
Modern Logical Frameworks Design

Agata Anna Murawska

Advisor: Carsten Schürmann
Submitted: August 2017

ii

Abstract

Throughout the years, logical frameworks have been a successful
tool for prototyping and developing a number of logics and pro-
gramming languages. However, to use the full power of the LF
approach, the behaviour of variables in the system being mecha-
nised must match the behaviour of those used in the LF variant.
While this is not a problem when working with more standard logi-
cal systems, it severely limits the usefulness of LF-like frameworks
for less typical applications. A more practical consideration is that
many of the existing frameworks do not have implementations, and
even those that do lack support for reasoning about, or program-
ming with, the mechanised systems.

Our main motivation is to eventually make it possible to model
and reason about complex concurrent systems and protocols. No
matter the application, be it the development of a logic for multi-
party session types or a cryptographic protocol used in a voting
system, we need the ability to model and reason about both the
building blocks of these systems and the intricate connections be-
tween them.

To this end, this dissertation is an investigation into LF-based
formalisms that might help address the aforementioned issues. We
design and provide the meta-theory of two new frameworks, HyLF
and Lincx. The former aims to extend the expressiveness of LF to
include proof irrelevance and some user-defined behaviours, using
ideas from hybrid logics. The latter is a showcase for an easier to
implement framework, while also allowing more properties of the
mechanised system to be expressed.

iii

iv

Resumé

Gennem årene har »logical frameworks« været et succesfuldt værk-
tøj til at udvikle mange logikker og programmeringssprog, samt at
skabe prototyper til disse. For at kunne benytte hele styrken bag
LF-metodikken er det dog nødvendigt, at variabler i systemet der
mekaniseres har adfærd, der passer til LF-variantens egne. Selv
om dette ikke er noget problem når man arbejder med almindelige
logiske systemer, er det en voldsom begrænsning når det gælder
mindre udbredte anvendelser. Der er også visse praktiske proble-
mer: de fleste frameworks mangler implementeringer, og de få, der
er blevet implementeret, understøtter ikke at man ræsonnerer over,
eller programmerer med, det mekaniserede system.

Vores primære mål med dette arbejde er at muliggøre, at man
kan mekanisere og ræsonnere over komplekse parallelle systemer
og protokoller. Uanset om formålet er at udvikle en logik for »mul-
tiparty session types« eller en kryptografisk protokol benyttet i et
valgsystem, skal vi kunne mekanisere og ræsonnere over både dis-
se systemers isolerede bestanddele og deres indviklede forbindelser.

Med dette formål er denne afhandling en undersøgelse af LF-
baserede formalismer, der måske kan være med til at løse de oven-
nævnte problemer. Vi designer og præsenterer metateorier for to
nye frameworks, nemlig HyLF og Lincx. Det første har som mål
at udvide LFs udtryksfuldhed med »proof irrelevance« og visse
brugerdefinerede opførelser, baseret på idéer fra hybride logikker.
Det andet er et eksempel på et framework, der er nemmere at imple-
mentere, samtidig med at det muliggør, at flere af det mekaniserede
systems egenskaber kan udtrykkes.

v

Acknowledgements

Throughout the writing process for this dissertation, I kept repeating to
myself that “I do like writing”. I do think this remains true now that
the thesis is finished, and it would definitely not be the case without the
support of some.

First, my supervisor, Carsten Schürmann, deserves gratitude for his
ongoing support, as well as his patience with me, and allowing me the
freedom to work on things that I found interesting.
Second, a big thanks to Nicolas Guenot, with whom I worked throughout
the first two and a half years of my PhD, for introducing me to the
wonderful world of proof theory, and teaching me the more magical
parts of LaTeX. None of this would have been well-typeset without his
help!
I am also extremely grateful to Brigitte Pientka for her warm welcome in
Montreal during my research stay abroad. Not only was the collaboration
there very fruitful, I consider my visit to McGill one of the most amazing
learning experiences. And I got to write some OCaml!

My co-authors, colleagues and friends from Copenhagen, Montreal,
Wrocław and elsewhere are too numerous to list (I’m sure I’d forget some,
and be really embarrassed about it), but you know who you are, and I
know that I owe you!

My eternal gratitude goes to Alec Faithfull, for his love, patience
and support. Not to mention spellchecking and proof reading the entire
thesis, and finding countless little ways to keep me (relatively) sane and
well-rested in between writing and more writing.
Alec also translated the abstract of this thesis to Danish, and Taus Brock-
Nannestad made sure it actually sounded good enough for a native
Danish speaker and an LF expert.

Thank you.

viii

Contents

Prelude 1
Synopsis . 2

I Background 3

1 Logical Framework Methodology 5
1.1 Kinds, Types and Terms . 5
1.2 Higher-Order Abstract Syntax . 9
1.3 Adequacy of Encodings . 12
1.4 Reasoning About Specifications . 15

2 Linear Logic 21
2.1 Classical Linear Logic . 22
2.2 Intuitionistic Linear Logic . 24
2.3 Resource-Aware Systems . 26

3 Encoding Linear Systems 29
3.1 Linear Logical Framework . 30
3.2 Meta-theory of LLF . 34
3.3 Beyond LLF . 39

II HyLF 41

4 Hybridising Logical Framework 43
4.1 Resource Counting . 43
4.2 Hybrid LF . 44
4.3 From HLF to HyLF . 47

5 [LFMTP 2014] Hybrid Extensions in a Logical Framework 49
5.1 Hybrid Logics and LF . 49
5.2 Extending Hybrid LF . 52
5.3 Encoding Logics in HyLF . 60
5.4 Conclusion and Future Work . 66
5.A Appendix . 67

III Lincx 73

6 Programming with Higher-Order Abstract Syntax 75
6.1 Contexts in LF . 75
6.2 Contextual Modal Logic . 77
6.3 Contextual LF . 78

7 [ESOP 2017] Lincx: A Linear Logical Framework with First-class Contexts 83
7.1 Introduction . 84
7.2 Motivating Examples . 86
7.3 Lincx: A Linear Logical Framework with First-Class Contexts 94
7.4 Mechanization of Lincx . 110
7.5 Related Work . 112
7.6 Conclusion and Future Work . 113
7.A Appendix . 114

Postlude 121

Bibliography 123

x

Prelude

The ambition to obtain correct and well-behaved systems was present
from the early days of computer science. Equally early it was understood
that strong guarantees of correctness would come not from pencil-and-
paper proofs, but rather from careful mechanization efforts using dedi-
cated tools for theorem proving. As the programs we want to model and
the properties we want to verify about them become more complex and
intricate, the tools for modelling and reasoning about them must also be-
come more adaptive and flexible to keep up with the growing complexity
of the systems being modelled. Theorem provers like Agda and Coq are
general enough to encode almost arbitrarily complex systems, although
this generality comes at a cost. Fitting a system into such a framework
often requires a heavy administrative burden, and with each change in
a system whose properties we want to mechanise, these administrative
steps have to be repeated and potentially even re-designed.

The logical framework approach to modelling and reasoning shifts
some of this burden from the user of the system to its developer. There is,
however, a trade-off: a concrete LF-like framework is well-suited only for
a very specific subclass of problems. It is probably for this reason that the
LF methodology seems to be lagging behind a little when compared to
the development of Coq or Agda: each new development in the LF world
is a separate, self-contained instance, rather than a module that might be
combined with existing tools and frameworks. Perhaps it would be of
value for the LF community to focus part of their efforts on adding more
expressive power to the frameworks being built, potentially even at the
cost of moving part of the maintenance burden to the user.

To this end, the work presented here is an investigation into possible
solutions which, while still adhering to the LF methodology, allow
modelling larger classes of systems. Additionally, a more uniform way

of reasoning within different logical frameworks with some shared
properties is of interest.

One concrete area in which these developments might be appreciated
is concurrency theory, in particular reasoning about voting systems. For
instance, the DemTech project is interested in, amongst other things,
developing trustworthy protocols for elections. This can clearly be con-
sidered as a concurrent, multi-party system. On some level, it is also an
example of resource-aware computation, where each ballot that has been
cast must necessarily be counted – precisely once. (The latter constraint
holds even when modelling non-electronic protocols considered in vot-
ing.) Finally, one might be interested in formally reasoning about the
trust that we put in such a system, using epistemic logics. The eventual
answers to these questions may well be beyond the scope of this disserta-
tion, but they should be kept in mind as part of the motivation for this
work.

Synopsis

We begin this dissertation by covering the background material important
for both of the subsequent parts. This includes an introduction to the
logical framework methodology and to linear logic. A more thorough
description of the Linear Logical Framework LLF is then presented, as
both the HyLF and Lincx frameworks, described in subsequent parts,
rely crucially on ideas introduced in LLF.

The next part is dedicated to HyLF, Hybrid Logical Framework. It
begins by presenting the design of HLF, a framework for linear logic
using ideas from hybrid logic to encode linearity; these ideas were, in
turn, a conceptual foundation for HyLF. The second chapter goes on
to present a slightly revised version of our LFMTP 2014 paper which
introduced HyLF.

The last part investigates a more general approach to logical frame-
works, which is that of Contextual Modal LF. Both this variant of LF
and its implementation in the Beluga system are discussed in the first
chapter of this part. The next chapter presents our ESOP 2017 paper,
which introduced a linear contextual framework Lincx.

2

Part I

Background

Chapter 1

Logical Framework Methodology

Modelling logics, programming languages and other complex systems to
verify their properties or reason formally about them has been an area
of ongoing research for several decades, leading to the development of
proof assistants and model checkers. The approach we are interested
in in this thesis is that of logical frameworks, the first implementation
of which was the Automath system [De Bruijn, 1980]. The name of the
particular style of formalism studied in the thesis comes from a later
work, namely the Edinburgh Logical Framework LF [Harper et al., 1993].
The original paper introducing LF has, at the time of writing, over 1700
citations – it is hard to argue against it being influential and interesting
to the scientific community.

The logical framework methodology is based on the concept of using
an expressive meta-logic to model whole classes of object logics. The
meta-logic is typically higher-order, and thanks to the Curry-Howard
correspondence, provability of certain formulae of the object logic can be
reduced to an inhabitation problem in the higher-order meta-logic encod-
ing. A crucial property of the meta-logic is, therefore, the decidability
of type checking, since checking the type of an object is equivalent to
checking the correctness of a proof.

1.1 Kinds, Types and Terms

In the case of standard LF, the meta-logic in question is λΠ-calculus (de-
scribed as part of the lambda cube in [Barendregt and Hemerik, 1990]),

a first-order dependent type system where a Π type may only depend on
a simply-typed term. This is typically expressed as an explicit syntactic
distinction between kinds and types, as we do not allow higher-order
dependencies. Grammars for kinds, types and terms (as presented in the
original LF system) can be given as:

Kinds K ::= type | Πx:A.K
Type Families A, B ::= a | Πx:A.B | A M
Terms M, N ::= c | x | λx : A.M | M N

A term in LF can be a lambda abstraction, an application, a variable or a
constant declared in the signature Σ.

Signature Σ ::= · | Σ, a : K | Σ, c : A

A type family can again be a constant, a dependent type or an application
of a dependent type to a term. On both the kind and the type level,
non-dependent functions will be denoted using →, so Πx:A.B ≡ A → B
if B does not depend on x.

The presentation of types and terms differs, depending on the
variant of the framework considered. A pre-canonical presentation
by [Cervesato and Pfenning, 1996] distinguishes atomic and normal
terms, allowing only η-long forms of the latter. A more recent
canonical presentation, studied by [Watkins et al., 2002] and later
by [Harper and Licata, 2007], ensures that only canonical forms are
typeable. Further, variants using spines instead of applications have
been investigated, starting with [Cervesato and Pfenning, 2003]. Finally,
a different base logic with its own connectives can be considered, like in
[Cervesato and Pfenning, 1996, Watkins et al., 2002, Reed, 2009]. Even
with all that variety, the separation of kinding and typing is, in general,
preserved.

When discussing variants of LF in the later chapters, more modern
presentations will be given; however, for the purpose of this general
introduction to the methodology of logical frameworks, a presentation
close to the original one will suffice, as we focus our attention on the
uses of the framework, rather than on the meta-theoretic aspects of it.
To this end, Figure 1.1 presents the typing and kinding rules of LF.
The ≡ relation is a definitional equality given by β- and η-conversions.
Signature Σ and context Γ well-formedness definitions are omitted, but
absolutely standard. Note that in the presence of dependent types, all of
these judgements are mutually dependent.

6

x:A ∈ Γ �Σ Γ ctx

Γ �Σ x : A
c:A ∈ Σ �Σ Γ ctx

Γ �Σ c : A

Γ, x : A �Σ M : B
Γ �Σ λx : A.M : Πx:A.B

Γ �Σ M : Πx:A.B Γ �Σ N : A
Γ �Σ MN : [N/x]B

Γ �Σ M : A Γ �Σ A′ : type Γ �Σ A ≡ A′

Γ �Σ M : A′

�Σ Γ ctx a : K ∈ Σ
Γ �Σ a : K

Γ, x : A �Σ B : type

Γ �Σ Πx:A.B : type

Γ, x : A �Σ B : K
Γ �Σ λx : A.B : Πx:A.K

Γ �Σ A : Πx:B.K Γ �Σ M : B
Γ �Σ AM : [M/x]K

Γ �Σ A : K Γ �Σ K′ : kind Γ �Σ K ≡ K′

Γ �Σ A : K′

�Σ Γ ctx

Γ �Σ type : kind
Γ, x : A �Σ K : kind
Γ �Σ Πx:A.K : kind

Figure 1.1: LF Types and Kinds

LF Notation Many of the examples presented in this and the subse-
quent chapters of this thesis use a notation based on a Twelf implemen-
tation of LF.

– identifiers standing for constants from the signature, both of type
and term level, are starting with small letters; e.g. nat, succ or
plus

– identifiers for meta-variables standing for LF terms start with a
capital letters; e.g. N in succ N

– usage of curly brackets is an alternative syntax for a Π-type; e.g.
{N1: nat}{N2: nat}{M: nat} plus N1 N2 M stands for
Π (N1: nat) . Π (N2: nat). Π {M: nat} . plus N1 N2 M

– by convention, if we skip type declarations of meta-variables used as
indices, they are universally quantified in the order of appearance;

7

e.g. plus N1 N2 M is a shorthand for {N1: nat}{N2: nat}{M: nat}
plus N1 N2 M

1.1.1 Example: Binary Trees

When modelling object systems using LF, the framework relies on
encodings made using explicit constant declarations (both kind and
type-level declarations of this form are allowed).

As an example of a simple type in LF, we will consider binary trees.
First, we have to declare a constant my_tree : type. This creates an
unindexed type family. We continue by providing constants that inhabit
this type, in this case leaves and branches: my_leaf : my_tree and
my_branch : my_tree → my_tree → my_tree. Note that the my_leaf
constant does not contain any data. If we had another type available, say,
that of natural numbers nat, we could of course declare data-containing
leaves as my_leaf : nat → my_tree.

nat : type.
z : nat.
s : nat → nat.

my_tree : type.
my_leaf : nat → my_tree.
my_branch : my_tree → my_tree → my_tree.

There is not a lot to be said about this level of encoding, apart from
its resemblance to a typical data type declaration in a programming
language. We will move one step up from here, and discuss a language
of properties of binary trees.

Let us now consider tree height. Coming from a (functional) pro-
gramming background, it seems natural to expect that, having access
to a type nat of natural numbers, we can express the tree height as a
function tree_height : my_tree → nat. In LF this expectation is in
fact incorrect, as such a construct would actually provide an additional
constructor for the type nat. Instead, we will use a type family encoding
a relation between a my_tree object and a natural number representing
its height. The definition of the max M N P relation ("P is a maximum of
M and N") is skipped here, but behaves as expected.

8

tree_height : my_tree → nat → type.
tree_height/my_leaf : {N : nat} tree_height (my_leaf N) z.
tree_height/my_branch :

{T1 : my_tree}{T2 : my_tree}{N1 : nat}{N2 : nat}{N : nat}
max N1 N2 N →
tree_height T1 N1 →
tree_height T2 N2 →
tree_height (my_branch T1 T2) (s N).

Polymorphism It is worth pointing out that polymorphism is not sup-
ported in LF, making it impossible to construct a binary tree parametrized
by the type of a leaf. That would require a type family something like
poly_tree : Π A : type . type, which cannot be expressed using the
LF grammar given above. We do allow dependent types, but dependent
kinds are not supported. LF’s strength crucially depends on the existence
of canonical (i.e. long βη-normal) forms, which become problematic in
the presence of polymorphism – in particular, η-expansion cannot be
directly performed on a polymorphic variable. Interestingly, [Reed, 2008]
observes that, in principle, base-type polymorphism in LF is possible
without η-expansion being sacrificed – however, at the time of writing
this thesis and to the best of our knowledge, no follow-up work based
on this observation has been made.

In general, it should be said that LF is strictly less expressive than,
for instance, the Calculus of Constructions by [Coquand and Huet, 1988],
used as a foundation of the Coq theorem prover. This lack of expressive
power is the price to pay for how easy it is in LF to work with binders.

1.2 Higher-Order Abstract Syntax

Logical frameworks would not have been a topic of active research for
almost thirty years if their expressive power ended with the properties of
binary trees. Indeed, the true power of the LF approach comes from its
good support for higher-order abstract syntax (HOAS). In simple terms,
HOAS allows using the function space of the meta-logic to model variable
bindings in the object logic. This comes with a number of advantages,
such as the ease with which we can implement binders with built-in
support for α-conversion (meta-level variables are α-convertible) or, as

9

we will see later in this chapter, substitution theorems for the object
logic coming for free with no need to even define substitution itself.
We start this overview by looking at some encodings using HOAS, and
continue by discussing the technical requirements for this technique to
be practicable.

1.2.1 Example: Lambda Calculus

The canonical example of using higher-order abstract syntax is a mecha-
nization of lambda calculus. We consider a simple variant of it, allowing
for anonymous functions and pairs, together with application and pro-
jections. We start by encoding the grammar of lambda terms:

tm : type.
lam : (tm → tm) → tm.
app : tm → tm → tm.
pair : tm → tm → tm.
proj1 : tm → tm.
proj2 : tm → tm.

Two things are worth noting about the code above. First, typically
a grammar for tms would include the variable case. Second, the lam
constructor takes a function from tm to tm as its argument, whereas
λ-abstraction is normally constructed by exposing the variable name x
and providing a term which may have free occurrences of x. These two
features are precisely where the higher-order abstract syntax is in play.
Since in LF we express object logic variables as meta-logic variables, it is
meaningful to consider a variable x : tm as long as tm is a correct type.
We exploit this fact further to describe a lambda abstraction of the object
level system, by explicitly using the meta-level variable in the argument.
As a result, we obtain a meta-level function from tm to tm.

To introduce typing rules for simply-typed lambda calculus, we first
need to declare the possible types. We will consider a type class tp,
containing arrow type, conjunction and some (further unspecified) base
type o. With tp available, we can then express the typing derivation as a
relation between a term and its appropriate type.

tp : type.
o : tp.
conj : tp → tp → tp.
arr : tp → tp → tp.

10

of_type : tm → tp → type.
of_type/proj1 :
of_type M (conj A B) → of_type (proj1 M) A.

of_type/proj2 :
of_type M (conj A B) → of_type (proj2 M) B.
of_type/pair :
of_type M A → of_type N B →
of_type (pair M N) (conj A B).

of_type/app :
of_type M (arr A B) → of_type N A →
of_type (app M N) B.
of_type/lam :
({x : tm} of_type x A → of_type (M x) B) →
of_type (lam (λx. M x)) (arr A B).

Most of the cases defining the of_type relation are self-explanatory.
The interesting one is of_type/lam, which again relies on higher-order
abstract syntax to encode a familiar rule for typing a λ-abstraction. The
argument taken by this constant is an LF function which, given x and
of_type x A, returns an instance of of_type (M x) B – corresponding
directly to the premise Γ, x : A � M : B of the typing rule. The conclusion
of of_type/lam is an instance of of_type (lam (λx. M x)) (arr A B),
which encodes the judgement Γ � λx.M : A → B.

Notably, the of_type/lam case exemplifies that HOAS provides
α-conversion for free. When writing of_type (M x) B we (implicitly)
make the typing assumption M : tm → tm, since we do apply x : tm
to M. But this means the control over names of variables used can be
expressed as a λ-wrapping: λy.M y will use y as the free variable in M.

The next step in defining a simply-typed lambda calculus is to provide
semantics for it. In LF these will be represented using a relation step
between two objects of type tm, denoting single-step reduction. The
property value describes values of the language.

value : tm → type.
value/lam : value (lam (λx. M x)).
value/pair : value (pair M N).

step : tm → tm → type.
step/app/beta : value N → step (app (lam (λx. M x)) N) (M N).
step/proj1/beta : step (proj1 (pair M N)) M.
step/proj2/beta : step (proj2 (pair M N)) N.

step/app1 : step M M’ → step (app M N) (app M’ N).

11

step/app2 : value M → step N N’ → step (app M N) (app M N’).
step/proj1 : step M M’ → step (proj1 M) (proj1 M’).
step/proj2 : step M M’ → step (proj2 M) (proj2 M’).

The constant step/app/beta is an interesting case. Typically, a β-
reduction is given as (λx.M)N �→ [N/x]M, requiring that a substitution
function be formally defined. As we have already mentioned, in LF
variable substitution is precisely application, which greatly simplifies
mechanization of any development relying on substitution. This becomes
even more important when considering properties like type preservation
under evaluation, which we will look at in Section 1.4.1.

1.2.2 Canonical Forms

The crucial property of a logical framework, which gives higher-order
abstract syntax so many advantages, is the existence of canonical forms
for all well-typed terms in the meta-language.

In the case of LF, these canonical forms are usually chosen to be
β-normal and η-long. This allows pattern matching on functions: a
canonical form for a term foo of type nat → nat has to start with
a lambda abstraction: foo = λx:nat. foo’ x for some foo’, as it is
η-long. Moreover, as we require that canonical terms are β-normal, the
application of an argument bar: nat to function foo can be expressed as
a substitution: foo bar = (λx:nat. foo’ x) bar = [bar / x] foo’,
and vice-versa. It follows that if in the meta-logic, substitution preserves
typing, so does the substitution in the object logic.

Of course, it is only when the meta-logic and object logic behave the
same with respect to variables that we can exploit HOAS to the fullest.
In standard LF, for example, we allow weakening and contraction in
contexts, so representing single use (linear or affine) variables using LF
function space is not possible directly. We will come back to this point in
Chapter 3.

1.3 Adequacy of Encodings

The adequacy property establishes that the encoding we came up with
corresponds precisely to the mathematical objects we were formalizing
in the first place. After all, when formalizing a logical system, we want

12

the properties obtained in the mechanized version to relate back to the
original system of interest. This requires that we provide a compositional
isomorphism between the original system and its encoding.

Definition 1.1 (Adequacy). Given a logical system D, its encoding �D� is
considered adequate when there exists a compositional bijection between objects
in D and canonical forms describing �D� in LF.

x : A ∈ Γ
Γ � x : A

Γ, x : A � t : B
Γ � λx.t : A → B

Γ � t : A → B Γ � u : A
Γ � t u : B

Γ � t : A Γ � u : B
Γ � 〈t, u〉 : A ∧ B

Γ � t : A ∧ B
Γ � π1 t : A

Γ � t : A ∧ B
Γ � π2 t : B

u value
(λx.t)u �→ [u/x]t π1 〈t, u〉 �→ t π1 〈t, u〉 �→ u

(λx.t) value
t �→ t′

t u �→ t′ u
u �→ u′

t u �→ t u′

〈t, u〉 value
t �→ t′

π1 t �→ π1 t′
t �→ t′

π2 t �→ π2 t′

Figure 1.2: λ-calculus: Typing and Reductions

We want to argue for the adequacy of the encoding of simply-typed
λ-calculus (STLC) from Section 1.2.1, using induction on derivations. We
aimed for it to be an encoding of the logical system given in Figure 1.2.

Establishing adequacy for the step and value relations requires
noticing, as we have before, that the substitution present in the rule
(λx.t)u �→ [u/x]t can be expressed in LF as a meta-level application, like
in step (app (lam (λx. �t� x)) �u�) (�t� �u�), since the canoni-
cal forms of �t� �u� and [�u�/x] �t� expressions must necessarily be
the same. Of course, this argument also relies on the assumption that
terms of STLC are encoded adequately.

In the case of of_type being an adequate representation of the typing
judgement, things get more interesting, as the latter makes explicit use
of the context Γ, which we hide in the encoding. We want to argue that
Γ � t : A holds if and only if the type of_type �t� �A� is inhabited
when the meta-context contains the encoding of Γ. The encoding of

13

the context has not been given explicitly, but looking at the type of
of_type/lam constant, we require it to be:

�·� = ·
�Γ, x : A� = �Γ�, (x : tm, o : of_type x �A�)

As the encoding function must be invertible, let us also provide the
inverse; notice that the LF context necessarily contains pairs (blocks, in
the LF terminology) of assumptions, (x: tm, o: of_type x A).

�·�−1
= ·

�Γ, (x : tm, o : of_type x A)�−1
= �Γ�−1

, x : �A�−1

The interesting cases in the adequacy argument are, unsurprisingly,
ones using HOAS. In each of the proof sketches below, assume that the
meta-context of LF is populated by an encoding �Γ� of context Γ, unless
explicitly stated otherwise.

Case
x : A ∈ Γ
Γ � x : A

if and only if of_type x �A� is inhabited.

’=⇒’
Knowing x : A ∈ Γ and given the definition of �Γ�, we conclude that

(x : tm, o : of_type x �A�) is in the LF meta-context. Therefore
of_type x �A� is inhabited, with o being the inhabitant.
’⇐=’

Knowing of_type x �A� is inhabited, take o to be the inhabi-
tant. Then necessarily (x : tm, o : of_type x �A�) is in �Γ�. Us-
ing the decoding function, we conclude that � �Γ��−1

= Γ contains
x : � �A��−1

= x : A. Therefore Γ � x : A using the variable typing rule.

Case
Γ, x : A � t : B

Γ � λx.t : A → B
if and only if

of_type (lam (λx. �t� x)) (arr �A� �B�) is inhabited.
’=⇒’

By using the induction hypothesis for Γ, x : A � t : B, we can conclude
that the type of_type �t� �B� must be inhabited in the LF meta-context
�Γ�, (x : tm, o : of_type x �A�). Let OT stand for the inhabitant
of this type. Then, using LF typing rules, we are able to construct a

14

term λx.λo.OT of type {x:tm} of_type x �A� → of_type �t� �B�.
Therefore, of_type (lam (λx. �t� x)) (arr �A� �B�) is inhabited,
with of_type/lam (λx.λo.OT) being the inhabitant.

’⇐=’
Knowing of_type (lam (λx. �t� x)) (arr �A� �B�) is inhab-

ited, take OT to be the inhabitant. Then, by inversion on the typing
of OT, we obtain OT = of_type/lam (λx.λo.OT’). It follows that OT’
is an LF object of type of_type �t� �B� in the LF meta-context �Γ�
, (x:tm, o:of_type x �A�). Next, using the induction hypothesis
on �Γ�, (x:tm, o:of_type x �A�) � OT’ : of_type �t� �B�, we
obtain Γ, x : A � t : B. We then use the appropriate typing rule to
conclude Γ � λx.t : A → B.

Proofs of adequacy are not difficult, but can quickly become very
technical. However, it is absolutely essential that adequacy is established
– especially in encodings using higher-order abstract syntax, where part
of the encoding specifying context representation is hidden.

1.4 Reasoning About Specifications

Throughout this chapter we have looked at examples of encodings for a
variety of objects:

– my_tree, as well as tm, tp and nat are simple type families, core-
sponding to data types in a typical programming language;

– tree_height and of_type encode (partial) functions;

– value and step stand for, respectively, a unary and a binary rela-
tion.

What we have seen so far is therefore specifying only an object logic. Hav-
ing mechanised a system specification, we are typically also interested in
reasoning about it.

1.4.1 Example: Type Preservation

The first property we are interested in formally establishing is that of
type preservation under evaluation of the STLC presented in Figure 1.2.

15

Property 1 (Preservation).
If Γ � M : A and M �→ M′ then Γ � M : A.

Knowing from the previous discussion that step and of_type are
both adequate encodings of the relevant relations in simply-typed λ-
calculus, we can also express it using the provided encoding:

Property 1 (Preservation).
For any M:tm, M’:tm, A:tp, if of_type M A and step M M’ then also
of_type M’ A.

Formalising the theorem statement in LF is fairly straightforward
using a dependent type family. Note that again meta-variables which
are not declared (in this case M, M’ and A) are implicitly universally
quantified.

preservation : step M M’ → of_type M A → of_type M’ A → type.

It was already remarked upon that, in the LF approach, we replace
satisfiability of a formula with inhabitation of a type. Indeed, Property
1 is satisfied if the preservation type family is inhabited. The code
snippet below shows inhabitant construction cases for the implication
fragment.

preserv/app/beta:
preservation
(step/app/beta (V : value N))
(of_type/app (of_type/lam OFT) (OT2 : of_type N B))
(OFT N OT2).

preserv/app1:
preservation ST OT1 (OT′1 : of_type M’ (arr A B)) →
preservation
(step/app1 ST) (of_type/app OT1 OT2) (of_type/app OT′1 OT2).

preserv/app2:
preservation ST OT2 (OT′2 : of_type N’ A) →
preservation
(step/app2 V ST) (of_type/app OT1 OT2) (of_type/app OT1 OT′2).

In both preserv/app1 and preserv/app2, we base our reasoning on
establishing the property for smaller terms first. On the other hand,
preserv/app/beta provides an inhabitant of the preservation type for
specific arguments.

Are these enough to argue Property 1? Clearly not, since we have
not said anything about the step/proji cases. But what if we limit

16

our attention to the implication fragment of the language, skipping
pair, proj1, proj2? Is the preservation property established for such
a fragment? And, more importantly, what is the systematic (if not
automated) way of establishing this?

We need to ensure that the cases provided above define a total rela-
tion: for all possible inhabitants ST of step M M’ and OT of of_type M A,
we are able to construct an inhabitant OT’ of of_type M’ A such that
preservation ST OT OT’ is inhabited. We can observe that the provided
code performs an inductive analysis of all relevant cases of the step rela-
tion, constructing an inhabitant of preservation in each case. Moreover,
the size of terms decreases in the inductive calls. Therefore, for the
implication fragment of STLC we have indeed considered all cases, and
so the preservation type is inhabited and Property 1 is thus established.

1.4.2 Example: Progress

Another "sanity check" property of STLC that we want to ensure is that
of evaluation progress: each well-typed term is either a value, or can be
rewriten in one step to another term.

Property 2 (Progress).
If Γ � M : A then either M is a value or there exists M′ such that M �→ M′.

Using the encoding provided in the previous section, we can refor-
mulate it slightly:

Property 2 (Progress).
If of_type M A then either value M or step M M’ for some M’.

Notice that it is not possible to express progress as an LF type family
directly, since the disjunction type is not supported. We can however
simulate it using a type family val_or_step, as below:

val_or_step : tm → type.
val_or_step/val : value M → val_or_step M.
val_or_step/step : step M M’ → val_or_step M.

progress : of_type M A → val_or_step M → type.

A pencil-and-paper proof of this property will proceed by induction
on the typing derivation. Cases where the term is already a value are
easy to express:

17

progress/lam :
progress (of_type/lam OT) (val_or_step/val value/lam).

progress/pair :
progress (of_type/pair OT1 OT2)

(val_or_step/val value/pair).

However, in the case of the of_type/app OT1 OT2, we cannot directly
give one rule that covers all possible reductions which can be used in
the application case1: step/app/beta, step/app1 or step/app2. Case
analysis would again require the use of disjunction, which we simulate
as before, using a type family.

progress_app_lem :
val_or_step M1 → val_or_step M2 →
of_type M1 (arr A B) → val_or_step (app M1 M2) → type.

progress_app_lem/app1 :
progress_app_lem (val_or_step/step S) VS2 OT1

(val_or_step/step (step/app1 S)).
progress_app_lem/app2 :

progress_app_lem (val_or_step/val V) (val_or_step/step S) OT1
(val_or_step/step (step/app2 V S)).

progress_app_lem/beta :
progress_app_lem (val_or_step/val value/lam) (val_or_step/val V2)

(of_type/lam OT)
(val_or_step/step (step/app/beta V2)).

progress/app :
progress_app_lem E1 E2 OT1 S →
progress OT1 E1 → progress OT2 E2 →
progress (of_type/app OT1 OT2) S.

Much like when we argued that preservation is inhabited, when check-
ing the inhabitation of the progress type, we need to ensure that all
possible cases are covered, and that induction is called only on smaller
terms. Property 2 is indeed established for the implication fragment,
however noticing that requires a few more steps of indirection. In partic-
ular, we rely on progress_app_lem to be inhabited, which conceptually
corresponds to using a lemma.

1.4.3 Automating Reasoning

There are a few parts to this process of verifying properties like the
ones from the examples above. Firstly, the defined constants need to

1The same happens with of_type/proji

18

typecheck; secondly, when constructing an inhabitant recursively, we
need to ensure that we cover all possible cases; and thirdly, we have to
verify that the recursive calls are smaller.

The first of these tasks is fairly easy to satisfy, as we do ex-
pect logical frameworks to have decidable typing rules. There are
also numerous results on coverage checking in LF-based systems,
for instance by [Schürmann and Pfenning, 2003] and more recently by
[Pientka and Abel, 2015].

Sadly, the strength of LF that comes from using HOAS does have
a price: the definitions we write are no longer inductive in the usual
sense. Indeed, recursion over an object using higher-order abstract syntax
requires going under a lambda abstraction, effectively requiring that we
work on open derivations.

Twelf

One of the most well-established systems for automating reasoning about
LF specifications is Twelf by [Schürmann, 2000]. It uses a specially de-
signed meta-logic which supports inductive reasoning with LF specifica-
tions. In particular, Twelf allows automatic coverage and termination
checks of the provided definitions.

Using the Twelf-like approach, whenever we need a new logical
framework with support for automated reasoning, we need to also de-
velop a meta-logic for it. Unfortunately, a general meta-logic that covers
any arbitrary logical framework has so far escaped our grasp. For some
variations of LF, such as CLF, the meta-logic is not yet known, making
automated meta-reasoning impossible. To the best of our knowledge, no
general results exist on designing such meta-logics.

Beluga

Another approach to reasoning about LF specifications is presented in
the Beluga system by [Pientka and Dunfield, 2010]. In it, the reasoning
layer is essentially a first order logic, and we raise LF objects to that level
by assigning to them postponed substitutions. Compared to Twelf, it
promises more flexibility, as the meta-logic is not as tightly bound to the
specification logic. We exploit this in Part III of this thesis, where we step
towards changing the specification language for Beluga without altering
the reasoning layer.

19

Chapter 2

Linear Logic

Linear logic, introduced by [Girard, 1987], is a resource-aware, substruc-
tural logic with modalities enabling duplication ("of course", !) or discard-
ing ("why not", ?) assumptions, which are otherwise precisely single-use.

From the proof theory perspective, the main difference between intu-
itionistic logic and intuitionistic linear logic (or classical logic and classical
linear logic) lies in the presence of certain structural rules. Weakening
and contraction are absent in linear variants, making the variables behave
in a resource-like fashion: we require that they are all used precisely
once. When giving sequent calculus or natural deduction inference rules
for a non-linear logic, we typically build weakening and contraction into
the rules for connectives. Interestingly, with weakening and contraction
not present, the additive and multiplicative variants of conjunction and
disjunction can no longer be considered equivalent. In order to recover
the full expressive power of non-linear (intuitionistic or classical) logic,
we need to add operators for which weakening and contraction do again
hold: these are the modalities "of course" and "why not", jointly referred
to as exponentials.

Other substructural logics can also be considered. Affine logic admits
weakening, but not contraction – each assumption can be used at most
once. Systems with subexponentials [Nigam and Miller, 2009] exploit the
non-canonical nature of exponentials, allowing us to examine a linear
logic equipped with a whole class of labelled modal operators, instead
of just a single pair.

Finally, before moving onto the presentation of the logic itself, it
should be remarked that only a fragment of it is relevant to the core
of this thesis – the linear implication (�) connective being of primary

interest. Still, given the directions of future work sketched in the sub-
sequent chapters, as well as a large body of applications using more
of the connectives from linear logic (with session types being the most
prominent example), we give a more thorough presentation.

2.1 Classical Linear Logic

Connectives of classical linear logic can be split into categories, depending
on their behaviour regarding the context of assumptions.

A ::= a | 1 | 0 |
 | ⊥ | A ⊗ B | A
&

B
| A & B | A ⊕ B | !A | ?A | A⊥

– multiplicatives: conjunction (⊗, "tensor") with its unit (1, "one"),
disjunction (

&
, "par") with its unit (⊥, "bottom"), which do not

allow re-usage of context;

– additives: disjunction (⊕, "plus") with its unit (0, "zero"), conjunc-
tion (& , "with") with its unit (
, "top"), which do allow using the
same context in two different premises;

– exponentials: of course (!, "bang"), why not (?), which re-introduce
weakening and contraction, allowing the context to be used as in
classical logic;

– linear negation (−⊥, "dual").

Notice that linear implication (�, "lolli") is missing in this pre-
sentation. This is because, just like in classical logic, it is encodable:
A � B := A⊥ &

B.

Linear negation introduces duality between pairs of operators, as
presented in Figure 2.1. Note that a stands for a propositional variable,
and a⊥ for its dual. This duality allows the presentation of the full system
of classical linear logic as a single-sided sequent calculus, as can be seen
in Figure 2.2. An alternative presentation using a double-sided sequent
calculus is also possible, but would be unnecessarily verbose, since we
effectively encode every rule twice – a shortcoming avoided here by
exploiting the dual nature of linear connectives.

The axiom rule requires the context to only contain an assumption
and its dual, enforcing that all assumptions are, in the end, used. Another

22

(a)⊥ = a⊥ (a⊥)⊥ = a
1⊥ = 0 0⊥ = 1

⊥ = ⊥ ⊥⊥ =

(A ⊗ B)⊥ = A⊥ ⊕ B⊥ (A ⊕ B)⊥ = A⊥ ⊗ B⊥

(A & B)⊥ = A⊥ &
B⊥ (A

&
B)⊥ = A⊥ & B⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

Figure 2.1: Duality in classical linear logic

� A, A⊥ ax � Γ, A � Δ, A⊥
� Γ, Δ cut

� Γ, A � Δ, B
� Γ, Δ, A ⊗ B

⊗ � Γ, A, B
� Γ, A

&
B

&

� Γ, A � Γ, B
� Γ, A & B &

� Γ, A
� Γ, A ⊕ B

⊕1
� Γ, B

� Γ, A ⊕ B
⊕2

�?Γ, A
�?Γ, !A !

� Γ, A
� Γ, ?A ?

� Γ
� Γ, ?A weaken

� Γ, ?A, ?A
� Γ, ?A contr

� 1 1 (No rule for 0) � Γ,

 � Γ
� Γ,⊥ ⊥

Figure 2.2: Classical Linear Logic

interesting feature is the behaviour of modal operators: ?Γ in the ! rule
requires that all the assumptions in the context Γ begin with ? modality.
This can, of course, be achieved using the ? rule. Further, such "why not"
assumptions can be weakened and contracted at will.

Choice of formalism The only systems for linear logic considered in
this thesis will be presented using either natural deduction or sequent
calculus formalisms. It should, however, be noted that other possibil-
ities exist. In particular, when introducing linear logic, [Girard, 1987]
suggested a use of proof nets. Promising results also arise from the

23

linear nested sequent [Lellmann, 2015] view of linear logic, for instance
in [Lellmann et al., 2017]. However, because the LF methodology is typi-
cally described using natural deduction, for our purposes this formalism
is more familiar and easier to work with.

2.2 Intuitionistic Linear Logic

The presentation of intuitionistic linear logic (ILL), like that of intuition-
istic logic, is given as a double-sided sequent calculus with a single
conclusion. Looking at the rules from Figure 2.2, it is fairly easy to see
that the multiplicative disjunction

&
operator is not compatible with

the single-conclusion style of intuitionistic logic. It is therefore replaced
with a linear implication � ("lolli"). We do not consider the "why not"
? operator, and we also abandon the negation (−)⊥ operator. Impor-
tantly, the spirit of splitting classical negation into an exponential and
a linear negation (duality) is preserved in the splitting of intuitionistic
implication: A → B :=!A � B.

The complete syntax of formulas in intuitionistic linear logic is there-
fore the following:

A ::= a | 1 | 0 |
 | A ⊗ B | A � B | A & B | A ⊕ B | !A

Figure 2.3 presents sequent calculus inference rules for ILL. Just as
lambda calculus terms can be used to annotate derivations of intuition-
istic logic, it is possible to annotate linear logic derivations with linear
lambda calculus terms. We do not give these annotations here, keeping
the discussion purely logical; we will, however, use them in subsequent
chapters.

The rules for the "of course" (!) operator are interesting. First, the
!R rule requires that all assumptions in the context begin with the !
modality. Second, there are three different left rules, corresponding
to the structural rules of contraction and weakening, which we want
the ! modality – and no other connective in the system – to have. The
rule !Lderel ("dereliction"), allows a linear assumption to be demoted to a
persistent one. The !R rule, on the other hand, promotes the conclusion of
the judgement to be permanent.

24

A � A
ax Γ � A Δ, A � C

Γ, Δ � C cut

Γ � A Δ � B
Γ, Δ � A ⊗ B

⊗R
Δ, A, B � C

Δ, A ⊗ B � C
⊗L

Δ, A � B
Δ � A � B

�R
Δ � A Γ, B � C
Δ, Γ, A � B � C

�L

Δ � A Δ � B
Δ � A & B

& R
Δ, A � C

Δ, A & B � C
& L1

Δ, B � C
Δ, A & B � C

& L2

Δ � A
Δ � A ⊕ B

⊕R1
Δ � B

Δ � A ⊕ B
⊕R2

Δ, A � C Δ, B � C
Δ, A ⊕ B � C

⊕L

!Γ � A
!Γ �!A

!R
Γ, A � C
Γ, !A � C !Lderel

Γ, !A, !A � C
Γ, !A � C

!Lcontr Γ � C
Γ, !A � C !Lweak

� 1
1R

Δ � C
Δ, 1 � C

1L Γ, 0 � C
0L Γ �

R

(No rule for 0R) (No rule for
L)

Figure 2.3: Intuitionistic Linear Logic

2.2.1 Proof Theory

Linear logic satisfies the usual proof theoretic metrics that allow us
to decide whether a logic is considered well-behaved. These include
initiality, associated with η-expansion, which allows restricting the axiom
rule to work only on atomic propositions a � a, and cut elimination,
which lets us consider only proofs which are cut-free. The formulations
of these properties for ILL are given as:

Theorem 2.1 (Initiality). The general axiom rule A � A is derivable if we
allow using its atomic variant a � a.

25

Theorem 2.2 (Cut elimination). For any derivation D :: Γ � A, there exists a
cut-free variant of it.

One of the most important consequences of cut elimination is the
subformula property, which in turn allows for algorithmic search for
proofs of a given formula. Moreover, thanks to the more structured
behaviour of its connectives, linear logic – especially its non-exponential
fragment – allows for more intricate proof search procedures. This led,
for instance, to the development (by [Andreoli, 1992]) of focusing as
a proof technique, which was later also adapted to intuitionistic and
classical logics.

Observing the distinction between additive and multiplicative con-
nectives led to the establishment of a Curry-Howard relation between
linear logic and session types [Caires and Pfenning, 2010, Wadler, 2015].
Seen through this lens, multiplicative connectives correspond to sending
and receiving actions, whereas additives stand for internal and external
choice operators. Finally, the exponential can be seen as a replication.

2.3 Resource-Aware Systems

Linear logic is often described as a "resource-aware logic" or a "logic
of resources". Indeed, the lack of weakening and contraction in linear
logic seems to be a perfect fit for modelling resource-based systems. No
contraction means that no resource can be used twice, and no weakening
forces us to use every resource we have. (We should note that affine
systems are also a good match, as we can sometimes have leftover
resources.)

2.3.1 Example: Restaurant Menu

Lunch Menu : 200 DKK

� A soup (tomato or onion, depending on availability)

� Vegetarian or fish meal

� Water ad libitum

� Choice of cake or cheese board: 50 DKK extra

26

One of the most commonly seen examples explaining usage of linear
logic connectives for resource modelling is that of a restaurant menu.

What does 200 Danish kroner get us? A lunch consists of a seasonal
soup course, a vegetarian or fish main meal, and unlimited water. If we
pay another 50 kroner we can also get a cake or some cheese. Notice that
some choices are external (whether the soup is tomato or onion depends
on what is available) and some are internal (whether we get a vegetarian
meal or fish is something we decide on). This is precisely the behaviour
of additive operators: ⊕ represents a disjunction, an external choice (of
whoever is offering to feed us), whereas & is a conjunction, an internal
choice (where we decide if we want fish). Water ad libitum can mean any
amount of water, so water in this example is a persistent resource. We
mark that it is available in any quantity using the "of course" operator.
Finally, we have an option of ordering a desert (cake or cheese), but only
if we are willing to pay extra. We can also choose not to have desert,
which is represented using type 1. The menu can be described in linear
logic in the following manner:

lunch = 200 DKK � soup ⊗ main ⊗ ! water ⊗ maybe_dessert
soup = tomato ⊕ onion
main = vegetarian & fish
maybe_desert = desert & 1
dessert = (50 DKK � cake & cheese)

When trying to mechanise an example like this in LF, we quickly
encounter a number of problems: it is rather difficult to express that
the money we have can be used only once, and you can have as many
dinners and deserts as you want. While this is obviously excellent news
(especially if the cake is good), it raises issues of adequacy.

LF was originally developed using intuitionistic logic as its basis, so
has no native support for linear implication �, and everything we have
access to can be used arbitrarily often. To model linear systems using
an LF-like approach, a variant of LF designed with linearity in mind is
needed.

One can see this as a test of the methodology. Given that the gains
from using LF can be best appreciated when the higher order abstract
syntax allows for "free" variable binders and substitution theorems, how
hard is it to develop a variant of LF that allows the bound variables to
behave precisely as we want them to?

27

Chapter 3

Encoding Linear Systems

The establishment of a correspondence between session types and linear
logic led to a rise of interest in formal reasoning frameworks using the
latter. The hope is that, if such a framework is expressive enough to
capture session types, formal reasoning about protocols and abstract
concurrency models will become less cumbersome.

However, the interest in using linear logic as a basis for a LF-like
system is not new. The first effort in this direction was the Linear Logical
Framework (LLF) by [Cervesato and Pfenning, 1996], a variant of LF
designed specifically to work with resource-aware systems. As it is a
spiritual predecessor to both of the lines of enquiry pursued in this
thesis, its design is worth studying in more detail.

The presentation that we give here does not precisely follow that in
the original paper, which required terms to be η-long, but not necessarily
β-normal. Rather, it adheres to the modern methods of building such
frameworks, designed to ensure that only canonical forms are typeable.
This greatly simplifies the design of the meta-theory and makes ade-
quacy arguments easier to express: since the only well-typed terms are
canonical, the compositional bijection we are looking for in the adequacy
arguments is between elements of the object logic and well-typed terms
in (a variant of) LF, rather than canonical objects of the framework. To
this end, the presentation we give here will use hereditary substitution,
as described by [Harper and Licata, 2007] in the Canonical LF paper and
originally introduced for the Concurrent Logical Framework CLF by
[Watkins et al., 2004]. We actually go one step further and use a spine
presentation from [Cervesato and Pfenning, 2003], moving the system

closer to a sequent calculus presentation while at the same time making
termination of hereditary substitution easier to argue. Moreover, as the
subsequent work focuses on the fragment of LLF using only linear impli-
cation, we restrict our attention to this fragment – skipping the other two
connectives present in the original presentation: & and
.

3.1 Linear Logical Framework

When mechanising theorems about the encodings, like those in Examples
1.4.1 and 1.4.2, we rely on the presence of dependent types to give the
theorem statement. It is not clear what a dependent linear type would be:
should assumptions serving as indices to a type count as used? Whatever
the answer, the behaviour of such linear dependent types is far from
ideal. At the same time, the meta-theoretical properties of linear systems
are themselves not always proven using linear proofs. These make a
clear argument for not making LLF purely linear, but rather extending
LF with linear operators. This way, everything expressed in LF can also
be encoded in LLF, making it a conservative extension.

Much like LF, LLF distinguishes three levels of objects: kinds, types
and terms. However, since we are only interested in the typability of
canonical terms, we need to distinguish between two syntactic categories
of types: canonical types are used to give types to canonical terms,
whereas atomic types are used to give types to other terms. As we aim
for a system in which only β-normal terms are typeable, we have chosen
a spine presentation for the atomic terms. This way, the potential future
redex in the form of a head variable, is exposed, rather than hidden in
a chain of applications, which are replaced here with a spine – a list of
arguments applicable to the head. This way, when the substitution for a
head variable occurs, we can immediately reduce the newly constructed
redex. The complete syntax of LLF can be given as:

Kinds K ::= type | Πx:A.K
Atomic Types P, Q ::= a · S
Canonical Types A, B ::= P | Πx:A.B | A � B
Heads H ::= x | c
Spines S ::= ε | M ; S | M ;̂ S

30

Atomic Terms R ::= H · S
Canonical Terms M, N ::= R | λx.M | ̂λx.M |
Unrestricted Contexts Γ ::= · | Γ, x:A
Linear Contexts Δ ::= · | Δ, x:̂A
Signatures Σ ::= · | Σ, a:K | Σ, c:A

In addition to the kinds, terms and types already present in LF, we
extend the types syntax with linear implication �. On the term level,
this requires allowing for linear abstraction ̂λx.M. Choosing the spine
presentation replaces application and linear application with extending
the spine: M ; S mimics an intuitionistic application and M ;̂ S a linear
one.

Before looking more closely at the meta-theory of LLF, let us briefly
discuss some example encodings making use of the new connectives of
the framework.

3.1.1 Example: Blocks World

The first example we will look at is a classic planning problem. Given
a set of wooden blocks on a table, the goal is to move them to some
pre-defined end position, for instance a single stack. Only one block can
be moved at a time and some blocks are initially on top of others, so
only top blocks from each stack can be moved. In past AI research, this
problem was typically presented by giving start and goal configurations
and then looking for a list of legal moves from the start to the goal.

What makes linear logic the right tool to encode the rules of this
system is the inherent notion of state, changing as we move a block from
one stack to the next. A block is not lost during a move, but its old state
is. We will therefore use block state as a linear resource when describing
legal moves.

We distinguish between two states of a block: either it is on the table,
or on another block. This is expressed via on_table and on_top_of. A
block can also be a top block in its stack, is_top in the presented code
snippet.

: type.
block : type.

on_table : block → type.
on_top_of : block → block → type.
is_top : block → type.

31

There are three possible moves, which can be described as changes of
state: moving a block from the table to the top of another stack, moving
it from the top of one stack to the top of another, and putting the top
block of a stack down on the table1.

move/from_table_to_top :
(on_table B1 � is_top B1 � is_top B2 � #) �
(on_top_of B1 B2 � is_top B1 � #).

move/from_top_to_table :
(is_top B1 � on_top_of B1 B2 � #) �
(is_top B1 � on_table B1 � is_top B2 � #).

move/from_top_to_top :
(is_top B1 � on_top_of B1 B2 � is_top B3 � #) �
(is_top B1 � is_top B2 � on_top_of B1 B3 � #).

These rules can be seen as context rewriting rules. Controlling what is
in the context is achieved by explicitly listing these elements. (This is,
in fact, typical of resource-based systems: most of the work is done via
context manipulation.) We use # : type as an end marker, which can
be constructed using move/... rules; in this way, the only possibility of
getting an inhabitant of # type is by manipulating blocks in the context.

Finding a sequence of moves between the start and goal configurations
can be expressed as an inhabitation problem: can we rewrite the context
describing the starting configuration into the context containing the goal
one?
b1 : block.
b2 : block.
b3 : block.

% Start state: 3 blocks, all of them on the table
% Goal state: 3 blocks on top of one another; b3 on the table, b1 on top

start : type =
on_table b1 � is_top b1 �
on_table b2 � is_top b2 �
on_table b3 � is_top b3 � #.

goal : type =
on_table b3 � on_top_of b2 b3 �
on_top_of b1 b2 � is_top b1 � #.

1We skip moving from the table back to the table, as this does not actually change
the state of the system.

32

move :
start � goal =
λf. λot3. λoto23. λoto12. λit1.
(move/from_table_to_top
(λot. λit. λit’.
(move/from_table_to_top
(λot2. λit2. λit2’. f ot it ot2 it2 ot3 it2’)

oto23 it’))
oto12 it1).

3.1.2 Example: Linear Lambda Calculus

Our second example encodes a linear lambda calculus. We are interested
in the higher-order abstract syntax in the linear case. The code below
looks quite similar to that in Example 1.2.1; however, it uses linear
implication instead of intuitionistic one. We use ̂λx.M to denote a linear
abstraction and M ˆ N to stand for linear application.

tm : type.
lam : (tm � tm) � tm.
app : tm � tm � tm.
pair : tm � tm � tm.
proj1 : tm � tm.
proj2 : tm � tm.

Notice that the lam case makes explicit use of the linear function space.
This forces other constants to also use linearity, as they could not oth-
erwise use variables introduced under a lambda. For instance, with
the app variant of app : tm → tm → tm, it would not be possible to
typecheck the term lam (̂λx. lam (̂λy . app x y)), as it tries to use
linear variables x and y as if they were intuitionistic.

With such a presentation of syntax, the typing rules of_type/... can
remain intuitionistic.

tp : type.
o : tp.
arr : tp → tp → tp.
conj : tp → tp → tp.

of_type : tm → tp → type.
of_type/lam :
({x : tm} of_type x A → of_type (M ˆ x) B) →
of_type (lam ˆ (̂λx . M ˆ x)) (arr A B).

33

of_type/app :
of_type M (arr A B) → of_type N A →
of_type (app ˆ M ˆ N) B.

of_type/pair :
of_type M A → of_type N B →
of_type (pair ˆ M ˆ N) (conj A B).

of_type/proj1 :
of_type M (conj A B) → of_type (proj1 ˆ M) A.

of_type/proj2 :
of_type M (conj A B) → of_type (proj2 ˆ M) B.

Importantly, the typing rules above use the intuitionistic arrow, and the
terms themselves (M, N, ...) have to be used intuitionistically, since they
are used as indices to of_type. However, the constructors for tm all rely
on a linear function space, so we cannot write an object of type tm which
re-uses variables.

We should mention that this is not the only way to encode linear
lambda calculus in LLF. It is also possible to leave the syntax precisely
as in Example 1.2.1 and to enforce linearity through the typing rules. In
that case, we can write non-linear terms of type tm; however, we cannot
assign types to them.

3.2 Meta-theory of LLF

A typical modern presentation of an LF-based framework usually omits
some of the judgements (or even theorems!) needed to make a complete
argument of the system’s well-behavedness in the interests of brevity.
Indeed, these judgements and theorems are mostly standard – it is simply
a matter of "fine-tuning" them to the concrete framework at hand. A
good overview of the full meta-theory of logical frameworks is given by
[Harper and Licata, 2007]. In this case, however, we find it important to
present the LLF system in full detail, as adaptations of it were used while
developing the systems presented in the main parts of this thesis.

Typing judgements in LLF are parametrized by a signature Σ, contain-
ing term- and type-level constants. The full forms of these judgements
therefore have the shape Γ; Δ �Σ J with J being type checking for canoni-
cal terms (M ⇐ A), type synthesis for heads (H ⇒ A) or spine checking
(S > A ⇒ P). Typically we omit the signature Σ as it is fixed. The
inference rules for typing LLF terms are presented in Figure 3.1 and
rely on hereditary substitution [M/x]A which we define in Figure 3.4

34

Γ, x:A; Δ � M ⇐ B
Γ; Δ � λx.M ⇐ Πx:A.B

Γ � A type Γ; Δ, x:̂A � M ⇐ B
Γ; Δ � ̂λx.M ⇐ A � B

Γ; Δ1 � H ⇒ A Γ; Δ2 � S > A ⇒ P Γ � P = Q
Γ; Δ1, Δ2 � H · S ⇐ Q

c:A ∈ Σ � Γ ctx
Γ; · � c ⇒ A

x:A ∈ Γ � Γ ctx
Γ; · � x ⇒ A

Γ � A type

Γ; x:̂A � x ⇒ A

Γ � P ⇒ type

Γ; · � ε > P ⇒ P
Γ; · � M ⇐ A Γ; Δ � S > [M/x]AB ⇒ P

Γ; Δ � M ; S > Πx:A.B ⇒ P

Γ; Δ1 � M ⇐ A Γ; Δ2 � S > B ⇒ P
Γ; Δ1, Δ2 � M ;̂ S > A � B ⇒ P

Figure 3.1: Typing LLF Terms

and discuss later in this chapter. The typing judgement depends on
two contexts: intuitionistic Γ and linear Δ. Importantly, the typing rule
for the H · S term changes the mode of operation from type checking
(H · S ⇐ Q) to type synthesis (H ⇒ A, S > A ⇒ P), relying also on type
equivalence of atomic types. Notice that when typechecking the linear
abstraction case ̂λx.M, we need to verify that the type of the variable,
A, is in fact well-formed given the current intuitionistic context. This
step is necessary to avoid a situation where a linear, dependently typed
variable depends on an intuitionistic variable which gets introduced to
the context later, e.g. we want to reject terms such as ̂λy : bx.λx : a.y
where y is of type bx (a term λx. ̂λ y.y would be perfectly acceptable).

The typing rules of LLF depend on the validity of the signature
(� Σ sig), and of the both unrestricted and linear contexts (denoted
�Σ Γ ctx and Γ �Σ Δ linctx, respectively). These validity rules are
presented in Figure 3.2. Fixed Σ means that dependent types in Σ must
have their dependencies satisfied within it. All constants in Σ are re-
usable, and therefore not linear.

The validity of contexts and signatures depends, in turn, on well-
formed types and kinds, given in Figure 3.3. Notice that no form of
dependency on linear assumptions is allowed.

When extending a spine with an unrestricted term, we rely on a
substitution operation in both the typing and kinding rules: [M/x]AB

35

� · sig
� Σ sig · �Σ K kind

� Σ, a : K sig

� Σ sig · �Σ A type

� Σ, c : A sig

� Σ sig

�Σ · ctx
�Σ Γ ctx Γ �Σ A type

�Σ Γ, x:A ctx

�Σ Γ ctx

Γ �Σ · linctx
Γ �Σ Δ linctx Γ �Σ A type

Γ �Σ Δ, x:̂A linctx

Figure 3.2: Signature and Context Validity

� Γ ctx
Γ � type kind

Γ � A type Γ, x : A � K kind

Γ � Πx:A.K kind

� Γ ctx
Γ � ε > type ⇒ type

Γ � M ⇐ A Γ � S > [M/x]AK ⇒ type

Γ � S ; M > Πx:A.K ⇒ type

a : K ∈ Σ Γ � S > K ⇒ type

Γ � a · S ⇒ type

Γ � A type Γ, x:A � B type

Γ � Πx:A.B type

Γ � A type Γ � B type

Γ � A � B type

Figure 3.3: Kind and Type Formation

and [M/x]AK, respectively. Crucially, using a standard substitution
might result in creating a redex, which would violate the "only canonical
forms have types" principle of canonical LF. Therefore, instead of a
simple inductive definition of substitution, we use hereditary substitution,
presented in Figures 3.4 and 3.5. Hereditary substitution is in fact a family
of relations, [M/x]jα, j ∈ {k, t, s, c} (for kinds, types, spines and canonical
terms, respectively), annotated by a simple type α of the substituted
variable. This simple type can be obtained from a normal type using
the type erasure operation, which replaces dependent types with their
non-dependent variants.

(a · S)− = a
(Πx:A.B)− = A− → B−

(A � B)− = A− � B−

36

[M/x]kα type = type

[M/x]kαK = K′ [M/x]tα A = A′

[M/x]kα(Πy:A.K) = Πy:A′.K′

[M/x]tα A = A′ [M/x]tαB = B′

[M/x]tα(Πy:A.B) = Πy:A′.B′
[M/x]tα A = A′ [M/x]tαB = B′

[M/x]tα(A � B) = A′ � B′

[M/x]sαS = S′

[M/x]tα(a · S) = a · S′

Figure 3.4: Hereditary Substitution in LLF: Types and Kinds

[M/x]sαS = S′ [M/x]cαN = N′

[M/x]sα(N ; S) = N ;′ S′
[M/x]sαS = S′ [M/x]cαN = N′

[M/x]sα(N ;̂ S) = N ;̂ ′S′

[M/x]sαε = ε

[M/x]sαS = S′ reduce(M : α, S′) = H · S′′

[M/x]cα(x · S) = H · S′′

[M/x]sαS = S′ x �= y
[M/x]cα(y · S) = y · S′

[M/x]sαS = S′

[M/x]cα(c · S) = c · S′

[M/x]cαN = N′

[M/x]cα(λy.N) = λy.N′
[M/x]cαN = N′

[M/x]cα(̂λy.N) = ̂λy.N′

Figure 3.5: Hereditary Substitution in LLF: Terms

Both the type erasure and the marker indicating the substitution rela-
tion variant are often omitted; for instance, [M/x]AB is in fact [M/x]tA−B.

The single instance where a hereditary substitution does not behave
like an inductively defined one is the [M/x]cα(x · S) case. Thanks to our
use of the spine variant of the calculus, upon substitution we imme-
diately have access to the new head, M, and the spine S′ – the result
of substituting [M/x]sαS. We can continue reducing any newly created
redex using a recursive reduce(M : α, S) function, defined below. Notice

37

that the simple type of the head term decreases in each recursive call,
guaranteeing termination.

reduce(λx.M : α → β, (N ; S)) = reduce([N/x]cαM : β, S)
reduce(̂λx.M : α � β, (N ;̂ S)) = reduce([N/x]cαM : β, S)
reduce(H · S : a, ε) = H · S
reduce(M : α, S) = ⊥

3.2.1 Hereditary Substitution Properties

Writing [M/x]tA−B in the typing rules suggests that herediary substitu-
tion can be treated as a partial function. This is indeed the case.

Lemma 3.1 (Uniqueness of hereditary substitution).

(i) If reduce(M : α, S) = H · S and reduce(M : α, S) = H′ · S′, then
H = H′ and S = S′;

(ii) If [M/x]eαE = E′ and [M/x]eαE = E′′, then E′ = E′′ (for e ∈ {k, t, s, c},
E ∈ {K, A, S, M}).

When substitution is defined as a relation, in addition to the usual
requirement of it being type preserving, we must also argue that it is
actually a well-defined operation in all relevant cases.

Theorem 3.1 (Hereditary substitution I). Hereditary substitution on well-
typed terms is a terminating total function.

Theorem 3.2 (Hereditary substitution II). Hereditary substitution on well-
typed terms preserves typing.

3.2.2 Decidability of Type Checking

As already hinted at in Chapter 1, a logical system must have a number
of meta-theoretic properties for it to be useful as a logical framework.
Most notably, as we heavily rely on the judgements as proofs paradigm, we
require typing to be decidable.

Lemma 3.2 (Decidability of hereditary substitution).

(i) For any e ∈ {k, t, s, c}, E ∈ {K, A, S, M}, given M, α, x, either there
exists E′ such that [M/x]eαE = E′ or [M/x]eαE = ⊥;

38

(ii) Given M, α and S, either there exist H and S′ such that
reduce(M : α, S) = H · S′ or reduce(M : α, S) = ⊥

Lemma 3.3 (Decidability of formation).

(i) For all Σ, it is decidable whether � Σ sig holds;

Assume Σ such that � Σ sig

(ii) For all Γ, it is decidable whether �Σ Γ ctx holds;

Assume Γ such that �Σ Γ ctx

(iii) For all Δ, it is decidable whether Γ �Σ Δ linctx holds;

(iv) For all K, it is decidable whether Γ � K kind holds;

(v) For all A, it is decidable whether Γ � A type holds;

(vi) For all P, it is decidable whether there exists K such that Γ � P > K ⇒
type;

Assume Δ such that Γ �Σ Δ linctx

(vii) For all M, A, it is decidable whether Γ; Δ � M ⇐ A holds;

(viii) For all H, it is decidable whether there exists A such that Γ; Δ � H ⇒ A;

(ix) For all S, A and P, it is decidable whether Γ; Δ � S > A ⇒ P holds.

It is easy to see that the (vii) case of the lemma above proves:

Theorem 3.3 (Decidability of typing LLF derivation). Typing is decidable.

3.3 Beyond LLF

A number of implementations of the Linear Logical Framework exist.
Work by [McCreight and Schürmann, 2004] directly introduced a meta-
logic for LLF. An approach by [Reed, 2009] was to construct a variant of
the Twelf system optimized to allow for linear abstraction encodings.

As we have mentioned at the beginning of this chapter, LLF (in its
original presentation) only allows for a small subset of intuitionistic linear
logic connectives to be used: �, & , and
. The motivation for such a

39

choice may not be immediately obvious – but in fact, this comes from
a limitation of linear logic itself: these three operators form a maximal
subset of linear logic with canonical forms. On the other hand, to use LLF
for encodings of concurrent systems, we need both linear implication and
tensor to be present. To see where the problem with canonicity occurs,
consider the η-expansion of a variable of ⊗ type:

Example 3.1. Let W = (a ⊗ b)⊗ (c ⊗ d). The two derivations below, when
annotated with proof terms, yield two different η-expansion proofs for a variable
of type (a ⊗ b)⊗ (c ⊗ d).

W � W
a ⊗ b � a ⊗ b

c ⊗ d � c ⊗ d
...

a, b, c, d � W
c ⊗ d, a, b � W

a ⊗ b, c ⊗ d � W
(a ⊗ b)⊗ (c ⊗ d) � (a ⊗ b)⊗ (c ⊗ d)

W � W
c ⊗ d � c ⊗ d

a ⊗ b � a ⊗ b
...

a, b, c, d � W
a ⊗ b, c, d � W

a ⊗ b, c ⊗ d � W
(a ⊗ b)⊗ (c ⊗ d) � (a ⊗ b)⊗ (c ⊗ d)

CLF, a system by [Watkins et al., 2002], is a proposed solution based
on concurrent computations encapsulated in a monad, to address the
lack of canonicity. Unfortunately, and despite the recent re-design
of its meta-theory by [Schack-Nielsen, 2011], CLF does not yet have a
reasoning meta-logic. It nevertheless remains a very promising and
expressive framework. An implementation of CLF, Celf, has been
proposed by [Schack-Nielsen and Schürmann, 2008].

Any extension of LLF using more of the connectives taken from
linear logic must address the canonicity problem. One way to extend
the language expressivity is to follow [Reed, 2009] in adapting a more
expressive logic, in which we can then embed a (fragment of) ILL. This
idea serves as the base of the work presented in Part II of this thesis.
Another approach is to separate representation from reasoning, as in
the Beluga system by [Pientka and Dunfield, 2010]: we would then have
more freedom in designing the representation fragment without affecting
the reasoning capabilities. We attempt this solution in Part III.

40

Part II

HyLF

Chapter 4

Hybridising Logical Framework

This part of the thesis is an attempt at building an expressive logical
framework, able to capture systems that use non-standard bindings or
require support for some form of proof irrelevance. This work is, in part,
motivated by the difficulties encountered when trying to build a general
framework for working with the family of intuitionistic modal logics
described in [Simpson, 1994].

The main idea is to generalise the work of the Hybrid Logical Frame-
work HLF1 by [Reed, 2009], a logical framework using techniques known
from hybrid logic to encode linearity.

We ask if a more in-depth investigation into hybrid logic can expand
the expressiveness of a single, general logical framework. The resulting
HyLF framework does not directly extend HLF and it connects to hybrid
logic much more tightly than its predecessor; it is still worth sketching
the idea behind HLF, if only to see precisely how far we can take some
of its core concepts.

4.1 Resource Counting

To understand how a hybrid system can encode linearity, it is helpful
to first look at an alternative presentation of linear logic using resource
counting, based on [Cervesato et al., 2000]. Δ � M : A[U] is a linear
judgement, where U : Δ → N counts how many times each variable
from Δ has been used in M. A typing derivation is then considered

1We distinguish Reed’s Hybrid Logical Framework and ours throughout this thesis
by using different short forms, HLF and HyLF, respectively.

linear (or valid) if U is a constant function 1 (1). (As a convention, if we
omit mappings in the annotation, they are equal to 0.) A fragment of the
system is presented in Figure 4.1.

x : A ∈ Δ
Δ � x : A[x �→ 1]

x
Δ � () :
[1]

I

Δ, x : A � M : B[U, x �→ 1]

Δ � ̂λx.M : A � B[U]
�I

Δ � M : A � B[U] Δ � N : A[V]

Δ � M ˆN : B[U + V]
�E

Δ � M : A[U] Δ � N : B[U]

Δ � 〈M, N〉 : A&B[U]
&I

Δ � M : A&B[U]

Δ � π1M : A[U]
&E1

Δ � M : A&B[U]

Δ � π2M : B[U]
&E2

Figure 4.1: Resource Counting Logic

The variable case simply marks the variable as used. To enforce linear
usage of a freshly introduced variable x in the �I case, we require that
the function maps x to 1. Linear application requires that we merge
the resources used to produce the function and its argument, which
is done via the U + V construction: (U + V)(x) = U(x) + V(x). For
the additive product, the two branches should use the same resource
counting function. The additive unit simply marks every resource as
used.

4.2 Hybrid LF

Like LLF, Hybrid LF is a conservative extension of LF, which adds a new
construct of worlds, along with some hybrid operations. Reed proposes
that these worlds have a specific, fixed structure to them, in order to
encode linear resource usage: to be more precise, worlds form a monoid
with ∗ being a binary operation and ε – its neutral element. This way, the
U function described in the previous section can be encoded by assigning
each linear variable a world resource. These resources, joined together

44

by the ∗ operator, are then used to annotate the typing judgement with
a compound world consisting of markers for all the used variables. It
serves our purpose to present only a fragment of the HLF system: we
skip the & and
 operators in this presentation, as we are interested in
the hybrid aspect of this work.

It should be noted that it is not precisely a hybrid logic in the sense
of [Prior, 1967], despite similarities in naming hybrid connectives and
the name of the framework itself: neither the assumptions nor types are
annotated with worlds, but rather the judgement itself.

Kinds K ::= type | Πx:A.K | ∀α.K

Types A, B ::= a · S | Πx:A.B | ∀α.A | Πα.A | A@p | ↓α.A
Heads H ::= x | c
Spines S ::= ε | M ; S | p ; S
Terms M, N ::= H · S | λx.M | λα.M

Worlds p, q ::= α | p ∗ q | ε

Contexts Γ ::= · | Γ, x:A | Γ, α:ω
Signatures Σ ::= · | Σ, a:K | Σ, c:A

The kinds of HLF are extended, compared to LF, to include world
abstractions. Similarly, types now include four new hybrid operators:
∀α.A stands for quantification over worlds, Πα.A is a function dependent
on a world, A@p can be read as "type A at world p", and the "here"
operator ↓α.A binds the current world into variable α.

The main judgement of the system is Γ � M ⇐ A[p], read as "term
M has type A at world p in context Γ". Unlike typical hybrid logics,
HLF does not use worlds to annotate variables in Γ. Worlds cannot be
declared in the signature, as they only serve a purpose when annotating
the judgement itself. Moreover, worlds come equipped with a congruence
relation ≡ , and equality in HLF is defined modulo it. The congruence
on worlds is defined as:

−−−−−−−−−−−−−−−−−−−−−−−−
(p ∗ q) ∗ r ≡ p ∗ (q ∗ r)

−−−−−−−−−−−−−
p ∗ q ≡ q ∗ p

−−−−−−−−−−
p ∗ ε ≡ p

−−−−−−
p ≡ p

q ≡ p
−−−−−−
p ≡ q

p ≡ q q ≡ r
−−−−−−−−−−−−−−−

p ≡ r

p ≡ p′ q ≡ q′
−−−−−−−−−−−−−−−−
p ∗ q ≡ p′ ∗ q′

45

Γ, x : A � M ⇐ B[p]
Γ � λx.M ⇐ Πx:A.B[p]

Γ, α : ω � M ⇐ A[p]
Γ � λα.M ⇐ Πα.A[p]

Γ, α : ω � M ⇐ A[p]
Γ � M ⇐ ∀α.A[p]

Γ � M ⇐ A[q]
Γ � M ⇐ A@q[p]

Γ, α : ω � M ⇐ ([p/α]A)[p]
Γ � M ⇐ ↓α.A[p]

Γ � H ⇒ A Γ � S > A[ε] ⇒ a · S[p] p ≡ q
Γ � H · S ⇐ a · S[q]

Γ � ε > A[p] ⇒ A[p]
Γ � p Γ � S > ([p/α]A)[q] ⇒ P[r]

Γ � p ; S > Πα.A[q] ⇒ P[r]

Γ � M ⇐ A[ε] Γ � S > ([M/x]AB)[p] ⇒ C[q]
Γ � M ; S > Πx:A.B[p] ⇒ C[q]

Γ � r Γ � S > ([r/α]A)[p] ⇒ C[q]
Γ � S > ∀α.A[p] ⇒ C[q]

Γ � S > ([p/α]A)[p] ⇒ C[q]
Γ � S > ↓α.A[p] ⇒ C[q]

Γ � S > A[p] ⇒ C[r]
Γ � S > A@p[q] ⇒ C[r]

x : A ∈ Γ
Γ � x ⇒ A

c : A ∈ Σ
Γ � c ⇒ A

α : ω ∈ Γ
Γ � α Γ � ε

Γ � p Γ � q
Γ � p ∗ q

Figure 4.2: Type Checking in HLF

The typing rules for the system are given in Figure 4.2, with the
rules for new constructs highlighted. Notice that types ∀α.A, A@p and
↓α.A are actually refinement types – they do not change the term when
introduced, or the spine when eliminated.

HLF relies on substitutions for world and term variables. For the
latter, it uses hereditary substitution much like the one presented for
LLF. Since substituting for a world can never trigger a redex, world
substitution can be given via a typical inductive definition.

46

Crucially, a linear implication can now be encoded on the meta level:

A � B := ∀α . ↓β . (A@α → B@(β ∗ α))

Here, α represents the fresh world associated with the assumption A. To
ensure that this newly added assumption is indeed used in B, we require
that α is part of the judgement annotation when constructing an object
of type B – it therefore acts as a resource marker for using this particular
assumption of type A.

4.3 From HLF to HyLF

Although HLF is interesting in its own right as an implementation of
LLF, the key idea that we find worthy of further exploration is that of
using hybrid connectives to allow more intricate encodings.

The world equivalence relation that HLF uses is a simple but powerful
tool allowing for the encoding of some form of proof irrelevance: the parts
of the object system that are encoded using worlds can, by exploiting the
world structure, be exchanged to equivalent variants without leaving a
trace. This is appealing, for instance, when encoding modal logics, where
the world reachability relation is typically described using a Kripke
structure or as a direct relation on the worlds (in IS5 logic, as an example,
the relation in question is an equivalence), which should remain proof
irrelevant.

At the same time, seeing that HLF is a well-behaved system using
(some) hybrid connectives gives us hope that a more general framework
based on hybrid logic is achievable. Combining support for arbitrary
structure on worlds with the expressive power of hybrid operators should,
in principle, allow for the encoding of whole classes of logics. The meta-
level encoding of the � operator from linear logic is but one example of
a possible application of such a generalised framework.

Of course, with great power comes great responsibility, and such a
general system would likely require some work on the part of the user
when they define their own instance of it. A completely arbitrary algebra
on worlds is not guaranteed to be well-behaved, and might endanger de-
cidability. It is the user’s responsibility to ensure that their world algebra
behaves as required by the framework. Still, this approach promises more
flexibility and ease of use for encodings that use a less "mainstream"
meta-logic and context behaviour, while still providing them with the

47

full power of the logical framework methodology, including higher-order
abstract syntax.

48

Chapter 5

Hybrid Extensions in a Logical Framework
Originally published in: Logical Frameworks and Meta Languages: Theory and Practice, 2014

Joint work with: Taus Brock-Nannestad, Nicolas Guenot, Carsten Schürmann

Abstract

We discuss the extension of the LF logical framework with
operators for manipulating worlds, as found in hybrid logics or in the
HLF framework. To overcome the restrictions of HLF, we present
a more general approach to worlds in LF, where the structure of
worlds can be described in an explicit way. We give a canonical
presentation for this system and discuss the encoding of logical
systems, beyond the limited scope of linear logic that formed the
main goal of HLF.

5.1 Hybrid Logics and LF

The LF logical framework [Harper et al., 1993] has been successfully
used to represent adequately many logics and systems, and it greatly
simplifies encodings by providing a representation language with an
object-level based on the λ-calculus. This offers the possibility to use
higher-order abstract syntax, as well as hypothetical judgements, where the
usual notions of abstraction and substitution are primitives.

There are however some systems that cannot be encoded adequately
in LF without heavy manipulation of structures that must be dealt with
manually both when defining their encoding and when reasoning about
the system. One such example can be obtained by extending a stan-
dard logic, such as intuitionistic logic, by hybrid operations as suggested

by [Prior, 1967] and introduced later in standard proof theory — some
theory for hybrid logics can be found for example in [Tzakova, 1999],
[Areces et al., 2001] and [Galmiche and Salhi, 2011]. The idea of hybrid
logics is simply to make explicit the Kripke semantics usually given
to logics, in particular modal logics, by allowing inference rules to ma-
nipulate the worlds of the semantics. This yields elegant proof systems
for logics with connectives performing complex operations on these
worlds. For example, one can define a natural deduction system for the
intuitionistic form of modal logics [Simpson, 1994] where rules for � are:

Γ, xRy � A[y]
�I −−−−−−−−−−−−−−

Γ � � A[x]

Γ � � A[x] (xRy)
�E −−−−−−−−−−−−−−−−−−−−

Γ � A[y]

where A[x] indicates that A is provable at a particular world x, while an
assumption of the shape xRy in the context is a witness of the condition
that for this rule to hold, y must be reachable from x in the relation R of
the associated Kripke semantics. The properties of such a modal logic
then depend on the axioms on the relation used in the semantics, and for
example a reflexive and transitive relation yields IS4.

The problem with the encoding of such a system in LF is that worlds
and assumptions of shape xRy must be encoded and manipulated man-
ually, so that each time a property of R needs to be used, the same
procedure is applied. What is lacking in LF is support for manipulat-
ing structures inside the syntax to, for example, automatically handle
reflexivity, transitivity or other properties. Such an infrastructure has
been developed for the specific purpose of encoding linearity in the HLF
framework [Reed, 2009] that extends LF with some support for hybrid
operations. In HLF, the types and terms can use worlds that are not
always variables but can also be compounds built from a binary ∗ operator
with unit ε. This structure of worlds was used to encode linear implica-
tion in HLF at the level of the representation language: reasoning linearly
is possible in HLF in the sense that � is available as a type — a macro
using primitive operations on worlds.

If we consider the naive encoding of a modal logic in LF, we need to
explicitly manipulate the worlds and define the constants corresponding
to the rules of the congruence:

o : type.
ω : type.
pf : o → ω → type.
rc : ω → ω → type.

50

⊃ : o → o → o.
� : o → o.
♦ : o → o.

refl : {α : ω} rc α α.
trans : {α, γ, σ : ω} rc α γ → rc γ σ → rc α σ.

�I : {A : o}{α : ω} ({γ : ω} rc α γ → pf A γ) → pf (� A) α.
�E : {A : o} {α, γ : ω} pf (� A) α → rc α γ → pf A γ.
(...)

but this encoding is not adequate in LF because of the many ways
of making two worlds equivalent. The situation could not really be
improved in HLF, since the relation on worlds that is needed here does
not fit the syntax of ∗ and ε under AC-unification. As a consequence,
encoding modal logics in LF or HLF is problematic from the viewpoint
of adequacy, since there can be several proofs of reachability that are all
identified in the proof on paper. In a similar way, the work we present
stems from an attempt to represent and reason about a calculus based
on hypersequents for some variant of linear logic [Montesi, 2013], which
fails in HLF because of the structure of worlds: it is used to ensure
linearity and cannot be used to also represent the connections between
sequents in a hypersequent. This is essentially the same problem as
encountered when encoding modal logics in HLF, which is uneasy since
the relation on worlds is incompatible with the notion of equality on
worlds in this framework.

The goal of the work presented here is therefore to define a more gen-
eral extension of LF that allows a more extensive use of the expressivity
of hybrid operations. To do this, we follow the standard presentation of
LF in its canonical form [Harper and Licata, 2007] and add ingredients
from HLF, and more, to support the encoding of advanced hybrid sys-
tems. The key to do this is the generalisation of the structure of worlds,
from a fixed set of operations {∗, ε} to an abstract notion combining
any number of operators and an equivalence relation on worlds. The
resulting framework is then parametric in the definition given for worlds.

We start in Section 5.2 by describing our hybrid framework, called
HyLF, and discuss its reduction, normal forms and notions of substitution
in this setting. Then, in Section 5.3, we illustrate the use of the system
by considering an encoding of modal logics exploiting an advanced
structure of worlds.

51

5.2 Extending Hybrid LF

Instead of starting from HLF and enriching the system, we go back
to the standard framework of LF [Harper et al., 1993], in its form re-
lying on canonical typing derivations [Harper and Licata, 2007]. In
particular, we use the standard λ-calculus as our base, without spines
[Cervesato and Pfenning, 2003], to keep the theory as simple as possible.
The language of terms and types of our HyLF framework is an extension
of canonical LF that supports various user-defined operators on worlds.

In the following, we denote by letters such as x, y and z term variables,
by M, N and V canonical terms, by R and S atomic terms, by c term constants,
by A and B canonical types, by F and G atomic types, by a type constants
and by K or L kinds of HyLF. Moreover, we use Greek letters such as α

or γ for world variables and p or q for worlds in general. Terms, types and
kinds are defined by the following grammar:

K, L ::= type |
A, B ::= F |
F, G ::= a |
M, N ::= R |
R, S ::= x | c |

Πx : A.K | ∀α.K
Πx : A.B | ∀α.A | A@p | ↓α.A
F M | F {p}
λx.M | λ{α}.M | M at p | hereα.M
R M | R {p} | R to p | ccwR

(5.1)

This system is similar to HLF [Reed, 2009], with primitives at the
level of terms reflecting the elimination rules of the world operators in
the object language. For the sake of simplicity, no cartesian product is
used in HyLF, and we collapse the dependent product and the universal
quantification when it comes to worlds.

The generalisation of HyLF with respect to HLF lies in the way worlds
can be defined: instead of defining one fixed structure of worlds with the
operator ∗ and its unit ε, we will make the whole framework parametric
in the definition of worlds. The first step in the instantiation of the
framework is to define the language of worlds, always of the shape:

p, q ::= α | o(�p) where o : |�p| ∈ O
where o is an operator defined in the operators signature O that contains
entries of the form o : k indicating that o is an operator of arity k, and
where �p is a sequence of worlds of length k. The second step of the
instantiation is to define the equivalence relation ≡ over worlds, which
must form a congruence for the operators in O, by specifying additional
equations.

52

Definition 5.1. An instance HyLF(O, ≡) of the HyLF parametric framework
is defined by providing some operators signature O and a congruence ≡ over
worlds.

In the following, we will write HyLF when discussing the properties
of any particular instance, and specify the exact operators signature and
congruence only if necessary. The typing rules for the canonical term
level of HyLF are shown in Figure 5.1. Binding a new world can be
done in this system through a λ-abstraction, but also with hereα.M, a
construct binding the current world.

Example 5.1. The structure of worlds described in HLF is obtained in HyLF by
an instantiation where the language of worlds is defined through the signature
{∗ : 2, ε : 0}, which corresponds to the grammar:

p, q ::= α | p ∗ q | ε

and where the congruence over worlds is defined by the rules:
−−−−−−−−−−−−−−−−−−−−−−−−−−
(p ∗ q) ∗ p′ ≡ p ∗ (q ∗ p′)

−−−−−−−−−−−−−
p ∗ q ≡ q ∗ p

−−−−−−−−−−
p ∗ ε ≡ p

−−−−−−
p ≡ p

q ≡ p
−−−−−−
p ≡ q

p ≡ q q ≡ p′
−−−−−−−−−−−−−−−−

p ≡ p′
p ≡ p′ q ≡ q′
−−−−−−−−−−−−−−−−
p ∗ q ≡ p′ ∗ q′

which are implementing AC-unification.

In the rules from Figure 5.1, we use two kinds of judgements to indi-
cate whether the type is synthesized from the term or is checked against the
term, always at some world p, which will be denoted by Ω; Γ � R ⇒ A[p]
and by Ω; Γ � M ⇐ A[p], respectively. In both cases, Ω is a set of world
variables and Γ is a list of assumptions of the shape x : A[p]. This means
that assumptions are assigned some world, as is often done in sequent
calculi for modal logics [Galmiche and Salhi, 2011], but not in HLF. The
two judgement forms are meant to enforce a separation between canoni-
cal and atomic terms, so that all terms typed are canonical. Moreover, in
these rules:

• the condition p ∈ W ensures that p appears in the set W of worlds
well-formed according to the signature O,

• the list Σ is some constants signature implicitly associated to the
judgement — we could write �Σ but omit this for the sake of
readability,

53

Ω; Γ, x : A[p] � M ⇐ B[p]
Πi −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � λx.M ⇐ Πx : A.B[p]

Ω; Γ � M{p/α} ⇐ A{p/α}[p]
↓i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � hereα.M ⇐ ↓α.A[p]

Ω; Γ � M ⇐ A[q] p ∈ W
@i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � M at q ⇐ A@q[p]

Ω, α; Γ � M ⇐ A[p] α �∈ Ω
∀i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � λ{α}.M ⇐ ∀α.A[p]

. .

Ω; Γ � R ⇒ F[q] p ≡ q p ∈ W
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � R ⇐ F[p]
. .

Ω; Γ � R ⇒ Πx : A.B[p] Ω; Γ � M ⇐ A[p]
Πe −−

Ω; Γ � R M ⇒ B[M/x]p[p]

Ω; Γ � R ⇒ ↓α.A[p]
↓e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � ccwR ⇒ A{p/α}[p]

x : A[p] ∈ Γ p ∈ W
x −−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � x ⇒ A[p]

Ω; Γ � R ⇒ A@p[q] p ∈ W
@e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � R to p ⇒ A[p]

c : A ∈ Σ p ∈ W
c −−−−−−−−−−−−−−−−−−−−−

Ω; Γ � c ⇒ A[p]

Ω; Γ � R ⇒ ∀α.A[q] p ∈ W
∀e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � R {p} ⇒ A{p/α}[q]

Figure 5.1: Typing rules for HyLF terms

• we can go from one kind of judgement to the other only in the s
rule, which swaps from synthesis to checking, and this is also the
only rule relying on the congruence,

• in the axioms x and c, the context Γ and signature Σ should be
checked for well-formation, following rules that we omit here but
are straightforward,

• the notation {p/α} corresponds to the standard notion of capture-
avoiding substitution in a term, of a world for a world variable,

• the notation [M/x]p corresponds to the notion of hereditary substi-
tution, which we define below.

54

a : K ∈ Σ
a −−−−−−−−−−−−−−−

Ω; Γ � a ⇒ K

Ω; Γ � F ⇒ ∀α.K p ∈ W
∀f −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � F {p} ⇒ K{p/α}

Ω; Γ � F ⇒ Πx : A.K Ω; Γ � M ⇐ A[p]
Πf −−

Ω; Γ � F M ⇒ K[M/x]p
. .

Ω; Γ � F ⇒ type
f −−−−−−−−−−−−−−−−−−−

Ω; Γ � F :: type

Ω, α; Γ � A :: type α �∈ Ω
∀ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � ∀α.A :: type

Ω; Γ � A :: type Ω; Γ, x : A[p] � B :: type
Π −−−

Ω; Γ � Πx : A.B :: type

Ω, α; Γ � A :: type
↓ −−−−−−−−−−−−−−−−−−−−−

Ω; Γ � ↓α.A :: type

Ω; Γ � A :: type p ∈ W
@−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � A@p :: type
. .

t −−−−−−−−−−−−−−−−−−−−−
Ω; Γ � type :: kind

Ω, α; Γ � K :: kind α �∈ Ω
∀k −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � ∀α.K :: kind

Ω; Γ � A :: type Ω; Γ, x : A[p] � K :: kind
Πk −−−

Ω; Γ � Πx : A.K :: kind

Figure 5.2: Kinding rules for HyLF

Finally, we show in Figure 5.2 rules for kinding type families in
HyLF, which are again an extension of the standard rules for LF, where
abstraction can be performed over worlds and atomic types can also be
applied to worlds. Notice that the same conditions are used as in Figure
5.1, so that contexts and signatures should be checked at axiom rules
a and t. There are three new judgements in these rules, Ω; Γ � F ⇒ K,
Ω; Γ � A :: type, and Ω; Γ � K :: kind which represent having a certain
kind K, the validity of a type A, and the validity of a kind K, respectively.

The term level of this system reflects the extension of the type level by
offering primitives to manipulate worlds. The meaning of the constructs
can be intuitively understood as:

• the universal quantification over worlds ∀α.A yields a simple mech-
anism using abstraction and application, distinguished from the

55

standard λ-calculus constraints by the {p} syntax used in abstrac-
tion and application, so that λ{α}.M is related only to R {p} and
not standard application,

• the world localisation operation A@p yields the two operations
M at p and R to p which indicate that some term M must be eval-
uated at a world p, and that R has been moved to the world p,
respectively: this plays a role in the semantics of computation in
this setting, where reduction happens at a certain world to reflect
the constraints imposed by typing judgements,

• the current world (binding) operation ↓α.A is similar to the world
quantification but it yields a mechanism for binding the world
where a term M will be evaluated using the operation hereα.M,
and associating this name to the world where some term R is
currently evaluated, with the operation of call-current-world written
ccwR.

Canonical forms. In a logical framework such as LF, it is impor-
tant to be able to isolate canonical forms, so that adequacy can later be
proven, to correctly relate structures being encoded and their actual LF
encodings. This is why the typing rules for HyLF are bidirectional and
restrict the formation of terms to the grammar given in (5.1). However,
we need to have the notion of reduction to offer some way to represent
the dynamics of systems we encode — for example, reductions for cut
elimination in a given logic presented in a sequent calculus. This cannot
be achieved inside a canonical system, as reductions correspond to elimi-
nation of detours, where an introduction rule appears immediately above
the corresponding elimination rule in a typing derivation.

In order to recover a system where reductions are possible, we need
to bypass the restrictions imposed by the use of ⇒ and ⇐ annotations.
Moving from one kind of judgement to the other is already possible
using the swap rule s. All we need is therefore a rule s−1 opposite to this
rule:

Ω; Γ � M ⇐ A[q] p ≡ q p ∈ W
s−1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � M ⇒ A[p]

to be able to type non-canonical forms. Notice that this rule applies
at any type and not just on atomic types, yielding the ability to type
sequences of introduction and elimination rules. Here, we chose the
canonical presentation where this rule does not appear, and we kept

56

reduction as an “external” device. In the following, we will call well-typed
a term M such that for a given type A there exists a typing derivation
for Ω; · � M ⇐ A[p] in HyLF — this implies that M is canonical, since
the s−1 rule is not used and it is the only rule that can break canonicity.

Reduction. Allowing non-canonical forms allows us to type more
terms, but we want to reason under some equivalence relation such that
any non-canonical term is associated to a canonical term. This relies
on the notion of reduction over non-canonical terms from a grammar
where M appears in the category R as shown in (5.1) — this can be
obtained with the s−1 rule shown above. Since in the hybrid setting all
terms are reduced at a certain world, the reduction relation −→p must be
parametrized by some p where evaluation happens. The main reduction
rules are:

(λx.M) N −→p M{N/x}
ccw (hereα.M) −→p M{p/α}
(M at p) to p −→p M
(λ{α}.M) {q} −→p M{q/α}

(5.2)

where the first is simply β-reduction and the others represent the elimi-
nation of other detours in HyLF typing derivations. But there are more
rules needed here, to allow reduction under any construct. These rules
are standard in most cases, and we have for example:

λx.M −→p λx.N if M −→p N
M N −→p M′ N′ if M −→p M′ and N −→p N′

ccw M −→p ccwN if M −→p N
hereα.M −→p hereα.N if M −→p N

but the reduction rules involving the at and to operators have a specific
effect on the world where evaluation happens:

M at q −→p N at q if M −→q N
M to p −→p N to p if M −→q N for some q ∈ W

corresponding to the meaning of these operations. Indeed, even when
M at q is evaluated at p, the evaluation of M is performed at world q,
and if M is evaluated into N at q, then M to N transfers the result of
the evaluation to world p — this can be related to the fetch and get
operations affecting the current world of evaluation in a modal λ-calculus
as the one presented in [Murphy VII et al., 2004].

57

Apart from this use of worlds in the evaluation of terms, the computa-
tional semantics of HyLF is based on standard notions. In particular, the
key element during reduction is substitution. There are two kinds of sub-
stitution used in (5.2): the substitution {M/x} of some term u for a term
variable x, capture-avoiding and using α-conversion for λ-abstractions,
and the substitution {p/α} of a complex world p for a world variable α.
This second form of substitution is defined in a standard way, relying on
the α-conversion of world names in binding operations of world abstrac-
tion and of current world abstraction. Intuitively, this is a simultaneous
replacement of all the free occurrences of α by the world p, in any term.
We will not discuss here the properties of the −→p reduction or of its
reflexive, transitive closure −�p.

Substitution. The dynamics of non-canonical terms is based on
the notion of substitution. In the canonical HyLF system, we cannot
define the usual notion of substitution because it does not necessarily
yield a canonical form. Such a notion can be defined here, and thus
preserve canonical forms, only if it is parametrized to an hereditary form
of substitution, where the redexes created by substitution are reduced
immediately [Watkins et al., 2004].

Definition 5.2. For well-typed terms M, N, some variable x and a world p,
the hereditary substitution M[N/x]p of N for x in M at world p is defined
by the relation presented in Figure 5.3.

Notice that only the case of crossing an application can create new
redexes in LF, but here there are three more non-trivial cases correspond-
ing to other reduction rules in HyLF. However, none of these new cases
trigger a term substitution, and substitution of worlds never creates new
redexes, so that it does not need to be defined hereditarily to stay in
the canonical fragment. Indeed, all redexes in (5.2) rely on the shape of
terms rather than on worlds, except of (M at p) to q, but it is well-typed
only if p = q. We can now state that hereditary substitution is actually
a particular implementation of the reductions shown in (5.2). Proof for
some representative cases is provided in the Appendix.

Theorem 5.1 (Hereditary substitution).
For any terms M and N, if for a given world p there exists V such that
M[N/x]p = V, then we have the reduction M{N/x} −�p V.

Notice that the correspondence of hereditary substitution and re-
duction of non-canonical HyLF terms is established only for well-typed

58

−−−−−−−−−−−−−−
x[N/x]p = N

−−−−−−−−−−−−−
y[N/x]p = y

R[N/x]p = R′ M[N/x]p = M′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(R M)[N/x]p = R′ M′

−−−−−−−−−−−−−
c[N/x]p = c

R[N/x]p = λy.V′ M[N/x]p = M′ V′[M′/y]p = V
−−−

(R M)[N/x]p = V

M[N/x]p = V
−−−−−−−−−−−−−−−−−−−−−−−−
(λy.M)[N/x]p = λy.V

M[N/x]p = V
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(λ{α}.M)[N/x]p = λ{α}.V

M[N/x]q = V
−−−−−−−−−−−−−−−−−−−−−−−−−−−
(M at q)[N/x]p = V at q

M[N/x]p = V
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(hereα.M)[N/x]p = hereα.V

R[N/x]q = S
−−−−−−−−−−−−−−−−−−−−−−−−−−
(R to p)[N/x]p = S to p

R[N/x]q = M at p
−−−−−−−−−−−−−−−−−−−−−−
(R to p)[N/x]p = M

R[N/x]p = S
−−−−−−−−−−−−−−−−−−−−−−−−
(ccwR)[N/x]p = ccwS

R[N/x]p = hereα.M
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(ccwR)[N/x]p = M{p/α}

R[N/x]p = S
−−−−−−−−−−−−−−−−−−−−−−−−−
(R {q})[N/x]p = S {q}

R[N/x]p = λ{α}.M
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(R {q})[N/x]p = M{q/α}

Figure 5.3: Hereditary substitution

terms, which simplifies the situation as it prevents the creation of redexes
through world substitutions making world substitution non-hereditary.

A critical property of the notion of hereditary substitution is that it
preserves typeability in the canonical system, along with the fact that
given two well-typed terms M and N, we can perform the substitution
of N for a variable inside M. Proving this requires an induction, made
more complex by the case where a β-redex is created, since it involves
the type of the substituted N. This is however standard, and we only
need to consider a simple approximation of the type of N.

Definition 5.3 (Type erasure). For a term N of type A, the simple type

59

τ(N) of N is defined as �A�τ, where:

�a�τ = a
�Πx : A.B�τ = �A�τ → �B�τ �∀α.A�τ = �A�τ

�F M�τ = �F�τ �A@p�τ = �A�τ

�F {p}�τ = �F�τ �↓α.A�τ = �A�τ

We can now state the main theorem allowing us to use the notion
of substitution in the canonical presentation of HyLF. More details on
this result in standard LF but also in HLF can be found in the literature
[Harper and Licata, 2007, Reed, 2009]. A generalized formulation of this
theorem, together with representative cases of its proof, can be found in
the Appendix.

Theorem 5.2 (Substitution).
For any terms M and N such that Ω; Γ, x : A[q], Δ � M ⇐ B[p] and

Ω; Γ � N ⇐ A[q], it follows that Ω; Γ, Δ[N/x] � M[N/x] ⇐ B[N/x][p].

There is another theorem that allows us to perform the same operation
on worlds, corresponding to the observation that if a world variable is
used in a typing derivation, this derivation is parametric in that variable.
Consistently replacing the variable with any given world always therefore
yields a valid typing derivation. The proof of representative cases can
again be found in the Appendix.

Theorem 5.3 (World substitution).
For a world q and a term M with Ω, α; Γ � M ⇐ B[p], there is a derivation of
the judgement Ω; Γ{q/α} � M{q/α} ⇐ B{q/α}[p{q/α}].

We will not go into further details about the properties of terms and
derivations forming the meta-theory of the HyLF framework, but rather
present examples of how extending LF with hybrid constructs allows us
to elegantly represent logics that are defined by a hybrid system.

5.3 Encoding Logics in HyLF

We consider here two ways of using the hybrid operations to encode
logics and systems. The first one is the standard encoding idea of LF,
where the given system is defined with rules represented by typed con-
stants added to a signature, so that adequacy can be proven between the
system as seen “on paper” and its LF representation. The second approach
follows the HLF example of encoding certain logical connectives into the

60

type level of LF, and arguing that the typing rules from LF correspond
to the rules intended for this connective, so that the form of reasoning
embodied by this connective is made available to encode further systems,
using standard encodings.

Notice that this first approach, in the HyLF framework, requires
not only the definition of typed constants representing the rules of
the system, but also the definition of operators and a congruence on
worlds to instantiate the framework, as it is now parametric. However,
there is a trade-off, where the added specification of the level of worlds
subsequently makes the representation of the rules simpler.

Intuitionistic modal logics. The most natural system that can be en-
coded using the hybrid operations from HyLF is a natural deduction cal-
culus for intuitionistic modal logics defined by Simpson [Simpson, 1994],
using rules shown in Figure 5.4. In this system, the relation on worlds
defining the particular flavour of modal logic used is mentioned explic-
itly, so that the same rules properly represent different modal logics, for
example IK, IS4 or IS5. This system is well-suited for a presentation in
HyLF, as we will be able to define inference rules as constants and simply
change the definition of the congruence on worlds to switch between
different logics — by specifying exactly the axioms defining the Kripke
semantics of these logics.

The presentation of the IK system is made slightly more precise than
the one given by Simpson, on the syntactic level, as we use the sequent
notation and distinguish between three parts of a context, denoted by Ω,
Σ and Γ, to hold available world names, assumptions on R and logical
assumptions, respectively. In this system, worlds are always just names
such as x, y or z. A sequent is written Ω; Σ; Γ � A[x] for provability of A
at a world x under these three contexts. The formulas are defined by the
standard grammar:

A, B ::= a | A ⊃ B | � A | ♦ A

where one can observe that the IK system is modal but not hybrid in
the sense that worlds are used in sequents but not mentioned in formu-
las. The presentation we have given is equivalent to the original one
[Simpson, 1994], and the distinctions made inside contexts are meant
to make adequacy as obvious as possible for the given encoding of the
system in HyLF.

The first step of the encoding is to define the structure of the worlds,
and the congruence relation ≡ . In all modal logics that can be rep-

61

A[x] ∈ Γ
ax −−−−−−−−−−−−−−−−

Ω; Σ; Γ � A[x]

Ω; Σ; Γ, A[x] � B[x]
⊃i −−−−−−−−−−−−−−−−−−−−−−

Ω; Σ; Γ � A ⊃ B[x]

Ω; Σ; Γ � A[x] Ω; Σ; Γ � A ⊃ B[x]
⊃e −−

Ω; Σ; Γ � B[x]

Ω, y; Σ, xRy; Γ � A[y]
� i −−−−−−−−−−−−−−−−−−−−−−−−

Ω; Σ; Γ � � A[x]

Ω; Σ, xRy; Γ � � A[x]
� e −−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Σ, xRy; Γ � A[y]

Ω; Σ, xRy; Γ � A[y]
♦ i −−−−−−−−−−−−−−−−−−−−−−−−

Ω; Σ, xRy; Γ � ♦ A[x]

Ω; Σ; Γ � ♦ A[x] Ω; Σ, xRy; Γ, A[y] � B[z]
♦ e −−

Ω; Σ; Γ � B[z]

Figure 5.4: Inference rules for the basic logic IK

resented using the rules of IK shown above, the grammar of worlds
is:

p, q, o ::= α | pRq | p ∗ q | ε

where R is of arity 2 and is meant to represent reachability as described
by the relation of the Kripke semantics, and ∗ and ε of arities 2 and 0
respectively are used to encode sets of worlds.

Remark 5.1. In the natural deduction presentation of basic modal logic IK as
well as in its extensions, the assumptions of the shape pRq involve only world
names, so that it should be xRy, but our grammar does not enforce such a
restriction. Indeed, the current definition of HyLF only allows the operators to
be specified with some arity, and through a complete grammar.

This is however not a problem, since the encoding of rules preserves the
invariant that in any world of the shape pRq, both p and q are variables: the
worlds inside the assumptions are never accessed and decomposed by the rules,
but simply compared, so that replacing a variable by a compound world does not
break the encoding.

The precise meaning of operators on worlds is partly given through
the congruence. There will be a part of this relation common to all
the systems based on the rules given for IK, which will actually be the

62

congruence for the logic IK itself. Then, extending ≡ with other axioms
concerning R yields other, richer logics. This basic part of the congruence
≡ is defined by the equations:

p ∗ q ≡ q ∗ p p ∗ ε ≡ p
p ∗ (q ∗ o) ≡ (p ∗ q) ∗ o p ∗ p ≡ p

We will now define the constants meant to represent the inference
rules of the system. These terms are given types representing the struc-
ture of formulas and sequents in IK, following the usual approach of LF,
where → stands for a non-dependent product:

o : type.
pf : o → ∀ α. type.
⊃ : o → o → o.
� : o → o.
♦ : o → o.

Then, the purely implicational part of IK is described by rules for ⊃
which do not use the reachability relation:

⊃I : (pf A {x} → pf B {x}) → pf (A ⊃ B) {x}
⊃E : pf (A ⊃ B){x} → pf A {x} → pf B {x}

where we omit all the outer bindings on A, B and x, that are necessary
only to obtain a fully closed term and can be easily reconstructed.

We now consider the modal part of the system, encoding the rules
for � and ♦, which actually affect the worlds:

�I : (∀ α . pf A {α} @ (s * x R α)) → pf (� A){x} @ s.
�E : pf (� A) {x} @ (s * x R y) → pf A {y} @ (s * x R y).
♦I : pf A {x} @ (s * x R y) → pf (♦ A) {y} @ (s * y R x).
♦E : pf (♦ A) {x} @ s →

(∀ α . pf A {α} @ s → pf B {y} @ (s * x R α)) →
pf B {y} @ s.

where we omit bindings on A, B, s, x and y. This encoding of the IK rules
can be proven adequate in a straightforward way, since all types used
rely on the following correspondence between a sequent and its encoding:

Ω; Σ; Γ � A[x] ↔ pf A {x} @ s

where s is some world representing Σ by turning recursively Σ′, xRy into
s’ * x R y, where s’ represents Σ′, and ε is the empty set. Then, Ω and

63

Γ are handled implicitly as usual in LF using the binders on world and
term variables from the representation language. The same applies to
logics such as for example IS4, where the Kripke semantics contains the
reflexivity and transitivity axioms for R. Representing IS4 is achieved in
our encoding by extending the congruence with the equations:

xRx ≡ ε xRy ∗ yRz ≡ xRz

without changing the rules from Figure 5.4. The effect of this extension is
to modify the set of formulas validated by the logic, so that, in particular
we can prove the axioms � A ⊃ A and A ⊃ ♦ A by using reflexivity, as
well as � A ⊃ �� A and ♦♦ A ⊃ ♦ A by using transitivity. These axioms
illustrate how the use of the congruence can control precisely the modal
logic being represented, just as the axioms of some Kripke semantics. In
order to obtain IS5, we just add the following axiom:

xRy ∗ xRz ≡ yRz

to the ones used before to define IS4. Various other axioms from the
standard proof theory of modal logics can be added in a similar way.

Linear reasoning. Another use of hybrid operations in HyLF consists
in extending the representation language of types with an encoding
of linear implication �. This allows to subsequently represent other
systems using a type A � B, and in particular this is the way a sequent
calculus for linear logic can be adequately represented, as done in HLF
[Reed, 2009] where it was the goal of the introduction of hybrid operators.
We can use in HyLF the exact same encoding as in HLF, provided that
we use:

A � B � ∀α.↓γ. (A@α → B@(α ∗ γ))

because the two operations: ∀α and@p behave the same in both frame-
works. This encoding yields a direct encoding of the rule of introduction
for �, in HyLF:

Ω, α; Γ, A@α[p] � B[α ∗ p]
@i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω, α; Γ, A@α[p] � B@(α ∗ p)[p]
Πi −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω, α; Γ � A@α → B@(α ∗ p)[p]
↓ i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω, α; Γ � ↓γ.(A@α → B@(α ∗ γ))[p]
∀i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � ∀α.↓γ.(A@α → B@(α ∗ γ))[p]

64

and similarly a direct encoding of the elimination rule based on the
elimination rules for each of the components used in the encoding of �
in HyLF:

Ω; Γ � ∀α.↓γ.(A@α → B@(α ∗ γ))[p]
∀e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � ↓γ.(A@q → B@(q ∗ γ))[p]
↓ e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω; Γ � A@q → B@(q ∗ p)[p] Ω; Γ � A@q[p]
Πe −−−

Ω; Γ � B@(q ∗ p)[p]
@e −−−−−−−−−−−−−−−−−−−−−

Ω; Γ � B[p]

where we omit terms and simplify notations by omitting also the side
conditions. The constraints on worlds induced by the use of @ restrict the
set of valid proofs of A � B to those proofs of A → B that are actually
linear ones. Details on this encoding and the use of � to represent
other systems in a logical framework can be found in the literature
[Reed, 2009].

Towards modal reasoning. Just as linearity could be encoded at
the representation level of HLF and HyLF, it is conceivable to extend
this language further, by defining modalities such as the � and ♦ of
modal logics within the syntax of types in HyLF. This would allow us to
represent systems for which an adequate encoding relies on the ability to
control separate worlds within a relation as in Kripke semantics. Using
the ideas found in the encoding of linearity from HLF, one encoding of
� could be:

� A � ∀α.↓γ. A@(α � αRγ)

with � standing for an operator on worlds designed to allow the distinc-
tion, in the current world of a sequent, between an actual world and a
constraint on the relation R that must be validated. In the structure of
worlds, we would then require enough operators to keep a structured
form of information about the relation. Notice that with an encoding
as shown above, the distributivity axiom K is provable without any re-
quirement on the structure of worlds, and the axioms T and 4 yield the
standard conditions on worlds, reflexivity and transitivity. Note that in
the variant of the framework presented in this paper, enforcing that �
take precisely a single world variable as its first argument is not possible.
A modification allowing a compound world to contain a fixed set of
zones, built using different operators, would therefore be required. We
leave this for future work.

65

Furthermore, encoding the ♦ connective this way is more compli-
cated, as it requires to use existential quantification over worlds. This is
not inconceivable, but the current HyLF framework would need to be
extended beyond the definition given here in terms of syntax and typing
rules.

5.4 Conclusion and Future Work

We have presented here an extension of the standard LF framework
that allows hybrid operators to be explicitly used for encodings, and
discussed its properties, as well as the representation of systems for
modal logics in this setting. This opens a number of questions for future
work:

• we still need to fully develop the meta-theory of HyLF, and in par-
ticular the underlying notion of reduction as well as the expressive
power of the framework — from a practical viewpoint, we would
need to impose some restrictions on the structure given to worlds,
since for example we could think of defining any non-decidable
congruence, that would lead to problems in attempts at performing
unification,

• we can now try to encode other logics in HyLF than the few modal
systems we mentioned, for example any temporal, spatial or epis-
temic logic, but also just other presentations of logic, for example
based on the notion of hypersequents, that could be encoded using
worlds,

• we need to investigate further the question of encoding the oper-
ators necessary for modal reasoning, starting with � and ♦, but
more generally we could attempt to identify other forms of rea-
soning that can be reified by some modality, and encoded into the
world structure available in HyLF,

• on the side of implementation, the extended features of the worlds
in HyLF yield the question of feasibility for any reasonable im-
plementation of the algorithms of unification or coverage, but we
hope that restrictions imposed on the congruence can reduce the
complexity of the problem,

66

• we could also consider further extensions to the syntax of types
and terms in HyLF, in particular to allow existential quantification
over worlds, and over terms, or introduce a cartesian product as
done in HLF,

• the expressive power of this hybrid framework might allow to
encode complex systems that combine several aspects requiring a
particular world structure, such as the hybrid linear logic presented
in [Chaudhuri and Despeyroux, 2014], and the freedom offered in
the definition of operators on worlds could even be enough to
define some general means of combining the encodings, so that for
example the two levels of structure on worlds needed for the linear
treatment of context on one side, and the access to the worlds of
modal logics on the other, could merge.

5.A Appendix

We present here partial proofs and generalized reformulations of theo-
rems mentioned in Section 5.2 of this paper.

Theorem 5.1 (Hereditary substitution).
For any terms M and N, if for a given world p there exists V such that
M[N/x]p = V, then we have the reduction M{N/x} −�p V.

Proof. By structural induction on the derivation of M[N/x]p = V. The
following are representative cases:

Case:
M[N/x]p = V

−−−−−−−−−−−−−−−−−−−−−−−−
(λy.M)[N/x]p = λy.V

By the induction hypothesis, we obtain M{N/x} −�p V. Using the
definition of capture-avoiding substitution and the properties of −�, we
conclude that indeed (λy.M){N/x} = λy.M{N/x} −�p λy.V

Case: −−−−−−−−−−−−−−
x[N/x]p = N

By the definition of capture-avoiding substitution, x{N/x} = N. There-
fore x{N/x} reduces in zero steps to itself: N −�p N.

67

Case:
R[N/x]p = R′ M[N/x]p = M′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(R M)[N/x]p = R′ M′

By the induction hypothesis, we obtain R{N/x} −�p R′ and
M{N/x} −�p M′. Using the definition of capture-avoiding substi-
tution and the standard distributivity properties of −�, we conclude
that indeed (R M){N/x} = (R{N/x}) (M{N/x}) −�p R′ M′.

Case:
R[N/x]p = λy.V′ M[N/x]p = M′ V′[M′/y]p = V
−−−

(R M)[N/x]p = V

By the induction hypothesis, we obtain R{N/x} −�p λy.V′, as well as
M{N/x} −�p M′ and V′{M′/y} −�p V. Therefore, using the defi-
nitions of capture-avoiding substitution and relations −� and −→, as
well as the distributivity properties of −�, we are able to conclude
that (R M){N/x} = (R{N/x}) (M{N/x}) −�p (λy.V′) M′ −→p
V′{M′/y} −�p V.

Case:
R[N/x]q = M at p

−−−−−−−−−−−−−−−−−−−−−−
(R to p)[N/x]p = M

By the induction hypothesis, we obtain R{N/x} −�p M at p. There-
fore, using the definitions of capture-avoiding substitution and rela-
tions −� and −→, as well as the properties of −�, we conclude that
(R to p){N/x} = R{N/x} to p −�p (M at p) to p −→p M.

�

Theorem 5.2 (Substitution).
Given any term N such that Ω; Γ � N ⇐ A[q], and:

• given any term M such that D :: Ω; Γ, x : A[q], Δ � M ⇐ B[p], it fol-
lows that Ω; Γ, Δ[N/x] � M[N/x] ⇐ B[N/x][p];

• given any term R such that D :: Ω; Γ, x : A[q], Δ � R ⇒ B[p],
it follows that either Ω; Γ, Δ[N/x] � R[N/x] ⇒ B[N/x][p] or
Ω; Γ, Δ[N/x] � R[N/x] ⇐ B[N/x][p].

Proof. We prove both parts by mutual lexicographic induction over first
the simple type of N, τ(N), and second – the derivation of D. The
following are representative cases:

68

Case:
Ω; Γ, x : A[q], Δ, y : B0[p] � R ⇐ B1[p]

Ω; Γ, x : A[q], Δ � λy.R ⇐ Πy:B0.B1[p]
By the induction hypothesis and substitution properties, we obtain
that Ω; Γ, Δ[N/x], y : B0[N/x][p] � R[N/x] ⇐ B1[N/x][p]. Therefore,
using the typing rule for lambda abstraction, we can also conclude
Ω; Γ, Δ[N/x] � λy.R[N/x] ⇐ Πy:B0[N/x].B1[N/x][p] – which, using
the definition of capture-avoiding substitution, can be equivalently writ-
ten as Ω; Γ, Δ[N/x] � (λy.R)[N/x] ⇐ (Πy:B0.B1)[N/x][p]

Case:
Ω; Γ, x : A[q], Δ � R ⇒ F[p′] p ≡ p′ p ∈ W

Ω; Γ, x : A[q], Δ � R ⇐ F[p]
By the induction hypothesis, we may obtain one of two possible results:

• Ω; Γ, Δ[N/x] � R[N/x] ⇒ F[N/x][p′] – in which case we may use
the swap rule again, to move between synthesizing and checking,
obtaining: Ω; Γ, Δ[N/x] � R[N/x] ⇐ F[N/x][p].

• R[N/x] = M′ and Ω; Γ, Δ[N/x] � M′ ⇐ F[N/x][p′] – in which
case, we have to first invert the last typing rule used. Since M′
is still of an atomic type F[N/x], we can conclude that the last
inference rule used was in fact the phase changing one above,
therefore M′ = R[N/x] is in fact a maximally applied atomic term:

Ω; Γ, x : A[q], Δ[N/x] � R[N/x] ⇒ F[N/x][p′′] p′ ≡ p′′ p′ ∈ W
Ω; Γ, Δ[N/x] � R[N/x] ⇐ F[N/x][p′]

– but in this case, using the fact that the structure on worlds is a
congruence, we can also rewrite the last step to be

Ω; Γ, x : A[q], Δ[N/x] � R[N/x] ⇒ F[N/x][p′′] p ≡ p′′ p ∈ W
Ω; Γ, Δ[N/x] � R[N/x] ⇐ F[N/x][p]

which is precisely, what we needed to show.

Case:
Ω; Γ, x : A[p], Δ � x ⇒ A[p]

Since Ω; Γ � N ⇐ A[p], using weakening we are able to obtain
Ω; Γ, Δ[N/x] � N ⇐ A[p].

69

Case:
Ω; Γ, x:A[p], Δ � R ⇒ Πy:B0.B1[p] Ω; Γ, x:A[p], Δ � M ⇐ B1[p]

Ω; Γ, x:A[p], Δ � R M ⇒ B1[M/y][p]
By the induction hypothesis on the typing derivation for M, we obtain
Ω; Γ, Δ[N/x] � M′ ⇐ B0[N/x][p] for M′ = M[N/x]. Further, applying
the induction hypothesis to the typing derivation of R yields two possible
outcomes:

• Ω; Γ, Δ[N/x] � R[N/x] ⇒ Πy:B0[N/x].B1[N/x][p′] – in which case
we simply use the same typing rule again to obtain:
Ω; Γ, Δ[N/x] � R[N/x] M[N/x] ⇐ B1[N/x][M′/y][p]. Since
B1[N/x][M′/y] = B1[M/y][N/x], this, in turn, is equivalent to
Ω; Γ, Δ[N/x] � (R M)[N/x] ⇐ (B1[t/y])[N/x][p]

• R[N/x] = M0 and Ω; Γ, Δ[N/x] � M0 ⇐ Πy:B0[N/x].B1[N/x][p′]
– in which case, we have to first invert the last typing rule used,
concluding that M0 must in fact be λy.M′′ for some M′′:

Ω; Γ, Δ[N/x], y : B0[N/x] � M′′ ⇐ B1[N/x][p′]

Ω; Γ, Δ[N/x] � λy.M′′ ⇐ Πy:B0[N/x].B1[N/x][p′]
This is the case where hereditary substitution acts differently to an
inductively defined one. Recall that the appropriate rule in this
case requires us to continue substituting, as (λy.M′′) M′ contains a
redex:
R[N/x] = λy.M′′ M[N/x] = M′ M′′[M′/y] = M′′′
−−

(R M)[N/x] = M′′′

We can now use the inductive hypothesis again, this time
on derivations Ω; Γ, Δ[N/x] � M′ ⇐ B0[N/x][p] as well as
Ω; Γ, Δ[N/x], y : B0[N/x] � M′′ ⇐ B1[N/x][p′], to obtain
Ω; Γ, Δ[N/x] � M′′[M′/y] ⇐ B1[N/x][M′/y][p], or equivalently
Ω; Γ, Δ[N/x] � M′′[M′/y] ⇐ (B1[M/y])[N/x][p]

�

Theorem 5.3 (World substitution).
Given a world w ∈ W , and

• given a term M such that D :: Ω, α; Γ � M ⇐ B[p], it follows that
Ω; Γ{q/α} � M{q/α} ⇐ B{q/α}[p{q/α}];

• given a term R such that D :: Ω, α; Γ � R ⇒ B[p], it follows that
Ω; Γ{q/α} � R{q/α} ⇒ B{q/α}[p{q/α}].

70

Proof. By induction on the typing derivation D. The following are repre-
sentative cases:

Case:
Ω, α; Γ, x : A[p] � M ⇐ B[p]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ω, α; Γ � λx.M ⇐ Πx : A.B[p]

Using the induction hypothesis we obtain:
Ω; Γ{q/α}, x : A{q/α}[p{q/α}] � M{q/α} ⇐ B{q/α}[p{q/α}].
We continue by using the λ abstraction typing rule again, which yields
Ω; Γ{q/α} � λx.M{q/α} ⇐ Πx : A{q/α}.B{q/α}[p{q/α}], which is
precisely Ω; Γ{q/α} � (λx.M){q/α} ⇐ (Πx : A.B){q/α}[p{q/α}].

Case:
Ω, α; Γ � R ⇒ F[r] p ≡ r p ∈ W
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω, α; Γ � R ⇐ F[p]
By the induction hypothesis, Ω; Γ{q/α} � R{q/α} ⇒ F{q/α}[r{q/α}].
Further, as ≡ is a congruence rule, p{q/α} ≡ r{q/α}. Therefore, using
the same typing rule yields Ω; Γ{q/α} � R{q/α} ⇐ F{q/α}[p{q/α}].

Case:
x : A[p] ∈ Γ p ∈ W
−−−−−−−−−−−−−−−−−−−−−−

Ω, α; Γ � x ⇒ A[p]
If x : A[p] ∈ Γ, then also x : A{q/α}[p{q/α}] ∈ Γ{q/α} – and therefore
Ω; Γ{q/α} � x ⇒ A{q/α}[p{q/α}].

Case:
Ω, α; Γ � R ⇒ Πx : A.B[p] Ω, α; Γ � M ⇐ A[p]
−−

Ω, α; Γ � R M ⇒ B[M/x]p[p]
Using the induction hypothesis, we obtain:
Ω; Γ{q/α} � R{q/α} ⇒ Πx : A{q/α}.B{q/α}[p{q/α}] and
Ω; Γ{q/α} � M{q/α} ⇐ A{q/α}[p{q/α}]. Using the typing rule for
application yields:
Ω; Γ{q/α} � R{q/α} M{q/α} ⇒ B{q/α}[M{q/α}/x]p{q/α}[p{q/α}], or
equivalently Ω; Γ{q/α} � (R M){q/α} ⇒ (B[M/x]p){q/α}[p{q/α}].

�

71

Part III

Lincx

Chapter 6

Programming with Higher-Order Abstract
Syntax

In this part of the thesis we will focus on a different approach to building
logical frameworks – one which allows for reasoning about specifications
without the need to re-design the reasoning language with each new
instance. The Beluga system by [Pientka and Dunfield, 2010] provides
a clean separation between the level of encodings (data) and that of
proofs (computation). This separation makes it possible to replace one of
the layers without significant changes to the other, as long as we keep
the same interface between the two. The next chapter presents the first
attempt at such a replacement; for now, however, let us focus on the
overall design of the framework we intend to re-use.

6.1 Contexts in LF

The main source of difficulty when reasoning about LF specifications
comes from one of its biggest strengths: using higher-order abstract syn-
tax in the encodings inherently forces programming with (or reasoning
about) open terms of the meta-level. Moreover, we cannot manipulate, or
in fact even directly access, the bound variables present in the encodings.

6.1.1 Example: Variable Occurrence Counting

A very simple example of reaching the limits of the pure LF approach is
counting the occurrences of a specific bound variable. We will re-consider

the arrow fragment of the STLC system from Example 1.2.1.

tm : type.
lam : (tm → tm) → tm.
app : tm → tm → tm.

How would one go about writing a variable counter for a calculus
like this? In a functional programming language not using HOAS, with a
recursive function var_occ_count: var → tm → nat, with var being
the abstraction for variables used in terms tm. In LF, though, we cannot
express even the type of this function, as a bound variable is, in fact,
declared in the LF context, which we do not have direct access to.

The remedy proposed by [Pientka, 2008] is to consider programming
with contextual modal objects. Instead of defining functions and properties
of encodings directly in LF, we use Beluga, a functional programming
language which includes open LF objects together with their contexts as
one of the available data types. This introduces two significant changes:
first, we switch from the logical to the functional paradigm; second and
more important, the LF encodings we are used to working with can now
be lifted to another abstraction level, where they can be considered with
their respective contexts. In this approach, a contextual type [Ψ � A]
behaves as type A when its dependencies, in the form of context Ψ, are
satisfied.

A contextual term is, then, one having such a contextual type. This
way, we can explicitly mention the variable whose occurrences we want to
count as part of the context. The counting function can then be declared
as taking a contextual object depending on, among others, a variable x,
and returning a natural number – the number of occurrences of x in the
object.

schema ctx = tm.

rec var_occ_count: (γ : ctx) [γ, x : tm � tm] → nat =
fn e ⇒ case e of

| [γ, x : tm � x] ⇒ 1
| [γ, x : tm � lam (λy. M)] ⇒

var_occ_count [γ, y:tm, x:tm � M]
| [γ, x : tm � app M N] ⇒

var_occ_count [γ, x: tm � M] + var_occ_count [γ, x : tm � N]
| [γ, x : tm � _] ⇒ 0
;

76

Notice that, while var_occ_count is declared to perform computation
on an open LF object, it is not itself an LF expression. The first argument
of var_occ_count, γ : ctx, describes a context of terms tm, in which
(when extended with x : tm) the second argument, a contextual object
of type [γ, x : tm � tm], resides. The counting function can then be
declared using pattern matching on contextual terms.

The interesting cases are, as usual, those for variables and binders.
The variable case is split: either the variable used is the same one we
are counting (in which case, return 1), or it is not (return 0). The latter
is expressed here as a blank _, which matches all cases not previously
considered. We may sometimes have to be a bit more precise, which is
why Beluga introduces parameter variables to talk about arbitrary variable
cases. In the lam (λy.M) case, we instantiate the context variable γ in the
recursive call to be γ, y:tm.

Even though meta-variables and context variables come from the
computation level, they can, of course, appear in the LF level as well –
after all, for γ, x:tm � M to be a correct LF object, the context variable
γ needs to be a correct context. This dependency forms the previously
mentioned interface between the data and computation layers.

6.2 Contextual Modal Logic

We will now take a look at the design of Contextual LF, an LF variant
compatible with programming with open terms as described in the
previous section. The type theory behind it is an adaptation of Contextual
Modal Type Theory by [Nanevski et al., 2008], exploring the idea that,
in between a modal �A, which ensures universal validity, and A, which
guarantees only local truth, there is a whole spectrum of relative truths,
depending on some assumptions, which can be expressed in the form of
a context Ψ. This relativity can be captured in a [Ψ � A]1 type construct.

Types A, B ::= a | A → B | [Ψ � A]

Contexts Γ, Ψ ::= · | Γ, x : A
Modal Contexts Δ ::= · | Δ, u : [Ψ � A]

1[Ψ]A in some presentations

77

x : A ∈ Γ
Δ; Γ � A

ax
u : [Ψ � A] ∈ Δ Δ; Γ � Ψ

Δ; Γ � A
cax

Δ; Γ, x : A � B
Δ; Γ � A → B

→I
Δ; Γ � A → B Δ; Γ � A

Δ; Γ � B
→E

Δ; Ψ � A
Δ; Γ � [Ψ � A]

�I
Δ; Γ � [Ψ � A] Δ, u : [Ψ � A]; Γ � C

Δ; Γ � C
�E

Δ; Γ � B1 . . . Δ; Γ � Bn

Δ; Γ � {yi : Bi}i=1
n

ctx

Figure 6.1: Contextual Modal Logic

Figure 6.1 presents the natural deduction system for a non-dependent
intuitionistic contextual modal logic. Notice that the variable rule cax,
used when taking a hypothesis u : [Ψ � A] from Δ, ensures the existence
of context transformation (substitution) from the existing context, Γ, to one
that the assumption u requires, Ψ.

6.3 Contextual LF

Contextual LF is built on the basis of the contextual modal type theory, by
extending it to include dependent types and providing term assignment
for formulas. To make the presentation simpler, we skip the former in this
section, as it is re-introduced in the system presented in the subsequent
chapter. We also omit the separation of atomic and canonical terms, as
our primary interest is in the new constructs required to make it possible
to write functions on open LF terms – not the mechanics of making the
type theory for the system beautiful.

Types A, B ::= a | A → B
Terms M, N ::= c | x | u[σ] | λx.M | M N
Substitutions σ, τ ::= · | idψ | σ, M
Contexts Γ, Ψ ::= · |ψ | Γ, x : A
Signatures Σ ::= · |Σ, a : type | Σ, c : A

78

Meta Contexts Δ ::= · |Δ, ψ : G | Δ, u : [Ψ � A]

Context Schemata G ::= A | G + A

The distinction between the contextual modal context (meta-context)
Δ and the normal context Γ is preserved; however, we do not consider
[Ψ � A] to be an LF-level type. In particular, we do not allow assumptions
of this form in Γ, and, as a consequence, we cannot λ-abstract over them
in Contextual LF. Instead, we consider [Ψ � A] a meta-type, belonging
only to a meta-context and typing meta-variables. Additional constructs
such as context variables2 γ are added in order to capture some recurring
concepts in mechanizations, as was already suggested in the previous
section. Context variables are annotated with schemata, describing types
of LF level variables allowed in a concrete context instantiating such
context variable. For instance schema ctx = tm describes a type of
context containing only tm assumptions, and γ : ctx stands for any
context of such tm assumptions. In the simply typed case a schema is
just a union of possible types – therefore schema ctx’ = nat + bool
denotes a type of a context which may contain boolean and natural
number assumptions.

In order to move between the object level and the meta-level, the
notion of simultaneous substitutions is introduced. It provides term
assignment to the context transformation rule ctx seen in Figure 6.1. As
the correct context can now include a context variable ψ, there must also
be a substitution term for it, idψ. New constructs in Contextual LF also
include u[σ], a term standing for a closure for meta-variable.

Meta Variables X ::= u | ψ

Meta Objects C ::= ˜Ψ.M | Ψ
Meta Types U ::= [Ψ � A] | G
Meta Substitutions Θ ::= · | Θ, [C/X]

Meta contexts do not get extended directly in the LF layer. Instead,
they are created in the computational layer. Certain refinements can be
given to meta-variables and context variables, leading to simultaneous
meta substitution Θ.

To sketch the idea of how the pieces of Contextual LF fit together, Fig-
ures 6.2 and 6.3 present its typing rules. As we are not using dependent

2In the full variant of Contextual LF, also parameter variables and substitution
variables.

79

c : A ∈ Σ
Δ; Γ � c : A

x : A ∈ Γ
Δ; Γ � x : A

u : [Ψ � A] ∈ Δ Δ; Γ � σ : Ψ
Δ; Γ � u[σ] : A

Δ; Γ, x : A � M : B
Δ; Γ � λx.M : A → B

Δ; Γ � M : A → B Δ; Γ � N : A
Δ; Γ � M N : B

Δ; Γ � · : · Δ; ψ, Γ � idψ : ψ

Δ; Γ � σ : Ψ Δ; Γ � M : A
Δ; Γ � (σ, M) : Ψ, x : A

Figure 6.2: Contextual LF, data level

ψ : G ∈ Δ
Δ � ψ : G Δ � · : G

Δ � Γ : G A ∈ G
Δ � (Γ, x : A) : G

Δ; Ψ � M : A
Δ � ˜Ψ.M : [Ψ � A]

Δ � · : ·
Δ � Θ : Δ′ Δ � C : U
Δ � Θ, C/X : Δ′, X : U

Figure 6.3: Contextual LF, computation level

types in this short introduction, many of them are greatly simplified, but
the extension to dependent types does not introduce any interesting new
challenges. The syntactic restriction on what constitutes a type allows us
to preserve most of the typing rules from Figure 6.1 intact, the changes
in the substitution σ typing rules being purely aesthetic.

A significant difference is that, on the data level, we no longer allow
a contextual object to appear on its own – it has to be accompanied by a
closure, in the form of a simultaneous substitution σ. The idea here is
that, once we know how to instantiate the meta-variable, we can continue
substituting σ.

The simultaneous substitution σ can be defined inductively, as in
Figure 6.4, although typically hereditary presentations are chosen. Meta-
substitution interacts with simultaneous substitution when substituting

80

σΨ(x) Variable lookup

(σ, M)Ψ,x:A(x) = M : A
(σ, M)Ψ,y:A(x) = σΨ(x) where y �= x
σΨ(x) = ⊥
[σ]ΨM

[σ]Ψ(c) = c
[σ]Ψ(x) = M where σΨ(x) = M : A
[σ]Ψ(λy.N) = λy.N′ where [σ]ΨN = N′,

choosing y �∈ Ψ, y �∈ FV(σ)

[σ]Ψ(u[τ]) = u[τ′] where [σ]Ψτ = τ′

[σ]Ψ(M N) = M′ N′ where [σ]ΨM = M′ and [σ]ΨN = N′

[σ]Ψτ

[σ]Ψ(·) = ·
[σ]Ψ(idψ) = idψ

[σ]Ψ(τ, M) = (τ′, M′) where [σ]Ψτ = τ′ and [σ]ΨM = M′

Figure 6.4: Simultaneous substitution

for meta-objects, as we require the postponed substitution present in
the closure to be executed. The relevant meta-substitution rules are
presented in Figure 6.5. id(Ψ) is simply an identity substitution x/x for
all elements of Ψ. Note that these rules are oversimplified – reasoning
about Contextual LF presented this way would be extremely cumbersome,
and we would typically use something more like the spine presentation
with hereditary substitution introduced in Chapter 3.

Both simultaneous substitution σ and meta-substitution Θ are type-
preserving, and typing is decidable.

Connecting Data and Computation The general idea of the interface
between data and computation used in Beluga is this: in the compu-
tational layer, we allow general pattern matching on contextual objects,
using them as an index language in Beluga. Whenever a pattern is
matched, the concretization of meta-variables that it uses spawns a meta-
substitution which is injected to the Contextual LF layer. The technical de-
tails of the computational layer are not relevant for the work that follows,

81

ΘΔ(X) Contextual variable lookup

(Θ, C/X)Δ,X:U(X) = C : U
(Θ, C/Y)Δ,Y:_(X) = ΘΔ(X) where Y �= X
ΘΔ(X) = ⊥

�Θ�Δ(M) = M′

�Θ�Δ(x) = x
�Θ�Δ(c) = c
�Θ�Δ(u[σ]) = M′ where ΘΔ(u) = ˜Ψ.M : (Ψ � A)

and �Θ�Δ σ = σ′
and [σ′]ΨM = M′

�Θ�Δ(λx.M) = λx.M′ where �Θ�ΔM = M′

�Θ�Δ(M N) = M′ N′ where �ΘΔ� M = M′
and �Θ�Δ N = N′

�Θ�Δ(·) = ·
�Θ�Δ(idψ) = id(Ψ) where ΘΔ(ψ) = Ψ
�Θ�Δ(σ, M) = σ′, M′ where �Θ�Δ σ = σ′ and �Θ�Δ M = M′

(Θ, C/X)Δ,X:U(X) = C : U
(Θ, C/Y)Δ,Y:_(X) = ΘΔ(X) where Y �= X
ΘΔ(X) = ⊥

Figure 6.5: Meta-substitution

and therefore are beyond the scope of this brief introduction. They can
be found, for instance, in [Pientka, 2008] and [Cave and Pientka, 2012].
The important point here is that, as long as the index language we want
to use behaves similarly enough to Contextual LF, the computation layer
will not require changes. In the next chapter we will therefore propose
Lincx, a linear contextual LF framework whose behaviour is compatible
with Beluga’s expectations for an index type.

82

Chapter 7

Lincx: A Linear Logical Framework with
First-class Contexts
Originally published in: 26th European Symposium on Programming, 2017

Joint work with: Aina Linn Georges, Shawn Otis, Brigitte Pientka

Abstract

Linear logic provides an elegant framework for modelling state-
ful, imperative and concurrent systems by viewing a context of
assumptions as a set of resources. However, mechanizing the meta-
theory of such systems remains a challenge, as we need to manage
and reason about mixed contexts of linear and intuitionistic assump-
tions.

We present Lincx, a contextual linear logical framework with
first-class mixed contexts. Lincx allows us to model (linear) abstract
syntax trees as syntactic structures that may depend on intuition-
istic and linear assumptions. It can also serve as a foundation for
reasoning about such structures. Lincx extends the linear logical
framework LLF with first-class (linear) contexts and an equational
theory of context joins that can otherwise be very tedious and intri-
cate to develop. This work may be also viewed as a generalization of
contextual LF that supports both intuitionistic and linear variables,
functions, and assumptions.

We describe a decidable type-theoretic foundation for Lincx that
only characterizes canonical forms and show that our equational
theory of context joins is associative and commutative. Finally,
we outline how Lincx may serve as a practical foundation for
mechanizing the meta-theory of stateful systems.

7.1 Introduction

Logical frameworks make it easier to mechanize formal systems and
proofs about them by providing a single meta-language with abstractions
and primitives for common and recurring concepts, like variables and
assumptions in proofs. This can have a major impact on the effort and cost
of mechanization. By factoring out and abstracting over low-level details,
it reduces the time it takes to mechanize formal systems, avoids errors
in manipulating low-level operations, and makes the mechanizations
themselves easier to maintain. It can also make an enormous difference
when it comes to proof checking and constructing meta-theoretic proofs,
as we focus on the essential aspect of a proof without getting bogged
down in the quagmire of bureaucratic details.

The contextual logical framework [Nanevski et al., 2008,
Pientka, 2008], an extension of the logical framework LF
[Harper et al., 1993], is designed to support a broad range of com-
mon features that are needed for mechanizations of formal systems. To
model variables, assumptions and derivations, programmers can take
advantage of higher-order abstract syntax (HOAS) trees; a context of
assumptions together with properties about uniqueness of assumptions
can be represented abstractly using first-class contexts and context
variables [Pientka, 2008]; single and simultaneous substitutions together
with their equational theory are supported via first-class substitutions
[Cave and Pientka, 2013, Cave and Pientka, 2015]; finally, derivation
trees that depend on a context of assumption can be precisely described
via contextual objects [Nanevski et al., 2008]. This last aspect is partic-
ularly important. By encapsulating and representing derivation trees
together with their surrounding context of assumptions, we can analyse
and manipulate these rich syntactic structures via pattern matching,
and can construct (co)inductive proofs by writing recursive programs
about them [Pientka and Dunfield, 2010, Cave and Pientka, 2012]. This
leads to a modular and robust design where we cleanly separate the
representation of formal systems and derivations from the (co)inductive
reasoning about them.

Substructural frameworks such as the linear logical framework
LLF [Cervesato and Pfenning, 1996] provide additional abstractions
to elegantly model the behaviour of imperative operations such
as updating and deallocating memory [Walker and Watkins, 2001,
Fluet et al., 2006] and concurrent computation (see for example session

84

types [Caires and Pfenning, 2010]). However, it has been very challeng-
ing to mechanize proofs about LLF specifications as we must manage
mixed contexts of unrestricted and linear assumptions. When construct-
ing a derivation tree, we must often split the linear resources and dis-
tribute them to the premises relying on a context join operation, written
as Ψ = Ψ1 �� Ψ2. This operation should be commutative and asso-
ciative. Unrestricted assumptions present in Ψ should be preserved
in both contexts Ψ1 and Ψ2. The mix of unrestricted and restricted
assumptions leads to an intricate equational theory of contexts that
often stands in the way of mechanizing linear or separation logics in
proof assistants and has spurred the development of specialized tactics
[McCreight, 2009, Bengtson et al., 2012].

Our main contribution is the design of Lincx (read: “lynx”), a contex-
tual linear logical framework with first-class contexts that may contain
both intuitionistic and linear assumptions. On the one hand our work
extends the linear logical framework LLF with support for first-class
linear contexts together with an equational theory of context joins, con-
textual objects and contextual types; on the other we can view Lincx as
a generalization of contextual LF to model not only unrestricted but also
linear assumptions. Lincx hence allows us to abstractly represent syntax
trees that depend on a mixed context of linear and unrestricted assump-
tions, and can serve as a foundation for mechanizing the meta-theory
of stateful systems where we implement (co)inductive proofs about lin-
ear contextual objects by pattern matching following the methodology
outlined by [Cave and Pientka, 2012] and [Thibodeau et al., 2016]. Our
main technical contributions are:

(i) A bi-directional decidable type system that only characterizes canonical
forms of our linear LF objects. Consequently, exotic terms that do
not represent legal objects from our object language are prevented.
It is an inherent property of our design that bound variables can-
not escape their scope, and no separate reasoning about scope is
required. To achieve this we rely on hereditary substitution to guar-
antee normal forms are preserved. Equality of two contextual linear
LF objects reduces then to syntactic equality (modulo α-renaming).

(ii) Definition of first-class (linear) contexts together with an equational theory
of context joins. A context in Lincx may contain both unrestricted
and linear assumptions. This not only allows for a uniform repre-
sentation of contexts, but also leads to a uniform representation of

85

simultaneous substitutions. Context variables are indexed and their
indices are freely built from elements of an infinite, countable set
through a context join operation (��) that is associative, commutative
and has a neutral element. This allows a canonical representation of
contexts and context joins. In particular, we can consider contexts
equivalent modulo associativity and commutativity. This substan-
tially simplifies the meta-theory of Lincx and also directly gives
rise to a clean implementation of context joins which we exploit in
our mechanization of the meta-theoretic properties of Lincx.

(iii) Mechanization of Lincx together with its meta-theory in the proof as-
sistant Beluga [Pientka and Cave, 2015]. Our development takes ad-
vantage of higher-order abstract syntax to model binding structures
compactly. We only model linearity constraints separately. We have
mechanized our bi-directional type-theoretic foundation together
with our equational theory of contexts. In particular, we mecha-
nized all the key properties of our equational theory of context joins
and the substitution properties our theory satisfies.

We believe that Lincx is a significant step towards modelling (linear)
derivation trees as well-scoped syntactic structures that we can analyse
and manipulate via case-analysis and implementing (co)inductive proofs
as (co)recursive programs. As it treats contexts, where both unrestricted
and linear assumptions live, abstractly and factors out the equational
theory of context joins, it eliminates the need for users to explicitly
state basic mathematical definitions and lemmas and build up the basic
necessary infrastructure. This makes the task easier and lowers the
costs and effort required to mechanize properties about imperative and
concurrent computations.

7.2 Motivating Examples

To illustrate how we envision using (linear) contextual objects and (lin-
ear) contexts, we implement two program transformations on object
languages that exploit linearity. We first represent our object languages
in Lincx and then write recursive programs that analyse the syntactic
structure of these objects by pattern matching. This highlights the role
that contexts and context joins play.

86

7.2.1 Example: Code Simplification

To illustrate the challenges that contexts pose in the linear setting, we
implement a program that translates linear Mini-ML expressions that
feature let-expression into a linear core lambda calculus. We define the
linear Mini-ML using the linear type ml and our linear core lambda
calculus using the linear type lin as our target language. We introduce a
linear LF type together with its constructors using the keyword Linear

LF.

Linear LF ml : type =
| lam : (ml � ml) � ml
| app : ml � ml � ml
| letv : ml � (ml � ml) � ml;

Linear LF lin : type =
| llam : (lin � lin) � lin
| lapp : lin � lin � lin;

We use the linear implication � to describe the linear function
space and we model variable bindings that arise in abstractions and
let-expressions using higher-order abstract syntax, as is common in log-
ical frameworks. This encoding technique exploits the function space
provided by LF to model variables. In linear LF it also ensures that
bound variables are used only once.

Our goal is to implement a simple translation of Mini-ML expressions
to the core linear lambda calculus by eliminating all let-expressions and
transforming them into function applications. We thus need to traverse
Mini-ML expressions recursively. As we go under an abstraction or a
let-expression, our sub-expression will not, however, remain closed. We
therefore model a Mini-ML expression together with its surrounding
context in which it is meaningful. Our function trans takes a Mini-
ML expression in a context γ, whose type is written as [γ � ml], and
returns a corresponding expression in the linear lambda calculus in a
context δ, an object of type [δ � lin]. More precisely, there exists such
a corresponding context δ. Due to linearity, the context of the result of
translating a Mini-ML term has the same length as the original context.
This invariant is however not explicitly tracked.

We first define the structure of such contexts using context schema
declarations. The tag l ensures that any declaration of type ml in a
context of schema ml_ctx must be linear. Similarly, any declaration of
type lin in a context of schema core_ctx must be linear.

schema ml_ctx = l (ml);
schema core_ctx = l (lin);

87

rec trans : (γ:ml_ctx)[γ � ml] → Result =
fn e ⇒ case e of
| [x :̂ ml � x] ⇒ Return [x :̂ lin � x]

| [γ � lam ˆ (̂λx. M)] ⇒
let Return [δ, x :̂ lin � M’] = trans [γ, x :̂ ml � M] in

Return [δ � llam ˆ (̂λx. M’)]
| [γ(1��2) � app ˆ M ˆ N]

where M:[γ1 � ml] and
N:[γ2 � ml] and
γ(1��2) = γ1 �� γ2⇒

let Return [δ1 � M’] = trans [γ1 � M] in
let Return [δ2 � N’] = trans [γ2 � N] in
Return [δ(1��2) � lapp ˆ M’ ˆ N’]

where δ(1��2) = δ1 �� δ2

| [γ(1��2) � let ˆ M ˆ (̂λx. N)]
where M:[γ1� ml] and

N:[γ2, x :̂ ml � ml] and
γ(1��2) = γ1 �� γ2 ⇒

let Return [δ1 � M’] = trans [γ1 � M] in
let Return [δ2, x :̂ lin � N’] = trans [γ2, x :̂ ml � N] in

Return [δ(1��2) � lapp ˆ (llam ˆ (̂λx. N’)) ˆ M’]
where δ(1��2) = δ1 �� δ2;

Figure 7.1: Translation of linear ML-expressions to a linear core language

To characterize the result of this translation, we define a recursive
type:

inductive Result : type = Return : (δ:core_ctx) [δ � lin] → Result;

By writing round parenthesis in (δ:core_ctx) we indicate that we
do not pass δ explicitly to the constructor Return, but it can always be
reconstructed. It is merely an annotation declaring the schema of δ.

We now define a recursive function trans using the keyword rec

(see Figure 7.1). First, let us highlight some high level principles and
concepts that we use. We write [Ψ � N] to describe an expression N
that is meaningful in the context Ψ. For example, [γ � lam ˆ (̂λx. M)]
denotes a term of type ml in the context γ where γ is a context variable
that describes contexts abstractly. We call M a meta-variable. It stands for
an ml term that may depend on the context γ,x :̂ ml. In general, all meta-
variables are associated with a stuck substitution, written N[σ] or M[σ].
We usually omit the substitution σ, if it is the identity substitution. One
substitution that frequently arises in practice is the empty substitution

88

that is written as [] and maps from the empty context to an unrestricted
context Ψ. It hence acts as a weakening substitution.

Our code simplification is implemented using pattern matching on
[γ � ml] objects and specifying constraints on contexts. In the variable
case, since we have a linear context, we require that x be the only variable
in the context1. In the lambda case [γ � lam ˆ (̂λx.M)] we write ˆ for
linear application and linear abstraction. We expect the type of M to be
inferred as [γ,x :̂ ml � ml], since we interpret every pattern variable to
depend on all its surrounding context unless otherwise specified. We
now recursively translate M in the extended context γ, x :̂ ml, unpack
the result and rebuild the equivalent linear term. Note that we pattern
match on the result translating M by writing Result [δ, x :̂ lin � M’].
However, we do not necessarily know that the output core_ctx context
is of the same length as the input ml_ctx context and hence necessarily
has the shape [δ, x :̂ lin], as we do not track this invariant explicitly.
To write a covering program we would need to return an error, if we
would encounter Return [� M’], i.e. a closed term where δ is empty.
We omit this case here.

The third and fourth cases are the most interesting ones, as we
must split the context. When analysing [γ(1��2) � app ˆ M ˆ N], term
M has some type [γ1 � ml] and N has some type [γ2 � ml] where
γ(1��2) = γ1 �� γ2. We specify these type annotations and context con-
straints explicitly. Note that we overload the �� symbol in this example:
when it occurs as a subscript it is part of the name, while when we write
γ1 �� γ2 it refers to the operation on contexts. Then we can simply recur-
sively translate M and N and rebuild the final result where we explicitly
state δ(1��2) = δ1 �� δ2. We proceed similarly to translate recursively
every let-expression into a function application.

Type checking verifies that a given object is well-typed modulo context
joins. This is non-trivial. As an example, consider a contextual lin ob-
ject [δ(1��2) � lapp ˆ (llam ˆ (̂λx. N’)) ˆ M’] where δ(1��2) = δ1 �� δ2.
Clearly, we should be able to type check it also if the user instead wrote
δ = δ2 �� δ1. Hence we want our underlying type theory to reason about
context constraints modulo associativity and commutativity.

As the astute reader will have noticed, we only allow (at most) one
context variable in every context, making it illegal to write objects like

1In case we have a mixed context, we could specify instead that the rest of the
context is unrestricted, using the keywords where and unr.

89

γ(1��(21��22))

γ1 γ(21��22)

γ21 γ22

��

��

equivalent to

γ((1��21)��22)

γ(1��21)

γ1 γ21

γ22��

��

Figure 7.2: Context Joins

[δ1,δ2 � lapp ˆ (llam ˆ (̂λx. N’)) ˆ M’]. Furthermore, we have delib-
erately chosen the subscripts for our context variables to emphasize their
encoding in our underlying theory. Note that all context variables that
belong to the same tree of context splits have the same name, but differ
in their subscripts. The context variables γ1 and γ2 are called leaf-level
context variables. The context variable γ(1��2) is their direct parent and sits
at the root of this tree. One can think of the tree of context joins as an
abstraction of the typing derivation.

To emphasize this idea, consider the deeply nested pattern:
[γ((11��12)��2) � lapp ˆ (lapp ˆ (llam ˆ (̂λx. M)) ˆ N’) ˆ K] in which
M : [γ11, x :̂ ml � ml], N : [γ12 � ml], and K : [γ2 � ml], and
where we again encode the splitting of γ in its subscript. Our underlying
equational theory of context joins treats γ(11��(12��2)) as equivalent to
γ((11��12)��2) or γ((12��11)��2) as it takes into account commutativity and
associativity. However, it may require us to generate a new intermediate
node γ(1��21) and eliminate intermediate nodes (such as γ21��22).

Our encoding of context variables is hence crucial to allow the rear-
rangement of context constraints, but also to define what it means to
instantiate a given context variable such as γ21 with a concrete context Ψ.
If Ψ contains also unrestricted assumptions then instantiating γ21 will
have a global effect, as unrestricted assumptions are shared among all
nodes in this tree of context joins. This latter complication could possibly
be avoided if we separate the context of intuitionistic assumptions and
the context of linear assumptions. However, this kind of separation
between intuitionistic and linear assumptions is not trivial in the depen-
dently typed setting, because types of linear assumptions may depend
on intuitionistic assumptions.

This design of context variables and capturing their dependency is
essential to Lincx and to the smooth extension of contextual types to
the linear setting. As the leaf-level context variables uniquely describe a
context characterized by a tree of context joins, we only track the leaf-level
context variables as assumptions while type checking an object, but justify

90

the validity of context variables that occur as interior nodes through the
leaf-level variables. We want to emphasize that this kind of encoding of
context variables does not need to be exposed to programmers.

7.2.2 Example: CPS translation

As a second example, we implement the translation of programs into
continuation passing style following [Danvy and Filinski, 1992]. Con-
cretely, we follow closely the existing implementation of type-preserving
CPS translation in Beluga from [Belanger et al., 2013], but enforce that
the continuations are used linearly, an idea from [Berdine et al., 2002].
Although context splits do not arise in this example, as we only have one
linear variable (standing for the continuation) in our context, we include
it, to showcase the mix and interplay of intuitionistic and linear function
spaces in encoding program transformations.

Our source language is a simple language consisting of natural num-
bers, functions, applications and let-expressions. We only model well-
typed expressions by defining a type source that is indexed by types
tp.

Linear LF tp : type =
| nat : tp
| arr : tp → tp → tp;

Linear LF source : tp → type =
| app : source (arr S T) → source S

→ source T
| lam : (source S → source T)

→ source (arr S T)
| z : source nat
| s : source nat → source nat;

In our target language we distinguish between expressions, character-
ized by the type exp and values, defined by the type value. Continuations
take values as their argument and return an exp. We ensure that each
continuation itself is used exactly once by abstracting exp over the linear
function space.
Linear LF exp : type =
| kapp : value (arr S T) → value S → (value T → exp) � exp
| halt : value S → exp
and value : tp → type =
| klam : (value S → (value T → exp) � exp) → value (arr S T)
| kz : value nat
| ksuc : value nat → value nat ;

We can now define our source and value contexts as unrestricted
contexts by marking the schema element with the tag u.

91

schema sctx = u (source T);
schema vctx = u (value T);

To guarantee that the resulting expression is well-typed, we define a
context relation Ctx_Rel to relate the source context to the value context
(see Figure 7.3). Notice that we explicitly state that the type S of a
source and target expression is closed; it does not depend on γ or δ. To
distinguish between objects that depend on their surrounding context
and objects that do not, we associate every index and pattern variable
with a substitution (the identity substitution by default); if we want
to state that a given variable is closed, we associate it with the empty
substitution [].

We can now define the translation itself (see Figure 7.3). The function
cpse takes in a context relation Ctx_Rel [γ] [δ] and a source term
of type source S[] that depends on context γ. It then returns the
corresponding expression of type exp, depending on context δ extended
by a continuation from value S to exp. The fact that the continuation is
used only once in exp is enforced by declaring it linear in the context.
The translation proceeds by pattern matching on the source term. We
concentrate here on the interesting cases.

Parameter Variable If we encounter a variable from the context γ, writ-
ten as #p, we look up the corresponding variable #q in the target context
δ by using the context relation and we pass it to the continuation k. We
omit here the definition of the lookup function which is straightforward.
We use _ where we believe that the omitted object can reasonably be
inferred. Finally, we note that the expression k #q is well-typed in the
context δ, k :̂ value _ → exp, as k is well-typed in the context that only
contains the declaration k :̂ value _ → exp and #q is well-typed in the
context δ.

Constant z We first retrieve the target context δ to build the final ex-
pression by pattern matching on the context relation r. Then we pass
kz to the continuation k in the context δ,k :̂ value nat → exp. Note
that an application k kz is well-typed in δ,k :̂ value nat → exp, as kz
is well-typed in δ, i.e. its unrestricted part.

Lambda Abstraction To convert functions, we extend the context γ and
the context relation r and convert the term M recursively in the extended

92

data Ctx_Rel: {γ:sctx}{δ:vctx} type =
Nil : Ctx_Rel [] []
Cons : Ctx_Rel [γ] [δ] → Ctx_Rel [γ, x:source S[]] [δ, v:value S[]];

rec cpse:(γ:sctx)(δ:vctx)(S:[� tp])
Ctx_Rel [γ] [δ] →
[γ � source S[]] →
[δ, k :̂ value S[] → exp � exp] =

fn r, e ⇒ case e of
| [γ � #p] ⇒

let [δ� #q] = lookup r [γ � #p] in
[δ, k :̂ value _ → exp � k #q]

| [γ � z] ⇒ let (r : Ctx_Rel [γ] [δ]) = r in
[δ,k :̂ value nat → exp � k kz]

| [γ � suc N] ⇒
let [δ,k :̂ value nat → exp � P] = cpse r [γ � N] in
[δ,k :̂ value nat → exp � P[λp. k (ksuc p)]]

| [γ � lam λx. M] ⇒
let [δ, v:value S[], k :̂ value T[] → exp � P] = cpse [Cons r] [γ, x:
source _ � M] in

[δ, k̂ :value (arr S[] T[]) → exp � k (klam (λx.̂λc. P))]

| [γ � app M N] ⇒
let [δ, k1 :̂ value (arr S[] T[]) → exp � P] = cpse r [γ � M] in
let [δ, k2 :̂ value S[] → exp � Q] = cpse r [γ � N] in
[δ,k :̂ value T[] → exp � P[λf. Q[λx. kapp f x ˆ k]]];

Figure 7.3: CPS Translation

context to obtain the target expression P. We then pass to the continuation
k the value klam λx.̂λc.P.

Application Finally, let us consider the source term app M N. We trans-
late both M and N recursively to produce the target terms P and Q re-
spectively. We then substitute for the continuation variable k2 in Q a
continuation consuming the local argument of an application. A contin-
uation is then built from this, expecting the function to which the local
argument is applied and substituted for k1 in P producing a well-typed
expression, if a continuation for the resulting type S is provided.

We take advantage of our built-in substitution here to reduce any
administrative redexes. The term (λx. kapp f x ˆ k) that we substitute

93

for references to k2 in Q will be β-reduced wherever that k2 appears
in a function call position, such as the function calls introduced in the
variable case. We hence reduce administrative redexes using the built-in
(linear) LF application.

7.3 Lincx: A Linear Logical Framework with First-Class
Contexts

Throughout this section we gradually introduce Lincx, a contextual linear
logical framework with first-class contexts (i.e. context variables) that gen-
eralizes the linear logical framework LLF [Cervesato and Pfenning, 1996]
and contextual LF [Cave and Pientka, 2012]. Figure 7.4 presents both
contextual linear LF (see Section 7.3.1) and its meta-language (see Sec-
tion 7.3.6).

7.3.1 Syntax of Contextual Linear LF

Lincx allows for linear types, written A � B, and dependent types
Πx:A.B where x may be unrestricted in B. We follow recent presen-
tations where we only describe canonical LF objects using hereditary
substitution.

As usual, our framework supports constants, (linear) functions, and
(linear) applications. We only consider objects in η-long β-normal form,
as these are the only meaningful terms in a logical framework. While the
grammar characterizes objects in β-normal form, the bi-directional typing
rules will also ensure that objects are η-long. Normal canonical terms are
either intuitionistic lambda abstractions, linear lambda abstractions, or
neutral atomic terms. We define (linear) applications as neutral atomic
terms using a spine representation [Cervesato and Pfenning, 2003], as
it makes the termination of hereditary substitution easier to establish.
For example, instead of x M1 . . . Mn, we write x · M1; . . . ; Mn; ε. The
three possible variants of a spine head are: a variable x, a constant c or a
parameter variable closure p[σ].

Our framework contains ordinary bound variables x which may refer
to a variable declaration in a context Ψ or may be bound by either
the unrestricted or linear lambda-abstraction, or by the dependent type
Πx:A.B. Similarly to contextual LF, Lincx also allows two kinds of
contextual variables as terms. First, the meta-variable u of type (Ψ � P)

94

Contextual Linear LF

Kinds K ::= type | Πx:A.K
Types A, B ::= P | Πx:A.B | A � B
Atomic Types P, Q ::= a · S
Heads H ::= x | c | p[σ]
Spines S ::= ε | M ; S | M ;̂ S
Atomic Terms R ::= H · S | u[σ]
Canonical Terms M, N ::= R | λx.M | ̂λx.M
Variable Declarations D ::= x:A | x:̂A | x:̌A
Contexts Ψ, Φ ::= · | ψm | Ψ, D
Substitutions σ, τ ::= · | idψ | σ, M

Meta-Language

Meta-Variables X ::= u | p | ψi

Meta-Objects C ::= ˜Ψ.R | ˜Ψ.H | Ψ

Context Schema Elem. E ::= λ(
−−→
xi:Ai).A | λ(

−−→
xi:Ai). ̂A

Context Schemata G ::= E | G + E
Context Var. Indices m ::= ε | i | m �� n
Meta Types U ::= Ψ � P | Ψ � #A | G
Meta-Contexts Δ ::= · | Δ, X : U
Meta-Substitutions Θ ::= · | Θ, C/X

Figure 7.4: Contextual Linear LF with first-class contexts

stands for a general LF object of atomic type P and uses the variables
declared in Ψ. Second, the parameter variable p of type (Ψ � #A) stands
for a variable object of type A from the context Ψ. These contextual
variables are associated with a postponed substitution σ representing a
closure. The intention is to apply σ as soon as we know what u (or p
resp.) stands for.

The system has one mixed context Ψ containing both intuitionistic
and linear assumptions: x:A is an intuitionistic assumption in the context
(also called unrestricted assumption), x:̂A represents a linear assumption
and x:̌A stands for its dual, an unavailable assumption. It is worth noting

95

that we usê throughout the system description to indicate a linear object
– be it term, variable, name etc. Similarly, q always denotes an unavailable
resource.

In the simultaneous substitution σ, we do not make the domain ex-
plicit. Rather, we think of a substitution together with its domain Ψ; the
i-th element in σ corresponds to the i-th declaration in Ψ. The expression
idψ denotes the identity substitution with domain ψm for some index
m; we write · for the empty substitution. We build substitutions using
normal terms M. We must however be careful: note that a variable x
is only a normal term if it is of base type. As we push a substitution σ

through a λ-abstraction λx.M, we need to extend σ with x. The resulting
substitution σ, x might not be well-formed, since x might not be of base
type and, in fact, we do not know its type. This is taken care of in our def-
inition of substitution, based on contextual LF [Cave and Pientka, 2013].
As we substitute and replace a context variable with a concrete context,
we unfold and generate an (η-expanded) identity substitution for a given
context Ψ.

7.3.2 Contexts and Context Joins

Since linearity introduces context splitting, context maintenance is crucial
in any linear system. When we allow for first-class contexts, as we do
in Lincx, it becomes much harder: we now need to ensure that, upon
instantiation of the context variables, we do not accidentally join two
contexts sharing a linear variable. To enforce this in Lincx, we allow
for at most one (indexed) context variable per context and use indices
to abstractly describe splitting. This lets us generalize the standard
equational theory for contexts based on context joins to include context
variables.

As mentioned above, contexts in Lincx are mixed. Besides linear
and intuitionistic assumptions, we allow for unavailable assumptions
following the approach of [Schack-Nielsen and Schürmann, 2010], in or-
der to maintain symmetry when splitting a context: if Ψ = Ψ1 �� Ψ2,
then Ψ1 and Ψ2 both contain all the variables declared in Ψ; however,
if Ψ1 contains a linear assumption x:̂A, Ψ2 will contain its unavailable
counterpart x:̌A (and vice-versa).

To account for context splitting in the presence of context variables,
we index the latter. The indices are freely built from elements of an
infinite, countable set I , through a join operation (��). It is associative

96

and commutative, with ε as its neutral element. In other words, (I∗, ��, ε)
is a (partial) free commutative monoid over I . For our presentation it is
important that no element of the monoid is invertible, that is if m �� n = ε

then m = n = ε. In the process of joining contexts, it is crucial to ensure
that each linear variable is used only once: we do not allow a join of
Ψ, x:̂A with Φ, x:̂A. To express the fact that indices m and n share no
elements of I and hence the join of ψm with ψn is meaningful, we use
the notation m⊥n. In fact we will overload ��, changing it into a partial
operation m �� n that fails when m �⊥n. This is because we want the
result of joining two context variables to continue being a correct context
upon instantiation. We will come back to this point in Section 7.3.6, when
discussing meta-substitution for context variables.

To give more intuition, the implementation of the indices in our
formalization of the system is using binary numbers, where I contains
powers of 2, �� is defined as a binary OR and ε = 0 . m⊥n holds when
m and n use different powers of 2 in their binary representation. We can
also simply think of indices m as sets of elements from I with �� being
∪ for sets not sharing any elements.

The only context variables tracked in the meta-context Δ are the leaf-
level context variables ψi. We require that these use elements of the carrier
set i ∈ I as indices. To construct context variables for use in contexts, we
combine leaf-level context variables using �� on indices. Consider again
the tree describing the context joins (see Figure 7.2). In this example,
we have the leaf-level context variables γ1, γ21, and γ22. These are the
only context variables we track in the meta-context Δ. Using a binary
encoding we would use the subscripts 100, 010 and 001 instead of 1, 21,
and 22.

Rules of constructing a well-formed context (Figure 7.5) describe four
possible initial cases of context construction. First, the empty context,
written simply as ·, is well-formed. Next, there are two possibilities why
a context denoted by a context variable ψi is well-formed. If the context
variable ψi is declared in the meta-context Δ, then it is well-formed and
describes a leaf-variable. To guarantee that also context variables that
describe intermediate nodes in our context tree are well-formed, we have
a composition rule that allows joining two well-formed context variables
using �� operation on indices; the restriction we make on �� ensures
that they do not share any leaf-level variables. ψε forms a well-formed
context as long as for some index i, there is a context variable ψi declared
in Δ. ψε then stands for the intuitionistic part of the context we are

97

Δ � Ψ ctx Ψ is a valid context under meta-context Δ

Δ � · ctx
ψi ∈ dom(Δ)

Δ � ψε ctx

ψi ∈ dom(Δ)
Δ � ψi ctx

Δ � ψk ctx Δ � ψl ctx m = k �� l
Δ � ψm ctx

Δ � Ψ ctx Δ; Ψ � A type D ∈ {x:A, x:̂A, x:̌A}
Δ � Ψ, D ctx

Figure 7.5: Well-formed contexts

abstracting over using ψi. Finally, the last case for context extensions is
straightforward.

In general we write Γ for contexts that do not start with a context vari-
able and Ψ, Γ for the extension of context Ψ by the variable declarations
of Γ.

When defining our inference rules, we will often need to ac-
cess the intuitionistic part of a context. Much like in linear LF
[Cervesato and Pfenning, 1996], we introduce the function Ψ which is
defined as follows:

Ψ Intuitionistic part of Ψ
· = ·
ψm = ψε

Ψ, x:A = Ψ, x:A
Ψ, x:̂A = Ψ, x:̌A
Ψ, x:̌A = Ψ, x:̌A

Note that this function does not remove any variable declarations from Ψ,
it simply makes them unavailable. Further, when applying this function
to a context variable, it drops all the indices, indicating access to only
the shared part of the context variable. After we instantiate ψm with a
concrete context, we will apply the operation. Extracting the intuitionistic
part of a context is hence simply postponed.

Further, we define notation unr(Ψ) to denote an unrestricted context,
i.e. a context that only contains unrestricted assumptions; while Ψ

98

Ψ = Ψ1 �� Ψ2 Context Ψ is a join of Ψ1 and Ψ2

· = · �� ·
m = k �� l

ψm = ψk �� ψl

Ψ = Ψ1 �� Ψ2
Ψ, x:A = Ψ1, x:A �� Ψ2, x:A

Ψ = Ψ1 �� Ψ2
Ψ, x:̌A = Ψ1, x:̌A �� Ψ2, x:̌A

Ψ = Ψ1 �� Ψ2
Ψ, x:̂A = Ψ1, x:̂A �� Ψ2, x:̌A

Ψ = Ψ1 �� Ψ2
Ψ, x:̂A = Ψ1, x:̌A �� Ψ2, x:̂A

Figure 7.6: Joining contexts

drops all linear assumptions, unr(Ψ) simply verifies that Ψ is a purely
intuitionistic context. In other words, unr(Ψ) holds if and only if Ψ = Ψ.
We omit here its (straightforward) judgmental definition.

The rules for joining contexts (see Figure 7.6) follow the approach pre-
sented by Schack-Nielsen in his PhD dissertation [Schack-Nielsen, 2011],
but are generalized to take into account context variables. Because of the
monoid structure of context variable indices, the description can be quite
concise while still preserving the desired properties of this operation.
For instance the expected property Ψ = Ψ �� Ψ follows, on the context
variable level, from ε being the neutral element of ��. Indeed, for any ψm,
we have that ψm = ψm �� ψε.

It is also important to note that, thanks to the determinism of ��,
context joins are unique. In other words, if both Ψ = Ψ1 �� Ψ2 and
Φ = Ψ1 �� Ψ2, it follows that Ψ = Φ. On the other hand, context splitting
is non-deterministic: given a context Ψ we have numerous options of
splitting it into Ψ1 and Ψ2, since each linear variable can go to either of
the components.

We finish this section by describing the equational theory of context
joins. We expect joining contexts to be a commutative and associative
operation, and the unrestricted parts of contexts in the join should be
equal. Further, it is always possible to extend a valid join with a ground
unrestricted context, and Ψ can always be joined with Ψ without changing
the result.

Lemma 7.1 (Theory of context joins).

(i) (Commutativity) If Ψ = Ψ1 �� Ψ2 then Ψ = Ψ2 �� Ψ1.

99

(ii) (Associativity1) If Ψ = Ψ1 �� Ψ2 and Ψ1 = Ψ11 �� Ψ12 then there exists
a context Ψ0 s.t. Ψ = Ψ11 �� Ψ0 and Ψ0 = Ψ12 �� Ψ2.

(iii) (Associativity2) If Ψ = Ψ1 �� Ψ2 and Ψ2 = Ψ21 �� Ψ22 then there exists
a context Ψ0 s.t. Ψ0 = Ψ1 �� Ψ21 and Ψ = Ψ0 �� Ψ22.

(iv) If Ψ = Ψ1 �� Ψ2 then Ψ = Ψ1 = Ψ2.

(v) If unr(Γ) and Ψ = Ψ1 �� Ψ2 then Ψ, Γ = Ψ1, Γ �� Ψ2, Γ.

(vi) For any Ψ, Ψ = Ψ �� Ψ.

We will need these properties to prove lemmas about typing and
substitution, specifically for the cases that call for specific context joins.

7.3.3 Typing for Terms and Substitutions

We now describe the bi-directional typing rules of Lincx terms (see
Figure 7.7). All typing judgements have access to the meta-context
Δ, context Ψ, and to a fixed well-typed signature Σ where we store
constants c together with their types and kinds. Lincx objects may
depend on variables declared in the context Ψ and a fixed meta-context Δ
which contains contextual variables such as meta-variables u, parameter
variables p, and context variables. Although the rules are bi-directional,
they do not give a direct algorithm, as we need to split a context Ψ into
contexts Ψ1 and Ψ2 such that Ψ = Ψ1 �� Ψ2 (see for example the rule
for checking H · S against a base type P). This operation is in itself non-
deterministic, however since our system is linear there is only one split
that makes the components (for example H and S in H · S) typecheck.

Typing rules presented in Figure 7.7 are, perhaps unsurprisingly, a
fusion between contextual LF and linear LF. As in contextual LF, the
typing for meta-variable closures and parameter variable closures is
straightforward. A meta-variable u : (Ψ � P) represents an open LF
object (a “hole” in a term). As mentioned earlier it has, associated with
it, a postponed substitution σ, applied as soon as u is made concrete.
Similarly, a parameter variable p : (Ψ � #A) represents an LF variable –
either an unrestricted or linear one.

As in linear LF, we have two lambda abstraction rules (one introduc-
ing intuitionistic, the other linear assumptions) and two corresponding
variable cases. Moreover, we ensure that types only depend on the un-
restricted part of a context when checking that two types are equal. As

100

Δ; Ψ � M ⇐ A Term M checks against type A

Δ; Ψ, x:A � M ⇐ B
Δ; Ψ � λx.M ⇐ Πx:A.B

Δ; Ψ, x:̂A � M ⇐ B
Δ; Ψ � ̂λx.M ⇐ A � B

u : (Φ � P) ∈ Δ Δ; Ψ � σ ⇐ Φ Δ; Ψ � [σ]ΦP = Q
Δ; Ψ � u[σ] ⇐ Q

Δ; Ψ1 � H ⇒ A Δ; Ψ2 � S > A ⇒ P Δ; Ψ � P = Q Ψ = Ψ1 �� Ψ2
Δ; Ψ � H · S ⇐ Q

Δ; Ψ � H ⇒ A Head H synthesizes a type A

c:A ∈ Σ unr(Ψ)

Δ; Ψ � c ⇒ A
p : (Φ � #A) ∈ Δ Δ; Ψ � σ ⇐ Φ

Δ; Ψ � p[σ] ⇒ [σ]Φ A

unr(Ψ) x:A ∈ Ψ
Δ; Ψ � x ⇒ A

unr(Ψ1) unr(Ψ2)

Δ; Ψ1, x:̂A, Ψ2 � x ⇒ A

Δ; Ψ � S > A ⇒ P Spine S synthesizes type P

unr(Ψ)

Δ; Ψ � ε > P ⇒ P
Δ; Ψ � M ⇐ A Δ; Ψ � S > [M/x]AB ⇒ P

Δ; Ψ � M ; S > Πx:A.B ⇒ P

Δ; Ψ1 � M ⇐ A Δ; Ψ2 � S > B ⇒ P Ψ = Ψ1 �� Ψ2
Δ; Ψ � M ;̂ S > A � B ⇒ P

Figure 7.7: Typing rules for terms

we rely on hereditary substitutions, this equality check ends up being
syntactic equality. Similarly, when we consider a spine M ; S and check it
against the dependent type Πx:A.B, we make sure that M has type A in
the unrestricted context before continuing to check the spine S against
[M/x]AB. When we encounter a spine M ;̂ S and check it against the
linear type A � B in the context Ψ, we must show that there exists a
split s.t. Ψ = Ψ1 �� Ψ2 and then check that the term M has type A in the
context Ψ1 and the remaining spine S is checked against B to synthesize
a type P.

Finally, we consider the typing rules for substitutions, presented in

101

Δ; Ψ � σ ⇐ Φ Substitution σ maps variables from Φ to Ψ

unr(Ψ)

Δ; Ψ � · ⇐ ·
unr(Γ)

Δ; ψm, Γ � idψ ⇐ ψm

Δ; Ψ � σ ⇐ Φ Δ; Ψ � M ⇐ [σ]Φ A
Δ; Ψ � σ, M ⇐ Φ, x:A

Δ; Ψ1 � σ ⇐ Φ Δ; Ψ2 � M ⇐ [σ]Φ A Ψ = Ψ1 �� Ψ2

Δ; Ψ � σ, M ⇐ Φ, x:̂A

Δ; Ψ � σ ⇐ Φ Ψ = Ψ′ Δ; Ψ′ � M ⇐ [σ]Φ A
Δ; Ψ � σ, M ⇐ Φ, x:̌A

Figure 7.8: Typing rules for substitutions

Figure 7.8. We exercise care in making sure the range context in the base
cases, i.e. where the substitution is empty or the identity, is unrestricted.
This guarantees weakening and contraction for unrestricted contexts.

The substitution σ, M is well-typed with domain Φ, x:A and range
Ψ, if σ is a substitution from Φ to the context Ψ and in addition M
has type [σ]Φ A in the unrestricted context Ψ. The substitution σ, M is
well-typed with domain Φ, x:̂A and range Ψ, if there exists a context split
Ψ = Ψ1 �� Ψ2 s.t. σ is a substitution with domain Φ and range Ψ1 and
M is a well-typed term in the context Ψ2. The substitution σ, M is well-
typed with domain Φ, x:̌A and range Ψ, if σ is a substitution from Φ to
Ψ and for some context Ψ′, Ψ = Ψ′, M is a well-typed term in the context
Ψ′. This last rule, extending the substitution domain by an unavailable
variable, is perhaps a little surprising. Intuitively we may want to skip the
unavailable variable of a substitution. This would however mean that we
have to perform not only context splitting, but also substitution splitting
when defining the operation of simultaneous substitution. An alternative
is to use an arbitrary term M to be substituted for this unavailable
variable, as the typing rules ensure it will never actually occur in the
term in which we substitute. When establishing termination of type-
checking, it is then important that M type checks in a context that can
be generated from the one we already have. We ensure this with a side
condition Ψ = Ψ′. By enforcing that the unrestricted parts of Ψ and Ψ′

102

are equal we limit the choices that we have for Ψ′ deciding which linear
variables to take (linear) and which to drop (unavailable), and deciding
on the index of context variable.

When considering an identity substitution idψ, we allow for some
ambiguity: we can use any ψm for both the domain and range of idψ.
Upon meta-substitution, all instantiations of ψm will have the same names
and types of variables; the only thing differentiating them will be their
status (intuitionistic, linear or unavailable). Since substitutions do not
store information about the status of variables they substitute for (this
information is available only in the domain and range), the constructed
identity substitution will be the same regardless of the initial choice of
ψm – it will however have a different type.

The observation above has a more general consequence, allowing us
to avoid substitution splits when defining the operation of hereditary
substitution: if a substitution in Lincx transforms context Φ to context
Ψ, it does so also for their unrestricted fragments.

Lemma 7.2. If Δ; Ψ � σ ⇐ Φ then Δ; Ψ � σ ⇐ Φ.

7.3.4 Hereditary Substitution

Next we will characterise the operation of hereditary substitution, which
allows us to consider only normal forms in our grammar and typing
rules, making the decidability of type-checking easy to establish.

As usual, we annotate hereditary substitutions with an approximation
of the type of the term we substitute for to guarantee termination.

Type approximations α, β ::= a | α → β | α � β

We then define the dependency erasure operator (−)− as follows:

A− = α α is a type approximation of A
(a · S)− = a

(Πx:A.B)− = A− → B−

(A � B)− = A− � B−

We will sometimes tacitly apply the dependency erasure operator
(−)− in the following definitions. Hereditary single substitution for
Lincx is standard and closely follows [Cave and Pientka, 2013], since
linearity does not induce any complications. When executing the current

103

substitution would create redexes, we proceed by hereditarily performing
another substitution, using a reduction operation reduce(M, S).

reduce(M : α, S) = N Result of reducing M applied to spine S is N

reduce(λx.M : α → β, (N ; S)) = reduce([N/x]αM : β, S)
reduce(̂λx.M : α � β, (N ;̂ S)) = reduce([N/x]αM : β, S)
reduce(R : a, ε) = R
reduce(M : α, S) = ⊥

For the sake of completeness, the full rules for hereditary single
substitution can be found in the Appendix 7.A.1 with rules presented in
Figure 7.12.

Termination can be readily established:

Theorem 7.1 (Termination of hereditary single substitution). The heredi-
tary substitutions [M/x]α(N) and reduce(M : α, S) terminate, either by failing
or successfully producing a result.

The following theorem provides typing for the hereditary substitution.
We use J to stand for any of the forms of judgements defined above.

Theorem 7.2 (Hereditary single substitution property).

(i) If Δ; Ψ � M ⇐ A and Δ; Ψ, x:A � J then Δ; Ψ � [M/x]A J.

(ii) If Δ; Ψ1 � M ⇐ A, Δ; Ψ2, x:̂A � J and Ψ = Ψ1 �� Ψ2 then also
Δ; Ψ � [M/x]A J

(iii) If Δ; Ψ1 � M ⇐ A, Δ; Ψ2 � S > A ⇒ B, Ψ = Ψ1 �� Ψ2 and
reduce(M : A−, S) = M′ then also Δ; Ψ � M′ ⇐ B

We can easily generalize hereditary substitution to simultaneous sub-
stitution. We focus here on the simultaneous substitution in a canonical
terms (see Figure 7.9). Hereditary simultaneous substitution relies on
a lookup function that is defined below. Note that (σ, M)Ψ,x:̌A(x) = ⊥,

104

[σ]
˜Φ
Ψ M

Substitution of the variables of Ψ in a canonical term
(leaving elements of ˜Φ unchanged)

[σ]
˜Φ
Ψ(λy.N) = λy.N′ where [σ]

˜Φ,y
Ψ N = N′,

choosing y �∈ Ψ, y �∈ FV(σ)

[σ]
˜Φ
Ψ(

̂λy.N) = ̂λy.N′ where [σ]
˜Φ,ŷ
Ψ N = N′,

choosing y �∈ Ψ, y �∈ FV(σ)

[σ]
˜Φ
Ψ(u[τ]) = u[τ′] where [σ]

˜Φ
Ψτ = τ′

[σ]
˜Φ
Ψ(c · S) = c · S′ where [σ]

˜Φ
ΨS = S′

[σ]
˜Φ
Ψ(x · S) = reduce(M : α, S′) where Ψ = Ψ1 �� Ψ2, and x �∈ ˜Φ,

and σΨ1(x) = M : α,
and [σ]

˜Φ
Ψ2

S = S′

[σ]
˜Φ
Ψ(y · S) = y · S′ where y ∈ ˜Φ, and [σ]

˜Φ
ΨS = S′

[σ]
˜Φ
Ψ(y · S) = y · S′ where ỹ ∈ ˜Φ, and [σ]

˜Φ\ỹ
Ψ S = S′

[σ]
˜Φ
Ψ(p[τ] · S) = p[τ′] · S′ where Ψ = Ψ1 �� Ψ2,

and ˜Φ = ˜Φ1 �� ˜Φ2,

and [σ]
˜Φ1
Ψ1

τ = τ′, and [σ]
˜Φ2
Ψ2

S = S′

Figure 7.9: Simultaneous substitution

since we assume x to be unavailable in the domain of σ.

σΨ(x) Variable lookup

(σ, M)Ψ,x:A(x) = M : A−

(σ, M)Ψ,x:̂A(x) = M : A−

(σ, M)Ψ,y:A(x) = σΨ(x) where y �= x
(σ, M)Ψ,y:̌A(x) = σΨ(x) where y �= x
σΨ(x) = ⊥

Unlike many previous formulations of contextual LF, we do not allow
substitutions to be directly extended with variables. Instead, following
a more recent approach from [Cave and Pientka, 2013], we require that
substitutions must be extended with η-long terms, thus guaranteeing
unique normal forms for substitutions. For this reason, we maintain a list
of variable names and statuses which are not to be changed, ˜Φ in [σ]

˜Φ
Ψ.

105

This list gets extended every time we pass through a lambda expression.
We use it when substituting in y · S – if y ∈ ˜Φ or ŷ ∈ ˜Φ we simply leave
the head unchanged. It is important to preserve not only the name of the
variable, but also its status (linear, intuitionistic or unavailable), since we
sometimes have to perform a split on ˜Φ. Such split works precisely like
one on complete contexts, since types play no role in context splitting.

As simultaneous substitution is a transformation of contexts, it is
perhaps not surprising that it becomes more complex in the presence
of context splitting. Consider for instance the case where we push the
substitution σ through an expression p[τ] · S. While σ has domain Ψ
(and is ignoring variables from ˜Φ) and p[τ] · S is well-typed in (Ψ, Φ),
the closure p[τ] is well-typed in a context (Ψ1, Φ1) and the spine S is
well-typed in a context (Ψ2, Φ2) where Ψ = Ψ1 �� Ψ2 and Φ = Φ1 �� Φ2.

As a consequence, [σ]˜ΦΨτ and [σ]
˜Φ
ΨS would be ill-typed, however [σ]

˜Φ1
Ψ1

τ

and [σ]
˜Φ2
Ψ2

S will work well. Notice that it is only the domain of the
substitution that we need to split, not the substitution itself.

Similarly to the case for hereditary single substitution, the theorem
below provides typing for simultaneous substitution.

Theorem 7.3 (Simultaneous substitution property). If Δ; Ψ � J and Δ; Φ �
σ ⇐ Ψ then Δ; Φ � [σ]Ψ J.

7.3.5 Decidability of Type Checking in Contextual Linear LF

In order to establish a decidability result for type checking, we observe
that the typing judgements are syntax directed. Further, when a context
split is necessary (e.g. when checking Δ, Ψ � σ, M ⇐ Φ, x:̂A), it is
possible to enumerate all the possible correct splits (all Ψ1, Ψ2 such that
Ψ = Ψ1 �� Ψ2). For exactly one of them it will hold that Δ; Ψ1 � σ ⇐ Φ
and Δ; Ψ2 � M ⇐ [σ]Φ A. Finally, in the Δ, Ψ � σ, M ⇐ Φ, x:̌A case,
thanks to explicit mention of all the variables (including unavailable
ones), we can enlist all possible contexts Ψ′ well-formed under Δ and
such that Ψ = Ψ′.

Theorem 7.4 (Decidability of type checking). Type checking is decidable.

7.3.6 Lincx’s Meta-Language

To use contextual linear LF as an index language in Beluga, we have to be
able to lift Lincx objects to meta-types and meta-objects and the definition

106

� Δ mctx Δ is a valid meta-context

� · mctx

� Δ mctx Δ; Ψ � P type

� Δ, u : (Ψ � P) mctx

� Δ mctx Δ; Ψ � A type

� Δ, p : (Ψ � #A) mctx
� Δ mctx i ∈ I
� Δ, ψi : G mctx

�

Figure 7.10: Well-formed meta-contexts

of the meta-substitution operation. We are basing our presentation on
one for contextual LF [Cave and Pientka, 2012].

Figure 7.4 presents the meta-language of Lincx. Meta-objects are
either contextual objects or contexts. The former may be instantiations to
parameter variables p : (Ψ � #A) or meta-variables u : (Ψ � P). These
objects are written ˜Ψ.R where ˜Ψ denotes a list of variables obtained by
dropping all the type information from the declaration, but retaining the
information about variable status (intuitionistic, linear or unavailable).

˜Ψ Name and status of variables from Ψ
·̃ = ·
˜ψm = ψm

˜Ψ, x:A = ˜Ψ, x
˜Ψ, x:̂A = ˜Ψ, x̂
˜Ψ, x:̌A = ˜Ψ, qx

Contexts as meta-objects are used to instantiate context variables
ψi : G. When constructing those we must exercise caution, as we need to
ensure that no linear variable is used in two contexts that are, at any point,
joined. At the same time, instantiations for context variables differing
only in the index (ψi and ψj) have to use precisely the same variable
names and their unrestricted fragments have to be equal. It is also
important to ensure that the constructed context is of a correct schema G.
Schemas describe possible shapes of contexts, and each schema element
can be either linear (λ(

−−→
xi:Ai). ̂A) or intuitionistic (λ(

−−→
xi:Ai).A). This can be

extended to also allow combinations of linear and intuitionistic schema
elements.

107

Ψ ⊥ψ Θ Context Ψ is linearly disjoint from the range of Θ for ψj

Ψ ⊥ψ (·)
Ψ ⊥ψ Θ Ψ′ = Ψ �� Ψj

Ψ ⊥ψ (Θ, Ψj/ψj)

Ψ ⊥ψ Θ X �= ψj

Ψ ⊥ψ (Θ, C/X)

Δ � Θ ⇐ Δ′ Θ has domain Δ′ and range Δ

Δ � · ⇐ ·
Δ � Θ ⇐ Δ′ Δ � Ψi ⇐ G Ψi ⊥ψ Θ

Δ � Θ, Ψi/ψi ⇐ Δ′, ψi : G

Δ � Θ ⇐ Δ′ Δ � C ⇐ �Θ�Δ′U
Δ � Θ, C/X ⇐ Δ′, X : U

Figure 7.11: Typing rules for meta-substitutions

We now give rules for a well-formed meta-context Δ (see Figure 7.10).
It is defined on the structure of Δ and is mostly straightforward. As
usual, we assume the names we choose are fresh. The noteworthy case
arises when we extend Δ with a context variable ψi. Because all context
variables ψj will describe parts of the same context, we require their
schemas to be the same. This side condition (�) can be formally stated
as: ∀j.ψj ∈ dom(Δ) → ψj : G ∈ Δ. Moreover, to avoid manually ensuring
that indices of context variables do not cross, we require that leaf context
variables use elements of the carrier set i ∈ I (i.e. they are formed
without using the �� operation).

Typing of meta-terms is straightforward and follows precisely the
schema presented in previous work. Due to space limitation we move
the presentation of these rules to the Appendix (see Figure 7.13 and
Figure 7.14).

Because of the interdependencies when substituting for context vari-
ables, we diverge slightly from standard presentations of typing of meta-
substitutions.

First, we do not at all consider single meta-substitutions, as they
would be limited only to parameter and meta-variables. In the general
case it is impossible to meaningfully substitute only one context vari-
able, as this would break the invariant that all instantiations of context
variables share variable names and the intuitionistic part of the context.

108

Second, the typing rules for the simultaneous meta-substitution (see
Figure 7.11) are specialized in the case of substituting for a context
variable. When extending Θ with an instantiation Ψi for a context
variable ψi : G, we first verify that context Ψi has the required schema G.
We also have to check that Ψi can be joined with any other instantiation
Ψj for context variable ψj already present in Θ (that is, Ψi ⊥ψ Θ). This is
enough to ensure the desired properties of meta-substitution for context
variables.

We can now define the simultaneous meta-substitution. The operation
itself is straightforward, as linearity does not complicate things on the
meta-level (see Figure 7.16 in the Appendix). What is slightly more
involved is the variable lookup function.

ΘΔ(X) Contextual variable lookup

(Θ, Ψ/ψi)Δ,ψi :G(ψε) = Ψ
(Θ, Ψ/ψi)Δ,ψi :G(ψi) = Ψ
(Θ, Ψ/ψi)Δ,ψi :G(ψm) = Φ where Φ = Ψ �� Ψ′

and m = i �� n
and ΘΔ(ψn) = Ψ′

(Θ, Ψ/ψi)Δ,ψi :G(ψm) = ΘΔ(ψm) where i ⊥ψ m
(Θ, C/X)Δ,X:U(X) = C : U
(Θ, C/Y)Δ,Y:_(X) = ΘΔ(X) where Y �= X
ΘΔ(X) = ⊥

On parameter and meta-variables it simply returns the correct meta-
object, to which the simultaneous substitution from the corresponding
closure is then applied. The lookup is a bit more complicated for context
variables, since Θ only contains substitutions for leaf context variables ψi.
For arbitrary ψm we must therefore deconstruct the index m = i1 �� · · · ��
ik and return ΘΔ(ψi1) �� · · · �� ΘΔ(ψik). Finally, for ψε we simply have
to find any Ψ/ψi in Θ and return Ψ – the typing rules for Θ ensure that
the choice of ψi is irrelevant, as the unrestricted part of the substituted
context is shared.

Theorem 7.5 (Simultaneous meta-substitution property). Having both
Δ � Θ ⇐ Δ′ and Δ′; Ψ � J, it follows that Δ; �Θ�Δ′Ψ � �Θ�Δ′ J.

109

7.3.7 Writing Programs about Lincx Objects

We sketch here why Lincx is a suitable index language for writing pro-
grams and proofs. [Thibodeau et al., 2016] describe several requirements
for plugging in an index language into the (co)inductive foundation for
writing programs and proofs about them. They fall into three different
classes. We will briefly touch on each one.

First, it requires that the index domain satisfies meta-substitution
properties that we also prove for Lincx. Second, comparing two objects
should be decidable. We satisfy this criteria, since we only characterize
βη-long canonical forms and equality reduces to syntactic equality. The
third criterion is unification of index objects. While we do not describe a
unification algorithm for Lincx objects, we believe it is a straightforward
extension of [Schack-Nielsen and Schürmann, 2010]. Finally, we require
a notion of coverage of Lincx objects which is a straightforward extension
of [Pientka and Abel, 2015].

7.4 Mechanization of Lincx

We have mechanized2 key properties of our underlying theory in the
proof assistant Beluga. In particular, we encoded the syntax, typing rules
of Lincx together with single and simultaneous hereditary substitution
operations in the logical framework LF relying on HOAS encodings to
model binding. Our encoding is similar to [Martens and Crary, 2012] of
LF in LF, but we also handle meta-variables and simultaneous substi-
tutions. Since Beluga only intrinsically supports intuitionistic binding
structures and contexts, linearity must be enforced separately. We do
this through an explicit context of variable declarations, connecting each
variable to a flag and a type. To model contexts with context variable in-
dices we use a binary encoding. The implementation of Lincx in Beluga
was crucial to arrive at our understanding of modelling context variables
using commutative monoids.

As mentioned in Section 7.3.2, the context variable indices take
context splitting into account by describing elements from a countably
infinite set I , along with a neutral element and a join operation that is
commutative and associative. We implement these indices using binary
strings, where ε is the empty string, and a string with a single positive bit

2Lincx mechanization: https://github.com/Beluga-lang/Beluga/tree/master/
examples/lincx_mechanization

110

represents a leaf-level variable. In other words, through this abstraction,
every context variable in Δ is a binary string with a single positive bit.
[Schack-Nielsen, 2011] uses a similar encoding for managing flags for
linear, unrestricted, and unavailable assumptions in concrete contexts.
Our encoding lifts these ideas to modelling context variables. We then
implement the �� operation as a binary OR operation which fails when
the two strings have a common positive (for instance a join between
001 and 011 would fail). The following describes the join of M and N,
forming K:

LF bin_or : bin → bin → bin → type =
| bin_or_nil_l : bin_or nil M M
| bin_or_nil_r : bin_or M nil M
| bin_or_l : bin_or M N K

→ bin_or (cons one M) (cons zero N) (cons one K)
| bin_or_r : bin_or M N K

→ bin_or (cons zero M) (cons one N) (cons one K)
| bin_or_zero : bin_or M N K

→ bin_or (cons zero M) (cons zero N) (cons zero K);

We then proceed to prove commutativity, associativity and uniqueness
of bin_or. Finally, we mechanized the proofs of the properties about
our equational theory of context joins as total functions in Beluga. In
particular, we mechanized proofs of Lemmas 7.1 and 7.2. Here we take
advantage of Beluga’s first-class contexts and in the base cases rely on
the commutativity and associativity properties of the binary encoding
of context variable indices. We note that context equality is entirely
syntactic and can thus be defined simply in terms of reflection.

Although we had to model our mixed contexts of unrestricted and
linear assumptions explicitly, Beluga’s support for encoding formal sys-
tems using higher-order abstract syntax still significantly simplified our
definitions of typing rules and hereditary substitution operation. In par-
ticular, it allowed us to elegantly model variable bindings in abstractions
and Π-types.

Inductive properties about typing and substitution are implemented
as recursive functions in Beluga. Many of the proofs in this paper
become fairly tedious and complex on paper and mechanizing Lincx
therefore helps us build trust in our foundation. Given the substantial
amount of time and lines of code we devote to model contexts and
context joins, our mechanization also demonstrates the value Lincx can

111

bring to mechanizing linear systems or more generally systems that work
with resources.

7.5 Related Work

The idea of using logical framework methodology to build a specification
language for linear logic dates back two decades, beginning with linear
logical framework LLF [Cervesato and Pfenning, 1996] providing �, &
and
 operators from intuitionistic linear logic, the maximal set of
connectives for which unique canonical forms exist. The idea was later
expanded to the concurrent logical framework CLF [Watkins et al., 2002],
which uses a monad to encapsulate less well-behaved operators. The
quest to design meta-logics that allow us to reason about linear logical
frameworks has been marred with difficulties in the past.

In proof theory, [McDowell, 1997, McDowell and Miller, 2002] and
later [Gacek et al., 2012] propose a two-level approach to reason about
formal systems where we rely on a first-order sequent calculus together
with inductive definitions and induction on natural numbers as a meta-
reasoning language. We encode our formal system in a specification logic
that is then embedded in the first-order sequent calculus, the reasoning
language. The design of the two-level approach is in principle modular
and in fact [McDowell, 1997] describes a linear specification logic. How-
ever the context of assumptions is encoded as a list explicitly in this
approach. As a consequence, we need to reason modulo the equational
properties of context joins and we may need to prove properties about
the uniqueness of assumptions. Such bureaucratic reasoning then still
pollutes our main proof.

In type theory, [McCreight and Schürmann, 2004] give a tailored
meta-logic L+

ω for linear LF, which is an extension of the meta-logic for LF
[Schürmann, 2000]. While L+

ω also characterize partial linear derivations
using contextual objects that depend on a linear context, the approach
does not define an equational theory on contexts and context variables.
It also does not support reasoning about contextual objects modulo such
an equational theory. In addition L+

ω does not cleanly separate the meta-
theoretic (co)inductive reasoning about linear derivations from specifying
and modelling the linear derivations themselves. We believe the modular
design of Beluga, i.e. the clean separation of representing and modelling
specifications and derivations on one hand and reasoning about such
derivations on the other, offers many advantages. In particular, it is

112

more robust and also supports extensions to (co)inductive definitions
[Cave and Pientka, 2012, Thibodeau et al., 2016].

The hybrid logical framework HLF [Reed, 2009] is in principle capable
to support reasoning about linear specifications. In HLF, we reason about
objects that are valid at a specific world, instead of objects that are valid
within a context. However, contexts and worlds seem closely connected.
Most recently [Bock and Schürmann, 2015] propose a contextual logical
framework XLF. Similarly to Lincx, it is also based on contextual modal
type theory with first-class contexts. However, context variables have a
strong nominal flavor in their system. In particular, Bock and Schürmann
allow multiple context variables in the context and each context variable
is associated with a list of variable names (and other context variable
domains) from which it must be disjoint – otherwise the system is prone
to repetition of linear variables upon instantiation.

On a more fundamental level the difference between HLF and XLF
on the one hand and our approach on the other is how we think about
encoding meta-theoretic proofs. HLF and XLF follow the philosophy of
Twelf system and encoding proofs as relations. This makes it sometimes
challenging to establish that a given relation constitutes an inductive
proof and hence both systems have been rarely used to establish such
meta-theoretic proofs. More importantly, the proof-theoretic strength of
this approach is limited. For example, it is challenging to encode formal
systems and proofs that rely on (co)inductive definitions such as proofs
by logical relations and bisimulation proofs within the logical framework
itself. We believe the modular design of separating cleanly between
Lincx as a specification framework and embedding Lincx into the proof
and programming language Beluga provides a simpler foundation for
representing the meta-theory of linear systems. Intuitively, meta-proofs
about linear systems only rely on linearity to model the linear derivations
– however the reasoning about these linear derivation trees is not linear,
but remains intuitionistic.

7.6 Conclusion and Future Work

We have presented Lincx, a linear contextual modal logical framework
with first-class contexts as a foundation to model linear systems and
derivations. In particular, Lincx satisfies the necessary requirements
to serve as a specification and index language for Beluga and hence
provides a suitable foundation for implementing proofs about (linear)

113

derivation trees as recursive functions. We have also mechanized the key
equational properties of context joins in Beluga. This further increases
our confidence in our development.

There is a number of research questions that naturally arise and
we plan to pursue in the future. First, we plan to extend Lincx with
additional linear connectives such as
 and A&B. These additional
connectives are for example present in [Cervesato and Pfenning, 1996].
We omitted them here to concentrate on modelling context joins and their
equational theory, but we believe it is straightforward to add them.

Dealing with first-class contexts in the presence of linear operators out-
side the set {�, &,
} is more challenging, as they may break canonicity.
We plan to follow the approach in CLF [Watkins et al., 2002] enclosing
them into a monad to control their behaviour. Having also additive oper-
ators would allow us to for example model the meta-theory of session
type systems [Caires and Pfenning, 2010] and reason about concurrent
computation. Further we plan to add first-class substitution variables
[Cave and Pientka, 2013] to Lincx. This woud allow us to abstractly de-
scribe relations between context. This seems particularly important as
we allow richer schemas definitions that model structured sequences.

Last but not least, we would like to implement Lincx as a specification
language for Beluga to enable reasoning about linear specifications in
practice.

7.A Appendix

We present here partial proofs and generalized reformulations of lemmas
and theorems mentioned in Section 7.3 of this paper.

Lemma 7.2. If Δ; Ψ � σ ⇐ Φ then Δ; Ψ � σ ⇐ Φ.

Proof. Proof by induction on typing derivation D :: Δ; Ψ � σ ⇐ Φ. We
show a couple of cases below, the remaining ones are straightforward.

Case D =
unr(Γ)

Δ; ψm, Γ � idψm ⇐ ψm

unr(Γ) by assumption
Δ; ψε, Γ � idψm ⇐ ψε by substitution typing

114

Case D =
Δ; Ψ1 � σ ⇐ Φ Δ; Ψ2 � M ⇐ [σ]Φ A Ψ = Ψ1 �� Ψ2

Δ; Ψ � σ, M ⇐ Φ, x:̂A

Δ; Ψ1 � σ ⇐ Φ by IH
Ψ = Ψ1 = Ψ2 by Lemma 7.1(iv)
Δ; Ψ � σ, M ⇐ Φ, x:̌A by substitution typing

�

7.A.1 Hereditary single substitution

Hereditary single substitution in Lincx closely follows
[Cave and Pientka, 2013]. We present complete rules in Figure 7.12.

The following theorem establishes typing for single substitutions.
Notice that it is more general compared to the variant presented in
Section 7.3.4.

Theorem 7.2 (Hereditary single substitution property).

(i) If Δ; Ψ � M ⇐ A and Δ; Ψ, x:A, Φ � J then Δ; Ψ, [M/x]AΦ �
[M/x]∗A(J) where ∗ ∈ {c, s, l}.

(ii) If Δ; Ψ1 � M ⇐ A, Δ; Ψ2, x:̂A, Φ � J and Ψ = Ψ1 �� Ψ2 then
Δ; Ψ, Φ � [M/x]∗A(J) where ∗ ∈ {c, s, l}.

(iii) If Δ; Ψ1 � M ⇐ A, Δ; Ψ2 � S > A ⇒ B, Ψ = Ψ1 �� Ψ2 and
reduce(M : A−, S) = M′ then Δ; Ψ � M′ ⇐ B

In order to obtain a similar result for simultaneous substitution, we
first need to show a number of properties.

Lemma 7.3. If Φ, Γ = Φ1, Γ1 �� Φ2, Γ2 and Ψ � σ ⇐ Φ, then Φ, [σ]·ΦΓ =
Φ1, [σ]·Φ1

Γ1 �� Φ2, [σ]·Φ2
Γ2

Lemma 7.4. Suppose Ψ = Ψ1 �� Ψ2, then Δ; Φ � σ ⇐ Ψ iff Δ; Φ1 � σ ⇐
Ψ1 and Δ; Φ2 � σ ⇐ Ψ2 for Φ = Φ1 �� Φ2.

Lemma 7.5. [σ]
˜Γ1,˜Γ2
Ψ J = [σ]

˜Γ1,qx,˜Γ2
Ψ J

Proof. By induction on the simultaneous substitution.
�

115

[M/x]cαN = N′

[M/x]cα(λy.N) = λy.N′ where [M/x]cαN = N′,
choosing y �= x, y �∈ FV(M)

[M/x]cα(̂λy.N) = ̂λy.N′ where [M/x]cαN = N′,
choosing y �= x, y �∈ FV(M)

[M/x]cα(u[σ]) = u[σ′] where [M/x]sασ = σ′

[M/x]cα(c · S) = c · S′ where [M/x]lαS = S′

[M/x]cα(x · S) = N where [M/x]lαS = S′ ,
and reduce(M : α, S′) = N

[M/x]cα(y · S) = y · S′ where [M/x]lαS = S′ and x �= y
[M/x]cα(p[σ] · S) = p[σ′] · S′ where [M/x]sασ = σ′ and [M/x]lαS = S′

[M/x]lαS = S′

[M/x]lα(ε) = ε

[M/x]lα(N ; S) = N′ ; S′ where [M/x]cαN = N′ and [M/x]lαS = S′

[M/x]lα(N ;̂ S) = N′ ;̂ S′ where [M/x]cαN = N′ and [M/x]lαS = S′

[M/x]sασ = σ′

[M/x]sα(·) = ·
[M/x]sα(idψ) = idψ

[M/x]sα(σ, N) = σ′, N′ where [M/x]sασ = σ′ and [M/x]cαN = N′

Figure 7.12: Hereditary single substitution

116

Again, the theorem is more general compared to the variant presented
in Section 7.3.4.

Theorem 7.3 (Simultaneous substitution property). If Δ; Ψ, Γ � J and
Δ; Ψ′ � σ ⇐ Ψ then Δ; Ψ′, [σ]·

Ψ
Γ � [σ]

˜Γ
Ψ(J).

Proof. Proof by induction on the typing derivation D :: Δ; Ψ, Γ � J. We
show some representative cases.

Case D =
Δ; Ψ, Γ, x:̂A � M ⇐ B

Δ; Ψ, Γ � ̂λx.M ⇐ A � B

Δ; Ψ, [σ]·
Ψ
(Γ, x:̂A) � [σ]

˜Γ,x̂
Ψ M ⇐ [σ]

˜Γ,qx
Ψ

B by IH

Δ; Ψ, [σ]·
Ψ

Γ, x:̂[σ]Γ
Ψ

A) � [σ]
˜Γ,x̂
Ψ M ⇐ [σ]

˜Γ,qx
Ψ

B by definition of substitution

Δ; Ψ, [σ]·
Ψ

Γ[σ]·
Ψ

A) � ̂λx.[σ]˜ΓΨM ⇐ [σ]·
Ψ

A � [σ]
˜Γ,qx
Ψ

B by typing rule

Δ; Ψ, [σ]·
Ψ

Γ[σ]·
Ψ

A) � ̂λx.[σ]˜ΓΨM ⇐ [σ]·
Ψ

A � [σ]
˜Γ
Ψ

B By Lemma 7.5

Δ; Ψ, [σ]·
Ψ

Γ � [σ]
˜Γ
Ψ
̂λ x.M ⇐ [σ]

˜Γ
Ψ
(A � B) by definition of substitution

Case D =
Δ; Ψ1 � M ⇐ A Δ; Ψ2 � S > B ⇒ P Φ, Γ = Ψ1 �� Ψ2

Δ; Φ, Γ � M ;̂ S > A � B ⇒ P
Ψ1 = Φ1, Γ1
Ψ2 = Φ2, Γ2
Φ = Φ1 �� Φ2
Γ = Γ1 �� Γ2 by Lemma 7.1
Δ; Ψ′

1 � σ ⇐ Ψ1
Δ; Ψ′

2 � σ ⇐ Ψ2
Ψ′ = Ψ′

1 �� Ψ′
2 by Lemma 7.4

Δ; Φ1, [σ]·
Φ1

Γ1 � [σ]
˜Γ1
Φ1

M ⇐ [σ]
˜Γ1
Φ1

A

Δ; Φ2, [σ]·
Φ2

Γ2 � [σ]
˜Γ2
Φ2

S > [σ]
˜Γ2
Φ2

B ⇒ [σ]
˜Γ2
Φ2

P by IH
Φ, [σ]ΦΓ = Φ1, [σ]Φ1

Γ1 �� Φ2, [σ]Φ2
Γ2

Δ; Φ, [σ]ΦΓ � [σ]
˜Γ1
Φ1

M ;̂ [σ]
˜Γ2
Φ2

S > [σ]
˜Γ1
Φ1

A � [σ]
˜Γ2
Φ2

B ⇒ [σ]
˜Γ2
Φ2

P By typing
rule
Δ; Φ, [σ]ΦΓ � [σ]

˜Γ1
Φ1

M ;̂ [σ]
˜Γ2
Φ2

S > [σ]
˜Γ
Φ

A � [σ]
˜Γ
Φ

B ⇒ [σ]
˜Γ
Φ

P By Lemma 7.1

Δ; Φ, [σ]ΦΓ � [σ]
˜Γ1
Φ1

M ;̂ S > [σ]
˜Γ
Φ

A � [σ]
˜Γ
Φ

B ⇒ [σ]
˜Γ
Φ

P By substitution

�
117

Δ � Ψ ⇐ G Context Ψ checks against schema G

Δ � · ⇐ G
ψi : G ∈ Δ

Δ � ψε ⇐ G
ψi : G ∈ Δ

Δ � ψi ⇐ G

Δ � ψk ⇐ G Δ � ψl ⇐ G m = k �� l
Δ � ψm ⇐ G

Δ � Ψ ⇐ G λ(
−−→
xi:Ai).B ∈ G Δ; Ψ � σ ⇐ (

−−→
xi:Ai) Δ; Ψ � A = [σ]

(
−−→
xi :Ai)

B

Δ � Ψ, x:A ⇐ G

Δ � Ψ ⇐ G λ(
−−→
xi:Ai).̂B ∈ G Δ; Ψ � σ ⇐ (

−−→
xi:Ai) Δ; Ψ � A = [σ]

(
−−→
xi :Ai)

B

Δ � Ψ, x:̂A ⇐ G

Δ � Ψ ⇐ G λ(
−−→
xi:Ai).̂B ∈ G Δ; Ψ � σ ⇐ (

−−→
xi:Ai) Δ; Ψ � A = [σ]

(
−−→
xi :Ai)

B

Δ � Ψ, x:̌A ⇐ G

Figure 7.13: Typing rules for contexts of a given schema

7.A.2 Typing for Meta-Terms

Rules for constructing a context of a given schema presented in Fig-
ure 7.13 describe four possible initial cases of context construction, which
correspond to four cases of constructing a valid context. Note that since
their instantiations should contain the same variables (albeit with some
variables becoming unavailable), all the context variables should have
the same schema. Next, we have three cases for context extension, i.e.:
extending a context with either an unrestricted, a linear or an unavailable
variable. In either case, we must ensure that the schema as an element of
the proper type, and the proper status, for the context variable, which is
to say, an unrestricted variable should expects an unrestricted element,
while a linear or unavailable variable expects a linear schema element.

Typing of other meta-terms, as presented in Figure 7.14 is straightfor-
ward: a meta-object ˜Ψ.R has type (Ψ � P), if R has type P in the context
Ψ. The typing of variable objects, i.e. an object of type (Ψ � #A), must
be reconsidered carefully. A parameter type is inhabited only by variable
objects, i.e. either concrete variables from Ψ or parameter variable asso-
ciated with a variable substitution. The typing for parameter variables

118

Δ � C ⇐ U Meta-level term C checks against type U

Δ; Ψ � R ⇐ P
Δ � ˜Ψ.R ⇐ (Ψ � P)

x:A ∈ Ψ unr(Ψ)

Δ � ˜Ψ.x ⇐ (Ψ � #A)

unr(Ψ1) unr(Ψ2)

Δ � (˜Ψ1, x̂, ˜Ψ2).x ⇐ (Ψ1, x:̂A, Ψ2 � #A)

p : (Φ � #A) ∈ Δ Δ; Ψ � π ⇐ Φ Δ; Ψ � B = [π]Φ(A)

Δ � ˜Ψ.p[π] ⇐ (Ψ � #B)

Figure 7.14: Typing rules for meta-terms

id(Ψ) Identity substitution

id(·) = ·
id(idψ) = idψ

id(Ψ, x:A) = id(Ψ), η-exp(A−)(x, ε)

id(Ψ, x:̂A) = id(Ψ), η-exp(A−)(x, ε)

id(Ψ, x:̌A) = id(Ψ), η-exp(A−)(x, ε)

η-expA(H, S) η-expansion

η-expa(H, S) = H · S
η-expα→β(H, S) = λx.η-expβ(H, S@η-expα(x))
η-expα�β(H, S) = ̂λx.η-expβ(H, Ŝ@η-expα(x))

Figure 7.15: Simultaneous meta-substitution, auxiliary definitions

follows the typing for meta-objects. There are two cases to consider when
we have a concrete variable x from the context: either Ψ contains only
unrestricted variable declarations and x : A is one of them; or x is in fact
a linear variable of type A which forces Ψ to be a context with only one
linear declaration x:̂A.

119

�Θ�ΔM Simultaneous meta-substitution for terms

�Θ�Δ(λx.M) = λx.M′ where �Θ�ΔM = M′

�Θ�Δ(
̂λx.M) = ̂λx.M′ where �Θ�ΔM = M′

�Θ�Δ(u[σ]) = R′ where ΘΔ(u) = ˜Ψ.R : (Ψ � P)
and �Θ�Δ σ = σ′
and [σ′]ΨR = R′

�Θ�Δ(c · S) = c · S′ where �Θ�Δ S = S′

�Θ�Δ(x · S) = x · S′ where �Θ�Δ S = S′

�Θ�Δ(p[σ] · S) = M′ where ΘΔ(p) = ˜Ψ.x : (Ψ � #A)
and �Θ�Δ σ = σ′
and �Θ�Δ S = S′ and σ′

Ψ(x) = M : α
and reduce(M : α, S′) = M′

�Θ�Δ(p[σ] · S) = q[τ′] · S′ where ΘΔ(p) = ˜Ψ.q[π] : (Ψ � #A)
and �Θ�Δ σ = σ′
and �Θ�Δ S = S′ and [σ′]π = τ

�Θ�Δσ Simultaneous meta-substitution for substitutions

�Θ�Δ(·) = ·
�Θ�Δ(idψ) = id(Ψ) where ΘΔ(ψε) = Ψ
�Θ�Δ(σ, M) = σ′, M′ where �Θ�Δ σ = σ′ and �Θ�Δ M = M′

Figure 7.16: Simultaneous meta-substitution

120

Postlude

In this thesis we have looked at extending the power of LF-based systems
in two different dimensions, proposing two new frameworks. The first
one, HyLF, focuses on adding more expressive power when formalising
encodings. The other, Lincx, expands the realm of the kinds of programs
and properties we can express in an encoding.

Neither of these topics can be considered a closed research question
at this point. The Future Work section of the Lincx paper remains rel-
evant, as the results presented here are fairly recent. With HyLF, we
are currently interested in a more systematic approach to building this
framework. Concretely, we are looking into making it a more hybrid
framework, one that adheres to the "worlds as types" principle, while
also removing the – slightly unusually behaving – ↓α.A type. Adding
a reachable world type, ♦p for some world p, is also under investigation,
although geometric theories known from modal logic are not quite as
well-behaved in the context of logical frameworks as we were originally
hoping for. A separate, and equally interesting, question is that of the
modularity of the HyLF approach: how can we systematically combine
subsystems using hybrid worlds with different algebras in a way that
leads to a well-behaved, consistent end-framework?

Also interestingly, both HyLF and Lincx are based, at least to some
extent, on modal logic: HyLF uses hybrid operators and modal worlds
known from the Kripke semantics of modal logic, and contextual modal
type theory and judgmental reconstruction of modal logic serve as a
basis for Lincx and its predecessors. With that in mind, attempting to
build a contextual hybrid logical framework seems like a natural next
step. Although no work has yet been done on this front, it remains an
idea for a HyLF implementation.

Bibliography

[Andreoli, 1992] Andreoli, J. (1992). Logic programming with focusing
proofs in linear logic. J. Log. Comput., 2(3):297–347.

[Areces et al., 2001] Areces, C., Blackburn, P., and Marx, M. (2001). Hy-
brid logics: Characterization, interpolation and complexity. Journal of
Symbolic Logic, 66(3):977–1010.

[Barendregt and Hemerik, 1990] Barendregt, H. and Hemerik, K. (1990).
Types in lambda calculi and programming languages. In Jones, N. D.,
editor, ESOP’90, 3rd European Symposium on Programming, Copenhagen,
Denmark, May 15-18, 1990, Proceedings, volume 432 of Lecture Notes in
Computer Science, pages 1–35. Springer.

[Belanger et al., 2013] Belanger, O. S., Monnier, S., and Pientka, B. (2013).
Programming type-safe transformations using higher-order abstract
syntax. In Gonthier, G. and Norrish, M., editors, 3rd International
Conference on Certified Programs and Proofs (CPP’13), Lecture Notes in
Computer Science (LNCS 8307), pages 243–258. Springer.

[Bengtson et al., 2012] Bengtson, J., Jensen, J. B., and Birkedal, L. (2012).
Charge! - A framework for higher-order separation logic in Coq. In
Beringer, L. and Felty, A. P., editors, Third International Conference on
Interactive Theorem Proving (ITP’12), Lecture Notes in Computer Science
(LNCS 7406), pages 315–331. Springer.

[Berdine et al., 2002] Berdine, J., O’Hearn, P. W., Reddy, U. S., and Thi-
elecke, H. (2002). Linear continuation-passing. Higher-Order and Sym-
bolic Computation, 15(2-3):181–208.

[Bock and Schürmann, 2015] Bock, P. B. and Schürmann, C. (2015). A
contextual logical framework. In 20th International Conference on Logic

for Programming, Artificial Intelligence and Reasoning (LPAR‘15), Lecture
Notes in Computer Science (LNCS 9450), pages 402–417. Springer.

[Caires and Pfenning, 2010] Caires, L. and Pfenning, F. (2010). Session
types as intuitionistic linear propositions. In Gastin, P. and Laroussinie,
F., editors, 21th International Conference on Concurrency Theory (CON-
CUR’10), Lecture Notes in Computer Science (LNCS 6269), pages
222–236. Springer.

[Cave and Pientka, 2012] Cave, A. and Pientka, B. (2012). Programming
with binders and indexed data-types. In 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’12), pages
413–424. ACM.

[Cave and Pientka, 2013] Cave, A. and Pientka, B. (2013). First-class sub-
stitutions in contextual type theory. In 8th ACM SIGPLAN International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP’13), pages 15–24. ACM.

[Cave and Pientka, 2015] Cave, A. and Pientka, B. (2015). A case study
on logical relations using contextual types. In Cervesato, I. and
K.Chaudhuri, editors, 10th International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LFMTP’15), pages 18–33.
Electronic Proceedings in Theoretical Computer Science (EPTCS).

[Cervesato et al., 2000] Cervesato, I., Hodas, J. S., and Pfenning, F. (2000).
Efficient resource management for linear logic proof search. Theor.
Comput. Sci., 232(1-2):133–163.

[Cervesato and Pfenning, 1996] Cervesato, I. and Pfenning, F. (1996). A
linear logical framework. In Clarke, E., editor, 11th Annual Symposium
on Logic in Computer Science, pages 264–275, New Brunswick, New
Jersey. IEEE Press.

[Cervesato and Pfenning, 2003] Cervesato, I. and Pfenning, F. (2003). A
linear spine calculus. Journal of Logic and Computation, 13(5):639–688.

[Chaudhuri and Despeyroux, 2014] Chaudhuri, K. and Despeyroux, J.
(2014). A hybrid linear logic for constrained transition systems. In
Matthes, R. and Schubert, A., editors, TYPES’13 Post-proceedings, to
appear in LIPIcs.

124

[Coquand and Huet, 1988] Coquand, T. and Huet, G. (1988). The calcu-
lus of constructions. Information and Computation, 76(2):95 – 120.

[Danvy and Filinski, 1992] Danvy, O. and Filinski, A. (1992). Represent-
ing control: A study of the CPS transformation. Mathematical Structures
in Computer Science, 2(4):361–391.

[De Bruijn, 1980] De Bruijn, N. G. (1980). A survey of the project au-
tomath. To H.B. Curry : Essays on combinatory logic, lambda calculus and
formalism, pages 579–606.

[Fluet et al., 2006] Fluet, M., Morrisett, G., and Ahmed, A. J. (2006).
Linear regions are all you need. In Sestoft, P., editor, 15th European
Symposium on Programming (ESOP’06), Lecture Notes in Computer
Science (LNCS 3924), pages 7–21. Springer.

[Gacek et al., 2012] Gacek, A., Miller, D., and Nadathur, G. (2012). A
two-level logic approach to reasoning about computations. Journal of
Automated Reasoning, 49(2):241–273.

[Galmiche and Salhi, 2011] Galmiche, D. and Salhi, Y. (2011). Sequent
calculi and decidability for intuitionistic hybrid logic. Journal of Infor-
mation and Computation, 209(12):1447–1463.

[Girard, 1987] Girard, J.-Y. (1987). Linear logic. Theor. Comput. Sci.,
50(1):1–102.

[Harper et al., 1993] Harper, R., Honsell, F., and Plotkin, G. (1993). A
framework for defining logics. Journal of the ACM, 40(1):143–184.

[Harper and Licata, 2007] Harper, R. and Licata, D. (2007). Mechanizing
metatheory in a logical framework. Journal of Functional Programming,
17(4–5):613–673.

[Lellmann, 2015] Lellmann, B. (2015). Linear nested sequents, 2-sequents
and hypersequents. In Proceedings of the 24th International Conference
on Automated Reasoning with Analytic Tableaux and Related Methods -
Volume 9323, TABLEAUX 2015, pages 135–150, New York, NY, USA.
Springer-Verlag New York, Inc.

[Lellmann et al., 2017] Lellmann, B., Olarte, C., and Pimentel, E. (2017).
A uniform framework for substructural logics with modalities. In Eiter,
T. and Sands, D., editors, LPAR-21. 21st International Conference on Logic

125

for Programming, Artificial Intelligence and Reasoning, volume 46 of EPiC
Series in Computing, pages 435–455. EasyChair.

[Martens and Crary, 2012] Martens, C. and Crary, K. (2012). LF in LF:
Mechanizing the metatheories of LF in Twelf. In 7th International
Workshop on Logical Frameworks and Meta-languages:Theory and Practice
(LFMTP’12), pages 23–32. ACM.

[McCreight, 2009] McCreight, A. (2009). Practical tactics for separation
logic. In Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M., editors,
22nd International Conference on Theorem Proving in Higher Order Logics
(TPHOLs’09), Lecture Notes in Computer Science (LNCS 5674), pages
343–358. Springer.

[McCreight and Schürmann, 2004] McCreight, A. and Schürmann, C.
(2004). A meta-linear logical framework. In 4th International Workshop
on Logical Frameworks and Meta-Languages (LFM’04).

[McDowell, 1997] McDowell, R. (1997). Reasoning in a Logic with Defini-
tions and Induction. PhD thesis, University of Pennsylvania.

[McDowell and Miller, 2002] McDowell, R. C. and Miller, D. A. (2002).
Reasoning with higher-order abstract syntax in a logical framework.
ACM Transactions on Computational Logic, 3(1):80–136.

[Montesi, 2013] Montesi, F. (2013). Choreographic Programming. PhD
thesis.

[Murphy VII et al., 2004] Murphy VII, T., Crary, K., Harper, R., and Pfen-
ning, F. (2004). A symmetric modal lambda calculus for distributed
computing. In LICS’04, pages 286–295.

[Nanevski et al., 2008] Nanevski, A., Pfenning, F., and Pientka, B. (2008).
Contextual modal type theory. ACM Transactions on Computational
Logic, 9(3):1–49.

[Nigam and Miller, 2009] Nigam, V. and Miller, D. (2009). Algorithmic
specifications in linear logic with subexponentials. In Proceedings of the
11th ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, PPDP ’09, pages 129–140, New York, NY, USA. ACM.

126

[Pientka, 2008] Pientka, B. (2008). A type-theoretic foundation for pro-
gramming with higher-order abstract syntax and first-class substi-
tutions. In 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’08), pages 371–382. ACM.

[Pientka and Abel, 2015] Pientka, B. and Abel, A. (2015). Structural re-
cursion over contextual objects. In Altenkirch, T., editor, 13th Inter-
national Conference on Typed Lambda Calculi and Applications (TLCA’15),
pages 273–287. Leibniz International Proceedings in Informatics
(LIPIcs) of Schloss Dagstuhl.

[Pientka and Cave, 2015] Pientka, B. and Cave, A. (2015). Inductive Bel-
uga:Programming Proofs (System Description). In Felty, A. P. and
Middeldorp, A., editors, 25th International Conference on Automated De-
duction (CADE-25), Lecture Notes in Computer Science (LNCS 9195),
pages 272–281. Springer.

[Pientka and Dunfield, 2010] Pientka, B. and Dunfield, J. (2010). Beluga:
a framework for programming and reasoning with deductive systems
(System Description). In Giesl, J. and Haehnle, R., editors, 5th Interna-
tional Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes
in Artificial Intelligence (LNAI 6173), pages 15–21. Springer.

[Prior, 1967] Prior, A. (1967). Past, Present and Future. Oxford University
Press.

[Reed, 2008] Reed, J. (2008). Base-type polymorphism in lf.

[Reed, 2009] Reed, J. (2009). A hybrid logical framework. PhD thesis,
Carnegie Mellon.

[Schack-Nielsen, 2011] Schack-Nielsen, A. (2011). Implementing Substruc-
tural Logical Frameworks. PhD thesis, IT University of Copenhagen.

[Schack-Nielsen and Schürmann, 2008] Schack-Nielsen, A. and Schür-
mann, C. (2008). Celf – A logical framework for deductive and concur-
rent systems (system description). In Armando, A., Baumgartner, P.,
and Dowek, G., editors, 4th International Joint Conference on Automated
Reasoning (IJCAR’08), Lecture Notes in Computer Science (LNCS 5195),
pages 320–326.

127

[Schack-Nielsen and Schürmann, 2010] Schack-Nielsen, A. and Schür-
mann, C. (2010). Pattern unification for the lambda calculus with
linear and affine types. In Crary, K. and Miculan, M., editors, Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP’10), volume 34 of Electronic Proceedings in Theoretical
Computer Science (EPTCS), pages 101–116.

[Schürmann, 2000] Schürmann, C. (2000). Automating the Meta Theory
of Deductive Systems. PhD thesis, Department of Computer Science,
Carnegie Mellon University. CMU-CS-00-146.

[Schürmann and Pfenning, 2003] Schürmann, C. and Pfenning, F. (2003).
A coverage checking algorithm for LF. In Basin, D. A. and Wolff, B.,
editors, Theorem Proving in Higher Order Logics, 16th International Confer-
ence, TPHOLs 2003, Rom, Italy, September 8-12, 2003, Proceedings, volume
2758 of Lecture Notes in Computer Science, pages 120–135. Springer.

[Simpson, 1994] Simpson, A. (1994). The Proof Theory and Semantics of
Intuitionistic Modal Logic. PhD thesis.

[Thibodeau et al., 2016] Thibodeau, D., Cave, A., and Pientka, B. (2016).
Indexed codata. In Garrigue, J., Keller, G., and Sumii, E., editors,
21st ACM SIGPLAN International Conference on Functional Programming
(ICFP’16), pages 351–363. ACM.

[Tzakova, 1999] Tzakova, M. (1999). Tableau calculi for hybrid logics.
In Murray, N., editor, TABLEAUX’99, volume 1617 of LNCS, pages
278–292.

[Wadler, 2015] Wadler, P. (2015). Propositions as types. Commun. ACM,
58(12):75–84.

[Walker and Watkins, 2001] Walker, D. and Watkins, K. (2001). On re-
gions and linear types. In Pierce, B. C., editor, 6th ACM SIGPLAN
International Conference on Functional Programming (ICFP’01), pages
181–192. ACM.

[Watkins et al., 2002] Watkins, K., Cervesato, I., Pfenning, F., and Walker,
D. (2002). A concurrent logical framework I: Judgments and properties.
Technical Report CMU-CS-02-101, Department of Computer Science,
Carnegie Mellon University.

128

[Watkins et al., 2004] Watkins, K., Cervesato, I., Pfenning, F., and Walker,
D. (2004). A concurrent logical framework I: The propositional frag-
ment. In Berardi, S., Coppo, M., and Damiani, F., editors, TYPES’03
Post-proceedings, volume 3085 of LNCS, pages 355–377.

129

