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“Games are a series of interesting decisions.”

Sid Meier

“This is the essence of intuitive heuristics: when faced with a difficult question, we often

answer an easier one instead, usually without noticing the substitution.”

Daniel Kahneman



IT UNIVERSITY OF COPENHAGEN

Abstract

Procedural Personas for Player Decision Modeling and Procedural Content

Generation

by Christoffer Holmg̊ard

How can player models and artificially intelligent (AI) agents be useful in early-stage

iterative game and simulation design? One answer may be as ways of generating syn-

thetic play-test data, before a game or level has ever seen a player, or when the sampled

amount of play test data is very low.

This thesis explores methods for creating low-complexity, easily interpretable, generative

AI agents for use in game and simulation design. Based on insights from decision theory

and behavioral economics, the thesis investigates how player decision making styles may

be defined, operationalised, and measured in specific games.

It further explores how simple utility functions, easily defined and changed by game

designers, can be used to construct agents expressing a variety of decision making styles

within a game, using a variety of contemporary AI approaches, naming the resulting

agents “Procedural Personas.”

These methods for constructing procedural personas are then integrated with existing

procedural content generation systems, acting as critics that shape the output of these

systems, optimizing generated content for different personas and by extension, different

kinds of players and their decision making styles.

Finally, the thesis compares the top-down theory driven definition of utility functions

with bottom-up play trace driven learning of utility functions and proposes methods for

hybridizing the two approaches.
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Abstract

Procedural Personas for Player Decision Modeling and Procedural Content

Generation

by Christoffer Holmg̊ard

Hvordan kan modeller af spilleradfærd og agenter baseret p̊a kunstig intelligens bruges

i de tidligere stadier af iterative spiludviklingsprocesser? Et muligt svar er, at de kan

bruges til at generere data fra syntetiske spillere, før et spil eller en bane er afprøvet af

menneskelige spillere, eller n̊ar mængden af indsamlet information er forholdsvis lille.

Denne afhandling udforsker metoder til at skabe kunstigt intelligente agenter, der har

en lav kompleksitet og hvis adfærd er let at fortolke, til brug i design af spil og simula-

tioner. Funderet i beslutningstagningsteori undersøger afhandlingen, hvordan spilleres

beslutningstagningsstilarter kan defineres, operationaliseres og m̊ales i specifikke spil.

Desuden undersøger afhandlingen, hvordan simple funktioner, der beskriver nytteværdi,

som er lette for spildesignere at definere og ændre, kan bruges til at styre agenter, som

udtrykker en række forskellige beslutningstagningsstilarter i en række spil. Agenterne

skabes ved hjælp af moderne metoder inden for kunstig intelligens til computerspil og

kaldes under en samlende betegnelse for “Procedurale Personaer.”

Metoder til at skabe procedurale personaer integreres med eksisterende systemer til

procedural generering af spilindhold, hvor personaerne fungerer som kritikere, der former

systemernes output, optimerer genereret indhold til forskellige personaer og i forlængelse

heraf forskellige typer af spillere og deres beslutningstagningsstilarter.

Til sidst sammenligner afhandlingen to tilgange til at definere modeller af spilleradfærd

og agenter: Én baseret p̊a teori-dreven definering af nytteværdifunktioner og én baseret

p̊a data-dreven maskinlæring af nytteværdifunktioner. Afhandlingen afsluttes med et

forslag til, hvordan de to tilgange kan kombineres i en hybridtilgang til modellering af

spilleres beslutningstagningsstilarter.
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Preface

The research reported in this thesis was conducted from 2012 to 2015 at the IT Uni-

versity of Copenhagen, University of Malta, Northeastern University, and New York

University, as part of my enrollment in the three-year PhD program at the IT Univer-

sity of Copenhagen’s PhD School.

The PhD training and research that I conducted was continuously submitted to aca-

demic venues for review and, in some instances, published throughout the course of my

enrollment. For that reason, this thesis takes the form of a collection of papers.

However, not all the publications that were published during my enrollment fit neatly

together under the same main topic. For the sake of focus and brevity, this thesis

focuses on the development and application of the concept of procedural personas for

player modeling and automatic play-testing. The main text contains a summary and

integration of the papers that were published under this theme.

In parallel with pursuing and developing the concept of procedural personas, I also

conducted work in another direction within player modeling: Detecting stress from

physiological signals in response to games and simulations and building models of user

affect; in particular for supporting the diagnosis and treatment of post-traumatic stress

disorder. This secondary research track never achieved integration with the overarching

agenda of decision modeling for automatic play-testing, though a number of possible

avenues for integration were identified and tentatively explored. Other work, such as

Ahn (2010)’s highly interesting PhD thesis on affective decision making, points to how

such integration could be pursued. I briefly touch upon this in the chapters on decision

making and player modeling. Though integrating psychophysiology into the procedural

personas concept turned out to be out of scope for a three-year PhD thesis, it is certainly

a direction worthy of additional research. The papers that resulted from these endeavors

are interesting in their own right, but are not integrated in the main thesis, since they

belong to a different narrative. Instead, they are included in the appendices for the

interested reader.
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Chapter 1

Introduction

This thesis addresses the topic of modeling player decision making in computer games.

It introduces the concept of procedural personas: Game playing agents that codify player

decision making styles, either from the designer’s holistic representation of these or from

observations of players collected directly from the game. These procedural personas, in

turn, become proxies for actual human players, acting as stand-ins that play the game

in place of human players, enabling procedural play-testing by generating synthetic play-

traces.

Extending the play persona concept (Canossa and Drachen, 2009), procedural personas

represent archetypal ways of playing the particular game and by interfacing with the

game through the same operations as the human players, it allows for the application

of the analytical and visualization tools that game designers would otherwise use to

make sense of human play. For reasons that will be explicated later in this chapter,

the procedural personas in this thesis are constructed around the notion of simulating

human decision making styles.

The fundamental research question for this thesis is: “How can we computationally

model and simulate human decision making to facilitate the exploration of (digital)

games?”

While other perspectives onto characterizing and simulating behavior in games could be

equally valid, centering on decision making offers a number of advantages that this work

seeks to exploit. The study of human decision making has a long history in psychology

which provides a substantial literature on which to draw when defining decisions and

understanding player decision making. It provides a theoretical basis from which to

operationalize decision making into observable in-game behavior.

1
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Insights into human decision making from these perspectives are often based on reductive

models of human cognition and motivation, and their empirical data is often collected

from highly structured decision making experiments that limit participant’s decision

making freedom (see e.g. Schulte-Mecklenbeck et al., 2010).

While this approach is sometimes criticized for lacking ecological validity (Gregory,

2004), particularly within psychology’s naturalistic decision making tradition (Kahne-

man and Klein, 2009), it is well-suited for understanding decision making in games.

Many games, and digital games in particular, are exactly characterized by being highly

structured environments that limit the decision making freedom of their players, cre-

ating situations that make decisions clear and meaningful and not wholly unlike the

experimental paradigms found in decision science.

This thesis argues that psychological decision science provides a useful theoretical foun-

dation for the computational modeling of player decision making and supports this claim

through a number of demonstrations in specific game domains.

The purpose of the computational models of decision making presented in this thesis is

to develop new methods for understanding how players choose to engage with games as

decision spaces. While this problem is interesting in itself, modeling decision making

also has direct applicability in relation to play-testing and procedural content generation

in games.

Play-testing is a crucial stage of game development, analog or digital (Fullerton et al.,

2004). Some might even argue that it is an integral part of imagining new games: A

game designer happens upon an idea for a game: a mechanic, a set of rules, a setting,

or an ambiance. Instantly, in her mind, she imagines how the game plays. The first

play-test has already happened, and the game has not seen a single player yet. The

designer mentally simulated her players, extrapolating their behavior from her experience

across many other games, participating in, observing, designing for play. From these

experiences she already has a range of archetypal player behaviors distilled from the

many individual examples. These individual archetypes represent play-styles; various

ways that different kinds of people like to interact with games. A mental design-test-

evaluate loop has occurred, simulating and evaluating a low-fidelity version of the first

design of the game.

Play-testing as a concept and practice can be broken down along many different dimen-

sions (Fullerton et al., 2004; Elias et al., 2012). Three possible dimensions are when the

play-test occurs, what is observed, and who participates.

Modern play-testing of digital games may be conceptualized as ranging from the low-

fidelity idea generating process over the fully instrumented laboratory runs of large game
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development studios to the telemetric measurement, storing, and data mining of player

behavior from released games that are already in the market. This is one dimension of

play-testing: When in the game’s life-cycle it takes place.

A second dimension is what classes of information are gathered from the players partici-

pating in the play-test: A non-exhaustive list of options from multiple modalities includes

in-game behavioral data, video data, emotional responses, verbal reactions, subjective

reports from players or a designer’s impression of player responses. They range from the

atomic and strictly operationalised, e.g. a single action at a single point in time, to the

holistic and phenomenological, e.g. a free-form narrative from a play-tester describing

her play experience (Fullerton et al., 2004; El-Nasr et al., 2013).

A third dimension of play-testing is the number of individuals that take part in the

play-testing process. From the example above, which includes only the designer of the

game, to a released, telemetrically enabled game which in practice engages every player

with an Internet connection in a continuous play-test. Typically, the more complete the

game is, the easier it becomes to gather atomic play-test data at a larger scale enabling

fine tuning via small changes (El-Nasr et al., 2013).

Earlier in a game’s development cycle, play-testing requires bringing players and de-

velopers together, often in the same room. This puts a limitation on the amount of

play-testing that is logistically and financially feasible to conduct for most games. Mi-

nor changes to game rules or pieces of content such as level designs may not be significant

enough to warrant new play-tests with players. As a consequence, the designer making

these individually small, but collectively important, changes relies heavily on the imag-

inal play-testing loop, supported by various analytical tools, when she is designing or

changing a piece of content for her game.

When the designer opts to create a game reliant on procedural content generation, whole

parts of this iterative production and testing loops are embedded into the game itself as

an artifact. Here, automated play-testing would allow designers to incorporate models

of player decision making as strictly encoded representations of their imagined players,

controlling and driving the procedural content generation process.

This thesis explores how to build technology that may support the designer in the play-

testing process, creating an analytical tool that helps designers explicate and codify

assumptions about player motivations. It focuses on the stage in a game’s life-cycle

when it is still under development, but the rules are well-defined, where it would be

useful to observe individual player actions in response to specific pieces of content as

they are being created, and when play-testers external to the development team are

infrequently available or not available at all. This could be when a game development
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team is expanding the content of a game by adding puzzles and levels, or it could be

when a procedural content generation system is generating content for a game.

1.1 Primary Contributions

The thesis provides a highly non-exhaustive answer to the research question through a

number of specific contributions to the literature on player modeling, listed below and

illustrated in Figure 1.1.

• It extends play persona theory by adding a generative dimension to the preexisting

descriptive and prescriptive dimensions in the form of procedural personas.

• It forges a connection between contemporary decision science, player modeling and

a number of modern AI agent control methods.

• It argues that procedural personas can provide dynamic reference points for un-

derstanding possible trajectories in games.

• It shows that procedural personas may be used to model archetypal decision mak-

ing styles in three test-beds with four different agent control architectures.

• It demonstrates that procedural personas can be used as computational critics

shaping the output search-based procedural content generation systems.

• It provides two novel test-beds for studying and modeling decision making in games

to the community, one centered on decision making under risk and the other cen-

tered on bounded rationality.

Figure 1.1: The three fields that procedural personas integrate and the three primary
applications for procedural personas.
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1.2 Secondary Contributions

In addition to the primary contributions presented in the main narrative of this thesis,

the thesis work provides a number of secondary contributions to the literature on player

modeling in relation to stress detection in sufferers of post-traumatic stress disorder in

relation to the StartleMart game. The secondary contributions are not included in the

main narrative of this thesis, as they are only tangentially related to the main theme,

but the produced papers are included in the appendices for the sake of completeness.

This secondary strain of research brings the following contributions to the literature on

applied games and player modeling:

• It demonstrates how modeling responses to games and simulations from physiolog-

ical signals may be used to characterize the symptoms of patients suffering from

post-traumatic stress disorder.

• It introduces a novel paradigm for combining games, multi-modal physiological

player modeling, and stress-inoculation therapy: StartleMart.

• It provides evidence toward preference based ranking being a more stable paradigm

for self-reporting experiences of stress than numerical rating.

Below, the following section provides a brief overview of how the primary contributions

will be presented in this thesis.

1.3 Thesis Overview

The remainder of this thesis is organized into 13 chapters.

In Chapters 2 to 5, a general summary of the theoretical background and position of the

thesis is provided along with a review of the methods and domains used for the empirical

work.

The following six chapters, Chapters 6 to 11, each contain a paper contributing to de-

veloping the procedural persona concept. Each paper is included in its published form,

adapted to the layout of this thesis. The papers are ordered chronologically by their

date of publication. This order also matches the development of the procedural per-

sona concept and thus is well suited to trace the theoretical development and empirical

exploration of the concept.

This development starts at the general notion of using agents to represent certain de-

cision making styles in games and gradually develops into the persona concept, which
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ultimately is tested in the two MiniDungeons test-beds. For five of the six papers, I was

main author and conducted the bulk of the work pertaining to persona development,

implementation, and testing. The fifth paper “Personas as Critics in MiniDungeons”

was written by Antonios Liapis as first author and he conducted the main parts of the

work and research. The personas enabling the experiments in the paper, however, are

the ones developed in the earlier study reported in “Evolving Personas from Utility Con-

figurations”. The complete author lists and venues for the papers may be found in the

Preface of this thesis and in the chapters reproducing the papers.

After presenting the six papers, the thesis moves on to summarize the findings from

this research agenda so far, suggesting future directions of research for developing the

procedural persona concept, and concludes in the final chapter.

Chapter 2: Decision Making, gives an introduction to the work that underpins the

theoretical position of the thesis. It starts out with a description of three per-

spectives from the decision sciences in psychology and examines the question of

what defines rationality and how human decision makers exhibit rationality. It

also extracts a number of key requirements to agents simulating human decision

making from each perspective presented.

Chapter 3: Player Modeling and Procedural Content Generation, provides a

short review of player modeling and search-based procedural content generation

in games in order to contextualize the concept of procedural personas.

Chapter 4: Decision Making in Games, links the review of general theories on de-

cision making to decision making in games. The chapter further applies decision

science to identify features of games that are relevant to studying human decision

making. Given the many different perspectives that can be taken on games as

systems in which players make decisions, how do we choose a general approach

for identifying decision points in games? A pragmatic solution for the purpose

of developing the procedural persona concept, building on affordances, is pro-

posed. Future avenues for formalizing and improving this process, working from

design patterns, are suggested. An introduction to play persona theory, the pri-

mary foundation for the procedural persona method, is given and the procedural

persona concept is introduced as an extension of the play persona concept. Three

metrics for evaluating decision making likeness between decisions made by humans

and simulated decision makers are introduced. Finally, the specific agent control

methods used to control the procedural personas are presented.
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Chapter 5: Domains, introduces the games that were used to develop and test the

procedural persona concept: The Mario AI Benchmark Framework, MiniDungeons

1, and MiniDungeons 2.

Chapter 6: Decision Making Styles as Deviation from Rational Action, the first

paper, uses the Mario AI Benchmark to understand how human play behavior can

be compared to agent behavior and how different kinds of deviations from a ref-

erence agent can define archetypal ways of playing a game; in this case the Mario

AI Benchmark.

Chapter 7: Generative Agents for Player Decision Modeling, the second paper,

focuses on using Q-learning to both generate and identify archetypal behavior, this

time in the MiniDungeons 1 game.

Chapter 8: Evolving Personas from Utility Configurations, the third paper, fol-

lows up on the results from Chapter 7 by addressing the problem that the personas

created via Q-learning did not generalize to unseen content. To solve this problem,

this study evolves sets of linear perceptrons to control the personas and arrives at

a more generalizable solution.

Chapter 9: Personas versus Clones for Player Decision Modeling, the fourth pa-

per1 returns to the question of relating persona behavior to human player behavior.

Again using MiniDungeons 1, this paper asks how the use of personas, represent-

ing designer intuition and expertise, performs in comparison to simply learning

by observing human players. The paper also investigates the properties of the

controller architecture developed in Chapter 8 in greater detail.

Chapter 10: Procedural Personas as Critics for Dungeon Generation, the fifth

paper, brings the study of procedural personas in MiniDungeons 1 full circle, by

integrating the personas in Antonios Liapis’ (2014) mixed-initiative level design

tool, Sentient Sketchbook. Here, the personas are used to not only test and eval-

uate human-created levels, but also to come up with new solutions presented to

human designers. This study represents the first full-circle proof-of-concept of the

procedural persona method.

Chapter 11: Monte-Carlo Tree Search for Persona Based Player Modeling,

the sixth paper included in this thesis, moves on to the domain of MiniDungeons 2.

In contrast to MiniDungeons 1, MiniDungeons 2 contains no hidden information or

stochasticity and thus does not represent an environment where decisions must be

1The version of the paper reported here was expanded from the published version with additional
theoretical considerations and more comprehensive results. This expanded version is, at the time of
writing, under review with the journal Entertainment Computing.
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made under risk. Instead, the fully deterministic game represents a decision space

with a high branching factor and many interacting parts that players cannot solve

analytically. They must rely on a combination of analytic and heuristic reasoning.

This paper uses on-line search based agents, moving away from off-line training.

It uses an architecture that combines tree-search with heuristics to create proce-

dural personas that simulate this two-step analytic and heuristic decision making

process in human players.

Chapter 12: Discussion, provides a recapitulation of the findings from the six stud-

ies and a discussion of the performance, validity, intelligibility, usefulness, and

extensibility of the procedural persona concept.

Chapter 13: Future Work, continues where the discussion of Chapter 12 left off,

identifying future potentially fruitful directions of research into the theoretical

and practical aspects of the procedural personas concept.

Chapter 14: Conclusion, summarizes the findings and contributions of the thesis.

Appendices A to F, reproduce six papers published in relation to the StartleMart

game, a game developed under the Games for Health project with the purpose of

investigating the use of games and simulations as diagnosis and treatment tools

for post-traumatic stress disorder.

1.4 Chapter Summary

In this chapter an introduction was given to the thesis and its research question, per-

taining to the modeling and simulation of player decision making styles. A list of the

main contributions, which form the main narrative of the thesis, was provided along

with a list of secondary contributions which are included in the appendices of the thesis.

The following chapter reviews three main psychological perspectives on decision making

and connects them to computational modeling and simulation of decision making.
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Decision Making

The procedural personas presented in this thesis are constructed around modeling and

simulating human decision making, building on a combination of psychological decision

science and play persona theory. This chapter introduces three psychological perspec-

tives and relates them to agent based simulation of decision making: Decision Theory,

Bounded and Adaptive Rationality, and Recognition Primed Decision Making. From each

perspective, key design requirements to decision simulating agents are extracted which

are later related to the procedural persona concept. Chapter 3 provides an overview of

player modeling and procedural content generation and relates these to decision science.

Chapter 4, in turn, introduces play personas and extends them into procedural personas,

a form of decision science based player modeling, via agent based simulation.

2.1 Decision Theory

Decision theory as a field was founded by Tversky and Kahneman (1974). Their work

built on and presented a theoretical and empirical critique of expected utility theory

which adhered to the idea of humans as perfectly rational decision makers; homo eco-

nomicus. Tversky and Kahneman documented a vast number of identifiable heuristic

processes that guide, shorten or bypass conscious analytical decision making. They

further documented that humans sometimes apply heuristics to the extent that they

become biases; systematically skewed evaluations in spite of evidence that, subjected to

detailed analysis, would have yielded different conclusions.

Decision theory did, however, retain the notion of the personal utility function. The

personal utility function describes an individual decision maker’s valuation of different

potential outcomes of a particular decision, in a given moment, in a given context.

9
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Rather than assume that decision makers were rationally optimizing for utility, decision

theory documented how most decision processes in humans were only partially analytic

and relied heavily on biases and heuristics shaping decision outcomes (Kahneman, 2011).

This two-step decision making process is described by decision theory as the outcome of

the interaction of two psychological systems:

System 1: A quickly classifying, motivating, impulsive, and highly parallel emotional

process. Capable of rapidly making decisions, but prone to bias and misclassifi-

cation (the plausible neuro-psychological basis of system is extensively studied in

the work of Damasio, see section 2.5).

System 2: A slower, laborious, attention demanding, memory limited, sequential pro-

cess that delivers precise responses and inhibits motivations and biased outputs

from system 1.

Their interaction produces results that are systematically shaped by the biases of system

1 and the performance capabilities of system 2, both properties that are somewhat stable

within the individual (Kahneman, 2011). These stable tendencies, or decision making

styles, should be expressed through actions in game-play in the same way that they are

expressed across other activities in everyday life.

Since biases and heuristics, and utility functions themselves, are highly responsive to

context, much decision theoretical research has been carried out in strict experiments

under laboratory conditions. As a consequence, decision theory is sometimes criticized

for being based on too reductive models making unwarranted generalizations about hu-

man decision making from experiments carried out in reduced, structured environments.

For instance, the naturalistic decision making (Lipshitz et al., 2001) perspective, which

focuses on individual case studies and a qualitative approach, is often positioned in

contrast to decision theory (Kahneman and Klein, 2009).

While this criticism is relevant, and even acknowledged by decision theory, the fact that

most decision theoretical research is conducted in highly structured environments makes

the perspective well suited for many games, digital and otherwise. Understood as er-

godic artifacts that shape the behavior of their players as they work their way through

its structures (Aarseth, 1997; Juul, 2011) many games derive their appeal exactly from

being limited decision making spaces where each decision can be analyzed and the con-

sequences predicted with either deterministic accuracy or within some stochastic range,

depending on whether the game is focused on luck, skill, or a combination thereof (Elias

et al., 2012)1.

1While the classical categories of Caillois (2001) also include simulation (mimicry) and vertigo (ilinx),
we consider these out of scope for the study of decision making in this thesis.
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An important point of decision theory is that the biases and heuristics applied by human

decision makers in all manners of decisions may in fact often be chosen inappropriately

for reasons that may not be consciously available to the decision maker (Kahneman,

2011).

For the case of many games this may mean that in-game decisions that appear to be a

consequence of lack of skill or understanding of the game may in fact be the result of

shortcuts learned from unrelated, and hence potentially inappropriate, games or other

domains. For the objective of constructing agents simulating human decision making in

games, this means that agent control architectures should support the inclusion of biases

and/or heuristics that may not always be optimal for the individual decision. Determin-

ing the influences of these biases or the considerations of the heuristics in human players

will, however, be a challenging task, as they are not necessarily consciously available

to players and hence must be observed from game-play behavior. Taken together, deci-

sion theory informs us that to model human decision makers in agents, we need agents

that can be configured to act in accordance with utility functions and with biases and

heuristics shaping the way they pursue utility.

2.2 Decision Making Styles

A second part of decision science of relevance to this work is the finding that people

tend to exhibit patterns or tendencies in decision making. Individuals seem to hold

a disposition or trait toward one or more types of general decision making strategies

that have an impact on their performance on specific tasks. From the decision theory

perspective, we may say that they are systematically expressing biases in their heuristic

evaluations through specific decisions (Grigorenko and Sternberg, 1995) and that these

biases are stable over time. The concept has been operationalized into a psychological

instrument that has starting to see some use and attain evidence for reliability and

validity (Loo, 2000; Scott and Bruce, 1995; Thunholm, 2004). This may suggest a

potential relation between the notion of a player exhibiting a certain play style (Canossa

and Drachen, 2009), as often claimed by player modeling (Yannakakis et al., 2013),

and players exhibiting a decision making style. Or, put differently, a player’s decision

making style may be a partial determinant of a player’s play style, as captured by player

modeling. As such, modeling a player’s decision making style may be understood as a

sub-problem of the more general problem of player modeling.

If we can model the heuristic tendency of the player’s system 1, and combine this with

knowledge about a) the capacity/performance of the player’s system 2 and b) contextual
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knowledge about possible solutions for achieving the player’s current goal in the game,

we may be able to predict the player’s decisions with some accuracy.

To the extent that we choose to model the player’s decision making process in a gener-

ative agent after this double system, it may be reasonable to look for decision making

algorithms that incorporate a combination of analytic and heuristic aspects, maintaining

an abstract isomorphism to the process observed in human decision makers. We need

agents that decide both analytically and heuristically, support stable biases, and are

characterized by how they balance these two systems.

2.3 Bounded and Adaptive Rationality

A third, related, perspective on human decision making is given by the direction of

psychology studying human rationality as being bounded and adaptive. Early aspects of

this perspective even predate prospect and decision theory’s contribution to the study of

decision making in the work of Simon (1955). Later efforts, notably those of Gigerenzer

and Selten (2002) and Gigerenzer and Gaissmaier (2011), have developed, to a certain

extent, in dialog with decision theory.

The bounded and adaptive rationality perspective sees the human decision making pro-

cess as taking place in an environmentally responsive and adaptive balance between

analytic and heuristic processing. Proponents of the adaptive perspective on decision

making will argue that human decision makers often operate with limited resources

available for attention and cognition in constantly changing and partially unpredictable

environments. As such, the application of biases and heuristics that in the perspective

of decision theory may be seen as leading to cognitive fallacies, may in the adaptive

perspective be seen as strategies for making decisions that are good enough, rather than

optimal. In this perspective, the rational decision then becomes the decision that leads

to an acceptable outcome under an acceptable amount of effort within an acceptable

time-frame. This necessarily means that the motivation to make a good decision and

the time available for decision making become important contextual parameters when

evaluating decision making quality. Considered in the context of games, we may imagine

that a decision may seem inconsequential or uninteresting to a player, even if the game

rules emphasize the decision. Players playing irrationally or seemingly without skill

may simply be unmotivated by individual decisions, the game as such, or distracted,

and may hence be playing carelessly and devoting few resources to optimizing their

decision making.
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If we aim to simulate human decision making styles in games, our strategies for doing so

should be able to scale the amount of information that players take into consideration

and the amount of effort they dedicate to making optimal (as defined by the game

rules) decisions. We need agents that care about different decision problems to different

degrees and can represent different amounts of decision making effort.

2.4 Naturalistic and Recognition Primed Decision Making

Related to the notion of adaptive rationality and decision making under limited resources

(such as time for reasoning or attention) is a perspective from naturalistic decision

making studies: recognition primed decision making (Lipshitz et al., 2001; Klein, 1993;

Flin, 1997; Ross et al., 2004). Recognition primed decision making is concerned with

describing situations where experts decide within complex situations over short time

spans.

Studies of naturalistic decision making in fire fighters, among other professions, have

shown that expertly trained professionals may make decisions under stress by quickly

iterating through all courses of action retrieved from memory in response to a partic-

ular perceived pattern and enact the first strategy that is deemed submissible, rather

than comparing all submissible courses of action and selecting the best one. The first

retrieved submissible course of action retrieved from memory will depend on the pattern

in question and can be shaped through training. The shorter the time span for deciding,

or in general the more limited the cognitive resources available for decision making, the

more likely it is that expert decision makers will make recognition primed decisions. In

the context of games this becomes relevant when we consider game mechanics that are

common across games within particular genres or when players develop strong expertise

within a single game. In e.g. a first person shooter game players may respond imme-

diately to enemies by strafing or taking cover, without any rational thought preceding

the behavior. Any player that has moved between superficially similar, but different,

games such as from Quake Live (id Software, 2010) to Counter-Strike (Hidden Path

Entertainment and Valve Corporation, 2012) will probably have experienced the effect

of making recognition primed decisions out-of-context: While strafing is an effective way

of counter-acting an enemy’s ranged attack in Quake Live, due to the movement speed

of the player and the low rate at which the player takes damage, the same behavior is

ill-advised in Counter-Strike, where movement is slower and shots are far more deadly.

Still, the superficial likeness of the two games may make the expert Quake Live player,

who starts playing Counter-Strike, make these inappropriate tactical decisions until a

new set of behaviors can be linked to the recognized patterns through training.
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If we aim to simulate recognition primed decision making in artificial agents, it may make

sense to have galleries of low-level ready-made plans that can be enacted reactively to

particular patterns in the game state, in particular for games where decisions must made

quickly or where many decisions are made at the same time. We need agents that can

act reflexively to situations perceived as familiar.

2.5 Somatic Markers of Decision Making

A final body of work in the field of decision science relevant to simulating human deci-

sion makers in games is the neuro-psychological work of Damasio that resulted in the

somatic marker hypothesis (Damasio, 2008). Building on previous work in emotion and

decision making, Damasio constructed experimental psychological paradigms incorporat-

ing psycho-physiological measurements. The somatic marker hypothesis views decision

making as a partially conscious cognitive process supported by corporeally distributed

heuristics experienced by the subject as “feelings” (Damasio, 2000). The work has

demonstrated an integration between two separate, but functionally interacting neu-

rological systems in the human brain: A fast emotional system that labels expected

outcomes quickly, in parallel and mostly unconsciously, and a slower, but more detailed,

conscious system that integrates and sometimes inhibits the output of the fast system.

Damasio’s work compared patients with structural brain damage to the connections be-

tween the two systems to people with no brain damage. Important to this discussion is

the finding that normal individuals exhibit traceable physiological signals when decid-

ing under uncertainty and these signals match the experience of emotionally deciding

based on feeling what the preferred decision is rather than solely analytically knowing

(Bechara et al., 1997). The ideas of somatic markers of decisions and decision making

styles map well onto the models of decision theory, adaptive decision making and recog-

nition primed decision making. Since we know that decision making elicits measurable

physiological responses in normal humans too (Ahn and Picard, 2006; Ahn, 2010), it

is not far-fetched to imagine that physiological input devices would be able to provide

indicators of what kind of decision making is taking place in human players, potentially

informing future player models 2.

2The papers included in the appendices of this thesis deal with recognizing emotional responses to
games in human game players, but do not link these measurements to in-game decision making.
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2.6 Chapter Summary

This chapter provided an introduction to three psychological perspectives on decision

making: decision theory, adaptive and bounded rationality, and recognition primed deci-

sion making. From each perspective a number of implications for agent-based modeling

of decision making were identified. Additionally, a dominant perspective on the link

between emotion, physiology, and decision making in humans was given.

In the following chapter, we give a short introduction to the fields of player modeling and

procedural content generation and relate them to the perspectives of decision science in

order to build a theoretical foundation for a method for computationally modeling and

simulating decision making in the form of agents.



Chapter 3

Player Modeling and Procedural

Content Generation

In the previous chapter, we reviewed three dominant perspectives in psychological de-

cision science that inform the procedural persona concept. As models and simulations

of player decision making, procedural personas fall naturally within the field of player

modeling. When applied to the generation and evaluation of content, they become tools

for controlling procedural content generation, as computational critics (Osborn et al.,

2013), linking player modeling and procedural content generation. In this chapter we

provide a short overview of related work within player modeling and procedural content

generation in order to situate the procedural persona concept.

3.1 Player Modeling

Player modeling is defined by Yannakakis et al. (2013, p. 1) as

...the study of computational models of players in games. This includes

the detection, modeling, prediction and expression of human player char-

acteristics which are manifested through cognitive, affective and behavioral

patterns.

In their holistic overview of player modeling, Yannakakis et al. define four kinds of data

sources that player models can be built from: game-play input, objective information,

game context, and player profile information.

Game-play input describes the individual, atomic actions that the player uses to control

the game or aggregations thereof; in the case of digital games what is sent through the

16



Chapter 3: Player Modeling, Procedural Content Generation 17

input devices of the platform running the game. From a decision making perspective

game-play input is the behavioral implementation of player decisions.

Objective information describes the state of the player herself and can be obtained from

many different modalities that provide indications of the cognitive and affective state

of the player such as e.g. facial expressions, posture, heart rate, electrodermal activity,

etc. As mentioned earlier, this cognitive and affective information may be directly

relevant to understanding player decision making, as described by the somatic marker

hypothesis, and may assist in measuring player’s attention, engagement, risk perception,

and importance attributed to decisions.

Game context describes the parametrized state of the game at given points in time.

From the perspective of modeling decision making in games, this information naturally

becomes crucial in order to understand what is being decided upon. As noted in the

previous chapter, players’ analytic effort and the heuristics they apply depend heavily

on their perception of the decision making problem at hand which of course to a large

degree is determined by the game state.

Player profile information describes external models of players derived from other con-

texts such as measures of personality, intelligence or any other source of information that

describes individual differences between players along one or more dimensions. From the

perspective of decision making in games it is quite likely that players of different per-

sonality types also exhibit different decision making styles as suggested by e.g. Canossa

et al. (2015).

Based on the inputs, the purpose of player modeling is to define a computational model

of the player that accepts some or all of these kinds of inputs and provide outputs that

accurately describe individual players or groups of players.

Yannakakis et al. define four categories of player model outputs: scalar values, class

selections, ordinal data representing preferences, or no output, when the results of a

player model are used to classify a player as a specific type of player or cluster member.

The main intent of the procedural persona method is to combine a utility function with

an agent control architecture, simulating a combination of analytic and heuristic decision

processes to output data that can be used to simulate players.

Each combination of a utility function and a control architecture represents a particular

player profile or more specifically a decision making style. In terms of applying a persona

model, when the persona is used to simulate a player, game context information (in

the form of game states) is combined with this player profile through the controller

architecture to generate the output. The output of the model may be either scalar (e.g.
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choosing coordinate locations for an attack or choosing a movement speed or target),

ordinal (e.g. producing a ranked list of choices), or class values (e.g. choosing between

different targets or abilities) depending on the game which the procedural persona is

implemented for and how the game is controlled.

If personas are used to classify human players, mapping them to predefined personas,

the models may function as classifiers of human players. As such, the personas may

produce output in any of the four categories defined by Yannakakis et al., depending on

the game in question and how the personas are applied. For any particular game, the

personas may be limited to some of the four categories.

Before a persona model can be applied in the way described above, the utility function

must be defined. In the papers included in this thesis the utility functions of personas

are defined in two different ways:

The first way of defining the utility function is having game designers directly specifying

the utility matrix based on their understanding of the game rules and their personal

experience as game designers, testers, and players. This approach is applied in the

majority of the papers included in the thesis and aims to represent a situation where

a game designer wants to generate synthetic play-traces, but does not have any human

play-test subjects available. In the terms of Yannakakis et al. this means that the game

designer is providing the player profile directly by defining the utility matrix.

The second way of defining the utility function in procedural personas explored in this

thesis is learning it from human play-traces, or in the terminology of Yannakakis et

al., a combination of game-play input and game context information. This approach

is explored in Chapter 9, where agents are trained directly on human play traces and

compared to personas defined by game designers.

These two ways of defining utility functions reflect a central dichotomy in player modeling

in general: Player models tend to be dominated by either the influence of a priori

information (theory) or the influence of observed information (data). The first kind is

termed model-based approaches while the second kind is termed model-free approaches.

The procedural persona method, as envisioned in this thesis, primarily belongs to the

model-based category, but Chapter 13 will suggest how procedural personas may be

implemented in ways that draw on methods from both categories.

In the next chapter, we explore how to enable game designers to describe the utility

functions of procedural personas by defining decision spaces within games.

Before proceeding, however, we will briefly review the topic of procedural content gener-

ation in games, which is an application of procedural personas explored in Chapter 10.
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3.2 Procedural Content Generation in Games

Procedural content generation in games is an approach to providing large amounts of

content in games while reducing either the amount of human effort necessary to produce

the content or the amount of storage required to distribute the content. As a method,

procedural content generation has been used almost since the beginning of digital games

with the dungeon-crawling game Rogue (Toy et al., 1980) and the space trading game

Elite (Braben and Bell, 1984) being well known early examples. Recently, procedural

content generation has seen a strong interest as an method in commercial games and as

a research topic within game artificial intelligence.

Togelius et al. (2011, p. 1) define procedural content generation as:

. . . creating game content automatically, through algorithmic means . . . the

term game content refers to all aspects of the game that affect gameplay other

than non-player character (NPC) behaviour and the game engine itself. This

set includes such aspects as terrain, maps, levels, stories, dialogue, quests,

characters, rulesets, dynamics and weapons.

Developing a taxonomy of methods for procedural content generation, Togelius et al.

identify three different methods of procedural content generation that each represent

a different approach to controlling the quality of the generated content: constructive,

generate and test, and search-based procedural content generation.

Constructive procedural content generation creates content through a linear process and

does not evaluate or adjust the output. The method always assumes that whatever is

produced from it will fall within the expected and acceptable range of outputs; the

method itself guarantees that the generated content is sufficient, so to speak. Synthetic

testing via procedural personas has little relevance for procedural content generation sys-

tems built around this method, since play-testing is moot for content that is guaranteed

to be acceptable. However, procedural personas might be relevant for such a process as

a step in the constructive process, for instance decorating a level with the consequences

of simulated actions for the human player to experience. Synthetic play-traces might

also be relevant if the designer wished to visualize potential strategies for solving levels

generated by constructive processes. Procedural personas are not applied to games fea-

turing constructive procedural content generation processes in the work presented here,

but doing so is a potential avenue for future work.

Generate-and-test methods for procedural content generation take a slightly different ap-

proach than constructive methods. Rather than guaranteeing that the initial generation
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of a piece of content, e.g. a level, always ends with an acceptable results, generate-and-

test approaches evaluates the content against a number of criteria. If the content satisfies

these criteria, it is accepted; otherwise it is discarded and a new attempt is made at

generating something acceptable. Here, procedural personas may be useful in evaluating

the generated content, either as the only evaluating mechanism or, more realistically,

in conjunction with other evaluative mechanism. For instance, a requirement could be

that a procedural persona with a particular decision making style should always be able

to complete levels generated by a constructive system, should be able to complete them

with some predefined probability, or should be able to attain some level of utility as de-

fined by the persona’s utility function. Personas can function as evaluators of whether

a level is playable at all, or they may be able to assign a level a particular score, based

on how e.g. much utility they derive from playing it. In this sense they may function as

what Osborn et al. (2013) term computational critics - stand-ins for human evaluators of

content. The immediate down-side to generate-and-test methods for procedural content

generation is that they may be wasteful if it is hard or unlikely to generate content that

satisfies the criteria. In that case it may be advantageous to use procedural content

generation methods that do not follow this simple loop of producing and discarding

content, but instead perform a directed search within the multi-dimensional space that

defines the possible solutions to the content generation problem at hand.

The third approach, search-based procedural content generation, does exactly this,

searching through potential content configurations in a directed manner, along the way

evaluating which changes are most likely to generate better content. For search-based

procedural content generation procedural personas can take on the same role as com-

putational critics that they may take on in generate-and-test solutions, but in this case

their use becomes much more efficient. They can be integrated directly into the content

evaluations that guide the search through content space. Using procedural personas in

this manner is demonstrated in Chapter 10, where procedural personas with differing

utility functions are used to control search-based procedural generation of levels for the

test-bed game MiniDungeons 1, through the application of evolutionary computation.

3.3 Chapter Summary

Until this point, we have discussed the utility functions and decisions of procedural

personas in an abstract sense, only relating them to decision theory and reviewing how

models of utility functions embedded in agents may be useful for player modeling and

procedural content generation in games. In the following chapter, we become specific

about how specific utility functions of procedural personas may be defined for specific
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games with an outset in the play persona theory that procedural personas are built on

top of. Additionally, we define a number of metrics that we will use to measure how well

personas represent human player decision making and to measure differences between

individual personas.



Chapter 4

Decision Making in Games

In order to model and simulate human decision making in games we must consider how

to operationalize player decision making, defining measurable indicators of decisions.

We should conduct this operationalization while taking into account the decision sci-

ence related in the previous chapters and the derived requirements to decision making

simulating agents. In this chapter, we address this problem by suggesting how elements

of and occurrences in games can be used to infer decision making from behavior.

First, we review the concept of play personas which forms the final part of the theoretical

underpinnings of the procedural persona concept and enables the us to propose an

operationalization of decision making. Secondly, we review the concept of affordances

and its relation to play personas. Thirdly, we link play personas and affordances to

decision making and examine the procedural persona concept in detail. We define three

metrics that we use to compare individual decision makers in games. We will later

use these metrics to compare procedural personas to one another and evaluate how

close procedural personas come to representing human players’ decision making styles.

Finally, we describe the agent control methods used to implement procedural personas

in this thesis.

4.1 Play Personas and Procedural Personas

The concept of personas was first adapted to the domain of (digital) games under the

headline of play personas by Canossa and Drachen (2009, p. 3) who define play personas

as

22
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“clusters of preferential interaction (what) and navigation (where) attitudes,

temporally expressed (when), that coalesce around different kinds of in-

scribed affordances in the artefacts provided by game designers.”

Their work focuses on how assumptions about such player preferences can be used as

metaphors for imagined player behavior during the design process, and how patterns

in observed player behavior can be used to form lenses on the game’s design during

play-testing.

Applying the perspective of decision making can further narrow the play-persona con-

cept. Rather than considering any arbitrary reasons for player preferences valid, focusing

on decision making provides a perspective to operationalize the backgrounds for prefer-

ences into combinations of affordances (Gibson, 1977) and utilities. In this perspective,

any preference in a game, expressed through behavioral interaction with the game’s af-

fordances, is either the result of decision making or the result of noise which falls outside

of the explanatory power of the theoretical framework. This should allow us to explain

less of the behavior in any given game, but allow us to provide stronger explanations of

the behavior that we can explain.

The play persona concept is based on the notion of games being artifacts with affordances

inscribed into them by game designers. Since procedural personas are built on play per-

sona theory, this warrants a closer look at affordances in games: For any spatio-temporal

configuration of a given game, a limited number of plausible affordances can be deter-

mined using information about the game mechanics and reward structures by analyzing

and interpreting the games. Based on these affordances, different hypothetical combi-

nations of utilities can be used to create metaphors for typical player behavior. Each

combination then represents a utility function describing the motivations of a persona.

To the extent that these metaphors match what actual human players decided, they can

be considered lenses on the players’ decision making styles with utilities explaining how

player preferences are distributed between the available affordances. In this thesis, we

attempt to extend the play-persona concept into game playing procedural personas, by

building generative models of player decision making from either designer metaphors,

actual play data, or combinations of the two. As such, we need to identify a way of

connecting affordances and utility to decision making.

Our solution is to operationalize decisions as actions relating to the affordances presented

in a particular game. In this context, we define affordances as selected game mechanics

accessible to the player. By focusing on the affordances of the game we abstract away the

particular inputs of the player and only consider behavior in relation to the structured

context that the game provides; the inscribed affordances. In this operationalization a
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decision has occurred when a player interacts with a selected affordance. Put differently,

we use expert game design knowledge about what constitutes meaningful interactions in

the game to a priori define what constitutes decisions in relation to the game rules. This

reduces the game’s state space into a smaller decision space in which we can conduct

our player modeling and simulation.

We must then reduce player motivations and actions onto this same decision space

in order to connect the affordances of the game with player preferences, understood

through utility functions. This means that we can only account for player motivations

to the extent that they are directed at the affordances that we included in the decision

space; only these affordances can provide utility to the player. If a player derives utility

from the game by sources that are not included in our selected list of affordances, we

cannot explain this in our framework, but must consider it noise or an idiosyncratic

bias. This also means that this decision making perspective will never be capable of

explaining all player behavior, though it may be able to reproduce it, by incorporating

idiosyncratic player biases. We effectively split the sources of player behavior into two

categories: Behavior derived from decision making related to the affordances of the game

and behavior derived from other sources. The first category we can operationalize and

analyze by way of our a priori defined affordances as sources of utility, while we will

refrain from explaining the other part and simply operationalize this as the aspects of

player behavior that we cannot explain, but only describe and include it as bias towards

certain kinds of behavior or noise that influences the player’s movement through decision

space.

The link between the decision space, identified by way of the affordances, and player

motivations can then be forged by encoding the relative value of interacting with each

particular affordance in a utility matrix for the individual player. The weights of this

utility matrix will describe the player’s preferences with respect to the affordances in-

cluded as sources of utility. Learning a player’s decision making style, within the a priori

defined decision space of the game, becomes a problem of learning these weights as ac-

curately as possible. The advantage of the approach is that it allows us make specific

predictions about what decisions players with specific utility matrix configurations will

make in specific situations. The disadvantage is that we cannot account for reasons for

behavior that we have not included a priori in our list of affordances that make up the

dimensions of the utility matrix.

In order to construct this decision space we must identify the sources of affordance in

the game. In the following section, we outline a strategy for accomplishing this.
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4.2 Identifying Decisions in Games

The task of identifying relevant game mechanics for defining decision affordances in

games is not necessarily a simple problem. At the most detailed level any game will

arguably have a set of decision affordances unique to that particular game, but games

share configurations of decision affordances within genres or other groupings. Ideally, an

approach for modeling decision making in games should provide a generalizable method

for this. This thesis does not address this question as it only treats three particular

games and identifies decision affordances in each game in an ad hoc manner. However,

work by Cowley et al. (2009) has demonstrated ways of applying game design patterns

(Björk and Holopainen, 2004) to categorize behavioral patterns in games that could be

construed as decision making affordances at the individual action level. Here, we define

decision affordances individually for the three games in which we study decision making,

and instead go into detail with regards to the levels of abstraction on which decision

making takes place.

When considering players’ interactions with a game’s affordances, one approach could be

to record and examine every instance of input to the game that the player delivers. We

have already established that some decision making is not directly rational and cannot

be expected to happen in direct pursuit of game goals. This may make some input seem

random or misdirected in relation to the formal context of the game rules. Additionally,

research by Canossa and Cheong (2011) indicates that it may be naive to even consider

all inputs to a game as intended, willful, or goal-directed. Canossa and Cheong classify

actions, and thereby inputs, as being the consequence of either intentional, trained or

chaotic behavior, which we may translate roughly into planned, reactive or random

behavior, respectively.

The three kinds of actions can be interpreted from the three decision theoretic frame-

works we reviewed in the previous chapter, decision theory, bounded rationality, and

recognition primed decision making.

Random behavior cannot be related to the game rules and must be considered either

noise or a bias in player’s decision making. Any model we choose to use for the human

player’s decision making should be capable of treating these facets of the in-game actions

by modeling behaviors that are inexplicable in relation to the affordances as noise or

biases.

Reactive behavior can be expected to occur when players respond with rote learned

routines to in-game events, such as automatically jumping in front of an enemy in a

platform game or firing at an enemy that appears in a first person shooter game. Relating

reactive behavior to decision making, it can be understood as decision making consisting
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only of heuristics: The player perceives a known pattern in the game and responds

with the most appropriate general or specialized heuristic in her repertoire. This kind

of behavioral response is best explained by recognition primed decision theory, which

describes how the human mind maps perceivable patterns to predetermined immediately

executable behavioral scripts that leave little to no room for conscious modification or

planning (Klein, 1993). As such, reactive behavior can be understood as decisions that

are consistently enacted in response to particular patterns in the game state. A player’s

expertise and motivation for the game in general or for a particular aspect of a game

should be expected to influence to which extent decisions are made reactively, using very

few cognitive resources, or are made in a planned, rational manner.

Planned behavior, can be explained as the result of intentional, rational decision making

as described by decision theory. We should expect planned behavior to be describable

and intelligible in relation to personal utility functions that players try to optimize their

decision and behavior in accordance with. When a player is motivated toward a game and

is awarded an unlimited amount of time and cognitive resources for making a decision, we

should expect the decision making process to be describable in accordance with decision

theory. We should expect the player though optimize rationally, though still having her

decisions shaped by biases and still relying, to some extent, on heuristics that may or

may not be appropriate depending on the player’s level of training and expertise. The

degree to which player relies on heuristics can be understood as a function of the player’s

motivation and resources in accordance with the bounded rationality perspective.

Few digital games contain only decision making challenges players can solve using only

rational or reactive decision making. Rather, in many games players must rely on a

combination of manual skill, memory capacity, and reasoning abilities simultaneously

while pursuing several, often conflicting, goals on different time scales and often in real

time. This, arguably, is part of what makes digital games an appealing medium full of

interesting decisions.

This means that an analytical framework for understanding how a game affords decisions

through mechanics should help us make sense of decisions and actions of multiple kinds

occurring simultaneously. It also means that a meaningful in-game behavior, such as

opening a door, engaging with a particular enemy, or choosing a particular inventory

item, is unlikely to indicate just one kind of decision or one kind of action, but rather

is the result of several kinds of decisions and actions. Assuming that we cannot tease

apart these constituents through interactions with affordances, but must look at them

in their integrated form, we suggest that we instead look at them as different levels of

abstraction and grouping in relation to the game rules.
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In the following section we identify three possible levels of abstraction for considering

decision making in relation to affordances in games. We propose these three levels as

perspectives for operationalizing player behavior into measurable indicators of decisions.

4.3 Three Pragmatic Levels of Decision Making in Games

Our first step of identifying what constitutes meaningful decisions is to locate and select

decision making affordances in games. Once located, we examine interaction with these

decision indicating affordances in three different ways: 1) individually, 2) in terms of the

order in which they appear, and 3) in terms of their aggregate occurrence frequencies

across delineated windows of game-play events e.g. levels. We call these three levels

the action level, the tactical level, and the strategic level. In the papers included in this

thesis, we eventually pursue all three of these levels, building generative agents that try

to simulate human decision making styles at these three levels, respectively.

Action level decisions are considered atomically and are not related to other action

level decisions that went before or come after, only the immediate game state in which

they occurred. They are operationalized as the simplest meaningful effects of a player

interaction with a mechanic. Typical examples would be moving a player character or

utilizing a particular attack or weapon in a specific situation.

Tactical level decisions are operationalized as the interaction with higher level challenges

or objectives in the game: Fighting an individual foe, reaching a particular location, or

or acquiring a particular object. They typically encompass a number of action level

decisions and typically require planning to organize series of action level decisions in

an order leading to the defined interaction. Tactical level decisions describe ordered

relations between affordances. Given the latest affordance that the player chose to

interact with what will the next affordance be? The individual action level decisions

leading to the tactical outcomes are not considered directly, so two tactical decisions

are considered equivalent even if different series of action level decisions were made to

realize them.

Strategic level decisions are the most abstract operationalization and describe the fre-

quency distribution of the action and/or tactical decisions over the course of a predeter-

mined section of a game. How often was each affordance interacted with in the particular

level. This measure of decision making does not consider the order of the decisions, but

simply observes how often they occur across the entire window of game-play events. E.g.

how many monsters were fought in a level, how many attacks of which kinds were used,

or how many points were acquired. They are similar to the metrics typically used in
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game analytics to characterize play sessions across e.g. levels or maps (El-Nasr et al.,

2013).

In the following section, we complete our operationalization of decision making by defin-

ing three metrics of decision similarity.

4.4 Metrics of Decision Similarity

In this section, we present the three different simulation based metrics used to evaluate

how alike personas are in their decision making and how well they represent human

decision makers. Each metric was constructed to capture interactions with affordances

at each of the three different levels of decision making operationalization: the action

level, the tactical level, and the strategic level.

4.4.1 Action Agreement Ratio

The first metric used to evaluate agent to human likeness is the action agreement ratio

(AAR). AAR considers each step of a human play-trace a distinct decision. To produce

the AAR between an agent and a human player, all distinct game states of the human

play-traces are reconstructed. For each game state, the agent being tested is inserted

into the game state and queried for the next preferred action, essentially asking: “What

would you do?”. If the action is the same as the actual next human action, the agent

is awarded one point. Finally, the AAR is computed by dividing the points with the

number of decisions in the human play-trace. As such, a perfect AAR score of 1.0

represents an agent that for every situation in the player’s play trace decided to take

exactly the same action as the player did. Figure 4.1 contains an illustration of how the

AAR is produced, and Algorithm 1 describes each step in pseudo-code.

Figure 4.1: An illustration of how the Action Agreement Ratio is calculated.
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Algorithm 1: Algorithm for calculating the AAR metric.

input : A play trace consisting of a vector G of original (player or agent) game states
of length n.

input : A corresponding vector A of original actions, also of length n.
input : A template for a procedural persona P .
output: A scalar AAR representing the correlation between the D and a vector of

generated agent decisions of equal length.
i = 0;
hits = 0;
while i < n do

gameclone = clone(Gi);
procedural personas instance p = new P ;
set game state of p to gameclone;
record next action ap from p;
if ap == Ai then

hits+ +;

i+ +;

AAR = hits/n;
return AAR;

4.4.2 Tactical Agreement Ratio

The second metric used for evaluating the likeness between agents and humans is the

tactical agreement ratio (TAR). TAR does not necessarily consider individual actions

decisions. It only considers reaching each distinct affordance in the level a significant

decision, and may ignore individual actions in between. For each affordance reached

in the human play-trace, the resulting game state is reconstructed and the agent being

tested is inserted into the game state. The agent is then allowed as many actions as

necessary to reach the next affordance, asking the question “What affordance would

you go for next?” at the tactical level. If the next encountered affordance, in terms

of both type and location, matches the actual next human one exactly, the agent is

awarded a point. Finally, the TAR is computed by dividing the points with the number

of affordances reached in the human play-trace. As such, a perfect TAR score of 1.0

represents an agent that visits every affordance visited by the player in the same order as

the player originally did. Figure 4.2 contains an illustration of how the AAR is produced,

and Algorithm 2 describes each step in pseudo-code.

4.4.3 Strategic Agreement Ratio

The third metric used for evaluating the likeness between agents and humans is the

strategic agreement ratio (SAR). Operating at the general and aggregate level, SAR

considers the total amount of affordances engaged with for each level. For each affordance
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Figure 4.2: An illustration of how the Tactical Agreement Ratio is calculated.

Algorithm 2: Algorithm for calculating the TAR metric.

input : An original game state g (from a player or agent session).
input : An vector T of length m containing affordances encountered in the original

game.
input : A template for a procedural persona P .
output: A scalar TAR representing the correlation between the affordance encounters

in T and a vector of generated agent affordance encounters of equal length.
j = 0;
hits = 0;
while j < m do

gameclone = clone(Gj);
procedural personas instance p = new P ;
set game state of p to gameclone;
while p has not encountered an affordance pt in gameclone do

get next action pa from p;
apply pa to gameclone;

record next affordance pt encountered by p in gameclone;
if pt == Tj then

hits+ +;

j + +;

TAR = hits/m;
return TAR;

the absolute difference between the agent’s measure and the player’s interaction counts

is calculated and normalized by the maximal possible number for the level or, in the

case of the number of affordances with no natural upper limit, in relation to a constant.

These statistics are then summed, divided by the number of statistics (in this case five).

The score, which is an expression of how different the agent’s statistics are from the

player’s, is subtracted from 1.0 to produce the SAR. As such, a perfect SAR score of 1.0

would indicate an agent that e.g. fought exactly the same number of monsters, collected

exactly the same number of treasures, died in combat or exited the level just like the

player, and did so in exactly the same number of actions. In other words, the SAR asks

the question “How often would you go for each affordance in this level?”. Figure 4.3

contains an illustration of how the AAR is produced, and Algorithm 3 describes each
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step in pseudo-code.

Figure 4.3: An illustration of how the Strategic Agreement Ratio is calculated.

Algorithm 3: Algorithm for calculating the SAR metric.

input : An original game state g (from a player or agent session).

input : A list of selected affordance types Q of length o.

input : A vector S of affordance interaction frequency counts, also of length o.

input : A template for a procedural persona P .

output: A scalar SAR representing the correlation between the affordance encounter

frequencies in S and a corresponding vector generated by an agent.

gameclone = clone(g);

procedural personas instance p = new P ;

set game state of p to gameclone;

gameover = false;

T = new vector of length o;

while !gameover do

apply next action ap of p to gameclone;

for k = 0; k < o; k + + do

if p interacted with affordance of type Qk then

Tk+ = 1;

if dead(p)||won(p) then

gameover = true;

SAR = 0;

for l = 0; l + +; l < o do

SAR+ = Tl/SL;

SAR = SAR/o;

SAR = 1− SAR;

return SAR;
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In the following section, we describe which agent control methods we used for imple-

menting procedural personas which were evaluated using the three metrics described

above.

4.5 Agent-Control Methods for Procedural Personas

To construct the procedural personas described in this chapter, we need to choose a spe-

cific agent implementation that forms the generative core of our decision maker model,

our persona(s). In this and previous chapters, we identified a number of ideal agent

qualities that would be useful for decision modeling which can be summarized in the

following list of requirements:

• Agents should support a utility function, describing how they value different events,

affordances, in the game.

• Agents should be able to represent both the analytic and heuristic steps in human

decision making.

• Agents should be configurable in how much of their decision making is based on

analysis or search and how much is based on heuristics.

Commercial and academic game artificial intelligence offer a large gallery of examples and

methods to choose from for agent implementations: ranging from finite state machines

and behavior trees to neural-networks trained by back-propagation and neuroevolution,

to name a few examples (Rabin, 2004; Mikkulainen et al., 2006; Risi and Togelius, 2014;

Yannakakis and Togelius, 2014). Some commercial implementations, when used to pro-

duce e.g. AI opponents with varying play styles as in the Civilization (Firaxis Games,

2010) games, have even been used to produce agents that may even be thought of as per-

sonas, exhibiting different decision making styles. The literature, notably Mark (2009)

also describes the use of utility functions for generating variation in agent behavior.

In spite of this, agents in the literature that are modeled with different play styles

typically play with the player, but not as different players. They are often - as e.g.

in the case of the AI players in Civilization - given access to information or other

advantages and are crafted for providing an enjoyable game experience rather than an

accurate description of possible or typical player play styles. The procedural personas, in

contrast, are crafted for playing as players that are given the same information and action

options that human players would receive. Still, many of the agent control methods in

the literature are useful for and adaptable to the procedural persona concept. In the

papers of this thesis, four particular methods are appropriated:
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A* Search in State Space is used in the first paper in Chapter 6 to create a single

agent that becomes a reference process representing a decision making style. The

A* search algorithm operates with a combination of search and heuristics and easily

incorporates the notion of utility in its cost function and heuristic. The drawback

of using A* search in state space is that both the cost function and heuristic,

typically, are defined and tweaked by the algorithm designer. Each affordance of

the game must be considered in detail and added to the cost and heuristic functions

specifically, making adaptation to games with many affordances time consuming.

Q-Learning is used in the second paper in Chapter 7 to learn how to satisfy different

utility functions for particular levels. While the method, as implemented here, is

shown to perform well, it is limited by being time-consuming to train and by not

being able to generalize to new game content.

Neuro-evolution is employed in Chapters 8 to 10 and is the most extensively applied

method in this thesis. Here, it is applied in a simple variant, where the topology

of the controller network is kept static and only weights of individuals are evolved.

While the method still requires off-line training it is shown to generalize grace-

fully to unseen content and utility functions may be converted directly into fitness

functions. This means that personas based on neuroevolution can be used to play

content as it is being created and changed, while producing consistent results.

Monte-Carlo Tree Search is used in the final paper of the thesis, Chapter 11. This

method also support utility functions in a straight forward manner. Furthermore,

it has the advantage of not requiring off-line training and being highly generalizable

to new content. However, the method is shown to potentially require some manual

adaptation, e.g. in the form of guided roll-outs, to perform optimally for particular

games.

Each method comes with its own set of advantages and disadvantages. The implemen-

tations of the four agent control methods are described and evaluated in detail in the

respective papers. In Chapter 13, other promising agent control methods that could be

combined with the procedural persona concept in future work are described.

4.6 Chapter Summary

In this chapter we reviewed the theory of play personas, a framework for prescribing

and describing player behavior in games, useful for game design and game analytics.
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Extending the play persona concept, we defined the concept of procedural personas

which encode play personas as game playing agents by modeling players as decision

makers: observed in-game or imagined by the designer.

We defined three analytical levels for understanding decision making in games: the

action level, the tactical level, and the strategic level. We argued that these levels have

different meanings for different games as they depend on the game rules. Therefore, they

must be defined for the individual game before procedural personas can be constructed

and their definitions are highly dependent on the affordances of the game in question.

We described three simulation based metrics for measuring the likeness between players

and personas, one for each analytical level. Finally, we contextualized and described

the AI agent control methods used to drive the behavior of procedural personas in the

papers of this thesis.

In the following chapter we present the three game domains that were used to explore

and develop the procedural persona concept in this thesis.



Chapter 5

Domains

In this chapter we introduce the three domains that are used for the decision modeling

experiments in this thesis: The Mario AI Benchmark Framework, MiniDungeons 1, and

MiniDungeons 2.

5.1 The Mario AI Benchmark

The Mario AI Benchmark (Karakovskiy and Togelius, 2012) is a well established testbed

for working with procedural content generation, player modeling, agent development and

testing, and human imitation in platform games. It is a replication of the game mechanics

and content of the classic 2D platform game series Super Mario Brothers (Miyamoto

and Tezuka, 1985). The testbed has the advantage of being immediately familiar to

most players in terms of content and mechanics. The object of the game is to move

the player character, Mario, towards the right of the screen while avoiding a number of

obstacles and avoiding or killing a number of enemies. The game has simple keyboard

inputs consisting of buttons mapped to six different actions: Down, Jump, Left, Right,

Speed, and Up.

The game is played in a real-time (25 fps) simulation with an experientially continuous

deterministic world with predictable physics. It allows for a large number of unique

positions and action sequences, ensuring that any two sessions played by humans are

unlikely to ever be completely identical.

The game rules that the player is afforded to comply with are simple: Players should

win levels as quickly as possible, while avoiding or killing enemies in their way, and

collecting as many items as possible.

35
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At every given moment during the course of a play-through, only a subset of the level

is visible to the player, providing no more information than can be assimilated at any

given moment by a perceptually and cognitively normally functioning individual.

The game presents most relevant information about the game state at any given time

and can, as such, be considered a game rich in information (though not perfect, as

blocks may contain various hidden power-ups and enemies can be hidden from sight for

varying amounts of time). Figure 5.1 shows an example screen-shot from the Mario AI

Benchmark Framework along with a number of positions that the player character could

hypothetically occupy and some potential paths between those positions.

Figure 5.1: A screen-shot from the Mario AI Benchmark Framework, showing a few
different potential paths form the left-hand side of the screen to the right-hand side.

The Mario AI Benchmark is included in the first paper of this thesis as an initial ex-

amination of the problem of learning about human decision making styles by comparing

them to synthetic agent decision making styles. The game is investigated at the action

level by comparing human play-traces to agent play-traces and using the individual play-

ers’ deviations from the agent play trace to characterize the players. While the game

formed a useful initial context for developing the notion of using agents as reference

processes for understanding human players, the framework is not used in the subsequent

papers which instead focus on the MiniDungeons games. This is primarily due to the
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fact that the high frequency decision making in the Mario AI Benchmark makes it hard

to construct a simple decision space for the game. Moreover, the fact that the game re-

lies heavily on trained manual skill makes it well suited for studying recognition primed

decision making, but perhaps less well suited for studying tactical or strategic decision

making. As the first study finds, some players will be characterized by their (lack of)

skill alone. While this is interesting in itself, it may be disturbing for the purpose of

studying decision making styles in games.

Instead, the rest of the papers in this thesis use the MiniDungeons games as test-beds for

studying decision making styles. These games were specifically developed to require little

to no manual skill allowing us to focus on the expression of decision making styles through

behavior, rather than the expression of manual skill. In their design, the games were

inspired by classic dungeon crawling games featuring procedural content generation, such

as the original Rogue (Toy et al., 1980), but also modern turn-based dungeon crawling

games emphasizing decision making were a source of inspiration, especially 868-HACK

(Brough, 2013) and Hoplite (Cowley et al., 2013).

5.2 MiniDungeons 1

MiniDungeons 1 is the first game included in this thesis developed specifically for the

purpose of studying and simulating human decision making (Holmg̊ard et al., 2014b) and

tries to solve some of the challenges identified in the work with the Mario AI Benchmark.

Implemented in Java (Gosling et al., 2011) using the Processing framework (Reas and

Fry, 2001), the game is a simple turn-based rogue-like puzzle game, played in a web

browser or as a stand-alone application, and is controlled using only the arrow keys of

the keyboard. There is no time pressure in the game and the player is free to spend

as much time deciding between each action as she wants. These design aspects largely

eliminate the problems identified in the Mario AI Benchmark, removing the influence

of manual skill on the decisions that players make in the game.

MiniDungeons 1 levels are laid out on a grid of 12×12 tiles: tiles can be walls (which

obstruct movement), empty, or contain monsters, treasure, the level entrance or exit.

In MiniDungeons 1, a hero (controlled by the player) starts at the level entrance and

must proceed to the level exit: stepping on the exit tile concludes a level and loads the

next one. A hero starts each level with 40 hit points (HP) and dies at 0 HP. The hero

can collect treasure by stepping on treasure tiles: treasures have no in-game effect but a

treasure counter is shown on the user interface. The hero can drink potions by stepping

on potion tiles: potions heal 10 HP, up to the maximum of 40 HP. The hero can kill

monsters by stepping on monster tiles: monsters do not move and only engage the hero if
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the hero moves onto their tile. Combat is stochastic: a monster deals a random number

between 5 HP and 14 HP of damage to the hero and then dies. This means that the player

has full information about the level except for monsters’ damage. As such, the main

challenge in MiniDungeons 1 becomes to find a plausible route to the main affordance,

the exit. At the same time, the player must decide which auxiliary affordances to pursue:

how many additional monsters to kill and treasures to collect. The player quickly learns

the monster damage distribution (a uniform distribution in the range 5 to 14 HP, both

inclusive) and the extent to which the player decides to pursue each affordance is then

assumed to provide information about how much utility each affordance provides to

the player. A screen-shot from MiniDungeons 1 is shown in Figure 5.2. Differences

in affordance interactions are then assumed to represent differences in utility functions

and per extension differences in decision making styles. The relatively small size of

the levels and the fact that they are discretized spaces produce a high decision density.

Even a single action, such as moving to an adjoining empty tile, significantly changes

the game state in terms of remaining steps to the exit, monsters, potions, and treasures.

This means that any input that significantly changes the game state entails a specific

decision. The small number of affordances in this test-bed limits the number of utility

sources that must be considered when constructing an agent-persona. Finally, the small

level size means that most levels can be completed relatively quickly.

In a number of the papers included in this thesis, we demonstrate how a game as

seemingly simple as MiniDungeons 1 contains enough interesting decisions to allow us to

observe a variety of decision making styles and simulate these using a gallery of different

personas. The MiniDungeons 1 game is well suited to investigate how affordances, utility

functions, and risk interact, and the game is fundamentally about making decisions

under risk. However, we found that the game is not complex enough to investigate the

concept of adaptive and bounded rationality. Since the player character is the only one

that moves and changes in MiniDungeons 1, it becomes relatively easy for the player to

anticipate future game states. The game presents no antagonists to the player, and does

not give the impression of working against the player, but simply presents a number

of gambles that the player may choose to engage with or not. In order to address this

other aspect of decision making, we designed and implemented the game MiniDungeons

2, which we describe in the following section.

5.3 MiniDungeons 2

MiniDungeons 2 is also a turn-based rogue-like game, implemented in Mono (Xamarin,

2004) using the Unity (Unity Technologies, 2005) game engine. It retains a number of the
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Figure 5.2: A level from MiniDungeons 1. The only moving character is the player’s.
The main challenge is to decide what affordances to pursue in the level under the risk

that each monster may deal from 5 to 14 HP worth of damage.

design features of MiniDungeons 1. It is playable on smart-phones and web browsers in

order to reach as many potential players as possible and requires little to no manual skill

to play. Every decision the player makes in MiniDungeons 2 has a significant impact on

the game state meaning that every decision counts, bringing the game’s state space and

the decision space in close alignment. Levels in MiniDungeons 2 may be solved in many

different ways, in an attempt to support variety in decision making styles. Crucially, a

complete game tree for a single level of MiniDunegons 2 is difficult to simulate mentally,

enticing players to conduct some aspects of decision making through analytic thinking
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and other aspects through heuristic thinking.

Levels in MiniDungeons 2 have a slightly different format from those in MiniDungeons

1, owing to the game being optimized for smart-phones. The tile based levels are sized 10

by 20 and tiles are either Walls or Passable Tiles. Walls are completely impassable and

serve as barriers. Passable Tiles may contain objects and/or game play characters, i.e.

the player-controlled Hero or computer-controlled characters (NPCs). Objects include

Treasures, Potions, Traps, Portals, one Entrance, and one Exit. The level ends when the

Hero reaches the Exit or when the Hero dies. Game play characters may move between

empty tiles by moving either North, East, South, or West. All game play characters

have hit points (HP) and can deal damage.

Objects have different properties:

Treasures when reached are consumed by the Hero, increasing the player’s treasure

score. Treasures may also be consumed by Ogres.

Potions when reached are consumed by the Hero, increasing the Hero’s HP by 1, to a

maximum of 10 HP. Potions may also be consumed by Blobs.

Traps deal 1 damage to any character that moves into them.

Portals come in pairs: a character moving into a portal is immediately (on the same

turn) teleported to the linked portal.

The Entrance and the Exit determine where the Hero starts and where the Hero

must go to complete the level, respectively.

The player controls the Hero of the game and always moves first, upon which each object

and character in the level in sequence responds deterministically. The Hero starts each

level with 5 HP. The Hero possesses a single Javelin which can be thrown at any other

character to which the Hero has an unbroken line of sight. The Hero deals 1 damage to

other characters on collision or by throwing the Javelin at them. The Javelin remains

on the tile to which it was thrown, and the Hero must go there to collect it. NPCs then

respond to the player’s decision:

Goblins move 1 step toward the Hero along the shortest path if they have an unbroken

line of sight to the Hero. They have 1 HP and deal 1 damage on collision. Goblins

avoid colliding with other Goblins or Goblin Wizards.

Goblin Wizards deal 1 ranged damage to the Hero, if they have an unbroken line of

sight and are within 5 tiles of the Hero; otherwise, they move 1 step toward the

Hero. Goblin Wizards have 1 HP and deal no damage on collision.
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Blobs remain static unless they have an unbroken line of sight to either the Hero or

a Potion. If a Blob sees either, it moves 1 tile toward the closest one, preferring

Potions over the Hero. When Blobs collide with each other, they merge into a

larger, more powerful Blob. The simplest Blob has 1 HP and deals 1 damage to a

colliding non-Blob character; this upgrades to 2 HP and 2 damage, and 3 HP and

3 damage at maximum power. A more powerful Blob which receives damage loses

one power level.

Ogres remain static unless they have an unbroken line of sight to either the Hero or a

Treasure. If an Ogre sees either, it moves 1 tile towards the closest one, preferring

Treasures over the Hero. If the Ogre reaches a Treasure it consumes the Treasure

and becomes fancier to look at. Ogres have 2 HP and deal 2 damage to any other

character they collide with, including other Ogres.

Minitaurs always move 1 step toward the player along the shortest path as determined

by A* path-finding, disregarding other characters and objects. Collision with a

Minitaur deals 1 damage to the colliding character. Unlike other enemy characters

a Minitaur does not have HP and does not die, but will be knocked out for 3

rounds if it receives damage.

The characters and objects in MiniDungeons 2 have simple properties, and respond

deterministically to the player’s decisions. Still, the number of moving parts in the

game means that is difficult to impossible to mentally simulate a full level, at least

from the beginning when the hero is far from the exit, and all monsters are still alive.

This means that the player must rely on heuristic problem solving to some extent, and

extrapolating from theory, we can expect this extent to rely on the player’s cognitive

resources and motivation. While the complexity of making each decision is higher in

MiniDungeons 2 than in MiniDungeons 1, the game contains no stochasticity and in that

sense no hidden information or risk, since all outcomes in principle could be calculated

ahead of time.

In addition to the balance between analytic and heuristic decision making shaping the

player’s decisions, we should expect it to be shaped by her decision making style, again

representable in a utility matrix.

5.4 Chapter Summary

In this chapter, we presented the three games that we use as test-bed domains for

studying and modeling decision making.
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Figure 5.3: A typical MiniDungeons 2 level at start (left panel) and after three turns
(right panel).

The three games included in this thesis together only cover a small part of the amount

of games that it would be necessary to study in order to provide a comprehensive inves-

tigation of decision making in games.

In an effort to focus on the problem of decision making making in games, relatively

simple 2D games with relatively limited action spaces, no explicit narratives, and no

continuity or state permanence between levels were chosen. This naturally limits the

scope of the conclusions that can be drawn from this thesis, and future work should focus

on expanding the research agenda to games of other genres and greater complexity, a

topic we revisit in Chapter 13.

The Mario AI Benchmark provides a game which is continuous in time and space from

the perspective of the player and is played in real time. This means that the player is
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constantly taking random, reactive, and planned actions in the game and it seems plau-

sible that decision making in the game must rely on heuristic and recognition primed

decision making to a large extent. The game forces the player to apply bounded ratio-

nality since the action progresses in real-time and the enemies in the game act even if

the player does not.

In contrast, the MiniDungeons games take place in discretized time and space. This may

remove the cognitive demand on the player as it sets her free to spend as much time

as she wants making decisions. For this reason, we should expect a minimal amount

of random and reactive actions in the MiniDungeons games, and we should expect

players to be able to rely on analytical decision making to the extent that they are able

and motivated to. The MiniDungeons 1 game is not analytically complex in terms of

the rules of the game, but the stochasticity of the game forces players to either learn

heuristics describing the likely outcomes of monster fights or to analytically consider

likely results by recording past outcomes. MiniDungeons 2, on the other hand, has no

stochasticity, but has a complexity that prevents players from analytically extrapolating

the full consequences of their actions, instead relying on heuristics to predict the long

term consequences of an individual action.

As such, even though the games at the surface level are similar in their simplicity, they

can be seen as quite distinct in terms of the kinds of decision making they afford their

players.

The following six chapters present the papers that study decision making in the three

domains presented here.



Chapter 6

Decision Making Styles as

Deviation from Rational Action

Reference:

Holmg̊ard, Christoffer, Julian Togelius, and Georgios N. Yannakakis (2013). “Decision

Making Styles as Deviation from Rational Action. A Super Mario Case Study”. In:

Proceedings of the Ninth Annual AAAI Conference on Artificial Intelligence and In-

teractive Digital Entertainment.

6.1 Abstract

In this paper we describe a method of modeling play styles as deviations from approxi-

mations of game theoretically rational actions. These deviations are interpreted as con-

taining information about player skill and player decision making style. We hypothesize

that this information is useful for differentiating between players and for understanding

why human player behavior is attributed intentionality which we argue is a prerequisite

for believability. To investigate these hypotheses we describe an experiment comparing

400 games in the Mario AI Benchmark testbed, played by humans, with equivalent

games played by an approximately game theoretically rationally playing AI agent. The

player actions’ deviations from the rational agent’s actions are subjected to feature ex-

traction, and the resulting features are used to cluster play sessions into expressions

of different play styles. We discuss how these styles differ, and how believable agent

behavior might be approached by using these styles as an outset for a planning agent.

Finally, we discuss the implications of making assumptions about rational game play

and the problematic aspects of inferring player intentions from behavior.

44
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6.2 Introduction

Recent work in Game AI research has seen an increasing interest in the generation of

believable bot behavior: bots that not only challenge or interest humans, but play like

humans. For instance, the well known Mario AI Championship (Karakovskiy and To-

gelius, 2012; Shaker et al., 2013b) recently added a Turing Track to the competition and

the 2K Botprize (Hingston, 2013; Hingston, 2010) has long been a successful recurring

event. Both competitions challenge researchers and developers to create bot players

whose behaviors are as indistinguishable from those of human players as possible.

At the core of the pursuit lies evidence that the experience of playing against another

sentient player brings engagement and entertainment to most games (Togelius et al.,

2012). The phenomenon that believable human-like interaction from a computer sys-

tem will generally result in human emotional and behavioral reciprocation has been

documented for many kinds of human-computer-interaction (Reeves and Nash, 1996).

Believability can be construed as a question of being able to attribute intentionality to a

bot through inferring from observation that it is exhibiting goal directed behavior and by

interpreting and understanding this behavior. Dennett named this process of ascribing

agency to an object from assumptions about beliefs and desires the “Intentional Stance”

(Dennett, 1987). In short, if we ascribe beliefs and desires to an artificial agent, we are

likely to also ascribe to it intentions and from the intentionality comes the tendency

toward treating the object as sentient.

Our hypothesis is that the way humans deviate from an optimal course of action in

the game theoretical sense, whether due to lack of skill or the pursuit of goals not

formalized in the game’s rule structure, is useful in making behavior seem intentional.

We further hypothesize that decisions are a useful way of operationalizing the deviations.

We attempt such an operationalization by contextually analyzing the observable actions

that humans take within the rule systems of games as collected in play traces.

6.3 Related Work

Modeling play styles is nothing new in general. Various signals from the player have

been employed to enable differentiation between and grouping of players, ranging from

facial expressions during game play (Asteriadis et al., 2012) over spatial exploration

and behavior overall (Drachen et al., 2009b; Asteriadis et al., 2012) to simply player

performance in terms of score (Asteriadis et al., 2012).
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Additionally, the psychological literature contains a cornucopia of models for describing

how behavior is derived from or influenced by unobservable, latent traits. Below, we

briefly visit and relate to previous work in generating human-like behavior from latent

trait models and exemplify their application to play style modeling.

6.3.1 Latent Trait Models of Behavior

One approach for creating believable bots is to start out with general models of human

cognition and motivation and use these models as generative systems for bot behavior.

Cognitive psychology concerned with personality and motivation sees human behavior

as the expression of latent tendencies inherent in the individual that are stable over

time.

Personality models are generally concerned with preference and appraisal tendencies.

They are typically constructed by examining people’s preferences and appraisals in re-

sponse to general questions or specific situations, real or imagined. There is evidence

that such models can be used to explain play styles to a certain extent. For instance,

personality has been shown to significantly influence behavior in on-line virtual worlds

(Yee et al., 2011b). Personality models rest on the idea of a cognitive-emotional system

that responds to various situations in a predictable fashion because the system – bar-

ring any life-altering experiences such as physical or psychological trauma – is relatively

stable over time. Personality models are accepted as having explanatory use and valid-

ity in cognitive psychology and have been used for generating believable bot behavior

(Rosenthal and Congdon, 2012). A similar, but less investigated and established latent

model, is humans having decision making styles as traits. The general idea is analogue

to that of personality profiles, but suggests that humans exhibit stable decision making

biases. There is evidence that humans possess such stable and predictable decision mak-

ing styles (Scott and Bruce, 1995). The question then becomes how to recognize such

decision making biases in game play.

6.3.2 Irrational Play

The idea that play is not purely rational, but is driven by multiple motivations aside

from the wish to perform optimally within the strict rules of the game, is well known.

For instance, agon is only one of Callois’ classic categories (Caillois, 2001) of play and

the idea has also been expressed in concepts such as a game-play continuum (Malaby,

2007). In the same vein, research has attempted to capture the deviation from rational

play by observing the interactions between players in multiplayer games (Smith, 2006).
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6.3.2.1 The Compliant-Constructive Continuum.

It has been proposed that the discrepancy between the individual player’s intentions,

and the ones strictly afforded by the game rules, can be described as residing on a

compliant-constructive play style continuum (Caspersen et al., 2006).

The completely compliant player only uses the rules of the game to respond to the

affordances presented by the game, attempting to move closer to achieving the winning

condition. An example would be a Counter-Strike (Hidden Path Entertainment and

Valve Corporation, 2012) player who directs all her play efforts toward making her own

team win, disregarding any aesthetic preference in e.g. distance to enemies or weapon

choice in order to optimize her contribution to her team’s coordinated efforts.

The completely constructive player uses the game rules to enable intrinsically motivated

actions and situations that may or may not be related to the winning conditions, and

hence affordances, of the game. An example would be a player using the game world

to enact a protest against violence through inaction or graffiti (Antunes and Leymarie,

2010).

These two examples represent positions of play styles on opposite ends of the compliant-

constructive continuum. Importantly, the completely compliant and rational play style

can be thought of as apersonal and a matter of solving the game: From a given state in

a deterministic game of perfect information, the compliant-rationally best action(s) will

be the same for any player. By extension, the style of a particular player should then be

expected to be found in the part of the play actions that are constructive, rather than

compliant, and thus suboptimal from a game theoretical perspective.

Taking previous work on play styles, latent traits, and rational play into consideration,

the novelty of the approach described here lies in the understanding of play styles as

series of decisions leading to actions systematically deviating from game theoretically

rational actions.

6.4 Belief-Desire-Intention Agents

Key to investigating the usefulness of the analytical approach outlined above is having a

clear mechanistic model of the process leading from intention to decision to action that

can be reverse-inferred with some degree of precision from observed actions.

The artificial intelligence literature provides a well-known framework for describing and

generating intentions and plans from beliefs and desires: The Belief-Desire-Intention
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(BDI) framework for agents (Rao and Georgeff, 1997). The framework is originally

generative, but this work aims to use the model analytically on empirical observations.

The use of BDI agents has a rather long history in simulations, but they have less com-

monly been found in computer games, the most notable examples perhaps being the

Black & White series of god-games (Lionhead Studios, 2001, 2005) (Norling and Sonen-

berg, 2004). The paradigm is fundamentally a reasoning and planning approach that

uses three high level concepts, beliefs, desires, and intentions, that together constitute

an agent model.

Beliefs describe the agent’s current representation of its own state and the state of its

surrounding environment.

Desires describe all the current goals that the agent would like to achieve at a given

time.

Intention(s) describes the active goal(s) that the agent is pursuing at any given time.

In addition to this, a typical approach is for the agent to have a plan library, from which

it selects courses of action to form intentions (Norling and Sonenberg, 2004).

Two main aspects of the BDI paradigm make it especially useful for modeling human

decision making: The psychologistic nature of the model maps well to a human in-

trospective understanding of thought processes. Norling and Sonenberg (Norling and

Sonenberg, 2004) mention that the framework does not match the actual way that hu-

man reasoning occurs, but by small appropriations, the BDI paradigm can fit the typical

model of human reasoning from cognitive psychology: If beliefs are understood as a com-

mon headline for perception and evaluation of the state of an agent’s internals as well

as its environment it need not be a completely conscious representation. We can take

the beliefs as being the total sum of the agent’s available information, including declar-

ative, non-declarative, procedural, and emotional knowledge. By the same reasoning,

desires can be understood as motivations widely, incorporating both conscious wishes

as well as unconscious drives, instincts and behavioral tendencies all the way down to

the conditioned level. Finally, intentions can be understood as the selection basis for

the current plan under execution, regardless of whether this plan was motivated by con-

scious determination or by partially or wholly intuitive or procedural impulses. That

means that the moment an intention is formed and followed, in the BDI framework, it

can be understood as a decision.
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6.4.1 Decision Making Styles

In this work we attempt to use the BDI framework as a backdrop for understanding

play traces from the Mario AI Benchmark (MAIB) testbed (Karakovskiy and Togelius,

2012), assuming that the actions observed during game play are decisions that in turn

are realizations of intentions. We further assume that any variation from the rationally

optimal is grounded in intentions beyond the scope of the game rules, and a realization

of the player’s play style as a a personal trait1, realized dynamically in interaction with

the context of the game rules. As such, the complete chain of inference leads backwards

from actions to decisions to intentions to beliefs and desires and cannot be understood

without a deep understanding of the game’s rule structure. We do not necessarily assume

that beliefs or desires are wholly conscious, and as such decisions may be based partly or

wholly on procedural knowledge and evaluative processes at the subliminal level. This is

especially relevant to the MAIB framework, since it is a real-time game where perceptual

and motor skills are emphasized.

The key to the project outlined here then becomes the question of how to approximate

how a rational agent with the perceptual and motor capabilities of a human player would

act while playing MAIB. If we assume that the player is a rational agent, and that we

know exactly what information about the game state the player has access to and is

able to perceive, the decision space of the game player narrows significantly, and we

start becoming able to use combinations of normative and descriptive game theory to

approximate what a perfectly playing rational agent would have done. In the following,

we treat some of the general challenges to consider in collecting data on decision making

from human players and proceed to examine an attempt at handling these challenges in

a data set play traces from the MAIB.

6.5 Decision Making in the MAIB

The MAIB testbed is a well established framework for working with procedural content

generation, player modeling, agent development and testing, and human imitation in

platform games. It is a replication of the game mechanics and content of the classic

2D platform game Super Mario Brothers. The testbed has the advantage of being

immediately familiar to most players in terms of content and mechanics. This may offset

learning effects in experimental conditions and eases the administration of instructions

1Considering the source of the play style tendency as a trait is beyond the scope of this work, but as
noted in the section on related work, decision making style, cognitive and personality models may be of
use here.
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during experimental runs. The game has simple keyboard inputs consisting of buttons

mapped to six different actions: Down, Jump, Left, Right, Speed, and Up.

The MAIB testbed offers several features that are of interest to the study of decision

making in games. Because the game is played in a real-time (25 fps) simulation with

an experientially continuous deterministic world with predictable physics, it offers a

well suited backdrop for studying ecological decision making under well-known con-

ditions. The testbed allows for a practically infinite number of unique positions and

action sequences, ensuring that any two sessions played by humans are unlikely to ever

be identical. Though the game world offers an impressive expressive richness vis-à-vis

its limited reality, the game rules superimposed on top of the game world that the player

is afforded to comply with are simple: Players should win levels as quickly as possible,

while avoiding or killing enemies in their way, and collecting as many items as possible.

At every given moment during the course of a play through, only a subset of the level

is visible to the player, providing no more information than can be assimilated at any

given moment by a perceptually and cognitively normally functioning individual. The

game presents most relevant information about the game state at any given time and

can, as such, be considered a game rich in information (though not perfect, as blocks

may contain various hidden power-ups and enemies can be hidden from sight for varying

amounts of time).

Together these features allow us to construct an agent that plays the game as a com-

pletely rational, compliant human player would: By searching through the possible game

states from any given position and finding the temporal path that best fulfills the above

outlined affordances. One well-performing method for constructing such an agent has

been provided by Baumgarten in previous work (Champandard, 2009; Togelius et al.,

2010; Baumgarten, 2013) in the form of a MAIB playing A*-agent. This agent was

used to approximate the actions of a perfectly compliant, rational player during data

collection2.

6.6 Method

The following method was developed for discovering player decision making styles from

actions performed in the MAIB testbed: Human subjects are asked to play randomly

generated levels in the MAIB. All human actions are logged and from these a play trace

is constructed, representing their path through each particular level. An A*-agent solves

2As the A*-algorithm itself is well known, we refer to Baumgarten’s work (Champandard, 2009;
Togelius et al., 2010; Baumgarten, 2013) for methods of appropriating the algorithm to the MAIB
testbed. His description and code formed the basis for the implementation used for this study.
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each level using a set of affordances determining what possible actions are given priority

and to which extent, and a corresponding trace is constructed. In this particular case the

only affordances are to complete the level as quickly and safely as possible. The difference

between the two is determined by comparing the maximal Y values of the human and

the agent traces for each tile in the level resulting in a deviation trace. Additionally, an

action deviation matrix is computed between the normalized action frequencies of the

player and the normalized action frequencies of the agent. Features are then extracted

from the deviation trace, while the normalized input differences for each session are used

directly. The set of observations is subjected to cluster analysis to discover play styles

across individuals and their play sessions. The prevalence of clusters for each individual

is correlated with measures of player skill as an indication of the relation between the

human play style and the agent play style. Features are compared across clusters to

determine how and to which degree clusters exhibit different play styles. Finally, the

original traces of the discovered play style clusters are visualized on selected levels for

interpretation.

6.6.1 Feature Extraction and Clustering

The following features are extracted from the deviation trace for every play through: The

mean (Mean) of the deviation trace in order to represent the player’s average deviation

from the agent trace. The maximum deviation (Max ) from the agent trace, in order

to capture actions extremely different from the agent trace. The standard deviation

of the deviation trace (Sd) in order to represent the variation of the deviation trace.

The means of the first and second differences of the deviation trace (Diff1 ) and (Diff2 ),

representing local variation in the deviation trace, i.e. the tendency of the player to

move vertically in the level in a manner different from the agent’s.

The action frequencies (Down, Jump, Left, Right, Speed, Up) of each player/the agent

across the play through of the level are captured as control inputs from each frame of

the game. The frequencies are normalized to a range of 0 to 1, relative to the number of

frames from start to finish in the play session. The difference matrix is then calculated

as the absolute value of the difference for each input type. In order to avoid any direct

convolution of skill with play style, no measures of score or performance are used as

features.

The total feature set is used as input for an agglomerative hierarchical clustering process,

applying Ward’s minimum variance method (Kaufman and Rousseeuw, 2005).
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Figure 6.1: Dendogram from the agglomerative hierarchical clustering of the extracted
features from 400 observations. The tree was cut at the level of four clusters.

6.6.2 Data Collection

A data set was generated from 10 human players playing 40 different, short levels of the

MAIB testbed, yielding a total of 400 play sessions. All player inputs were recorded and

replayed to generate a trace of the players’ routes through the levels. The levels were of

varying difficulty, but all were exactly 100 tiles long. On average players completed levels

on approximately 35% of the play throughs, though substantial individual differences

were observed (range 0-70%, std.dev. 24.7). For each human play through a deviation

trace and an action deviation matrix were calculated as described above.

6.7 Results

The clustering yielded 4 well defined clusters (C1, C2, C3, and C4 ) depicted in Fig. 6.1.

The selected cluster for each session was mapped back onto its player, yielding 10 ob-

servations with cluster membership frequencies for each player, depicted in Fig. 6.2.

Additionally, each player’s average score and average win rate across all sessions were

added to the dataset as indications of player performance. A correlation analysis was

conducted in order to investigate the relationship between deviation style predominance

and in-game performance. The results are reported in Table 6.1 and indicate that the

two play styles C1 and C2 are correlated positively with performance while play styles

C3 and C4 are correlated negatively with performance. They also indicate that C2 is
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Figure 6.2: Players’ individual cluster expressions across all play throughs. Each
column represents a player and each shading within each column represents how many
of the individual player’s 40 play sessions were grouped into clusters C1, C2, C3, and

C4 respectively.

Feature Wins Score C1 C2 C3 C4

Mean -0.06 -0.06 -0.04 -0.05 0.07 0.02
Max 0.15 0.16 0.04 0.17 -0.03 -0.21
Diff1 -0.09 -0.10 -0.06 -0.11 0.06 0.09
Diff2 -0.01 -0.03 -0.01 -0.01 -0.09 0.06
Down -0.06 -0.06 -0.07 -0.03 0.07 0.00
Jump -0.33 -0.33 -0.09 -0.35 0.02 0.44
Left 0.08 0.09 0.06 0.14 -0.12 -0.05
Right -0.13 -0.10 -0.02 -0.03 0.01 0.07
Speed -0.69 -0.68 -0.46 -0.67 0.72 0.39
Up -0.06 -0.08 -0.08 -0.05 0.09 -0.00
C1 0.57 0.59 - 0.37 -0.46 -0.16
C2 0.86 0.85 - - -0.72 -0.85
C3 -0.66 -0.62 - - - 0.27
C4 -0.73 -0.75 - - - -

Table 6.1: Spearman correlation between cluster membership frequency, features, and
performance measures. Values significant at the p < 0.05 level are in bold. Significance

values are subjected to Holm-Bonferroni correction for multiple tests.

characterized by a Jump frequency close to that of the agent, while C4 is character-

ized by a Jump frequency different from the agent’s, and that C1 and C2 have Speed

frequencies closer to the agent’s in contrast to C3 and C4.

A mapping of play style clusters to levels was conducted, showing how often a given

play style was expressed on each particular level. The frequencies of the results were

used to identify levels that allow for the expression of all clusters identified across the

dataset. The results are presented in Fig. 6.3 and indicate that most levels only enable

the expression of some play styles.
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Figure 6.3: Expressed play style clusters mapped to levels. Each shading represents
a cluster.

To further investigate the differences between the clusters across the features, the cen-

trality of each cluster with respect to each feature was established using the Hodges-

Lehmann Estimator of Location. To test for significant group differences, each feature

was subjected to a Kruskal-Wallis analysis of variance (Lehmann and D’Abrera, 1975).

The results are reported in Table 6.2 and indicate that most features significantly differ

across groups, with the exception of Diff2, Down and Left. Overall, C4 resembles the

agent the most as expressed by the mean trace difference. Examining the correlation

between C4 and and performance measures, it seems plausible that C4 resembles the

agent because this play style dies early, but acts like the agent in the early stages of

the level before dying. This interpretation is supported by the fact that the Jump and
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Feature C1 C2 C3 C4 H df Sig.

Mean 1.96 1.73 2.88 1.54 174.0 3 0.00
Max 6.00 7.50 7.50 4.50 309.3 3 0.00
Sd 1.70 1.91 2.22 1.43 152.4 3 0.00
Diff1 0.10 0.10 0.17 0.09 26.5 3 0.00
Diff2 -0.00 -0.04 -0.02 0.00 3.1 3 0.38
Down 0.00 0.00 0.00 0.00 5.8 3 0.12
Jump 0.08 0.08 0.09 0.23 15.8 3 0.00
Left 0.04 0.03 0.04 0.03 5.9 3 0.12
Right 0.44 0.34 0.38 0.42 25.7 3 0.00
Speed 0.60 0.53 0.78 0.91 16.2 3 0.00
Up 0.00 0.00 0.00 0.00 9.8 3 0.02

Table 6.2: Kruskal-Wallis H tests for differences between clusters. C1 -C4 contains the
Hodges-Lehmann Estimator of Location (Lehmann and D’Abrera, 1975), as a measure
of centrality, for each cluster for each feature to allow for comparison. Note that for
some features, e.g. Speed, all clusters are different from one another, while for others,

e.g. Jump, one cluster deviates.

Speed frequencies of C4 are very different from the agent’s, while the Jump and Speed

frequencies of the high-performing C2 cluster are closer to those of the agent.

For exemplification, three levels enabling all play styles were selected and visualized

in Fig. 6.4. These graphs indicate that C2 traces resemble agent traces. So do C4

traces, but only for a short period of time before losing, cutting the session short. The

graphs show C1 and C3 diverging from the agent in terms of trace path, with varying

performance. In terms of the compliant-constructive continuum relative to the A*-

agent, we suggest that C2 and C4 could be considered compliant and skilled/unskilled

respectively, while C1 and C3 are acting more constructively and less stably. This

interpretation, of course, only holds to the extent that one accepts the A*-agent as a

relevant proxy for a rational, compliant, skilled MAIB player.

6.8 Discussion

The results presented in this paper reveal a number of insights about the play styles of the

participants. The clustering of the play styles and the correlations to performance mea-

sures indicate that the applied approach might indeed be able to differentiate between

different kind of play styles, and by extension that the operationalization of decision

making styles into deviation from rational behavior is applicable for a game of the scope

of the MAIB. Further work should be undertaken, however, to investigate and control

for the influence of the particular level as Fig. 6.3 suggests that such an influence is

present.
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Also, multiple theoretical assumptions still stand unresolved. It is unclear from the

results presented here to which extent the assumptions of what constitutes rational

behavior are indeed appropriate and how this approach would transfer to games of higher

complexity than the MAIB. The A*-agent is arguably a high-performing solution for the

MAIB, but different agents might perform equally well. With more than one normative

game theoretical solving approach to the game, it becomes difficult to prescribe one

over the other as a perfect baseline. From a pragmatic perspective any high-performing

solution might be good enough, as long as it serves as a baseline by which to differentiate

players, but it is an assumption that warrants further research. One approach to this

problem could be the construction of multiple baseline agents and characterizing players

in terms of which baseline agent they resemble the most or the least — generating

procedural personas.

A first step for future work should be to include longer and more varied levels, allowing

for a greater expressive range in the play throughs. This would also force an elaboration

of the assumptions of what rational behavior in the MAIB is, and would necessitate a

hierarchy of affordances or a similar method for identifying the most plausible intentions

of the player from multiple options. Should the agent prefer enemy kills over bonus items

or vice versa? In the scope of the current study, this consideration is not necessary, as the

only affordances are reaching the end of the level as quickly and safely as possible. While

this limited scope benefits this first tentative exploration of the approach, more complex

game situations will be needed to push the boundaries of decision style identification

from deviations from rational play. In the same vein it is clear that any decision styles

extracted from player behavior will be dependent on the game in question and that the

extent to which decision making styles generalize between games remains unknown. If

decision making styles in games are stable traits expressed across situations, this should

be detectable across different games, but it remains to be seen if the contexts drown

out any signal of the individual player’s decision making style. A comparative study of

multiple games, preferably using the same sample of players, would be necessary.

Also remaining is the answer to the question of how to use the clusters identified as

decision making styles for synthesizing behavior in the BDI framework. The exten-

sion of this method to a multiple-agent approach would enable this, if each agent was

characterized (even if not strictly implemented) in the BDI framework, exhibiting differ-

ent desire hierarchies and and different plans for achieving these desires. This could be

achieved by using a battery of different agents or by constructing an agent with dynamic

affordance-response preferences that could be weighted between or during play-throughs.

Finally, the difference trace used in this limited study is created with reference to an

agent completing the whole level. A more precise approach might be for the agent to
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determine its preferred action for each frame of the player’s play session, yielding a

difference trace based on moment-by-moment differences instead of session-based differ-

ences.

6.9 Conclusion

We have presented a framework for characterizing player behavior in terms of deviations

from rational actions. We believe this framework could be used as a foundation to further

understanding of player behavior, which is often analyzed in a rather ad-hoc way using

unsupervised learning. This framework was demonstrated using an analysis of play

styles in the Mario AI Benchmark, with a high-performing A*-based agent providing

the ground against which human play traces were contrasted. This analysis yielded

features that allowed players to cluster meaningfully with significant differences between

them. These clusters were also found to correlate with playing performance. The current

work provides ample opportunity for further investigation.
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Figure 6.4: Traces from three levels. Each graph represents a trace of an individual
player or the agent. Note that the high-performing C2 traces bear resemblance to the

agent traces.
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7.1 Abstract

This paper presents a method for modeling player decision making through the use of

agents as AI-driven personas. The paper argues that artificial agents, as generative

player models, have properties that allow them to be used as psychometrically valid, ab-

stract simulations of a human player’s internal decision making processes. Such agents

can then be used to interpret human decision making, as personas and playtesting tools

in the game design process, as baselines for adapting agents to mimic classes of hu-

man players, or as believable, human-like opponents. This argument is explored in

a crowdsourced decision making experiment, in which the decisions of human players

are recorded in a small-scale dungeon themed puzzle game. Human decisions are com-

pared to the decisions of a number of a priori defined “archetypical” agent-personas,

and the humans are characterized by their likeness to or divergence from these. Essen-

tially, at each step the action of the human is compared to what actions a number of

reinforcement-learned agents would have taken in the same situation, where each agent

is trained using a different reward scheme. Finally, extensions are outlined for adapting

the agents to represent sub-classes found in the human decision making traces.

59
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7.2 Introduction

This paper describes an approach to modeling, grouping and interpreting players based

on their inferred utility function modeled through reinforcement learning in the form

of a generative agent. It proposes how this could be extended to adapt to derived

player groups through a process of clustering and inverse reinforcement learning. The

example presented here uses trained Q-learning agents with manually configured reward

parameters as a priori defined personas, but in principle any agent with a trainable,

configurable reward function could be used to generate easily interpretable generative

player models for player characterization and design support.

Player modeling in its various expressions facilitates at least one of four purposes: the

description, prediction, interpretation, and in some cases reproduction of player behavior

(Smith et al., 2011; Yannakakis et al., 2013). All four purposes are rarely addressed

simultaneously in the same model for theoretical and practical reasons. An interest in

understanding groupings of players might not necessarily entail an interest in accurately

predicting or reproducing their behavior. Inversely, in order to create a player model

that reproduces player behavior, it might not be necessary to account for why players

exhibit a certain behavior in-game — only that a reproduction is convincing to a human

spectator. Still, certain areas of investigation or specific applications might mandate the

pursuit of player models that address all four purposes at once.

This paper expands on previous work (Holmg̊ard et al., 2013a) and attempts to span

all four purposes outlined above: it aims to describe, predict, and reproduce player

decision making with the overarching goal of facilitating its interpretation. By modeling

players as decision making agents and using these models to characterize players by

their induced motivations, a high-level sketch of the players’ decision making processes

is drawn facilitating the interpretation of their preferences. The approach draws on

the theoretical framework of prospect and decision theory, considering every action in

a game a decision made under uncertainty (Tversky and Kahneman, 1974; Rubinstein,

1998).

This approach is based on three fundamental assumptions: The first assumption is that

players exhibit a particular decision making tendency or style when playing a particular

level or game, and that this tendency can be captured and expressed by approximating

a utility function that shapes their decisions in-game. This utility function is latent in

the sense that it cannot be observed directly. The second assumption is that in order to

validly model this assumed utility function, the elements and procedures of the utility

function, as a psychological construct, should be explicated in a manner that accounts

for the key components and processes of the player’s psychology, the outcomes of which
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can be empirically observed. The third assumption is that a priori outlined models

of player decision making styles can be used as archetypes or personas by comparing

their generative output with the empirical observations of human decision and that a

well-motivated artificial process that generatively mimics a player constitutes a valid

abstract model of the player’s internal process.

In the following section, we will first discuss related work from psychology and artificial

intelligence, and the epistemological assumptions in that work. In Section 7.4 we explain

the general structure of our experiments as well as the artificial intelligence methods in-

volved. Sections 7.5 and 7.6 describe our method for data collection from human players,

and the results of our attempts to classify human playtraces according to agreement with

generative agents. We conclude by discussing the potential and limitations of the current

work and overall methodology.

7.3 Related Work

The presented method of player decision style modeling draws in parallel on the lit-

eratures on decision theory, psychometric validity, and player modeling. This section

outlines the insights drawn from each field and motivates the synthesis of the three.

7.3.1 Decision Theory

Psychology, behavioral economics and game theory share a common history under the

umbrella of decision theory which tries to describe decision making through formal

models. One of the central ideas of decision theory is that any decision a human makes

under uncertainty, due to incomplete information or a stochastic outcome, is guided by

a utility function that determines the decision makers willingness to take risks for an

expected reward.

Utility to the decision maker is considered idiosyncratic, and decision theory makes no

general claims about this, but typically defines a particular conception of utility a priori.

Whatever is desirable to the decision maker is a potential source of utility to various

degrees. It prescribes that, given its conception of utility, an agent acts rationally when

it optimizes, within its computational constraints, its actions to achieve it (Rubinstein,

1998). The utility function describes the decision maker’s risk/reward policy for this

optimization.

Here, the purpose is to develop a method for decision modeling that is relevant for a wide

range of computer games, including ones that support (even if they might not suggest)
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unstructured play in the game world — or have competing or even conflicting goals. For

that reason it is most relevant to interpret any player input to the game as a decision

that is expressive of a utility function that is shaped both by the interaction between

the game’s overt rules, its expressive space in total, and the player’s motivations and

capabilities. Any action the game affords the player (Gibson, 1977) becomes a potential

source of utility. If any action in the game can be taken as an output of the player’s

utility function, this in turn allows for inducing the player’s concept(s) of utility by

approximating and then interpreting the utility function.

Since the utility function weighs the values of the constituents of future game states,

relative to the risk involved with potentially attaining them, it is necessary to define

these constituents before attempting to model the utility function — constructing a

selection of affordances that could provide utility in the game. This comes with the risk

of identifying only a subset of the actual affordances or perhaps picking the wrong ones

altogether.

Once an acceptably large set of possible affordances are defined, an approximation of

the player’s utility function could technically be accomplished by any generative compu-

tational method capable of simulating the human decision maker, rule-based or search-

based. However, since the interest here is not only reproducing the utility function, but

also interpreting the computational generation of a given utility value as an abstract

representation of the player’s same process, it is necessary to apply methods that al-

low for the inspection and interpretation of the weightings of the affordances behind

the utility function. Once successfully constructed, such a model is then interpreted as

an abstract simulation of the player’s decision making process. The following section

briefly argues why this methodological approach can be considered appropriate in terms

of psychometric validity.

7.3.2 Validity in Latent Trait Modeling

To construct player models that aim to discriminate between players or predict their

actions, by modeling a process that is completely internal to the psychology of the player

and therefore unobservable, an argumentation for the validity of the proposed model of

the player’s psychology is necessary. The work presented here attempts to induce the

player’s sources of utility, treating the utility function as a latent trait or state within

the player, motivating her behavior. Recent research in psychometrics argues that a

particular test or model for measuring a latent attribute is valid if “a) the attribute

exists and b) variations in the attribute causally produce variations in the measurement

outcome.” (Borsboom et al., 2004). Although at first glance this seems intuitive, the
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necessity of a causal relation between the attribute and the measurement outcomes puts

an explanatory onus on the theoretical framework and assumptions of the model. A

psychological concept that cannot produce theoretical reasons for assuming the modeled

processes in the psychology of the player runs the risk of regressing to operationalism

where the process in the player is defined as what is measured through the empirical

methods (Pedersen and Yannakakis, 2012), potentially mistaking outcome correspon-

dence for process correspondence. To avoid this risk, a model that claims to represent

unobservable processes in the psychology of a player needs a clear mechanistic chain

of inference from the context to the player action to facilitate description, prediction,

interpretation, and reproduction. Otherwise, it cannot claim to model the internal pro-

cess of the player, but only produces a potentially unrelated, even if effective, mapping

between the input and output states (Borsboom, 2005).

This is specifically what this work attempts to address by developing a model of player

decision making that takes into account high-level characteristics of the human decision

process, while remaining reasonably intelligible, by making strong claims about what

aspects of a decision problem are evaluated by the player and what importance the

player attributes to each aspect in the form of a persona.

7.3.3 Player Modeling

Yannakakis et al. (2013) present a high-level overview of player modeling approaches and

argue that player models always, at least in an abstract sense, incorporate the whole

player either overtly or tacitly. The paper usefully separates model-based and model-free

player modeling approaches, while pointing to the fertile, hybrid middle ground between

the two. From this perspective, the approach taken here is model-based in the sense

that it makes strong assumptions about the psychology of the player and represents it

in the form of agent-personas, but the actual agent training is model-free in the sense

that a Q-learning agent is used. As such, the method presented here is a hybrid one.

Smith et al. (2011), present a useful, inclusive taxonomy of player models, identifying

opportunities for filling gaps in the already known gallery of approaches to player mod-

eling. They present four facets of player models that can be used to describe their kind :

the scope, purpose, domain and source of the player model. The method that is pre-

sented here would, under their taxonomy, be categorized as a Class Induced Generative

Action model. Smith et al. specifically note that “Class models are more difficult to

motivate in an academic context, requiring either justification of a theory of stereotypes

or aggregation of sufficient individual data to build up class descriptors. Thus, we expect

class models to be used more in practice than they are reported.”. This precisely touches
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upon the considerations of validity outlined in the preceding section, and helps explain

why the class based category of academic player models has no examples in Smith et

al.’s survey. The quote also describes the potential applicability of class based models:

Stereotypical players, or personas, are widely used in game design and development for

guiding content creation (Tychsen and Canossa, 2008; Canossa and Drachen, 2009),

taking the place of play testers when actual play testing is infeasible or undesirable.

Typically, a game designer uses the persona as a starting point for imagining what the

persona would do in a particular part of the game, or actually plays the game while

informally simulating the persona’s play style. This implies that the game designer has

a mental model of the decision making process of the persona, typically based on previ-

ous experience and the interpretation of qualitative and/or quantitative data from play

testing, metrics, etc. The purpose of our modeling method is obviously not to supplant

this part of the game design process, but to provide the game designer with an exter-

nal representation of not only how different personas would play the game, but at the

abstract level also why. Such a model could form a point of comparison and contrast to

the game designer’s internal mental model or become part of a mixed-initiative content

authoring tool, suggesting content suitable for one or more personas, configured by the

designer, adapted to human data, or built as a a hybrid of the two.

7.4 Testbed

For the purpose of exploring the argument presented above, a simple testbed game was

created along with a set of archetypical generative agents.

7.4.1 Game Environment

The game environment, MiniDungeons (see Fig. 7.1), aims to evoke the fundamental me-

chanics of a rogue-like dungeon exploration game. It puts the player in a two-dimensional

dungeon on a grid of 12 by 12 tiles, viewed from a top-down perspective. Tiles are ei-

ther passable or impassable to the player. Passable tiles may be occupied by monsters,

rewards, potions, the dungeon entrance or the dungeon exit. All tiles and their current

state is visible to the player, so the game applies no notion of fog-of-war or limited

visibility. The player has a hitpoint counter and a treasure counter, and the player loses

the level if her hitpoints (HP) drop to zero. The player starts each level at the dungeon

entrance with 40 HP, and every turn can move to any adjacent, passable tile. When

moving onto a monster tile, combat is resolved instantly, the monster is removed and

the player loses a number of HP. Combat is stochastic: enemies may deal between 5 and

14 points of damage, determined each time the level starts. Moving onto a treasure tile
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Figure 7.1: The game environment on one of the levels used in the experimental
protocol. The hero, shown in gray armor, moves around the level collecting treasures
(brown closed chests), potions (red bottles) and killing enemies (green goblins). The
hero starts at the entrance (stairway leading up, left of the screen) and the level ends
when the exit is reached (stairway going down, right of the screen). The hero’s hitpoints
are shown at the bottom, along with the number of treasures collected and the most

recent event.

removes the treasure and increases the treasure counter by one, while moving onto a

potion tile removes the potion and increases the player’s HP by 10 (up to a maximum

of 40). If the player moves onto the dungeon exit, the level is completed.

The number of tile types and allowed player actions is very limited, and monsters do

not move. Hidden information is only a factor in the game for combat actions, as



Chapter 7: Generative Agents for Player Decision Modeling 66

enemies deal a variable amount of damage, but the damage range is quickly induced

after a few rounds of combat. For all purposes, the complete game rules are quickly

learned by human players and are simple enough to potentially allow a number of agent

construction approaches.

The relatively small size of the level and the fact that it is a discretized space, results in

a high decision density. Even a single action, such as moving to an adjoining empty tile,

significantly changes the game state in terms of remaining steps to the exit, monsters,

potions, and treasures. This means that any input that significantly changes the game

state entails a specific decision. The bounded number of affordances in this testbed

limit the number of utility sources that must be considered when constructing an agent-

persona. Finally, the small level size means that most playthroughs can be completed

relatively quickly.

7.4.2 Generative Agents

To produce an agent representative of archetypical players, any technique capable of

incorporating the concept of a utility function would technically be a possibility. Any

reinforcement learning technique satisfies these requirements, including any form of dy-

namic programming, Monte Carlo methods, and temporal-difference learning (Sutton

and Barto, 1998). Among them, one-step Q-learing was selected for its simplicity as

well as its ability to handle the stochastic nature of combat implemented in the testbed

game. Additionally, the small gameworld and limited number of hero moves in each level

position permit the use of a lookup table for storing state-action pairs. In an attempt

to maintain the Markov property of each state, states in the lookup table consist of the

entire gameworld (including passable and impassable tiles, the hero’s location and the

location of undefeated monsters and uncollected treasures and potions) as well as an

abstraction of the hero’s hitpoints. The latter is encoded as an integer with 4 possible

values, with 0 for 1-5 HP (can certainly not defeat any monster), 1 for 6-14 HP (is likely

to die from a monster), 2 for 15-30 HP (can defeat at least one monster) and 3 for 31-40

HP (will not benefit to the full extent from a potion). The addition of these hitpoint

ranges to the state description implicitly includes a model of the environment since the

enumerators were selected based on the damage range of monsters and the HP healed

by potions; although one of the advantages of temporal-difference learning is its ability

to operate without a model of the environment, the addition of hitpoint enumerators

aimed to speed up convergence of the Q-learning process.

In Q-learning (Watkins and Dayan, 1992), the agent in a particular state s performs an

action a (move up, down, left or right) and observes the subsequent state s′. The Q(s, a)



Chapter 7: Generative Agents for Player Decision Modeling 67

Table 7.1: Description of agents.

Agent (Abbrv.) Playing Style

Baseline Player (B) Reach exit.

Runner (R) Minimize moves.

Survivalist (S) Minimize risk.

Monster Killer (M) Kill all monsters in level.

Treasure Collector (T) Collect all treasure in level.

Table 7.2: Rewards r for specific game events.

Agent
Event B R S M T

Killed monster 1
Was killed -1
Reached exit 0.5 0.5 0.5 0.5 0.5
Collected treasure 1
Moved -0.01

value is then increased by α[r+ γmaxaQ(s′, a)−Q(s, a)], where r is the reward in state

s′, α is the learning rate and γ is the discount factor of future rewards. For training the

agents in the presented experiment on a specific game level, 2.5·105 games were played

with α = 0.5 and γ = 0.9. During training, the action with the highest Q value was

selected with a likelihood of 1− ε (ε-greedy); in the experiments detailed in this paper,

ε starts at 1 and starts decreasing linearly after 2500 games from ε = 1 to ε = 0.1 at

the end of the training session. When not selecting the highest Q value or in unvisited

states, exploration favors the least often taken action in that state.

The reward function of the Q-learning agent is simply the model of the player’s utility

function. In order to produce multiple different personas for comparisons with players,

a number of distinct agents were developed which had different playing styles (see Ta-

ble 7.1). All possible outcomes of an action are assigned rewards and each agent (except

Baseline) receives a single additional reward; this is expected to create distinct behaviors

each emphasizing a particular affordance as a source of utility. While more elaborate

strategies with multiple rewards could be included, this paper focuses on “archetypical”

agents which are straightforward to understand or modify by designers.

7.5 Data Collection

In order to collect human decisions in the form of playtraces in the game environment, a

crowdsourcing experiment was conducted. The experiment placed the game on a public

webpage which was advertised via e-mail and social media.
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Tutorial

Level 1 Level 2 Level 3 Level 4 Level 5

Level 6 Level 7 Level 8 Level 9 Level 10

Figure 7.2: The levels used for the data collections experiment. The tutorial level is
hand-crafted, and could be played multiple times. The “real” levels (1-10) were played
only once (no retries if the hero died) and were created in a mixed-initiative fashion.

The starting screen informed the participants that they would be taking part in an

experiment concerning computer games, but not its goals of modeling decision making

styles. Upon starting, participants had the option of voluntarily providing their name

and e-mail address and were informed that participants who chose to do so would enter a

lottery and a competition. One participant would be drawn at random and additionally

the participant who “did best” would receive a prize as well. In order to ensure variation

in the players’ concepts of utility, the notion of what constituted best was not explained

and left to the player’s imagination. This design choice was expected to motivate players

to exhibit different play styles, i.e. allocating different priorities to reaching the exit of

the level, avoiding damage, killing monsters, or collecting treasures and potions. By the

same logic, the decision to participate in the competition and lottery was left to the

player, since we assumed that this would be of utility to some players and irrelevant to

others.

Following a brief introduction on the mechanics and visuals of the game, participants

began play on a “tutorial level”, which they were allowed to replay as many times as

they wished, followed by 10 “real levels” (see Fig. 7.2), each of which they could play

once (i.e. without replays if the hero died). Between levels, players were presented

with a summary screen of their previous level, with information on the hero’s final HP,
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monsters killed, treasures collected, potions drunk, actions taken and percentage of level

explored. As with the choice of leaving the notion of best performance unclear in the

starting screen, showing as many diverse statistics as possible was expected to elicit

different play styles among participants. All player actions on every level were logged

and stored in an online database.

Apart from the hand-crafted tutorial level, the levels used in the protocol were created

via a mixed-initiative design process. Dungeons were generated via constrained genetic

algorithms according to the process described in Liapis et al. (2013d), followed by manual

adjustments in order to increase the range of interesting, risky actions and the rewards

they offer. Most levels have multiple paths to the exit, each path needing different

degrees of combat or no combat at all. All levels also have side passages and diversions,

with treasures and potions often guarded by monsters, but at times also unguarded,

either at the end of a long side passage or along a path to the exit. Finally, monsters

are usually placed in corridors allowing no way through except via combat; some levels

(such as level 8) also include unavoidable monsters on the path from entrance to exit.

7.5.1 Human Playtraces

38 players successfully completed all 10 levels of the experiment. Some of the most

consistent behavioral patterns across players was that of treasure and potion collecting,

since both were collected quite consistently by most users.

While treasures were never explicitly deemed important and serve no in-game purpose,

the name itself and its significance in many role-playing games plausibly made several

players strive towards collecting all of them; the fact that, apart from hit points, trea-

sures collected was the only other statistic visible on the user interface may have also

contributed to this. Although not all players targeted treasures, 32 of the 38 players

finished the levels with more than 60 total treasures (out of 70). Potions, on the other

hand, were often collected by necessity in order to survive combat with monsters which

were, for the most part, guarding treasures. As such, it is not surprising that most play-

ers collected potions, although there was not as obvious or consistent a drive to collect

potions as there was for collecting treasure; out of 38 players, 22 finished the levels with

more than 30 total potions (out of 40), and 11 with more than 35.

In terms of actions taken and tiles explored, little variation between players existed,

although the (few) outliers are of interest. Two players finished all 10 levels having visited

349 and 395 tiles in total, respectively, which compared to the average 594.4 explored

tiles across players indicates that they were trying to complete each level quickly, possibly

due to lack of interest or in order to see the next level.
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In terms of monsters killed, player behavior was less consistent: since every level con-

tained 8 monsters, even with the help of potions the likelihood of defeating all of them

was slim due to the stochastic nature of combat. Due to the fact that each level had

different needs for killing monsters (such as unavoidable monsters for reaching the exit),

there were few consistent patterns either between players or between levels. The data

indicates, however, that players did not explicitly target killing monsters as their goal,

possibly because they had no chance of replaying the level if they died. Of the 38 players,

only 13 finished the levels with more than 60 total monster kills (out of 80) and only 5

with more than 70. Even players who collected all treasures in all levels did not succeed

in killing all the monsters in every level, and no player reached 80 out of 80 monster

kills.

An interesting visual aid for qualitatively assessing the behavior of different players

is the level’s “heatmap”, i.e. the tiles visited by the player during her playthrough.

Fig. 7.3 shows some indicative heatmaps of different players on the same level, which

illustrate the different player behaviors. Certain players acted as “completionists”, and

explored most of the level, collected all the treasure, drank all the potions and killed

all the monsters (Fig. 7.3a). Other players rushed to the exit, killing only the minimal

number of monsters and ignoring treasures and potions even if they were not guarded by

monsters (Fig. 7.3e). Many players collected the unguarded potions and treasures, and a

few guarded ones if the risk was limited (Fig. 7.3c) while others did not accurately assess

the risk involved and died; Fig. 7.3b and Fig. 7.3f are particularly good examples of the

latter, since the players could have collected the unguarded potions before attacking the

monster which killed them.

7.5.2 Artificial Playtraces

The five generative agents of Table 7.1 were trained for each level of the user study. Each

agent was trained via 2.5·105 playthroughs, using the parameters described in Section

7.4.2. Once training was completed, exploration and learning were disabled (α = ε = 0)

and 20 test playthroughs of the level were performed to assess the agent’s performance

— unless otherwise noted, statistics in this section will refer to the average of those 20

playthroughs.

The behavior of the generative agents was largely dependent on the level in which they

were trained. Table 7.3 includes some indicative game statistics of the agents’ overall

playthrough of levels 1 to 10, which provide some insight on the agents’ behavior. In

several levels the Baseline (B), the Runner (R) and the Survivalist (S) agents had very

similar behaviors as they took the shortest path to the exit (see Fig. 7.4a, where their
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: Heatmaps of selected players in Level 2. Some acted as “completionists”;
others rushed to the exit. Many players only collected guarded items if the risk was
limited while others took excessive risks and died. The heatmaps indicate that a single
level allows for different decision making styles in spite of the apparent simplicity of

the testbed.

heatmap is identical); this was due to the fact that the shortest path to the exit usually

did not contain enough monsters to kill the player (which would be detrimental to the

Survivalist agent). Despite such similarities, agent S did not die in any of the 200 runs

(20 runs of each of the 10 levels), while agent B died 13 times, agent R died 23 times,

agent M died 63 times and agent T died 169 times. The high death rate of Monster

Killer (M) and Treasure Collector (T) agents is due to the fact that, since they were

not penalized for dying, the agents took unnecessary risks to kill monsters and collect

treasures, respectively. While they were not as thorough in clearing the entire level as

human players, agent M finished all 10 levels with 53.8 total monsters killed (out of 80)

while agent T finished all 10 levels with 48.9 treasures (out of 70), far more than other

agents. Of the remaining statistics it is worth noting that the Runner agent finished

all levels with the lowest number of tiles explored, although agents B and S have only

somewhat higher values. Finally, the Monster Killer agent collected the largest number

of potions in order to survive more combat encounters and achieve more monster kills.

The Survivalist agent was also expected to collect a fair number of potions, in order

to increase the chance of surviving, but the fact that most levels did not have enough
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Table 7.3: Game statistics of each artificial agent for the entire playthrough of 10
levels. With the exception of Times Died, values are averaged across 20 test runs;

Times Died includes all 200 playthroughs tested.

Agent
Statistic B R S M T

Monsters 22.7 22.6 21.4 53.8 48.2
Treasures 9.4 7.8 11.0 9.4 48.9
Potions 2.1 2.0 3.1 16.1 3.7
Tiles Explored 236 230 244 302 328
Times Died 13 22 0 63 169

(a) Agent B, R or S (b) Agent M (c) Agent T

(d) Agent B (e) Agent R (f) Agent S

Figure 7.4: Some indicative heatmaps of trained agents on Level 2 (Fig. 7.4a–7.4c) and
Level 8 (Fig. 7.4d–7.4f). The different playstyles of the agent-personas are showcased,

although in Level 2 agents B, R and S all share the heatmap of Fig. 7.4a.

unavoidable monsters between the dungeon entrance and the exit made such a strategy

redundant except in special cases (see Fig. 7.4f).

7.6 Results

In order to compare player decisions to agent-persona decisions, a simple metric was

defined: for each player’s playtrace, we replay the whole game and at each point in

time, we input the state description to all of our artificial agents, and compare the
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player’s decision to the decision of the different agents. Essentially, we ask: “What

would Q do?”. This metric expresses the degree of agreement on next best action

between the individual player and the agent-persona. It is directly grounded in the

theoretical considerations of decision making outlined above, and assumes that for every

given state of the game, an agent-persona that is adequately representative of a player in

that particular state will select the same action as the player. More precisely, the metric

was calculated as the number of agent-persona/human player agreements Na for each

decision made in the human decision trace, normalized with respect to the number of

decisions in the player’s decision trace N , i.e. Na/N . One advantage of this metric is that

it gives a numeric representation of the degree to which an agent adequately represents a

player across a level. The utilities of each agent could subsequently be tweaked through

iterations of training using a simple hill-climbing approach to maximize the agreement

ratio with regard to an individual player or to clusters of players. Another advantage

is that the agreement ratios would be easily intelligible to game designers using the

agent-personas in a content creation process. In order to test the agent-personas as well

as the comparison metrics, a Random Controller was constructed which chose randomly

from all legal moves from each game state. This addition investigates to which degree

the agent-personas decided and represented players differently from a random agent.

For each level in the user study, each playtrace was examined to determine which agent-

persona had the highest agreement, and hence represented the best fit for the playtrace.

Table 7.4 indicates the number of times each agent was the best fit for each level. As

is evident from the table, most playtraces matched the Treasure Collector (T) persona,

while subgroups of players matched other personas. This finding corroborates the obser-

vation in Section 7.5.1 of players’ tendency to collect treasures, evidenced by the large

proportion of players that collected most (and some all) treasures across levels. This

behavior may have stemmed from the treasure counter on the user interface as well as

the encouragement of being the “best” in the game. Unfortunately, no post-play quali-

tative data were collected, which could have helped illuminate individual motivations of

players. Although the Treasure Collector persona does seem to dominate the dataset in

terms of agreements, all other agents except for the Survivalist have a strong minority

representation as best fits. The general relevance of the method is supported by the fact

that only a single playtrace was characterized best by the Random Controller (Z).

In order to assess the performance of the best fitting agent-personas for each playtrace,

the agreements are visualized in the plot depicted in Fig. 7.5. The plot shows how the

agent on average agreed with players on 60%–70% of their decisions. A Mann-Whitney

U test unsurprisingly indicated that collectively, the best-fitting agent for each playtrace

agreed significantly more with players than the Random Controller (W = 155633.5, p <

0.001).
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Table 7.4: Frequencies of agent-persona best fit across levels.

Agent
Level B R S M T Z Total

1 1 10 27 38
2 2 4 5 27 38
3 5 2 31 38
4 1 2 1 34 38
5 3 35 38
6 3 4 31 38
7 6 3 7 22 38
8 1 4 33 38
9 3 2 1 31 1 38
10 1 7 2 28 38

Total 15 29 7 29 299 1 380

Table 7.5: Statistics of the individual agent-personas. All agent-personas attain high
maximal values. This indicates that all agents, except for the random controller, are

relevant approximations of some players.

Agent Mean SD Max Min N

Baseline Player (B) 0.52 0.10 0.94 0.25 15
Runner (R) 0.54 0.09 0.94 0.37 29
Survivalist (S) 0.53 0.11 0.94 0.25 7
Monster Killer (M) 0.54 0.10 0.80 0.23 29
Treasure Collector (T) 0.63 0.11 0.90 0.35 299
Random Controller (Z) 0.43 0.02 0.49 0.37 1

Table 7.5 summarizes the performance of each agent across all levels. The results show

that all agents attain a high level of agreement with some playtraces and very low levels

of agreement with others. This indicates a variety in the expressed utility functions of

the agent-personas, but the fact that the Treasures Collector agent dominates the data

set in terms of best fit suggests that this agent possibly could be split into multiple

agents to better represent the playtraces for which it is the best fit.

7.7 Discussion

The method developed and demonstrated in this paper seems to have a number of

attractive characteristics, allowing for the construction of decision making personas and

determining to which degree different players agree to them. However, this method also

suffers from a number of limitations warranting further work. These limitations concern

the data collection method, the agent as an abstract model of human decision makers,

and the scalability of the computational approach.
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Figure 7.5: The best agreeing agent for each level. The dotted line indicates the mean
agreement of the best fitting agent-personas across all players on each level.

The applied data collection method sought to enable players to engage with the game

in accordance with their individual motivations and hence utilities. As part of this goal,

players were given the option of participating in a competition and lottery. The collected

data exhibits a predominance of behavior matching the Treasure Collector persona which

could be a consequence of players trying to win the competition.
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The utility function of the agent-persona is constant over the course of each level, and

only one agent-persona is used to characterize a full decision making trace. This means

that if the player changes her conception of utility while playing the level, she will quite

possibly match several personas during the playthrough. A response to this limita-

tion could be to subdivide decision traces, e.g. via a sliding window, to find the best

agent-persona match for each point along the decision making trace. As an extension,

this approach could be used to cover all playtraces for an individual human player to

investigate which personas are matched across all the player’s traces. Relatedly, the

utility function of the agent will necessarily be a high-level abstraction of the player’s.

While this is intentional, other factors influencing the agent’s evaluations and learning,

such as exploration chance, learning rate and γ value (discount of future rewards) are

kept constant in the experiment presented here. Each of these could have, at some

level, relevant psychological counterparts such as openness to new experience, ability at

learning rules and content, and tendency and motivation to plan ahead; the extend to

which these parameters map to human psychology should be explored, and agents with

different configurations of these parameters should be tested.

The testbed game used for the development and demonstration of the method has a

limited number of affordances that are considered potential components of the player’s

utility function. Hence, the construction of various agent-personas based on various

configurations of these is a manageable task, which can be done manually. For more

complex games, the number of affordances may be significantly higher, making it dif-

ficult and time consuming to construct agents that cover the space of possible utility

configurations to a degree that a good agent-persona match could be found for every

player. This affects the scalability of the method, albeit the degree remains unknown

at this point. One possible solution could be to use the method for modeling players

at a conceptual level and designing content at a sketch level, rather than at a detailed

level, though this will naturally depend on the game in question. While the Q-learning

agents were demonstrated to work well, the training of the agents is computationally

demanding and hence time consuming. The time needed to train the Q-learning agents

on an average desktop computer would likely exceed the time a content designer would

be willing to wait for agent-based feedback. A better approach would be to use a generic

trained agent, whose policy was not tied to a particular level. Possible approaches could

include using agents based on Q-learning with neural networks, Monte Carlo Tree Search

or evolutionary rule-based systems.

Future work will focus on addressing these limitations, in an attempt to find a faster

performing, more accurately representative, and scalable approach to modeling human

decision making in the form of generative agents. We will also attempt to adapt the a
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priori constructed agents to fit either individual players or, more realistically, general-

ized representations of players. Such generalized representations could be obtained by

clustering players based on their difference from the various agent-personas, and training

the closest agent-persona to match the center of the cluster (Holmg̊ard et al., 2013a).

7.8 Conclusion

This paper presented a theory-based method of using generative agents as models of

human decision making in computer games and explored it in a simple scenario. A

theoretical argument for considering agents eligible for representing variations in human

decision making processes as agent-personas was presented. To test this argument, a

crowdsourced human decision making experiment was conducted using a testbed game.

A number of Q-learning agents were developed as agent-personas, and the decision

making of human players was compared to the decision making of the agents. The

comparison demonstrated that the agents were useful as personas for characterizing

and discriminating between the human players. Although the suggested method has a

number of limitations in its current form, key findings demonstrate that a high-level

abstraction of human decision making, in the form of agents, is possible and can provide

useful insights on possible and plausible interactions with game levels, whether hand

crafted or procedurally generated. We believe that the method could be of use to player

modeling as well as game design and development.
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8.1 Abstract

This paper explores how evolved game playing agents can be used to represent a priori

defined archetypical ways of playing a test-bed game, as procedural personas. The end

goal of such procedural personas is substituting players when authoring game content

manually, procedurally, or both (in a mixed-initiative setting). Building on previous

work, we compare the performance of newly evolved agents to agents trained via Q-

learning as well as a number of baseline agents. Comparisons are performed on the

grounds of game playing ability, generalizability, and conformity among agents. Finally,

all agents’ decision making styles are matched to the decision making styles of human

players in order to investigate whether the different methods can yield agents who mimic

or differ from human decision making in similar ways. The experiments performed in

this paper conclude that agents developed from a priori defined objectives can express

human decision making styles and that they are more generalizable and versatile than

Q-learning and hand-crafted agents.

78



Chapter 8: Evolving Personas for Player Decision Modeling 79

8.2 Introduction

Decision making is a central aspect of almost any interesting agonistic (Caillois, 2001)

game, as noted by Sid Meier who famously stated that “a game is a series of interesting

choices” (Rollings and Morris, 2004). Typically, play sessions in agonistic games can be

described as chains of decisions by one or more players in a proactively and reactively

changing environment. Players make decisions while the environment either observes,

responds, or proceeds agnostically, or enacts some combination of the three. Captur-

ing, describing, modeling, and reproducing chains of decisions is of interest to game

researchers, developers, and players for several reasons.

One reason can be to characterize typical chains of decisions as being representative

of certain decision making styles in playing particular games. They represent certain

ways of navigating the decision space of the game at a chosen level of abstraction. The

appropriate level of abstraction naturally differs among games and one game may have

several levels of abstraction where decision making can be characterized. For instance,

playing a game of Mario entails decisions at the aesthetic level (do I prefer fireball or

raccoon tail?) and the tactical level (do I attempt to engage or evade enemies?) as

well as the atomic level (do I press up or down?). Decision style characterization should

hypothetically be possible at all three levels (Holmg̊ard et al., 2013a), and the relevant

level of analysis must be determined by the purpose of the decision style characterization.

In this paper we address the problem of modeling human decision making in games in

the following two ways: Firstly, we attempt to represent archetypical decision making

styles in a test-bed game via game playing agents which we call procedural personas.

Secondly, we map agent decision making styles to human ones in order to measure to

which extent our personas are capable of expressing typical human ways of making

decisions within our test-bed game. The chief motivation for the work presented is

to use agents that express decision making styles to test manually or procedurally/co-

creatively (Yannakakis et al., 2014) generated game content such as levels (Liapis et

al., 2013b). This could support the game design process by providing low-cost, low-

fidelity mock playtesting of content during development. Such a method could e.g.

be of use and interest to level designers during the design of a new level, allowing

for quick impressions of what decisions archetypical players might make in the level.

By continuously comparing procedural persona behavior with human behavior, and

adjusting persona decision making styles accordingly, the personas might be continuously

refined during iterative development and playtesting cycles to better represent identified

subgroups of human players, as outlined in our previous work (Holmg̊ard et al., 2013a).

The envisioned process is illustrated in Fig. 8.1.
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Observe Behavior

Create or Change Content Create or Adapt Personas

Compare with Humans

Figure 8.1: The intended designer use of procedural personas.

In order to model decision making styles, this paper contributes to and expands on

previous work (Holmg̊ard et al., 2014b) by developing personas based on linear per-

ceptrons and comparing their performance against previously developed personas based

on Q-learning as well as several baseline agents. Our previous approach was limited in

terms of performance, generalizability, and scalability; the approach presented here is

an attempt to address these problems. To describe this process, we first present related

work and outline how our approach is based on psychological decision theory. Secondly,

we briefly present the reinforcement learning experiments which we are building on.

Thirdly, we describe our method of and fitness functions for evolving linear perceptrons

to represent archetypical decision making styles for procedural personas. Fourthly, we

present our experiments and results in using these evolved personas to express decision

making styles and capture typical player styles in decision making and comparing them
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to the reinforcement learning agents. We conclude by arguing that evolutionary meth-

ods are better suited to replicating observed player behavior than previously applied

td-learning techniques, and we point out limitations and under-explored aspects of the

method.

8.3 Related Work

This paper builds upon a theoretical framework of human decision-making; additionally,

it is related to player modeling as well as the simulation-based evaluation of procedurally

generated content. A brief survey of these domains follows.

8.3.1 Decision Theory

As described in Holmg̊ard et al. (2014b), decision theory (Kahneman and Tversky, 1979)

deals with human decision making under risk and uncertainty. One of its fundamental

assumptions is that human decision making can be described as being shaped by utility.

Briefly stated, utility captures how much an expected outcome of a decision is worth to

the decision maker versus the expected cost and risk of attaining that outcome. Humans

typically attempt to optimize the utility gained from a decision which is then considered

rational action. Research in decision theory has shown that the nature of this opti-

mization process is shaped by the utility expected from the decision, meaning that the

assignment of cognitive resources and the balance between heuristic and analytic rea-

soning is based on the perceived importance of the decision (Gigerenzer and Gaissmaier,

2011). The decision making process happens under bounded rationality (Rubinstein,

1998). Generally, utility is considered idiosyncratic and decision theory does not try to

explain why a given outcome has utility to the decision maker (though other directions

in psychology such as personality psychology (Yee, 2006) or motivational psychology

(Canossa, 2012) might be helpful in explaining this). Instead, it looks at the decision

maker’s tendency to take risks to attain particular outcomes. This means that for real

world decision making problems, the possible sources of utility are practically infinite

though often context can be used to identify probable sources of utility.

Games, and certain computer games in particular, can be considered special, limited

cases of decision making problems, when the game’s decision space is delineated by its

rules and mechanics. As a game becomes more complex this decision space of course

expands and complexifies rapidly. However, knowing the rules and mechanics of a game

provides a well-defined context for making assumptions about possible sources of utility

in the game. A game’s stated goals and the possibilities inherent in the game’s mechanics
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constitute affordances (Gibson, 1977) which are likely to be of utility to the player, since

they are typically the very reason for playing the game in the first place. By analyzing

the mechanics of a game we should be able to detect likely sources of utility, though due

to the idiosyncratic nature of utilities we can never be certain to have covered all cases.

This is relevant to our purpose of developing decision making procedural personas, as

the analysis of the affordances in a game can provide us with a list of possible goals

to direct the behaviors of procedural personas. Once a hierarchy of goals, representing

sources of utility, has been established for a persona, we can effectively use this as a

representation or metaphor for a decision making style.

In the following section, we describe how this approach can be used to enable a form of

player modeling which seems to be relatively underexplored in the academic literature,

though perhaps more common for ad hoc industry purposes (Smith et al., 2011).

8.3.2 Player Modeling

Since this work aims to represent archetypical decision making styles in our test-bed

game, each resulting persona can be considered an individual player model. Smith

et al. (2011) provide a useful inclusive taxonomy of player modeling methodologies.

The work categorizes player modeling techniques via four different facets: the scope,

purpose, domain, and source of the player model. Scope determines the generalizability

of the player model. For this work, the scope of each model is limited to the game in

question, since the decisions and utilities are contingent on the particular game, in this

case MiniDungeons. Purpose refers to the intended use of the model. Our method

is generative in the sense that the final intent is to express decision making styles in

games, either styles defined a priori by designers or styles adapted to match human styles

observed across groups or from individual playthroughs. Domain refers to what the

model generates, in this case player decisions expressed through in-game actions at the

same level that human players would. Source refers to the motivation or substrate from

which the player model is derived. The models generated from our approach are hybrids

in the taxonomy. They are initially interpreted in the sense that the a priori personas

are developed by the game’s designers based on expert knowledge about typical decision

making styles of human players, but aim to grow empirically induced in the sense that

they are partly evaluated on how well they express the decision making styles of actual

human players and ultimately should evolve to adapt to these. As such, the method

attempts to achieve player modeling by evolving from game designer interpreted personas

to player data induced personas, bridging the designer’s expert knowledge and empirical

play data. Approaching the problem from an alternative framework by Yannakakis et

al. (2013) our method combines a way to move iteratively from a model-based (designer
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centric) player model to a model-free (data centric) player model, creating a hybrid

player model.

8.3.3 Procedural Content Generation

As stated above, the main goal of the procedural persona method is to provide low-cost,

low-fidelity mock playtesting in a manner that is useful in supporting game content

creation. This may be useful to a human designer manually creating a piece of content

in an editor, but human designers are, to some extent, capable of informally mentally

simulating different decision making styles their content might enable. We would argue

that the procedural persona method could potentially be of greater use to search based

procedural content generation processes (Togelius et al., 2011) that are either wholly

procedural or based on mixed-initiative co-creative processes where a human designer

and an AI-driven support tool collaboratively produce content (Liapis et al., 2013a).

Human designers might use procedural personas as input to a co-creative process, con-

trolling the AI’s search for novel content by asking it to generate content that fits certain

decision making styles.

8.4 Previous Work

In this section we briefly present the previous work this paper builds on, and the testbed

game on which the experiments were performed.

8.4.1 MiniDungeons

The test-bed game used, MiniDungeons, implements the fundamental mechanics of a

roguelike dungeon exploration game. The turn-based game puts the player in a top-

down viewed tile-based dungeon (of 12 by 12 tiles) containing monsters, potions, and

treasures, as displayed in Fig. 8.3. Impassable tiles constitute the walls of the dungeon,

while passable tiles may contain enemies or items for the player. All of the level is visible

to the player who can move freely between passable tiles. When the player moves to

a tile occupied by a monster or item, immediately the monster is fought or the item is

collected and applied. The player has a 40 hit point (HP) health counter and dies if this

drops to zero. Monsters randomly deal between 5 and 14 HP of damage while potions

heal 10 HP up to the maximum value of 40 HP. Treasures have no game mechanical

effect other than adding to a counter of collected treasures which is displayed to the

player. The game contains 10 levels (see Fig. 8.2) and a tutorial level. Excepting the
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Tutorial

Level 1 Level 2 Level 3 Level 4 Level 5

Level 6 Level 7 Level 8 Level 9 Level 10

Figure 8.2: The levels included in MiniDungeons. The tutorial level is hand-crafted,
and could be played multiple times. The “real” levels (1-10) were played only once (no

retries if the hero died) and were created in a mixed-initiative fashion.

tutorial level, all levels are generated using the multi-genre mixed-initiative co-creation

tool Sentient Sketchbook (Liapis et al., 2013c). For further details on the test-bed game

and discussion of its properties, we refer to our previous work (Holmg̊ard et al., 2014b).

8.4.2 Previous Experiments with Q-learning

Our previous work demonstrated a proof-of-concept for the idea of training procedural

personas to express decision making styles using temporal difference-based (td-based)

reinforcement learning, specifically Q-learning.

A data set of 380 human play traces from MiniDungeons was collected and used as a

reference for determining to which extent the defined personas expressed actual human

decision making styles. The resulting personas matched the human players’ decisions

with an average precision of 78%, a result that would not have been feasible with any

one persona alone.

The specification and logic of the personas was straightforward and intuitive, as the

reinforcing rewards given to the agents during training worked as a direct metaphor

for the personas’ respective utilities. For instance a “Monster Killer” type persona was
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Figure 8.3: The MiniDungeons interface while a game is played.

given a large reward for every monster killed in a given level and a smaller reward for

reaching the exit. Personas trained on this reward configuration consistently expressed

decisions that we would argue are subjectively interpretable as a “Monster Killer” style.

Unfortunately, the technique of using td-based reinforcement learning suffers from a

number of issues that precludes it from being useful for the practical purpose of on-

line interactive content creation. Firstly, the method is computationally expensive as

it requires the Q-learning agent to run through a significant number of simulations to

learn the appropriate Q-table, amounting to hours worth of training time on a modern



Chapter 8: Evolving Personas for Player Decision Modeling 86

desktop computer to train a single persona for a single level. Secondly, given the ap-

plied technique of Q-learning, where agents were trained on an only slightly abstracted

version of the state space, the personas do not generalize across levels. This necessitates

retraining of the personas whenever the level content is changed, further exacerbating

the problem of practical applicability. Thirdly, the Q-learning agents would not provide

useful starting points for adapting the personas to observed human behavior as it would

most likely be more efficient to train new agents using inverse reinforcement learning to

represent groups of human players’ or individual human players’ decision making styles.

This would again make it impractical to implement the desired iterative hybridization

of the designer specified interpreted model and the observation based induced model.

Though optimizations, such as applying active learning to the Q-learning process, might

possibly mediate these drawbacks, the sum of the concerns listed above motivates us to

attempt to replicate the results of the td-based reinforcement learning technique with

faster, evolution-based methods.

8.5 Methods

In the following section we describe how we achieve this by evolving linear perceptrons

selecting which of the currently available affordances to act on. While these agents are

structured very differently, they enact decision making styles equivalent to those of the

Q-learning agents trained on observation of the game’s state space.

8.5.1 Evolved Controllers

In order to control the personas in MiniDungeons and express the desired decision mak-

ing styles, 7 linear perceptrons are combined into an evolvable controller. The percep-

trons take 8 inputs in addition to the bias, and through weighted sums produce the 7

outputs. The 8 inputs consist of the hero’s current hit points (1 to 40) and 7 distance

measures derived from A* path finding (with Manhattan Distance heuristic) in the maze:

the distance to the nearest monster, the distance to the nearest treasure, the distance

to the nearest treasure while avoiding monsters, the distance to the nearest potion, the

distance to the nearest potion while avoiding monsters, the distance to the level exit,

and the distance to the exit while avoiding monsters. The inputs are chosen under the

assumption that human players will typically survey the whole play area and pick from

the available paths to the various affordances in the level. The distance to each affor-

dance type, accepting and avoiding the risk of fighting a monster, are then considered

an acceptable abstraction of the game state into a number of utility providing options

that the player can choose from. In the same vein, each of the linear perceptrons are
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mapped to represent one of the available strategies, with or without risk taking: pur-

suing the nearest monster, pursuing the nearest treasure, pursuing the nearest treasure

while avoiding monsters, pursuing the nearest potion, pursuing the nearest potion while

avoiding monsters, pursuing the exit, or pursuing the exit while avoiding monsters. The

controller re-evaluates the state of the game for each step. The network is fed forward,

and the linear perceptron with the highest activation value is identified and from the

corresponding affordance, the next step in the path is selected. In the case that an

affordance is unavailable, e.g. if all paths to the nearest treasure, avoiding monsters, is

blocked, the next ranked affordance, based on activation, is selected, and so on, until

the controller ultimately picks the risky path to the exit as a final fall-back affordance.

Distance 
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treasure
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treasure 
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Distance 
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Figure 8.4: The controller network which was evolved to generate the five personas.

8.5.2 Evolutionary algorithm

We use a (µ+α) evolution strategy without self-adaptation. This is a truncation-based

evolutionary algorithm which for each generation retains the 50% best performing indi-

viduals, discards the lowest performing half, and produces single-parent offspring from

the remaining individuals to maintain the population size. Finally all population individ-

uals are mutated, except for members of an elite group, consisting of the top performing

2% of the population, which remains unchanged. Mutation is accomplished by changing

each connection weight in the network with a random number drawn from a Gaussian

distribution centered around zero with a standard deviation of 0.3. All experiments are

done using a population size of 100 individuals, trained for 100 generations. One set
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of personas are evolved for one level specifically for 100 generations. Another, general-

ized, set of personas are evolved by playing on 9 of the 10 levels, keeping the 10th level

unseen. As such, each generation of these generalized agents is exposed to 9 times the

level content compared to the level specific personas.

8.5.3 Fitness Functions for Evolving Personas

As noted above, the procedural personas are evolved to represent archetypical decision

making styles, motivated by utilities. In an effort to represent this in the personas, the

fitness functions used to evolve the linear perceptrons are constructed as compounds of

the relative importance of each potential source of utility in the game and the persona’s

ability to achieve these utilities. Five different potential sources of positive or negative

utility were identified in the MiniDungeons game, based on an analysis of the game’s

mechanics: making a move, fighting a monster, collecting a treasure, dying, and reaching

the exit of the level. Collecting an HP restoring potion could have been considered a

source of utility in itself, but was not included, as it was considered subsumed under

the other sources of utility. This resulted in five distinct personas being defined: The

Exit persona simply tries to reach the exit of the level, representing a player who mainly

cares about progressing through the levels of the game. The Runner persona attempts to

reach the exit in the fewest steps possible, representing a step-optimizing “speed runner”.

The Survivalist avoids damage to the largest extent possible, while moving toward the

exit, representing a conservative player who does not like to lose. The Monster Killer

represents an aggressive player by seeking out and fighting every monster in the level,

while attempting to reach the exit without dying. The Treasure Collector represents

a completionist player who cares about collecting every treasure, before progressing to

the next level. The specific utilities of the personas were set to mirror the rewards

given to our Q-learning agents in our previous work (Holmg̊ard et al., 2014b) as closely

as possible. The individual values are presented in Table 8.1. Collecting treasure and

killing monsters are associated with positive utility, while moving or dying are associated

with negative utility for the relevant personas. All personas derive a slight amount of

negative utility form each move made, in order to ensure progression through the level.

The value subtracted is doubled for the Runner persona.

Agents’ fitness scores are calculated by dividing the amount of utility obtained by the

individual during the playthrough by the maximally attainable utility for the level in

question. The only exception to this rule is the number of moves made, which is not

normalized. The sources of utility depend on the persona and are shown in Table 8.1

along with their utility weights. For personas evolved on a single level, the fitness is

computed for each playthrough of the level. For personas evolved across multiple levels,
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the fitness for each level played is first computed after which the mean across all 9 played

levels is computed and used as the fitness score for the individual in that generation.

8.5.4 Decision-level playtrace comparison

To determine the degree to which the decision making styles of the evolved personas

match the previous reinforcement learning trained personas, as well as actual human

decision making styles, a simple measure of agreement is used. For each human play

trace, we replay the whole game and at each decision point (in this case every action), we

input the state description to all of our artificial agents, and compare the player’s decision

to the decisions of the different agents. Essentially, we query each agent “What would

you do, given this situation?”. The resulting metric is a simple count of agreements,

normalized to a ratio from 0 to 1 by the number of decisions in the human play trace.

8.5.5 Baseline Agents

In order to allow for a fair comparison of the performance of the reinforcement learning

trained agents and the evolved agents, a number of baseline agents are constructed. The

simplest one of these is a random controller that every step picks a legal (i.e. leading to

a passable tile) decision in the level. Additionally, five more advanced baseline agents

are constructed using a finite state machine on top of the A* algorithm for pathfinding.

These agents act single-mindedly by always making a decision for following the shortest

path toward one primary objective until this objective is exhausted, after which they

follow the shortest path to the exit. Their objectives are to pursue either monsters,

treasure, or the exit. The treasure and exit objectives are implemented in two modes:

one where the baseline agent tries to avoid monsters along the path if possible and one

where monsters are ignored and fought if they are present along the shortest path. The

baseline agents are not considered personas as such, since their behaviors are too simple,

but are included in an attempt to provide baselines for simple random moves, and for

single-mindedly following paths to classes of affordances in the game. The complete list

of personas tested in our experiments is provided in Table 8.1 along with the parameters

for their training or evolution.

8.6 Results

To verify that the developed personas actually exhibit decision making styles in accor-

dance with their intended persona identity, Table 8.3 presents the performance of each
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Table 8.1: All personas tested in the experiments.

Utility weight of tiles or events
Persona Code Moved Monster Treasure Death Exit

Q-learning

Exit qE 0.5
Runner qR -0.01 0.5
Survivalist qS -1 0.5
Monster Killer qM 1 0.5
Treasure Coll. qT 1 0.5

Evolution

Exit eE -0.01 0.5
Runner eR -0.02 0.5
Survivalist eS -0.01 -1 0.5
Monster Killer eM -0.01 1 0.5
Treasure Coll. eT -0.01 1 0.5

Table 8.2: Baseline agents used in experiments.

Baseline Agent Code Method Primary Objective

Monster Killer aM A* ignoring monsters Nearest monster
Runner aR A* ignoring monsters Exit
Treasure Collector aT A* ignoring monsters Nearest treasure
Runner Safe aR,s A* avoiding monsters Exit
Treasure Collector Safe aT,s A* avoiding monsters Nearest treasure

Random Controller Z Random legal move None

individual agent across all levels. This verification is necessarily a process of subjective

interpretation. From Table 8.3 we can identify that both Q-learning based and evolved

Exit personas engage in little combat. Additionally they exhibit a relatively low de-

gree of exploration. The Monster Killer personas engage with the most monsters across

methods, exhibiting the desired decision making style. Interestingly, the evolved Mon-

ster Killer personas tend to collect more potions than the Q-learning trained Monster

Killer and also succeed in killing more monsters. The Runner persona exhibits a rela-

tively low exploration value. In the case of the Q-learning agent, the exploration is lower

than most other personas, but significantly higher than the survivalist persona, while in

the case of the evolved personas it is practically tied with the survivalist. The special

case of the Q-learning survivalist can be attributed to the fact that in some cases that

persona opts to stop progressing when faced with monsters blocking its path, as is also

evident from the low number of monsters killed. The evolved survivalist on the other

hand proceeds to fight monsters when this is the only available course of action to reach

the exit. Given the restricted nature of the play environment the Runner and Survivalist

generally overlap in their performance statistics, as the safest and fastest paths to the

exit typically deviate with only a few steps. The Treasure Collector personas unsur-

prisingly consistently exhibit the greatest collection of treasures as well as the greatest
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Table 8.3: Average statistics of each persona’s play traces across all levels in MiniDun-
geons. M stands for monsters killed, T for treasures collected, P for potions drunk, Ex
for tiles explored, and D for times died. With the exception of D, values are averaged

across 20 test runs; D includes all playthroughs tested.

Persona or Agent M T P Ex D

qE Exit 22.8 9.4 2.1 237.9 8
qM Monster Killer 54.4 9.0 15.9 300.3 66
qR Runner 22.4 7.7 2.0 231.8 19
qS Survivalist 4.0 5.0 1.0 135.0 0
qT Treasure Collector 48.6 49.4 3.9 335.7 167

eE Exit 22.1 5.5 1.6 217.0 10
eM Monster Killer 69.5 10.3 30.9 413.9 89
eR Runner 23.1 6.5 1.4 230.2 15
eS Survivalist 21.6 7.2 1.2 227.2 2
eT Treasure Collector 50.1 57.5 6.5 413.9 151

ΣeE Exit 24.2 4.5 1.4 217.7 30
ΣeM Monster Killer 75.5 10.4 37.0 454.8 102
ΣeR Runner 24.1 4.7 1.7 216.8 27
ΣeS Survivalist 24.1 5.0 1.9 221.0 23
ΣeT Treasure Collector 58.9 60.4 23.1 493.4 93

aM Monster Killer 49.2 3.8 1.2 200.6 200
aR Runner 24.3 4.8 1.7 218.9 25
aR,s Runner Safe 19.0 4.5 1.4 225.4 31
aT Treasure Collector 48.2 49.1 1.6 329.9 190
aT,s Treasure Collector Safe 44.7 57.5 3.0 421.9 122
Z Random Controller 58.5 38.4 19.9 521.2 123

exploration of the game levels. The Q-learning trained Treasure Collector and the level

specifically evolved Treasure Collector seem relatively comparable. Notably, the gener-

alized, evolved Treasure Collector performs better than both of them and picks up more

potions on its way through the level. The A* based baseline agents generally perform

worse than their persona counterparts, but following comparative strategies, while the

random controller has the largest exploration ratio of all personas and agents, since the

controller just roams the map until it randomly reaches the exit, runs out of allocated

testing actions, or dies. A set of indicative heatmaps from level 7 is included in Fig. 8.5,

showing the varied behaviors of the personas and agents.

8.6.1 Agreements between Q-learning personas and evolved personas

As mentioned above, the evolved personas’ fitness functions are designed in an attempt

to make them emulate the decision making styles expressed by the Q-learning trained

personas. To test whether this is accomplished, the decision-level playtrace comparison

method described in Sec. 8.5.4 is applied between similar personas, across all 380 col-

lected playtraces, using the human decisions as the baseline. This comparison is not
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Z

Figure 8.5: Heatmaps of all personas and baseline agents on level 7 of MiniDungeons.

made between Q-learning personas and generalized, evolved personas, since these would

have to be tested on levels unseen to them, but seen to the Q-learning personas. For each

step in each human play trace, the game is advanced to the game state from which the

human play trace was collected. The game state is then input to the comparable pair of

personas, and both are queried for their next action. If they report the same action, even

if in disagreement with the human player, this is counted as an inter-persona agreement.

If they report different actions, irregardless of the human choice, this is counted as an

inter-persona disagreement. The results are presented in Table 8.4. As is evident, all
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Table 8.4: Agreements between individual personas based on human players’ play
traces.

Q-learning Persona Evolved Persona Agreement

qE Exit eE Exit 0.71
qM Monster Killer eM Monster Killer 0.69
qR Runner eR Runner 0.72
qS Survivalist eS Survivalist 0.63
qT Treasure Collector eT Treasure Collector 0.70

Table 8.5: Agreements between personas/baseline agents and human players. Evolved
personas which were generalized by holding out the test level are marked with a Σ.

Q-learning Persona Agreement Evolved Persona Agreement

qE Exit 0.52 eE Exit 0.55
qR Runner 0.53 eR Runner 0.56
qS Survivalist 0.49 eS Survivalist 0.57
qM Monster Killer 0.54 eM Monster Killer 0.59
qT Treasure Collector 0.62 eT Treasure Collector 0.71

Baseline Agent Agreement Generalized persona Agreement

aM Monster Killer 0.53 ΣeE Exit 0.55
aR Runner 0.55 ΣeR Runner 0.55
aR,s Runner Safe 0.55 ΣeS Survivalist 0.56
aT Treasure Collector 0.71 ΣeM Monster Killer 0.60
aT,s Treasure Collector Safe 0.70 ΣeT Treasure Collector 0.74
Z Random Controller 0.43

types of personas seem to exhibit agreements at levels ranging from approximately 60%

to 70%. Though better than random performance, this indicates that the weightings of

utilities cannot be naively transferred from one method to the other.

8.6.2 Agreements between personas and human players

To ascertain to which extent the individual personas express actual human player deci-

sion making styles all personas (as well as baseline agents) are compared to the human

play data, again using the decision-level playtrace comparison method. In this config-

uration, agent reports are only counted as persona-human agreements if they report

exactly the same action that is present in the human play trace, in response to the game

state. The results for each agent, averaged across all human play traces on all levels, are

presented in Table 8.5.

From Table 8.5 it is clear that the average action agreement ratio across all players

seems limited, perhaps with the exception of the Treasure Collector personas and base-

line agents. This is, however, to be expected, as each persona is should express a distinct
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Table 8.6: Frequencies of personas and baseline agents being the best match for
individual human play traces.

Persona or Agent 1 2 3 4 5 6 7 8 9 10 Total

qE Exit 0 0 0 0 0 0 1 0 3 1 5
qR Runner 0 0 2 0 0 1 1 0 0 0 4
qS Survivalist 0 0 0 1 0 0 0 0 0 0 1
qT Treasure Collector 1 2 1 1 4 1 2 1 0 2 15

eE Exit 0 0 0 0 0 0 1 0 0 1 2
eR Runner 0 0 0 0 0 0 2 0 0 0 2
eS Survivalist 0 0 0 0 0 0 0 1 0 0 1
eM Monster Killer 8 0 0 1 0 0 1 0 3 0 13
eT Treasure Collector 0 15 19 13 10 12 1 11 7 3 91

ΣeM Monster Killer 0 0 0 1 1 0 6 1 0 0 9
ΣeT Treasure Collector 28 7 13 20 19 22 21 23 18 23 194

aE,s Exit Safe 0 1 0 0 0 0 0 0 0 0 1
aT Treasure Collector 1 7 1 0 4 2 0 0 1 1 17
aT,s Treasure Collector Safe 0 6 2 1 0 0 2 1 6 7 25

Z Random Controller 0 0 0 0 0 0 0 0 0 0 0
Total 38 38 38 38 38 38 38 38 38 38 380

decision style which should only be displayed by some human players. Therefore, aver-

aging the agreements across all players on all levels obscures the human decision making

style expressiveness of each persona. To mitigate this problem, we instead map each

human play trace to the persona which agrees the most with it, or put differently, the

best matching persona. Table 8.6 shows the frequency with which each persona or agent

is the best match for the human players. The results indicate that treasure seeking

personas dominate the covering of the human play traces, followed by monster killing,

and finally the exit seeking strategies expressed; Survivalist and Runner personas only

cover a few human play traces. The baseline agents also cover some human playtraces.

This could be attributed to the limited decision space of the game and the fact that

treasure collecting is a common culturally reinforced affordance for roguelike games;

without further information about the players, however, this remains speculation. Two

notable characteristics of the results, however, is that the evolved personas generally

cover more of the human play trace sample than the other methods, and that the gener-

alized, evolved agents tend to attain better coverage of the human play traces than the

level specific ones. This could speculatively be attributed to the fact that the generalized

evolved agents have learned from a broader range of examples.

While the frequency table provides insight into how much of the human sample each

persona/agent covers, it is also relevant to investigate the quality of each persona/agent’s

coverage. Table 8.7 displays the mean agreement for each persona or agent. The mean is

calculated over all human playtraces for which the persona or agent was the best match,

for every level. From the results it is clear that the best matching personas agree with
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Table 8.7: Mean agreement ratios for personas and baseline agents when they were
selected as best matches.

Persona or Agent 1 2 3 4 5 6 7 8 9 10

qE 0.78 0.86 0.86
qR 0.70 0.78 0.74
qS 0.60
qT 0.65 0.71 0.77 0.78 0.79 0.62 0.66 0.74 0.85

eE 0.88 0.85
eR 0.72
eS 0.82
eM 0.72 0.79 0.69 0.74
eT 0.79 0.80 0.73 0.76 0.81 0.66 0.79 0.74 0.86

ΣeM 0.70 0.72 0.75 0.80
ΣeT 0.75 0.71 0.83 0.77 0.75 0.78 0.72 0.83 0.76 0.82

aE,s 0.71
aT 0.69 0.76 0.86 0.73 0.77 0.72 0.87
aT,s 0.75 0.79 0.78 0.66 0.79 0.81 0.83

Table 8.8: Mean agreement ratio across all traces from all levels where personas or
agents were selected as best matches.

Persona or Agent n Mean SD Min Max

qE Exit 5 0.84 0.07 0.76 0.94
qR Runner 4 0.73 0.06 0.64 0.78
qS Survivalist 1 0.60 0.60 0.60
qT Treasure Collector 15 0.74 0.07 0.62 0.85

eE Exit 2 0.87 0.02 0.85 0.88
eR Runner 2 0.72 0.16 0.61 0.83
eS Survivalist 1 0.82 0.82 0.82
eM Monster Killer 13 0.73 0.05 0.65 0.84
eT Treasure Collector 91 0.78 0.07 0.56 0.95

ΣeM Monster Killer 9 0.75 0.06 0.64 0.82
ΣeT Treasure Collector 194 0.78 0.07 0.57 0.95

aE,s Exit Safe 1 0.71 0.71 0.71
aT Treasure Collector 17 0.76 0.06 0.67 0.87
aT,s Treasure Collector Safe 25 0.79 0.07 0.63 0.90

human players on between 60% and 88% of decisions, with a great deal of variation across

levels. In order to better capture each persona’s agreement with humans, Table 8.8 lists

the mean agreement values for each persona across all play traces on all levels. Generally,

the personas display mean performances ranging from 0.7 to 0.8, which is comparable

to the baseline agents in the relatively few cases that they attain a best match, but still

leaves room for improvement at matching human decision making styles.

Finally, Table 8.9 compares the mean agreements for best matches between Q-learning

and evolved personas designed to express the same decision making style. For most

personas, not enough human play traces were matched for robust comparisons. The
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Table 8.9: Wilcoxon Rank Sum Test for differences between persona pairs, with
personas created either via Q-learning or evolution.

Persona n Persona n W p

qE Exit 5 eE Exit 2 6.0 0.86
qR Runner 4 eR Runner 2 4.0 1.00
qS Survivalist 1 eS Survivalist 1 1.0 1.00
qM Monster Killer 0 qM Monster Killer 13
qT Treasure Collector 15 eT Treasure Collector 91 880.5 0.07

qE Exit 5 ΣeE Exit 0
qR Runner 4 ΣeR Runner 0
qS Survivalist 1 ΣeS Survivalist 0
qM Monster Killer 0 ΣeM Monster Killer 9
qT Treasure Collector 15 ΣeT Treasure Collector 194 1801.0 0.13

eE Exit 2 ΣeE Exit 0
eR Runner 2 ΣeR Runner 0
eS Survivalist 1 ΣeS Survivalist 0
eM Monster Killer 13 ΣeM Monster Killer 9 67.0 0.60
eT Treasure Collector 91 ΣeT Treasure Collector 194 8553.5 0.67

Treasure Collectors, however, show a borderline significant difference between qT and

eT using Wilcoxon’s Rank Sum test (α-level 0.05). Comparisons are not made between

baseline agents and personas, since the baseline agents are not based on utilities.

8.7 Discussion

It could be argued that the testbed game we employ is too simple and not representative

of actual games. However, we argue that the game is similar in complexity to many of

a new wave of roguelike games that have recently become popular on hand-held devices

- the likes of 868-hack (Brough, 2013), Hoplite (Cowley et al., 2013) and Out There

(Mi-Clos Studio, 2014). Those games cannot be considered “toy problems” more than

any other successful game. This is not to say that MiniDungeons is as entertaining or

“deep” (in game design terms) as those games. Future work should include iterating

over the MiniDungeons design to provide more satisfying gameplay, which will help us

collect more and better player data.

8.8 Conclusion

We have addressed the problem of creating procedural personas, which are generalized

generative player models that represent the behavior of a class of players with particular

playing styles or decision making styles. Based on an analysis of the affordances in a
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simple roguelike game, we identified five different reward structures, which were used in

the training of personas. A persona representation was devised based on an evolvable

perceptron that selects which immediate goal to pursue based on knowledge of internal

state and distances to various level features. This evolutionary persona representation

was compared with a previously devised method based on Q-learning, and it was found

that the evolutionary solution is better both at agreeing with human players and opti-

mizing the rewards, while also being generalizable to unseen levels. These models are

well-suited for e.g. simulation-based testing in procedural content generation.
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9.1 Abstract

The current paper investigates multiple approaches to modeling human decision making

styles for procedural play-testing. Building on decision and persona theory we evolve

game playing agents representing human decision making styles. Three kinds of agents

are evolved from the same representation: procedural personas, evolved from game

designer expert knowledge, clones, evolved from observations of human play and aimed at

general behavioral replication, and specialized agents, also evolved from observation, but

aimed at determining the maximal behavioral replication ability of the representation.

These three methods are then compared on their ability to represent individual human

decision makers. Comparisons are conducted using three different proposed metrics

that address the problem of matching decisions at the action, tactical, and strategic

levels. Results indicate that a small gallery of personas evolved from designer intuitions

can capture human decision making styles equally well as clones evolved from human

play-traces for the testbed game MiniDungeons.

98
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9.2 Introduction

This paper investigates how to create models of human decision making styles in games

using generative, game-playing agents for procedural play-testing. It proposes an evolu-

tion based framework for representing player decision making in games and a simulation

based method for evaluating human likeness of game playing agents at three different

levels. The framework is applied in two different ways: evolving in a top-down manner

from designer-driven intuitions and evolving in a bottom-up, data-driven manner from

play-traces. The evaluation method is then used on both applications of the framework

to evaluate their performances. Finally, a possibility for combining the two applications

of the framework, allowing for hybrid top-down/bottom-up decision modeling through

generative agents is suggested.

Generative, game-playing agents that represent and replicate human decision making

may be useful in games for many purposes e.g. as believable stand-ins for human players

or as benchmark rivals for players to surpass. The work presented here focuses on using

game playing agents representing human decision making styles as stand-in players,

supporting the traditional process of human play-testing.

Play-testing is typically an integral part of game development (Fullerton et al., 2004).

The complexity and cost of the play-testing depends on the kind of game under develop-

ment, the stage in the games development process, and the objectives of the play-testing.

At one extreme play-testing may be conducted by the game designer herself by simply

imagining how players might interact with the game, a feature or a piece content. At

the other extreme play-testing may be conducted under highly instrumented laboratory

conditions or at a massive scale in the wild by telemetrically collecting data from players

after the launch of the game (El-Nasr et al., 2013).

In this paper, we suggest there may be an opportunity for methods using generative

agents to support designers in situations where new content is being developed, but

access to human play-testers is limited or impossible. For example, when a level designer

is implementing a new level for a game or making changes to an existing one, these

changes might not be large enough to mandate a full play-test with human players.

Still, it might be useful for the level designer to observe how different kinds of players

would interact with the level.

In situations like these, generative game playing agents based on models of human

decision making might provide designers with surrogate play-traces to inform their design

process and explore what parts of the game space players are likely to interact with and

how, effectively delivering procedural play-testing.
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When agents sufficiently simulate a particular archetypal human decision making style

we call agents procedural personas. Integrated with content creation tools, we envision

that procedural personas will allow for mixed-initiative game design tools that yield

immediate feedback during the design process, even if this feedback is not a completely

accurate representation of how human players might play the game. Additionally, play-

traces from procedural personas can be used as input for procedural content generation

systems shaping the output in response to the generative player models (Liapis et al.,

2015).

In other words, agents that play like humans can help understand content by playing it

as it is being created.

9.2.1 Research Questions

An important question then arises with respect to which sources of information about

player decision making styles are useful for constructing believable procedural personas

that simulate human decision making with sufficient accuracy. Do we need some amount

of low level behavioral data from actual players or can we derive the same information

from the expert knowledge of a game designer?

A second question is how general we can make the resulting models. Can we ensure that

they perform consistently on unseen content that either no play-traces were sampled

from or that the game designer was not explicitly considering?

The work presented here addresses these questions by comparing two particular methods

for realizing procedural personas, one drawing on designer expert knowledge and one

using empirically gathered play test data, in order to evaluate which method produces

the best models for generating synthetic play-test data.

9.2.2 Prior Work

In previous work we have designed a simple turn-based, tile-based dungeon crawling

game, MiniDungeons, which features monsters, treasures and potions in mazes (Holmg̊ard

et al., 2014b). 38 players played 10 levels of this game and we recorded their every action.

Next, we analyzed the design of the game to extract a number of possible affordances

which we translated into partially conflicting objectives that a player might seek to

fulfill (e.g. kill all monsters, avoid danger or get to the exit quickly). Using these

affordances we trained agents to play the game rationally for each objective. Both Q-

learning (Holmg̊ard et al., 2014b) and evolutionary algorithms (Holmg̊ard et al., 2014a)

were used to train high-performing agents; the evolved agents have the benefit that they
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generalize to levels they were not trained on in contrast to Q-learning agents which

where unable to perform on levels they previously had not seen.

9.2.3 Metrics and Methods for Comparing Agents to Human Players

The agents’ behaviors were compared to play-traces of the human players through a

metric we call the action agreement ratio (AAR) which compares agents and humans at

the action level -–– comparing every action of the player and the agent and asking if the

agent would pursue the same next action as the player. But is this really the right level

of analysis for comparing players to agents? It could be argued that the microscopic

level of comparing actions gives a biased view of how well an agent’s behavior reproduces

player behavior, and that it is more interesting to look at behavior not on the level of

atomic decisions, but rather at the level of tactical or strategic decisions. Further, are

we right to assume that players exhibit boundedly rational behavior given some set of

objectives? It might be that with the same agent representation, we could train agents

that reproduce player behavior better by using the actual play-traces as training data

instead of focusing on player objectives. The current paper tries to answer these two

questions.

Expanding on previous work (Holmg̊ard et al., 2014d), we propose two new play-

trace comparison methods, tactical agreement ratio (TAR) and strategic agreement ratio

(SAR) that, instead of asking whether an agent would perform the same singular action

as the player in a given state, ask whether it would choose to pursue the same next

affordance or the same overall outcome, respectively.

We also train a second class of agents to behave as similarly as possible to human players

on unseen levels using play-traces as objectives, again evaluated on the three levels of

comparison: the action level, the tactical level, and the strategic level. We call such

agents clones.

Finally, we train a third class of agents to behave as similarly as possible to human

players on previously seen levels in order to explore the maximal performance of our

chosen representation. We call such agents specialized agents as they are likely to be the

closest fit of the representation to an individual play-trace, but are trained for just one

particular level.

9.2.4 Modeling Bounded Rationality

Grounded in contemporary decision science, this paper has two central assumptions

about human players’ decision making: The first is that players’ decisions are guided
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by their expected utility for a given decision; i.e. the amount of experienced value they

expect to derive from the consequences of a decision.

The second is that human players exhibit bounded rationality i.e. players allocate limited

amounts of cognitive resources to decisions in games either due to innate limitations or

because they only apply part of their cognitive capacity to the decision due to conscious

or subliminal reasons. Decision making style in games thus depends not only on pref-

erences in outcomes, but also the resources the player is willing or able to allocate to

the decision making task. Our approach to simulating a decision maker in the form of

a generative agent is to represent these two characteristics, the player’s rational utility

function and the player’s cognitive bounds, in the implementation of the agent.

In the following we outline the relations between persona theory, decision theory, player

modeling, and the resulting concept of procedural personas. We briefly describe our

testbed game, MiniDungeons, and the methods we used to create game playing personas

and clones, before we present the results from comparing the resulting agents to the

human players.

9.3 Related Work

In this section, we review decision theory, the concept of personas as applied to (digital)

games, player modeling, and the relations between the three areas in this study.

9.3.1 Decision Theory and Utility

The personas used for expressing designer notions of archetypal player behavior in

MiniDungeons are structured around the central concepts of decision theory. Decision

theory states that whenever a human makes a rational decision in a given situation,

the decision is a result of an attempt to optimize the expected utility (Kahneman and

Tversky, 1979). Utility describes any positive outcome for the decision maker and is

fundamentally assumed to be idiosyncratic. This means that in principle no definite

assumptions can be made about what can provide utility to the decision maker. The

problem is further complicated by the fact that the effort a decision maker directs toward

attaining maximum utility from a decision can be contingent on the expected utility it-

self. For problems that are expected to provide low utility even in the best case, humans

are prone to rely more heavily on heuristics and biases for the decision making process,

further bounding the rational analysis applied to the problem (Simon, 1955; Rubinstein,

1998; Kahneman, 2003; Gigerenzer and Gaissmaier, 2011).
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In practice, however, for structured, well-defined problems, such as many games, in-

sights from e.g. psychology or contextual information about the decision maker or the

decision problem may provide us with opportunities for assuming which decisions are

important and which outcomes may be of utility to the decision maker. As decision

spaces, most games are special cases since the available decisions and their consequences

are highly structured by the game’s mechanics and evaluation mechanisms. Games,

through their design, often provide specific affordances (Gibson, 1977; Elias et al., 2012)

to the player, and suggest utility for various outcomes. This perspective forms the ba-

sis for our understanding of player behavior in our testbed game, as we assume that

players are interacting with the game in accordance with the rules, understanding and

responding to the affordances of our game. That, in turn, motivates our use of utility

for attaining game rule based affordances as the defining characteristics of the personas

we develop. Similar theoretical perspectives have been described by other authors, no-

tably Mark (2009). When attempting to characterize player decision making styles in

games using utilities, it is important to consider the level of decision making relevant

for the game, as described in Canossa and Cheong (2011). Here, we model players at

the individual action level, at the more tactical level of game affordances, and at the

strategic level of aggregate outcomes.

In the following section, we suggest how the concept of play-personas can be used to

arrive at a selection of utility configurations for a particular game.

9.3.2 Personas

The concept of personas was first adapted to the domain of (digital) games under the

headline of play-personas by Canossa and Drachen (2009) who define play-personas as

“clusters of preferential interaction (what) and navigation (where) attitudes, temporally

expressed (when), that coalesce around different kinds of inscribed affordances in the

artefacts provided by game designers”. Their work focuses on how assumptions about

such player preferences can be used as metaphors for imagined player behavior during

the design process or patterns in observed player behavior can be used to form lenses

on the game’s design during play-testing.

Applying the perspective of decision theory further narrows the play-persona concept.

Rather than considering any arbitrary reasons for player preferences valid, decision the-

ory provides a perspective to operationalize the backgrounds for preferences into com-

binations of affordances and utilities. For any spatio-temporal configuration of a given

game, a limited number of plausible affordances can be determined using information
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about the game mechanics and reward structures. Based on these affordances, differ-

ent hypothetical combinations of utilities can be used to create metaphors for typical

player behavior. To the extent that these metaphors match what actual human play-

ers decided, they can be considered lenses on the players’ decision making styles with

utilities explaining how player preferences are distributed between the available affor-

dances. Our long term research agenda is to operationalize the play-persona concept

into actual game playing procedural personas, by building generative models of player

behavior from designer metaphors, actual play data, or combinations of the two.

In the following section, we argue for the use of game playing agents to provide such

representations of possible configurations of utilities, drawn from play-personas.

9.3.3 Player Modeling

Generative models of player behavior can be learned using a number of different meth-

ods. A key dichotomy in any player modeling approach lies in the influence of theory

(vs. data) for the construction of the player model (Yannakakis et al., 2013). On one

end, model-based approaches rely on a theoretical framework (in our case persona theory

or expert domain knowledge) and on the other hand, computational models are built

in a model-free, data-driven fashion. In this paper, personas represent the model-based

approach while what we term clones represent the data-driven approach. Within the

model-free approach, a fundamental distinction is between direct and indirect player

imitation, where the former uses supervised learning methods to train agents directly on

play-traces, and the latter uses some form of reinforcement learning to train agents to

behave in a way that agrees with high-level features extracted from the play-traces (To-

gelius et al., 2007). In several investigations, direct and indirect comparisons have been

compared for imitating player behavior in racing games (Togelius et al., 2007; Van Hoorn

et al., 2009) and platform games (Ortega et al., 2013). Model-free player modeling can

be done by imitating the player directly, using supervised learning methods on the play-

traces, or indirectly using some form of reinforcement learning to train agents to behave

in a way that agrees with high-level features extracted from the play-traces (Togelius

et al., 2007). Evolutionary computation can be used to optimize an agent to behave

similarly to a play-trace or optimize it to exhibit the same macro-properties as said

play-trace (Togelius et al., 2007; Van Hoorn et al., 2009; Ortega et al., 2013). Direct

imitation is prone to a form of over-fitting where the agent only learns to cope with

situations which exist in the play-traces, and might behave erratically when faced with

new situations. Indirect imitation to a large extent solves this problem by learning a

more robust, general strategy, which could be termed a decision making style. Here, we

investigate this problem by comparing clones that are directly trained on play-traces,
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but tested on unseen maps, to the personas, while we use specialized agents directly

trained and tested on seen maps as a best case, but context dependent, performance of

the chosen agent representation.

In the following section we describe the MiniDungeons testbed game in further detail.

9.4 MiniDungeons

The testbed game, MiniDungeons, implements the fundamental mechanics of a dungeon

exploration game where the player navigates an avatar through a dungeon containing

enemies, power-ups, and rewards. The turn-based game puts the player in a top-down

viewed tile-based 12 by 12 dungeon containing monsters, potions, and treasures. Im-

passable tiles constitute the walls of the dungeon, while passable tiles contain enemies

or items for the player. All of the level is visible to the player who can move freely

between passable tiles. When the player moves to a tile occupied by a monster or item,

immediately the monster is fought or the item is collected and applied. The player has a

40 hit point (HP) health counter and dies if this drops to zero. Monsters randomly deal

between 5 and 14 HP of damage while potions heal 10 HP up to the maximum value

of 40 HP. Treasures have no game mechanical effect other than adding to a counter of

collected treasure. The game contains one tutorial level and 10 “real” levels. For further

details on the test-bed game and discussion of its properties, we refer to Holmg̊ard et al.

(2014b). The necessary data for developing and evaluating the agents was collected from

38 anonymous users who played MiniDungeons on-line; this resulted in 380 individual

play-traces on the 10 MiniDungeons levels provided. The data was subsequently used to

evolve clones and specialized agents as described below. Figure 7.3 shows Level 2 from

the game, along with human play-traces from the level, exemplifying the diversity of

human decision making styles expressed in even a simple game like this. In Section 9.6.1

we give a brief introduction to our method of representation, but first we introduce three

metrics that we propose for evaluating to which degree personas, clones, and specialized

agents successfully enact human decision making styles in MiniDungeons.

9.5 Agreement Ratios for Evaluating Player Models

In this section, we present the three different metrics used to evaluate the performance

of the agents. Each metric was constructed to capture a different level of game play,

ranging from the specific and atomic to the general and aggregated.
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Figure 9.1: Heat-maps of six selected human play-traces in Level 2 of MiniDungeons,
showing a diversity of player decision making styles. Note that in two heat-maps, top

center and bottom right, the player died before completing the level.

9.5.1 Action Agreement Ratio

The first metric used to evaluate agent to human likeness is the action agreement ratio

(AAR). AAR considers each step of a human play-trace a distinct decision. To produce

the AAR between an agent and a human player, all distinct game states of the human

play-traces are reconstructed. For each game state, the agent being tested is inserted

into the game state and queried for the next preferred action, essentially asking: “What

would you do?”. If the action is the same as the actual next human action, the agent

is awarded one point. Finally, the AAR is computed by dividing the points with the

number of decisions in the human play-trace. As such, a perfect AAR score of 1.0

represents an agent that for every situation in the player’s play trace decided to take

exactly the same action as the player did.

9.5.2 Tactical Agreement Ratio

The second metric used for evaluating the likeness between agents and humans is the tac-

tical agreement ratio (TAR). TAR only considers reaching each distinct affordance in the

level a significant decision, ignoring the individual actions in between. For MiniDun-

geons the affordances considered relevant are: fighting a monster, drinking a potion,



Chapter 9: Personas versus Clones for Player Decision Modeling 107

collecting a treasure, or exiting a level. For each affordance reached in the human play-

trace, the resulting game state is reconstructed and the agent being tested is inserted

into the game state. The agent is then allowed as many actions as necessary to reach the

next affordance, asking the question “What affordance would you go for next?” at the

tactical level. If the next encountered affordance, in terms of both type and location,

matches the actual next human one exactly, the agent is awarded a point. Finally, the

TAR is computed by dividing the points with the number of affordances reached in the

human play-trace. As such, a perfect TAR score of 1.0 represents an agent that visits

every affordance in the level in the same order as the player originally did.

9.5.3 Strategic Agreement Ratio

The third metric used for evaluating the likeness between agents and humans is the

strategic agreement ratio (SAR). Operating at the general and aggregate level, SAR

considers the total amount of affordances engaged with for each level. The affordances

considered by SAR are: the number of monsters fought, the number of treasures col-

lected, the number of actions taken, and whether the agent reached the exit and was

alive at the end of the level. For each affordance the absolute difference between the

agent’s measure and the player’s measure (e.g. monsters killed) is calculated and nor-

malized by the maximal possible number for the level or, in the case of the number of

moves, in relation to the number of moves in the player’s play trace. These statistics

are then summed, divided by the number of statistics (in this case five). The score,

which is an expression of how different the agent’s statistics are from the player’s, is

subtracted from 1.0 to produce the SAR. As such, a perfect SAR score of 1.0 would

indicate an agent that fought exactly the same number of monsters, collected exactly

the same number of treasures, died in combat or exited the level just like the player,

and did so in exactly the same number of actions. In other words, the SAR asks the

question “How often would you go for each affordance in this level?”

In the following section we describe the testbed game, MiniDungeons, in which these

comparison metrics were used, and the controllers that were evolved and evaluated using

the metrics as fitness functions.

9.6 Generative Agents

This section describes the general controller framework used to evolve both personas,

clones, and specialized agents, and the evolutionary algorithm used to learn behaviors

from utilities in the case of personas and from the AAR, TAR, and SAR metrics in the
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cases of clones and specialized agents. All agents were evolved using the same algorithm;

what differentiates personas, clones, and specialized agents is the fitness function and

whether they are evolved across multiple levels (personas and clones) or on just one level

(specialized agents).

9.6.1 Evolving Agent Controllers

The controllers of the agents are represented as seven linear perceptrons. Each percep-

tron takes 8 inputs describing safe and risky path distances to the nearest affordances

in the map as illustrated in Figure 9.2. By only considering the nearest affordances, the

agent controller simulates bounded rationality in the sense that it only looks one affor-

dance ahead. For the sake of simplicity this bound is not varied in these experiments, but

potentially this horizon could be changed to represent different degrees of bounded ratio-

nality. Further details of the controller representation is given in Holmg̊ard et al. (2014a).

Controllers are evolved using a (µ + α) evolutionary strategy without self-adaptation.

For each generation the top 2% performing elite individuals remain unchanged, the low-

est performing half of the remaining population is removed, and single-parent offspring

from the remaining individuals are produced to maintain the population size. Finally

all individuals not in the elite are mutated. Mutation is accomplished by changing each

connection weight in the network with a random number drawn from a Gaussian distri-

bution centered around zero with a standard variation of 0.3, a value confirmed as useful

for this game by informal experimentation. All experiments are done using a popula-

tion size of 100 individuals, evolved for 100 generations. Controllers are initialized with

random connection weights for all connections in the linear perceptrons. The topology

shared by all controllers is illustrated in Figure 9.2.

9.6.2 Personas

For the purpose of the experiments five individual personas with different utility config-

urations were defined, based on designer interpretations of likely game-play in MiniDun-

geons. The personas were intended to represent five hypothetical extreme decision mak-

ing styles in interacting with the game: an Exit (E) persona who simply tries to escape

the level, a Runner (R) persona who tries to escape the level in as few steps as possible,

a Survivalist (S) persona who tries to avoid risk, a Monster Killer (MK) persona who

tries to kill all monsters and escape the level, and a Treasure Collector (TC) persona

who attempts to collect all treasures and escape the level. The decision making styles

are defined by the utility weights presented in Table 8.1, and serve as a metaphor for

the relative importance of the affordances to the archetypal player represented by the
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Figure 9.2: The controller network used for all agents: personas, clones, and spe-
cialized agents. The weights of the connections are determined through evolution as
described in Section 9.6.1. For every action it takes in the game, a controller uses
the current state of the game, represented by the 8 input nodes (disregarding the bias
node), and the weights to select which of the 7 strategies represented by the output

nodes to pursue.
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persona. The values were assigned by the authors, as the designers of the game, by

imagining how different archetypal player types would weigh the various affordances.

When assigned to personas as a fitness score during the evolutionary process, utility

points attained from a level are normalized by the maximally attainable utility for the

same level. E.g. killing three monsters in a level with eight monsters will yield a Monster

Killer persona 0.375 utility points, while yielding a Treasure Collector persona no points.

During evolution, personas are exposed to and evaluated on 9 of the 10 MiniDungeons

levels. The 10th level is subsequently reserved for comparison with human players. In

total, 50 personas were evolved for this study.

Table 9.1: Utility weights for the five designed personas.

Affordances E R S MK TC

Move -0.01 -0.02 -0.01 -0.01 -0.01
Monster 1
Treasure 1
Death -1
Exit 0.5 0.5 0.5 0.5 0.5
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9.6.3 Clones

Clones, like personas, are evolved by exposing them to 9 of the 10 levels of MiniDungeons.

Their fitness value is computed as the average normalized AAR, TAR or SAR across all

9 seen levels. One clone per player per map is evolved, yielding 380 agents per evaluation

metric, in total 1140 clones. All subsequent tests are done comparing the clones to the

players they were cloned from on their individually unseen levels.

9.6.4 Specialized Agents

In order to find the likely closest possible fit of the perceptron-based representation a

set of specialized agents is evolved. Again, one agent for each human play-trace for each

evaluation metric is evolved, resulting in 1140 total. These are evolved on a single level

of MiniDungeons each. Their fitness scores are computed directly from AAR, TAR or

SAR on that same level in an attempt to establish the closest fit to each human player

the representation can achieve.

9.7 Results

This section compares the three presented evaluation metrics, and compares the ability

of personas, clones, and specialized agents to represent human decision making styles in

MiniDungeons. It presents a breakdown of how the application of different evaluation

metrics change which personas are mapped to individual players. Finally, it provides an

example of a single player’s play-trace and the personas, clones, and specialized agents

derived from that player on a particular level.

Table 9.2 shows the mean of the agreement ratios for each kind of agent evolved, using

the AAR, TAR, and SAR metrics. In the case of personas, the best matching persona

from the 5 persona gallery, meaning the one with the highest agreement ratio (for AAR,

TAR, or SAR respectively) is identified for each player on each level and used in the

analysis. The distributions of best matches are presented below in Table 9.3.

The achieved ratios are generally highest for AAR, followed by SAR, with TAR produc-

ing the lowest ratios. However, while the ratios share some semantic properties such as

an upper perfect match represented by 1.0, it should be noted that the ratios are not

directly comparable.

No agents, not even the specialized ones, attain a perfect agreement ratio. This indicates

that the chosen agent control architecture seems incapable of matching players perfectly.
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Table 9.2: Means and standard deviations (SD) of agreement ratios attained for best
matching personas, clones, and agents evolved using the described fitness functions. It
is worth noting that across all three metrics, personas generally exhibit performance
close to that of the clones. Additionally, it is worth noting that while specialized agents
evolved using TAR and SAR as fitness functions perform best in the metric they were
evolved from, this is not the case for agents evolved using the AAR metric as a fitness
function. Using the AAR metric, the TAR-evolved specialized agents exhibit the best

performance.

Evaluation metric
AAR TAR SAR

Agent type Fitness function Mean SD Mean SD Mean SD

Personas Utilities 0.75 0.08 0.62 0.13 0.77 0.16

Clones AAR 0.77 0.08 0.66 0.13 0.68 0.23
Clones TAR 0.76 0.09 0.65 0.13 0.67 0.23
Clones SAR 0.69 0.10 0.53 0.17 0.72 0.22

Specialized AAR 0.81 0.09 0.73 0.17 0.68 0.24
Specialized TAR 0.84 0.07 0.86 0.09 0.71 0.24
Specialized SAR 0.73 0.10 0.57 0.18 0.85 0.21

This may be due to an inability of the seven-perceptron network to represent and hence

learn the decision making preferences of actual players or it may be due to the fact that

controllers are only provided with information about the distance to the nearest kind

of each affordance. While the linear perceptron network has the advantage of having

easily inspectable and interpretable weights other networks with greater representational

power, such as non-linear multilayer perceptrons, may provide a better matching of

individual player from the same information.

An interesting perspective is to compare across agent types within the different eval-

uation metrics. If we look at how fitness functions based on AAR, TAR, and SAR,

respectively perform when cross-evaluated against each other within clones and special-

ized agents, we see that AAR and TAR produce comparable results. In other words,

a clone or a specialized agent evolved using AAR as a fitness function also performs

well when evaluated by TAR and vice versa. Agents evolved using SAR on the other

hand, only perform relatively well when evaluated by SAR. For the other metrics, clones

and specialized agents evolved from SAR perform worse than the other members of

their groups. This may indicate that evolving agents using the high-level SAR as a

metric, results in some loss of information about the decision making styles that play-

ers are enacting. When agents are only evolved from information about the aggregate

outcome for each level, they might not learn about the order in which a player prefers

to pursue affordances. SAR results also show higher standard deviations, which may

be attributable to the loss of information from human play-traces making it harder to

produce reliable matches. This suggests that AAR and TAR may be the most relevant

metrics for modeling player decision making styles in MiniDungeons.
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Next, we investigate the differences between how well personas and clones agree with

player decision making styles. In the following analyses, specialized agents are omitted

as they are assumed to represent the likely closest fit of the representation and indeed

produce the highest agreement ratios when evaluated on the same metric from which

they were developed.

Using the AAR evaluation metric across personas and clones, a one-way ANOVA shows

significant differences (F (3, 1516) = 62.24, p < 0.001) between the means of the four

groups: the best matching personas and the three kinds of clones. Similar differences

were established when using the TAR (F (3, 1516) = 68.16, p < 0.001) and the SAR

evaluation metrics (F (3, 1516) = 16.29, p < 0.001), in spite of large standard deviations

in the latter case.

For all evaluation metrics, Tukey HSD tests for post-hoc analysis reveal that the personas

are significantly different (p < 0.05) from all clones, regardless of the fitness function

used to evolve the clones. The only exception is when personas are compared to clones

evolved from TAR, evaluated by AAR. With AARs of 0.75 and 0.76, respectively, there

is no significant difference between these two groups.

When examining the specific mean agreement ratios of the personas in contrast to the

clones it is clear that the actual differences in the case of AAR, even though significant,

are minor and that the personas for all practical purposes achieve the same performance

as the clones, perhaps with the exception of clones evolved through SAR which perform

the worst out of the group.

A similar pattern is repeated when examining the mean agreement ratios calculated

using TAR, though the personas in this case rank lower than clones evolved from both

AAR and TAR, while clones evolved using SAR again produce the lowest agreement

ratio.

Finally, when applying the SAR metric, the personas outperform all clone types with a

sizable performance difference between the personas and the worst performing clones,

the ones evolved using SAR.

Taken together the above results indicate that a small gallery of five personas, defined

using utility theory by game designers, are capable of representing a corpus of 38 players

across 10 levels with roughly the same performance individually evolved clones. The

personas do perform worse than specialized agents evolved to specifically copy player

behavior on one particular level, but this is to be expected. Measured by the action

and strategic metrics, the personas come relatively close to the specialized agents, while

they lag further behind the specialized agents when applying the tactical metric.
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Table 9.3 shows which personas exhibited the best ability to represent human play-traces,

for each MiniDungeons level and in total. For each human play-trace, the personas with

the highest AAR, TAR, and SAR respectively, are identified. All three metrics generally

favor the Treasure Collector persona as the best match for most play-traces, although

there is some discrepancy between the three measures in terms of which personas repre-

sent the human play-traces best. Notably, the SAR metric yields best matches that are

quite different from the matches yielded by the AAR and TAR metrics. This underlines

the fact that using an aggregate strategic level metric allows for larger degrees of vari-

ability in the decision order, since different orderings may lead to the same aggregate

results.

Table 9.3: Best persona matches based on Action Agreement Ratio (AAR), Tactical
Agreement Ratio (TAR), and Strategic Agreement Ratio (SAR), respectively

AAR
Persona/Level 1 2 3 4 5 6 7 8 9 10 Total
Exit 0 2 5 1 0 1 5 1 2 3 20
Runner 0 0 0 0 0 0 0 0 0 0 0
Survivalist 0 1 0 0 0 0 0 0 0 0 1
Monster Killer 8 8 0 2 3 1 7 2 2 0 33
Treasure Collector 30 27 33 35 35 36 26 35 34 35 326
Total 38 38 38 38 38 38 38 38 38 38 380

TAR
Persona/Level 1 2 3 4 5 6 7 8 9 10 Total
Exit 0 0 5 1 0 1 4 0 2 0 13
Runner 0 0 0 0 0 0 0 0 0 0 0
Survivalist 0 0 0 0 0 0 0 0 0 0 0
Monster Killer 5 15 3 3 4 3 4 5 0 0 42
Treasure Collector 33 23 30 34 34 34 30 33 36 38 325
Total 38 38 38 38 38 38 38 38 38 38 380

SAR
Persona/Level 1 2 3 4 5 6 7 8 9 10 Total
Exit 7 7 10 11 2 15 11 1 7 0 71
Runner 0 0 0 1 0 2 2 0 0 0 5
Survivalist 0 0 0 0 0 1 0 3 0 1 5
Monster Killer 5 10 5 7 3 7 18 6 14 3 78
Treasure Collector 26 21 23 19 33 13 7 28 17 34 221
Total 38 38 38 38 38 38 38 38 38 38 380

Finally, Figure 9.3 shows a particular player’s original play trace along with the best

matched personas, using each metric, and the derived clones and specialized agents.

The player was matched by the Treasure Collector by all three metrics, as was indeed

the typical case in the data set. The heat-maps illustrate how most agents provide a

relatively close match to the visited areas of the level. The Treasure Collector comes

close to matching the visitation pattern of the player, but fights several monsters the

player did not fight, as monsters have no bearing on the utility attained by the Treasure

Collector as long as they do not endanger the persona’s chances of completing the level.
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The AAR metric does not consider the order of the affordances in the level directly, but

only the immediate next atomic action. As a consequence, the clone and the specialized

agent derived from this metric miss visiting tiles occupied by monsters and potions

visited by the player, but in general exhibit a visitation pattern close to that of the

player.

The TAR metric does consider the kinds of affordances it visits and the order of them

and hence visits more of the same specific monsters, treasures and potions of the level

as the player. As a consequence the visitation pattern also looks the same.

The SAR metric only considers outputting the same number of affordance interactions

as the player and does not concern itself with neither the order, nor the location, of these

affordances. The SAR based clone ends up with a relatively (and uncharacteristically)

poor performance, possibly by choosing an early order of actions that makes it diffi-

cult for it to achieve the same statistics as the player. Meanwhile, the SAR specialized

agent attains perfect performance, but does so through a quite different visitation pat-

tern, demonstrating how the SAR metric allows for greater variation in the underlying

implementation of actions leading to the same SAR value.

9.8 Discussion

In the following discussion we revisit and evaluate the results from the experiments.

Two important observations must be made in relation to the experiment used to collect

the play-traces: Firstly, all 38 players in the study were playing MiniDungeons for the

first time. Though they were given unlimited plays on the tutorial level they were not

familiar with the rules of the games or the distribution used to choose damage dealt by

the monsters in the level. The play-traces collected are most likely subject to learning

effects, as the players moved from being novices to developing some expertise, which in

turn may have impacted their decision making styles. It might also have made players

change decision making styles along the way, as their expertise increased. However,

MiniDungeons is a relatively easy game to learn, making it likely that any learning

effects beyond the first few levels would be limited. Future work could attempt to

measure such learning effects or try to counter-act them by randomizing level order or

operating with a block experimental design.

Secondly, each level in the game was played independently of the preceding levels. Each

level let the player start with full hit-points. This may have lead players to favor the

Treasure Collector decision making style, simply because risk was perceived as low. If
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Figure 9.3: Heat-maps from one player and all best matching personas, all clones,
and all specialized agents on Level 2. For each agent the maximally attained agreement
on each metric is indicated in the order AAR; TAR; SAR. The metric used to drive the
evolution of each agent, excepting the persona, is indicated in bold. The best matching

persona, by all metrics, was the Treasure Collector.

(a) Player (b) Personas (TC)
0.78; 0.61; 0.94

(c) AAR Clone
0.83; 0.78; 0.57

(d) AAR Specialized
0.86; 0.77; 0.53

(e) TAR Clone
0.85; 0.78; 0.56

(f) TAR Specialized
0.85; 0.89; 0.84

(g) SAR Clone
0.60; 0.39; 0.47

(h) SAR Specialized
0.82; 0.78; 1.00

a player died before reaching the exit, the player would start the next level with full

health.

Below, we discuss the observed properties and performances of the three kinds of metrics

used. We then briefly discuss the used controller architecture and whether its perfor-

mance, as indicated by the metrics, suggests that it is sufficient for playing MiniDun-

geons. Afterwards, we discuss the implications of personas and clones attaining relatively
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similar performances and whether either method hypothetically would be transferable

to other games. Finally, we suggest future work, including adapting both personas and

clones further to observed play-traces by fitting utility values through multi-objective

evolution.

9.8.1 AAR, TAR, and SAR metrics

The three different metrics presented in this paper are not directly comparable as they

operate on three different levels of analysis, relative to the mechanics and affordances

of the MiniDungeons game. As the results above indicate, each metric yields somewhat

different behavior when applied to the evolution of game playing agents representative of

human players, each capturing different aspects of the original player’s decision making

style.

The metrics operate at three different levels of analysis, which is rooted in the theoret-

ical notion that, even for simple games, decision making takes place at multiple levels

simultaneously, focusing on the individual decision, the order of individual decisions,

and the aggregate outcome of a set of decisions irrespective of the individual decisions

or their order.

However, the specific implementation of the three metrics for MiniDungeons, meaning

the identification of relevant affordances and related decisions, was pragmatically shaped

by the game’s design and not rooted in a theoretical system of analysis. This could be

potentially be addressed by applying existing formal systems for identifying affordances,

decisions, and actions in games, such as e.g. through the notion of game design patterns

(Björk and Holopainen, 2004). The cost of taking this approach would be a longer, more

involved analytical process before metrics could be defined for a particular game, but

the gain would potentially be a greater validity of the chosen affordances. Depending

on the purpose of the modeling, this may or may not be a desirable trade-off: An single

developer looking to reduce time and resource consumption spent on play-testing may

be perfectly content with using her own expertise as a valid foundation. In contrast, a

team working in a larger organization or doing an academic study of one or multiple

games might prefer grounding the selected affordances and decisions in a larger corpus

of examples collected from other games.

Finally, while these metrics are specifically targeted at modeling decision making, other

play-trace comparison metrics could be used to compare agent behavior to human player

behavior: e.g. action/edit-distance based methods such as the Gamalyzer metric (Os-

born and Mateas, 2014).



Chapter 9: Personas versus Clones for Player Decision Modeling 117

9.8.2 Controller Architecture Performance

The results indicate that a relatively small gallery of personas, crafted analytically by a

game designer, may provide representational performance comparable to that achieved

by the cloning approach. Still, the evolution of specialized agents that represent indi-

vidual players on individual levels provides a reproductive fidelity that neither personas

nor clones can match. On the other hand, specialized agents suffer from the problem

that they are optimized for one particular level and are not well suited for generalizing

to new levels, for which they have not been evolved.

The performances of the specialized agents reveal that the chosen representation using

seven linear perceptrons is incapable of learning a human play-trace perfectly. This could

motivate two changes to the controller to achieve better performance. Firstly, the use

of a more complex controller, such as e.g. a controller based on multilayer perceptrons

configured using Neuro-Evolution with Augmenting Topologies (Stanley and Miikku-

lainen, 2002), would most likely exhibit a greater ability to learn individual play-traces.

Secondly, controller performance might be improved by increasing the environment sens-

ing capabilities of the controller. In the current implementation, the controller is only

informed about risky and safe path distances to the nearest affordance of each kind. As

such, it can be interpreted as representing the assumption that players only look to the

nearest affordances that they can reach when making decisions. This is most likely an

over-simplification which, while having the advantage of simplifying the implementation

and intelligibility of the model, may be too aggressive. Future work should explore more

complicated agent control architectures.

9.8.3 Personas and Clones for MiniDungeons and Beyond

The fact that the top-down approach of persona construction and the bottom-up ap-

proach of cloning yield similar performances provides some indication that using pro-

cedural personas for synthesizing player models and play-test data for games might be

feasible at least for games of the same scope as MiniDungeons.

We suggest that this might be useful in multiple situations: One example could be when

game designers need quick access to potential interactions with new content during an

iterative design process. By considering only the basic affordances of their game, and

producing different preference orderings of these by assigning utilities, they may quickly

sketch out different play-styles and see them in action. Another example could be for

games using procedural content generation to an extent where full human curation of

the generated content is impossible. Here, procedural personas can act as proxy critics

of a human designer’s intentions (Liapis et al., 2015).
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The persona method is less play-trace-dependent and computationally expensive than

the cloning method, but needs an expert game designer. Still, some players may exhibit

decision making styles that cannot be captured by the designer’s intuition, and would

be captured better by the cloning approach.

MiniDungeons is arguably a game with a small scope, compared to most commercial

games, even most made by single, independent developers. This begs the question of

whether the method is extensible to larger games. While this is an open question at

the moment, some strategies may be imagined. Any game which may be abstracted

to a discrete graph of decisions may in principle be subject to the method. How this

abstraction could be appropriately implemented would again be dependent on the design

of the game in question and possibly subordinate modeling steps could be added to the

method. If e.g. a first person shooter were being modeled, a first step could be to

reduce the game’s spatial areas into specific decision points, based on the affordances

they contain. A collection of design patterns for the genre, such as those described

in Hullett and Whitehead (2010), might aid in this process. Once the design patterns

were identified, personas would be implemented to choose between these areas, based

on their play style preferences, choosing e.g. between a sniper area or a close combat

area. Decision making styles within each area could then be simulated using a separate

application of the persona method, a probabilistic model, or simple scripted behavior.

The major challenge in this case would be to arrive at a successful abstraction of the

game’s state space into appropriate affordances with an acceptable amount of effort.

Future work will focus on formalizing this process.

9.8.4 Combining Personas and Clones

The fact that the persona and the cloning methods seem to perform equally well for

MiniDungeons raises the question of whether the persona method has any value once a

sufficient amount of human play-traces have been collected for modeling. We suggest

that even in this situation, procedural personas may offer two advantages to game and

level designers.

Firstly, each persona defines a decision making style grounded in the designer’s expec-

tations. Individual or groups of human players may be described by their distances

to these a priori defined decision making styles. This means that the designer is not

interpreting the play traces in terms of their observed decision making styles alone, but

also in terms of how different they are from the designer’s conception of styles catered

to in the game’s decision making space. This helps contrast what the designer expected

to what the players actually did.
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Secondly, once a relation between personas and clones has been established, it becomes

possible to interpolate between personas and individual clones or points defined by

clusters of clones. This allows a designer to define new personas that are more like the

observed play-traces, but still informed by the designer’s own observations, expectations

and wishes for decision making styles within the game space.

Distances between personas and clones can be defined according to any of the three

proposed metrics, depending on the designer’s agenda, or according to an aggregation of

all three metrics. While the designer could define these new adapted personas manually,

a more efficient approach would be to fit utility values automatically to maximize one,

two or all three of the defined agreement ratios. If a designer wanted to maximize

agreement for all three metrics e.g. multi-objective evolutionary methods (Van Hoorn

et al., 2009) could be used to arrive at suitable utility weight configurations. Once

these had been determined computationally, the designer could then inspect these utility

values to understand the differences between the original personas and the adapted ones

and manually adjust them to her preference.

9.9 Conclusion

This paper presented a framework for modeling player decision making styles. This

framework was implemented in three different manners: One was based on personas,

evolved from designer expert knowledge, another was based on clones, based on human

play-traces, while the third used specialized agents to replicate human play-traces while

sacrificing generalizability. Three metrics were used to evaluate the agents’ ability to

represent human decision making styles, focused at the action, tactical, and strategic

levels, respectively.

Personas and clones were shown to represent human decision making styles almost

equally well when compared at the action and tactical levels. At the strategic level,

personas were somewhat better at representing human decision making styles, compared

to clones. The three different metrics showed how focusing on different analytical levels

of a game can be used to characterize play traces differently and to generate variation

in game playing agents.

Two advantages of using personas over clones is that we lose little accuracy from using

personas instead of clones and we do not need to collect empirical data from players

before we can start modeling. Clones, on the other hand, may learn examples of decision

making styles that we as designers might not imagine on our own. The advantage of

using either personas or clones over specialized agents is that even though they are less
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accurate they may be used on novel content, which is critical in enabling procedural

play-testing.

Based on the results, we conclude that using the top-down approach procedural personas

for representing player decision making styles is comparable to using the bottom-up

approach of cloning. Either approach may be useful for synthesizing play-test data for

new content as it is being generated which may be of use to game designers authoring

content as well as game designers building procedural content generation systems.
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10.1 Abstract

This paper introduces a constrained optimization method which uses procedural per-

sonas to evaluate the playability and quality of evolved dungeon levels. Procedural per-

sonas represent archetypical player behaviors, and their controllers have been evolved

to maximize a specific utility which drives their decisions. A “baseline” persona evalu-

ates whether a level is playable by testing if it can survive in a worst-case scenario of

the playthrough. On the other hand, a Monster Killer persona or a Treasure Collector

persona evaluates playable levels based on how many monsters it can kill or how many

treasures it can collect, respectively. Results show that the implemented two-population

genetic algorithm discovers playable levels quickly and reliably, while the different per-

sonas affect the layout, difficulty level and tactical depth of the generated dungeons.

10.2 Introduction

The generation of dungeons is one of the first instances of procedural content generation

(PCG) with Rogue (Toy et al., 1980). Since then, many games have used algorithms

121
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to generate dungeons, e.g. Diablo (Blizzard North, 1996), Daggerfall (Bethesda Soft-

works, 1996) and Daylight (Zombie Studios, 2014). Generating dungeons has also been

a fertile research topic as summarized by Linden et al. (2013); algorithmic approaches

using constraints (Roden and Parberry, 2004), grammars (Dormans, 2010) and genetic

algorithms (Hartsook et al., 2011) have been successfully applied to this task.

This paper introduces a method where procedural personas act as critics in a search-

based procedural content generation (SBPCG) framework (Togelius et al., 2011). Pro-

cedural personas are artificial agents which represent archetypical player behaviors (e.g.

rushing to the goal, killing monsters, collecting treasures). In this paper, the personas

have been evolved on a set of authored dungeons, according to different fitnesses that

match archetypical decisions-making priorities. The testbed game, named MiniDun-

geons, is a simple turn-based roguelike game; the game has been tested by human users

and a close match between procedural persona playstyle and human playstyle was found

(Holmg̊ard et al., 2014a).

Using procedural personas to test the evolving dungeons situates the proposed

method as a type of simulation-based SBPCG. However, the persona-critics are used

not only to evaluate how appropriate a dungeon is for a particular playstyle, but also

whether the dungeon is actually playable. The requirement that a dungeon can be com-

pleted by a simple “baseline” persona — despite any stochasticity of the gameplay —

adds another constraint to the generative process. This paper uses a two-population ge-

netic algorithm for the purposes of constrained optimization, which evolves both feasible

and infeasible dungeons (Kimbrough et al., 2008). Dungeons are tested by a “baseline”

persona based on whether it can complete a worst-case scenario of the dungeon; this

persona also evaluates infeasible dungeons’ distance from feasibility. Playable levels are

evaluated by a Monster Killer persona or a Treasure Collector persona based on how

many monsters it can kill or how many treasures it can collect, respectively.

10.3 Previous Work

This Section covers the core background material (testbed game, procedural personas

and evolutionary level design) on which the presented method is built.

10.3.1 MiniDungeons game

MiniDungeons is a simple turn-based roguelike puzzle game, implemented as a bench-

mark problem for modeling decision making styles of human players (Holmg̊ard et al.,
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Figure 10.1: The levels used for collecting player data and for evolving procedural
personas.

2014b). MiniDungeons levels are laid out on a grid of 12×12 tiles: tiles can be walls

(which obstruct movement), empty, or contain monsters, treasure, the level’s entrance

or exit. The player has full information of the level except for monsters’ damage, as

discussed below.

In MiniDungeons, a hero (controlled by the player) starts at the level’s entrance and

must proceed to the level exit: stepping on the exit tile concludes a level and loads the

next one. A hero starts each level with 40 hit points (HP) and dies at 0 HP. The hero

can collect treasure by stepping on treasure tiles: treasures have no in-game effect but a

treasure counter is shown on the user interface. The hero can drink potions by stepping

on potion tiles: potions heal 10 HP, up to the maximum of 40 HP. Finally, the hero can

kill monsters by stepping on monster tiles: monsters do not move and only engage the

hero if the hero moves onto their tile. Combat is stochastic: a monster deals a random

number between 5 HP and 14 HP of damage to the hero and then dies.

For the purposes of collecting player data as well as for evolving procedural personas,

ten MiniDungeon levels were created in advance (see Fig. 10.1). These levels were

designed in a mixed-initiative fashion (Liapis et al., 2013c) and had several patterns

which allowed different decision making styles to be exhibited. The authored levels

have many branching points, but usually include an easy path (with minimal combat)

between the entrance and the exit. Moreover, treasures and potions are often “guarded”

by monsters, although some treasures are easily accessible and some monsters do not

obstruct any paths. These patterns allow for different ways of traversing the level, as

will be seen in Section 10.3.2.
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(a) Player #1 (b) Player #2 (c) Player #3

(d) Baseline persona (e) Monster Killer (f) Treasure Collec-
tor

Figure 10.2: Playtraces of human players and evolved procedural personas of
MiniDungeons.

10.3.2 Procedural Personas

The MiniDungeons game was created for two purposes: (a) to investigate how human

players enact decision making styles in a simple game, and (b) to construct artificial

agents able to represent such decision making styles.

A core assumption of decision theory (Kahneman and Tversky, 1979) is that human

decision making under risk and uncertainty is shaped by utility. A utility function

determines the decision maker’s willingness to take risks for an expected reward, and is

considered idiosyncratic. In digital games, the game’s mechanics constitute affordances

(Gibson, 1977) which are likely to be of utility to the player. Using the MiniDungeons

game as a testbed, 38 participants played all 10 levels of Fig. 10.1, as covered in detail in

Holmg̊ard et al. (2014a): a few participants managed to collect all the treasures in every

level (see Fig. 10.2a), while others rushed to the exit (see Fig. 10.2b) or miscalculated

the risk of combat and died (see Fig. 10.2c). Such mechanics (treasure collection, death,

reaching the exit) are thus likely sources of utility to players.

Procedural personas are artificial agents which represent archetypical decision making
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styles. In MiniDungeons, procedural personas consider several gameplay and level el-

ements as sources of utility: killing monsters, collecting treasures, reaching the exit,

performing as few actions as possible, or avoiding death. Previous work identified five

procedural personas: a Monster Killer, a Treasure Collector, a “baseline” persona, a

Speedrunner and a Survivalist, respectively. For the purposes of this paper, generated

dungeons will be evaluated by personas evolved on all dungeons of Fig. 10.1 as per

Holmg̊ard et al. (2014a). The controller for each persona is a combination of 7 linear

perceptrons, with inputs being the hero’s HP and distance to different elements (e.g.

closest potion, closest “safe” treasure) and outputs being the desirability of a strategy

(e.g. go to closest potion, go to closest treasure that does not involve combat). The

strategy with the highest value is selected by the agent; the decision is re-evaluated in

every step rather than upon completion of the strategy. The perceptrons’ weights were

evolved via an (µ+λ) evolutionary strategy without self-adaptation. The fitness of each

agent was calculated from the utilities collected after all 10 levels were played. Focusing

on the personas used in this paper, the baseline persona received a boost to its fitness for

every exit it reached; the Treasure Collector received a fitness boost for every treasure

collected and a smaller boost for every exit reached; the Monster Killer received a fitness

boost for every monster killed and a smaller boost for every exit reached. Optimizing

the controllers for these fitnesses resulted in personas exhibiting very different behaviors

(see Fig. 10.2d–10.2f).

The evolved procedural personas were compared to the human playtraces, in terms of

persona-player agreement ratio. In every step a human took when playing, the persona

was queried “what would be your next action given this game state?”: if the persona’s

chosen action matched the human’s, the agreement ratio increased. Summarizing the

results of Holmg̊ard et al. (2014a), most players had the highest agreement ratio with

the Treasure Collector persona, while a smaller number of players matched the Monster

Killer persona.

10.3.3 Constrained Optimization of Game Levels

Previous experiments on the constrained optimization of game levels focused on gener-

ating map sketches, i.e. low-resolution, high-level abstractions of complete levels (Liapis

et al., 2013c). Map sketches contain a small number of tiles which represent the most

significant features of a level of a specific genre (e.g. weapon pickups in shooter games,

player bases in strategy games). The simplicity of a map sketch allows it to be evolved

in a straightforward and computationally lightweight manner. Map sketches of strategy

games, rogue-like dungeons and first-person shooters have been evolved according to a

generic set of objectives which can be customized to the game genre at hand (Liapis
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et al., 2013d). The constraints of such map sketches revolve around the connectedness

between level features: for instance, in a map sketch for a strategy game all bases must

be connected (via passable paths) with each other and with all of the map’s resources.

In order to ensure constraint satisfaction, evolution has been carried out via a FI-2pop

GA (Kimbrough et al., 2008) which can discover feasible individuals quickly and reliably

even in highly constrained spaces (Liapis et al., 2013b).

MiniDungeon levels differ from map sketches in the fact that, despite a similarly small

map size, they are directly playable. This introduces additional constraints on MiniDun-

geon levels in that they must be completable by procedural personas. Moreover, pre-

vious experiments optimized map sketches according to hard-coded objectives inspired

by game design patterns (Björk and Holopainen, 2004), while MiniDungeon levels are

evolved according to the play experience of the procedural personas that playtest them.

In that regard, the procedural personas act as critics both on the playability and on the

quality of the generated level: how this affects the evolutionary process will be explored

in Section 10.5.

10.4 Methodology

This Section describes the two-population genetic algorithm used to evolve MiniDungeon

levels, as well as the methods for assessing playability (the infeasible fitness function)

and level quality (the feasible fitness function) via procedural personas.

10.4.1 Evolving MiniDungeon levels

A MiniDungeon level consists of 144 tiles, which can be empty or contain walls, monsters,

treasures, potions, the level entrance or the level exit. In the genotype, a MiniDungeon

level is represented directly as an array of integers: each integer describes the contents

of a single tile in the level.

Due to the constraints on playability (discussed in Section 10.4.2), MiniDungeon lev-

els are evolved via a feasible-infeasible two-population genetic algorithm (FI-2pop GA).

The FI-2pop GA separates feasible individuals from infeasible ones (which do not satisfy

one or more constraints), placing the former in a feasible population and the latter in

an infeasible population (Kimbrough et al., 2008). The feasible population evolves to

optimize the domain-specific measure of quality, while the infeasible population evolves

to minimize its members’ distance from the feasible border. As infeasible individuals

approach the border of feasibility, the chances that their offspring will be feasible in-

crease. Feasible offspring of infeasible parents migrate to the feasible population, and
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vice versa: this indirect form of interbreeding may increase the size and diversity of the

feasible population. In order to ensure that the feasible population is sufficiently large

for efficient optimization, the offspring boost mechanism is applied to the FI-2pop GA.

The offspring boost is applied in cases where the feasible population is smaller than the

infeasible population, and forces both feasible and infeasible populations to produce an

equal number of offspring regardless of the number of parents in each population.

In the experiments described in this paper, evolution of MiniDungeon levels is driven by

asexual mutation alone; preliminary experiments showed that recombination is slower

to discover feasible individuals and can result in multiple entrances or exits in the same

dungeon. Mutation may transform an empty tile to a wall tile and vice versa, a level

feature (non-wall, non-empty tile) may swap places with another level feature chosen

randomly, or any tile may swap places with an adjacent one. Every offspring has 5% to

20% of its tiles (chosen randomly) mutated in the above fashion. By evolving content

solely via this mutation scheme, an offspring is ensured to contain the same number of

monsters, treasures, potions, level entrances and level exits as its parent. Parents are

chosen via fitness-proportionate roulette wheel selection; the same parent may be chosen

multiple times to generate offspring. In each population (feasible and infeasible), the

best individual is transferred to the next generation unchanged.

10.4.2 Assessing Playability with Personas

In order for a MiniDungeons level to be playable, a number of constraints need to be

satisfied: (a) the level must contain a specific number of tiles of certain types, e.g. one

entrance and one exit, (b) all features of the level (monsters, potions, treasures, exit)

must be accessible via passable paths to the hero, and (c) the hero must be able to reach

the exit without dying. Constraints of type (a) are automatically satisfied by seeding

the initial population with levels containing the desired number of level features: since

mutation does not add or remove features, the number of features in the initial popula-

tion will remain constant throughout the evolutionary process. Constraints of type (b)

require that a passable path exists between the level entrance and all other features in

the level: levels that fail this constraint are evaluated based on how many features are in-

accessible. Finally, constraints of type (c) require that an agent simulates a playthrough

of the level. In order to ensure that the level can be completed regardless of the stochas-

ticity of combat, a ‘worst-case’ scenario is constructed by assigning maximum damage

(14 HP) to all monsters of the level. The agent chosen to perform the playthrough is

the baseline persona, whose affordance is only to reach the exit: this persona does not

get “distracted” by treasure or monsters, and is likely to finish the level quickly. If the

baseline persona dies then this constraint is failed: however, an additional check for the
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number of tiles explored by the persona is performed. This additional constraint was

added after preliminary experiments in order to ensure that the entrance and exit are

not close to each other, so that even speedrunners face at least a minimal challenge. If a

baseline persona completes the level having explored less than 12 tiles, the level fails to

satisfy the constraint of type (c) and is evaluated based on how many tiles the baseline

persona explored, or a worse score if the baseline persona died.

Combining constraints (b) and (c) into a fitness measure for infeasible content, the

distance to feasibility is calculated via dinf of eq. (10.1). The infeasible population

evolves to minimize dinf , which increases the chances of feasible content being discovered.

Observing dinf , there is a clear priority between constraints: levels that fail constraints

of type (b) automatically fail constraint (c) and assume that the baseline persona died

without even testing for it. Moreover, if a baseline persona dies then the level receives

a much worse score than if it completes the level, even within a very small number of

steps. This aims to guide infeasible content towards first becoming well-formed (with

all features accessible to the hero), then minimally playable for the baseline persona.

dinf =


1 + uN

N if uN > 0

1 if baseline persona died

1
2(1− sB

Cs
) if baseline persona completed the level with sB < Cs

(10.1)

where N is the total number of level features (monsters, potions, treasures, exit) and

uN is the number of features which are not accessible from the level entrance; sB is the

number of tiles explored by the baseline persona in the worst-case scenario (all monsters

dealing maximum damage) and Cs is the minimum number of explored tiles for a level

to be considered feasible (Cs = 12 in this study).

10.4.3 Assessing Level Quality with Personas

The main contribution of the procedural personas is towards the evaluation of feasible,

playable game levels. However, it is not obvious what a persona (or indeed the human

players it represents) looks for in a level. Granted that the decisions of procedural

personas are shaped by their own utility functions, only events which affect their utility

should be considered. This paper will consider the two most dominant (and distinct)

procedural personas of past experiments: the Monster Killer (with a utility for killing

monsters and reaching the exit) and the Treasure Collector (with a utility for collecting

treasure and reaching the exit). Most playtraces of the 38 human players who tested
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MiniDungeons matched the Treasure Collector persona (86%), while the Monster Killer

was second (8%). When evaluating a level it has just finished playing (either by reaching

the exit or by dying), the Monster Killer assigns the score of eq. (10.2) while the Treasure

Collector assigns the score of eq. (10.3). The values of Cm, Ct and Cr are taken directly

from the fitness function which guided the evolution of each persona’s controller1; the

persona was evolved on 10 authored levels (see Fig. 10.1) and was evaluated on how

it represents an archetypical decision making style (a Monster Killer that kills most

monsters, a Treasure Collector that collects most treasure) (Holmg̊ard et al., 2014a).

Inversely, the scores of eq. (10.2) and (10.3) evaluate whether the level provides the

desired utilities to personas that play optimally towards attaining them.

SMK = (dmCm+Crr)
(NmCm+Ce)

(10.2)

STC = (dtCt+Crr)
(NtCt+Ce)

(10.3)

where Nm and Nt is the number of monsters and treasures in the level respectively;

dm and dt is the number of dead monsters and collected treasures respectively; r is

1 if the hero reached the exit and 0 if not; Cm, Ct and Cr are constants expressing

the priority of monsters, treasures and level completion (respectively) in each persona’s

utility; for these personas Cm = Ct = 1 and Cr = 0.5. The denominator normalizes the

score of eq. (10.2) and (10.3) between 0 (no affordances acquired) and 1 (all affordances

acquired).

Intuitively, a persona prefers levels that allow it to maximize its utility function: i.e. a

Monster Killer prefers levels that allow it to kill all monsters and a Treasure Collector

prefers levels that allow it to collect all treasure. Due to the stochastic nature of combat,

the same level is played by a persona multiple times (10 in this paper) with damage for

each monster randomized in each playthrough. When maximizing the level’s utility for

a persona, the simulations’ SMK and STC scores are averaged in the fitness of eq. (10.4)

for a Monster Killer, and eq. (10.5) for a Treasure Collector, respectively.

FMK = 1
R

∑R
i=0 SMK(i) (10.4)

FTC = 1
R

∑R
i=0 STC(i) (10.5)

1The fitness function of all personas’ controllers included a penalty for taking extraneous actions.
Since this penalty was a control mechanism to avoid playthroughs taking too long rather than an explicit
utility, it is omitted for the purposes of level evaluation.
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Maximizing the utility function of a persona, however, may be somewhat naive consid-

ering the decisions taken within MiniDungeons. Maximizing the utility of a Treasure

Collector, for instance, can be trivially solved by placing all the treasure in a straight

path between the level entrance and the level exit. In such cases, the player does not

take a decision at any point during play; there is no risk/reward where the idiosyncratic

utility function would shape the decision. In order to provide an element of risk, and

thus require that the persona makes meaningful decisions, the level can be evaluated

on how different a playthrough is from the next. Due to the randomness of combat,

different playthroughs by the same persona may result in a premature death, in more or

fewer treasures collected or monsters killed. Using the standard deviation of SMK and

STC among the 10 simulations, eq. (10.6) (for a Monster Killer) and eq. (10.7) (for a

Treasure Collector) aim to maximize the levels’ risk involved in personas’ decisions.

DMK =
√

1
R−1

∑R
i=0(SMK(i)− FMK) (10.6)

DTC =
√

1
R−1

∑R
i=0(STC(i)− FTC) (10.7)

10.5 Experiments

The experiments described in this section test how the different procedural personas

(Monster Killer and Treasure Collector) and different fitness functions of eq. (10.4)-(10.7)

affect the evolutionary process and the final generated dungeons. Dungeons generated in

this paper have the same properties as those of Fig. 10.1: a 12×12 tile grid containing one

entrance, one exit, 8 monsters, 7 treasures and 4 potions (21 level features in total). All

experiments in this paper were performed with a population size of 20 (including feasible

and infeasible levels), and evolution runs for 100 generations; results were averaged from

20 independent evolutionary runs and each level is evaluated by a procedural persona

via 10 playthroughs.

10.5.1 Discovery of feasible content

Despite the small map size of MiniDungeons, the constraints of connectivity of 21 level

features and that of baseline persona survival were expected to make discovery of feasible

individuals by random chance highly unlikely. Out of 106 randomly initialized levels,

360 were feasible (for all constraints) and 958 satisfied the constraints of connectivity,

i.e. uN = 0 in eq. (10.1). Evolving infeasible individuals allowed the FI-2pop GA to

discover playable levels quickly despite the limited population size: the first feasible
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individual was discovered on average after 14.39 generations2 (standard error: 1.40).

This performance of the FI-2pop GA can be compared with a single population approach

which handles infeasible individuals by applying the death penalty (i.e. fitness of 0).

Using the same parameters as the FI-2pop GA and performing 20 evolutionary runs

with each of eq. (10.4)–(10.7) (80 runs in total), the single population approach did

not discover any feasible individuals in 21 of 80 runs (while all runs of the FI-2pop

GA discovered playable levels). Moreover, among those runs where feasible individuals

were found when using the death penalty, discovery of playable levels occurred after

35.42 generations (standard error: 0.84). As the difference in generation of discovery

between FI-2pop GA and single-population GA is statistically significant (p < 10−6 via

two-tailed Student’s t-test assuming unequal variances), it is clear that the FI-2pop GA

can discover playable MiniDungeon levels faster and more reliably.

10.5.2 Quality of feasible content

Figure 10.3 displays the best final evolved levels of 20 evolutionary runs, for each fitness

function of eq. (10.4)–(10.7). To better demonstrate the levels’ gameplay, each level is

accompanied by a visualization of different playthroughs of the persona that evaluates

it. Levels evolved towards FMK tend to allow access from the entrance to the exit as

well as to most potions (i.e. no monsters guard those level features); therefore it is the

players’ decision to pursue combat without it being forced upon them. Levels evolved

towards FTC tend to leave most treasures unguarded (in Fig. 10.3f only one treasure,

near the exit, is guarded by a monster) and therefore collecting all treasures is not a

risky choice for the player. Levels evolved towards DMK tend to place more monsters

at chokepoints, therefore guarding many of the level’s features such as the exit, potions

and treasure: in Fig. 10.3k the hero must face a minimum of two monsters in order to

reach the exit, and a minimum of three monsters to reach the treasures in the middle of

the map (the exit tile can not be crossed as it ends the level). Levels evolved towards

DTC similarly place monsters at chokepoints: in Fig. 10.3l two monsters must be fought

to reach the exit as well as the treasures in the middle of the map. While the Treasure

Collector persona could theoretically have fought those two monsters and gained access

to the 6 otherwise unguarded treasures, it opted to go for the bottom right treasure

which often caused it to die. This odd decision demonstrates the bias introduced by the

representation of the personas’ controllers (the Treasure Collector went for the closest

guarded treasure in this case) and by the levels they were evolved on (which rarely had

so many monsters clustered in a map corner). This issue will be further discussed in

Section 10.6.

2Since the infeasible fitness (dinf ) is the same for all experiments, discovery of the first feasible
individual is calculated based on all four sets of experiments (FMK , FTC , DMK , DTC).
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To evaluate the quality of a generated level, the utility function of its persona-critic is

a straightforward performance metric. Expanding on that, the quality of the persona’s

playthroughs in each level can be captured by other gameplay metrics, such as number

of tiles explored, actions taken or times the persona died. Table 10.1 contains the

gameplay metrics of the best final evolved levels as evaluated via 10 playthroughs of its

persona-critic. Values in parentheses represent the deviation between playthroughs of

the same level (rather than deviation between levels). For comparative purposes, Table

10.1 includes the gameplay metrics of the authored levels of Fig. 10.1, on which the

personas were evolved. Observing Table 10.1, there is a clear difference between Monster

Killer personas and Treasure Collector personas: Monster Killers kill far more monsters

(unsurprisingly), drink more potions, die far more often and take much more damage

than Treasure Collectors. Comparing between levels evolved towards FMK and DMK ,

the former can be played by a Monster Killer persona more efficiently: more monsters

are killed, more potions drunk and less deaths occur than with DMK . The high death

ratio of DMK is a direct result of the fitness computation: the most straightforward

way to achieve a larger deviation in monster kills is by dying prematurely. This is

achieved in the map design by “hiding” potions behind multiple monsters, whereas maps

evolved towards FMK allow the hero to heal at any time (see Fig. 10.3). Comparing

between levels evolved towards FTC and DTC , it is obvious that the former present

minimal challenge to the Treasure Collector persona: with FTC , all 7 rewards are always

collected — without the hero ever dying — in every simulation and in every best final

level. In contrast, with DTC the hero collects less treasure with a high deviation in

treasure collected between playthroughs, and has some chance of dying. Interestingly,

the chance that the Treasure Collector dies is lower for maps evolved towards DTC than

for authored maps on which it was evolved; this is different than with maps evolved

towards DMK , where the death ratio is higher than for authored maps. Observing the

Treasure Collector’s actions in maps evolved for DTC , its cautious tactics (compared to

the Monster Killer) led it to rush to the exit when at low HP, since unguarded treasures

were rarely available.
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(e) FMK (f) FTC

(k) DMK (l) DTC

Figure 10.3: Best evolved levels for the different fitness functions of eq. (10.4)-(10.7).
The levels shown have the highest fitness among 20 independent runs. Above each level
are two playthroughs of the persona for which the level is evolved (Monster Killer or

Treasure Collector), with randomized damage values for each monster.
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Monsters Treasures Potions Explored Actions Death Ratio Damage

Monster Killer

Auth. 7.47 (0.47) 0.95 (0.21) 3.77 (0.15) 45.19 (4.57) 70.64 (10.34) 0.68 (0.42) 68.64 (5.25)
FMK 7.91 (0.23) 2.90 (0.28) 3.99 (0.05) 44.34 (2.32) 78.81 (9.11) 0.43 (0.47) 72.63 (5.64)
DMK 6.16 (1.15) 2.39 (0.45) 3.58 (0.51) 35.66 (6.09) 53.70 (12.75) 0.92 (0.13) 54.23 (6.16)

Treasure Collector

Auth. 5.93 (0.42) 6.52 (0.61) 2.47 (0.49) 52.03 (6.12) 84.25 (14.42) 0.29 (0.42) 55.72 (4.18)
FTC 2.68 (0.03) 7.00 (0.00) 3.57 (0.02) 43.57 (0.15) 75.89 (0.68) 0.00 (0.00) 25.29 (4.97)
DTC 3.30 (0.83) 4.59 (2.07) 2.34 (1.29) 30.63 (12.39) 41.97 (21.55) 0.17 (0.19) 30.84 (9.26)

Table 10.1: Metrics of the best final levels, derived from simulations with procedural personas. Each level is simulated 10 times, and the value in
the table represents the average of those 10 simulations, averaged again across the 20 independent runs of the GA. The value in parentheses represents
the standard deviation of that metric within the 10 simulations (on the same level), and is also averaged across the 20 runs of the GA. Included are
the gameplay metrics of the authored levels of Fig. 10.1: the values are averaged from 10 simulations, with deviation between simulations (on the

same level) in parentheses.
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10.6 Discussion

The experiments in Section 10.5 demonstrated the impact of the FI-2pop GA in the

swift and reliable discovery of playable MiniDungeon levels. Moreover, the influence of

the persona-critic was shown in the evolved dungeons’ design patterns: levels evolved

according to a Monster Killer had many unguarded potions while levels evolved ac-

cording to a Treasure collector had many unguarded treasures. However, optimizing

for most monsters killed or treasures collected resulted in MiniDungeon levels of lim-

ited interest, especially for FTC where there was no risk of dying when collecting all

treasure. In contrast, maps evolved towards deviations between monsters killed (DMK)

or treasures collected (DTC) featured a higher chance of dying for either persona, and

therefore interesting risk/reward decisions. Maps evolved towards either DMK or DTC

are superficially similar, as both fitnesses result in levels with more monsters guarding

potions and treasure; the difference in gameplay metrics, therefore, is introduced by

the different decisions and utility functions of the personas playtesting them. It may

be worthwhile in future work to explore the potential of evolving maps based on how

different the playthroughs between these two personas are.

However, the design patterns of evolved levels were biased by the personas’ architecture

as well as the levels that they were evolved on. Using two inputs for estimating the

utility of treasure (closest treasure and closest unguarded treasure) works well for the

authored levels the personas were evolved on (which had several unguarded treasures)

but fell short when all treasures were guarded e.g. in Fig. 10.3l. Additionally, following

a strategy such as “collect closest treasure” should avoid monsters when possible by

using more sophisticated planning approaches than the ones currently in place. Finally,

future work can explore how dungeons can be evolved according to personas with more

elaborate utilities (e.g. a completionist persona targeting both monsters and treasure),

or according to clones of human players, i.e. artificial agents evolved to match the

decisions of a specific human player (Holmg̊ard et al., 2014d), thus providing personalized

dungeons.

The algorithms covered in this paper can be applied to any problem that includes search

in constrained spaces using simulations to evaluate content quality. Within games, pro-

cedurally generated content usually has to satisfy certain constraints; such constraints

can be tested via planning (Horswill and Foged, 2012), ensuring that a “perfect” or

“worst-case” player can finish the game. However, in games with high stochasticity

(e.g. roguelike games), with emerging tactics (e.g. multi-player strategy games) or where

players don’t always play optimally (e.g. sandbox games), simulations using one or more

artificial agents to test the game can be useful both for playability checks (assuming more
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human-like perception, cognitive load and response times) and for evaluating the qual-

ity of completed playthroughs. Beyond games, constrained optimization is extensively

applied in evolutionary industrial design (Michalewicz et al., 1996) where simulations

are often used to test robot locomotion or the performance of a machine part. The

results of these simulations can act as constraints (e.g. minimal distance covered by a

robot or lifetime of a machine part) in order to divide the search space into feasible and

infeasible, allowing the FI-2pop GA to explore it using simulation-based fitnesses on the

feasible and infeasible population.

10.7 Conclusion

This paper described a method for using procedural personas to evaluate the playability

and quality of generated levels for the MiniDungeons game. Playability is determined by

a “baseline” persona playing through a worst-case scenario of the level, with monsters

dealing maximum damage. Using a two-population genetic algorithm to distinguish

between feasible and infeasible content, discovery of playable levels is fast and reliable

despite the highly constrained search space. To test the level’s quality, a procedural

persona simulates multiple playthroughs: a good level may require that the persona

maximizes its utility or that the decisions taken by the persona affect its utility signifi-

cantly. This paper tested two procedural personas, the Monster Killer and the Treasure

Collector, and the final evolved levels demonstrated different map designs appropriate for

each. Future work aims to improve the persona-critics, explore other simulation-based

level evaluations, and increase the complexity of MiniDungeons.

10.8 Acknowledgements

The research was supported, in part, by the FP7 ICT project C2Learn (project no:

318480) and by the FP7 Marie Curie CIG project AutoGameDesign (project no: 630665).



Chapter 11

Monte-Carlo Tree Search for
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(2015). “Monte-Carlo Tree Search for Persona Based Player Modeling”. In: Workshop

Technical Reports from the Eleventh AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment (Player Modeling Workshop at AIIDE-15).

11.1 Abstract

Is it possible to conduct player modeling without any players? In this paper we use

Monte-Carlo Tree Search-controlled procedural personas to simulate a range of deci-

sion making styles in the puzzle game MiniDungeons 2. The purpose is to provide a

method for synthetic play testing of game levels with synthetic players based on designer

intuition and experience. Five personas are constructed, representing five different de-

cision making styles archetypal for the game. The personas vary solely in the weights of

decision-making utilities that describe their valuation of a set affordances in MiniDun-

geons 2. By configuring these weights using designer expert knowledge, and passing the

configurations directly to the MCTS algorithm, we make the personas exhibit a number

of distinct decision making and play styles.

137
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11.2 Introduction

This paper investigates new methods for automatic play-testing in games. Play-testing

is an integral step of iterative game development. It allows game designers to test

their assumptions about player behavior and to observe dynamics of the game system

(Fullerton et al., 2004). In a sense, it is a partial mapping of the game space itself

through observing where human players are capable of and interested in going within

that space. As crucial as human play-testing is, it is also time consuming and potentially

expensive. Further, it does not necessarily support a quick iterative loop when game

designers are creating or fine-tuning new content for a game (e.g. game levels). Level

designers can only test their levels with human players so many times, and for many

developers minor changes cannot realistically mandate human play-testing. Instead, the

designer informally infers or formally analyses the expected atomic and holistic impacts

on each minor change in a level design, imagining what players might do, observing her

own behavior in the level, or testing internally with her team. While this works for

current game development practices we propose that there is a potential for supporting

the level design process with generative player models. Generative player models acting

as agents which play the game in lieu of players may provide game designers with

surrogate play-traces to inform their design decisions or to integrate in their content

creation systems. When a designer defines such an agent for a particular game we call

them procedural personas. As player types akin to those described by Bartle (1996) and

the play personas described by Tychsen and Canossa (2008) and Canossa and Drachen

(2009), they describe archetypal ways of interacting with the game. They are formal

representations of the game designer’s assumptions about her players.

Each persona may be used interactively or automatically in the level design process. In-

teractively, a level designer can inspect different interaction patterns (e.g. play-traces or

completion statistics) in the level and iteratively adapt either the level or the persona be-

havior (Yannakakis et al., 2014). Automatically, a procedural content generation system

can use the personas as critics that evaluate and change the generated content (Liapis

et al., 2015) as part of a search based procedural content generation loop (Togelius et al.,

2011). The purpose of procedural personas is thus to create easily configurable artificial

game playing agents that believably simulate a variety of human decision making styles.

Inspired by decision theory the behaviors of procedural personas are controlled with

simple utility functions (Mark, 2009) that designers can easily interpret, change and

use to describe archetypal decision making styles. By assigning utility weights to game

affordances, the designer prescribes what the different personas should prioritize. Meth-

ods for modeling player behavior from observed play traces and methods for creating

AI agents that function as believable opponents are research areas that have seen much
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attention and progress in the last decade (Hingston, 2012). However, methods that

encode and model designer’s notions and expectations of player behavior from simple

parameters, and realize these as observable behavior in-game, is still an under-explored

part of Game AI (Smith et al., 2011; Yannakakis and Togelius, 2014).

In this paper we contribute to the development of AI agents as generative models of

expected player behavior by demonstrating the use of procedural personas, configured

by utility weights and controlled by Monte-Carlo Tree Search (MCTS), in our test-bed

game MiniDungeons 2. We start out by grounding our work in decision theory, followed

by a description of the MiniDungeons 2 test-bed game. Afterwards, we describe our

specific implementation of an MCTS controller for MiniDungeons 2. This controller is

then used with 5 different procedural persona configurations. The personas are used to

play a number of MiniDungeons 2 levels, and their behaviors are recorded and contrasted

to test whether meaningful differences arise from the different persona configurations.

11.3 Related Work

Two fundamental assumptions about games, drawn from decision theory, underlie the

method suggested here.

The first assumption is that players’ decisions in games can be understood as being driven

by utility. Whenever a player is making a move in a game she is trying to maximize her

expected utility. The utility function is personal in the sense that different players will

have different preferences when playing games. Their preferences need not be perfectly

aligned with the rules of the game and may even change over the course of the game —

although this problem is not treated here, as we try to express static utility functions.

The utility function is expressed through play style or, more specifically, decision making

style.

The second assumption is that players try to optimize their utility in a boundedly ra-

tional fashion, using analytic thinking to solve parts of the decision making task while

using heuristics to solve other parts of the decision making task (Gigerenzer and Selten,

2002; Kahneman, 2011). The extent to which the player applies each kind of thinking

depends on the player’s ability to do so — the player’s analytic skill and experience.

It also depends on the player’s interest in devoting cognitive resources to solving the

decision task in the first place, and the extent to which the player possesses specialized

heuristics (from expertise) that can replace analytic effort (Gigerenzer and Gaissmaier,

2011). MCTS may be a well-suited algorithm for approximating this decision making

process in a simulation, since it supports utility weights directly, is composed of an
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analytical and a heuristic part, and its performance can be varied by changing its com-

putational budget (Lorentz, 2011; Bourki et al., 2010; Zook et al., 2015). In this paper

we explore the feasibility of using MCTS for generating different decision making styles

in our test-bed game MiniDungeons 2. Before describing MiniDungeons 2, we briefly

describe its predecessor that guided its design: MiniDungeons 1.

11.4 MiniDungeons 1 Game Design

Earlier attempts at modeling human decision making were made using the game MiniDun-

geons 1 (MD1) (Holmg̊ard et al., 2014b). As a predecessor to the MiniDungeons 2 game,

described in this paper, MD1 had a much simpler rule set and a smaller set of affor-

dances which affected human decision making. MD1 levels were laid out on a grid of 12

by 12 tiles, and tiles could be impassable walls, or passable tiles which could be empty

or contain potions, treasures, or monsters. Unlike MiniDungeons 2, its predecessor only

had one type of monster, which did not move. Combat in MD1 was stochastic: if a

hero moved into the position of a monster, the monster would deal a random number of

hit point (HP) damage and then die (with the hero moving to its tile). MD1 therefore

revolved around the calculated risk of combat: could the hero survive another monster

fight and what reward did the monster guard? Personas in MD 1 attempted to model

how players pursued various affordances while deciding under uncertainty.

In contrast, MiniDungeons 2 acts as a test-bed for modeling combinations of analytical

and heuristic decision making, moving closer to the puzzle genre. For this reason, mon-

sters in MiniDungeons 2 move in a completely deterministic manner and their combat

damage is easily predictable. Therefore, MiniDungeons 2 (with larger levels and more

complicated mechanics) challenges the decision making skill of a player not in her de-

cision making under uncertainty, but on the long-term risk of the level play-through,

which is harder to analyze than in the smaller, simpler MD1 levels.

11.5 MiniDungeons 2 Game Design

MiniDungeons 2 is a deterministic one-and-a-half player game with full game state infor-

mation available to the player (Elias et al., 2012). The game is designed specifically to

have a high decision density, meaning that every action matters, while requiring little to

no manual skill. It is a turn-based puzzle game where a hero travels from the entrance of

a dungeon level to the exit (which loads the next level), similarly to many games in the

rogue-like genre. Within the level, there are potions, treasures and monsters of different
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types. The monsters move in response to the hero’s action. Fighting happens when char-

acters collide or when the hero or certain monsters conduct ranged attacks by throwing

a spell attack or, in the case of the hero, a javelin. The hero may kill most monsters by

fighting, but crucially, a special monster called the minitaur cannot be killed, but can

only be knocked out for 3 turns through fighting. Every turn the minitaur will move

directly toward the hero along the shortest path as determined by A* path-finding, if it

is not knocked out. This helps drive the game toward a terminal state, though it does

not guarantee it. A state in MiniDungeons 2 will typically have 3-4 actions available,

depending on the level in question. A typical level in MiniDungeons 2 takes 15-30 turns

to play, depending on which goals a player chooses to pursue. Depending on monster

setup some levels allow the player to play indefinitely, if she so chooses, by running away

from the minitaur forever. Figure 11.1 shows an example MiniDungeons 2 level; the

detailed rules of MD2 are described in Holmg̊ard et al. (2015).

Figure 11.1: Map 7 from MiniDungeons 2.
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Table 11.1: All personas tested in the experiments. The five different personas are
awarded utility from seven affordances in MiniDungeons 2: Taking a turn (Tu), reducing
the distance to the exit (Di), killing a monster (M), collecting a treasure (Tr), drinking

a potion (P), dying (D) or reaching the exit of a level (E).

Utility weights of affordances
Persona Tu Di M Tr P D E

Exit -0.01 1 0.5
Runner -0.02 1 0.5
Survivalist -0.01 0.5 0.5 -1 0.5
Monster K. -0.01 0.5 0.5 0.5
Treasure C. -0.01 0.5 0.5 0.5

11.6 Persona Design for MiniDungeons 2

As described above, the personas for MiniDungeons 2 are defined by their individual

utility functions and mediated by their computational budget.

The sources of utility in MiniDungeons 2 are defined by the authors, acting as the

designers of the game. They are comprised of what we consider to be the most important

seven events that can occur in the game: spending a turn, moving toward the exit,

killing a monster, collecting a treasure, drinking a potion, dying (and losing the level),

and exiting (and completing the level). Table 11.1 shows the configurations of the

five personas that were defined for MiniDungeons 2. The personas represent different

imagined play styles: Exit (E) simply tries to finish the level. So do the other personas,

but they have auxiliary goals shaping their decisions: Runner (R) tries to complete the

level in as few turns as possible, Survivalist (S) tries to avoid damage and collect potions,

Monster Killer (MK) tries to kill as many monsters as possible, and Treasure Collector

(TC) tries to collect as many treasures as possible.

11.7 Monte Carlo Tree Search for Persona Control

Monte Carlo Tree Search (MCTS) is a stochastic tree search algorithm that has seen

considerable success in some board games and digital games (Browne et al., 2012; Ja-

cobsen et al., 2014; Champandard, 2012; Perez et al., 2015). It works by expanding

each state depending on how promising it is (based on its reward) and on an estimate

of how under-explored it is. Reward is calculated by repeatedly playing the game from

the given state until a terminal state, and averaging the terminal state reward (win or

loss). When using the algorithm for games where random play-outs are not guaranteed

(or even likely) to lead to a terminal state within a reasonable time (e.g. many arcade

games), the algorithm needs to be modified (Jacobsen et al., 2014). A common modi-

fication is to only perform the play-out for a set number of actions, and then evaluate
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the end state using some heuristic. We use the standard UCB1 formulation of MCTS

(Browne et al., 2012), but only perform play-outs for a maximum length of 10,000 ac-

tions and then use the utility function of the persona to evaluate the state. In practice,

however, very few play-outs reach the 10,000 action limit and reach a terminal state long

before. The utility function is applied to terminal states as well, and terminal states

are specifically flagged as such by the game logic. The intent of our work is not only

to develop agents that play the game well, but to develop agents that can model player

preferences and skill as personas. Skill can be represented through the computational

budget allocated to MCTS play-outs. We investigate this by varying the computation

time available to the personas. It is important to note that the different utility functions

require different information and therefore have marginally different complexities. How-

ever, all necessary information for all utility functions is always calculated by the game

logic during game-play and play-outs. Therefore, we assume that the personas have the

same amount of computation time available and are playing at similar “skill” levels. In

spite of this we do not assume that the different persona preferences are equally easy

or hard to enact. Being a Monster Killer may be a more difficult decision making style

than being a Runner. While this is an interesting question in itself, this paper focuses

on behavioral differences between personas with identical computational budgets and

performance differences within personas across different computational budgets. Below,

we briefly outline our strategy for comparing the behaviors of the various personas and

their performances under varying computational budgets.

11.8 Metrics

In this section we describe the three different types of metrics we use to evaluate the

implemented personas as procedural representations of imagined decision making styles:

Action agreement ratios, summary statistics, and heat-maps.

11.8.1 Action Agreement Ratio

In order to establish that the personas are in fact enacting different decision making

styles, we apply an agreement metric across individual actions. The metric we use to

evaluate persona likeness, developed in previous work (Holmg̊ard et al., 2014a) on per-

sona/human comparison, is the action agreement ratio (AAR). AAR considers each step

of a play-trace a distinct decision, in line with the high decision density of MiniDun-

geons 2. To produce the AAR between two personas, all distinct game states of a persona

play-trace, the original, are reconstructed. For each game state, the other persona be-

ing compared for agreement is inserted into the game state and queried for the next
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preferred action, essentially asking: “What would you do?”. If the two personas choose

the same action, one point is registered. Finally, the AAR is computed by dividing the

number of points with the number of decisions in the original play-trace. A perfect AAR

score of 1.0 represents two personas that agree on every single decision.

In Results we describe the experiments we ran to generate persona behaviors and exam-

ine their performances and differences through summary statistics and through AAR.

11.8.2 Summary Statistics and Heat-Maps for Persona Identification

and Skill Evaluation

Since the different personas are constructed to pursue different affordances in MiniDun-

geons 2 it is difficult to evaluate all of them using a simple unidimensional score system.

Instead, we summarize the number of affordances reached during game-play and inter-

pret these as indications of whether a persona is enacting a desired style. While this

arguably is a subjective approach to determining whether personas enact a desired deci-

sion making style, the fundamental persona concept is subjective to the designer. Future

work will focus on determining if personas are recognizable across observers, but here

we directly interpret the summary statistics from a game design perspective. Further,

we examine a number of heat-maps representing persona play-traces to identify patterns

that characterize the behavior of the various personas.

For evaluating whether varying the computational budget has an impact on persona

performance we apply a straightforward operationalist approach: For each persona we

determine whether variation in the computational budget impacts the interaction with

affordances that factor into the particular persona’s utility function. If a Monster Killer

manages to kill more monsters or if a Treasure Collector manages to collect more trea-

sure, we interpret this as an indication of greater skill. In the following section we first

present the experiments we ran to obtain results and then analyze each of the metrics.

11.9 Results

The five MCTS personas (Exit, Runner, Survivalist, Monster Killer and Treasure Col-

lector) were tested on 10 hand-crafted maps in MiniDungeons 2. The levels were crafted

to represent varying degrees of difficulty and to allow for the expression of all five deci-

sion making styles. The levels were informally tested to ensure that this was the case.

Five test conditions were defined with 10ms, 100ms, 1s, 10s, and 60s of computation

time, respectively. Each controller was run 20 times on each map in order to take into
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Table 11.2: Action Agreement Ratios (AAR) between all personas. The AARs range
from 0 to 1 and indicate the extent to which two personas agree on atomic in-game
decisions. The results indicate that personas agree with themselves to a larger extent
than with other personas. However, it is also evident that some variation happens
within personas, likely due to the stochasticity of the MCTS algorithm. All AARs were

calculated with 1s of decision making time per action.

E R S MK TC

Exit 0.65 0.49 0.42 0.40 0.43
Runner 0.43 0.65 0.59 0.46 0.56
Survivalist 0.42 0.56 0.61 0.45 0.51
Monster Killer 0.47 0.49 0.48 0.64 0.46
Treasure Collector 0.44 0.58 0.52 0.40 0.68

account the effect of stochasticity, and the means of the scores are reported here. All

experiments were run on an Intel Xeon E5-2680 Ivy Bridge CPU at 2.80GHz.

11.9.1 Action Agreement Ratios

AAR values were obtained by cross-comparing all personas against each other with 1s of

computation time. For each persona, the other four personas as well as a new instance

of the same persona were presented with all 1s play-traces from the original persona (20

per map) and asked to evaluate each decision, yielding an AAR value. Each play-trace

was evaluated 20 times to account for stochasticity. The average AAR values resulting

from this process are presented in Table 11.2.

The results indicate a number of interesting things. No personas achieve perfect agree-

ment, not even with themselves. This may be due to the stochasticity of the MCTS

algorithm. The state space of MiniDungeons 2 is too large to be fully explored by

MCTS. Hence, each instance of a persona may end up exploring slightly different parts

of the state space and reach different conclusions about the best course of action. In

particular, sometimes an agent walks back and forth while still implementing an over-

all optimal path. Secondly, all personas agree more with themselves than with any

other persona, with a mean AAR within personas of 0.65 in contrast to a mean AAR

between personas of 0.48. This difference is significant as measured by Welch’s t-test

(t = 128.3, p < 0.01), showing that the designer-defined utility weights for the different

affordances clearly and consistently affect persona behavior.

11.9.2 Summary Statistics and Heat-Maps

Table 11.3 shows summary statistics for each persona, summed across all levels when

different computational budgets are allocated. The results show similar patterns across
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all computational budgets and highlight the similarities and differences in the behaviors

of the personas.

In general the personas fail at completing the levels. In a few instances they do succeed

in reaching the exit, mainly in the case of the Exit persona, but in general they die before

completing any levels. This may be due to a general weakness in the MCTS controller

design. The controller does not implement domain knowledge in the play-outs, which

are completely random. This can lead to most play-outs providing little information

which in turn can hamper performance. It can, however, also be due to the fact that the

levels are somewhat hard. Future work comparing persona skill to human player skill

should investigate this.

In relative terms, the Exit persona is by far the most successful of the personas. De-

pending on the computational budget, it completes between 15% and 39% of the levels.

However, it may be argued that the Exit persona has the simplest decision making style,

as it only has to optimize for reducing the distance to the exit, reaching the exit, and

taking as few turns as possible; all of these goals align well within the rules of the game.

The Runner persona, on the other hand, is typically unsuccessful in reaching the exit.

The only difference to the Exit persona is a higher cost to spending a turn, but this

changes the behavior to be unsuccessful. Notably, the Runner pursues almost no po-

tions which stands in contrast to the Exit persona which seems to exploit potions to

make it all the way to the exit. The Survivalist seems to focus shortsightedly on potions,

which it collects to a great extent, but the number of potions in the levels seems to be

too low to make this a viable strategy for also reaching the exit. The Monster Killer

kills by far the most monsters of any persona, and collects a large number of potions

too, to enable this mission. Finally, the Treasure Collector collects more treasure than

anyone else, but typically fails at reaching the exit. This could either be because it

prefers treasures over finishing the levels or the controller can not look ahead far enough

to avoid trapping itself in fatal situations.

Figure 11.2 shows persona behaviors on various maps. The maps are chosen to highlight

the behavior of each persona as different maps cater to different personas’ decision

making styles. The green color indicates tiles visited by the persona and the red color

indicates tiles onto which the persona threw the javelin. Each map is shown in its final

state.

All together the results indicate that the personas exhibit variation in behavior based on

their utility functions. The differences in AAR values and summary statistics support

this and the heat-maps serve as demonstrations. At the more general level, the personas

exhibit a somewhat weak ability to play the game successfully, although this might be
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Table 11.3: Play summary statistics summed across the 10 maps under different
computational budgets: 10ms, 100ms, 1s, 10s, and 60s. Each condition totaled 200

runs per persona, 20 per map.

10 milliseconds

E R S MK TC

Turns 5368 3853 4106 4386 3982
Deaths 170 195 197 200 197
Monsters 721 531 571 741 531
Minitaurs 718 589 634 627 631
Treasures 111 90 78 86 175
Potions 57 11 34 32 14
Javelins 359 354 317 327 311

100 milliseconds

E R S MK TC

Turns 5017 2645 3328 4210 2778
Deaths 144 194 194 196 196
Monsters 800 481 554 931 490
Minitaurs 580 415 507 539 427
Treasures 113 77 84 92 210
Potions 75 0 57 65 3
Javelins 291 274 282 278 249

1 second

E R S MK TC

Turns 4116 2263 2831 3907 2513
Deaths 138 195 200 197 199
Monsters 761 482 570 969 476
Minitaurs 416 358 418 461 377
Treasures 110 57 68 88 203
Potions 45 0 70 63 5
Javelins 283 224 237 287 235

10 seconds

E R S MK TC

Turns 4066 2250 2576 3648 2603
Deaths 123 197 196 200 195
Monsters 769 455 544 1002 478
Minitaurs 459 372 375 403 417
Treasures 106 56 60 59 190
Potions 58 0 67 62 5
Javelins 243 233 225 237 217

60 seconds

E R S MK TC

Turns 3885 2110 2579 3611 2336
Deaths 122 197 199 198 192
Monsters 759 473 577 967 493
Minitaurs 408 337 392 406 349
Treasures 89 58 49 70 201
Potions 53 0 85 52 3
Javelins 230 202 215 253 223
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addressed by changing details in the MCTS controller implementation and by fine-tuning

the personas’ utility functions.

11.10 Discussion

In this paper we demonstrated that combining the idea of varying simple utility functions

with Monte-Carlo Tree Search for agent control allows us to express archetypally different

decision making styles in MiniDungeons 2. The decision making styles modeled in this

paper do not represent models of observed human players but instead represent formal

models of archetypal players imagined by game designers. On the one hand, it is possible

to criticize this as being altogether different from the usual conception of data-driven

player modeling. On the other hand, it is our belief that game designers always work

with informal, imaginary player models when designing games, and that helping the

designer formalize these assumptions procedurally may be valuable to the design process,

in line with play persona theory (Canossa and Drachen, 2009). The use of MCTS itself

brings new possibilities to embedding synthetic play-testing in iterative level design

processes. In previous work focusing on MiniDungeons 1 we have shown how other

agent control methods, including reinforcement learning (Holmg̊ard et al., 2014b) and

neural networks configured through evolution (Holmg̊ard et al., 2014a), can be used for

the same purpose. However, the methods used for that game would not perform well in

MiniDungeons 2, which has a dynamic environment (monsters move); the models learned

for MiniDungeons 1 presumed a static world. Other recent work has shown how game

playing agents that play across multiple games (while not incorporating any explicit

notions of style or preference) can be produced using a combination of reinforcement

learning and neural networks (Mnih et al., 2015) or MCTS (Perez et al., 2015). While

off-line machine learning-based player modeling methods perform well when trained for

a sufficiently long time and with a sufficient amount of training material, the need for

training also constitutes their major disadvantage. If a game designer fundamentally

changes the rules of a game, previously trained agents or personas may be rendered

invalid in an instant. In contrast, on-line search based methods like MCTS are capable

of adapting to unseen problems within the rules of a game (e.g. new maps) or to rule

changes. If we add a new monster with an entirely new behavior to MiniDungeons 2 and

include this in the simulations of the MCTS personas, it is likely that the personas would

retain their individual characteristics while responding to the new element of the game.

Prior work in MCTS for general game playing supports this assumption (Finnsson and

Björnsson, 2008), but future work should focus on investigating this for the particular

case of MiniDungeons 2. The scalable aspects of MCTS allow for a straightforward way

of simulating player skill for personas. The results in this paper suggest that skill may
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be represented through computational budgets, and recent work has provided deeper

insight into MCTS and skill for other games (Zook et al., 2015). It is an open question

to what extent MCTS based personas can replicate the behavior of a human player on an

unseen map in MiniDungeons 2. The current personas are defined by hand, and are in

a sense extremes within the space of strategies that can be represented with the current

set of primary utilities. When sufficient player data has been collected from players

of MiniDungeons 2, we should try to learn personas directly from player behavior, by

varying the utility weights of the MCTS agents until the best possible fit is obtained.

Future work revolves around using these personas as level design critics in procedural

content generation tools for MiniDungeons 2.

11.11 Conclusion

In this paper we have demonstrated how a number of simple utility functions, represent-

ing game designers’ assumptions about player behavior, can be used with a Monte-Carlo

Tree Search implementation to provide game playing personas that enact a gallery of

decision making styles. We also argued that MCTS has a number of advantages for mod-

eling player decision making styles: It matches contemporary high-level models of the

human decision making process, it accepts utility functions in a straightforward man-

ner, and can be adjusted to represent different skill levels by changing its computational

budget. These characteristics make MCTS a good candidate for constructing genera-

tive player models across a wide range of games. Future work will focus on building

MCTS-based data-driven generative player models from human play-traces, comparing

these to the expert-knowledge-driven ones built from game designer expectations, and

eventually applying these player models as critics for procedural level generation.
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Figure 11.2: Heat-maps of end game states exemplifying differences in the personas’
behaviors, taken from personas given 1s of decision making time. Different maps are
chosen to best showcase the personas’ decision making styles. Green indicates tiles a
persona moved to and red indicates a javelin attack. In sub-figures (a) and (b) the
Exit and Runner personas manage to finish the level, while in sub-figures (c), (d), and
(e) the personas die before reaching the end of the level. The Survivalist pursues two
potions, but ultimately dies, and the Monster Killer manages to kill all monsters in the
level, but does not survive. Finally, the Treasure Collector gets all the treasure, but

dies in the process.

(a) Exit (b) Runner (c) Survivalist

(d) Monster Killer (e) Treasure Collector



Chapter 12

Discussion

In this chapter, we review the findings from the six preceding chapters, discuss the

contributions and limitations of the procedural persona concept as well as the general

attempt to model human decision making in games.

First, we discuss the fundamental notion of the thesis: that procedural personas can

provide useful reference processes for making sense of potential and actual decision

making styles in games.

Second, we discuss the validity of the findings from the studies of MiniDungeons 1 and

2, examining whether the reported results support the claim that procedural personas

represent decision making styles.

Third, we go deeper into the operationalization of decision making applied in the papers,

critique the use of affordances to identify decision making points in games, and discuss

whether other indicators could be established and how. We also discuss whether the

manual part of defining decision points could be supported by computational tools or

even fully automated, pointing to related work that shows some progress in this direction.

Fourth, we discuss the metrics used throughout the papers to compare decisions among

personas and human players and ask whether other metrics would be more appropriate.

Fifth, we examine how well the procedural persona method can be expected to extend

beyond the MiniDungeons games and whether the method could be useful in real-world

game development.

The above discussions are summarized in the last section which serves as the vantage

point for the following chapter, which outlines future work for developing the procedural

persona concept.

151
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12.1 Establishing Reference Processes in State Spaces

One of the fundamental assumptions of this thesis is that the state spaces of most games,

save for perhaps the simplest ones, are too large for an analyst, designer or player to

mentally contain all at once or to practically explore completely. Not every possible

state of a game or every possible sequence of states can be visited by a human observer.

In some cases all game states may be calculated and visited by a computer and stored for

inspection. This is demonstrated by Sturtevant (2013) who also argues that the range

of games that may be exhaustively searched is rapidly increasing with computational

power and storage. However, even then, these states cannot be grasped all at once by a

human observer.

The procedural persona method suggests that valuable information can be obtained by

instead working with reduced abstractions of games’ state spaces and player behaviors,

derived from a priori readings of the rules, to understand what is possible and interesting

in a game. The concept is a way of establishing known reference processes in a game’s

state space, by defining affordances and player motivations and reducing the game’s state

space into a decision space. Projections back from this decision space onto the game’s

state space, through simulation, then allows a designer, analyst or a procedural content

generation system to explore what is possible and interesting in the game, according to

these definitions.

Of the six papers presented in the previous six chapters the first one, concerned with

player behavior in the Mario AI Benchmark, may be considered the odd-one-out, since it

does not explicitly contain the concept of procedural personas. The study of deviations

from a reference agent in the Mario AI Benchmark is the first exploration of using agents

as reference processes to make sense of a game. Being the first paper in the development

of the concept, it suffers from a number of weaknesses: The distance metrics applied to

measure the deviation between the reference agent and the human players operates only

in one dimension and has trouble accounting for play-traces of varying lengths. Also,

it has a hard time capturing and accounting for the tactical aspects of player decision

making in platform games, such as exploiting patterns in scripted enemy behaviors or

moving both back and forth in the level. Additionally, the agent is not a persona

with multiple goals, defined by a utility matrix. It represents a rational player who acts

strictly in accordance with the primary goal of the game, getting to the end as efficiently

as possible. In a sense it solves the levels, but does not play them. Still, the method

shows that comparisons with an agent with a known set of motivations and methods for

enacting these can provide information about a game and its players and thus supports

the idea of reference processes. The following five papers all build on this notion of

reference processes in MiniDungeons 1 and 2 instead, which are tailored to investigate
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the idea of representing decision making styles. Their designs remove potential sources

of noise that could be difficult to filter out in other game genres by aligning the state

space with the decision space.

It should be noted that other methods than the procedural persona one could be consid-

ered equally relevant for establishing reference processes for making sense of the dynam-

ics of a game or for guaranteeing properties of procedurally generated content. Exam-

ples could include methods for discovering a range of possible play styles by generating

random actions instead of taking the controlled persona approach (Bauer et al., 2013;

Isaksen et al., 2015), generative approaches based on constraint satisfaction (Smith et

al., 2013), grammar based agents (Xu et al., 2014) or reasoning, analytic agents (Shaker

et al., 2013a), to name a few successful examples. The procedural persona approach

may be added to this gallery of methods where the appropriate approach will depend on

the particular interest of the analyst or designer. This begs the question of whether the

procedural persona method actually models decision making styles or just play styles:

do procedural personas validly represent decision making styles?

12.2 Validity: Do Procedural Personas Represent Decision

Making Styles?

The first argument for the validity of the procedural personas being models of decision

making is that they are well-grounded in decision science. Decision theory, bounded and

adaptive rationality, and recognition primed decision making are complementary and

account for different parts of human decision making: The rational, the adaptive, and

the immediate.

Insights from the three perspective are integrated into the personas through the use of

utility functions and through the agent controller architectures that match the overall

processes described by the theories. Still, the personas are limited generative models

human decision making and they do not represent human decision at a detailed level.

A detailed, accurate representation falls closer to the goals of elaborate cognitive ar-

chitectures which comprise a whole research direction within cognitive science. Such

models are most likely unnecessarily complex for the purpose of understanding game

state spaces or generating game content and would probably not be helpful as player

modeling tools due to their complexity. The procedural personas are aimed to be as

simple as possible while still representing decision making styles in games.

A second question is whether the utility functions are a valid way of representing the

motivations that underlie different play styles in games. One answer is to, again, point
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to observations from the decision sciences where behavior can be explained from the

notion of utility. A second answer is that other work within games also shows that

in-game actions can be related to in-game affordances via variations in motivations

(Drachen et al., 2009a; Canossa, 2012) and constructs like personality type (Yee et

al., 2011b; Canossa et al., 2015). Affective, objective information would be another

source of information for inferring player motivations. As touched upon in Chapter

2, there is evidence that signals like heart-rate and skin conductance, to name a few,

can be used to identify what decisions players find interesting and important (Bechara

et al., 1997; Yannakakis and Hallam, 2008; Ahn, 2010). Establishing correspondence

between physiological indicators of engagement in decision making and the learned utility

functions would provide stronger support for the validity of procedural personas as

player models. Since utility functions indicate what affordances players care most about,

physiological indicators should match this.

Another way of evaluating the validity of the procedural persona concept is to examine

its capacity as a player classifier. The papers included in this thesis shed some light

on this question, although more research is needed. Results from the papers relating to

MiniDungeons 1 show that the human players, classified by the personas, predominantly

ended up in one class. This classification imbalance could be influenced by several

factors: The controller implementations, the chosen utility functions, the level designs,

or they could truly represent differences in player decision making preferences and styles.

More studies, including wider samples of players across more levels, preferably across

several games, and with the added collection of external measures such as intelligence

tests, personality tests, and objective measures from physiology, are needed to provide

a deeper evaluation of the procedural persona method as a player classifier.

The aspect of procedural personas that has seen the most comprehensive investigation

in the papers in this thesis is the method’s ability to predict individual decisions of

individual players. Across all the different approaches to predicting player decisions, the

best matching procedural personas seem to be able to reproduce player decisions with

an accuracy of 60 − 70% in Chapter 9, depending on the metric used. While this is

clearly better than a random agent, which never attained an accuracy greater than 43%,

it leaves room for improvement as predictive player models.

At least three reasons for why the personas do not attain better accuracies seem plau-

sible:

Firstly, the chosen controller architectures may not be able to represent the decision

making styles of players. In the paper featuring personas and clones, the specialized

agent results indicate that the evolved perceptron-based controller is capable of learning
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to predict up to 85% of players’ decisions on average. While this seems a more accept-

able performance it does indicate that a more complex controller architecture might be

able to learn a greater accuracy. Unfortunately, player data does not exist for MiniDun-

geons 2 yet, so the accuracies of the Monte-Carlo Tree Search based personas are not

known. Regardless, there is no question that the validity of the method depends on the

performance of the chosen controller.

Secondly, the utility functions that are used for controlling the performance of the per-

sonas, and hence predicting the actions of individual players, are in no way fitted to

the properties of the sample that they are modeling. Players are assigned to whichever

persona is the best fit and this persona is then used as the best predictive model. The

predictive performance of the personas could most likely be enhanced significantly by

applying an iterative process of classifying players and adjusting utility functions, until

a desired distribution of player classifications and a maximal level of predictive perfor-

mance was attained. Each of these clusters could then be characterized by their distance

to the original personas and be labeled anew by the persona designer. As such, it seems

reasonable to assume that the predictive performance of the method could be improved

through further research.

Thirdly, the predictions derived from the procedural personas is dependent on the met-

rics that were defined for measuring decision agreement. The action, tactical, and strate-

gic agreement ratios depend on the affordances that are chosen for a particular game, in

our case MiniDungeons 1 and 2. The metrics are subjective in the sense that they are

defined by the game designers, who use them to describe what they consider important.

Other designers might have other evaluations and define the metrics differently. On one

hand, this is intentional as the method aims to enable sense-making of specific games’

state spaces. On the other hand it makes it hard to compare performance across games:

There is no way to guarantee that it will work well in a game before it has been tested.

An approach to partially solving this problem could be to explore the performance of

the method across groups of games that are classified as being similar within some tax-

onomy. A framework such as game design patterns (Björk and Holopainen, 2004) might

be well suited for this, but there is no data to support this assumption yet.

12.3 Metrics and Operationalization

In terms of the three metrics developed in this thesis, they too are grounded in the

theoretical basis of decision sciences. While the implementation of each is metric is

and game specific, the abstract definition of each level of decision characterization in

games is general and applicable across games. The best way, perhaps, to evaluate
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the validity of the metrics, would be to compare them to other measures of decision

making in games. At this point in time, to the best of my knowledge, no other general

metrics for characterizing and predicting player actions in games focus specifically on

decision making. Still, as described in the introductory chapters and the papers here, the

interpretative jump from an action to a decision can be considered relatively small, as

long as the action is significant in the context of the game. At least one other framework

in the literature addresses the problem of classifying players based on their inputs and

actions: the Gamalyzer method by Osborn and Mateas (2014). While not included in

this thesis, the validity of the three decision agreement metrics developed here could be

improved by comparing classification results from the persona method with classification

results from the Gamalyzer method.

12.4 Extensibility and Usefulness

Another in relation to the value of procedural persona concept is to which extent it gen-

eralizes to different kinds of video games. The MiniDungeons games, although different

in mechanics and dynamics, share many similarities by both being turn-based dungeon

roaming games that take place on relatively small maps where the whole level layout

is visible to the player. Other research working with the notion of procedural personas

for different games has recently emerged (Brown, 2015), but does not yet have results

on the performance of the method. The MiniDungeons games were characterized by a

tight alignment between the games’ state spaces and decision spaces. Being turn based

and discretized, every action in the games significantly changed the game state and even

at the action level the personas were making meaningful decisions.

A way of investigating the extensibility of the method would be to identify a game

where the game’s state space is loosely aligned with the decision space. This could be

a game where many inputs or actions are needed to generate few meaningful decisions.

One example could be a Massively Multi-player On-line Role Playing Game, like e.g.

World of Warcraft (Blizzard Entertainment, 2014). World of Warcraft takes place in

a continuous three-dimensional world where a relatively large amount of time is spent

traveling between encounters and destinations. Many encounters with enemies and other

challenges in World of Warcraft are similar and repetitive, yet they still require significant

tactical decision making when they take place. World of Warcraft also features a number

of highly technical challenges called instances, which require teamwork and coordination,

social interaction, and crafting and trading, among many other features. The game’s

decision space is vast, but due to the continuous and real-time nature of the game

environment, the game’s state space is many orders of magnitude larger. Still, it is
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well documented that different kinds of players exhibit different play styles in World

of Warcraft (Yee et al., 2011a), and it would follow from our previous argument that

these players exhibit variation in decision making styles when faced with the various

challenges in the game. Does the procedural persona concept have any usefulness or

applicability to a game of this scope and scale? While a thought experiment, we can

imagine how procedural personas might be helpful for designers creating new content

for a game like World of Warcraft.

Creating personas that could operate within the actual state space of the game would

most likely be very difficult, as an agent capable of playing World of Warcraft like a

human player in every capacity is beyond the current state of the art in game artificial

intelligence. If, however, certain aspects of the game were extracted and modeled as

reduced decision spaces, abstractions over the actual game of World of Warcraft, the

persona method might be useful. An instance in World of Warcraft (a certain, delineated

challenge in the game) might quickly be modeled as a graph of decisions by the level

designers. From there, assumptions of designers about how players of different decision

making styles could be formalized as utility functions and simulations could be run

over this abstract graph representing the instance. Changing the probabilities of events

occurring in the instance, the difficulty of enemies or the availability of other kinds of

affordances, and re-running persona-based simulations, could relatively quickly inform

designers about the consequences of design changes, before they were implemented as

costly alterations to the game content.

The example remains a thought experiment and unproven, but suggests that for modern

games of high complexity, a simulation of players operating on a reduced simulation of

the game might be a useful support tool for game development. To the extent that pro-

cedural content generation tools could be interjected to generate content from abstract

representations of decision space, it might even be possible to automatize further steps

of this process. Obviously, significant improvements upon the current state-of-the-art in

procedural content generation methods for games would be needed, but work on mixed-

initiative tools for content creation (Liapis et al., 2013c) and automatic game generation

(Cook et al., 2014) point to the future feasibility of such methods.

12.5 Chapter Summary

In this chapter we revisited the core assumptions, strengths, and weaknesses of the

procedural persona concept and discussed its validity, extensibility, and potential. In the

following chapter, we outline the future work that could be undertaken to expand upon
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the concept and developed new methods for player decision modeling and procedural

content generation.



Chapter 13

Future Work

In the previous chapter we discussed the main assumptions of this thesis and visited

some of the main limitations in the shown validity, generalizability, and applicability of

the procedural persona method. We identified a number of areas where further research

is needed if the method is to be considered a valid and general approach for modeling

and simulating player decisions in video games. Here, in this chapter, we expand on the

identified future work.

First, we discuss the prospective of learning player utility functions and suggest one

approach for accomplishing this in practice. Then, we visit the question of the perfor-

mance of applied agent control architectures and whether other architectures would be

better suited and what benefits and trade-offs other approaches might imply. Further

building on the player modeling perspective, we suggest that procedural personas, used

as individual player models, should be correlated and examined for correspondence to

external psychometric measures. Also, objective measures, such as affective information

collected during play-testing, could advantageously be used as supporting data sources

for building procedural personas. Relatedly, we discuss the possibility of conducting user

studies with game and level designers to further investigate the claim that procedural

personas can produce information that is useful in iterative content creation for games,

enabling computer-assisted content design. We also outline a future research agenda for

implementing procedural content generation for MiniDungeons 2, and for expanding the

testing of the method to other games and genres, and imagine how a more general game

design support tool could be built around procedural personas.

159
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13.1 Learning Utility Functions for New Personas

As touched upon in the discussion, a limitation in this thesis is the fact that all the

personas used for player classification and modeling had their utility functions predefined

by expert game designers. Human player were characterized by the extent to which the

personas agreed with them, but no attempt was made to adapt the personas to match the

players by way of adjusting their utility functions. Instead, the clones of Chapter 9 tried

to learn directly from the human play-traces. Future work should focus on learning the

decision making style of human players indirectly, by adjusting the utility functions of the

personas until the agreement ratios between personas and individual players, or clusters

of players, are maximized. This could allow for the generation of new personas, adapted

to play-traces, that are intelligible by way of their distances to the original a priori

defined personas. If all three agreement ratios are targeted simultaneously, while the

utility functions of personas are directed at multiple affordances, this becomes a multi-

parameter, multi-objective indirect learning problem. One approach for finding solutions

to such problems is applying multi-objective evolution. Multi-objective evolution can

find probable solutions along high-dimensional pareto-fronts and are an active research

topic within game artificial intelligence (Schrum and Miikkulainen, 2008) and have also

seen use for modeling decision making preferences in other domains (Marler and Arora,

2004). Applying these methods might allow us to create hybrid personas with utility

functions shaped by play-traces as examples, but interpretable in relation to a priori

defined personas.

A second approach to learning the utilities of players could be preference learning

(Fürnkranz and Hüllermeier, 2005), useful both for defining the input to the personas

and for generating output. In terms of input, a persona designer might find the relative

ranks of different affordances obvious, but could have a hard time meaningfully assign-

ing scalar values to the affordances. Here, describing the utility to players in terms of

preferences would bypass this problem. In terms of output, preference learning could

work for personas where decisions can be reduced to matters of preferences, i.e. where

the desired model output is of the ordinal or class kind. When personas select between

different options, and the scalar outputs of utility functions in any instance have no

other meaning than sorting the different decision options, preferences provide the same

information. Preference learning can deliver strong performance for supervised learning

problems (Yannakakis et al., 2009), can be used with evolutionary methods (Mart́ınez

et al., 2010), and a large body of work addresses the integration of affective information

into preference learning (Yannakakis, 2009).
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Related to this discussion is the question of whether the implemented controllers are

capable of sufficiently representing the human players’ decision making. In the next

section, we address this question in greater detail.

13.2 Alternative Agent Control Architectures

One of the main issues with the implementations of the procedural persona concept in the

papers of this thesis, visited in the discussion, is that at least the evolved agents based on

linear perceptrons seem to be incapable of fully learning player decision making styles, as

documented in Chapter 9. Additionally, this architecture does not specifically implement

two decision making steps, an analytic and a heuristic one, but represents the analytic

part in the weights of the perceptron and the heuristic and bounded part of decision

making in the amount of game state information that is considered for each decision. The

Monte-Carlo Tree Search based personas of MiniDungeons 2, described in Chapter 11,

improve on this by having a distinct analytic step and a distinct heuristic step, each of

which can be controlled, tuned, and adapted individually. However, a number of other

agent control architectures could be considered and should be tested in conjunction with

the procedural persona concept, including expanded off-line training methods such as

neuro-evolution with augmenting topologies (NEAT) (Stanley and Miikkulainen, 2002),

ensemble methods combining several approaches like reinforcement learning and neural

networks (Mnih et al., 2015), a revisiting of the A* in state space approach used in

Chapter 6, or even variations of bounded simple breadth-first search with end-state

heuristic evaluation (Sturtevant, 2013).

13.2.1 Emphasizing Model-Free Aspects of Procedural Personas

The first two options, NEAT and ensemble machine learning methods, represent moving

away from the model-driven emphasis of the procedural persona concept and moving

closer to model-free personas, where more of the behavior is learned from interacting

with the game rules in simulations and from observing human play traces. This could

provide the benefit of a lower reliance on designer analysis of affordances, but could also

lower the interpretability of the personas as reference processes in the game’s state space.

Some intelligibility might be recovered, however, by extracting rules (Krishnan et al.,

1999a) from the learned neural networks or mapping them to decision trees (Krishnan

et al., 1999b; Setiono and Leow, 1999).

NEAT has been shown to be an effective method for configuring agents in games and

beyond to learn and perform a variety of behaviors (Stanley and Miikkulainen, 2002).
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This provides reason to believe that the method would allow for a closer matching of

personas to individual player play-traces. The method would also be flexible in the

sense that it would, depending on how the controller is constructed, be usable as a

direct action selector (similar to the approach taken with linear perceptrons in this

thesis), an action evaluator, or a state evaluator choosing between the outcomes of

search based methods. One downside of using a more complicated approach such as

NEAT is that each individual persona would contain a significant amount of the player

model information in the configuration of the controller neural network, rather than in an

easily inspectable matrix of weights directed at the affordances of the game in question.

That means that any greater reproductive performance would most likely come with

the cost of lower intelligibility of the model. This would complicate the measurement of

differences between personas using their utility functions, but would still allow for the

characterization of their relative differences through simulation-based metrics like the

action, tactical, and strategic agreement ratios.

Applying ensemble methods such as a combination of different reinforcement learning

techniques, e.g. Q-learning and deep learning combined have been shown to perform

well across multiple games (Mnih et al., 2015), would most likely bring many of the same

benefits and costs as the application of NEAT. One argument in favor of applying such

methods could be that once the (relatively) simple intelligibility of controlling agents

through linear combinations of weights in utility matrices is left behind, we may as well

apply any method that produces a high quality reproduction of player decision making

styles. If we decide on pursuing a model-free approach and simply use the machine

learned model as a black-box actor outputting the next preferred action, we should

exploit this to the largest possible extent. We might accomplish this by simply relying

on the observed behaviors of the personas, and their relative differences as measured by

the agreement rations, to understand their differences.

Both of the approaches suggested above have the advantage that they can learn indirectly

from objectives given through utility functions, and as such satisfy the basic requirements

of procedural personas, being able to learn from a utility matrix. This makes them

suitable candidates for alternative agent controllers. However, they suffer from the fact

that they must be trained through off-line simulation. Depending on the decision space

of the game, this can be a resource and time consuming process and may be hard to

combine with the iterative nature of game analytics, game design, or procedural content

generation. An analyst, a designer or a procedural content generation system might not

have the time to wait for agents with various utility functions to be retrained through

extensive simulation.
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13.2.2 Emphasizing Model-Based Aspects of Procedural Personas

A different approach could be to pursue agent control methods that are more model-

driven by combining on-line search in state space with hand-crafted heuristics that

provide estimates of attaining the various kinds of utility derived from the affordances of

the game. This would mean putting further emphasis on the analysis of the affordances

of the game in question and building accurate heuristics for each of them. For the

Monte-Carlo Tree Search implementation shown in Chapter 11, this would most likely

enable us to boost the performance of the controller significantly by injecting expert

information into the roll-out phase through search-guiding heuristics.

Another relevant on-line-search based method, driven by expert knowledge, that could

be explored would be the evolution of action sequences with a rolling-horizon, a method

which recently has been shown to perform well for coarser-grained actions, which could

be promising for decisions at the tactical and strategic levels (Perez et al., 2013).

Relatedly, the A* in state-space approach used for playing the Mario AI Benchmark in

Chapter 6 could relatively easily be ported to a game like MiniDungeons 2 which has

few affordances. Each affordance would have to be incorporated into the A* heuristic in

manner allowing for weighing the contribution of each affordance. Finally, this approach

could be even further simplified by simply searching as far in the game tree as possible

within a given computational budget and evaluating the value of the nodes at the end

of the search using the same hand-crafted heuristics, weighed by the utility matrix of

the persona.

While these on-line-search based methods would require a greater degree of design and

configuration from expert knowledge they would, on the other hand, be immediately

tunable by analysts or game designers and could easily be adapted to varying computa-

tional budgets.

The alternative agent control architectures suggested above represent plausible candi-

dates for improving the performance of procedural personas for the test-beds presented

in this thesis, and possibly other test-beds and games. The first are directed toward

increasing the model-free aspects of method while the latter increase the model-based

aspects. Depending on their application, either approach may be better. Future work

should focus on implementing these and possibly other agent control architectures to

explore their suitability for the suggested uses of procedural personas.
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Regardless of the agent control architectures used, the player modeling aspects of the

work presented in this thesis is limited by the fact that only in-game behavior is consid-

ered. In the next section we outline possible ways of relating decision making styles as

modeled by procedural personas to other measures of individual differences.

13.3 Correspondence with Other Measures

As noted in Chapter 3, a large component of many kinds of player modeling is player

profile information. In this thesis, player profile information is integrated indirectly in

the personas, by identifying the personas that are the best matches for human players,

and is learned directly in the form of clones. In both these cases, the only player profile

information that is learned is in relation to decision making styles within the respective

games. However, as mentioned in Chapters 3 and 12, other psychological measures exist

that describe decision making styles or constructs that are known to be correlated with

differences in decision making styles. These include decision making style questionnaires

(Scott and Bruce, 1995), measures of general intelligence, personality measures (Bruin et

al., 2007) and measures of life motives (Canossa, 2012). Establishing relations between

decision making styles and external measures would support the validity of procedural

personas as models of decision making. Future research should collect these kinds of

measures from participants.

In the same vein, research on the emotional components of decision making suggest

that objective measures such as affective signals collected from physiology could con-

tain information indicative of decision making styles (Ahn, 2010), useful for identifying

individual or group differences in players. Future research should try to integrate such

objective measures in the experimental paradigms.

13.4 Future Implementations and Studies with Procedural

Personas

Another aspect of the procedural persona method which is not explored fully in this the-

sis is the integration of personas in mixed-initiative content generation tools and fully

automated procedural content generation systems. Even though Chapter 10 provides an

initial investigation into this, much work remains to be done to outline the limits and

possibilities of the approach. Future work should include studies with game designers

using mixed-initiative content generation tools supported by the personas, monitoring
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how they interact with the system and to which extent they use the information gen-

erated. This will provide further information about the usefulness and applicability of

procedural personas.

A first step in this direction will be the implementation of personas in a level editing tool

for MiniDungeons 2, analogous to the one that was implemented for MiniDungeons 1.

In the same vein, experiments with human players making decisions in MiniDungeons 2

would be a natural next step, since this game is prepared for telemetric crowd-sourced

collection of play data. Future work will see MiniDungeons 2 launched as a publicly

available research game for collecting decision making data from the game. This ver-

sion of the game will feature automatic generation of game levels, following the same

principles that were applied in MiniDungeons 1, using procedural personas as critics

evaluating the generated content.

Finally, the procedural persona method should be applied to other games than MiniDun-

geons 1 and 2, which were specifically designed to support the procedural persona re-

search agenda. Ideally, future work should include the construction and testing of per-

sonas for commercial games of other genres and of higher complexity. This could provide

an opportunity to test the notion of running personas not in the actual state spaces of

these games, but in abstract representations of their decision spaces.

13.5 Chapter Summary

In this chapter we explored the immediate future work that could extend the work pre-

sented in this thesis. While this thesis presents the theoretical foundation and early

empirical investigations into extending play personas into procedural personas, many

unanswered questions remain. From the theoretical perspective we still need to inves-

tigate the limits of how well we can model player decision making styles, which agent

control architectures are appropriate for procedural personas, and what the validity of

the concept as a player modeling tool is. We also need to conduct further investigations

into the potential value of the method in game content creation processes, whether inter-

active or automated. From the practical perspective, the test-bed games, in particular

MiniDungeons 2, have potential to support a range of new experiments which have yet

to be conducted. Additionally, the procedural persona concept should be applied to

other games than the ones developed in this thesis.
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Conclusion

This thesis introduced the concept of procedural personas. Extending the concept of play

personas (Tychsen and Canossa, 2008; Canossa and Drachen, 2009), procedural personas

are operationalizations of the former, realized in generative agents, modeling player

decision making styles through a combination of utility functions and automatically

learned or manually defined heuristics. Procedural personas are an attempt to represent

player decision making processes in games in abstract generative models that capture

the essential components of human decision making in order to support game analysts

and designers in understanding the possibility spaces of games.

The procedural persona concept was derived from combining psychological decision sci-

ence with play persona theory, and was operationalized and realized into practical im-

plementations through a number of agent control methods drawn from game artificial

intelligence. Though exhaustively investigating the validity, generalizability, and appli-

cability of the framework turned out to be beyond the scope of this thesis, the empirical

results substantiate that the concept was viable and applicable for two specific test-bed

games, and a significant amount of potential future work was identified.

The concept presented in this thesis represents an addition to the gallery of methods for

player modeling in games and for controlling search-based procedural content generation

processes found in the game artificial literature. Moreover, it represents an addition to

the literature on agent based modeling of psychological processes, albeit for the very spe-

cific domain of decision making in games, and to the general game artificial intelligence

literature on agent control methods.
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Epistemological Challenges for

Operationalism in Player

Experience Research

Reference:

Pedersen, Christoffer Holmg̊ard and Georgios N. Yannakakis (2012). “Epistemological

Challenges for Operationalism in Player Experience Research”. In: Foundations of

Digital Games, Play Experience Workshop - Reconciling PX Methods.

In this abstract we argue that employing an operationalist epistemology can limit the

potential of player experience research. This argument is drawn from modern psycho-

metrics where a movement questioning fundamental assumptions of classical test theory

has been gaining increasing attention and has been supplying increasing amounts of

evidence in recent years. We argue that these criticisms should be observed and that

this could have important questions to player experience research in terms of theory and

methods.

In line with the psychometrics research, we propose the use of a realist latent variable

epistemology that we believe provides a stronger vantage point for the quantitative in-

vestigation of player experience and allows for more powerful methods of analysis. The

concern that we put forward in this paper takes its outset in recent psychometric work

of Borsboom (2005) and Borsboom et al. (2004). Their position is that the part of psy-

chological research that employs classical test theory suffers from a number of problems.

The problems span across the epistemological, theoretical and methodological levels,

but are interconnected and are ultimately related to the question of validity in empirical

studies. They label the combined classical test theory approach ‘operationalism’.

167



Appendix A. Epistemological Challenges for Operationalism in PX Research 168

The fundamental problem of operationalism, according to Borsboom, stems from its

notion of true and error scores. The idea is borrowed from the theory of errors which

is used e.g. in astronomy and, crucially, assumes that the true score is constant across

measurements and that the error score is only introduced by the limitations of psycho-

logical instruments of measurement, typically tests or questionnaires, or random aspects

of the measurement situation. In classical test theory, the true score is approximated by

assuming that the error score is random. Then one proceeds by using various techniques

to measure the same phenomenon multiple times in different ways across individuals,

while assuming that these measurements are perfectly parallel and governed by the same

conditions. Given this procedure, the true score emerges as the average value across the

multiple measurements; however, the assumptions underlying this approach are prob-

lematic, since human beings and measurement conditions will change in myriad ways

between trials. This means that repeated measures cannot be considered perfectly par-

allel and from a strictly epistemological view, classical test theory cannot concern itself

with repeated measures since they do not conform to the assumptions of the theory

(Borsboom, 2005). Classical test theory’s solution to this problem is, however, to as-

sume this parallelism anyway. The end result of this assumption is that the measurable

true score itself becomes an assumption, rendering the method tautologous, but this is

seldom recognized in the application of classical test theory. If accepted, this critique

of operationalism poses major questions to most user experience assessment tools such

as the Game Experience Questionnaire (Ijsselsteijn et al., 2008) that uses the same ap-

proach across games and across subjects, not taking the measurement situation into

account.

Recent research on ranking-based questionnaire schemes and non-linear predictive statis-

tics (Yannakakis and Hallam, 2011; Yannakakis et al., 2010) (among many) indicates

that approaches alternative to the operationalist one in player experience research can

provide models that have a strong grounding in reality and better predictive capacity

than e.g. measurements based on rating-based questionnaire methodology and linear

frequentist statistics. We argue that these strains of epistemology and methodology

can lead to new unexplored areas of player experience research and yield more accurate

predictors of player experience.
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Games

Reference:

Pedersen, Christoffer Holmg̊ard, Rilla Khaled, and Georgios N. Yannakakis (2012). “Eth-

ical Considerations in Designing Adaptive Persuasive Games”. In: Persuasive Tech-

nology.

B.1 Abstract

In this poster, we describe an ongoing project concerning the development of an Adaptive

Treatment Game (ATG) for treating Post Traumatic Stress Disorder. The ATG uses

biofeedback and computer game technology to enable multiple treatment techniques

and goals. We examine how a multidisciplinary approach shaped the prototype and we

discuss the ethical implications of creating a self-adaptive, semi-autonomous treatment

game.

B.2 Introduction

Post Traumatic Stress Disorder (PTSD) can be a severely disabling syndrome. It is

sometimes developed after exposure to extreme stress in situations that include expe-

riencing or witnessing mortal danger or extreme terror. Research into the efficacy of
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different treatments for PTSD has been ongoing since the 1980’s and a variety of treat-

ment approaches have been identified (Foa et al., 2009; Nemeroff et al., 2006). One

of the most recent developments in treatment approaches is the use of Virtual Reality

Therapy (VR-T). Studies of the efficacy of VR-T are cautiously positive, though more

research is needed (Parsons and Rizzo, 2008).

Meanwhile, advances in affective computing have enabled the creation of systems that

use psychophysiological and behavioral data to reliably infer emotions experienced by

users, including stress and anxiety (Haag et al., 2004; Picard, 2000; Popović et al., 2009).

Drawing together threads of earlier research initiatives, we have reason to believe that

including ludic and diegetic aspects in VR-T universes will enhance their efficacy, along

with their ability to promote attitude and behavior change. To explore this hypothesis,

we are developing a prototype of a multi mode Adaptive Treatment Game (ATG) that

brings together three Cognitive Behavioral Treatment techniques in one coherent game

universe. The ATG prototype will be completed and undergo clinical testing in Spring

2012.

B.3 The ATG prototype.

The multidisciplinary team behind the ATG included multiple game designers and de-

velopers, computer game, affective computing and artificial intelligence researchers and

three PTSD therapists (two psychologists and a psychiatrist) with decades of treat-

ment experience between them. Based on the recommendations and experience of the

therapists, Relaxation Training (RT), Stress Inoculation Training (SIT) and Exposure

Therapy (ET) were chosen as the treatment approaches at the outset of the project. As

such, our tool is multi modal, in that it supports these three treatment types. Avenues of

adaptive persuasive design that were outlined by Fogg (2003) almost a decade ago have

now been used in a plethora of tools and products as discussed by Kaptein et al. (2009)

and Kaptein and Eckles (2010). Drawing on persuasive design strategies, including tun-

nelling, tailoring, and conditioning (Fogg, 2003), we designed a treatment tool that uses

adaptive biofeedback technology to learn an individual patient’s response patterns and

adjust the presented stimuli relative to reaction data from previous treatment sessions

(Popović et al., 2009). In addition, the tool uses game design to create a convincing,

seamless world. The three modes of the ATG are displayed in Figure B.1.

We decided to create our own development method in order to support the multidisci-

plinary collaboration process and structure the contributions from the different areas of

expertise. Since we wanted to create a game that could be used in real world psycholog-

ical practice, we needed to ensure that the ATG was feasible, useful and safe outside the
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Relaxation Training Stress Inoculation Training Exposure Therapy

Figure B.1: Screenshots from the three modes of ATG

laboratory. To solve this task, we started by forming a hierarchy of design concerns, in

the following priority: functional design, treatment design, technology design, and game

design. This design hierarchy was used to resolve any design conflicts - e.g. treatment

design concerns would always take precedence over game design concerns.

B.4 Discussion

A design incorporating input from many sources of reference must become an amalgam

of priorities from all the different fields, which are not necessarily compatible. This

means that hard decisions and prioritization was necessary in order to make the different

constituents of the ATG fit together.

It resulted in an underdeveloped game design, since this was at the lowest tier of the

design hierarchy. It might have been fruitful to give game design a higher priority,

or to abandon the idea of prioritized concerns altogether to ultimately make a more

compelling tool.

However, we believe that the most interesting and pressing questions that the ATG

raises, fall under the area of ethical persuasive design. Making any form of semi-

autonomous system that interacts with patients in clinical settings entails a major ethical

responsibility on the part of the designers of the system, as does the construction of any

piece of persuasive technology. The responsibility of imbuing the system with these

adaptive properties is not whisked away by providing the therapist as a safety measure;

the constructors of the system still carry a responsibility for its subsequent effects on

end users (Friedman and Kahn Jr, 2002). Berdichevsky and Neuenschwander (1999)

describe in their decision tree for ethical evaluation of persuasive technologies that a

system designer’s work is ethical if her system’s outcome is intended and good, but she
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is not responsible if an undesirable outcome is unintended and not reasonably predica-

ble. In the case of adaptive persuasive technology it becomes more difficult to imagine

all possible use scenarios and thus all the possible unintended side-effects. This blurs

the line of reasonable predictability as also Kaptein and Eckles (2010) point out in their

treatment of persuasive profiles. Indeed, using adaptivity and profiling might put an

even greater responsibility on the designer. In our case, we identified the following risks:

Black-boxing of the ATG’s inner workings could make the links between experience

and evaluation opaque to the patient and the therapist. This may in term result in

alienation from the platform and demotivate the patient from engaging with the ATG

more than once. The answer to this was exposing the evaluations of the system to the

therapist as well as the patient, making the ATG a tool that the two use in an egalitarian

and transparent manner.

Objectification of the patient to a level where the ATG’s evaluations take precedence

over phenomenological experience. A special responsibility lies with the therapist to

emphasize the experience of the patient as valid.

Erroneous profiling where short-comings of the applied AI lead to misclassifications

and possible misinterpretations of the patient’s reactions to certain stimuli, potentially

leading to the exposure of the patient to unduly stressful or completely inappropriate

stimuli. This is handled by the fact that the therapist may always override the system.

Second-order conditioning where fear reactions to cues in the virtual environment

are not extinguished, but rather generalized, making hitherto unproblematic elements of

experience into cues eliciting stress and/or anxiety. This risk is handled in conjunction

by the therapist and the ATG.

Re-traumatization could be considered the worst-case consequence of the combination

of erroneous profiling and second-order conditioning. If the ATG presented a patient

with a wrongly graded, too intense, stimulus, it could set off a fully fledged anxiety

attack or a flashback. The consequence could be conditioning adverse responses to the

therapy situation itself and have destructive consequences for the therapeutic alliance.

To minimize this risk, the stimuli in the ATG undergo testing with expert therapists,

users drawn from the general public and as well as veteran cohorts, and carefully selected

PTSD patients.
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B.5 Conclusion and Future Work

With the ATG, we designed and built a prototype that points to a new way of applying

virtual reality for PTSD in particular, but perhaps also cognitive behavioral therapy in

general. While we have yet to investigate the efficacy of the ATG as a treatment tool (it

will undergo clinical trials in Spring 2012) the process of making the prototype yielded

a number of valuable insights.

Bringing a hierarchical set of concerns into an iterative design process turned out to be

limiting. With this approach some areas of a project may receive too little attention or

be inappropriately bounded by concerns with higher priority. This was partially the case

with game design in our project and it remains an open question whether the ATG would

be a better tool if game design had been allowed to influence functional or treatment

design.

Our research and development efforts so far suggest that adaptive and goal-directed

VR-T tools can make psychological therapy not only more engaging, but also more

effective at treating debilitating anxiety disorders. It shows that making adaptive and

profiling tools raises important ethical questions with responsibilities for the designers

and creators – and that handling these challenges is worth the effort, when it allows us

to make future cognitive behavioral therapy a more personal, immersive and effective

experience.
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The Games for Health Prototype

Reference:

Holmg̊ard, Christoffer, Georgios N. Yannakakis, and Rilla Khaled (2013). “The Games

for Health Prototype”. In: Foundations of Digital Games, Research and Experimental

Games Festival, pp. 396–399.

C.1 Abstract

In this paper we present a prototype developed to explore the application of game design

and technology to the treatment of Post Traumatic Stress Disorder (PTSD). We describe

the design process that led to the development of the prototype and the included aspects

of game design and game technology, how the approach and the prototype differ from

previous work in using virtual environments in the treatment of PTSD, and we outline

the first clinical trials of the prototype.

Demo and video links:

http://itu.dk/people/holmgard/gfh/gfh.html

http://www.gamesforhealth.dk

C.2 Introduction

Post Traumatic Stress Disorder (PTSD) is a psychiatric diagnosis describing an often

severely disabling syndrome that is sometimes developed after being exposed to highly

stressful situations. Veterans from military operations are a high-risk group for develop-

ing this syndrome (Thomsen et al., 2011). With the Games for Health project we set out
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to investigate the usefulness of game design and technology to support the psychiatric

treatment of PTSD with veteran soldiers from the currently ongoing Danish military

engagement in the conflict in Afghanistan. One treatment approach for PTSD, favored

because of strong evidence for its therapeutic efficacy, is the cognitive behavioral therapy

technique of exposure therapy. In exposure therapy, the therapist confronts the patient

with anxiety provoking stimuli in a controlled setting in order to extinguish reactions

to said stimuli and/or allow the patient to reprocess the memories cued by the stimuli.

Three common variations are the use of real life stimuli i.e. in vivo, representing stimuli

via media i.e. mediated, or having the patient imagine the stress provoking situations

and thus self-generate the stimuli i.e. imaginal (Foa et al., 2009; Nemeroff et al., 2006).

With the help of a multidisciplinary team, we designed and implemented a novel game

that expands upon the principles of exposure therapy with simple game mechanics and

uses detection mechanisms to infer the user’s responses to in-game events.

C.3 Background

Prior research has demonstrated the usefulness of virtual environments for treating vet-

erans’ PTSD with virtual reality therapy (Parsons and Rizzo, 2008). The developed

systems often focus on outfitting the therapist with a sand-box type environment for

the patient to explore that the therapist manually configures during the therapeutic

session. The interaction is centered on the conversation between the user and the ther-

apist, and the user’s primary role is to explore and perceive the virtual environment,

rather than directly interact with it. The approach also typically seeks a high degree

of verisimilitude and employs specialized equipment such as head mounted displays or

custom-built interfaces like e.g. vibrating platforms. Finally, virtual reality therapy

most often focuses on exposing the patient to the original stressful, traumatizing situa-

tion. Notable examples are the Virtual Iraq and Virtual Afghanistan applications that

show promising results in clinical testing (Reger et al., 2011; Rizzo et al., 2009b; Rizzo

et al., 2009a). No approaches for virtual reality therapy have yet, to the knowledge of

the authors, combined exposure therapy with affective computing (Picard, 2000). Var-

ious physiological phenomena have been demonstrated to allow for the measurement

of emotional states, finding use in everything from the measurement and modeling of

players’ reactions to veterans’ stress levels (Perala, 2007; Popovic et al., 2005; Westland,

2011; Yannakakis and Hallam, 2008). Additionally, studies have shown that veterans

suffering from PTSD exhibit response patterns significantly different from those of non

patients. It has been suggested that these differences could be used to support diagnostic

differentiation (Blechert et al., 2007).
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C.4 Game Design Considerations

The design of the Games for Health prototype was guided by the joint design efforts

of a multidisciplinary team consisting of researchers and practitioners from the fields of

psychotraumatology and digital games. We set out to address the PTSD condition in a

manner that differed from the prior work outlined above in a number of ways:

Ease of use was an overarching design goal. We aimed to create a tool that would fit into

most psychological or psychiatric clinical practices with a minimum of technical expertise

needed from the mental health practitioner. Hence, it was decided to develop a tool

that could run on any reasonably modern consumer computer equipment. To this end

the prototype was developed using the game engine Unity (Unity Technologies, 2005).

We did, however, deviate from this design goal to the extent that is was necessary to

enable the physiological readings for the affective computing component of the prototype,

but only employed consumer-grade psycho-physiological measurement equipment (Wild

Divine. http://www.wilddivine.com).

Exposure to everyday life situations was central to the design of the prototype.

Whereas existing solutions (Reger et al., 2011; Rizzo et al., 2009b; Rizzo et al., 2009a)

focus on addressing the memory of the traumatizing situation, the mental health profes-

sionals on the design team stressed the potential value of being able to expose patients

to mundane, but stressful situations. We hypothesized that this approach could help

PTSD patients improve their functioning in everyday tasks with direct benefits to their

quality of life as a form of systematic desensitization (Foa et al., 2009). The task of

going shopping in a supermarket was quickly identified as a common situation that is

severely challenging to many veterans suffering from PTSD. Supermarkets are highly

stimulating environments with many social interactions and unpredictable auditive and

visual experiences, which PTSD patients find stressful; some to the extent that they

avoid going shopping or only do so with a helper present for emotional support. Con-

sequently, we built our prototype to take place in a virtual supermarket and focused

on reproducing the experience of the stressfulness of shopping in a supermarket. Since

many veterans suffering from PTSD report re-experiencing memories of the originally

traumatizing situation when cued by elements in the environment, we also included

short flashbacks. These momentarily change the environment of the game to an Afghan

theater of operations, before changing back into the supermarket. The two modes of the

game are depicted in Figure C.1 and Figure C.2.

Goal driven interaction with the virtual environment was determined to be a prior-

ity area where game design could support the use of virtual environments for treating
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Figure C.1: The supermarket. A man is walking rapidly and angrily down the aisle.

PTSD. The underlying idea was informed by research in presence and immersion (McMa-

han, 2003) suggesting that the user’s involvement with the diegetic aspects of a virtual

environment has a high impact on the level of immersion the user feels which we, in

turn, hypothesized to influence the stressfulness of the experience. Additionally, adding

a mission to the patient’s interaction with the prototype would quite simply provide a

reason for interacting with as much of the virtual environment as possible, allowing us

to expose the patient to as many different stimuli as possible. Hence, we added the very

basic mission of having to gather a number of items indicated on a shopping list, before

proceeding to the register, standing in line and paying the store clerk before leaving.

The patients were asked to complete this task within a set time frame and were shown

a timer counting down while they were completing the mission.

Tracking responses through affective computing was included for a number of

reasons. As noted above, earlier studies (McFall et al., 1990) have shown that patients

suffering from PTSD have autonomic responses to stressful events that differ from those

of control individuals. Consequently, the autonomic responses would allow us to inves-

tigate whether veterans did indeed respond differently to the prototype than a control

group, which would indicate that the prototype had a specific relevance to the patients.
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Figure C.2: A flashback scene presented immediately after the game state of Figure
C.1. The angrily walking man bled into a vision of a man running towards the player.

Conversely, once a baseline dataset had been established, it could also potentially allow

the prototype to function as a diagnostic support tool, by using autonomic responses to

distinguish between patients and non-patients. Finally, the ability to track and evaluate

patients’ responses to individual events in the virtual environment could allow for the

construction of individual models of stress reactivity, which in turn could allow for the

tailoring of event-configurations at the individual level.

C.5 Playing the Game

Below, we briefly describe how the game was played by the participants in the study.

Since the game is specifically constructed to elicit stress responses with the player an

experimenter and trained psychologist, capable of intervening, is present in the room

with the player throughout the session to minimize the risk of subjecting the player

to any excessive stress. Before initiating the first round of play, the severity of the

patient’s PTSD symptoms is assessed using a structured interview and a questionnaire:
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The PTSD Module of the Structured Clinical Interview for the DSM (SCID) (First et

al., 2002) and the PTSD Checklist (Weathers et al., 1993).

C.5.1 The Game Environment

As noted above, we assume that the player’s level of immersion into the game environ-

ment will influence the extent to which he responds to the stressors in the game. To

support immersion, the simulation is presented from a first-person-perspective, inviting

the player to identify himself onto the unseen avatar of the game. The player starts at

the entrance of the supermarket, navigates through the supermarket collecting items on

the list and concludes the mission by standing in line and paying at the cash register.

The player can move freely around the supermarket and collects or activates goods or

items by centering the view on them and clicking. In order to ensure that the player

experiences as much of the supermarket as possible, the object of the game is to col-

lect a number of goods presented on an on-screen shopping list within a given time

frame. The items to collect and the remaining time are displayed on screen during the

game. The goods are placed in locations that make it probable that the player will

be exposed to all sections of the supermarket if he manages to collect all items. The

supermarket environment includes a number of stressors that aim at eliciting stress in

the player. These are designed around three typical symptoms of PTSD, namely agora-

phobia, hyper-arousal/heightened startle response, and the re-experiencing of traumatic

events upon cueing by an outside stimulus or general stress (Foa et al., 2009).

Stressors targeting agoraphobia include the following design elements: The layout of

the supermarket is designed to include hidden angles and preventing the player from

attaining a full overview of the location. An aisle is blocked by a shopping cart making it

difficult for the player to pass. Non-Player-Characters (NPCs), adults as well as children,

wander around the supermarket, sometimes blocking the way of the player. Two NPCs,

engaged in conversation, will stop talking and stare at the player if he approaches. An

NPC walks angrily down the aisle toward the player, expressing aggression through his

body-language. A family of NPCs are engaged in a discussion, the father scolding the

child aggressively. An NPC pockets goods from the shelves of the supermarket.

Stressors targeting hyper-arousal include a dog barking at the entrance to the supermar-

ket and the sound of crashes and glass breaking suddenly playing at random locations

in the supermarket.

Finally, stressors targeting re-experiencing are included in the form of three different

flashbacks. The purpose of these is to elicit the feeling of recalling and re-experiencing

a traumatic memory. Only one is shown per mission. In the first flashback the player is



Appendix C. The Games for Health Prototype 180

walking on a foot patrol in a typical Afghan theater of operations. In the second flashback

the player sees a man running directly toward him, possibly with hostile intentions. In

the third flashback the player sees a fellow soldier hit by an explosion, clutching the

remains of his leg.

The game features three different configurations of missions assumed to elicit stress to

different degrees. The missions vary in terms of the number of items the player must

collect within the time limit and the apparent threat in the presented flashback. We

assume that increasing the number of items the player has to collect within the same time

frame and increasing the degree of threatening content in the flashbacks will increase

the stressfulness of the experience accordingly. The missions are played consecutively

from the least stressful to the most stressful.

C.5.2 Hardware and Setup

For continuous measurement of skin conductance (SC) and blood volume pulse (BVP)

the IOM biofeedback device (Wild Divine. http://www.wilddivine.com) is used. The

IOM biofeedback device samples these two signals at a rate of 300 Hz and downsamples

them to 30 Hz in firmware before transmitting them to the recording computer (Wild

Divine Developer Support. http://www.wilddivinedev.com). The device is attached to

the distal phalanges of the little, ring, and middle fingers of the player’s non-dominant

hand. To ensure maximum exposure to the content, while still using typical consumer-

grade hardware, the game is presented on a 25” LCD monitor placed roughly 35 cm

from the face of the player. For providing auditive stimulation, while still allowing

the player to communicate with the experimenter, supra-aural headphones are used to

deliver the sounds of the game. The audio level is adjusted to be experienced subjectively

as loud, but pleasant. Since frustration with the control scheme of the game might

introduce unwanted variation into the results of the experiment (Yannakakis et al.,

2010) the game is configured to use what we consider to be standard controls for first-

person-perspective computer games which should be familiar to most players. The

mouse, operated with the player’s dominant hand, controls the perspective and the

keyboard controls movement. In order to minimize the risk of movement artifacts in the

physiological readings, participants operate the keyboard (W, A, S, D or arrow keys)

with only the index finger of their non-dominant hand, keeping the other fingers still.



Appendix C. The Games for Health Prototype 181

C.6 Clinical Trials

Clinical trials were completed in December 2012. A total of 15 veterans suffering from

PTSD and 20 comparable veterans, who were screened for but not diagnosed with PTSD,

played the game three to six times over one to two sessions (three rounds per session),

with a fourteen day break between sessions. The analysis of the collected data is cur-

rently ongoing, however, preliminary findings indicate that the prototype has a strong

potential for stimulating stress in veterans suffering from PTSD, based on both qual-

itative data gathered from observation and interviewing, as well as subjective ratings

of experienced stress levels collected from the participants. Preliminary analyses of

physiological responses support this observation. Several patients commented that the

experience of playing through the prototype made them aware what elements of the

supermarket they found particularly stressful and that this provided them with insight

into their everyday challenges of going shopping.

C.7 Future Work

The first analysis of the collected data material is expected to be completed during

January 2013. If the collected data supports the hypothesis that physiological responses

to the prototype can be used to differentiate between those veterans who qualify for the

PTSD diagnosis and those who do not, further testing is planned to expand the body of

evidence. The next step for the prototype will be the inclusion of adaptive functionality,

enabling it to identify the most potent stimuli at the personal level. The assumption

is that this will allow sessions to be increasingly customized to the individual patient,

based on the individual’s previous responses to the game.

C.8 Conclusion

This paper has given a short introduction to the Games for Health prototype and the

key considerations that went into its design and development. The developed proto-

type advances the areas of game design and technology applied for health purposes.

Preliminary results indicate that there is indeed a value in this alternative approach of

simulating everyday situations to provide PTSD patients with a tool that allows them

to train their coping skills for these situations in collaboration with their therapist. Fur-

thermore, preliminary analyses suggest that the bodily responses of PTSD patients are
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substantially different from the responses of non-patients. This in turn makes it plau-

sible that a virtual environment featuring affective detection functionalities could have

potential as a future diagnostic tool supporting psychiatric practice.
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Appendix D

Stress Detection for PTSD via

the StartleMart Game

Reference:

Holmg̊ard, Christoffer, Georgios N. Yannakakis, Karen-Inge Karstoft, and Henrik Steen

Andersen (2013). “Stress Detection for PTSD via the StartleMart Game”. In: Affective

Computing and Intelligent Interaction (ACII), 2013 Humaine Association Conference

on. IEEE, pp. 523–528.

D.1 Abstract

Computer games have recently shown promise as a diagnostic and treatment tool for psy-

chiatric rehabilitation. This paper examines the positive impact of affect detection and

advanced game technology on the treatment of mental diagnoses such as Post Traumatic

Stress Disorder (PTSD). For that purpose, we couple game design and game technology

with stress detection for the automatic profiling and the personalized treatment of PTSD

via game-based exposure therapy and stress inoculation training. The PTSD treatment

game we designed forces the player to go through various stressful experiences while a

stress detection mechanism profiles the severity and type of PTSD via skin conductance

responses to those in-game stress elicitors. The initial study and analysis of 14 PTSD-

diagnosed veteran soldiers presented in this paper reveals clear correspondence between

diagnostic standard measures of PTSD severity and skin conductance responses. Sig-

nificant correlations between physiological responses and subjective evaluations of the

stressfulness of experiences, represented as pairwise preferences, are also found. We

conclude that this supports the use of the simulation as a relevant treatment tool for

183
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stress inoculation training. This points to future avenues of research toward discerning

between degrees and types of PTSD using game-based diagnostic and treatment tools.

D.2 Introduction

Post Traumatic Stress Disorder (PTSD) is a psychiatric diagnosis describing an often

severely disabling syndrome that is sometimes developed after being exposed to highly

stressful situations. Veterans from military operations are a high-risk group for devel-

oping this syndrome (Hoge et al., 2004). A number of psychiatric treatments for PTSD

are based on cognitive-behavioral approaches and include exposure therapy and stress

inoculation training. Among the possible ways of treating PTSD computer games and

virtual environments appear to have a great potential for eliciting stress in a controlled

fashion and provide an immersive medium for PTSD treatment facilitating exposure

therapy and stress inoculation training.

In this paper we investigate the usefulness of game design incorporating affect detection

to support the psychiatric treatment of PTSD-diagnosed veteran soldiers. For that pur-

pose, we designed and developed a game — StartleMart — that expands upon existing

principles of PTSD treatment techniques with game mechanics and uses stress detection

to infer the user’s physiological responses to in-game events. In this initial study we run

a test with 14 veterans diagnosed with PTSD and examine the impact of their PTSD

psychiatric profile on the arousal responses — measured via skin conductance (SC) —

they manifest through in-game stress elicitors. In addition we examine the relationship

between self-reported stress levels and SC signal features. Results show that physio-

logical responses correlate with both PTSD profile features and self-reports of stress,

supporting the relevance of the StartleMart game for PTSD diagnosis and treatment.

This work is novel as it uniquely combines real-time stress detection with a game (vir-

tual) environment aimed at PTSD treatment. Diverging from and innovating upon

earlier work in the use of simulations for treating PTSD (Wood et al., 2011), we argue

that simulating everyday-life situations can help PTSD patients improve their function-

ing in everyday tasks with direct benefits to their quality of life as a form of stress

inoculation training (Foa et al., 2009). The present study expands on previous research

and approaches by constructing a desensitization and exposure paradigm consisting of

a virtual world taking place in a home-like setting with integrated game mechanics.

The result is a hitherto unexplored midpoint between mediated and in vivo exposure

paradigms aimed at addressing issues in the everyday-life of the patient.We believe that

by interweaving appropriate game design and efficient stress profiling we can provide a
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personalized therapeutic environment that allows therapists, for the first time, to de-

tect and address common PTSD symptoms across individuals with varying etiologies

behind their PTSD. For instance, a veteran soldier and an assault victim may exhibit

similar responses to stressful everyday-life situations and a simulation addressing these

situations would be relevant to both.

D.3 Background: Stress Detection and PTSD Treatment

This section covers related work on affect detection, the relationship between stress dis-

orders and physiology, treatment types for PTSD and our approach to PTSD diagnosis

and treatment, and, finally, the use of virtual environments and computer games for the

treatment of PTSD.

D.3.1 Stress Detection

A wide range of approaches exist for capturing stress using physiological, behavioral,

and self-report data or combinations thereof. Earlier work on stress detection (Calvo

and D’Mello, 2010) has demonstrated how features extracted from raw physiological

signals can be used to discern between a variety of emotional states in general (Picard

et al., 2001) and in games (Mart́ınez et al., 2011). SC has been identified as a useful

indicator of stress elicited from tasks (Healey and Picard, 2005; Hernandez et al., 2011)

and with soldiers (Perala, 2007). Innervation of the sweat glands is caused solely by

the autonomic nervous system, making it a well suited source for measuring specifically

arousal and, by extension, stress (Boucsein, 2011). Thus, SC is an obvious physiologi-

cal indicator of player stress. It has been indicated that it is necessary to mediate the

interpretation of physiological measurement data with information from self reports of

phenomenal experience (Tognetti et al., 2011). For this reason we also use self-reports

to collect information about the stressfulness of using StartleMart. Because self-reports

have been shown to be unstable over time and hard to anchor to fixed scales between

sessions (Yannakakis and Hallam, 2011), we treat self-reports as expressions of prefer-

ence rather than directly comparable indications of subjective experience. By collecting

physiological responses synchronously with log data from the game environment, we

build on previous attempts to use affective computing to link responses to presented

stimuli with PTSD symptom severity (Popović et al., 2009; Wood et al., 2011).
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D.3.2 Physiology of PTSD

In mediated stimulus exposure paradigms, PTSD-patients exhibit physiological responses

to stressful visual and auditive stimuli that are significantly different from the responses

of non-patients (Perala, 2007). Their responses are generally characterized by high sym-

pathetic activity as measured by SC. In experimental studies, slower SC habituation,

elevated resting SC, and greater SC responses to startling stimuli, have been found to

be robust identifying characteristics of PTSD-patients (Pole, 2007). This indicates the

higher base levels of arousal and heightened sensitivity to stress that are typical of the

disorder. It has been suggested that these differences could be used to support diagnos-

tic differentiation between PTSD patients and non-patients as well as between different

degrees of PTSD symptom severity (Blechert et al., 2007) guiding treatment strategies

or allowing for adaptive treatment tools (Wood et al., 2011). In the present study we

innovate by investigating the relationship between PTSD profiles, self-reports of stress

and SC signal features of arousal.

D.3.3 Treating Stress Disorders

Two well-known treatment approaches for PTSD are the cognitive-behavioral therapy

techniques of exposure therapy and stress inoculation training. In exposure therapy, the

therapist confronts the patient with anxiety provoking stimuli in a controlled setting in

order to extinguish reactions to the stimuli and/or allow the patient to reprocess the

memories cued by the stimuli. Three common variations are the use of real life stimuli

i.e. in vivo, representing stimuli via media i.e. mediated, or having the patient imagine

the stress provoking situations and thus self-generate the stimuli i.e. imaginal (Foa et

al., 2009). In stress inoculation training, the therapist exposes the patient to stimuli

and situations that are not directly linked to the original trauma of the patient, but

that cause problematic anxiety responses that are difficult for the patient to cope with

(Foa et al., 2009). In the present study we utilize StartleMart as a game facilitator of

exposure therapy and stress inoculation training.

D.3.4 Games for Mental Health

Games and game-like worlds have successfully been used as mental health interventions

by appropriating commercial games (Holmes et al., 2009) and by developing specialized

solutions (Hoque et al., 2009). Earlier research has demonstrated the usefulness of virtual

environments for treating veterans’ PTSD with virtual reality therapy, an extension

of exposure therapy (Parsons and Rizzo, 2008; Wood et al., 2011). Virtual reality
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therapy most often focuses on exposing the patient to the original stressful, traumatizing

situation, in the vain of classic exposure therapy, rather than appropriating principles

from stress inoculation training. Notable examples are the Virtual Iraq and Virtual

Afghanistan applications that show promising results in clinical testing (Reger et al.,

2011; Rizzo et al., 2009a). In the StartleMart game, instead, we adopt a hybrid approach

coupling exposure therapy and stress inoculation training which is informed by real-time

stress detection for personalized treatment.

D.4 The StartleMart Game for PTSD Treatment

The design of StartleMart is guided by the joint efforts of a multidisciplinary team

consisting of researchers and practitioners from the fields of psychotraumatology, game

design and game technology. Informed by the mental health professionals on the design

team, we assume that being able to expose patients to simulations of mundane, but

stressful, situations will be effective for diagnosis and treatment while maintaining flex-

ibility in terms of possible patient groups that can benefit from the game. The task of

going shopping in a supermarket is as a common situation that is severely challenging

to many patients suffering from PTSD (Kashdan et al., 2010). Supermarkets are highly

stimulating environments with social interactions and unpredictable auditive and visual

experiences which PTSD patients find stressful; some to the extent that they avoid go-

ing shopping or only do so with a helper present for emotional support. Consequently,

the game is built to primarily take place in a virtual supermarket (see Fig. D.1). Since

many veterans suffering from PTSD report re-experiencing memories of the originally

traumatizing situation when cued by elements in the environment, the game includes

short flashbacks (see Fig. D.1). These momentarily change the environment of the game

to an Afghan theater of operations, before changing back into the supermarket, embed-

ding elements of exposure therapy (Foa et al., 2009) in the stress inoculation training

(Foa et al., 2009) approach1. We assume that the player’s level of immersion into the

game environment will influence the extent to which he responds to the stressors in the

game (McMahan, 2003). To support immersion, the simulation is presented as a first-

person-shopper. The player starts at the entrance of the supermarket, navigates through

the supermarket collecting items on the list and concludes a mission by standing in line

and paying at the cash register. The player can move freely around the supermarket

and collect or activate goods or items. In order to ensure that the player experiences as

much of the supermarket as possible, the objective of the game is to collect a number of

goods presented on an on-screen shopping list within a given time frame. The items to

1As the flashbacks constitute a minor part of the content they can easily be omitted or exchanged
for groups of patients that are not war veterans.
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(a) Sound of ventilator blowing overhead. (b) Sound of wind blowing.

(c) Man walking angrily toward player. (d) Man running toward player.

(e) Man staring at player. (f) Wounded soldier staring at player.

Figure D.1: The three flashbacks of the game (b, d, f) and the immediately preceding
supermarket scenes (a, c, e). Elements of the supermarket bleed into the flashbacks,

simulating re-experience.
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collect and the remaining time are displayed on screen during the game (see top-right

of the left-hand images in Fig. D.1). The goods are placed in locations that make it

probable that the player will be exposed to all sections of the supermarket if he manages

to collect all items.

D.4.1 Game Stressors

The supermarket environment includes a number of stressors that aim at eliciting stress

in the player. These are designed around three typical symptoms of PTSD, namely fear-

avoidance behavior, hyper-arousal (i.e. heightened startle response), and re-experiencing

of traumatic events triggered by an outside stimulus or general stress (Foa et al., 2009).

Stressors targeting fear-avoidance behavior include the following design elements: The

layout of the supermarket is designed to include hidden angles and preventing the player

from attaining a full overview of the location. An aisle is blocked by a shopping cart

making it difficult for the player to pass. Non-Player-Characters (NPCs), adults as

well as children, wander around the supermarket, sometimes blocking the way of the

player. Two NPCs, engaged in conversation, will stop talking and stare at the player

if he approaches. An NPC walks angrily down the aisle toward the player, expressing

aggression through his body-language. A family of NPCs are engaged in a discussion, the

father is scolding the child aggressively. An NPC pockets goods from the shelves of the

supermarket. Stressors targeting hyper-arousal include a dog barking at the entrance

to the supermarket and the sound of crashes and glass breaking suddenly playing at

random locations in the supermarket. Stressors targeting re-experiencing are included

in the form of three different flashbacks. Their purpose is to elicit the feeling of recalling

and re-experiencing a traumatic memory. Only one is shown per mission. In the first

flashback the player is walking on a foot patrol in a typical Afghan theater of operations

(see Fig. D.1b). In the second flashback the player sees a man, apparently of Afghan

origin, running directly toward him (see Fig. D.1d). In the third flashback the player

sees a fellow soldier hit by an explosion, clutching the remains of his leg (see Fig. D.1f).

The game features three different configurations of missions assumed to elicit stress to

different degrees. The missions vary in terms of the number of items the player must

collect and the apparent threat in the presented flashback. We assume that increasing

the number of items the player has to collect and increasing the degree of threatening

content in the flashbacks will increase the stressfulness of the experience. The missions

are played consecutively going from the least stressful to the most stressful.
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Figure D.2: An example of an SC signal recorded from a single game session: Subject
no. 5, game session 3 (high stress intensity).

D.5 Experimental Protocol and Data Collection

In this section we provide details about the participants of our experiment and the ex-

perimental protocol followed for the clinical trials of the game. Fourteen male PTSD

patients, veterans from Danish military operations in Afghanistan, are included in the

study presented in this paper. The participants are in psychiatric treatment for PTSD

and qualify for the PTSD diagnosis. All subjects in the sample are medicated with Se-

lective Serotonin Re-uptake Inhibitors (SSRI) which is known to generally lower sympa-

thetic activity and in particular SC (Siepmann et al., 2003). This clearly ads a challenge

to the detection of SC stress responses to game stimuli since patients are expected to

manifest responses that are pharmacologically suppressed to an unknown degree. Our

approach, thus, is based on a within-subject analysis to eliminate such effects. Each

patient participates in the experiment twice, engaging in a total of 6 game play sessions,

3 per participation (11 patients have participated in both sessions, while 3 participated

in the first session only). The experimenters, trained psychologists, welcome the partic-

ipant, complete a diagnostic interview with the patient and collect various instances of

demographic and background data from either the patient himself or the patient’s med-

ical records (see section D.6.1). The participant is introduced to the experimental setup

and seated in front of the controls and monitor. The biofeedback device is attached to

the participant’s fingertips (see more details in section D.5.1), and a brief introduction

to the game rules and how to control game is given. Following a short waiting period,

collecting baseline SC data, the participant is asked to play three sessions of the game.

Subjective data (self-reports) are collected over the course of the experiment (see section

D.6.2). Finally, the experimenter debriefs the participant, responding to any concerns

or issues the patient might have.
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D.5.1 Physiological Sensors and Setup

For continuous measurement of SC the IOM biofeedback device2 is used. The IOM

biofeedback device samples SC at a rate of 300 Hz and down-samples them to 30 Hz in

firmware before transmitting them to the recording computer. The device’s measuring

electrodes are attached dryly to the distal phalanges of the little and middle fingers of

the patient’s non-dominant hand. A sensor measuring blood volume pulse is attached

to the ring finger, but is not used for the study and analysis presented here. To ensure

maximum exposure to the content the game is presented on a 25” LCD monitor placed

roughly 35 cm from the face of the patient. To provide auditive stimulation, while still

allowing the player to communicate with the experimenter, supra-aural headphones are

used to deliver the sounds of the game. The audio level is adjusted to be experienced

subjectively as loud, but pleasant. Since frustration with the control scheme of the

game might introduce unwanted variation and artifacts to the results of the experiment

(Yannakakis et al., 2010) the game is configured to use standard controls for first-person-

perspective computer games which should be familiar to most patients. The mouse,

operated with the patient’s dominant hand, controls the perspective and the keyboard

controls movement. To minimize the risk of movement artifacts in the physiological

readings, patients operate the keyboard (W, A, S, D or arrow keys) with only the index

finger of their non-dominant hand, keeping the other fingers still. An example of a SC

signal collected from a single session is illustrated in Fig. D.2.

D.6 User Data Features

This section details the three types of data obtained from, or extracted for, each ex-

periment participant considered in this study. These include the PTSD profile of the

patient, the subjective self-reports of stress during the experiment and the the set of

features extracted from the SC signal.

D.6.1 PTSD profile

Each participant is subjected to the PTSD Module of the Structured Clinical Interview

for the DSM (SCID) (First et al., 2002) and completes the military version of the PTSD

Checklist-IV (PCL-M) (Blanchard et al., 1996), a 17-item questionnaire that yields a

PTSD symptom severity score in the interval 17–85. Then all patients are profiled

in terms of age, PTSD checklist score PCL, number of deployments (i.e. war missions)

2http://www.wilddivine.com/
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Table D.1: PTSD profile features

Feature Average Standard deviation Range

Age 26.8 2.5 22–32
PCL 58.0 4.9 50–65
Ndep 1.77 0.67 1–3
Nday 1001.2 432.4 113–1685

experienced Ndep, and the number of days since their return from their latest deployment

Nday. The average, standard deviation and range values of the PTSD profile features

across all 14 patients are presented in Table D.1. For the veteran PTSD patients,

traumatized by experiences during deployment in this study, we assume that Nday may

be considered an adequately precise measure of the time passed since the traumatizing

experience. The deployment situation as a whole may be considered a highly stressful

experience and as such part of the traumatizing situation. This means that the age of

the trauma for all purposes here is assumed to be equivalent to Nday.

D.6.2 Self-Reports of Stress

Before, immediately after, and following a short break after each of the three sessions,

the patient is asked to provide a rating of his subjectively experienced stress level on

the Subjective Units of Distress Scale (SUDS) (Wolpe, 1973) in a range from 0 to 100

with 0 representing complete absence of stress and 100 representing the most stressful

experience the patient can recall.

D.6.3 Features extracted from Skin Conductance

SC features are extracted from complete game sessions. Session data is procedurally and

visually inspected for outliers and other indications of artifacts. Session data instances

containing artifacts are either reconstructed, if possible, or removed from the data set.

Following this data cleaning process — that removed 7 (9%) of all possible 75 game

sessions resulting in a total of 68 (91%) sessions — all signals are adjusted for baseline

readings, subtracting the individual session mean baseline value from the raw signal.

Prior to feature extraction all signals are normalized via min-max normalization within

individuals and across sessions from the same day. In order to account for any day-

variation effects, signals from the same patients, but taken on different days, are treated

as separate individuals. In accordance with recommendations from earlier studies on

SC signal processing (Picard et al., 2001; Yannakakis and Hallam, 2008; Mart́ınez et al.,

2011), a number of features of the SC signal are extracted: Mean SC value SCx̄, standard

deviation of the SC signal SCσ, minimum SC value SCmin, maximum SC value SCmax,



Appendix D. Stress Detection for PTSD via the StartleMart Game 193

the difference between the maximum and minimum SC value SCmax−min, the correlation

between recording time t and SC values RSCt, the value of the first SC sample Sinit,

the value of the final SC sample Slast, the difference and absolute difference between

final and first SC value SClast−init and |SClast−init|, the time of the minimum SC value

tSCmin , the time of the maximum SC value tSCmax , the time t difference between the

minimum and maximum SC values |tSCmax−min | the means of the absolute values of the

first and second differences of the SC signal SC|δ1| and SC|δ2|. An uncommonly used

feature: the mean of the absolute first difference of the absolute first difference |SCδδ |
is added in an attempt to describe the tendency toward weak habituation in the signal.

D.7 Results

We assume there is a relationship between PTSD profile and manifestations of stress on

the SC signal and, thus, investigate the effects of PTSD profile features on SC signals.

We also investigate the relationship between self-reported levels of stress and features

of the SC signal. On that basis, we follow a correlation analysis for examining both

relationships and present the key findings of this initial analysis.

D.7.1 Correlation analysis between PTSD profile and SC features

To investigate the impact of a PTSD profile to manifestations of stress via SC we com-

pute correlations between the two sets of features using Spearman’s rank correlation

coefficient ρ (Kendall, 1970). The results are presented in Table D.2. Results suggest

that patients suffering from more severe degrees of PTSD (higher PCL values) respond

with higher SCmax and a higher increase across the sessions as indicated by SClast−init.

This corresponds to findings that PTSD patients are more responsive to stressful stimuli.

They also complete the session with a higher SClast which corresponds to findings that

PTSD patients are more responsive and habituate slower than non-patients. Patients

with more severe PTSD exhibit higher values of all typical measures of local variation.

The correlations between PCL and SC|δ1|, SC|δ2| indicate that patients with more severe

PTSD exhibit more variation. We hypothesize this is due to the relation between the

severity of the syndrome and the hyper-responsiveness and hyper-arousal of the patient,

meaning the patient responds more often to stimuli in the game. SC|δδ| also corre-

lates with symptom severity suggesting PTSD patients’ slower habituation compared to

non-patients (Pole, 2007). Significant positive correlation is observed between Ndep and

SCmin. No clear explanation can be given for this, since more deployments should mean

a higher degree of exposure to potentially highly stressful situations, but it should be

noted that the range of the number of deployments in the sample is limited to 1−−3.
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Table D.2: Correlations ρ between SC signal and PTSD profile features in the left
section of the table. Correlations c(z) between SC signal and self-reported stress in the
right section of the table. Statistically significant correlations appear in bold (p-value <

0.05) and italics (p-value < 0.10).

Age PCL Ndep Nday Day
pairs

Adjac.
pairs

SCx̄ 0.10 0.10 0.01 0.08 0.15 0.14
SCmax 0.22 0.29 0.05 −0.25 −0.15 0.00
SCmin −0.16 0.03 −0.31 0.05 −0.15 0.00

SCmax−min 0.23 0.24 0.13 −0.26 −0.25 −0.19
SCσ 0.26 0.17 0.13 −0.23 −0.15 0.00
RSCt 0.10 0.02 0.15 −0.06 0.15 0.14
SCinit 0.11 0.08 −0.13 0.10 0.25 0.10
SClast 0.08 0.35 −0.17 −0.30 −0.02 −0.05

SClast−init −0.08 0.31 −0.03 −0.25 −0.02 0
|SClast−init| 0.09 0.32 −0.01 −0.35 −0.02 0.05
tSCmin 0.06 0.02 −0.13 −0.02 −0.12 −0.10
tSCmax −0.17 0.06 0.10 −0.12 −0.02 0.00

|tSCmax−min | −0.04 −0.07 0.11 −0.15 0.08 0.05
SC|δ1| 0.15 0.29 0.13 −0.26 −0.12 −0.14

SC|δ2| 0.15 0.28 0.14 −0.25 −0.12 −0.14

SC|δδ| 0.15 0.28 0.14 −0.25 −0.02 0.00

One could speculate that individuals who were only diagnosed with PTSD after sev-

eral deployments were less susceptible to contracting the hyper-aroused state of PTSD.

It would follow that they would exhibit lower SC bounds than their more susceptible

colleagues, but the explanation remains speculation. A negative correlation is observed

between Nday and the last SC value recorded in session; PTSD symptoms typically

abate as a function of time (Foa et al., 2009), so this relation matches the literature on

PTSD. The literature also matches the relation between Nday and PCL: PCL and Nday

correlate negatively (ρ = −0.51, p < 0.01) indicating the symptom severity decreases

over time. It seems plausible that Nday is an inverse indicator of symptom severity and

that less severe cases of PTSD exhibit lower bounds of SC, most likely due to a less

elevated mean SC level and faster (closer to normal) habituation. Altogether, we argue

the results indicate a positive relationship between symptom severity and physiological

stress responses to StartleMart.

D.7.2 Correlation analysis between self-reports and SC features

To investigate relations between self-reported levels of stress and signal features another

measure of correlation is computed. As noted in section D.3.1 there is reason to believe

that pair-wise preference analysis is a useful approach for examining self-reports. For

this purpose, preference pairs are created with each pair containing a self-report value
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and a feature value. Correlation values are calculated via the following test statistic

(Yannakakis and Hallam, 2008)

c(z) =
∑

Ns
i=1{zi/Ns} (D.1)

where zi = 1 if the highest stress value is from the same observation of the pair as

the highest feature value; otherwise zi = −1. In cases where the SUDS ratings are

equal the stress preference pair is considered ambiguous and discarded. The relations

between the self-reported SUDS ratings collected from the patients are expected to

become increasingly vague over time. This, in turn, affects the quality of self-reported

ratings. Episodic memory traces that form the basis of self reports fade over time, but the

precise rate at which this memory decay occurs is unknown in this case and most likely

individual (Robinson and Clore, 2002). Ideally, memory decay is so slow that the patient

will have a clear feeling of the first session when rating the final session, but it is possible

that only comparisons between immediately adjacent sessions are valid. To account

for this uncertainty, two different correlation analyses are attempted: one combining

data from sessions on the same day and one combining data only from sessions that

took place immediately adjacent to each other. The results are included in Table D.2.

Two significant effects are identified across the two approaches: A negative correlation

between self-reports of stress and the range of the SC signal (SCmax−min) and a positive

correlation between reported stress and initial SC values. Both effects are consistent with

the fact that patients with severe PTSD symptoms exhibit high SC values and weaker

habituation. This means their SC values stay higher and their signals are subject to

quick stabilization at the individually higher baseline. The correlations indicate that

patients feeling stressed by interacting with StartleMart exhibit matching physiological

responses and supports the relevance of the game to the target group.

D.8 Discussion

The PCL score of the patients served as the first measure of ground truth describing

symptom severity in this study. The PCL instrument is well-validated and the de facto

standard for PTSD severity screening (Foa et al., 2009), but is nonetheless based on self-

reports of personal experience retrieved from memory. This is an inherent weakness of

the presented study, but one we suspect is innate and difficult to overcome in any study

involving a syndrome defined partially by personal experience. The negative correlation

between PCL values and Nday, which matches expectations according to the literature,

strengthens the validity of the measure. The second measure of ground truth is the

SUDS values collected during the game-play sessions. These are subject to the concerns
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described in sections D.3.1 and D.7.2, but these concerns are sought mediated by the use

of pair-wise preferences as the basis for correlation. In Table D.2 negative correlations

are present between self-reports and SCmax and SCmin when pairs are constructed

across all sessions in a day. These correlations trend in the opposite direction of what

we would expect from theory. When pairs are limited to adjacent sessions these effects

disappear and only effects matching expectations from theory remain. We consider

this an indication of the psychometric properties of self-reports of stress. Future work

using StartleMart might benefit from including stress evaluations as preferences at the

report level. The analyses presented in this paper are limited to correlating features.

Recent work in the literature (Zhai et al., 2005; Hernandez et al., 2011) describes how

applications of non-linear techniques of analysis and machine learning can support stress

detection and the data set described here could advantageously be analyzed by these

methods in the future. Finally, the application of SC signal deconvolution could allow

us to separate tonic and phasic components of the SC signal, identifying phasic drivers

underlying responses to in-game events (Benedek and Kaernbach, 2010b). This could

allow us to develop personalized, event-based PTSD profiles that integrate information

from the simulation context into the stress detection process.

D.9 Conclusion

The results of the analyses in this paper indicate that physiological responses to Startle-

Mart are highly correlated with PTSD symptom severity and subjective experience

expressed through self-reports of stress. That StartleMart elicits stress responses with

PTSD patients lends credence to the general idea of using game-based stimuli of every-

day life situations for stress inoculation training for PTSD patients. However, any

treatment efficacy is unknown at this point and would require a randomized study.

Nonetheless, the fact that physiological responses seem to scale with measures of symp-

tom severity, self-reports and an indicator of recovery over time, indicates a promise

to using StartleMart for diagnosis and treatment of PTSD. Future work will focus on

leveraging these findings to refine profiling and adaptive game-based solutions support-

ing diagnosis and treatment in psychiatric work.
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Appendix E

Multimodal PTSD

Characterization via the

StartleMart Game

Reference:

Holmg̊ard, Christoffer, Georgios N. Yannakakis, Héctor P. Mart́ınez, Karen-Inge Karstoft,

and Henrik Steen Andersen (2014). “Multimodal PTSD Characterization via the

StartleMart Game”. In: Journal on Multimodal User Interfaces, pp. 1–13.

E.1 Abstract

Computer games have recently shown promise as a diagnostic and treatment tool for

psychiatric rehabilitation. This paper examines the potential of combining multiple

modalities for detecting affective responses of patients interacting with a simulation

built on game technology, aimed at the treatment of mental diagnoses such as Post

Traumatic Stress Disorder (PTSD). For that purpose, we couple game design and game

technology to create a game-based tool for exposure therapy and stress inoculation train-

ing that utilizes stress detection for the automatic profiling and potential personalization

of PTSD treatments. The PTSD treatment game we designed forces the player to go

through various stressful experiences while a stress detection mechanism profiles the

severity and type of PTSD by analyzing the physiological responses to those in-game

stress elicitors in two separate modalities: skin conductance (SC) and blood volume

pulse (BVP). SC is often used to monitor stress as it is connected to the activation of

the sympathetic nervous system (SNS). By including BVP into the model we introduce

197
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information about para-sympathetic activation, which offers a more complete view of

the psycho-physiological experience of the player; in addition, as BVP is also modulated

by SNS, a multimodal model should be more robust to changes in each modality due

to particular drugs or day-to-day bodily changes. Overall, the study and analysis of 14

PTSD-diagnosed veteran soldiers presented in this paper reveals correspondence between

diagnostic standard measures of PTSD severity and SC and BVP responsiveness and

feature combinations thereof. The study also reveals that these features are significantly

correlated with subjective evaluations of the stressfulness of experiences, represented as

pairwise preferences. More importantly, the results presented here demonstrate that

using the modalities of skin conductance and blood volume pulse captures a more nu-

anced representation of player stress responses than using skin conductance alone. We

conclude that the results support the use of the simulation as a relevant treatment tool

for stress inoculation training, and suggest the feasibility of using such a tool to profile

PTSD patients. The use of multiple modalities appears to be key for an accurate pro-

filing, although further research and analysis are required to identify the most relevant

physiological features for capturing user stress.

E.2 Introduction

Post Traumatic Stress Disorder (PTSD) is a psychiatric diagnosis describing an often

severely disabling syndrome that is sometimes developed after being exposed to highly

stressful situations. Veterans from military operations are a high-risk group for develop-

ing this syndrome (Hoge et al., 2004). A number of psychiatric treatments for PTSD are

based on cognitive-behavioral approaches and include exposure therapy and stress inoc-

ulation training(Foa et al., 2009). Among the possible ways of treating PTSD computer

games and virtual environments appear to have a great potential for eliciting stress in

a controlled fashion and provide an immersive medium for PTSD treatment facilitat-

ing exposure therapy and stress inoculation training. If enhanced with affect detection

capabilities, these systems would be able to aid psychiatric evaluation of patients and

automatic personalized treatments.

In this paper we investigate the combination of multiple modalities for stress detec-

tion in games designed to support the psychiatric treatment of PTSD-diagnosed veteran

soldiers. For that purpose, we designed and developed a game — StartleMart — that ex-

pands upon existing principles of PTSD treatment techniques with game mechanics and

profiles users based on their stress levels, which are inferred from physiological responses
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to in-game events. In this study, we examine results gathered from 14 veterans diag-

nosed with PTSD and examine the relation among their PTSD psychiatric profile (mea-

sured via standard clinical tools), their perceived stress levels while playing the game

(measured via post-experience self-reports), and their physiological responses to in-game

stressors (measured via skin conductance (SC) and blood volume pulse (BVP) sensors).

Results, building upon and expanding an initial analysis of SC features reported in pre-

vious work (Holmg̊ard et al., 2013b), show that not only SC, but also BVP physiological

responses correlate with both PTSD profile features and self-reports of stress. More

importantly, results further show that features extracted from the two modalities can

be combined into two underlying linear components which are related to measures of

PTSD symptom severity. In all, the results demonstrate that capturing user stress re-

sponses from multiple physiological modalities enables a more nuanced understanding

of patient responses compared to using a single modality. While one could argue that

SC is enough to monitor stress because it is modulated only by the sympathetic nervous

system (SNS) — which controls the responses of the body to events perceived as threats

— the connection of BVP to both sympathetic and para-sympathetic nervous systems

— which in contrast to SNS is linked to relaxation responses — has several advantages.

The combination of both signals provides more complete information about the stress

responses (e.g. the stress activation and the following relaxation or lack thereof) and

more robust monitoring of SNS activations (e.g. motion artifacts, day-to-day changes

or effects of drugs more prominent in a single modality (Siepmann et al., 2003)).

From the perspective of PTSD treatment, StartleMart represents a novel approach as

it uniquely combines real-time stress detection with a game (virtual) environment sim-

ulating everyday-life situations. Diverging from and innovating upon earlier work in

the use of simulations for treating PTSD (Wood et al., 2011), we argue that simulating

everyday-life situations can help PTSD patients improve their functioning in everyday

tasks with direct benefits to their quality of life as a form of stress inoculation training

(Foa et al., 2009). The present game design expands on previous research and approaches

by constructing a desensitization and exposure paradigm consisting of a virtual world

representing a home-like setting with integrated game mechanics. The result is a hith-

erto unexplored midpoint between mediated and in vivo desensitization and exposure

paradigms aimed at addressing issues in the everyday-life of the patient. Our experi-

ments show the viability of this approach as both physiological responses and experience

self-reports suggest that in-game events can significantly stress soldiers diagnosed with

PTSD.

We believe that by interweaving appropriate game design and efficient stress profiling we

can provide a personalized therapeutic environment that allows therapists, for the first

time, to detect and address common PTSD symptoms across individuals with varying
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etiologies behind their PTSD. For instance, a veteran soldier and an assault victim may

exhibit similar responses to stressful everyday-life situations and a simulation addressing

these situations would be relevant to both. Unsurprisingly, the utilization of multiple

input modalities appears to be fundamental to empower these solutions with efficient

profiling capabilities across individuals.

E.3 Stress Detection

A wide range of approaches exist for capturing stress using physiological, behavioral,

and self-report data or combinations thereof. Earlier work on stress detection (Calvo

and D’Mello, 2010) has demonstrated how features extracted from raw physiological

signals can be used to discern between a variety of emotional states in general (Picard

et al., 2001) and in games (Mart́ınez et al., 2011), and previous work has presented

designs and studies that build affective loops for PTSD treatment by coupling presented

stimuli with PTSD symptom severity (Popović et al., 2009; Wood et al., 2011). Informed

by this previous research, our configuration captures indications of stress responses by

continuously recording SC and BVP and by requesting self-reports from the player.

SC has been identified as a useful indicator of stress elicited from tasks (Healey and

Picard, 2005; Hernandez et al., 2011) and with soldiers (Perala, 2007). Innervation

of the sweat glands is caused solely by the sympathetic nervous system (SNS) whose

activation is linked to reaction to threats (Andreassi, 2000). By extension, SC activity is

related to emotional states such as fear, anger and anxiety, and more generally arousal

(Boucsein, 2011). Thus, SC is an obvious physiological indicator of player stress.

BVP is a measure of blood flow in body appendices such as finger tips, and it is directly

related to heart rate (HR). HR increases with activation of the SNS, but in contrast to

SC, HR is also affected by a second control system; HR decreases with activation of the

para-sympathetic nervous system (PSNS). This reaction is associated to states of rest

and enjoyment (Andreassi, 2000). Thus, variability on HR as observed from BVP can

reveal changes across both states of stress and relaxation, adding information not easily

identified in the SC signal.

Self-reports can provide valuable ground truth (Tognetti et al., 2011) for interpreting

recorded physiological responses, though they have been shown to be unstable over time

and hard to anchor to fixed scales between sessions (Yannakakis and Hallam, 2011).

For our work presented here, we attempt to exploit SC to indicate sympathetic activation

and HR to indicate para-sympathetic activation with self-report measures as a source

of ground truth. In order to mediate the effect of the instability of self-reports, we
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treat these as expressions of preference rather than direct indications of the subjectively

experienced stressfulness.

E.3.1 Physiology of PTSD

In mediated stimulus exposure paradigms, PTSD-patients exhibit physiological responses

to stressful visual and auditive stimuli that are significantly different from the responses

of non-patients (Perala, 2007). Their responses are generally characterized by high

sympathetic activity as measured by SC and HR. In experimental studies, slower SC

habituation, elevated resting SC, and greater SC responses to startling stimuli have been

found to be robust identifying characteristics of PTSD-patients. Additionally, elevated

resting HR and larger HR responses to startling stimuli and trauma cues have been

identified as indicators of PTSD. Indeed, HR has been shown to prospectively predict

PTSD in some studies (Pole, 2007). This indicates the higher base levels of arousal

and heightened sensitivity to stress that are typical of the disorder. It has been sug-

gested that these differences could be used to support diagnostic differentiation between

PTSD patients and non-patients as well as between different degrees of PTSD symp-

tom severity (Blechert et al., 2007) guiding treatment strategies or allowing for adaptive

treatment tools (Wood et al., 2011). While prior work has related multiple modalities

to PTSD, in the present study we contribute by investigating the relationship between

PTSD profiles, self-reports of stress and SC, BVP and HR signal features in response to

rich interactive simulations and determine that employing and combining multiple phys-

iological modalities provides additional relevant information for characterizing patient

responses, compared to using a single modality alone.

E.4 The StartleMart Game for PTSD Treatment

Two well-known treatment approaches for PTSD — favored because of strong evidence

for their therapeutic efficacy — are the cognitive-behavioral therapy techniques of expo-

sure therapy and stress inoculation training. In exposure therapy, the therapist confronts

the patient with anxiety provoking stimuli in a controlled setting in order to extinguish

reactions to the stimuli and/or allow the patient to reprocess the memories cued by the

stimuli. Three common variations are the use of real life stimuli i.e. in vivo, represent-

ing stimuli via media i.e. mediated, or having the patient imagine the stress provoking

situations and thus self-generate the stimuli i.e. imaginal (Foa et al., 2009). In stress

inoculation training, the therapist exposes the patient to stimuli and situations that are

not directly linked to the original trauma of the patient, but that cause problematic

anxiety responses that are difficult for the patient to cope with (Foa et al., 2009). In the
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present study we utilize StartleMart as a game facilitator of exposure therapy and stress

inoculation training. The game implements a simulation of a number of experiences

from everyday life that are known to be stressful to PTSD patients (Kashdan et al.,

2010), and additionally provides cues of traumatic experiences that war veterans may

have experienced. The stimuli are designed around three typical symptoms of PTSD,

namely fear-avoidance behavior, hyper-arousal (i.e. heightened startle response), and re-

experiencing of traumatic events triggered by an outside stimulus or general stress (Foa

et al., 2009). For a deeper discussion of related work in using simulations and games for

mental health, and an in-depth presentation of the StartleMart game, we refer to our

previous work (Holmg̊ard et al., 2013b). Fig. E.1 gives examples of the types of stimuli

delivered by the game.

E.5 Experimental Protocol and Data Collection

In this section we provide details about the participants of our experiment and the ex-

perimental protocol followed for the clinical trials of the game. Fourteen male PTSD

patients, veterans from Danish military operations in Afghanistan, are included in the

study presented in this paper. The participants are in psychiatric treatment for PTSD

and qualify for the PTSD diagnosis. All subjects in the sample are medicated with

Selective Serotonin Re-uptake Inhibitors (SSRI) which is known to generally lower sym-

pathetic activity and in particular SC (Siepmann et al., 2003), while recent research

found no significant effect on HR variability (Kemp et al., 2010). This clearly adds

a challenge to the detection of SC stress responses to game stimuli since patients are

expected to manifest responses that are pharmacologically suppressed to an unknown

degree. Each patient participates in the experiment twice, engaging in a total of 6 game

play sessions, 3 per participation (11 patients have participated in both sessions, while 3

participated in the first session only). For each participation, the 3 sessions vary in terms

of goal locations in the virtual environment and in terms of the specific configuration of

the stressful experiences.

E.5.1 Physiological Sensors and Setup

For continuous measurement of SC and BVP the IOM biofeedback device1 is used. The

IOM biofeedback device samples SC and BVP at a rate of 300 Hz and down-samples

the signals to 30 Hz in firmware before transmitting them to the recording computer.

An example of SC and BVP signals collected from a single session is illustrated in

1http://www.wilddivine.com/
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(a) Sound of ventilator blowing overhead. (b) Sound of wind blowing.

(c) Man walking toward player. (d) Man running toward player.

(e) Man staring at player. (f) Wounded soldier staring at player.

Figure E.1: The three traumatic experience cues of the game (b, d, f) and the
immediately preceding stressful scenes from everyday life (a, c, e). Elements of the
everyday life scenes bleed into the cue scenes, referencing re-experience, a symptom

typical for PTSD.
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Figure E.2: An example of an SC and a BVP signal recorded from a single game
session: Subject no. 5, game session 3.

Fig. E.2. The experimental paradigm and protocol are further detailed in our previous

work (Holmg̊ard et al., 2013b).

E.6 User Data Features

This section details the three types of data obtained from, or extracted for, each ex-

periment participant considered in this study. These include the PTSD profile of the

patient, the subjective self-reports of stress during the experiment and the set of features

extracted from the physiological signals.

E.6.1 PTSD Profile

Each participant is subjected to the PTSD Module of the Structured Clinical Interview

for the DSM (SCID) (First et al., 2002) and completes the military version of the PTSD

Checklist-IV (PCL-M) (Blanchard et al., 1996), a 17-item questionnaire that yields a

PTSD symptom severity score in the interval 17–85. Then all patients are profiled

in terms of age, PTSD checklist score PCL, number of deployments (i.e. war missions)

experienced Ndep, and the number of days since their return from their latest deployment

Nday. The average, standard deviation and range values of the PTSD profile features

across all 14 patients are presented in Table E.1. For the veteran PTSD patients,

traumatized by experiences during deployment in this study, we assume that Nday may

be considered an adequately precise measure of the time passed since the traumatizing

experience. The deployment situation as a whole may be considered a highly stressful

experience and as such part of the traumatizing situation. This means that the age of

the trauma for all purposes here is assumed to be equivalent to Nday.
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Table E.1: PTSD profile features

Feature Average Standard deviation Range

Age 26.8 2.5 22–32
PCL 58.0 4.9 50–65
Ndep 1.77 0.67 1–3
Nday 1001.2 432.4 113–1685

E.6.2 Self-Reports of Stress

Before, immediately after, and following a short break after each of the three sessions,

the patient is asked to provide a rating of his subjectively experienced stress level on

the Subjective Units of Distress Scale (SUDS) (Wolpe, 1973) in a range from 0 to 100

with 0 representing complete absence of stress and 100 representing the most stressful

experience the patient can recall.

E.7 Features Extracted from Physiological Signals

In the following section we present the features extracted from the two physiological

signals and the motivation for including these signals. An overview of all features is

presented in Table E.2.

E.7.1 Features Extracted from Skin Conductance

SC features are extracted from complete game sessions. Session data is procedurally and

visually inspected for outliers and other indications of artifacts. Session data instances

containing artifacts are either reconstructed, if possible, or removed from the data set.

Following this data cleaning process — that removed 7 (9%) of all possible 75 game

sessions resulting in a total of 68 (91%) sessions — all signals are adjusted for baseline

readings, subtracting the individual session mean baseline value from the raw signal.

Prior to feature extraction all signals are normalized via min-max normalization within

individuals and across sessions from the same day. In order to account for any day-

variation effects, signals from the same patients, but taken on different days, are treated

as separate individuals. In accordance with recommendations from earlier studies on

SC signal processing (Picard et al., 2001; Yannakakis and Hallam, 2008; Mart́ınez et al.,

2011), a number of features that summarize the key statistical characteristics of SC

signals are extracted: Mean SC value (SCx̄), standard deviation of the SC signal (SCσ),

minimum SC value (SCmin), maximum SC value (SCmax), the difference between the

maximum and minimum SC value (SCrange), the Pearson correlation between recording

time (t) and SC values (RSCt), the value of the first SC sample (SCα), the value of the
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final SC sample (SCω), the difference and absolute difference between final and first SC

value (SCω−α) and (|SCω−α|), the time of the minimum SC value (tSCmin), the time of

the maximum SC value (tSCmax), the absolute time (t) difference between the minimum

and maximum SC values (|tSCrange |), the means of the absolute values of the first and

second differences of the SC signal (SC|δ1|) and (SC|δ2|). An uncommonly used feature,

the mean of the absolute first difference of the absolute first difference (|SCδδ |), is added

in an attempt to describe the tendency toward weak habituation in the signal.

E.7.2 Features Extracted from Blood Volume Pulse

BVP features are also extracted from complete game sessions after inspection for arti-

facts. Only signals with uncorrupted corresponding SC signals are considered. None of

these BVP signals were impacted by artifacts to a detrimental degree and hence BVP

features are calculated for all 68 sessions remaining from the first inspection process

(91%). Firstly, heart rate (HR) is computed using a 5-second sliding window by ex-

trapolating the inter-beat time intervals detected in the BVP signal. The measurement

unit for the resulting HR signal is beats per minute (BPM) whereas BVP is a relative

measure of blood vessel pressure. Features from HR as well as BVP are chosen in order

to cover the more significant BVP signal dynamics identified in previous studies in the

field (Picard et al., 2001; Goldberger et al., 2001; Yannakakis and Hallam, 2008). Note

that while HR and SC present similar features, BVP is a relative signal, and therefore

extracted features focus only on its periodic nature. The RR features are aimed at pro-

viding an insight on the frequency domain of HR, and they have been developed over

decades of research on psychophysiology (Goldberger et al., 2001).

For HR the following features are extracted: Mean (HRx̄), maximum HR (HRmax),

minimum HR (HRmin), range of HR (HRrange) and standard deviation (HRσ). The

Pearson correlation between measurement time and HR value (RHRt), the HR at the

start of the session (HRα), at the end of the session (HRω), and the difference between

the two (HRω−α). The time of the maximum recorded HR value (tHRmax), the time

of the minimum recorded HR value (tHRmin), and the difference in time between the

two (tHRrange). The local variation of the HR signal as represented by the means of the

absolute values of the first and second differences of the signal (HR|δ1| and HR|δ2|).

For the raw BVP the following features are extracted: Mean (BV Px̄), and standard

deviation (BV Pσ). The local variation of the BVP signal as represented by the means

of the absolute values of the first and second differences of the signal (BV P|δ1| and

BV P|δ2|). The mean and standard deviation of the inter-beat amplitude (IBAmpx̄ and

IBAmpσ).



Appendix E. Multimodal PTSD Characterization via the Startle-Mart Game 207

Additionally, given the inter-beat time intervals (RR intervals) of the BVP signal a

number of heart rate variability extractors are proposed, concerned with the time-domain

and the frequency domain, respectively:

• HRV-time domain: The mean and standard deviation of RR intervals (RRx̄ and

RRσ), the fraction of RR intervals that differ by more than 50 msec from the

previous RR interval (pRR50) and the root-mean-square of successive differences

of RR intervals (RRRMS) (Goldberger et al., 2001).

• HRV-frequency domain: The frequency band energy values derived from power

spectra obtained using the Lomb periodogram (Moody, 1993); energy values are

computed as the integral of the power of each of the following two frequency

bands, relevant for short experiences (Force, 1996): High Frequency (HF ) band:

(0.15, 0.4] Hz and Low Frequency (LF ) band: (0.04, 0.15] Hz. In addition, the

ratio LF
HF and the normalized values LF

(LF+HF ) and HF
(LF+HF ) are also included as

recommended in (Force, 1996).

E.8 Results

There exists a relation between the PTSD profile of a patient and the levels of stress that

is experienced in everyday situations. Therefore we assume a relationship between the

patient’s PTSD profile and manifestations of stress on the physiological signals recorded

across several sessions of interacting with StartleMart. First, we investigate this relation

for each modality independently (see Section E.8.1 and Section E.8.3) using a correla-

tion analysis between the PTSD profile feature set and the physiological features using

Spearman’s rank correlation coefficient ρ (Kendall, 1970). Secondly, we use principal

component analysis (PCA) to also investigate the interdependencies between modalities

by studying the relation between the principal components and the features (see Section

E.8.5).

Furthermore, we investigate how physiological signals vary along different levels of stress

experience during the game. On that basis, we study the correlation between self-

reported stress levels and the extracted physiological features using a pair-wise corre-

lation metric (see Section E.8.2 and Section E.8.4). As noted in Section E.3 there is

reason to believe that pair-wise preference analysis is a useful approach for examin-

ing self-reports. For this purpose, we create two sets of preference pairs. The first

set (denoted as Day) contains three preference pairs for each session by comparing the

post-experience SUDS ratings given to each of the three games. The preferred game
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Table E.2: Overview of features extracted from SC and BVP.

Symbol Feature

SCx̄ Mean SC value
SCmax Max SC value
SCmin Min SC value
SCrange Difference between max and min SC
SCσ Standard deviation of SC
RSCt Correlation, recording time and SC
SCα Value of the first SC sample
SCω Value of the final SC sample
SCω−α Difference between final and first SC
|SCω−α| Absolute difference between final and first SC
tSCmax Time of the max SC value
tSCmin Time of the min SC value
|tSCrange | Time between the max and min recorded SC

values
SC|δ1| Mean of absolute values of 1st difference of SC

SC|δ2| Mean of absolute values of 2nd difference of
SC

SC|δδ| Mean of absolute values of 1st difference of 1st

difference of SC
HRx̄ Mean HR
HRmax Max HR
HRmin Min HR
HRrange Range of HR
HRσ Standard deviation of HR
RHRt Correlation, measurement time and HR value
HRα First HR value of the session
HRω Final HR of the session
HRω−α Difference between the final and first HR val-

ues
tHRmax Time of the max recorded HR value
tHRmin Time of the min recorded HR value
tHRrange Time between max and min recorded HR val-

ues
HR|δ1| Mean of absolute values of 1st difference of HR

HR|δ2| Mean of absolute values of 2nd difference of
HR

BV Px̄ Mean BVP
BV Pσ Standard deviation of BVP
BV P|δ1| Mean of absolute values of 1st difference of

BVP
BV P|δ2| Mean of absolute values of 2nd difference of

BVP
IBAmpx̄ Mean of inter-beat amplitude
IBAmpσ Standard deviation of inter-beat amplitude

RRx̄ Mean of RR intervals
RRσ Standard deviation of RR intervals
RRRMS Root-mean-square of differences of RR inter-

vals
pRR50 Fraction of RR intervals that differ by more

than 50 msec from the previous RR interval
HF Integral of power of Lomb periodogram High

Frequency band: (0.15, 0.4] Hz
LF Integral of power of Lomb periodogram Low

Frequency band: (0.04, 0.15] Hz
LF

(LF+HF )
Normalized values of the Low Frequency band

HF
(LF+HF )

Normalized values of the High Frequency
band

LF
HF

Ratio of Low Frequency over High Frequency
band
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on each pair corresponds to the highest rating (i.e. preference in this context denotes

higher stress levels). In cases where the SUDS ratings are equal the stress preference

pair is considered ambiguous and discarded. In the second set (denoted as Adjacent),

we only extract two pairs from each session following the same procedure. We omit

the comparison between the first and third game to minimize noise introduced by the

variation on the rating scale due to memory decay. Note that the relations between the

self-reported SUDS ratings collected from the patients are expected to become increas-

ingly vague over time. This, in turn, affects the quality of self-reported ratings. Episodic

memory traces that form the basis of self-reports fade over time, but the precise rate

at which this memory decay occurs is unknown in this case and most likely individual

(Robinson and Clore, 2002). Ideally, memory decay is so slow that the patient will have

a clear feeling of the first session when rating the final session, but it is possible that

only comparisons between immediately adjacent sessions are valid. To account for this

uncertainty, we analyze the correlations for the Day and Adjacent sets independently.

Correlation values are calculated for each physiological feature via the following test

statistic (Yannakakis and Hallam, 2008)

c(z) =
∑

Ns
i=1{zi/Ns} (E.1)

where for each pair i, zi = 1 if the preferred game (i.e. higher stress report) presents a

higher feature value, and zi = −1 otherwise; Ns represents the total number of pairs.

All the correlation coefficients discussed in the following sections are included in Table

E.3.

E.8.1 Correlations Between PTSD Profile and SC Features

Results suggest that patients suffering from more severe degrees of PTSD (higher PCL

values) respond with higher SCmax and a higher increase across the sessions as indi-

cated by SCω−α. This corresponds to findings that PTSD patients are more responsive

to stressful stimuli. They also complete the session with a higher SCω which corre-

sponds to findings that PTSD patients are more responsive and habituate slower than

non-patients. Patients with more severe PTSD exhibit higher values of all typical mea-

sures of local variation. The correlations between PCL and SC|δ1|, SC|δ2| indicate that

patients with more severe PTSD exhibit more variation. We hypothesize this is due

to the relation between the severity of the syndrome and the hyper-responsiveness and

hyper-arousal of the patient, meaning the patient responds more often to stimuli in the

game. SC|δδ| also correlates with symptom severity suggesting PTSD patients’ slower
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Table E.3: Correlations ρ between physiological signal features and PTSD profile
features are in the left section of the table. Correlations c(z) between physiological
signal features and self-reported stress are in the right section of the table. Statistically

significant correlations appear in bold (p < 0.05) and italics (p < 0.10).

Age PCL Ndep Nday Day Adjac.

SCx̄ 0.10 0.10 0.01 0.08 0.15 0.14
SCmax 0.22 0.29 0.05 −0.25 −0.15 0.00
SCmin −0.16 0.03 −0.31 0.05 −0.15 0.00
SCrange 0.23 0.24 0.13 −0.26 −0.25 −0.19
SCσ 0.26 0.17 0.13 −0.23 −0.15 0.00
RSCt 0.10 0.02 0.15 −0.06 0.15 0.14
SCα 0.11 0.08 −0.13 0.10 0.25 0.10
SCω 0.08 0.35 −0.17 −0.30 −0.02 −0.05
SCω−α −0.08 0.31 −0.03 −0.25 −0.02 0.00
|SCω−α| 0.09 0.32 −0.01 −0.35 −0.02 0.05
tSCmax −0.17 0.06 0.10 −0.12 −0.02 0.00
tSCmin 0.06 0.02 −0.13 −0.02 −0.12 −0.10
|tSCrange | −0.04 −0.07 0.11 −0.15 0.08 0.05
SC|δ1| 0.15 0.29 0.13 −0.26 −0.12 −0.14
SC|δ2| 0.15 0.28 0.14 −0.25 −0.12 −0.14
SC|δδ| 0.15 0.28 0.14 −0.25 −0.02 0.00

HRx̄ −0.53 0.18 −0.01 0.21 −0.08 −0.10
HRmax −0.03 0.05 0.04 0.17 0.25 0.19
HRmin −0.19 −0.04 −0.16 0.23 −0.46 −0.38
HRrange 0.09 0.07 0.21 0.00 0.42 0.29
HRσ 0.09 0.18 0.25 −0.08 0.32 0.29
RHRt 0.19 0.02 0.05 −0.33 −0.05 −0.05
HRα −0.07 −0.05 0.07 0.31 −0.05 0.05
HRω −0.44 0.21 0.01 −0.07 0.22 0.14
HRω−α −0.21 0.15 −0.07 −0.25 0.12 0.00
tHRmax −0.08 −0.07 0.22 −0.07 −0.08 −0.10
tHRmin 0.28 −0.36 0.13 0.23 −0.25 −0.24
tHRrange −0.26 0.22 0.07 −0.15 0.19 0.24
HR|δ1| −0.08 0.39 0.17 −0.25 0.32 0.38
HR|δ2| −0.11 0.40 0.19 −0.24 0.32 0.33

BV Px̄ −0.09 0.28 0.02 −0.16 0.05 0.00
BV Pσ −0.04 −0.29 −0.02 0.30 −0.02 0.00
BV P|δ1| −0.12 −0.24 −0.06 0.30 −0.08 −0.05
BV P|δ2| −0.12 −0.24 −0.06 0.30 −0.08 −0.05
IBAmpx̄ −0.02 −0.30 −0.09 0.30 −0.19 −0.14
IBAmpσ 0.19 −0.22 0.25 0.03 0.25 0.29

RRx̄ 0.51 −0.16 0.02 −0.19 0.02 −0.05
RRσ 0.02 0.28 0.21 −0.25 0.22 0.29
RRRMS −0.03 0.31 0.19 −0.33 0.19 0.24
pRR50 0.20 0.16 0.05 −0.18 0.25 0.24
HF −0.04 0.13 0.22 −0.42 0.12 0.05
LF 0.17 −0.23 −0.25 0.31 −0.46 −0.38

LF
(LF+HF )

0.15 −0.26 −0.24 0.45 −0.22 −0.14
HF

(LF+HF )
−0.15 0.26 0.24 −0.45 0.22 0.14

LF
HF

0.15 −0.26 −0.24 0.45 −0.22 −0.14
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habituation compared to non-patients (Pole, 2007). Significant positive correlation is

observed between Ndep and SCmin. No clear explanation can be given for this, since

more deployments should mean a higher degree of exposure to potentially highly stress-

ful situations, but it should be noted that the range of the number of deployments in

the sample is limited to 1 to 3. One could speculate that individuals who were only

diagnosed with PTSD after several deployments were less susceptible to contracting the

hyper-aroused state of PTSD. It would follow that they would exhibit lower SC bounds

than their more susceptible colleagues, but the explanation remains speculation. A neg-

ative correlation is observed between Nday and the last SC value recorded in session;

PTSD symptoms typically abate as a function of time (Foa et al., 2009), so this rela-

tion matches the literature on PTSD. The literature also matches the relation between

Nday and PCL: PCL and Nday correlate negatively (ρ = −0.51, p < 0.01) indicating

the symptom severity decreases over time. It seems plausible that Nday is an inverse

indicator of symptom severity and that less severe cases of PTSD exhibit lower bounds

of SC, most likely due to a less elevated mean SC level and faster (closer to normal)

habituation. Altogether, we argue the results indicate a positive relationship between

symptom severity and features of SC responses to StartleMart.

E.8.2 Correlations Between Self-Reports and SC Features

Two significant effects are identified across the two approaches to generating preferences

pairs: A negative correlation between self-reports of stress and the range of the SC

signal (SCrange) and a positive correlation between reported stress and initial SC values.

Both effects are consistent with the fact that patients with severe PTSD symptoms

exhibit high SC values and weaker habituation. This means their SC values stay higher

and their signals are subject to quick stabilization at the individually higher baseline.

The correlations indicate that patients feeling stressed by interacting with StartleMart

exhibit matching SC responses and supports the relevance of the game to the target

group.

E.8.3 Correlations between PTSD Profile and HR/BVP Features

A number of correlations are observed between the patients’ PTSD profiles, and the

BVP/HR features. Both average (HRx̄) and last HR (HRω) are negatively correlated

with age while no significant correlation is observed with respect to PCL, days from

last deployment (Nday) or days deployed (Ndep). Age and PCL present an equivalent

negative correlation (ρ = −0.52, p < 0.01). This could indicate that in this sample older

patients exhibit greater resilience toward PTSD as seen by lower PCL scores and lower
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HR values; an interpretation which is consistent with findings in the literature on PTSD

in veterans (Magruder et al., 2004).

More severe PTSD appears to result in a higher reactivity to the stressors as suggested

by the positive correlation between PCL and a number of features that measure the

local variability of the HR signal (HR|δ1|, HR|δ2|, RRσ and RRRMS). Note that a higher

value of these features is typically related to a larger number of peaks in the signal (quick

increments on HR) that increase local variability while not necessarily affecting global

variability (as measured by HRσ). This appears to be a strong relation as it has also

been observed in the SC features. Due to the periodicity of BVP, its standard deviation

(BV Pσ) captures information of different nature, related more closely to the average

inter-beat amplitude (IBAmpx̄) than to the local variability of HR. PCL is negatively

correlated to both BV Pσ and IBAmpx̄ which suggests that more severe PTSD would

be related to higher sympathetic arousal.

PCL is also correlated (negatively) to the time to the lowest recorded HR (tHRmin)

suggesting that patients with more severe symptoms of PTSD respond earlier to the

stressful stimuli and do not revert to a less stressed state during a session, though this

feature, as noted, correlates with age as well.

The number of days from deployment (Ndays) appears to be positively correlated with

a higher activity of the sympathetic nervous system (captured by LF and LF
LF+HF

(Acharya et al., 2006), also IBAmpx̄ and BV Pσ), negatively correlated to higher activ-

ity of the para-sympathetic nervous system (captured by HF and
HF

LF+HF ) and positively correlated with a dominance of sympathetic over para-sympathetic

(LF/HF ). Given the connection between sympathetic activity and stress, these results

show that the participants with older traumas appear to be more stressed during the

therapy than patients with more recent traumas. These correlations to a certain extent

run counter to the idea of spontaneous PTSD recovery over time, though one possible

explanation could be that patients who are further into treatment respond with stronger

manifestations of sympathetic dominance when subjected to novel therapeutic methods.

On the other hand, a correlation is observed between RRRMS and Nday. It would

seem that this correlation matches the assumption that Nday, representing the age of

the trauma, is a rough measure of spontaneous recovery leading to lower manifestation

from patients with older traumas. Finally, mean inter-beat intervals (RRx̄) correlate

positively with age, mirroring the relation found between HRx̄ and age.
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E.8.4 Correlations between Self-Reports and HR/BVP Features

Similar patterns of significant effects are identified across the two approaches to gener-

ating preferences pairs for the HR/BVP signals. For HR features, measures connected

with stress and sensitivity to stress exhibit positive correlations to the ranked subjec-

tive evaluation of session stressfulness. The same patterns are observed for the features

extracted directly from the BVP signal. Again, as was the case for the SC signal, these

correlations indicate both that patients feel stressed from interacting with StartleMart

and that this experience scales with symptom severity. The stronger effect between

the features derived from HR and self-reports than between the SC features and self-

reports matches findings in the literature suggesting that HR features provide a robust

physiological indicator of PTSD symptom severity (Pole, 2007).

E.8.5 Principal Component Analysis of Physiological Features and

their Relations to PTSD symptom severity

While the results suggest that the applied modalities are useful in characterizing player

stress responses in relation to interacting with StartleMart, the high number of features

makes the identification of the underlying causes difficult. In order to investigate whether

any unifying components exist which underlie the correlations in the large feature set,

a principal component analysis with no rotation is conducted. All extracted features

are subjected to the analysis producing components that combine information across

modalities, producing an initial set of 45 principal components.

Initially, 45 principal components are generated. The first five components account for

approximately 43%, 30%, 12%, 7%, and 4% of the variance, respectively, after which the

proportion of explained variance for each component reduces rapidly. The components

are depicted in a scree plot in Fig. E.3. In order to retain a low number of components,

we coerce the model to produce two components, though three components could have

been considered as well. However, choosing two components yields a balance between

the variance explained by each of the two resulting components as each accounts for

approximately half of the variance as indicated in Table E.4 (df = 901, χ2 = 16166.24,

p < 0.01).
Table E.4: Standard deviation and explained variance for each of the two principal

components extracted from the feature set.

Component 1 Component 2

Standard deviation 3.1841 2.8916
Proportion of Variance 0.5480 0.4520
Cumulative Proportion 0.5480 1.0000
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Figure E.3: Scree plot of all 45 principal components derived from the original feature
set. The scree plot shows two components explaining most of the variance in the data

with the remaining components explain relatively less.

Though the analysis does not provide any inherent labeling of the resulting components

it could be hypothesized that the two components are related to para-sympathetic and

sympathetic activation in response to the simulation, respectively, or put differently, the

player’s ability to habituate to the stimuli or respond to the stimuli with manifestations

of stress.

To provide an insight into the most important features for each component, Table E.5

presents the Pearson correlations between the individual features and the principal com-

ponents, ordered by the magnitude of the correlations. Component 1 is characterized

primarily by negative correlations to measures of sympathetic activity captured via BVP
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expressed in HR. As described in Section E.3.1, PTSD symptom severity is character-

ized by elevated resting HR and larger HR responses to stimuli and the component

appears to capture this phenomenon. Component 2 is characterized primarily by posi-

tive correlations to features extracted from SC, indicating sympathetic activity, also in

accordance with expectations from the literature. From the correlations between the

individual features and the two components, it seems that the first component primarily

represents responses captured via BVP, while the second component primarily represents

responses captured via SC. However, the fact that both components do exhibit correla-

tions to features from both modalities suggests that the two modalities together enable

the capturing of both resilience and sensitivity to manifesting stress in response to the

simulation. The principal components are subsequently correlated to Age, PCL, Nday,

and Ndep, and self-reports as the external measures of symptom severity and tendency

to manifest stress in response to the simulation.

To test the relation between these two principal components and the measures of PTSD

symptom severity, the same correlation analyses applied to the individual features are

applied to the components. The results are reported in Table E.6. A negative correlation

between the first component and PCL and a borderline significant positive correlation

between the second component and PCL are observed. Additionally, a positive correla-

tion between the first component Nday is observed, while a negative correlation between

the second component and Nday is evident. The two pairs of correlations conform to

expectations from the literature on PTSD symptoms, as described earlier, and could be

seen as further indication that the two components represent patients’ tendencies toward

para-sympathetic and sympathetic activation in response to the simulation. Notably,

neither of the components correlate with Age or Ndep. Pairwise correlations between

the extracted components and self-reports of experienced stress also exhibit to the same

pattern, with component 1 correlating negatively with reports of stress and component

2 correlating positively with reports of stressful experience. Taken together, this could

indicate a more robust relation between the multimodal components, symptom severity,

and self-reports than between individual features and external measures of ground truth.

E.9 Discussion

The PCL score of the patients served as the first measure of ground truth describing

symptom severity in this study. The PCL instrument is well-validated and the de facto

standard for PTSD severity screening (Foa et al., 2009), but is nonetheless based on self-

reports of personal experience retrieved from memory. This is an inherent weakness of
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Table E.5: Correlations between individual features and the two extracted princi-
pal components. For each component, the features listed are sorted according to the
absolute value of the correlation coefficient in order to allow for a straightforward iden-

tification of the features with the strongest relation to the component.

Component 1 Component 2
Feature R Feature R

RRσ -0.83 SCσ 0.78
RRRMS -0.83 SCrange 0.78
HR|δ1| -0.77 |SCω−α| 0.78
HR|δ2| -0.76 SC|δ1| 0.77
LF 0.74 SC|δ2| 0.77

HF
(LF+HF )

-0.69 SC|δδ| 0.77
LF

(LF+HF )
0.69 SCmax 0.73

HRrange -0.66 SCmin -0.66
LF
HF

0.66 HRmin -0.62
HRσ -0.63 RRx̄ 0.52
IBAmpx̄ 0.60 HRx̄ -0.50
pRR50 -0.53 SCω−α 0.48
SCmin -0.53 pRR50 0.46
SCrange 0.52 SCω 0.43
HRmin 0.50 RRσ 0.42
SCx̄ -0.49 LF

(LF+HF )
-0.42

BV P|δ1| 0.49 HF
(LF+HF )

0.42

BV P|δ2| 0.49 RRRMS 0.42
|SCω−α| 0.48 HF 0.39
HRmax -0.48 HRω -0.38
SCσ 0.43 HRα -0.37
BV Pσ 0.41 LF

HF
-0.37

SCmax 0.41 SCα -0.35
SCω−α 0.39 BV P|δ2| -0.33
SCα -0.39 BV P|δ1| -0.33
|tSCrange | -0.35 SCx̄ -0.32
tHRmax 0.35 LF -0.32
tHRrange 0.33 IBAmpx̄ -0.28
RSCt -0.33 IBAmpσ -0.26
SCω 0.32 HRrange 0.25
SC|δ1| 0.32 HR|δ1| 0.23
SC|δ2| 0.32 HR|δ2| 0.22
SC|δδ| 0.32 tSCmax 0.19
HF -0.31 tSCmin 0.16
BV Px̄ -0.30 RSCt 0.14
HRx̄ -0.29 HRσ 0.13
RRx̄ 0.25 tHRmax 0.12
IBAmpσ -0.24 IBAmpσ 0.11
HRα -0.23 tHRrange 0.10
tSCmin 0.15 HRmax -0.10
RHRt 0.14 |tSCrange | 0.09
HRω−α 0.14 BV Px̄ 0.06
tHRmin -0.11 HRω−α 0.06
HRω -0.08 RSCt -0.05
tSCmax 0.02 tHRmin -0.02

the presented study, but one we suspect is innate and difficult to overcome in any study

involving a syndrome defined partially by personal experience. The negative correlation

between PCL values and Nday, which matches expectations according to the literature,

strengthens the validity of the measure. The second measure of ground truth is the

SUDS values collected during the game-play sessions. These are subject to the concerns
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Table E.6: Correlations ρ and c(z) between the two principal components and Age,
PCL, Nday, and Ndep, and self-reports. Statistically significant correlations appear in

bold (p < 0.05) and italics (p < 0.10).

Component 1 Component 2

Age 0.10 0.18
p 0.47 0.39

PCL −0.29 0.26
p 0.04 0.06

Nday 0.30 −0.35
p 0.03 0.02

Ndep −0.22 0.21
p 0.22 0.22

Self-reports, day -0.25 0.22
p 0.02 0.03

Self-reports, adjac. -0.14 0.19
p 0.08 0.06

related to ratings (as described in Sections E.3 and E.8), but these concerns are sought

mediated by the use of pair-wise preferences as the basis for the correlation analysis;

this analysis ignores the exact value of the ratings and considers only the ordinal rela-

tion between ratings given on the same day or adjacent sessions. In Table E.3 negative

correlations are present between self-reports and SCmax and SCmin when pairs are con-

structed across all sessions in a day. Based on findings in the literature, we would expect

these to be positive. However, when pairs are limited to adjacent sessions these effects

disappear and only effects matching expectations from theory remain. We consider this

a confirmation that the absolute value of self-reported ratings of stress becomes increas-

ingly unreliable over time as memories decay. Future work using StartleMart might

benefit from including stress evaluations as preferences at the report level.

Some features extracted from BVP indicate dominance of sympathetic activation over

para-sympathetic that scales with the age of the trauma, contrary to our expectation

of spontaneous recovery. Though one explanation could be that veteran patients re-

spond stronger to novel treatment methods, further investigation is necessary to fully

understand these relations.

The feature combination through principal component analysis suggests that it may be

feasible to reduce the physiological stress manifestations in response to the simulation to

two underlying components which could be interpreted as resilience and sensitivity to-

wards the stressful stimuli. These two components correlate with measures of symptom

severity and self-reports as expected from the literature. However, as a cross-modality

feature combination technique the principal component analysis seems to fall short, as

one component is dominated by BVP/HR features, and the other component is domi-

nated by SC features.
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In general, the analyses presented in this paper are limited to correlating features and

applying linear methods of feature combination through principal component analysis.

Recent work in the literature (Zhai et al., 2005; Hernandez et al., 2011) describes how

applications of non-linear techniques of analysis and machine learning can support stress

detection and the data set described here could advantageously be analyzed by these

methods in the future. Additionally, the application of SC signal deconvolution could

allow us to separate tonic and phasic components of the SC signal, identifying phasic

drivers underlying responses to in-game events (Benedek and Kaernbach, 2010b). This

could allow us to develop personalized, event-based PTSD profiles that integrate in-

formation from the simulation context into the stress detection process. Finally, more

advanced methods of multimodal signal fusion could enable a better characterization of

the stress responses through the combination of the SC and BVP/HR signals, possibly

yielding a more satisfactory cross-modality combination and a more accurate model of

the patients’ stress responses (Martinez et al., 2013).

E.10 Conclusion

In this study we used StartleMart, a game-based PTSD exposure therapy and stress

inoculation therapy tool, to elicit stress responses from 14 male PTSD patients. We

collected physiological indications of stress responses from skin conductance and blood

volume pulse, along with external PTSD profile information indicating PTSD symptom

severity as well as self-reports of experienced stress as sources of ground truth. From the

physiological signals, 45 individual features were extracted and correlated to the sources

of ground truth. The results of the analyses in this paper indicate that physiological

responses to StartleMart are highly correlated with PTSD symptom severity and sub-

jective experience expressed through self-reports of stress. Additionally, an application

of principal component analysis to reduce the number of features into two distinct com-

ponents suggests that two response patterns are manifested in relation to the content

presented in the simulation: One which is primarily related to stress resilience/para-

sympathetic activity and exhibits a negative correlation to external measures of PTSD

symptom severity and one which is primarily related to stress sensitivity/sympathetic

activity and exhibits a positive correlation to external measures of PTSD symptom

severity. This underlines the complex nature of user responses to rich stimulus pre-

senting simulations and motivates the further use and study of multiple modalities for

capturing stress responses. Further, the fact that StartleMart elicits stress responses

with PTSD patients lends credence to the general idea of using game-based stimuli of

every-day life situations for stress inoculation training for PTSD patients. However,

any treatment efficacy is unknown at this point and would require a randomized study.
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Nonetheless, the fact that physiological responses seem to scale with measures of symp-

tom severity, self-reports and an indicator of recovery over time, indicates a promise to

using stress eliciting game-based solutions like StartleMart for diagnosis and treatment

of PTSD. Future work will focus on leveraging these findings to refine profiling and

adaptive game-based solutions supporting diagnosis and treatment in psychiatric work.
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Appendix F

To Rank or to Classify?

Annotating Stress for Reliable

PTSD Profiling

Reference:

Holmg̊ard, Christoffer, Georgios N. Yannakakis, Héctor P. Mart́ınez, and Karen-Inge

Karstoft (2015). “To Rank or to Classify? Annotating Stress for Reliable PTSD Pro-

filing”. In: Affective Computing and Intelligent Interaction (ACII), 2015 Humaine

Association Conference on. IEEE.

F.1 Abstract

In this paper we profile the stress responses of patients diagnosed with post-traumatic

stress disorder (PTSD) to individual events in the game-based PTSD stress inocula-

tion and exposure virtual environment StartleMart. Thirteen veterans suffering from

PTSD play the game while we record their skin conductance. Game logs are used to

identify individual events, and continuous decomposition analysis is applied to the skin

conductance signals to derive event-related stress responses. The extracted skin con-

ductance features from this analysis are used to profile each individual player in terms

of stress response. We observe a large degree of variation across the 13 veterans which

further validates the idiosyncratic nature of PTSD physiological manifestations. Further

to game data and skin conductance signals we ask PTSD patients to indicate the most

stressful event experienced (class-based annotation) and also compare the stress level of

all events in a pairwise preference manner (rank-based annotation). We compare the

220
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two annotation stress schemes by correlating the self-reports to individual event-based

stress manifestations. The self-reports collected through class-based annotation exhibit

no correlation to physiological responses, whereas, the pairwise preferences yield signifi-

cant correlations to all skin conductance features extracted via continuous decomposition

analysis. The core findings of the paper suggest that reporting of stress preferences across

events yields more reliable data that capture aspects of the stress experienced and that

features extracted from skin conductance via continuous decomposition analysis offer

appropriate predictors of stress manifestation across PTSD patients.

F.2 Introduction

This paper describes a game-based method for profiling post traumatic stress disorder

(PTSD) using affective responses to events in a virtual environment incorporating prin-

ciples of game design, called the StartleMart game (Holmg̊ard et al., 2013b; Holmg̊ard

et al., 2014c). We describe how we construct a specific paradigm for eliciting and cap-

turing affective responses to particular in-game events of 13 PTSD patients through the

StartleMart game. We then use these responses to enable individual PTSD profiling and

stress detection through continuous decomposition analysis (Benedek and Kaernbach,

2010a) of skin conductance (SC) manifestations to in-game stressor events. Our results

indicate that participants’ memories of the most stressful events correspond poorly to

SC responses, but their ordering of events in terms of stressfulness corresponds strongly

to these same responses.

The work presented here is inspired by previous pioneering work on the use of virtual

environments and games as tools supporting affective learning in PTSD patients (Par-

sons and Rizzo, 2008; Wiederhold and Wiederhold, 2008) and it builds upon previous

work (Holmg̊ard et al., 2013b; Holmg̊ard et al., 2014c) in which it is demonstrated that

features from affective responses to game play sessions in the StartleMart game contain

useful indications of the symptom severity of PTSD patients, pointing to the relevance

of simulations and games for affective learning and profiling. Here, we move from corre-

spondence analysis at the game session level to analyzing event-based stress responses

in order to obtain not only general indications of the patient’s affective response but

also to identify responses to individual events. By identifying and profiling responses to

stressful situations in war veterans suffering from PTSD we create a novel and efficient

method for understanding the syndrome configuration of the individual patient.

The paper is novel in that continuous decomposition analysis is applied for extracting

appropriate indicators of sympathetic arousal from skin conductance in PTSD patients.

Such an approach allows us to derive stress detectors such as tonic and phasic drivers
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of skin conductance soon after a stressful event (elicitor) is presented to users (Benedek

and Kaernbach, 2010a; Bach and Friston, 2013). Additionally we, for the first time,

compare two different stress self-annotation schemes for their consistency to manifested

stress via skin conductance. Our results further validate evidence and observations in

the literature (Metallinou and Narayanan, 2013; Yannakakis and Hallam, 2011; Martinez

et al., 2014; Yannakakis and Martinez, 2015) suggesting that rank-based (compared to

class-based or rating-based) annotation yields better approximators of the ground truth

of experienced emotion.

F.3 Background: PTSD, Games, and Affect

In this section we describe the PTSD syndrome, the relationship between games and

PTSD treatment, PTSD’s links to human physiology and its affective manifestations.

F.3.1 Post Traumatic Stress Disorder

Post Traumatic Stress Disorder (PTSD) is a psychiatric diagnosis describing an often

severely disabling syndrome that is sometimes developed after being exposed to highly

stressful situations. Veterans from military operations are a high-risk group for devel-

oping this syndrome (Hoge et al., 2004).

Two well-known treatment approaches for PTSD — favored because of strong evidence

for their therapeutic efficacy — are the cognitive-behavioral therapy techniques of expo-

sure therapy and stress inoculation training. In exposure therapy, the therapist confronts

the patient with anxiety provoking stimuli in a controlled setting in order to extinguish

reactions to the stimuli and/or allow the patient to reprocess the memories cued by the

stimuli. Three common variations are the use of real life stimuli i.e. in vivo, represent-

ing stimuli via media i.e. mediated, or having the patient imagine the stress provoking

situations and thus self-generate the stimuli i.e. imaginal (Foa et al., 2009). In stress

inoculation training, the therapist exposes the patient to stimuli and situations that are

not directly linked to the original trauma of the patient, but that cause problematic

anxiety responses that are difficult for the patient to cope with (Foa et al., 2009).

F.3.2 Games for PTSD treatment

Games and game-like worlds have successfully been used as mental health interventions

by appropriating commercial games (Holmes et al., 2009) and by developing specialized

solutions (Hoque et al., 2009). Among the possible ways of treating PTSD, computer
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games and virtual environments have a particular potential for eliciting stress in a con-

trolled, graded fashion and can provide an immersive and rich medium for PTSD treat-

ment (Wiederhold and Wiederhold, 1998; Wiederhold and Wiederhold, 2008; Rizzo et

al., 2009a; Rizzo et al., 2009a). Earlier research has demonstrated the usefulness of vir-

tual environments for treating veterans’ PTSD with virtual reality therapy, an extension

of exposure therapy (Parsons and Rizzo, 2008; Wood et al., 2011). Some implemen-

tations of virtual reality therapy have focused on exposing the patient to the original

stressful, traumatizing situation, in the vain of classic exposure therapy. Notable ex-

amples are the Virtual Iraq and Virtual Afghanistan applications that show promising

results in clinical testing (Reger et al., 2011; Rizzo et al., 2009a). Other implementations

have focused on appropriating principles from stress inoculation training (Wiederhold

and Wiederhold, 2008). StartleMart implements a hybrid of exposure therapy and stress

inoculation training.

The conversation between the user and the therapist is central for treatment efficacy

(Foa et al., 2009). The user’s perception of which events are stressful, and the user’s

actual physiological stress responses to the same events, are important touchstones in

this conversation. Therefore, we see a need for self-report schemes that allow the user to

accurately report which events were perceived as stressful. We address this by comparing

two schemes for self-reporting experiences of stressful events, classification and ranking,

with physiological responses as the ground truth.

F.3.3 Physiology of PTSD

When placed in mediated stimulus exposure paradigms, PTSD-patients exhibit physio-

logical responses to stressful visual and auditive stimuli that are significantly different

from the responses of non-patients (Perala, 2007). Their responses are generally charac-

terized by high sympathetic activity as measured by SC. Responses that have been found

to be robust indicators of PTSD conditions via experimental studies include slower SC

habituation, elevated resting SC, and greater SC responses to startling stimuli (Pole,

2007). In general, higher base levels of arousal and heightened sensitivity to stress seem

to characterize the physiological manifestations of the disorder. It has been suggested

that these differences could be used to support diagnostic differentiation between PTSD

patients and non-patients as well as between different degrees of PTSD symptom severity

(Blechert et al., 2007) guiding treatment strategies or allowing for adaptive treatment

tools (Wood et al., 2011).
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Although the general symptomatology of PTSD is consistent across sufferers, every in-

stance of the syndrome includes idiosyncratic aspects related to the particular individ-

ual and the instigating stressful experience. Which particular events elicit the strongest

stress-response or trigger flashbacks vary across individuals and research has shown the

strength of the response to be contingent upon the stimulus relation to the original

trauma (Liberzon et al., 1999). This characteristic of the PTSD syndrome proves a

challenge when developing any treatment or diagnostic tool as we assume that greater

efficacy and precision comes at a cost of lower generalizability. For virtual environ-

ments, this is particularly challenging as convincing environments are time-consuming

and expensive to develop. In order for a virtual environment for PTSD to be as gen-

erally useful and cost-effective as possible, it should apply to as wide a range of PTSD

symptomatologies as possible.

A design solution to this challenge is presented in the stress-inoculation training ap-

proach taken in this study. By choosing a stimulus delivery environment that is predom-

inantly related to the everyday strivings of PTSD patients (Kashdan et al., 2010), rather

than the original trauma, some specificity is sacrificed, but a greater relevance across

patients is attempted. The general relevance of the approach has been demonstrated in

(Holmg̊ard et al., 2013b) and (Holmg̊ard et al., 2014c) which focus on feature extraction

from full length sessions, while here we move to an event-level analysis. Simultaneously,

the everyday environment supports a patient/therapist conversation about the stimuli

present in everyday life that are most stressful to the particular patient, supporting the

stress inoculation process.

In the following section we outline the key features of the StartleMart game; for the

interested reader the game is described in greater detail in (Holmg̊ard et al., 2013b;

Holmg̊ard et al., 2014c).

F.4 The StartleMart Game for PTSD Treatment

The task of shopping in a supermarket is a common situation that is severely chal-

lenging to many patients suffering from PTSD (Kashdan et al., 2010). Supermarkets

are highly stimulating environments with social interactions and unpredictable audi-

tive and visual experiences which PTSD patients find stressful; some to the extent that

they avoid going shopping or only do so with a helper present for emotional support.

Consequently, the game is built to primarily take place in a virtual supermarket (see

Fig. F.1). The supermarket environment includes a number of stressors that aim at elic-

iting stress in the player. These are designed around three typical symptoms of PTSD,

namely fear-avoidance behavior, hyper-arousal (i.e. heightened startle response), and
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(a) Sound of ventilator blowing overhead. (b) Sound of wind blowing.

(c) Man walking angrily toward player. (d) Man running toward player.

(e) Man staring at player. (f) Wounded soldier staring at player.

Figure F.1: The three flashbacks of the game (b, d, f) and the immediately preceding
supermarket scenes (a, c, e). Elements of the supermarket bleed into the flashbacks,

simulating re-experience.

re-experiencing of traumatic events triggered by an outside stimulus or general stress

(Foa et al., 2009). Stressors targeting fear-avoidance behavior include the layout of the

supermarket which is designed to include hidden angles and preventing the player from

attaining a full overview of the location and Non-Player-Characters (NPCs) that provide
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socially stressful experiences. Stressors targeting hyper-arousal include a dog barking at

the entrance to the supermarket and the sound of crashes and glass breaking suddenly

playing at random locations in the supermarket. Stressors targeting re-experiencing are

included in the form of three different flashbacks.

F.5 Experimental Protocol and Data Collection

In this section we provide details about the participants of our experiment and the

experimental protocol followed. Thirteen male PTSD patients, veterans from Danish

military operations in Afghanistan, are included in the study presented in this paper.

The participants are in psychiatric treatment for PTSD and qualify for the PTSD diag-

nosis. All subjects are medicated with Selective Serotonin Re-uptake Inhibitors (SSRI)

which is known to generally lower sympathetic activity and in particular SC (Siepmann

et al., 2003). This clearly adds a challenge to the detection of SC stress responses to

game stimuli since patients are expected to manifest responses that are pharmacolog-

ically suppressed to an unknown degree. Each patient participates in the experiment

twice, engaging in a total of 6 game play sessions, 3 per participation (11 patients have

participated in both sessions, while 3 participated in the first session only), progressing

through low stress intensity, medium stress intensity, and high stress intensity. The

experimenters, trained psychologists, welcome the participant, complete a diagnostic in-

terview with the patient and collect various instances of demographic and background

data from either the patient himself or the patient’s medical records. The participant is

introduced to the experimental setup and seated in front of the controls and monitor.

The biofeedback device is attached to the participant’s fingertips (see more details in

Section F.5.1), and a brief introduction to the game rules and how to control the game

is given. Following a short waiting period, collecting baseline SC data, the participant

is asked to play three sessions of the game. Subjective data (self-reports) is collected

over the course of the experiment. Finally, the experimenter debriefs the participant,

responding to any concerns or issues the patient might have.

F.5.1 Physiological Sensors and Setup

For continuous measurement of SC the IOM biofeedback device1 is used. The IOM

biofeedback device samples SC at a rate of 300 Hz and down-samples them to 30 Hz in

firmware before transmitting them to the recording computer. The device’s measuring

electrodes are attached dryly to the distal phalanges of the little and middle fingers of the

1http://www.wilddivine.com/
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patient’s non-dominant hand. A sensor measuring blood volume pulse is attached to the

ring finger, but is not used for the study and analysis presented here. Since frustration

with the control scheme of the game might introduce unwanted variation and artifacts

to the results of the experiment (Yannakakis et al., 2010) the game is configured to use

standard controls for first-person-perspective computer games which should be familiar

to most patients. The mouse, operated with the patient’s dominant hand, controls the

perspective and the keyboard controls movement. To minimize the risk of movement

artifacts in the physiological readings, patients operate the keyboard (W, A, S, D or

arrow keys) with only the index finger of their non-dominant hand, keeping the other

fingers still.

F.5.2 Game Logging

During game play, a number of features are logged constantly. A screen-shot from the

player’s perspective is logged every second to allow for reconstruction of the events of

the game play session and for subsequent identification of the most stressful experiences.

Stressor stimulus presentations are logged as game events whenever they occur. The four

types of events are labeled as: 1) sound events, when sudden sounds of crashes and glass

breaking are played, 2) pickup events, when the player obtains one of the items on the

shopping list, 3) social events, when the player is close to one or more of the NPCs in

the supermarket and 4) flashback events, when the flashback of the session is presented.

F.6 Self-reports and SC Feature Extraction

In this section we describe the data collected from the two stress self-report schemes

(Section F.6.1) and the SC features extracted via continuous composition analysis (Sec-

tion F.6.2).

F.6.1 Stress Self-reports

At the end of each session, the patient is asked to indicate which singular event during

the session was considered the most stressful, if any. This self-report is subsequently

reduced to one of the four event categories: social, sound, pickup, and flashback. The

player is then presented with a 4-alternative-forced-choice (4AFC) survey comprised of

series of pairs constructed from all events that happened during the game. The two

screen-shots that were taken closest in time to each event are presented side by side as

a representation of each event. The player is asked to express a preference for which of
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the two events that was most stressful, if both were equally stressful, or if neither of the

events were stressful. The player completes this process for pairings of all logged events

producing a global ordering of the events in terms of stressfulness.

F.6.2 Skin Conductance Event Response Features

The trough-to-peak analysis of skin conductivity response (SCR) amplitude, area or

similar measures, can be subject to super-positioning of phasic and tonic activity. This

may necessitate the subtraction of baseline measures or other forms of signal correction

(Boucsein, 2011). It has been suggested that even with such corrections one may still

confound phasic and tonic SC which is undesirable in a study focusing predominantly

on event-related activation (Benedek and Kaernbach, 2010a).

To address this potential issue, features of the player’s SC at the time of the event are

extracted using Continuous Decomposition Analysis (CDA) as described in (Benedek

and Kaernbach, 2010a). The method allows for the decomposition of phasic and tonic

electro-dermal activity. It initially separates super-positioned phasic and tonic compo-

nents of the raw SC signal. Subsequently it adapts a general model of the human skin’s

impulse response function (representing the basic SCR shape that would result from a

unit impulse) to the phasic activity by sampling the tonic component around the event

response to establish a local baseline and fitting the general impulse response function

to the shape of the phasic component. The result is expressed in a phasic driver mea-

sured in µS that approximates the phasic response affecting the signal within the event

window. As such, the phasic driver across the event window can be interpreted as a

locally baseline-corrected measure of the patient’s SC response to the event. As a result

of the decomposition procedure the phasic driver value can take on negative values. A

detailed example from the CDA process is provided in Fig. F.2. More details about the

CDA method can be found in (Benedek and Kaernbach, 2010a). A 1 − 4 s after-event

response window is applied, meaning that only activation occurring with this window

is considered relevant to the event (see Fig. F.2). A minimum phasic driver threshold

value of 0.05 µS is used, meaning that only events with a phasic driver value exceeding

this threshold are considered significant and counted as SCRs.

From the CDA result, four skin conductance response features are extracted for each

event in the game: the mean phasic driver within the skin conductance response window

(Sp), the integral of the phasic driver within the response window (ip), the mean tonic

SC (St) within the window, and the global mean within the window (Sg). The literature

suggests that features based on the phasic driver of skin conductance are supreme detec-

tors of heightened sympathetic arousal (Benedek and Kaernbach, 2010a). We therefore
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trust that the four features extracted are appropriate indicators of stress elicited around

the stressful events provided by the game (Bach and Friston, 2013; Boucsein, 2011).

Figure F.2: Continuous Decomposition Analysis of SC of Player 5, Session 3. The top
graph shows the full game session whereas the bottom graph shows a detailed view of
an excerpt from that session. Both graphs depict three components extracted from the
raw SC signal: Phasic activity (yellow), tonic activity (orange), and the phasic driver
(red) of SC. SC features are extracted within the event response windows as illustrated

in the bottom graph.

F.7 Results

In this section we present a descriptive overview of the SC responses of the patients of the

study to the included events demonstrating the individual differences in responses to the

events in the StartleMart and the complex relationship between physiological responses

and subjective experience. Moreover, we investigate the relation between the two self-

report schemes and the extracted SC features. First, in Section F.7.1 we correlate patient

classifications of the most stressful event with the extracted skin conductance features.

Then, in Section F.7.2 we correlate preferences of the stressfulness of events with the

same features.

58 sessions were deemed free of protocol and uncorrectable sensor artifacts and thus

usable for analysis. Sessions ranged in length from 66 to 202 seconds, with an average

length of 144.8s and a standard deviation of 36.3s. Together, these sessions provided

479 events over the defined phasic driver threshold value, an average of 8.3 events per
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session, with a range from 2 to 11 above threshold events per session and a standard

deviation of 2.2 events.

F.7.1 Classifying Stress

Our first approach to obtaining self-reports from patients was to ask them to pick of the

most stressful event during the game session. All events in each session of the dataset

are annotated with this classification: labeling an event as either the most stressful or

not. A descriptive overview of chosen events and Sp values for each patient and each

session is provided in Fig. F.3. The figure shows the differences between individuals in

physiological responses to events, differences in self-reports of experienced stress, and

discrepancies between the physiological responses to events and self-reports of which

events were experienced as most stressful. Most patients exhibit a tendency to report

the flashbacks of StartleMart as the most stressful type of experience; however, their

physiological responses across events indicate that responses to other types of events, on

average, are stronger. Figure F.3 indicates the need of more complex, non-linear, models

for mapping the physiological responses of patients to the perceived experience of stress

from interacting with the StartleMart game. Further it demonstrates illustratively the

inconsistency between the most stressful events reported by the patients and heightened

sympathetic arousal (via the mean phasic driver feature).

To investigate the relationship between the events classified as most stressful and their

corresponding SC features values, the annotated events are correlated to the four ex-

tracted SC features using the binomially-distributed pairwise correlation described in

(Yannakakis and Hallam, 2011) which is calculated as: c(z) =
∑

i{zi}/N ; where N is

the sample size, and zi is 1 if there is an agreement between the annotation (e.g. most

stressful) and the corresponding SC feature and −1 otherwise. The c(z) values are calcu-

lated by considering annotation agreements with the most stressful event as determined

by physiology (i.e. the corresponding SC feature). To further explore potential effects

between reported and manifested stress we also calculate potential agreements between

the reported event and the three, five and ten most stressful events as manifested by SC

features. The results reported in Table F.1 showcase significant negative correlations

when the single, three and five most stressful events are considered. This already indi-

cates a poor consistency between class-based self-reports and physiological indications

of stress. Only when the ten most stressful events are considered we start observing

a minor positive correlation which demonstrates that some of the largest physiological

responses are captured in the class (most stressful event reports) only when 10 of those

events are considered.
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Figure F.3: Individual event response patterns: Patients and event types are cross
tabulated. The color of each cell represents the patient’s mean normalized Sp response
to the event type, across all sessions, extracted using Continuous Decomposition Anal-
ysis (Benedek and Kaernbach, 2010a). The size of each green dot indicates the number
of times the patient picks the corresponding type of event as the most stressful. For
fair comparison purposes, both the event response levels and the event preference fre-

quencies are normalized into [0, 1] within each individual, across all sessions.

F.7.2 Ranking Stress

Our second approach to obtaining reliable stress self-reports from PTSD patients uses

the fully ordered preference-pairs constructed from the 4AFC selections. These are

pairwise-correlated to the extracted SC also using the c(z) test statistic. The p-value,

in this case, is obtained from the normal distribution as the binomially-distributed c(z)

approximates the normal distribution when large samples are considered. As shown in

Table F.1 significant positive correlations are found between reported ranks of stress and

all four extracted SC features. This suggests that reported stress preferences expressed

through 4AFC yield event orderings that are highly consistent with the orderings of the

physiological responses as measured via any of the four features. In particular, Sp and

ip demonstrate the highest correlation values with reported stress preferences. Based on

the obtained results it appears that preference-based annotation of stress is a reliable
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Table F.1: Pairwise rank-correlations (c(z)) and corresponding p-values (p) between
the most stressful event reported (class) or the reported rankings of stressful events

(preference) and the four skin conductance features.

Sp ip St Sg

Class c(z) −0.86 −0.86 −0.76 −0.76
(Most stressful event) p < 0.01

Class c(z) −0.45 −0.45 −0.24 −0.31
(3 most stressful events) p < 0.01 < 0.01 0.02 < 0.01

Class c(z) −0.17 −0.17 −0.17 −0.17
(5 most stressful events) p 0.04

Class c(z) 0.14 0.14 0.14 0.14
(10 most stressful events) p 0.06

Preference c(z) 0.43 0.43 0.33 0.37
p < 0.01

self-report measure of stress elicitation from events in PTSD patients. It is also obvious

that classifying events as most stressful is an annotation practice that fails to capture

the idiosyncratic nature of both PTSD and its physiological manifestations.

F.8 Discussion and Conclusions

In this paper, we have presented a set of key findings on PTSD profiling and stress

detection via games from a sample of 13 clinical PTSD patients interacting with the

StartleMart game. Earlier work has demonstrated that this game has an ability to

instigate and detect stress in patients to a degree that scales with PTSD symptom

severity (Holmg̊ard et al., 2013b). The work presented here extends that study by

characterizing the individual patient symptoms from subjective experience, event-based

skin conductance responses, and game logging data. Further, we introduce continuous

decomposition analysis for extracting features of skin conductivity near the stressful

in-game events that are appropriate indicators of stress responses.

The study demonstrates the challenges of fusing interactive environments with a stim-

ulus exposure approach, since the agency afforded to the player significantly impacts

the experimenter’s or therapist’s control over the flow of events. Our analysis shows a

high degree of inter-subject variability in terms of which events the patients responded

strongest to as measured via physiology, and which events they reported as being subjec-

tively most stressful. This finding is not surprising given the general literature on PTSD,

but underlines that PTSD patients’ responses to events in virtual environments exhibit

the same variation across subjects as responses in more controlled stimulus-exposure

paradigms or in everyday life.
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When asked patients to recall the most stressful event in a session and comparing this

to physiological responses around the corresponding events, no significant effect is ob-

served. Speculatively, this may be due to memory effects where patients attribute the

experienced stress to the most salient and heterogeneous event in the session. However,

when patients are presented with a memory cue of each event individually and rank

all of them in relation to each other, a strong correlation emerges between self-reports

of stress and physiological responses. This suggests that using preference-based rank-

ing paradigms, such as the 4AFC, provides better support for recalling the experienced

stress in response to individual events even though it comes with an additional effort

of comparing across all possible combinations of experienced events. It is important to

note that we did not consider the comparison between rating-based annotation against

the rank-based and the class-based approaches in this study. Ratings are ordinal values

which are already obtained via the reported preferences of the PTSD patients (Martinez

et al., 2014). Further, this study is based on a relatively narrow, homogeneous sample

of patients and generalizability to other conditions or groups is an open question.

The core findings of the paper indicate that rank-based stress annotation to a series

of events (i.e. rank two or more stressful events) is a beneficial method for detecting

stress compared to class-based (i.e. what is the most stressful event) annotation which

further validates the observations of earlier studies in affect annotation and modeling

(Metallinou and Narayanan, 2013; Yannakakis and Hallam, 2011; Martinez et al., 2014;

Yannakakis and Martinez, 2015). Results also suggest that the phasic driver (as obtained

from continuous decomposition analysis) is a highly reliable predictor of PTSD severity

manifested via skin conductance responses to in-game events. It is possible that these

findings may extend to other affective disorders with arousal components, such as e.g.

anxiety, though this remains an open question for future work.
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Couëtoux, Jeyull Lee, Chong-U Lim, and Tommy Thompson (2015). “The 2014 Gen-

eral Video Game Playing Competition”. In: IEEE Transactions on Computational

Intelligence and AI in Games.

Picard, Rosalind (2000). Affective Computing. Second. MIT Press.



Bibliography 244

Picard, R.W., E. Vyzas, and J. Healey (2001). “Toward Machine Emotional Intelligence:

Analysis of Affective Physiological State”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 23.10, pp. 1175–1191.

Pole, Nnamdi (2007). “The Psychophysiology of Posttraumatic Stress Disorder: A Meta-

Analysis.” In: Psychological Bulletin 133.5, p. 725.

Popovic, S., M. Slamic, and K. Cosic (2005). “Scenario Self-Adaptation in VR Exposure

Therapy for PTSD”. In: NATO Advanced Research Workshop–Novel Approaches to

the Diagnosis and Treatment of Posttraumatic Stress Disorder, pp. 13–15.
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