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Abstract

There are many valid arguments both for and against the use of electronic voting in

real world elections.

My thesis is that any software implementation of an algorithm for counting of bal-

lots can be proven correct or shown to be incorrect by a combination of formal speci-

fication and testing. Hand counting of paper ballots is no longer ever necessary, if we

can assume that the digital ballots are valid, untampered with and a true representation

of the paper ballots etc.

As a case study, the Danish and Irish voting schemes are analyzed in this disserta-

tion, including a discussion of how to generate test cases for the Irish voting scheme.



Chapter 1

Introduction

1.1 Background

1.1.1 The Secret Ballot

The use of printed paper ballot instead of handwritten votes to preserve secrecy is

sometimes known as the Australian Ballot [32, 38].

However the integrity of a paper ballot still depends on physical security controls.

Historically, failed security controls have led to modified, spoiled, and stolen ballots,

as well as to stuffed ballot boxes [9].

There is also a potential for mistakes in the manual process of counting paper bal-

lots by hand. Goggin and Bryne have observed that there can be up to two percent

inaccuracy [37, 36].

1.1.2 Electronic Voting Machines

There are many good arguments in favor of electronic voting. It avoids the chain-of-

custody problems of handling physical ballot papers and the human error associated

with manual counting. It also defeats the problem of ballot papers being stolen or false

ballot papers added, so-called ballot stuffing [71].

Many countries have used electronic voting with apparent success, others have
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failed completely and some have continuing problems [39, 52, 64, 27, 54]

Voting and Elections in Ireland

Electronic voting machines are no longer used in the Republic of Ireland, for example.

The decision to stop using e-voting was based on several different factors, including an

inability to verify the accuracy of the proprietary vote counting software [40, 23, 55].

1.1.3 Internet Voting

Remote voting through the Internet provides convenience and access to the electorate.

At the same time, the security concerns facing any distributed application are magnified

when the task is so crucial to democratic society. In addition, some of the electoral

process loses transparency when it is encapsulated in information technology [70, 46,

65].

Man in the Middle (MITM) attack

Internet voting is also vulnerable to the Man-in-the-Middle (MITM) attack, in which

the attacker impersonates the client machine to the server and the server machine to

the client. This might be avoided, for example, by physical distribution of the crypto-

graphic certificates to each voter [60, 30, 7].

1.1.4 Cryptographic Voting

Various researchers have suggested cryptographic schemes for secure electronic vot-

ing [47, 10, 4, 68]. These technologies are complementary to, but outside the scope of

my dissertation.

Sandler, Derr and Wallach have proposed a solution called VoteBox, that provides

strong end-to-end security guarantees without use of a paper audit trail but instead

using a concept called the Auditorium which

joins all voting machines together all election events are signed and broad-

cast each broadcast is logged by every machine
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and timestamps are connected using hash-chaining[69].

In contrast, my dissertation uses the Irish and Danish voting schemes as a case

study. For the purpose of my dissertation, I simply assume that there exists a suitable

technology similar to the Auditorium in VoteBox.

1.2 Motivation

Accidentally or maliciously altering a small number of votes can alter the outcome

of an election. Every vote needs to be counted. This means that even a very small

error can have wide ranging consequences, undermining confidence in the democratic

process and weakening the moral authority of elected leaders [63].

1.3 Thesis Statement

The following is the core statement of my thesis that I wish to defend:

Any software implementation of an algorithm for counting of ballots can be proven

correct or shown to be incorrect by a combination of formal specification and testing.

Hand counting of paper ballots is no longer ever necessary.

In other words, we don’t need a voter verifiable paper audit trail (VVPAT), to verify

the count, although it might be needed for other reasons e.g. to verify the collection

of votes; and that the votes cast are the same as those counted, but not to verify the

actual count itself. The VVPAT might be needed for matching up and verifying the

authenticity of the ballots, but not for verification of the counting. The auditors should

be able to choose an electronic ballot at random, and match it to a paper ballot in the

audit trail, but there is no need to count the audit trail by hand [74, 66].

3



Chapter 2

Formalisation of Electoral Law

A voting scheme is an algorithm for counting ballots. A preference voting scheme

requires the voter to rank two or more candidates (C) in order of preference from first

to last. In contrast, a plurality voting scheme requires the voter to pick one candidate,

and thus is equivalent to the preference scheme when the ranking list has unitary size.

2.1 Proportional Representation by Single Transferable

Vote (PR-STV)

Definition 1 (Spoilt Ballot) A ballot is spoilt if it contains no valid preferences. A

paper ballot can also be spoilt if it contains writing that could identify the person

casting the vote1.

Definition 2 (Quota) The quota of ballots for election is calculated so that at most

N − 1 candidates can reach the quota, where N is the number of seats in the con-

stituency. The formula for the Droop Quota is 1 + V/(N + 1), where V is the number

of unspoiled ballots cast.

1However, in practice, where the difference between two candidates is very small, ballots initially dis-
carded can be looked at again (often with representatives and even lawyers for each candidate present!). If
there is agreement that the intention is clear, even if the ballot paper is strictly invalid, then it may be ac-
cepted. So for example, if the name of one candidate is underlined, and no mark against any other name and
no numeric preference shown, that might be regarded as an effective No 1 vote. Also an X or a tick against
one name only is usually accepted as a No 1 vote. This scenario was not included in my model of PR-STV
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Definition 3 (Surplus) The surplus for a candidate is the number of votes in excess of

the quota. Surplus ballots may be transfered to other candidates.

Definition 4 (Exclusion) The continuing candidate with least votes is eligible for ex-

clusion; his or her ballots are then available for re-distribution to other continuing

candidates.

Definition 5 (Continuing Candidate) A continuing candidate is a candidate who has

not yet been either elected or eliminated.

Definition 6 (Wasted Vote) A ballot with an incomplete set of preferences becomes

wasted, if and when it is assigned to an excluded candidate or within the surplus of an

elected candidate, and cannot be transferred to any of the continuing candidates.

Filling of Last Seat When there is one seat remaining and two continuing candidates,

then the candidate with the greater number of votes is deemed elected without reaching

the quota.

Variants of PR-STV To highlight the complexities of election schemes, consider

the following variants of the voting scheme. For example, Australia, Ireland, Malta,

Scotland, and Massachusetts use different variants of PR-STV for their elections [6].

• Australia - Australia uses a single-seat variant of PR-STV to elect its House of

Representatives and an open list system for its Senate, where voters can choose

either to vote for individual candidates using PR-STV or to vote “above-the-line”

for a party. If voters choose to use PR-STV then all available preferences must

be used [31].

• Ireland - Ireland uses PR-STV for local, national and European elections. Trans-

fers are rounded to the nearest whole ballot, so the order in which ballots are

transferred makes a difference to the result [58]. Not all preferences need to be

used, so voters may choose to use only one preference, as in Plurality voting, if

desired.
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• Malta - Malta uses PR-STV for local, national and European elections. For

national elections Malta also adds additional members so that the party with the

most first preference votes is guaranteed a majority of seats.

• Scotland, UK - Scotland uses PR-STV for local elections. Rather than se-

lect which ballots to include in the surplus, fractions of each ballot are trans-

ferred [35].

• Massachusetts, USA - Cambridge in Massachusetts uses PR-STV for city elec-

tions. Candidates with less than fifty votes are excluded in the first round and

surplus ballots are chosen randomly, rather than in proportion to second and sub-

sequent preferences.

The fact that a single complex voting scheme like PR-STV has this many variants

in use highlights the challenges in reasoning about and validating a given software

implementation.

2.2 Abstract Model

In this case study, the core concepts of ballot counting are modeled, for example: bal-

lots, ballot boxes, candidates, and election results.

Candidates Candidates are identified by (distinct) names. The set of all candidates

is denoted C. In our examples we use canonical candidate names, e.g. Alice, Bob, etc.,

like those used in cryptographic protocol analysis.

Ballot An ordinal or preference ballot b is a strict total order on a set of candidates

C. The length of a ballot, |b|, is the number of preferences expressed. The minimum

number of preferences is one, except in systems like that used in Australia where all

preferences must be used. In a plurality voting scheme the maximum number of pref-

erences is one, otherwise the maximum length of a ballot is the number of candidates

in the election.
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2.3 Irish Electoral Law

Article 16, section 2, subsection 5 of the Irish Constitution2 states only that:

The members shall be elected on the system of proportional representation

by means of the single transferable vote.

This leaves considerable freedom for the electoral regulations to define the precise

means of vote casting and counting in the official Commentary on Count Rules [24, 22].

The functional requirements were read from the electoral legislation and CEV

guidelines and listed in a table by Cochran and Kiniry [14, 50] e.g.

• Counting does not begin until all votes are loaded.

• The total number of first preference votes must remain the same after each count.

• The (Droop) quota is equal to ((Number of valid votes cast)/(Number of seats

being filled + 1)) + 1, ignoring any remainder.

• Any candidate with a quota or more than a quota of votes, is deemed to be

elected.

• The surplus of an elected candidate is the difference between the quota and

his/her total number of votes.

• The minimum number of votes required for a candidate to secure the return of

his/her deposit is one plus one-quarter of a quota based on the total number of

seats in the constituency.

2.4 Mechanics of PR-STV

To give context, we now discuss the mechanics of PR-STV in more detail.

2http://www.constitution.ie/constitution-of-ireland/default.asp
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Preference Ballots The voter writes the number “1” beside his or her favorite candi-

date. There can only be one first preference.

The voter then considers which candidate would be his or her next preference if his

or her favorite candidate is either excluded from the election or is elected with a surplus

of votes.

The second preference is marked with “2” or some equivalent notation. There can

be only one second preference; there cannot be a joint second preference3. Likewise

for third and subsequent preferences. Not all preferences need to be used, but there

should be no gaps in the rank order e.g. there cannot be a fourth preference without a

third preference.

Multi-seat constituencies Each electoral constituency in Dáil Éireann , the lower

house of the Irish state legislature, is represented by either three, four or five seats.

Definition 7 (The Droop Quota) The quota is calculated so that not all candidates

can reach the quota. The Droop Quota is d V
1+S e, where V is the total number of valid

votes cast and S is the number of vacancies (or seats) to be filled [33]. The quota is

chosen so that any candidate reaching the quota is automatically elected, and so that

the number of candidates with a quota is less than than the number of seats.

For example, in a five-seat constituency a candidate needs just over one-sixth of the

total vote to be assured of election.

Definition 8 (Surplus) The surplus for each candidate, is the number of ballots in

excess of the quota (if any). The surplus ballots are then available for redistribution to

other continuing candidates.

The selection of which ballots belong to the surplus is a complex issue, depending

on the round of counting. In the first round of counting, any surplus is divided into sub-

piles for each second preference, so that the distribution of the ballots in the surplus

is proportional to the second-preferences. In later rounds the surplus is taken from the

last parcel of ballots received from other candidates. This surplus is then sorted into

3This is because a physical ballot paper is not intended to be split in two, but in a digital voting system
with fractional ballots it would be possible to have equality of preferences
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sub-piles according to the next available preference.

For example, if the quota is 9,000 votes and candidate A receives 10,000 first pref-

erence votes, then the surplus is 1,000 votes. Suppose 5,000 ballots had candidate B as

next preference, 3,000 had candidate C and 2,000 had candidate D. Then the surplus

consists of 500 ballots taken from the 5,000 for candidate B, 300 from the 3,000 for

candidate C and 200 from the 2,000 for candidate D4.

Exclusion of weakest candidates When there are more candidates than available

seats, and all surplus votes have been distributed, the continuing candidate with least

votes is excluded.

All ballots from the pile of the excluded candidate are then transferred to the next

preference for a continuing candidate, or to the pile of non-transferable votes.

This continues until another candidate is elected with a surplus or until the number

of continuing candidates equals the number of remaining seats.

Filling of Last Seat and Bye-elections When there is only one seat remaining to

be filled, i.e. the number of candidates having so far reached the quota is one less

than the number of seats, or in a bye-election for a single vacancy, then the algorithm

becomes the same as Instant Runoff Voting; no more surplus distributions are possible,

and candidates with least votes are excluded until only two remain.

Last Two Continuing Candidates When there are two continuing candidates and

one remaining seat, then the algorithm becomes the same as single-seat First Past The

Post (FPTP) plurality; the candidate with more votes is deemed elected to the remaining

seat, without needing to reach the quota.

Definition 9 (Partial Ballot) A partial ballot is one in which not all preferences are

used, that is if less than N − 1 preferences are used, or allowed to be counted, when

there are N candidates.
4Ideally each subset would also be sorted according to third and subsequent preferences, but this does not

happen under the current procedure for counting by hand, nor was it mandated in the previous guidelines for
electronic voting in Ireland
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In the next chapter I will discuss some of the various technologies that can be used

in verification, and then in chapter 4 I discuss existing examples of verification in

voting, before talking about Danish and Irish voting.
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Chapter 3

Verification Technologies

This chapter describes and compares an assortment of verification technologies.

3.1 Java Modeling Language

The Java Modeling Language (JML) is a behavioral interface specification language

that can be used to specify the behavior of Java modules. It combines the design by

contract approach of Eiffel and the model-based specification approach of the Larch

family of interface specification languages, with some elements of the refinement cal-

culus [8, 13].

3.2 Extended Static Checking

Extended Static Checking (ESC) is the transformation of a program into a set of veri-

fication conditions, which can then be checked using an automated theorem prover.

ESC/Java2 is a programming tool that attempts to partially verify JML annotated

Java programs by static analysis of the program code and its formal annotations. It

translates the specifications into verification conditions that are modularly discharged

by an automatic theorem prover [51].
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3.3 Alloy

Alloy is a textual, declarative modeling language based on first-order relational logic.

An Alloy model consists of Signatures, Relations, Facts and Predicates. Signatures

represent the entities of a system and Relations depict the relations between such en-

tities. Facts and Predicates specify constraints, which apply on the Signatures and

Relations [42].

Alloy comes with a tool, the Alloy Analyzer, which supports fully automated anal-

ysis of Alloy models. The analyser provides two main functionalities, Simulation and

Assertion checking. Simulation produces a random instance of the model, which con-

forms to the specification. This ensures that the developed model is not inconsistent.

Assertions are constraints, which the model needs to satisfy.

The Alloy Analyzer works by translating Alloy formulas to boolean expres- sions,

which are analysed by SAT solvers embedded within the analyser. A user-specified

scope on the model elements bounds the domain. If an instance that violates an asser-

tion is found within the scope, the assertion is not valid. However, if no instance is

found, the assertion might be invalid in a larger scope.

An Alloy model is a collection of constraints that describes (implicitly) a set of

structures, for example: all the possible security configurations of a web application,

or all the possible topologies of a switching network. The Alloy Analyzer, is a solver

that takes the constraints of a model and finds structures that satisfy them. It can be

used both to explore the model by generating sample structures, and to check properties

of the model by generating counterexamples. Structures are displayed graphically, and

their appearance can be customized for the domain at hand.

At its core, the Alloy language is a simple but expressive logic based on the no-

tion of relations, and was inspired by the Z specification language and Tarski relational

calculus. Alloy syntax is designed to make it easy to build models incrementally, and

was influenced by modeling languages (such as the object models of OMT and UML).

Novel features of Alloy include a rich subtype facility for factoring out common fea-

tures and a uniform and powerful syntax for navigation expressions.
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Alloy is influenced by Z, but has a syntax that mimics object-oriented languages,

making it accessible to Java developers.

JForge JForge is an Eclipse plug-in for bounded verification of Java programs using

Forge. It assists in writing specifications in JForge Specification Language (JFSL) and

verifies code against these specifications within bounds specified by the user. In short,

JFSL evolved from an understanding of shortcomings of Java Modeling Language in

bounded code verification and realization that Alloy-like expression syntax is very ef-

ficient in specifying program behavior [44].

3.4 SAL

SAL stands for Symbolic Analysis Laboratory. It is a framework for combining dif-

ferent tools for abstraction, program analysis, theorem proving, and model checking

toward the calculation of properties (symbolic analysis) of transition systems. A key

part of the SAL framework is an intermediate language for describing transition sys-

tems. This language is intended to serve as the target for translators that extract the

transition system description for other modeling and programming languages, and as a

common source for driving different analysis tools1.

3.5 ASM Tools

Gurevich’s Abstract State Machines (ASMs) constitute a high-level state-based mod-

eling language, which has been used in a wide range of applications. The ASM Work-

bench is a comprehensive tool environment supporting the development and computer-

aided analysis and validation of ASM models. It is based on a typed version of the

ASM language, called ASM-SL, and includes features for type-checking, simulation,

debugging, and verification of ASM models [20].

1http://sal.csl.sri.com/
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3.6 PVS

PVS is a prototype verification system: that is, a specification language integrated

with support tools and a theorem prover. It is intended to capture the state-of-the-art

in mechanized formal methods and to be sufficiently rugged that it can be used for

significant applications. PVS is a research prototype: it evolves and improves as we

develop or apply new capabilities, and as the stress of real use exposes new require-

ments [62, 61].

3.7 Linear Temporal Logic / Maude

The Maude LTL model checker supports on-the-fly explicit-state model checking of

concurrent systems expressed as rewrite theories. This greatly expands the range of

applications amenable to model checking analysis [28, 29].

3.8 Event-B and Pro-B

Event-B2 is a formal method for system-level modeling and analysis. Key features

of Event-B are the use of set theory as a modeling notation, the use of refinement to

represent systems at different abstraction levels and the use of mathematical proof to

verify consistency between refinement levels [1, 67, 72, 2].

Pro-B offers very similar functionality to the Alloy Analyzer; it can generate coun-

terexamples to assertions fully automatically.

3.9 Contracts for Java

This open source Java API provides design by contract style annotations for Java, but

is less expressive than JML3.

2http://www.event-b.org/
3http://code.google.com/p/cofoja/
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3.10 KeY Tool

KeY is a tool that provides facilities for formal specication and verication of programs

within a commercial platform for UML based software development. Using the KeY

tool, formal methods and object-oriented development techniques are applied in an

integrated manner. Formal specication is performed using the Object Constraint Lan-

guage (OCL), which is part of the UML standard [3].

3.11 Analysis and Comparison of Verification Technolo-

gies

My criteria for assessing which tools, language and methodology to use for analysis of

ballot counting are:

1. Ability to express first-order logic

2. Object-orientedness

3. Java support

which led to the selection of BON, JML and Alloy as design, specification and

modeling languages, respectively, with the most emphasis on JML and Alloy, and with

a lessor emphasis on BON. In particular, I did not use the more formal part of BON

since that can be derived directly from the JML, and vice versa.
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Chapter 4

Verification in Voting

This chapter will discuss the use of verification technology in existing voting systems

e.g. KOA [50]. KOA is interesting because of the use of JML to specify its tally system.

4.1 Waterford Institute of Technology

Meagher used Z and B to model the PR-STV based election process at Waterford In-

stitute of Technology [59]. The election process was a variant of PR-STV with gender

and faculty limits. On reaching the quota for election, a candidate who exceeded one

of the limits would be excluded instead of deemed elected, and all of his or her votes

would be made available for transfer. Likewise, in some cases the least continuing can-

didate is exempt from exclusion if he or she is needed to fulfill one of the lower bounds,

and therefore the second lowest candidate is perhaps excluded instead. In other words

the WIT election scheme is PR-STV with special rules for exclusion or non-exclusion

of candidates.
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4.2 Voting Machines in the Netherlands

Electronic voting machines (EVMs) were introduced without controversy in the Nether-

lands around 1998. The primary supplier of these machines is Nedap1, the same sup-

plier as in Ireland.

However, as attention has been focused the world over on EVMs, the Dutch par-

liament had begun to re-evaluate its approach. In keeping with this reassessment, the

Dutch parliament decided to conduct experiments with the next natural step in the use

of technology for voting: remote voting using both the internet and telephone. The

main inspiration is that, nowadays, many personal transactions (e.g. banking), can be

carried out from arbitrary locations, so why not voting?

4.2.1 Kiezen op Afstand (KOA)

The genesis of KOA stemmed from a promise made by the Dutch government to par-

liament that they would investigate possible developments in the Dutch voting system.

This promise was fulfilled in the KOA experiment by allowing expatriates to vote in

the elections to the European Parliament via the internet and by telephone.

However, Dutch national election law is quite explicit about what is permitted with

respect to how votes may be cast. Therefore, in order to conduct an experiment in

voting over the internet, some amendments to this general law were formulated. This

formed the legal foundation for the KOA project.

Apart from the general rules governing internet voting, it also included some addi-

tional rules detailing a citizen’s right to vote from a different polling booth other than

the one originally appointed. However, in this chapter the KOA project is described

purely as if it was an internet voting experiment.

Internet Voting in The Netherlands The elections to the European Parliament of

June 2004 allowed remote voting via the internet and telephone. It was limited to

expatriates who were required to explicitly register beforehand. It was thought that

1Nedap — http://www.nedap.com/.
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such a small-scale use (thousands of voters) would provide a useful real-world test for

the technology.

The main reason why it was thought that an internet-based solution was suitable

is decidedly non-technical. Essentially, by significantly constraining the remote voting

problem, particularly with respect to the registration and voting process itself, it was

believed that a “sufficiently secure” and reliable system could be constructed. In par-

ticular, the system needed to be at least as secure and reliable as the existing remote

voting system which was based upon postal ballots.

The Remote Voting Process When a citizen registers to use KOA, the voter chooses

their own personal access code (a PIN). Some time later, a customized information

packet is mailed to the voter. This packet contains general information about the vote

itself (date, time, etc.), as well as voter-customized details that are known to only that

voter. These details include information for voter authentication, including an identifi-

cation code and the previously chosen access code.

Also included is a list of all candidates. Each candidate is assigned a large set of

unique random numbers2, and exactly one of those numbers is given to each voter. The

set of codes per voter is determined randomly but is not unique.

To vote, a registered voter logs in to a web site with their voter code and access

code. They then step through a series of simple web pages, typing in their candidate

codes as appropriate for their choices. The system shows the voter the actual names

and parties of the candidates in question to confirm the accuracy of the vote. When a

voter is finished, a transaction code is provided. This code can later be used to check

in a published list that the voter’s choices were included correctly in the final tally.

All votes are stored in a doubly-encrypted fashion; each vote is encrypted by a

symmetric key per voter3 and the public key of the voting authority.

Use and GPL Release The trial during the elections to the European Parliament in

June, 2004 was restricted to roughly 16,000 eligible Dutch expatriates. Expatriates

21,000 codes were generated for each candidate for the elections to the European Parliament in 2004.
3This symmetric key is generated by hashing the assigned identification code.
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could vote either via the internet or by telephone. The telephone votes were fed into

the KOA tally system. 5,351 people used one or other system.

Subsequently, in July 2004, the Dutch Government released the majority of the

source code for the KOA system under the GNU General Public License (GPL) making

it the first Open Source internet voting system in the world.

Vote Counting System As seen in the previous section, one of the results of the

recommendation to split the responsibilities of the parties involved, was that the gov-

ernment decided to accept bids for the creation of a separate vote counting subsystem,

to be implemented in isolation by a third party. This separate tally application would

allow the vote counting to be independently verified. The Security of Systems (SoS)

(now called Digital Security) group at Radboud University Nijmegen4 put forward a

proposal to write this application, and were successful in this bid. The key idea behind

their tender was that the vote counting program should be formally verified using the

JML and ESC/Java2 tools.

The vote counting system formed a small but important part of the whole KOA

system. This provided the SoS group with a suitable opportunity to test the use of some

of the formal techniques and practices that they had been developing. Given the severe

time constraints placed upon them due to the impending election, the application was

built by three members of the group over a barely-sufficient period of four weeks. Java

was chosen as the programming language in which to implement the system so that

JML could be used as the formal specification language. Due to the time constraints,

verification was only attempted with the core modules.

Counting votes within KOA proceeds offline using a separate tally application. The

input to this application consists of two XML files (one containing the list of candidates

and their codes, and one containing the encrypted votes), and a public/private key pair

used to decrypt the votes.

As the informal requirements of vote-counting are obvious (for every candidate in

the candidate list count the number of votes for that candidate), the functional specifica-

4http://www.ru.nl/ds/
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tion [57] (in Dutch) mostly prescribes details of file formats and encryption algorithms

to be used.

Nevertheless, the functional specification does impose some requirements that greatly

influence the structure of the Java application and its JML specification. First, the dif-

ferent tasks that need to be performed in order to count the votes (reading in the two

files, reading in the keys, decrypting the contents of the votes file, counting the votes,

generating reports) are made explicit in this document and, more importantly, the or-

der in which they have to be performed is specified. Second, the document provides a

rough sketch of the user interface and its contents. Finally, the document gives some

bounds on the data, such as the lengths of fields or the maximum number of candidates

in each list, which are incorporated in the JML specifications of the data structures.

In accordance with the above high-level specification, the resulting tally applica-

tion consists of some 30 classes, which can be grouped into three categories: the data

structures, the user interface, and the tasks.

The data structure classes form an excellent opportunity to write JML specifica-

tions. Typical concepts from the domain of voting, such as candidate, district and

municipality can be modeled with detailed JML specifications.

The different tasks associated with counting votes were mapped to individual classes.

After successful completion of a task, the application state is changed. A task can only

be started if the application is in an appropriate state. The life-cycle model of the appli-

cation that therefore emerges is maintained in the main class of the application inside

a simple integral field. This life-cycle model can be specified in JML using invariants

and constraints, essentially stating that on successful completion of the application, the

application went from “initial state” to “votes counted state”. The state of attributes

associated with the individual tasks can be linked to the application life-cycle state us-

ing invariants. For instance, such an invariant could read: ‘after the application reaches

the “keys imported state”, the private key field is no longer null’. This is stated in

MenuPanel.java as follows:

/*@ invariant

@ (state >= PRIVATE_KEY_IMPORTED_STATE
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@ ==> privateKey != null);

*/

A graphical user interface is usually not very amenable to formal specification.

Nonetheless, some light-weight specifications were written. One of the requirements

defined in the original informal specification was that users should not be allowed to

start certain tasks before certain other tasks are successfully completed. For instance,

a user should (by means of the user interface) not be able to start decrypting votes

before the votes are read in from file. In the graphical user interface, this demand is

met by only enabling certain buttons when the application reaches certain states in the

life-cycle model. The fact that the graphical user interface complies with the life-cycle

model can be neatly specified in the GUI classes by referring to the application state.

Process As already stated, ESC/Java2 was only used to verify the core of the tally

application. This means that it was used to verify reading in the XML-files with the

candidates and the votes, decryption of the votes and counting the votes. The final

generation of the reports is not checked with JML.

Using JML on reading XML files is quite straightforward. Essentially, for every

object that is read, some methods are called that specify that the total number of ob-

jects will be increased by exactly one. Naturally, in order to verify code that uses

functionality provided in external libraries, some of the corresponding APIs must also

be specified. The JML community has provided specifications for most of the APIs that

come with Sun’s standard edition of Java. However, APIs dealing with cryptography,

XML parsing, and PDF generation, as used by the tally application had not previously

been specified. These APIs were specified in a light-weight manner: the specifica-

tions mostly deal with purity and non-null references in the API methods which makes

verification of client code using ESC/Java2 much easier.

Naturally, the counting process is likewise formally specified in JML, which en-

sures that each valid vote is counted for exactly one candidate. This also implies that

specifications are easy to check to make sure that the total number of votes a party list
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receives is equal to the sum of votes for each candidate5 on this party list.

The JML run-time assertion checker was also used in the development process.

First, for testing the data structure classes, the checker was used to generate unit tests.

Second, they ran the full application, including user interface, using the checker.

Bounded Verification Dennis et al, found errors in the JML specification for KOA,

using bounded verification techniques [21].

5Including the ‘blanco’ or ‘blank ballot’ candidate.
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Chapter 5

Danish Voting

My first case study concerns formal specification of ballot counting in Denmark. The

formalisation of the Danish Voting System (DiVS) was achieved in collaboration with

MSc student Ólavur Kjölbro [53], who contributed the background knowledge about

the workings of the Danish voting system.

5.1 Analysis

The Danish voting system is based on proportional representation (PR). The Folketing

(Danish parliament) is unicameral and has 179 seats of which the Faroe Islands and

Greenland have two seats each; the elections in the Faroe Islands and Greenland follow

different rules and are not included in this project. Out of the 175 seats 135 seats are

constituency seats, and 40 are additional seats; the additional seats are used to level

unevenness. The electoral map of Denmark consists of 3 provinces and 10 multi-

member constituencies. A voter can either vote for a party or a candidate.

The allocation of seats is done in 6 steps:

• Allocate constituency seats on constituency level

• Determine threshold on national level

• Allocate additional seats to parties on national level
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• Allocate additional seats to parties on province level

• Allocate additional seats to parties on constituency level

• Select candidates

The formal specification covers only the most interesting aspects of the election

procedures. These things are left out:

• Register electoral map

• Register parties and candidates

• Party list

• Party gets more seats in a constituency than there are candidates

• Substitution list

• Lots drawn on district level when distributing party votes

• Handling rounding errors

5.1.1 State Charts

From the election procedures on and after the Election Day state charts can be derived

showing which states the election can be in. The states in figure 1 have been grouped

together on two levels so that the result is a two-tier state machine. These are referred

to as the outer and the inner state machines respectively. The former covers the election

procedures, and the latter covers the computation of the results.

The states in the state charts are capitalized in case it is a normal state representing

the state that the system (the election) is in currently, e.g. Election Closed. The action

states, which by the way represent the transition between the states, consist of lower

case letters in order to distinguish them from normal states. The actions are denoted on

the charts with more rounded edges than the normal state.

The states in the outer state machine are all sequential. The state Before Election is

a state before the election where everything is prepared. The states Election Open and
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Figure 5.1: Outer state chart

Election Closed are on the Election Day. Preliminary Results Computed is usually late

on election night. The final counting starts the very next day after Election Day and the

Final Results Computed is usually about two days after the election.

Inside the compute preliminary results and compute final results action state there

are more states that are shown in the chart below. The former does not reach the

candidate selection action, whereas the latter does.

These states follow directly from the procedure described in the Danish electoral

law. If there are no ties that must be broken, then only the action states in the middle are

used (i.e. all states/transitions inside the dotted gray square). The action states starting

with the word resolve are meant for resolving draw issues. According to the law, ties

must be broken by drawing lots. The state No Passing Parties is added, since there is

no guarantee that any party will pass the threshold. The next transition from Step 4

Done is either resolve step 4 draw or allocate additional seats to provinces dependent

on the presence of draws.
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Figure 5.2: Inner state chart

5.2 Verification and Tests

The intention has been to use a static checker tool to check the soundness of DiVS.

DiVS has been implemented using Java 1.6. Therefore it is not possible to use ESC/-

Java2, because ESC/Java2 only supports Java 1.4. The OpenJML plug-in for Eclipse

features an ESC tool that was also tried out. OpenJML uses the JML4c compiler, which

does not yet support quantified expressions. Therefore it was left out too. Instead of

rewriting the code in Java 1.4 a choice was made to outline a proof of correctness

instead. This can be thought of as manual static checking; i.e. the proofs inspect

the methods to ensure that they do what the methods must guarantee according to the

specifications.
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5.2.1 Outlined Proof

In this section three of the transitions are outlined and proven. The first transition is

Check Preliminary Counting in the outer state machine, the second and third are the

Allocate Constituency Seats and the Allocate Constituency Seats to Provinces; both in

the inner state machine. The rest of the transitions are outlined and proven in a similar

way in both the outer and inner state machine1.

Check Preliminary Counting (Outer State Machine)

When outer state reaches Election Closed, it enables polling stations to initiate the

counting and eventually the registration of the results. The outcome of this state is

possibly Preliminary Counting Completed, but only if all the individual polling stations

have registered their preliminary results. In other words, if there is any polling station

that has not yet registered the preliminary results, the state will not change. When

the outer state reaches Preliminary Counting Completed, the inner state machine is

informed about all necessary data from the registered preliminary results.

Allocate Constituency Seats (Inner State Machine)

The preconditions for this transition are:

• For each constituency result there must be a list containing all parties and a list of

all independent candidates and their votes. The list of constituency results must

be of size 10, which is the number of constituencies in Denmark

• For each constituency result the number of seats taken so far must equal 0

• For all parties in all constituency results the number of seats taken so far must be

0

• For all candidates the elected status is set to non-elected

• All parties running in the constituencies must be found in the list of parties on

the national level as well as on the provincial level for the province in which the

1http://code.google.com/p/danishvotingsystem/wiki/OutlinedCorrectnessProof
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constituency belongs

• For all constituency result elements at least one party will get at least 1 vote or

there are at least the number of independent candidates getting at least 1 vote as

there are constituency seats in the constituency

• The inner state must be Before Computing

The first point says that the inner state machine must be informed about the result

on the constituency level. The second through fourth say that everything must be ini-

tialized to zero or non-elected. The reason for the fifth pre condition point is that when

a party wins constituency seats, it must be possible to accumulate these seats on the

national and provincial level after this transition. The fifth is very interesting: if it is

true, then it is possible to allocate all constituency seats. If it is false, then it is not

possible to allocate all constituency seats. The start state of the inner state machine is

always Before Computing. The post conditions for this transition are:

• For all constituency results the number of seats taken is greater or equal to the

number of constituency seats belonging to constituency

• If there exists a constituency result with more seats taken than constituency has

seats allocated, then the parties and/or independent candidates involved in draws

are marked. The number of involved parts is always greater than 1

• If there are no draws then all parties on the national level are updated with the

number of constituency seats won on the constituency level

• The inner state changes to Step 1 Done or Step 2 Resolved

(if there are no draws)

The first point says that all the constituency seats are allocated and perhaps more

seats are allocated than there should be. The second point says that if there are more

seats taken than allocated, then the involved parts are marked so that lots might be

drawn outside this system. The outcome of the lots drawn is afterwards registered in
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the system. In order to verify the post conditions, it is necessary to look into how the

algorithm works:

1 for all constituency result

2 FindSeats(ConstituencyResult i)

3 if (for all constituency) seats taken =

constituency seats allocated to

constituency then

4 update result on the national level

FindSeats(ConstituencyResult cr)

5 create one div and add it to the div list

of every party in cr

6 while seats taken < constituency seats

allocated to constituency do

7 find the highest quotient among

parties and vote count for unelected

independent candidates

8 locate party and/or un-elected independent

candidate with highest div value

9 if party then add 1 seat to party and

add 1 more div to div list

using the d’Hondt method

10 if independent candidate then

set him/her to elected

11 if seats taken > constituency seats

available in constituency then

12 mark all parties and/or independent

candidates with quotient = highest
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The sixth pre condition ensures that as long as the predicate in the while-loop is

true, we will always find the highest quotient on line 7. If at least one party gets at

least 1 vote, then the quotient of those parties will always be larger than 0. This is

because the number of votes divided by 1, 2, 3, etc. is always larger than 0. At some

point the seats taken will be equal or greater than the number of constituency seats

belonging to constituency, at which time the algorithm terminates. In the last while-

loop iteration, however, there might be quotients that are equal among the involved

parties and independent candidates. If they are, then multiple seats get allocated in this

last loop, and therefore the number of seats taken in the province might be more than

allocated to the province. This is exactly what the first post conditions claims and is

hereby verified.

The last if-statement of the algorithm says that if there are more seats taken than

there are seats available, then all involved parts are marked. If there is, during the

last iteration of the while-loop, only 1 seat allocated, then seats taken would equal

constituency seats available. But if the if-statement in line 11 is true, then there must

be more than 1 allocated during the last iteration and involved parts are marked. This

is what the second post condition claims, and it is hereby verified.

At the end of the transition there is a check that investigates the presence of any

issues/draws in the constituencies (line 3). If there are no issues, then the number of

seats on the national level is updated. This satisfies the third post condition.

It has already been shown that the algorithm will terminate.

Allocate Additional Seats to Provinces (inner state machine)

The algorithm that allocates additional seats to the provincial level is complicated.

This subsection verifies both the allocation of the additional seats and the resolving of

possible draws. The pre conditions to this transition are:

• The number of additional seats taken must be 0

• For all provinces the number of additional seats taken must be 0

• For all parties in all provinces the number of additional seats taken must be 0

30



• The total number of additional seats allocated to parties on the national level

must be 40

• The total number of additional seats allocated to the provinces is equal to 40

• For all parties in all provinces the size of the div list must equal the number of

constituency seats + 1

• All passing parties get at least 1 vote in all provinces

The pre conditions to this computational step are that all initializations are done prop-

erly and no unresolved draws are left from previous transitions. Keep in mind pre

condition number 7 - it states the most common case in the elections. If not stated, then

the verification falls apart. The post conditions are:

• The number of additional seats taken is 40 (total number of additional seats in

Denmark)

• All provinces get exactly the number of additional seats that they are allocated

before hand

• On the provincial level, all parties, in total, receive the same number of additional

seats that they get on the national level

• The inner state is Step 4 Resolved

All post conditions in this transition merely state that there are no draws and that all

seats get allocated to the parties on the provincial level. In order to verify the post

conditions, we need to look at the algorithm. The algorithm that allocates the additional

seats on the provincial level is shown in pseudo code below. An explanation follows.

1. while additional_seats_taken < 40 and not

TooManySeatsTaken do

2. highest := -1

3. for all un-arrested passing parties in

all un-arrested provinces
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4. find highest quotient

5. if no highest quotient found then break

6. ranking := additional_seats_taken

7. count := 0

8. for all passing parties in all provinces

9. for each quotients/div with value = highest

10. count := count + 1;

11. set quotients ranking = ranking

12. add 1 to province.additional_seats_taken

13. add 1 to party.additional_seats_taken

(national level)

14. add 1 to party.additional_seats

(province level)

15. add 1 to div list for party on

province level

16. accumulate additional_seats_taken by count

TooManySeatsTaken()

17. for all province results

18. if additional_seats_taken by province

result > additional_seats allocated to

province then

19. return true

20. for all passing parties on the national level

21. if additional_seats_taken by party >

additional_seats then

22. return true

23. return false

A party result is put to rest if the party result has received its additional seats allo-

cated on the national level or more. A party that is un-arrested has not yet received its
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additional seats. The same reasoning applies for provinces. Line 4 states: find highest

quotient.

This means implicitly find highest quotient that are not crossed out. The most

common case involves no draws. Let’s first look into that. The while-loop (line 1) will

stop when at least 40 seats are taken. Because of the seventh pre condition it will always

be possible to find a highest quotient (line 3 and 4), and therefore the if-statement on

line 5 is always false. This causes every iteration of the while-loop to allocate at least

one additional seat to a party and a province. The algorithm will therefore terminate at

some point since all the additional seats will get allocated.

It is possible, however, that while-loop iterations allocate more than just one ad-

ditional seat. This doesn’t imply, however, that a draw is created; which is what we

assume for the moment. Therefore, when there are no draws, all post conditions get

verified.

The while-loop will terminate as soon as a draw is present. The definition of a

draw is: a party result takes, on the national level, more additional seats than it has

allocated, or a province takes more additional seats than it has allocated. The sub-

routine TooManySeatsTaken illustrates how the presence of draws is found.

The only possible way for a draw to occur is that two or more quotients are equal.

Furthermore, these quotients must belong to either the same party in several provinces

(e.g. the last additional seat of a party getting allocated to two provinces) or to the

same province for several parties (e.g. the last additional seat of the province getting

allocated to two parties).

The worst case scenario is when several parties in several provinces draw for the

same seat; i.e. all parties in all provinces have a just claim on a seat, because their

quotients are the same. This would be the result of all possible combinations of all

passing parties in all provinces; e.g. if there are 10 passing parties then there are 30

involved parts in the draw, taking into account that there are 3 provinces in Denmark.

When the allocation of additional seats to the provincial level stops and the inner

state is not Step 4 Resolved, it means that there is a draw present. The algorithm below

works out the involved parts:
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GetStepFourDraw

24. ranking := -1

25. for all passing parties in all provinces

26. find the highest quotients ranking

among the quotients

27. for all passing parties in all provinces

28. if quotients.ranking = ranking

29. StepFourDraw.addParty

30. StepFourDraw.addProvince

The algorithm first locates the highest ranking value among the parties on the provincial

level. The reason for this is that since the while-loop of the main algorithm breaks as

soon as a draw presents itself, the involved parts must have the highest ranking number.

In order to know the involved parts, one simply has to invoke GetStepFourDraw. Lines

29 and 30 add a party-province pair to a StepFourDraw instance.

The law says that lots must be drawn to resolve draw issues. DiVS must be in-

formed about the result of the lots drawn. DiVS resolves issues through the algorithm

ResolveStep4Draw. The algorithm receives three parameters: rank, party result, and

province result. The semantics of the parameters is that the party result in province

result wins the ranking, and all others loose. The pre condition for the algorithm is that

there is a draw issues that must be resolved, and the post condition is that there is not a

draw issue that must be resolved.

ResolveStep4Draw(int rank, party pres,

province pr)

31. for all parties in all provinces

32. if quotients.ranking = rank and

( party != pres or province != pr )

33. subtract 1 from

province.additional_seats_taken

34. subtract 1 from
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party.additional_seats_taken

(national level)

35. subtract 1 from

party.additional_seats

(province level)

36. remove from div list the last div and

set ranking of last div to 0

37. subtract 1 from additional_seats_taken

The algorithm above resolves the draw issue by making all parts lose the draw except

for 1 party-province pair. This means that there are no draws left after this issue, and

the next transition from Step 4 Done is allocate additional seats to provinces. The if-

statement in line 32 ensures that all rankings are found, except for the winning party-

province pair that the algorithm receives as parameters. This means that if the draw

involves 3 party-province pairs and this method is called, then the method removes

all but what corresponds to the parameters received; i.e. 2 party-province pairs. Line

number 37 is therefore called twice in this working example. And when the main

algorithm eventually resumes, then the ranking in line 6 is set to a number which is 1

higher than it was before.

There’s no reason to suggest that ResolveStep4Draw doesn’t terminate. It has al-

ready been shown, that when there are no draws then all additional seats are allocated

on the provincial level. When draws are involved this is also the case. A possible draw

slows down the process since it needs to be resolved before the algorithm is resumed.

After resolving one issue, the additional seats taken gets closer to 40 by at least 1. It

has been shown that ResolvStep4Draw completely resolves a draw. Putting these two

things together implies that eventually all draw issues are resolved. This is exactly

what the post conditions state, and it must therefore be concluded that the algorithm is

correct. It has already been shown that the algorithms will terminate.

It is important to note that the last pre condition says that all passing parties get

votes in all provinces. If this pre condition is removed, then all parties might run in

only some provinces or just one. The law says explicitly that if there are parties that
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run in only one or two provinces then their additional seats should be allocated before

the others to ensure that the province is not arrested before party’s quotient becomes

the highest in the main algorithm. This is assuming that there are only a few passing

parties that don’t run in all provinces and allocating the additional seats to these parties

effectively resolves the issues. However, if all parties don’t run in all provinces then

there is a good chance that the situation mentioned above occurs anyway. This is shown

in the counterexample below.

All provinces have 45 constituency seats and 13 or 14 additional seats allocated.

27 parties are running. They all get the same number of votes and they all get 5 con-

stituency seats each. The parties are only running in 1 province. In computation step

3, the parties get allocated 6 or 7 seats total. This means that they get 1 or 2 addi-

tional seats. Since all get the same number of votes their fractions are all the same and

therefore lots must be drawn.

The lots provide all parties in one province with 2 additional seats. This means

e.g. that 18 seats belong to parties in this province. The province has only 13 or

14 additional seats, and therefore the province gets arrested before all the additional

seats of the parties running in the province are allocated. In the main algorithm the

while-loop will only go through 2 iterations before producing a draw. In the first, 27

additional seats get allocated.

This results in 14 parties getting arrested, since their only additional seat is taken,

but no provinces are arrested. In the second, the remaining 13 parties become involved

in a draw issue. This issue gets resolved by drawing lots with only one winner, the

ResolveStep4Draw is called, and the main algorithm is resumed. The result is, that

15 parties are arrested and 12 parties are involved in a draw. Again this issue gets

resolved, and it goes on.

At some point the province gets arrested, as well as all parties in the other provinces.

This means that line 4 will not find any highest quotient, and the if-statement on line

5 becomes true. At this point there are no draws, since TooManySeatsTaken returns

false. But there exists on the national level a few parties that haven’t received their

additional seats yet on the provincial level. This violates the post condition that all
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seats should be allocated.

Therefore the pre condition stating that all parties must get votes in all provinces is

kept.

5.2.2 Limitations

There are two minor inconsistencies in the electoral laws which could not be captured

in the formal specification of Danish voting:

• One way to resolve the situation when no parties pass the threshold is to state in

the electoral law that there are at most 175 seats representing Denmark. Alterna-

tively a second lower threshold should be defined and used when no parties are

passing the first threshold.

• A pragmatic approach to resolve the situation with regards to article 78 is to en-

able the calculation to allocate the seats to the parties in their respective provinces.

This would be a violation on how the seats are allocated to the electoral map,

which uses principles from the (Danish) Constitutional Act2. It would, however,

make the situation resolvable.

2http://www.stm.dk/_p_10992.html
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Chapter 6

Irish Voting

The second and more complete case study is about formal specification and testing of

Irish PR-STV voting.

6.1 Methodology

To appreciate the rigor involved in formally specifying and verifying a ballot counting

system for a non-trivial electoral system like PR-STV, discussing details about our

methodology is warranted.

6.1.1 Derivation of formal requirements from legal documents

This is potentially a complex issue. However, the legal framework for voting in Ireland

has been in existence for many elections and thus has been well tested and is well

understood. In addition, there are official guidelines for voting machine developers

and vendors. Thus, the requirements are already laid out in a semi-formal structure,

that is relatively unambiguous.

6.1.2 Business Object Notation

Business Object Notation (BON) provides a high-level object orientated description

of a system [75]. BON can be thought of as a rigorous subset of UML. BON has
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two flavors: informal BON and formal BON. Informal BON looks like a structured

natural language, but is checked for well-formedness in a variety of ways. Formal

BON looks like a strongly typed object-oriented, parametric class-based programming

language with contracts and behavioral specifications. Refinement from informal to

formal BON is described in the aforementioned text and supported by Fairmichael’s

BONc tool suite1.

6.1.3 Java Modeling Language

The Java Modeling Language (JML) is a formal behavioral interface specification lan-

guage used to specify the behavior of Java software [56]. It extends Java with annota-

tions for specifying simple formal statements in a design-by-contract (DBC) style [12]

and model-based specifications a la Larch [11]. Informal BON is either refined to a

formal specification in formal BON or directly to a formal object-oriented specifica-

tion language such as JML. Partial support for checking such refinements is provided

by the Beetlz tool2.

The initial JML specifications for Vótáil were written by hand based on the ASM,

the table of functional requirements and the informal BON. For the final version of

Vótáil, Beetlz was used to help derive the formal BON from the existing JML specifi-

cation.

The JML specifications cover the critical sub-systems of Vótáil, namely the elec-

tion.tally package.

Beetlz Beetlz is a tool for checking the consistency between BON and JML specifi-

cations. It is neither sound nor complete, but it does help to speed up the process of

writing formal specifications, by reducing the need for manual translation from JML to

BON, although as with any automated translation, the results are not always precisely

correct.

Therefore the refinement from BON to JML needs to be manually inspected and

corrected by hand.

1http://www.kindsoftware.com/products/opensource/BONc/
2http://www.kindsoftware.com/products/opensource/Beetlz/
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States Invariant JML
PRELOAD No ballots loaded yet. totalVotes == 0;
PRECOUNT No candidates elected yet. numberElected == 0;
PRECOUNT No candidates excluded yet. numberEliminated == 0;
COUNTING There is at least one seat for election. 1 <= seats;
COUNTING Number of seats remaining remainingSeats == (seats - numberElected);
FINISHED All seats filled. numberElected == seats;

Figure 6.1: Invariants for some of the outer states

From State To State Java Method
Ready to Count No Seats Filled Yet BallotCounting
Surplus Available Ready for Next Round of Counting distributeSurplus

Figure 6.2: Part of the Inner ASM for ballot counting process

6.1.4 Abstract State Machines

Abstract State Machines (ASM) are embedded within the JML specification,3 so as

to ensure that methods are called and used in the correct order. Whereas normally, a

precondition applies only to parameters and not to fields, we use a field called ‘state’

which represents the ASM for the class. Each transition in the ASM is implemented as

a Java method, for which the precondition is to be in one state and the postcondition is

to be in another state. The principal class, BallotCounting has a two tier state machine.

The Ballot and Candidate classes each have their own simpler ASM.

Outer ASM for Count Process

The outer ASM is as described in previous work [14, 48]. Some examples of the

invariants for each outer state, excluding technical constraints such as non-nullity, are

shown in figure 6.1.

Inner ASM for Count Process

The inner ASM models the detailed count process. The possible states and transitions

are described in figure 6.2.

The inner ASM is implemented in the AbstractCountStatus class.

3The JML specification is a refinement of the ASM as well as being a refinement of the BON design.
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Candidate ASM

The Candidate can be in one of three states. The final state is either Elected or Excluded

and the initial state is Continuing.

Ballot ASM

The specification of the Ballot class also enforces the process of transferring the ballot

to another candidate. The transfer function moves to the next effective preference on

the ballot paper.

6.1.5 A Verification-centric Development Process

Functional 
Requirements

Abstract State 
Machine

Business Object 
Notation

Java Modeling 
Language Specification

Scenario Tests Java Code

refines

refines

refinesrefines

generatesrefines

refines

refines

Unit Tests

Figure 6.3: Relationships between software engineering artifacts.

A set of functional requirements and features, derived from electoral law, is a semi-

formal specification, although written in a structured way. To translate the ballot count-

ing process, as defined by law, into an executable software system we define an abstract

state machine (ASM). This ASM and a set of functional requirements (described later)

are refined into an object-oriented system design using BON, which is in turn refined
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Table 6.1: Cross-referencing functional requirements and the law.
ID Functional Requirement Section Item Page
9 Not more than one surplus is distributed in any one

count.
4 3 16

10 Where there are seats remaining to be filled, but
no surpluses available for distribution, the low-
est continuing candidate or candidates must be ex-
cluded.

4 4 16

11 There must be at least one continuing candidate
for each remaining seat.

4 4 16

...

into a JML contract-based specification. The JML specification and ASM are then im-

plemented in Java. Thus, the development follows a strict design-by-contract based

approach to software engineering.

Validation is accomplished via testing. Automated tests are generated from the JML

specification, and scenario tests are derived from the ASM. Finally, the entire system

is verified using extended static checking, a kind of automated functional verification.

Figure 6.3 provides an overview of these artifacts and their interrelationships.

6.2 Formal Specification

Requirements are derived from electoral law and regulations for the counting of votes.

In the Irish context, these requirements come from a commission on voting and elec-

toral law and from the electoral act itself.

The 1992 Electoral Act, including subsequent amendments, and the Commentary

on Count Rules issued by the CEV [24], is the starting point for our requirements anal-

ysis. In previous work 39 semi-formal statements are used to describe these functional

requirements for ballot counting in elections to the Dáil [14].

A few example formal statements from our previous work are listed and cross-

referenced, as shown in Table 6.1. The section, item and page column titles refer to the

CEV Commentary on Count Rules, which in turn refers back to the Electoral Acts.

The formal specification has several aspects. First, we must formalize the ballot

counting process — the steps through which one must pass to convert a pile of legal
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ballots into a tally. Secondly, we must capture the various stages through which each

key element of the counting process (e.g., a candidate, a ballot, a ballot box, etc.) can

pass. The formalization of these two different, but interrelated, facets of the specifica-

tion are done via the use of ASMs.

6.2.1 Abstract State Machine

(1) Ready to 
Count

(2) No Seats 
Filled Yet

(A) Calculate Quota

 (D) Calculate Number of 
Votes to Transfer

 (4) Candidate Is 
Deemed to be 

Elected

 (6) Surplus 
Available

(C) Calculate Surplus

(B) Find Highest Continuing Candidate With Quota

 (13) Last Seat Being 
Filled (Single Winner 

IRV)

(16) All Seats Filled

(10) Ready to Move 
Ballots (L) Move the Ballots (12) Ready for Next 

Round of Counting

(5) No Surplus 
Available

(J) Select Lowest Continuing 
Candidates for Exclusion

(11) Candidate 
Excluded

(H) Calculate Transfers

(M) Check Remaining Seats

(15) One or 
More Seats 
Remaining

(K) Count Continuing Candidates

(14) More Continuing Candidates 
Than Remaining Seats

(18) Just One 
Continuing Candidate 
For Each Remaining 

Seat

(N) Declare Remaining 
Candidates Elected

Figure 6.4: Abstract State Model, lower tier (sub-states)

A two tier Abstract State Machine (ASM) is used to represent the 39 functional

requirements. The upper tier of the ASM describes the state of the election (EMPTY,

SETTING UP, PRELOAD, LOADING, PRECOUNT, COUNTING, FINISHED, AUDIT,

REPORT) in a linear way, in which there is only one possible transition into and out

of each state, whereas the lower tier of the ASM (shown in 6.4) is more complex and

describes more detailed sub-states and transitions within the COUNTING state.

6.2.2 Invariants

An invariant is a predicate about a set of objects in the system that must always hold

during stable/quiescent states during system execution. In essence, the invariants of an

object and its class hierarchy explain what constitutes a valid instance of the object in
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question. Likewise, invariants about the states of an ASM explain what must be true of

the process and the objects on which it operates for the process itself to be valid.

/** Number of candidates elected so far */
public model int numberElected;
public invariant 0 <= numberElected;
public invariant numberElected <= seats;
public invariant (state <= PRECOUNT) ==> numberElected == 0;
protected invariant (COUNTING <= state) ==> numberElected == (\num_of int i;
0 <= i && i < totalCandidates; isElected(candidateList[i]));

public invariant (state == FINISHED) ==> numberElected == seats;

Figure 6.5: A JML specification describing the number of candidates elected.

Each election state has a number of invariants that must hold. For example, in

the fragment of JML seen in figure 6.5, the Finished state has as an invariant that

the number of candidates elected equals the number of seats available, whereas the

Pre-Count state has an invariant that the number of candidates elected (so far) is zero.

Invariants are coupled to states in the ASM through a variable state denoting the

obvious. Some invariants must only hold in a given state and others must hold for that

state and all future states, as in the example.

6.2.3 Coupling State Transitions

Reasoning about the overall correctness of the counting algorithms implementation

boils down to reasoning about the top-level ASM. If we can show that each transition

in the ASM is valid (it only goes from legal pre-states to legal-post states, as defined by

law), then we can guarantee, by transitivity, that the overall algorithm is correct. The

correctness of these transitions is captured entirely by invariants, which are preserved

in the top-level state transitions.

Similar reasoning is used to analyze the correctness of each invariant on each state

of the ASM, invariants that span ASM states, as well as the legitimacy of transitions

between states.
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Transitions into Invariant for new state
End of Count The number of candidates elected equals the num-

ber of open seats.
No Surplus Available All continuing candidates have less than a quota

of votes.
No Seats Filled Yet The number of elected candidates is zero.
Candidates Have Quota There exists a continuing candidate with at least

one quota of votes.
Candidate Excluded This candidate had fewer votes than any other con-

tinuing candidate.
Last Seat Being Filled The number of elected candidates is one fewer

than the number of open seats.
Seats Remaining The number of elected candidates is less than the

number of open seats.

Figure 6.6: Examples of invariants for each sub-state, translated from JML to English
for the reader.

6.2.4 Other Examples of Invariants

All invariants must hold in every state, not just those state pairs at the end of transitions

in the top-level ASM. These legal invariants are expressed by class and object invariants

in the JML specification. Consequently, when a transition between states occurs, the

invariants of both the old and new state must hold during the transition (i.e., during any

helper methods that are called while the software is moving between states).

6.2.5 Refinement to BON

To formally capture legal requirements, as expressed through invariants, and to rigor-

ously refine our ASMs into a software system, the architecture of our ballot counting

system (i.e., its classifiers and their relations) and its correctness properties (i.e., its

invariants) are formally specified in the Business Object Notation.

Each state transition in the Abstract State Model is represented either by a com-

mand or a query in BON. In BON, a command is an action that changes the state of an

object, for example, moving a ballot from one pile to another, whereas a query returns

some information about the system. A query is implemented in JML either as a field

with invariants or as a pure method.

The example in figure 6.7 shows an informal BON description of the Ballot Count-
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class_chart BALLOT_COUNTING
explanation

"Count algorithm for tallying of the votes
in Dail elections"

query
"How many continuing candidates?",
"How many remaining seats?",
"What is the quota?",
"Who is/are highest continuing candidate(s)
with a surplus?",

"What is the surplus?",
"What is the transfer factor?"

command
"Distribute the surplus ballots",
"Select lowest continuing candidates for
exclusion",

"Declare remaining candidates elected",
"Close the count"

end

Figure 6.7: An Informal BON description of the Ballot Counting class.

ing process.

6.2.6 Refinement to JML Specification

The BON design contains 1 cluster4 with 5 classifiers, 20 queries, 5 commands and 6

constraints. These are refined to 1 package with 10 classes, 104 methods, 70 invariants,

192 preconditions and 117 postconditions in JML.

We used a version of JML that extends Java 1.4, because of existing mature tool

support. We also minimize our use of the JDK and use simple data structures such as

arrays. When using arrays in JML we make assumptions about the maximum number

of candidates and the maximum number of ballots, based on past elections and the

theoretical maximum population of a constituency.

Two examples of JML are shown in figures 6.8 and 6.9, one for a query and one

for a command, and are examples of the initial JML specification written during re-

finement. Such a specification contains only the signature of each method without

implementation code (the implementation is “bottom,” aka “assert false.”). Note also

4A BON cluster is a collection of related concepts, roughly similar to a Java package.
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/** Number of votes needed to win a seat */
requires 0 <= seats;
ensures \result == 1 + (totalVotes / (seats + 1));
public pure int getQuota();

Figure 6.8: An example of a JML specification for a BON query.

/**
* Transfer votes from one candidate to

* another.

*
* @param fromCandidate

* Elected or excluded candidate

* @param toCandidate

* Continuing candidate

* @param numberOfVotes

* Number of votes to be transferred

*/
requires fromCandidate.getStatus() != CandidateStatus.CONTINUING;
requires toCandidate.getStatus() == CandidateStatus.CONTINUING;
ensures countBallotsFor(fromCandidate.getCandidateID()) ==

\old (countBallotsFor(fromCandidate.getCandidateID())) - numberOfVotes;
ensures countBallotsFor(toCandidate.getCandidateID()) ==

\old (countBallotsFor(toCandidate.getCandidateID())) + numberOfVotes;
public abstract void transferVotes(

final non_null Candidate fromCandidate,
final non_null Candidate toCandidate,
final int numberOfVotes);

Figure 6.9: An example of a JML specification for a BON command.

that the method signature specification in this example states in a precondition that

none of the parameters can have null values.

6.2.7 Limited Verification

Our toolset for verification has some important limitations. This means that we cannot

achieve full program verification with the existing generation of JML tools.

Length of Verification Conditions

In many cases, specifications need to be rewritten and simplified so as to avoid overly

complex verification conditions, that ESC/Java2 (or its theorem provers) are unable to

handle.
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Loop Invariants, Summation and Generalized Quantifiers Some calculations were

specified as a summation and implemented using loops. ESCJava2 could neither verify

the loop invariants nor the post-condition of such methods, for example in the method

Candidate.getTotalVote:

/**
* Total number of votes received by or added to this candidate.

*
* @return Gross total of votes received

*/
requires lastCountNumber < votesAdded.length;
ensures \result == (\sum int i; 0 <= i && i <= lastCountNumber; votesAdded[i]);
public pure int getTotalVote() {

int totalVote = 0;

loop_invariant votesAdded[i] <= totalVote;
for (int i = 0; i <= lastCountNumber; i++) {
totalVote += votesAdded[i];

}

return totalVote;
}

Figure 6.10: An example of a JML Loop Invariant.

The solution is to rewrite this method using a field that is updated as new votes are

added, rather recalculated on demand.

In cases where this is not possible, the alternative solution is to isolate the unverified

part of each method, using refactoring, so that the offending code would be easy to

inspect manually. It is hoped that future verification tools such as OpenJML will have

more success with this code.

The Java code is written in such a way as to be verification friendly, in many cases

simplified so that it is easy for verification tools (such as ESCJava2) to understand,

for example by avoiding reliance on third-party or non-standard APIs. This also helps

make the code easy to read.

Decision to use Java instead of a functional programming language

Java, version 1.4, is used because it is multiplatform and has existing tool support from

the JML community, and others. However, a functional programming language or
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domain specific language might lead to a simpler specification and implementation.

However many of the ESC warnings found would have been unnecessary in a more

strongly typed language, or even in a more recent version of Java, but there was no

JML tool support for modern Java, when this work was started.

6.2.8 Architecture

Ballot

ElectionStatus Candidate

Ballot Counting

Abstract Ballot 
Counting

Ballot Box

has-a

is-a

has-a

has-ahas-a

Count 
Configuration

Abstract Count 
Status

has-a

has-a

CandidateStatus

has-a

Constituency

has-a

Figure 6.11: Relationship between classes

election.tally package

There are 10 Java classes in the election.tally package, representing the actors in the

system, for example Ballots, Ballot Boxes and Candidates. Figure 6.11 shows the rela-

tionship between the Java classes. The BallotCounting class contains the specifics

of PR-STV, whereas the AbstractBallotCounting class contains the more gen-

eral properties of ballot counting algorithms. Class names shown in italics are sup-

porting classes that were added in the Java implementation but were not refined from

BON.

other supporting packages

ie.votail.test This package contains ten hand-written scenario tests derived from the

inner ASM of the BallotCounting class. These tests cover 97 % of the election.tally

package, according to the metrics used by the Emma plugin for Eclipse.
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ie.votail.model, ie.uilioch These packages contain the framework for model-based

test generation, which will be described in the next chapter.

6.3 The Vótáil Hypothesis

Due to the manner in which the formal specification of the ballot counting algorithms

is accomplished and the aforementioned argument about the correctness of state tran-

sitions (section 6.2), we summarize via informal refinement the overall theorem ex-

pressed by this ballot counting system as the Vótáil Hypothesis.

Vótáil Hypothesis: Given a valid set of candidates up for election for a

set of seats, and a ballot box containing a valid set of ballots, after the bal-

lot counting algorithm executes, we guarantee that the candidates deemed

elected by Vótáil are exactly those elected by Irish law, where casting of

lots and shuffling of ballots are simulated by sorting the ballots and candi-

dates into a secret order beforehand.

In other words, the candidates elected by a machine count are the same as would be

elected in a correct manual count of paper based ballots.

6.4 Verification and Validation

6.4.1 Open Source Implementation

The Vótáil source code is open source, under the terms of the MIT open source license5,

and is available from the Mercurial repository on JavaForge http://javaforge.

com/hg/voting6. The source code contains 723 Java statements in 11 classes and

92 methods.
5http://www.opensource.org/licenses/MIT
6http://www.javaforge.com/project/5342
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6.4.2 Scenario Tests

Ten hand-written scenario tests are derived from the ASM and provide 97 percent code

coverage. To measure coverage we use the EclEmma7 code coverage plug-in for the

Eclipse Integrated Development Environment8 and run tests using JUnit.

However 100% code coverage can be achieved using automatic generation of test

data, derived from a formal model of the ballot counting process. This is described in

chapter 7.

6.4.3 Extended Static Analysis

The Extended Static Checker for Java version 2 (ESC/Java2) is a programming tool

that attempts to find common run-time errors in JML-annotated Java programs by static

analysis of the program code and its formal annotations [17]. Users control the amount

and kinds of checking that ESC/Java2 performs by annotating their programs with spe-

cially formatted comments called pragmas. ESC/Java2 is used to type check the JML

specifications and to check that the Java implementation fulfills these specifications.

No flags were provided to ESC/Java2, I used the default configuration for the ES-

C/Java2 Eclipse plugin as part of the Mobius Program Verification Environment (PVE)

configuration for Eclipse. I used the loopsafe option, as there are many loops in the

algorithm.

Frame Conditions Each method has a full assignable clause. I relied on ESC/Java2

to check these frame conditions.

ESC/Java2 is used to both type check the JML specifications and to check that the

Java implementation fulfills these specifications.

This verification is complemented by the aforementioned testing because ESC/-

Java2 is neither sound nor complete. While we have used its functionality to check

that specifications are sound [45] and that we have not ventured into any territory that

touches on the soundness and completeness issues inherent in the tool’s design and

7http://www.eclemma.org
8http://www.eclipse.org
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implementation [49], only via rigorous, well-designed testing are we assured that the

system is functioning correctly in an actual execution environment.
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Chapter 7

Alloy Model

7.1 Model Driven Testing

As stated previously, static analysis, in itself is neither sound nor complete, whereas

Runtime Assertion Checking (RAC) is sound but requires a complete set of test cases.

We wish to achieve full statement and path coverage, however we cannot test all possi-

ble inputs to the system in a reasonable time frame.

Many researchers have already written about the limitations of random test gener-

ation [19, 16]. A more promising approach, albiet with some limitations, is the use of

model checkers to generate witnesses or counter examples. At first glance, this might

appear to be similar to our approach, but has the disadvantage of state-space explosion,

and does not guarantee full path coverage [5, 41].

Dijkstra’s Dictum Program testing can be used to show the presence of bugs, but

never to show their absence [26].

Jackson’s Small Scope Hypothesis Most bugs have small counterexamples [43].

In order to show the absence of bugs with the smallest possible test cases I decided

to use the Alloy model finder to describe the PR-STV count algorithm. In this chapter I

describe my formalization of Irish PR-STV using the Alloy Analyzer [15] for the pur-
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pose of test generation. The model contains 2 enumerations, 5 signatures, 60 facts and

24 assertions for PR-STV. A fact in Alloy is an axiom, and an assertion is a lemma.

Later in this chapter, I show how to use the Alloy Analyzer to model PR-STV and then

generate a complete set1 of PR-STV test cases for use with Runtime Assertion Check-

ing (RAC). Remember that RAC is sound (unlike Extended Static Checking which is

neither sound nor complete), but its completeness depends on the completeness of the

test data. The test data needs to be complete, not in the sense of covering every possible

combination of ballot papers, but in covering every possible type of election outcome

and every branch through the vote counting algorithm.

Number of Different Combinations of Ballot Papers

To concretize completeness we need to analyze the space complexity of elections.

The number of distinct permutations of non-empty preferences is
C∑
l=1

(C)l, where

C = |C| and partial ballots are allowed, so that the number of preferences used range

in length from one to the number of candidates. For a ballot of length l, (C)l is the

number of distinct preferences that can be expressed.

In general, the number of possible ballots grows factorially (i.e. faster than expo-

nential), while the number of equivalence classes due to symmetries grows linearly.

Unfortunately, there is no obvious way to leverage these symmetries in the gener-

ation of tests from a naive ballot-centric point-of-view because the number of ballot

boxes grows exponentially. For example, even if we know that there are only a linear

number of equivalence classes of ballots, how do we know how many ballot boxes to

generate to fully test a system?

One approach to validating/testing electoral systems (if they are tested at all) is to

randomly generate hundreds of thousands (or, indeed, even millions) of ballot boxes

and then to compare the results of executing two or more different implementations

of the same voting scheme. If different results are found, then the ballots are counted

manually to determine which result is correct [18].

This methodology has limited effectiveness, because even if one generates billions

1a set that contains at least one representative from each equivalence class (election scenario)
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of ballots in non-trivial election schemes, the fraction of the state space explored is van-

ishingly small. To make this clear, we will analyze the number of distinct combinations

of preferences possible in PR-STV ballots.

Number of Distinct Outcomes

If B is the number of distinct non-empty ranked choices that can be made, and V = |B|

is the number of votes cast, then the number of possible combinations of ballots is BV

if the order of ballots is important, and
BV

V !
if not.

For example, consider a five seat constituency with a voting population of 100,000

and 24 candidates. Consequently, the number of possible ballot boxes is (
24∑
l=1

(24)l)
100,000,

an astronomical number of tests which would be impossible to run, even if each indi-

vidual test took only a fraction of a second.

To avoid this explosion, we partition the set of all possible ballot boxes into equiv-

alence classes with respect to the counting algorithm chosen. We consider the equiv-

alence class of election results for PR-STV. Each election result consists of the set of

Election Outcomes for each candidate.

7.1.1 Election Outcomes

The key idea is that election scenarios represent an equivalence class of election out-

comes, thereby letting us collapse the testing state space due to symmetries in candidate

outcomes. We will return to this point in detail below in the early examples.

Each election result is described by an election scenario which is a vector of can-

didate outcome events. Both of these terms are defined in the following.

The inner ASM of the ballot counting algorithm (see figure 6.4) is modeled as a

set of events defined in figure 7.1. The paths through the Inner ASM for each election

outcome are shown in figure 7.2. Note the election outcomes are defined more precisely

than the ASM (to capture the movement of ballot transfers as well as the final outcome

for each candidate) so that two or more Election Outcomes can traverse the same path

through the ASM. In particular the ASM does not show a separate branch for handling

of non-transferable votes, whereas both the JML refinement and the Alloy refinement
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Outcome Informal Definition
WinnerNonTransferable elected on first round with at least one non-transferable surplus vote
SurplusWinner elected on first round with at least one surplus vote (all surplus votes are transferable)
Winner elected in the first round of counting by quota but with no surplus
AboveQuotaWinner elected with transferable surplus votes on second or later round after receipt of transfers
QuotaWinnerNonTransferable elected on second or later round after receiving transfers

with at least one non-transferable surplus vote
QuotaWinner elected with quota after transfers from another candidate, but without a surplus
CompromiseWinner elected on the last round of counting without quota but by plurality
TiedWinner elected by tie breaker in the last round
TiedLoser defeated only by tie breaker but reaches the threshold
TiedSoreLoser defeated only by tie breaker but does not reach threshold
Loser defeated in last round but reaches the minimum threshold of votes
SoreLoser defeated in last round,but does not even reach the minimum threshold of votes
EarlyLoserNonTransferable reaches threshold but is excluded before last round with some non-transferable votes
EarlyLoser reaches threshold but is excluded before last round, all votes are transferable
EarlySoreLoser excluded before last round, and below threshold, all votes are transferrable
EarlySoreLoserNonTransferable below threshold and excluded before last round with at least one non-transferable vote

Figure 7.1: Informal Definition of each Election Outcome

States Outcome
Candidate Deemed Elected, Surplus Available SurplusWinner
Candidate Deemed Elected, No Surplus Available Winner
Candidate Deemed Elected, Surplus Available WinnerNonTransferable
Candidate Deemed Elected, Surplus Available AboveQuotaWinner
Candidate Deemed Elected, Surplus Available QuotaWinnerNonTransferable
Candidate Deemed Elected, No Surplus Available QuotaWinner
Last Seat Being Filled, All Seats Filled CompromiseWinner
Last Seat Being Filled, All Seats Filled TiedWinner
Last Seat Being Filled, All Seats Filled TiedLoser
Last Seat Being Filled, All Seats Filled TiedSoreLoser
Last Seat Being Filled, All Seats Filled Loser
Last Seat Being Filled, All Seats Filled SoreLoser
Candidate Excluded EarlyLoserNonTransferable
Candidate Excluded EarlyLoser
Candidate Excluded EarlySoreLoser
Candidate Excluded EarlySoreLoserNonTransferable

Figure 7.2: Examples of paths through the Inner ASM for each Election Outcome

do include the notion of non-transferable votes, of the tie break and of the threshold

for example.

The formal definition of an election outcome is found in the axioms that reference

that outcome, for which an example will be given later after the definition of each

signature in the model.

7.1.2 Ballots and Ballots Boxes

The ranked choice (preference) ballot is modelled as follows:
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sig Ballot {

assignees: set Candidate, -- Candidates to which this ballot has been assigned

preferences: seq Candidate -- Ranking of candidates

}

where the assignees field is used to track the movement of the ballot. In the first round

of counting, each ballot has just one assignee, then new assignees are added if the

ballot is transferred. There is no need to know the order of assignees because they

follow the same order as the preferences, although preferences can be skipped over, if

the intervening candidates have been already elected or excluded, since a ballot will be

transferred to the highest preference for a continuing candidate (not already elected or

excluded).

The Ballot Box is defined as follows:

one sig BallotBox {

spoiltBallots: set Ballot, -- empty ballots excluded from count

nonTransferables: set Ballot, -- ballots for which preferences are exhausted

size: Int -- number of unspoilt ballots

}

{

no b: Ballot | b in spoiltBallots and b in nonTransferables

size = #Ballot - #spoiltBallots

all b: Ballot | b in spoiltBallots iff #b ·preferences = 0

all b: Ballot | some c: Candidate |

b in nonTransferables implies b in c ·wasted

}

note that to avoid duplication of data, and adding too many fields to the model, there is

no direct mapping between the Ballot Box and every single ballot. There is however a

mapping between ballots and candidates.

7.1.3 Candidates

The stack of ballots in favor of a given candidate is modelled as follows:
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sig Candidate {

votes: set Ballot, -- First preference ballots assigned to this candidate

transfers: set Ballot, -- Second and subsequent preferences received

surplus: set Ballot, -- Ballots transferred to another candidate

wasted: set Ballot, -- Ballots non-transferable

outcome: Event -- Election outcome for each candidate

}

In Alloy an axiom is either labelled as a fact or else appended to a type signature sig.

However it was found that the Alloy API when used from Java does not load facts

unless they are appended to the signature.

For example, the following appended axiom (on Ballots) enforces consistency be-

tween the definition of ballots and candidates.

all c: Candidate | preferences ·first = c iff this in c ·votes

The appended axioms on Candidate enforce the meaning of the various outcomes, for

example, certain outcomes are possible only when there is a least one non-transferable

(wasted) vote:

0 < #wasted iff (outcome = WinnerNonTransferable or

outcome = QuotaWinnerNonTransferable or

outcome = EarlyLoserNonTransferable or

outcome = EarlySoreLoserNonTransferable)

7.1.4 Electoral Constituency

The constituency for the election is modeled as follows:

one sig Election {

seats: Int, -- number of seats for election

constituencySeats: Int, -- full number of seats in constituency
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method: Method -- type of election; PR-STV or plurality

}

{

0 < seats and seats < = constituencySeats

seats < #Candidate

method = Plurality or method = STV

}

In a special election, or by-election, the number of seats to be filled can be less than

full number of seats. If only one seat is being filled then PR-STV reduces to Instant

Runoff Voting (IRV). The model also has parameters to support Plurality elections by

narrowing the range of possible outcomes and disallowing of transfers.

7.1.5 Electoral Scenarios

The Electoral Scenario is defined informally as a sequence of Election Outcomes, but

more formally as a set of winners and a set of losers, with a subset of (early) losers

excluded before the last round. The scenario is effectively the input to the Alloy solver

and the set of ballots is the output for a given model.

one sig Scenario {

losers: set Candidate,

winners: set Candidate,

eliminated: set Candidate, -- Candidates excluded before last round

threshold: Int, -- Minimum number of votes for funding

quota: Int, -- Minimum number of votes needed to guarantee election

fullQuota: Int -- Quota if all constituency seats were vacant

} {

// Mandatory pairs of outcomes: ties between winners and losers

all a: Candidate | some b: Candidate |

(a ·outcome = TiedLoser or a ·outcome = TiedSoreLoser)

iff (b ·outcome = TiedWinner)

}
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The following appended axioms require the winners and losers are disjoint, but that

eliminated is a subset of losers.

all c: Candidate | c in winners + losers

no c: Candidate | c in losers & winners

eliminated in losers

Now that the signatures are defined, the election outcomes can be given a more formal

definition.

7.1.6 Formal Definition of Election Outcomes

The formal definition of each Election Outcome is the set of axioms that reference it.

As an indication, the axioms for the AboveQuotaWinner are listed below:

all c: Candidate | (c ·outcome = AboveQuotaWinner) implies (

(Scenario ·quota < #c ·votes + #c ·transfers) and

(not Scenario ·quota < = #c ·votes) and

(#c ·surplus = #c ·votes + #c ·transfers - Scenario ·quota) and

(c ·surplus in c ·transfers) and

(#c ·wasted = 0))

The rest of the appended axioms can be found in appendix C.

The axioms represent rules expressed in electoral law, although in a more precise

way. For example, the electoral law talks about elected, excluded and continuing can-

didates, but does not explicitly talk about election outcomes. This contrasts with the

BON/JML specification and the ASM in which each state and transition can be refer-

enced to a paragraph or subparagraph of electoral law. Therefore the definition of an

Election Outcome is somewhat arbitrary and alternative refinements might have been

possible.
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7.2 Validation of the PR-STV Alloy Model using Alloy

Assertions

How then do we know if the axioms are complete and non-contradictory?

The internal consistency of the Alloy model is checked in two ways, using Alloy

assertions (lemmas) and Alloy predicates (scenarios). The axioms are refinements of

explicit rules in the electoral law, whereas the implicit requirements are stated as lem-

mas.

7.2.1 Lemmas

If the assertion contradicted the existing axioms, then the counter-example, from the

unsatisfiability core, was examined carefully, to see which axiom or lemma was correct.

This is one of the strengths of using the Alloy Analyzer.

For example, the following assertion requires that if one candidate won by tie

breaker, then another candidate must have lost by tie breaker, with an equal number

of votes and transfers2.

assert wellFormedTieBreaker {

some w,l : Candidate | (w in Scenario ·winners and

l in Scenario ·losers and #w ·votes = #l ·votes and

#w ·transfers = #l ·transfers) implies

w ·outcome = TiedWinner and

(l ·outcome = TiedLoser or l ·outcome = TiedSoreLoser) }

The next example of a lemma is an implicit rule that there cannot be more preferences

than candidates:

assert lengthOfBallot {

all b: Ballot | Election ·method = STV implies

#b ·preferences < = #Candidate }

2Strictly it would require an equal number of votes and transfers on each round of counting, but the model
does not specify in which round the transfers were received
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7.3 Procedure for Automated Test Generation using Al-

loy Predicates

The question arises, how do we find witnesses for each distinct outcome, that is how do

we find the smallest set of test ballots required for each outcome, where each outcome

represents a distinct path through the algorithm.

These generated test cases are used to complement existing hand-written unit tests.

To accomplish this task, one needs to be able to generate the ballots in each distinct kind

of ballot box identified using the results of the earlier sections of this paper. Effectively,

the question is one of, “Given the election outcome R, what is a legal set of ballots B

that guarantees R holds?”

7.3.1 Generation of Ballot Boxes for Test Cases

Using the ie.votail.model.factory.ScenarioFactory class it is possible to enumerate through

all the possible thousands of combinations of Election Outcomes for a given number

of seats and a given number of candidates. Scenarios which contain incompatible sets

of outcomes, e.g. a CompromiseWinner with a TiedLoser, are discarded.

The remaining valid scenarios are then loaded one at a time as predicates into the

Alloy model. If a solution is not found for a small scope, then the predicate is run with

a larger scope. If no solution us found for a scope as large as 30, for example, then it is

noted in a log file for further investigation to confirm that the scenario has no solution.

The solution space for each scenario is then parsed so as to extract the ballots which

are then saved into a test database.

This test database then forms the dataset for testing with RAC.

If all configurations are explored and the expected scenario matches the actual re-

sults, then we know that the implementation correctly implements all branches of the

voting scheme’s specification. If some of the results are incorrect, then we have found

a bug in the ballot counting implementation, assuming that the model is perfect. If

code coverage is less than complete, but the model is complete, then we have discov-

ered hidden functionality (or dead code) in the system under test, keeping in mind
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that the model is still an abstraction of the underlying software. For example, the

earliest version of the PR-STV model did not distinguish between transferable and

non-transferable surpluses.

The ElectoralScenario class contains an ordered sequence of Election Outcomes

e.g. one winner above quota, one compromise winner, two early losers etc.

7.3.2 Coverage Analysis

Beyond the issue of correctness, we can also analyze the completeness and efficiency

of the implementation. In particular, by running all validation tests while measuring

code coverage, we can discover:

• which parts of the code are exercised most, and thus are the prime focus for the

application of verification technologies,

• which parts of the code are not exercised at all, and thus are dead code, or are

code representing misinterpretations of the voting scheme’s counting rules, and

• if the system crashes, the inputs that were unexpected, which in turn tells us

about misinterpretations of the scheme

Results The test and coverage analysis can be seen in section 8.3.
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Chapter 8

Conclusions

Since I did not use full functional verification, for example by using a functional pro-

gramming language, the correctness of the implementation cannot be guaranteed, but

instead a measure of the completeness of verification and validation is given.

However the use of (very) lightweight formal methods remains a viable alternative

to code inspection and intensive manual testing of software. In particular, a test strategy

could be designed to focus on those parts of the system with less coverage from the

verification tools.

8.1 Limitations

1992 Electoral Act, Section 121, subsection (8) There is one scenario which I did

not include in my model of PR-STV, the lowest continuing candidate can be excluded

before the distribution of a surplus, if that candidate already has enough votes to reach

the quarter-quota threshold, or if the surplus would not be enough to make a difference.

This was an oversight in my part, it should be straightforward to add this as an

axiom in the model.
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8.2 Vulnerabilities

STV, without fractional counting, is subject to two forms of counting attack in addition

to the ballot signing attack. 1 The first attack is to bias the shuffling of ballots so that

ballots with third and subsequent preferences for the chosen candidate are closer to the

top of the pile, and the second would be to bias the breaking of ties in favor of a chosen

candidate.

8.3 Results

Despite the use of a verification-centric process, and 100% statement coverage of the

code, the following issues are outstanding, representing a potential inconsistency in the

JML specifications.

8.3.1 ESC Warnings

Figure 8.1 lists the unresolved ESC warnings in each class. These are assumed to

represent false negatives, unless confirmed by code inspection or by RAC, since ESC/-

Java2 is not sound.

For example the Possible Negative Array Index warning on line 220 of Abstract-

BallotCouting.java makes no sense given the precondition on line 212 which restricts

the index parameter to non-negative values.

The warning Code Not Checked means that the assumptions are inconsistent, that

the method might not terminate, or that the static analysis is imprecise. The warning

Method Not Checked means that the prover limit (maximum number of verification

conditions) was exceeded.

The number of lines of specification with unresolved ESC warnings in each class,

per statement are shown in figure 8.2 and methods with unresolved warnings in figure

8.3. The count of specification methods includes Java methods with JML specifica-

1Ballot signing is possible when anonymized ballots are made available for third-party inspection and
counting. The lower preferences can be chosen in such a way as to identify the vote to a coercer. The
defense is either not to reveal the ballot data or only to reveal the higher preferences which were exercised
during the count [25].
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File Method Line Warning
AbstractBallotCounting.java isDepositSaved 220 Negative Array Index
AbstractBallotCounting.java setup 277 Precondition
AbstractBallotCounting.java load 301 Object Invariant
AbstractBallotCounting.java allocateFirstPrefrences 347 Modifies Clause
AbstractBallotCounting.java countBallotsFor 370 Loop Invariant
AbstractBallotCounting.java countFirstPreferences 397 Loop Invariant
AbstractBallotCounting.java getPotentialTransfers 426 Loop Invariant
AbstractBallotCounting.java getNextContinuingPreference 464 Precondition
AbstractBallotCounting.java load 308 Object Invariant
AbstractBallotCounting.java allocateFirstPreferences 342 Loop Invariant
AbstractBallotCounting.java allocateFirstPreferences 351 Postcondition
AbstractBallotCounting.java getNextContinuingPreference 464 Precondition
AbstractBallotCounting.java isContinuingCandidateID 491 Precondition
AbstractBallotCounting.java isContinuingCandidateID 497 Postcondition
AbstractBallotCounting.java getActualTransfers 551 Postcondition
AbstractBallotCounting.java getTransferShortfall 608 Loop Invariant
AbstractBallotCounting.java isHigherThan 713 Precondition
AbstractBallotCounting.java compareCandidates 789 Precondition
AbstractBallotCounting,java getTotalTransferableVotes 832 Loop Invariant
AbstractBallotCounting.java findHighestCandidate 891 Loop Invariant
AbstractBallotCounting,java findLowestCandidate 939 Loop Invariant
AbstractBallotCounting.java eliminateCandidate 986 Precondition
AbstractBallotCounting.java redistributeBallots 1008 Null Reference
AbstractBallotCounting.java redistributeBallots 1009 Negative Array Index
AbstractBallotCounting.java transferBallot 1033 Precondition
AbstractBallotCounting.java electCandidate 1072 Precondition
AbstractBallotCounting.jml getSumOfTransfers 366 Null Reference
AbstractBallotCounting.jml getCandidateRanking 513 Array Index
AbstractBallotCounting.jml getCandidateRanking 518 Precondition
AbstractBallotCounting.jml numberTransferable 659 Null Reference
AbstractBallotCounting.jml getOrder 693 Null Reference
BallotBox.java accept 117 Precondition
Candidate.java addVote 195 Precondition
Candidate.java getCandidateRanking n/a Method Not Checked
Constituency.java setNumberOfCandidates 102 Code Not Checked

Figure 8.1: Extract from the list of unresolved ESC warnings
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Class Lines with Warnings Total Coverage %
AbstractBallotCounting 28 292 90
AbstractCountStatus 0 10 100
Ballot 0 23 100
BallotBox 1 23 96
BallotCounting 0 64 100
Candidate 1 71 99
Constituency 1 35 97
ElectionStatus 0 7 100
Total for election.tally package 31 534 94

Figure 8.2: Unresolved ESC warnings by line for each JML specification class

Class Methods with Warnings Total Coverage %
AbstractBallotCounting 26 54 50
Ballot 1 21 95
BallotBox 0 5 100
BallotCounting 0 19 100
Candidate 1 16 94
Constituency 1 8 87
AbstractCountStatus 0 4 100
ElectionStatus 0 3 100
election.tally package 29 130 78

Figure 8.3: Unresolved ESC warnings by method for each JML specification class

tions, and also JML model methods. Coverage refers to the percentage of lines of

specification, or methods of specification without unresolved warnings.

8.3.2 RAC failures

Figure 8.4 lists the unresolved RAC failures in each class. Unfortunately, the very

first failure was in the constructor of the main class, so it may be hiding other RAC

failures later on. This first RAC failure does not appear when the same RAC tests are

run in debug mode using Eclipse, to discover which invariant had been violated, thus

revealing the other RAC errors.

The number of lines of code with unresolved RAC failures in the each class are

shown in figure 8.5 and number of methods with unresolved RAC failures in figure

File Method Line Number Failures
BallotCounting.java Default Constructor 41 Object Invariant
BallotCounting.java removeNonTransferableBallots 126 Loop Invariant
BallotCounting.java incrementCountNumber 400 Postcondition
Constituency.java constructor 44 Object Invariant

Figure 8.4: Full List of RAC failures
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8.6. Four such failures are found, confirming the related ESC warnings.

Since there is no possibility of unsoundness in RAC, these failures indicate an (as

yet) undiscovered inconsistency in the formal specifications.

This is the major limitation of the methodology chosen, despite having sufficient

test cases and establishing the consistency of the Alloy model, there remains the possi-

bility of a subtle mistake in the JML specifications, such as over-specification leading

to false negatives.

Whereas Alloy predicates can be used to detect an over-specification, this can be

harder to do in JML. One technique that was used before implementing the JML spec-

ification was to place assert false in each empty method body. Any such method that

passed would be shown to have an inconsistent specification. Although this was done

before implementation, it was clearly not sufficient.

At first glance, such an inconclusive result, might seem to undermine confidence

in both the specification and implementation of Vótáil. Nevertheless each of the RAC

failures can be shown to be false negative by code inspection.

If the same test cases were to be used for black box testing of a third-party imple-

mentation without a JML specification, and perhaps without source code, then it would

still be possible to check the expected result for each set of test ballots as well as the

overall code coverage. The main limitation of this approach is that the generated test

ballots were stored in Vótáil specific format, rather than a standard format such as the

Election Markup Language (EML) [73] which considerably increases the amount of

software engineering effort required to test each system.

Nevertheless, in principle, there is now a complete set of test data, suitable for

testing any PR-STV implementation, and more importantly a means of updating the

model behind this data and regenerating the test data, if required.

Vótáil also offers a large and interesting JML specification against which new JML

tools can be deployed and tested, knowing that there are potential specification errors

waiting to be discovered.
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Class Lines with Failures Total Coverage %
AbstractBallotCounting 0 306 100
AbstractCountStatus 0 20 100
Ballot 0 52 100
BallotBox 0 29 100
BallotCounting 3 191 98
Candidate 0 81 100
Constituency.java 1 47 98
CandidateStatus.java 0 7 100
CountConfiguration 0 5 100
ElectionStatus.java 0 11 100
election.tally package 4 749 99

Figure 8.5: Unresolved RAC failures by line for each Java class

Class RAC Failed Methods Total Coverage %
AbstractBallotCounting 0 34 100
BallotCounting 3 19 84
Candidate 0 14 100
Ballot 0 9 100
Constituency 1 8 100
BallotBox 0 5 100
CountConfiguration n/a 0 n/a
ElectionStatus n/a 0 n/a
CandidateStatus n/a 0 n/a
AbstractCountStatus 0 1 100
election.tally package 4 90 96

Figure 8.6: Unresolved RAC failures by method for each Java class
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8.4 Contribution

This is the first complete formal specification of the Irish PR-STV ballot counting

procedure, except for one rule mentioned above. The requirements are traceable from

the legislation, through BON and JML to the Java code, although the Alloy model itself

is not traceable from the requirements. The specifications and source code are publicly

available for comment and criticism. There are no other publicly available works of

this kind.

PR-STV is one of the most complex voting systems in use today, particularly with

regards to formal specification and verification. It is also one of the most complex

which can be implemented and understood using paper ballots.

Counting of ballots is only one facet of the entire process, but is a critical compo-

nent.

Even in simple first-past-the-post counting it is not uncommon to discover com-

puter tally errors, for example in the spreadsheets used for the Maine Caucus2. If this

is the case for simple plurality voting, the scope for errors in PR-STV are even greater.

There appears to be no valid reason why a software system for counting of votes

should contain any errors whatever, provided the software has been rigorously verified,

and also installed in a secure tamper-proof manner in the machines.

Finally, a discrepancy between the paper count and electronic count does not al-

ways mean that the electronic count is wrong.

8.5 Possible Future Work

My results and conclusions would suggest the following approach for future work.

8.5.1 Paperless VVAT with Full Functional Verification

If a vote counting algorithm were written a functional programming language, with full

functional verification, then, with suitable cryptographic and security guarantees, then

it might be possible to implement a Voter Verifiable Audit Trail (VVAT) electronically,
2http://www.bbvforums.org/cgi-bin/forums/show.cgi?8/81922
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without paper ballots, unless public control and scrutiny of paper ballots is a legal

requirement.
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Appendix A

BON Design Specification

A.1 Primitive Types

cluster_chart BON_TYPES

explanation

"Standard built-in and primitive classes reusable in all BON designs"

class BOOLEAN description "A binary true or false value"

class NATURAL_NUMBER description "Non-negative whole number"

class REAL_NUMBER description "Any measurable value"

class STRING description "A sequence of text characters"

class SET description "A collection of objects of the same type"

class VALUE description "Abstract number, quantity or index with a

linear ordering i ·e · that can be compared with other values of the same type ·"
end

class_chart BOOLEAN

indexing

proposed_refinement: "java ·lang ·Boolean"
explanation

"A binary true or false value"

inherit VALUE

end

class_chart NATURAL_NUMBER

explanation

"Any non-negative whole number"

inherit VALUE
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query

"What is my value?",

"Is my value higher than another natural number?",

"Is my value equal to another natural number?"

command

"Change my value to this natural number"

constraint

"My initial value is zero",

"My value is greater than or equal to zero",

"My value is a whole number"

end

class_chart REAL_NUMBER

explanation

"Any measurable value"

inherit VALUE

end

class_chart SET

explanation

"Collection of objects of the same type"

end

class_chart STRING

explanation "Sequence of text characters"

end

A.2 System Chart

system_chart VOTAIL

explanation

"A verified verifiable open source system for remote electronic/computer

mediated voting"

cluster COUNTING_PROCESS description "The counting of ballots by proportional

representation with single transferable vote"

end
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A.3 Cluster Charts

cluster_chart COUNTING_PROCESS

explanation

"The counting of electronic ballots"

class BALLOT description "List of some or all candidates in order of preference"

class BALLOT_BOX description "The set of all valid ballots"

class BALLOT_COUNTING description "The algorithm used to count the ballots"

class CANDIDATE description "A person eligible and nominated for election"

class CONSTITUENCY description "The overall parameters of the election"

end

A.4 Class Charts

-- Votail is designed to be used with either an optical ballot scan system or

-- a remote online voting system that supply a valid set of ballots to be

-- counted and take care of system level issues such as security,

-- authentication, data storage and verification ·
--

class_chart BALLOT

explanation

"A valid set of preferences such as an ordered list of candidates"

query

"How many preferences are shown on this ballot?",

"Who is the first preference for?",

"Who is the next preference for?",

"Who is the highest preference continuing candidate on this ballot?",

"Which elected or continuing candidate benefits from this ballot?"

command

"Allocate this ballot to the next preference candidate"

constraint

"The sequence of preferences is unbroken e ·g · no candidate is listed twice",

end

class_chart BALLOT_BOX

explanation

"The set of all ballot papers with at least one valid preference"

query
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"How many valid ballot papers?",

"How many first preference votes for each candidate?",

"How many different piles of ballots?"

constraint

"Every ballot paper has at least one preference",

"The total number of first preference votes is equal to the number of ballots",

"The sum of the number of ballots in each pile is equal to the

number of ballots"

end

class_chart BALLOT_COUNTING

explanation

"Count algorithm for tallying of the votes in Dail elections"

query

"How many continuing candidates?",

"How many remaining seats?",

"What is the quota?",

"Who is/are highest continuing candidate(s) with a surplus?",

"What is the surplus?",

"What is the transfer factor?"

command

"Distribute the surplus ballots",

"Select lowest continuing candidates for exclusion",

"Declare remaining candidates elected",

"Close the count"

end

class_chart CANDIDATE

explanation

"A person eligible and nominated for election"

query

"How many first preferences?",

"How many second preferences?",

"How many votes in each round?"

end

class_chart CONSTITUENCY

explanation

"The overall parameters of the election"

query
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"How many candidates in this election?",

"How many seats are in this constituency?",

"How many seats are being filled in this election?"

constraint

"At least one seat is being filled",

"The number of seats being filled is not more than the number of

seats in this constituency",

"The number of seats being filled is less than the number of candidates"

end

class_chart SCENARIO

explanation

"A set of candidate outcomes"

command

"Add a candidate outcome to this scenario"

end

class_chart SCENARIO_LIST

explanation

"The complete set of all scenarios"

command

"Replay from a stored file"

"Write to a stored file"

end

A.5 Event Chart

-- Internal (outgoing) events

-- See diagrams/DailBallotCounting

event_chart VOTAIL

outgoing

part

"2/2"

event

"A: The quota is calculated"

involves

BALLOT_BOX, BALLOT_COUNTING

event
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"B: The highest continuing candidate is found"

involves

BALLOT_COUNTING

event

"C: The surplus, from an elected candidate, is calculated"

involves

BALLOT_COUNTING

event

"D: The number of votes for transfer (from surplus) are calculated"

involves

BALLOT_COUNTING

event

"H: Transfers, from an excluded candidate, are calculated"

involves

BALLOT_COUNTING

event

"J: The lowest continuing candidate is selected for exclusion"

involves

BALLOT_COUNTING

event

"K: The number of continuing candidates is recalculated"

involves

BALLOT_COUNTING, CANDIDATE

event

"L: The selected ballots are moved to the next continuing

preference candidate"

involves

BALLOT, BALLOT_COUNTING

event

"M: The number of remaining seats is checked"

involves

BALLOT_COUNTING

event

"N: The remaining candidates are deemed elected"

involves

BALLOT_COUNTING, CANDIDATE

event

"P: The counting is closed and final result declared"

involves

BALLOT_COUNTING
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end

A.6 Scenario Chart

-- See diagrams/DailBallotCounting

scenario_chart VOTAIL

explanation

"Scenarios for ballot counting"

scenario

"01: READY_TO_START"

description

"Ballots, candidate and election data have been loaded"

scenario

"02: NO_SEATS_FILLED_YET"

description

"No candidates have been elected so far"

scenario

"03: CANDIDATE_REACHES_QUOTA"

description

"One or more candidates achieve the minimum quota of votes"

scenario

"04: CANDIDATE_ELECTED"

description

"The highest continuing candidate with quota is deemed to be elected"

scenario

"05: NO_SURPLUS_AVAILABLE"

description

"There is no surplus available for distribution"

scenario

"06: SURPLUS_AVAILABLE"

description

"There is at least one surplus available for distribution"

scenario

"10: READY_TO_MOVE_BALLOTS"

description

"The number of ballots for transfer to each candidate has been determined"

scenario

"11: LOWEST_CANDIDATE_EXCLUDED"
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description

"Exclude one or more of the lowest continuing candidates"

scenario

"12: READY_FOR_NEXT_ROUND"

description

"Ballots have been transfered form one candidate to one or more others"

scenario

"13: FILLING_OF_LAST_SEAT"

description

"There is one remaining seat and at least two continuing candidates,

or the number of continuing candidates is just one more than the

number of remaining seats"

scenario

"14: MORE_CANDIDATES_THAN_SEATS"

description

"There are more continuing candidates than remaining seats"

scenario

"15: SEATS_REMAINING"

description

"There is at least one vacancy yet to be filled"

scenario

"16: ALL_SEATS_FILLED"

description

"The number of continuing candidates equals the number of seats remaining"

scenario

"18: CONTINUING_CANDIDATES_EQUAL_REMAINING_SEATS"

description

"The number of continuing candidates equals the number of remaining

seats; all continuing candidates are deemed elected"

end
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Appendix B

JML Design Specification

B.1 Abstract Ballot Counting Class

package election ·tally;

/∗ ∗

∗ This is a Java Modeling Language (JML) design specification of the ballot
∗ counting algorithm for elections to Dail Eireann - the lower house of the
∗ National Parliament of Ireland ·
∗

∗ @see < a href="http://www ·irishstatutebook ·ie/1992_23 ·html"> Part XIX of the
∗ Electoral Act, 1992< /a>
∗ @see Requirements for this specification are taken from
∗ < a href="http://www ·cev ·ie/htm/tenders/pdf/1_2 ·pdf"> Department of
∗ Environment and Local Government, Commentary on Count
∗ Rules, sections 3-16, pages 12-65< /a>
∗ @see < a href="http://www ·jmlspecs ·org/"> JML Homepage< /a>
∗/

public abstract class AbstractBallotCounting extends ElectionStatus {

/∗ ∗ List of details for each candidate ·
∗ @constraint There are no duplicates in the list of candidate IDs and,
∗ once the counting starts, there must be a ballot paper associated with
∗ each vote held by a candidate ·
∗/

public invariant (PRECOUNT < state) =⇒ \nonnullelements (candidateList);

public model Candidate[] candidateList;

public invariant (PRELOAD < = state) =⇒ (candidateList 6= null) &&
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(\forall int i; 0 < = i && i < totalCandidates; candidateList[i] 6=
null);

public invariant (PRELOAD < = state) =⇒ (totalCandidates == candidateList ·length);
public invariant (state == PRELOAD || state == LOADING) =⇒
(\forall int i; 0 < = i && i < totalCandidates;

candidateList[i] ·getStatus() == Candidate ·CONTINUING &&

candidateList[i] ·getTotalVote() == 0);

public invariant (state == PRELOAD || state == LOADING ||

state == PRECOUNT || state == COUNTING || state == FINISHED) =⇒
(\forall int i, j; 0 < = i && i < totalCandidates &&

i < j && j < totalCandidates; candidateList[i] ·getCandidateID() 6=
candidateList[j] ·getCandidateID());

protected invariant (state == COUNTING || state == FINISHED) =⇒
(\forall int i; 0 < = i && i < totalCandidates;

candidateList[i] ·getTotalAtCount() ==

countBallotsFor (candidateList[i] ·getCandidateID()));

/∗ ∗ List of contents of each ballot paper that will be counted · ∗/

public model non_null election ·tally ·Ballot[] ballotsToCount;

/∗ ∗ Total number of candidates for election ∗/

public model int totalCandidates;

public invariant 0 < = totalCandidates;

public invariant (PRECOUNT < = state) =⇒ totalCandidates < = candidateList ·length;
public invariant numberElected + numberEliminated < = totalCandidates;

/∗ ∗ Number of candidates elected so far ∗/

public model int numberElected;

public invariant 0 < = numberElected;

public invariant numberElected < = seats;

public invariant (state < = PRECOUNT) =⇒ numberElected == 0;

protected invariant (COUNTING < = state) =⇒
numberElected == (\num_of int i; 0 < = i && i < totalCandidates;

isElected(candidateList[i]));

public invariant (state == FINISHED) =⇒ numberElected == seats;

public constraint \old(numberElected) < = numberElected;

/∗ ∗ Number of candidates excluded from election so far ∗/

public model int numberEliminated;

public invariant 0 < = numberEliminated;

public invariant (PRECOUNT < = state) =⇒
seats + numberEliminated < = totalCandidates;

public invariant (state == COUNTING || state == FINISHED) =⇒
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numberEliminated == (\num_of int i; 0 < = i && i < totalCandidates;

candidateList[i] ·getStatus() == Candidate ·ELIMINATED);

/∗ ∗ Number of seats to be filled in this election ∗/

public model int seats;

public invariant 0 < = seats;

public invariant seats < = totalSeats;

public constraint (PRELOAD < state) =⇒ seats == \old (seats);

public invariant (state == COUNTING) =⇒ (1 < = seats);

/∗ ∗ Total number of seats in this constituency
∗ @design The constitution and laws of Ireland do not allow less than three or
∗ more than five seats in each Dail constituency, but this could change in
∗ future and is not an essential part of the specification ·
∗/

public model int totalSeats;

public invariant 0 < = totalSeats;

public constraint (LOADING < = state) =⇒ totalSeats == \old (totalSeats);

/∗ ∗ Total number of valid votes in this election count
∗ @design There is a theoretical maximum number of votes because there
∗ must be at least one seat for every thirty thousand electors, and therefore
∗ a maximum of 150,000 votes in a five seater constituency, but this also
∗ could change and is not an essential part of the specification ·

The Java
∗ primitive type < code> int< /code> has a maximum value of over two billion
∗ which should be sufficient for anything less than a worldwide election ·
∗/

public model int totalVotes;

public invariant 0 < = totalVotes;

public invariant (LOADING < state) =⇒ (totalVotes == ballotsToCount ·length);
public invariant (state < LOADING) =⇒ totalVotes == 0;

public constraint (state == LOADING) =⇒ (\old (totalVotes) < = totalVotes);

public constraint (LOADING < state) =⇒ (totalVotes == \old (totalVotes));

/∗ ∗ Minimum number of votes needed to save deposit unless elected ∗/

public model int depositSavingThreshold;

public invariant 0 < = depositSavingThreshold;

public invariant depositSavingThreshold < = totalVotes;

/∗ ∗ @see requirement 6, section 3, item 3, page 13 ∗/

invariant (PRECOUNT < state) =⇒
(depositSavingThreshold == ((getQuota() / 4) + 1));
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/∗ ∗ Number of rounds of counting so far ∗/

public model int countNumber;

public initially countNumber == 0;

public invariant 0 < = countNumber;

public invariant (PRELOAD < = state) =⇒
countNumber < = CountConfiguration ·MAXCOUNT;

public constraint (state == COUNTING) =⇒
\old(countNumber) < = countNumber;

/∗ ∗ Number of seats that remain to be filled ∗/

public model int remainingSeats;

public invariant 0 < = remainingSeats;

public invariant remainingSeats < = seats;

public invariant (state < = PRECOUNT) =⇒ remainingSeats == seats;

public invariant (state == FINISHED) =⇒ remainingSeats == 0;

public invariant (state == COUNTING) =⇒
remainingSeats == (seats - numberElected);

/∗ ∗

∗ Determine if the candidate has received enough votes for election
∗

∗ @param candidate This candidate
∗ @return True if the candidate has at least a quota of votes
∗ @see "http://www ·cev ·ie/htm/tenders/pdf/1_1 ·pdf, page 79, paragraph 120 (2)"
∗/

ensures \result == (countBallotsFor(candidate ·getCandidateID()) ≥
getQuota());

public pure boolean hasQuota (election ·tally ·Candidate candidate);

/∗ ∗

∗ Determine if the candidate has been elected
∗

∗ @design It is possible for a candidate without having reached the quota
∗ to be elected in the final round of counting by virtue of being the
∗ highest continuing candidate when one seat remains ·
∗

∗ @see requirement 4, section 13, item 3, page 13
∗

∗

∗ < p> The quota is the minimum number of votes needed for election, except
∗ when any of the following shortcuts apply ·
∗ < ul>
∗ < li> The number of continuing candidates is equal to the number of remaining
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∗ seats ·
∗ < li> The number of continuing candidates is one more than the number of
∗ remaining seats ·
∗ < li> There is one remaining seat ·
∗ < /ul>
∗

∗ @see < a href="http://www ·cev ·ie/htm/tenders/pdf/1_1 ·pdf">
∗ Department of Environment and Local Government, Electronic Vote Counting System, Appendix E< /a>
∗ @see < a href="http://www ·cev ·ie/htm/tenders/pdf/1_2 ·pdf">
∗ Department of Environment and Local Government, Count Requirements and Commentary on Count Rules, sections 3-14< /a>
∗ @see < a href="http://www ·irishstatutebook ·ie/1992_23 ·html">
∗ Sections 48, 118 and 124 of the Electoral Act, 1992< /a>
∗

∗ @param candidate This candidate
∗ @return True if the candidate has been elected
∗/

requires candidate 6= null;

requires countNumber ≥ 1;

requires state == COUNTING;

ensures (\result == true) < =⇒
(candidate ·getStatus() == Candidate ·ELECTED || hasQuota(candidate));

public pure boolean isElected (election ·tally ·Candidate candidate);

/∗ ∗

∗ Determine how many surplus votes a candidate has ·
∗

∗ The surplus is the maximum number of votes available for transfer
∗ @see requirement 5, section 3, item 3, page 13
∗

∗ @param candidate The candidate record
∗ @return The undistributed surplus for that candidate, or zero if the
∗ candidate has less than a quota of votes
∗/

public pure int getSurplus (election ·tally ·Candidate candidate);

/∗ ∗

∗ Determines if a candidate has saved his or her deposit ·
∗

∗ @design The deposit saving threshold is one plus one quarter of the full
∗ quota · < p>
∗ It is possible for a candidate without the deposit saving threshold
∗ to be elected in the final round of counting by virtue of being the
∗ highest continuing candidate when one seat remains · This could happen,
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∗ for example, if the majority of ballots contained only first preferences ·
∗

∗ @see requirement 7, section 13, item 3, page 13
∗

∗ @param candidate This candidate
∗ @return < code> true< /code> if candidate has had enough votes to save deposit
∗ or has been elected
∗/

requires (state == COUNTING) || (state == FINISHED);

ensures \result < =⇒
(candidateList[index] ·getTotalVote() ≥ depositSavingThreshold) ||

(isElected (candidateList[index]) == true);

public pure boolean isDepositSaved (int index);

/∗ ∗

∗ Distribution of surplus votes
∗

∗ @param candidateWithSurplus The candidate whose surplus is to be distributed
∗ @design The highest surplus must be distributed if the total surplus
∗ could save the deposit of a candidate or change the relative position
∗ of the two lowest continuing candidates, or would be enough to elect the
∗ highest continuing candidate ·
∗ @see requirements 14-18, section 5, item 2, page 18
∗ @see requirement 8, section 4, item 2, page 15
∗/

requires isElected (candidateList[candidateWithSurplus])

&& getSurplus (candidateList[candidateWithSurplus]) > 0;

requires state == COUNTING;

requires getNumberContinuing() > remainingSeats;

ensures getSurplus (candidateList[candidateWithSurplus]) == 0;

public abstract void distributeSurplus(int candidateWithSurplus);

/∗ ∗

∗ Set up candidate details and number of seats
∗/

requires state == EMPTY;

ensures state == PRELOAD;

ensures totalCandidates == constituency ·getNumberOfCandidates();
ensures seats == constituency ·getNumberOfSeatsInThisElection();
ensures totalSeats == constituency ·getTotalNumberOfSeats();
public void setup (Constituency constituency);

/∗ ∗ Loads all valid ballot papers ·
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∗

∗ @param ballotBox The set of ballots for counting
∗

∗ All ballot papers must be assigned to a valid candidate ID
∗/

requires state == PRELOAD;

ensures state == PRECOUNT;

ensures totalVotes == ballotBox ·numberOfBallots;
ensures (\forall int i; 0 < = i && i < totalVotes;

(\exists int j; 0 < = j && j < totalCandidates;

ballotsToCount[j] ·isAssignedTo(candidateList[i] ·getCandidateID())));
public void load(BallotBox ballotBox);

/∗ ∗

∗ Count the votes ·
∗

∗ @design This is the method that starts the counting process ·
∗ @see requirement 1, section 3, item 2, page 12
∗/

public normal_behavior

requires state == PRECOUNT || state == COUNTING;

assignable state, countNumber, numberElected, remainingSeats,

candidateList, ballotsToCount;

ensures remainingSeats == 0;

ensures numberElected == seats;

ensures state == FINISHED;

public abstract void count();

/∗ ∗

∗ Get the status of the algorithm in progress
∗/

ensures \result == state;

public model pure byte getStatus();

/∗ ∗

∗ Gets the potential number of transfers from one candidate to another ·
∗

∗ @design This method is needed to get the proportions to use when transferring
∗ surplus votes · If the candidate was elected on the first count then all
∗ votes are examined, otherwise only the last set of votes received are examined ·
∗

∗ @see requirement 19, section 7, item 2, page 23
∗
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∗ @param fromCandidate Candidate ID from which to check the transfers
∗ @param toCandidateID Candidate ID to check for receipt of transfered votes
∗ @return Number of votes potentially transferable from this candidate to that
∗ candidate
∗/

ensures \result== (\num_of int j; 0 < = j && j < totalVotes;

(ballotsToCount[j] ·isAssignedTo(fromCandidate ·getCandidateID())) &&

(getNextContinuingPreference(ballotsToCount[j]) == toCandidateID));

protected pure spec_public int getPotentialTransfers (

non_null Candidate fromCandidate, int toCandidateID);

/∗ ∗

∗ Get the maximum number of votes transferable to continuing candidates ·
∗

∗ @see requirement 20, section 7, item 2, page 24
∗

∗ @param fromCandidate Candidate from which to check the transfers
∗ @return Number of votes potentially transferable from this candidate
∗/

requires state == COUNTING;

protected pure spec_public int getTotalTransferableVotes (

non_null Candidate fromCandidate);

requires state == COUNTING;

public model pure int getSumOfTransfers(non_null Candidate fromCandidate) {

int sum = 0;

loop_invariant (0 < i) =⇒ (sum == (\sum int j; 0 < = j && j <

i;

getPotentialTransfers (fromCandidate,

candidateList[j] ·getCandidateID())));
for (int i=0; i < totalCandidates; i++ ) {

sum + = getPotentialTransfers (fromCandidate,

candidateList[i] ·getCandidateID());
}

return sum;

}

/∗ ∗

∗ Gets the next preference continuing candidate ·
∗

∗ This is the _nearest_ next preference i ·e ·
∗ filter the list of preferences to contain continuing candidates and then
∗ get the next preference to a continuing candidate, if any ·
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∗

∗ @param ballot Ballot paper from which to get the next preference
∗

∗ @return Candidate ID of next continuing candidate or NONTRANSFERABLE
∗/

requires state == COUNTING;

ensures (\result == Ballot ·NONTRANSFERABLE) ||

(\exists int k; 1 < = k && k < = ballot ·remainingPreferences();
\result == ballot ·getNextPreference(k));

ensures (isContinuingCandidateID(\result)) || (\result == Ballot ·NONTRANSFERABLE);
protected pure spec_public int getNextContinuingPreference(non_null Ballot ballot);

/∗ ∗

∗ Determine actual number of votes to transfer to this candidate, excluding
∗ rounding up of fractional transfers
∗

∗ @see requirement 21, section 7, item 3 ·1, page 24
∗ @see requirement 22, section 7, item 3 ·2, page 25
∗

∗ @design The votes in a surplus are transfered in proportion to
∗ the number of transfers available throughout the candidates ballot stack ·
∗ If not all transferable votes are accounted for the highest remainders
∗ for each continuing candidate need to be examined ·
∗

∗ @param fromCandidate Candidate from which to count the transfers
∗ @param toCandidate Continuing candidate eligible to receive votes
∗ @return Number of votes to be transfered, excluding fractional transfers
∗/

requires state == COUNTING;

requires isElected (fromCandidate) ||

(fromCandidate ·getStatus() == Candidate ·ELIMINATED);
requires toCandidate ·getStatus() == Candidate ·CONTINUING;
ensures ((fromCandidate ·getStatus() == Candidate ·ELECTED) &&

(getSurplus(fromCandidate) < getTotalTransferableVotes(fromCandidate)))

=⇒ (\result == (getSurplus (fromCandidate) ∗

getPotentialTransfers (fromCandidate, toCandidate ·getCandidateID()) /

getTotalTransferableVotes (fromCandidate)));

ensures ((fromCandidate ·getStatus() == Candidate ·ELIMINATED) ||

(getTotalTransferableVotes(fromCandidate) < = getSurplus (fromCandidate)))

=⇒ (\result == (\num_of int j; 0 < = j && j < totalVotes;

ballotsToCount[j] ·isAssignedTo(fromCandidate ·getCandidateID()) &&

getNextContinuingPreference(ballotsToCount[j]) ==

toCandidate ·getCandidateID()));
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protected pure spec_public int getActualTransfers (

non_null Candidate fromCandidate, non_null Candidate toCandidate);

/∗ ∗

∗ Determine the rounded value of a fractional transfer ·
∗

∗ @design This depends on the shortfall and the relative size of the
∗ other fractional transfers ·
∗

∗ @see requirements 23-25, section 7, item 3 ·2, page 25
∗

∗ @param fromCandidate
∗ Elected candidate from which to distribute surplus
∗

∗ @param toCandidate
∗ Continuing candidate potentially eligible to receive transfers
∗

∗ @return < code> 1< /code> if the fractional vote is to be rounded up
∗ < code> 0< /code> if the fractional vote is to be rounded down
∗/

requires state == COUNTING;

requires isElected (fromCandidate);

requires toCandidate ·getStatus() == election ·tally ·Candidate ·CONTINUING;
requires getSurplus(fromCandidate) <

getTotalTransferableVotes(fromCandidate);

ensures (getOrder (fromCandidate, toCandidate) < =

getTransferShortfall (fromCandidate)) =⇒ \result == 1;

ensures (getOrder (fromCandidate, toCandidate) >

getTransferShortfall (fromCandidate)) =⇒ \result == 0;

protected pure spec_public int getRoundedFractionalValue (

non_null Candidate fromCandidate, non_null Candidate toCandidate);

/∗ ∗

∗ Determine the number of continuing candidates with a higher remainder in
∗ their transfer quotient, or deemed to have a higher remainder ·
∗

∗ @design There must be a strict ordering of candidates for the purpose of
∗ allocating the transfer shortfall · If two or more candidates have equal
∗ remainders then use the number of transfers they are about to receive and if
∗ the number of transfers are equal then look at the number of votes already
∗ received ·
∗

∗ @param fromCandidate
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∗ Elected candidate from which to distribute surplus
∗

∗ @param toCandidate
∗ Continuing candidate potentially eligible to receive transfers
∗

∗ @return The number of continuing candidates with a higher quotient remainder
∗ than this candidate
∗/

requires state == COUNTING;

requires isElected (fromCandidate);

requires toCandidate ·getStatus() == CandidateStatus ·CONTINUING;
requires getSurplus(fromCandidate) < getTotalTransferableVotes(fromCandidate);

ensures \result == getCandidateRanking (fromCandidate, toCandidate);

protected pure spec_public int getOrder(

final non_null Candidate fromCandidate,

final non_null Candidate toCandidate);

ensures \result == (\num_of int i; i < = 0 && i < totalCandidates &&

candidateList[i] ·getCandidateID() 6= toCandidate ·getCandidateID() &&

candidateList[i] ·getStatus() == election ·tally ·Candidate ·CONTINUING;
(getTransferRemainder(fromCandidate, candidateList[i]) >

getTransferRemainder(fromCandidate, toCandidate)) ||

((getTransferRemainder(fromCandidate, candidateList[i]) ==

getTransferRemainder(fromCandidate, toCandidate)) &&

(getActualTransfers(fromCandidate, candidateList[i]) >

getActualTransfers(fromCandidate, toCandidate))) ||

((((getTransferRemainder(fromCandidate, candidateList[i]) ==

getTransferRemainder(fromCandidate, toCandidate)) &&

(getActualTransfers(fromCandidate, candidateList[i]) ==

getActualTransfers(fromCandidate, toCandidate)))) &&

isHigherThan (candidateList[i], toCandidate)));

public pure model int getCandidateRanking (

Candidate fromCandidate, Candidate toCandidate) {

int counter = 0;

for (int i=0; i < totalCandidates; i++ ) {

if (candidateList[i] ·getCandidateID() 6= toCandidate ·getCandidateID() &&

candidateList[i] ·getStatus() == election ·tally ·Candidate ·CONTINUING &&

((getTransferRemainder(fromCandidate, candidateList[i]) >

getTransferRemainder(fromCandidate, toCandidate)) ||

((getTransferRemainder(fromCandidate, candidateList[i]) ==

getTransferRemainder(fromCandidate, toCandidate)) &&

(getActualTransfers(fromCandidate, candidateList[i]) >

getActualTransfers(fromCandidate, toCandidate))) ||
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((((getTransferRemainder(fromCandidate, candidateList[i]) ==

getTransferRemainder(fromCandidate, toCandidate)) &&

(getActualTransfers(fromCandidate, candidateList[i]) ==

getActualTransfers(fromCandidate, toCandidate)))) &&

isHigherThan (candidateList[i], toCandidate)))) {

counter++ ;

}

}

return counter;

}

/∗ ∗

∗ Determine if one continuing candidate is higher than another, for the purpose
∗ of resolving remainders of transfer quotients ·
∗

∗ @design This is determined by finding the earliest round of counting in which
∗ these candidates had unequal votes · If both candidates are equal at all counts
∗ then random numbers are used to draw lots ·
∗

∗ @see < a href="http://www ·cev ·ie/htm/tenders/pdf/1_2 ·pdf"> Department of
∗ Environment and Local Government, Count Requirements and Commentary on Count
∗ Rules, section 7, page 25< /a>
∗

∗ @param firstCandidate
∗ The first of the two candidates to be compared
∗

∗ @param secondCandidate
∗ The second of the two candidates to be compared
∗

∗ @return < code> true< /code> if first candidate is deemed to have received more
∗ votes than the second ·
∗/

requires firstCandidate ·getStatus() == Candidate ·CONTINUING;
requires secondCandidate ·getStatus() == Candidate ·CONTINUING;
ensures \result == (\exists int i; 0 < = i && i < = countNumber;

(firstCandidate ·getVoteAtCount(i) > secondCandidate ·getVoteAtCount(i)) &&

(\forall int j; i < j && j < = countNumber;

firstCandidate ·getVoteAtCount(j) == secondCandidate ·getVoteAtCount(j))) ||

((randomSelection (firstCandidate, secondCandidate) ==

firstCandidate ·getCandidateID()) &&

(\forall int k; 0 < = k && k < = countNumber;

firstCandidate ·getVoteAtCount(k) == secondCandidate ·getVoteAtCount(k)));
protected pure spec_public boolean isHigherThan (
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non_null Candidate firstCandidate,

non_null Candidate secondCandidate);

/∗ ∗

∗ Draw lots to choose between two continuing candidates ·
∗

∗ @design The official guidelines suggest that the returning officer
∗ be asked to draw lots each time a random selection is required ·

This
∗ is simulated by having random numbers assigned to the candidates, so that
∗ process of drawing lots is repeatable for testing purposes · < p>
∗ This means that
∗ the count results are deterministic for any given set of random numbers ·
∗ < p>
∗ Where fractional transfers are possible then there should be less need for
∗ this, especially when second and subsequent preferences are used in the
∗ even that two candidates receive an equal number of first preferences ·
∗

∗ @param firstCandidate
∗ The first of the two candidates to be compared
∗

∗ @param secondCandidate
∗ The second of the two candidates to be compared
∗

∗ @return The candidate ID of the chosen candidate
∗/

ensures (\result == firstCandidate ·candidateID) < =⇒
(firstCandidate ·isAfter(secondCandidate)
|| firstCandidate ·sameAs(secondCandidate));

ensures (\result == secondCandidate ·candidateID) < =⇒
(secondCandidate ·isAfter(firstCandidate)
|| secondCandidate ·sameAs(firstCandidate));

public model pure int randomSelection (

non_null Candidate firstCandidate,

non_null Candidate secondCandidate);

/∗ ∗

∗ Determine the indivisible remainder after integer division by the transfer
∗ factor for surpluses ·
∗

∗ @design This can all be done with integer arithmetic; no need to use
∗ floating point numbers, which could introduce rounding errors ·
∗
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∗ @param fromCandidate Elected candidate from which to count the transfers
∗ @param toCandidate Continuing candidate eligible to receive votes
∗

∗ @return The size of the quotient remainder
∗/

requires state == COUNTING;

requires isElected (fromCandidate);

requires toCandidate ·getStatus() == election ·tally ·Candidate ·CONTINUING;
requires getSurplus(fromCandidate) < getTotalTransferableVotes(fromCandidate);

requires 0 < = getTransferShortfall (fromCandidate);

ensures \result ==

getPotentialTransfers(fromCandidate, toCandidate ·getCandidateID()) -

getActualTransfers(fromCandidate, toCandidate);

protected pure spec_public int getTransferRemainder (

non_null Candidate fromCandidate, non_null Candidate toCandidate);

/∗ ∗

∗ Determine shortfall between sum of transfers rounded down and the size of
∗ surplus ·
∗

∗ @param fromCandidate
∗ Elected candidate from which to distribute surplus
∗

∗ @return The shortfall between the sum of the transfers and the size of surplus
∗/

protected normal_behavior

requires state == COUNTING;

requires isElected (fromCandidate);

requires getSurplus(fromCandidate) < getTotalTransferableVotes(fromCandidate);

protected pure spec_public int getTransferShortfall (

non_null Candidate fromCandidate);

requires state == COUNTING;

public pure model int numberTransferable (

non_null Candidate fromCandidate) {

int sum = 0;

for (int i = 0; i < = totalCandidates; i++ ) {

sum + = getPotentialTransfers(

fromCandidate, candidateList[i] ·getCandidateID());
}

return sum;

}
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/∗ ∗

∗ Determine if a candidate ID belongs to a continuing candidate ·
∗

∗ @param candidateID
∗ The ID of candidate for which to check the status
∗

∗ @return < code> true< /code> if this candidate ID matches that of a
∗ continuing candidate
∗/

requires 0 < candidateID;

ensures \result == (\exists int i; 0 < = i && i < totalCandidates;

candidateID == candidateList[i] ·getCandidateID() &&

candidateList[i] ·getStatus() == Candidate ·CONTINUING);
public /∗@ pure @∗/ boolean isContinuingCandidateID (int candidateID);

/∗ ∗

∗ List each candidate ID in order by random number to show how lots would be have
∗ been chosen ·
∗

∗ @param candidate Candidate for which to get the order of
∗ @return Order of this candidate for use when lots are chosen
∗/

requires state == COUNTING || state == FINISHED;

protected pure model int getOrder(non_null Candidate candidate) {

int order = 1;

for (int c = 0; c < = totalCandidates; c++ ) {

if (candidateList[c] ·isAfter(candidate)) {

order++ ;

}

}

return order;

}

/∗ ∗

∗ Transfer votes from one candidate to another ·
∗ @param fromCandidate Elected or excluded candidate
∗ @param toCandidate Continuing candidate
∗ @param numberOfVotes Number of votes to be transfered
∗/

requires fromCandidate ·getStatus() 6= CandidateStatus ·CONTINUING;
requires toCandidate ·getStatus() == CandidateStatus ·CONTINUING;
ensures countBallotsFor(fromCandidate ·getCandidateID()) ==

\old (countBallotsFor(fromCandidate ·getCandidateID())) - numberOfVotes;
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ensures countBallotsFor(toCandidate ·getCandidateID()) ==

\old (countBallotsFor(toCandidate ·getCandidateID())) + numberOfVotes;

public abstract void transferVotes(

final Candidate fromCandidate,

final non_null Candidate toCandidate,

final int numberOfVotes);

/∗ ∗

∗ Count the number of ballots in the pile for this candidate ·
∗

∗ @param candidateID The internal identifier of this candidate
∗ @return The number of ballots in this candidate’s pile
∗/

public pure int countBallotsFor(int candidateID);

/∗ ∗ Number of votes needed to guarantee election ∗/

requires 0 < = seats;

ensures \result == 1 + (totalVotes / (seats + 1));

public pure int getQuota();

/∗ ∗ Number of candidates neither elected nor excluded from election
∗ There must be at least one continuing candidate for each remaining seat
∗ @see requirement 11, section 4, item 4, page 16
∗/

ensures 0 < = \result;

ensures \result == totalCandidates - (numberElected + numberEliminated);

public pure int getNumberContinuing();

}

B.2 Ballot Counting Class

public class BallotCounting extends AbstractBallotCounting {

/∗ ∗ Inner ASM ∗/

public non_null CountStatus countStatus;

/∗ ∗

∗ Distribute the surplus of an elected candidate ·
∗

∗ @param winner
∗ The elected candidate
∗/
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also

requires state == COUNTING;

requires countStatus ·getState() ==

AbstractCountStatus ·SURPLUS_AVAILABLE;
requires isElected (candidateList[winner]);

requires 0 < = winner && winner < candidateList ·length;
public void distributeSurplus(final int winner);

/∗ ∗

∗ Move surplus ballots from a winner’s stack to another continuing candidate ·
∗

∗ @param winner
∗ @param index
∗/

requires 0 < = index && index < candidateList ·length;
requires 0 < = winner && winner < candidateList ·length;
requires \nonnullelements (candidateList);

protected void moveSurplusBallots(final int winner, final int index);

requires 0 < = winner && winner < candidateList ·length;
requires state == COUNTING;

protected void removeNonTransferableBallots(final int winner,

final int surplus, final int totalTransferableVotes);

requires 0 < = index && index < candidateList ·length;
requires 0 < = winner && winner < candidateList ·length;
requires \nonnullelements (candidateList);

protected int calculateNumberOfTransfers(final int winner, final int index);

/∗ ∗

∗ Transfer votes from one Dail candidate to another ·
∗

∗ @param fromCandidate
∗ The elected or excluded candidate from which to transfer votes
∗ @param toCandidate
∗ The continuing candidate to receive the transferred votes
∗ @param numberOfVotes
∗ The number of votes to be transferred
∗/

also

requires state == COUNTING;

requires countStatus ·getState() == AbstractCountStatus ·READY_TO_MOVE_BALLOTS;
public void transferVotes(final Candidate fromCandidate,
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final non_null Candidate toCandidate, final int numberOfVotes);

/∗ ∗

∗ Count the ballots for this constituency using the rules of proportional
∗ representation by single transferable vote ·
∗

∗ @see "requirement 1, section 3, item 2, page 12"
∗/

also

requires state == PRECOUNT || state == COUNTING;

requires \nonnullelements (candidateList);

assignable countNumberValue, ballotsToCount, candidateList[∗];

assignable candidates, candidates[∗];

assignable totalRemainingSeats, countStatus;

assignable savingThreshold, ballots, ballotsToCount;

assignable numberOfCandidatesElected;

assignable numberOfCandidatesEliminated;

assignable status, countStatus;

assignable remainingSeats, totalRemainingSeats;

assignable candidateList;

ensures state == ElectionStatus ·FINISHED;
public void count();

/∗ ∗

∗ Elect any candidate with a quota or more of votes ·
∗/

requires state == COUNTING;

assignable candidateList, ballotsToCount, candidates,

numberOfCandidatesElected, totalRemainingSeats, countStatus;

ensures countStatus ·substate == AbstractCountStatus ·CANDIDATE_ELECTED ||

countStatus ·substate == AbstractCountStatus ·SURPLUS_AVAILABLE;
protected void electCandidatesWithSurplus();

/∗ ∗

∗ Indicates if there are any continuing candidates with at least a quota
∗ of votes; these candidates are ready to be deemed elected by quota ·
∗

∗ @return < code> true< /code> if there exists a continuing candidate
∗ who has quota of votes
∗/

requires PRECOUNT < = state;

ensures \result == (\exists int i; 0 < = i && i < totalNumberOfCandidates;

(candidates[i] ·getStatus() == CandidateStatus ·CONTINUING)
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&& hasQuota(candidates[i]));

protected/∗@ pure @∗/boolean candidatesWithQuota();

requires \nonnullelements (candidateList);

assignable countStatus, countNumberValue, candidates, candidateList;

assignable numberOfCandidatesEliminated, ballots, ballotsToCount;

assignable countStatus ·substate;
protected void excludeLowestCandidates();

/∗ ∗

∗ As the number of remaining seats equals the number of continuing
∗ candidates, all continuing candidates are deemed to be elected without
∗ reaching the quota ·
∗/

requires candidateList 6= null;

requires \nonnullelements (candidateList);

requires getContinuingCandidates() == totalRemainingSeats;

requires countStatus 6= null;

assignable candidateList[∗], countNumber, countNumberValue;

assignable numberOfCandidatesElected, totalRemainingSeats;

assignable candidates;

ensures 0 == totalRemainingSeats;

protected void fillLastSeats();

requires state == PRECOUNT;

assignable state, countStatus, countStatus ·substate, countNumberValue,

totalRemainingSeats, savingThreshold, numberOfCandidatesElected,

numberOfCandidatesEliminated;

ensures state == COUNTING;

public void startCounting();

/∗ ∗

∗ Get the number of votes required in order to recoup election expenses or
∗ qualify for funding in future elections ·
∗/

ensures \result == 1 + (getQuota() / 4);

public/∗@ pure @∗/int getDepositSavingThreshold();

requires state == COUNTING;

requires countStatus ·isPossibleState (countingStatus);

assignable countStatus, countStatus ·substate;
ensures countingStatus == countStatus ·getState();
public void updateCountStatus(final int countingStatus);
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assignable countNumberValue;

ensures \old(countNumberValue) + 1 == countNumberValue;

public void incrementCountNumber();

ensures totalRemainingSeats == \result;

public model pure int getRemainingSeats() {

return totalRemainingSeats;

}

ensures getNumberContinuing() == \result;

public model pure int getContinuingCandidates() {

return getNumberContinuing();

}

requires 0 < = index && index < candidates ·length;
ensures \result == candidates[index];

public pure Candidate getCandidate(final int index);

}

B.3 Abstract Count Status Class

package election ·tally;

public abstract class AbstractCountStatus {

// Internal states within the ballot counting machine

public static final int READY_TO_COUNT = 1;

public static final int NO_SEATS_FILLED_YET = 2;

public static final int CANDIDATES_HAVE_QUOTA = 3;

public static final int CANDIDATE_ELECTED = 4;

public static final int NO_SURPLUS_AVAILABLE = 5;

public static final int SURPLUS_AVAILABLE = 6;

public static final int READY_TO_ALLOCATE_SURPLUS = 7;

public static final int READY_TO_MOVE_BALLOTS = 8;

public static final int CANDIDATE_EXCLUDED = 9;

public static final int READY_FOR_NEXT_ROUND_OF_COUNTING = 10;

public static final int LAST_SEAT_BEING_FILLED = 11;

public static final int MORE_CONTINUING_CANDIDATES_THAN_REMAINING_SEATS = 12;

public static final int ONE_OR_MORE_SEATS_REMAINING = 13;

public static final int ONE_CONTINUING_CANDIDATE_PER_REMAINING_SEAT = 14;

public static final int ALL_SEATS_FILLED = 15;
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public static final int END_OF_COUNT = 16;

/∗ ∗

∗ Get the current stage of counting ·
∗/

ensures \result == substate;

public model pure int getState() {

return substate;

}

/∗ ∗

∗ Move to the next stage of counting ·
∗

∗ @param newState
∗ The next stage of counting ·
∗/

requires isPossibleState (newState);

requires isTransition (getState(), newState);

assignable substate;

ensures getState() == newState;

public abstract void changeState(int newState);

protected/∗@ spec_public @∗/int substate;

/∗ ∗

∗ Confirm that this value is a valid stage of counting ·
∗

∗ @param value
∗ The stage in the counting process ·
∗/

ensures \result < =⇒
((READY_TO_COUNT == value) ||

(NO_SEATS_FILLED_YET == value) ||

(CANDIDATES_HAVE_QUOTA == value) ||

(CANDIDATE_ELECTED == value) ||

(NO_SURPLUS_AVAILABLE == value) ||

(SURPLUS_AVAILABLE == value) ||

(READY_TO_ALLOCATE_SURPLUS == value) ||

(READY_TO_MOVE_BALLOTS == value) ||

(CANDIDATE_EXCLUDED == value) ||

(READY_FOR_NEXT_ROUND_OF_COUNTING == value) ||

(LAST_SEAT_BEING_FILLED == value) ||

(MORE_CONTINUING_CANDIDATES_THAN_REMAINING_SEATS == value) ||
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(ONE_OR_MORE_SEATS_REMAINING == value) ||

(ALL_SEATS_FILLED == value) ||

(END_OF_COUNT == value) ||

(ONE_CONTINUING_CANDIDATE_PER_REMAINING_SEAT == value));

public model pure boolean isPossibleState(int value) {

return ((READY_TO_COUNT == value)

|| (NO_SEATS_FILLED_YET == value)

|| (CANDIDATES_HAVE_QUOTA == value)

|| (CANDIDATE_ELECTED == value)

|| (NO_SURPLUS_AVAILABLE == value)

|| (SURPLUS_AVAILABLE == value)

|| (READY_TO_ALLOCATE_SURPLUS == value)

|| (READY_TO_MOVE_BALLOTS == value)

|| (CANDIDATE_EXCLUDED == value)

|| (READY_FOR_NEXT_ROUND_OF_COUNTING == value)

|| (LAST_SEAT_BEING_FILLED == value)

|| (MORE_CONTINUING_CANDIDATES_THAN_REMAINING_SEATS == value)

|| (ONE_OR_MORE_SEATS_REMAINING == value)

|| (ALL_SEATS_FILLED == value)

|| (END_OF_COUNT == value)

|| (ONE_CONTINUING_CANDIDATE_PER_REMAINING_SEAT == value));

}

/∗ ∗

∗ Confirm that this is a valid transition from one stage of counting to another ·
∗

∗ @param fromState The current stage of counting ·
∗ @param toState The next stage if counting ·
∗/

requires isPossibleState(fromState);

requires isPossibleState(toState);

public model pure boolean isTransition (int fromState, int toState) {

// Self transitions are allowed

if (toState == fromState) {

return true;

}

// No transitions into the initial state

else if (READY_TO_COUNT == toState) {

return false;

}
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// No transitions away from final state

else if (END_OF_COUNT == fromState) {

return false;

}

// Transition: Calculate Quota

else if ((READY_TO_COUNT == fromState) && (NO_SEATS_FILLED_YET == toState)) {

return true;

}

// Transition: Find Highest Continuing Candidate with Quota

else if (((NO_SEATS_FILLED_YET == fromState) ||

(CANDIDATES_HAVE_QUOTA == fromState) ||

(MORE_CONTINUING_CANDIDATES_THAN_REMAINING_SEATS == fromState)) &&

((CANDIDATE_ELECTED == toState) ||

(NO_SURPLUS_AVAILABLE == toState))) {

return true;

}

// Transition: Calculate Surplus

else if ((CANDIDATE_ELECTED == fromState) &&

((CANDIDATES_HAVE_QUOTA == toState) ||

(SURPLUS_AVAILABLE == toState) ||

(NO_SURPLUS_AVAILABLE == toState))) {

return true;

}

// Transition: Calculate Number of Votes to Transfer

else if ((SURPLUS_AVAILABLE == fromState) &&

(READY_TO_ALLOCATE_SURPLUS == toState)) {

return true;

}

// Transition: Calculate Transfers from Surplus

else if ((READY_TO_ALLOCATE_SURPLUS == fromState) &&

(READY_TO_MOVE_BALLOTS == toState)) {

return true;

}

// Transition: Calculate Transfers from Excluded Candidate

else if ((CANDIDATE_EXCLUDED == fromState) &&

(READY_TO_MOVE_BALLOTS == toState)) {
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return true;

}

// Transition: Move the Ballots

else if ((READY_TO_MOVE_BALLOTS == fromState) &&

(READY_FOR_NEXT_ROUND_OF_COUNTING == toState)) {

return true;

}

// Transition: Select Lowest Continuing Candidates for Exclusion

else if ((NO_SURPLUS_AVAILABLE == fromState) ||

(CANDIDATE_EXCLUDED == toState)) {

return true;

}

// Transition: Count Continuing Candidates

else if ((ONE_OR_MORE_SEATS_REMAINING == fromState) &&

((LAST_SEAT_BEING_FILLED == toState) ||

(MORE_CONTINUING_CANDIDATES_THAN_REMAINING_SEATS == toState) ||

(ONE_CONTINUING_CANDIDATE_PER_REMAINING_SEAT == toState))) {

return true;

}

// Transition: Check Remaining Seats

else if ((READY_FOR_NEXT_ROUND_OF_COUNTING == fromState) &&

((ONE_OR_MORE_SEATS_REMAINING == toState) ||

(ALL_SEATS_FILLED == toState))) {

return true;

}

// Transition: Declare Remaining Candidates Elected

else if ((ONE_CONTINUING_CANDIDATE_PER_REMAINING_SEAT == fromState) &&

(ALL_SEATS_FILLED == toState)) {

return true;

}

// Transition: Close the Count

else if ((ALL_SEATS_FILLED == fromState) &&

(END_OF_COUNT == toState)) {

return true;

}

// No other state transitions are possible
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return false;

}

}

B.4 Ballot Class

package election ·tally;

/∗ ∗

∗ The Ballot class represents a ballot paper in an Irish election,
∗ which uses the Proportional Representation Single Transferable Vote
∗ (PRSTV) system ·
∗

∗ @see < a href="http://www ·cev ·ie/htm/tenders/pdf/1_2 ·pdf"> Department of
∗ Environment and Local Government, Count Requirements and Commentary on Count
∗ Rules, sections 3-14< /a>
∗/

public class Ballot {

/∗ ∗

∗ Candidate ID value to use for nontransferable ballot papers ·
∗

∗ @design A special candidate ID value is used to indicate
∗ non-transferable votes i ·e ·, when the list of preferences has
∗ been exhausted and none of the continuing candidates are in the
∗ preference list, then the ballot is deemed to be nontransferable ·
∗

∗ @see < a href="http://www ·cev ·ie/htm/tenders/pdf/1_2 ·pdf"> Department of
∗ Environment and Local Government, Count Requirements and Commentary on Count
∗ Rules, section 7, pages 23-27< /a>
∗/

public static final int NONTRANSFERABLE;

/∗ ∗ Preference list of candidate IDs ∗/

protected spec_public non_null int[] preferenceList;

/∗ ∗ Total number of valid preferences on the ballot paper ∗/

public invariant 0 < = numberOfPreferences;

// numberOfPreferences == 0 means an empty ballot ·
protected spec_public int numberOfPreferences;
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/∗ ∗ Position within preference list ∗/

public initially positionInList == 0;

public invariant 0 < = positionInList;

public invariant positionInList < = numberOfPreferences;

public constraint \old(positionInList) < = positionInList;

protected spec_public int positionInList;

/∗ ∗

∗ Default constructor
∗/

ensures numberOfPreferences == preferenceList ·length;
ensures positionInList == 0;

public Ballot(final /∗@ non_null @∗/ int[] preferences);

/∗ ∗

∗ Gets remaining number of preferences ·
∗

∗ @return The number of preferences remaining
∗/

public normal_behavior

requires positionInList < = numberOfPreferences;

ensures \result == numberOfPreferences - positionInList;

public pure int remainingPreferences();

}

B.5 Ballot Box Class

package election ·tally;

/∗ ∗ Data transfer structure for set of all valid ballots ∗/

public class BallotBox {

/∗ ∗

∗ List of valid ballot papers, already shuffled and mixed by the data loader
∗ or returning officer ·
∗/

invariant ballots ·length < = Ballot ·MAX_BALLOTS;
invariant (\forall int i; 0 < = i && i < numberOfBallots;

ballots[i] 6= null);

protected non_null spec_public Ballot[] ballots;

/∗ ∗

∗ Get the number of ballots in this box ·
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∗

∗ @return the number of ballots in this ballot box
∗/

public normal_behavior

ensures 0 < = \result;

ensures \result == numberOfBallots;

ensures (ballots == null) =⇒ \result == 0;

public pure int size();

/∗ ∗

∗ The total number of ballots in this ballot box ·
∗/

public invariant 0 < = numberOfBallots;

public invariant numberOfBallots < = Ballot ·MAX_BALLOTS;
public invariant numberOfBallots < = ballots ·length;
public constraint \old (numberOfBallots) < = numberOfBallots;

protected spec_public int numberOfBallots;

public ghost int lastBallotAdded = 0;

/∗ ∗

∗ Number of ballots copied from box
∗/

public initially index == 0;

public invariant index < = size();

public constraint \old(index) < = index;

protected spec_public transient int index;

/∗ ∗

∗ Create an empty ballot box ·
∗/

assignable index, numberOfBallots, ballots;

public BallotBox();

/∗ ∗

∗ Accept an anonymous ballot paper ·
∗ < p>
∗ The ballot ID number is regenerated ·
∗ < p>
∗

∗ @param preferences
∗ The list of candidate preferences
∗/
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public normal_behavior

requires numberOfBallots < ballots ·length;
requires numberOfBallots < Ballot ·MAX_BALLOTS;
requires (\forall int i; 0 < = i && i < preferences ·length;
preferences[i] 6= Ballot ·NONTRANSFERABLE &&

preferences[i] 6= Candidate ·NO_CANDIDATE);
assignable ballots, numberOfBallots, ballots[∗], lastBallotAdded;

ensures \old(numberOfBallots) + 1 == numberOfBallots;

ensures ballots[lastBallotAdded] 6= null;

public void accept(final non_null int[] preferences);

/∗ ∗

∗ Is there another ballot paper?
∗

∗ @return < code> true< /code> if there is another ballot in the box
∗/

ensures \result < =⇒ index < numberOfBallots;

public/∗@ pure @∗/boolean isNextBallot();

/∗ ∗

∗ Get the next ballot paper
∗

∗ @return The ballot paper
∗/

requires 0 < = index;

requires isNextBallot();

requires index + 1 < ballots ·length;
assignable index;

ensures \result == ballots[\old(index)];

ensures \old(index) + 1 == index;

public Ballot getNextBallot();

}

B.6 Candidate Class

package election ·tally;

/∗ ∗

∗ The Candidate object records the number of votes received during
∗ each round of counting · Votes can only be added to the
∗ candidate’s stack while the
∗ candidate has a status of < code> CONTINUING< /code> ·
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∗

∗ @see < a href="http://www ·cev ·ie/htm/tenders/pdf/1_2 ·pdf">
∗ Department of Environment and Local Government,
∗ Count Requirements and Commentary on
∗ Count Rules, section 3-14< /a>
∗/

public class Candidate extends CandidateStatus {

/∗ ∗

∗ Maximum expected number of candidates in any one constituency ·
∗/

public static final int MAX_CANDIDATES = 50;

/∗ ∗

∗ Identifier for the candidate · The data should be loaded in
∗ such a way that the assignment of candidate IDs is fair and
∗ unbiased ·
∗/

public invariant 0 < = candidateID;

public constraint \old(candidateID) 6= NO_CANDIDATE

=⇒ candidateID == \old(candidateID);

protected transient spec_public int candidateID;

/∗ ∗ Number of votes added at each count ∗/

public invariant (\forall int i; 0 < i && i < votesAdded ·length;
0 < = votesAdded[i]);

public initially (\forall int i; 0 < i && i < votesAdded ·length;
votesAdded[i] == 0);

public invariant votesAdded ·length < = CountConfiguration ·MAXCOUNT;
protected/∗@ spec_public non_null @∗/int[] votesAdded =

new int[CountConfiguration ·MAXCOUNT];

/∗ ∗ Number of votes removed at each count ∗/

public invariant (\forall int i; 0 < = i && i < votesRemoved ·length;
0 < = votesRemoved[i]);

public initially (\forall int i; 0 < = i && i < votesRemoved ·length;
votesRemoved[i] == 0);

public invariant votesRemoved ·length < = CountConfiguration ·MAXCOUNT;
protected/∗@ spec_public non_null @∗/int[] votesRemoved =

new int[CountConfiguration ·MAXCOUNT];

public invariant votesAdded 6= votesRemoved;
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public invariant votesRemoved 6= votesAdded;

/∗ ∗ The number of rounds of counting so far ∗/

public invariant 0 < = lastCountNumber;

public initially lastCountNumber == 0;

public constraint \old(lastCountNumber) < = lastCountNumber;

public invariant lastCountNumber < CountConfiguration ·MAXCOUNT;
public invariant lastCountNumber < votesAdded ·length;
public invariant lastCountNumber < votesRemoved ·length;
protected spec_public int lastCountNumber = 0;

protected initially totalVote == 0;

protected constraint \old(totalVote) < = totalVote;

protected spec_public int totalVote = 0;

/∗ ∗ Number of ballots transferred to another candidate∗/

protected initially removedVote == 0;

protected invariant removedVote < = totalVote;

protected constraint \old(removedVote) < = removedVote;

protected invariant (state == CONTINUING) =⇒ removedVote == 0;

protected spec_public int removedVote = 0;

public static final int NO_CANDIDATE = Ballot ·NONTRANSFERABLE;

/∗ ∗

∗ Next available value for candidate ID number ·
∗/

private constraint \old(nextCandidateID) < = nextCandidateID;

private spec_public static int nextCandidateID = MAX_CANDIDATES +

1;

/∗ ∗

∗ Gets number of votes added or removed in this round of counting ·
∗

∗ @param count
∗ This count number
∗ @return A positive number if the candidate received transfers
∗ or a negative number if the candidate’s surplus was
∗ distributed or the candidate was eliminated and votes
∗ transfered to another ·
∗/

protected normal_behavior

requires 0 < = count;
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requires count < votesAdded ·length;
requires count < votesRemoved ·length;
ensures \result == votesAdded[count] - votesRemoved[count];

protected/∗@ pure spec_public @∗/int getVoteAtCount(final int count);

/∗ ∗

∗ Total number of votes received by or added to this candidate ·
∗

∗ @return Gross total of votes received
∗/

ensures \result == totalVote;

public/∗@ pure @∗/int getTotalVote();

/∗ ∗

∗ Get status at the current round of counting; {@link #ELECTED},
∗ {@link #ELIMINATED} or {@link #CONTINUING}
∗

∗ @return State value for this candidate
∗/

public normal_behavior

ensures \result == state;

public pure byte getStatus();

/∗ ∗

∗ Get the unique ID of this candidate ·
∗

∗ @return The candidate ID number
∗/

public normal_behavior

ensures \result == candidateID;

public pure int getCandidateID();

/∗ ∗

∗ Create a < code> candidate< /code> where the identifier is already
∗ known
∗

∗ @param theCandidateID
∗/

requires 0 < theCandidateID;

assignable candidateID, votesAdded, votesRemoved;

ensures this ·candidateID == theCandidateID;

ensures (\forall int i; 0 < = i && i < CountConfiguration ·MAXCOUNT;
getTotalAtCount() == 0);
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public Candidate(final int theCandidateID);

/∗ ∗

∗ Add a number of votes to the candidate’s ballot pile ·
∗

∗ This method cannot be called twice for the same candidate in the
∗ same round of counting ·
∗

∗ @param numberOfVotes
∗ Number of votes to add
∗ @param count
∗ The round of counting at which the votes were added
∗/

public normal_behavior

requires state == CONTINUING;

requires lastCountNumber < = count;

requires 0 < = count;

requires count < votesAdded ·length;
requires 0 < = numberOfVotes;

assignable lastCountNumber, votesAdded[count], totalVote;

ensures \old(votesAdded[count]) +

numberOfVotes == votesAdded[count];

ensures \old(totalVote) + numberOfVotes == totalVote;

ensures count == lastCountNumber;

public void addVote(final int numberOfVotes, final int count);

/∗ ∗

∗ Update the last count number for this Candidate
∗

∗ @param count
∗ The number of the most recent count
∗/

protected normal_behavior

requires count < CountConfiguration ·MAXCOUNT;
requires count < votesAdded ·length;
requires count < votesRemoved ·length;
requires lastCountNumber < = count;

assignable lastCountNumber;

ensures lastCountNumber == count;

protected void updateCountNumber(final int count);

/∗ ∗

∗ Removes a number of votes from a candidates ballot stack ·
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∗

∗ This method cannot be called twice for the same candidate
∗ in the same round of counting ·
∗

∗ @param numberOfVotes
∗ Number of votes to remove from this candidate
∗ @param count
∗ The round of counting at which the votes were removed
∗/

public normal_behavior

requires state == ELIMINATED || state == ELECTED;

requires lastCountNumber < = count;

requires 0 < = count;

requires count < votesRemoved ·length;
requires count < votesAdded ·length;
requires count < CountConfiguration ·MAXCOUNT;
requires 0 < = numberOfVotes;

requires numberOfVotes < = getTotalAtCount();

assignable lastCountNumber, votesRemoved[count], removedVote;

ensures \old(votesRemoved[count]) + numberOfVotes ==

votesRemoved[count];

ensures \old(removedVote) + numberOfVotes == removedVote;

ensures count == lastCountNumber;

public void removeVote(final int numberOfVotes, final int count);

/∗ ∗ Declares the candidate to be elected ∗/

public normal_behavior

requires this ·state == CONTINUING;

requires this ·lastCountNumber < = countNumber;

requires 0 < = countNumber &&

countNumber < CountConfiguration ·MAXCOUNT;
requires countNumber < votesAdded ·length;
requires countNumber < votesRemoved ·length;
assignable state, lastCountNumber;

ensures state == ELECTED;

public void declareElected(final int countNumber);

/∗ ∗ Declares the candidate to be eliminated ∗/

public normal_behavior

requires 0 < = countNumber &&

countNumber < CountConfiguration ·MAXCOUNT;
requires countNumber < votesAdded ·length;
requires countNumber < votesRemoved ·length;
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requires this ·lastCountNumber < = countNumber;

requires this ·state == CONTINUING;

assignable state, lastCountNumber;

ensures state == ELIMINATED;

public void declareEliminated(final int countNumber);

/∗ ∗

∗ Determines the relative ordering of the candidate in the event of
∗ a tie ·
∗

∗ @param other
∗ The other candidate to compare with this candidate
∗ @return < code> true< /true> if other candidate is not selected
∗/

public normal_behavior

ensures (\result == true) < =⇒
(this ·candidateID > other ·candidateID);

public pure boolean isAfter(final non_null Candidate other);

/∗ ∗

∗ Is this the same candidate?
∗

∗ @param other
∗ The candidate to be compared
∗ @return < code> true< /code> if this is the same candidate
∗/

public normal_behavior

ensures \result < =⇒ ((other 6= null) &&

(other ·candidateID == candidateID));

public model pure boolean sameAs (non_null Candidate other) {

return (other ·candidateID == this ·candidateID);
}

/∗ ∗

∗ How many votes have been received by this round of counting?
∗

∗ @return The total number of votes received so far
∗/

ensures \result == totalVote - removedVote;

public model pure int getTotalAtCount() {

return totalVote - removedVote;

}
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/∗ ∗

∗ Has this candidate been elected?
∗

∗ @return < code> true< /code> if elected
∗/

ensures (\result == true) < =⇒ (state == ELECTED);

public pure boolean isElected();

//@ ensures \result < =⇒ (state == ELIMINATED);

public pure boolean isEliminated();

}

B.7 Constituency Class

package election ·tally;

public class Constituency {

public Constituency() {

this ·candidates = Candidate ·MAX_CANDIDATES;
this ·totalSeatsInConstituency = 1;

this ·seatsInThisElection = 1;

this ·candidateList = null;

}

/∗ ∗ Number of candidates for election in this constituency ∗/

public invariant 0 < candidates;

public invariant seatsInThisElection < candidates;

public invariant candidates < = Candidate ·MAX_CANDIDATES;
protected spec_public int candidates;

/∗ ∗ Number of seats to be filled in this election ∗/

public invariant 0 < seatsInThisElection;

protected spec_public int seatsInThisElection;

/∗ ∗ Number of seats in this constituency ∗/

//@ public invariant seatsInThisElection < = totalSeatsInConstituency;

protected spec_public int totalSeatsInConstituency;

/∗ ∗ List of all candidates in this election ∗/

protected spec_public Candidate[] candidateList;
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public ghost boolean candidateDataInUse = false;

/∗ ∗

∗ Get the < code> Candidate< /code> object ·
∗

∗ @return The candidate at that position on the initial list
∗/

requires \nonnullelements (candidateList);

requires 0 < = index && index < candidateList ·length;
ensures candidateList[index] == \result;

public pure non_null Candidate getCandidate(final int index);

/∗ ∗

∗ Determine the number of candidates in this election ·
∗

∗ @param number
∗ The number of candidates in this election ·
∗ There must be at least two candidates or choices in any
∗ election ·
∗/

requires 2 < = number && number < = Candidate ·MAX_CANDIDATES;
requires seatsInThisElection < number;

requires candidateDataInUse == false;

assignable candidates, candidateList, candidateDataInUse,

candidateList[∗];

ensures number == this ·candidates;
ensures this ·candidates < = candidateList ·length;
ensures candidateDataInUse == true;

public void setNumberOfCandidates(final int number);

/∗ ∗

∗ Get the number of seats in this election
∗

∗ @return The number of seats for election
∗/

ensures \result == seatsInThisElection;

public pure int getNumberOfSeatsInThisElection();

/∗ ∗

∗ Get the total number of seats for a full general election
∗

∗ @return The total number of seats
∗/
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ensures \result == totalSeatsInConstituency;

public/∗@ pure @∗/int getTotalNumberOfSeats();

requires seatsInElection < = seatsInConstituency;

requires 0 < seatsInElection;

requires seatsInElection < candidates;

assignable seatsInThisElection;

assignable totalSeatsInConstituency;

ensures seatsInThisElection == seatsInElection;

ensures totalSeatsInConstituency == seatsInConstituency;

public void setNumberOfSeats(final int seatsInElection,

final int seatsInConstituency);

/∗ ∗

∗ Get the number of candidates running for election in this
∗ constituency ·
∗

∗ @return The number of candidates ·
∗/

ensures \result == this ·candidates;
public/∗@ pure @∗/int getNumberOfCandidates();

/∗ ∗

∗ Load the list of candidates for this constituency ·
∗

∗ @param candidateIDs
∗ The list of candidate identifiers corresponding to the
∗ encoding of the ballots
∗/

requires candidateDataInUse == false;

requires seatsInThisElection < candidateIDs ·length;
requires (\forall int i; 0 < = i && i < candidateIDs ·length;
0 < candidateIDs[i]);

assignable candidates, candidateList, candidateDataInUse,

candidateList[∗];

ensures \nonnullelements (candidateList);

ensures candidateDataInUse == true;

ensures candidateList ·length == candidateIDs ·length;
ensures candidates == candidateIDs ·length;
public void load(final /∗@ non_null @∗/int[] candidateIDs);

}
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Appendix C

Alloy Model

C.1 Signatures and Axioms

-- An individual person standing for election

sig Candidate {

votes: set Ballot,

-- First preference ballots received

transfers: set Ballot,

-- Second and subsequent preferences received

surplus: set Ballot,

-- Ballots transferred to another candidate

wasted: set Ballot,

-- Ballots non-transferable

outcome: Event

} {

0 < #wasted iff (

outcome = WinnerNonTransferable or

outcome = QuotaWinnerNonTransferable or

outcome = EarlyLoserNonTransferable or

outcome = EarlySoreLoserNonTransferable)

no b:Ballot | b in votes & transfers

all b: Ballot | b in votes + transfers implies

this in b ·assignees

surplus in votes + transfers and

Election ·method = Plurality

implies #surplus = 0
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and #transfers = 0

0 < #transfers implies

Election ·method = STV

-- Losers excluded but above threshold

(outcome = EarlyLoser or

outcome = EarlyLoserNonTransferable) iff

(this in Scenario ·eliminated and

not (#votes + #transfers < Scenario ·threshold))

outcome = TiedLoser implies

Scenario ·threshold < = #votes + #transfers

outcome = Loser implies

Scenario ·threshold < = #votes + #transfers

outcome = EarlyLoser implies

Scenario ·threshold < = #votes + #transfers

outcome = EarlyLoserNonTransferable implies

Scenario ·threshold < = #votes + #transfers

Election ·method = Plurality implies

(outcome = Loser or

outcome = SoreLoser or

outcome = Winner or

outcome = TiedWinner or

outcome = TiedLoser or

outcome = TiedSoreLoser)

// PR-STV Winner has at least a quota of first preference

votes

(Election ·method = STV and outcome = Winner) implies

Scenario ·quota = #votes

(outcome = SurplusWinner or outcome = WinnerNonTransferable)

implies

Scenario ·quota < #votes

// Quota Winner has a least a quota of votes after transfers

outcome = QuotaWinner implies

Scenario ·quota = #votes + #transfers

(outcome = AboveQuotaWinner or outcome =

QuotaWinnerNonTransferable)

implies Scenario ·quota < #votes + #transfers

127



// Quota Winner does not have a quota of first preference

votes

(outcome = QuotaWinner or outcome = AboveQuotaWinner or

outcome = QuotaWinnerNonTransferable) implies

not Scenario ·quota < = #votes

// Compromise winners do not have a quota of votes

outcome = CompromiseWinner implies

not (Scenario ·quota < = #votes + #transfers)

// STV Tied Winners have less than a quota of votes

(Election ·method = STV and outcome = TiedWinner) implies

not (Scenario ·quota < = #votes + #transfers)

// Sore Losers have less votes than the threshold

(outcome = SoreLoser or outcome =

EarlySoreLoserNonTransferable or

outcome = EarlySoreLoser or outcome =

EarlySoreLoserNonTransferable)

implies #votes + #transfers < Scenario ·threshold

// Tied Sore Losers have less votes than the threshold

outcome = TiedSoreLoser implies

#votes + #transfers < Scenario ·threshold

// Size of surplus for each STV Winner and Quota Winner

(outcome = SurplusWinner or outcome = WinnerNonTransferable)

implies ((#surplus = #votes - Scenario ·quota) and #

transfers = 0)

(outcome = AboveQuotaWinner or outcome =

QuotaWinnerNonTransferable)

implies (#surplus = #votes + #transfers - Scenario ·quota)
(outcome = Winner and Election ·method = STV) implies

(Scenario ·quota + #surplus = #votes) and #transfers = 0

(outcome = QuotaWinner or outcome = AboveQuotaWinner or

outcome = QuotaWinnerNonTransferable) implies surplus in

transfers

(outcome = QuotaWinner or outcome = AboveQuotaWinner or

outcome = QuotaWinnerNonTransferable) implies

Scenario ·quota + #surplus = #votes + #transfers

// Existence of surplus ballots

0 < #surplus implies (outcome = SurplusWinner or
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outcome = AboveQuotaWinner or

outcome = WinnerNonTransferable or

outcome = QuotaWinnerNonTransferable)

}

-- A digital or paper artifact which accurately records the

intentions

-- of the voter

sig Ballot {

assignees: set Candidate, -- Candidates to which this ballot

has

-- been assigned

preferences: seq Candidate -- Ranking of candidates

} {

assignees in preferences ·elems
not preferences ·hasDups
preferences ·first in assignees

Election ·method = Plurality implies #preferences < = 1

0 < = #preferences

// First preference

all c: Candidate | preferences ·first = c iff this in c ·votes

// Second and subsequent preferences

all disj donor,receiver: Candidate |

(donor + receiver in assignees and

this in receiver ·transfers and this in donor ·surplus)
implies

(preferences ·idxOf[donor] < preferences ·idxOf[receiver]
and

receiver in preferences ·rest ·elems)

// All transfered ballots are associated with the last

candidate to

// receive the transfer

all disj c,d: Candidate | this in c ·transfers implies

c in assignees and

(d not in assignees or preferences ·idxOf[d] < preferences ·
idxOf[c])

// Transfers to next continuing candidate

all disj skipped, receiving: Candidate |
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preferences ·idxOf[skipped] < preferences ·idxOf[receiving]
and

receiving in assignees and (not skipped in assignees)

implies

(skipped in Scenario ·eliminated or

skipped ·outcome = SurplusWinner or

skipped ·outcome = AboveQuotaWinner or

skipped ·outcome = WinnerNonTransferable or

skipped ·outcome = QuotaWinnerNonTransferable or

skipped ·outcome = Winner or

skipped ·outcome = QuotaWinner)

}

-- An election result

one sig Scenario {

losers: set Candidate,

winners: set Candidate,

eliminated: set Candidate, -- Early and Sore Losers under STV

rules

threshold: Int, -- Deposit Saving Threshold

quota: Int, -- Quota for this election

fullQuota: Int -- Quota if all seats were vacant

} {

all c: Candidate | c in winners + losers

#winners = Election ·seats
no c: Candidate | c in losers & winners

0 < #losers

all w: Candidate | all l: Candidate |

l in losers and w in winners implies

(#l ·votes + #l ·transfers < = #w ·votes + #w ·transfers)

Election ·method = STV implies threshold = 1 + fullQuota ·div
[4]

eliminated in losers

// All PR-STV losers have less votes than the quota

all c: Candidate | (c in losers and Election ·method = STV)

implies

#c ·votes + #c ·transfers < quota

// Winners have more votes than all non-tied losers

all disj c,d: Candidate | c in winners and

(d ·outcome = SoreLoser or d ·outcome = EarlyLoser or
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d ·outcome = Loser or

d ·outcome = EarlySoreLoser) implies

(#d ·votes + #d ·transfers) < (#c ·votes + #c ·transfers)

// Losers have less votes than all non-tied winners

all disj c,d: Candidate |

(c ·outcome = CompromiseWinner or c ·outcome = QuotaWinner or

c ·outcome = Winner

or c ·outcome = SurplusWinner or c ·outcome =

AboveQuotaWinner or

c ·outcome = WinnerNonTransferable or

c ·outcome = QuotaWinnerNonTransferable) and

d in losers implies

#d ·votes + #d ·transfers < #c ·votes + #c ·transfers

// Lowest candidate is eliminated first

all disj c,d: Candidate | c in eliminated and d not in

eliminated

implies #c ·votes + #c ·transfers < = #d ·votes + #d ·
transfers

// Winning outcomes

all c: Candidate | c in winners iff

(c ·outcome = Winner or c ·outcome = QuotaWinner or

c ·outcome = CompromiseWinner or

c ·outcome = TiedWinner or c ·outcome = SurplusWinner or

c ·outcome = AboveQuotaWinner or

c ·outcome = WinnerNonTransferable or

c ·outcome = QuotaWinnerNonTransferable)

// Loser outcomes

all c: Candidate | c in losers iff

(c ·outcome = Loser or c ·outcome = EarlyLoser or

c ·outcome = SoreLoser or

c ·outcome = TiedLoser or c ·outcome = EarlySoreLoser or

c ·outcome = TiedSoreLoser or

c ·outcome = EarlySoreLoserNonTransferable or

c ·outcome = EarlyLoserNonTransferable)

// STV election quotas

Election ·method = STV implies quota = 1 +

BallotBox ·size ·div[Election ·seats+ 1] and
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fullQuota = 1 + BallotBox ·size ·div[Election ·
constituencySeats + 1]

Election ·method = Plurality implies quota = 1 and fullQuota =

1

// All ties involve equality between at least one winner and

at

// least one loser

all w: Candidate | some l: Candidate | w ·outcome = TiedWinner

and

(l ·outcome = TiedLoser or l ·outcome = TiedSoreLoser)

implies

(#l ·votes + #l ·transfers = #w ·votes + #w ·transfers)
all s: Candidate | some w: Candidate | w ·outcome = TiedWinner

and

(s ·outcome = SoreLoser or s ·outcome = TiedLoser) implies

(#s ·votes = #w ·votes) or

(#s ·votes + #s ·transfers = #w ·votes + #w ·transfers)
// When there is a tied sore loser then there are no non-sore

losers

no disj a,b: Candidate | a ·outcome = TiedSoreLoser and

(b ·outcome = TiedLoser or

b ·outcome=Loser or b ·outcome=EarlyLoser or

b ·outcome = EarlyLoserNonTransferable)

// For each Tied Winner there is a Tied Loser

all w: Candidate | some l: Candidate | w ·outcome = TiedWinner

implies

(l ·outcome = TiedLoser or l ·outcome = TiedSoreLoser)

// Tied Winners and Tied Losers have an equal number of votes

all disj l,w: Candidate |

((l ·outcome = TiedLoser or l ·outcome = TiedSoreLoser) and

w ·outcome = TiedWinner) implies

#w ·votes + #w ·transfers = #l ·votes + #l ·transfers
// Compromise winner must have more votes than any tied

winners

all disj c,t: Candidate | (c ·outcome = CompromiseWinner and

t ·outcome = TiedWinner) implies

#t ·votes + #t ·transfers < #c ·votes + #c ·transfers
// Winners have more votes than non-tied losers

all w,l: Candidate | w ·outcome = Winner and

(l ·outcome = Loser or l ·outcome = EarlyLoser or

l ·outcome = SoreLoser or

l ·outcome = EarlyLoserNonTransferable or
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l ·outcome = EarlySoreLoser or

l ·outcome = EarlySoreLoserNonTransferable)

implies

((#l ·votes < #w ·votes) or

(#l ·votes + #l ·transfers < #w ·votes + #w ·transfers))
// For each Tied Loser there is at least one Tied Winner

all c: Candidate | some w: Candidate |

(c ·outcome = TiedLoser or c ·outcome = TiedSoreLoser)

implies w ·outcome = TiedWinner

}

-- The Ballot Box

one sig BallotBox {

spoiltBallots: set Ballot, -- empty ballots excluded from

count

nonTransferables: set Ballot, -- ballots for which

preferences are

-- exhausted/wasted votes

size: Int -- number of unspolit ballots

}

{

no b: Ballot | b in spoiltBallots and b in nonTransferables

size = #Ballot - #spoiltBallots

all b: Ballot | b in spoiltBallots iff #b ·preferences = 0

// All non-transferable ballots belong to an non-transferable

surplus

all b: Ballot | some c: Candidate | b in nonTransferables

implies

b in c ·wasted
}

-- An Electoral Constituency

one sig Election {

seats: Int, -- number of seats to be filled

constituencySeats: Int, -- full number of seats

method: Method -- type of election; PR-STV or plurality

}

{

0 < seats and seats < = constituencySeats

seats < #Candidate

}
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C.2 Lemmas

assert honestCount {

all c: Candidate | all b: Ballot | b in c ·votes + c ·
transfers

implies c in b ·assignees
}

check honestCount for 15 but 6 int

assert atLeastOneLoser {

0 < #Scenario ·losers
}

check atLeastOneLoser for 15 but 6 int

assert atLeastOneWinner {

0 < #Scenario ·winners
}

check atLeastOneWinner for 14 but 6 int

assert plurality {

all c: Candidate | all b: Ballot | b in c ·votes and

Election ·method = Plurality implies c in b ·preferences ·first
}

check plurality for 18 but 6 int

assert pluralityNoTransfers {

all c: Candidate | Election ·method = Plurality implies

0 = #c ·transfers
}

check pluralityNoTransfers for 13 but 7 int

assert wellFormedTieBreaker {

some w,l : Candidate | (w in Scenario ·winners and

l in Scenario ·losers and

#w ·votes = #l ·votes and #w ·transfers = #l ·transfers) implies

w ·outcome = TiedWinner and

(l ·outcome = TiedLoser or l ·outcome = TiedSoreLoser)

}

check wellFormedTieBreaker for 18 but 6 int

assert validSurplus {

all c: Candidate | 0 < #c ·surplus implies

(c ·outcome = WinnerNonTransferable or

134



c ·outcome = QuotaWinnerNonTransferable or

c ·outcome = SurplusWinner or

c ·outcome = AboveQuotaWinner or

c in Scenario ·eliminated)
}

check validSurplus for 16 but 6 int

-- Advanced Lemmas

-- Equal losers are tied or excluded early before last round

assert equalityofTiedWinnersAndLosers {

all disj w,l: Candidate | w in Scenario ·winners and

l in Scenario ·losers and

#w ·votes + #w ·transfers = #l ·votes + #l ·transfers implies

w ·outcome = TiedWinner and

(l ·outcome = TiedLoser or

l ·outcome = TiedSoreLoser or

l ·outcome = EarlyLoserNonTransferable or

l ·outcome = EarlySoreLoserNonTransferable or

l ·outcome = EarlyLoser)

}

check equalityofTiedWinnersAndLosers for 16 but 7 int

-- No lost votes during counting

assert accounting {

all b: Ballot | some c: Candidate | 0 < #b ·preferences
implies

b in c ·votes and c in b ·assignees
}

check accounting for 16 but 6 int

-- Cannot have tie breaker with both tied sore loser and non-

sore loser

assert tiedWinnerLoserTiedSoreLoser {

no disj c,w,l: Candidate | c ·outcome = TiedSoreLoser and

w ·outcome = TiedWinner and (l ·outcome = Loser or

l ·outcome = TiedLoser)

}

check tiedWinnerLoserTiedSoreLoser for 6 int

-- Compromise winner must have at least one vote

assert validCompromise {

all c: Candidate | c ·outcome = CompromiseWinner implies

0 < #c ·votes + #c ·transfers
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}

check validCompromise for 6 int

-- Quota winner needs transfers

assert quotaWinnerNeedsTransfers {

all c: Candidate | c ·outcome = QuotaWinner implies

0 < #c ·transfers
}

check quotaWinnerNeedsTransfers for 7 int

-- Sore losers below threshold

assert soreLoserBelowThreshold {

all c: Candidate | c ·outcome = SoreLoser implies not

(Scenario ·threshold < = #c ·votes + #c ·transfers)
}

check soreLoserBelowThreshold for 10 but 6 int

-- Possible outcomes when under the threshold

assert underThresholdOutcomes {

all c: Candidate |

(#c ·votes + #c ·transfers < Scenario ·threshold)
implies

(c ·outcome = SoreLoser or

c ·outcome = TiedSoreLoser or

c ·outcome = TiedWinner or

c ·outcome = EarlySoreLoserNonTransferable or

c ·outcome = EarlySoreLoser or

c ·outcome = CompromiseWinner or

(Election ·method = Plurality and c ·outcome = Winner))

}

check underThresholdOutcomes for 10 but 6 int

-- Tied Winners have equality of votes and transfers

assert tiedWinnerEquality {

all a,b: Candidate | (a ·outcome = TiedWinner and

b ·outcome = TiedWinner) implies

#a ·votes + #a ·transfers = #b ·votes + #b ·transfers
}

check tiedWinnerEquality for 10 but 6 int

-- Non-negative threshold and quota

assert nonNegativeThresholdAndQuota {

0 < = Scenario ·threshold and 0 < = Scenario ·quota
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}

check nonNegativeThresholdAndQuota for 6 but 6 int

-- STV threshold below quota

assert thresholdBelowQuota {

Election ·method = STV and 0 < #Ballot implies

Scenario ·threshold < = Scenario ·quota
}

check thresholdBelowQuota for 13 but 7 int

-- Plurality sore loser

assert pluralitySoreLoser {

all c: Candidate | (c ·outcome = SoreLoser and

Election ·method = Plurality) implies

#c ·votes < Scenario ·threshold
}

check pluralitySoreLoser for 13 but 7 int

-- Plurality winner for a single seat constituency

assert pluralityWinner {

all disj a, b: Candidate | (Election ·method = Plurality and

Election ·seats = 1 and

a ·outcome = Winner) implies #b ·votes < = #a ·votes
}

check pluralityWinner for 2 but 7 int

-- Length of PR-STV ballot does not exceed number of candidates

assert lengthOfBallot {

all b: Ballot | Election ·method = STV implies

#b ·preferences < = #Candidate

}

check lengthOfBallot for 7 int

-- Quota for a full election is less than for a by-election

assert fullQuota {

Scenario ·fullQuota < = Scenario ·quota
}

check fullQuota for 7 int

-- All transfers have a source either from a winner with

surplus or by

-- early elimination of a loser

assert transfersHaveSource {
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all b: Ballot | some disj donor, receiver : Candidate |

b in receiver ·transfers
implies b in donor ·votes and

(donor in Scenario ·winners or donor in Scenario ·eliminated)
}

check transfersHaveSource for 7 int

-- No missing candidates

assert noMissingCandidates {

#Candidate = #Scenario ·winners + #Scenario ·losers
}

check noMissingCandidates for 7 int

-- Spoilt votes are not allocated to any candidate

assert handleSpoiltBallots {

no c : Candidate | some b : Ballot | b in c ·votes and

b in BallotBox ·spoiltBallots
}

check handleSpoiltBallots for 7 int

-- The End

The End.
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