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Abstract

One of the most interesting new problems in theoretical computer science is mas-
sive data algorithmics. Massive data problems cannot rely on näıve techniques.
Even quadratic time algorithms can be unbearable in the case of massive input.
This problem is even more urgent when the output depends on aggregations of
the input data, since to aggregate data translates in an explosion in size and
time necessary to compute the aggregation. Still, the aggregate, intermediate
data are necessary to produce the correct output. We present algorithms that
are able to sample from the multiset of intermediate data, without the neces-
sity of representing explicitly such a multiset, in this way achieving small space
usage and efficient running time.

We address problems in data mining, data streaming, pattern mining in
graphs and structure prediction. For all this topics, we use the innovative tech-
nique of sampling from implicit sets.

More specifically, we present algorithms for finding the most similar pairs of
items in the so called market basket model. This model is easily explained in
the following way: we want to find those pairs of items that are mainly bought
together by customers of a shop. In one scenario, the input of this problem is
given in a single unit and can be read several times; on the other hand, there
are frameworks in which the input arrives in smaller, volatile chunks; in these
frameworks it is infeasible to store more than one chunk at a time; therefore,
once a chunk is read, it cannot be accessed anymore in the future. We address
the problem of finding similar pairs in both scenarios without generating the
multiset of all the pairs that appear in the customers’ baskets. For the latter
scenario we also present two hardness results.

Furthermore, we present an algorithm for finding recurrent sequences of
nodes in a directed graph. The output is produced without generating all the
possible directed paths of nodes that exist in the graph. To the best of our
knowledge, this is the first algorithm dealing with such a problem.

Moreover, we show an algorithm for computing an approximation of the
number of non zero entries in the result of the product of two boolean matrices.
The estimate is output without explicitly producing the result of the matrix
product.

The algorithms we present are all randomised, and so they can make errors.
A thorough analysis of these errors shows that our algorithms are indeed accu-
rate and reliable, and errors are unlikely. Moreover, all our algorithms solve the
respective problems using time, in expectation, that is linear, or quasi linear,
with respect to the input size or is linear with respect to the size of the output.
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Chapter 1

Introduction

Theoretical computer science has evolved in the years, starting from the classical
graphs and combinatorial optimisation problems, to arrive to the arguably more
recent massive data and algorithmic game theory problems.

This evolution accounts for many factors that influenced computer science
during the last 50 years: Faster machines, cheaper storage space, pervasive
deployment of Internet in the first world, economical evolution and a different
perception of the tasks of scientific research in universities. While all these
factors are not necessarily positive, the plethora of new branches that computer
science has followed has highlighted some interesting and deep problems.

A very meaningful example of such a new problem is the one connected to
massive data algorithms. The topic has acquired such a huge relevance that
entire research centres have been devoted to researching in this field. Why
massive data algorithms became a central topic of study is easily understood,
looking at the evolution of western societies in the last 30 years. Besides the
political reasons and interests of the police in keeping the data of social entities
under strict control, cheap hardware has caused all the administrative tasks of
companies or social institutions to be carried out using computers. All that was
formerly recorded only on paper, suddenly found a Platonic copy of itself in a
digital format. This means that managing such a huge amount of information
could not rely anymore on näıve algorithms. Managing information is not only
the task of accessing and storing the data; it also entails being able to aggregate
them and output the result of the aggregation tasks. Handling information also
requires to run analyses of the data in order to find some possibly interesting
characteristics that they possess. Typically, companies want to build profiles of
the customers, in order to define classes of clients on the basis of their habits. A
very good idea of this process can be obtained by thinking of the use that of our
personal information, such as the contents of unencrypted emails, our World
Wide Web habits and the country from which we connect, is done by some
of the largest companies operating on the Internet. So it is very common to
get personalised adverts, references to digital information concerning people we
might know in real life, and so on. Another factor that has made massive data
algorithms important has been the fast development of the Internet on a world
scale, and in particular the huge increase in data traffic that this phenomenon
has created. Analysis of traffic implies facing an overwhelming amount of data.
Just the log of a home router can easily grow to megabytes or even gigabytes
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in size, hence the obvious considerations about ISPs and backbone routers.
Analysis of those logs can be highly interesting for many actors in the digitalised
world. In particular, such analyses have to be run on the fly, while the packets
pass through the router, in order for this information to be of any use. This
specific setting has also made a new problem model popular, that completely
catches the issues of carrying on fast computations with a very limited amount
of memory.

In this massive data world, this thesis is born and grown up, showing some
characteristic of problems and proposing some solutions.

In what remains of the chapter, we will explain which problems we face and
how they relate to each other. Moreover we will devote a large part of the
chapter to introduce randomized algorithms and techniques.

1.1 A descriptive overview

Here we describe in a general, descriptive and abstract way, the problems we ad-
dress. The section does not require the reader to have any scientific knowledge,
with respect to computer science and mathematics.

Before starting the description of the problems, it is opportune to define what
massive data means. Massive data problems face inputs that are overwhelmingly
large given the computational power at hand. Terabytes of data are often used
to represent some information; for example very long sequences of items, market
basket data of huge multinational shops, the content of the World Wide Web,
are all good representative of massive data for the current technology.

However, we think it is relevant to highlight the fact that the meaning of
massive has not to deal only with the amount of memory necessary to store the
input. A 1000 nodes graph can be represented using a very small quantity of
memory; still it is, and it will likely always be, a massive data input when the
problem to solve is the Travelling Salesperson Problem1. This depends from the
fact that a graph is implicitly massive. Its rich mathematical structure is able
to represent in a succinct way a huge number of sub structures that are often
the objects of interest for some problem to be solved.

1.1.1 Data mining

A typical massive data task is to extract information from data. This is not
only the task of querying a database about its content. It is also the process
of building non structured information that lie hidden in the rough data. Data
mining is a big umbrella including many distinct problems. One of the most
interesting amongst these problems, can be described in the following abstract
form: Suppose that a set of people possesses collections of objects, one set per
person. Moreover, suppose that all the objects in the collections come from
a limited number of possible existing object kinds, so that several people can
own objects of the same kind. A reasonable question is to ask which subsets
of objects are often owned by people, or to ask which objects are likely to be

1This problem, often called TSP, is very hard to solve. Suppose that the salesperson can
sell his products in a certain number of cities that are connected by a network of roads; the
salesperson, in order to maximise his revenue, wants to find a tour that touches all the cities
only once and that allows him to use at most a fixed amount of fuel.
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owned together. In general, given a dataset, it is useful to understand which
are the patterns, if any, that happen in the dataset. Moreover, once a pattern
is discovered, it can be interesting to understand how frequent such a pattern
actually is.

Example 1.1.1. We live in an industrialised post-modern society, so the request
for cars with some very, so to say, advanced characteristics is very high. We are
the car builders and we want to understand which have been the most well re-
ceived features of the cars we produce by the market. In this setting, each subset
is a car with a given set of characteristics. So a car can have a certain colour, a
compact disk reader, the ABS braking system and so on. The goal of the mining
would be finding those sets of characteristics that are highly related. In partic-
ular, looking at the cars sold in the previous years, it can happen to spot that
red cars are nearly always equipped with black seats, and the other way around.
Such data suggests that red frames and black seats are related characteristics. ◦

It is also interesting to point out that data mining not only attempts to
uncover information that is spread, hidden and often unknown, in the data, but
it tries as well to predict the evolution of the data, using the information that it
is able to get. Looking at a pattern mining framework, where recurring patterns
in the input are sought, it is easy to see how and why this works: Suppose that
there is evidence that, when a series of patterns happens, then a consequence,
a specific datum or data pattern, shows up. This means that when the series
of patterns is spotted, it can be considered as likely that the consequence that
has been discovered will happen as well. In the literature the two described
approaches fall respectively in the so-called descriptive and predictive class of
data mining. The latter is also a very common and studied problem in the
framework of machine learning.

Example 1.1.2. In the past years, white cars with a pack rack and towing at-
tachment have turned out to be quite popular, so we can infer that that set
of characteristics has to be put on the market again, since it is likely to find a
receptive audience. ◦

1.1.2 Streaming

Streaming algorithms are probably one of the main topics of interest in recent
theoretical computer science. The setting in which a router, in an online fashion,
tries to compute information as the packets flow through it, is entirely caught by
the streaming framework and constitutes a reasonable real world explanation
of what the streaming environment is. It is clear what are the issues that
such algorithms have to face: Limited space, which results in the infeasibility
of storing the whole input, and limited time, because of the high rate of the
incoming data. The input of these algorithms is typically and infinite stream
of data. An infinite stream of data is massive without any doubt and make
entirely clear the reason why storing the input is not an option.

Example 1.1.3. The car factory wants to differentiate its offer on the basis of
territorial tastes and preferences. To achieve this goal, sensors along some of
the highways are placed that can register the features of cars that pass by them.
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These devices are limited in computational power and storage space. For exam-
ple they might be powered only with solar panels, so they need to save as much
energy as possible. ◦

Many data mining tasks can framed in a streaming fashion. It is easy to
understand, as a matter of fact, that the information contained in a stream of
data can be found using concepts and ideas from the data mining world. Of
course the techniques used in the streaming world and the data mining one
cannot be exactly the same, given the difference in nature of the two problems,
but can be adapted sometimes to fit each other framework.

An interesting challenge in streaming, as well as in data mining, is exploiting
any possibility of speeding up the computation using parallelism. Nowadays
even laptops are equipped with multicore CPUs, so parallel algorithms can
provide attractive solutions when the data are massive and the time constraints
are strict.

Example 1.1.4. Instead of processing the data arriving from the sensors like if
they form a single stream, we split those data in several streams, on the basis
of the areas where the sensors are placed. In this way we end up with several
streams of approximately the same size, since all highways are used with the
same average intensity. Hence we can process each stream using a distinct CPU
and reduce the time needed to find the information we are interested in. ◦

1.1.3 Graph mining

Graphs are notoriously a natural source of complex problems. Their structure
embeds a level of mathematical complexity and richness that often challenges
algorithms that want to be efficient.

Data mining often asks for mining over some very specific data coming from
real world applications. A worthy goal is thus to come out with general ap-
proaches that are able to capture the structure of the problem. In this way it
is often possible to find algorithms that are able to solve a much wider array of
problems that are representable with the formal, as said, general, formulation
of the problem.

Graphs, as noted before, are very rich in structure and can productively be
applied to some of the problems that data mining poses. Graph mining often
looks for recurring patterns in a graph. Often, these patterns are substructures
of the graph that become interesting when they repeat frequently.

As an example, consider a situation in which a certain number of agents
have installed transmitters on themselves and there are antennas in their envi-
ronment, that are capable of keeping track of the passage of an agent when it
is reasonably close. Along with the event of having seen a specific agent, the
antenna keeps track of the timestamp of the reading. In such a setting it can
be interesting to spot those patterns of movement that agents tend to exhibit
in a temporal sequence, considering two antennas’ readings consecutive if they
happen within a certain time window. To be more concrete, consider people
pushing around trolleys in a mall. Suppose that there is a transmitter installed
on every trolley. It can be commercially advantageous to keep track of what
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are the recurrent and frequent movements of customers in the mall, such as
which shops people visit in a sequence. This information might allow a market
analyst to be able, in real time, to predict the movement of people, according
to patterns exhibited by other customers.

These settings can be represented using a graph, in particular, a directed
acyclic graph, where events are vertices of the graph and edges represent the
fact that two events happened within a reasonable time window. In general,
when a real-world situation can be represented using a directed graph, so that
two events can be considered close according to a certain metric, which need
not be the time, finding frequent patterns in such a graph allows mining the
sequences of events that are frequent. An example of this flexibility is the one
that follows.

Example 1.1.5. In our world of massive industrial production, the sensors that
were placed on the highways have been re-converted to just signal the presence
of a car, registering the plate of the car and the time when it passed. We might
be interested in computing which routes are the most common that cars take.
This would help building a network of dedicated workshops, for instance, to
assist owners of cars experiencing mechanical problems. The whole road system
can be represented with a directed graph. In this setting, car routes can be
represented using directed sequences of nodes in the directed graph, so the task
of the graph mining algorithm would be to find those routes, so those directed
paths, occurring frequently. ◦

1.1.4 Matrix multiplication

Using a matrix many information and characteristics of datasets can be repre-
sented. The idea is that each row or column of a matrix can be seen as the
representation of a vector. Since objects can be represented with a list of values
in connection with the characteristics they provide, hence a vector, matrices
turn out to be good tools for representing sets of objects.

Example 1.1.6. A car can be described using a set of characteristics. If we fix an
order for this set of characteristics, we can associate a vector with each car, that
is a sequence of numbers, such that the position of a number in the sequence
tells us what characteristic it refers to, and the value quantifies the character-
istic. A red car, with 5 doors, no ABS and three air bags may be represented
as (1, 5, 0, 3). We are assuming that to each colour is represented uniquely by
a number, so to red, the number 1 is associated. If we list all the cars, their
associated vectors will form a matrix. ◦

Matrix multiplication is therefor a very interesting abstraction of many prob-
lems in the massive data environment, when the input needs to be manipulated
in order to get the structure necessary to uncover the information that it em-
beds. Matrix multiplication essentially captures, amongst others, the concepts
of set intersection and its size, cardinality of sets tout court. These concepts
and mathematical operations are very important in database applications. In
this field it is often interesting to know how many elements an entity possesses,
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which translates, in practical terms, to removing duplicates from the result of
some relational algebra operators.

Moreover, matrix multiplication is interesting as a problem in its own right,
and the research community has used a lot of effort in solving it in an efficient
way. The mathematical structure of the problem is rich enough that we can
hope to find some aspects that have not yet been explored.

Example 1.1.7. We associate a vector of characteristics to each car. For con-
currency reasons, we want to compute the similarity amongst two kinds of cars
on the basis of the gadgets they provide. This will allow us to differentiate our
products with respect to other producer and within the own range of cars of-
fered. This problem is very easily represented by multiplying the characteristic
vectors of distinct models of cars. ◦

1.2 This thesis

As introduced in the previous sections, massive data require fast and space
efficient algorithms. Still, it does not always suffice to just carry on the com-
putation on the data in the form they are given. Often, the information is
contained in some aggregation of the data. It is the same as in industrial prod-
ucts, where starting from the raw materials, a finished product comes out. This
does not happen in a single step of production, the process usually goes through
several phases of manipulation, where several semiprocessed products are pro-
duced. Often, the interesting information has to be found and extracted from
these semiprocessed products rather than from the raw material.

A semiprocessed product often occupies much more space than the raw ma-
terials used for producing the semiprocessed product itself. As an example,
one can think of car production, where the raw materials are metal and raw
chemicals for plastic, and a semiprocessed product is the car frame and some
of the plastic interiors. Moreover, producing those pieces is not an immediate
task and, before they are actually ready to be put on the assembly line to get
the car finished, a lot of time is necessary.

All this easily translates in terms of algorithms and complexity. Massive data
are, tautologically, massive, so it is already challenging to deal with them in a
space and time efficient way. When the data in their raw form are not sufficient
to produce the output and they instead need to be aggregated, or semiprocessed
to bind the idea to the former paragraph scenario, the explosion in size might
be unbearable. This means that not all the semiprocessed products must be
produced, because it would be just too expensive, both in terms of time and
space.

For this reason this work has the title “Sampling implicit sets: A new data
mining technique”: the sampling, which is one of the necessary techniques for
dealing with massive datasets, happens on the implicit stock of semiprocessed
products, without actually producing them all. As a concrete example we can
think of customers who, in the context of market research, have expressed a
list of characteristics that they would like to find in a car. Then, instead of
producing cars with all possible combination of characteristics, such as colour of
the frame and electric engine, we produce cars having some of the combinations
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of characteristics: The ones that customers have expressed as important to have
together. Notice that the sentence “important to have together” requires, asks
for a proper semantic

For all the informally described problems, we use the technique of computing
the output without producing what would be an overwhelming amount of data.

1.3 Our results

We now describe in a more precise way the problems we address, providing
some terminology and defining some concepts and functions that will be used
in the following chapters. These definitions will also be given in the appropriate
chapters, but they are necessary at this point in order to have a mathematical
idea of the problems we will present and the tools to provide a description of
how they relate together.

The reader of the section is supposed to have some basic knowledge of com-
puter science and theory of computing, since many definitions are skipped and
concepts are assumed to be well known.

Each following sub-section will detail what has been described in general in
Section 1.1.

1.3.1 Similarity mining - a two passes approach

We explain here what has already been described in an informal fashion in
Section 1.1.1.

The input of this problem is a collection of subsets T1, . . . , Tm of a set, or
universe, U = [n] = {1, . . . , n}. The letter T for the elements of the collection
stands for transaction, which is a term borrowed from the world of databases.
The problem is to produce those 2−itemsets of elements of U that are highly
similar, according to some similarity measure. It is evident how this problem
can be trivially solved, producing the set

(
U
2

)
of all the 2−itemsets of U and

studying its composition. It is evident, as well, that this approach, when the
cardinality n of U is large, is not feasible, since it would produce

(
n
2

)
pairs. Still,

the implicit set from which we will sample, is exactly
(
U
2

)
. It is opportune to

remark that |
(
U
2

)
| = O(n2). The main idea we will exploit is to spend, for a

pair, a time that is proportional to the similarity of the pair itself. In particular
this will translate in sampling a pair a number of time that is, in expectation,
proportional to the similarity it holds. Relying on this fact, it will be possible
to select, in a successive phase, those pairs that have been sampled frequently
enough, since those will be the pairs that have a high similarity.

A more precise definition of similarity will be provided in the chapter that
describes the algorithm. Here, it suffices to say that the similarity functions
that we will address, depend linearly on the number of occurrences of a pair
and in inverse proportion to the number of occurrences of the single items the
pair contains. Just as an example, we can think of a similarity measure that
is sometimes actually used, called support. Support measures the number of
occurrences of a pair, so the more frequently a pair appears in the input, the
more similar it is considered, according to this measure. A technique in this case
would be to sample uniformly from the transactions. The sampling probability
should be chosen as a function of the minimum support ∆ we are interested
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in. In particular, we can choose a sampling probability ρ = µ/∆, so that a
pair whose support is equal to ∆ will be sampled µ times. Moreover, pairs
having support much smaller than ∆ would be unlikely to be sampled even
once. Besides the time necessary for reading the input, using a smart way of
carrying out the sampling, we could spend time only on pairs that are actually
sampled. In this way, we would obtain a random sample of the pairs such that
a pair appears in the sample a number of times, in expectation, proportional to
its similarity, that is its support s times the sampling probability ρ. This would
give us a good idea of the high frequency pairs. Notice that false positives, pairs
appearing in the result set that have support below a the threshold, can be
ruled out just by means of a second pass over the data. In this way it would be
possible to compute the actual support of the pairs to be output. This approach
is always feasible when multiple passes over the data are possible, in this way
turning false positives in a false problem.

For general similarity measures, a smarter sampling technique will be nec-
essary. The algorithm will take time O(mb + τ

∑
0<i<j≤n s(i, j)), where s(i, j)

is the similarity measure applied to the pair {i, j}, mb is the input size and τ
is an input parameter. τ can be thought of as a constant that is used to tune
the error probability of the algorithm; that is, the number of false positives and
negatives. Looking at the time complexity we can see that the running time is
either dominated by reading the input or is proportional to the sum of pairwise
similarities, that is what we are trying to evaluate.

Chapter 2 contains the detail of what we described in this sub section.

1.3.2 Similarity mining - a streaming approach

We explain here what has been already described in an informal fashion in
Section 1.1.2 with respect to sequential algorithms.

A variant of the problem described in the previous section considers the
collection of subsets as a stream of transactions. According to what we said
in Section 1.1.2 and what we will define more formally in Section 1.4.2, in the
streaming model we cannot store the whole input and once we have dealt with
one of the elements in the stream, that piece of the input is lost. In this setting,
what we can store, is one transaction at a time. The implicit subset is the same
of the former problem, namely

(
U
2

)
, since we will focus again on pairs. It is quite

evident that in this setting, since a second pass over the data is just impossible,
producing candidates to be output is not an option and the algorithm must go
directly for the interesting pairs.

The algorithm will exploit the same sampling technique and idea of the two
passes version, adapted to deal with the constraints that streaming imposes.

Another question that arises quite naturally in this setting is how much space
an algorithm must use in order to produce the desired output. The answer to is
that no algorithm, even a randomized one, can do better than the trivial ones
when trying to find the most similar pair in the input. For this reason, in order
for the algorithm presented to be more efficient than that, we will make the
assumption that the transactions in the stream, arrive in random order.

The running time of the algorithm is a logarithmic factor away from lin-
ear, with high probability. In particular the time complexity has the form
O(mb log(mn)), where, again, mb is the input size, and m is the length of the
stream. Within this time bound, the algorithm is able to spot pairs appearing
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frequently enough, a so called support threshold, and having similarity higher
than a limit that depends either on n or on the input size. For what concerns
the space usage, the dependency is either on the number n of distinct elements
in the universe U , or on a parameter s. The algorithm, after sampling in a way
that is similar to the one of Section 1.3.1, re-samples the pairs using a data
structure that has size s, and influences the precision of the whole algorithm.

Chapter 4 contains the details of the algorithm that we sketched in this sub
section.

1.3.3 Frequent paths in graphs

A more formal definition of the graph mining problem described in Section 1.1.3
is: Given a directed acyclic graph G = (V,E) and a labelling of the nodes in V ,
find those traces of labels of length at most m, so paths of nodes of length at
most m, such that they appear frequently in the graph. A question is: What is
in this case the set from which we want to extract the frequent traces? This is
the multiset Sm of all traces of length at most m existing in the graph, so the
set of all subpaths of length at most m existing in the graph. The cardinality of
this set is exponential in the maximum length m of traces that we allow. The
algorithm we will present, relies on the observation that traces have an inner
recursive structure that can be exploited. As a matter of fact, let Si(v) denote
the multiset of traces corresponding to paths (of length at most i) starting in a
node v ∈ V . Then we can write:

Si(v) = {label(v)} × (ε ∪
⋃

v′|(v,v′)∈E

Si−1(v′))

where ε is the empty trace. So, if m is the maximum length of a trace we are
interested in, we can write:

Sm =
⋃

v∈V

Sm(v).

From Sm we will sample traces recursively and in a way that a branch of recur-
sion will produce at least one sample. This fact will help us in bounding the
running time used by the sampling, binding it to the number of samples taken.
It is worth remarking that the running time will be independent of the total
size of Sm.

Chapter 6 contains the details of what we depicted in this sub section.

1.3.4 Structure prediction

We explain here what has been already described in an informal fashion in
Section 1.1.4.

The matrix multiplication problem we address consists in estimating the
number of non zero entries in the result of the product of two boolean matrices.
This setting captures the nature of various problems in databases and computer
algebra. As a matter of fact, it is fairly intuitive to understand the formulation
of the problem basing the description on databases foundations. Moreover, it
can be used for data mining purposes in order to compute the support similarity
measure introduced in Section 1.3.1. It also allows for estimating the space usage
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A =


1 1 1
0 1 1
1 0 0
1 1 0

 , AT =

 1 0 1 1
1 1 0 1
1 1 0 0

 ,

Ã = A×AT =


3 2 1 2
2 2 0 1
1 0 1 1
2 1 1 2

 .

Figure 1.1: The rows of A represent the items, while the columns represent
the transactions. The elements of Ã are the support of single elements on the
diagonal, and of pairs in other positions.

of a run of Agrawal and Srikant’s A-Priori algorithm [6]. This algorithm, as a
first step, produces the set of all pairs that can be generated by a collection of
transactions. This number of pairs can be estimated running our algorithm on
matrices representing

Consider a 0 − 1 matrix A in which each row represents an item and each
column a transaction. It will be ai,p = 1 if and only if item i appears in
transaction p. Then, computing Ã = A × AT , we get that for an item i, sup-
port(i) = ãi,i. Because Ã is symmetric, support(i, j) = ãi,j = ãj,i for any item
j 6= i. Figure 1.1 gives an example of what we have just discussed. An inter-
esting application of this property is computing the cardinality of the result of
the natural join of two relations followed by a projection that eliminates the
columns used to join. To represent this in a mathematical fashion, consider two
tables R1 = (a, b) and R2 = (b, c) where a, b and c are sets of attributes. Using
standard relational algebra operators, what we want to compute is the cardi-
nality of R = πa,c(R1 on R2), that is, the projection of the attributes a and c of
the relation R obtained from the natural join of R1 and R2. It is immediately
clear that the difficulty lies in the fact that the result is a set, so duplicates of
the same row collapse to one and only one row. Notice that there can be as
many as |b| copies of a row once b gets projected out, where |b| stands for the
number of possible values that the set of attributes b can acquire.

In essence here the multiset from which we will sample, is the table R1 on R2,
that is, the table having all rows before the projection takes place. This table
can be very large, as of |b| · |R1| · |R2| so, again, actually computing it is not a
feasible task.

The algorithm we will present in Chapter 7 computes an approximation of
the solution with small error probability using time that is, in expectation, linear
in the size of the input, that is the sum of the number of rows of the two input
relations.

Chapter 7 multiplies the detail of what we introduced in this sub section.

1.3.5 Frequent pairs in data streams

We extend here what has been already introduced in an informal fashion in
Subsection 1.1.2 with respect to parallel algorithms.
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The problem we address consists in reporting the most frequent pairs ap-
pearing in a stream of transactions. The problem of finding frequent items in
an item stream has been deeply studied in many aspects, and several techniques
have been developed depending on the specific function that has to be computed
on the stream.

The set from which the implicit sampling is carried on is again the multiset of
all pairs contained in all transaction. However, the goal of the sampling in this
case is only achieving a small space usage by means of smart data structures.
For what concerns the time complexity, the algorithm will actually produce the
whole multiset; in order to avoid a quadratic cost, the algorithm will rely on the
use of multiple processors, splitting the stream of pairs in sub-streams that are
tackled in parallel.

In order to fulfil the requirement of small space usage and a good precision,
the algorithm composes well known techniques for streams of items, extending
them in order to be able to deal with pairs of items; moreover, the algorithm as-
sumes that the frequencies of pairs follow a Zipfian distribution. The algorithm
provides, for a space usage k, a Zipfian distribution fi = C/zi and d distinct
pairs in the stream, a constant error guarantee when reporting pairs whose fre-
quency is over a lower bound that depends on the parameters introduced before.
The error then can be made arbitrarily small by means of Chernoff bounds, at
the cost of running multiple instances of the algorithm.

1.4 Models and tools

We introduce and describe the tools that we use in our algorithms, providing
here some general and formal definitions. Besides presenting some of the con-
cepts that we will use extensively throughout the whole thesis, we provide an
overview of the scientific fields where these tools fall in. The reader who is
interested in deepening his knowledge of the topics that we touch on, in the
remainder of the chapter, will find useful references inside the sections.

1.4.1 Randomized algorithms

In the proceeding we often referred to the need of performing a sampling of the
implicit sets. This is necessary since the size of those sets is simply too large
to actually deal with. In this subsection, we will introduce and discuss some
characteristics of randomized algorithms in general. For a deeper description
and coverage of the topic, the book of Motwani and Raghavan [74] is a precious
resource.

Randomized algorithms, besides having some remarkable practical applica-
tions such as hash tables and signatures, play an important role in theoretical
computer science. Not only they allow fast algorithms that guarantee accurate
outputs, they have also posed some of the most interesting questions in the field;
for example, we can think of the complexity class BPP containing properly the
complexity class P or not. On the other hand, randomisation often hides the
structure of a problem, relying instead on the properties of some probability
distribution; in this cases, even though it provides efficiency, it does not open
to any real understanding of the characteristics of the problem at hand.

Randomized algorithms can be classified into two main categories:
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Monte Carlo: algorithms in this family make errors, which means that the
answer provided by the algorithm may be the wrong one; these algorithms
can present errors of two different kinds:

One sided error: this kind of algorithm can produce errors only in one
way; for decision problems, this translates in the fact that if the
algorithm answers Yes (answers No) then the answer is correct for
sure; on the other hand, if it answers No (respectively Yes) the answer
can be wrong with some probability;

Two sided error: this kind of algorithms has not the property of the
former class. They can answer with the wrong output in all cases so
that every output has a probability larger than zero of being wrong;

Las Vegas: the other side of coin are the Las Vegas algorithms. The algorithms
in this class are always right; their drawbacks are the fact that the running
time is a random variable and in the fact that the algorithms in this class
may not, in principle, terminate; usually Las Vegas algorithms are defined
in way that imposes them to admit an upper bound on the expected
running time.

The algorithms that will be presented in this thesis are all Monte Carlo ones, in
a broader sense than the former definition admits. The problems we address are
not decision ones, so the definition above has to be adapted. Our results usually
have the form of computing an approximation of the exact solution with some
guarantee, that is, usually, being a 1 ± ε factor away from correctness. The
guarantee on the approximation holds with a small error probability, so that
the algorithms can output a solution whose quality is is worse than the one
guaranteed; the algorithms we will present are Monte Carlo in this sense, and
can make errors that are both one sided and two sided.

In the discussion that follows we will reason about computational complexity
classes. We assume one of the standard models of computation and skate over
the details and we will not define precisely what a complexity class is at all. We
assume the reader is familiar with these concepts. Also it would be very space
consuming to detail precisely the tools necessary for more precise considerations
about computational complexity. The reader who wants to go deeper in this
topic can find plenty of discussions in some of the most interesting books that
have been published during the short life of computer science. We signal here
just a selection of these excellent books: [77, 10, 11, 49, 56, 42].

Polynomial time Las Vegas problems define the class ZPP = RP ∩ Co-
RP, where RP is the class of decision problems that admit a polynomial time
Monte Carlo algorithm with one sided error on acceptance and error probability
smaller than or equal to 1/2. So Co-RP contains those problem admitting the
inverse error behaviour with respect to those in RP, that are algorithms that
can error on rejection with error probability smaller than 1/2. From the former
considerations it is clear how to come up with a Las Vegas algorithm for a
problem, given RP and Co-RP: Just run two algorithms, one from each class,
for the problem and as soon as they agree on an answer, that answer will be
correct for sure. This also gets it across of why the running time of the obtained
Las Vegas algorithm is a random variable and does not admit an upper bound
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P
ZPP

Co-RP RP

Co-NP NP

BPP

Figure 1.2: The structure of some of the randomized and deterministic com-
plexity classes. The inclusion are never strict, so, for instance, P ⊆ BPP.

for the worst case: The two algorithms may run for an infinite number of times
without agreeing on the result.

In order to have a better idea of the relationships between complexity classes,
we introduce the class BPP. This class is defined as including those decision
problems that admit polynomial time randomized algorithms that output the
correct answer with probability at least 3/4.

It is quite evident that ZPP ⊆ RP ⊆ BPP. Both the classes RP and BPP
are meaningful if and only if there exist a perfect source of randomness that
the algorithms can exploit. This question is actually relevant and refers to the
existence of suitable and proper pseudorandom generators. Without entering
the theory and the results concerning this topic, it is worth noticing that this
entities are intensively studied and are object of rather vivid discussions in the
theoretical computer science community (see for example [48, 63, 50]. Figure 1.2
gives a visual idea of how some of the complexity classes relate each other. This
whole hierarchy of complexity classes is actually very intriguing and poses some
of the most interesting problems in current theoretical computer science:

• P = BPP?

• BPP ⊆ NP?

• RP = Co-RP?

• RP ⊆ NP ∩ Co-NP? (This would be implied by proving the former);

The first point has been the topic of many research papers during the years,
and solving it would be a huge step forward in science.

In order to classify our algorithms we have to refer to optimisation prob-
lems rather than decision ones. In this framework, our algorithms all present a
FPRAS (fully polynomial time randomized approximation scheme). As a mat-
ter of fact, the time bounds we will present are polynomial, even linear or quasi
linear, in the input size and have a dependency on the approximation parameter
ε that is polynomial in ε−1.
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Streaming problems have been a fruitful field for randomised algorithms. It
is arguably infeasible to deal with streaming problems without using randomisa-
tion. Streaming has seen a huge increase in popularity in recent years. In fact,
many papers on streaming have started to flow after the seminal work from
Alon, Matias and Szegedi [7] has raised again the level of interest in the topic,
after some years of calm. We will describe here the streaming framework in
what follows. The description will be repeated later in the appropriate chapters
when needed, in order to point out the salient elements of the model.

1.4.2 Streaming

In this sub section we give a formal definition of stream and characterise the
streaming framework. For a wider, deeper coverage of the topic the reader can
refer to [12, 75]. The streaming framework possesses the following characteris-
tics:

• A stream is composed of data elements that arrive in an on-line2 fashion;

• The order in which elements arrive is not under the control of the algo-
rithm;

• The length of the stream is unknown and usually considered unbounded;

• Once an element of the data stream is processed, it is lost and cannot be
accessed again, unless it has been explicitly recorded in memory.

A formal definition of a stream can be given according to several models.

Definition 1.4.1. An input stream a1, a2, . . . arrives sequentially, one item at
the time. The elements of the stream are such that ∀i . ai ∈ {1, . . . , N}. This is
a set of objects, which can be pairs and are not necessarily numbers. We can
think of the elements of the universe {1, . . . , N} as a mapping of values in R
The sequence of items describes an underlying signal S. The signal is essentially
mapped by the elements of the stream, so that S can be considered a function
such that: S : {1, . . . , N} → R.

According to how the stream represents S we have the following definitions:

Time series model: ∀i . ai = S[i]; this means that each element ai of the
stream is the representation of the ith element of the signal;

Cash register model: ∀i . ai = (j, Ii), I ≥ 0, so that Si[j] = Si−1[j] + Ii; this
means that Si represents the state of the signal after the ith element of
the stream has been seen; this model is quite popular and often used in
literature when addressing streaming problems;

Turnstile model: ∀i . ai = (j, Ui), so that Si[j] = Si−1[j] + Ui; the difference
with the former model stands in the fact that, in this case, the state of the
signal gets updated and not only incremented, since Ui can be positive,
negative or zero; there is a variant to this model, called the strict turnstile
model, where it must be true that S[j] ≥ 0. ◦

2On-line is a setting where the input is not know a priori, and is discovered as elements
arrive.
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Our algorithms use both the time series (Chapters 4,7) and the cash register
models (Chapters 2,4,6). The former will be used when we do not care about the
frequency of elements but will focus only on single appearances, while the second
will be used whenever statistics about frequencies are necessary. It is interesting
to point out how our algorithms often generate a stream from the input. Such a
generated stream, often falls in the cash register model. Some of our algorithms
could be extended to use the turnstile model, essentially considering a fully
dynamic scenario. For example, consider the problem presented in Section 1.3.2,
augmenting it in order to take into account the deletion of a transaction. This
would be captured and naturally represented by the turnstile model, just by
using negative updates.

The performances of an algorithm that computes some function of a signal
can be measured in several ways:

• Time used per element ai;

• Space used by the algorithm at any give time t;

• Total time used to compute the function at any given time t.

In this framework, we usually aim for (i) a very small time per element, rep-
resenting the fact that data arrive at a high pace, (i) small space, representing
the fact that the algorithm runs on limited hardware, (i) and small total time,
which is not a surprising desideratum.

In order to achieve a succinct space usage, it is necessary to use algorithmic
techniques to represent the input without storing it explicitly; that is, maintain a
synopsis of the input. In order to adhere to this requirement, various approaches
can be used, also depending on the function to be computed on the signal:

Random samples: This technique is the most immediate one can think of;
noticeably it allows for further synopses to be computed on top of the
sample. A good example are the frequent items algorithms; in this algo-
rithms sampling is often used in connection with a data structure that
keeps track of the counts of a subset of elements from the stream; these
algorithm are also called counter-based, for obvious reasons. We will use
some of these techniques in the algorithms that we will present in what
follows;

Sketching: This technique has been introduced by the aforementioned paper
of Alon, Matias and Szegedy [7]; the technique consists of maintaining a
summary of the data that is able to represent some qualities of the stream
that the algorithm wants to compute. The summary that is maintained
has not, usually, an intuitive structure; it looks instead fairly involved
from a semantic perspective, yet simple and easy to maintain. This kind
of technique is particularly suited when the goal is to compute moments
of the stream or, equivalently, norms of a vector in the turnstile or cash
register model. There are also remarkable examples of the use of sketching
in a frequent items scenario;

Histograms: This technique aims to represent the distribution of values in the
stream, keeping the space usage within reasonable boundaries. Histograms
allow for an even finer sub-classification; we will not detail the various
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techniques but the interested reader can refer to the cited literature for
further explanations and accurate references:

• V-optimal histogram;
• Equi-Width histogram;
• End-biased histogram.

Wavelets: This technique represents the signal using a suitable basis of or-
thogonal vectors; distinct wavelets differ according to how the basis is
chosen;

Sliding windows: This is a largely unexplored area, where the academic lit-
erature is sparse. One area where it has been used to some extent, is
data mining, as discussed in Section 4.1. The idea behind this model is to
consider only the more recent elements in the stream, since those are good
candidates for computing the goal function; the reason why the younger
elements are considered more interesting is that they may hold a higher
influence if they will continue to appear in the part of the stream yet to
come. This approach makes sense only in some specific scenarios, where
the past part of the stream is less relevant than the recent part.

Our algorithms use both random samples and sketching techniques, by maintain-
ing counting data structures for the former (Chapters 2, 4 and 6) and synopsis
data structures for the latter (Chapters 7 and 5). The other techniques are
reported for the sake of completeness and to give the reader an overview of the
field.

Another interesting aspect of streaming scenarios, arguably the most inter-
esting aspect, is that they allow for many techniques to be used in order to
compute lower bounds. These techniques fall, in essence in three main cate-
gories:

Compressibility: Given a problem Q and a prefix of the stream P , suppose
that such prefix is stored, in some compressed way, in a data structure A;
we could then craft a suffix S of the stream such that, solving Q on P ◦S
could be used to reconstruct exactly P from A. Since the space used by A
can compress only a subset of prefixes, the lower bound on the size of A
follows; we use this technique in Chapter 5 to give a proof of infeasibility;

Communication complexity: This is a rather natural way of finding lower
bounds for streaming algorithms. Usually one can reduce a two party
protocol to the streaming problem, and since the protocol needs a certain
amount of communication, the lower bound follows; we use his technique
in Chapter 4 to get an unavoidable space usage need for the problem of
mining similar pairs in a stream of transactions;

Reduction: This is the classic and well known technique, used in several dis-
tinct fields of theoretical computer science.

Now we will start the description of the techniques we developed in order
to carry on sampling on implicit sets. All the algorithms presented are ran-
domized Monte Carlo algorithms, using streaming tools or being themselves
streaming algorithms. The main innovation of all the algorithms, stands in the
way the sampling is carried out on the implicit set, and in the way we exploit
the structure of the set itself.
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Chapter 2

BiSam - a Two Passes
Approach

Sampling-based methods have previously been proposed for the problem of find-
ing interesting associations in data, even for low-support items. While these
methods do not guarantee precise results, they can be vastly more efficient
than approaches that rely on exact counting. However, for many similarity
measures no such methods have been known. In this chapter we show how a
wide variety of measures can be supported by a simple biased sampling method.
The method also extends to find high-confidence association rules. We demon-
strate theoretically that our method is superior to exact methods when the
threshold for “interesting similarity/confidence” is above the average pairwise
similarity/confidence, and the average support is not too low. Our method is
particularly advantageous when transactions contain many items. We confirm
in experiments on standard association mining benchmarks that we obtain a
significant speedup on real data sets. Reductions in computation time of over
an order of magnitude, and significant savings in space, are observed.

2.1 Introduction

A central task in data mining is finding associations in a binary relation. Typ-
ically, this is phrased in a “market basket” setup, where there is a sequence
of baskets (from now on “transactions”), each of which is a set of items. The
goal is to find patterns such as “customers who buy diapers are more likely to
also buy beer”. There is no canonical way of defining whether an association
is interesting — indeed, this seems to depend on problem-specific factors not
captured by the abstract formulation. As a result, a number of measures exist:
In this chapter we deal with some of the most common measures, including
Jaccard [28], lift [17, 4], cosine, and all_confidence [66, 76]. In addition, we are
interested in high-confidence association rules, which are closely related to the
overlap coefficient similarity measure. We refer to [52, Chapter 5] for general
background and discussion of similarity measures.

In the discussion we limit ourselves to the problem of binary associations,
i.e., patterns involving pairs of items. There is a large literature considering
the challenges of finding patterns involving larger itemsets, taking into account
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the aspect of time, multiple-level rules, etc. While some of our results can
be extended to cover larger itemsets, we will for simplicity concentrate on the
binary case. Previous methods rely on one of the following approaches:

1. Identifying item pairs (i, j) that “occur frequently together” in the trans-
actions — in particular, this means counting the number of co-occurrences
of each such pair — or

2. Computing a “signature” for each item such that the similarity of every pair
of items can be estimated by (partially) comparing the item signatures.

Our approach is different from both these approaches, and generally offers
improved performance and/or flexibility. In some sense we go directly to the
desired result, which is the set of pairs of items with similarity measure above
some user-defined threshold ∆. Our method is sampling based, which means
that the output may contain false positives, and there may be false negatives.
However, these errors are rigorously understood, and can be reduced to any
desired level, at some cost of efficiency — our experimental results are for a false
negative probability of less than 2%. The sampling method that we describe is
the main novelty of the approach. It samples, as it will be clear in the following,
pairs from the multiset of all pairs that appear in all transactions.

The main focus in many previous association mining publications has been
on space usage and the number of passes over the data set, since these have been
recognized as main bottlenecks. We believe that time has come to also carefully
consider CPU time. A transaction with b items contains

(
b
2

)
item pairs, and if b

is not small the effort of considering all pairs is non-negligible compared to the
cost of reading the itemset. This is true in particular if data resides in RAM, or
on a modern SSD that is able to deliver data at a rate of more than a gigabyte
per second. One remedy that has been used (to reduce space, but also time) is
to require high support, i.e., define “occur frequently together” such that most
items can be thrown away initially, simply because they do not occur frequently
enough (they are below the support threshold). However, as observed in [28]
this means that potentially interesting or useful associations (e.g. correlations
between genes and rare diseases) are not reported. We consider instead the
problem of finding associations without support pruning. Of course, support
pruning can still be used to reduce the size of the data set before our algorithms
are applied.

In the following sections we first discuss the need for focusing on CPU time
in data mining, and then elaborate on the relationship between our contribution
and related works.

2.1.1 I/O versus CPU

In recent years, the capacity of very fast storage devices has exploded. A typical
desktop computer has 4–16 GB of RAM, that can be read (sequentially) at a
speed of at least 800 million 32-bit words per second. The flash-based ioDrive
Duo of Fusion-io offers up to over a terabyte of storage that can be read at
around 400 million 32-bit words per second. Thus, even massive data sets can
be read at speeds that make it challenging for CPUs to keep up. An 8-core
system must, for example, process 100 million (or 50 million) items per core per
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second. At 3 GHz this is 33 clock cycles (or 66 clock cycles) per item. This means
that any kind of processing that is not constant time per item (e.g., using time
proportional to the size of the transaction containing the item) is likely to be
CPU bound rather than I/O bound. For example, a hash table lookup requires
on the order of 5-10 ns even if the hash table is L2 cache-resident (today less
than 10 MB per core). This gives an upper limit of 100-200 million lookups per
second in each core, meaning that any algorithm that does more than a dozen
hash table operations per item (e.g. updating the count of some item pairs)
is definitely CPU bound, rather than I/O bound. In conclusion, we believe
it is time to carefully consider optimizing internal computation time, rather
than considering all computation as “free” by only counting I/Os or number of
passes. Once CPU efficient algorithms are known, it is likely that the remaining
bottleneck is I/O. Thus, we also consider I/O efficient versions of our algorithm.

2.1.2 Previous work

Exact counting of frequent itemsets

The approach pioneered by the A-Priori algorithm [5, 6], and refined by many
others (see e.g. [47, 70, 18, 78, 80]), allows, as a special case, finding all item
pairs (i, j) that occur in more than k transactions, for a specified threshold k.
However, for the similarity measures we consider, the value of k must in general
be chosen as a low constant, since even pairs of very infrequent items can have
high similarity. This means that such methods degenerate to simply counting
the number of occurrences of all pairs, spending time Θ(b2) on a transaction
with b items. Also, generally the space usage of such methods (at least those
requiring a constant number of passes over the data) is at least 1 bit of space
for each pair that occurs in some transaction. An experimental comparison for
some 2004 state-of-the-art algorithms for frequent itemset mining is carried out
in [46].

The problem of counting the number of co-occurrences of all item pairs is
in fact equivalent to the problem of multiplying sparse 0-1 matrices. To see
this, consider the n×m matrix A in which each row Ai is the incidence vector
having 1 in position p iff the ith element in the set of items appears in the pth
transaction. Each entry Ãi,j of the n × n matrix Ã = A × AT represents the
number of transactions in which the pair (i, j) appears. The best theoretical
algorithms for (sparse) matrix multiplication [8, 30, 88] scale better than the
A-Priori family of methods as the transaction size gets larger, but because of
huge constant factors this is so far only of theoretical interest.

Sampling methods

Toivonen [82] investigated the use of sampling to find candidate frequent pairs
(i, j): Take a small, random subset of the transactions and see what pairs
are frequent in the subset. This can considerably reduce the memory used
to actually count the number of occurrences (in the full set), at the cost of
some probability of missing a frequent pair. This approach is good for high-
support items, but low-support associations are likely to be missed, since few
transactions contain the relevant items.

Cohen and Lewis [29] present an algorithm for approximate matrix multipli-
cation that can be used for finding similar pairs (in the same approximate sense
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that we pursue here) according to some similarity measures such as cosine and
lift. In fact, for these similarity measures their algorithm will produce estimator
random variables with the same distribution as ours (binomial), in a similar
time bound. Our approach handles more general similarity measures, uses less
space in addition to the input, and we couple the sampling with a space-efficient
algorithm for finding the most similar pairs.

Locality-sensitive hashing

Cohen et al. [28] proposed the use of another sampling technique, called min-
wise independent hashing , where a small number of occurrences of each item (a
“signature”) is sampled. This means that occurrences of items with low support
are more likely to be sampled. As a result, pairs of (possibly low-support) items
with high jaccard coefficient are found — with a probability of false positives and
negatives. A main result of [28] is that the time complexity of their algorithm
is proportional to the sum of all pairwise jaccard coefficients, plus the cost of
initially reading the data. Our main result exactly the same form, but has the
advantage of supporting a wide class of similarity measures.

Min-wise independent hashing belongs to the class of locality-sensitive hash-
ing methods [58]. Another such method was described by Charikar [23], who
showed how to compute succinct signatures whose Hamming distance reflects
angles between incidence vectors. This leads to an algorithm for finding item
pairs with cosine similarity above a given threshold (again, with a probability of
false positives and negatives), that uses linear time to compute the signatures,
and Θ(n2) time to find the similar pairs, where n is the number of distinct
items in all transactions. Charikar also shows that many similarity measures,
including some measures supported by our algorithm, cannot be handled using
the approach of locality-sensitive hashing.

Deterministic signature methods

In the database community, finding all pairs with similarity above a given thresh-
old is sometimes referred to as a “similarity join.” Recent results on similarity
joins include [9, 24, 85, 86]. While not always described in this way, these
methods can be seen as deterministic analogues of the locality-sensitive hashing
methods, offering exact results. The idea is to avoid computing the similarity
of every pair by employing succinct “signatures” that may serve as witnesses for
low similarity. Most of these methods require the signatures of every pair of
items to be (partially) compared, which takes Ω(n2) time. However, the worst-
case asymptotic performance appears to be no better than the A-Priori family of
methods. A similarity join algorithm that runs faster than Ω(n2) in some cases
is described in [9]. However, this algorithm exhibits a polynomial dependence
on the maximum number k of differences between two incidence vectors that
are considered similar, and for many similarity measures the relevant value of k
may be linear in the number m of transactions.

Larger significant itemsets

Wu et al. [84] consider mining of significant itemsets according to a measure
related to lift. In particular, their approach extends to negative associations.
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Zhang et al. [90] use the same approach, presenting also a fuzzy variant. How-
ever, both approaches require exact counting of the number of co-occurrences
of all itempairs (where each item is above the support threshold). Therefore the
performance for finding significant/similar pairs is similar to the performance
of other exact counting methods.

Streaming algorithms

In Chapter 4, a modification of the technique presented in this chapter finds
similar pairs in a randomly ordered stream of transactions. In the streaming
framework one can see and store only one transaction at a time. In order to
tackle the difficulties of the new environment in an efficient fashion, that is
avoiding to sample too many pairs, a support threshold is used. Moreover the
sampling is carried out in a slightly different way, in order to guarantee that
it happens in “real time”. Also, we replace the final step of the algorithm by
the method of [35] that is particularly well suited to the setting of randomly
ordered data. Chapter 4 also contains a lower bound on the space that every
algorithm mining similar k-itemsets must use, in a worst case scenario, extending
a previous lower bound in [34].

2.1.3 Our results

As noted previously in the chapter, we present a novel sampling technique to
handle a variety of measures (including jaccard, lift, cosine, and all_confidence),
even finding similar pairs among low support items. The idea is to sample
a subset of all pairs (i, j) occurring in the transactions, letting the sampling
probability be a function of the supports of i and j, such that the expected
number of times a pair is sampled is proportional to s(i, j). Given a threshold
∆ the sampling rate can be scaled such that any pair with similarity above ∆ is
likely to be sampled several times, whereas pairs with similarity “far below” ∆
are likely not to be sampled. The number of times a pair is sampled follows a
binomial distribution, which allows us to use the sample, in a filtering phase, to
infer which pairs are likely to have similarity above the threshold, with rigorous
bounds on false negative and false positive probabilities.

A näive implementation of this idea would still use quadratic time for each
transaction, but we show how to do the sampling time that is linear in the
size of the transaction and number of sampled pairs. In turn, the expected
number of samples is proportional the sum of all pairwise similarities between
items. We will argue that this running time is the best one could hope for with
no conditions on the distribution of pairwise similarities. Under reasonable
assumptions, e.g. that the average support is not too low, this gives a speedup
of a factor Ω(b), where b is the average size of a transaction, compared to exact
counting methods.

We show in extensive experiments on standard data sets for testing data
mining algorithms that our approach (with sampling rate resulting in a 1.8%
false negative probability) gives speedup factors in the vicinity of an order of
magnitude, as well as significant savings in the amount of space required, com-
pared to exact counting methods. We also present evidence that for data sets
with many distinct items, our algorithm may perform significantly less work
than methods based on locality-sensitive hashing 2.4.1.
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2.1.4 Notation and framework

Let T1, . . . , Tm be a sequence of transactions, Tj ⊆ [n] = {1, . . . , n}. For i =
1, . . . , n let Si = {j | i ∈ Tj}, i.e., Si is the set of occurrences of item i.

We are interested in finding associations among items, and consider a frame-
work that captures the most common measures from the data mining literature.
Specifically, we can handle a similarity measure s(i, j) if there exists a function
f : N×N→ R+ that is non-increasing in both parameters, and such that:

s(i, j) = |Si ∩ Sj | f(|Si|, |Sj |) .

Table 2.1 shows particular measures that fall within this framework. The mono-
tonicity requirement on f holds for any reasonable similarity measure: It says
that for a given value of |Si ∩ Sj |, adding an occurrence of i or j should not
increase the similarity. In the following we assume that f is computable in
constant time, which is clearly a reasonable assumption for the measures of
Table 2.1. In the time analysis we will further assume that f is polynomial in
the sense that changing the input by a constant changes the value of f by a
constant, specifically that f(c1, c2) = O(f(c1/2, c2/2)) for all c1, c2. This clearly
holds for all similarity measures we consider, and arguably for any reasonable
similarity measure.

We end with some observations on other measures that can be handled
directly or indirectly by our framework.

Composite measures

Notice that if f1(|Si|, |Sj |) and f2(|Si|, |Sj |) are both non-increasing, then any
linear combination αf1 + βf2, where α, β > 0, is also non-increasing. Similarly,
min(αf1, βf2) is non-increasing. This allows us to use BiSam to directly search
for pairs with high similarity according to several measures (corresponding to
f1 and f2), e.g., pairs with cosine similarity at least 0.7 and lift at least 2.

Handling the Jaccard measure

We observe the following relationship between the jaccard and dice similarity
measures: sjaccard(i, j) = sdice(i, j)/(1− sdice(i, j)). Observe that sjaccard grows
monotonically with sdice, and that the derivative wrt. sdice is in the range [1; 4].
This means that most questions about jaccard similarity can be translated into
questions about dice similarity. For example, if we are interested in all pairs
with a certain jaccard similarity, this translates directly into all pairs with a
certain dice similarity.

2.2 The BiSam algorithm

For a given parameter τ > 0 our goal is to sample pairs of items such that (i, j)
is sampled τ · s(i, j) times in expectation. Also, we want the occurrences of an
item pair to be sampled independently, such that the number of samples follow
a (highly concentrated) binomial distribution.

The output of our algorithm, named BiSam (for biased sampling), will be
an unordered sequence of samples. It will be convenient to work with weighted
samples, i.e., with each sampled pair we associate a positive real number (which
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Measure s(i, j) f(|Si|, |Sj |)

lift m
|Si∩Sj |
|Si||Sj | m/(|Si| · |Sj |)

cosine |Si∩Sj |√
|Si||Sj |

1/
√
|Si| · |Sj |

all_confidence |Si∩Sj |
max(|Si|,|Sj |) 1/ max(|Si|, |Sj |)

dice |Si∩Sj |
|Si|+|Sj | 1/(|Si|+ |Sj |)

overlap_coef |Si∩Sj |
min(|Si|,|Sj |) 1/ min(|Si|, |Sj |)

Table 2.1: Some measures covered by our algorithm and the corresponding func-
tions. Note that finding all pairs with overlap coefficient at least ∆ implies finding
all association rules with confidence at least ∆. The Jaccard similarity measure
can be handled via the dice measure, as argued in Section 2.1.4.

will be at least 1, but not necessarily integer). We define the number of occur-
rences of a pair (i, j) as the sum of the associated numbers.

We observe that all measures in Table 2.1 are symmetric, s(i, j) = s(j, i),
so it suffices to sample either (i, j) or (j, i). Our pseudocode will make this
optimization, by dealing with sets {i, j}, but can easily be modified to also
handle asymmetric measures.

2.2.1 Algorithm idea

Algorithm 2.1 shows pseudocode for BiSam. In an initial pass over the data it
computes item support counts, stored in a (hash) map c. For convenience, we
precompute item counts rounded down to the nearest power of 2, stored as c′.

After the initial pass, the algorithm iterates through the transactions once
more. For each transaction Tt, some number of size-2 subsets of Tt are output,
with a weight associated with each pair. The processing of a transaction starts
with sorting the items according to value of c′, i.e., they are “roughly sorted”
according to support. Below, we discuss how this can be done in linear time by
exploiting that c′ has only dlog me possible distinct values.

The main loop of the algorithm, Lines 4-16, outputs those pairs {Tt[i], Tt[j]}
for which f(c(Tt[i]), c(Tt[j]))τ > r, where r is a random real number in [0; 1).
This can be seen as follows. For each value of i the algorithm iterates through
j = i + 1, i + 2, . . . until j = |Tt| or f(c′(Tt[i]), c′(Tt[j]))τ ≤ r. In both cases we
can conclude, since f is non-increasing, that no more pairs with the current value
of i should be reported. The total time for the outer loop, Line 7, is O(|Tt|),
and the time for the inner loop, Lines 9-14, is proportional to the number of
pairs {i, j} for which f(c′(Tt[i]), c′(Tt[j]))τ < r.

A pair {Tt[i], Tt[j]} is sampled with probability min(1, f(c(Tt[i]), c(Tt[j]))τ).
In cases where we sample with probability less than 1, we associate a weight of 1
with the sample; otherwise we assign the weight f(c(Tt[i]), c(Tt[j])τ . In either
case, the expected weight assigned to the sample is f(c(Tt[i]), c(Tt[j])τ . Thus
we have the following:

Lemma 2.2.1. Let M(i, j) denote the total weight of the pair {i, j} in the output
of BiSam. For all pairs (i, j), where i 6= j and c(i) ≤ c(j), if f(c(i), c(j))τ < 1
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then at the end of the procedure, M(i, j) has binomial distribution with |Si ∩Sj |
trials and mean

|Si ∩ Sj |f(|Si|, |Sj |)τ = s(i, j)τ.

If f(c(i), c(j))τ ≥ 1 then at the end of the procedure M(i, j) = s(i, j)τ with
probability 1. ◦

In other words, the weight M(i, j) is an unbiased estimator for s(i, j)τ that
is tightly concentrated. This allows us to give firm guarantees on the probability
that M(i, j)/τ deviates substantially from s(i, j), as discussed in Section 2.3.1.

1: procedure BiSam(T1, . . . , Tm; f, τ)
2: c := ItemCount(T1, . . . , Tm)
3: c′ := FloorToPowerOf2(c)
4: for t := 1 to m do
5: sort Tt[] s.t. c′(Tt[j]) ≤ c′(Tt[j + 1]) for 1 ≤ j < |Tt|
6: let r be a random number in [0; 1)
7: for i := 1 to |Tt| do
8: j := i + 1
9: while j ≤ |Tt| and f(c′(Tt[i]), c′(Tt[j]))τ > r do

10: if f(c(Tt[i]), c(Tt[j]))τ > r then
11: output {{Tt[i], Tt[j]},max(1, f(c(Tt[i]), c(Tt[j]))τ)}
12: end if
13: j := j + 1
14: end while
15: end for
16: end for
17: end procedure

Algorithm 2.1: Pseudocode for the BiSam algorithm. The call to the procedure
ItemCount(·) on Line 2, returns a function (hash map) that contains the number
of occurrences of each item. The call to the procedure FloorToPowerOf2(c),
on Line 3, returns a function that is obtained from c by rounding down occurrence
counts to the nearest integer power of 2. Tt[j] denotes the jth item in transaction
number t.

2.2.2 Implementation

The best implementation of the subprocedure ItemCount depends on the re-
lationship between available memory and the number n of distinct items. If
there is sufficient internal memory, it can be efficiently implemented using a
hash table. In the following we first consider the standard model (often re-
ferred to as the “RAM model”), where the hash tables fit in internal memory,
and assume that each insertion takes constant time. Then we consider the I/O
model, for which an I/O efficient “sort-and-count” implementation is discussed
(Section 2.2.3).

The use of the standard implementation of the sorting step would require
time O(|Tt| log |Tt|). However, we observe that there are only dlog me possible
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item occurences item occurrences
i c(i) i c(i)
1 66 6 31
2 66 7 28
3 65 8 5
4 60 9 5
5 58 10 3

Table 2.2: Items in the example, with corresponding ItemCount values.

item FloorToPowerOf2 bucket item FloorToPowerOf2 bucket
i c′(i) i c′(i)
1 64 5 6 16 3
2 64 5 7 16 3
3 64 5 8 4 2
4 32 4 9 4 2
5 32 4 10 2 1

Table 2.3: The table represents the function c′ obtained by the application of the
functional FloorToPowerOf2 to the function c. Hence the elements are grouped
in 5 buckets.

values of c′, so this can be done more efficiently by bucket sorting (one bucket
per value). In case |Tt| < log m we need a few extra tricks to get a linear
time algorithm. We stress that these tricks are described for the purpose of
the theoretical result, and are unlikely to yield an advantage in practice due to
increased constant factors.

We modify standard bucket sort as follows: The buckets should be initialized
in a lazy fashion, such that we do not use time on buckets that contain no
elements. Also, when traversing the buckets to form the result we should not
spend time on empty buckets. This can be achieved by maintaining a bit vector
of length dlog me indicating which buckets are nonempty. Then the non-empty
buckets can be found in time O(|Tt|) using a constant-time least-significant-bit
computation.

Example 2.2.1. Suppose ItemCount has been run and the supports of items
1–6 are as shown in Table 2.2. Table 2.3 shows the values associated to each
element by the function c′.

Suppose now that the transaction Tt = {6, 4, 5, 3, 2, 1} is given. Note that its
items are written according to the mapping given by the function c′. Assuming
the similarity measure is cosine, τ = 14, and r for this transaction equal to 0.9,
the algorithm would sample from Tt × Tt the pairs shown in Table 2.4. ◦
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i j f(c(i), c(j))τ i j f(c(i), c(j))τ
10 9 3.61 10 2 0.99
10 8 3.61 10 1 0.99
10 7 1.52 9 8 2.8
10 6 1.45 9 7 1.18
10 5 1.06 9 6 1.12
10 4 1.04 8 7 1.18
10 3 1.00 8 6 1.12

Table 2.4: Pairs selected from Tt in the example. Notice that after realizing
the bucket pair (2, 5) does not satisfy the inequality f(c′(9), c′(3))τ > r, the al-
gorithm will not take into account the pairs of bucket (2, 4). Moreover, since
f(c′(7), c′(6))τ < r the pairs of buckets (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) and (5, 5).

2.2.3 Analysis of running time

We provide a running time analysis both in the standard (RAM) model and in
the I/O model of [3]. In the latter case we present an external memory efficient
implementation of the algorithm, IOBiSam. Let b denote the average number
of items in a transaction, i.e., there are bm items in total.

Running time in the standard model

The first part of the algorithm just goes through the input, using expected time
O(mb). The sorting of a transaction with b1 items, performed as described
above, takes O(b1) time, and in particular the total cost of all sorting steps is
O(mb). Similarly, the total cost of iterating through all transactions is O(mb)
if the cost of the while loop of Lines 9-14 is not counted.

The time for the while loop is proportional to the number of pairs {i, j} for
which f(c′(Tt[i]), c′(Tt[j]))τ < r. That is, the probability that we spend time
O(1) on the pair {i, j} is min(1, f(c′(Tt[i]), c′(Tt[j]))τ). Summing over all pairs
and all transactions we get an expected cost of at most:

∑
t

∑
{i,j}⊆Tt

f(c′(i), c′(j))τ = O

∑
t

∑
{i,j}⊆Tt

f(c(i), c(j))τ


using the assumption that f is polynomial. Reordering the terms of the sum we
get an expected cost of:∑

{i,j}

|Si ∩ Sj |f(c(i), c(j))τ =
∑
{i,j}

s(i, j)τ .

Theorem 2.2.1. Suppose we are given transactions T1, . . . , Tm, each a subset of
[n], with mb items in total, and that f is a polynomial function such that s(i, j) =
|Si∩Sj |f(|Si|, |Sj |). Then the expected time complexity of BiSam(T1, . . . , Tm; f, τ)

in the standard model is O
(
mb + τ

∑
1≤i<j≤n s(i, j)

)
. ◦
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Discussion. In most of our experiments the first of the two terms dominated
the time complexity. This means that the running time is close to optimal, as
O(mb) is the time for just reading the input. However, we also found that for
some data sets with mainly low-support items, the second term (the cost of
reporting samples) dominated.

A comparison can be made with the complexity of schemes counting the
occurrences of all pairs. Such methods use time Ω(mb2), which is a factor Ω(b)
larger than the first term. In fact, the difference will be larger if the distribution
of transaction sizes is not even.

Similarity threshold. The parameter τ should be chosen such that s(i, j)τ
is not too small, e.g. s(i, j)τ , for the pairs that are considered highly similar.
It is instructive to parameterize in terms of the threshold ∆ for “interesting
similarity”. To ensure that interesting pairs are reported with good probability,
τ must be chosen such that τ∆ is not too small, e.g. in our experiments we use
τ∆ ≈ 15.

A reasonable assumption is that ∆ is greater than the average similarity,
i.e., ∆ ≥

∑
1≤i<j≤n s(i, j)/

(
n
2

)
. In many cases ∆ will be much greater than the

average similarity, as discussed in Section 2.4.1. But just using the above we
can obtain the following simple (in some cases pessimistic) upper bound on the
time complexity:

Corollary 2.2.1. If ∆ = O(1/τ) is no smaller than the average pairwise simi-
larity, then expected time complexity of BiSam is O(mb + n2). ◦

This means that under the assumption of the corollary we win a factor
of at least min(b, m(b/n)2) compared to the exact counting approach. If we
let σ = mb/n denote the average support, the speedup can be expressed as
Ω(b min(1, σ/n)). So if the average support is n or more, we gain a factor Ω(b).

Independent items. As further evidence for (or explanation of) why the
time complexity of the second term may be close to linear, we consider an
input where each item i appears in a given transaction with probability pi,
independently of all other items. Thus, the probability that distinct items i
and j appear in a transaction is pipj . We observe that each similarity measure
s(i, j) in Table 2.1, with the exception of lift, satisfies s(i, j) ≤ s̄(i, j), where
s̄(i, j) = |Si∩Sj |

|Si| + |Si∩Sj |
|Sj | . Thus, we get an upper bound on running time for

these measures by considering the similarity measure s̄(i, j). Observe that the
expected value of s̄(i, j) is pi+pj by linearity of expectation. Hence, the expected
sum of similarities is:

n∑
i=1

n∑
j=i+1

pi + pj ≤
n∑

i=1

pin +
n∑

j=1

npj = 2n .

This means that the running time of BiSam is O(mb + τn) for independent
items. Usually mb � τn, so the first term dominates.
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Running time in the I/O model

We now present IOBiSam, an I/O efficient implementation of the BiSam al-
gorithm. The rest of the chapter can be read independently of this section.
As before, we assume the similarity measure is represented as s(i, j) = |Si ∩
Sj |f(|Si|, |Sj |).

In order to compute the support of each item, which means computing the
ItemCount function, a sorting of the dataset’s items is carried out. It is nec-
essary to keep track of which transaction each item belongs to. To compute
the sorted list of items, O(N

B log M
B

N
M ) I/Os are needed [3], where N = mb

is the number of pairs c = 〈item, Transaction ID〉, M is the number of such
pairs that fit in memory, and B is the number of pairs that fit in a memory
page. When the items are sorted, it is trivial to compute the number of occur-
rences of each item, so it takes just O(N

B ) I/Os to compute and store the tuples
c〈item,support,Transaction ID〉.

We then sort the tuples according to transaction ID, and secondarily accord-
ing to support, again using O(N

B log M
B

N
M ) I/Os. This gives us each transaction

in sorted order, according to item supports. Assuming that each transaction
fits in main memory1 it is simple to determine which pairs satisfy the inequal-
ity f(c(Tt[i]), c(Tt[j]))τ > r. When a pair satisfies the inequality, it is output,
togheter with its weight max{1, f(c(Tt[i]), c(Tt[j]))τ}. This operations have a
cost of O(N/B) I/Os for the reads.

The most expensive steps are the sorting steps, implying that the following
theorem holds:

Theorem 2.2.2. Suppose we are given transactions T1, . . . , Tm, each a subset
of [n], with N = mb items in total, and f is the function corresponding to
the similarity measure s. Also let |Si ∩ Sj |f(|Si|, |Sj |) = s(i, j). The expected
complexity of IOBiSam(T1, . . . , Tm; f, τ) in the I/O model is

O
(

N
B log M

B

N
M

)
I/Os .

◦

2.3 How to use the BiSam output

Summing up the weight M(i, j) of a given pair {i, j} in the output of BiSam
gives us, by Lemma 2.2.1, one of the following:

• Exactly s(i, j)τ with probability 1, or

• The value of a random variable with binomial distribution and expectation
s(i, j)τ .

In the former case we obviously know the similarity of i and j. In the latter
case we can use statistical methods to derive bounds on likely and unlikely

1The assumption is made only for simplicity of exposition, since the result holds also
without this assumption.
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Figure 2.1: Illustration of confidence levels, using Poisson approximation, for
sample counts 1, 2, 4, 8, 16, and 32. Larger sample counts yield larger confidence.

values of s(i, j). In our theoretical discussion we will make use of the fact that
the binomial distribution is closely approximated by the Poisson distribution
(with the same mean) whenever the sampling probability is much smaller than
the expectation. However, we stress that in concrete cases it is possible to
do confidence calculations directly on the binomial distribution to get more
accurate results.

Figure 2.1 shows confidence bounds for various observed values of a Poisson
distributed random variable. We know that the mean value of M(i, j) is τs(i, j),
so M(i, j)/τ is an unbiased estimator for s(i, j). How likely is it that s(i, j) <
αM(i, j)/τ for some α < 1? This depends on α and M(i, j) — Figure 2.1
considers the cases where M(i, j) ∈ {1, 2, 4, 8, 16, 32}. For each value of M(i, j)
the graph plotted is the probability of not observing a value as large as M(i, j)
given that s(i, j) = αM(i, j)/τ . This is the “confidence” we have in the assertion
that s(i, j) > αM(i, j)/τ . Larger values of M(i, j) yield higher confidences.
Taking M(i, j) = 8 as an example we see that with 90% confidence the estimate
M(i, j)/τ is at most s(i, j)/0.59 ≈ 1.7s(i, j), and with 90% confidence M(i, j)/τ
is at least s(i, j)/1.65 ≈ 0.6s(i, j).

2.3.1 Errors with respect to a reporting threshold

One case we will consider in particular is when there is a threshold ∆ such that
we are interested in reporting all pairs with similarity ∆ or more. To report
such pairs with reasonable probability we cannot simply choose the pairs with
weight ∆τ or more, since this would give too many false negatives, i.e., pairs
with s(i, j) ≥ ∆ that are not reported. The false negative probability can be
decreased by lowering the weight threshold. In the following we assume that
pairs with weight ∆τ/2 or more are reported.

Analysis of false negative probability. We first bound the probability that
a pair {i, j} with s(i, j) ≥ ∆ is not reported by the algorithm. This happens if
M(i, j) ≤ ∆τ/2 and M(i, j)f(c(i), c(j),∆) < 1. If f(c(i), c(j))τ ≥ 1 then the
pair {i, j} is reported with probability 1. Otherwise, since M(i, j) has binomial
distribution, it follows from Chernoff bounds (see e.g. [74, Theorem 4.2] with
δ = 1/2) that the probability of the former event is at most exp(−δ2µ/2) =
exp(−µ/8). Solving for µ this means that we have error probability at most
ε if µ ≥ 8 ln(1/ε). This bound is pessimistic, especially when ε is not very
small. Tighter bounds can be obtained using the Poisson approximation to the
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τ∆ ε ε′

3 0.199 0.0498
5 0.125 0.00674
10 0.0671 0.0000454
15 0.0180 < 10−6

20 0.0108 < 10−8

30 0.00195 < 10−13

Table 2.5: Values of τ∆ and corresponding error probabilities ε. The error
probabilities ε′ are for the variant of the algorithm where we return the whole
multiset M , and use a different method to filter false positives (see Section 2.3.2).

binomial distribution, which is known to be precise when the number of trials
is not too small (e.g., at least 100). Table 2.5 shows some values of µ and
corresponding false negative probabilities, using the Poisson approximation.

False positives. The probability that a pair {i, j} with s(i, j) < ∆ is reported
depends on how far the mean s(i, j)τ is from ∆τ . If the ratio s(i, j)/∆ is close
to 1, there is a high probability that the pair will be reported. However, this is
not so bad since s(i, j) is close to the threshold ∆. On the other hand, when
s(i, j)/∆ is close to zero we would like the probability that {i, j} is reported to
be small. Again, we may use the fact that either f(c(i), c(j))τ ≥ 1 (in which
case the pair is exactly counted and reported if and only if s(i, j) ≥ ∆/2). For
s(i, j) < ∆/2 we can use Chernoff bounds, or the Poisson approximation, to
bound the probability that M(i, j) > ∆τ/2. Figure 2.2 illustrates two Poisson
distributions (one corresponding to an item pair with measure three times be-
low the threshold, and one corresponding to an item pair with measure at the
threshold).

2.3.2 Filtering of BiSam output

The BiSam algorithm generates a stream of weighted item pairs that may be
very large. In order to obtain a more succinct output we propose a filtering phase
that eliminates pairs that are not similar enough. This task can be carried out
in at least three ways:

Exact threshold filtering: A weight threshold w can be set, depending on
the similarity one is interested in, and can be used in order to filter out
those pairs whose sum of weights is below the threshold. As discussed in
the previous section this gives an output where false positive and negative
probabilities can be rigorously analyzed. This method requires that the
filter stores a set of weighted samples M , e.g. using a hash table, keeping
track of the current sum for each pair seen. In the I/O model, the best
implementation is via sorting of the output produced by IOBiSam. In
the standard model where space is a bigger issue, the next methods may
offer better guarantees at the cost of a more complex implementation;

Checking similarities: The weight threshold w implies that we filter away
those pairs whose similarity is far below w/τ . An alternative is to spend
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Figure 2.2: Illustration of false negatives and false positives for τ∆ = 15. The
leftmost peak shows the probability distribution for the number of samples of a pair
{i, j} with s(i, j) = ∆/3. With a probability of around 13% the number of samples
is above the threshold (vertical line), which leads to the pair being reported (false
positive). The rightmost peak shows the probability distribution for the number of
samples of a pair {i, j} with s(i, j) = ∆. The probability that this is below the
threshold, and hence not reported (false negative), is around 1.8%.

more time on the pairs output by BiSam, using a sampling method to
obtain a more accurate estimate of |Si ∩ Sj |. A suitable technique could
be to use min-wise independent hash functions [19, 57] to obtain a sketch
of each set Si. It suffices to compare two sketches in order to have an
approximation of the jaccard similarities of Si and Sj , which in turn gives
an approximation of |Si ∩ Sj |. Based on this we may decide if a pair is
likely to be interesting, or if it is possible to filter it out. The sketches
could be built and maintained during the ItemCount procedure using,
say, a logaritmic number of hash functions. [57] presents an efficient class
of (almost) min-wise independent hash functions.

For some similarity measures such as lift and overlap coefficient the sim-
ilarity of two sets may be high even if the sets have very different sizes.
In such cases, it may be better to sample the smaller set, say, Si, and
use a hash table containing the larger set Sj to estimate the fraction
|Si ∩ Sj |/|Si|. However, this requires that the whole data set fits in mem-
ory.

Most frequent pairs in a stream: This technique consists in the use of a
streaming algorithm for finding the pairs whose sum of associated weights
exceeds a given user defined threshold. Many algorithms exist that address
this problem, see [31] for a comprehensive treatment and an experimental
comparison, but only some of them are able to manage weighted items.
One algorithm suiting the needs of BiSam well is SpaceSaving [71].
See [72] for a more detailed description of the algorithm. In the following
we will describe a modification of SpaceSaving that takes into account
the weights of pairs without adding any cost to the computational time.
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Weighted SpaceSaving

Here we describe a modification of SpaceSaving that supports weights in the
stream M . Such a modification has already been presented in [32], but our
approach is different in the sense that using some slackness in the space allowed,
we get constant time updates for the underlying data structure. We will refer
to our algorithm with the name WSpaceSaving. In the following we consider
the elements of M as pairs, but the algorithm works for generic elements.

As pointed out before, we are interested in reporting only those pairs in M
whose sum of weights exceeds a certain threshold. Let N :=

∑
(i,j)∈M M(i, j);

given a user defined threshold φ we want to report those pairs p = (i, j) whose
sum of associated weights M(i, j) = M(p) is larger than φN , for some φ > 0.
We discuss the choice of φ below.

In the following we will call the sum of associated weights M(i, j) of a pair
(i, j), the pair’s weight, and the threshold φ the cut weight. Moreover, we will
denote the associated weight of a pair (i, j) = p with ω.

In order to have the desired result, we maintain a collection of entries, each
of which contains a pair, plus an estimate of the weight. The estimate is denoted
countv. Moreover, we keep track of the minimum count among all the recorded
entries, and refer to this value with the name min.

The size l of the collection has to be chosen according to the precision of the
desired result, since the algorithm can output pairs whose weight is larger than
(φ− 2/l)N , and guarantees to output each pair having weight larger than φN .

The algorithm works in a pretty simple way: When a new pair (i, j) arrives,
we look for it in the collection; if it is already recorded in some position v, we
update countv adding the associated weight ω (which is max{1, f(|Si|, |Sj |)τ}
in the case of BiSam) to it and we move to the next pair. If the pair is not
in the collection we put the pair in the data structure, replacing a pair among
the ones having small estimated sum of associated weights. Suppose this pair
appears at position v — then we put in that position the pair (i, j), and assign
countv = countv + ω. Figure 2.2 reports the pseudocode for the updating
procedure.

1: procedure WSpaceSaving(M,φ)
2: while there is a new pair (i, j) from the stream do
3: if (i, j) is in the collection D at position v then
4: countv := countv + ω
5: else
6: Choose a pair from the low weight pairs bucket
7: Let v be its position
8: Dv := (i, j)
9: countv := countv + ω

10: end if
11: end while
12: ∀v . v ∈ {1, . . . , l} : countv ≥ φN output Dv

13: end procedure

Algorithm 2.2: Pseudocode for the WSpaceSaving algorithm. We remark that,
in the case of BiSam, ω := max{1, τf(|Si|, |Sj |)}
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Choosing the pair to replace. We describe how to implement WSpace-
Saving in a way that only a constant number of operations are needed in case
of an update to the data structure. We maintain the pairs along with their
estimated sum of associated weights in buckets, each of which contains pairs
with count in a certain range. The size of ranges is increasing by a factor of
2, so we only have to keep track of a logarithmic, with respect to N , num-
ber of buckets. In particular, we will have the ranges: [1, 2), [2, 4), [4, 8), . . . ,
[2k−1, 2k), [2k, φN), [φN,N ]. In this way, when we need to find a pair whose
count = min, we can go directly in the nonempty bucket with the lowest weight
range, and pick up an arbitrary pair contained in it. Moreover, when it is nec-
essary to move a pair in a new bucket, it is sufficient to move it in the bucket
representing the next range, eventually initializing the bucket. These operations
can easily be done in constant time per update. Once a bucket is empty it will
never receive a new pair again, so we can directly switch to the next one.

For what concerns the correctness of the algorithm, we will first describe
some properties.

Lemma 2.3.1. At any point in time
∑

v∈{1,...,l} countv = N

Proof. The lemma can be proved via induction on the length of the stream. The
main idea is that at each step, only one counter is incremented with the weight
of the new arrived pair.

Lemma 2.3.2. Among all counters, the minimum counter value, min, is no
greater than N/l.

Proof. We can write:

min = l−1

N −
∑

v∈{1,...,l}

(countv −min)

 ;

since ∀v . countv ≥ min, the summation has all nonnegative terms, thus the
result.

Theorem 2.3.1. ∀(i, j) . (i, j) ∈ M ∧M(i, j) > φN ⇒ (i, j) is recorded in the
data structure.

Proof. Assume (i, j) do not end up in the data structure; notice that M(i, j) >
min at any point in time. Since (i, j) is not in the data structure there has
to be a pair that caused the deletion of (i, j) one last time. Since (i, j) has
been selected to be deleted, all the pairs in the data structure have to have an
estimated frequency larger than φN , so min > φN ; by means of Lemma 2.3.2,
we also have min ≤ N/l, so min > φN ≥ N/l ≥ min which is absurd.

Theorem 2.3.1 states that all pairs (i, j) having frequency M(i, j) > φN are
reported by the algorithm.

It remains to understand the entity of the error the algorithm introduces.
The error depends on the maximum overestimation the algorithm allows. From
Lemma 2.3.2 we know that min ≤ N/l; the pair having countv = min pertains
to a bucket whose range is [a, b). Since b = 2a ≤ 2min ≤ 2N/l and since
we can have overestimated the frequency of a pair using at most b, we get an
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additive 2/l−approximation, hence it is possible that pairs, whose frequency
falls in ((φ− 2/l)N,φN ], are reported.

From the previous theorem, we get the corollary:

Corollary 2.3.1. The space usage of BiSam, when WSpaceSaving is used, is
O(N/(τ ·∆)) and the computational time remains O(mb + τ

∑
0<i<j≤n s(i, j)).

Proof. For the time complexity, we have already pointed out that every update
to the data structure takes constant time. The space bound is straightforward
when we notice that, given the cut weight φ, we can have at most 1/φ frequent
pairs, so we need at least the space for storing those pairs. For φ = (τ ·∆)/(2·N),
the claim is verified.

2.4 Experiments

To make experiments fully reproducible and independent of implementation
details and machine architecture, we focus our attention on the number of hash
table operations, and the number of items in the hash tables. That is, the
time for BiSam is the number of items in the input set plus the number of
pairs output. The space of BiSam is the number of distinct items (for support
counts) plus the space for the filtering algorithm. An exact threshold filter has
space usage that is equal to the number of distinct pairs output by BiSam,
whereas the most frequent pairs algorithm has space usage that is equal to the
output weight of BiSam divided by the weight threshold (see Corollary 2.3.1).
Similarly, the time for methods based on exact counting is the number of items
in the input set plus the number of pairs in all transactions (since every pair is
counted), and the space for exact counting is the number of distinct items plus
the number of distinct pairs that occur in some transaction.

We believe that these simplified measures of time and space are a good choice
for two reasons. First, hash table lookups and updates require hundreds of clock
cycles unless the relevant key is in cache. This means that a large fraction of the
time spent by a well-tuned implementation is used for hash table lookups and
updates. Second, we are comparing two approaches that have a similar behavior
in that they count supports of items and pairs. The key difference thus lies in
the number of hash table operations, and the space used for hash tables. Also,
this means that essentially any speedup or space reduction applicable to one
approach is applicable to the other (e.g. using counting Bloom filters to reduce
space usage).

Data sets. Experiments have been run on both real datasets and artificial
ones. We have used most of the datasets of the Frequent Itemset Mining Imple-
mentations (FIMI) Repository2. In addition, we have created three data sets
based on the internet movie database (IMDB). Table 2.6 contains some key
figures on the data sets.

2.4.1 Results and discussion

Tables 2.8, 2.9, 2.10 show the results of our experiments for the all_confidence
measure. The time and space for BiSam is a random variable. The reported

2http://fimi.cs.helsinki.fi/
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Dataset
distinct number avg. max. avg. avg.
items of trans. trans. items simila-

trans. size size support rity
Chess 75 3196 37 37 1577 0.3148

Connect 129 67557 43 43 22519 0.1626
Mushroom 119 8124 23 23 1570 0.1523

Pumsb 2113 49046 74 74 1718 0.0120
Pumsb_star 2088 49046 50 63 1186 0.0102

Kosarak 41270 990002 8 2498 194 0.0168
BMS-WebView-1 497 59601 2 161 301 0.0307
BMS-WebView-2 3340 59601 2 161 107 0.0140

BMS-POS 1657 515596 6 164 2032 0.0044
Retail 16470 88162 10 76 55 0.0094

Accidents 468 340183 33 51 24575 0.0248
T10I4D100K 870 100000 10 29 1161 0.0137
T40I10D100K 942 100000 40 77 4204 0.0230

actors 128203 51226 31 1002 12 0.0618
directorsActor 50645 3783 1221 8887 90 0.0978
movieActors 51226 133633 12 2253 33 0.0380

Table 2.6: Key figures on the data sets used for experiments. The first 13
data sets are from the FIMI repository. The last 3 were extracted from the May
29, 2009 snapshot of the Internet Movie Database (IMDB). The datasets Chess,
Connect, Mushroom, Pumsb, and Pumsb_star were prepared by Roberto
Bayardo from the UCI datasets and PUMBS. Kosarak contains (anonymized)
click-stream data of a hungarian on-line news portal, provided by Ferenc Bodon.
BMS-WebView-1, BMS-WebView-2, and BMS-POS contain clickstream
and purchase data of a legwear and legcare web retailer, see [64] for details. Re-
tail contains the (anonymized) retail market basket data from a Belgian retail
store [16]. Accidents contains (anonymized) traffic accident data [43]. The
datasets T10I4D100K and T10I4D100K have been generated using an IBM
generator from the Almaden Quest research group. Actors contains the set of
rated movies for each male actor who has acted in at least 10 rated movies. Di-
rectorActor contains, for each director who has directed at least 10 rated movies,
the set of actors from Actors that this director has worked with in rated movies.
MovieActor is the inverse relation of Actors, listing for each movie a set of
actors.
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number is an exact computation of the expectation of this random variable.
Separate experiments have confirmed that observed time and space is relatively
well concentrated around this value. The values of τ used are shown in Ta-
ble 2.7 — they were chosen manually in each case to give a “human readable”
output of around 1000 pairs. (For the IMDB data set Actor and the Kosarak
data set this was not possible; for the latter this behaviour was due to a large
number of false positives.) Note that choosing a smaller ∆ would bring the
performance of BiSam closer to the exact algorithms; this is not surprising,
since lowering ∆ means reporting pairs having a small values for the similarity
measure, increasing in this way the number of samples taken. As noted before,
we are usually interested in reporting pairs with high similarity, for almost any
reasonable scenario.

The results for the other measures are omitted for space reasons, since they
are very similar to the ones reported here. This is because the complexity of
BiSam is, in most cases, dominated by the first phase (counting item frequen-
cies), meaning that fluctuations in the cost of the second phase have little effect.

We see that the speedup obtained in the experiments varies between a factor
1.62 and a factor over 36. The largest speedups tend to come for data sets with
the largest average transaction size, or data sets where some transactions are
very large (e.g. Kosarak). However, as our theoretical analysis suggests, large
transaction size alone is not sufficient to ensure a large speedup — items also
need to have support that is not too small. So while the DirectorActor data
set has very large average transaction size, the speedup is not as high as the ones
observed for other datasets, because the support of items is low. In a nutshell,
BiSam gives the largest speedups when there is a combination of relatively large
transactions and relatively high average support. The space results are shown
in Table 2.9 and Table 2.10. In particular, Table 2.9 refers to the algorithm
when the Exact threshold filtering is applied and the space usage ranges from
being quite close to the space usage for exact counting, to a decent reduction.
Table 2.10 refers to the algorithm when WSpaceSaving is used. In particular,
in this case, we are taking into account the version of the algorithm presented
in [32], where the space usage would be N/(τ · ∆) at the cost of raising the
time complexity to O

(
mb + τ

∑
1≤i<j≤n s(i, j) log(N/τ∆)

)
. As can be seen we

may get much higher savings in space in this case, up to almost two orders of
magnitude for some data sets. Especially, we get large savings for some data
sets with many distinct items.

Though we have not experimented with methods based on locality-sensitive
hashing (LSH), we observe that our method appears to have an advantage when
the number n of distinct items is large. This is because LSH in general (and in
particular for cosine similarity) requires comparison of

(
n
2

)
pairs of hash signa-

tures. On the other hand, our algorithm uses time that is n2 times the average
similarity (times a constant τ that is typically small, since we are looking for
high-similarity pairs). Table 2.6 shows the average all_confidence similarity of
each of our data sets, which is typically 1–2 orders of magnitude smaller than
the similarity of the pairs we wish to report.

For the data sets Kosarak, Retail, BMS-Webview-2, Actors, and Movie-
Actors the ratio between the number of signature comparisons and the number
of hash table operations required for BiSam is in the range 9–1340. While these
numbers are not necessarily directly comparable, it does indicate that BiSam
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has the potential to improve LSH-based methods that require comparison of all
signature pairs.

Parameters and output size
Dataset τ #output

Chess 20 986
Connect 20 1008

Mushroom 40 1048
Pumsb 9 844

Pumsb_star 14 1012
Kosarak 6 1710

BMS-WebView-1 30 992
BMS-WebView-2 21 1002

BMS-POS 85 994
Retail 20 1047

Accidents 30 1030
T10I4D100K 40 947
T40I10D100K 30 1087

Actors 8 200445
DirectorsActor 3 714
MovieActors 13 1213

Table 2.7: Chosen values of parameter τ and the corresponding output sizes.
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Time
Dataset BiSam Exact counting Ratio

Chess 1.35 · 105 22.5 · 105 16.67
Connect 29.3 · 105 639 · 105 21.82

Mushroom 2.08 · 105 22.4 · 105 10.77
Pumsb 36.8 · 105 1360 · 105 36.96

Pumsb_star 25.4 · 105 638 · 105 25.12
Kosarak 108 · 105 3130 · 105 28.98

BMS-WebView-1 2.06 · 105 9.64 · 105 4.68
BMS-WebView-2 5.66 · 105 24.4 · 105 4.31

BMS-POS 35.1 · 105 246 · 105 7.01
Retail 15.3 · 105 80.7 · 105 5.27

Accidents 115 · 105 187 · 105 1.62
T10I4D100K 11 · 105 62.8 · 105 5.72
T40I10D100K 42.6 · 105 841 · 105 19.74

Actors 144 · 105 500 · 105 3.47
DirectorsActor 4688 · 105 81500 · 105 17.38
MovieActors 290 · 105 1070 · 105 3.69

Table 2.8: Experimental results for all_confidence measure concerning time.
The colums ratio represents the savings BiSam gets with respect to an exact ap-
proach computing all pairs.

Space (Exact Threshold Filtering)
Dataset BiSam Exact counting Ratio

Chess 2.20 · 103 2.66 · 103 1.21
Connect 4.14 · 103 6.96 · 103 1.68

Mushroom 2.92 · 103 3.65 · 103 1.25
Pumsb 36.7 · 103 536 · 103 14.6

Pumsb_star 44.5 · 103 485 · 103 10.9
Kosarak 2306 · 103 33100 · 103 14.35

BMS-WebView-1 26.5 · 103 64.5 · 103 2.43
BMS-WebView-2 163 · 103 725 · 103 4.45

BMS-POS 89.4 · 103 381 · 103 4.26
Retail 612 · 103 3600 · 103 5.88

Accidents 10.9 · 103 47.3 · 103 4.35
T10I4D100K 60.7 · 103 171 · 103 2.82
T40I10D100K 168 · 103 433 · 103 2.57

Actors 11925 · 103 32900 · 103 2.76
DirectorsActor 76104 · 103 367000 · 103 4.82
MovieActors 22317 · 103 55400 · 103 2.48

Table 2.9: Result of experiments for the all_confidence measure concerning
space when the Exact Threshold Filtering is used.
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Space (WSpaceSaving)
Dataset BiSam Exact counting Ratio

Chess 2.11 · 103 2.66 · 103 1.26
Connect 2.90 · 103 6.96 · 103 2.40

Mushroom 2.79 · 103 3.65 · 103 1.31
Pumsb 9.33 · 103 536 · 103 57.48

Pumsb_star 10.61 · 103 485 · 103 45.69
Kosarak 387 · 103 33100 · 103 85.63

BMS-WebView-1 7.5 · 103 64.5 · 103 8.60
BMS-WebView-2 29.27 · 103 725 · 103 24.79

BMS-POS 18.96 · 103 381 · 103 20.10
Retail 94.33 · 103 3600 · 103 38.20

Accidents 4.75 · 103 47.3 · 103 9.95
T10I4D100K 12.52 · 103 171 · 103 13.65
T40I10D100K 38.22 · 103 433 · 103 11.32

Actors 1731 · 103 32900 · 103 19.00
DirectorsActor 58974 · 103 367000 · 103 6.32
MovieActors 3461 · 103 55400 · 103 16.00

Table 2.10: Result of experiments for the all_confidence measure concerning
space when the version of WSpaceSaving presented in [32] is used.
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Chapter 3

Interlude

The BiSam algorithm presented in Chapter 2, looks for all the pairs in a transac-
tion whose associated sampling probability falls in an interval of the form [r, 1].
This is actually a concrete example of the more general problem of finding el-
ements belonging to a certain interval of values in a matrix. In this chapter
we present a technique for solving the described problem in linear time with
respect to the size of the dimensions of the matrix. We will use this technique
explicitly in Chapters 7 and 5, with the adaptations necessary to fit the specific
settings of those problem. The method can also be applied to the case described
in Section 4.3.1, in the paragraph on page 54, where the details of the streaming
adaptation are explained.

We think it is useful to give a description that prescinds from the specific
incarnation it can take for a given problem.

3.1 Problem description

Suppose that we are given two vectors of values ~v = (v1, . . . , vn) ⊆ Un and
~w = (w1, . . . , wm) ⊆ Um. Moreover, suppose that the two vectors are sorted in
ascending order; i.e, ∀i, j . i < j ⇒ vi ≤ vj ∧ wi ≤ wj . Furthermore, suppose
that a function g is defined, such that:

g : U × U → I
u1 , u2 7→ g(u1, u2)

.

The function g is monotonically not decreasing in both parameters in the group
I which, in turn, has the property of having a total order relation ≤ defined on
it.

The problem we are interested in is finding efficiently the pairs of vectors
components (vi, wj) such that g(vi, wj) ∈ [p, q] ⊆ I, where p and q are not
necessarily distinct values.

The problem is trivially solved in quadratic time just by checking all the
possible pairs of vector components. So solving this problem efficiently means
finding an algorithmic way to the result that is linear both in the size of the
vectors and to the number of pairs in the output.

In the next section we will present an algorithm that achieves the necessary
efficiency.



44 Interlude

3.2 Our algorithm

In order to find the pairs we are interested in, we will find some zones in an
ideal matrix M that contain all those pairs. We can think of the matrix M
associating every row i with the value vi and every column j with the value wj .
An entry Mi,j of M consists of the value g(vi, wj).

Instead of an interval [p, q] we will consider the interval [p+h, q+h] = [p′, q′],
where for each d ∈ I we have p′ ≤ d. We consider the interval in this form
because it simplifies the exposition of the algorithm. We will start looking at
the pairs whose associated values appear in the first column, that is pairs of
the form (vi, w1). In order to find the first pair that has an associated value
belonging to the interval, we look for the largest value smaller than q′ in the
column. We can start to look for this value starting from the bottom of the
column and going up one row at a time. The position j where the value is
found is marked and used afterwards. Once such a value has been found, all
the interesting values will be found on rows that have a smaller index. The
scanning of the rows will stop as soon as the algorithm finds the row i where
the value Mi,1 < Mi−1,1. Also position i−1 gets marked. We call this inversion
in monotonicity a flip and notice that: (i) the value in position i, is the smallest
in the column; (ii) there is one and only one flip per column. If the algorithm
reaches row 1 during the search of either positions, it continues to search starting
from the bottom of the column. The values of the columns wrap up, so, as it
happens for Karnaugh maps, the values M1,j and Mn,j have to considered as
adjacent.

Once the algorithm has found all the interesting values in a given column k,
it carries on the search in column k + 1. It will start looking at the first value
smaller than q′ from the row index j that has been marked in the preceding
column. The reason this choice is that, since g is monotonic, the values Mk,j+1

are either involved in a flip or larger than Mk,j . Once the starting position is
found, the algorithm looks at the value Mi−1,j+1 and from there it starts looking
for the flip in column j +1 in rows with index smaller than i− 1. When the flip
is found, the algorithm marks the newly found position and will use it for the
next column.

It is important to point out that rows have the same characteristics of
columns in terms of behaviour of the values. Therefore, each row is mono-
tonically not decreasing, has one and only one pair of adjacent columns where
a flip happens and the index where the flip happens marks the position of the
smallest value in the row.

Algorithm 3.1 contains the pseudocode for the described technique.

3.3 Analysis

For the first column the algorithm takes at most n steps to find the starting
and the flip positions. As a matter of fact, the loops on Line 4 and Line 8 in
Algorithm 3.1 are separated for sake of clarity, but the operations they involve
could be carried out together. For subsequent columns it suffices to notice that
at most n increases to the row index of the starting position will be carried out in
all columns, since there can be only one flip per row. The same reasoning applies
for the the number of increases to the row index of the flips in all columns. This
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1: procedure FindInterval(~v, ~w, q′)
2: s := n
3: for t := 1 to m do
4: while g(vs, wt) > q′ do
5: s := (s− 1) mod n
6: end while
7: s′ := s
8: while g(vs′ , wt) > g(v(s′−1) mod n, yt) do
9: s′ := (s′ − 1) mod n

10: end while
11: ot := (s, s′)
12: end for
13: output ~o
14: end procedure

Algorithm 3.1: Pseudocode for the interval finder. The While loop on Line 4
finds s such that s(vs, wt) is the largest value smaller than q′ in the column.
The While loop on Line 8 finds instead the index where the flip happens in the
column.

results in at most 3n operations, which is exactly the linear running time we
were trying to achieve. Clearly, in order to report the z pairs in the interval, it
would suffice to scan the interval itself and output the pairs, which would take
z steps.

The total running time is therefore O(n+m+z), when the algorithm outputs,
along with the boundaries of the interval, the pairs that the interval contains.
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Chapter 4

BiSam - a Streaming
Approach

While there has been a lot of work on finding frequent itemsets in transaction
data streams, none of these solve the problem of finding similar pairs according
to standard similarity measures. In this chapter we present a first attempt at
dealing with this, arguably more important, problem.

We start out with a negative result that also explains the lack of theoretical
upper bounds on the space usage of data mining algorithms for finding frequent
itemsets: any algorithm that (even only approximately and with a chance of er-
ror) finds the most frequent k-itemset must use space Ω(min{mb, nk, (mb/ϕ)k})
bits, where mb is the number of items in the stream so far, n is the number of
distinct items and ϕ is a support threshold.

To achieve any non-trivial space upper bound we must thus abandon a worst-
case assumption on the data stream. We work under the model that the transac-
tions come in random order, and show that surprisingly, not only is small-space
similarity mining possible for the most common similarity measures, but the
mining accuracy improves with the length of the stream for any fixed support
threshold.

4.1 Introduction

The problem we face is very close to the one presented in Chapter 2. As a mat-
ter of fact we have a set of m sets (“transactions”), each a subset of {1, . . . , n},
and we want to find interesting associations among items in these transactions.
This problem is thus the one framed in the “market basket” model where we are
interested in finding those pairs of items that are frequently bought together.
As pointed out in the previous chapter, understanding whether a pattern is
interesting or not must rely on various similarity measures, since the interest
of a pattern is problem dependent. We report here the names of some of the
most used similarity measures, as we did in Chapter 2, in order for the reader
to have a simpler access to the relevant references: Jaccard [28], cosine and
all_confidence [66, 76]. Also in this case, besides the cited measures, we are
also interested in association rules, which are intimately related to the overlap



48 BiSam - a Streaming Approach

coefficient similarity measure. As already pointed out in the previous chap-
ter, [52, Chapter 5] contains background and discussions of similarity measures.

In this chapter, we initiate the study of this problem in the streaming model
where transactions arrive one by one, and we are allowed limited time per trans-
action and very small space. The latter constraint implies we cannot hope to
store much information regarding pairs that are not similar and, moreover, we
cannot store the input. In particular, classical frequent item set algorithms such
as Apriori [6] and FP-growth [53] that work in several passes over the data can-
not be used. The survey of Jiang and Gruenwald [59] gives a good overview of
the challenges in data stream association mining.

Previous works on transaction data streams have focused on finding frequent
itemsets, and can be classified in the following way [92]:

Landmark model: The frequent itemsets are searched for in the whole stream,
so that itemsets that appeared in the far past have the same importance
as recent ones;

Damped model: This model is also called Time-Fading. Recent transactions
have a higher weight than the older ones, so nearer itemsets are considered
more interesting than the further;

Sliding window: Only a part of the stream is considered at a given time in
this model, the one falling in the sliding window. This implies storing
information concerning the transactions falling within the window, since
whenever a transaction gets out of the window span, it has to be removed
from the counts of the itemsets. This approach falls in the more general
streaming technique described in Subsection 1.4.2

The last two models make the problem of achieving low space usage simpler,
since most of the information in the stream has little or no effect on the mining
result. The challenge is instead to handle the real-time requirements of data
stream settings.

All the cited approaches look for frequent items and do not try to com-
pute any similarity, relying on the tacit assumption that whatever is frequent is
automatically interesting. This assumption is not always true:

Example 4.1.1. Suppose we have item 1 appearing in 20% of transactions, item 2
appearing in 20% of transactions, and the pair {1, 2} appears in 10% of transac-
tions. Suppose moreover that the pair {3, 4} appears in only 5% of transactions
and that these transactions are the only ones in which 3 and 4 appear. The
set {1, 2} has a frequency that is two times the one of {3, 4}. But looking at
the similarity function cosine, we can easily realize that s(1, 2) = 10/20 = 0.5
while s(3, 4) = 5/5 = 1. If we base the idea of similarity only on frequencies,
we are likely to miss the pair {3, 4} which holds a much higher similarity than
the more frequent pair {1, 2}.

Notice also that {3, 4} holds a higher similarity for all the measures we are
addressing, so the example shows how frequencies alone do not suffice to infer
similarity properties of pairs. ◦
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Our contributions. In this chapter we address the problem of finding similar
pairs in a stream of transactions. We first show a negative result, which is that
a worst-case stream does not allow solutions with non-trivial space usage: To
approximate even the simplest similarity measure one essentially needs space
that would be sufficient to store either the number of occurrences of all pairs or
the contents of the stream itself. Imposing a minimum support ϕ for the items
we are interested in alleviates the problem only when ϕ is close to the number
of transactions.

Theorem 4.1.1. Given a constant k > 0, and integers m, n, ϕ, consider
inputs of m transactions of total size mk with n distinct items. Let smax de-
note the highest support among k-itemsets where each item has support ϕ or
more. Any algorithm that makes a single pass over the transactions and esti-
mates smax within a factor α < 2 with error probability δ < 1/2 must use space
Ω(min(m,nk, (m/ϕ)k)) bits in expectation on a worst-case input distribution. ◦

This lower bound extends and strengthens a lower bound for single-item
streams presented in [34].

Of course, many data streams may not exhibit worst-case behavior. Several
papers have considered models of data streams where the items are supposed
to be independently chosen from some distribution, or presented in random
order [35, 87, 20, 51]. We present an upper bound that works for a worst-case
set of transactions under the condition that it is presented in random order,
which is sufficient to bypass the lower bound. Our method is general in the sense
that it can evaluate the similarity of pairs according to several well-established
measure functions.

Theorem 4.1.2. Let δ > 0 be constant, and s, M > 1 be integers. We consider
a data stream of transactions (subsets of {1, . . . n}) of maximum size M , where
in each prefix the set of transactions appears in random order. For all the
similarity measures in Table 2.1 there is a streaming algorithm (depending on s
and M) that maintains a “1±δ approximation” of the s most similar high-support
pairs in the stream, as follows: Within the m transactions seen so far, let ∆ be
the sth highest similarity among pairs {i, j} where both i and j appear at least
ϕ times, where ϕ can be any function of m. There exists L = O(log(mn)) such

that if ∆ > L
ϕ max

{√
mbM

s ,M

}
, then the pairs maintained all have similarity

at least (1−δ)∆ with high probability, and all such pairs with similarity (1+δ)∆
or more are reported. To process a prefix of mb items, the algorithm uses time
O(mb log(nm)), with high probability, and space O(n + s). ◦

It is worth noticing that s can be chosen as O(n), which yields a space
usage linear in the number of distinct items. Conversely, choosing s smaller
does not improve the space usage, so we may assume s ≥ n. In absence of a
known bound on the maximum transaction size, one can use M = n. Then the
algorithm guarantees to detect pairs with similarity at least L

ϕ max
{√

mb, n
}

.
Using s ≥ n and ignoring the logarithmic factor L this means that up to input
size mb = n2 we can detect similarity n/ϕ, and after this point we can detect
similarity

√
mb/ϕ. Assuming that ϕ is chosen as a linear function of m (relative

support threshold), we see that the accuracy improves with the length of the
stream.
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4.1.1 Previous work

Denote by m the number of transactions seen up to the moment in which we
want to report the similar pairs. Let n indicate the number of distinct items
that can appear in transactions. Without loss of generality we can assume these
items are in the set {1, . . . , n}. Parameter b is the average length of transactions
(such that mb is the size of the data set seen so far).

Most of the algorithms we describe actually consider the problem of finding
frequent objects in a stream of items, so they do not focus on itemsets, like we
do. But given a stream of transactions we can of course generate the stream
of all pairs occurring in these transactions, and feed them to a frequent item
algorithm. (We do not consider here that this might not be possible for large
transactions in settings where real-time constraints are important.)

Landmark model

Many research papers have addressed the problem of frequent items in a stream.
Starting from the seminal paper [7] streaming algorithms have started to flow
in recent years. Many important contributions to the problem of frequent items
(and indirectly frequent itemsets) have thus been presented.

In several independent papers [73, 35, 62] algorithms have been presented
that can find all pairs with support at least k using space |S|/(k−1) and constant
time per pair in the stream S. These algorithms may generate false positives,
i.e., it is only known that the output will contain the frequent pairs.

Cormode and Muthukrishnan [34] consider the problem of reporting hot
items in a fully dynamic database scenario. The space usage is similar to the
schemes above, but the error probability can be reduced arbitrarily (at the cost
of space).

Also in [34] is a lower bound on the number of bits of memory necessary in
order to answer queries that concern reporting the items with frequencies over
a certain threshold. This lower bound is extended and generalized by our lower
bound in Theorem 4.1.1.

In [22] the Count Sketch algorithm tackles the problem of reporting the k
most frequent itemsets. For worst-case distributions their algorithm has similar
performance to those mentioned above, but for skewed distributions they are
able to detect itemsets with smaller frequencies in the same amount of space.

A false negative approach

Yu et al. [87] present algorithms directly addressing the problem of finding
frequent itemsets in a transaction stream. The algorithm does not find itemsets
that are similar by means of measure functions other than support. Under
the assumption that items occur independently (which is arguably quite strong,
since we are assuming that there may be dependencies resulting in frequent sets)
the authors show upper bounds on space usage similar to those of [34]. The
performance is tested on artificial data sets where the independence assumption
holds. For itemsets of size two (or more) the paper lacks a theoretical analysis
of the proposed algorithm, but claims an empirical space usage bounded by
m3/k3.
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Sampling according to the similarity

Our algorithms builds on top of the idea presented in Chapter 2. The sampling
technique used in that algorithm is such that pairs are sampled a number of
times that is proportional to their similarity. (A more technical explanation can
be found in Section 4.3.1 where we improve the sampling procedure to make it
suitable for a streaming environment.) The algorithms presented in Chapter 2
have near-optimal running time, when no information on the distribution of
similarities are given. As a matter of fact, the running time is linear in the size of
the input and output (when there are many pairs of roughly the same similarity).
The methods presented are highly general and apply to many measure functions
that are linear in the number of occurrences of a pair. However, the method
does not directly apply to a streaming setting since it needs two passes over the
data.

4.2 Lower bound

There are two näıve approaches to handling k-itemset support counting in a
data stream setting: One consists in storing all the transactions seen (possibly
trying to compress the representation), and the other one maintains support
counts for all k-itemsets seen so far.

Theorem 4.1.1 says that it is not possible to beat the best of these approaches
in the worst case (with support threshold ϕ = 1). The proof is a reduction from
communication complexity:

Proof. The inputs considered for the lower bound have m transactions of size
k. Let n′ = min(n, bmk/(2ϕ)c)− 1 be the largest possible number of items that
can appear ϕ times in m/2 transactions, minus 1. We pick an arbitrary set F
of n′ items, and will form an input stream that consists of two parts:

• In the first m/2 transactions we ensure that each item in F appears ϕ
times or more, while no k-subset of F appears. This can be done by
putting one item not in F in each transaction.

• In the last m/2 transactions we encode information that will require many
bits to store, as detailed below.

Consider the first s = min(m/2,
(
n′

k

)
) transactions in the second part. Since s ≤(

n′

k

)
we can map the numbers {1, . . . , s} to unique k-itemsets in F . In particular,

any bit string x ∈ {0, 1}s can be mapped to the unique set of transactions
corresponding to the positions of 1s in x. In this data set, each k-itemset from
F appears at most once.

Suppose we have an algorithm that can determine the support of the most
frequent itemset within a factor α < 2 with probability 1 − δ. This implies
that, on inputs where no itemset appears more than twice, the algorithm can
distinguish (with probability 1 − δ) the cases where the most frequent itemset
appears once and twice. Given x ∈ {0, 1}s we consider the memory configuration
after the algorithm has seen the set of transactions that correspond to x. This
can be seen as a “message” that encodes sufficient information on x that allows
us to determine if one of the itemsets we have seen appears later in the stream.
Lower bounds from communication complexity (see [65, Example 3.22]) tell us
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that even when we allow error probability δ < 1/2 the amount of communication
to determine whether x, y ∈ {0, 1}s have a 1 in the same position (corresponding
to the same k-itemset appearing twice) is Ω(s) bits in expectation. This means
that the memory representation (even if it is compressed) must use Ω(s) bits.
Using the estimate

(
n′

k

)
≥ min(

(
n
k

)
,
(
mk/(3ϕ)

k

)
) = Ω(min(nk, (m/ϕ)k)) we get the

lower bound stated in the theorem.

Corollary 4.2.1. Any deterministic algorithm that determines the highest sup-
port in a transaction data stream must, after having processed transactions of
total size mb, use space Ω(min(mb, nk)) bits on a worst-case input. ◦

4.3 Our algorithm

We now present a new algorithm for extracting similar pairs from a set of trans-
actions using only one pass over the data. The algorithm is approximate, so
false negatives and false positives occur. Most of our discussion will concern
space usage, but we are also aiming for very low per-item time complexity of
the algorithm. In particular, we will not allow anything like iterating through
all pairs in a transaction.

The measures we will address are almost the same reported in the previous
chapter in Figure 2.1. The difference stands in the fact that we do not support
lift. We remark that also in the algorithm presented in this chapter, the measure
Jaccard can be computed by means of computing the measureDice. Further-
more we recall the reader that finding pairs with an Overlap Coefficient over
a certain threshold, entails finding association rules with confidence over the
same threshold. It is worth pointing out again that the measures we address are
all symmetric. This means that we are interested only in looking at pairs (i, j)
where i < j. For this reason we will use set notation for the pairs, so instead of
(i, j) we will write {i, j}.

Parameters of the algorithm. We recall that ϕ is the item support thresh-
old, and M is the maximal transaction size. Increasing ϕ will decrease the
minimum similarity the algorithm will be able to spot. M is a characteristic
of the transactions, supplied as a parameter to the algorithm. In absence of a
known bound on M , one can set M = n. The parameter s determines the space
usage of the algorithm, which is O(n + s) words.

Notation. In the streaming framework, the total number of transactions is
not known. In order to address this issue, we consider sets of transactions,
prefixes, of the stream of increasing size. Suppose that so far we have seen m
transactions T1, . . . , Tm ⊆ {1, . . . , n}.

The current prefix has length 2t, t ∈ N ∪ {0} when m falls in the interval
[2t, 2t+1). Our algorithm maintains counts of all items and store copies of the
counts every time the current prefix changes (that is: Every time the number of
transactions seen is two times the length of the current prefix). Each time the
current prefix changes, we update our estimate of the most similar pairs, and
use this estimate until the next change of current prefix.

The algorithm is based on two pipelined stages: A stream of pairs generation
phase and a store and count phase. We will describe the two phases separately,
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Prefix
T1, T2, . . . , Tm

Pair sampling
T(m/2)+1, . . . , Tm

new counts

previous counts

SampleCount

{i, j}
{i, p}
{p, q}...
{i, j}

Similar Pairs

Figure 4.1: Overview of the algorithm with all its components.

since the output of the former phase will constitute the input of the latter.
Figure 4.1 gives an overview of the algorithm.

The prefixes of the stream are fed to a pair sampling stage that uses the
stored counts from the previous prefix to compute sampling probabilities. Given
the current prefix, the counts relative to that prefix will be used in order to sam-
ple pairs in the stream, until a new set of counts is stored for the prefix of length
2t+1 The idea is that, since transactions come in random order, the sampling
probabilities associated with the pairs in each prefix, should be approximately
the same as for the BiSam (Subsection 2.2.1) sampling procedure (which bases
the sampling probabilities on exact item frequencies).

In Section 4.4 we show how this technique samples, with high probability,
the pairs having a high enough similarity. In fact, we show that a stronger
property holds with high probability: Even when we split the stream into κ
chunks, each with the same number of transactions, we will sample these pairs
sufficiently often in each chunk to reliably estimate their similarity.

4.3.1 Pair sampling

We base our technique on the sampling method of the BiSam algorithm (Chap-
ter 2). For each transaction the pairs are sampled according to their support,
such that the pair {i, j} is sampled with probability τf(|Si|, |Sj |), where f is a
function that depends on the similarity measure considered, and τ is a parame-
ter that is used to control the sampling rate. We fix τ = 4ϕ

M , where the number
of chunks κ is given by (4.6).

BiSam idea. The idea is that after both i and j have appeared ϕ times, the
expected number of times {i, j} is sampled is proportional to s(i, j). Also, the
number of samples follows a highly concentrated (binomial) distribution, so the
true similarity can be estimated reliably for pairs that are sampled sufficiently
often. For any f that is non-increasing in both parameters, the BiSam algorithm
performs the sampling in time that is expected linear in the transaction size
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plus the number of samples. However, the time to process a transaction may be
quadratic with non-negligible probability, which is problematic for application
in a streaming context. We refer to the previous chapter for details.

Streaming adaptation. Two things allow us to arrive at a version suitable
for streaming:

• While BiSam produces dependent samples, in the sense that the number of
times two different itemsets is sampled is not independent, we show how
to make the samples produced independent. This will ensure that the
number of samples from each transaction is highly concentrated around
its expectation.

• The requirement of minimum support ϕ will ensure that processing of a
single transaction takes “linear time with high probability.” More precisely:
Any set of consecutive transactions with a total of log m items will require
linear time with high probability.

To achieve independence we will change the sampling probabilities by round-
ing them down to the nearest negative power of 2. This means that the expected
number of times {i, j} is sampled is no longer exactly proportional to s(i, j),
but is changed by a factor γi,j ∈ [1, 2]. However, since the sampling probability
is known, which means that γi,j will be constant for any given {i, j}, we can
still use the sample counts to reliably estimate similarity.

Details. For a transaction Tt we can visualise the pairs in Tt × Tt as a 2-
dimensional table, with rows and columns sorted by support, where we are
interested in the pairs below the diagonal (index i < j). The cost of sorting will
be swallowed by the cost of the subsequent operations. Since f is non-increasing
the sampling probabilities are decreasing in each row and column. This means
that for any k > 0, in time O(|Tt|) we can determine what interval in each row
of the table is to be sampled with probability 2−k. In order to do this, we just
have to maintain references to where the next interval starts. Consider the case
when k = −1. We can browse the bottom row until we find a pair {1, j} such
that f(Tt[1], Tt[j]) < 1/2. We can mark position (1, j) in order to remember
where to start looking for pairs belonging to the next interval. We then go to
row 2 and we look at column j; from here we start looking at columns j − p,
with p ∈ {1, . . . , j−3} until we find a q such that f(Tt[2], Tt[q]) ≥ 1/2 and mark
the position q + 1. This will tell us the position where the rows belonging to
the next interesting interval start on row 2. We then move to row 3 and carry
out the same procedure until no more pairs can be found with an associated
probability of 1/2. The total number of pairs scanned is at most 2|Tt| and we
know in which columns the interval corresponding to the sampling probability
2−2 start. Assume we have found the interval for k = x − 1. This means that
we know where the interval for k = x starts on all the rows we have scanned
so far. Assume y and w are the indexes of rows where the first and the last
pair with associated probability 2−x lie. We start from row y and look for the
first column index where f(Tt[y], Tt[r]) < 2−x. We again mark the position
and carry out the same operations described above; that is, we scan row y + 1
and start decreasing the column index in order to find the first index where
f(Tt[y], Tt[r]) ≥ 2−x. Also in this case, the number of pairs scanned is at most
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2|Tt|, since we know, for each row index y, where the interval starts; that is,
either the index of the first interesting value or the position (y, y + 1). Thus
we only need to find where the interval finishes, which means going back to at
most column w + 1 ≤ |Tt| or reaching the diagonal in at most |Tt| − y steps.

It is interesting to notice that the method described is an ad-hoc one for
a specific determination of a more general and abstract problem. This ab-
stract problem is the one of finding elements belonging to an interval in a set
of values; that is, the problem we described in Chapter 3. So, another possi-
ble approach would be finding the specific adaptation of the general technique
provided there. Chapters 5 and 7 show another case in which the same prob-
lem is faced, in distinct frameworks, and using the general technique, with the
appropriate adaptations.

To produce the part of the sample for one such interval, we describe a method
for producing a random sample of S = {1, . . . , φ}, for a given integer φ, where
each number is sampled with the same probability p. Since pφ may be much
smaller than φ, we want the time to depend on the number of samples, rather
than on φ. This can be achieved using a simple recursive procedure similar to the
one used in efficient implementations of reservoir sampling: With probability
(1−p)φ we return an empty sample. Otherwise, we choose one random element x
from S, and recursively take a sample of the set S\{x} with sampling probability
p. The set S can be maintained in an array, where sampled numbers are marked.
In case more than half of the numbers are marked, we construct a new array
containing only unmarked numbers. The amortised cost of the construction of
the new array is constant per marking. To select a random unmarked number
we sample until one is found, which takes expected O(1) time because no more
than half of the numbers are marked. To see why this is true, it suffices to point
out that each marked number has at most, and very crudely, probability 1/2 of
being selected. In summary, for each sampling probability 2−k we can compute
the corresponding part of the sample in expected time O(|Ti| + zk), where zk

is the number of samples. This is done for k = 1, 2, . . . , 2 log(nm). Sampling
probabilities smaller than (nm)−2 are ignored, since the probability that any
such pair would be sampled in any transaction is less than 1/m. That is, with
high probability ignoring such pairs does not influence the sample. To state our
result, let 2−N denote the set of negative integer powers of 2.

Lemma 4.3.1. Let f̃ : N × N → 2−N be non-increasing in both parameters.
Given a transaction Tt and support counts |Si| for its items, in expected time
O(|Tt| log(nm) + z) we can produce a random sample of z 2-subsets of Tt such
that:

• {i, j} is sampled with probability f̃(|Si|, |Sj |) if f̃(|Si|, |Sj |) > (nm)−2, and
otherwise with probability 0, and

• The samples are independent. ◦

For all similarity measures in Table 2.1 and any feasible value of τ , the
minimum support requirement will ensure that the expected number of samples
in a transaction is at most |Tt|. This means that for each transaction Tt, the
time spent is O(|Tt| log(nm)) with high probability.
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4.3.2 SampleCount

This phase sees the stream of pairs generated by the pair sampling, and has to
filter out as many low similarity pairs as possible, while successfully identifying
high similarity pairs. By the properties of pair sampling, this is essentially the
task of identifying frequent pairs in the stream of samples. We aim for space
usage that is smaller than that of standard algorithms for frequent item mining
in a data stream. In order to accomplish this we use a modification of an
algorithm presented in [35]. That algorithm finds frequent items in a randomly
permuted stream of items, and so does not directly apply to our setting where
only the transactions are assumed to come in random order. In [35], the authors
are able to sample random elements by simply taking the first elements from
the stream. This would not work in our setting, where all these elements might
be pairs coming from the same transaction.

Reservoir sampling. Instead, we use a reservoir sampling method [83]. We
sketch the mechanism here and we refer to the original paper for a complete
description. Suppose we have a sequence of d items and we want to sample
a random subset of the sequence. We first of all put in the sample the first
s elements that we see. For each subsequent element, in position t > s, we
will put it in the sample with probability s/t. When a new element has to be
included in the sample, another one that is already part of the sample has to
be evicted. Each element of the set of samples will be chosen as the victim with
probability 1/s. This technique ensures we will end up with a set of samples
that is a true random sample of size s.

SampleCount. We consider the stream of pairs divided into κ chunks. The
pair sampling generates these chunks such that each chunk corresponds to some
set of transactions (i.e., all the pairs sampled from each transaction end up in
the same chunk).

We run reservoir sampling on every other chunk to produce a truly random
sample of size s/2. We then proceed to count the occurrences of the elements of
the sample in the next chunk. Assume in the following that we number chunks
by [κ], such that reservoir sampling is done on even-numbered chunks, indexed
by [κeven].

When doing the above, whenever we see a pair {i, j} whose count must be
updated, we weigh the sample by the factor γi,j that got “lost” during the pair
sampling phase, so as to consider an expected number of samples exactly pro-
portional to s(i, j). At the end of a counting chunk we estimate the similarities
of all pairs sampled, and keep the s/2 largest similarities seen so far. At the end
of the stream the similarity estimates found are returned to supersede the pre-
vious estimates. Pseudocode for the SampleCount is shown in Algorithm 4.1.

4.4 Analysis

Using the same notation as of Chapter 2, Si denotes the set of transactions
containing the element i. Again this means that Si∩Sj is the set of transactions
containing the pair {i, j}. Let S1

i denote the set of transactions containing i in
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1: procedure SampleCount(P, s, size)
2: S′

out := ∅
3: while There are elements in P do
4: S′ := ∅
5: S := ∅
6: S := the first s/2 elements in P
7: t := s/2
8: while t < size do
9: i := the next element in P

10: t := t + 1
11: Choose uniformly at random a number r ∈ [0, 1]
12: if r ≤ s/(s/2 + t) then
13: Choose a victim j uniformly at random from S
14: Substitute j with i
15: end if
16: end while
17: Initialize(S′, S)
18: while (t < 2 · size) do
19: i := the next element in P
20: t := t + 1
21: if i ∈ S then
22: S′(i) := S′(i) + γi

23: end if
24: end while
25: S′

out := the s topmost distinct items between S′
out and S′

26: end while
27: output S′

out

28: end procedure

Algorithm 4.1: Pseudocode for the SampleCount phase. The input parameter
P , it is a stream of pairs, each of which has associated a similarity value. The
length of P is known. S′ on Line 17, is an associative array indexed on the
distinct items present in S; initializing it means putting all its entries to 0.
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the current prefix of the stream. Similarly, Sk
i will denote the set of transactions

containing i in Ck, the chunk k of the suffix of the stream up to the point in which
a new current prefix changes the counts of items occurrences. So Sk

i = Si ∩ Ck

Definition 4.4.1. Given x, y ∈ R we say that x (δ, L)-approximates y, written
x

δ,L' y, if and only if x ≥ L implies x ∈ [(1− δ)y; (1 + δ)y]. ◦

The notation extends in the natural way to approximate inequalities.
In what follows we will use (δ, L)-approximations, where L = C log(mn) for a

suitably large constant C (depending on the accuracy δ in Theorem 4.1.2). The
task is to analyze the accuracy of the new approximation computed when the
current prefix changes. We introduce two random events, GoodPermutation
(GP) and GoodBisamSample (GBS), and bound the probability that they do
not happen.

A permutation of the transactions is called good for {i, j}, denoted GPi,j , if
and only if the following conditions hold (for the current prefix):

1. |S1
i |

δ,L' |Si|/2 and |S1
j |

δ,L' |Sj |/2;

2. ∀k . |Sk
i ∩ Sk

j |
δ,L' |Si ∩ Sj |/2k;

Essentially, goodness means that the frequencies of individual items are close in
the first and second half of the current prefix and the frequency of the pair is
evenly spread over the chunks in the second part of the current prefix.

Lemma 4.4.1. Given δ ∈ [0; 1] ⊆ R, we have:

Pr[GPi,j ] ≥ 1− 6 · e
−|Si|δ

2

6

Proof. An interesting property of the random variables |S1
i | and |Sk

i ∩ Sk
j | is

that they are negatively dependent [37]. First of all we bound the probability
that |S1

i | is far from |Si/2|. Using Chernoff bounds we can write:

Pr[|S1
i | − |Si|/2| ≤ δ|Si|/2] ≤ 2 · e−

|Si|δ
2

6 (4.1)

Looking at |Sk
i ∩ Sk

j | we can write:

Pr[|Sk
i ∩ Sk

j | − |Si ∩ Sj |/2κ| ≤ δ|Si ∩ Sj |/2κ] ≤ 2 · e−
|Si∩Sj |δ

2

6κ (4.2)

We use the fact that Chernoff bounds also holds for negatively dependent ran-
dom variables. Since the last bound is the weakest, the lemma follows.

We want GPi,j to hold with probability 1− o(1/n2) whenever items i and j
both have support ϕ. From Lemma 4.4.1 we get that this holds if |Si ∩ Sj | >
Cκ log n, for some constant C (depending on δ). If s(i, j) > 2κLf(ϕ, ϕ) ≥ κL/ϕ
then |Si ∩ Sj | ≥ 2κL. Hence, a sufficient condition for the similarity is

s(i, j) > κL/ϕ . (4.3)

It remains to understand what is the probability that, given a good permu-
tation, the pair sampler will take a number of samples for a given pair in each
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chunk k that leads to a (1 ± δ)-approximation of s(i, j). We denote the latter
event by GBSi,j,k, and want to bound the quantity Pr[GBSi,j,k|GPi,j ].

For this purpose consider the random variable Xi,j,k defined as the number
of times we sample the pair {i, j} in chunk k. Assuming GPi,j we have that (over
the randomness in the pair sampling algorithm and because of the properties
of BiSam) E[Xi,j,k]

δ,L' f̃(|S1
i |, |S1

j |)τ |Si ∩ Sj |/2κ. Since the occurrences of
{i, j} are independently sampled, we can apply a Chernoff bound to conclude
Xi,j,k

δ,L' E[Xi,j,k]. This leads to the conclusion:

Lemma 4.4.2. Xi,j,k
δ,L' f̃(|S1

i |, |S1
j |)τ |Si ∩ Sj |/2κ ◦

Suppose that Xi,j,k is close to its expectation. Then we can use it, with
(1± δ)-approximations of |Si| and |Sj |, to compute a (1±O(δ))-approximation
of s(i, j). This follows by analysis of the concrete functions f of the measures
in Table 2.1 on page 25.

A sufficient condition on the similarity needed for a (1±δ)-approximation of
Xi,j,k can be inferred from Lemma 4.4.2. in order to get the right approximation
for Xi,j,k, we need to enforce that f̃(|S1

i |, |S1
j |)τ |Si∩Sj |/2κ ≥ L. We know that

f̃(|S1
i |, |S1

j |) ≥ f(|S1
i |, |S1

j |)/2. Moreover |S1
i | and |S1

j | approximate |Si|/2 and
|Sj |/2 respectively. It is important to point out that for all the measures we
address, f(|Si|/2, |Sj |/2) = 2f(|Si|, |Sj |). Thus, overloading the symbol δ we

can write: f̃(|S1
i |, |S1

j |)τ |Si ∩ Sj |/2κ
δ,L

≥ f(|Si|, |Sj |)τ |Si ∩ Sj |/2κ = s(i, j)τ/2κ.
If s(i, j) ≥ 4κL/τ then E[Xi,j,k] ≥ s(i, j)τ/4κ ≥ L. So it suffices to enforce:

s(i, j) ≥ 4κL/τ . (4.4)

In order to have O(mb) pairs produced by the pair sampling phase, we
will choose τ = 4ϕ/M . The expected number of pair samples from Tt is less
than |Tt|2τf(ϕ, ϕ), using that f is decreasing. For all measures we consider,
f(ϕ, ϕ) ≤ 1/ϕ, so |Tt|2τf(ϕ, ϕ) ≤ |Tt|2/M ≤ |Tt|.

It remains to understand which is the probability that a pair of items,
each with support at least ϕ, is not sampled by SampleCount. Let the ran-
dom variable X.,.,k represent the total number of samples taken in chunk k.
The probability that a {i, j} is sampled in chunk k is Xi,j,k/X.,.,k, so the
probability that it does not get sampled in any (even-numbered) chunk is∏

k∈[κeven](1−Xi,j,k/X.,.,k)s. We have seen before that Xi,j,k

δ,L

≥ s(i, j)τ/4κ. For

what concerns X.,.,k using a Chernoff bound we can get: X.,.,k
δ,L' E[X.,.,k] ≤

mb/κ, using the linear upper bound on the number of samples. So we can
compute:

∏
k∈[κeven]

(1−Xi,j,k/X.,.,k)s ≤
(

1− s(i, j)τκ

2κγi,jmb

)sκ/2

≤
(

1− s(i, j)τ
4mb

)sκ/2

≤ C exp
[
−s(i, j)τsκ

8mb

]
In order for this probability to be small enough (O(1/m2)), we need to bound
the similarity to

s(i, j) ≥ 8mbL

sκτ
(4.5)
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Figure 4.2: Plots of the ratios |S1
i |/|Si| and |S1

i ∩ S1
j |/|Si ∩ Sj |.

To choose the best value of κ we balance constraints (4.3) and (4.5), getting:

κL

ϕ
=

mbL

sκτ
⇒ κ =

√
mbM

s
(4.6)

From which we can deduce:

s(i, j) =
L

ϕ
max

{√
mbM

s
,M

}
. (4.7)

4.5 Dataset characteristics

We have computed, for a selection of the datasets hosted on the FIMI web page1,
the ratios between the number of occurrences of single items and pairs in the
first half of the transactions and the total number of occurrences of the same
items or pairs. The values of some of this ratios, the most representative, are
plotted Figure 4.2; on the x-axis items or pairs are spread evenly, after they have
been sorted according to their associated ratio. The y-axis represents the value
of the ratios. We have taken into account only items and pairs whose support is
over 20 occurrences in the whole dataset, in order to avoid the noise that could
be generated by very rare elements. As we can see, the number of occurrences
and co-occurrences are not so far from what would be expected under a random
permutation of the transactions. The synthetic data set behaves exactly like we
would expect under a random permutation, with the ratio being very close to
1/2 for almost all items/pairs.

This means that even for real data sets, where the order of transactions is
not random, the sampling probabilities used in the pair sampling are reason-
ably close to the ones that would be obtained under the random permutation
assumption.

4.6 Conclusions

We presented the first study concerning the problem of mining similar pairs
from a stream of transactions that does rely on the similarity of items and not
only on the frequency of pairs. A thorough experimental study of (carefully
engineered versions of) the presented algorithm remains to be carried out.

1http://fimi.cs.helsinki.fi/



Chapter 5

Frequent Pairs in Data
Streams: Exploiting
Parallelism and Skew

We introduce the Pair Streaming Engine (PairSE) that detects frequent pairs in
a data stream of transactions. Our algorithm provably finds the most frequent
pairs with high probability, and gives tight bounds on their frequency. It is
particularly space efficient for skewed distribution of pair supports, confirmed
for several real-world datasets. Additionally, the algorithm parallelizes easily,
which opens up for real-time processing of large transactions. Our simple Java
implementation processes over 20 million pairs per second on a workstation.

Furthermore we show that any algorithm that returns the exact most fre-
quent pair in a data stream must keep track of the frequencies of all pairs,
meaning that an exact approach is infeasible for data sets with many distinct
items.

Our theoretical findings are backed by extensive experiments showcasing
precision and recall of our method. In particular, we find that our method
achieves much better precision than guaranteed by the theoretical analysis, often
returning identical upper and lower bounds on the supports of the most frequent
pairs.

5.1 Introduction

We have already discusses in this work that a fundamental tasks in knowledge
discovery in databases is the mining of high quality association rules from trans-
actional databases over a set of items. The pioneering A-Priori [6] algorithm
proposed about two decades ago has paved the way for many important contri-
butions to the problem. Algorithms with much better space and time complexity
have since been proposed [18, 53, 78, 80] and shown to efficiently handle large
amounts of data.

In this chapter we concentrate again on discovering frequent pairs, or 2-
itemsets. It is worth pointing out again that, in our setting, we consider a pair
p = (i, j) as a set {i, j}; therefore we can focus our attention only on pairs
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such that i < j. Our algorithm can be generalized in a straightforward way to
k-itemsets, but in that case the analysis becomes more complex. Also, it has
been observed that already the case of 2-itemsets captures the main challenge
of frequent itemset mining: “. . . the initial candidate set generation, especially
for the large 2-itemsets, is the key issue to improve the performance of data
mining” [78].

5.1.1 Mining data streams

The considerations in this section are vastly similar to the ones already expressed
in Section 4.1. We think it is useful for the reader to be able to have a picture
of the framework without the need of jumping back to where these notions were
firstly exposed. Classical approaches such as A-Priori [6] and FP-growth [53]
require several passes over the transactional database and thus it is necessary
to have access to a storage system containing the database. As observed by
Manku and Motwani [68] this requirement is not practical for many real life
applications where we want to mine frequent patterns in only one pass from a
high speed stream of transactions. Since this seminal work, many researchers
have considered the special requirements of data stream association mining. We
refer the reader to the survey of Jiang and Gruenwald [59] for an introduction
to this area, and references to many central works. In this paper we restrict
our attention to the fundamental case of mining frequent pairs over the entire
stream (“landmark model”, in the classification of [92]).

We show in Section 5.5 that even if we are only interested in the single most
frequent pair, any streaming algorithm that always returns the correct pair must
(in a certain technical sense) keep count of the number of occurrences of every
pair, the cost of which may be prohibitive for datasets with many distinct items.
For this reason we concentrate on algorithms that succeed with high probability,
and return upper and lower bounds on the number of occurrences rather than
precise counts. For example, in the webdocs dataset there are around 700 million
distinct pairs of items, and keeping all their counts in a hash table would require
at least 8 GB of memory. In contrast, we obtain accurate results using a sketch
data structure of a few megabytes that fits in L2 cache.

5.1.2 Related work

Heuristic algorithms. Manku and Motwani [68] first recognized the neces-
sity for efficient algorithm targeted at frequent itemsets in transaction streams.
They generalized their StickySampling algorithm to a heuristic for transac-
tion streaming and showed empirically that it reliably estimates the frequency of
the most frequent itemsets on several benchmarks. The basic idea is to process
the data set in memory-sized chunks, mining each chunk for frequent itemsets
to determine which itemsets should be counted in the next chunk. However,
this method is vulnerable to large itemsets that are “temporarily frequent”. An
itemset of size k that is frequent in a chunk will have all its subsets counted in
the following chunk, using space 2k. For this reason it does not seem suitable
for general use.

Reduction to the single-item case. Another approach to mining of fre-
quent pairs (mentioned, but dismissed, in [68] and in Chapter 4) is to reduce the
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problem to that of mining frequent items, which is well-studied in a data stream
context. For a transaction T ⊆ [n], this approach generates all

(|T |
2

)
= Θ(|T |2)

pairs of T and feeds the resulting stream S, where the items of S are the pairs
generated, into a frequent items algorithm. Let F2 denote the length of the
stream generated in this way. It is known that using space s one can compute
the frequency of items (which are in fact pairs in our case) with an additive
error of F2/s [73, 35, 62].

This means that all pairs with frequency above F2/s can be reported, with
computed upper and lower bounds on the frequency that differ by at most F2/s.
While this is optimal over a worst-case data stream where all pairs occur with
frequency about F2/s, some methods, notably the SpaceSaving algorithm [71]
(an more detailed version of the paper is [72]), have been observed to produce
even tighter bounds on the highest frequencies in practice. However, to our best
knowledge, SpaceSaving and related algorithms have never been experimen-
tally investigated in the context of finding frequent itemsets.

Frequent items algorithms aim for using low time per item, and as a matter
of fact, the best methods use constant time per item; therefore the time usage for
the whole stream is O(F2). The most space-efficient methods do not parallelize
efficiently, as they rely on a single data structure, any part of which may be
updated for a particular transaction. Our algorithm, in contrast, parallelizes
efficiently without any need for shared memory.

Muthukrishan and Cormode [33] considered finding frequent items space-
efficiently in a stream that is highly skewed (Zipfian distribution with parameter
greater than 1). In the cited paper they are able to improve over previous
results the space needed to identify the most frequent items. However, when
considering the stream of all pairs, none of the data sets that we studied exhibits
large enough skew for their result to apply.

Algorithms for random streams. Yu et al. [87] presented another algo-
rithm for transaction stream mining. The main idea in their approach is to
keep a list of potentially frequent itemsets, and to update the list in a clever
way when advancing the stream. The paper contains theoretical bounds for the
quality of their estimates. However, in order to derive these bounds, they need
to assume that transactions are generated independently at random by some
process, and their analysis crucially depends on Chernoff bounds that can be
used because of this assumption.

In Chapter 4 the assumption is weaker, and is that the order of the trans-
actions in the stream is random.

Parallel and distributed algorithms. Since our data streaming algorithm
is parallel, it is natural to compare it to the literature on parallel and distributed
association mining (see e.g. Zaki’s 1999 survey [89]). Often, algorithms in this
literature store, partition, and repeatedly access data, so are not viable in a
data streaming context. For this reason, our technique for parallelizing the
approximate counting of pairs seems novel, and might be applicable to pursue
speedups in standard parallel models. In particular, all methods in [89] use
either a vertical layout of the data or a shared data structure — our algorithm
requires neither.
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5.1.3 Our contribution

The results presented in this chapter are:

• An efficient algorithm with rigorously understood time and space com-
plexity and output quality; it is analyzed under the assumption of Zipfian
distribution of the frequency of pairs; we show that this assumptions holds
for many real-life datasets;

• A lower bound on the space that any algorithm has to use when the goal
is to report the pair with the highest frequency, or even just the highest
frequency seen in the stream of pairs.

The algorithm of the former point is randomized and returns with high
probability a correct estimate of the frequency of the most frequent pairs. We
build upon well-known streaming algorithms and show how to extend them to
transaction streaming.

The complexity as well as the quality of the output is determined by the
Zipfian distribution parameters and the space allowed. The space usage is a
user-defined parameter from which we will derive bounds for the frequency of
pairs which can be detected with high probability as well as on their estimates.

We show through extensive experiments on real and synthetic datasets that
in many cases our algorithm performs considerably better than the theoretical
analysis suggests. misleading since

5.2 Notation

For ease of exposition, in this chapter the notation is slightly different with
respect to the former two. Therefore we specify again all the necessary notation,
even if it partially overlaps with what has already been defined previously.

The transaction stream is denoted by S = T1, .., Tm where Ti ⊆ [n] where
[n] = {1, . . . , n}. Again a subset p = {i, j} ⊂ [n] is called a pair. The set of pairs
is denoted by P, while the number of distinct pairs occurring in the stream S
is represented using d ≤

(
n
2

)
. Furthermore the number of frequent pairs by f ,

where the meaning of frequent will be specified in the given context.
The support of a pair p is the number of transactions containing p: sup(p) =

|{Tj : p ⊆ Tj}|, 1 ≤ j ≤ m.
A hash function h : P → [k] for k ∈ N is t-wise independent if and only

if Pr[h(p1) = c1 ∧ h(p2) = c2 ∧ · · · ∧ h(pt) = ct] = k−t for distinct pairs pi,
1 ≤ i ≤ t, and ci[k].

The Zipfian distribution with parameters C and z is defined as fi = C/iz

for the frequency fi of the i-th most frequent pair. Note that we will consider
z to be a constant but C does not need to be constant.

5.3 Our approach

5.3.1 Background and intuition

Before formally describing our algorithm let us give some technical background
and intuition. An algorithm detecting the frequent items in an item stream
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can be generalized in a straightforward way in order to find frequent pairs in a
stream of transactions: Simply generate for each transaction all subsets of size
2 and treat these subsets as items. In particular, the two well known algorithms
Count-Sketch and SpaceSaving could be generalised as described.

In Count-Sketch [22] every item i is hashed by a hash function h : [n] →
[k] to a bucket B containing a counter cB . Upon arrival of an item i the
corresponding counter is updated by a uniform sign hash function s(i) evaluating
i to either 1 or -1. After processing the stream the frequency of a given item i
can be estimated as cB · s(i) where B = h(i). The intuition is that contribution
from other items will cancel out. Both h and s are pairwise independent and
this is sufficient to show that for appropriate number of buckets the algorithm
produces good estimates where the error is measured with respect to the 2-
norm of the item frequencies. For skewed distribution of the stream frequencies
this gives high quality estimates of the heaviest pairs. One can amplify the
probability for correct estimates by working with more than one hash functions.
Upon a query for the frequency of a given item Count-Sketch returns the
median of the estimates, i.e., the counters in the buckets the item hashes to.

The SpaceSaving algorithm [71] has been already cited in Chapter 2, where
we extended it in order to satisfy the needs the setting presented there. We
sketch again its mechanism here, for the sake of clarity and to make the chapter
more readable. We remark that SpaceSaving offers upper and lower bounds
on the frequency of the items it reports, rather than an unbiased estimator. It
keeps a list of ` triples (itemj , countj , overestimationj), 1 ≤ j ≤ `. Until there
are free slots amongst the `, it inserts a new triple as (i, 1, 0) when an item i,
that is not already stored in one of the slots, arrives. The ` triples are sorted
according to their count value. On arrival of new item i the algorithm checks if
it is already in the list, in which case it increases the corresponding counter by 1
and updates the order in the list. Otherwise, if there is an empty slot amongst
the `, it inserts a new triple as (i, 1, 0) in one of the empty spaces; If there is
no room left, the algorithm replaces the triple (item`, count`, overestimation`)
having minimum count with a new triple (i, count` +1, count`). The intuition is
that heavy items will either get early on the “pull position" and won’t be evicted
from the list, or they will have many chances of entering the data structure and
start climbing towards the topmost positions as they appear in the stream.
Skewed data we will thus get an accurate estimation.

Our algorithm can be seen as a twofold refinement of the above direct ap-
proach:

1. In order to address the issue of having a quadratic number of pairs in
each transaction, hence a quadratic number of hash values to produce, we
employ parallelism. In this way we are able to distribute the computation
among several cores in a way such that each core efficiently computes the
pairs hashing to a given subset of the hash table.

2. Assuming Zipfian distribution we want to use the fact that the most fre-
quent pairs will not collide and thus we keep track of the most frequent
pair hashing to a given bucket. We will use an important property of
SpaceSaving; this property is described in [71] and consists in the fact
that in a stream of items, an item having relative frequency at least 1/2
will end up in the first position of the SpaceSaving data structure.
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Moreover, SpaceSaving has the nice property to correctly estimate the
frequency for the most frequent items for skewed distribution. This is more
of a heuristic property since the correctness of SpaceSaving depends on the
items order of arrival. However, for certain datasets we are able to obtain very
accurate estimates. Details follow.

5.3.2 Our algorithm

The skeleton of our algorithm is the following:

• Hash each pair to a bucket.

• Keep track of the most frequent pair in each bucket.

• Return an estimate of the frequency of the most frequent pair for each
bucket.

In the parallel version, each processor keeps track of an interval of the hash table,
and the total space remains fixed. Thus, we are in a shared nothing model with
no need for a shared memory – the only requirement is that each processor sees
the input stream. It is well-known that this kind of parallel algorithm scales
extremely well compared to algorithms that rely on interprocess communication
or shared data structures. Even for the largest data sets that we looked at, it
is feasible to keep the entire hash table in L2 cache of the involved processors
on a large workstation, resulting in extremely fast processing.

A crucial property in our analysis and experimental evaluations is that most
frequent pairs do not collide, and thus we obtain high quality estimates on their
frequency. We combine two different ways for estimating the frequency of the
heaviest pairs based on the Count-Sketch and SpaceSaving algorithms. In
particular, we use a distribution hash function h : [n]× [n] → {0, . . . , k − 1} to
split the set of pairs into k parts, and use a SpaceSaving sketch on each part.
The size k of the hash table and the size of the SpaceSaving sketch determines
the accuracy of the sketch.

Pseudocode for our algorithm is shown in Algorithms 5.1 and 5.2. PairSE(i, j)
produces a table with SpaceSaving and Count-Sketch structures for those
pairs (u, v) that have h(u, v) ∈ [i, j) for some range [i, j).

Parallelizing processing of pairs Näively we could just iterate through
all pairs of each transaction Tt, but we would like an algorithm that runs in
linear time when the number of pairs hashing to [i, j) is small. This will allow
us to split the task of computing the sketch among several cores, all the way
to the point where each core processes a transaction in linear time. In other
words, given sufficient parallelism we can handle a given data rate even if the
transactions are huge.

To achieve this, we exploit the special structure of our hash function: h(u, v) =
(h1(u)+h2(v)) mod k for pairwise independent hash functions h1, h2 : [n] → [k].
To find the pairs in transaction Tt that hash to [i, j) we first sort the sets
H1 = h1(Tt) and H2 = h2(Tt). Pairs with hash value in the right range cor-
respond to elements of H1 and H2 with sum in [i, j) ∪ [k + i, k + j). We will
sometimes denote [k + i, k + j) using [i, j) + k. One way to find these would
be to iterate over elements of H1, and for each do two binary searches over the
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sorted list H2 to find the values in the right ranges. However, this can be further
improved by processing H1 in sorted order, and exploiting that the intervals of
H2 values to consider will be moving monotonically left. This brings down the
time to O(|Tt|+ d[i, j)), where d[i, j) is the number of pairs hashing to [i, j).

In order to improve the algorithm’s accuracy we may run t = O(log 1
δ ) copies

of the algorithm in parallel.
At the end a pair is reported frequent if it has “won" in at least t/2 of its

corresponding SpaceSaving data structures. Our experimental results will be
for a single run, so the reported accuracy can be improved at the cost of time
and space.

The second estimate of the algorithm is based on the Count-Sketch al-
gorithm by Charikar, Chen and Farach-Colton [22]. Here, we have a counter
serving as an unbiased estimator for the frequency of the heaviest pair, where
unbiased means that the estimate does not depend on the order of arrival of
pairs.

As in the original Count-Sketch algorithm we will work with an additional
pairwise independent hash functions: The sign function s : P → {−1, 1}. With
each bucket B we associate a counter cB . The counter serves the same purpose
as in the original algorithm [22].

Upon arriving of a new pair p we update the corresponding bucket, we abuse
notation and denote it as h(p), as follows: ch(p) = ch(p) + s(p). The intuition
is that the heaviest pair will contribute with the same sign, and contributions
from other pairs will cancel out. At the end the algorithm returns s(p) · ch(p) as
estimated frequency for the pair where p is the first pair in the SpaceSaving
data structure. As we show in the next section, if sup(p) > m/2, then a high-
quality estimation of p’s frequency is returned.

In order to reduce the error we work again with our simulation of t = O(log 1
δ )

independent hash functions and report the median of the results.

Parameters We will assume that data is not lightly skewed and z > 1/2. We
will distinguish between the cases when 1/2 < z < 1 and z > 1. In order to
keep the presentation concise the particular case z = 1 will not be analyzed.

In our analysis we will also use as a parameter the number of distinct pairs
d occurring in the transaction stream. Of course, the value of d is not known in
advance. One can either be conservative and assume d = Ω(

(
n
2

)
), or use efficient

methods for estimating the number of occurring pairs, like the one presented in
Chapter 7, if two passes over the transaction stream are allowed.

5.4 Analysis

In the following we give a separate analysis of the estimates based on Space-
Saving (giving guarantees on the upper/lower bounds), as well as the unbiased
Count-Sketch estimator returned by our algorithm. Note that while Count-
Sketch is theoretically superior as it always returns an unbiased estimator, it
requires more space for high quality estimates and our evaluations show that it
performs rather poorly on real-life datasets compared to the estimates given by
SpaceSaving.
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1: procedure PairSE(Stream S, Interval [i, j), Integer k)
2: for B ∈ {0, . . . , k − 1} do
3: SpSk[B].Initialise() . Initialisation of the k buckets
4: end for
5: for T ∈ S do
6: Hash(T, [i, j), SpSk, k)
7: end for
8: for B ∈ {0, . . . , k − 1} do
9: (p, c, ε) := SpSk[0]

10: s(p) := SpSk[2]
11: cB := SpSk[3]
12: output (p, c, ε)
13: output cB · s(p) as an unbiased estimator of the frequency of p
14: end for
15: end procedure

16: procedure Hash(Transaction T , Interval [i, j), Array SpSk, Integer k)
17: H1 := h1(T )
18: T1 := T sorted according to the values in H1

19: H2 := h2(T )
20: T2 := T sorted according to the values in H2

21: u1 := T.length− 1
22: u2 := T.length− 1
23: s := 0
24: while s < T.length− 2 do
25: while h1(T1[s]) + h2(T2[u1 − 1]) > i do
26: u1 := u1 − 1
27: end while
28: s1 := u1

29: while h1(T1[s]) + h2(T2[u2 − 1]) > i + k do
30: u2 := u2 − 1
31: end while
32: s2 := u2

33: while h1(T1[s]) + h2(T2[s1]) < j do
34: B := h1(T1[s]) + h2(T2[s1]) mod k . compute the hash value
35: SpaceSketch(SpSk[B], (T1[s], T2[s1])))
36: s1 := s1 + 1
37: end while
38: while h1(T1[s]) + h2(T2[s2]) < j + k do
39: B := h1(T1[s]) + h2(T2[s2]) mod k . compute the hash value
40: SpaceSketch(SpSk[B], (T1[s], T2[s2])))
41: s2 := s2 + 1
42: end while
43: s := s + 1
44: end while
45: end procedure

Algorithm 5.1: The initialisation on line 3 just put to 0 all the values
in the entries of SpSk. An entry j in the array SpSk is: SpSk[j] =
((p1, c1, ε1), (p2, c2, ε2), cj , s(p1)). The While loop on Line 24 finds for every
element x of a transaction T the items y ∈ T such that h(x, y) ∈ [i, j) ∪ [i, j) + k
(Loops on Lines 25 and 29). On Lines 35 and 40 are the calls to the procedure
that maintains the sketches for both SpaceSaving and Count-Sketch
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1: procedure SpaceSketch(Bucket SpSk[B], Pair p)
2: ((p1, c1, ε1), (p2, c2, ε2), roundB , cB) := SpSk[B]
3: if p = p1 then
4: c1 := c1 + 1
5: else
6: if p = p2 then
7: c2 := c2 + 1
8: else
9: p2 := p

10: ε2 := c2

11: c2 := c2 + 1
12: cB := cB + s(p) . s : P → {−1, 1}
13: end if
14: if c2 > c1 then
15: swap((p1, c1, ε1), (p2, c2, ε2))
16: end if
17: end if
18: end procedure

Algorithm 5.2: The pseudocode explains how the techniques SpaceSaving and
Count-Sketch are implemented by the algorithm.

5.4.1 SpaceSaving Based Sketch

Theorem 5.4.1. For a Zipfian distribution with parameters C and z > 1,
Algorithm 5.1 detects with constant error probability pairs with frequency at
least Ω( C

kz ); k is a user defined space usage parameter; that is, the hash function
range. For z < 1 the bound is Ω(max( C

kz , Cd1−z

k )). We recall the reader that
d is the number of distinct pairs occurring in all transactions. By allowing a
multiplicative factor of O(log(1

δ )) for the space usage we report at least (1− δ)f
frequent pairs with probability at least 1− δ for a user-defined parameter δ.

Proof. Let the minimum support threshold for frequent pairs be αm, α > 0.
(At the end of the proof we will obtain bounds on αm that depend on k.) We
will estimate the probability that a frequent pair p is not reported. From the
Zipf distribution we obtain that x := ( C

αm )
1
z pairs will have frequency above

αm.
Let B be the bucket p hashes to. We first consider the case that another pair

with frequency above αm will be hashed to B. This happens with probability
p1 := x/k. We will enforce a value for x, i.e. a lower bound on the support
threshold of frequent pairs, such that p1 < 1/6.

Assume now that the only frequent pair in B is p. As already discussed
if the total weight of pairs frequencies hashed to B is less than 2αm, then
p will be reported. Let w :=

∑d
i=x+1 C/iz be the total weight of infrequent

pairs. In the following we will use the fact that w = O(C(d1−z)) for z < 1 and
w = O(C(x1−z)) for z > 1, where d is the number of distinct pairs in transaction
database. This follows by integration of the corresponding continuous function.
Then we expect pairs of total weight w/k to land in B. In order to show a a
small deviation from the expected value we will adapt the analysis from [33] to
our problem.
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Let Yj be an indicator random variable denoting whether the j-th infrequent
pair is hashed to B and X =

∑d−x
j=1 Yj . Clearly, E[X] = w/k. Applying Markov’s

inequality we obtain Pr[X ≥ 3w/k] = p2. We will later enforce p2 ≤ 1/3.
We want 3w/k ≤ 2αm. For z < 1 we have w ≤ C(d1−z)

1−z thus we set k =

max(6( C
αm )

1
z , 3 C(d1−z)

(1−z)(2αm) ). Similarly, for z > 1 we have w ≤ C(x1−z)
(z−1) , hence the

bound k = max(6( C
αm )

1
z , 3C

1
z

2(z−1)(αm)
1
z
).

Thus, for z > 1, we will consider pairs frequent if their frequency is αm =
Ω( C

kz ) and for z < 1 if αm = Ω(max( C
kz , Cd1−z

k )).
Thus, by the union bound the probability that a given pair with frequency

at least αm is not reported is at most p1 + p2 < 1/2.
Instead of having one hash function we will work with t := c log 1

δ2 , for some
constant c > 1, independent hash functions such that each of them updates
one of k unique SpaceSaving data structures. A pair will be reported as
frequent only if it has won at least t/2 of its corresponding “races". Since the
hash functions are independent and the expected number of a frequent pair
being reported is at least t/2, we can apply Chernoff inequality and bound the
probability of a frequent pair not reported to at most O(δ2).

Note that the number of reported pairs is bounded by 2k. Thus, we expect
at most δ2x frequent pairs not to be reported and by Markov’s inequality the
probability we don’t report more than δx frequent pairs is at most δ.

We remark that the above analysis is for a worst case scenario, namely
the one in which the pairs hashed to each bucket arrive in a specific order.
Moreover, in order to derive theoretically sound analysis, we work with the
pessimistic bounds given by Markov’s inequality. In our experiments we show
that for real-life datasets we are able to achieve very accurate results with much
more modest parameters than the ones in the above analysis.

If we define the two functions:

Recall: the ratio between the number of identified frequent pairs divided by
the number of all frequent pairs;

Precision: the ratio between the number of frequent pairs and the number of
pairs that are output;

it is possible to balance between them by choosing an optimal value for the
number of buckets k. The bigger k, the better recall we get, but the noise
in the output decreases the precision. The two functions are good metrics for
estimating the influence of the number of false positives and false negatives in
the output.

5.4.2 Count-Sketch

Theorem 5.4.2. For a Zipfian distribution with parameters C and z > 1/2
the unbiased estimator returned by Algorithm 5.1 estimates the frequency of a

given pair with frequency Ω( (k/C2)
2z−1

z

C ) within an additive constant factor with
a constant error probability. By allowing a multiplicative factor of O(log(1

δ )) for
the space usage we report correct estimates for at least (1 − δ)f frequent pairs
with probability at least 1− δ for a user-defined parameter δ.
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Proof. As in the original Count-Sketch algorithm we work with an additional
hash function: The sign function s : P → {−1, 1}.

In the analysis below we will obtain closed expressions for the frequency of
items which we will consider frequent depending on C, z and the user-defined
k. Let us first denote the minimum required support as sup(p) ≥ αm, α > 0.
From the parameters of the Zipfian distribution we obtain a closed form for
the number of pairs with frequency at least αm, i.e. ( C

αm )
1
z , let us denote this

number by x.
First, we have already analyzed the event that a given frequent pair is not

reported. We will assume this happens with probability at most 1/2.
We will now obtain upper and lower bounds on the estimates and will bound

the probability of them being not incorrect. The expected value E[s(p) · ch(p)]
is the exact frequency of p; abusing notation we denote by ch(p) the counter in
the bucket where p hashes to. Our goal is to show concentration result around
the expected value which will imply an high-quality estimate.

We bound the probability that pairs with total weight at least αm will land
in h(p). In order to show concentration around the expected value we will adapt
the analysis from the previous section and will work with Chebyshev’s inequality
instead of Markov’s. Let w :=

∑d
i=x+1

C
iz denote the total weight of infrequent

pairs. The sum of squared frequencies of infrequent pairs is w2 =
∑d

i=x+1(
C
iz )2.

We use the fact that w2 = C2x1−2z

2z−1 for z > 1/2.
The expected excess in a bucket with a frequent pair, denoted by the random

variable X, is E[X] = w/k. The variance turns out to be Var[X] = w2/k. Thus,
for k > w2 we bound the probability for absolute deviation from expectation by
more than λ to 1/λ2. We assume λ > 2, thus the error probability is at most 1/4.
Note that this bound directly implies an upper bound on the overestimation,
respectively underestimation, of the frequency of the reported frequent pair.
With some algebra one obtains the lower bound on the support claimed in the
theorem.

The above lower bound on the space requirement is bigger than the bounds
in Theorem 5.4.1t for z > 1/2.

With the same analysis of the previous section we compute the probabil-
ity of not reporting the pair; therefore, to account also for the probability of
over/under estimating the frequency, we can use a union bound and get an error
probability smaller than 1/2. The probability can be reduced to any desired δ
by working with t := c log 1

δ2 = O(log 1
δ ) independent hash (sign and bucket)

functions for some constant c > 1, as outlined in the previous section. We will
report a pair as frequent if and only if it has been found frequent at least t/2
times. We take the median of the results and apply Chernoff bounds in order to
bound the probability the frequency has been over/underestimated. For bound-
ing the number of not reported/not correctly estimated frequent pairs, we can
apply again Markov’s inequality as shown in the previous section.

5.5 A lower bound

We present a lower bound for the space needed in order to report the most fre-
quent pair in a stream of transactions. Of course, this applies also to any harder
problem, such as reporting a larger set of frequent pairs, with counts. This lower
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bound complements the strong worst-case space lower bound presented in Chap-
ter 4, by arguing that any data streaming algorithm for frequent pairs that does
not make errors must store all information about itempair counts.

Theorem 5.5.1. Any data streaming algorithm that always outputs the most
frequent pair, or even just the frequency of the most frequent pair, must encode
in its state all itempair counts, in the sense that if two stream prefixes differ in
the count of some itempair, the algorithm must be in different states after seeing
the prefixes.

Intuitively, the only generally applicable ways of storing the counts of all
pairs is to either store each count explicitly, or store all transactions seen so
far. Indeed, in the full version of this paper we show that this means that for
a wide range of input distributions, after seeing a sufficiently long prefix of the
stream any algorithm needs space Ω(n2) (with high probability), where n is the
number of distinct items.

Proof. For a prefix of the stream consider the count vector that for each pair
records its frequency in the prefix. Let A be any algorithm that computes the
most frequent pair in a data stream. Consider two distinct count vectors x and
y, corresponding to different stream prefixes. We argue that A must be in two
different states after seeing these prefixes. Suppose that the latter claim is not
true, so that for x 6= y the algorithm is in the same state. Since x and y differ,
there must be at least a pair (u, v) having distinct counts in the two count
vectors. But this implies that we can extend the streams with a sequence that
makes the pair (u, v) the most frequent one in one of the vectors, say w.l.o.g. x,
(u, v) becomes the most frequent pair, while this does not happen in y. Still, the
algorithm would be in the same state in both cases, returning the same result
and occurrence count. This contradicts the assumption that A always returns
the correct answer, so the assumption that x and y resulted in the same state
must be false.

5.6 Experiments

Table 5.1 summarises the data sets that we use for experiments. In all cases, we
use the order in which the transactions are given as the stream order. Experi-
ments refer to the version of the algorithm using Spacesaving. We worked with
two implementations, a simple Python implementation, and a cache-optimised
Java implementation that was 10–20 times faster. In both cases, we used the
built-in random number generator of the language to store hash values in a
table.

5.6.1 Pair similarity distribution

We would like to justify the assumption in our theoretical analysis that the
counts over all pairs follow a Zipfian distribution. While it is well-known that
this is true for single items in many data sets, it is not obvious that this as-
sumption holds for streams of pairs generated from a stream of transactions.
For this reason we computed the exact count the most significant pairs using
Borgelt’s A-Priori implementation 1 [15], and plotted them in decreasing order.

1http://www.borgelt.net/apriori.html
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Dataset # of pairs (F2) # of distinct pairs
Mushroom 22.4 · 105 3.65 · 103

Pumsb 1360 · 105 536 · 103

Pumsb_star 638 · 105 485 · 103

Kosarak 3130 · 105 33100 · 103

Retail 80.7 · 105 3600 · 103

Accidents 187 · 105 47.3 · 103

Webdocs 2.0 · 1011 > 7 · 1010

Nytimes 1.0 · 1010 > 5 · 108

Pubmed 1.6 · 1010 > 6 · 108

Wikipedia 5.17 · 1011 > 5.8 · 109

Table 5.1: Information on data sets for our experiments. Nytimes and Pubmed
are taken from the UCI Machine Learning Repository (Bag of Words data set).
The wikipedia dataset has been crafted according to what is described in [1,
Page 14]. The rest are from the Frequent Itemset Mining Repository. For the
last four data sets the number of distinct pairs was estimated using the hashing
technique presented in Chapter 7.

Figure 5.1 shows the supports of the most frequent pairs for our datasets. In all
cases we see that the curve starts as approximately a straight line. The length
of this line varies from one data set to another, from a few hundred pairs to
hundreds of thousands. Observe also that in all cases where the curve deviates
from a line it drops below, i.e., the distribution is dominated by a powerlaw
distribution.

5.6.2 PairSE precision and recall

Our next set of experiments shows results on the precision of the counts ob-
tained by PairSE, as well as the recall. Both aspects are of course influenced
by the amount of space used. For each data set we have chosen a relatively
low space usage, to show that even with a small memory footprint good results
are obtained. In practice, it may be hard to foresee how much space will be
needed for a particular stream, so probably one will tend to use as much space
as feasible with respect to running time (ensure in-cache hash table), or what
amount of memory can be made available on the system. A consequence of this
will be even more precise results. The results of the experiments are visible
in Figures 5.2 and 5.3, where the former zooms in the zone where the lower
and upper bound computed by SpaceSaving are very accurate (left part of
Figure 5.3).

5.6.3 PairSE space requirements

We now investigate what happens to precision and recall when the space usage
of PairSE is pushed to, and beyond, its limits. In order to do this, we chose to
work with 3 representative data sets, namely Mushroom, Retail and Accidents.
We decreased the space usage gradually, plotting the ratio between the upper
and lower bounds for the top-100 pairs returned by our algorithm. This is shown
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Figure 5.1: The frequency distribution for the most frequent pairs, on doubly-
logarithmic scale. All start off with a straight line.
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Figure 5.2: Top frequent pairs for Webdocs, and their rank according to the
frequency lower bound computed by PairSE using 220 buckets. As can be seen,
recall is initially high, but decreases with the support.
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Figure 5.3: Upper and lower bounds for Webdocs computed by PairSE using 220

buckets. Values are normalised by dividing by true support. Upper bounds shadow
lower bounds; exact bounds are visible only as red dots without blue dots below.
As can be seen, upper bounds are generally tighter than lower bounds.

in Figure 5.4 and we can see how the transition between very good and very
poor quality is fairly fast.

5.6.4 Load balance

We ran experiments in order to evaluate the distribution of pairs amongst the
buckets. When running these experiments, we kept track also of the num-
ber of pairs that were evicted by a bucket, the number of swaps, the number of
increments to the counters. The results of these experiments are reported in Ta-
ble 5.2. The numbers in the table confirm that the pairs spread evenly amongst
the buckets; this means that parallelism greatly improves the running time of
the algorithm, since there will be no core that have to sustain a much larger
burden than the others; such a negative situation would bring the performances
of the algorithm close to a sequential one.

5.6.5 Performance and scalability

Experiments have been carried out in order to verify how the algorithm scales,
in terms of time, when parallel computations are used. We ran the algorithm on
various datasets using several different number of cores. In this way it has been
possible to highlight the parallel nature of the algorithm, hence, its capability of
being very time efficient when many cores are at hand. Table 5.3 reports some
of the results we obtained. The machine we used is described in the caption of
the table. It is interesting to point out that in case of large datasets, with a
high number of pairs, the algorithm allowed the CPU to manage more than 20
millions pairs per second. This means that the algorithm scales particularly well
when the transaction are large. In those cases the parallelism of the computation
speed up considerably the algorithm.
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Retail

# of cores Kicks Swaps
Average σ Average σ

8 491288 766.5 263672 290
4 982621 1392 527344 219
2 1965243 2643 1054688 503

Docword.kos

# of cores Kicks Swaps
Average σ Average σ

8 2509110 7010 1114876 3598
4 5018221 9664 2227698 3127
2 1.0036 · 107 9.925 4455395 1246

Webdocs

# of cores Kicks Swaps
Average σ Average σ

8 7.94 · 108 2.25 · 105 3.77 · 108 2.83 · 105

4 1.59 · 109 3.8 · 105 7.54 · 108 4.4 · 105

2 3.176 · 109 5235 1.51 · 109 1.1 · 106

Nytimes

# of cores Kicks Swaps
Average σ Average σ

8 9.88 · 108 5.26 · 105 4.78 · 108 1.93 · 105

4 1.97 · 109 3.15 · 105 9.56 · 108 1.48 · 105

2 3.95 · 109 4.1 · 105 1.9 · 109 9.2 · 104

Wikipedia

# of cores Kicks Swaps
Average σ Average σ

8 3.38 · 1010 1.3 · 1010 1.47 · 1010 6.63 · 106

4 7.72 · 1010 9 · 106 2.93 · 1010 1.2 · 107

Table 5.2: The table contains data concerning the load balancing of the algorithm
with respect to several numbers of cores used. The average and the standard
deviation are reported for both the number of pairs that got evicted from the data
structure (column Kicks) and for the number of swaps between pairs; both the
measures refer to all buckets in the data structure.
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Figure 5.4: Average ratio of lower and upper bound for top-100 pairs, for three
representative data sets. On the x axis we have the number of buckets. On the y
axis the ratio mentioned before. As can be seen, there is a quick transition from
poor to excellent precision.

Dataset # of cores ms on # cores ms 1 core

Retail
8 1321
4 1193 2001
2 1512

Docword.kos
8 1551
4 1586 2881
2 1997

Webdocs
8 299153
4 357679 891565
2 482111

Nytimes
8 443119
4 524553 1313698
2 689058

Wikipedia
8 27526403
4 35397110 93477243
2 53795313

Table 5.3: Experiments ran on an Intel Xeon E5570 2.93 Ghz equipped with
23 GB of RAM; the OS is GNU/Linux, kernel version 2.6.18. The number of
processes used is 8 for all the four rows. Times are given in milliseconds (ms).
We can observe that in any case, millions of pairs per second were manipulated
by the algorithm.
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Chapter 6

On Finding Frequent
Patterns in Event
Sequences

Given a directed acyclic graph with labelled vertices, we consider the problem
of finding the most common label sequences (“traces”) among all paths in the
graph (of some maximum length m). Since the number of paths can be huge, we
propose novel algorithms whose time complexity depends only on the size of the
graph, and on the frequency ε of the most frequent traces. In addition, we apply
techniques from streaming algorithms to achieve space usage that depends only
on ε, and not on the number of distinct traces.

The abstract problem considered models a variety of tasks concerning find-
ing frequent patterns in event sequences. Our motivation comes from working
with a data set of 2 million RFID readings from baggage trolleys at Copen-
hagen Airport. The question of finding frequent passenger movement patterns
is mapped to the above problem. We report on experimental findings for this
data set.

6.1 Introduction

Sequential pattern mining has attracted a lot of interest in recent years. How-
ever, some of the probabilistic techniques that have proved their efficiency in
mining of frequent itemsets have, to our best knowledge, not been transferred
to the realm of sequence mining. In this chapter we take a step in that direc-
tion, namely, we propose an analogue of Toivonen’s sampling-based algorithm
for frequent itemset mining [82] in the context of sequential patterns.

At a conceptual level we work with a new, simple formulation of the problem:
The input is a directed acyclic graph (DAG) where the vertices are events and
there is an edge between two events if they are considered to be connected (i.e.,
part of the same event sequences). Vertices are labelled by the type of event
they represent. This allows certain flexibility in modelling that is lacking in
many other formulations:
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goo tec ora itu goo

Figure 6.1: Example of a browsing history represented by a DAG

The browsing history of a user session can be captured by the dag, which also
accounts for detours or visits to search engines.

• Spatio-temporal events can be connected based on both spatial and tem-
poral closeness.

• Events that have an associated time range (rather than a single time
stamp) can be connected based on an arbitrary closeness criterion.

The data mining task we consider is to find the most common sequences of
event types (“traces”) among all paths in the DAG, or more generally all paths
of some maximum length m. The challenge is to handle the huge number of
paths that may be present in a DAG.

Example 6.1.1. Consider data on the history of URLs visited by a user, where
each URL is labelled by its domain name. If the user visits the domains
www.techcrunch.com, www.oracle.com, and www.itu.dk in this order, there
may be a connection between the first and second site, and between the second
and third site. If all visits happen within a few minutes one could also imagine
that the second site was merely a detour, and there is a connection from the
first to the third site. This is naturally modelled using a graph having URL
visits as vertices, and directed edges between vertices that we deem connected
(based on any criterion, e.g., temporal closeness). We label vertices by domain
name, and look for frequently occurring label sequences, traces, on paths in the
graph. Figure 6.1 gives represents the situation that we have just described. ◦

We might be interested in such frequent event sequences for a variety of
reasons, e.g. improved understanding of browsing behavior for advertisers (avoid
paying for many page impressions to the same user), and page recommendations
(“users who visited the same sequence of domains as you, often went on to the
domain. . . ”). We should be able to detect the connection between sites even if
they are not visited in succession. For example, many browsing histories will
interleave visits to hubs such as google.com and yahoo.com with visits to topic
specialized domains.

6.1.1 Approach

We start from the observation that the number of paths in a DAG can be
extremely large, even if the path length is restricted to some small number m.
For example, the DAG pictured in Figure 6.2 has 16 vertices and 45 edges, but
the number of paths is 10919.

More generally, we expect the number of paths to increase exponentially
with m. In our experiments we see that, even for small m, the number of paths
is much larger than the size of the DAG.
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Figure 6.2: In this small DAG, there are 16 vertices, 45 edges but the number
of paths is 10919. The number of paths can have an exponential dependence on
the maximum length of a path.

Our algorithm rests on a novel sampling procedure that is able to create a
sample of any desired size, in time that is linear in the size of the DAG (for
preprocessing) and the size of the sample. This allows a time complexity for the
mining procedure that depends only on the frequency ε of the most common
traces, rather than the total number of traces. We also apply a technique from
data streaming algorithms to achieve space that depends on ε rather than on
the number of distinct traces.

Though our formulation does not capture all the many aspects present in
other approaches to sequential pattern mining, we believe that it possesses an
attractive combination of expressive modeling and algorithmic tractability.

6.1.2 Problem definition

We are given a directed acyclic graph G = (V,E), and a function label(v)
that returns the label of a vertex. A path p in G is a sequence of vertices
v1, v2, . . . , vj ∈ V such that (vi, vi+1) ∈ E for i = 1, . . . , j − 1. A path p has a
trace label(p), which is the vector of labels on the path. Let Sm be the multiset
of all path traces of length at most m, i.e.,

Sm = {label(p) | p is a path in G of length at most m} .

The data mining task is to find the most frequent traces in Sm. It comes in
several flavours:

Top-k: For a parameter k, find the k traces that have the most occurrences
in Sm (breaking ties arbitrarily).

Frequency ε: Find the set of traces that have frequency ε or more in Sm.

Monte Carlo: For both the above variants we can allow an error probability δ
(typically allowing a false negative probability, i.e., that we fail to report
a trace with probability δ).

In this chapter, emphasis will be on Monte Carlo algorithms for the frequency
variant. However, we note that one can also obtain results for top-k by a simple
reduction.

6.1.3 Related work

There is a large body of related work on sequential pattern mining, see e.g. [69,
81, 60, 54, 91, 44, 25, 79]. These works deviate from the present one in that
they consider the input as a sequence of timestamped events, and allow a host
of formulations of what kinds of subsequences are of interest. In contrast, we
put the modeling of interesting subsequences into the description of the event
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sequence (by defining DAG edges), and the patterns sought are simple strings.
This allows us to do things that we believe have not been done, and are probably
difficult, in traditional sequential data mining settings, namely making use of
sampling methods.

The difficulty with sampling is that patterns can overlap in many ways, so
any straightforward approach will fail to produce a sample that correctly “rep-
resents” the original data. As an example, suppose that the pattern a2m occurs
in the input, which means k + 1 occurrences of am. If we sample events with
probability 50%, the probability that an occurrence of am remains in the sample
is 1/2. On the other hand, if there are k +1 non-overlapping occurrences of am,
the probability that this is seen in the sample may be much lower. For exam-
ple, for the string (ambm)m+1 the probability is O(m/2m), i.e., exponentially
decreasing as m grows. This means that there is no direct way of going from
the number of occurrences in the sample to the number of occurrences in the
original string.

Similar problems make use of sampling methods in general graph mining
difficult. Suppose that we sample vertices (or edges) with probability p. If
all triangles in a graph overlap in a single vertex, the sample will contain no
triangles at all with probability 1 − p. On the other hand, if there is the same
number of vertex (edge) disjoint triangles, we are likely to sample close to a
fraction p3 of them. As before, we cannot estimate the number of occurrences
in the original graph based on the number of occurrences in the sample.

6.2 Our solution

6.2.1 Generation of all traces

As a warmup we consider the task of producing the multiset Sm of all traces
having maximum length m. We will use the notation Si(v) to denote the mul-
tiset of traces corresponding to paths (of length at most i) starting in node v.
Clearly S0(v) = ∅. For i > 0 we have the recursive definition

Si(v) = {label(v)} × (ε ∪
⋃

v′, (v,v′)∈E

Si−1(v′)),

where ε denotes the empty trace (note that this symbol is different from ε denot-
ing the frequency), and

⋃
is multiset union. Clearly we have Sm =

⋃
v∈V Sm(v).

These equalities lead to a simple recursive algorithm, shown in Algorithm 6.1.
It is easy to see that if traces are represented in a reasonable way (e.g. as singly
linked lists) the running time is linear in the size |V |+ |E| of the graph and the
total length of the traces generated.

Succinct output. If we are satisfied with returning hash values of the traces
(unique with high probability) the time can be improved such that only O(1)
time is used for each trace, i.e. time O(|V | + |E| + |Sm|) in total. This can
be done using a standard incremental string hashing method such as the one
that can be found in [61]. Observe that the output is sufficient to find the hash
values of the most frequent traces in Sm (with a negligible error probability).
A second run of the procedure could then output the actual frequent traces,
e.g. by looking up the count of each hash value computed.
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1: procedure AllTraces(v, t, i)
2: if i > 0 then
3: output t||label(v)
4: for each v′ where (v, v′) ∈ E do
5: AllTraces(v′, t||label(v), i− 1)
6: end for
7: end if
8: end procedure

9: for v ∈ V do
10: AllTraces(v, ε,m)
11: end for

Algorithm 6.1: The procedure AllTraces outputs the concatenation of a trace
prefix t, and each trace starting at v having length at most i. The notation || is
for concatenation of traces. Lines 7–9 call AllTraces for all vertices v, with the
empty trace ε as prefix, producing the multiset Sm of all traces of length at most
m.

6.2.2 Generation of a random sample

If the patterns we are interested in occur many times, substantial savings in
time can be obtained by employing a sampling procedure. That is, rather than
generating Sm explicitly we are interested in an algorithm that produces each
trace in Sm with a given probability p, independently. This will reduce the
expected number of samples to a fraction p of the original. The choice of p is
constrained by the fact that we still want to sample each frequent trace a fair
number of times (to minimize the probability of false negatives being introduced
by the sampling).

Counting phase. Our algorithm starts by computing, for i = 1, . . . ,m the
number of paths v.c[i] of length at most i that start in each vertex v. We
assume that this can be done using standard precision (e.g. 64 bit) integers. The
pseudocode shown in Algorithm 6.2 mimics the structure of the näive generation
algorithm, but uses memoization (aka. dynamic programming) to reduce the
running time.

For each i ≤ m the cost of all calls to CountTraces with parameters (v, i),
disregarding the cost of recursive calls, is easily seen to be proportional to the
number of edges incident to v. This means that the total time complexity of
the counting phase is O(|E|m). The space usage is dominated by an array of
size m for each vertex, i.e., it is O(|V |m).

Sampling phase. Consider the multiset Si(v) of traces, which has size v.c[i]
by definition. The probability that none of these traces are sampled should
be (1 − p)v.c[i]. Conditioned on the event that at least one trace from Si(v) is
sampled, we either have to sample a trace of length more than one (starting
with label(v)), or include the trace {v} in the sample. In a nutshell, this is what
the procedure SampleTraces of Algorithm 6.3 does.

Let rand() denote a function the returns a uniformly random number in [0; 1],
independently of previously returned values. The condition rand() > (1−p)v.c[m]

holds with probability 1 − (1 − p)v.c[m], so lines 14–16 call SampleTraces if
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1: function CountTraces(v, i)
2: if v.c[i] =null then
3: v.c[i] := 1
4: for each v′ where (v, v′) ∈ E do
5: v.c[i] := v.c[i]+CountTraces(v′, i− 1)
6: end for
7: end if
8: return v.c[i]
9: end function

10: for v ∈ V do
11: CountTraces(v)
12: end for

Algorithm 6.2: Recursive computation of the paths of traces for each start-
ing vertex, using memoization. The algorithm assumes that each value v.c[0] is
initially set to zero, and each value v.c[i], 0 < i ≤ m, is initially null.

and only if we need to sample at least one trace from Sm(v). In the procedure
SampleTraces we use, similarly to above, a parameter t to pass along a trace
prefix. The variable out is used to keep track of whether a trace has been
output in the recursive calls. If out is false after all recursive calls we sample
t||label(v). For each v′ with (v, v′) ∈ E the probability that we do not sample
any trace from label(v)||Si−1(v′) is (1 − p)v′.c[i−1]/(1 − (1 − p)v.c[i]). This is
exactly the correct probability since we condition on at least one trace in Si(v)
being sampled.

Refinement. Looking at the pseudocode of Algorithm 6.3, we can observe
that the probability in Line 4 may be precomputed for each edge and value
of i. Even with this optimization, a direct implementation of that pseudocode
may spend a lot of time in the for loop of 3 without producing any output.
To get a theoretically satisfying solution we may preprocess, for each (v, i),
the probabilities p1, p2, . . . , pd of making the recursive calls. Specifically, for
j = 0, . . . , d we consider the probabilities qj = Πj′≤j(1− pj′) that no recursive
call is made in the first j iterations. If we choose r uniformly at random in [0; 1]
then the probability that qj−1 > r > qj is exactly the probability that the first
recursive call is in the jth iteration. Similarly, the probability that r > qd is
exactly the probability that no recursive call is made. Thus, by doing a binary
search for r over qd, . . . , q0 we may choose, with the correct probability, the first
iteration j1 in which there should be a recursive call. The same method can be
repeated, using a random value r in [0; qj1 ] to find the next recursive call, and
so on.

In the worst case this uses time O(log |V |) per recursive call. We can exploit
the fact that we are searching for a random value r to decrease this to O(1)
expected time. The idea is to represent the values qj in a binary trie that is
precomputed for each node. In addition we store for each string s ∈ {0, 1}dlog de

a pointer to the node in the trie that corresponds to the longest prefix of s.
The number of bits of r needed to determine its position in qd, . . . , q0 is at most
dlog de+ t with probability at least 1− 2−t. Using the pointers we can thus in
expected time O(1) find the node in the trie that has the longest common prefix
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1: procedure SampleTraces(v, t, i)
2: out := false
3: for each v′ where (v, v′) ∈ E do
4: if rand()> (1− p)v′.c[i−1]/(1− (1− p)v.c[i]) then
5: SampleTraces(v′, t||label(v), i− 1)
6: out := true
7: end if
8: end for
9: if out = false or rand()< p then

10: output t||label(v)
11: end if
12: end procedure

13: for v ∈ V do
14: if rand()> (1− p)v.c[m] then
15: SampleTraces(v, ε,m)
16: end if
17: end for

Algorithm 6.3: The procedure SampleTraces outputs the concatenation of a
trace prefix t and a random sample of the traces starting at v of length at most
i. The traces are sampled from the conditional distribution that is guaranteed to
sample at least one trace. As before, the notation || is for concatenation of traces,
and ε denotes the empty trace. Lines 13–17 call SampleTraces for each vertex
v with probability 1 − (1 − p)v.c[i], to produce a sample of all traces starting at v
having length at most i, where each trace is chosen independently at random with
probability p.
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with the binary representation of r. This, in turn, determines the rank of r in
qd, . . . , q0.

As before, we can choose to have a succinct output where traces are repre-
sented by the hash values of their traces, with no increase in time complexity.

6.2.3 Time and error analysis

For the time analysis we focus on the refined implementation described above,
since it allows a clean and exact theoretical analysis. A similar analysis of the
version stated in the pseudocode can be made under the assumption that the
outdegree of vertices in G is bounded by a constant. Observe that if Sample-
Traces makes c recursive calls this takes expected time O(1+ c). Also observe
that the total number of procedure calls is upper bounded by the total length
of all sampled traces — this is because each recursive call is guaranteed to pro-
duce at least one output. Combining these facts we see that the expected time
for all calls to SampleTraces is linear in the length ` of all traces sampled.
Notice that the expected value of ` is O(p|Sm|m). Since ` is independent of
the random choices determining the running time of the data structure in the
refined implementation we can conclude that the total expected running time
of the code in Algorithms 6.2 and 6.3 is O(|V |+ |E|m + p|Sm|m).

The parameter p must be chosen such that p = C/ε, where C > 1 is a
parameter that determines the false negative probability. The expected number
of times that we sample a trace with frequency ε′ is Cε′/ε, and since the samples
are independent, the number of samples follows a binomial distribution. By
Chernoff bounds, this means that if ε′ ≥ ε then the number of samples is at
least C/2 with probability 1− 2−Ω(C). Examples of concrete error probabilities
are given in our experimental section. We have the following theoretical result:

Theorem 6.2.1. We can generate a random sample of Sm in expected time
O(|V | + |E|m + log(1/δ)/ε) such that any trace with frequency ε or more has
frequency at least ε/2 in the random sample with probability 1− δ. ◦

Observe that the running time is independent of the total number of traces
in Sm.

6.2.4 Putting things together

It remains to assess how to choose, among the samples, the ones that are actually
interesting. In particular, we are interested in those traces appearing in the
sample at least C/2 times.

This problem can be efficiently faced using a frequent items algorithm. Such
algorithms are widely used in data streaming contexts, and guarantee very small
space usage. A comprehensive treatment and an experimental comparison be-
tween various techniques can be found in [31].

Definition 6.2.1. Given a stream S of n elements, a frequency threshold η,
and let fi be the the frequency of i in S. The frequent items problem consists
in returning a set F of size at most 1/η such that for all i with fi > η, i ∈ F .◦

Observe that false positives, with fi < η, can appear in the output. To
eliminate these, we simply make another pass (i.e., generate the same sample
again) to compute exact frequencies.
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Theorem 6.2.2. Given a stream of elements representing the set of samples
of traces produced by SampleTraces, the space needed in order to output the
traces with frequency at least ε/2, without producing any trace with frequency
less than ε/2, is O(1/ε) words. ◦

6.3 From event sequence to a DAG

An event sequence is a set S of tuples of the form (t, i, `), where t ∈ R is a time
stamp, i is a tag identifier, and ` is a label (in our application case of RFID
readings from baggage trolleys, i identifies the RFID on a trolley and ` is a
location identifier that indicates an approximate location, namely vicinity of an
antenna, of i at time t). In this work we do not consider the physical locations
of antenna as part of the input.

Formally we may define the problem as follows: For a given number ∆, the
input set specifies a directed acyclic graph G∆ = (V,E∆), where each observa-
tion is a vertex, and there is an edge from v1 to v2 if and only if the vertices
are observations of the same tag, at different locations, separated by at most ∆
time units (we use minutes as the time unit from now on).

To produce the DAG we sort the data by tag ID and timestamp. Note that
this makes it easy to find all the edges from a particular vertex v in G∆: Simply
scan the sorted list forward until either the timestamp differs by more than ∆
from that of v, or we reach a node corresponding to another tag.

Example 6.3.1. If ∆ = 20 and we observe locations 1, 2, 3, 6, 7 at time 10,
20, 30, 60, 70, the following subsequences are considered to reflect a movement:
1-2, 2-3, 1-2-3, 1-3, 6-7. Notice the inclusion of 1-3, where one observation is
skipped, since there is at most ∆ minutes between the observation of 1 and 3.
◦

6.4 Experiments

We have worked with a data set consisting of readings of RFID (Radio-Frequency
ID) tags by fixed-position antenna. RFID chips can be identified only when they
are in the proximity of an antenna, which means that readings give approximate
information about the location of an RFID tag. Such data sets, as well as sim-
ilar data sets based on other technologies, are becoming increasingly available
as more and more items, from parcels to items in shops, are being tagged with
RFID chips.

In order to construct the DAG, we have cleaned some of the noise present in
the data. One source of noise was due to the presence of sequences of readings
regarding trolleys remaining in zones where the range of two antennas is over-
lapping. This sequences of alternating readings had the form (x+y+)(x+y+)+.
In order to clean up this interferences, we replaced the elements of such a kind
of sequences, using a new zone label that represents the zone of overlap of the
range of antennas. In particular we have used, for a sequence (x+y+)(x+y+)+,
the label min{x, y} ∗ 100 + max{x, y}.
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Figure 6.3: RFID antenna in Copenhagen Airport.

∆ |V | |E|
20 2206302 4059250
10 2206302 2657931
5 2206302 1721448
3 2206302 1228759

Table 6.1: Size of the airport DAG for different values of ∆. As can be seen all
graphs are quite sparse, and in fact many nodes have no outgoing edges. This is
due to a relatively low resolution in the data set.

Notice that this can be thought as an increase in the resolution of the read-
ings, making the granularity of the information finer. In some sense this modi-
fication allows for a cleaner sight on the movement of some trolleys.

Another source of noise, sometimes connected with the one just described,
is the presence of sequences of readings regarding the same zone for a given
trolley. In order to avoid having traces of the form t = (Qyy+W ), where
Q and W are sequences of readings, we considered only one occurrence of y,
properly managing the timestamps of the readings. In particular this means
that, assuming the difference in time between any two consecutive y is within
the threshold ∆, in the DAG we put a directed edge (v, y), v ∈ Q iff the first
occurrence of y after Q occurred within time ∆ from v. Moreover we put a
directed edge (y, w), w ∈ W iff w happened within time ∆ from the last reading
of y in t.

It is necessary to point out that our method differs from the previous ap-
proaches in the way we look for frequent patterns. This means that our results
are not directly comparable with the ones that can be found in literature, so we
do not compare to existing algorithms.

6.4.1 Results

We ran a set of experiments on the airport data, in order to understand how
many patterns would have been generated for a given ∆ and a size m. Table 6.2
shows the size of the graph for different sizes of ∆. We compare the obtained
results with the expected performance of our algorithm.
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∆ m Tot. traces Dis. traces top 100th ratio
20 5 365818472 4311942 168000 990
10 5 106678064 1712646 52951 425
10 3 6196850 50085 9458 38.2
5 5 66947355 631300 42008 198
3 5 23152990 280454 15363 93

Table 6.2: Characteristics of the data for several combinations of ∆ and m.
The third column, Tot. traces, represents the total number of traces that would
be generated by the näıve approach; the Dis. traces column represents the number
of distinc traces; the top 100th column contains the frequency of the 100th most
frequent trace; the column ratio represents the saving we would achive using a
frequency threshold equal to the one represented in the top 100th column.

∆ m Tot. traces # samples ratio
20 5 365818472 22774 16800
10 5 106678064 20147 5295
10 3 6196850 6552 946
5 5 66947355 15937 4200
3 5 23152990 15070 1536

Table 6.3: The ratio between the total number of traces and the number of
samples we would take using C = 10.

Table 6.2 reports some interesting characteristics of the data when fixing ∆
and m. In particular the table contains the number of traces generated, the fre-
quency of the 100th most frequent trace and the ratio between the space needed
in case of an exact computation and the space required when our algorithm is
used. Note that the space to represent the DAG and the counts is not counted
in this ratio. The rationale for this is that as we consider longer event sequences
the space for the DAG representation is expected to become negligible compared
to the space needed for finding the most common traces.

From the results of the test it is clear that great savings can be achieved
when the frequencies we are interested in are not too low. In a case, nearly 3
orders of magnitude of space can be saved using our approach. As a matter of
fact, when we are interested in very frequent traces, and this is often the case
in many practical applications, the sampling outputs a large number of samples
for each interesting trace, so that a low sampling ratio can be used.

Table 6.3 shows the number of samples we would take in expectation when
C = 10 is used. The table gives the flavor of the saving in time that could be
achieved with respect to generating all the possible traces. Here we notice that
the total number of traces is already 1–2 orders of magnitude larger than the
size of the DAG, so we expect an improvement in running time of at least 1 order
of magnitude. Larger values of C will increase the running time proportionally,
but decrease the error probabilities. Table 6.4 shows false negative probabilities,
as well as probabilities that traces with frequency below ε/4 are reported.
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C
False negative

probability
Significantly false

positive probability
3 0.199 0.173
5 0.125 0.127
10 0.0671 0.0420
15 0.0180 0.0376
20 0.0108 0.0318
30 0.00195 0.0103

Table 6.4: Probability that a trace with frequency ε or more is not reported (false
negative), and probability that a trace with frequency less than ε/4 is reported
(significantly false positive), for different values of parameter C. The values are
computed using the Poisson approximation to the binomial distribution, which is
accurate unless the set Sm from which we sample is small.



Chapter 7

Size Estimation for Sparse
Matrix Products

We consider the problem of doing fast and reliable estimation of the number
z of non-zero entries in a sparse boolean matrix product. This problem has
applications in databases and computer algebra.

Let n denote the total number of non-zero entries in the input matrices. We
show how to compute a 1 ± ε approximation of z (with small probability of
error) in expected time O(n) for any ε > 4/ 4

√
z. The previously best estimation

algorithm, uses time O(n/ε2). We also present a variant using O(sort(n)) I/Os
in expectation in the cache-oblivious model.

In contrast to these results, the currently best algorithms for computing a
sparse boolean matrix product use time ω(n4/3) (resp. ω(n4/3/B) I/Os), even
if the result matrix has only z = O(n) nonzero entries.

Our algorithm combines the size estimation technique of [13] with a par-
ticular class of pairwise independent hash functions that allows the sketch of
a set of the form A × C to be computed in expected time O(|A| + |C|) and
O(sort(|A|+ |C|)) I/Os.

We then describe how sampling can be used to maintain (independent)
sketches of matrices that allow estimation to be performed in time o(n) if z
is sufficiently large. This gives a simpler alternative to the sketching technique
found in [40], and matches a space lower bound shown in that paper.

Finally, we present experiments on real-world data sets that show the accu-
racy of both our methods to be significantly better than the worst-case analysis
predicts.

In this chapter we will consider a d × d boolean matrix as the subset of
[d]× [d] corresponding to the nonzero entries. The product of two matrices R1

and R2 contains (i, k) if and only if there exists j such that (i, j) ∈ R1 and
(j, k) ∈ R2. The matrix product can also be expressed using basic operators of
relational algebra: R1 on R2 denotes the set of tuples (i, j, k) where (i, j) ∈ R1

and (j, k) ∈ R2, and the projection operator π can be used to compute the tuples
(i, k) where there exists a tuple of the form (i, ·, k) in R1 on R2. Since most of
our applications are in database systems we will primarily use the notation of
relational algebra.

We consider the following question: Given relations R1 and R2 with schemata
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(a, b) and (b, c), estimate the number z of distinct tuples in the relation Z =
πac(R1 on R2). This problem has been referred to in the literature as join-project
or join-distinct1. We define n1 = |R1|, n2 = |R2|, and n = n1 +n2. As observed
above, the join-project problem is equivalent to the problem of estimating the
number of non-zero entries in the product of two boolean matrices, having n1

and n2 non-zero entries, respectively.
In recent years there have been several papers presenting new algorithms

for sparse matrix multiplication [8, 67, 88]. In particular, these algorithms can
be used to implement boolean matrix multiplication. However, the proposed
algorithms all have substantially superlinear time complexity in the input size
n: On worst-case inputs they require time ω(n4/3), even when z = O(n).

In an influential work, Cohen [26] presented an estimation algorithm that,
for any constant error probability δ > 0, and any ε > 0, can compute a 1 ± ε
approximation of z = |Z| in time O(n/ε2). Cohen’s algorithm applies to the
more general problem of computing the size of the transitive closure of a graph.

Our main result is that in the special case of sparse matrix product size
estimation, we can improve this to expected time O(n) for ε > 4/ 4

√
z. This

means that we have a linear time algorithm for relative error where Cohen’s
algorithm would use time O(n

√
z).

Approach. To build intuition on the size estimation question, consider the
sets Aj = {i |(i, j) ∈ R1} and Cj = {k |(j, k) ∈ R2}. By definition, Z =⋃

j Aj ×Cj . The size of Z depends crucially on the extent of overlap among the
sets {Aj × Cj}j . However, the total size of these sets may be much larger than
both input and output (see [8]), so any approach that explicitly processes them
is unattractive.

The starting point for our improved estimation algorithm is a well-known
algorithm for estimating the number of distinct elements in a data streaming
context [13]. (We remark that the idea underlying this algorithm is similar to
that of Cohen [26].) Our main insight is that this algorithm can be extended
such that a set of the form Aj × Cj can be added to the sketch in expected
time O(|Aj | + |Cj |), i.e., without explicitly generating all pairs. The idea is to
use a hash function that is particularly well suited for the purpose: Sufficiently
structured to make hash values easy to handle algorithmically, and sufficiently
random to make the analysis of sketching accuracy go through.

7.0.2 Motivation

Cohen [27] investigated the use of the size estimation technique in sparse ma-
trix computations. In particular, it can be used to find the optimal order of
multiplying sparse matrices, and in memory allocation for sparse matrix com-
putations.

In addition, we are motivated by applications in database systems, where size
estimation is an important part of query optimisation. Examples of database
queries that correspond to boolean matrix products are:

1Readers familiar with the database literature may notice that we consider projections
that return a set, i.e., that projection is duplicate eliminating. We also observe that any
equi-join followed by a projection can be reduced to the case above, having two variables in
each relation and projecting away the single join attribute. Thus, there is no loss of generality
in considering this minimal case.
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• A query that computes all pairs of people in a social network with a
distance 2 connection (“possible friends”).

• A query to compute all director-actor pairs who have done at least one
movie together.

• In a business database with information on orders, and a categorisation
of products into types, compute the relation that contains a tuple (c, p) if
customer c has made an order for a product of type p.

As a final example, we consider a fundamental data mining task. Given
a list of sets, the famous A-Priori data mining algorithm [6], that we have
already cited several times, finds frequent item pairs by counting the number
occurrences of item pairs where each single element is frequent. So if R1 = R2

denotes the relationship between high-support (i.e., frequent) items and sets in
which they occur, Z is exactly the pairs of frequent items, and the number of
distinct items in Z determines the space usage of A-Priori. Since A-Priori may
be very time consuming, it is of interest to establish whether sufficient space is
available before choosing the support threshold and running the algorithm.

7.0.3 Further related work

JD sketch

Ganguly et al. [40] previously considered techniques that compute a data struc-
ture (a sketch) for R1 and R2 (individually), such that the two sketches suffice
to compute an approximation of z.

Define na = |{i | ∃j.(i, j) ∈ R1}| and nc = |{k | ∃j.(j, k) ∈ R2}|. Ganguly
et al. show that for any constant c and any β, a sketching method that returns
a c-approximation with probability Ω(1) whenever z ≥ β must, on a worst-case
input, use expected space

Ω(min(n1+n2, nanc(n1/na+n2/nc)/β)) = Ω(min(n1+n2, (n1nc+n2na)/β)) bits.

The lower bound proof applies to the case where n1 = n2, na = nc, and z <
na + nc. We note that [40] claims a stronger lower bound, but their proof does
not establish a lower bound above n1 + n2 bits. Ganguly et al. present a sketch
whose worst-case space usage matches the lower bound times polylogarithmic
factors (while not stated in [40], the trivial sketch that stores the whole input
can be used to nearly match the first term in the minimum).

In Section 7.2 we analyze a simple sketch, previously considered in other
contexts by Gibbons [45] and Ganguly and Saha [41]. It similarly matches the
above worst-case bound, but the exact space usage is incomparable to that
of [40].

The focus of [40] is on space usage, and so the time for updating sketches,
and for computing the estimate from two sketches, is not discussed in the paper.
Looking at the data structure description we see that the update time grows
linearly with the quantity s1, which is Ω(n) in the worst case. Also, the sketch
uses a number of summary data structures that are accessed in a random fashion,
meaning that the worst case number of I/Os is at least Ω(n) unless the sketch
fits internal memory. By the above lower bound we see that keeping the sketch
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in internal memory is not feasible in general. In contrast, the sketch we consider
allows collection and combination of sketches to be done efficiently in linear time
and I/O.

Distinct elements and distinct paths estimation.

Our work is related in terms of techniques to papers on estimating the number
of distinct items in a data stream (see [13] and its references). However, our
basic estimation algorithm does not work in a general streaming model, since
it crucially needs the ability to access all tuples with a particular value on the
join attribute together.

Ganguly and Saha [41] consider the problem of estimating the number of
distinct vertex pairs connected by a length-2 path in a graph whose edges are
given as a data stream of n edges. This corresponds to size estimation for the
special case of squaring a matrix (or self-join in database terminology). It is
shown that space

√
n is required, and that space roughly O(n3/4) suffices for

constant ε (unless there are close to n connected components). The estimation
itself is a join-distinct size estimation of a sample of the input having size no
smaller than O(n3/4/ε2). Using Cohen’s estimation algorithm this would require
time O(n3/4/ε4), so this is O(n) time only for ε > 1/ 16

√
n.

Join synopses

Acharya et al. [2] proposed so-called join synopses that provide a uniform sample
of the result of a join. While this can be used to estimate result sizes of a variety
of operations, it does not seem to yield efficient estimates of join-project sizes.
The reason is that a standard uniform sample is known to be inefficient for
estimating the number of distinct values [21]. In addition, Acharya et al. assume
the presence of a foreign-key relationship, i.e., that each tuple has at most one
matching tuple in the other table(s), which is also known as a snow flake schema.
Our method has no such restriction.

Distinct sampling

Gibbons [45] considered different samples that can be extracted by a scan over
the input, and proposed distinct samples, which offer much better guarantees
with respect to estimating the number of distinct values in query results. Gib-
bons shows that this technique applies to single relations, and to foreign key
joins where the join result has the same number of tuples as one of the relations.
In Section 7.2 we show that the distinct samples, with suitable settings of pa-
rameters, can often be used in our setting to get an accurate estimate of z = |Z|.
The processing of a pair of samples to produce the estimate consists of running
the efficient estimation algorithm of Section 7.1 on the samples, meaning that
this is time- and I/O-efficient.

7.1 Our algorithm

The task is to estimate the size z of Z = πac(R1 on R2). We may assume that
attribute values are O(log n)-bits integers, since any domain can be mapped
into this one using hashing, without changing the join result size with high
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probability. When discussing I/O bounds, B is the number of such integers
that fits in a disk block. In linear expected time (by hashing) or sort(n) I/Os
we can cluster the relations according to the value of the join attribute b. By
initially eliminating input tuples that do not have any matching tuples in the
other relation we may assume without loss of generality that z ≥ n/2.

In what follows, k is a positive integer parameter that determines the space
usage and accuracy of our method. The technique used is to compute the kth
smallest value v of a hash function h(x, y), for (x, y) ∈ Z. Analogously to the
result by Bar-Yossef et al. [13] we can then use z̃ = k/v as an estimator for z.

Our main building block is an efficient iteration over all tuples (x, ·, y) ∈
R1 on R2 for which h(x, y) is smaller than a carefully chosen threshold p, and is
therefore a candidate for being among the k smallest hash values. The essence
of our result lies in how the pairs being output by this iteration are computed
in expected linear time. We also introduce a new buffering trick to update the
sketch in expected amortised O(1) time per pair. In a nutshell, each time k
new elements have been retrieved, they are merged using a linear time selection
procedure with the previous k smallest values to produce a new (unordered) list
of the k smallest values.

Theorem 7.1.1. Let R1(a, b) and R2(b, c) be relations with n tuples in total,
and define z = |πac(R1 on R2)|. Let ε, 0 < ε < 1

4 be given. There are algorithms
that run in expected O(n) time on a RAM, and expected O(sort(n)) I/Os in the
cache-oblivious model, and output a number z̃ such that for k = 9/ε2:

• Pr[(1− ε)z < z̃ < (1 + ε)z] ≥ 2/3 when z > k2, and

• Pr[z̃ < (1 + ε)k2] ≥ 2/3 when z ≤ k2. ◦

Observe that for ε > 4/ 4
√

z we will be in the first case, and get the desired
1± ε approximation with probability 2/3. The error probability can be reduced
from 1/3 to δ by the standard technique of doing O(log(1/δ)) runs and taking
the median (the analysis follows from a Chernoff bound). We remark that this
can be done in such a way that the O(log(1/δ)) factor affects only the RAM
running time and not the number of I/Os. For constant relative error ε > 0 we
have the following result:

Theorem 7.1.2. In the setting of Theorem 7.1.1, if ε is constant there are
algorithms that run in expected O(n) time on a RAM, and expected O(sort(n))
I/Os in the cache-oblivious model, that output z̃ such that Pr[(1 − ε)z < z̃ <
(1 + ε)z] = 1−O(1/

√
n). ◦

The error probability can be reduced to n−c for any desired constant c by
running the algorithms O(c) times, and taking the median as above.

7.1.1 Finding pairs

For B = πb(R1) ∪ πb(R2) and each i ∈ B let Ai = πa(σb=i(R1)) and Ci =
πc(σb=i(R2)). We would like to efficiently iterate over all pairs (x, y) ∈ Ai ×Ci,
i ∈ B, for which h(x, y) is smaller than a threshold p. This is done as follows
(see Algorithm 7.1 for pseudocode).



96 Size Estimation for Sparse Matrix Products

For a set U , let h1, h2 : U → [0; 1] be hash functions chosen independently
at random from a pairwise independent family, and define h : U × U → [0; 1]
by2

h(x, y) = (h1(x)− h2(y)) mod 1.

It is easy to show that h is also a pairwise independent hash function — a
property we will utilize later. Now, conceptually arrange the values of h(x, y) in
an |Ai| × |Ci| matrix, and order the rows by increasing values of h1(x), and the
columns by increasing values of h2(y). Then the values of h(x, y) will decrease
(modulo 1) from left to right, and increase (modulo 1) from top to bottom.

For each i ∈ B, we traverse the corresponding |Ai| × |Ci| matrix by visiting
the columns from left to right, and in each column t finding the row s̄ with the
smallest value of h(xs̄, yt). Values smaller than p in that column will be found
in rows subsequent to s̄. When all such values have been output, the search
proceeds in column t + 1. Notice, that if h(xs̄, yt) was the minimum value in
column t, then the minimum value in column t+1 is found by increasing s̄ until
h(xs̄, yt+1) < h(x(s̄−1) mod |Ai|, yt+1). We observe that the algorithm is robust
to decreasing the value of the threshold p during execution, in the sense that
the algorithm still outputs all pairs with hash value at most p.

7.1.2 Estimating the size

While finding the relevant pairs, we will use a technique that allows us to main-
tain the k smallest hash values in an unordered buffer instead of using a heap
data structure (Lines 14–18 in Algorithm 7.1). In this way we are able to main-
tain the k smallest hash values in constant amortised time per insertion in the
buffer, eliminating the log k factor implied by the heap data structure.

Let S and F be two unordered sets containing, respectively, the k smallest
hash values seen so far (all, of course, smaller than p), and the latest up to k
elements seen. We avoid duplicates in S and F (i.e., the sets are kept disjoint) by
using a simple hash table to check for membership before insertion. Whenever
|F | = k the two sets S and F are combined in order to obtain a new sketch S.
This is done by finding the median of S∪F , which takes O(k) time using either
deterministic methods (see [36]) or more practical randomized ones [55].

At each iteration the current kth smallest value in S may be smaller than
the initial value p, and we use this as a better substitute for the initial value
of p. However, in the analysis below we will upper bound both the running time
and the error probability using the initial threshold value p.

7.1.3 Time analysis

We split the time analysis into two parts. One part accounts for iterations of
the inner while loop in Lines 13–20, and the other part accounts for everything
else. We first consider the RAM model, and then outline the analysis in the
cache-oblivious model.

Inner while loop. Observe that for each iteration, one pair (xs, yt) is added
to F (if it is not already there). For each t ∈ Ci, p|Ai| elements are expected to

2We observe that this is different from the “composable hash functions” used by Ganguly
et al. [40].
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1: procedure DisItems(p, ε)
2: k := d9/ε2e
3: F := ∅
4: for i ∈ B do
5: x := Ai sorted according to h1-value
6: y := Ci sorted according to h2-value
7: s̄ := 1
8: for t := 1 to |Ci| do
9: while h(xs̄, yt) > h(x(s̄−1) mod |Ai|, yt) do

10: s̄ := (s̄ + 1) mod |Ai|
11: end while
12: s := s̄
13: while h(xs, yt) < p do
14: F := F ∪ {(xs, yt)}
15: if |F | = k then
16: (p, S) := Combine(S, F )
17: F := ∅
18: end if
19: s := (s + 1) mod |Ai|
20: end while
21: end for
22: end for
23: (p, S) := Combine(S, F )
24: if |S| = k then
25: return “ z̃ = k

p and z̃ ∈ [(1± ε)z] with probability 2/3”
26: else
27: return “ z̃ = k2, z ≤ k2 with probability 2/3”
28: end if
29: end procedure

30: procedure Combine(S, F )
31: v := Rank(h(S) ∪ h(F ), k) . Rank(·, k) returns the kth smallest value
32: S := {x ∈ S ∪ F |h(x) ≤ v}
33: return (v, S)
34: end procedure

Algorithm 7.1: Pseudocode for the size estimator. The While loop on Line 9–
11 finds s̄ such that h(xs̄, yt) is the minimum in the column. The While loop on
Line 13–20 finds all s where h(xs, yt) < p. The condition of the If on Line 15 is
verified when the buffer F is filled.

be added since each pair (xs, yt) is added with probability p. This means that
the expected total number of iterations is O(p|Ai||Ci|). Each call to Combine
costs time O(k), but we notice that there must be at least k iterations between
successive calls, since the size of F must go from 0 to k. Inserting a new value
into F costs O(1) since the set is not sorted. Hence, the total cost of the inner
loop is O(p|Ai||Ci|).

Remaining cost. Consider the processing of a single i ∈ B in Algorithm 7.1.
The initial sorting of hash values can be done in expected time O(|Ai| + |Ci|)
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in the following way. To sort Ai according to h1-value we employ a simple
bucket sorting method: Create an array of size |Ai| where entry ` points to
a “bucket” array that will eventually contain the items {x ∈ Ai | h1(x) ∈
[`/|Ai|; (` + 1)/|Ai|)}. The items are placed one by one in a bucket, taking
time linear in the number of items already in the bucket. The total cost for a
bucket is quadratic in the number of items it contains at the end. As shown
in [39], summing over all buckets this is O(|Ai|) in expectation if h1 is pairwise
independent. By the same argument, Ci can be sorted in expected time O(|Ci|).

For the iteration in Lines 9–11 observe that h(xs̄, yt) is monotone modulo 1,
and we have at most a total of 2|Ai| increments of s̄ among all t ∈ Ci (since both
h1(x) and h2(y) map into [0; 1] and we consider them in sorted order). Thus,
the total number of iterations is O(|Ai|), and the total cost for each i ∈ B is
O(|Ai|+ |Ci|).

The time for the final call to Combine is dominated by the preceding cost
of constructing S and F .

I/O efficient variant. As for I/O efficiency, notice that a direct implemen-
tation of Algorithm 7.1 may cause a linear number of cache misses if Ai and
Ci do not fit into internal memory. To get an I/O-efficient variant we use a
cache-oblivious sorting algorithm, sorting R1 according to (b, h1(a)), and R2

according to (b, h2(c)), such that the sorting steps for each i ∈ B is replaced by
one global sorting step.

The rest of the algorithm works directly in a cache-oblivious setting. To
see this, notice that it suffices to keep in internal memory the two input blocks
that are closest to each of the pointers s, t, and s̄. The cache-oblivious model
assumes the cache to behave in an optimal fashion, so also in this model there
will be Ω(B) operations between cache misses, and O(n/B) I/Os, expected, in
total.

Lemma 7.1.1. Suppose R1(a, b) and R2(b, c) are relations with n tuples in
total. Let p > 0 and ε > 0 be given. Then Algorithm 7.1 runs in expected
O(n +

∑
i p|Ai||Ci|) time and O(1/ε2) space on a RAM, and can be modified to

use expected O(sort(n)) I/Os in the cache-oblivious model. ◦

Choice of threshold p

We would like a value of p that ensures the expected processing time is O(n). At
the same time p should be large enough that we expect to reach Line 25 where
an exact estimate is returned (except possibly in the case where z is small).

Lemma 7.1.2. Let j ∈ B satisfy |Ai||Ci| ≤ |Aj ||Cj | for all i ∈ B. Then p =
min(1/k, k/(|Aj ||Cj |)) gives an expected O(n) running time for Algorithm 7.1.

Proof. We argue that for each i, p|Ai||Ci| ≤ max(|Ai|, |Ci|), which by Lemma 7.1.1
implies running time O(n +

∑
i p|Ai||Ci|) = O(n +

∑
i max(|Ai|, |Ci|)) = O(n).

Suppose first that |Ai||Ci| ≥ k2. Then p = k/(|Aj ||Cj |) and p|Ai||Ci| ≤ k ≤√
|Ai||Ci| ≤ max(|Ai|, |Ci|). Otherwise, when |Ai||Ci| < k2, we have p ≤ 1/k

and p|Ai||Ci| = |Ai||Ci|/k ≤ max(|Ai|, |Ci|).
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We note that when R1 and R2 are sorted according to b, the value of p
specified above can be found by a simple scan over both inputs. Our experiments
indicate that in practice this initial scan is not needed, see Section 7.3 for details.

7.1.4 Error probability

Theorem 7.1.3. Let h be a pairwise independent hash function. Suppose we
are provided with a stream of elements N with h(x) < v for all x ∈ N . Further,
let ε, 0 < ε < 1

4 be given and assume that p ≥ min
(

k
2z , 1

k

)
, where k ≥ 9/ε2,

and z is the number of distinct items in N . Then Algorithm 7.1 produces an
approximation z̃ of z such that

• Pr[(1− ε)z < z̃ < (1 + ε)z] ≥ 2/3 for z > k2, and

• Pr[z̃ < (1 + ε)k2] ≥ 2/3 for z ≤ k2.

Proof. The error probability proof is similar to the one that can be found in [13],
with some differences and extensions. We bound the error probability of three
cases: The estimate being smaller or larger than the multiplicative error bound,
and the number of obtained samples being too small.

Estimate too large. Let us first consider the case where z̃ > (1+ε)z, i.e. the
algorithm overestimates the number of distinct elements. This happens if the
stream N contains at least k entries smaller than k/(1 + ε)z. For each pair
(a, c) ∈ Z define an indicator random variable X(a,c) as

X(a,c) =

{
1 h(a, c) < k/(1 + ε)z
0 otherwise

That is, we have z such random variables for which the probability of X(a,c) = 1
is exactly k/(1+ε)z and E[X(a,c)] = k/(1+ε)z. Now define Y =

∑
(a,c)∈Z X(a,c)

so that E[Y ] = E[
∑

(a,c)∈Z X(a,c)] =
∑

(a,c)∈Z E[X(a,c)] = k/(1 + ε). By the
pairwise independence of the X(a,c) we also get Var(Y ) ≤ k/(1 + ε). Using
Chebyshev’s inequality [74] we can bound the probability of having too many
pairs reported:

Pr [Y > k] ≤ Pr
[
|Y − E[Y ]| > k − k

1+ε

]
≤ Var[Y ](

k − k
1+ε

)2 ≤
k/(1 + ε)(
k − k

1+ε

)2 ≤
1
6

since k ≥ 9/ε2.
Estimate too small. Now, consider the case where z̃ < (1− ε)z which hap-

pens when at most k hash values are smaller than k/(1−ε)z and at least k hash
values are smaller than p. Define X ′

(a,c) as

X ′
(a,c) =

{
1 h(a, c) < k/(1− ε)z
0 otherwise

so that E[X ′
(a,c)] = k/(1−ε)z < (1+ε)k/z. Moreover, with Y ′ =

∑
(a,c)∈Z X ′

(a,c)

we have E[Y ′] = k/(1 − ε), and since the indicator random variables defined
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above are pairwise independent, we also have Var[Y ′] ≤ E[Y ′] < (1 + ε)k.
Chebyshev’s inequality gives:

Pr [Y ′ < k] ≤ Pr
[
|Y ′ − E[Y ′]| > k

1−ε − k
]
≤ Var[Y ′](

k − k
1+ε

)2 ≤
(1 + ε)k(
k

1−ε − k
)2 < 1

9

since k ≥ 9/ε2.
Not enough samples. Consider the case where |S| < k after all pairs have

been retrieved. In this case the algorithm returns β = k2 as an upper bound
on the number of distinct elements in the output, and we have two possible
situations: either there is actually less than k2 distinct pairs in the output, in
which case the algorithm is correct, or there are more than k2 distinct elements
in the output, in which case it is incorrect. In the latter case, less than k hash
values have been smaller than p and the kth smallest value v is therefore larger
than p. Define X ′′

(a,c) as

X ′′
(a,c) =

{
1 h(a, c) < p

0 otherwise

and let again Y ′′ =
∑

(a,c)∈Z X ′′
(a,c). It results that E[X ′′

(a,c)] = p and E[Y ′′] =
zp, and because of pairwise independence of X ′′

(a,c), also Var[Y ′′] ≤ E[Y ′′]. Using
Chebyshev’s inequality and remembering that z > k2 in this case we have:

Pr[Y ′′ < k] ≤ Pr[|Y ′′ − E[Y ′′]| > zp− k] ≤ zp

(zp− k)2
≤ zp(

1
2zp
)2 ≤ 8/k ≤ 1/18.

using that k ≥ 9/ε2 ≥ 144.
In conclusion, the probability that the algorithm fails to output an estimate

within the given limits is at most 1/6 + 1/9 + 1/18 = 1/3.

For the proof of Theorem 7.1.2 we observe that in the above proof, if ε is
constant the error probability is O(1/k). Using k =

√
n we get linear running

time and error probability O(1/
√

n).

Realization of hash functions

We have used the idealised assumption that hash values were real numbers in
(0; 1). Let m = n3. To get an actual implementation we approximate (by
rounding down) the real numbers used by rational numbers of the form i/m,
for integer i. This changes each hash value by at most 2/m. Now, because of
the way hash values are computed, the probability that we get a different result
when comparing two real-valued hash values and two rational ones is bounded
by 2/m. Similarly, the probability that we get a different result when looking up
a hash value in the dictionary is bounded by 2k/m. Thus, the probability that
the algorithm makes a different decision based on the approximation, in any of
its steps, is O(kn/m) = o(1). Also, for the final output the error introduced by
rounding is negligible.
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7.2 Distinct sketches

A well-known approach to size estimation in, described in generality by Gib-
bons [45] and explicitly for join-project operations in [41, 8], is to sample random
subsets R′

1 ⊆ R1 and R′
2 ⊆ R2, compute Z ′ = πac(R′

1 on R′
2), and use the size

of Z ′ to derive an estimate for z. This is possible if R′
1 = σa∈Sa(R1), where

Sa ⊆ πa(R1) is a random subset where each element is picked independently
with probability p1, and similarly R′

2 = σc∈Sc(R2), where Sc ⊆ πc(R2) includes
each element independently with probability p2. Then z′ = |Z ′|/(p1p2) is an
unbiased estimator for z. The samples can be obtained in small space using
hash functions whose values determine which elements are picked for Sa and Sc.
The value |Z ′| can be approximated in linear time using the method described
in Section 7.1 if the samples are sorted — otherwise one has to add the cost of
sorting. In either case, the estimation algorithm is I/O-efficient.

Below we analyse the variance of the estimator z′, to identify the mini-
mum sampling probability that introduces only a small relative error with good
probability. The usual technique of repetition can be used to reduce the error
probability. Recall that we have two relations with n1 and n2 tuples, respec-
tively, and that na and nc denotes the number of distinct values of attributes a
and c, respectively. Our method will pick samples R′

1 and R′
2 of expected size

s from each relation, where s = p1n1 = p2n2 is a parameter to be specified.

Theorem 7.2.1. Let R′
1 and R′

2 be samples of size s, obtained as described
above. Then z′ = |πac(R′

1 on R′
2)|/(p1p2) is a 1 ± ε approximation of z =

|πac(R1 on R2)| with probability 5/6 if z > β, where β = 14
ε2

(
ncn1+nan2

s

)
. If

z ≤ β then z′ < (1 + ε)β with probability 5/6. ◦

7.2.1 Analysis of variance

To arrive at a sufficient condition that z′ is a 1±ε approximation of z with good
probability, we analyse its variance. To this end define Zi· = {j | (i, j) ∈ Z},
Z·j = {i | (i, j) ∈ Z}, and let

Xi =
{

1− p1, if i ∈ Sa

−p1, otherwise Yj =
{

1− p2, if j ∈ Sc

−p2, otherwise .

By definition of Sa, E[Xi] = Pr[i ∈ Sa](1 − p1) − Pr[i 6∈ Sa]p1 = 0. Similarly,
E[Yi] = 0. We have that (i, j) ∈ Z ′ if and only if (i, j) ∈ Z and (i, j) ∈ Sa × Sc.
This means that z′p1p2 =

∑
(i,j)∈Z(Xi+p1)(Yj+p2). By linearity of expectation,

E[(Xi+p1)(Yj+p2)] = p1p2, and we can write the variance of z′p1p2, Var(z′p1p2)
as

E


 ∑

(i,j)∈Z

((Xi + p1)(Yj + p2)− p1p2)

2
 .

Expanding the product and using linearity of expectation, we get

Var(z′p1p2) =
∑

(i,j)∈Z

∑
(i,j′)∈Z

E
[
X2

i p2
2

]
+

∑
(i,j)∈Z

∑
(i′,j)∈Z

E
[
Y 2

j p2
1

]
+

∑
(i,j)∈Z

E
[
X2

i Y 2
j

]
=
∑
i∈A

∑
j,j′∈Zi·

p2
2 E
[
X2

i

]
+
∑
j∈C

∑
i,i′∈Z·j

p2
1 E
[
Y 2

i

]
+ z E

[
X2

i

]
E
[
Y 2

i

]
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Since E
[
X2

i

]
= p1(1 − p1)2 + (1 − p1)(−p1)2 = p1 − p2

1 < p1, and similarly
E
[
Y 2

j

]
< p2 we can upper bound Var(z′) as follows:

Var(z′) = (p1p2)−2 Var(z′p1p2)

< (p1p2)−2
(∑

i∈A

∑
j,j′∈Zi·

p1p
2
2 +

∑
j∈C

∑
i,i′∈Z·j

p2
1p2 + z p1p2

)
≤ (p1p2)−2

(
ncz p1p

2
2 + naz p2

1p2 + z p1p2

)
=
(
nc/p1 + na/p2 + (p1p2)−1

)
z .

7.2.2 Sufficient sample size

We are ready to derive a bound on the probability that z′ deviates significantly
from z. Choose 0 < ε < 1. Since z = E[z′] Chebyshev’s inequality says

Pr[|z′ − z] > εz] <
Var(z′)
(εz)2

≤
(
nc/p1 + na/p2 + (p1p2)−1

)
/(ε2z).

This can equivalently be expressed in terms of the sample size s, since p1 = s/n1

and p2 = s/n2:

Pr[|z′ − z] > εz] < (ncn1 + nan2 + n1n2/s) /(sε2z).

We seek a sufficient condition on s that the above probability is bounded by
some constant δ < 1

2 (e.g. δ = 1/6). In particular it must be the case that
n1n2/(s2ε2z) < δ, which implies s >

√
n1, n2/(δz) ≥

√
n1, n2/(δnanc). Hence,

using the arithmetic-geometric inequality:

n1n2/s <
√

ncn1nan2δ ≤ (ncn1 + nan2)/(2
√

δ).

In other words, it suffices that

(ncn1 + nan2) (1 + (2
√

δ)−1)
sε2z

< δ ⇐⇒ s >

(
ncn1 + nan2

z

)(
1 + (2

√
δ)−1

ε2δ

)
.

One apparent problem is the chicken-egg situation: z is not known in ad-
vance. If a lower bound on z is known, this can be used to compute a sufficient
sample size. Alternatively, if we allow a larger relative error whenever z ≤ β we
may compute a sufficient value of s based on the assumption z ≥ β. Whenever
z < β we then get the guarantee that z′ < (1 + ε)β with probability 1 − δ.
Theorem 7.2.1 follows by fixing s and solving for β.

Optimality

For constant ε and δ our upper bound matches the lower bound of Ganguly
et al. [40] whenever this does not exceed n1 + n2. It is trivial to achieve a
sketch of size O((n1 + n2) log(n1 + n2)) bits (simply store hash signatures for
the entire relations). We also note that the lower bound proof in [40] uses certain
restrictions of parameters (n1 = n2, na = nc, and z < na + nc), so it may be
possible to do better in some settings.
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(b) k = 1024

Figure 7.1: The cumulative distribution functions for k = 256 and k = 1024.
It is seen that k = 1024 yields a more precise estimate than k = 256 with 2/3 of
the estimates being within 4% and 10% of the exact size, respectively.
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(a) k = 1024, p1 = p2 = 0.1
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(b) k = 1024, p1 = p2 = 0.01

Figure 7.2: Plots for sampling with probability 10% and 1%. If the sampling
probability is too small, no elements at all may reach the sketch and in these cases
we are not able to return an estimate. Instances with no estimates have been left
out of the graph.
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7.3 Experiments

We have run our algorithm on most of the datasets from the Frequent Item-
set Mining Implementations (FIMI) Repository3 together with some datasets
extracted from the Internet Movie Database (IMDB). Each dataset represents
a single relation, and motivated by the A-Priori space estimation example in
the introduction, we perform the size estimation on self-joins of these relations.
Table 7.1 displays the size of each dataset together with the number of distinct
a- and c-values.

Instance z na (= nc) ε0.1 ε0.01

Accidents 94 · 103 468 1.18 3.73
BMS-POS 760 · 103 1,657 0.78 2.47

BMS-WebView-1 128 · 103 497 1.04 3.29
BMS-webView-2 1.45 · 106 3,340 0.80 2.54

Chess 5.24 · 103 75 2.00 6.33
Connect 13.8 · 103 129 1.62 5.12

DirectorActor 734 · 106 50,645 0.14 0.44
Kosarak 66.2 · 106 41,270 0.42 1.32

MovieActor 111 · 106 51,226 0.36 1.14
Mushroom 7.17 · 103 119 2.16 6.82

Pumsb 1.07 · 106 2,113 0.74 2.35
Pumsb_star 967 · 103 2,088 0.78 2.46

Retail 7.19 · 106 16,470 0.80 2.53

Table 7.1: Characteristics of the used datasets. The rightmost middle column
displays the size na = |πa(R1)| (which in this case is equals nc = |∪πc(R2)|). The
two rightmost columns display the theoretical error as described in Theorem 7.2.1,
for p1 = p2 = 0.1 and p1 = p2 = 0.01, respectively. These theoretical error bounds,
which hold with probability 5/6, are significantly larger than the actual observed
errors in Figure 7.2.

Rather than selecting h1 and h2 from an arbitrary pairwise independent
family, we store functions that map the attribute values to fully random and
independent values of the form d/264, where d is a 64 bit random integer formed
by reading 64 random bits from the Marsaglia Random Number CDROM4.

We have chosen an initial value of p = 1 for our tests in order to be certain to
always arrive at an estimate. In most cases we observed that p quickly decreases
to a value below 1/k anyway. But as the sampling probability decreases, the
probability that the sketch will never be filled increases, implying that we will
not get a linear time complexity with an initial value of p = 1. In the cases
where the sketch is not filled, we report |F |/(p1p2) as the estimate, where |F |
is the number of elements in the buffer.

Tests have been performed for k = 256 and k = 1024. In each test, 60
independent estimates were made and compared to the exact size of the join-
project. By sorting the ratios “estimate”/“exact size” we can draw the cumulative
distribution function for each instance that, for each ratio-value on the x-axis,
displays on the y-axis the probability that an estimate will have this ratio or

3http://fimi.cs.helsinki.fi
4http://www.stat.fsu.edu/pub/diehard/
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less. Figure 7.1 shows plots for k = 256 and k = 1024. In Table 7.2 we compare
the theoretical error ε with observed error for 2/3 of the results. As seen, the
observed error is smaller than the theoretical upper bound.

In Figure 7.2 we perform sampling with 10% and 1% probability, as described
in Section 7.2. Again, the samples are chosen using truly random bits. The
variance of estimates increase as the probability decreases, but increases more
for smaller than for larger instances. If the sampling probability is too small,
no elements at all may reach the sketch and in these cases we are not able to
return an estimate. As seen, the observed errors in the figure are significantly
smaller than the theoretical errors seen in Table 7.1.

k ε Observed ε

256 0.188 0.1
1024 0.094 0.04

Table 7.2: The theoretical error bound is ε =
p

9/k as stated Theorem 7.1.3.
The observed error in Figure 7.1, however, is significantly less.

7.4 Conclusion

We have presented improved algorithms for estimating the size of boolean matrix
products, for the first time allowing o(1) relative error to be achieved in linear
time. An interesting open problem is if this can be extended to transitive closure
in general graphs, and/or to products of more than two matrices.



Chapter 8

Epilogue

Sampling from implicit sets is not in general an entirely new technique. As a
matter of fact the idea has been used for rather significant research, and some
of these findings have been regarded as influential enough to be awarded prizes.

It is important to highlight the work of Dyer, Frieze and Kannan [38], where
a technique similar to ours, in the fact that the sampling happens on an im-
plicit object, is used in order to provide an approximation algorithm for com-
puting the volume of convex bodies. Computing the volume of convex bodies
takes time that is exponential in n, where n is the number of dimensions. The
cited paper proposed a randomized approximation algorithm that computes an
ε−approximation of the volume with high probability, in time that is polynomial
in the number of dimensions n. Notice that it would be infeasible to achieve
an approximation even within a polynomial factor in deterministic polynomial
time, since a hardness result is contained in [14]. In order to accomplish the
result, the algorithm performs a random walk over an implicitly defined undi-
rected graph. The graph models cubes that try to cover the space of the body,
and an estimate of the body volume is derived from the size of the cubes covered
by the random walk. The random walk will hence visit a number of vertices of
the graphs that are the cubes, and provide an estimate after a sufficient number
of steps have been taken. In this way, it is not necessary to draw the entire
graph, that is, producing all the cubes, but only the portion of graph, hence the
portion of cubes, involved in the walk. A polynomial number of such entities is
necessary to the algorithm to achieve the desired result.

In most cases, the difference from our approach stands in a fundamental
point: the complexity class in which the problems we address lie in. For the
convex body, all known deterministic algorithms are exponential in the number
of dimensions of the space, and the approximation randomized algorithm reduces
the running time to polynomial. Almost all the problems that we address are
solvable in polynomial time, usually quadratic time, and the algorithms we
present reduce the running time to quasi-linear or linear. This means that the
problem of and the structural approach to the sampling faces entirely different
constraints and opportunities.

Moreover, the sampling techniques we use are highly innovative for the prob-
lems we have presented. Sometimes (see Chapter 6), sampling is an entirely new
approach to the framework we applied it. Our techniques offer the appealing
characteristic of avoiding the generation of candidate solutions to be selected,
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in a second phase, to be output. The candidate generation phase, in particu-
lar when carried out in the early stages of many algorithms, operates on the
whole input, and for this reason produces a lot of intermediate artefacts; this
production is expensive from both a time and a space perspective.

Possible evolutions

BiSam family of algorithms.

A rather natural extension of the techniques presented would be addressing
itemsets of size larger than 2. At first glance, the technique we presented can-
not be immediately extended in this sense, and using it as a first phase of a
multiphase algorithm would make the algorithm fall in the class of candidate
generating algorithms, which is not desirable, as explained before.

One possible approach is to be use geometric properties of vectors, hence
matrix multiplication techniques, in order to get estimates of some of the mea-
sure functions like cosine. Additionally similarity functions for itemsets of size
larger than two are not so frequent.

Another interesting direction to follow is finding more hardness results, tak-
ing into account various possible characteristics of the input. A very natural
development would be, for instance, extending the lower bound of Theorem 4.1.1
on page 49, in order to take into account the random order of transactions.

Graph mining

Graph mining offers a wide space of manoeuvre in order for our sampling tech-
niques to be used.

Many counting problems seem to be good candidates for reducing polynomial
time complexities to linear or quasi-linear. Counting k−cliques in a graph can
be one such problem. The obvious worst case time for an exact algorithm would
be nO(k), that is particularly expensive when k is large.

A k−clique is a vertex connected to all nodes in a (k− 1)−clique, so an ap-
proach to estimating the number of cliques could exploit this recursive structure
in order to sample a number of cliques that is not too large, using a suitable
sampling probability. If one is able to sample with a probability that is inde-
pendent enough and uniform, or almost uniform, a conclusion can be derived on
the total expected number of k−cliques in the graph. In essence the algorithm
should try to take samples from the set of subgraphs of size k without explicitly
producing that set.

Another problem similar in spirit can be estimating the number of cliques of
low degree nodes in a dense graph. This kind of graphs are interesting for the
many real world structures that they are able to represent.

Matrix multiplication

As pointed out, the problem is widely general, so extending and deepening
this technique is a rather appealing path. It remains, as a matter of fact, to
be understood whether the algorithm: (i) can be adapted and generalized in
order to address the problem of transitive closure for general graphs; (ii) can be
extended and adapted to the case of multiplication of multiple matrices.



Bibliography

[1] Eivind Abusland and Matyas Markovics. Implementing and evaluating a
sampling-based approach to association mining on mapreduce. Master’s
thesis, IT University of Copenhagen, 2011.

[2] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. Join synopses for approximate query answering. In Proceedings
of the 1999 ACM SIGMOD International Conference on Management of
Data, volume 28(2) of SIGMOD Record, pages 275–286. ACM, 1999.

[3] Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of
sorting and related problems. Comm. ACM, 31(9):1116–1127, 1988.

[4] Charu C. Aggarwal and Philip S. Yu. A new framework for itemset genera-
tion. In Proceedings of the ACM SIGACT–SIGMOD–SIGART Symposium
on Principles of Database Systems (PODS ’98), pages 18–24. ACM Press,
1998.

[5] Rakesh Agrawal, Manish Mehta, John C. Shafer, Ramakrishnan Srikant,
Andreas Arning, and Toni Bollinger. The quest data mining system. In
Proceedings of the 2nd International Conference of Knowledge Discovery
and Data Mining (KDD ’96), pages 244–249. AAAI Press, 1996.

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. pages 487–499. Morgan Kaufmann,
1994.

[7] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. J. Comput. Syst. Sci., 58(1):137–
147, 1999.

[8] Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects and sparse
matrix multiplications. In Proceedings of Database Theory - 12th Interna-
tional Conference (ICDT ’09), volume 361 of ACM International Confer-
ence Proceeding Series, pages 121–126. ACM, 2009.

[9] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-
similarity joins. In Proceedings of the 32nd International Conference on
Very Large Data Bases (VLDB ’06), pages 918–929. ACM, 2006.

[10] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.



110 BIBLIOGRAPHY

[11] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Al-
berto Marchetti Spaccamela, and Marco Protasi. Complexity and Approxi-
mation - Combinatorial Optimization Problems and Their Approximability
Properties. Springer Verlag, 1999.

[12] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-
nifer Widom. Models and issues in data stream systems. In Proceedings
of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 1–16. ACM, 2002.

[13] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Tre-
visan. Counting distinct elements in a data stream. In Proceedings of the 6th
International Workshop on Randomization and Approximation Techniques
(RANDOM ’02), pages 1–10. Springer-Verlag, 2002.
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