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Abstract

In this dissertation, we study bigraphical languages—languages based on the theory
for bigraphs and bigraphical reactive systems developed by Milner and coworkers.

We begin by examining algebraic theory for binding bigraphs. We give a term
language for binding bigraphs and develop a complete axiomatization of structural
equivalence. Along the way, we develop a set of normal form theorems, which prove
convenient for the analysis of bigraphical structure.

We examine next the central problem of matching, that is, to determine when
and where the left-hand side of a bigraphical reaction rule matches a bigraph. We
give an inductive characterization in the form of a set of rules for inferring matching
for binding bigraphs and show that the characterization is both sound and complete.

We then develop a matching algorithm that works on terms for bigraphs. We
start by specializing the characterization above to include application of structural
congruence. We isolate a class of normal inferences, and prove that normal inferences
are sufficient for inferring all matches. The matching algorithm relies on building
normal inferences mechanically. An implementation of the algorithm is at the core of
the BPL Tool, a prototype tool for experimenting with bigraphical reactive systems.

In a second line of work, we study bigraphical reactive systems as a vehicle for
developing a language to model biochemical reactions at the level of cells and pro-
teins. We discuss and isolate BΣ,R-calculi, a family of bigraphical reactive systems
that we deem sufficient for the language. We develop a self-contained presentation of
the syntax and operational semantics for BΣ,R-calculi that exploits the restrictions
we have made on the family. We also treat how one may extend certain bigraph-
ical reaction rules to include negative contextual side-conditions. As an example,
we show that the nondeterministic κ-calculus (due to Danos and Laneve) can be
modelled.

Finally, we build on our study above and develop a formal language, the C-
calculus, for modelling low-level interaction inside and among cells. At the core of
the calculus lies a model of formal proteins and membranes. In addition, formal
channels between compartments allow us to model an intermediate state in cell fu-
sion or division, regulated by diffusion. A user models in the C-calculus by refining
a set of core rules, each of which encapsulates a core biological reaction. We il-
lustrate the calculus with two examples, one that models the firing of a G-protein
coupled receptor protein, and another that models the formation of clathrin-coated
cytoplasmic vesicles through budding.
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Chapter 1

Introduction

This dissertation comprises five papers; together they revolve around testing the
thesis that programming languages may be based on the theory for bigraphical
reactive systems. We present a body of work that spans contributions to bigraphical
theory and implementation, and the development of a concrete bigraphical language.

The theory of bigraphs and bigraphical reactive systems is due to Milner and
colleagues [JM04, LM04, Mil05, Mil06b]. Bigraphs provide a graphical model of
computation that focuses at the same time on mobile locality and connectivity. The
initial aim was to develop a vehicle for unifying the behavioral theories for process
calculi for concurrency and mobility. Milner also suggested as a long-term aim to use
bigraphs to model directly and reason about context-aware systems in the domain
of mobile ubiquitous computing [Mil06b].

The Bigraphical Programming Languages (BPL) project at the IT University of
Copenhagen1, which financed this Ph.D., set out to investigate how to develop new
programming and specification languages for mobile and distributed systems on the
theoretical foundation of bigraphs [Bir04, BBD+06]. Up until now, there has been
a particular focus on context-aware systems and ubiquitous computing.

In this dissertation, our aim has been to further the investigation of bigraphically
based languages (in short, bigraphical languages). We have set two main goals: (1)
to develop a sound formal foundation for a tool for experimenting with bigraphi-
cal languages; and, (2) to develop a novel bigraphical language for the domain of
cellular biology. The fulfillment of the first goal is a vital step in allowing direct ex-
perimentation with bigraphical languages. The fulfillment of the second goal gives
an exemplifying answer to the central question underlying the BPL project: What
is a bigraphical language? Only through the development of concrete new languages
can we really test the thesis, that programming languages may be based on bigraphs.
And, as we shall illustrate in the dissertation, the bigraphical framework seems well-
poised as a foundation for experimenting with models and languages for biological
systems.

1Funded by the Danish Research Agency grant: 2059-03-0031 (LaCoMoCo).
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2 Introduction

Contributions in this Dissertation

The trajectory of the work presented here begins with the development of a bigraph-
ical equational theory, brings us across a characterization and subsequent implemen-
tation of matching for bigraphs, and ends with the presentation of a domain-specific
bigraphical language for expressing the reactions in biological cells. Below, we sum-
marize the contributions contained in this dissertation. The approach we take may
be divided into two steps, corresponding to the two goals set above.

Our first step establishes the foundation for a tool for experimenting with bi-
graphs. Through the study of algebraic theory for bigraphs with binders, including
the development of normal forms and an axiomatization of structural equivalence
for bigraphs with binders, we arrive at a complete inductive characterization of
matching. This characterization forms the basis of a provably sound and complete
matching algorithm; this algorithm, in turn, is at the core of the implementation of
a prototype tool for working with bigraph matching and reaction—the first version
of the BPL Tool was released in December 2007.

In the second step, our work turns to the development of languages. We develop a
formal language, the C-calculus, for modelling low-level interaction inside and among
biological cells. The language combines a protein-model and rule-based modelling
á la the κ-calculus [DL04, DFF+07, DFFK07] with a membrane model inspired by
the brane family of calculi [Car04a, DP04]. The extension of a κ-like calculus with
dynamic compartments is a novel contribution in itself; in addition, the calculus
also includes a novel abstraction for capturing partially fused compartments and
associated diffusion of protein-complexes between such compartments.

Our work on developing the C-calculus highlighted that the presentation of cer-
tain reaction patterns may be more concisely expressed by allowing contextual neg-
ative side-conditions in reaction rules; and, that the presentation of a particular
calculus may be hampered by the versatility of the bigraphical model. By catering
for a wide variety of languages, the presentation of a single language may be over-
loaded with bigraphical idiosyncracies, such as those inherited from the underlying
categorical model. To counter such problems we investigate the use of bigraphs for
modelling biological interaction in a separate pre-study; in particular, we treat how
to extend reaction rules to include negative side-conditions. We also make the effort
to treat carefully a self-contained presentation of the operational semantics for BΣ,R-
calculi, a subset of bigraphical calculi. We utilize this work to give a presentation
of the C-calculus void of most bigraphical idiosyncracies.

Structure of the Dissertation

In the remaining sections of the present chapter, we provide a brief background
on the bigraph model and on research in bigraphs. We start by giving a quick
introduction to bigraphs with binders and their reactive systems in Section 1.2.1. We
hope to provide readers unfamiliar with bigraphs with enough background to follow
the following discussions. In Section 1.2.2, we briefly overview some fundamental
studies and results for the bigraphical framework.
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In Chapter 2, we turn to the contributions in this dissertation. For each of the
papers in the dissertation, we give a summary of the goals and the approach taken,
and discuss relations to other research. In Section 2.3, we conclude on the obtained
results, and in Section 2.4, we outline directions for future work.

The main body of this dissertation is contained in the five Chapters 3 through 7.
In Chapter 3, we develop a term language, a set of normal form theorems, and an
associated equational theory on terms for binding bigraphs that captures graph iso-
morphism on the term level. Subsequently, in Chapter 4, we develop a complete
inductive characterization of matching, that is, for describing when and where the
left-hand side of a reaction rule matches a bigraph. In Chapter 5, we describe a
provably sound and complete matching algorithm for bigraphical reactive systems.
The algorithm forms the basis of the implementation of the BPL tool, a first imple-
mentation of bigraphical reactive systems. In the pre-study in Chapter 6, we lay the
foundation for using bigraphical calculi to experiment with models and languages
for biological systems. Finally, in Chapter 7, we develop the C-calculus, a novel
language based on bigraphs that allows a user to experiment with reactions inside
and among biological cells.

We aim the dissertation at readers who are familiar with process calculi for
distributed and mobile systems, in particular, the family stemming broadly from
the work by Milner on CCS [Mil89] and the π-calculus [Mil99]. We also assume
familiarity with calculi that introduce explicit representations of locality, such as
the family of ambient calculi launched by Cardelli and Gordon [CG98, CG00].

1.1 Papers

In order of appearance, the following papers are included in this dissertation:

[DB06] Troels C. Damgaard and Lars Birkedal. Axiomatizing binding bigraphs.
Nordic Journal of Computing, 13(1-2):58–77, 2006.

[DGBM07] Troels Christoffer Damgaard, Arne J. Glenstrup, Lars Birkedal, and
Robin Milner. An inductive characterization of matching in binding bigraphs.
Manuscript submitted for publication, September 2007.

[GDBH07] Arne J. Glenstrup, Troels Christoffer Damgaard, Lars Birkedal, and
Espen Højsgaard. An implementation of bigraph matching. Manuscript
submitted for publication, October 2007.

[DK08] Troels C. Damgaard and Jean Krivine. A generic language for biological
systems based on bigraphs. Technical Report TR-2008-115, IT University
of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen V, December
2008.

[DDK08] Troels C. Damgaard, Vincent Danos, and Jean Krivine. A language for
the cell. Technical Report TR-2008-116, IT University of Copenhagen, Rued
Langgaards Vej 7, DK-2300 Copenhagen V, December 2008.



4 Introduction

The papers are presented in their original form, except for minor typographical
changes and the inlining of erratta for [DB06] (as described in the preface of Chap-
ter 3). The second paper [DGBM07] is an extended and revised version of [BDGM07],
which provides more explanations and examples, and includes extensive details for
the proof of completeness of the characterization, including a self-contained sec-
tion on the algebraic properties of wirings and parallel product. The third pa-
per [GDBH07] is a direct continuation of the paper on matching. Both the second
and third paper are under submission for publication. The tech reports [DK08] and
[DDK08] are more recent work, and will form the basis for later publication.

The following papers have been omitted from the dissertation.

[DD05b] Søren Debois and Troels C. Damgaard. Bigraphs by Example. Technical
Report TR-2005-61, IT University of Copenhagen, March 2005.

[DB05] Troels C. Damgaard and Lars Birkedal. Axiomatization of binding bi-
graphs (revised). Technical Report 71, IT University of Copenhagen, October
2005.

[BBD+06] Lars Birkedal, Mikkel Bundgaard, Troels Christoffer Damgaard, Søren
Debois, Ebbe Elsborg, Arne John Glenstrup, Thomas Troels Hildebrandt,
Robin Milner, and Henning Niss. Bigraphical programming languages for
pervasive computing. In Thomas Strang, Vinny Cahill, and Aaron Quigley,
editors, Proceedings of Pervasive 2006 International Workshop on Combining
Theory and Systems Building in Pervasive Computing, pages 653–658, May
2006.

[BDGM07] Lars Birkedal, Troels Christoffer Damgaard, Arne J. Glenstrup, and
Robin Milner.Matching of bigraphs. Electronic Notes in Theoretical Computer
Science, 175(4):3–19, 2007.

The tech report [DD05b] is a basic study of the modelling capabilities of bigraphs;
it contains a series of encodings of smaller examples in bigraphical reactive sys-
tems. The papers [DB05] and [BDGM07] are superseded by the included pa-
pers [DB06] and [DGBM07] (although [DB05] includes full details for some proofs
omitted from [DB06]). Finally, the publication [BBD+06] is a position paper.

1.2 Background

In Section 1.2.1, we give a quick informal introduction to bigraphs with binders
and their reactive systems. (The section is essentially an expanded version of the
brief introduction to bigraphs in Chapter 3.) Our main purpose is to provide the
reader unfamiliar with bigraphs with enough background to follow the discussion of
our work in Chapter 2. In Section 1.2.2, we provide some pointers to some of the
fundamental studies and results underlying the bigraphical framework. For each of
the papers in the dissertation, we discuss further related work in Chapter 2.
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The reader already familiar with binding bigraphs may wish to skip Section 1.2.1.
For a more formal account, we refer the reader to Section 2 in Chapter 4. For quick
reference, the Appendix in Chapter 3 contains a terse recap of the main definitions
underlying binding bigraphs; below, we shall provide the reader with a few pointers
to those formal definitions.

1.2.1 A Brief Introduction to Bigraphs

The theory of bigraphs has been developed by Milner and colleagues [JM04, LM04,
Mil05, Mil06b]. Bigraphs and their reactive systems have been developed as a graph-
ical model of computation that focuses on both mobile locality and connectivity. The
theory has been been developed with two principal aims: (1) to be able to model
directly important aspects of ubiquitous systems, and (2) to provide a unification of
existing theories by developing a general theory, in which many existing calculi for
concurrency and mobility may be represented, with a uniform behavioural theory.
The latter is achieved by representing the dynamics of bigraphs by an abstract def-
inition of reaction rules from which a labelled transition system may be derived in
such a way that an associated bisimulation relation is a congruence relation.

We can use bigraphs to model systems. Figure 1.1 shows an example of a bigraph
model. It consists of two roots (dashed boxes), nodes (solid boxes), and links (green
lines). Each node has a control (in sans serif) indicating the number and type of
ports for linkage. Ports can be either free or binding — the latter indicated by
circular attachments. To determine the set of controls, we can use in a bigraphical
reactive system, we give a bigraphical signature.

The bigraph E is supposed to model a part of a building. In one location, there
is a server with a secret inside. The secret is linked to a binding port of the server.
The free port of the server is linked (supposedly by some kind of network connection)
to a pc inside an office in another location. The office also contains two pdas linked
to each other.

Figure 1.1: E — a bigraph model of an office

Bigraphs can contain sites (gray boxes), and inner or outer names (in red). Both
roots and sites are ordered. The bigraph F in Figure 1.2 has two sites numbered 0
and 1, and two inner names, x located at site 0 and z global (i.e., not located). The
bigraph G in Figure 1.3 has two corresponding outer names, x located at its first
root, and z global. We also use circular attachments to denote that x is local to the
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first root.

Figure 1.2: F — a bigraph context

Figure 1.3: G — a bigraph that composes with F

A bigraph comprises two structures, a place graph, which is a forest of nodes
with unordered siblings, rooted at the roots, and with sites occuring only as leaves;
and a link graph, which is a hypergraph connecting ports of the nodes with each
other and with inner and outer names. Figure 1.4 shows the place and link graph
of F — letting r ’s and s’s denote roots and sites, respectively.

Figure 1.4: Place and link graph of F

Milner originally worked on pure bigraphs [Mil01, Mil06b], which only have
global names and free ports. In pure bigraphs the place and link graphs are en-
tirely orthogonal.

The bigraphs E, F and G are examples of binding bigraphs, which enforce a
scoping discipline. We call binding ports and local names binders — the circular
attachment is used to emphasize their likeness. The scope rule for binding bigraphs
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requires that all inner names or ports linked to a binder must be located below (in the
place graph) the binder (cf. Definition 13 in Chapter 3). For instance, the leftmost
link in F adheres to this discipline: the binder is located on the server node, and this
node is located above the site 0, where x is located. On the other hand, the global
inner name z could not be linked to any binder, as z is a global (i.e., non-located)
inner name. We discuss the motivation for introducing binding in Section 1.2.2.

Bigraphs are composable structures. We can compose F and G by plugging
the sites of F with the roots of G, joining equal inner and outer names; F and G
compose to form E. We write E = F ◦G, or just E = FG.

Not all bigraphs are composable. Bigraphs F and G compose exactly because
G has roots and outer names corresponding to the sites and inner names of F .
The inner and outer interfaces of a bigraph registers this information, and hence
determines which bigraphs can be composed. An interface has the form 〈n, ~X, Y 〉
for an integer n, a set of names Y , and an array of disjoint subsets of the names
Y , ~X = (X0, . . . , Xn−1) of length n. The bigraph F has the inner interface (or
innerface) 〈2, ({x}, ∅), {x, z}〉. The first and third component registers that F has 2
sites, and that it has the inner names x and z, respectively. The second component,
the array ({x}, ∅), registers for each site the local names for that site; hence, the
innerface of F registers that x is local to the first site (and that no other names are
local). The outer interface (or outerface) of F is 〈2, (∅, ∅), ∅〉 registering that F has
2 roots, and that F has no outer names. The second component of an outerface
registers for each root the names local to that root; thus, as F has no outer names,
there are no local names. We write F : 〈2, ({x}, ∅), {x, z}〉 → 〈2, (∅, ∅), ∅〉, and
call this the interface of the entire bigraph. Bigraph G, on the other hand, has the
interface 〈0, (), ∅〉 → 〈2, ({x}, ∅), {x, z}〉.

We see that F andG compose, because the innerface of F is equal to the outerface
of G. The identity for composition on a particular interface is called the identity
bigraph. Given an interface I = 〈n, ~X, Y 〉, the identity bigraph on I, idI : I → I,
maps n sites severally to n roots and map all inner names y ∈ Y to equal outer
names.

Formally, a bigraph is defined as a pairing of a place graph and a link graph.
Eliding some detail, taking interfaces as objects, bigraphs as morphisms, and the
identity bigraphs as the categorical identities, we have essentially a category of
binding bigraphs.2 (See also the Appendix in Chapter 3 for more details.)

Both E and G have no sites or inner names, their innerfaces are 〈0, (), ∅〉. We
say that E and G are ground and call them agents. Agents are important, as
reaction in a bigraphical reactive system can only take place on agents. To reflect
this importance, we write the innerface 〈0, (), ∅〉 of agents simply as ε.

We can also combine bigraphs with a tensor product (denoted by ⊗), which is
simply juxtapositioning of roots. For tensor product we require that both inner and
outer names be disjoint. From tensor product, we can derive straightforwardly a

2We are eliding here the discussion of abstract vs. concrete bigraphs. Only the former constitute
a category, concrete bigraphs form a so-called supported pre-category, as composition is not always
defined. We discuss this further in the discussion on Syntax for Bigraphs in Section 2.1.
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parallel product || that aliases common outer names, and, a prime product | that
aliases common outer names and merges several roots into one root.

In Chapters 3, 4, and 5, we shall be particularly concerned with three classes
of bigraphs, which prove important in a decompositional analysis of bigraphs: (1)
prime bigraphs are those with only a single root, and only local inner names; (2)
discrete bigraphs are bigraphs, where all links to a global outer name are one-to-one;
and, (3) name-discrete bigraphs, are those where all links to both local and global
outer names are one-to-one (refer to Definition 14 in Chapter 3 for the full definition
of discreteness).

We build bigraphical reactive systems (BRSs) by giving a signature (to determine
the controls) and a set of reaction (or rewriting) rules. Reaction rules are expressed
essentially as a pair of bigraphs, such as those in Figure 1.5.

Figure 1.5: A bigraph reaction rule

Eliding some details, we might interpret this rule as saying: If a pc in some office
is linked to a server, a pda in the same office may use the pc as a gateway to copy
data from the server.

The left-hand side of a rule is called the redex and the right-hand side the
reactum. We use rules to rewrite bigraph agents. To do so, we match the rule to
some part of the agent, and we find a bigraph parameter to fill the sites of the redex
— essentially, to supply the missing inner structure — and find a bigraph context
to supply the missing outer structure.

Suppressing some detail, a redex R matches a ground agent a, if a decomposes,
such that,

a = C (R⊗ idZ) d,
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for a context C and a discrete parameter d.3 The bigraph idZ is shorthand for the
identity on the interface 〈0, (), Z〉, and serves to allow the parameter d to export
some extra names Z past the redex, and directly to the context C.

The reaction rule in Figure 1.5 can be used to rewrite E, essentially with G as
parameter and with the empty context.4

1.2.2 The Foundation for Bigraphs

The theory of bigraphs and BRSs stem from work on deriving labelled transition
systems (LTSs) for reactive systems [Sew02, LM00, JM03], and from an effort by
Milner and coworkers to provide a general theory able to unify behavioral aspects
of mobile process calculi [Mil06b, JM04]. Thus, in the collective eyes of the mobile
process calculi community, bigraphs and BRSs is a “grand unifying model” (quoting
Nestmann [Nes06]).

Bigraphs and BRSs have been designed inherently by the needs of a meta-
calculus. When modelling in BRSs, we are given the freedom to choose both our
own static structures and the reconfiguration semantics for those structures. We
essentially implement a domain-specific calculus for modelling both the static struc-
ture and the dynamic semantics directly. This has consequences for the modelling
primitives and mechanisms we are given to work with. As we have reviewed in an
earlier litterature study (in [Dam06]), from a modelling perspective bigraphs and
BRSs have much in common with the fields of term rewriting [BN98, TeR03] and
algebraic (or double-pushout) graph transformation [Roz97, REKE99, REKM99].
We shall discuss some selected relations to term rewriting and graph transformation
when discussing related work in Section 2.1.2.

Up until now, there has been a considerable amount of work on recapturing
aspects of mobile process calculi in the CSP, CCS, and ACP tradition of process
algebra for modelling and reasoning about concurrent systems [Bae05]. There has
been less work on designing novel models or languages based on bigraphs. We post-
pone the discussion of both the recapture of existing calculi, and of the development
of novel models or languages, to the section on related work in Section 2.2.1.

In the remainder of this section, we discuss the background for bigraphs with
binders, and comment on a number of fundamental results that seek to strengthen
or extend the bigraphical framework.

Pure Bigraphs and Bigraphs with Binders

Pure bigraphs treat connectivity (i.e., the link graph) and locality (i.e., the place
graph) orthogonally, and do not include any notion of scope or locality of linkage.
The intuition underlying the place graph is to model the structure of the abstract

3Formally, the context also has to be active (see Section 2, Chapter 4).
4This is only essentially correct. Choosing G as the parameter would require us to choose

idZ = id{z}, but then R⊗ idZ is not defined (recall that ⊗ requires outer names to be disjoint). We
can simply rename z in G to z′, though, and provide a context that rewires z′ and z from R, and
we have a valid match.
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syntax tree of a term, while the intuition for links is to provide bigraphical lan-
guages with a first-class model of pure names. Open (or free) links are assigned
names, and closed links, which have no name, correspond to α-convertible names.
(As a side-remark, our work in Chapter 6 formalizes that intuition.) By taking
links as primitives, bigraphs also incorporate the power to model directly explicit
substitutions of names as link graphs.

Binding bigraphs introduce mechanisms to allow us to relate and constrain the
two constituent structures. As outlined in Section 1.2.1, binding bigraphs add bind-
ing ports to nodes, an associated scope rule, and names localized to roots to transfer
the scope discipline across composition.

Building on the intuition for pure links given above, bound links provide bigraphs
with a model of lexically scoped bound names, or, in programming language-terms,
lexically scoped name-valued formal variables. The scope discipline ensures essen-
tially, that the context A in the composition AB cannot make global links in B
local; it may however make local links in B global (in bigraph-lingo, by concretizing
them). The intuition here is that a context may only instantiate bound names, not
treat already instantiated names as variables.

Introducing locality and binding allows us to model both copying of linkage inside
a parameter, and change of linkage connected to a parameter. Thus, binding and
localized linkage appear naturally in modelling, as it allows us more control over
parametric reaction.

As has been shown by Jensen and Milner for the asynchronous π-calculus [JM04],
and by Bundgaard and Sassone for the typed polyadic π-calculus [BS06], introducing
binders in combination with located names provides us with enough expressivity to
faithfully capture process calculi like the π-calculus. This concerns both the internal
reactive semantics and the labelled semantics.5 Names bound by a ν or by an input-
prefix in the π-calculus are captured in binding bigraphs using closed, or bound and
closed links, respectively. We underline the point: In the π-calculus, we typically
use the term bound names to refer to both names bound by a ν—such as x in P in
νx.P—and, names bound by a binding prefix—such y in P in x(y).P . It is important
to note that in binding bigraphs these two notions are treated separately. In short,
the intuition is: ν-bound names correspond to closed links; names, which may be
substituted for other names, correspond to bound links.

In the study of bigraphical example models [DD05b], we give another example
of the modelling power of binding bigraphs based on a case-study of using binding
bigraphs to model event-driven systems.

More recently, Milner has investigated extensions of binding bigraphs, where
names are allowed to be multi-located, that is, located at several roots or several
sites [Mil04, Mil06a]. The research on extensions of binding bigraphs with a more
fine-grained control over the locality of names, is motivated by the lacking ability to
write convenient wide reaction rules working on bound linkage. In binding bigraphs
names can only be located at a single root. This means that names shared across

5At the least, up to differences between what is modelled as part of the structural congruence
and as part of the reaction rules.
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roots in wide redexes or reactums must be global. When we match a redex to an
agent, the scope rule prevents us from treating global names in the redex as local
in the context. Consequentially, in binding bigraphs, we cannot write wide rules
working on bound linkage, because we need to explicitly show a binder in the rule.
In graph terms, we need to show a common ancestor of the points connected to
a bound link. Binding bigraphs with multi-located names lift this restriction by
allowing names shared across roots to be local, and thus bound. Centrally, Milners
encoding of the λ-calculus [Mil06a] uses this feature to encode succinctly non-local
substitution (referred to as “substitution at-a-distance”).

Sortings and Types

Sortings [Deb08] allow us to prune the bigraphs we consider, by asserting that we
only consider our reactive system to contain those bigraphs that adhere to a sorting
discipline. We could, for example, disallow all bigraphs with nodes of control K
beside each other (such as K|K). Sortings are defined categorically via a functor from
a sorted category into an unsorted category. Thus, a sorting works by restricting
which bigraphs may be composed; consequentially, sorted reactive systems only
contain well-sorted bigraphs.

Variants of sortings have been applied extensively for pruning the derived labelled
transition systems for encodings of various calculi into bigraphs to recapture in the
encoding the contextual equivalence of the original calculi (e.g., for CCS [Mil06b],
typed π [BS06], Homer [BH06], and Mobile Ambients [Jen06]6). It has also been
applied to the domain of context-aware systems in [BDE+06], where sortings are
used for modelling context-aware reaction rules, by requiring for particular reaction
rules that the context be sorted according to a particular sorting.

Work by Debois, Birkedal, and Hildebrandt has focused on giving a unified treat-
ment of sortings. In [BDH06], a general theory of sortings for reactive systems over
categories was defined, and it was conjectured that an extension to bigraphs was fea-
sible. In particular, a framework was established for so-called decomposable predicate
sortings, those sortings given by a predicate P preserved under decomposition. Re-
cently, the lift to bigraphical reactive systems was completed [BDH08], and a refined
theory based on so-called closure sortings is established. The scoping restrictions
imposed by the above-mentioned binding variants of bigraphs can also be expressed
as sortings. Stemming from work in the dissertation by Debois [Deb08], in [BDH08]
it is shown that binding bigraphs with multi-located names can be recaptured via a
sorting. Recall, however, that the definition of reaction is also changed for bigraphs
with binders. In particular, all variants of binding bigraphs allow parameters with
arbitrary bound wiring. This cannot be expressed directly via sorting.

In [EHS08a] (under publication as [EHS08b]) Elsborg, Hildebrandt, and San-
giorgi launch an investigation of types for bigraphs defined inductively over the
structure of terms for bigraphs. The aim is to be able to model more easily than

6Refer to our comments on related work in Section 2.2.1 for an overview of bigraph-based lan-
guages.
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sortings existing type systems for process calculi, which are often defined over the
structure of terms. As an example, the authors develop an i/o-type system with
subtyping for a finite π-calculus without summation. It is also a hope that type
systems defined over the structure of terms may be more easily computer-verified.

Directed Bigraphs

Over a series of papers [GM07a, GM07b, GM08a, GM08b], Grohmann and Mic-
ulan have launched an investigation of directed bigraphs—a generalization of pure
bigraphs where the link graph is symmetric. Directed bigraphs generalize the ex-
isting notion of link graph in bigraphs such that linking is oriented (i.e., directed).
Formally, in standard bigraphs, the link graph maps inner names and ports to outer
names and edges. Thus, there is an asymmetry between the notion of inner and
outer names; the direction of links is restricted to ascend a bigraph, so to speak.
In directed link graphs, the authors add sets of so-called downwards names to the
interfaces of bigraphs. Thus, in directed bigraphs a port can be linked both upwards
and downwards. This provides link graphs with a symmetric structure with regard
to composition.

In [GM07b] it is shown that the fusion calculus without replication (due to Par-
row and Victor [PV98]) may be encoded faithfully in directed bigraphs. In [GM08a],
the authors provide a term language for directed bigraphs, and finally, in [GM08b],
the authors study directed bigraphs over polarized signatures, adding negative ports
that allow directed bigraphs to represent controlled access to resources modelled by
edges.

We should also remark that interestingly, as noted by Debois [Deb08], directed
bigraphs is the only known variant of bigraphs, whose structure cannot be recaptured
using sortings.

Spatial Logics

In [CMS05b, CMS05a, CMS07] Conforti, Macedonio, and Sassone have initiated re-
search on a framework, BiLog, for static spatial logics, which instantiate directly to
(pure) bigraphical structure as a composition of a place graph and a link graph logic.
The basic logic is defined on bigraph terms and is inspired and firmly supported by
the axiomatization of pure bigraphs in [Mil05]. It is an intensional logic, in that it
coincides with structural congruence, which, in general, is strongly more fine grained
than any behavorial equivalence one might want to consider. Towards controlling
the structural inspection power of the logic, a notion of transparency is defined; es-
sentially, allowing one to consider certain parts of the bigraphical structure as opaque
or indistinguishable. In essence, we may define certain nodes of certain controls to
be opaque, blocking inspection of a term at these nodes and their descendants.

Recent, yet unpublished, work [CMS06], delve into more exemplifying instanti-
ations of the logic, and discuss how the framework may be extended to encompass
also dynamic behavior. Interestingly, it is shown that by utilizing the strong in-
tensionality of the logic, for particular cases, standard temporal modalities such as
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the next-step modality can be expressed in the logic as it is. Essentially, based on
an analysis which characterizes all reacting contexts and given a particular set of
reaction rules, it is possible to define a characteristic formula for every rule. This
is shown for a simple encoding of CCS and an associated behavioral logic Lspat

(introduced in [CL04]).
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Chapter 2

Summary

In this section, we give an overview and discussion of the papers in Chapters 3
through 7.

We discuss the papers in two steps as outlined in the introduction: A first step
that discusses the establishment of a theoretical foundation for developing a tool for
experimenting with bigraphs and BRSs (in Section 2.1); and a second step, which
concerns the use of bigraphs for biological modelling and presents the development of
a concrete language based on bigraphs (in Section 2.2). In Section 2.3, we conclude
and summarize the contributions, and in Section 2.4, we provide pointers for future
work.

2.1 Towards a Tool for Working with Bigraphs

As outlined in the introduction, our first step focuses on establishing the foundation
for implementing a prototype tool for experimenting with bigraphs.

In Chapter 3, we start by developing a firm syntactic foundation for working
with the structure of bigraphs with binders. We develop a term language, a set of
normal form theorems, and an associated equational theory on terms that captures
graph isomorphism on the term level. Subsequently, in Chapter 4, we develop a
complete inductive characterization of matching, that is, for describing when and
where a redex matches an agent.

To start with, the work yields convenient syntax-based and inductive proof-
techniques for reasoning about equality and matching in binding bigraphs. However,
it also yields a formal foundation for the implementation of a tool for working with,
and reasoning about, BRSs. Such an implementation needs an internal representa-
tion of bigraphs, and prominently needs to find matches based on this representa-
tion. The work presented in Chapters 3 and 4 provides the necessary foundation for
choosing a syntactic representation of bigraphs.

Thus, concluding this step, in Chapter 5, we describe a provably sound and com-
plete matching algorithm for bigraphical reactive systems. The algorithm forms the
basis of the implementation of the BPL Tool, a first implementation of bigraphical
reactive systems.

15
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Before we turn to the discussion of the papers, let us dwell for a moment on
the basis for our approach. In particular, we should discuss briefly why we focus on
syntax for a graphical formalism.

Syntax for Bigraphs Formally, bigraphs come in two flavours, concrete bigraphs,
where nodes and edges are equipped with identities (or support); and, abstract
bigraphs, where identities have been quotiented away. We may think of concrete
bigraphs as vehicles for defining the abstract bigraphs.

Essentially, the idea is that we start by assigning concrete identities to nodes
and edges to give the parent and link maps underlying place and link graphs. We
obtain from this so-called concrete place and link graphs. A concrete bigraph is a
pairing of a concrete place graph and a concrete link graph.

Concrete bigraphs form a so-called supported pre-category, not a category. This
is because composition is defined only for concrete bigraphs whose constituents do
not share identities. We are interested in the structure of a bigraph, however, not in
the concrete identities of nodes and edges. Those identities are essentially there to
state the underlying maps.1 Further, as an artefact of this manner of giving the link
map, concrete link graphs may contain unconnected edges (so-called idle edges).
Such edges are essentially “junk”. Formally, lean-support equivalence, denoted m, is
defined such that G0 m G1 iff G0 and G1 differ only by a bijection between their
nodes and non-idle edges; idle edges are disregarded entirely. The class of abstract
bigraphs, those bigraphs we are really interested in, are defined as m-equivalence
classes of concrete bigraphs. Abstract bigraphs form a full category.

In reasoning about equality for bigraphs (as we do in Chapter 3) or about match-
ing a redex to an agent (as we do in Chapter 3), an algebraic presentation of abstract
bigraphs has certain conveniencies. Rather than reasoning, for example, about
equivalence of (abstract) bigraphs based on the representation sketched above, a
term representation with an associated structural congruence allows us standard
syntax-based equational reasoning. This is convenient, because we can find a small
language for describing bigraphs and because it helps us describe in separation, in
the equational theory, the possible ways the elements of the language may interact
to create equal bigraphs. For instance, the elision of idle edges is captured concisely
in a single axiom expressing the interaction between two elementary wirings.

Based on these considerations, we choose to study how the algebraically based
understanding of equality for binding bigraphs (that we develop in Chapter 3) may
also provide us with an understanding of matching. That study is documented in
Chapter 4 and continued in Chapter 5.

1Giving identities or support to nodes and edges also equip the supported pre-category of con-
crete bigraphs with relative pushouts. They would otherwise be missing, because we would lack
any notion of sharing of nodes or edges between bigraphs. This is important for the theories for
labelled bisimulations and sortings for bigraphs. These topics are, however, out of the scope of this
dissertation. We direct the reader to the works by Milner [Mil06b] or the recent dissertation by
Debois [Deb08], for more on these topics.
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2.1.1 Axiomatizing Binding Bigraphs

In Chapter 3, we develop a term language for binding bigraphs, an associated axiom-
atization of graph isomorphism for bigraphs, and a series of normal form theorems
for binding bigraphs. This is done as a conservative extension of the work for pure
bigraphs by Milner [Mil05]. The introduction of binding and locality turns out to re-
quire some reworking on the level of the term language; in turn, this invokes changes
for both the normal forms and the equational theory.

Our Approach

The term language, the normal form and the equational theory for pure bigraphs
utilizes the orthogonality of the place and link graph to full effect [Mil05]. Let us
start by giving a brief overview of that work.

The term language provides three placings essentially for constructing place
graphs, two linkings for constructing link graphs, and a single construct, an ion,
for adding nodes. The combinators, composition and tensor product, stem directly
from the categorical foundation for bigraphs. The normal form for pure bigraphs
is based on so-called discrete decomposition; here a bigraph is decomposed into (1)
a discrete bigraph—a place graph with a trivial link graph (all links are linked to
separate outer names), and (2) a wiring—a bigraph with an empty place graph.
In other words, the effect is to reach a description that decomposes a bigraph into
its underlying place and link graph. This manner of decomposition eases the proof
of completeness of the normal form considerably. Importantly, the normal form is
also engineered towards establishing the completeness of the associated equational
theory.

The equational theory for pure bigraphs itself is stated as a set of axioms. Most
axioms are derived from the categorical foundation of composition and tensor prod-
uct (e.g., axioms for associativity and commutativity). The separation of place and
link graph in the term language supports a separation of the axioms concerned with
place and link graph structure into three axioms expressing the basic equalities for
placings and four axioms for linkings. A single axiom is concerned with ions. The
separation of placings and linkings in the term language, and in the discrete de-
composition provided by the normal form, is also used intrinsically in the proof of
completeness of the equational theory.

In Chapter 3, we work with binding bigraphs, where the place and link graph
are no longer orthogonal—the locality of names and binding ports, which serve to
constrain the link graph, is dependent on the place graph. Hence, we cannot hope
to decompose place and link graph entirely in a term language or a normal form for
binding bigraphs. On the other hand, binding bigraphs are simply a refinement on
pure bigraphs, in the sense that if we “forget” the binding of ports and locality of
names, we get a valid pure bigraph.2 We would expect a term language, a normal

2Formally, there is an obvious forgetful functor from the category of binding bigraphs to the
category of pure bigraphs.
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form, and, an equational theory to reflect this. In other words, we seek to develop
a conservative extension of the algebraic theory for pure bigraphs.

This requires a careful extension of the term language and the normal form
developed for pure bigraphs. It proves non-trivial to extend the term language
and normal form to engineer them towards establishing and proving complete the
equational theory. Centrally, we take care to define the term language and the
normal form, such that we can prove completeness of the equational theory by
structural induction.

In the term language, we change a placing to allow for local names, add a con-
stant, the concretion pXq, that maps local names X to global names X, and define
a new combinator, the abstraction (Y )P , that converts global outer names Y in
the bigraph P to local outer names.3 Furthermore, to account for binding ports on
nodes, we allow a binding ion K~y( ~X) to bind severally sets of (local) inner names
X0, . . . , Xb−1 to each of the b binding ports of the node K.

Subsequently, we develop a normal form, where binding is introduced as “late” as
possible, and which is based centrally on a correspondent to (pure) discreteness called
name-discreteness. In name-discrete bigraphs, all linkage to both global and local
outer names is required to be trivial, that is, linked one-to-one to outer names. The
term language and normal form is engineered such that it is easy to define a syntactic
correspondent to name-discrete bigraphs called linearity. Linearity imposes a simple
syntactical restriction on the type of linkings allowed in a term. It is easily verified
that linearity is an inductive property with regard to the term language. We utilize
this correspondence to full effect to allow the proof of completeness of the equational
theory to be established by structural induction.

To illustrate the engineering of the term language and normal form, consider as
an example the binding ion. One could have defined the binding ion to only allow
single inner names (not sets of names) to be bound to the binding ports of nodes.
In fact, the term language (with this variant of the ion) is complete for binding
bigraphs, and we could have easily defined a complete normal form. However, we
would not have been able to define linearity as a simple syntactic correspondent of
name-discreteness; thus complicating the establishment of the normal forms and the
equational theory.

In stating the equational theory, we extend the axioms for pure bigraphs with six
axioms concerned with abstractions, concretions, and, binding ions, and we refine the
axioms concerned with the changed placing. The main theorems state soundness and
completeness of the equational theory. These results yield syntax-based equational
techniques for reasoning about equivalence of bigraphs.

Discussion and Related Work

Our equational theory and associated term language for binding bigraphs closes an
open problem by Milner in [Mil05]. We have already discussed in detail the work by

3Formally, in this case P is required to be prime, i.e., to have a single root and no local inner
names.
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Milner on the axiomatization of pure bigraphs [Mil05]; and, in Section 1.2, we have
given pointers to some other fundamental results developed for bigraphs. Below, we
comment on the relations between our work and some of these results.

The soundness and completeness of the axiomatization of directed bigraphs by
Grohmann and Miculan [GM08a] is verified by techniques similar to ours.

The work by Elsborg, Hildebrandt, and Sangiorgi on type systems inductively
built over terms for (binding) bigraphs [EHS08a], is based on the term language we
develop for binding bigraphs. Consequentially, our equational theory is heavily used
to establish the validity of the theory.

As discussed in Section 1.2.2, Milner has suggested a variant of bigraphs with
binders and multi-located names. The equational theory treated in Chapter 3 is
for bigraphs with binders and singularly located names. It is an open question to
extend our work to encompass also multi-located names. We conjecture that the
extension is not difficult, and that the difficulty lies in introducing binding in the
first place.

The axiomatization of pure bigraphs [Mil05], has proven an important founda-
tion for the analysis of pure bigraphs, and, as such, has been the main inspiration
for BiLog, the framework for spatial logics for bigraphical structure [CMS05b] by
Conforti, Macedonio, and Sassone (as discussed in Section 1.2.2). Our results extend
this foundation to binding bigraphs, and thus yields an obvious line of future work,
namely to extend BiLog to binding bigraphs.

Finally, another line of related work is based on the resemblance between the
algebraic presentation of bigraphs and term graph rewriting systems. The alge-
braic presentation of pure and binding bigraphical structure resembles the algebraic
presentation of term graphs by Corradini and Gadduci in [CG99a]. (For more on
relations to term graphs, see our comments on related work in the following section.)

2.1.2 An Inductive Characterization of Matching in Binding Bi-
graphs

In Chapter 4, we tackle the central problem of matching the left-hand side of a
reaction rule, the redex, to an agent. Our approach is to initially characterize
solutions to the matching problem, and then later (as we shall discuss in the following
section) to investigate how to specialize this into an algorithmic approach.

Our Approach

As discussed above, an algebraic representation is convenient for reasoning about
equality. It allows us to build an understanding of equality by treating in separation
the ways in which elementary bigraphs and combinators may work together to form
equal bigraphs.

In the same manner, we look to utilize the term language to separate concerns
in handling the matching problem. Recall that (omitting some details) we need
to solve the following problem: Given a reaction rule R → R′ and an agent a, if
a = C (R ⊗ idZ) d, we say that the rule R → R′ matches a. In other words, when
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a can be decomposed into a context C, the redex R, and a parameter d, we have a
match. In that case, we can perform a reaction a→ C (R′ ⊗ idZ) d.

Because of the richness of the bigraphical model, the decomposition of a is
nontrivial—even more so, for binding bigraph reactive systems, where links may
be either local (i.e., linked to a located name or to a binding port) or global. For in-
stance, links that are global in the agent may be matched by local links in the redex
since the context C may concretize them (i.e., make them global); and, parameters
may contain nontrivial local links that may also, through concretization, end up
matching global links in the agent. As a small example of the interplay between lo-
cal and global links, consider a rule with left-hand side: K(id1) | id(x).4 We may read
this rule as matching a node of control K, possibly with something inside the site id1,
beside a local link named x, located at a site. However, even though the link and the
node are next to each other in the redex, in the agent they need not be related; in
fact, in the agent the link need not be matched to a local link—or be present at all.5

Observe also, that links that are open in the redex may be matched to closed links
in the agent (but not the other way around). Wide rules—rules, where R contains
several regions—also contribute to the complexity; as does the fact that links are
hyper-edges with unordered points, and that place graphs have unordered children.
For instance, we allow left-hand sides such as K(merge2), a K node with two sibling
sites inside. That redex, when matched to an agent, nondeterministically splits any
content of a K node into 2 parts.

To tackle the decomposition of the agent, we exploit that we already have an
inductive way of building binding bigraphs as terms. Our approach in Chapter 4
is to look for an inductive characterization of how to construct a context C and a
parameter d, by induction on the structure of the agent a and the redex R, the input
to the matching problem. We define the concept of a matching sentence—a new
representation of a match. A matching sentence defines a relation on components
of the agent, redex, context, and parameter. Matching sentences are defined such
that valid sentences correspond to valid matches, and we look to characterize this
relation inductively.

Our main result is a set of rules that suffice for deriving all valid sentences. The
main theorems state soundness and completeness of the rules.

The term language characterization of bigraphs helps us give a concise set of
rules. As for the equational theory it helps us separate concerns. For instance, the
special concerns in matching local and global linkage is collected in one rule (the
rule lsub), while the matching of closed links is handled in another rule (the rule
close). Matching sentences also utilize the insight gained from the treatment of
discrete decomposition in the normal forms, by separating global links from place
graphs and local links.

4Formally, in the following, assume that K has active control, i.e., may contain other nodes and
allows reaction to occur inside it.

5Why? Because the context may either concretize the link to match it to a global link in the
agent; or, because the context may concretize and close the link while, at the same time, the
parameter introduces the located name x via an idle (i.e., not connected) local name—in effect,
making the link an idle edge that is discarded via elision.
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Discussion and Related Work

To start with, our results yield an inductive method for reasoning about matching
in binding bigraphs. Moreover, in combination with our earlier work, we have also
established a foundation for basing a theoretically well-founded implementation of
bigraphs and BRSs directly on terms. This allows us to base such an implementation
on a provably complete representation and on provably correct algorithms. We shall
discuss this work in Section 2.1.3.

Incidentally, the proof of completeness of the characterization serves as a thor-
ough example of the utilization of the decompositional analysis provided by the
normal form and the proof-techniques for reasoning about equivalence (i.e., as de-
veloped in Chapter 3).

In the section on related work in Chapter 4, we comment on the relation of our
work to general graph pattern matching algorithms. Below, we outline the relations
to the long-running traditions of term rewriting and graph transformation systems
(see [Dam06], for a more comprehensive survey).

Bigraphical reactive systems are related to term rewriting systems [BN98, TeR03].
A term rewriting system (TRS) is a collection of rewrite rules on terms. Terms are
constructed inductively over sets of function symbols and variables. Rewrite rules
are pairs of terms L→ R, such that all variables in R also occur in L. A rule L→ R
matches a term t iff for a substitution σ on the variables of L and a subterm t′ of
t, we have σ(L) = t′. We rewrite (or reduce) a redex by replacing t′ = σ(L) with
σ(R).

Though TRSs lack any treatment of names, they bear a close likeness to reactive
systems over place graphs. There are a few important differences, though. Recall
that we consider place graphs equal up to permutation of siblings. Terms of TRSs
are naturally considered equal iff they are syntactically equal. In matching terms
quotiented by an underlying equational theory place graphs are more reminiscent
of rewriting logic, that is, term rewriting modulo a set of static equivalences. A
survey by Meseguer [Mes96] outlined the use of rewriting logic as semantic models
for concurrent systems. In bigraphs we are also allowed to write wide rules working
on place graphs. This allows us to model elegantly distributed reaction, including
non-local mobility and copying, as we do not need to show explicitly the parent
structure of the subtrees matched by the patterns in the redex. Finally, a special
aspect of bigraph sites (that play the role of variables in rules) is that we may match
a set of subtrees to a single site in the redex. Further studies are needed to determine
whether and how, we may employ some of the sophisticated techniques for matching
and rewriting developed in the context of rewriting logic, for instance, for the system
Maude [Mau, CDE+01, CDE+03].

The long tradition of algebraic graph transformation systems (GTSs) based on
double-pushout (DPO) constructions [Roz97, REKE99, REKM99] (for a recent sur-
vey, see [EEPT06]), initiated by Ehrig, Pfender and Schneider [EPS73], are also
related to bigraphical reactive systems. The class of all graphs as objects and of (to-
tal) graph homomorphisms form a category Graphs. A graph transformation rule



22 Summary

p = (L l← K
r→ R) with lefthand-side L and right-hand side R, consists of graphs

L,K,R and mono (i.e., injective) morphisms l, r. We can think of the interface K
as the intersection of L and R. A (direct) graph transformation G

p,m
=⇒ H goes from

a graph G to a graph H by p and a match morphism m : L→ G. We may think of
the match morphism m as identifying nodes and edges in L with nodes and edges
in G. Given m, we transform G by p, essentially by removing from G those nodes
and edges not present in K, and to construct H, we add the nodes and edges in
R\K. Formally, the matching and the construction of H are defined by two pushout
diagrams essentially built from the morphism k = m ◦ l : K → G (hence the name
double-pushout).

Notably, standard graph transformation systems do not allow parametric re-
configuration rules. When matching a bigraphical redex R to an agent a, a =
C (R ⊗ idZ) d, we naturally rely on the hierarchical structure of the place graph to
split the surroundings of R in a context above, C, and a parameter below, d. In con-
trast, a priori, we have no way to give meaning to parameters for arbitrary graphs.
Consequentially, we cannot express directly in GTS rules, copying and deletion of
arbitrary subgraphs in (basic) GTSs. Some approaches to hierarchical graph trans-
formation systems have been investigated. In [DHP02], Drewes et al. investigate a
DPO approach that allows recursive nesting of graphs in special hyperedges. The
work supports rule schemas with so-called frame variables, which can be instanti-
ated to graphs, to allow directly copying and deletion of subgraphs. As opposed to
bigraphs, though, edges cannot cross boundaries of frames. Palach [Pal04] proposes
a framework that imposes a separate nesting relation directly on components of a
(flat) graph (bringing us closer to bigraphs). The framework allows edges crossing
nesting boundaries, but the framework does not yet include a supporting notion of
parametric rules.

More studies are needed to determine whether the work on, for instance, hierar-
chical graph transformations may inform the work on bigraphical reactive systems.
There are, in fact, studies that show that the links between the theoretical under-
pinnings for BRSs and graph transformation may be strengthened. As reported by
Ehrig in [Ehr02], the underlying categorical model and use of pushouts are different,
but may possibly be conjoined.6

Finally, the field of term graph rewriting has roots in both term rewriting and
graph transformation. Simply put, a term graph rewriting system is a TRS that
is lifted and reduced under GTS semantics. When lifting terms to graphs, edges
represent the nesting relation. Variables are represented using special nodes, and the
structure of graphs is used to represent sharing of variables directly. When applying
rules with terms lifted to graphs this naturally results in shared, rather than copied,

6As noted in [Dam06], a common ground may be found, perhaps using a 2-categorical approach
as used by Gadduci et al. to represent graph rewriting in [GHL99], or, by Sassone and Sobocinski
for deriving labels for reactive systems [SS02]. Furthermore, a recent line of work founded by Ehrig
and Koenig on deriving labels and capturing observational equivalences in the DPO approach to
graph transformation is directly inspired by the work on deriving labelled transitions systems for
BRSs [EK04].
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subterms, something which cannot be expressed in basic TRSs. The utilization of
sharing allows very efficient implementations of functional programming languages
such as Clean [Cle, PE93].

As noted in Section 2.1.1, the algebraic presentation of the structure of bigraphs
resembles the algebraic presentation of term graphs [CG99a] by Corradini and Gad-
duci. The work in loc.cit. is used as the basis of a 2-categorical presentation of
term graph rewriting [CG99b]. This resemblance could be used as the foundation
for looking for a stronger categorical foundation for the description of matching and
rewriting in bigraphs.

2.1.3 An Implementation of Bigraph Matching

The term language for binding bigraphs gives us a complete representation language
for expressing bigraphs, and the normal form is a uniform representation based
directly on this manner of expressing bigraphs. The inductive characterization of
matching, as outlined above, gives us an inductive method for proving a match valid.
It can also be used, however, as a foundation for implementing matching in a tool
for BRSs.

The paper in Chapter 5 describes our work on deriving a provably sound and
complete algorithm for bigraph matching from the characterization. The algorithm
is implemented in the BPL Tool, a prototype implementation of bigraphical reactive
systems. In the paper, we also describe the tool and illustrate it with an example.

Our Approach

The characterization in Chapter 4 uses the term language and normal forms to sep-
arate concerns when we build up valid matches, and for decomposing the involved
bigraphs (i.e., agent, context, redex, and parameter) in smaller parts. However,
matching sentences still express a relation on expressions up to structural congru-
ence. So, in Chapter 5, to recast the inference rules to work directly on terms,
we could simply add a single rule to allow application of structural congruence.
However, this yields a wildly nondeterministic inference system as we might need
to apply arbitrary structural congruence laws in every step to infer a match. For
mechanically finding valid matches, this is hardly practical.

Consequentially, to specialize the characterization into an algorithm for mechan-
ically finding matches, we define normal inferences. Normal inferences are inferences
that are complete in the sense that all valid matching sentences can be inferred, but
suitably restricted, such that inferences can be built mechanically. In particular,
normal inference definitions for term matching need to spell out how and where
to apply structural congruence. As a main trick, we define normal inferences that
require each inference to start by rewriting the input terms (i.e., the redex and the
agent) to be on normal form. This allows us to incorporate structural congruence
axioms into two rules, the rule for introducing tensor products, and the rule that
handles the merging of a product into one bigraph root. In the main theorem in
Chapter 5, we prove a grammar for normal inferences sound and complete.



24 Summary

It is feasible to build normal inferences mechanically, and an algorithm to derive
such inferences formes the core of the BPL Tool. The tool is a reference implemen-
tation of binding bigraph matching and rewriting, and gives us a toolbox for exper-
imenting with bigraphs. The implementation is written in Standard ML, consists of
a parser, normalisation and matching kernel, and includes web and command line
user interfaces (see [BPL07]). To ensure correctness, the implementation is faithful
to the theory, implementing directly the inference systems developed for matching,
normalisation and auxiliary operations; essentially implementing one SML function
for each inference rule.

Discussion and Related Work

Through our work, we have built an implementation that is theoretically well-
founded and whose core algorithm for matching is provably correct. The tool has
been used for experimenting with semantics for several bigraphically derived lan-
guages; including the C-calculus, developed in Chapter 7, and in the CosmoBiz-
project [BGH+08a, BGH+08b] to experiment with higher-order variants of WS-
BPEL [TC07] formalized in binding bigraphs. Alas, the implementation is not very
efficient. As is apparent from the discussions in the sections above, we have focused
on allowing the full generality of reactive systems over binding bigraphs; our first
concern has been on soundness and completeness of the algorithm, not efficiency-
issues. We comment on several possibilities for future lines of work in Section 2.4.

As discussed under related work in Section 2.1.2, bigraphical reactive systems
bear a resemblance to term rewriting systems and graph transformation systems,
and some of the techniques employed for the implementation of these might inspire
future work on a dedicated tool for BRSs. Due to the longer history of the fields,
implementations such as the previously mentioned Maude-system [Mau, CDE+01,
CDE+03] (based on rewriting logic), the Clean-language [Cle, PE93] (based on term
graph rewriting), and graph transformation tools, such as the AGG (Attributed
Graph Grammar) System [AGG, ERT99] and the PROGRES (PROgrammed Graph
Rewriting Systems) [PRO, SWZ99], build on considerable amounts of work. In these
fields, the development of tools tend to have been driven by varius applications. As
needs have arisen in applications, so tools and techniques have evolved. For instance,
applications with associated implementations include semantics for functional lan-
guages such as Clean [NSvP91], verification of object-oriented systems using graph-
transformation systems such as GROOVE [Ren04], generation of diagram editors
from graph grammar specifications of visual languages [Min03], and, as suggested
in [VSV05], the theoretical foundation of model transformation in model driven
development.

This points to a strong argument for also letting the needs of a particular appli-
cation drive and inform further development on tools for bigraphs. As discussed in
the following sections, in Chapters 6 and 7, we launch the idea that bigraphical re-
active systems may be used for modelling biochemical reactions at the level of cells.
We discuss and motivate a number of significant simplifications and restrictions on
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the kinds of bigraphs and reaction rules that we need consider for such systems.

2.2 Developing a Bigraphical Language

In this section, we give an overview of our work on developing a concrete bigraph-
ical language. This effort constitutes the second step in our test of bigraphs as a
foundation for the development of languages.

Previous efforts have shown that the bigraphical framework allows the recapture
of the semantics of a wide variety of calculi.7 This is clearly a strength, and it also
helps us in developing novel calculi, as it allows us to experiment with a wide variety
of different semantics. As we have explained, in our earlier efforts on the BPL Tool
we have meticulously made sure to include all the degrees of freedom of BRSs over
binding bigraphs. This allows us to give tool-aid for that kind of experimentation
using all the expressivity of BRSs.

As we have discussed in Section 2.1.2, the downside of full generality is that it
has repercussions for matching. The bigraphical framework allows rules, which may
seem too exotic. However, at the level of semantic framework our approach has been
to refrain from disallowing any degree of freedom. The encodings of various calculi
and experimentation with different bigraphical models have shown that sometimes
we might be able to prove certain invariants for our model that make seemingly exotic
rules useful. Or, we might simply want to start by giving an abstract semantics that
allows “too many” reactions; and then later on refine that semantics. Had we made
restrictions on the bigraphical framework before working on the BPL Tool, we could
have risked hindering such experimentation for some languages.

However, in the process of developing a specific language, our experience has
been that as part of the process of finding the right abstractions for a language, it is
a natural step to try to single out a subset of BRSs to work with. For instance, for
modelling low-level biochemical reactions, it turns out that linear rules are sufficient.
Cutting away selected parts of bigraphical freedom benefits the presentation of the
developed calculus, and may form the foundation for more efficient implementation
later on.

In the following sections we shall discuss our investigation of the usage of bigraphs
and BRSs for modelling biological interaction. In Section 2.2.1, we discuss our work
on settling on a family of bigraphs and BRSs that we can base our development
of a concrete language on. This work is presented in the paper in Chapter 6. In
Section 2.2.2, we summarize our development of a concrete language, the C-calculus,
that allows a user to experiment with reactions inside and among biological cells.
This work is presented in the paper in Chapter 7.

7In the section on related work below, we discuss some notable examples where the behavioral
theories for existing calculi have been recaptured.



26 Summary

2.2.1 A Generic Language for Biological Systems based on Bi-
graphs

Since Regev, Shapiro, and Silverman suggested using the π-calculus for modelling
biochemical processes [RSS01], there have been numerous suggestions for using pro-
cess calculi for modelling biological systems at the molecular level. In the pre-study
in Chapter 6, we lay the foundation for using bigraphical calculi to experiment with
models and languages for biological systems.

Our Approach

First, we need to give a brief outline of the kind of languages that we are aiming for.
We set our aim towards languages that allow rule-based modelling, that is, allow

a user of the language to write certain kinds of reaction rules themselves. This
way of modelling seems particularly well-suited for modelling biochemical reaction
patterns. It mimics the understanding and level of description of basic biochemical
reactions that biochemists tend to use.

The κ-calculus [DL04] by Danos and Laneve, is a prominent example of a lan-
guage that has championed rule-based modelling for biological systems. It focuses
on capturing protein-protein interaction at the level of protein domains. On top
of a (flat) graph-based static model, a user of the κ-calculus writes her own set of
reaction rules modelling in isolation each possible local protein-protein interaction.
More recently, the κ-calculus has also been provided with a stochastic semantics
and an efficient implementation allowing simulation and various methods of causal-
ity analysis [DFF+07, DFFK07].

Bigraphs and BRSs seem well-suited as a foundation for developing a calculus
that allows rule-based modelling. By leaving part of the job of writing reaction rules
to a user of the language, we can leverage the meta-modelling capabilities of bigraphs
to allow a user to instantiate a domain-specific sub-calculus for the investigation of
a particular biological problem. In summary, the C-calculus, which we shall discuss
in the following section, is going to be a family of bigraphical languages, where we
will allow the user a level of freedom in choosing reaction rules.

Turning to our work in Chapter 6, we pave the way by discussing and identifying
a subset of bigraphical calculi suitably restricted for modelling biological interaction.
We call the resulting family BΣ,R-calculi. (We let the name signify that we instan-
tiate a particular calculus by giving a signature Σ and a set of rules R; the B, of
course, stands for bigraphical.) We take the time to develop and treat carefully
an alternative and self-contained description of the syntax, and give an operational
semantics for BΣ,R-calculi void of most bigraphical idiosyncracies. First of all, this
little experiment illustrates that such alternative presentations of bigraphical calculi
may, in fact, be developed. It lets us describe the C-calculus without referring too
much to bigraphs. Importantly, the description of BΣ,R-calculi may also serve as
the basis for dedicated and more efficient implementations. We have taken care to
exploit, in the characterization of the operational semantics for BΣ,R-calculi, the
restrictions of the language and the reaction rules. We sketch below, the restrictions
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we have made on BΣ,R-calculi.
In short, BΣ,R has a lightly sugared syntax for processes that correspond to

bigraphs with one root and no inner names or idle outer names (in short, link-epi
primes); so-called process groups are essentially products of processes. In the syntax
for processes, we choose a standard set of operators—prominently including parallel
product, name hiding, and prefixing—and derive standard definitions for free and
bound names, structural congruence and substitution (defined essentially on top of
bigraphical composition). As a main simplification, we do not include processes that
correspond to pure link graphs; they would essentially be representatives of explicit
substitutions (on names). In other words, there is no correspondent of, say, the
bigraph y/X among BΣ,R-processes. Observe that in bigraphs, we essentially have
substitution residing inside the language—bigraphical composition is an operator.
In the syntax for BΣ,R-calculi we define substitution as an operation instead of having
it be an operator. These are some of the central simplifications that we make for
BΣ,R-calculi, whose repercussions, to the syntax, the structural congruence relation
(in particular), and the operational semantics, helps us bring the presentation more
in line with standard tradition for process calculi.

For reaction rules, we require all rules to be linear and prime (i.e., to be only over
processes, not process groups). We give a small set of rules for contextualizing re-
actions. We simply close reactions under syntactic constructions, structural congru-
ence, and also under bijective (not general) renaming of free names—consequentially,
we call the contextualization non-aliasing. The non-aliasing contextualization is mo-
tivated by the inclusion of side-conditions, which we shall discuss now.

It turns out, that the dynamics of a few special rules for diffusion in the C-
calculus are more concisely expressed with the usage of a modicum of contextual
side-conditions on reaction rules. Such side-conditions are well-known from other
meta-language frameworks (such as in graph transformation systems [EPS73, Roz97,
REKE99, REKM99]), but have not been investigated for bigraphs before. Hence, in
Chapter 6, we give a first treatment of reaction rules that allow testing of arbitrary
side-conditions on parameters. For defining such side-conditions sensibly on links
from parameters, it turns out that reaction under non-aliasing contexts is important.

In a (pure) bigraph reaction, parameters are required to be discrete (i.e., with no
shared names), leaving to the context to perform all aliasing. (For process calculi,
this corresponds to pushing all ν-binders to the top of an expression, before reaction.)
As we explain in the paper, the choice to make bigraphical matching work in that
manner resolves an ambiguity in the duplication of links in parameters for non-linear
rules.

For our purposes, that means, that if we wish to define side-conditions that test
sharing among links stemming from parameters, we would need to test the context
also. However, as explained above, we are only concerned with linear rules. As a
consequence, the ambiguity does not arise in our setting. Hence, we choose to give
an alternative definition of matching for bigraphs, that requires aliasing to occur
inside parameters, and disallows aliasing in contexts. That suffices to allow us to
define also side-conditions on parameters for linear bigraphical reaction.
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The main result of the paper is to show formally that BΣ,R-calculi and their
reaction semantics correspond to bigraphical reaction under non-aliasing contexts for
the subset of bigraphs corresponding to BΣ,R-processes. We finish off by illustrating
that with non-aliasing semantics the (nondeterministic) κ-calculus may be faithfully
captured as a BΣ,R-calculus.

Discussion and Related Work

Before turning to related work, let us discuss two specific choices in our development
of the BΣ,R-framework.

First, for the BΣ,R-framework and for the C-calculus, we decided not to use any
of the variants of binding for bigraphs. We experimented with the use of binding
for capturing some of the invariants of the model for biological phenomena in the
C-calculus—as captured in well-formedness conditions (see the following section).
However, the fact that binding has been developed for capturing lexical scoping of
names, ends up working against that use. The scoping constraints for binding are
asymmetric, in the sense that bound links are barred from extending outside the
location of their binder; there is no restriction to downwards extension of links,
however. For modelling biological phenomena, we really need an abstraction that
captures distance, a symmetric concept. Links represent chemical bonds governed by
a variety of fairly weak and highly distance-limited forces. Consequentially, links in
the C-calculus are limited to connecting highly co-located entities. Though to a lim-
ited degree we have been able to construct encodings that enable binding to capture
some of the necessary constraints, binding is really not the right abstraction for the
job. Thus, we elected to work in pure bigraphs, and formulate the well-formedness
constraints as a series of conditions directly on the (bi)graphs—essentially, a sort-
ing. This, in turn, has the side-effect that in verifying the preservation of those
well-formedness constraints, we use bigraphical reasoning. This is both a strength
of the dual bigraph and term nature of BΣ,R-processes; but also underlines that the
BΣ,R presentation cannot currently stand by itself.

Secondly, in retrospect, the capture of numbered sites and associated composi-
tion ends up being somewhat cumbersome. Though, as explained above, we demoted
composition to be an operation—in the form of substitution—we decided to keep
sites in the language, in the form of numbered variables. To match the behav-
ior of sites in bigraphs, this requires us to consider processes with variables up to
order-preserving renumbering of the variables, and include this in the structural
congruence relation. This is essentially to mimic that taking the tensor product of
two bigraphs A and B invokes a similar reordering on the numbers of sites in A⊗B.
As a consequence, for defining conveniently substitution (i.e., the correspondent of
bigraphical composition), we also need to stratify the numbering of the variables,
that is, to renumber variables to 0, 1, 2, . . .. Formally, we can capture this by taking
the least order-preserving renumbering.

The BΣ,R-framework was an experiment to try to give an alternative presentation
of bigraphs and BRSs, which exploits a particular subset of bigraphs and reaction
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rules. In evaluating that experiment, we feel that the capture of variables and
substitution is perhaps the least satisfying. It does not match the typical usage
of term-valued variables in calculi such as the applied π-calculus [AF01], and still
smacks more of an abstraction for contexts with numbered holes (which sites were
developed to capture) than it does of variables for carrying parameters in reaction
rules. In future work on the BΣ,R-framework, and on presenting the syntax and
semantics of bigraphical calculi, we need to try to find more elegant ways of treating
variables for parametric rules.

Below, we expand the discussion on related work in the paper. In order for the
discussion to be coherent and self-contained, we shall need to repeat a few paragraphs
from the paper.

Much effort has been made to recapture existing calculi as BRSs, in particular,
on recapturing contextual equivalences using the machinery for bigraphically derived
bisimulations via the derivation of minimal labels [Mil06b]. (More recently, Bonchi
et al. have suggested an alternative approach, called a saturated semantics [BKM06],
and motivated that in some cases minimal labels are not sufficient.)

Milner and Jensen recaptured the behavioral equivalences for a version of the
asynchronous π-calculus [JM04]. In the monograph by Jensen [Jen06], Jensen ex-
tends the results to the full π-calculus with summation and replication; and also
treats a bigraphical encoding of the ambient calculus [CG98, CG00]. Bundgaard
and Sassone treat the polyadic π-calculus with capability types (as introduced by
Pierce and Sangiorgi [PS96]) in bigraphs [BS06]. All these encodings make use of
bigraphs with binders and use a variety of bigraphical sortings (as discussed in Sec-
tion 1.2.2) to recapture the original contextual equivalences given for these calculi.

In [Mil06b], Milner encodes a finite variant of CCS (i.e., without replication)
in pure bigraphs. It turns out, that the derived bisimilarity for the encoding does
not match the original bisimilarity given for CCS [Mil80]. To recapture the original
notion of bisimilarity given for CCS, Milner restricts to labels corresponding to con-
texts without substitutions (i.e., link-mono contexts). Correspondingly, the original
bisimilarity given for CCS is not preserved under substitution. Interestingly, those
contexts match our non-aliasing contexts.

In our work, we have focused on reaction and dynamic correspondences, not
bisimulation. We wished to start by focusing on finding good abstractions for mod-
elling biological entitities and events. In future work, we may wish, however, to
investigate contextual equivalences for BΣ,R, also. In doing so, we may try to
use the bigraphical framework for deriving labels and bisimulation. However, as
we have modified the definition of the reaction relation to incorporate (negative)
side-conditions and restricted the contextualization of ground reaction to link-mono
contexts, it needs to be studied how to update the framework accordingly. In doing
so, one may look to the experiences, by Rangel et al. [RKE08], on deriving labels
for graph transformation systems that have rules with negative application condi-
tions (using the similar, so-called borrowed context approach [EK06]). Such studies
may also be a first step towards relating the bigraphical theory for bisimulation
congruences to the studies on meta-theoretical theorems concerned with establish-
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ing congruential behavioral equivalences for syntactic rule formats for structural
operational semantics [MRG07].

In [Mil06a], Milner gives an encoding of an (untyped) λ-calculus with explicit
substitutions, Λsub and starts an investigation of confluence properties of BRSs.
Milner uses the identities for nodes and edges in concrete bigraphs to analyze if, and
how, two ground redexes occurring in a ground bigraph overlap. Ó Conchúir contin-
ues the examination of Milners λ-calculus [Con06], and of confluence, and compares
it to another λ-calculus with explicit substitutions λxgc by Bloo and Rose [BR95].

Bundgaard and Hildebrandt builds upon the treatment of explicit substitutions
(by Milner in [Mil06a]) and nested named locations (by Jensen in [Jen06]), to give a
bigraphical semantics for the calculus Higher-Order Mobile Embedded Resources
(Homer) in [BH06], a higher-order calculus (i.e., allowing process-passing) with
nested locations that allows active mobility and duplication of processes, and has
local names.

Finally, in [GM08a], Grohmann and Miculan use and motivate their directed
variant of bigraphs by giving an encoding of the Fusion calculus.

There have been a few lines of work that focus on the development of novel
models or languages based on bigraphs.

An evaluation of the aim of using bigraphs for representing context-aware systems
in the domain of mobile ubiquitous systems was initiated in [BDE+06] and continued
in [Els06] by Elsborg, who defines and models so-called plato-graphical models as
BRSs. Along the way the authors encode and analyze a MiniML-like calculus with
references. This work focuses on context-aware systems, in particular the location
aspect of context, and the goal is to represent and analyze a minimalistic location-
aware model as a plato-graphical (BRS) model.

The CosmoBiz research project (Computer Supported Mobile Adaptive Business
Processes) at the IT University of Copenhagen has as aim to provide formalisations
and implementations of business process languages for mobile and adaptive business
processes [HNB+07]. In brief, the project aims to extend the current state of the
art for business process languages to handle also mobile and distributed workflows.

The project stems from work in the Ph.D. thesis of Bundgaard [Bun07] on mod-
els, reasoning techniques, and, types for higher-order mobile embedded resources,
and from work by Hildebrandt et al. [HNO06], on giving an encoding of a sub-
set of the business process execution language (BPEL) in the bigraphically based
framework Reactive XML [HNOW06]. In [BGH+08a], Bundgaard et al. present a
higher-order variant of WS-BPEL [TC07], and shows how this language may be for-
malized in binding bigraphs. In the companion tech report [BGH+08b] the language
is also implemented and simulated with the help of the BPL Tool.

2.2.2 A Language for the Cell

In Chapter 7, we conclude our investigation of bigraphical languages by presenting
a novel language, the C-calculus. The C-calculus allows a user to work with models
that capture low-level interaction inside and among cells, the basic building blocks
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of all life. In the C-calculus, we focus on two main actors of cells, membranes and
proteins.

The introduction in the paper includes a brief overview of the biology governing
cells, proteins, and membranes, providing a background for the motivation for our
choices in the calculus.

Our Approach

Early in the development of the C-calculus, we phrased a slogan for the kind of
modelling that we wanted to allow: “Modelling by rule-refinement”. We wanted to
allow users of the C-calculus considerable freedom in choosing the reaction rules to
govern reconfiguration. As discussed in the previous section, the inspiration was
the succes of the κ-calculus in treating a wide variety of protein-protein reaction
patterns. However, we did not want to lay upon the shoulders of modellers the task
of inventing their own abstractions of basic biological events. This is hardly any
better than just presenting users, say, biochemists, with the entire framework of
bigraphs. Instead, we set an aim to characterize a fixed set of canonical biological
actions, and encapsulate each action in a reaction rule. The task of the user is then
to choose actions and decorate them with application conditions; this corresponds
to instantiating a reactive system by refining the core reaction rules.

Having set a goal for the calculus, we start by settling on a model for proteins
and membranes.

We aim to capture protein-protein interaction on a level comparable to that of
the κ-calculus, but extended to a multi-compartment environment. To allow for
transmembrane-proteins, in the C-calculus proteins are represented as clusters of so-
called protein domains sharing a common name.8 Protein domains are, bigraphically
speaking, atomic nodes. This name is a formal representative of the protein back-
bone. Domain-domain bonds, that let proteins form complexes, are also represented
via name-sharing.

Compartments are formed by formal membranes. Bigraphically, membranes are
modelled by active nodes, that is, nodes that may contain other nodes and, in
which reaction may occur. To capture faithfully the dynamics of fusing or dividing
membranes, we include in the C-calculus also binary channels between membranes.
Channels allows us to capture an observable intermediate state in fusion and divi-
sion. In this intermediate state the connected compartments may exchange material
regulated by diffusion. Formally, channels are formed by gates sharing a common
name. (Gates are another kind of atomic nodes.) Channels can be seen as abstrac-
tions for the various molecular-structures that bind together (real) fusing or dividing
membranes.

We instantiate the BΣ,R-framework for the C-calculus, and call processes in the
C-calculus solutions. We want to emphasize for users of the C-calculus that solu-

8In short, domains are biological abstractions of the active regions of proteins, i.e., the parts
of the protein that binds together with other proteins to form complexes. See the Introduction in
Chapter 7 for more details.
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tions have an equally formal interpretation as (bi)graphs, so we include a section
that outlines this relation. Importantly, the grammar for the C-calculus (i.e., that
inherited from the BΣ,R-framework) still allows us to write expressions for many
solutions, which may be hard to interpret biologically. So we define and motivate
at length a set of well-formedness conditions to single out those solutions, which we
can interpret biologically.

Having settled on a static model, our next task is to characterize a set of core
rules (called generators in the paper) that each encapsulate a single biological ac-
tion. These actions include protein-level reconfiguration, such as forming or breaking
complexation-links, or changing the conformation of a protein; or, they correspond
to a variety of biologically based membrane-level reconfigurations.

We need to take special care with those core rules which involve bulk transport
of sub-solutions; such transport is modelled by relocating parameters in parametric
rules. The central rule that allows transport encapsulates diffusion of complexes,
that is, connected components of proteins. The underlying molecular forces that
govern protein backbones and protein complexation are severely restricted by local-
ity; we capture this in the well-formedness conditions. To ensure that we preserve
well-formedness we develop a contextual side-condition that checks the parameters.
We formulate the side-condition using a small function that essentially computes
the connected component of a user-specified set of proteins T . However, as protein-
backbones may cross membranes, we need to find only the part of connected compo-
nent that is co-located with T . Furthermore, as we do not want to allow membranes
to diffuse, in some cases we want to disallow diffusion, namely when the connected
component needs to include a membrane to hold all connected proteins. The side-
condition also needs to check for this. In all, the treatment of diffusion requires
some care to settle on a model that is both logically sound and biologically valid;
consequentially, we spend quite some space on motivating and developing the core
rule that encapsulates it.

Finally, to allow a user to give application conditions for core rules, we define
refinement. We choose to treat and define refinement for general BΣ,R-rules (to allow
future development of the C-calculus). Bigraphically speaking, we essentially allow
rules L→ R to be refined to C LD → C RD; that is, we allow a user to add extra
context to rules. That corresponds exactly to giving extra conditions on the reaction
encapsulated in L→ R, in the sense that we simply restrict the applicability of the
rule, without changing the semantics.

The main theorem of the paper states that any refinement of a core rule preserves
well-formedness.

In the paper we also illustrate the use of the C-calculus with two examples. We
develop a model that illustrates simple cross-membrane signalling via a G-protein
coupled receptor protein, and we develop a larger model of the formation of clathrin-
coated cytoplasmic vesicles, through budding from the plasma membrane (i.e., the
cell-wall).

In conclusion, to develop a model in the C-calculus the main task of the user is to
pick and choose biological actions, encapsulated in a toolbox of core reaction rules,
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and then refine them by giving contextual application conditions for rules. The main
theorem ensures us that all reactions will stay within a fragment of solutions that
we can interpret biologically. In essence, we feel that we have fulfilled the goal set
out by our slogan, to allow “modelling by rule-refinement”.

Discussion and Related Work

The extension of a κ-like calculus with dynamic compartments that support both fu-
sion and fission is a novel contribution, in itself. The C-calculus is, to our knowledge,
the first calculus to capture an observable intermediate state for fusing and dividing
compartments. The channel abstraction and its behavior is modelled over research
that shows that both when cells fuse or divide, membranes will temporarily be in
a partially fused state with a neck consisting of partially fused membrane material.
Below, we comment on some related efforts on using formal calculi to model biology.
First, however, let us comment on the C-calculus itself.

Overall, our focus in developing the C-calculus has been to make choices to
simplify practical modelling of biological phenomena on the level of proteins and
membranes. Ideally, with the help of a little syntactic and graphical sugar, we expect
biochemists to be able to specify and work with C-calculus models themselves. The
description of the transportation rules (the rules for diffusion and pinch9) required
the most effort, to give a biologically faithful model that allows the specification of
convenient rules. As we discuss in the paper, we could have elided the use of any
side-conditions by taking only rules that allow the transport of statically specified
closed protein complexes. That would have been computationally complete, in the
sense that it allows transport of arbitrary complexes.

However, it would also be quite impractical to use, as in many cases a central
regulation mechanism of diffusion is based on certain proteins or complexes that act
as chaperones. Chaperones essentially allow anything that they bind to to diffuse;
and, there is, in general, a huge number of possible complexes that such chaperones
may bind to. In such situations it would be unfeasible to require a modeller to
enumerate and specify fully all the possible complexes that a chaperone was known
to bind to. So, to allow the specification of more practical rules, we set the goal
to allow rules that say something along the lines of: “any complex(es) C co-located
with, and bound to a chaperone given by some T may diffuse”; and we only want
to require the user to specify the chaperone in T . That goal drove us through a
series of models, which ended up in the core rule for diffusion having a special side-
condition that essentially collects the complex(es) C. The side-condition required
some formal footwork, to make it behave correctly. Though this complicates the
presentation of the final versions of the transport rules somewhat, on balance, we
feel that the convenience and level of abstraction allowed by this treatment justifies
the added complexity. In any case, in an implementation of the C-calculus, the
mechanics of computing the side-condition would be an implementation-detail that

9The pinch rule is the other rule in the C-calculus (apart from the diffusion-rule) that needs
care, as it encapsulates the simultaneous creation of a new membrane as well as transport.
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a user need not worry about.
We can also remark that, though in the paper we focus only on transport of

protein complexes, we have also considered versions of the calculus, where we gen-
eralize the rule for pinching a membrane to allow also transfer of membranes. This
would allow users to conveniently model, in a single rule and thus at a relatively
high level of abstraction, cellular division of eukaryotic cells—cells that have nuclei
and membrane-encapsulated organelles. We can model that, by allowing the core
rule encapsulating pinching to transport also membranes. In producing such exten-
sions of the calculus, we can benefit from having isolated the computation of the
complex in a side-condition: We need only reimplement the side-condition to collect
also membranes to capture cellular division.

Finally, tying in to our earlier work, we should also remark that the BPL Tool
was useful for experimenting with different semantics for the C-calculus. We ex-
pect future work on developing a dedicated implementation of the C-calculus, to
be able to exploit, in particular, the well-formedness conditions. In well-formed
solutions, we prune further the bigraphs considered in the BΣ,R-framework, and re-
move many of the complexities that haunt general bigraph matching. Knowing that
well-formedness is preserved across reaction allows an implementation to optimize
for this, for instance, to utilize that all links except protein backbones are binary,
and that backbone links (the only hyper-links) are restricted to one or two specific
shapes.

We now turn to related work; we expand the discussion on related work in the
paper. In order for the discussion below to be coherent and self-contained, we repeat
some paragraphs from the paper.

Several languages have been proposed in order to model biomolecular systems.
We have already discussed how the protein-model of the C-calculus is inspired by
the κ-calculus. The Bio-κ-calculus by Laneve and Tarissan extends the κ-calculus
with basic brane-inspired membranes [LT06]. However, splitting of membranes is a
non-atomic procedure, which requires a considerable amount of (computationally ex-
pensive) encoding. In comparison, in the C-calculus we have taken the atomic pinch
primitive for membrane division, and isolated any associated splitting of proteins in
a side-condition.

The idea to use formal calculi for mobile and distributed systems was launched
by Regev, Shapiro, and Silverman. They use the π-calculus to represent and sim-
ulate biomolecular processes underlying protein signalling networks [RSS01]. They
continue that work in the stochastic version of the π-calculus [PRSS01] (as treated
by Priami in [Pri95]) taking into account both the time and probability of bio-
chemical reactions. Proteins are encoded as parallel products of a series of do-
mains, encoded via channels. As in the C-calculus, name-sharing encodes both
protein-backbones and complexation. As is standard in the π-calculus, locality (i.e.,
membrane-encapsulated compartments) is encoded via the sharing of names, and
mobility is encoded via name-passing. Conformational change is also encoded via
mobility. The basic combinators of π-calculus suffice to encode sequential events,
independent events (via parallel), or mutually exclusive events (via sum). The line
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of work on using languages inspired by the stochastic π-calculus is continued in the
school of work on β-binders [PQ05] lead by Priami and co-authors. In particular,
β-binders add syntactic constructs for modelling membranes, but do not offer any
solution to the problem of fission.

In all, the π-calculus family suffice to model protein signalling at a relatively
high level of abstraction. However, the relative simplicity of the basic π-calculus
requires the modeller to invent and maintain her own abstractions of biological
entities and events. The single reaction rule of the π-calculus also requires us to
encode all biological reactions via name-passing. Even further, since our model is
entirely contained in a π-calculus process, this requires us to make explicit in the
process the pre-conditions for all events. In essence, we need to mix the specification
of the static model with our encoding of the dynamics for a model. This has the
benefit of giving us a model that may be easier to analyze, since we have elaborated
the possible events in the term for the process. On the other hand, it may also
make it harder to discover new and unexpected behavior. In the C-calculus, we are
inspired by the κ-calculus by allowing the user to disassociate the static model (the
solutions) from the dynamics (the reaction rules). We view this as one of the key
advantages of rule-based modelling. We should also remark, however, that by using
the π-calculus one benefits also from the multitude of tools developed for variants
of the π-calculus.

In Bio-ambients [RPS+04], Regev et al. extend their earlier work by developing
a modified version of the ambient calculus developed by Cardelli and Gordon [CG98,
CG00]. The ambient calculus is extended to include parent-to-child communication
as well as intra-ambient communication. The calculus is also equipped with a variety
of dual capabilities to allow actions such as entry, exit, and merging of ambients.
Named ambients model membrane-enclosed compartments; the ambient abstraction
is also used to model proteins, allowing merge to model certain kinds of complex-
formation and membrane fusion. The calculus encodes cross-membrane proteins
by parent-child communication—by allowing proteins to communicate outside the
membrane they are enclosed in. This has the side-effect of requiring the user to
not model cross-membrane proteins via ambients, but instead as naked processes.
Also, protein complex breakage is complicated by using merge to model complex-
formation. To allow complex-breakage, the authors suggest to use instead ambient
entry to model complex-formation (introducing an asymmetry in the relationship
behind proteins in a complex); or, to still use merge, but use private channels to
keep information on original protein-structure. The latter solution, in turn, results
in complex breakage being a multi-step procedure that essentially “gathers” the
proteins before disassociating them. (An analogous procedure would be needed to
model membrane division.) In its model of biological entities, the Bio-ambients
calculus is a step closer to the C-calculus. The calculus has a separate syntactic
abstractions for compartments; this is then used to model both membranes, proteins,
and protein complexes. As for the π-calculus, the reaction rules for the calculus is
hardwired.

Cardelli continues the investigation of membrane interactions in the family of
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brane calculi [Car04a]. Here, the focus is aimed mainly at finding good abstractions
for membranes and their behavior. Molecular structures are limited to atomic struc-
tures attached to membrane-surfaces. Cardelli identifies a set of basic membrane-
actions that is motivated by the hydrophilic and hydrophobic properties of mem-
branes, and coin the concept “bitonality” to describe the constraints. In capturing
a small set of membrane-actions in the C-calculus, we are inspired by the brane cal-
culi, and, in particular, by the projective variant of the brane calculi, by Danos and
Pradellier [DP04]. Projective descriptions (which we explain and define in detail in
the paper) let us describe conveniently sets of rules for reactions involving regions
separated by membrane-surfaces, while eliding the orientation of those separating
membranes. As the family of brane calculi contain only simple molecular structures
attached to membranes, the reactions to model fusion and division of membranes
(as well as transport) become equally simple. The C-calculus differs notably, in our
treatment of multi-compartment proteins, and our allowance for an observable in-
termediate state in fusion and fission. Also, as discussed above, in the C-calculus
the static model is dissassociated from the dynamic one.

In the recent paper on Bitonal Membrane Systems [Car08], Cardelli continues the
line of work on membrane calculi, and investigates further the notion of projectivity
and orientation to unify membrane-reactions that from a local perspective (a so-
called local patch of the membranes) involve the same pattern of reconfiguration.

Finally, also related is the school of work on P -systems [Pau02] initiated by
Paun. P -systems are essentially rewriting systems with locations at a high level
abstraction. The aim of P -systems is more angled towards developing a general
computational model inspired by biology, than towards giving a language for de-
scribing and investigating biology, however.



2.3 Conclusion 37

2.3 Conclusion

In this Ph.D. dissertation, we have made a number of contributions that together
fulfill the stated goals: (1) to develop a sound formal foundation for a tool for
experimenting with bigraphical languages; and, (2) to develop a novel bigraphical
language for the domain of cellular biology.

In the first main body of work, we have focused on establishing the theoretical
foundation for a tool for experimenting with bigraphs. In the paper presented as
Chapter 3, we have given a syntactic foundation for understanding and working
with the structure of binding bigraphs. We have developed a term language for
binding bigraphs, a set of normal form theorems, and an equational theory that
axiomatizes bigraph isomorphism. This work yields powerful syntax-based proof-
techniques for reasoning about bigraph equivalence on the term level. It has informed
the development of inductive type systems for bigraphs [EHS08a, EHS08b], and has
formed the basis for reasoning about matching on the term level.

In Chapter 4, we have presented a set of rules that together inductively charac-
terize matching for the full theory of bigraphical reactive systems over binding bi-
graphs, that is, for determining when the left-hand side of a bigraphical rule matches
an agent. The characterization is precise in the sense that it is proven both sound
and complete with regard to the abstract definition of matching. Our work provides
both inductive proof-techniques for reasoning about matching, and paves the way
for developing and proving correct a matching algorithm based on terms for bind-
ing bigraphs. The inductive characterization relies intrinsically on the normal form
theorems for binding bigraphs developed in Chapter 3 to tackle decomposition of
the agent, and to allow us to analyze matching of a general bigraph by considering
expressions for its link and place graph constituents.

In Chapter 5, we have described, and proven sound and complete, a matching
algorithm for bigraphical reactive systems over binding bigraphs. The algorithm
builds directly on the characterization presented in the previous chapter, but is spe-
cialized to integrate applications of structural congruence in special rules. We define
a grammar for normal inferences and prove that normal inferences are complete, in
the sense that all valid matches may be derived. A matching algorithm to build nor-
mal inferences mechanically forms the core of the BPL Tool, a first implementation
of bigraphical reactive systems. In the chapter, we have also described the tool and
illustrated it with an example.

In the second line of work, our focus has been to develop a concrete new language
based on bigraphs. The work presented in Chapter 6 forms a pre-study that lays
the foundation for using bigraphical theory to model biological interaction at the
level of proteins and cells. In the study, we treat how to extend linear bigraphical
reaction rules to include negative contextual side-conditions. We also develop a
self-contained presentation of the operational semantics for a subset of bigraphical
calculi inspired by the style of standard structural operational semantics.

Finally, in Chapter 7, we have presented the C-calculus, a novel language for
modelling low-level interaction at the level of biological cells. The language focuses
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on two main actors of cells, proteins and membranes, and allows users the freedom to
instantiate a domain-specific sub-calculus for the study of particular biological appli-
cations. The C-calculus also introduces a novel abstraction, channels, for modelling
partially fused membranes, and uses these to give a novel treatment of transport of
complexes through diffusion and parametric pinching of buds.
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2.4 Future Work

There are several lines of possible future work, and we have already commented on
a number of them above. Some are direct continuations of the work in Chapters 3
through 7, and, some involve the utilization or adaption of results, techniques, or
tools from other studies on bigraphs, or is inspired by research in other fields. Below,
we collect and outline some prominent directions.

Bigraphs with Binders

As discussed in Section 1.2.2, Milner has suggested a variant of bigraphs with multi-
located names [Mil04]. It seems fairly straightforward to extend the axiomatization
presented in Chapter 3, and the characteriziation of matching presented in Chapter 4
to this generalization. We conjecture that the complexity lies in introducing binders
in the first place.

In all, it seems that the final word on how to introduce binding in bigraphs has
yet to be said. In an upcoming book on bigraphs [Mil09], Milner discusses a variant
where binders have been disassociated entirely from ports on nodes (and where
names can still be multi-located); instead, binders take the form of atomic nodes
themselves. As discussed in loc. cit., this variant appears to preempt the previous
suggestions, and in addition allows binding links to connect to sibling ports. It will
be an important topic for future research to give a definitive treatment of binding
for bigraphs.

Logics, Sortings, and Types

Both static logics and dynamic logics are of considerable future importance for
stating properties and reasoning about bigraphs and BRSs. As discussed in Sec-
tion 1.2.2, Milners axiomatization of pure bigraphs has been used a foundation
for BiLog [CMS05b], a framework for spatial logics that instantiates to bigraphical
structure. An obvious line of future work would be to utilize the axiomatization of
binding bigraphs structure presented in Chapter 3 to extend the BiLog-framework
to the binding setting. It will also be important to work toward extending the
framework with more natural dynamic reasoning capabilities, than those discussed
in [CMS06]. We should not, perhaps, hope to find easily a general result relating
the derived bisimilarity and a dynamic logic for BiLog and BRSs, in the style of the
Hennesy-Milner logical characterization of bisimilarity for the π-calculus [HM80].
For that, it seems, that the intensionality of the BiLog framework at present is too
pronounced.

More experience is also needed to determine whether and how we might hope
to develop tool-support for some of the features presented by a logic. Promi-
nent tools such as the Concurrency Workbench [CWB, CPS93], and the Mobility
Workbench [MWB, Vic94] are concerned with efficiently representing CCS and the
π-calculus, respectively, and, particularly with analyzing and verifying behavioral
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properties. Spatial logics promise to lend us a language for expressing such proper-
ties for bigraphs and bigraphical reactive systems.

Relatedly, as discussed in Section 1.2.2, sortings [Deb08] and types [EHS08a,
EHS08b] for bigraphs may also be important topics to consider in future work on
tool-support. Sortings have been a necessary component in constraining BRSs to
include less “junk” when recapturing behavioral theories for various calculi. Both
typings and sortings could probably be used to simplify and make more efficient
the computation of the matching problem, as we need only consider well-sorted or
well-typed matches.

The inclusion of tool-support for either sortings, types, or logics seem to re-
quire a considerable amount of work. For sortings, in particular, this would at
the least require work on how to express sortings, but also on how to intelligently
combine sorting with matching and rewriting. This may be simpler for inductive
types [EHS08a, EHS08b] whose structure is related directly to the term language
for bigraphs. On the other hand, the theory is currently less developed. For spatial
logics, one would most probably need to determine an interesting subset of the logic,
which it would be feasible to implement tool-support for checking.

Matching and Implementation

The work presented in Chapters 4 and 5 constitutes a firm formal basis for the BPL
Tool [BPL07]. Our choice to base a matching algorithm on normal forms for term
has aided us in producing a formally verifiable algorithm. However, while the direct
utilization of the results on syntactic theories yields provably correct representations
and algorithms, it leaves ample room for efficiency-improvements.

First of all, it is interesting to note that each definition of normal inference
corresponds to a different algorithmic approach to matching. It might even be
worthwhile extending the set of rules to allow even more freedom in choosing a
definition of normal inference. There are several possibilities for adding rules that
allow shortcutting obviously invalid or valid matches. At the very least, one might
look for a revised normal form, more suited for efficient matching and rewriting.
We are also currently considering rephrasing the rules to derive a set of constraints
for wirings (the three first components of a matching sentence), which could be fed
to a constraint solving algorithm, instead of directly building matches for them, as
required by the vanilla rules.

Centrally, there is also a need to investigate techniques for intelligently combining
matching and rewriting. For instance, one of the main pillars of efficiency in the tool
developed for simulating the κ-calculus is, that matches for all reaction rules are pre-
computed and easily updated (i.e., not recomputed) when reaction occurs [DFFK07].
Such an approach could also be implemented as a heuristic approach, to maintain
instead a list of approximations for possible matchings.

Also, as suggested by [DD05a], it might be worthwhile to consider approaches
where matching is driven even more aggresively by the place graph. (In loc.cit., we
show that for pure bigraphs with epi redexes, given a match in the place graph there



2.4 Future Work 41

is at most one compatible link graph match.)
In the BPL group, we have also considered preliminary work on a generic ab-

stract machine for bigraphs. In essence, the idea is to combine the insights from the
inductive characterization of matching, as presented in Chapter 4, with a simplified
representation for bigraphs and their rewriting semantics, resembling the presenta-
tion given in Chapter 6. Ultimately, one might hope that given one of the encodings
of the π-calculus, such an abstract machine might be instantiable to something re-
sembling Turners abstract machine for the π-calculus [Tur96].

Finally, as discussed under related work in Section 2.1.2, another line of future
work is to investigate whether one might employ techniques for matching or rewrit-
ing from the fields of term or graph rewriting. Also, on the level of the algebraic
presentation, the resemblance between the axiomatization of term graph structure
in [CG99a]—which is used as the basis of a 2-categorical presentation of term graph
rewriting [CG99b]—leads to a line of work that may yield an alternative categorical
foundation for the description of matching and rewriting in bigraphs.

Bigraph-based Languages

In Chapters 6 and 7, we discuss and develop the usage of bigraphs for modelling bio-
chemical reactions. This work has driven the treatment of negative side-conditions
for bigraphical reaction rules and the development of an alternative presentation of
the rewriting semantics for bigraphs. We strongly believe that future development
of the bigraphical framework should be driven and informed by such experimenta-
tion with novel languages and models based on bigraphs. Thus, we hope that our
work on bigraphs for biology may serve as the basis for further studies, not only on
languages for biology, but also on the bigraph framework itself.

One particular line of future work, stemming from the work on negative side-
conditions, is to investigate how the derivation of labels and bisimulation behaves un-
der this modification. As discussed in the section on related work in Section 2.2.1, in
doing so, one might look to the research by Rangel et al. on deriving labels for graph
transformation systems with rules with negative application conditions [RKE08].

A Language for the Cell

In Section 5.1 in Chapter 7, we discuss suggestions for future work on the C-calculus,
at length. We summarize some of those suggestions below.

Immediate possibilities include the generalization of the description of pinching
to allow us to model cellular division of eukaryotic cells (i.e., cells with nuclei) and
further experimentation with larger examples.

Ultimately, to work with such experiments, we aim to build a dedicated im-
plementation for simulation of the C-calculus. The generic BPL Tool allows ex-
perimentation with a side-condition-free fragment of the C-calculus. However, a
dedicated implementation can be optimized directly for the calculus, utilizing the
well-formedness constraints to full effect. As we have essentially developed the cal-
culus as a (considerable) extension of the κ-calculus, we may hope to utilize some
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of the techniques developed for the implementation of the κ-calculus [DFFK07] to
build an efficient implementation.

Towards that purpose, we have also made a preliminary investigation of causal-
ity for pure bigraphs, which we expect to be instantiable for the C-calculus. Essen-
tially, we aim to be able to describe causal relations in terms of modification-testing
dependencies, in which we may describe classical notions such as precedence, weak
permutation, casuality, and concurrency. Recall, that we discussed above, the imple-
mentation of the κ-calculus, whose efficiency stems, in particular, from a mechanism
for updating precomputed matches when reaction occurs. That update-mechanism
relies essentially on an understanding of the causal relation between reaction rules.

Finally, recent results by Milner, Krivine, and Troina [KMT08] ensures us, that
we may extend the C-calculus to a stochastic setting. Several proposals in the field
of calculi for biology have illustrated that stochastics is important as it allows for
more accurate quantitative biological modelling [DFF+07, DPPQ06, PRSS01].



Chapter 3

Axiomatizing Binding Bigraphs

Abstract
We axiomatize the congruence relation for binding bigraphs and prove
that the generated theory is complete. In doing so, we define a normal
form for binding bigraphs, and prove that it is unique up to certain iso-
morphisms.
Our work builds on Milner’s axioms for pure bigraphs. We have extended
the set of axioms with five new axioms concerned with binding, and we
have altered some of Milner’s axioms for ions, because ions in binding
bigraphs have names on both their inner and outer faces. The resulting
theory is a conservative extension of Milner’s for pure bigraphs.

Preface This chapter is a reprint of the journal paper [DB06] which, in turn, is a
journal version of the Tech Report [DB05]. The paper is presented unchanged, except
for fixing two minor errors found after the publication of the paper (cf. footnotes 1
and 2). The paper was co-authored with Lars Birkedal from the IT University of
Copenhagen.

3.1 Introduction

Over the last decade, Robin Milner and co-workers have developed a theory of bi-
graphical reactive systems, see [JM04, Mil05, Mil06b]. Bigraphical reactive systems
(BRSs) provide a graphical model of computation in which both locality and con-
nectivity are prominent. In essence, a bigraph consists of a place graph, a forest,
whose nodes represent a variety of computational objects; and a link graph, which
is a hyper graph connecting ports of the nodes. Bigraphs can be reconfigured by
means of reaction rules. A bigraphical reactive system consists of set of bigraphs and
a set of reaction rules.BRSs have been developed with two principal aims: (1) to
model ubiquitous systems by focusing on mobile connectivity (the link graph) and
mobile locality (the place graph), and (2) to provide a unification of existing theo-
ries by developing a general theory, in which many existing calculi for concurrency
and mobility may be represented, with a uniform behavioural theory. The latter is
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achieved by representing the dynamics of bigraphs by reaction rules from which a
labelled transition system may be derived in such a way that the associated bisim-
ulation relation is a congruence. The unification has recovered existing behavioural
theories for the π-calculus [JM04], the ambient calculus [Jen06], and has contributed
to that for Petri nets [LM04]. Thus the evaluation of the second aim has so far been
encouraging. In [BDE+05] Birkedal et al. initiate an evaluation of the first aim, in
particular it is shown how to give bigraphical models of context-aware systems.

As suggested and argued in [JM04, Bir04, BDE+06, BDE+05] it would be very
useful to have an implementation of the dynamics of bigraphical reactive systems to
allow experimentation and simulation. In the Bigraphical Programming Languages
research project at the IT University, we are working towards such an implementa-
tion.

An implementation of bigraphical reactive systems must, of course, work on
some data structure representing bigraphs. An obvious possibility is to represent bi-
graphs by bigraphical expressions that denote bigraphs. This is particularly feasible
if (1) the bigraphical expressions are defined inductively (by a grammar, say), such
that algorithms may operate inductively on the representation; and (2) there are
normal forms for bigraphical expressions and axioms for determining whether two
bigraphical expressions denote the same bigraph, such that algorithms may operate
on normal form representations, and may be founded on principles of equational
reasoning. There is such an axiomatization of the so-called pure bigraphs with
these properties [Mil05]. In the present paper we extend the axiomatization for pure
bigraphs to binding bigraphs, a wider class of bigraphs better suited for the repre-
sentation of calculi and systems involving binding, e.g., the π-calculus, and prove
that our axiomatization has the above mentioned desired properties. In particular,
we prove the axiomatization complete and prove that our notion of normal form is
unique up to certain specified isomorphisms. Our axiomatization is a conservative
extension of Milner’s.

For reasons of brevity, we refer the reader to the papers cited above for more
background information and motivation than can be included here. In particular, we
shall need to assume some familiarity with pure and binding bigraphs as described
in [JM04] and with the axiomatization of pure bigraphs [Mil05] — we do, however,
include an informal description of bigraphs in the following section and we have
included the formal definition of binding bigraphs in 3.A.

The remainder of the paper is organized as follows. In the following section we
introduce bigraphs by example. In Section 3.3 we define elementary forms of bi-
graphs and arrive at a semantic normal form theorem, which expresses how every
bigraph may be decomposed into a composite of elementary forms. In Section 3.4
we present our term language for binding bigraphs and the accompanying equa-
tional theory. We arrive at a theorem which states soundness and compleness of
the equational theory. We present some examples of bigraphs and their correspond-
ing normal forms in Section 3.5 — we recommend that the reader refers to these
examples from time to time when reading the earlier more technical sections. We
comment on some related and further work in Section 3.6. Finally, 3.A contains a
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Figure 3.1: A – a bigraph model of an office in a building

summary of the definitions of binding bigraphs. We have omitted detailed proofs
from this paper, they can be found in the companion technical report [DB05].

3.2 Bigraphs by Example

We introduce the most basic terminology and properties for bigraphs, by giving a
small example of a bigraph. We refer the reader to 3.A for all formal definitions.

The bigraph A is bigraph model of an office containing a pc and two pdas. The
pc is linked (supposedly by some kind of network connection) to server containing
a secret located somewhere else. We say that A consists of roots (dashed boxes),
nodes (solid boxes), and links (lines). Each node has a control written beside it.
The control indicates the number and type of ports for linkage on the node. Ports
can be either free or binding — the latter indicated by circular attachments.

Bigraphs can contain sites (sometimes called holes), and/or inner or outer
names. The bigraph B has two sites, numbered 0 and 1, and two inner names,
x located at site 0 and z global (i.e., not located). C has two outer names, x
located at its first root, and x global.

We can compose B and C by plugging the sites of B with the roots of C. The
bigraphs B and C compose to form A. We write A = B ◦ C. Bigraph A is said to
be ground as it has no holes or inner names.

Binding bigraphs enforce a scope discipline on linkage connected to a binding
port: All peers (names or ports) linked to a binding port or located outer name,
must be nested within the node or root (see Definition 3.A.6).

Not all bigraphs are composable. B and C composes exactly, because C has a
root, outer name (local and global), for each corresponding site and inner name (local
and global) of B. The interfaces of a bigraph registers this, and hence determines
which bigraphs can be composed. We write B : 〈2, ({x}, ∅), {x, z}〉 → 〈2, (∅, ∅), ∅〉
and C : 〈0, (∅), ∅〉 → 〈2, ({x}, ∅), {x, z}〉.

We can also combine bigraphs by an associative tensor product (denoted by
⊗), which works simply by juxtaposition of roots. For tensor product we require
only that both inner and outer names be disjoint.

Finally, in the following we will be particularly concerned with three classes of
bigraphs — prime bigraphs are those with only a single root, and only local inner
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Figure 3.2: B and C – bigraphs that compose to form A

names. For discrete bigraphs all linkage upon global names is one-one while name-
discrete bigraphs, are those where all linkage upon all names is one-one (refer to
Definition 3.A.7 for the full definition of discreteness).

For more involved examples of bigraphical models including dynamics, we refer
the reader to the tech report [DD05b].

3.3 Elementary Bigraphs and Normal Form

We start by defining placings corresponding closely to the placings defined for pure
bigraphs in [Mil05]. We shall use placings to define the class of terms for bigraphs
that denote place graphs paired with identities on local names.

1 : ε→ 1 a barren root,
join : 2→ 1 join two sites,

γm,n,( ~X,~Z) : 〈m+ n, ~X ~Z, { ~X} ] {~Z}〉 → 〈m+ n, ~Z ~X, { ~X} ] {~Z}〉
transpose m with n places preserving names.

Note that 1 and join are defined exactly as for pure bigraphs, while γm,n,( ~X,~Z) lets
a set of local inner names be linked to corresponding outer names, in the only way
allowed by the scope rule (see Definition 3.A.6).

We use π and ρ to range over permutations, placings generated by composition
and tensor product from γm,n,( ~X,~Z).

For Ii = 〈mi, ~X
i
B, {

~Xi
B} ]Xi

F 〉 (i ∈ {0, 1}) we define

γI0,I1
def= γ

m0,m1,( ~X0
B , ~X1

B)
⊗ idX0

F
⊗ idX1

F
.

Using join we define the bigraph mergem that joins m sites:
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Figure 3.3: 1, join, and γm,n,( ~X,~Z) (using the abbreviation p = m+ n− 1)

Definition 3.3.1 (merge). For all m ≥ 0 we define mergem : m→ 1 recursively, by

merge0
def= 1

mergem+1
def= join(id1 ⊗mergem).

Note that merge1 = id1 and thus merge2 = join.
A linking is a (pure) link graph X → Y that has no nodes. All linkings can be

expressed in terms of the following two kinds:

/x : x→ ε closure,
y/X : X → y substitution x 7→ y, for all x ∈ X.

A closure closes a single link. For X = {x0, . . . , xk−1} and k > 0 we define a multiple
closure /X def= /x0 ⊗ · · · ⊗ /xk−1. For Y = {y0, . . . , yk−1}, k > 0, and disjoint sets
X0, . . . , Xk−1 we define a multiple substition

~y/ ~X
def= y0/X0 ⊗ · · · ⊗ yk−1/Xk−1.

Note that a substitution need not be surjective (i.e., we allow X = ∅), thus the
dual of closure – name introduction y : ε → y – is a substitution. A renaming is
a bijective (multiple) substitution, i.e., each Xi above is a singleton. A wiring is a
bigraph with zero width (and hence no local names) generated by composition and
tensor of /x and y/X.

We let ω range over wirings, σ range over (multiple) substitutions and α and
β range over renamings. Often we do not distinguish notationally between a name
and the singleton set containing the name. With this convention ~y/~x is a renaming
when ~y = y0, . . . , yk−1 and ~x = x0, . . . , xk−1, for some k.

A simple concretion is a discrete prime which maps a set X of local inner
names severally to equally named global outer names.

pXq : (X)→ 〈X〉 concretion.

Note that a special case of a simple concretion is id1 = p∅q.
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Figure 3.4: pXq

An abstraction (X)− is a construction, defined on every prime P that localizes
a subset of the global names of P . For every prime
P : I → 〈(YB), Y 〉, let

(X)P : I → 〈(YB ]X), Y 〉 abstraction on P ,

where X ⊆ Y \ YB.
Note that the scope rule is necessarily respected since the inner face of P is

required to be local as P is prime. Abstractions are in some sense dual to concretions,
and the axioms concerning abstraction and concretion reflect this (see axioms (B2)
and (B3) in Table 3.1)

Using abstraction we can express concretions in the sense of [JM04]: We define
a general concretion pY qX : 〈1, (X ] Y ), X ] Y 〉 → 〈1, (X), X ] Y 〉 in terms of a
simple concretion and abstraction as pY qX def= (X) pX ] Y q. Towards succinct
statement of the normal form, we define pαq def= (α⊗ id1)pXq (where α : X →).

With the help of linkings we get local wirings — bigraphs that by composition
can change the linkage of local names. We define a local renaming (for vectors of
names ~y and ~x, s.t. |~y| = |~x|) by (~y)/(~x) def= (~y)((~y/~x⊗ id1)p{~x}q). We extend this
notation to multiple substitutions and define (~y)/( ~X) def= (~y)((~y/ ~X ⊗ id1)pXq) (for
X = { ~X}).

Just as plain substitutions can introduce idle global names, local substitutions
can introduce idle local names when their underlying global substitution is not sur-
jective (e.g., (y)/(∅)).

We let αloc and σloc range over local renamings and substitutions, respectively.
We shall need to take the preimage of a local substitution σloc of a vector of namesets
~X. Formally:

Definition 3.3.2 (Preimage of a local wiring). Let σloc
u be the link map (which is

a function) of σloc. For a set of names X, define (σloc)−1(X) to be the preimage
(σloc

u )−1(X) and define (σloc)−1( ~X) to be the vector of namesets resulting from
taking the preimage of σloc pointwise for each set in ~X.

We can generate all isomorphisms in the category of binding bigraphs using
permutations π, renamings α, and local renamings αloc(see [JM04, Proposition 9.2b]
for the definition of isomorphism in the category of binding bigraphs):
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Proposition 3.3.3. Every binding bigraph isomorphism, ι : 〈m, ~Z, {~Z} ] U〉 →
〈m, ~X, { ~X} ] Y 〉 (of width m) may be expressed in the following form

ι = (π ⊗ α)(ν0 ⊗ · · · ⊗ νm−1 ⊗ idU )

where these requirements hold:

• m = | ~X| = |~Z|,

• α : U → Y ,

• ∀i ∈ m : νi = (~xi)/(~zi) for ~X = ({~x0}, . . . , {~xm−1}),
and ~Z = ({~z0}, . . . , {~zm−1}).

For a control K : b → f ∈ K, let ~y be a sequence of distinct names, and ~X a
sequence of sets of distinct names, s.t. | ~X| = b and |~y| = f .

A binding ion K~y( ~X) : 〈1, (X), X〉 → 〈1, (∅), Y 〉 is a prime bigraph with a single
node of control K with free ports linked severally to global outer names ~y, and each
binding port i ∈ b linked to all local inner names in Xi. Figure 3.5 shows a binding
ion.

K~y( ~X) : (X)→ 〈Y 〉 a binding ion

Figure 3.5: A binding ion

This definition of binding ion is a straightforward generalization of the free
discrete ion defined in [JM04, Chapter 11]. We can recapture the latter by requiring
every set in X to be a singleton. When ~X = ({x0}, . . . , {xb−1}), we overload our
notation and write K~y(~x) to mean a free discrete ion.

Definition 3.3.4. For any name-discrete prime P : I → 〈1, (X), X ] Z〉 and ion
K~y( ~X), we define a free discrete molecule as

(K~y( ~X) ⊗ idZ)P : I → 〈1, (∅), {~y} ] Z〉
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Note that even though we use the more general binding ion in the definition
above, our definition of free discrete molecule is equal to the one given in [JM04,
Chapter 11], in the sense that it covers the same set of bigraphs.

As P in the above definition is discrete and prime it is easily seen that M is also
discrete and prime. In fact:

Proposition 3.3.5. A free discrete molecule is a name-discrete prime bigraph with
a single outermost node.

This proposition relies on both name-discreteness and discreteness being pre-
served by composition and tensor (Lemma 3.A.8). Vice versa, we have:

Proposition 3.3.6. Any free discrete prime bigraph with a single outermost node
is a free discrete molecule.

3.3.1 A Normal Form for Binding Bigraphs

In the following section we present our binding discrete normal form theorem for
graphs. This semantic theorem states that every binding bigraph can be decomposed
in certain ways. We shall use it as the basis for the establishment of a corresponding
syntactic definition of normal form for our term language for binding bigraphs, which
we introduce in Section 3.4.

We aim to base our normal form on a variant of discreteness, as in [Mil05],
simply as this allows a clean separation between the constituent components of a
bigraph. Our main aim is to prove completeness for an equational theory over a
term language for binding bigraphs. To that end it will be central to formulate
an inductive property of expressions that characterizes our chosen variant of dis-
creteness syntactically. Alas, discreteness is not preserved under composition with
abstractions and concretions. Indeed, consider a discrete bigraph D with width n.
(
⊗

i<npXiq)D is not discrete, if D is not name-discrete. Conversely, given a nondis-
crete prime P : I → 〈(X), X ] Y 〉, (Y )P : I → (X ] Y ) is discrete. Hence, we turn
to name-discreteness.

Recall that a bigraph is name-discrete (Definition 3.A.7) if every free link is an
outer name and has exactly one point, and every bound link is either an edge, or
(if it is an outer name) has exactly one point. This is a simple specialization of the
discreteness property. As a consequence, it is easy to verify that both abstraction
and composition with concretions preserve both name-discreteness and non-name-
discreteness. Name-discreteness still allows arbitrary linking upon bound edges,
and exactly for that reason, we have chosen to take the binding ion (as defined
above) as a constant in our term language. Syntactically, this allows us to restrict
the usage of substitutions to define a simple inductive property that characterizes
name-discreteness.

Theorem 3.3.7 (Semantic binding discrete normal form).

1. Any free discrete molecule M : I → 〈1, {~y} ] Z〉 can be expressed as(
K~y( ~X) ⊗ idZ

)
P
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where P : I → 〈1, ({ ~X}), { ~X} ] Z〉 is a name-discrete prime.

This expression is unique up to renaming of the local names on the innerface
of the ion, and (correspondingly) on the outer face of prime P . Hence, any
other such expression for M takes the form(

K
~y( ~X′)

⊗ idZ

)
P ′

where the following requirements hold:

• there exists a local renaming αloc : ({ ~X ′})→ ({ ~X}) s.t.
K~y( ~X)α

loc = K
~y( ~X′)

, and

• P = (αloc ⊗ idZ)P ′.

2. Any name-discrete prime P : I → 〈1, (YB), Y 〉 may be expressed as

(YB)
(
mergen+k⊗idY

)
(pα0q⊗ · · · ⊗ pαn−1q⊗M0 ⊗ · · · ⊗Mk−1)π

where every Mi : Ji → 〈YM
i 〉 is a free discrete molecule, and for renamings

αi : Xi → Y C
i , we have Y = (

⊎
i∈n Y

C
i ) ]

⊎
YM

i .

The expression for P is unique up to reordering of the concretions and molecules,
and the ordering of the sites inside the molecules; the permutation changes ac-
cordingly to preserve the innerface. Formally, any other such expression for
P takes the form

(YB)
(
mergen+k⊗idY

) (
pα′0q⊗ · · · ⊗ pα′n−1q⊗M ′

0 ⊗ · · · ⊗M ′
k−1

)
π′

where the following requirements hold:

• There exist permutations ρ, ρi (i ∈ k), ρ′, s.t.

– pα′iq = pαρ(i)q

– M ′
i = Mρ(i)ρi,

– (id(X′
0) ⊗ · · · ⊗ id(X′

n−1) ⊗ ρ0 ⊗ · · · ⊗ ρk−1)π′ = ρ′π.

• Furthermore, let ~l denote the vector of inner widths of the product
((α0 ⊗ id1)pX0q⊗ . . .⊗ (αn−1 ⊗ id1)pXn−1q⊗M0 ⊗ · · · ⊗Mk−1),
let ~X ′ = (X ′

0, . . . , X
′
k−1), and let ~X = (X0, . . . , Xn−1).

Then ρ′ is determined uniquely by ρ, ~l, ~X, and ~X ′ as ρ′ = ρ~l, ~X′ ~X
as

defined in Lemma 3.4.2.

3. Any name-discrete bigraph D (of outer width n) can be expressed as

(P0 ⊗ · · · ⊗ Pn−1)π ⊗ α

where every Pi is a name-discrete prime, α is a renaming, and π is a permu-
tation.
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This expression is unique up to reordering of the sites in the primes; the per-
mutation changes accordingly to preserve the innerface. Hence, any other such
expression of D takes the form(

P ′
0 ⊗ · · · ⊗ P ′

n−1

)
π′ ⊗ α

where there exists permutations ρi, (i ∈ n), s.t. P ′
i = Piρi,

and (ρ0 ⊗ · · · ⊗ ρn−1)π′ = π.

4. Any bigraph G : I → 〈n, ~YB, { ~YB} ] YF 〉 can be expressed as(⊗
i<n

(~yi)/( ~Xi)⊗ ω

)
D

where D : I → 〈n, ~X,X ] Z〉 is name-discrete, ω : Z → YF is a wiring, and⊗
i<n(~yi)/( ~Xi) : ( ~X) → (~YB) is a local substitution of width n on the bound

names of D.

The expression is unique up to (local and global) renamings on the innerface
of the wiring and (correspondingly) on the outerface of D. Hence, any other
such expression of G takes the form(⊗

i<n

(~yi)/( ~X ′
i)⊗ ω′

)
D′

where there exists a renaming α s.t. ω′ = ωα, and n local renamings
αloc

i : ( ~X ′
i) → ( ~Xi), s.t. (

⊗
i<n(~yi)/( ~Xi))

⊗
i<n α

loc
i = (

⊗
i<n(~yi)/( ~X ′

i)),
and

(⊗
i<n α

loc
i ⊗ α

)
D′ = D.

Furthermore, for every class of expressions the expression given is well defined and
generates only bigraphs of the appropriate type.

See [DB05] for a proof of the theorem. The proof is simply a detailed analysis
of the structure of possible decompositions of binding bigraphs.

3.4 Binding Bigraph Expressions and Axioms

The set of binding bigraph expressions is defined as the smallest set of ex-
pressions built by composition, tensor product, and abstraction (on primes) from
identities and the constants we have just introduced:

1 join γm0,m1,( ~X0, ~X1) /x y/X pXq K~y( ~X)

Each expression (implicitly) has two interfaces of the form 〈m, ~X, Y 〉 which deter-
mine when tensor product, composition, and abstraction are well defined (according
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to the requirements stated formally in 3.A). The interface and the bigraph an ex-
pression denotes can be determined by induction. As usual, we write � E = F to
mean that the expression E = F is valid; and ` E = F if the equation is provable.

In [Mil05] Milner stated and proved a set of axioms complete for pure bigraph
expressions. We extend that result and prove the set of axioms in Table 3.1 com-
plete for binding bigraph expressions.1 Every pure bigraph expression as defined
by Milner [Mil05] trivially corresponds to a binding bigraph expression as defined
above. Our axiomatic theory is a conservative extension of Milner’s in the sense
that any two pure bigraph expressions are provably equal in Milner’s theory iff the
corresponding expressions are provably equal in our theory. (Formally, this is easy
to prove using soundness and completeness of the two theories and the fact that the
embeddings of pure bigraphs into binding bigraphs and pure bigraph expressions
into binding bigraph expressions are both full and faithful). We proceed by defining
and proving the theory complete for increasingly larger classes of expressions.

Note that as tensor product is defined only when name sets of the interfaces are
disjoint, and as abstraction is defined only on prime bigraphs with the abstracted
names in the outer face, we only require the equations to hold when both sides are
defined.

3.4.1 Preliminaries

Lemma 3.4.1 (Wiring commutes with all binding bigraph expressions). For all
bigraph expressions G and for all wirings ω ` G⊗ ω = ω ⊗G.

By essentially iterating axiom C9, we can push a permutation “through” a prod-
uct of primes, permuting the order in which they appear in the product, and pro-
ducing a permutation that reorders the sites in the primes to preserve the inner
face.

Lemma 3.4.2 (Push-through lemma). For n primes Pi

Pi : 〈mi, ~Xi, { ~Xi}〉 → 〈1, (Y B
i ), Yi〉,

and permutation π, there exists a permutation π ~m, ~X , which depends solely on π, ~m,

and ~X = (~X0, . . . , ~Xn−1), s.t.,2

` π ◦ (P0 ⊗ · · · ⊗ Pn−1) = (Pπ−1(0) ⊗ · · · ⊗ Pπ−1(n−1)) ◦ π ~m, ~X .

3.4.2 PlaceL expressions

Let PlaceL expressions be all expressions in the term language generated by ◦,
and ⊗ from bmergem, ~X (defined below) and γI,J . Thus, PlaceL consists of all

1In the published version, the axiom (C10) was mistakenly left out.
2In the published version, the following equation mistakenly used Pπ(i) instead of Pπ−1(i).



54 Axiomatizing Binding Bigraphs

Categorical axioms
(C1) A idI = A = idJ A (A : I → J)
(C2) A(BC) = (AB)C
(C3) A⊗ idε = A = idε ⊗A
(C4) A⊗ (B ⊗ C) = (A⊗B)⊗ C
(C5) idI ⊗ idJ = idI⊗J

(C6) (A1 ⊗B1)(A0 ⊗B0) = (A1 ◦A0)⊗ (B1 ◦B0)
(C7) γI,ε = idI

(C8) γJ,I γI,J = idI⊗J

(C9) γI,K(A⊗B) = (B ⊗A)γH,J (A : H → I,B : J → K)
(C10) γI⊗J,K = (γI,K ⊗ idJ)(idI ⊗ γJ,K)

Link axioms
(L1) x/x = idx

(L2) /y ◦ y/x = /x
(L3) /y ◦ y = idε

(L4) z/(Y ] y)(idY ⊗ y/X) = z/(Y ]X)

Place axioms
(P1) join(1⊗ id1) = id1

(P2) join(join ⊗ id1) = join(id1 ⊗ join)
(P3) join γ1,1,(∅,∅) = join

Binding axioms
(B1) (∅)P = P
(B2) (Y )pY q = id(Y )

(B3) (pXqZ ⊗ idY )(X)P = P (P : I → 〈1, (Z), Z ]X ] Y 〉
(B4) (((Y )(P ))⊗ idX)G = (Y )(P ⊗ idX)G
(B5) (X ] Y )P = (X)((Y )P )

Ion axioms
(N1) (id1 ⊗ α)K~y( ~X) = Kα(~y)( ~X)

(N2) K~y( ~X)σ
loc = K~y((σloc)−1( ~X))

Table 3.1: Axioms for binding bigraphs
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expressions denoting place graphs paired with identities on local names. We shall
start by proving that the theory is complete for PlaceL expressions.

To that end, we extend the place merging expression join to local interfaces.

Definition 3.4.3 (binding join). For sets of names X and Y let bjoin(X,Y ), the
binding join bigraph, be defined as

bjoin(X,Y )
def= (X ] Y )((join ⊗idX]Y ) ◦ (pXq⊗ pY q)).

We also define an iterated version

Definition 3.4.4 (binding merge). For all m ≥ 0 we define bmergem, ~X recursively,
by

bmerge0,()
def= 1

bmergem+1, ~XY

def= bjoin({ ~X},Y ) ◦ (bmergem, ~X ⊗ idY )

Binding join and merge behave similarly as their underlying place expressions
when composed with permutations or themselves (refer the place graph axioms of
Table 3.1), though, as they have (local) names on their faces their interplay with
names is not as simple. The lemma below reflects this, and also states that merging
a product of binding merges yields a binding merge.

Lemma 3.4.5.

` bjoin(X1,X0) ◦ γ1,1,(X0,X1) = bjoin(X0,X1),

` bmergem,π( ~X) ◦ π = bmergem, ~X ,

` bmergek, ~X ◦ (
⊗

i<k bmergemi, ~Xi
) = bmergem, ~X ,

where in the last equation m =
∑

i<k mi and
~X = ~X0 . . . ~Xk−1.

Using binding merge, we define and prove sufficient a normal form for PlaceL ex-
pressions.

Lemma 3.4.6 (Normal form for PlaceL expressions). For every
PlaceL expression E

` E = (bmergem0, ~X0
⊗ · · · ⊗ bmergemk−1, ~Xk−1

) ◦ π

for some k ≥ 0 and permutation expression π s.t. the composition is well defined.

With the help of Lemma 3.4.5 the proof is simple by induction on the structure
of expressions.

Note that in a strict symmetric monoidal category the categorical axioms are
known to be complete for ◦ and ⊗ of the symmetries γI,J — hence the theory is
complete for permutations.

Full completeness for PlaceL expressions follows with the help of the uniqueness
properties stated in Theorem 3.3.7. These yield a number of equations which are
provable within the theory.
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Proposition 3.4.7 (Completeness for PlaceL expressions). If
` E =

⊗
i<k bmergemi, ~Xi

◦ π and ` F =
⊗

j<l bmergenj , ~Yj
◦ π′ and |= E = F , then

` E = F .

3.4.3 LinkG expressions

We now consider the class of global link expressions, those bigraph expressions gen-
erated by composition and tensor of closure and substitution. We will refer to this
collection of expressions as LinkG. Our term language for binding bigraphs has the
same constructs for linking as the language used by Milner for pure bigraphs [Mil05].
Since we also have the exact same axioms for global link expressions, it is easily seen
that the proof that the axiomatic theory for the binding bigraph term language is
complete for global link expressions is entirely the same.

Proposition 3.4.8 (Link completeness). The theory is complete for link expres-
sions.

3.4.4 Linear Bigraph Expressions

We now define an important kind bigraph expressions – linear expressions, which
we shall prove to be a syntactic analogue to name-discrete bigraphs, in the sense
that any name-discrete bigraph has a linear expression.

Definition 3.4.9 (Linearity). A binding bigraph expression is linear iff it contains
only linkings of the form y/x.

In other words, in linear expressions all substitutions are renamings, and there
are no closures. This is an inductive property with respect to the term language,
which we will utilize to full effect in the following sections.

We start by establishing some basic properties of linear expressions. The proofs
of the following lemmas are all by induction on the structure of expressions.

Lemma 3.4.10. If E is linear expression, then ` E = E′ ⊗ α, where E′ is linear
and has local innerface.

Lemma 3.4.11. If E : 〈m, ~U, {~U}〉 → 〈n, ~Y , {~Y } ] V 〉 is a linear expression with
local innerface, then

` E ◦
⊗
i<m

(~ui)/( ~Zi) =

((⊗
i<n

(~yi)/( ~Xi)

)
⊗ idV

)
◦ E′,

for some ~y, ~X, and E′ where E′ is linear with local innerface.

We shall use the following proposition to show completeness for ion-free expres-
sions in the following section. Importantly, it also constitutes a step towards a
syntactic normal form for bigraph expressions, analogous to the semantic normal
form we established in Theorem 3.3.7, item 4.
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Proposition 3.4.12 (Underlying linear expression). For any expression G denoting
a bigraph of outer width n, there exists a wiring ω, a linear expression E, and a local
renaming

⊗
i<n(~yi)/( ~Xi), s.t.,

` G = (
⊗
i<n

(~yi)/( ~Xi)⊗ ω) ◦ E.

The proof is by structural induction on G, using the lemmas above [DB05].

3.4.5 Ion-free Expressions

Let us now consider ion-free expressions – all expressions in our term language,
that does not contain ions (K~y( ~X)). We proceed as above, by showing that ion-free
expressions can be decomposed into simpler expressions.

Lemma 3.4.13. If E = E1 ◦ E2 or E = E1 ⊗ E2 is linear, ion-free, and with local
inner and outer face, then E1 and E2 are also linear and ion-free with local inner
and outer face.

Lemma 3.4.14. If E is linear and ion-free of width n with local inner and outer
face, then ` E =

⊗
i<n(~yi)/(~xi) ◦GP , where GP ∈ PlaceL.

Lemma 3.4.15. If E is linear and ion-free, then there exists concretions, E′, and
a renaming α s.t. ` E = (

⊗
i<npXiqZi ◦ E′) ⊗ α, with E′ linear and ion-free and

local inner and outer face.

With the help of the above lemmas we can now establish a normal form for
ion-free expressions.

Lemma 3.4.16 (A normal form for ion-free expresssions). For all ion-free expres-
sions G of width n

` G = ω ⊗

(⊗
i<n

(Yi) ((ρ⊗ id1) ◦ pXiq)

)
◦GP .

where GP ∈ PlaceL.

Completeness for ion-free expressions follows easily.

Corollary 3.4.17 (The theory is complete for ion-free expressions).

3.4.6 Syntactic Normal Form

Corresponding to the four classes of normal forms in Theorem 3.3.7 we define four
classes of syntactic normal forms for binding bigraph expressions:
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Definition 3.4.18 (Syntactic binding discrete normal form (bdnf)).

mdnf M ::= (K~y( ~X) ⊗ idZ)P
pdnf P ::= (X)

(
mergen+k⊗idY

)
(pα0q⊗ · · · ⊗ pαn−1q⊗M0 ⊗ · · · ⊗Mk−1)π

ddnf D ::= (P0 ⊗ · · · ⊗ Pn−1)π ⊗ α
bdnf B ::= (

⊗
i<n(~yi)/( ~Xi)⊗ ω)D.

The proofs of the following lemmas go by induction on the number of ions. As
we have established completeness for ion-free expressions, we have the base case.

Lemma 3.4.19 (All bdnf forms are closed under composition with isos).

We also need that dbdnf expressions are closed under composition.

Lemma 3.4.20 (dbdnf is closed under composition). For all composable dbdnfs
C,D, there exists a dbdnf D′, s.t. ` D ◦ C = D′.

We now state the correspondence between our semantic normal form (Theo-
rem 3.3.7) and the syntactic normal form above. Moreover, we state that linearity
is, in fact, a syntactic correspondent to name-discreteness (item 3 in the following
proposition):

Proposition 3.4.21 (provable normal forms). Let E be a linear expression, and G
any expression.

1. If E denotes a free discrete molecule, then ` E = M for some mdnf.

2. If E denotes a name-discrete prime, then ` E = P for some pdnf P .

3. ` E = D for some ddnf D.

4. ` G = B for some bdnf B.

We are now able to state the formal completeness proposition, using our results
for linear expressions to bridge the gap to the full binding bigraph term language.

As we have laboured to establish a correspondence between each level of bdnf form
and each level of the semantic normal form, in the proofs we are able to proceed
by case analysis on the form of the bigraph the expression denotes, and then ap-
ply the uniqueness properties spelled out in Theorem 3.3.7 to yield a number of
equations that are provable within our theory. We refer to the companion technical
report [DB05] for more details on the proofs.

Proposition 3.4.22 (Linear completeness). If E and E′ are linear expressions and
E = E′, then ` E = E′.

Theorem 3.4.23 (Soundness and Completeness). For all binding bigraph expres-
sions E and F , � E = F iff ` E = F .
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3.5 Term Language and Normal Forms – by Example

We shall use our examples from Section 3.2 to give a few examples of the term
language and the syntactic binding discrete normal form.

Using a modicum amount of shorthand, an expression for C is
((x)(secretx ◦ 1))⊗ pdaz ◦ 1, while B can be expressed for example as

(id2 ⊗ /{e0, e1}) ◦
(

(servere0({x})) ⊗
(id〈1,e1〉 ⊗ /{f0, f1})(office ◦ 1⊗ id{e1,f0,f1})
(merge3⊗id{e1,f0,f1})(pce1 ◦ 1⊗ pdaf0 ◦ 1⊗ pdaf1 ◦ 1))

)
.

Hence, A can be expressed, simply by putting a ◦ between the two expressions for
B and C.

On the other hand, giving an expression on bdnf for either bigraph, requires us
to break it down into molecules, prime parts and not use non-linear linkage except
at the topmost level. As an example, we give an expression on normal form for B:

(id2 ⊗ /{e0, e1} ⊗ /{f0, f1}) ◦(
(∅)(merge1⊗ide0)(servere0({x}) ◦ (x)(merge1⊗idx)(pxq))⊗
(∅)(merge1⊗id{e1,f0,f1})(office ◦

(∅)(merge3⊗id{e1,f0,f1})(pce1 ◦ 1⊗ pdaf0 ◦ 1⊗ pdaf1 ◦ 1))
⊗ idε

)
.

Here we do not show identity permutations, and we write 1 instead of pbdnf for 1
(which is (∅)(merge0 ⊗ idε)).

3.6 Related and Further Work

Bigraphical reactive systems are related to graph transformation systems using the
double pushout construction [Ehr79] and, recently, it has also been investigated
how to derive bisimulation congruences in the double pushout approach to graph
rewriting [EK04].

Recent work on spatial logics [CMS05b] for pure bigraphs utilizes the axioma-
tization of pure bigraphs by Milner [Mil05]. An obvious line of further work is to
utilize the algebraic theory presented here for binding bigraphs to extend the spatial
logics to binding.

As mentioned in the introduction, jointly with the other members of our Bi-
graphical Programming Languages group, we are are currently working on an im-
plementation of bigraphical reactive systems.

Further work is needed to relate tools based on graph rewriting to our work on
Bigraphical Programming Languages.

Currently our experimental implementation of bigraphical reactive systems rep-
resents bigraphs internally by normal form bigraphical expressions that denote bi-
graphs. We have also developed a proposal for a surface language which users can
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use to define bigraphical reactive systems — expressions of the surface language
denote binding bigraphs and can thus be transformed to binding discrete normal
forms: the proofs of the normal form theorems of this paper are constructive in
nature and thus define algorithms than can be used to transform arbitrary bigraph
expressions into normal form.

The core problem of implementing the dynamics of bigraphical reactive systems
is the matching problem, that is, to determine for a given bigraph and reaction rule
whether and how the reaction rule can be applied to rewrite the bigraph.

The abstract semantic definition of matching, as defined in the theory of bi-
graphs [JM04], is roughly as follows (omitting many details): Given a reaction rule
with redex R and reactum R′ (with R and R′ both bigraphs), and a bigraph A (the
agent to be rewritten), if A = C ◦R ◦ d, then it can be rewritten to C ◦R′ ◦ d. Here
◦ denotes composition of bigraphs. In other words, if the reaction rule matches A,
in the sense that A can be decomposed into a context C, redex R and a parameter
d, then A can be rewritten.

Phrased in terms of binding bigraph expressions, the decision problem for match-
ing is then roughly the following. Given binding bigraph expressions R, A, C, and
d, determine whether � A = C ◦ R ◦ d holds. We have worked out an inductive
characterization of when � A = C ◦ R ◦ d holds, by induction on the normal forms
for A and R (the input to a matching algorithm). It is a precise characterization
in the sense that it is both sound and complete. This provides a detailed analysis
of the matching problem, and paves the way for developing and proving correct an
actual matching algorithm (which, given A and R, must find a C and d such that
� A = C ◦R◦d holds). We will report on our work on the inductive characterization
and on an actual matching algorithm in a subsequent paper.

We intend to use the implementation of bigraphical reactive systems to evaluate
also in practice how well bigraphical models of ubiquitous systems [BDE+05] work.

Axknowledgements We are grateful for useful discussions of this work with all
members of the BPL group at the IT University of Copenhagen, in particular Arne
Glenstrup and Søren Debois; and with Robin Milner.

3.A Definition of Binding Bigraphs

We recall the definition of binding bigraphs [JM04].

Definition 3.A.1 (binding signature). A binding signature K is a set of con-
trols. For each K ∈ K it provides a pair of finite ordinals: the binding arity
arb(K) = h and the free arity arf (K) = k. We write ar(K) = arb(K) + arf (K).

Definition 3.A.2 (binding interface). A binding interface I = 〈m, loc, X〉, con-
sists of a width m, a finite set of names X, and a locality map loc : X → m]⊥,
which associates some of the names in X with a location in m; if loc(x) = i ∈ m,
we say x is located at i or local to i. When loc(x) = ⊥ we say x is global.
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For an interface I = 〈m, loc, X〉 we shall typically represent the locality map by
a vector of disjoint subsets ~X = (X0, . . . , Xm−1), where Xi is the set of names local
to i ∈ m. If I is global, meaning that all names in I are global, then we may write
I simply as 〈m,X〉; just m, if X = ∅; or just X, if m = 0.

We call I prime if m = 1. In that case, we shall sometimes write I as 〈(X), Y 〉;
just (X), if it is local; or just 〈Y 〉, if it is global.

We use ε to denote the interface 〈0, (), ∅〉.
A binding bigraph will have two binding interfaces and will be a pairing of a

place graph, and a link graph following a structural requirement, the scope rule
(see Definition 3.A.6).

We start by calling to mind the definitions of place graphs and link graphs.

Definition 3.A.3 (place graph). A (concrete) place graph over signature K
G = (V, ctrl , prnt) : m → n has an inner width m and an outer width n, both
finite ordinals; a finite set V of nodes with a control map ctrl : V → K; and a
parent map prnt : m ] V → V ] n. The parent map is acyclic, i.e., prntk(v) 6= v,
for all k > 0 and v ∈ V .

The parent map prnt represents a forest of n unordered trees. The widths m and
n of G : m→ n index G’s sites 0, . . . ,m−1 and roots 0, . . . , n−1, respectively. We
use ε to denote the width 0. A place graph with inner width 0 is called an agent.

Place graphs are composed as follows. Let Gi = (Vi, ctrl i, prnt i) : mi → mi+1

(i ∈ {0, 1}) be place graphs with V0 ∩ V1 = ∅; then G1 ◦G0
def= (V, ctrl , prnt), where

V = V0 ] V1, ctrl = ctrl0 ] ctrl1, and prnt = (idV0 ] prnt1) ◦ (prnt0 ]idV1).
The identity place graph at m is idm

def= (∅, ∅, idm) : m→ m.
The tensor product I ⊗ J of two interfaces I = m and J = n is simply m + n,

and the tensor product of two place graphs F : k → l and G : m→ n with disjoint
node sets is F ⊗G : k+m→ l+n. It consists of placing the two forests side-by-side
(see [JM04, Definition 7.5] for a formal definition). Note that idε = id0 is the unit
for ⊗, in the sense that F ⊗ idε = idε ⊗ F = F , for all place graphs F . Thus, an
iterated tensor product F0 ⊗ · · · ⊗ Fk−1 equals idε in case k = 0.

Two concrete place graphs G0 and G1 are said to be support equivalent,
G0 l G1, if they differ only by a bijection between their node sets. An abstract
place graph is an l-equivalence class of concrete place graphs. Composition and
identity of abstract place graphs is given by composition and identity of concrete
place graphs, and this provides a well-defined category of place graphs with
interfaces as objects and abstract place graphs as morphisms. The induced tensor
product on abstract place graphs, defined by [F ]l⊗ [G]l

def= [F ⊗G]l, makes it into
a strict symmetric monoidal category.

Definition 3.A.4 (link graph). A (concrete) link graph G over a signature K, is
a tuple (V,E, ctrl , link) : X → Y with finite sets of nodes V , edges E, inner names
X, and outer names Y . As place graphs it has a control map ctrl : V → K.
The function link : X ] P → E ] Y maps points, i.e., inner names X and ports
P =

∑
v∈V ar(ctrl V ) of G to links, i.e., outer names Y and edges E.
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We call a link idle if it has no preimage under link . An outer name is an open
link, and an edge is a closed link. A point is called open if its link is open, otherwise
closed. Further, we call two distinct points on the same link peers.

The composition of two link graphs Gi = (Vi, Ei, ctrl i, link i) : Xi → Xi+1 (i ∈
{0, 1}) is defined when V0 ∩ V1 = ∅ and E0 ∩ E1 = ∅; and is then G1 ◦ G0

def=
(V,E, ctrl , link) : X0 → X2; where V = V0 ] V1, E = E0 ] E1, ctrl = ctrl0 ] ctrl1,
and link = (idE0 ] link1) ◦ (link0 ] idP1).

The identity link graph at X is idX
def= (∅, ∅, ∅, idX) : X → X.

The tensor product of two link graph interfaces X and Y is the disjoint union,
X ] Y , and is defined only when X and Y are disjoint. Tensor product of link
graphs Gi = (Vi, Ei, ctrl i, link i) : Xi → Yi is the disjoint union of the underlying
constituents G0 ⊗G1

def= (V0 ] V1, E0 ] E1, ctrl0 ] ctrl1,
link0 ] link1) : X0 ⊗ X1 → Y0 ⊗ Y1, and is defined only when the interfaces are
defined.

Definition 3.A.5 (binding bigraph). A (concrete) binding bigraph
G = (V,E, ctrl , GP, GL) : I → J over a signature K has an inner interface (or in-
ner face) I = 〈m, locI , X〉 and an outer interface (or outer face) J = 〈n, locJ , Y 〉.
Here V , E and ctrl are finite sets of nodes, edges, and a control map ctrl : V → K,
exactly as for link graphs.

The fourth component GP = (V, ctrl , prnt) : m → n is a place graph, while the
fifth GL = (V,E, ctrl , link) : X → Y is a link graph.

We require that G adheres to the scope rule below.

Definition 3.A.6 (scope rule). Let the binders of G be the binding ports of nodes
in V and the local names of its outer face J .

If p is a binder located at a node or root w, then for all peers p′ of p, loc(p′) = w′

must imply w′ = prntk
GP(w), for some k > 0.

We say that a link is bound if it contains a binder, otherwise free. As usual,
we extend this terminology to the points in the link. A binding bigraph G : I → J
is said to be free if its outer face J is global, i.e., the image of locJ is ⊥.

A binding bigraph G is given by its underlying place GP and link graph GL and
its binding interfaces I and J . We write G = 〈GP, GL〉 : I → J . We shall sometimes
use a variant of the 5-tuple notation where we inline the components unique to the
place graph and link graph components, i.e., G = (V,E, ctrl , prnt , link) : I → J .

We define a notation for the underlying set of vectors of names: Given a vector of
disjoint name sets ~Y , {~Y } denotes the disjoint union of the sets in the vector. Com-
position and tensor product of concrete binding bigraphs Gi = 〈GP

i , G
L
i 〉 : Ii → Ji

are given by composition and tensor product of their underlying place and link
graphs, and by the tensor product of binding interfaces. We have only to explain
the latter: Tensor product of binding interfaces Ii = 〈mi, ~Xi, Xi〉 is I0 ⊗ I1

def=
〈m0 +m1, ~X0

~X1, { ~X0} ] { ~X1}〉 (letting juxtaposition denote vector concatenation),
and is defined when the name sets are disjoint. Hence, if the bigraphs above have
disjoint node and edge sets, G1 ◦G0

def= 〈GP
1 ◦GP

0 , G
L
1 ◦GL

0 〉 : I0 → J1 is defined
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if I1 = J0; and G1 ⊗G0
def= 〈GP

1 ⊗GP
0 , G

L
1 ⊗GL

0 〉 : I0 ⊗ I1 → J0 ⊗ J1 if the tensor
products of the interfaces are defined. (See [JM04, Chapter 11] for more details.)

The identity for composition is given by a pairing of the identities for composition
for place graphs and link graphs. If I = 〈m, loc, X〉 then
idI

def= 〈idm, idX〉 : I → I.
We shall use the following notation for iterated tensor product:⊗

i<n Pi = P0 ⊗ P1 ⊗ · · · ⊗ Pn−1. The identity for tensor is idε; thus, an iterated
tensor product P0 ⊗ . . .⊗ Pn−1 equals idε in case n = 0. Composition binds tighter
than tensor product, and abstraction (Y )P and

⊗
binds as far right as possible.

We say that two concrete binding bigraphs G0 and G1 are lean-support equiv-
alent, denoted G0 m G1 iff they differ only by a bijection between their nodes and
their non-idle edges; idle edges are disregarded entirely.

Abstract binding bigraphs are m-equivalence classes of concrete binding bi-
graphs. Composition, tensor and identity of abstract binding bigraphs are given by
composition, tensor and identity of the underlying concrete bigraphs. Taking inter-
faces as objects and abstract binding bigraphs as morphisms we have a category
of binding bigraphs. Finally, a ground bigraph is a bigraph with inner face ε.
We shall also refer to such a bigraph as an agent. A bigraph G : I → J is called
prime, if I is local and J is prime.

We shall need to consider and distinguish several forms of discreteness, which
we define below.

Definition 3.A.7 (Variants of discreteness).

• We say that a bigraph is discrete iff every free link is an outer name and has
exactly one point.

• A bigraph is name discrete iff it is discrete and every bound link is either an
edge, or (if it is an outer name) has exactly one point.

Note that name-discrete implies discrete. Name-discreteness is defined to impose
exactly the same level of constraints on local and global linkage upon names. We
utilize this in the normal form we define. Discreteness and name-discreteness share
several nice properties.

Lemma 3.A.8. If A and B are discrete, then A ⊗ B, (Y )A, and AB are also
discrete. The same holds for name-discrete bigraphs A and B.
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Chapter 4

An Inductive Characterization
of Matching in Binding
Bigraphs

Abstract
We analyze the matching problem for bigraphs. In particular, we present
a sound and complete inductive characterization of matching in bigraphs
with binding. Our results yield a specification for a provably correct
matching algorithm, as needed by our prototype tool implementing bi-
graphical reactive systems.

Preface This chapter contains an extended and revised version of the extended
abstract “Matching of Bigraphs” [BDGM07] presented at the GT-VC workshop
2006. The paper was co-authored with Lars Birkedal and Arne J. Glenstrup from
the IT University of Copenhagen, and with Robin Milner from the University of
Cambridge, UK.

4.1 Introduction

Over the last decade, a theory of bigraphical reactive systems has been devel-
oped [JM04, Mil05, Mil06b]. Bigraphical reactive systems (BRSs) provide a graph-
ical model of computation in which both locality and connectivity are prominent.
In essence, a bigraph consists of a place graph; a forest, whose nodes represent a
variety of computational objects, and a link graph, which is a hyper graph connect-
ing ports of the nodes. Bigraphs can be reconfigured by means of reaction rules.
Loosely speaking, a bigraphical reactive system consists of a set of bigraphs and a set
of reaction rules, which can be used to reconfigure the set of bigraphs. BRSs have
been developed with principally two aims in mind: (1) to be able to model directly
important aspects of ubiquitous systems by focusing on mobile connectivity and
mobile locality, and (2) to provide a unification of existing theories by developing
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a general theory, in which many existing calculi for concurrency and mobility may
be represented, with a uniform behavioural theory. The latter is achieved by rep-
resenting the dynamics of bigraphs by an abstract definition of reaction rules from
which a labelled transition system may be derived in such a way that an associated
bisimulation relation is a congruence relation. The unification has recovered existing
behavioural theories for the π-calculus [JM04], the ambient calculus [Jen06], and has
contributed to that for Petri nets [LM04]. Thus the evaluation of the second aim has
so far been encouraging. Birkedal et al. has begun to adress the first aim, in partic-
ular, to show how to give bigraphical models of context-aware systems [BDE+06].

As suggested and argued in [JM04, BDE+06, BBD+06] it would be very useful
to have an implementation of the dynamics of bigraphical reactive systems to al-
low experimentation and simulation. In the Bigraphical Programming Languages
research project at the IT University, we have been working towards such an imple-
mentation. The core problem of implementing the dynamics of bigraphical reactive
systems is the matching problem, that is, to determine for a given bigraph and reac-
tion rule whether and how the reaction rule can be applied to rewrite the bigraph.
The topic of the present paper is to analyze the matching problem. We report on
an implementation based on the work presented here elsewhere [GDBH07].

In Figure 4.1 we show several bigraphs. Consider the bigraph named a. It is
intended to model two buildings, one belonging to a corporation and one belonging
to a consultancy group. Inside the buildings are laptops with data nested inside
folders. The nesting structure depicts the place graph. Links are used to name the
buildings and, moreover, to model the association of folders to network channels.
The laptop shown in the middle is intended to belong to a consultant working
for the corporation — the consultant has a folder, containing some data, which is
directly connected to a laptop in the consultancy (the link shown to the left) and
a folder with a connection over the corporate backbone to another laptop in the
corporation (the link shown to the right). There are two kinds of network channels
in this example; those local to a building (i.e., over a building backbone) and global
channels (presumably across the internet). The fact that folders are connected
over the corporation backbone is expressed by linking those folders to a so-called
binding port on the corporation building, indicated by the circle. A binding port of
a node imposes a scoping discipline to ensure that links connected to the port will
be constrained to connections within the node.

The abstract semantic definition of matching, as defined in the theory of bi-
graphs [JM04], is roughly as follows (omitting many details): Given a reaction rule
(R,R′) and a bigraph a, if a = C ◦ (R ⊗ idZ) ◦ d, then it can be rewritten to
C ◦ (R′ ⊗ idZ) ◦ d. We call a the agent. The constituents of the rule, R, the redex,
and R′, the reactum; and, the context C and parameter d are also bigraphs; ◦ is
vertical composition of bigraphs, while ⊗ juxtaposes bigraphs horizontally. Z is a
set of names exported by d. In short, we say that if the reaction rule matches the
agent a, in the sense that a can be decomposed into a context C, redex R and a
parameter d, then a can be rewritten.

Consider again the example in Figure 4.1. There is a reaction rule expressed by
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a=

Building

Laptop
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Data
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Laptop

Folder

Data

Folder
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y

R′ =

Laptop

0
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1
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2
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3 4:=1

y

d =

Folder
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Figure 4.1: A bigraph a = C ◦ (idz ⊗ R) ◦ d. Reaction rule R → R′ copies data
between connected folders.
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the redex R and the reactum R′. The intention of the reaction rule is to allow copying
of data only between folders on co-located laptops; we require also that the folders
be connected over a network connection (note the link in R between the two folders),
allowing that link to be possibly connected to a building backbone (expressed by
linking the link to the so-called local name y). The agent a can be written as a
composition of C, R and d — formally, a = C ◦ (R⊗ idz) ◦ d. Composition works by
(1) plugging the roots of R and d into the holes (aka sites) of C respectively R; (2)
fusing together the connections between folder and z (in d) and z and folder (in C),
removing the name z in the process; and (3) fusing together the connection between
the local name y and the two folders in R and the name y and the bound port
in C, removing the name y in the process. Note the use of idz in the composition
a = C ◦(R⊗ idz)◦d; it allows a name z from the parameter d to be passed around the
redex and be attached to something in the context C. The reactum R′ contains a
copy of the site numbered 1 in R, expressing that data is copied between the shared
folders. The sites numbered 0 and 2 in R allow the reaction rule to apply also when
the laptops contain other folders than the two that are connected. Thus a can be
rewritten using the reaction rule to another agent a′ like a but with two data items
in the rightmost laptop (the agent a′ is not shown in Figure 4.1).

In the present paper we provide an inductive characterization of when a = C ◦
(R ⊗ idZ) ◦ d holds, by induction on the structure of a, R, C and d. It is a precise
characterization in the sense that it is both sound and complete with respect to the
abstract definition. This provides a detailed analysis of the matching problem, and
give a specification for developing and proving correct an actual matching algorithm
(which, given a and R, must find C, d, and Z such that a = C ◦ (R⊗ idZ) ◦d holds).
We further include a discussion of how one may derive matching algorithms directly
from our inductive characterization.

Our inductive characterization is based on normal form theorems for binding
bigraphs [DB06], which express how general bigraphs may be decomposed into a
composition of simpler graphs. The normal form theorems and also the inductive
characterization we present here is based on discrete decompositions of bigraphs.
Discrete bigraphs are bigraphs with only a simple form of linkage. To a large extent,
this allows us to analyze matching of a general bigraph by considering its link graph
and place graph separately.

Of course, the matching problem is closely related to the NP-complete graph
embedding problem. Thus we analyze the embedding problem for a restricted class
of graphs, and our inductive characterization makes good use of the algebraic pre-
sentation of such graphs [Mil05, DB06]. Importantly, by providing an abstract
characterization founded in well-established theory for bigraphs, we expect to be
able to combine or adapt more easily our approach to theory and techniques being
developed for bigraphs; for instance, sortings (simple type disciplines) on bigraphs
could be a source of early search elimination [BDH06].

The remainder of this paper is organized as follows: In Section 4.2 we give an
informal description of binding bigraphs. The main contributions of this paper are
in Section 4.3, where we present our inductive characterization of matching, and
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in the Appendix, where we give the proof of completeness of the characterization.
To illustrate how the matching rules work together, in Section 4.4, we provide an
inference tree for inferring the match in the example in Figure 4.1. Section 4.5
discusses how the inductive characterization yields a specification for a provably
correct algorithm for matching. In the final sections we discuss related and future
work, and conclude.

An extended abstract of this paper was presented at the GT-VC 2006 workshop.
This extended and revised version fixes a few errors in the earlier presentations,
provides more explanations and examples, and notably includes extensive details for
the proof of completeness of the characterization and supporting lemmas, including
a selfcontained section on the algebraic properties of wirings and parallel product.

4.2 Binding Bigraphs

In the following section, we present binding bigraphs fairly thoroughly, but we leave
out formal details inessential for the present paper; for a more complete presentation,
see [JM04] or [DB06].

4.2.1 Concrete Bigraphs

A concrete binding bigraph G consists of a place graph GP and a link graph GL. The
place graph is an ordered list of trees indicating location, with roots r0, . . . , rn, nodes
v0, . . . , vk, and a number of special leaves s0, . . . , sm called sites, while the link graph
is a general graph over the node set v0, . . . , vk extended with inner names x0, . . . , xl,
and equipped with hyperedges, indicating connectivity.

We usually illustrate the place graph by nesting nodes, as shown in the upper
part of Figure 4.2 (ignore for now the interfaces denoted by “ : · → ·”). A link is a

Bigraph G : 〈3, [{}, {}, {x0, x2}], X〉 → 〈2, [{y0}, {}], Y 〉

0

1

2

y0 y1 y2

x0 x2

x1

e1

v0

v1
v2 v3

e0

X = {x0, x1, x2}
Y = {y0, y1, y2}

Place graph GP : 3→ 2

roots:

sites:

r0

v0

v1

s0

v2

r1

v3

s2 s1

Link graph GL : X → Y

names:

inner names:

y0 y1 y2

v0

v1

v2

v3

x0 x2 x1

e0

e1

Figure 4.2: Example bigraph illustrated by nesting and as place and link graph.
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hyper edge of the link graph, either an internal edge e0 or a name y. Those that are
names are called open, edges are called closed links. Names and inner names can
be global or local, the latter being located at a specific root or site, respectively. In
Figure 4.2, y0 is located at r0, indicated by a small ring, and x0 and x2 are located
at s2, indicated by writing them within the site. Global names like y1 and y2 are
drawn anywhere at the top, while global inner names like x1 are drawn anywhere at
the bottom. A link, including internal edges like e1 in the figure, can be located with
one binder (the ring), in which case it is a bound link, otherwise it is free. However,
a bound link must satisfy the scope rule, a simple structural requirement that all
points (see below) of the link lie within its location (in the place graph), except for
the binder itself. This prevents y2 and e0 in the example from being bound.

4.2.2 Controls

Every node v has a control K indicated by v : K, which determines a binding and
free arity K : b→ f . In the example of Figure 4.2, we could have vi : Ki, i = 0, 1, 2, 3,
where K0 : 0 → 1, K1 : 0 → 2, K2 : 0 → 3, K3 : 1 → 2. The arities determine
the number of bound and free ports of the node, to which bound and free links,
respectively, are connected. Ports and inner names are collectively referred to as
points.

4.2.3 Abstract Bigraphs

While concrete bigraphs with named nodes and internal edges are the basis of bi-
graph theory [JM04], our prime interest is in abstract bigraphs, equivalence classes
of concrete bigraphs that differ only in the names of nodes and internal edges1. Ab-
stract bigraphs are illustrated with their node controls, as shown in Figure 4.1 with
Building, Laptop, etc. In what follows, “bigraph” will thus mean “abstract bigraph.”

4.2.4 Interfaces

Every bigraph G has two interfaces I and J , written G : I → J , where I is the inner
face and J the outer face. An interface is a triple 〈m, ~X,X〉, where m is the width
(the number of sites or roots), X the entire set of local and global names, and ~X are
disjoint subsets of X indicating the locations of each local name, cf. Figure 4.2. We
let ε = 〈0, [ ], {}〉; when m = 1 the interface is prime, and if all x ∈ X are located by
~X, the interface is local. As in [Mil04] we write G : → J or G : I → for G : I → J
when we are not concerned about about I or J , respectively.

A bigraph G : I → J is called ground, or an agent, if I = ε, prime if I is local
and J prime, and a wiring if m = n = 0, where m and n are the widths of I and J ,
respectively. For I = 〈m, ~X,X〉, bigraph idI : I → I consists of m roots, each root
ri containing just one site si, and a link graph linking each inner name x ∈ X to
name x.

1Formally, we also disregard idle edges: edges not connected to anything.
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4.2.5 Discrete and Regular Bigraphs

We say that a bigraph is discrete iff every free link is a name and has exactly one
point. The virtue of discrete bigraphs is that any connectivity by internal edges must
be bound, and node ports can be accessed individually by the names of the outer
face. In Figure 4.1, only R,R′ and d are discrete, because the free internal edges of
a and C have two points. Further, a bigraph is name-discrete iff it is discrete and
every bound link is either an edge, or (if it is an name in the outer face) has exactly
one point. Note that name-discrete implies discrete.

A bigraph is regular if, for all nodes v and sites i, j, k with i ≤ j ≤ k, if i and
k are descendants of v, then j is also a descendant of v. Further, for roots ri′ and
rj′ , and all sites i and j where i is a descendant of ri′ and j of rj′ , if i ≤ j then
i′ ≤ j′. The bigraphs in the figures are all regular, the permutation in Table 4.1
is not. The virtue of regular bigraphs is that permutations can be avoided when
composing them from basic bigraphs.

4.2.6 Tensor Product, Parallel Product, and Composition

For bigraphs G1 and G2 that share no names or inner names, we can make the tensor
product G1 ⊗G2 by juxtaposing their place graphs, constructing the union of their
link graphs, and increasing the indexes of sites in G2 by the number of sites of G1.
For instance, bigraph d of Figure 4.1 is a tensor product of four primes. We write⊗n

i Gi for the iterated tensor G0 ⊗ · · · ⊗Gn−1, which, in case n = 0, is idε.
The parallel product G1 ||G2 is like the tensor product, except global names can

be shared: if y is shared, all points of y in G1 and G2 become the points of y in
G1 ||G2.

We can compose bigraphs G2 : I → I ′ and G1 : I ′ → J , yielding bigraph
G1 ◦ G2 : I → J , by plugging the sites of G1 with the roots of G2, eliminating
both, and connecting names of G2 with inner names of G1—as in Figure 4.1, where
a = C ◦ (idz ⊗R) ◦ d. In the following, we will omit the ‘◦’, and simply write G1G2

for composition, letting it bind tighter than tensor product.

4.2.7 Active, Passive and Atomic Controls

In addition to arity, each control is assigned a kind, either atomic, active or passive,
and describe nodes according to their control kinds. We require that atomic nodes
contain no nodes except sites; any site being a descendant of a passive node is
passive, otherwise it is active. If all sites of a bigraph G are active, G is active.

For Figure 4.1 we could have Data : atomic(0 → 0), Folder : passive(0 → 1),
Laptop : active(0→ 0), Building : active(1→ 1).

4.2.8 Bigraphical Reactive Systems

Bigraphs in themselves model two essential parts of context: locality and connec-
tivity. To model also dynamics, we introduce bigraphical reactive systems (BRS) as
a collection of rules. Each rule R →% R

′ consists of a regular redex R : I → J , a
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reactum R′ : I ′ → J , and an instantiation %, mapping each site of R′ to a site of
R. Interfaces I = 〈m, ~X,X〉 and I ′ = 〈m′, ~X ′, X ′〉 must be local, and are essentially
related by X ′

i = X%(i).2 We illustrate % by a ‘i := j’, as shown in Figure 4.1, when-
ever %(i) = j 6= i. Given an instantiation % and a discrete bigraph d = d0 ⊗ · · · ⊗ dk

with prime di’s, we let %(d) = d%(0) ⊗ · · · ⊗ d%(k), allowing copying, discarding and
reordering parts of d.

Given an agent a, a match of redex R is a decomposition a = C(idZ ⊗R)d, with
active context C, discrete parameter d and its global names Z. Dynamics is achieved
by transforming a into a new agent a′ = C(idZ⊗R′)d′, where d′ = %(d)—an example
is shown in Figure 4.1. This definition of a match is as in [JM04], except that we here
also require R to be regular. The restriction to regular redexes R, which simplifies
the inductive characterization, does not limit the set of possible reactions, because
sites in R and R′ can be renumbered to render R regular.

4.2.9 Notation, Basic Bigraphs, and Abstraction

In the sequel, we will use the following notation: ] denotes union of sets required to
be disjoint; we write {~Y } for Y0 ] · · · ] Yn−1 when ~Y = Y0, . . . , Yn−1, and similarly
{~y} for {y0, . . . , yn−1}. For interfaces, we write n to mean 〈n, [∅, . . . , ∅], ∅〉, X to
mean 〈0, [ ], X〉, 〈X〉 to mean 〈1, [{}], X〉, (X) to mean 〈1, [X], X〉, and ( ~X) to mean
〈n, ~X, { ~X}〉, when the length of ~X is n.

Any bigraph can be constructed by applying composition, tensor product and ab-
straction to identities (on all interfaces) and a minimal set of basic bigraphs [DB06].
Given a prime P , the abstraction operation localizes a subset of its outer names.
The scope rule is necessarily respected since the inner face of a prime P is required
to be local, so all points of P are located within its root. The abstraction operator
is denoted by (·)· and reaches as far right as possible.

We illustrate the basic bigraphs and abstraction in Table 4.1. Substitutions
introduce open linking and closures create edges. Renamings are one-one substitu-
tions, while wirings ω range over all expressions built by composition and tensor
from substitutions and closures. A merge bigraph merges sites into a single root, a
concretion maps local inner names to global outer names, while a permutation serves
to produce any ordering of sites inside roots. The ion introduces nodes, mapping
free ports to global outer names and bound ports to sets of local inner names.

The resulting inductive language for building bigraphs is fairly heavy, but it is
easy to derive more sugared languages, resembling closely standard notation used
for mobile process calculi, based on these basic bigraphs and operators. In this
paper, we shall not be concerned much with concrete notation, though; we refer
the interested reader to [BDE+06] or the forthcoming tutorial book on bigraphs by
Milner.

We shall only use a few basic conventions for shortening expressions. For a

2When copying sites with local names, one has to also rename local names of copied sites, which
makes the relation slightly less straightforward. We elide the details here, as they are not central
to matching, and refer the reader to [JM04, Chapter 12] for the full formal details.
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Table 4.1: Basic bigraphs, abstraction, and metavariables ranging over bigraphs.
Notation Example

Substitution
σ

~y/ ~X : X → Y [y1, y2, y3]/[{x1, x2}, {}, {x3}] =
x1

y1

x2

y2

x3

y3

Renaming
α, β

~y/~x : X → Y [y1, y2, y3]/[x1, x2, x3] =
x1

y1

x2

y2

x3

y3

Closure /X : X → {} /{x1, x2, x3} =
x1 x2 x3

Wiring
ω

ω : X → Y
([y1, y2]/[y1, y2]⊗ /{z1, z2})
[y1, z1, y2, z2] /
[{}, {x1, x2}, {x3, x4}, {x5}]

=
y1

x1 x2 x3

y2

x4 x5

Merge mergen : n→ 1 merge3 = 0 1 2

Concretion pXq : (X)→ 〈X〉 p{x1, x2}q =
0
x1

x1

x2

x2

Permutation
π ~X , π

{i 7→ j, . . .} ~X :
( ~X) → (π( ~X))

{0 7→ 2, 1 7→ 0, 2 7→ 1}[{x},∅,{y}] =
1 2 0

y

y

x

x

Ion K~y( ~X) : ({ ~X})→ 〈{~y}〉 K[y1,y2]([{x1},{x2,x3},{}]) =
K

y1y2

x1x2x3

Abstraction (Y )P : I→〈1, [Y ], Z ] Y 〉 ({y1, y2})p{y1, y2, z}q =
0

y1

y1

y2

y2

z

z
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renaming α : X → Y , we write pαq to mean (α ⊗ id1)pXq, and when σ : U → Y ,
we let σ̂ = (Y )(σ ⊗ id1)pUq. We write substitutions ~y/[∅, . . . , ∅] : ε → Y as Y . For
permutations, when used in any context, π ~XG or Gπ ~X , ~X is given entirely by the
interface of G; hence, we shall typically elide the names of π ~X and write only π.
Note that [ ]/[ ] = /∅ = π0 = idε and merge1 = p∅q = π1 = id1, where πi is the
nameless permutation of width i.

To conclude this section, we illustrate the basic bigraphs and operations by
showing expressions for some of the bigraphs in the previous examples. The bigraph
of Figure 4.2 can be expressed as

G = (ω ⊗ (({y0})(y0/Y0 ⊗ id1)pY0q)) (((Y0)P1)⊗ P2 ⊗ y2/x1) , where
ω = (/e0 ⊗ id{y1,y2})[y1, y2, e0]/[{y1}, {y2, y

′
2, y

′′
2}, {e0, e′0}], Y0 = {y0, y

′
0, y

′′
0}

P1 = (id{y0,y1,y′2,e0} ⊗merge2)
(

(id{y0,e0} ⊗K0[y′0])K1[y0,e0] ⊗K2[y′′0 ,y1,y′2] merge0

)
P2 = (id{e′0,y′′2 } ⊗merge2)(K3[e′0,y′′2 ]([{x0,x2}]) ⊗ p∅q),

and for Figure 4.1 we have a = (id{consultancy,corporation} ⊗ /z) (p1 || p2), where

p1 = (idz ⊗ Building[consultancy]([{}])Laptop)Folder[z]Datamerge0

p2 = (idz ⊗ Building[corporation]([{y1,y2}]))({y1, y2})(id{z,y1,y2} ⊗merge2) (p′2 ⊗ p′′2)
p′2 = (id{z,y1} ⊗ Laptopmerge2)(Folder[z]Datamerge0 ⊗ Folder[y1]Datamerge0)
p′′2 = (idy2 ⊗ Laptop)Folder[y2]Datamerge0

4.3 Inductive Characterization of Matching

In this section we present our inductive characterization of matching. To ease the
presentation we shall disregard the requirement that the context in a match must be
active (it is straightforward to extend the presentation to include that requirement).
To simplify notation we shall write id for local identity bigraphs, without a subscript
showing the interface, when it is clear from the context what interface is intended.
Furthermore, we use the name molecule for a prime with just one outermost node.

4.3.1 Discrete Decomposition

We base our characterization on discrete decomposition of bigraphs, which separates
global (or free) wiring from the place graph and local wiring. The following propo-
sition expresses how any bigraph may be decomposed into a global wiring ω, and a
discrete bigraph D (cf. Section 4.2.5).

Proposition 4.3.1 (Discrete decomposition). Any bigraph G can be decomposed
into a composition of the following form

G = (ω ⊗ id)(D ⊗ idY ),

where D is discrete and with local innerface. Any other decomposition of G on
this form takes the form G = (ω′ ⊗ id)(D′ ⊗ idY ), where ω′ = ω(α ⊗ idY ) and
D′ = (α−1 ⊗ id)D, for suitable α.
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a

id⊗ ωa

agent
=

d

idZ
R

ωR id

idZ]Y C

id⊗ ωC

context

redex

agent︷ ︸︸ ︷
(id⊗ ωa)a =

context︷ ︸︸ ︷
(id⊗ ωC)(idZ]Y ⊗ C)(idZ ⊗

redex︷ ︸︸ ︷
(id⊗ ωR)R)d.

Figure 4.3: Illustrating valid matching sentences

The proof follows easily from the normal form theorem in [DB06], which also
gives a number of normal forms for name-discrete, prime and molecular bigraphs.
We shall not go into detail with these forms in this section, but as they are central
in proving completeness of the characterization, we shall return to them in the
Appendix.

4.3.2 Matching Sentences

We now define matching sentences and rules for deriving valid matching sentences.

Definition 4.3.2 (Matching sentence). A matching sentence is a 7-place relation
among wirings and bigraphs, written ωa, ωR, ωC ` a,R ↪→ C, d, where ωa, ωR, ωC

are wirings, and a, R, C, d are discrete bigraphs, R and C have local inner faces,
and R is regular.

Definition 4.3.3 (Valid matching sentence). A matching sentence ωa, ωR, ωC `
a,R ↪→ C, d, where ωR :→ Y , and d has global outer names Z, is valid, denoted
ωa, ωR, ωC � a,R ↪→ C, d, iff

(id⊗ ωa)a = (id⊗ ωC)(C ⊗ idY ⊗ idZ) (idZ ⊗ (id⊗ ωR)R) d.

where unqualified identities are local and determined from their context.

Note that for a valid sentence ωa, ωR, ωC ` a,R ↪→ C, d, if we let a′ = (id⊗ωa)a,
C ′ = (id ⊗ ωC)(C ⊗ idY ⊗ idZ), and R′ = (id ⊗ ωR)R, then a′ = C ′(R′ ⊗ idZ)d.
Conversely, if, for general a′, C ′, R′, d we have a match a′ = C ′(R′ ⊗ idZ)d, then
by Proposition 4.3.1, we can decompose a′, C ′, and R′ and obtain a corresponding
valid sentence. Thus, valid sentences precisely capture the abstract definition of
matching.

Rearranging a few identities, we can illustrate the discrete decomposition of the
agent, context, and redex in a valid matching sentence schematically as in Fig-
ure 4.3. We draw bigraph composition as vertical composition, and tensor product
as horizontal juxtaposition.
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perm
ωa, ωR, ωC ` a,

⊗m
i Pπ−1(i) ↪→ C, (π ⊗ id)d

ωa, ωR, ωC ` a,
⊗m

i Pi ↪→ Cπ, d

par
ωa, ωR, ωC || ω ` a,R ↪→ C, d ωb, ωS, ωD || ω ` b, S ↪→ D, e

ωa || ωb, ωR || ωS, ωC || ωD || ω ` a⊗ b, R⊗ S ↪→ C ⊗D, d⊗ e

lsub
σa ⊗ ωa, ωR, σC ⊗ ωC ` p,R ↪→ P, d

ωa, ωR, ωC ` (σ̂a ⊗ id)(Z)p,R ↪→ (σ̂C ⊗ id)(U)P, d
,
σa : Z →
σC : U →

merge
ωa, ωR, ωC ` a,R ↪→ C, d

ωa, ωR, ωC ` (merge ⊗ id)a,R ↪→ (merge ⊗ id)C, d
, a global

ion
ωa, ωR, ωC ` ((~v)/( ~X)⊗ id)p,R ↪→ ((~v)/(~Z)⊗ id)P, d

σ || ωa, ωR, σα || ωC ` (K~y( ~X) ⊗ id)p,R ↪→ (K~u(~Z) ⊗ id)P, d
,
α = ~y/~u
σ : {~y} →

switch
ωa, idε, ωC(ασ ⊗ ωR ⊗ idZ) ` p, id ↪→ P, d

ωa, ωR, ωC ` p, (σ̂ ⊗ id)(W )P ↪→ pαq, d
,
σ : W → U
d : 〈m, ~X,X ] Z〉

close
σa, σR, idY ⊗ σC ` a,R ↪→ C, d

(id⊗ /(Y ]X))σa, (id⊗ /Y )σR, (id⊗ /X)σC ` a,R ↪→ C, d
,
σC :→ Z ]X
σR :→ U ] Y

Figure 4.4: Rules for matching binding bigraphs

4.3.3 Rules for Matching

In Figure 4.4 and Figure 4.5, we present a set of rules and axioms for inferring
matching sentences. In par we require further that the tensor products of all discrete
components be defined. Also, in the premises of the rules perm and ion, and in
the conclusion of rules merge, ion, and switch we require the id’s to have width
0 (hence be link graph identities). This determines them entirely from the context.

We now explain each of the rules. To illustrate how the matching rules work
together, in the following section (Section 4.4) we provide an inference tree for
inferring the match in the example depicted in Figure 4.1.

The perm rule simply pushes a permutation on the inside of the context through
the redex, permuting the discrete primes, and producing a pushed-through permuta-
tion π, depending on π and the innerface of the redex, as stated in the push-through
lemma [DB06, Lemma 2].
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prime-axiom
α : X → U β : V → Z σ : U ] Z → τ : Y → X p : 〈Y ] Z〉

σ(ατ ⊗ β), idε, σ ` p, id(X) ↪→ pαq, (X)(τ ⊗ β ⊗ id1)p

wiring-axiom
y, Y, y/Y ` idε, idε ↪→ idε, idε

Figure 4.5: Axioms for matching binding bigraphs

The par rule explains how to match a product, given two valid matches. The two
valid matches are allowed to share some context wiring ω, if the redices share (global)
names. Figure 4.6 illustrates the conclusion of a match using par. The wirings are
depicted above the underlying discrete bigraphs: a product of two agents a and b
containing a single node; a product of two contexts C and D, which contain only
a site; and, a product of two redices R and S containing a single node (for this
example, the parameters are empty). As the parallel product of the redex wirings
ωR and ωS already map the links from w1 and w2 to a shared name w, the link from
w is shared wiring ω (while the links from x and y1 are in ωa = ω || ωC, and the
links from y2 and z are in ωb = ω || ωD).

K L

xw1y1 y2w2 z

a b

ωa ωb

YC = {w}
YD = {w, z}

x y1 y2 z

x y1 y2

w

w

ω

z

C⊗idYC
idYD
⊗D

ωC ωD

K L

xw1y1 y2w2 z

R S

ωR ωS

Figure 4.6: Matching a product using the par rule

The lsub rule allows us to match any discrete prime by matching an underlying
free prime with the wiring of agent and context extended with the underlying global
substitutions σa and σC. In other words, this rule expresses that we can match a
single-rooted bigraph with local names by matching the corresponding free bigraph
(i.e., forgetting the locality of the names).

The merge rule simply states that if we can match (global) bigraphs with several
roots, then we can merge those roots into a single root, and still have a valid match.

The ion rule states intuitively that if we have two valid matches with primes
in agent and context, we can compose both primes with an ion (i.e., a node with
wiring) and still have a valid match. For any given match of discrete primes, we can
compose with ions K~y( ~X) or K~u(~Z), if we extend the wirings of agents and contexts
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K

y1 y2

y′1 y
′
2

σ

p
x1x2x3x4

a

K

u1 u2

y′1 y
′
2

σα

P
z1z2z3z4

C

v1 v2 v3

p
x1x2x3x4

a′

v1 v2 v3

P
z1z2z3z4

C ′

Figure 4.7: Matching an ion in the agent a with context C by matching a′ with
context C ′

with isomorphic wiring on the outer names ~y and ~u; stated in the rule by requiring
that we extend with σ and σα (where α = ~y/~u). For example, if we seek to match
the agent a = (id ⊗ K~y( ~X))p with a context C = (id ⊗ K~u(~Z))P , then it suffices

to consider matching of a′ = (~v)/( ~X)p with a context C ′ = (~v)/(~Z), as illustrated
in Figure 4.7. The local linkage remaining in a′ and C ′ is the local substitutions
underlying the ions in a and C.

a R C d

L
K

z1 z2 z3 z4 y z

y1 y2 y3

K

u1 u2 y

x
ωR →

σ

u1 u2

v1 v2

y1

x

y2

z

y3

ωC →

α→
L

z

L
K

z1 z2 z3 z4 y z

y1 y2 y3

K

w1w2w3w4 y

u1 u2

v1 v2

y1

x

y2

z

z

y3

ωC →

α→

σ →
← ωR ⊗ idZ

L

z

a R′ = id1 C ′ = C(R⊗ idZ) d

Figure 4.8: Matching a = C(R ⊗ idZ)d by matching a = C ′(R′ ⊗ idZ)d using the
switch rule.

Given an agent and considering an inference tree operationally bottom up, the
rules specify how to decompose the agent while constructing the corresponding con-



4.3 Inductive Characterization of Matching 79

text (cf., e.g., the ion rule). At the point where the root of the redex is matched,
the switch rule is applied, switching the redex into context position, so that further
decomposition of the agent checks that the redex matches. A redex root needs to
be matched when the only remainder of the context is a site, possibly with some
local linkage. Thus, when inferring a match, every rule except switch can be used
in two modes: one where the agent and redex are given, resulting in a context and
parameter; and, after a switch, one where the agent and context are given, result-
ing in a parameter. This is reflected in the fact, that in the premiss of switch, in
the matching sentence the redex-position is id and the redex-wiring is empty, since
we are now only concerned with checking the redex, and constructing the param-
eter. (Note, that this means that for d : 〈1, (Y ), Y ] Z〉, the unspecified id in the
context-wiring is necessarily idZ .)

In Figure 4.8, we depict an application of switch. As illustrated the agent does
not change when applying the rule; we simply try to infer a match between the
current agent structure a, and a new context C ′ constructed as the composition of
the former context C composed with the former redex R. As required, the new
redex R′ is an identity and the parameter d is preserved.

The prime-axiom and wiring-axiom axioms are the base cases of matching
inferences. The latter axiom is used to match bigraphs of zero width (i.e., bigraphs
which only contain wiring). By iterated application of this axiom and par, we
handle matching of any idle names (i.e., outer names not connected to anything).
Intuitively, this axiom allows us to only be concerned with wiring with no idle names
(i.e., epi wiring) in all other rules (cf., Note 4.A.21 in the appendix, immediately
following the proof of Lemma 4.3.8 concerned with wiring-axiom.)

a R C d

K

y1 y2 y3 v

x1 x2

u1 u2 z

τ →

α→

← σ

← β

x1 x2

x1 x2

u1 u2

x1 x2

z
σ →

α K

x1 x2 z

τ β

Figure 4.9: Matching a = C(R⊗ idZ)d by using prime-axiom.

The prime-axiom handles the case where we have matched all nodes in the
redex and context; this is the case when only sites remain. The axiom expresses this
for primes only; as par allows us to combine several valid matches with product,
most other rules simply need to be concerned with the prime case. Hence, the axiom
requires both redex and context to be single sites (in the context allowing renaming
of local names), and requires the agent and parameter place graph to be equal and



80 An Inductive Characterization of Matching in Binding Bigraphs

their wiring to be compatible.
Figure 4.9 depicts an instance of prime-axiom. The agent and parameter con-

tain a node of the same control K, and the wirings τ , β, α, and σ, which are
composed to determine the wiring of C(R ⊗ idZ)d, matches the wiring of a (which
in the figure is split accordingly, to illustrate this match).

Finally, the close rule allows us to infer a match for bigraphs where all global
links are open, and “close” this match by replacing names in wirings with edges,
cf. Figure 4.10.

a R C

K1 K2 L1 L2 M1 M2 K1 K2 L1

u

L2 M1 M2

u

K1 K2 L1 L2 M1 M2

y z2z1

K1 K2 L1

y u

L2 M1 M2

z2

u

z1

y

y

a′ R′ C ′

Figure 4.10: Matching closed links within and between redex and context

4.3.4 Soundness and Completeness of the Characterization

The two following theorems state that the rules constitute a sound and complete
characterization of matching.

Theorem 4.3.4 (Soundness). The rules for matching in Figures 4.4 and 4.5 are
sound, that is, any derivable matching sentence is valid.

Proof. Straightforward, by standard algebraic manipulations.

The completeness theorem is proved by induction on the size of valid sentences,
which is defined as follows.

Definition 4.3.5 (Size of a matching sentence). The size of a matching sentence
ωa, ωR, ωC ` a,R ↪→ C, d is the number of ions in a.

The following lemmas express how a valid sentence may be derived by applica-
tions of inference rules to valid sentences of lesser or equal size. The proofs proceed
by first decomposing the components of the given valid sentence, then defining the
components of the valid sentence(s) claimed to exist and, finally, verifying that (1)
the sentences claimed to exist really are valid and (2) that the given sentence can in-
deed be derived as claimed. The decompositions are obtained via Proposition 4.3.1
and other normal forms for binding bigraphs, and the verifications proceed using
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uniqueness results for normal forms based on those found in [DB06]. We give ex-
tensive details for the proofs of these lemmas in the Appendix.

Lemma 4.3.6. Every valid sentence ωa, ωR, ωC � a,R ↪→ C, d is provable using the
close and the perm rules on a valid sentence, of equal size, of the form σa, σR, σC �
a, S ↪→

⊗n
i Pi, e.

Lemma 4.3.7. Every valid sentence σa, σR, σC � a,R ↪→
⊗n

i Pi, d, with each Pi

prime and discrete, is provable using the par rule on valid sentences, of lesser or
equal size, of the form σ0

a, σ
0
R, σ

0
C ||σS

C � p, S ↪→ P0, e and σ1
a, σ

1
R, σ

1
C ||σS

C � a
′, R′ ↪→⊗n

i=1 Pi, e
′. All substitutions mentioned above are required to be epi (i.e., with no

idle names).

Lemma 4.3.8. Every valid sentence σa, σR, σC � a,R ↪→ idε, d is provable using
par and wiring-axiom.

Lemma 4.3.9. Every valid sentence σa, σR, σC � p,R ↪→ P, d, with p and P prime
and discrete, is provable using the lsub rule on a valid sentence, of lesser or equal
size, of the form σ′a, σ

′
R, σ

′
C � p

′, R ↪→ P ′, d, where p′ and P ′ are discrete free primes.
All substitutions mentioned above are required to be epi (i.e., with no idle names).

Lemma 4.3.10. Every valid sentence σa, σR, σC � p,R ↪→ Q, d, with p and Q
discrete and free primes, is provable using the merge, par (iterated), and switch
rules on valid sentences, each of lesser or equal size, and each on one of two forms:

• σ′a, σ′R, σ′C � pN, id ↪→ PN, e, where pN and PN are free discrete primes,

• σ′a, σ′R, σ′C � m,S ↪→M, e, where m and M are free discrete molecules.

All substitutions mentioned above are required to be epi (i.e., with no idle names).

Lemma 4.3.11. Every valid sentence σa, σR, σC � m,R ↪→ M,d, with m and M
free discrete molecules, is provable using the ion rule on a valid sentence σ′a, σ

′
R, σ

′
C �

p,R ↪→ P, d, of lesser size, where p and P are discrete primes. All substitutions
mentioned above are required to be epi (i.e., with no idle names).

Lemma 4.3.12. Every valid sentence σa, σR, σC � p, id ↪→ P, e, with p and P
free discrete primes, is provable using the merge and par (iterated) rules on valid
sentences of equal or lesser size, which are either instances of rule prime-axiom
or of the form σ′a, σ

′
R, σ

′
M � m,R ↪→ M,d. All substitutions mentioned above are

required to be epi (i.e., with no idle names).

Theorem 4.3.13 (Completeness). The rules for matching in Figures 4.4 and 4.5
are complete, that is, any valid matching sentence can be derived from the rules.

Proof. By induction on the size of a sentence. By the lemmas above, we have
that all valid sentences with size n can be derived from valid sentences of the form
σa, σR, σC � m,R ↪→ M,d, with m and M free discrete molecules, of size less than
or equal to n. By Lemma 4.3.11, these can be derived from sentences of size less
than n.
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4.4 An Example: Inferring a Match

In this section, we give an inference tree for inferring the match in the example
depicted in Figure 4.1. To fit the inference tree in three reasonably small figures
(Figures 4.11, 4.12, and 4.13), we use a more humble visual style, than in Figure 4.1,
to depict roots, nodes and names.

Roots are only drawn when there are more than one; in that case we use a dashed
separating line to indicate separate roots (see for example the conclusion of par in
Figure 4.11). Controls of nodes are indicated with the shape (and colour) of the
node: Buildings are (blue) rectangles, laptops are (gray) rectangles with rounded
corners, folders are (yellow) circles, and data-nodes are black squares with a D
inside. Instead of the name consultancy we use n and instead of corporation we use
c. Finally, we do not depict the basic redex R and parameter d, which are illustrated
already in Figure 4.1.

close

merge

par

(details elided)

n

n

e

e0
, idε,

n

n

e

e0
` D

n e0
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, idε
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c
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c
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z c
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` D D D D
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n

e0 z c
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` D D D D
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,R ↪→ D

n e0 c

y , d

Figure 4.11: Inferring the match in Figure 4.1

We build the inference bottom up and start by decomposing a and C discretely
to obtain a sentence that we aim to prove as the conclusion of an application of
close in Figure 4.11. (Note that in contrast to a and C, bigraphs R and d are
already discrete as depicted in Figure 4.1.) The application of close allows us to
match and introduce the edge between names e0 and e1 in the agent, and between
names e0 and z in the context. We are building an inference bottom up, so in the
premiss we simply introduce a fresh outer name e to map these names to.

Next, we aim to use an application of par to pair up two inferences of matches
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between top-level nodes of the agent and the context. The top-level nodes of the
agent and the context are in the same root, though, so after using par to pair up two
such inferences, we need to apply merge to merge the roots introduced by par into
a single root.

Matching the left root of the agent to the left root of the context is a simple
matter, as the agent and context are isomorphic, both in wiring and underlying
discrete bigraph, while the redex and parameter are empty (consequentially, we leave
out the details for that subderivation). The derivation D0 is depicted in Figure 4.12.
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Figure 4.12: The derivation D0

In the conclusion of the derivation D0 we use an application of ion to match
the top-level building node of the right root of the agent to the building node of
the right root of the context. Reading the application of the ion rule bottom up,
we see that removing the building node in both agent and context requires us to
match and remove the global wiring upon free ports of the building node (e/e1 and
e/z, respectively), and introduce a common local outer name x to map linkage upon
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binding ports to.
We immediately proceed to remove that local name. The lsub rule allows to

introduce local names and local wiring; so when building up an inference tree, we
simply introduce new global names (in this case, x0 and x1 in the agent, and y in
the context), and wire those names through global wiring instead.

In the resulting premiss of lsub the only remainder of the context is a concretion
pyq (i.e., a single site), so we can switch to matching the redex. This means that we
need to try to infer a match between the current agent structure (in the derivation)
and the remainder of the context (i.e., the context wiring and pyq) composed with
the redex R — with identity redex and the same parameter d. The composition
pyqR makes global the name y of R, which is subsequentially wired to an x in the
context-wiring. Consequentially, in the context in the premiss of switch we have R
with two global names y0 and y1, which are wired through the link x/{y0, y1}. The
redex in the premiss is id4 to match the four roots of the parameter d.

Now, we aim again to use an application of par to pair up two inferences of
matches between the top-level nodes of the current agent and context. After using
par to pair up those inferences, we need again to apply merge to merge the roots
introduced by par into a single root. The remaining two derivations for matching
folders with data in the agent to folders and data in the (former) redex and parameter
are very similar; we show the leftmost derivation D1 in Figure 4.13.
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Figure 4.13: The derivation D1

We conclude the derivation D1 as we did D0, namely with an application of ion,
in this case, to match and remove a laptop node. Folder nodes have no ports, so
here we need not be concerned with wiring.
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Another application of the rules merge and par allows to combine two deriva-
tions, the left of which is an instance of prime-axiom. The prime-axiom requires
both redex and context to be single sites (in the context allowing renaming of local
names), and requires the agent and parameter place graph to be equal and their
wiring to be compatible. In this case, only the names e1 and z differ, but as they
are internal (i.e., disappear when composing the wiring with the discrete underlying
bigraph), we can construct suitable wirings σ = e/z and β = z/e1 to verify that we
have a valid instance of prime-axiom.

In the remaining rightmost derivation we need a single application of ion, before
being able to conclude the entire derivation with a very simple instance of prime-
axiom, as data nodes have no ports to connect wiring to.

4.5 Towards Algorithms for Matching

The completeness theorem tells us that we can find all valid matching sentences by
applications of the rules for matching. Thus the rules for matching define an algo-
rithm for matching, for instance easily expressed in Prolog, which simply operates
by searching for inference trees using the rules.

Although we can base a matching algorithm directly upon the matching rules,
we do not claim that an efficient matching algorithm has to be so based. We have
introduced matching rules for a dual purpose: first, to characterize matching struc-
turally and inductively in order to understand it (in particular, to understand the
relation to representations based on normal forms and to understand exactly where
choices between different matches can be made during matching); second, to provide
a specification from which to begin the search for truly efficient matching algorithms,
and to verify them against. This rigorous approach to matching is justified, in our
view, because matching will be the workhorse of any implementation of bigraph
dynamics.

In practice, one is, of course, interested in minimizing unnecessary blind search,
and thus, for instance, only search for inference trees of a certain form. Indeed,
one can show that it suffices to consider so-called normal inference trees, which
put restrictions on the order in which the inference rules are applied (such as, e.g.,
always concluding with the close rule). We shall not include a formal definition of
normal inference trees here, but rather discuss some of the possibilities for defining
normal inference trees. We first remark that to retain completeness, any definition
of normal inference must, of course, ensure no loss of provability. Looking at the
formulations of the lemmas leading up to the completeness theorem, we see that
there are indeed several possibilities for the definition of normal inference tree. For
example, from Lemma 4.3.6 we see that we are free to conclude each inference tree
with close and then perm or vice versa. Further, in several rules we are allowed to
propagate closed links, even though close intuitively makes that unnecessary. We
have chosen to leave this freedom in the rule system and instead comment on how
we could extend the set of rules to allow even more freedom in chosing our definition
of normal inference tree. This is important when thinking about implementations,
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as each definition of normal inference tree corresponds to a different algorithmic
approach to matching.

One may say that the current set of rules naturally give rise to normal inferences
that are a mix between matching the link graph “lazily”or “eagerly”. Instead of
the close rule, one could have amended the par and ion rules (those with || in
the conclusion) such that they would also handle matching of closures. This would
have allowed true “by need” link-matching. Conversely, one could have amended
the close rule to also compare substitutions, allowing us to consider matching
of discrete bigraphs up to renamings (i.e., isomorphisms) on their outerfaces. If
we amended the lsub and switch rules to work accordingly, this would actually
preclude the need for the wirings ωa, ωR, ωC in matching sentences. It seems, though,
that the tedious complexity added into these rules would mean that we would gain
little in removing complexity from the rules as a whole. Anyhow, these changes
would allow us to define a variant of normal inferences, which would be “strict” in
the link graph, in that we would immediately be able to reject possible matches
based on the link graph (instead of the place graph).

Another possibility would be to add a rule glob, allowing us to match all wiring
stemming from a single prime as global wiring. This idea seems to indicate that
matching in local bigraphs [Mil04] (where there is no global linkage but instead
multilocated names) could be handled similarly, by recasting the rules to work on
local links and just locating names at all roots where they occur.

4.5.1 Representations of Bigraphs

An implementation of matching must, of course, represent bigraphs in some way.
One possibility is to represent bigraphs directly by place and link graphs, and then
implement the normal form lemmas, which express how bigraphs may be decomposed
into simpler bigraphs; then matching can proceed by induction on the decomposed
graph. In general, however, the “decomposition functions” return sets of possible
decompositions, because normal forms are only unique up to certain permutations.
(For example, merge(M1 ⊗M2) = merge(M2 ⊗M1).) A matching implementation
needs to explore all the possible decompositions. This can be made explicit for-
mally, by phrasing the inductive characterization of matching not on bigraphs but
on expressions (i.e., syntax) for binding bigraphs. Doing so forces us to add an
inference rule, which allows one to replace any expression in a matching sentence
ωa, ωR, ωC ` a,R ↪→ C, d, say a, by a′, when a′ is provably equal to a via the axioms
for structural equality of bigraphs [DB06]. Doing so clearly yields a complete set
of rules on bigraphical expressions, but yields a wildly nondeterministic inference
system as we might need to apply equality axioms between every step to infer a
match. (This is reminiscent of problems arising when implementing rewriting logic,
i.e., term rewriting modulo a set of static equivalences.) Consequentially, normal
inference trees for rules based on syntax, needs to spell out how and where to apply
equality axioms. The definition of normal inference trees will then formally explicate
all the possibilities that a matching algorithm needs to explore.
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4.5.2 A Prototype Implementation

Based on the considerations above, we have worked out a definition of normal infer-
ence tree for matching bigraph expressions and proved it complete. In particular, we
also utilize normal forms for expressions by defining normal inferences that require
each inference to start by rewriting the term to be on normal form. This restricts
considerably the set of expressions that the normal inferences need be concerned
with.

This definition of normal inferences is the basis of a prototype implementation
of a tool for working with bigraphical reactive systems. We report on this in a
forthcoming paper [GDBH07]. The prototype tool is also available online at:

http://tiger.itu.dk:8080/bplweb/

4.6 Related and Future Work

Bigraphical reactive systems are related to general graph transformations systems;
see [EEPT06] for a recent comprehensive overview of graph transformation sys-
tems. In particular, bigraph matching is strongly related to the general graph
pattern matching (GPM) problem, so general GPM algorithms might be applica-
ble [Ull76, Fu97, LV02, Zün94]. Due to the special structure of bigraphs, general
GPM algorithms are expected to be inefficient, although some GPM tools [VVF05]
use heuristic search strategies that might be able to discover and exploit bigraph
structure.

A special aspect of bigraphs is that we may match a set of subtrees with a single
node (site) in the redex, and match multiple redex roots in different places within the
agent. Fu [Fu97] handles such wildcard nodes and multiple patterns, but directly
applying his algorithm is not straightforward, as he attacks the problem of tree
isomorphism of rooted graphs unfolded to finite unbounded depths. The subtree
isomorphism problem [Sel77, Val02, ST99] is simpler than GPM, but applying it
directly to the place graphs of bigraphs would not exploit the constraints imposed
by the link graphs. Rather, efficient implementations of bigraph matching should
be derived from the initial implementation by experimenting with different normal
inference tree definitions, and combining it with subtree isomorphism algorithms.
The inductive characterization provided here will make it easier to prove an actual
algorithm correct. Finally, as noted in the introduction, by providing an abstract
characterization founded in well-established theory for bigraphs, we expect to be
able to combine or adapt more easily our approach to theory and techniques being
developed for bigraphs.

For a more detailed account of related work, in particular on relations between
BRSs, graph transformations, term rewriting and term graph rewriting, see [Dam06,
Section 6].

Future work on bigraph matching include investigating how we may combine,
for instance, our approach with sortings on bigraphs [BDH06], which could be a
source of early search elimination. We are also considering rephrasing the rules to
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derive a set of constraints for wirings (the three first components of a matching
sentence), which could be fed to a constraint solving algorithm, instead of matching
them online as the rules.

4.7 Conclusion

We have presented a sound and complete inductive characterization of matching
for binding bigraphs. The characterization provides a formal specification for a
matching algorithm for binding bigraphs; and, even further, the specification has
already served as the basis for an implementation of a prototype tool for working
with BRSs.

Acknowledgement This work was funded in part by the Danish Research Agency
(grant no.: 2059-03-0031) and the IT University of Copenhagen (the LaCoMoCo
project).

4.A Proofs of Completeness

We give extensive details for the proof of Lemmas 4.3.6 through 4.3.12. In proving
the main lemmas underpinning the completeness of the matching rules, we shall
need a number of properties of binding bigraph structure.

4.A.1 Algebraic Properties of Parallel Product

The parallel product G ||H of two bigraphs G : X → Y ] Z and H : U → V ] Z,
with X ∩ U = Y ∩ V = ∅, is given by taking the tensor of the place graphs and the
union of the link graph maps.

The equational properties of wiring, composition and tensor product has already
been investigated [Mil05, DB06]; in this section we build on this foundation to state
directly also a number of properties of wiring and ||, which shall allow us a number
of convenient equational manipulations. We shall mainly use equational reasoning
to prove the properties, in the process illustrating the convenience allowed by the
axiomatizations and the normal form for links (cf., loc. cit.).

We start by giving some simple equivalent forms of the definition of the parallel
product.

Lemma 4.A.1 (Parallel product). For Z = {z0, . . . , zn−1}

G ||H =
(
(
⊗|Z|

i zi/{zi, z′i})⊗ idY ⊗ idV

)(
G⊗ ((

⊗|Z|
i z′i/zi)⊗ idV )H

)
=

(
~z/(~z, ~z′)⊗ idY ⊗ idV

)(
G⊗ (~z′/~z ⊗ idV )H

)
=

(
σ ⊗ idY ⊗ idV

)(
G⊗ (α⊗ idV )H

)
,

where in the second equation we introduce some shorthand notation and in the
third equation σ and α are given by the previous equations.
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Proof. (Omitted) Routine from [JM04, Def. 9.13].

Sometimes, we shall need to split up a wiring by its inner- or outerface and
analyze it in smaller parts.

When splitting up a wiring ω : U ] V → X ] Y by its innerface or outerface,
respectively, we get, for δ a suitable closure,

ω = (δ ⊗ id)(σ0 || σ1) σ0 : U → σ1 : V →

respectively
ω = ω0 ⊗ ω1 ω0 :→ X ω1 :→ Y,

for δ, σ0, and σ1; and ω0 and ω1, which are constrained by ω, U , V , X and Y .
Those subwirings (i.e., the substitutions, closures, and wirings) of a splitting are

not in general determined uniquely by ω, U and V , or ω, X and Y . For example,
when splitting

ω =
y1

x1 x2 x3

y2

x4 x5

by {x1, x2, x3} and {x4, x5}, we get either

y1

x1 x2 x3

y2

x4

y2

x5

or
x1 x2 x3

y2

x4

y2

x5

y1

When splitting by the innerface, we are free to distribute the idle names of ω. When
the wirings have no idle names (i.e., are epi) the splitting is unique. We state this
formally in Lemma 4.A.5.

When splitting by the outerface, it is closures — that introduce edges, that
constitute the problem. For instance, there are four valid splittings of ω above by
{y1} and {y2}, corresponding to the four possible ways of distributing the two closed
links between the two wirings. We might, for instance, choose to put both closures
in either the lefthand or the righthand wiring:

y1

x1 x2 x5

⊗
x3

y2

x4

or
y1

⊗
x1 x2 x3

y2

x4 x5

Splittings by the outerface of pure substitutions (i.e., with no closures), on the other
hand, are unique; we state this formally in Lemma 4.A.6.

We start by recording that for wirings ⊗ and || commute.

Lemma 4.A.2 (Tensor and parallel product commute for wirings). For all wirings
ωa :→ Z ] Ya, ωb :→ Z ] Yb, ωc :→ X ] Yc, and ωd :→ X ] Yd, with all inner faces
mutually disjoint, X ∩ Z = ∅, and (Ya ∩ Yc) = (Yb ∩ Yd) = ∅, it holds that

(ωa || ωb)⊗ (ωc || ωd) = (ωa ⊗ ωc) || (ωb ⊗ ωd).
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Proof. Equationally,

(ωa || ωb)⊗ (ωc || ωd)
= (σZ ⊗ id)(ωa ⊗ (αZ ⊗ id)ωb)⊗ (σX ⊗ id)(ωc ⊗ (αX ⊗ id)ωd)
= (σZ ⊗ id)(ωa ⊗ (αZω

Z
b ⊗ ω′b))⊗ (σX ⊗ id)(ωc ⊗ (αXω

X
d ⊗ ω′d))

= (σZ ⊗ σX ⊗ id)(ωa ⊗ ωc ⊗ (αZω
Z
b ⊗ αXω

X
d ⊗ ω′d ⊗ ω′b))

= (σZ ⊗ σX ⊗ id)(ωa ⊗ ωc ⊗ (αZ ⊗ αX ⊗ id)(ωZ
b ⊗ ω′d ⊗ ωX

d ⊗ ω′b))
= (ωa ⊗ ωc) || (ωb ⊗ ωd).

— where the first and the last equality are instances of the third equation of
Lemma 4.A.1, and ωZ

b , ω′b, ωX
d , and ω′d arises from splitting ωb and ωd by the

outerface.

We state and prove Lemma 4.A.3, a cancellation property of parallel product
and idle names, only to help us prove Lemma 4.A.4. The latter lemma tells us,
that should the parallel product of two pairs of wirings with matching interfaces be
equal, then those pairs were equal in the first place.

Lemma 4.A.3. For wirings ωi = Xi → Y i ] Z (i ∈ {0, 1}) with X0 ∩ X1 =
Y 0 ∩ Y 1 = ∅,

(ω0 || ω1)(X0 ⊗ idX1) = Y 0 ⊗ ω1.

Proof. Equationally,

(ω0 || ω1)(X0 ⊗ idX1) = ω0X0 || ω1

= (Y 0 ⊗ Z) || ω1

= Y 0 ⊗ (σZ ⊗ idY 1)(Z ⊗ (αZ ⊗ idY 1)ω1)
= Y 0 ⊗ (σZ ⊗ idY 1)(Z ⊗ αZω

1
Z ⊗ ω1

Y 1)
= Y 0 ⊗ σZ(Z ⊗ αZω

1
Z)⊗ ω1

Y 1

= Y 0 ⊗ α−1
Z αZω

1
Z ⊗ ω1

Y 1

= Y 0 ⊗ ω1.

where σZ
def= ~z/(~z, ~z′), αZ

def= ~z′/~z (as defined in Lemma 4.A.1), and ω1
Z ⊗ω2

Y 1

def= ω1

is a splitting by the outerface of ω1, s.t. ω1
Z :→ Z and ω1

Y 1 :→ Y 1.
The fifth equality resolves the composition (equationally, by iterated application

of axiom L4 of [DB06]). For our particular purpose, the axiom can be instantiated
to state for each z ∈ Z that z/(z, z′)(z ⊗ idz′) = z/z′. Iterating this, we have also
that σZ(Z ⊗ idZ′) = α−1

Z = ~z/~z′.

Lemma 4.A.4. Given ωi
c, ω

i
a : Xi → Y i]Z, (i = 0, 1) with X0∩X1 = Y 0∩Y 1 = ∅,

we have that

ω0
c || ω1

c = ω0
a || ω1

a iff ω0
c = ω0

a and ω1
c = ω1

a.

Proof. (⇐) Immediate.
(⇒) Composing on both sides of the assumed equation with equal terms, we have,

(/Y 0 ⊗ idY 1]Z)(ω0
c || ω1

c)(X0 ⊗ idX1) = (/Y 0 ⊗ idY 1]Z)(Y 0 ⊗ ω1
c) = ω1

c, and
(/Y 0 ⊗ idY 1]Z)(ω0

a || ω1
a)(X0 ⊗ idX1) = (/Y 0 ⊗ idY 1]Z)(Y 0 ⊗ ω1

a) = ω1
a.
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— and analogously for ω1
c and ω1

a (using Lemma 4.A.3 to resolve the first equalities).

And now we can state and prove the two lemmas mentioned earlier, which tell
us when a splitting of wiring is unique.

Lemma 4.A.5 (Splitting by the innerface). The splitting of ω : U ]V → (i.e., with
U ∩ V = ∅) by its innerface into ω = (δ ⊗ id)(σ0 ⊗ σ1) with σ0 : U → and σ1 : V →
is unique (up to iso) if ω is epi.

Proof. Suppose wlog that ω : U ] V → Z. We analyse the underlying link-function
linkω of ω. When ω is epi, the link-function has codomain exactly linkω(U ] V ) =
Z ]E, where E is the set of edges in ω. (There are no edges in E with no preimage
in linkω, as we are concerned with abstract bigraphs, which contain no such idle
edges.)

The link-function of σ0 must, for each, u ∈ U , either contain u 7→ linkω(u) if
linkω(u) ∈ Z, or u 7→ zu for a fresh name zu if linkω(u) ∈ E; in the latter case, δ
must also contain zu 7→ ∅. The same goes for σ1.

We can freely choose the names for transferring closed links, such as zu; having
chosen those names, both the interfaces of σ0 and σ1 are also determined, since Z
contains only images of U ] V . By Lemma 4.A.4 this determines them wholly.

Lemma 4.A.6 (Splitting by the outerface). The splitting of σ :→ X ]Y (i.e., with
X ∩ Y = ∅) by its outerface into σ = σ0 || σ1 with σ0 :→ X and σ1 :→ Y is unique.

Proof. Suppose wlog that σ : U → X ] Y . Since σ is a substitution its underlying
link-function is defined precisely on linkσ : U → X ] Y (i.e., there are no ports or
names in the link-function).

The relation link−1
σ relates to each x ∈ X and y ∈ Y a (possibly empty) set

Ux ⊆ U or Uy ⊆ U , respectively. Since linkσ is a function, it is clear that all these
sets are distinct and disjoint.

Hence, we can construct mechanically the domain U0 of linkσ0 by taking the
union of the preimage of the names in X, i.e., U0 = link−1

σ (X); and this set is
disjoint from U1 = link−1

σ (Y ). This procedure determines the interfaces of σ0 and
σ1 uniquely, hence, by Lemma 4.A.4 it determines them wholly.

Finally, we record a few further convenient properties of the interplay of substi-
tutions with parallel product.

Lemma 4.A.7. When both sides are defined, we have:

σ || σα = σ(id || α), (4.1)
σ(ω0 || ω1) = σω0 || σω1, (4.2)

(σ0 || σ1 || σ2)(ω0 || ω1) = (σ0 || σ2)ω0 || (σ1 || σ2)ω1. (4.3)

Proof. (4.1) By definition of || and normal form for σ (see, [DB06]).
(4.2) Follows easily from (4.1).
(4.3) Immediate from the earlier properties.
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4.A.2 Valid Matching Sentences and Normal Forms

We start by stating two propositions, which can be derived from the normal form
theorem for binding bigraphs [DB06, Theorem 1(2)].

Proposition 4.A.8. Any discrete bigraph D of width n with local innerface can be
decomposed such that

D =
( n⊗

i

(σ̂i ⊗ id)Pi

)
π,

where the Pi’s are name-discrete and prime. Any other decomposition on this form
of D takes the form

(⊗n
i (σ̂′i ⊗ id)P ′

i

)
π′, where, for some α̂i, ρi, for all i, P ′

i =
(α̂i

−1 ⊗ id)Piρi (
⊗n

i ρi)π′ = π, and σ̂′i = σ̂iα̂i.

The normal forms of name-discrete primes and free discrete molecules can be
found in loc. cit.

One can decompose binding ions K~y( ~X) into K~y(~u)

⊗n
i (ui)/(Xi). Such decompo-

sitions will be useful because of the following property, which is a corollary of the
normal form for free discrete molecules.

In analyzing molecules, it shall be useful that the uniqueness property for free
discrete molecules actually holds also for all free molecules.

Proposition 4.A.9. For primes P and Q, if(
K~y(~x) ⊗ id

)
P =

(
K~y(~z) ⊗ id

)
Q,

then for α = ~x/~z, K~y(~x)α̂ = K~y(~z) and P = (α̂⊗ id)Q.

Proof. (Omitted) Follows easily from normal form for primes and molecules.

We give a number of convenient equivalent forms for Definition 4.3.3 of valid
matching sentences. Both are simply results of equational manipulations of the
original form. In particular, the second is more compact, while the third separates
global linkage from discrete bigraphs. In the proofs, we shall refer to the following
Fact instead of Definition 4.3.3.

Fact 4.A.10 (Valid matching sentence — with equivalent forms). A matching sen-
tence ωa, ωR, ωC ` a,R(→ C, d, where ωR : U → Y , for C with global outer names
V , and d with global outer names Z, is valid, denoted ωa, ωR, ωC � a,R(→ C, d, iff

(id⊗ ωa)a = (id⊗ ωC)(C ⊗ idY ⊗ idZ) (idZ ⊗ (id⊗ ωR)R) d
= (id⊗ ωC)((C ⊗ ωR)R⊗ idZ)d
= (id⊗ ωC(idV ⊗ ωR ⊗ idZ))((C ⊗ idU )R⊗ idZ)d.

where unqualified identities are local and determined from the context.
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The bigraph ((C⊗ idU )R⊗ idZ)d (i.e., the composition of the underlying discrete
bigraphs of context, redex and parameter in the last form given in Fact 4.A.10) is not
discrete in general. Discreteness is not preserved by composition — in composing
discrete D and E, local non-discrete linkage of E may be made global by composition
with D. On the other hand, the expression is a ground product of primes where all
edges are bound. We record some properties of these kinds of bigraphs, which follow
easily from the normal form theorems based on discrete decomposition.

We start by giving a simple restatement of Proposition 3.2, eliding the details of
the representation of discrete primes.

Corollary 4.A.11. Any discrete bigraph D with local innerface of width n can be
decomposed such that

D = (
n⊗
i

Pi)π,

where Pi are discrete prime. Any other decomposition on this form of D can be
written as (

⊗n
i P

′
i)π′, where for some ρi, P ′

i = Piρi and (
⊗n

i ρi)π′ = π.

We call bigraphs with only bound edges globally open.

Definition 4.A.12 (Globally open). G is globally open iff all edges in G are bound.

The following property of globally open bigraphs allows us to use the decompo-
sition in Fact 4.A.10 to establish a relation between the wiring of the agent and the
wirings of the context, redex and parameter, even though the latter is not discretely
decomposed. (We state the proposition only for ground bigraphs, as that is enough
for our purposes.)

Proposition 4.A.13 (Semi-discrete decomposition). If (id ⊗ ωd)d = (id ⊗ ωb)b,
where both identities are local, d is discrete and b is globally open, then there exists
a substitution σ, s.t., ωd = ωbσ and (id⊗ σ)d = b.

Proof. Follows easily from Proposition 4.3.1.
By Proposition 4.3.1, and since b is globally open, there exists σe and e, where e

is discrete, s.t., b = (id⊗σe)e. By uniqueness of the normal form of Proposition 4.3.1,
we have

ωd = ωbσeβ,

d = (id⊗ β−1)e.

We simply take σ = σeβ, and we are done.

We define products of primes with arbitrary ordering of the sites and call them
link-contained, as they are characterized precisely by having no links that span
several roots. In particular, a link-contained bigraph of width 1 is simply a prime.

Definition 4.A.14 (Link-contained). G is link-contained iffG is a product of primes
with arbitrary ordering of the sites.

In other words, G (of width n) can be written as (
⊗n

i Pi)π, where each Pi is
prime.
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Link-containedness is simply a generalization of discreteness.

Lemma 4.A.15 (Discreteness implies link-containedness).

Proof. (Omitted) Immediate from Definition 4.A.14 and normal form for discrete.

A virtue of link-containedness (as opposed to discreteness) is that it is preserved
by composition.

Lemma 4.A.16 (Link-containedness is preserved by composition). If D and E are
link-contained, then DE is link-contained.

Proof. (Omitted) Routine.

With regard to Fact 4.A.10, Lemmas 4.A.15 and 4.A.16 ensures us that ((C ⊗
idU )R⊗ idZ)d is link-contained.

Link-contained bigraphs share essentially all the nice properties with discrete
bigraphs, that we used for establishing their normal forms. From Proposition 4.3.1
and Corollary 4.A.11, we derive a normal form for link-contained bigraphs.

Corollary 4.A.17 (Normalform for link-contained bigraphs). If G is link-contained,
then G can be expressed as

G = (
n⊗
i

(ωi ⊗ id)Pi)π,

where each Pi is prime and discrete. Further, any other expression for G on this
format is of the form

(
n⊗
i

(ω′i ⊗ id)Qi)π′,

where (∀i ∈ n) there exists αi and ρi, s.t. ωi = ω′iαi, Qi = (αi ⊗ id)Piρi, and
(
⊗n

i ρi)π′ = π.

Proof. (Omitted) Follows easily from the definition of link-contained and the normal
forms for bigraphs and discrete bigraphs.

Finally, we state the following simple property of abstraction.

Lemma 4.A.18.
(U)P = (U)Q iff P = Q

Proof.
(⇐) Immediate.
(⇒) Nearly immediate; equationally, by composing with equal concretions:

P = (pUq⊗ id)(U)P = (pUq⊗ id)(U)Q = Q.
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4.A.3 Proofs of Lemmas 4.3.6 through 4.3.12

In this section we give the proofs for the lemmas which support the main theorem
on completeness, i.e., Theorem 4.3.13. For ease of reading, we repeat each lemma
immediately before each proof.

In the following proofs, we use equational techniques as allowed by the axiom-
atization of structural congruence of binding bigraphs [DB06]. In particular, in
manipulating terms, we shall need to introduce quite a lot of id’s on interfaces
determinable from the context. We shall adopt the convention of using only un-
qualified local identities, when the interface is determinable, and inessential for the
analysis. For global identities, we shall strive to use the metavariables introduced in
Fact 4.A.10 — i.e., we use V ’s for identities on context wiring, U ’s for identities on
redex wiring, and Z’s for identities on parameter-wiring.

We start by proving two sublemmas, of which Lemma 4.3.6 will be a simple
corollary. As close and perm work solely on the three link graph and four discrete
components, respectively, we proceed by proving a lemma for each of these rules.

Lemma 4.A.19. Every valid sentence ωa, ωR, ωC � a,R(→ C, d is a consequence by
perm on a valid sentence, of equal size, of the form ωa, ωR, ωC � a, S(→

⊗n
i Qi, e,

where each Qi is prime (and discrete).

Proof. By Fact 4.A.10 and Corollary 4.A.11, C can be decomposed directly as
(
⊗n

i Qi)π, while (regular) R can be decomposed as
⊗m

i Pi (for prime and discrete
Qi, Pi).

Applying these decompositions and the push-through lemma of [DB06] we find
by standard manipulations

(id⊗ ωa)a = (id⊗ ωC)

((
n⊗
i

Qi

)
π ⊗ ωR

)((
m⊗
i

Pi

)
⊗ idZ

)
d,

= (id⊗ ωC)

((
n⊗
i

Qi

)
⊗ ωR

)((
m⊗
i

Pπ−1(i)

)
⊗ idZ

)
(π ⊗ idZ)d.

Choosing S =
⊗m

i Pπ−1(i) and e = (π⊗idZ)d by Fact 4.A.10 we have a valid sentence
ωa, ωR, ωC � a, S(→

⊗n
i Qi, e, which taken as the premise in the perm yields the

required sentence as conclusion.

Lemma 4.A.20. Every valid sentence ωa, ωR, ωC � a,R(→ C, d is a consequence
by close on a valid sentence, of equal size, of the form σ′a, σ

′
R, σ

′
C � a,R(→ C, d.

Proof. We may write ωa, ωR and ωC as (by the normal form for linkage, cf. [Mil05])

(id⊗ /Ya)σa
def= ωa, (id⊗ /YR)σR

def= ωR, (id⊗ /YC)σC
def= ωC.

(Note, that for this proof (only) we use unqualified global identies.)
We have |Ya| = |YR|+|YC|; as, in particular, the number of free edges in the agent

must be equal to the number of free edges in the context composed with the redex
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and the parameter. The discrete bigraphs d, C and R contain no free edges, so the
free edges must be created entirely by ωR and ωC. Hence, there exists a renaming
α : Ya → YR ] YC. Assuming validity of the original sentence, we calculate

(id⊗ (id⊗ α)σa)a = (id⊗ (σC ⊗ idYR
)(idV ⊗ σR ⊗ idZ))((C ⊗ idU )R⊗ idZ)d,

which by Fact 4.A.10 means that the sentence

(id⊗ α)σa, σR, σC ⊗ idYR
� a,R(→ C, d,

is valid. This sentence is on the required form, and, checking, we see that applying
close to this sentence, we arrive at

(id⊗ /(YC ] YR))(id⊗ α)σa, (id⊗ /YR)σR, (id⊗ /YC)σC � a,R(→ C, d,

which, since by construction /(YC ] YR)(id⊗ α) = /Ya, is equal to

ωa, ωR, ωC � a,R(→ C, d.

Lemma (4.3.6). Every valid sentence ωa, ωR, ωC � a,R ↪→ C, d is provable us-
ing the close and the perm rules on a valid sentence, of equal size, of the form
σa, σR, σC � a, S ↪→

⊗n
i Pi, e.

Proof. Immediate by combining Lemma 4.A.20 and Lemma 4.A.19.

Lemma (4.3.7). Every valid sentence σa, σR, σC � a,R ↪→
⊗n

i Pi, d, with each Pi

prime and discrete, is provable using the par rule on valid sentences, of lesser or
equal size, of the form σ0

a, σ
0
R, σ

0
C ||σS

C � p, S ↪→ P0, e and σ1
a, σ

1
R, σ

1
C ||σS

C � a
′, R′ ↪→⊗n

i=1 Pi, e
′. All substitutions mentioned above are required to be epi (i.e., with no

idle names).

Proof. By Fact 4.A.10 and Corollary 4.A.11, a can be decomposed as
⊗n

i pi (with
discrete and prime pi). We immediately utilize that, assuming validity of the original
sentence, the width of a and

⊗n
i Pi must be equal.

We have, by Fact 4.A.10 (using, as usual, unqualified local identities and intro-
ducing C def=

⊗n
i=1 Pi)

(id⊗ σa)
n⊗
i

pi = (id⊗ σC(idV0 ⊗ idV ⊗ σR ⊗ idZ))((P0 ⊗ C ⊗ idU )R⊗ idZ)d.

By Proposition 4.A.13, there exists a substitution σL, s.t.,

σa = σC(idV0 ⊗ idV ⊗ σR ⊗ idZ)σL, (4.4)

and (id⊗ σL)
n⊗
i

pi = ((P0 ⊗ C ⊗ idU )R⊗ idZ)d. (4.5)
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We can partition the redex according to the innerfaces of P0 and C; and then
partition the parameter according to the partioning of the redex. From (4.5) we can
derive

(id⊗ σL)
n⊗
i

pi = ((P0 ⊗ idU0)R0 ⊗ idZ0)d0⊗

((C ⊗ idU ′)
m⊗

i=1

Ri ⊗ idZ′)
l⊗

i=1

di, (4.6)

introducing a few more convenient metavariables: For the partioned parts of the
redex and parameter, we let

⊗m
i Ri

def= R and
⊗l

i di
def= d (where each Ri and di is a

product of primes). Also, in the following, we shall use the shorthands R′ def=
⊗m

i=1Ri

and d′
def=
⊗l

i=1 di.

From (4.6) we see that we must be able to partition σL equally. The substitution
must be on the form σL =

(
σL
P0
⊗ σL

R0
⊗ σL

d0

)
⊗
(
σL
C ⊗ σL

R′ ⊗ σL
d′
)
, as we can split

σL according to the outerfaces of ((P0⊗ idU0)R0⊗ idZ0)d0 and ((C⊗ idU ′)R′⊗ idZ′)d′.
(This splitting is unique; as are all the other splittings of wiring in this lemma, since
we work only on epi substitutions — cf. Lemma 4.A.5 and Lemma 4.A.6.)

By Corollary 4.A.17, as the bigraphs are ground (and hence, there are no per-
mutations to consider), we find

(id⊗ σL
P0
⊗ σL

R0
⊗ σL

d0
)p0 = ((P0 ⊗ idU0)R0 ⊗ idZ0)d0 (4.7)

and (id⊗ σL
C ⊗ σL

R′ ⊗ σL
d′)

n⊗
i=1

pi = ((C ⊗ idU ′)R′ ⊗ idZ′)d′. (4.8)

We can also split σa by its innerface, which it shares with σL (cf. (4.4)), and define(
σP0
a || σR0

a || σd0
a

)
||
(
σC
a || σR′

a || σd′
a

)
def= σa.

(In the following we also use σR
a

def= σR0
a || σR′

a .)
Equally, we can split σR by its innerface into σR0 ||σR′ (corresponding to the out-

erface of σL
R0

and σL
R′ , respectively). Finally, we split σC by its innerface (cf. (4.4)),

to define
σP0
C || σd0

C || σ
R
C || σC

C || σd′
C

def= σC.

We cannot immediately split σR
C into two, as we could for σR

a . This part of the
context-wiring needs special care.
Now (4.4) can be expressed like this (rearranging terms slightly to compose matching
wirings)

σP0
a || σd0

a || σR
a || σC

a || σd′
a = (σP0

C || σd0
C || σ

R
C || σC

C || σd′
C ) ◦

σL
P0
⊗ σL

d0
⊗ (σR0σ

L
R0
|| σR′σL

R′)⊗ σL
C ⊗ σL

d′

= σP0
C σL

P0
|| σd0

C σL
d0
|| σR

C(σR0σ
L
R0
|| σR′σL

R′) ||
σC
Cσ

L
C || σd′

C σ
L
d′ .
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We note that by Lemma 4.A.4, as each pair of wirings of the parallel product have
equal interfaces, they are equal (i.e., σP0

a = σP0
C σL

P0
, σd0

a = σd0
C σL

d0
, . . . ).

We now consider the substitution working on the redex stemming from the con-
text, σR

C , which needs a little extra care. We have, by the arguments above, in
particular σR

a = σR
C(σR0σ

L
R0
|| σR′σL

R′).
Splitting σR

C by the outerfaces of σR0 and σR′ , we get

σR
a = σR0

a || σR′
a = (σR0

C || σR′
0

C || σR′
C )(σR0σ

L
R0
|| σR′σL

R′),

as, in general, σR0 and σR′ can share names in their outerface; σR′
0

C works on those
shared names.

For ease of notation, we break our metavariable conventions for substitutions
temporarily, and introduce φR

C = σR0
C || σR′

0
C and ψR

C = σ
R′

0
C || σR′

C . Applying
Lemma 4.A.7(4.2), we have

σR0
a || σR′

a = (φR
CσR0σ

L
R0
|| ψR

CσR′σL
R′),

and, applying Lemma 4.A.4, we find that

σR0
a = φR

CσR0σ
L
R0
, (4.9)

σR′
a = ψR

CσR′σL
R′ . (4.10)

And now, finally, we are set to utilize what we have learnt from these some-
what tedious symbol manipulations. Composing on both sides of (4.7) with id ⊗(
σP0
C || φR

CσR0 || σ
d0
C

)
, and using the equalities for the substitutions that we have

found above, we derive(
id⊗

(
σP0
C || φR

CσR0 || σ
d0
C

))
(id⊗ σL

P0
⊗ σL

R0
⊗ σL

d0
)p0 =(

id⊗
(
σP0
C || φR

CσR0 || σ
d0
C

))
((P0 ⊗ idU0)R0 ⊗ idZ0)d0

⇐⇒
(
id⊗

(
σP0
a || σR0

a || σd0
a

))
p0 =

(
id⊗

(
(σP0

C || φR
C || σ

d0
C )(idV0 ⊗ σR0 ⊗ idZ0)

))
◦

((P0 ⊗ idU0)R0 ⊗ idZ0)d0

Analogous manipulations from (4.8) and, using in particular (4.10), ensures us that
we have valid sentences

σP0
C || σR0

a || σd0
a , σR0 , σ

P0
C || σd0

C || σ
R0
C || σR′

0
C � p0, R0(→ P0, d0,

and

σC
a || σR′

a || σd′
a , σR′ , σC

C || σd′
C || σR′

C || σ
R′

0
C �

n⊗
i=1

pi, R
′(→

n⊗
i=1

Pi, d
′,

which by par yields the original sentence.
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Lemma (4.3.8). Every valid sentence σa, σR, σC � a,R ↪→ idε, d is provable using
par and wiring-axiom.

Proof. Since C = idε, a must have width 0, hence also a = idε the only discrete
bigraph with local innerface (in this case, actually ground innerface) of width 0.
Similarly, R and d must have width 0, hence be idε. We analyze the wirings, in turn:

Agent By Fact 4.A.10, the agent is expressible as (σa ⊗ idε)idε, hence σa = Y for
some Y .

Context Equally, by Fact 4.A.10, the context is (σC⊗ idε)(idε⊗ idU ) (for some names
U stemming from the redex (wiring)). Hence, σC : U → Y .

Redex And finally, also by Fact 4.A.10, redex is (σR⊗ idε)idε, hence σR : ε→ U = U .

By the arguments above, the original sentence must be on the form,

Y, U, σC � idε, idε(→ idε, idε (σC : U → Y ).

By induction on the size of Y it is immediate that this sentence is derivable by |Y |−1
applications of par from sentences, which are instances of wiring-axiom.

note 4.A.21. Iterating Lemma 4.3.7 allows us to break any product of discrete
primes in context and agent into prime parts, resulting in sentences of the form

σa, σR, σC � p,R(→ P, d,

for (discrete) primes p, P and epi substitutions σa, σR, σC. We treat in Lemma 4.3.7
only wirings with no idle names; we handle the idle names by (iterated) application
of Lemma 4.3.8, where there are no primes in the context or agent.

Hence, in the following lemmas all wiring is epi substitutions, and we are guar-
enteed that any splitting of wiring is unique.

Lemma (4.3.9). Every valid sentence σa, σR, σC � p,R ↪→ P, d, with p and P
prime and discrete, is provable using the lsub rule on a valid sentence, of lesser or
equal size, of the form σ′a, σ

′
R, σ

′
C � p

′, R ↪→ P ′, d, where p′ and P ′ are discrete free
primes. All substitutions mentioned above are required to be epi (i.e., with no idle
names).

Proof. We have (by Fact 4.A.10 and Proposition 4.A.8),

p = (σ̂q ⊗ idW )(Xq)q, and P = (σ̂Q ⊗ idV )(XQ)Q,

where q and Q are free primes.
Hence, given validity of the original sentence; by standard manipulations,

(σa ⊗ id)(σ̂q ⊗ idW )(Xq)p = (σC ⊗ id)◦
((((σ̂Q ⊗ idV )(XQ)Q)⊗ σR)R⊗ idXq)d

⇐⇒ (σa ⊗ id)(X)(σq ⊗ idW ⊗ id)p = (σC ⊗ id)◦
((((X)(σQ ⊗ idV ⊗ id)Q)⊗ σR)R⊗ idXq)d

⇐⇒ (X)(σa ⊗ σq ⊗ id)p = (X)(σC ⊗ σQ ⊗ id)((Q⊗ σR)R⊗ idXq)d,
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assuming σ̂q (hence, necessarily also σ̂Q) has outerface (X).
Now, by Lemma 4.A.18, we also have

(σa ⊗ σq ⊗ id)p = (σC ⊗ σQ ⊗ id)((Q⊗ σR)R⊗ idXq)d.

Hence, choosing σ′a = σa ⊗ σq, σ′C = σC ⊗ σQ, p′ = q, and P ′ = Q, we have a valid
sentence, which by lsub yields the original sentence.

Lemma (4.3.10). Every valid sentence σa, σR, σC � p,R ↪→ Q, d, with p and Q
discrete and free primes, is provable using the merge, par (iterated), and switch
rules on valid sentences, each of lesser or equal size, and each on one of two forms:

• σ′a, σ′R, σ′C � pN, id ↪→ PN, e, where pN and PN are free discrete primes,

• σ′a, σ′R, σ′C � m,S ↪→M, e, where m and M are free discrete molecules.

All substitutions mentioned above are required to be epi (i.e., with no idle names).

Proof. By Fact 4.A.10, and the propositions on normal forms (for namediscrete
primes, [DB06, Theorem 1(2)] and for discrete, Proposition 4.A.8), we see that,

p = (merge ⊗id)
k⊗
i

mi,

Q = (merge ⊗id)

((
n⊗
i

pαiq

)
⊗

m⊗
i

Mi

)
π,

and R =
l⊗
i

Pi,

as R is regular. Then by Fact 4.A.10 and Proposition 4.A.13, there exists a substi-
tution σL, s.t.,

σa = σC(σR ⊗ idV ⊗ idZ)σL, (4.11)

and

(id⊗ σL)(merge ⊗id)
k⊗
i

mi

= (merge ⊗id)

((((
n⊗
i

pαiq

)
⊗

m⊗
i

Mi

)
π ⊗ idU

)(
l⊗
i

Pi

)
⊗ idZ

)
d.

(4.12)
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Working on (4.12) we get (applying the push-through-lemma [DB06]),

(id⊗ σL) (merge ⊗id)
k⊗
i

mi

= (merge ⊗id)

(((
n⊗
i

pαiq

)
⊗

(
m⊗
i

Mi

)
⊗ idU

)(
l⊗
i

Pπ−1(i)

)
⊗ idZ

)
πd

= (merge ⊗id)

((
n⊗
i

(pαiq⊗ id)Pπ−1(i)

)
⊗

(
m⊗
i

(Mi ⊗ id)Si

)
⊗ idZ

)
πd

= (merge ⊗id)

((
n⊗
i

(
(pαiq⊗ id)Pπ−1(i) ⊗ id

)
ei

)
⊗

m⊗
i

((Mi ⊗ id)Si ⊗ id) fi

)
,

= (merge ⊗id)

((
n⊗
i

ti

)
⊗

m⊗
i

ui

)
, (4.13)

where we define

m⊗
i

Si
def=

l⊗
i=n

Pπ−1(i),

(
n⊗
i

ei

)
⊗

m⊗
i

fi
def= π d,

∀i ∈ n ti
def=
(
(pαiq⊗ id)Pπ−1(i) ⊗ id

)
ei, and

∀i ∈ m ui
def= ((Mi ⊗ id)Si ⊗ id) fi.

Each ei, Si and fi are determined by the innerfaces of the corresponding Pπ−1(i), Mi

and Si, respectively.
Since σL shares global outerface with the product of the ti’s and ui’s, we can

partition it according to the outerfaces of those primes.(
n⊗
i

σt
i

)
⊗

m⊗
i

σu
i = σ (4.14)

We do not want to break the redex and parameter entirely into molecules in this
step. Instead, as each mi represent a top-level node of the agent, it is easily seen
that we can permute and partition the mi’s into n products, pi, and m molecules,
ni, which match the place-graph structure in each ti and ui, respectively:(

n⊗
i

pi

)
⊗

m⊗
i

ni
def= (ρ⊗ id)

k⊗
i

mi (4.15)

for some permutation ρ. Since σL was also partitioned according to the outerfaces
of ti and ui, the outerface of each pi will match the innerface of each σt

i , and the
outerface of each ni will match the innerface of each σu

i .
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More formally, we can easily prove a little lemma for ground molecules and
primes, saying that

(merge ⊗id)
n⊗
i

mi = (merge ⊗id)
m⊗
i

pi

iff (for some ρ, ki)

∀ i ∈ m pi = (merge ⊗id)

 ki⊗
j

mρ(j)

 .

The point is, that when we have one of the products under a merge split wholly
into molecules, we can express each prime pi just by taking each of the molecules
mi that match it.

Consequentially, by combining (4.14) and (4.15), we find that

(∀i ∈ n) (σt
i ⊗ id)pi = ti (4.16)

and (∀i ∈ m) (σu
i ⊗ id)ni = ui (4.17)

Now we concern ourselves with the wirings of equation (4.11). We split σa by
the innerface according to the innerfaces of the σt

i ’s and σu
i ’s, to get

σa =
(

n

i

σt
i,a

)
||
(

m

i

σu
i,a

)
.

We also split σC(σR ⊗ idV ⊗ idZ) accordingly

σC(σR ⊗ idV ⊗ idZ)

((
n⊗
i

σt
i

)
⊗

m⊗
i

σu
i

)

= σC

((
n

i

σt
i,R

)
||
(

m

i

σu
i,R

)
⊗ idV ⊗ idZ

)(( n⊗
i

σt
i

)
⊗

m⊗
i

σu
i

)

=
((

n

i

σt
i,C(σt

i,R ⊗ id)
)
||
(

m

i

σu
i,C(σu

i,R ⊗ id)
))(( n⊗

i

σt
i

)
⊗

m⊗
i

σu
i

)
(4.18)

in the first step splitting σR, s.t.

σR =
(

n

i

σt
i,R

)
||
(

m

i

σu
i,R

)
,

and in the second step using Lemma 4.A.7(4.3) (iterated) to split shared wiring in
σC into n+m substitutions according to σt

i,R and σu
i,R.

As each σt
i,a and σu

i,a has the same interfaces as σt
i,C(σt

i,R⊗ id) and σu
i,C(σu

i,R⊗ id),
respectively, by Lemma 4.A.4 they are equal. By equational manipulations identical
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to those concluding the proof of Lemma 4.3.7, we can infer from (4.16), (4.17), and
(4.18), that,

(∀i ∈ n)
(
σt

i,a ⊗ id
)
pi =

(
σt

i,C

(
σt

i,R ⊗ id
)
⊗ id

)
ti

and (∀i ∈ m)
(
σu

i,a ⊗ id
)
ni =

(
σu

i,C

(
σu

i,R ⊗ id
)
⊗ id

)
ui.

We check and find, that we have n + m valid sentences which by par (iterated)
yields the original sentence by a single application of merge.

Finally, we note that each sentence corresponding to the first n equations,

σt
i,a, σ

t
i,R, σ

t
i,C � pi, Pπ−1(i)(→ pαiq, ei,

is a consequence by switch of the sentence,

σt
i,a, idε, σ

t
i,C

(
αiσπ−1(i) ⊗ σt

i,R ⊗ id
)
� pi, id(→ PN

π−1(i), ei

for Pi = (σ̂i ⊗ id) (Yi)PN
i ; where PN

π−1(i) is discrete, free and prime.

Lemma (4.3.11). Every valid sentence σa, σR, σC � m,R ↪→M,d, with m and M
free discrete molecules, is provable using the ion rule on a valid sentence σ′a, σ

′
R, σ

′
C �

p,R ↪→ P, d, of lesser size, where p and P are discrete primes. All substitutions
mentioned above are required to be epi (i.e., with no idle names).

Proof. By Fact 4.A.10, and the normal form for free discrete molecules (cf. [DB06]),
we can express m as

m =
(
K~y( ~X) ⊗ id

)
q,

and M as
M =

(
K~u( ~W ) ⊗ id

)
Q,

where q and Q are namediscrete and prime.3

Assuming validity of the original sentence, by Fact 4.A.10 and Proposition 4.A.13,
there exists a substitution σL, s.t.,

σa = σC(idV ⊗ σR ⊗ idZ)σL. (4.19)

and (id⊗ σL)
(
K~y( ~X) ⊗ id

)
q =

(((
K~u( ~W ) ⊗ id

)
Q⊗ idU

)
R⊗ idZ

)
d. (4.20)

Since the K-node on the righthand-side is wired discretely to ~u’s, the lefthand-side
must match this. Hence, we must have

σL = ~u/~y ⊗ σL
1 .

3Note, that for this proof only, we break our convention of only eliding interfaces on local
identities. The identities introduced in the expressions for m and M are global, but as they are
inessential for the analysis, to ease the notational clutter, we shall elide the interfaces for these two
identities.
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We define,

σ̂( ~X)

def=
| ~X|⊗
i

(xi)/(Xi) and φ̂( ~W )

def=
| ~W |⊗

i

(xi)/(Wi),

such that we can decompose the ions, and express (4.20) as,(
K~u(~x) ⊗ id

) (
σ̂( ~X) ⊗ σ

L
1

)
q =

(
K~u(~x) ⊗ id

) (((
φ̂( ~W ) ⊗ id

)
Q⊗ idU

)
R⊗ idZ

)
d.

(4.21)

Applying Proposition 4.A.9, we have,(
σ̂( ~X) ⊗ σ

L
1

)
q =

(((
φ̂( ~W ) ⊗ id

)
Q⊗ idU

)
R⊗ idZ

)
d. (4.22)

We split σa and σC into the wiring linked to the K-node (i.e., the ~y’s, and the ~u’s,
respectively) and a remainder.

σK
a || σr

a
def= σa,

and σK
C~u/~y || σr

C (σR ⊗ id)σL
1

def= σC (idV ⊗ σR ⊗ idZ)
(
~u/~y ⊗ σL

1

)
.

From (4.19), with the help of Lemma 4.A.4, then also, as the interfaces of the
corresponding substitutions match,

σK
a = σK

C~u/~y,

and σr
a = σr

C (idV ⊗ σR ⊗ idZ)σL
1 .

Composing on both sides of (4.22) with (id⊗ σr
C (idV ⊗ σR ⊗ idZ)) and using the

equalities defined above, we find,

(id⊗ σr
a)
(
σ̂( ~X) ⊗ id

)
q

= (id⊗ σr
C (idV ⊗ σR ⊗ idZ))

(((
φ̂( ~W ) ⊗ id

)
Q⊗ idU

)
R⊗ idZ

)
d.

Choosing σ′a = σr
a, σ′R = σR, σ′C = σr

C, p =
(
σ̂( ~X) ⊗ id

)
q, and

P =
(((

φ̂( ~W ) ⊗ id
)
Q⊗ idU

)
R⊗ idZ

)
d,

we have a valid sentence, which by ion yields the original sentence.

Lemma (4.3.12). Every valid sentence σa, σR, σC � p, id ↪→ P, e, with p and P
free discrete primes, is provable using the merge and par (iterated) rules on valid
sentences of equal or lesser size, which are either instances of rule prime-axiom
or of the form σ′a, σ

′
R, σ

′
M � m,R ↪→ M,d. All substitutions mentioned above are

required to be epi (i.e., with no idle names).
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Proof. (Sketch) The proof is similar to the proof of Lemma 4.3.10, but simpler as
the redex is a (local) identity. This also implies σR = idε, since for some local
identity (id ⊗ σR)R must be defined. For the concretions in P , instead of arriving
at sentences which are derivable by switch, each such sentence is an instance of
prime-axiom. We treat these basecases in more detail below.

The analysis for the wirings is simplified as σR is an identity. We find (focusing
only on the wiring concerned with the concretions of P ),

(∀i ∈ n) σt
i,a = σt

i,Cσ
t
i . (4.23)

Performing an analysis analogous to that in the proof of Lemma 4.3.10 we have
(instead of (4.16))

(∀i ∈ n) (σt
i ⊗ id)pi = (αi ⊗ id⊗ idZi) (pUiq⊗ idZi) ei, (4.24)

for renamings αi : Xi → Ui, and primes ei : 〈Zi ]Ui〉 stemming from the parameter.
From (4.24), we can derive an expression for ei in terms of pi. For each i ∈ n,

we have

(σt
i ⊗ id)pi = (αi ⊗ id⊗ idZi) (pUiq⊗ idZi) ei

⇐⇒ (α−1 ⊗ id⊗ idZi)(σ
t
i ⊗ id)pi = (pUiq⊗ idZi) ei

⇐⇒ (Xi)(α−1 ⊗ id⊗ idZi)(σ
t
i ⊗ id)pi = ei

(4.25)
Since we know ei is discrete, from (4.25) we see that σt

i must be a renaming on all
names not linked to Ui (to be localized by the abstraction). Hence, for each i ∈ n,

σt
i = σt′

i ⊗ βi,

for βi :→ Zi and σt′
i :→ Ui.

By composing on both sides of (4.24) with (σt
i,C⊗ id) and utilizing the forms for

ei from (4.25)

(∀i ∈ n) (σt
i,C(σt′

i ⊗ βi)⊗ id)pi

= (σt
i,C ⊗ id)(pαiq⊗ idZi)(Xi)(α−1

i ⊗ id⊗ idZi)(σ
t
i ⊗ id)pi (4.26)

To be strict, we also need to refer to equation (4.23) to see that σt
i,C(σt′

i ⊗ βi) is, in
fact, wiring stemming from the agent. In other words, (4.23) gives an equation of
the agent wiring in terms of the wiring from the context and parameter.

The n equations stated in (4.26), means that we have n valid sentences on the
form

σt
i,C(σt′

i ⊗ βi), idε, σ
t
i,C � pi, id(Xi)(→ pαiq, (Xi)(α−1

i ⊗ id⊗ idZi)(σ
t
i ⊗ id)pi.

It is easily verified that those sentences are instances of prime-axiom (choosing, in
particular, τ equal to α−1

i σt′
i ).
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Chapter 5

An Implementation of Bigraph
Matching

Abstract
We describe a provably sound and complete matching algorithm for bi-
graphical reactive systems. The algorithm has been implemented in our
BPL Tool, a first implementation of bigraphical reactive systems. We de-
scribe the tool and present a concrete example of how it can be used to
simulate a model of a mobile phone system in a bigraphical representation
of the polyadic π calculus.

Preface This chapter contains a paper currently submitted for publication. The
paper was co-authored with Arne J. Glenstrup, Lars Birkedal, and Espen Højsgaard
from the IT University of Copenhagen.

5.1 Introduction

The theory of bigraphical reactive systems [JM04] provides a general meta-model for
describing and analyzing mobile and distributed ubiquituous systems. Bigraphical
reactive systems form a graphical model of computation in which graphs embodying
both locality and connectivity can be reconfigured using reaction rules. So far it has
been shown how to use the theory for recovering behavioural theories for various
process calculi [JM04, Jen06, LM04] and how to use the theory for modelling context-
aware systems [BDE+06].

In this paper we describe the core part of our BPL Tool, a first prototype im-
plementation of bigraphical reactive systems, which can be used for experimenting
with bigraphical models.

The main challenge of implementing the dynamics of bigraphical reactive sys-
tems is the matching problem, that is, to determine for a given bigraph and re-
action rule whether and how the reaction rule can be applied to rewrite the bi-
graph. When studying the matching problem in detail, one finds that it is a surpris-
ingly tricky problem (it is related to the NP-complete graph embedding problem).

107
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Therefore we decided early on to study the matching problem quite formally and
base our prototype implementation on a provably correct specification. In previous
work [BDGM07, DGBM07], we gave a sound and complete inductive characteri-
zation of the matching problem for bigraphs. Our inductive characterization was
based on normal form theorems for binding bigraphs [DB06].

In the present paper we extend the inductive characterization from graphs to
a term representation of bigraphs. A single bigraph can be represented by sev-
eral structurally congruent bigraph terms. Using an equational theory for bigraph
terms [DB06], we essentially get a non-deterministic matching algorithm operating
on bigraph terms. However, such an algorithm will be wildly non-deterministic and
we thus provide an alternative, but still provably sound and complete, characteriza-
tion of matching on terms, which is more suited for mechanically finding matching.
In particular, it spells out how and where to make use of structural congruences.

We have implemented the resulting algorithm in our BPL Tool, which we briefly
describe in Section 5.6. We also present an example of a bigraphical reactive system,
an encoding of the polyadic π calculus, and show how it can be used to simulate a
simple model of a mobile phone system.

Bigraphical reactive systems are related to general graph transformation sys-
tems; [EEPT06] provide a recent comprehensive overview of graph transformation
systems. In particular, bigraph matching is related to the general graph pattern
matching (GPM) problem, so general GPM algorithms might also be applicable to
bigraphs [Ull76, Fu97, LV02, Zün94]. As an alternative to implementing matching
for bigraphs, one could try to formalize bigraphical reactive systems as graph trans-
formation systems and then use an existing implementation of graph transformation
systems. Some promising steps in this direction have been taken [SS05], but they
have so far fallen short of capturing precisely all the aspects of binding bigraphs. For
a more detailed account of related work, in particular on relations between BRSs,
graph transformations, term rewriting and term graph rewriting, see the Thesis
of [Dam06, Section 6].

The remainder of this paper is organized as follows. In Section 5.2 we give an
informal presentation of bigraphical reactive systems and in Section 5.3 we present
our matching algorithm: we first recall the graph-based inductive characterization,
then we develop a term-based inductive characterization, which forms the basis for
our implementation of matching. In Section 5.4 we describe how our implementation
deals with the remaining nondeterminism and in Section 5.5 we discuss a couple of
auxiliary technologies needed for the implementation of the term-based matching
rules. In Section 5.6 we finally describe the BPL Tool and present an example use
of it. We conclude and discuss future work in Section 5.7.

5.2 Bigraphs and Reactive Systems

In the following, we present bigraphs informally; for a formal definition, see the work
by [JM04] and [DB06].
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5.2.1 Concrete Bigraphs

A concrete binding bigraph G consists of a place graph GP and a link graph GL. The
place graph is an ordered list of trees indicating location, with roots r0, . . . , rn, nodes
v0, . . . , vk, and a number of special leaves s0, . . . , sm called sites, while the link graph
is a general graph over the node set v0, . . . , vk extended with inner names x0, . . . , xl,
and equipped with hyper edges, indicating connectivity.

We usually illustrate the place graph by nesting nodes, as shown in the upper
part of Figure 5.1 (ignore for now the interfaces denoted by “ : · → ·”). A link

Bigraph G : 〈3, [{}, {}, {x0, x2}], X〉 → 〈2, [{y0}, {}], Y 〉

0

1

2

y0 y1 y2

x0 x2

x1

e2

v0

v1
v2 v3

e1

X = {x0, x1, x2}
Y = {y0, y1, y2}

Place graph GP : 3→ 2

roots:

sites:

r0

v0

v1

s0

v2

r1

v3

s2 s1

Link graph GL : X → Y

names:

inner names:

y0 y1 y2

v0

v1

v2

v3

x0 x2 x1

e1

e2

Figure 5.1: Example bigraph illustrated by nesting and as place and link graph.

is a hyper edge of the link graph, either an internal edge e or a name y. Links
that are names are called open, those that are edges are called closed. Names and
inner names can be global or local, the latter being located at a specific root or site,
respectively. In Figure 5.1, y0 is located at r0, indicated by a small ring, and x0 and
x2 are located at s2, indicated by writing them within the site. Global names like y1

and y2 are drawn anywhere at the top, while global inner names like x1 are drawn
anywhere at the bottom. A link, including internal edges like e2 in the figure, can
be located with one binder (the ring), in which case it is a bound link, otherwise
it is free. However, a bound link must satisfy the scope rule, a simple structural
requirement that all points (cf. next paragraph) of the link lie within its location
(in the place graph), except for the binder itself. This prevents y2 and e1 in the
example from being bound.

5.2.2 Controls and Signatures

Every node v has a control K, indicated by v : K, which determines a binding and
free arity. In the example of Figure 5.1, we could have vi : Ki, i = 0, 1, 2, 3, where
arities are given by K0 : 1, K1 : 2, K2 : 3, K3 : 1→ 2, using K : f as a shorthand for
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K : 0 → f . The arities determine the number of bound and free ports of the node,
to which bound and free links, respectively, are connected. Ports and inner names
are collectively referred to as points.

In addition to arity, each control is assigned a kind, either atomic, active or
passive, and describe nodes according to their control kinds. We require that atomic
nodes contain no nodes except sites; any site being a descendant of a passive node
is passive, otherwise it is active. If all sites of a bigraph G are active, G is active.

A collection of controls with their associated kinds and arities is referred to as a
signature.

5.2.3 Abstract Bigraphs

While concrete bigraphs with named nodes and internal edges are the basis of bi-
graph theory [JM04], our prime interest is in abstract bigraphs, equivalence classes
of concrete bigraphs that differ only in the names of nodes and internal edges1.
Abstract bigraphs are illustrated with their node controls (see Figure 5.13 in Sec-
tion 5.6). In what follows, “bigraph” will thus mean “abstract bigraph.”

5.2.4 Interfaces

Every bigraph G has two interfaces I and J , written G : I → J , where I is the
inner face and J the outer face. An interface is a triple 〈m, ~X,X〉, where m is the
width (the number of sites or roots), X the entire set of local and global names, and
~X indicates the locations of each local name, cf. Figure 5.1. We let ε = 〈0, [ ], {}〉;
when m = 1 the interface is prime, and if all x ∈ X are located by ~X, the interface
is local. As in the work by [Mil04] we write G : → J or G : I → for G : I → J
when we are not concerned about about I or J , respectively.

A bigraph G : I → J is called ground, or an agent, if I = ε, prime if I is local
and J prime, and a wiring if m = n = 0, where m and n are the widths of I and J ,
respectively. For I = 〈m, ~X,X〉, bigraph idI : I → I consists of m roots, each root
ri containing just one site si, and a link graph linking each inner name x ∈ X to
name x.

5.2.5 Discrete and Regular Bigraphs

We say that a bigraph is discrete iff every free link is a name and has exactly one
point. The virtue of discrete bigraphs is that any connectivity by internal edges
must be bound, and node ports can be accessed individually by the names of the
outer face. Further, a bigraph is name-discrete iff it is discrete and every bound link
is either an edge, or (if it is a name) has exactly one point. Note that name-discrete
implies discrete.

A bigraph is regular if, for all nodes v and sites i, j, k with i ≤ j ≤ k, if i and
k are descendants of v, then j is also a descendant of v. Further, for roots ri′ and
rj′ , and all sites i and j where i is a descendant of ri′ and j of rj′ , if i ≤ j then

1Formally, we also disregard idle edges: edges not connected to anything.
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i′ ≤ j′. The bigraphs in the figures are all regular, the permutation in Table 5.1
is not. The virtue of regular bigraphs is that permutations can be avoided when
composing them from basic bigraphs.

5.2.6 Product and Composition

For bigraphs G1 and G2 that share no names or inner names, we can make the tensor
product G1 ⊗G2 by juxtaposing their place graphs, constructing the union of their
link graphs, and increasing the indexes of sites in G2 by the number of sites of G1.
We write

⊗n
i Gi for the iterated tensor G0⊗· · ·⊗Gn−1, which, in case n = 0, is idε.

The parallel product G1 ||G2 is like the tensor product, except global names can
be shared: if y is shared, all points of y in G1 and G2 become the points of y in
G1 ||G2.

The prime product G1 |G2 is like the parallel product, except the result has just
one root (also when G1 and G2 are wirings), produced by merging any roots of G1

and G2 into one.
We can compose bigraphs G2 : I → I ′ and G1 : I ′ → J , yielding bigraph

G1 ◦G2 : I → J , by plugging the sites of G1 with the roots of G2, eliminating both,
and connecting names of G2 with inner names of G1. In the following, we will omit
the ‘◦’, and simply write G1G2 for composition, letting it bind tighter than tensor
product.

5.2.7 Notation, Basic Bigraphs, and Abstraction

In the sequel, we will use the following notation: ] denotes union of sets required to
be disjoint; we write {~Y } for Y0]· · ·]Yn−1 when ~Y = Y0, . . . Yn−1, and similarly {~y}
for {y0, . . . , yn−1}. For interfaces, we write n to mean 〈n, [∅, . . . , ∅], ∅〉, X to mean
〈0, [ ], X〉, 〈X〉 to mean 〈1, [{}], X〉 and (X) to mean 〈1, [X], X〉.

Any bigraph can be constructed by applying composition, tensor product and
abstraction to identities (on all interfaces) and a set of basic bigraphs, shown in
Table 5.1 [DB06]. For permutations, when used in any context, π ~XG or Gπ ~X , ~X is
given entirely by the interface of G; in these cases we simply write π ~X as π.

Given a prime P , the abstraction operation localises a subset of its outer names.
Note that the scope rule is necessarily respected since the inner face of a prime P is
required to be local, so all points of P are located within its root. The abstraction
operator is denoted by (·)· and reaches as far right as possible.

For a renaming α : X → Y , we write pαq to mean (α ⊗ id1)pXq, and when
σ : U → Y , we let σ̂ = (Y )(σ⊗ id1)pUq. We write substitutions ~y/[∅, . . . , ∅] : ε→ Y
as Y .

Note that [ ]/[ ] = /∅ = π0 = idε and merge1 = p∅q = π1 = id1, where πi is the
nameless permutation of width i.
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Notation Example

Merge mergen : n→ 1 merge3 = 0 1 2

Concretion pXq : (X)→ 〈X〉 p{x1, x2}q =
0
x1

x1

x2

x2

Abstraction (Y )P : I→〈1, [Y ], Z ] Y 〉 ({y1, y2})({y3})p{y1, y2, y3, z}q =
0

y1

y1

y2

y2

y3

y3

z

z

Substitution
σ

~y/ ~X : X → Y [y1, y2, y3]/[{x1, x2}, {}, {x3}] =
x1

y1

x2

y2

x3

y3

Renaming
α, β

~y/~x : X → Y [y1, y2, y3]/[x1, x2, x3] =
x1

y1

x2

y2

x3

y3

Closure /X : X → {} /{x1, x2, x3} =
x1 x2 x3

Wiring
ω

(id⊗ /Z)σ : X → Y
(id{y1,y2} ⊗ /{z1, z2})
[y1, z1, y2, z2] /
[{}, {x1, x2}, {x3, x4}, {x5}]

=
y1

x1 x2 x3

y2

x4 x5

Ion K~y( ~X) : ({ ~X})→ 〈{~y}〉 K[y1,y2]([{x1},{x2,x3},{}]) =
K

y1y2

x1x2x3

Permutation
π ~X

{i 7→ j, . . .} ~X

: 〈m, ~X,X〉 → 〈m,π( ~X), X〉 {0 7→ 2, 1 7→ 0, 2 7→ 1}[{x},∅,{y}] =
1 2 0

y

y

x

x

Table 5.1: Basic bigraphs, the abstraction operation, and variables ranging over
bigraphs.
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5.2.8 Bigraphical Reactive Systems

Bigraphs in themselves model two essential parts of context: locality and connec-
tivity. To model also dynamics, we introduce bigraphical reactive systems (BRS) as
a collection of rules. Each rule R

%−→R′ consists of a regular redex R : I → J , a
reactum R′ : I ′ → J , and an instantiation %, mapping each site of R′ to a site of R,
and mapping local names in I ′ to those of I, as illustrated in Figure 5.2. Interfaces

R
0 1

x1 x2

R′

0 1
x0

1 x
0
2 x1

1 x
1
2

% % = [1&[x0
1 7→ x1, x

0
2 7→ x2],

1&[x1
1 7→ x1, x

1
2 7→ x2]]

Figure 5.2: A reaction rule

I = 〈m, ~X,X〉 and I ′ = 〈m′, ~X ′, X ′〉 must be local, and are related by X ′
i = X%(i),

where % must be a bijection between X ′
i and X%(i). We illustrate % by ‘i := j’,

whenever %(i) = j 6= i, or, alternatively, by listing [%(0), . . . , %(m′ − 1)]. Given an
instantiation % and a discrete bigraph d = d0 ⊗ · · · ⊗ dk with prime di’s, we let
%(d) = d%(0) ⊗ · · · ⊗ d%(k), allowing copying, discarding and reordering parts of d.

Given an agent a, a match of redex R is a decomposition a = C(idZ ⊗R)d, with
active context C and discrete parameter d with its global names Z. Dynamics is
achieved by transforming a into a new agent a′ = C(idZ ⊗ R′)d′, where d′ = %(d),
cf. Figure 5.3. This definition of a match is as given by [JM04], except that we

matching

instantiating

composing

d

d′

a′C%

R′

R a

Figure 5.3: The reaction cycle

here also require R to be regular. This restriction to regular redexes R simplifies the
inductive characterization of matching without limiting the set of possible reactions,
as sites in R and R′ can be renumbered to render R regular.

5.2.9 Bigraph Terms and Normal Forms

Expressing bigraphs as terms composed by product, composition and abstraction
over basic bigraph terms, [DB06] showed that bigraphs can be expressed on normal
forms uniquely up to certain permutations and renamings. Further, they showed
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equivalence of term and bigraph equality, which will allow us in Section 5.3.2 to
base our implementation on terms rather than graphs.

In this work, we use the normal forms shown in Figure 5.4, which are unique up
to permutation of Si’s and renaming of names not visible on the interfaces. Regular
bigraphs are expressed by the same forms, with the permutations removed.

M ::= (idZ ⊗K~y( ~X))N molecule
S ::= pαq | M singular top-level node
G ::= (idY ⊗mergen)(

⊗n
i Si)π global discrete prime

N ::= (X)G name-discrete prime
P,Q ::= (idZ ⊗ σ̂)N discrete prime
D ::= α⊗ (

⊗n
i Pi)π discrete bigraph

B ::= (ω ⊗ id( ~X))D binding bigraph

Figure 5.4: Normal forms for binding bigraphs

5.3 Matching

In this section we develop the theory underlying the matching engine. First, we
express matching inference using a graph representation; this representation is the
basis for correctness proofs. Then we transform it to be based on a term repre-
sentation more amenable to implementation, but in such a way that correctness is
preserved—achieving an implementation proven correct in great detail.

5.3.1 Inferring Matches using a Graph Representation

For simplicity, we will first consider just place graphs to explain the basic idea behind
matching inference.

Matching Place Graphs

A place graph match is captured by a matching sentence:

Definition 5.3.1 (Matching Sentence for Place Graphs). A matching sentence for
place graphs is a 4-tuple of bigraphs a,R‘ → C, d, all are regular except C, with a
and d ground. A sentence is valid iff a = CRd.

We infer place graph matching sentences using the inference system given in
Figure 5.5. Traversing an inference tree bottom-up, the agent is decomposed, while
constructing the context, using the ion, merge and par rules. The perm rule
permutes redex parts to align tensor factors with corresponding agent factors.

At the point in the agent where a redex root should match, leaving a site in the
context, the switch rule is applied, switching the roles of the context and redex.
This allows the remaining rules to be reused (above the switch rule) for checking



5.3 Matching 115

PRIME-AXIOM
p, id ↪→ id, p

ION
p,R ↪→ P, d

Kp,R ↪→ KP, d
SWITCH

p, id ↪→ P, d

p, P ↪→ id1, d

PAR
a,R ↪→ C, d b, S ↪→ D, e

a⊗ b, R⊗ S ↪→ C ⊗D, d⊗ e PERM
a,
⊗n

i Pπ−1(i) ↪→ C, πd

a,
⊗n

i Pi ↪→ Cπ, d

MERGE
a,R ↪→ C, d

merge a,R ↪→ merge C, d

Figure 5.5: Inference rules for deriving place graph matches

that the redex matches the agent. When a site in the redex is reached, whatever is
left of the agent should become (a part of) the parameter—this is captured by the
prime-axiom rule.

For a match with a redex R : m → n consisting of n nontrivial (i.e., non-
identity) primes, the inference tree will contain m applications of prime-axiom and
n applications of switch. Further, between any leaf and the root of the inference
tree, switch will be applied at most once. The structure of a matching inference
tree will thus generally be as illustrated in Figure 5.6; rules applied above switch

pax pax

pax

pax

pax

pax

switch

switch

switch

Figure 5.6: The general structure of an inference tree for matching (pax = prime-
axiom)

match agent and redex structure, while rules applied below match agent and context
structure.

Matching Binding Bigraphs

Turning now to consider binding bigraphs, we extend the matching sentences to
cater for links:

Definition 5.3.2 (Matching Sentence for Binding Bigraphs). A (binding bigraph)
matching sentence is a 7-tuple of bigraphs: ωa, ωR, ωC ` a,R‘→ C, d, where a,R,C
and d are discrete with local inner faces, all regular except C, with a and d ground.
It is valid iff (id⊗ ωa)a = (id⊗ ωC)(idZ]V ⊗ C)(idZ ⊗ (id⊗ ωR)R)d.

This definition separates the wirings, leaving local wiring in a, R, C and d, while
keeping global wiring of agent, redex and context in ωa, ωR and ωC , respectively.
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The validity property shows how a valid matching sentence relates to a match, as
illustrated in Figure 5.7.

a

id⊗ ωa

agent → =

d

idZ
R

ωR id

idZ]V C

id⊗ ωC
← context

← redex

agent︷ ︸︸ ︷
(id⊗ ωa)a =

context︷ ︸︸ ︷
(id⊗ ωC)(idZ]V ⊗ C)(idZ ⊗

redex︷ ︸︸ ︷
(id⊗ ωR)R)d.

Figure 5.7: Decomposition of the bigraphs of a valid matching sentence

To reach a system for inferring valid matching sentences for binding bigraphs,
we simply augment the place graph rules with wirings as shown in Figure 5.8, and
add three rules for dealing with purely wiring constructs, shown in Figure 5.9. A
detailed explanation of the rules is available in the literature [DGBM07], along with
proofs of soundness and completeness of the inference system.

5.3.2 Inferring Matches using a Term Representation

While the graph representation of matching sentences is useful for constructing a
relatively simple inference system amenable to correctness proofs, it is not sufficient
for an implementation based on syntax, that is, bigraph terms. One bigraph can
be represented by several different bigraph terms that are structurally congruent
by the axiom rules: a = a ⊗ id0 = merge1 a, a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c and
merge(a⊗b) = merge(b⊗a). If, for instance, we were to match agent a = merge((K⊗
L) ⊗ M) with redex R = K, we would first need to apply the axioms to achieve
R = merge((K⊗ id0)⊗ id0) before being able to apply the merge and par rules.

In the following, we recast the matching sentences to be tuples of 3 wirings and
4 bigraph terms ωa, ωR, ωC ` a,R  C, d, with the same restrictions and validity
as before, interpreting the terms as the bigraphs they represent. Given this, adding
just this one rule would be sufficient to achieve completeness of the inference system:

STRUCT
a ≡ a′ R ≡ R′ C ≡ C ′ h ≡ h′ ωa, ωR, ωC ` a′, R′  C ′, h′

ωa, ωR, ωC ` a,R C, h

The struct rule says that we can apply structural congruence to rewrite any term
a,R,C or h to a term denoting the same bigraph. With the help of the equational
theory for determining bigraph isomorphism on the term level [DB06], we have es-
sentially a nondeterministic algorithm for matching bigraph terms—implementable
in say, Prolog. A brief glance at the equational theory, shows us, though, that
the associative and commutative properties of the basic operators of the language
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PRIME-AXIOM
σ : W ] U → β : Z → U α : V →W τ : X → V p : 〈X ] Z〉

σ(β ⊗ ατ), idε, σ ` p, id(V ) ↪→ p α q, (β ⊗ τ̂)(X) p

ION

ωa, ωR, ωC ` ((~v)/( ~X)⊗ idU ) p,R ↪→ ((~v)/(~Z)⊗ idW ) P, d α = ~y/~u σ : {~y} →

σ || ωa, ωR, σα || ωC ` ( K~y( ~X) ⊗ idU ) p,R ↪→ ( K~u(~Z) ⊗ idW ) P, d

SWITCH

σ : W → U P : → 〈W ] Y 〉 d : 〈m, ~X,X ] Z〉
ωa, idε, ωC(σ ⊗ ωR ⊗ idZ) ` p, id ↪→ P, d

ωa, ωR, ωC ` p, (σ̂ ⊗ idY )(W ) P ↪→ p U q, d

PAR

ωa, ωR, ωC || ω ` a,R ↪→ C, d ωb, ωS, ωD || ω ` b, S ↪→ D, e

ωa || ωb, ωR || ωS, ωC || ωD || ω ` a⊗ b, R⊗ S ↪→ C ⊗D, d⊗ e

PERM

ωa, ωR, ωC ` a,
⊗m

i Pπ−1(i) ↪→ C, ( π ⊗ id) d

ωa, ωR, ωC ` a,
⊗m

i Pi ↪→ Cπ, d

MERGE

ωa, ωR, ωC ` a,R ↪→ C, d

ωa, ωR, ωC ` ( merge ⊗ idY ) a,R ↪→ ( merge ⊗ idX) C, d

Figure 5.8: Place graph rules (shaded) augmented for deriving binding bigraph
matches

WIRING-AXIOM
y,X, y/X ` idε, idε ↪→ idε, idε

ABSTR

σa : Z →W p : 〈Z ] Y 〉 σC : U →W P : → 〈U ]X〉
σa ⊗ ωa, ωR, σC ⊗ ωC ` p,R ↪→ P, d

ωa, ωR, ωC ` (σ̂a ⊗ idY )(Z)p,R ↪→ (σ̂C ⊗ idX)(U)P, d

CLOSE

σa : → U ] YR σR : → V ] YR σC : →W ] YC

σa, σR, idYR
⊗ σC ` a,R ↪→ C, d

(idU ⊗ /(YR ] YC))σa, (idV ⊗ /YR)σR, (idW ⊗ /YC)σC ` a,R ↪→ C, d

Figure 5.9: Added inference rules for deriving binding bigraph matches
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would yield a wildly nondeterminstic inference system, since we would need to apply
structural congruence between every step to infer a match. This is reminiscent of
the problems in implementing rewriting logic, that is, term rewriting modulo a set
of static equivalences [Mau, CDE+01, CDE+03]. Consequentially, we abandon the
fully general struct rule. For the purposes of stating the completeness theorem
below, we shall need to refer to sentences derived from the ruleset for bigraphs (i.e.,
from section 5.3.1) recast to terms with the help of the struct rule above. We shall
write such sentences ωa, ωR, ωC ` a,R  s C, h for wirings ωa, ωR, ωC and terms
a,R,C and h.

Definition 5.3.3. For wirings ωa, ωR, ωC and terms a,R,C and h, sentences
ωa, ωR, ωC ` a,R s C, h range over sentences derived from the rules of Figure 5.9—
reading a,R,C and h as terms—extended with the struct rule.

Instead, to specialize the characterization into a more efficient algorithm for
mechanically finding matches, we define normal inferences. Normal inferences are
classes of inferences that are complete in the sense that all valid matching sentences
can be inferred, but suitably restricted, such that inferences can be built mechan-
ically. In particular, normal inference definitions for term matching need to spell
out how and where to apply structural congruence. As a main trick, we utilize a
variant of the normal forms proven complete for binding bigraphs (cf. Section 5.2.9),
lending us a set of uniform representations of classes of bigraphs based directly on
terms for bigraphs; we define normal inferences that require each inference to start
by rewriting the term to be on normal form.

Before giving the format for normal inferences, we incorporate structural con-
gruence axioms into product and merge rules. We derive rules for iterated tensor
product and permutations under merge, arriving at the inference system shown in
Figure 5.10. In this inference system, the terms in the conclusion of every rule except
dnf is in some normal form as given by Figure 5.4, where e is a discrete prime (p) or
global discrete prime (g). An expression [[t]]G means term t expressed on G-normal
form—for instance, [[pαq]]G means (idY ⊗ merge1)(

⊗1
i pαq)—and similarly for the

remaining normal forms. The expression %̄(n,m) denotes the set of n-m-partitions.
An n-m-partition % is a partition of {0, . . . , n− 1} into m (possibly empty) subsets,
and for i ∈ m, %i is the ith subset. Given a metavariable X , X ranges over iterated
tensor products of X ’es. As indicated by the superscript, rules perE , parEn and
parE≡ can be used either on discrete primes p and P or global discrete primes g and
G.

The main differences from the preceding inference system is that we have replaced
the binary par rule by two iterative par rules, parEn and parE≡, and specialised the
merge rule into a rule, mer, that makes the partitioning of children in an agent
node explicit. The parE≡ rule splits up an iterated tensor product into a number of
products matching agent factors, while parEn performs the actual inductive inference
on each of the factors. (Note, by the way, that parE≡ and merE≡ correspond just to
particular instances of the struct-rule, that we abandoned above.)

Furthermore, note that the usage of the previous wiring-axiom-rule for intro-
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PAX
σ : W ] Z → α : V →W τ : X → V g : 〈X ] Z〉

σ(idZ ⊗ ατ), idε, σ ` g, [[id(V )]]P  [[pαq]]G, [[(idZ ⊗ τ̂)(X)g]]P

ION
σa, σR, σC ` (id⊗ (~v)/( ~X))n, P  (id⊗ (~v)/(~Z))N, q α = ~y/~u σ : {~y} →

(σ || σa), σR, (σα || σC) ` [[(idU ⊗K~y( ~X))n]]G, P  [[(idW ⊗K~u(~Z))N ]]G, q

SWX

σ : W → U G : → 〈W ] Y 〉 q : 〈m, ~X,X ] Z〉
σa, idε, σ

C(idZ ⊗ σ ⊗ σR) ` g, [[
⊗n

i id(Xi)]]
P  G, q

σa, σR, σC ` g, [[(idY ⊗ σ̂)(W )G]]P  [[pUq]]G, q

PARE
n

σ′ : IR → Ia (∀i ∈ n) σa
i , σ

R
i , σ || σC

i ` ei, P i  Ei, qi(
Ia ||

n

i
σa

i

)
,
(
IR ||

n

i
σR

i

)
,
(
σ′ || σ || n

i
σC

i

)
`
⊗n

i ei,
⊗n

i P i  
⊗n

i Ei,
⊗n

i qi

PARE
≡

P ′ij = Pj+
∑

r∈i lr q′ij = qj+
∑

r∈i kr
P ′ij : 〈kij , ~Xij〉 → ki =

∑
j∈li

kij

σa, σR, σC `
⊗n

i ei,
⊗n

i

⊗li
j P

′
ij  

⊗n
i Ei,

⊗n
i

⊗ki

j q′ij

σa, σR, σC `
⊗n

i ei,
⊗m

i Pi  
⊗n

i Ei,
⊗m′

i qi

PERE
σa, σR, σC ` e,

⊗n
i Qπ−1(i)  E,

⊗m
i qπ̄−1(i)

σa, σR, σC ` e,
⊗n

i Qi  Eπ,
⊗m

i qi

MER
σa, σR, σC `

⊗m
i (id⊗merge)

⊗
j∈%i,%∈%̄(n,m)mj , P  (

⊗m
i [[Sπ−1(i)]]G)π̄, q

σa, σR, σC ` (id⊗merge)
⊗n

i mi, P  (id⊗merge)
⊗m

i Si, q

ABS

σa
L : Z →W σC

L : U →W G : → 〈U ]X〉
σa

L ⊗ σa, σR, σC
L ⊗ σC ` g, P  G, q

σa, σR, σC ` (id⊗ σ̂a
L)(Z)g, P  (id⊗ σ̂C

L )(U)G, q

CLO
σa, σR, idYR

⊗ σC ` p, P  Qπ, q

(id⊗ /(YR ] YC))σa, (id⊗ /YR)σR, (id⊗ /YC)σC ` p, P  Qπ, q

DNF

a ≡ p R ≡ P C ≡ Qπ h ≡ q
p, P ,Q, q are on normal form R is regular

ωa, ωR, ωC ` p, P  Qπ, q

ωa, ωR, ωC ` a,R C, h

Figure 5.10: Inference rules for binding bigraph terms
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ducing idle linkage has been inlined to a side-condition on a slightly generalized
par-rule (i.e., the parEn-rule). The σ′ in that rule allows us to introduce idle linkage
in redex and agent, and link them in context; as previously allowed by the wiring-
axiom-rule. Hence, parEn also serves as an axiom, introducing 0-ary products of
idε’s on G- and P -normal forms.

While this inference system is more explicit about partitioning tensor products
(in the mer and parE≡ rules), there is still a lot of nondeterministic choice left
in the order in which the rules can be applied. To limit this, we define normal
inferences based, essentially, on the order rules were used in the proof of complete-
ness [DGBM07]. We derive a sufficient order that still preserves completeness:

Definition 5.3.4 (Normal Inference). A normal inference is a derivation using the
term matching rules of Figure 5.10 in the order specified by the grammar given in
Figure 5.11.

DG ::=



PAX · · ·

ION

ABS
DP

· · ·
· · ·

SWX
D′P
· · ·

D′G ::=


PAX · · ·

ION

ABS
D′P
· · ·
· · ·

DP ::=



DG

MER

PERG

PARG
≡

PARG
n

DG · · · DG

· · ·
· · ·
· · ·
· · ·

D′P ::=



D′G

MER

PERG

PARG
≡

PARG
n

D′G · · · D′G
· · ·
· · ·
· · ·
· · ·

DB ::= DNF

CLO

PERP

PARP
≡

PARP
n

ABS
DP

· · · · · · ABS
DP

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

Figure 5.11: Grammar for normal inferences for binding bigraphs with start symbol
DB

Now we can give the main theorem stating that normal inferences are sufficient
for finding all valid matches. The following theorem states formally for every sen-
tence derivable with the ruleset for bigraphs recast to bigraph terms by extending
with struct, that such a sentence is also derivable as a normal inference.
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Theorem 5.3.5 (Normal inferences are sound and complete). For wirings ωa, ωR, ωC

and terms a,R,C, d, we can infer ωa, ωR, ωC ` a,R  s C, d iff we can infer
ωa, ωR, ωC ` a,R C, d using a normal inference.

Proof. (Sketch) By induction over the structure of the derivation of the sentence
ωa, ωR, ωC ` a,R  s C, d. We case on the last rule used to conclude this sen-
tence. By the induction hypothesis (IH), we can conclude a normal derivation of
the sentence used for concluding ωa, ωR, ωC ` a,R s C, d.

struct: By IH, we can construct a normal derivation of ωa, ωR, ωC ` a′, R′  
C ′, d′, with a = a′, R′ = R, C ′ = C and d′ = d. This normal derivation can be used
directly to conclude also ωa, ωR, ωC ` a′, R′  C ′, d′.

prime-axiom: We produce the needed normal inference by starting with an
application of pax, which introduces the needed prime bigraphs and wiring—that
is, each term being equal up to structural congruence to the sentence concluded with
prime-axiom. Now we proceed to build the needed normal inference by a building
first a DP and then a DB-inference. All steps add only term structure to match a
particular normal form, while not changing the denotation of the terms.

ion: By IH, we can construct a normal derivation of ωa, ωR, ωC ` ((~v)/( ~X) ⊗
idU )p,R ((~v)/(~Z)⊗ idW )P, d. For this case, we have to unroll that normal deriva-
tion up across the DB production except for the last abs-step, concluding with a
parP

1 step (since we know p and P are prime). We now have a DP normal inference
with an added abs-step, which we can use for concluding an ion-step introducing
our needed ion. Referring to the grammar in Figure 5.11, we see that this produces
a DG-inference, which we have to lead through two series of par-per-mer steps
(and one abs-step), to produce a full normal inference.

switch: This case needs a little extra care. First, we point out two properties
of normal derivations: (i) any DG and DP inference without swx is also a D′G or
D′P inference, respectively; and, (ii) any sentence, ωa, idε, ωC ` a, id  C, h has a
normal derivation with no swx-steps. Both are easily verified.

Now, by the IH we can construct a normal derivation of a sentence ωa, idε, ωC(σ⊗
ωR ⊗ idZ) ` p, id  P, d for global P . By property (ii), we can assume that this
normal derivation does not contain any applications of swx. We unroll this normal
derivation up across the whole DB production, . This leaves us with a DP-type
normal derivation, which by property (i), we can use also as D′P derivation. Hence,
we can apply swx to obtain a DG derivation. We proceed to build first a DP

type inference, and then a DB type inference, in particular applying again abs to
introduce local linkage in p.

par: By IH, we can construct normal derivations of ωa, ωR, ωC ||ω ` a,R C, d
and ωb, ωS, ωD ||ω ` b, S  D, e. Each of these normal derivations we can unroll up
to the last application of parP

n Di and Ej , applied for concluding these parP
n steps.

To construct the required normal inference we simply let instead a single parP
n step

utilize all of the normal inferences Di and Ej .
perm: By IH, we can construct a normal derivation of ωa, ωR, ωC ` a,

⊗m
i Pπ(i)  

C, (π⊗ idZ)d. Unrolling this normal derivation up through the applications of dnf,
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clo, and perP, we can edit the perP-step to also move the permutation π to the
context.

merge: By IH, we can construct a normal derivation of ωa, ωR, ωC ` a,R C, d
for global a and C. We unroll this derivation up across theDB production to obtain n
DP-derivations (for a and C of width n). We may consider these as DG-derivations,
also. We combine these in a single application of parG

n , and, after a parP
≡ and a

per-step, we apply mer to merge the roots as required by the case. We conclude by
adding term structure to the terms of this DP-inference as required by the normal
form and lead it through the steps to produce a DB-derivation.

wiring-axiom: As sketched in the text above, introduction of idle names is
now handled by parP

n . For this case, we simply start with a parP
0 -step and proceed

through the grammar for DB to produce a normal inference as needed.
abstr: By IH, we can construct a normal derivation of σa ⊗ ωa, ωR, σC ⊗ ωC `

p,R  P, d. We unroll this normal derivation up across the entire DB-inference to
obtain a DP type inference. (We know there is only one DP-inference, as p and P
are prime.) We construct the required DB inference by starting with a modified
abs-step, where we introduce the required abstractions and local substitutions.

close: By IH, we can construct a normal inference for a sentence with only
substitutions (i.e., with no closed links). We simply unroll this normal inference up
across the clo-step, and instead, to produce the needed normal inference, close the
needed names in a new clo-step.

Normal inferences are sufficiently restricted such that we can base our prototype
implementation on mechanically constructing them.

5.4 Nondeterminism

Given these term-based rules and the normal inference grammar, proven correct
matching has been expressed in an operational, that is, implementable, form. How-
ever, there is still a fair amount of nondeterminism left, but fortunately we can
clearly identify where it occurs:

Grammar selection: Which branches to select for DG, DP, D′G and D′P.

Tensor grouping: How to group the tensor product in par≡.

Children partitioning: How to partition molecules in mer.

Prime permutation: How to permute redex primes in per.

Context-redex-parameter wiring: How to choose Z,α and τ in pax.

Mapping closed links: How to find an appropriate decomposition of agent wiring
in clo such that closed agent links are matched correctly with closed redex
links (i.e., determining σa and YR).
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When implementing matching, the challenge is to develop a heuristic that will
handle typical cases well. In general, an agent-redex pair can lead to many different
matches, so in our implementation we return for every inference rule a lazy list of
possible matches.

To handle nondeterminism, we return possible matches as follows, bearing in
mind that operationally speaking, rules applied below swx are given agent and
redex, while rules above swx are given agent (, redex) and context:

Grammar selection: For DG and DP, we concatenate the returned lazy lists re-
turned from matching each branch in turn. However, if pax succeeds, there is
no reason to attempt a swx match, as no new matches will result.

For DG
′ and DP

′, we try each branch in turn, returning the first branch that
succeeds, as later branches will not find any new matches.

Tensor grouping: For given m and n in parE≡, we compute all the ways of splitting
[0, . . . ,m − 1] into n (possibly empty) subsequences, trying out matching for
each split. Note that this need only be done for applications of parE≡ below
the swx rule.

Children partitioning: For given m and n in mer, we compute all the ways of
partitioning {0, . . . ,m− 1} into n (possibly empty) sets, trying out matching
for each partitioning.

Prime permutation: For given n in perE , we compute all n-permutations, trying
out matching for each permutation. This is done for applications of perE

below the swx rule; above, similar permutations are computed in the mer
rule.

Context-redex-parameter wiring: Given global agent wiring, we compute the
ways of decomposing it into σ(idZ ⊗ ατ), returning a match for each decom-
position.

Mapping closed links: We split agent wiring into named and closed links, and
postpone the actual mapping of each closed link to redex or context links until
some constraint, given by ion or pax produces it.

Note that even after limiting nondeterminism in this way, we can still in general find
several instances of the same match, reached by different inference trees, as we are
computing abstract bigraph matches using concrete representations. For instance,
matching redex R = K1 in agent a = merge(K1⊗K1) produces matches with context
C1 = merge(id1 ⊗ K1) and context C2 = merge(K1⊗ id1).

5.5 Auxiliary Technologies

A number of auxiliary technologies are needed for implementing the match inference
system presented here, notably the normalising and regularising operations needed
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in the dnf rule. While they do not represent the most advanced part of bigraph
matching, their correctness is vital for achieving a correct implementation.

5.5.1 Normalising

We define a normalisation relation t ↓B t′ for bigraph terms (details are given in
Figure 5.21 of Appendix 5.A.1), with the following property:

Proposition 5.5.1. For any bigraph terms t, t′, if t represents a bigraph b and
t ↓B t′, then t′ represents b as well, and is on B-normal form given in Figure 5.4.

The relation recursively normalises subterms, then recombines the results; for
tensor product, the rule stated is

Bten

ti ↓B (ωi ⊗ id(~Yi)
)Di Di ≡ αi ⊗ (

⊗
j∈ni

P j
i )πi : Ii → 〈ni, ~Yi, Yi〉

ω =
⊗

i∈n ωi α =
⊗

i∈n αi id(~Y ) =
⊗

i∈n id(~Yi)
π =

⊗
i∈n πi

P =
⊗

j∈n

⊗
i∈nj

P j
i D ≡ α⊗ Pπ⊗

i∈n ti ↓B (ω ⊗ id(~Y ))D
.

We find that the expression
⊗

j∈n

⊗
i∈nj

P j
i in general will lead to name clashes,

because we can only assume that outer, not inner names, of the ωi’s are disjoint.
One solution could be to rename names on P j

i ’s outer face in the Bten rule.
However, as Bten is applied recursively at each level of tensor product, this would
lead to multiple renamings of the same names, causing inefficiency. Instead, we
precede normalisation by a renaming phase described in the following; it will prevent
name clashes in normalisation.

5.5.2 Renaming

While renaming names used in a term might look trivial at first sight, it is in
fact not entirely straightforward. First, inner and outer names of a term must not
be renamed, or we would be representing a different bigraph. Second, we cannot
even require of a renamed term that all internal names are unique, as a normalised
subterm can contain several instances of the same name, due to the use of idY in
the normal form.

Thus, we need to identify a more refined notion of internal horizontal uniqueness,
where a name can be reused vertically in link compositions, but not horizontally in
tensor products. To this end, given a term t, we conceptually replace all occurrences
of /X by e1/x1 ⊗ · · · ⊗ en/xn, and K~y( ~X) by K~y(~e/ ~X), in effect naming uniquely
each closed link. We then define a function linknames, mapping terms to link
namers (details are given in Figure 5.22 of Appendix 5.A.2). Using this function
we define a predicate normalisable, which identifies terms whose tensor products
and compositions do not produce subterms with name clashes, and is preserved by
normalisation (details are given in Figure 5.23 of Appendix 5.A.2):
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Proposition 5.5.2. For any bigraph term t, if normalisable(t), there exists a t′

such that t ↓B t′ and normalisable(t′).

For the actual renaming, we define inductively a renaming judgment U ` α, t ↓β
t′, β a V , where U is a set of used names and α renames t’s inner names to those of
t′, while β renames t’s outer names to those of t′ and V extends U with names used
in t′ (details are given in Figure 5.24 of Appendix 5.A.2).

We can show that renaming preserves the bigraph, and enables normalisation:

Proposition 5.5.3. Given a term t representing a bigraph b : 〈m, ~X,X〉 → 〈n, ~Y , Y 〉,
we can derive X∪Y ` idX , t ↓β t′′, β−|V for some t′′, β, V , and set t′ = ((βglob)−1⊗

̂(βloc)−1)t′′; then t′ represents b, and normalisable(t′).

5.5.3 Regularising

As a regular bigraph can be expressed as a term containing permutations, we must
define regularising to represent it as a permutation-free term. This is done by
splitting the permutations in the D- and G-normal forms, recursively pushing them
into the subterms where they reorder the tensor product of Si’s.

WhileD’s permutation π must be a tensor product of πi’s—otherwise the bigraph
would not be regular—G’s permutation, on the other hand, need not be so. However,
as the bigraph is regular, it must be possible to split it into a major permutation π ~X

and n minor permutations π ~X
i , based on the local inner faces, ~X, of the Si’s. Then

π
~X is elided by permuting the Si’s, and each π ~X

i permutation is handled recursively
in its Si (details are given in Figure 5.25 of Appendix 5.A.3).

We can show that regularisation is correct:

Proposition 5.5.4. Given a term t representing a regular bigraph b, we can infer
t‘ → t′, for some t′ where t′ contains no nontrivial permutations, and t′ represents
b.

A detailed illustration of the entire reaction cycle involving the preceding trans-
formation technologies can be seen in Figure 5.12.

renaming

normalising

regularisingmatching

instantiating

composing

a

a

a

d

d′

a′

C%

R′

R

a

Figure 5.12: Details of the reaction cycle
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5.6 Tool Implementation and Example Modelling

We have implemented a BPL Tool as a reference implementation of binding bi-
graph matching, and as a toolbox for experimenting with bigraphs. It is written in
SML, consists of parser, normalisation and matching kernel, and includes web and
command line user interfaces [BPL07].

To ensure correctness, we have implemented normalisation, renaming, regularisa-
tion and matching faithfully by implementing one SML function for every inference
rule—in the case of matching, two: one for applications above and one for below the
swx rule.

The BPL Tool handles normalisation, regularisation, matching and reaction for
the full set of binding bigraphs, and allows construction of simple tactics for pre-
scribing the order in which reaction rules should be applied. The following example
output is taken verbatim from the command line interface, which is based on the
SMLNJ interactive system; omitted details are indicated by “[...]”.

As an example, we model the polyadic π calculus, running the mobile phone
system introduced in Milner’s π book [Mil99]. The calculus can be modeled by a
family of reaction rules {reacti | i = 0, 1, . . .}, one for each number of names that
are to be communicated in a reaction [JM04]; react2 is shown in Figure 5.13.

react2: (x̄〈y1, y2〉.P0 + P1) | (x(z1, z2).P2 + P3)→ {zi/yi}P0 | P2

0

1

2

3

Send2 Get2
Sum Sum

x

z1
z2

y1y2

0

1
z1z2

y1y2x

0:=0,1:=2

react2

val REACT2 = "REACT2" :::
Sum o (Send2[x,y1,y2] ‘|‘ idp(1)) ‘|‘ Sum o (Get2[x][[z1],[z2]] ‘|‘ idp(1))
--[0 |-> 0, 1 |-> 2]--|>
(y1/z1 * y2/z2 * x//[] * idp(1)) o (idp(1) ‘|‘ ‘[z1, z2]‘);

Figure 5.13: π calculus reaction rule shown as bigraphs and BPL value.

The signature for the nodes modelling the calculus and the mobile phone system
is constructed using passive and atomic functions as shown in Figure 5.14. For
this system, we only need Send and Get nodes for react0 and react2. Note that
all reaction rule nodes are passive, preventing reaction within a guarded expression.
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(* Pi calculus nodes *) (* Mobile phone system nodes *)
val Sum = passive0 ("Sum") val Car = atomic ("Car" -: 2)
val Send0 = passive ("Send0" -: 0 + 1) val Trans = atomic ("Trans" -: 4)
val Get0 = passive ("Get0" =: 0 --> 1) val Idtrans = atomic ("Idtrans" -: 2)
val Send2 = passive ("Send2" -: 2 + 1) val Control = atomic ("Control" -: 8)
val Get2 = passive ("Get2" =: 2 --> 1)

Figure 5.14: Signature for π calculus and mobile phone system nodes.

The system consists of a car, one active and one idle transmitter, and a control
centre, as shown in Figure 5.15.

Car

Trans Idtrans

Control

talk1

switch1

lose1

gain1

lose2

gain2

- val System1 = simplify (
Car[talk1,switch1]

‘|‘ Trans[talk1,switch1,gain1,lose1]
‘|‘ Idtrans[gain2,lose2]
‘|‘ Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]);

val System1 =
(lose1//[lose1_83, lose1_98] * talk2/talk2_82 * switch2/switch2_81
* gain2//[gain2_80, gain2_95] * lose2//[lose2_7f, lose2_94]
* talk1//[talk1_7e, talk1_9b, talk1_a5]
* switch1//[switch1_7d, switch1_9a, switch1_a4]
* gain1//[gain1_7c, gain1_99]) o merge(4) o

(Car[talk1_a5, switch1_a4] *
Trans[talk1_9b, switch1_9a, gain1_99, lose1_98] *
Idtrans[gain2_95, lose2_94] *
Control[lose1_83, talk2_82, switch2_81, gain2_80, lose2_7f, talk1_7e,

switch1_7d, gain1_7c])
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : bgval

-

Figure 5.15: Definition of the mobile phone system, System1

Internally, a prime product constructed using the ‘|‘ operator is represented by
a wiring and merge2 composed with a binary tensor product. The function simplify
applies various heuristics for producing human-readable bigraph terms, in this case
for a prime product of four factors.

The definition of these nodes and connections, shown in Figure 5.16, allows the
control centre to switch Car communication between the two transmitters (suppos-
edly when the car gets closer to the ilde than the active transmitter), and allows the
car to talk with the active transmitter. Note that in the BPL tool, we define a node
by a rule that unfolds an atomic node into a bigraph corresponding to the defining
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Defining equation BPL definition

Car(talk , switch) def=
talk .Car〈talk , switch〉

+ switch(t, s).Car〈t, s〉

val DEF_Car = "DEF_Car" :::
Car[talk,switch]
----|>
Sum o (Send0[talk] o Car[talk,switch]

‘|‘ Get2[switch][[t],[s]]
o (<[t,s]> Car[t,s]))

Trans(talk , switch, gain, lose) def=
talk .Trans〈talk , switch, gain, lose〉

+ lose(t, s).switch〈t, s〉
. Idtrans〈gain, lose〉

val DEF_Trans = "DEF_Trans" :::
Trans[talk,switch,gain,lose]
----|>
Sum o (Get0[talk][] o

Trans[talk,switch,gain,lose]
‘|‘ Get2[lose][[t],[s]]

o (<[t,s]> Sum o
Send2[switch,t,s]
o Idtrans[gain,lose]))

Idtrans(gain, lose) def=
gain(t, s).Trans〈t, s, gain, lose〉

val DEF_Idtrans = "DEF_Idtrans" :::
Idtrans[gain, lose]
----|>
Sum o Get2[gain][[t],[s]]
o (<[t,s]> Trans[t,s,gain,lose])

Control(lose1, talk2, switch2, gain2,

lose2, talk1, switch1, gain1) def=
lose1〈talk2, switch2〉.gain2〈talk2, switch2〉

.Control〈lose2, talk1, switch1, gain1,
lose1, talk2, switch2, gain2〉

val DEF_Control = "DEF_Control" :::
Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]
----|>
Sum o Send2[lose1,talk2,switch2]
o Sum o Send2[gain2,talk2,switch2]
o Control[lose2,talk1,switch1,gain1,

lose1,talk2,switch2,gain2]

Figure 5.16: Definitions of Car, Trans, Idtrans and Control nodes.
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π calculus expression.
Our BPL definition of the initial system in Figure 5.15, System1, is the folded

version; as BPL matching is complete, querying the tool reveals the four possible
unfolding matches, illustrated in Figure 5.17. Here mkrules constructs the inter-

- val rules = mkrules [REACT0, REACT2, DEF_Car, DEF_Trans,
DEF_Idtrans, DEF_Control];

[...]
- print_mv (matches rules System1);
[{rule = "DEF_Car",
context
= (lose1//[lose1_d3, lose1_d6] * talk2/talk2_d2 * switch2/switch2_d1

* gain2//[gain2_d0, gain2_d5] * lose2//[lose2_cf, lose2_d4]
* talk1//[talk, talk1_ce, talk1_d9]
* switch1//[switch, switch1_cd, switch1_d8]
* gain1//[gain1_cc, gain1_d7]) o

(merge(4) o
(Trans[talk1_d9, switch1_d8, gain1_d7, lose1_d6] *
Idtrans[gain2_d5, lose2_d4] *
Control[lose1_d3, talk2_d2, switch2_d1, gain2_d0, lose2_cf,

talk1_ce, switch1_cd, gain1_cc])),
parameter = idx0},
{rule = "DEF_Control", [...] },
{rule = "DEF_Idtrans", [...] },
{rule = "DEF_Trans", [...] }]

Figure 5.17: Determining which rules match System1.

nal representation of a rule set, and print_mv prettyprints a lazy list of matches,
produced by the matches function.

Using react_rule that simply applies a named reaction rule, and ++ that runs
its arguments sequentially, we construct a tactic, TAC_unfold, for unfolding all four
nodes once, shown in Figure 5.18. Applying this tactic using function run, we get
an unfolded version of the system.

Querying the BPL Tool for all possible matches in the unfolded system reveals
exactly the switch and talk actions, initiated by react2 and react0 rules, respec-
tively, cf. Figure 5.19. Applying the π calculus reaction rules for switching, we arrive
at System2, where Car communication has been switched to the other transmitter,
as witnessed by the outer names to which Car ports link, as well as the order of
names to which Control ports link.

This concludes our description of the example highlighting how we can use the
BPL Tool to experiment with bigraphical reactive systems.
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- val TAC_unfold =
react_rule "DEF_Car" ++ react_rule "DEF_Trans" ++
react_rule "DEF_Idtrans" ++ react_rule "DEF_Control";

[...]
- val System1_unfolded = run rules TAC_unfold System1;
val System1_unfolded =
(lose1//[lose1_3f9, lose1_419, lose_441, lose_459, lose_45d]
* talk2//[talk2_3f8, talk2_40f, talk2_418]
* switch2//[switch2_3f7, switch2_40e, switch2_417]
* gain2//[gain2_3f6, gain2_410, gain_431, gain_438]
* lose2//[lose2_3fd, lose_430]
* talk1//[talk1_3fc, talk_460, talk_465, talk_482, talk_485]
* switch1//[switch1_3fb, switch_447, switch_45f, switch_480, switch_481]
* gain1//[gain1_3fa, gain_442, gain_45e]) o merge(4) o

(Sum o merge(2) o
(Send0[talk_485] o Car[talk_482, switch_481] *
Get2[switch_480][[t_47d], [s_47c]] o
(<[s_47c, t_47d]> Car[t_47d, s_47c])) *
Sum o merge(2) o
(Get0[talk_465] o Trans[talk_460, switch_45f, gain_45e, lose_45d] *
Get2[lose_459][[t_446], [s_445]] o
(<[s_445, t_446]>
Sum o (Send2[switch_447, t_446, s_445] o Idtrans[gain_442, lose_441]))) *

Sum o Get2[gain_438][[t_433], [s_432]] o
(<[s_432, t_433]> Trans[t_433, s_432, gain_431, lose_430]) *
Sum o
(Send2[lose1_419, talk2_418, switch2_417] o
(Sum o
(Send2[gain2_410, talk2_40f, switch2_40e] o
Control[lose2_3fd, talk1_3fc, switch1_3fb, gain1_3fa, lose1_3f9,

talk2_3f8, switch2_3f7, gain2_3f6]))))
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : agent

Figure 5.18: Unfolding System1, using the TAC unfold tactic.
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Car

Idtrans Trans

Control

talk2

switch2

lose2

gain2

lose1

gain1

- print_mv (matches rules System1_unfolded);
[{rule = "REACT0", [...] }, {rule = "REACT2", [...] }]

[...]
- val TAC_switch =
react_rule "REACT2" ++ (* Control tells Trans to lose. *)
react_rule "REACT2" ++ (* Control tells Idtrans to gain. *)
react_rule "REACT2"; (* Trans tells Car to switch. *)

[...]
- val System2 = run rules TAC_switch System1_unfolded;
val System2 =
(lose1//[lose1_86a, lose_8c0] * talk2//[t_858, talk2_869, t_8bf]
* switch2//[s_857, switch2_868, s_8be] * gain2//[gain_856, gain2_867]
* lose2//[lose_855, lose2_86e] * talk1/talk1_86d * switch1/switch1_86c
* gain1//[gain1_86b, gain_8c1]) o merge(4) o

(Idtrans[gain_8c1, lose_8c0] * Car[t_8bf, s_8be] *
Control[lose2_86e, talk1_86d, switch1_86c, gain1_86b, lose1_86a, talk2_869,

switch2_868, gain2_867] * Trans[t_858, s_857, gain_856, lose_855])
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : agent

-

Figure 5.19: Checking possible matches, then switching to System2, using the
TAC switch tactic.
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5.7 Conclusion and Future Work

We have developed a provably sound and complete inference system over bigraph
terms for inferring legal matches of bigraphical reactive systems. Moreover, we
have implemented our BPL Tool, the first implementation of bigraphical reactive
systems. We have demonstrated a simple, but concrete, example of how the tool
can be used to simulate bigraphical models. We have found it very useful to base
this first implementation of bigraphical reactive systems so closely on the developed
theory—this has naturally given us greater confidence in the implementation, but
the implementation work has also helped to debug the developed theory.

There are lots of interesting avenues for future work. While the current imple-
mentation of BPL Tool is efficient enough to experiment with small examples, we
will try to make it more efficient by using a number of different techniques: we plan
to investigate how to prune off invalid matches quickly, for instance by making use
of sorting information [BDH06]. Moreover, we will investigate to what extent we
can capture the link graph matching via a constraint-based algorithm.

We also plan to investigate smarter ways of combining matching and rewriting.
As a starting point, we have made it possible for users to combine tactics to inform
the tool in which order it should attempt to apply reaction rules.

Jean Krivine and Robin Milner are currently investigating stochastic bigraphs,
which will be particularly important for simulation of real systems. We hope that our
detailed analysis of matching for binding bigraphs will make it reaonably straight-
forward to extend it to stochastic bigraphs.

5.A Auxiliary Technologies Details

5.A.1 Normalising

We define a normalisation relation t ↓B t′ for elementary bigraphs: mergen, pXq, ~y/ ~X,
K~y( ~X), and π as shown in Figure 5.20, and inductively for operations: abstraction
(X)P , product

⊗n
i Bi and composition B1B2 as shown in Figure 5.21, where the

notation σ�Y means {X 7→ y ∈ σ | y ∈ Y }.

5.A.2 Renaming

Let a link namer be a map µ mapping every link l (outer name or edge) in its
domain to a pair (E,X), where E is a set of names used internally to compose the
link, and X are the inner names linking to l. We let Vi(Y, µ) =

⋃
y∈Y,y 7→(X1,X2)∈µXi

and define link namer composition by

µ1 ◦ µ2 = {y1 7→ (E1 ∪X1 ∪ V1, V2) | y1 7→ (E1, X1) ∈ µ1 ∧ Vi = Vi(X1, µ2)}
∪ {y2 7→ (E2, X2) ∈ µ2 | ∀y1 7→ (E1, X1) ∈ µ1 : y2 /∈ X1},

essentially composing links of µ1 with those of µ2, and adding closed links from µ2.
We then define a function linknames, mapping terms to link namers, by the

equations given in Figure 5.22. By using the link namers of immediate subterms,
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Bmer
N ≡ (∅)(id∅ ⊗mergen)

⊗
i∈npid∅q P ≡ (id∅ ⊗ ([ ])/([ ]))N D ≡ id∅ ⊗ (

⊗
i∈1 P )idn

mergen ↓B (id∅ ⊗ id[∅])D

Bcon

N ≡ (∅)(idX ⊗merge1)
⊗

i∈1(idX ⊗ id1)pXq
P ≡ (idX ⊗ ([ ])/([ ]))N D ≡ id∅ ⊗ (

⊗
i∈1 P )id(X)

pXq ↓B (idX ⊗ id[∅])D

Bwir
~y/ ~X ↓B (~y/ ~X ⊗ id[ ])(idX ⊗ id0id0)

Bion

X = { ~X} Y = {~y} M ≡ (id∅ ⊗K~y( ~X))(X)(idX ⊗merge1)
⊗

i∈1(idX ⊗ id1)pXq
N ≡ (∅)(idY ⊗merge1)

⊗
i∈1M P ≡ (idY ⊗ ([ ])/([ ]))N D ≡ id∅ ⊗ (

⊗
i∈1 P )id(X)

K~y( ~X) ↓B (idY ⊗ id[∅])D

Bper

Yi = {~yi} Ni ≡ (Yi)(idYi
⊗merge1)

⊗
j∈1(idYi

⊗ id1)pYiq

Pi ≡ (id∅ ⊗ ~̂yi/~yi)Ni D ≡ id∅ ⊗ (
⊗

i∈m Pi)π

π : 〈m, ~X,X〉 → 〈m, ~Y ,X〉 ↓B (id∅ ⊗ id~Y )D

Figure 5.20: Inference rules for normalising elementary bigraph expressions

we can determine whether a term can be normalised without name clashes. To this
end, we define a predicate normalisable by the equations given in Figure 5.23. We
basically just require, that at no level in the term does two different links share any
internal names.

Renaming is achieved by the judgment U ` α, t ↓β t′, β a V , where U is a set of
used names and α renames t’s inner names to those of t′, while β renames t’s outer
names to those of t′ and V extends U with names used in t′. The system of rules
for inferring this judgment is given in Figure 5.24.

5.A.3 Regularising

The system of rules for inferring a permutation-free term representing a regular
bigraph is given in Figure 5.25.
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Babs

b ↓B (z/W ⊗ id([Y ]))(id∅ ⊗ (
⊗

i∈1(idZ ⊗ ~̂y/ ~X)(W )G)idI)
~zX = [zj ← ~z | zj ∈ X] ~zX̄ = [zj ← ~z | zj /∈ X]
~WX = [Wj ← ~W | zj ∈ X] ~W X̄ = [Wj ← ~W | zj /∈ X]
WX = { ~WX} W X̄ = { ~W X̄} U = {~y~zX}
N ≡ (WX ∪W )G P ≡ (idW X̄ ⊗ ̂

~y~zX/ ~X ~WX)N

(X)b ↓B (zX̄/W X̄ ⊗ id([U ]))(id∅ ⊗ (
⊗

i∈1 P )idI)

Bten

bi ↓B (ωi ⊗ id(~Yi)
)Di Di ≡ αi ⊗ (

⊗
j∈ni

P j
i )πi : Ii → 〈ni, ~Yi, Yi〉

ω =
⊗

i∈n ωi α =
⊗

i∈n αi id(~Y ) =
⊗

i∈n id(~Yi)
π =

⊗
i∈n πi

P =
⊗

j∈n

⊗
i∈nj

P j
i D ≡ α⊗ Pπ⊗

i∈n bi ↓B (ω ⊗ id(~Y ))D

Ccom
σ = (idZ ⊗ α)(idZ ⊗ y/X)

(idZ ⊗ (α⊗ id1)pY q)
⊗

i∈1(idZ ⊗ ~̂y/ ~X)(X)(idU ⊗mergen)S̄ ↓S̄ σ, S̄

Mcom

(idZ ⊗N)P̄ ↓N σ,N ′ ~X ′ = σ−1( ~X)
Z ′ = σ−1(Z) Y ′ = σ−1(Y ) σ′ = id{~y} ⊗ σ�Z]Y

(idZ ⊗ (idY ⊗K~y( ~X))N)P̄ ↓S̄ σ′,
⊗

i∈1(idZ′]Y ′ ⊗K~y( ~X′))N
′

Ncom

Pi : 〈mi, ~Xi, Xi〉 → 〈1, (Yi), Yi ]Wi〉⊗
i∈n P̄i =

⊗
i∈k Pi P̄i : Ii → 〈ni, ~Yi, {~Yi} ] Zi〉 (idZi

⊗ Si)P̄i ↓S̄ σi, S̄i

S̄ =
⊗

i∈n S̄i : I → 〈n′, Z ′ ] Y ′〉 σ =
⊗

i∈n σi

X ′ = σ−1(X) Z ′ = σ−1(Z) Y ′ = σ−1(Y )(
idZ ⊗ (X)(idY ⊗mergen)

⊗
i∈n Si

)⊗
i∈k Pi ↓N σ, (X ′)(idZ′]Y ′ ⊗mergen′)S̄

Pcom
(idZ ⊗N)P̄ ↓N σ,N ′ W = σ−1(Z ] Z ′) ~X ′ = σ−1( ~X) σ′ = σ�Z]Z′

(idZ ⊗ (idZ′ ⊗ ~̂y/ ~X)N)P̄ ↓P σ′, (idW ⊗ ~̂y/ ~X ′)N ′

Bcom

b1 ↓B
(
ω1 ⊗ id(~U1)

)
D1 : 〈m′, ~X ′, X ′ ] Z〉 → 〈n, ~U1, U1 ]W 〉

b2 ↓B
(
ω2 ⊗ id(~U2)

)
D2 : 〈m, ~X,X ] U〉 → 〈m′, ~U2, U2 ] Z〉

D1 ≡ α1 ⊗
(⊗

i∈n P
1
i

)
π1 : 〈m′, ~X ′, X ′ ] Z〉 → 〈n, ~U1, U1 ] V 1 ]W 1〉

D2 ≡ α2 ⊗
(⊗

i∈m′ P 2
i

)
π2 : 〈m, ~X,X ] U〉 → 〈m′, ~U2, U2 ] V 2 ]W 2〉

P 1
i : 〈m′

i,
~X ′

i, X
′
i〉 → 〈(U1

i ), U1
i ] V 1

i 〉 P 2
i : 〈m′′

i ,
~X ′′

i , X
′′
i 〉 → 〈(U2

i ), U2
i ] V 2

i 〉
ω1 : V 1 ]W 1 →W ω2 : V 2 ]W 2 → Z α1 : Z →W 1 α2 : U →W 2

V 2 =
⊎

i∈m′ V 2
i

⊗
i∈m′ P 2

π−1
1 (i)

=
⊗

i∈n P̄i P̄i : I ′i → 〈m′
i,
~X ′

i, X
′
i ] Z ′i〉

(idZ′
i
⊗ P 1

i )P̄i ↓P σi, Pi σ = idU ⊗
⊗

i∈n σi ω = ω1(α1ω2(α2 ⊗ idV 2)⊗ idV 1)σ
π = π1 ~X′′π2 D ≡ idU ⊗

(⊗
i∈n Pi

)
π

b1b2 ↓B
(
ω ⊗ id(~U1)

)
D

Figure 5.21: Inference rules for normalising bigraph abstraction, product and com-
position expressions
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linknames(mergen) = {}
linknames(pXq) = {x 7→ ({}, {x}) | x ∈ X}
linknames(~y/ ~X) = {yi 7→ ({}, Xi) | i ∈ |~y|}
linknames(K~y(~e/ ~X)) = {yi 7→ ({}, {}) | i ∈ |~y|} ∪ {ei 7→ ({}, Xi) | i ∈ | ~X|}
linknames(π : → 〈m, ~X,X〉) = {x 7→ ({}, {x}) | x ∈ X}
linknames((Y )P ) = linknames(P )
linknames(

⊗
i ti) =

⋃
i linknames(ti)

linknames(t1t2) = linknames(t1) ◦ linknames(t2)

Figure 5.22: Function for determining which names are used internally to compose
a link

normalisable(mergen) = true
normalisable(pXq) = true

normalisable(~y/ ~X) = true
normalisable(K~y(~e/ ~X)) = true

normalisable(π : → 〈m, ~X,X〉) = true
normalisable((Y )P ) = normalisable(P )
normalisable(

⊗
i ti) =

∧
i normalisable(ti)
∧(∀i 6= j : Ei ∩ Ej = ∅)
where µi = linknames(ti)

Ei =
⋃

y 7→(E,X)∈µi
E

normalisable(t1t2) = normalisable(t1) ∧ normalisable(t2)
∧(∀l1 6= l2 : µE(l1) ∩ µE(l2) = ∅)
where µi = linknames(ti)

µ = µ1 ◦ µ2

µE(l) = E, if µ(l) = (E,X)

Figure 5.23: Function for determining whether a (well-formed) term is normalisable
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Rmer
U ` id∅,mergen ↓β mergen, id∅ − |U

Rcon
X ′ = α(X)

U ` α, pXq ↓β pX ′q, α− |U

Rwir

Z = {~z} Z ∩ U = ∅ |Z| = |~z| = |~y|
~X ′ = α( ~X) β = {yi 7→ zi}
U ` α, ~y/ ~X ↓β ~z/ ~X ′, β − |U ∪ Z

Rion

Z = {~z} Z ∩ U = ∅ |Z| = |~z| = |~y|
~X ′ = α( ~X) β = {yi 7→ zi}
U ` α,K~y( ~X) ↓β K~z( ~X′), β − |U ∪ Z

Rper
X ′ = α(X) ~X ′ = α( ~X) ~Y ′ = α(~Y )

U ` α, π : 〈m, ~X,X〉 → 〈m, ~Y ,X〉 ↓β π : 〈m, ~X ′, X ′〉 → 〈m, ~Y ′, X ′〉, α− |U

Rabs
U ` α, t ↓β t′, β − |V X ′ = β(X)

U ` α, (X)t ↓β (X ′)t′, β − |V

Rten
ti : 〈mi, ~Xi, Xi〉 → Ji αi = α �Xi

Ui ` αi, ti ↓β t′i, βi − |Ui+1 β =
⊗

i∈n βi

U0 ` α,
⊗

i∈n ti ↓β
⊗

i∈n t
′
i, β − |Un

Rcom
U1 ` α1, t2 ↓β t′2, β1 − |U2 U2 ` β1, t1 ↓β t′1, β2 − |V2

U1 ` α1, t1t2 ↓β t′1t′2, β2 − |V2

Figure 5.24: Renaming rules

α
pαqid(X)‘→ pαq

M
Nπ‘→ N ′

(idZ ⊗K~y( ~X))Nπ‘→ (idZ ⊗K~y( ~X))N
′

N
Si : 〈mi, ~Xi〉 → Ji π = π′

~X
Siπ

′ ~X
i ‘→ S′i

((X)(idY ⊗mergen)
⊗

i∈n Si)π′‘→ (X)(idY ⊗mergen)
⊗

i∈n S
′
π(i)

D
π =

⊗
i∈n πi πi : I ′i → Ii Ni : Ii → Ji Niπi‘→ N ′

i

α⊗ (
⊗

i∈n(idZi
⊗ ~̂yi/ ~Xi)Ni)π‘→ α⊗

⊗
i∈n(idZi

⊗ ~̂yi/ ~Xi)N ′
i

B
D‘→ D′

(ω ⊗ id( ~X))D‘→ (ω ⊗ id( ~X))D
′

Figure 5.25: Removing nontrivial permutations from regular bigraphs.



Chapter 6

A Generic Language for
Biological Systems based on
Bigraphs

Abstract
Several efforts have shown that process calculi developed for reasoning
about concurrent and mobile systems may be employed for modelling
biological systems at the molecular level. In this paper, we initiate in-
vestigation of the meta-language framework bigraphical reactive systems,
due to Milner et al., as a basis for developing rule-based languages for
molecular biology.
We describe a family of BΣ,R-calculi sharing a small set of familiar oper-
ators and operations, and provide them with a simple operational seman-
tics. We show that BΣ,R-calculi and their reaction semantics correspond
to a version of bigraphical reaction under non-aliasing contexts and with
reaction rules extended to allow negative side-conditions for the subset of
bigraphs corresponding to BΣ,R-processes.
Finally, to illustrate the usage of BΣ,R, we show that with non-aliasing
semantics the κ-calculus may be faithfully captured as a BΣ,R-calculus.

Preface This chapter contains the tech report [DK08]. The report was co-authored
with Jean Krivine currently at Harvard Medical School.

6.1 Introduction

Starting with Regev, Shapiro, and Silverman [RSS01], several efforts have shown
that process calculi developed for reasoning about concurrent and mobile systems
may be succesfully employed for modelling biological systems at the molecular level.
In the κ-calculus [DL04], Danos and Laneve suggested a paradigm, which we may call
rule-based modelling for capturing protein-protein interaction at the level of protein
domains. On top of a flat graph-based static model, a user of the κ-calculus writes
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her own set of reaction rules modelling in isolation each possible local protein-protein
interaction. More recently, the κ-calculus has also been provided with a stochastic
semantics and an efficient implementation allowing simulation and various methods
of causality analysis [DFF+07, DFFK07].

One way of viewing how we model in the κ-calculus is, that we are allowed to
instantiate a domain-specific sub-calculus specialized for the study of a particular
problem; the obvious virtue being that we may engineer the reactive system to re-
flect very directly our setting. This benefit also influences the primitives of the
κ-language. Comprising essentially rewrite rules over nodes and named edges, sup-
ported by a simple algebraic notation, the κ-calculus is relatively light on language-
idiosyncracies. This allows domain-specialists (i.e., molecular biologists) to more
easily perform the abstraction from chemical binding between proteins to edges be-
tween nodes.

As it stands, the κ-calculus focuses solely on protein-protein interaction. Nature,
however, consists of more than variants of chemical binding among proteins. There
are a multitude of different kinds of objects, properties of objects, forces, and en-
vironments, which play vital roles at the molecular level. Examples include objects
such as variants of biological membranes, viruses, non-protein organic matter, and
properties such as the three-dimensional folding structure of proteins. We may also
consider how to model fluids (and properties such as their viscosity) or energy (be
that, e.g., in the form of radiation or in the form of the energy-currency of cells—
ATP/ADP-molecules); or environmental conditions such as pressure, temperature,
electricity, salinity, etc. If we wish to model nature in more detail, we need to begin
by searching for good abstractions of some of these phenomena. Our overall goal
is to develop κ-like languages to encompass also some of these phenomena. In this
paper, we shall focus on taking some preparatory steps towards that goal; we shall
investigate the so-called bigraphical framework as a basis for developing families of
calculi for modelling biological systems at the molecular level.

Bigraphs and bigraphical reactive systems (BRSs) have been developed by Mil-
ner and coworkers [JM04, Mil06b]. Though capable of representing a wide variety of
domains, they have been aimed particularly at providing a graphical meta-calculus
capable of being instantiated to capture the structure and dynamics of various nom-
inal process calculi concerned with concurrency, mobility, and locality. Loosely,
bigraphs provide us with nodes for modelling terms, and links for modelling names.
Nodes are arranged in a place graph, a forest, providing a model for nesting and pre-
fixing for terms. A link graph allows nodes to connect to links that may be named
or unnamed, in turn providing a model of terms using free or bound (fresh) names.
A key design parameter for bigraphs has been that graph isomorphism should re-
flect structural congruence in the modelled calculus. This connection has also been
well-researched [Mil05, DB06]. As such, we may think of a bigraph as a model of a
structural congruence class of terms. We instantiate a bigraphical calculus by giving
a signature (for nodes) and a set of reaction rules.

As noted already by Regev et al. [RPS+04], the bigraphical model has a striking
resemblance to the (informal) graphical models used for bio-calculi such as BioAm-
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bients. In the meantime, bigraphs have succesfully been used for modelling sev-
eral calculi—many resembling those that have been developed for studying cellular
biology. Variants of bigraphs have been succesfully employed to recapture the se-
mantics of a wide range of process calculi (such as CCS [Mil06b], variants of the
π-calculus [JM04, BS06], and Homer [BH06]). Several extensions of bigraphs have
been investigated (concerned, e.g., with scoping [JM04, DB06], or fusion [GM07b]),
and bigraphs have also been applied for modelling directly different systems (such as
context-aware systems [BDE+06]). Implementation of bigraphs has also been inves-
tigated [BDGM07], and a prototype implementation is available [BPL07]. Lately,
bigraphs have also been provided with a stochastic semantics [KMT08]. As is evi-
dent from several proposals [PRSS01, PQ05, DFFK07], stochastics is important for
biology as it allows for more accurate quantitative biological modelling.

In all, the bigraphical framework seem well-poised as a foundation for experi-
menting with models and languages for biological systems. In particular, it seems
that we may employ the bigraphical meta-modelling framework to capture directly
the rule-based modelling paradigm as pioneered by the κ-calculus. Further, we
expect to be able to employ the notion of nesting for adding to κ-like languages
biological compartments á la BioAmbients [RPS+04], Brane calculi [Car04b], or
beta-binders [PQ05].

In this paper, we adress the following issues, to pave the way for further studies
of calculi for biology based on bigraphs.

Bigraphical idiosyncracies Traditionally bigraphs are presented as a categori-
cally based graphical model with a closely corresponding term language with a small
set of categorically derived core operators and a wide variety of derivable operators.
In turn, the semantics for the reactive systems for bigraphs builds upon this un-
derstanding of bigraphical components and rules. This is important and useful for
developing the bigraphical meta-calculus, but is less convenient for appreciating a
concrete calculus.

Bigraphical rules are non-contextual The bigraphical framework demands
strict non-contextuality of rules. Bigraphical rules contains no mechanisms for ex-
pressing arbitrary contextual negative side-conditions—for instance, to require some
ancestor to be of a certain type or control (although given the versatility of wide
rules, i.e., rules with more than one region, and with the help of the binding vari-
ants of bigraphs [JM04, DB06], one may encode certain contextual checks). This has
lead to much skillfullness in encoding checks of such contextual condition, typically
using small sets of rules performing an iteration over the necessary context (see,
e.g., [BDE+06]); or using bigraphical rule-schemas, which range over a denumerable
set of bigraphical rules (see, e.g., [BH06]). Such encoding is at best impractical, and
at worst may hinder our capture of essential atomicity or transactional properties.

In perspective, we may compare bigraphs to graphical meta-modelling frame-
works in the long tradition of graph-transformation systems (GTSs) [EPS73, Roz97,
REKE99, REKM99], or to term rewriting systems (TRSs) [TeR03]. For both GTSs
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and TRSs, variants of negative side-conditions have been studied.
We should note that in modelling biological systems, focusing on local causes

for reactions is also of virtue. However, certain reaction patterns may be more
conveniently expressed using a modicum of contextual conditions. Specifically, since
we model chemical bonds with (named) edges of a graph, we expect connectivity-
constraints to become central. The forces governing chemical bonds are inherently
severely limited by range; there is no such direct correspondent for named edges.

As an aside, one may note that the noncontextual nature of bigraphical reaction
rules is partly due to bigraphical research being rooted in investigations of automatic
derivation of congruential contextual equivalences for process calculi. For languages
and models for biology, contextual equivalences have not yet proven very useful. The
complexity of nature is such that currently our struggle lies in finding languages with
the right abstractions for representing selected key components, events and their
causes in biological systems. However, even if we find ways to abstract faithfully
certain parts and mechanisms of nature, it is by no means clear that contextual
reasoning would be able tell us anything interesting about nature. In any model of
nature we focus only on those parts and mechanisms we are able to capture in our
language; thus any contextual equivalence is by design heavily dependent on the level
of abstraction of our language, in particular also on the amount of factors that we do
not model. This is, of course, a general point, not particularly pertaining to models
of molecular biology; but in a setting, where, for instance, a signalling pathway
may be shut off due to a minute change in complex enviromental conditions—such
as a minor change in the local acidity conditions or in the flow of the electrical
current—the point becomes acutely emphasized.1

Contributions of this paper In this paper, we aim at laying the foundation
for using bigraphical calculi to experiment with models and languages for biological
systems. To address the issues highlighted above, we

• discuss the usage of BRSs for modelling biological interaction and treat bi-
graphical reaction under non-aliasing contexts and extend reaction rules to
include testing of negative side-conditions;

• introduce a family of BΣ,R-calculi sharing a small set of classical process cal-
culus operators and operations, and provide them with a self-contained oper-
ational semantics;

• show formally that BΣ,R-calculi and their reaction semantics correspond to
bigraphical reaction under non-aliasing contexts for the subset of bigraphs
corresponding to BΣ,R-processes; and,

• show that with non-aliasing semantics the (nondeterministic) κ-calculus may
be faithfully captured as a BΣ,R-calculus.

1Debois has given a more detailed account and discussion of bigraphical modelling and bisimu-
lation, see [Deb06].
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In Section 6.2, we discuss the bigraphical foundation as needed by our domain of
interest—our main aim being to strip away some of the generality of the bigraphical
model, before we in the second step turn to presentation. We also discuss how to
extend bigraphical rules to allow negative side-conditions.

Previous usage of the bigraphical machinery for capturing certain domain-specific
models have used variants of lightly sugared syntax for expressing bigraphs
(e.g., [BDE+06]). In Section 6.3, we make the effort to treat carefully a family of
languages more in line with standard process calculi—BΣ,R-calculi—and develop
also a self-contained presentation of the dynamic semantics void of most bigraphical
idiosyncracies. We stress that the effort to produce a self-contained presentation
was a goal in itself. We have expended some effort in settling on a model, which
may yield to a short and comprehensible operational semantics, in a structural style,
and resembling that given for the κ-calculus.

In Section 6.4, we formally state the relationship between BΣ,R-calculi and BRSs;
and we conclude this paper by illustrating in Section 6.5, that we may recapture the
(nondeterministic) κ-calculus, as presented in [DL04], neatly as a BΣ,R-calculus.

Readers’ guide This paper deals in part with developing a self-contained presen-
tation of a certain family of bigraphical calculi. Hence, we aim the section concerned
with defining BΣ,R-calculi (Section 6.3), and the section on encoding the κ-calculus
as a BΣ,R-calculus (Section 6.5), at readers who know little or next to nothing about
bigraphs. In Section 6.5, we relate the κ-calculus to the BΣ,R-framework. We briefly
recap the central concepts in the κ-calculus, however, to fully appreciate the discus-
sion, a certain preknowledge on the κ-calculus is probably needed, as can be gotten
from, say, [DL04]. The section that deals solely with bigraphical machinery (Sec-
tion 6.2) and the section concerned with establishing that BΣ,R-calculi are, in fact, a
certain kind of bigraphical calculi (Section 6.4), we adress mainly to readers who are
familiar with the basic setup of pure bigraphs (as can be gotten from, say, [Mil06b]).

6.2 Bigraphical Preliminaries

In this section, we start by giving brief and informal recap of necessary concepts of
the theory for pure bigraphs [Mil06b]. We then continue to discuss and motivate the
addition of contextual additions, and finish by supplying a new definition of (linear)
reaction rules with side-conditions.

6.2.1 Pure Bigraphs—a Brief Recap

A bigraph consists of a place graph; a forest, whose nodes represent a variety of
computational objects, and a link graph, which is a hyper graph connecting ports
of the nodes. Certain leafs of the place graph may contain ordered sites (or holes).
The expression �0 denotes a bigraph with a single site. The link graph may also
contain inner or outer names, and the link graph links inner names and ports to
outer names or (unnamed) edges. The outer face of a bigraph is a pair 〈n,X〉 which
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registers the number of regions n and outer names X; the inner face is a pair 〈m,Y 〉,
which registers the number of sites m and inner names Y . We may compose the
bigraph B with A, if the outer face of B matches the inner face of A. The bigraph
AB is computed by plugging the sites of A with the roots of B, and fusing the links
to outer names of B with the links from their inner name counterpart in A. With
the help of composition we may model name-hiding; by composing a bigraph A with
the bigraph /x we may remove the outer name x, and replace it with an edge.

We may also combine bigraphs with a tensor product, ⊗, which is simply jux-
tapositioning of roots, requiring that both inner and outer names be disjoint. From
composition and product, we may derive further combinators, such as || that jux-
taposes roots and links up equal names, and | that merges two single-root (prime)
bigraphs as well as linking up equal names.

A bigraphical signature, Σ, determines a set of controls and provides for each
control K a finite ordinal, the number of ports, and one of three types, atomic,
passive, or, active. Each node of a bigraphs is assigned such a control. Atomic
nodes are restricted to be leafs, while active and passive nodes may nest other nodes
inside. The expression K~x denotes the bigraph consisting of the single node K with
each port i linked severally to a name xi.

Bigraphs can be reconfigured by means of reaction rules. A rule is essentially
a pair of bigraphs (R,R′). Rules are parametric—R and R′ may contain holes,
which are filled with parameters. Parametric rules generate an infinite set of ground
rules, which we may then subsequently contextualize. Essentially, we ground and
contextualize (R,R′) by closing rules under composition from above and below.
We may rewrite an agent a → a′ with (R,R′), when we have a = C(R ⊗ id)d →
C(R′⊗ id)d′ = a′ for some context C and ground parameter d. Graphically, we may
think of this as matching an instance of the pattern R inside a and substituting
it with R′. In general, bigraphical rules may both discard and copy parameters; a
so-called instantiation maps holes in R′ to R. The bigraph d′ is computed from the
parameter d by means of this instantiation.

In essence, a bigraphical reactive system consists of a set of bigraphs over a given
signature, and a set of reaction rules, which can be used to reconfigure the set of
bigraphs.

Linearity We aim to model mainly physical objects and phenomena, and in na-
ture, rarely it happens that matter is copied without matter being expended. There-
fore, we shall restrict ourselves to considering only linear rules, that is, when instan-
tiations are bijections. We seek calculi, which serve as vehicles for investigating how
nature implements low-level structures and their interaction; not abstract away from
it.

Active nesting When contextualizing bigraphical rules, the context C is required
to be active, determined by requiring that the redex R be nested only inside nodes
with active control; in our setting, however, we shall only treat nodes with active
control. Passive controls are useful for modelling blocking prefixes and may also be
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used for modelling passive storage compartments of active code, for instance, mod-
elling envelopes for mobile code. We envisage no important usage of such passive
compartments in modelling biological matter. Thus, we require contextual condi-
tions that prevent reaction in certain compartments be modelled explicitly.

6.2.2 Adding Contextual Conditions

In the domains where the bigraphical framework have been used up until now, links
have been applied for modelling entity-relations mostly orthogonal to the locality-
structure.

On the contrary, the structures whose essential properties we seek to capture
with links—like protein backbones, domain-domain binding, or the intermediate
state of two fusing membranes—are highly constrained by distance and locality.2

For those reasons it is convenient to be able to control sharing and freshness of
names in parameters.

Let us sketch a concrete example: Suppose that we want to express that a node
that models protein (matched in the redex) may be diffused from one compartment
to another only if the entire complex of proteins of which the protein is part (i.e., its
entire connected component) can be transported along with it. For expressing this
rule, it is highly inconvenient to require us to match the entire complex in the rule.
There is a huge number of possible configurations of complexes (species) in which a
particular protein may be a part. Hence, we wish to match only the protein in the
redex, and match the remainder of the complex in a parameter.

However, in nature such a diffusion reaction may be prevented because of certain
local conditions otherwhere in the complex, for instance, if part of the complex is
tied to a membrane. In our model, that tied part of the complex may be arbitrarily
distant. To test such an inherently contextual condition with vanilla bigraphical
rules, we need to write rules for stepping through the complex and perform this test
for every part of the complex. This is impractical and fails to capture the atomicity
of diffusion—which in turn is problematic (but not unfixable) should we wish to add
a stochastic semantics. Essentially, we would need the set of rules implementing
diffusion in this manner to uphold a transactional guarentee.

Instead, we aim to extend bigraphical reaction rules to internalize such contex-
tual (negative) side-conditions along with rules; we shall be mostly concerned with
capturing connectedness-constraints among the parameters in reactions, such as in
the example sketched above. In doing this, it shall be convenient for us to depart
slightly from standard tradition in how we derive ground, contextualized rules, as
we shall explain in further detail below. Traditionally, bigraphical calculi have been
provided with a semantics, which corresponds to pushing name-fusings (i.e., bigraph-
ical substitions) and all binders (i.e., bigraphical closures) to the top. But it need
not be so.

2We remark that such distance-related locality constraints do not match especially well the
constraints imposed by bigraphical binding, which seeks to capture traditional lexical scoping of
bound names.



144 A Generic Language for Biological Systems based on Bigraphs

Non-aliasing Reaction

We define non-aliasing reaction for BRSs, which allows us to extend rules with side-
conditions which test connectedness among parameters. We shall change grounding
and contextualization of rules to essentially push name-fusings and binders as far
down as possible. To explain our choices, we recall in a bit more detail, how ground-
ing and contextualization works.

Recall that in grounding parametric rules it is stipulated that the parameter
d be discrete, that is, with no bound or shared names. This produces bigraphs
where every link is a unique name. In particular, this restriction resolves a possible
ambiguity in deriving ground, contextualized rules when the instantation is non-
linear. For example, when applying a rule that copies a parameter such as the rule
(K⊗ id)�0 → (K⊗ id)(�0 |�0), to the agent a = /x (K⊗ id)(Mx |Mx) do we copy the
binder or not? This corresponds precisely to instantiating the parameter as either
d = /x (Mx |Mx) under the empty context or as d = (Mx1 |Mx2) under the context
C = /xx/x1, x2. Both choices constitute valid decompositions of a, that is, for both
choices of the parameter d and the context C, do we have a = C(R⊗ id)d. But only
the second choice, that is, d = (Mx1 |Mx2), is discrete. Hence, in the pure variant of
bigraphs copying parameters results in name-sharing.

As we are only concerned with linear rules, this ambiguity does not arise in our
setting. The choice to take only discrete parameters means, however, that we cannot
test in the (grounded or parametric) rule whether two links in a parameter d will be
matched as parts of the same link, as any two names in the grounded rule (R⊗ id)d
may be fused in the context. For our purposes this is impractical, as we want to
express side-conditions, which require certain sets of names to be disjoint. We could
express these conditions as requirements to be fullfilled by the context C instead; it
turns out, however, out that by instead enforcing the first choice above—matching
binders and shared names in the parameter—we may express the conditions directly
and succinctly on the grounded rule (R⊗ id)d.

In conclusion, we shall choose to allow any bigraph as the parameter d, but
restrict contexts C to be link-mono, or non-aliasing on names.

Now we define (linear) reaction rules with side-conditions on parameters. We
allow arbitrary conditions, but (as we shall exemplify in Section 6.3) we are mostly
interested in side-conditions testing the outer names of parameters.

Definition 6.2.1 (linear reaction rules with side-conditions). A (concrete) para-
metric linear reaction rule is a rule on the form (R : m → J,R′ : m → J, ϕ), where
R is the redex, R′ the reactum and ϕ is a predicate on ground bigraphs. R and R′

are required to be lean, i.e., they have no idle edges.
For every ground bigraph g : 〈m,X〉, where ϕ(g) holds, the parametric rule

generates every ground reaction rule of the form (r, r′), where r l (idX ⊗ R)g and
r′ l (idX ⊗R′)g.

The non-aliasing bigraphical reactive system over rules with side-conditions is
built as usual, but for the requirement that the context C also be link-mono. We
may express when a reaction may occur as below.
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Definition 6.2.2 (non-aliasing reaction). G→ G′ with (R,R′, ϕ), if G = C(id⊗R)g
and G′ = C(id⊗R′)g, for active, link-mono C and g such that ϕ(g) holds.

We underline the implication of taking a non-aliasing semantics: That no outer
names in the grounded rule (be it from R or d) can be aliased in the context,
effectively means that every such name is a unique handle on every link connected
to the grounded rule. This is convenient for our purposes, but may, of course, not
be so for other applications.

Interestingly, we find that allowing parameters to share and close names, we
provide a view on matching bigraphical rules, which corresponds more easily to
viewing bigraphical languages as a generic framework for rewriting on terms enriched
with names. For instance, it directly allows us to plug the hole in the pattern
(Kx ⊗ id)�0 with a term using x, e.g., (Jx ⊗ id)0, to form (Kx ⊗ id)Jx.0 instead of
requiring us to think of matching it as x/x1, x2((Kx1 ⊗ id)(Jx2 ⊗ id)0).

We shall expand on this remark in Section 6.3 to build a self-contained charac-
terization in structural operational semantics-style of how bigraphical calculi evolve
under non-aliasing semantics.

6.3 A Generic Process Calculus

BΣ,R-calculi are a generic family of process calculi equipped with pure names, a new-
name operator (sometimes called also hiding), parallel product and nesting, used for
modelling both prefixing and nesting (i.e., á la mobile ambients). We instantiate a
BΣ,R-calculus by giving a signature, Σ, and a set of reaction rules, R. The signature
allows us to tell which function symbols we may build processes from. Processes
of BΣ,R-calculi are quotiented according to a shared structural congruence relation,
ensuring that we interpret scope of new names and parallel product as usual. The
reaction rules allow us to give the dynamic semantics. Reactions are contextualized
using a standardized scheme, which we show in detail later.

We start by formally defining a signature.

Definition 6.3.1 (signature). A signature, Σ, is a set of controls, K; an arity map,
ar : K → N; and a map determining for every control, K ∈ K, whether it is active
or atomic.

The basic computing units in BΣ,R-calculi are processes. Processes are built from
function symbols with control from Σ, parallel product and new name operators.
The arity of a control tells us how many ports for names a function symbol has.
Furthermore, if a control is active, it may be a prefix. We write prefixing with the
help of an infix dot operator “.”—in correspondence with the prefixing operator of
process calculi in the π-family. For example, suppose that Σ contains L : atomic(2)
and M : active(0)—short for telling that Σ contains the controls L and M, that
L is atomic and M active, and that ar(L) = 2 and that ar(M) = 0. Then Ly,x |
M.Ly,z is a valid process. For many applications we may intend prefixing to model
containment, and then it may be more sensible to choose an ambient-style notation
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x, y, z pure names
X,Y, Z variables

K generic control
M active control
L atomic control

Figure 6.1: Notational conventions—names, variables and controls

for active controls. We may then define, for instance, [P ] def= M.P ; where the M is a
representation of the ambient.

In formally defining processes, we presuppose an unbounded supply of pure
names, N . We use lowercase letters, x, y, z, . . . for pure names and sanserif let-
ters, K, L,M, . . ., for controls. For further notational convenience, in the following
we shall treat M as having active control, and consider L (for leaf) an atomic control.

For writing reaction rules, we shall also need process terms with process-valued
variables; and process groups—ordered sequences of proceses, which may share
names. Variables in BΣ,R-calculi are numbered, i.e., they are drawn from a count-
able set of variables V = {V0, V1, V2, . . .}. This allows us to conveniently define
substitution of a process group into a process with variables (as we shall see below)
variable in an term. We require for well-formed process terms, that all variables in
a term are distinct. We use uppercase letters X,Y, Z, . . . as metavariables ranging
over variables.

These notational conventions are summarized in Figure 6.1. In Definition 6.3.2,
we define formally processes, and in Definition 6.3.3, we define process groups. A
process is a special case of a group—namely, a group with exactly one process. We
use this in many of the following definitions and properties and overload the symbols
we use for operations such as structural congruence and substitution to work for both
processes and groups. Definition 6.3.4 formally defines the well-formedness criterion.

Definition 6.3.2 (processes). BΣ,R processes over the signature Σ are defined in-
ductively as

M,N ::= M~y.M active prefix
| L~x atom
| (x)M new name
| M |N parallel product
| 0 the empty process
| X variable

when |~y| = ar(M) and |~x| = ar(L).

Definition 6.3.3 (groups). BΣ,R (process) groups over the signature Σ are defined
inductively as

C,D ::= M single process
| (x)C new name
| C ||D wide parallel product
| ε the empty group
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Definition 6.3.4 (well-formed processes and groups). Processes M and groups G
are well-formed iff all variables in M and G are distinct.

In the following, we shall assume that all processes or groups that we treat
are well-formed, although, of course, we need to make sure that well-formedness is
preserved by the operations we define on processes. We write var(M) and var(C)
for the (possibly empty) set of variables in processes M and groups C.

Call processes or groups without variables ground. Call nonground processes
preprocesses, and nonground groups pregroups—in general, we call nonground pro-
cesses or groups, contexts. We reserve the metavariables P,Q for ground processes,
and G,F for ground groups. Finally, we shall write PΣ for ground processes over
the signature Σ.

We use parentheses for grouping as usual. To save ink for parenthesis in large
terms, we let prefixing . bind tighter than |, which binds tighter than ||, which in turn
binds tighter than the operator (x). When x̃ = {x1, · · · , xn} we write (x1 · · ·xn)M
or (x̃)M to mean (x1) · · · (xn)M . Finally, as usual, we shall typically elide the
trailing 0 under empty prefixes, for instance, writing M instead of M.0.

Ordering of Variables

We are not interested in the particular numbers used for variables in a given term,
only in their relative ordering inside that term. For instance, we do not wish to
distinguish, the two processes V45 | V56 and V0 | V1. All variables in a well-formed
term are distinct, so we may order the variables in any term uniquely according to
their numbers. It is therefore clear what we mean, when we refer to the ith variable
in a given term.

We shall now define order-preserving renumbering, and by including order-preserving
renumbering in the structural congruence relation, we formalize notion that we con-
sider processes up to such order-preserving renumbering. We write nv(C) for the
set of numbers of variables in C.

Definition 6.3.5 (order-preserving renumbering). Given a group C and an order-
preserving and injective map r : nv(C) → N, let [C]r be the group C with all
variables renumbered according to r.

It is convenient to define also the stratifying renumbering, the renumbering that
maps every variable to the number given by its relative order. To that end, we may
order the renumberings themselves, pointwise. Formally, we simply say that for all
renumberings r and s, r ≤ s iff for all x, r ↓ x ⇐⇒ s ↓ x and r(x) ≤ s(x). It
is easy to check that this is induces a partial ordering with a least element: the
order-preserving renumbering of variables that maps the ith variable in a term to
Vi.

Definition 6.3.6 (stratifying renumbering). The stratifying renumbering of vari-
ables in a group C is the least order-preserving renumbering defined on nv(C).

We write [C] for the group C renumbered according to this renumbering, and
call [C] stratified.
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The stratifying renumbering shall serve as a help in defining substitution, by
mapping, for instance, V45 | V56 to V0 | V1.

Free and Bound Names

The new name operator (x)M is a binder—as we shall see below instances of the
name x in M are alpha-convertible. We define inductively the set of free or bound
names of a term as usual.

Definition 6.3.7 (free and bound names). For processes M the free names fn(M)
and the bound names bn(M) are defined inductively as:

fn(M~y.M) = ~y ∪ fn(M) bn(M~y.M) = bn(M)
fn(L~y) = ~y bn(L~y) = ∅

fn(M |N) = fn(M) ∪ fn(N) bn(M |N) = bn(M) ∪ bn(N)
fn((x)M) = fn(M) \ x bn((x)M) = x ∪ bn(M)

fn(0) = ∅ bn(0) = ∅
fn(A) = ∅ bn(A) = ∅

For groups we extend the definition above to include also:

fn(C ||D) = fn(C) ∪ fn(D) bn(C ||D) = bn(C) ∪ bn(D)
fn((x)C) = fn(C) \ x bn((x)C) = x ∪ bn(C)

fn(ε) = ∅ bn(ε) = ∅

We call a process or group closed if all its names are bound; and open if any
names are free. We say that two processes M and N are connected if they share
free names, that is, if fn(M) ∩ fn(N) 6= ∅.

Structural Congruence

We quotient processes and groups according to a structural congruence relation
enforcing prominently that names in the scope of a binder are alpha-convertible and
that (x) floats freely in a term, as long as we do not indaverdently capture free
instances of the name x. Furthermore, we make parallel product associative, allow
reordering, and stipulate that we may introduce (or delete) empty processes. For
groups, we make wide parallel product associative and make ε the neutral element.

Definition 6.3.8 (structural congruence). Structural congruence, ≡, on processes
and groups is the least congruence relation containing α-equivalence (i.e., bijective
renaming of bound names), order-preserving renumbering of variables, and s.t.:

• parallel product, |, is associative and commutative with 0 as neutral element;

• wide parallel product, ||, is associative with ε as neutral element;
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and including the following scope extrusion laws

M | (x)N ≡ (x)M |N if x 6∈ fn(M) (extrusion - par)
((x)M) ||N ≡ (x)M ||N if x 6∈ fn(N) (extrusion - wide par left)
M || (x)N ≡ (x)M ||N if x 6∈ fn(M) (extrusion - wide par right)

M~y.((x)M) ≡ (x) M~y.M if x 6∈ ~y (extrusion - prefix)
(x)(y)M ≡ (y)(x)M (reordering)

(x)M ≡ M if x 6∈ fn(M) (elision)

As usual it is easy to check that free names are invariant under structural con-
gruence, that is, for processes M ≡ N , fn(M) = fn(N).

Normal Form

Using structural congruence laws we may push binders to the top (performing α-
conversion as needed), remove superfluous binders via elision, and remove empty
processes or groups to bring every process and group on a normal form, resembling
the standard form for CCS [Mil80].

Proposition 6.3.9 (normal forms). Every process M is structurally congruent to a
normal form

M ≡ (x̃)(M0 | · · · |Mn−1)

where each M0, · · · ,Mn−1 is a variable, an atom, or a prefix (i.e., on the form
K~y.N) containing no binders; and where x̃ ⊆ fn(M0) ∪ · · · ∪ fn(Mn−1). (If n = 0,
then M0 | · · · |Mn−1

def= 0, and if x̃ = ∅ then the binder (x̃) is not there.)
Every group C is structurally congruent to a normal form

C ≡ (x̃)(M0 || · · · ||Mn−1)

where each M0, · · · ,Mn−1 is non-empty, contain no binders, and is otherwise on
(process) normal form; and where x̃ ⊆ fn(M0) ∪ · · · ∪ fn(Mn−1). (If n = 0, then
M0 || · · · ||Mn−1

def= ε, and if x̃ = ∅ then the binder (x̃) is not there.)
The forms are unique up to α-equivalence, and reordering of binders and parallel

processes (i.e., up to the commutative law for |).

We shall write C ≡N C ′, if C ≡ C ′ and C ′ is on normal form.
Having formalized a normal form for groups, we may conveniently define the

width of a group as the number of non-empty top-level processes.

Definition 6.3.10 (width of group). For

C ≡N (x̃)(M0 || · · · ||Mn−1)

let width(C) = n.
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Substitution

Nonground processes (and groups) have variables for which we may substitute other
processes. For BΣ,R-calculi we shall apply substitution mainly to define the sub-
stitution of parameters for the variables in parametric reaction rules, that is, rules
with variables.

We start by defining basic substitution of the variables in a group C by a process
M . (For ease we define substitution only for groups, C. The definition for processes
follows as a special case.) Substitution is capture-avoiding, as usual.

Definition 6.3.11 (raw substitution). Let ϕ be a bijective map from variables to
processes M0,M1, . . . ,Mn−1.

The substitution Cϕ of variables in C by the processes in ϕ is defined when
| var(C)| = n, for all i ∈ n, bn(C) ∩ fn(Mi) = ∅. In that case, we define Cϕ
inductively over the structure of C,

(M~y.M)ϕ = M~y.(Mϕ)
L~x ϕ = L~x

((x)M)ϕ = (x) (Mϕ)
(M |N)ϕ = (Mϕ |Nϕ)
0ϕ = 0

Xϕ =

{
Mi if ϕ(X) = Mi

X else

((x)C)ϕ = (x) (Cϕ)
(C ||D)ϕ = (Cϕ ||Dϕ)
ε ϕ = ε.

As each variable is a leaf in C it is easy to see that the substituted term respects
the grammar (i.e., in Definition 6.3.2 and in Definition 6.3.3). However, in general,
raw substitution does not preserve well-formedness. Any process Mi may contain
variables that C or some other process Mj also contains. Hence, we shall only use
raw substitution as a means to define two versions of substitution, where this issue
is resolved.

We start by defining total substitution, C · D, the substitution of all variables
in a group C with the processes in a group D.3 We shall define total substitution
by pushing the binders of D to the top of the created term; hence, we also require
that both bound and free names of C be distinct from bound names in D. This
is (another) technical requirement, as we can also α-convert bound names of D to
avoid any clashes.

Definition 6.3.12 (total substitution). Substitution C · D of variables in C by
processes in D is defined when | var(C)| = width(D) and bn(C) ∩ fn(D) = bn(C) ∩

3We choose an infix notation for total (and partial) substitution in analogy with the categorical
notation for composition; an analogy, which we shall make formal in the next section, when we
relate BΣ,R-substitution to bigraphical composition.
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bn(D) = fn(C) ∩ bn(D) = ∅. In this case, for

D ≡N (x̃)(M0 || · · · ||Mn−1)

let
C ·D = (x̃)[C]{V0 7→M0, · · · , Vn−1 7→Mn−1},

Note, that we use a stratifying renumbering to renumber the variables in C
before substituting, to ensure that the variables in C are numbered severally from
0 to n− 1. Observe also that, as all variables in C have been substituted, the term
C ·D is well-formed iff D is.

It is easy to check that substitution is associative.

Proposition 6.3.13 (total substitution is associative). (C ·D) · E = C · (D · E).

It shall be convenient to generalize our definition of substitution to also include
partial substitution—where only some of the variables of the context C are sub-
stituted. Partial substitution is not in general associative; by convention we take
it to be left-associative, and distinguish it with a non-symmetric symbol.4 Defini-
tion 6.3.14 generalizes Definition 6.3.12 to the cases, where D has fewer processes
than C has variables.

Definition 6.3.14 (partial substitution). Partial substitution C / D of variables
in C by processes in D is defined when | var(C)| ≥ width(D) and (as for total
substitution) when bn(C) ∩ fn(D) = bn(C) ∩ bn(D) = bn(C) ∩ fn(D) = ∅. In this
case, let

C / D = C · ([D] || Vk || · · · || Vk+n),

for | var(C)| − width(D) = n and | var(D)| = k.

It is immediate from the definitions, that in the case where | var(C)| = width(D),
C ·D ≡ C / D. In the case, where C has more variables, than D has processes, we
simply extend D with appropriately numbered variables. More generally, we may
also consider total and partial substitution as a way to compose processes or groups
with other processes or groups.5 As we shall see, this is convenient for expressing
succinctly filling parameters in rules with variables; viewing substitution as a way to
compose terms will be useful also for seeing that a set of terms are all substitution-
instances of a certain kind.

4It is easy to check that partial substition may be undefined if evaluated right to left (thus the
non-associativity), but is always defined if evaluated left to right.

5In bigraphs, we have substitution residing syntactically in the language—composition is an term
constructor instead of an operation as we define it as here. This is one of the simplifications that
we make for BΣ,R-calculi, whose repercussions, to the term language, the structural congruence
relation (in particular) and the structural operational semantics, help bring the presentation more
in line with standard tradition for process calculi.
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6.3.1 Operational Semantics

To instantiate a BΣ,R-calculus one gives a signature, Σ and a set of reaction rules
R. We start by defining reaction rules.

Definition 6.3.15 (reaction rule). A BΣ,R-rule (over the signature Σ) (M → N,ϕ)
is a pair of processes, where fn(M) = fn(N)and var(M) = var(N); along with ϕ, a
predicate on ground groups. We call M the left-hand side (or lhs) of the rule, and
N the right-hand side (or rhs). We call fn(M) = fn(N) the free names of the rule
and var(M) = var(N) the variables of the rule. We call ϕ the side-condition of the
rule.

Loosely, any ground process P that is a substitution-instance of the left-hand
side of a rule may be rewritten with that rule.6 Given a rule (M → N,ϕ), if for some
(ground) group G, we have P ≡M ·G, we may perform a reaction P → P ′ ≡ N ·G, if
ϕ(G) is satisfied. We say that P matches M with the parameter G, since G consists
of the group of processes that we will substitute for the variables in N . We allow
an arbitrary side-condition, ϕ, but we shall be concerned mainly with predicates
testing free names of the parameters of a reaction.

In rules, variables take on their intended role of placeholders—serving only to
carry parameters across a reaction. For rules, our only concern shall be, where
variables of the left-hand side are reused on the right-hand side; neither the numbers
of variables or ordering internal to the left-hand side or right-hand side matter. More
formally, it is easy to verify, that our definition for reaction is closed under order-
preserving renumbering (applied to both sides of a rule). Thus, by convention we
shall use metavariables A,B,C, . . . in rules to denote variables (as in the example
below), thus eliding which particular (numbered) variables are chosen.

Reactions may occur in any process context. We contextualize reactions ac-
cording to standard tradition. We close reactions under syntactic constructions,
structural congruence, and also under (bijective) renaming of free names. Defini-
tion 6.3.16 records a small set of rules which together characterize reactions for
processes.7

Definition 6.3.16 (reactive system). Given a signature Σ and a set of reaction
rules R, T Σ,R the reactive system associated with R for PΣ is given by the reaction

6We could have defined reaction for groups or, for that sake, for pre-processes or -groups, but
for our purposes, ground rewriting on processes shall be enough.

7Tradition differs on whether to call unlabelled transitions reactions (as in BRSs) or transitions
(as in κ). To remove any confusion: our reactions are unlabelled and correspond to transitions in
κ.
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relation →, the least binary relation over PΣ, s.t.

rule
(M → N,ϕ) ∈ R ∃G s.t. P = M ·G and P ′ = N ·G ϕ(G) satisfied

P → P ′

par
P → P ′

P |Q→ P ′ |Q
prefix

P → P ′

M~y.P → M~y.P
′

close
P → P ′

(x)P → (x)P ′ struct
Q ≡ P P → P ′ P ′ ≡ Q′

Q→ Q′

subst
P → P ′ ∃x̃.α : fn(P )↔ x̃

α(P )→ α(P ′)
,

where α is a bijection between the free names of P and fresh names x̃, and α(P ) is
the process P with free names substituted by names x̃.

It follows easily from the definition that free names of P are preserved, that is,
for P → P ′, fn(P ) = fn(P ′).

An important property of BΣ,R is that the semantics is non-aliasing. Let us
explicate what we mean by this. First of all, we allow bijective renaming of free
names, since the names of reaction rules are only intended as placeholders, which may
be matched to any name in a process. However, by allowing only bijective renaming,
we ensure that disconnectedness (immediate) is preserved by contextualization. This
in turn ensures us that we may meaningfully give side-conditions, which test the free
names of processes.

Consider an example. Take the rule

R = (A |B |M→ A |M.B, ϕ = {fn(A) ∩ fn(B) = ∅}).

We intend this rule to mean: “When two processes A and B reside beside each other
and an M-container, one of these processes may relocate to the M-container, only if
no entities in A and B are connected with each other.”8 For instance, we intend to
reject reactions such as Kz | Kz |M→ Kz |M.Kz, where the parameter G = Kz || Kz

of the reaction do indeed share names (we have (A |B |M) · (Kz ||Kz) = Kz |Kz |M).
Suppose that we had allowed arbitrary substitution, σ, in subst instead of only

bijective renaming. With this version of the subst-rule (call it substσ), we may
build the following derivation

rule
R ∈ R G = Kx || Ky ϕ satisfied

substσ

Kx | Ky |M→ Kx |M.Ky σ = {y 7→ z, x 7→ z}
Kz | Kz |M→ Kz |M.Kz

which contradicts our intention with the side-condition.
In Section 6.4, we shall see precisely, how we may consider BΣ,R-processes and

groups as corresponding to certain graphs with typed nodes corresponding to func-
tion symbols, nesting corresponding to prefixing, and, (named) links corresponding
to usage and sharing of names.

8In expressing side-conditions for reaction rules concisely, it is convenient to overload the usage
of variable-names in the rule, such as A and B, to refer to the processes in the parameter that we
are substituting for those variables.
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6.4 Bigraphs and BΣ,R-calculi

In this section, we verify formally that we may consider BΣ,R as a sugared and re-
stricted language for expressing certain kinds of bigraphs, and that BΣ,R-reaction
correspond to a variant of bigraphical reaction—extended with negative side-conditions
and under non-aliasing contexts. The verification itself is fairly straightforward—
our effort has consisted mainly in choosing suitable restrictions.

Such restrictions as we adopt in the BΣ,R-language for building processes are
key for allowing us to express reactions and contextualization as we have done it in
Definition 6.3.16. As opposed to bigraphs, we do not have explicit name-substitution
in the language; instead we take a rule for contextualization that allows renaming of
free names. We do not have explicit substitution or composition as a combinator in
the language, we take only the restricted prefix combinator and define substitution
as an operation, instead; and, we take as a primitive the parallel and wide parallel
operator, instead of the (bigraphical) tensor product, which requires disjointness
of names. These choices simplify both structural congruence, and the operational
semantics.9

In the following, we look to establish a dynamic correspondence between BΣ,R-
reaction and bigraphical reaction. We establish first, in Proposition 6.4.2, a static
correspondence verifying that BΣ,R-processes correspond to certain kinds of bi-
graphs with a single root (primes). In Lemma 6.4.3, we state formally that BΣ,R-
substitution is engineered to correspond to a relaxed version of bigraphical compo-
sition. This shall help us establish the dynamic correspondence; in Lemma 6.4.4,
we characterize BΣ,R-reaction via substitution. By way of this characterization, in
Theorem 6.4.5, we may formally state and verify the dynamic correspondence, we
are looking for.

6.4.1 Statics

We start by verifying that BΣ,R-processes are in one-to-one correspondence with
certain bigraphs with one root. Observe first, that for signatures the relation is
trivial—BΣ,R-signatures are simply bigraph-signatures with no passive controls.

Recall that link-epi are those link graphs with no idle outer names, and that
prime bigraphs are those with a single root and no inner names. Also recall, that
from the bigraphical ⊗-product that requires total disjointness of both outer and
inner names, we may derive a name-sharing parallel product ||, and prime product
|. Finally, in the following, to distinguish bigraphs from BΣ,R-processes, we write
bigraphs with a superscripted B.

We start by stating a normal form for link-epi, prime bigraphs, which we use to
make an direct comparison with the normal forms for BΣ,R.

9It should, of course, be said that the categorically derived tensor product and composition prove
their worth in establishing many meta-theorems about bigraphs, and, in general, seem to enjoy
better algebraic properties [Mil05, DB06]. However, our emphasis in this paper is on presentation;
hence our effort to show that bigraphs and BRSs may be presented otherwise.
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Lemma 6.4.1 (normal form for link-epi, prime bigraphs). All link-epi primes PB

may be expressed on the following normal form

MB = (K~x | idY )PB

PB = (/Z | id1)(idn |M0 | · · · |Mk−1)π

In case K is atomic, then the MB form degenerates to MB = K~x. (Also note that,
contrary to discrete normal form (cf. [Mil05]), the names ~x need not be distinct.)

Proof. Follows easily from the completeness of the DNF and CNF normal forms for
bigraphs (see [Mil05]).

Comparing the normal form for BΣ,R-processes in Proposition 6.3.9 and the
normal form for link-epi primes above, it is easy to check the following property.

Proposition 6.4.2 (BΣ,R-processes are link-epi primes). BΣ,R-processes over the
signature Σ considered up to ≡ correspond one-to-one to link-epi prime bigraphs
(over the corresponding bigraphical signature Σ).

Proof. As mentioned above, BΣ,R-signatures are simply bigraph-signatures with no
passive controls. We need only compare normal forms. They are essentially equal,
up to the extra care with identities we need to take for bigraphs, and up to the
fact that ordering of variables in the bigraphical term language is captured via a
permutation π.

From Lemma 6.4.2 and the normal form for groups, it follows also, that BΣ,R-
groups are products of link-epi primes. Hence, we may treat BΣ,R-processes or
groups as denoting bigraphs. We extend the usage of superscripting bigraphs with a
B to allow applying it as an operator. Given a process M or a group C, in the follow-
ing we let MB or CB denote the corresponding bigraph. Substitution for BΣ,R has
been defined to behave like bigraphical composition allowing extension with a link-
identity, as usual. (This is also sometimes known as bigraphical “dotting” [Mil09].)

Lemma 6.4.3 (BΣ,R-substitution is bigraphical composition). (C · D)B = (CB ||
idY )DB, for Y = fn(DB).

6.4.2 Dynamics

We now turn to dynamics. We relate BΣ,R-reaction rules and bigraphical rules (with
prime, link-epi redices and reactums) pointwise. Side-conditions for BΣ,R-rules may
be translated directly to bigraphical side-conditions (as defined in Section 6.2.2).
We extend the B-notation and write ϕB for the bigraphical predicate corresponding
to ϕ.

To pave the way for relating BΣ,R and bigraphical (non-aliasing) semantics,
we start by characterizing in terms of substitution the BΣ,R-processes that Defini-
tion 6.3.16 allows to rewrite.
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Lemma 6.4.4 (characterizing BΣ,R-reaction via substitution). For any BΣ,R-reaction
P → P ′ via a rule with left-hand side M and right-hand side N , we have P ≡
(x̃)(O · α(M ·G)) and P ′ ≡ (x̃)(O · α(N ·G)), for some process with one variable O
with fn(O) = z̃, a (ground) group G, and α : x̃ ∪ z̃ ↔ ỹ for some ỹ.

Proof. We may show that for any reaction P → P ′, there exists a normal derivation,
DN , of a reaction among processes Q and Q′ structurally congruent to P and P ′

(i.e., Q ≡ P and Q′ ≡ P ′) given by the little grammar below:

DN ::= close∗
Dctxt
· · · Dctxt ::=



subst
rule · · ·

· · ·

par
struct

Dctxt
· · ·
· · ·

prefix
Dctxt
· · ·

Reading the grammar bottom-up, we stipulate that—modulo structural congruence—
any reaction may be derived by first applying rule, then subst to rename free names
of the rule; followed by a sequence of prefix and par to add arbitrary context in
the form of prefixes or arbitrary processes in parallel (using struct to shuffle the
parallel components of the term, if needed); finally closing names meant to be hidden
(using close∗ as a shorthand for zero or more applications of close).

We may prove the completeness of the normal derivation by induction on the
structure of the derivation of the reaction P → P ′. The only somewhat tedious case
is when we consider a derivation concluding with a renaming α using subst. The
logic behind the positioning of subst in the normal derivation grammar is, that
the only relevant usage of that rule is to rename free names used in the rule itself.
Names used only in context introduced by par and prefix, we may already choose
freely. To conclude this formally, note that by the induction hypothesis we have a
normal derivation D′N of a reaction without the renaming α. To verify the case,
we construct a new normal derivation by essentially applying α across D′N up to
the rule/subst leaf, and then merge α with the substitution in the subst already
occuring in D′N . The remaining cases may be verified straightforwardly.

It remains to remark, that, using contiguous applications of prefix and
struct/par and the final sequence of close, we may build as context any process
(x̃)O with one variable; thus reasoning that the substitution of α(M · G) into O
characterizes the contextualization of the core reaction. With the help of the normal
form for processes (Proposition 6.3.9) this is straightforward.

Having thus characterized reactions via substitution, which in turn corresponds
to bigraphical composition (Lemma 6.4.3) we may bridge the gap to bigraphical
reaction.

Theorem 6.4.5 (BΣ,R reaction is bigraphical reaction under non-aliasing contexts).
P → Q by (M → N,ϕ) iff PB → QB by (MB → NB, ϕB) as defined in 6.2.1 and
Definition 6.2.2.
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Proof. (⇒) We are given a reaction P → Q by (M → N,ϕ), and we need to
construct a link-mono bigraph C and a ground parameter d, s.t. PB = C.MB.g and
QB = C.NB.g.

From Lemma 6.4.4, we know that P ≡ (x̃) (O·α(M ·G)), andQ ≡ (x̃) (O·α(N ·G))
for some process with one variable O and a (ground) group G. W.l.o.g., assume that
x̃ ⊆ fn(O · α(M ·G))—we may remove excess names from x̃ via elision.

We have

((x̃)(O · α(N ·G)))B = (/x̃⊗ id〈1,Y ]Z〉)O
B.(α⊗ id1)(NB.GB),

where α : fn(N · G) → Y and Z = fn(O). We know from Lemma 6.4.3 that
BΣ,R-substitution is bigraphical dotting; name-hiding and substitution correspond
to composition with closure and renaming, respectively.

We choose C = (/x̃⊗ id〈1,Y ]Z〉)(OB || idY )(α ⊗ id1) = (/x̃⊗ id〈1,Y ]Z〉)(OB || α),
and g = GB. We note that C is link-mono by construction, since OB (and any other
correspondent to a BΣ,R-process) has no inner names and α—the part of C that will
create inner names—is, by definition, link-mono (in fact, iso). By construction we
have PB = C.MB.g and QB = C.NB.g, and we are done.

(⇐) We are given a reaction among link-epi primes (and thus correspondents
of BΣ,R-processes) PB → QB by a reaction rule (MB → NB, ϕB); in other words,
we know that for some link-mono C and parameter g, PB = C.MB.d and QB =
C.NB.g; and C must also be link-epi as PB is. We need to construct a BΣ,R-
derivation of a reaction, s.t., P → P ′ by (M → N,ϕ).

To verify the case, we may reverse most of the reasoning for⇒-direction. We note
that in the construction above, the bigraphical correspondent to (x̃)O, (/x̃⊗ id)OB,
ranges over all link-epi primes.In turn, it is easy to verify (with the help of the normal
forms for bigraphs [Mil05]) that the C derived from O ranges over all link-mono and
-epi contexts with both inner and outer width equal to 1 (i.e., of width 1 and with a
single hole). Hence, we may reverse the logic of the construction above, to see that
PB ≡ (α((x̃) (O ·M ·G)))B, and QB ≡ (α((x̃) (O ·N ·G)))B; and then conclude the
case via Lemma 6.4.4.

(For the side-conditions, we need only remark that for any ϕ, ϕ(G) iff ϕB(GB).)

6.5 An Example: The κ-calculus as a BΣ,R-calculus

As an illustration of the BΣ,R-calculus we show how we may capture (modulo a
modicum of encoding) the nondeterministic κ-calculus, a language of formal pro-
teins [DL04]. The setup of the κ-calculus has a striking resemblance to the link
graph of bigraphs; it is not surprising that we may capture it fairly easily. It is,
however, a first step towards our goal of studying extensions of the κ-calculus, as
well as serving as an illustration of the BΣ,R-presentation.

In the κ-calculus one instantiates a concrete model by choosing a signature,
signifying the proteins one works with, and giving a set of rewrite rules. We describe
a family of BΣ,R-calculi, κB, which faithfully captures any such κ-model.
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6.5.1 The κ-calculus

Below, we briefly and informally summarize the central concepts in the nondeter-
ministic κ-calculus [DL04].

A κ-calculus description of a system consists of a set of solutions over a (κ-
calculus) signature, a collection of (formal) proteins, and a set of reaction rules.
Proteins have a name and a number of ordered sites, collectively referred to as
the interface of the protein. A site may have an internal state; it can either be
hidden, visible, or, bound. Rules provide a description of how agents interact. The
elementary interactions consist of binding or unbinding between two sites of proteins,
the modification of the state of a site, and the deletion or creation of an agent.

The syntax of the κ-calculus relies on

• a countable set of protein names P, ranged over by uppercase lettersA,B,C, . . .;

• a countable set of names N, ranged over by x, y, z, . . .; and,

• ∫—a (κ-calculus) signature, a map which assigns to each A ∈ P an arity
signifying the number of sites of the protein A; that is, ∫(A ∈ P) = n ∈ N.

For each protein A, ∫(A) is the number of sites of A and the pair (A, i) is a site of
A.

Interfaces A κ interface is a partial map from N to N ] {h, v}. We let ρ and σ
range over interfaces. A site (A, i) is

• visible, if ρ(i) = v;

• hidden, if ρ(i) = h; and

• bound, if ρ(i) ∈ N.

A protein A may be assigned an interface ρ, if ρ is defined on a subset of ∫(A).
For instance, if ∫(A) = 3, then ρ = {1 7→ v, 2 7→ h, 3 7→ x} is a well-defined interface
for A. It says that site 1 is visible, that site 2 is hidden, and that site 3 is bound to
some name x. As interfaces are part of the syntax, it has become tradition to write
the interface ρ with syntactic sugar as ρ = 1 + 2 + 3x.

Importantly, interfaces need not give information for all of A’s sites; we say that
they may be partial. This is to allow interfaces to depict partial information on A’s
sites in reaction rules.

Syntax The syntax for κ-solutions is as follows:

S, T ::= 0 empty solution
| A(ρ) protein
| S, T group
| (x) (S) new name

The (x)S operator is a binder of the name x in S, as usual. Definitions for free and
bound names may be given inductively, much as in Definition 6.3.7.
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Structural congruence and graph-likeness As BΣ,R-processes, κ-solutions are
quotiented by a structural congruence relation, ≡, which records that bound names
are α-convertible, that | is associative and commutative with 0 as the neutral ele-
ment; and, that the usual scoping laws for (x) holds; i.e., corresponding to extrusion,
reordering, and elision in Definition 6.3.8.

Graph-like solutions are those solutions, where

• free names occur at most twice, and

• binders bind either zero or two occurences of names.

A graph-like solutions is strongly graph-like, if all free names occur exactly twice.
One may define a translation from graph-like solutions to graphs whose nodes

have sites—providing a formal graph-based language for the κ-calculus. As expected,
structurally congruent solutions translate to the same graph.

At the top of Figure 6.2, we depict and write terms for two small κ-solutions
(ignore for now their translation into BΣ,R-process, at the bottom of the figure).
Note that name-sharing between bound sites induces so-called complexation-links
between sites.

Reaction rules There are two kinds of rules in the κ-calculus, monotonic and anti-
monotonic rules. They ensure that rules model biologically well-founded reactions on
the chosen level of granularity for the reactions in κ, such that they divide into two
clean classes: those that form new complexation links (monotonic), and, those that
break complexation links (anti-monotonic); and also that synthesis and degradation
(creation and deletion of proteins) is only allowed for proteins with no complexation-
links to other proteins. However, as discussed in the paper [DL04], and in later
versions of the κ-calculus [DFF+07, DFFK07], the restrictions on monotonicity may
also be loosened.

We shall not go into further detail here; suffice to say, that we may also adopt
and translate the schema for restriction for monotonic and anti-monotic rules to the
κB setting. The translation and correspondence we prove below is not dependent on
monotonicity, however, so in this treatment we shall not be concerned much with
monotonicity-restrictions.

For the remainder of this paper, it suffices to say that when L→ R is a monotonic
reaction rule, then L and R are graph-like solutions on the following forms:

L = A1(ρ1), · · · , An(ρn)
R = (x̃)A1(σ1), · · · , An(σn), An+1(σn+1), · · · , Am(σm),

for (possibly partial) interfaces ρ1, · · · , ρn, and full interfaces σ1, · · · , σm.
The newly created proteins An+1, · · · , Am must have full interfaces. Formally,

this follows from the so-called κ growth relation. The growth-relation also ensures,
essentially that monotonic rules only add complexation-links and proteins to solu-
tions, while anti-monotonic rules only remove structure.

Anti-monotonic rules are defined by symmetry as reverses of monotonic rules.
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Matching The matching of a monotonic reaction rule to solutions is defined as
follows, for S and T , two solutions.

We say that S, T matches L → R on the form above, written S, T � L → R, iff
for some injective renaming r (preserving hidden and unbound sites), and for some
partial interfaces ζ1, · · · , ζn we have that:

S = A1(r(ρ1) + ζ1), · · · , An(r(ρn) + ζn)
T = (r(x̃))A1(r(σ1) + ζ1), · · · , An(r(σn) + ζn), An+1(r(σn+1)), · · · , Am(r(σm)),

and, s.t., for all i, r(x̃) ∩ fn(ζi) = ∅.
In short, (monotonic) matching allows on L and R injective renaming on names

and extension of partial interfaces to full interfaces.

Reaction The reaction relation for the κ-calculus is defined via matching and is
closed under syntactic constructions and structural congruence.

The reaction relation is given via a set of rules that resembles Definition 6.3.16; in
fact, the simplicity of contextualization for the κ-reaction relation was a key source
of inspiration for the contextualization of BΣ,R-reaction.

We repeat the rules for deriving reactions in the κ-calculus below (eliding only
the details of monotonicity):

(rule)
S, T � L→ R ∈ R

S → T
(new)

S → T
(x) (S)→ (x) (T )

(group)
S → T

S,U → T,U
(struct)

S, T S ≡ S′ T ≡ T ′

S′ → T ′

6.5.2 Capturing the κ-calculus as a BΣ,R-calculus

In the following section, we start by defining a BΣ,R signature for κB that matches
a κ signature. We continue by defining a translation from κ-interfaces, in Defini-
tion 6.5.2, and solutions, in Definition 6.5.3, to BΣ,R-processes. In Proposition 6.5.4,
we state formally, that this translation respects and reflects structural congruence.
Definition 6.5.5 states that rules are simply translated pointwise, and in Propo-
sition 6.5.6 we formally state and verify the operational correspondence between
reaction in the κ-calculus and reaction in κB. Paving the way for expanding and
refining the model of proteins in κB, we finish by giving a little characterization of
the images of κ-solutions, in Definition 6.5.7, and verify it in Lemma 6.5.8.

We shall model κ-proteins as atomic BΣ,R-function symbols and κ-calculus names
directly as BΣ,R-names. However, while the ports of BΣ,R-calculi serve only to link
names, the sites of proteins hold bits of state information. We have to capture also,
that κ rules allow us to express only partial interfaces, where some sites of a protein
may be left out.

We capture these features of κ-interfaces by “exploding” the protein-model of
the κ-calculus—making the protein-node model (only) the backbone of a protein,
its ports connecting it to sites modelled as separate nodes.
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Consequentially, we inject a translation of κ-interfaces into our BΣ,R-signature
and add a few extra controls. We add three kinds of site nodes: 	p, a site in
unbound state connected to a protein-backbone via p; �p, a site in hidden state
connected to a protein-backbone via p; and, ⊕p,c, a site in bound state connected
to a protein-backbone via p and to another site via c. To sum up, the first port of a
site link sites to their (backbone) protein, while the second port, if present, are for
complexation links.10

Definition 6.5.1 (BΣ,R signature for κB). We consider the signature

Σ = {A : atomic(n) | A ∈ P, ∫(A) = n} ]
	 : atomic(1) ] � : atomic(1) ] ⊕ : atomic(2).

Translating κ-solutions

We have already sketched above how we intend to translate κ-solutions to κB-
processes. In our model of κ, we push κ-interfaces to the level of first-class citi-
zens. So, in defining translation formally, we define first translation of κ-interfaces
to κB-processes. We shall use links to connect also a protein with its (translated)
interface, so we parameterize the translation of interfaces by a another partial map,
a backbone map, from N to (backbone) names N, which is used to create these links
(and is introduced in the translation of solutions, below).

Definition 6.5.2 (translation of κ-interfaces). Given a backbone map β : N → N
and a κ-interface ρ of the form {(i 7→ x), (j 7→ h), (k 7→ v), . . .}11, we define [[ρ]]β ,
the translation of ρ under β, pointwise, translating

• (i 7→ x) as ⊕β(i),x,

• (j 7→ h) as �β(j),

• (k 7→ v) as 	β(k);

and composing translated parts with parallel bar, |.

We continue to give a fully compositional translation from κ-solutions to κB-
processes. The only slightly nontrivial part is the translation of proteins. We make
a set of fresh names for the backbones and wire up a translated interface using these
names. As we see, translation is homomorphic in the new- and parallel-operators
(and its unit 0); underlining that the level of encoding is very light.

10We have some degree of freedom here, of course. We might have taken just two rather than
three kinds of sites, � : atomic(1) and ⊕ : atomic(2) and let (c)⊕p,c model an unbound domain. We
choose, however, to stay as close in spirit to the original presentation of the κ-calculus as possible,
i.e., to have no link at all, when the site is free.

11Strictly speaking, we must also require that β and ρ be defined on an equal subset of N.
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Figure 6.2: Examples: κ-terms as κB-processes.

Definition 6.5.3 (translation of κ-solutions). We define translation of κ-solutions
inductively over the structure of κ-solutions.

[[0]] = 0
[[A(ρ)]] = (b̃′)Ab1,...,bn | [[ρ]]β
[[S, S]] = [[S]] | [[S]]

[[(x) (S)]] = (x) (S),

for A with arity n, fresh names b1, . . . , bn, and β : n→ b̃′ = {i 7→ bi | ρ(i) defined}.

Why is b̃′ not just b1, . . . , bn? Because, we anticipate that we also need to trans-
late proteins in rules with partial interfaces—i.e., where ρ is only defined on a subset
of n. We therefore close only those backbone-links which have a site-counterpart in
the (translated) interface. (This also explains why we require names b1, . . . , bn to be
fresh; in translating rules we might meet other proteins with partial interfaces.)12

Figure 6.2 shows two examples of κ proteins and depictions of their translation
into κB-processes. As the encoding is almost homomorphic, and each of the laws
for structural congruence in the κ-calculus has a direct correspondent in the BΣ,R-
setting, it is simple to verify, that structural congruence among κB-processes captures
structural congruence in the κ-calculus.

12We assume that κ-solutions are valid, i.e., that interfaces are allowable for proteins. We may
adopt conditions stating such restrictions directly, but elide them here for brevity.
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Proposition 6.5.4 (static correspondence). S ≡ T (for κ-≡) if and only if [[S]] ≡
[[T ]] (for BΣ,R-≡).

Translating Rules

We have already paved the way for translating κ-solutions with partial interfaces, so
we may simply translate κ-rules pointwise. The translation and treatment of κ-rules
is not dependent on whether the rule is monotonic or anti-monotonic, so (as noted
above) we shall disregard monotonicity in this translation.

Definition 6.5.5 (translation of rules). Given any kind of κ-rule, L → R, the
corresponding κB rule is [[L→ R]] = ([[L]]→ [[R]], ∅).

Operational Correspondence between κB-reaction and κ-reaction

Finally, we turn to verifying that κB-reaction recaptures κ-reaction.
Our encoding is light, and the setup of the BΣ,R-calculi is inspired in part by

the formal semantics of the κ-calculus; hence, the verification of the operational
correspondence is not too hard. We sketch the proofs in some detail below.

Proposition 6.5.6 (operational correspondence).

1. For all κ-solutions S and T , if S → T by L→ R then [[S]]→ [[T ]] by [[L→ R]].

2. If [[S]] = P → Q by r = [[L→ R]], then there exists a solution T , s.t., [[T ]] = Q,
and S → T by L→ R.

Proof. In both cases, we shall assume that L → R is a monotonic rule (the anti-
monotonic case is similar); then L and R are on the form

L = A1(ρ1), · · · , An(ρn)
R = (x̃)A1(σ1), · · · , An(σn), An+1(σn+1), · · · , Am(σm),

1.: We are given a κ-derivation of S → T stemming from a match on the rule
L→ R. The κ-match is on the form

(rule)
S′, T ′ � L→ R ∈ R

S′ → T ′

for

S′ = A1(r(ρ1) + ζ1), · · · , An(r(ρn) + ζn)
T ′ = (r(x̃))A1(r(σ1) + ζ1), · · · , An(r(σn) + ζn), An+1(r(σn+1)), · · · , Am(r(σm)),

where r is an injective renaming (preserving hidden and unbound sites), s.t., for all
i, r(x̃) ∩ fn(ζi) = ∅.
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We build a BΣ,R-derivation corresponding to this match:

rule
([[L]], [[R]], ∅) ∈ R P ′ ≡ [[L]] Q′ ≡ [[R]]

subst
P ′ → Q′ α = r ↓ fn(P ′)

struct
P ′′ ≡ α(P ′)→ α(Q′) ≡ Q′′

par
P ′′ → Q′′

P ′′ | [[ζ1]] | · · · | |[[ζn]]→ Q′′ | [[ζ1]] | · · · | |[[ζn]]

The BΣ,R-rule step is simple, and both renaming and (due to the first-class encoding
of interfaces) interface extension is handled through contextual and structural con-
gruence rules. We first rename free names via subst and then (for emphasis) bound
names via struct; and then extending interfaces by adding their translations via
par.

The remainder of the contextual steps in the κ-derivation of the reaction, we
mimic directly with their immediate BΣ,R-counterparts, noting in particular that,
as we have the static correspondence, we can mimic also any structural congruence-
steps.

2.: Via the substitution characterization of matches in BΣ,R (Lemma 6.4.4), we
have that P = [[S]] and Q, are on the form

[[S]] ≡ (ỹ) (α[[L]] | C)
Q ≡ (ỹ) (α[[R]] | C) ,

where we use that [[L]] and [[R]] are ground, and that all controls in κB are atomic.
We know also, that since S is a solution it has full interfaces; we can conclude

that C must be on the form

C ≡ [[ζ1]] | · · · | [[ζn]] | C ′,

where C ′ is the image of an open solution with complete interfaces, and s.t. each
ζi completes the interface of Ai, i.e., for all i ∈ n, Ai(ρi + ζi) and Ai(σi + ζi) are
proteins with full interfaces.

Letting α+ = α∪idfn(C), we conclude with ease—as our compositional translation
is particularly simple—that we have

[[S]] ≡ (ỹ) (α+ ([[A1(ρ1), · · · , An(ρn), B1(γ1), · · · , Bk(γk)]]))
Q ≡ (ỹ) (α+ ([[(x̃)A1(σ1), · · · , An(σn), An+1(σn+1), · · · , Am(σm),

B1(γ1), · · · , Bk(γk)]])) ,

introducing C ′ = B1(γ1), · · · , Bk(γk). The renaming we may equally apply on κ-
names; and, noting that the translation is homomorphic on name-closure, we have
found the T , s.t., Q = [[T ]].

It is easy to verify, that S → T by L→ R by building a κ-derivation.
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Characterizing Images of the Translation

In our BΣ,R model, we have decoupled proteins and interfaces, or, biologically speak-
ing, protein-backbones and their sites. This decoupling is essentially the only level
of encoding in our capture of the κ-calculus. We may formally state two well-
formedness conditions on the links that close this coupling. We add a third condi-
tion to say that bound sites link only to other bound sites. We express the well-
formedness conditions as clauses for each type of port in κB.

The characterization is presented essentially as a sorting [Deb08] on the bi-
graphs underlying BΣ,R processes. We shall use the model for proteins and the
well-formedness conditions presented here, as the basis for further investigation of a
language built on bigraphs for modelling biology [DDK08].

Definition 6.5.7 (well-formedness conditions).

1. All ports of protein are either (i) linked one-to-one via a bound name to either
the first port of a site-nodes (i.e., with control 	, �, or ⊕), or (ii) a distinct
name.

2. All sites are linked one-to-one via a bound name by their first port to the port
of a protein.

3. The second port of all ⊕-nodes are linked (via an open or bound name) to
either another ⊕-node, or (for open processes) a name.

We may lift further requirements from the κ-calculus, notably graph-likenessfor
κ-solutions directly to κB, copying definitions essentially verbatim.

It is fairly easy to verify that well-formed κB-processes characterize exactly the
images of κ-solutions (with partial or complete interfaces).

Lemma 6.5.8 (well-formed processes correspond to solutions).

1. for all S, [[S]] is well-formed and unique up to structural congruence, and

2. if a κB-process P is well-formed then there exists a unique (up to structural
congruence) S (over the corresponding κ-signature), s.t., P = [[S]].

Proof. We sketch the reasoning.
1.: Easy to verify by induction on the structure of S from the translation in

Definition 6.5.3.
2. By the normal form (Proposition 6.3.9) for BΣ,R-processes, we know that we

may consider P as a sequence of protein-nodes and site nodes, under a set of binders.
Well-formedness condition (2.) tells us that names used on the first port of a site

have exactly two occurences—they match up pairwise to a unique name used by a
port on a protein; and that name is bound. well-formedness condition (1.) tells us
in addition, that any name used on a port of a protein, which does not have such a
correspondent, is free and has only that one occurence.
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In other words, grouping proteins, sites and binders according to that pairing, we
see that P consists a topmost binder (allowing the binding of complexation links),
and groupings of closed processes of the following form

(x̃)
(
A~x | 	y1 | · · · | 	yj | �u1 | · · · | �uk

| ⊕v1,w1 | · · · | ⊕vl,wl

)
,

where each yi, ui, and, vi are equal to exactly one name in x̃ (the set corresponding
to the distinct names ~x).

Such a closed grouping correspond to exactly one κ-protein with a (partial or
full) interface.

Well-formedness condition (3.) tells us simply that the names wi used at the
second port of ⊕-nodes are distinct from all names used on other types of ports, but
may have one (or more, if it is not graph-like) other occurences among names used
on the second port of ⊕-nodes.

Well-formedness condition (3.) ensures us that links among the second port of
⊕-ports correspond one-to-one to κ-complexation links, as do their bound or free
state.

Concluding Remarks

In all, comparing the semantics of κ with that of κB, we may remark that to allow
for partial interfaces, we needed to lift sites to the level of first-class citizens and
disjoin them from protein backbones.

In return for this bit of added complexity, we get a more uniform treatment of
interface extension and renaming, and a simpler rule for matching. In BΣ,R, the
matching rule, rule, is comparatively simpler (in particular, for the atomic controls
of κB) than its κ-counterpart. This is because interface extension and renaming is
incorporated as part of the κ-matching rule; in κB, this is handled as just another
part of contextualization.

We may also note, that non-aliasing BΣ,R-reaction is actually necessary for re-
capturing directly the injectivity of the renaming of names as produced by the
κ-matching rule. As noted in the introduction, when modelling biology, controlling
and testing connectedness is valuable.

6.6 Conclusion

In this paper, we have treated and motivated the extension of bigraphical reaction
rules to include testing of negative side-conditions, and, for defining these sensibly,
defined reaction under non-aliasing contexts.

We have introduced the family of BΣ,R-calculi, an independent presentation of
a subset of bigraphical calculi, and provided a simple operational semantics in a
structural style, which we have shown corresponds to a non-aliasing bigraphical
semantics. This contribution in itself, provides bigraphical calculi with a novel self-
contained syntactically founded semantics (the standard presentation being firmly
based on the categorical foundations of bigraphs [Mil06b]).



6.6 Conclusion 167

Finally, to exemplify our contributions, we have shown that we may model the
nondeterministic κ-calculus as a BΣ,R-calculus. In doing so, we have paved the way
for further experimentation on languages based on bigraphs for studying biological
systems.

Related and Future Work In a sequel paper [DDK08], we shall build upon
the preliminary work presented here, and present a language encompassing both
domain-level protein-protein interaction, compartments and transport among these.
In that paper, we shall reap the benefit of having built a simple, self-contained
presentation of the subset of bigraphs that we need.

In the Introduction, we have already discussed the background and several
sources of inspiration for BΣ,R-calculi. We should also, however, comment on other
novel languages or models based on bigraphs.

In [BDE+06], Birkedal et al. evaluated the use of bigraphs for building, as BRSs,
so-called plato-graphical models of context-aware systems in the domain of mobile
ubiquitous systems. In [Els06], Elsborg continues this investigation. The authors
encode and analyse a MiniML-like calculus with references and use this language
to interact with direct representations of sensor networks. This work focuses on
context-aware systems, in particular the location aspect of context, and the goal is
to represent and analyze a minimalistic location-aware model as a plato-graphical
(BRS) model.

The CosmoBiz research project (Computer Supported Mobile Adaptive Business
Processes) at the IT University of Copenhagen has as aim to provide formalisations
and implementations of business process languages for mobile and adaptive business
processes [HNB+07].

In [BGH+08a], Bundgaard et al. present a higher-order variant of WS-BPEL [TC07],
and shows how this language may be formalized in binding bigraphs. In the com-
panion tech report [BGH+08b] the language is also implemented and simulated with
the help of the BPL tool.

In this paper, we have focused on reaction and dynamic correspondences, not
contextual equivalences. As discussed in the introduction, we wish to start by fo-
cusing on finding good abstractions for modelling biological entitities and events.
In future work, we may wish, however, to investigate contextual equivalences. In
doing so, it is an obvious step to try to use the bigraphical framework for bisimu-
lations that are congruences via the derivation of minimal labels [Mil06b]. (More
recently, Bonchi et al. have studied an alternative approach to minimal labels called
a saturated semantics [BKM06].) However, as we have modified the definition of the
reaction relation to incorporate (negative) side-conditions and require the context
to be link-mono, it needs to be studied how to update the framework, accordingly.
In doing so, one may look to the experiences in deriving labels for graph transforma-
tion systems that have rules with negative application conditions (using the similar,
so-called borrowed context approach [EK06]) by Rangel et al. [RKE08].

Such studies may also be a first step towards relating the bigraphical theory
for bisimulation congruences to the studies of meta-theoretical theorems concerned
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with establishing congruential behavioral equivalences for syntactic rule formats for
structural operational semantics [MRG07].

Acknowledgements The authors thank Søren Debois, Mikkel Bundgaard, Lars
Birkedal, Vincent Danos, and Robin Milner, for many useful discussions and sug-
gestions during the development of this work. Some of this work was developed
while the first author was visiting Catuscia Palamidessi’s group at Laboratory for
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Chapter 7

A Language for the Cell

Abstract
We introduce a formal language, the C-calculus, for modelling low-level in-
teraction inside and among cells, the basic building blocks of all known life.
We focus on two main actors of cells, proteins and membranes. Proteins
are represented as clusters of domains sharing a common hidden name;
domain-domain bonds are also represented via name-sharing. Compart-
ments are formed by formal membranes. We treat also channels between
membranes allowing transport of proteins, allowing us to capture an ob-
servable intermediate state in cell fusion or division, regulated by diffusion.
We illustrate the calculus by giving two example models. We exem-
plify the basic constituents of the calculus, by developing a model of
simple cross-membrane signalling via a G-protein coupled receptor pro-
tein. We continue by developing a model illustrating part of the endocytic
pathway—the formation of clathrin-coated cytoplasmic vesicles, through
budding from the plasma membrane (the cell-wall).

Preface This part contains the tech report [DDK08]. The report was co-authored
with Jean Krivine, Harvard Medical School, and with Vincent Danos, University of
Edinburgh.

7.1 Introduction

In this paper, we introduce a formal language, the C-calculus, for modelling low-
level interaction inside and among cells, the basic building blocks of all known life.
We start by giving a brief overview of the biology of cells, and discuss the level of
abstraction that we aim to capture in the calculus. In the C-calculus, we focus on
two main actors of cells, membranes and proteins.

Membranes In nature, biological membranes are vital for separating cells from
their surroundings, for confining dangerous compounds to secure compartments,
for serving as vehicles of transport, or, for promoting certain reactions by raising

169
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the local concentration of reactants. The membrane of a cell consists mostly of
a double layer of proteins and lipids (fat-like molecules). Membranes may have a
variety of molecules attached to them or embedded within them. Notably, such
molecules may be transmembrane proteins, which serve to propagate signals across
the membrane barrier; or, they may be various molecules, which serve as pumps for
moving different smaller molecules in and out of the cell. The molecules attached to
membranes also serve to differentiate the two sides of a membrane and to stabilize
it. Organelles (“small organs”) inside eukaryotic cells (cells with nuclei) are also
wrapped in protective membranes, as are vesicles transporting material between
cells.

Biological membranes are dynamic entities—under certain conditions, they may
form buds, new small membrane-enclosed compartments that grow from a particular
location on the membrane. Budding may serve to create vesicles, for instance.
A membrane may also undergo fission and divide entirely in two, in the process
also dividing the content in the enclosed compartment.1 Both budding and cell
division are typically complicated and regulated processes involving various kinds
of machinery (depending on the type of membranes and division). For instance—in
what is sometimes known as asexual reproduction of eukaryotic cells—when two
eukaryotic cells divide, initially the chromosomes (the structures carrying DNA) in
the cell nucleus are carefully separated into two nuclei. This process is called mitosis.
In a following step called cytokinesis, the cytoplasm (the contents inside the cellular
membrane) as well as the organelles and the cellular membrane are split up to form
two new daughter cells.

Membranes may also fuse with other membranes. This occurs, for instance,
when viruses infect cells, and it serves to create such structures as the long fibers
of human skeletal muscles. When two cells fuse together, their membranes meet
at one point and create a connection between the membranes. Eventually, the two
membranes will form one single, continuous membrane that surrounds the contents
of both cells.

Research has confirmed that both when cells fuse or divide, membranes will
temporarily be in a partially fused state with a neck consisting of partially fused
membrane material.2 This neck acts as a bridge connecting two compartments and
it typically allows some material to be exchanged by diffusion. Even further, it also
happens that cells abort fusion (or fission). For instance, two cells may partially
fuse, exchange some material by diffusion, and then part again.

1As in computer science, biological terminology tends to be overloaded. In this paper, we shall
use fission as a generic term to refer to any process by which membranes divide. In doing so, we
stretch the terminology typically employed by biochemists a bit, but it is convenient to use the
term to describe the reverse of fusion. We stress that our usage of fission should not be confused
with so-called binary fission—the specific process by which prokaryotic cells (cells without a nuclei)
divide.

2For instance, studies on cellular division in nematode worms show that an intermediate state
may indeed be observed during cell fusion [Pod06]. Other studies have focused on different models
for the intermediate structures in membrane fission [KK03]. Some studies also hypothesize that the
shapes of the intermediate protein structures, which form the neck itself, may drive and serve to
distinguish the process of fission and fusion [KC02].
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In the C-calculus, compartments are formed by formal membranes. To capture
faithfully the dynamics of fusion and fission, we include in the C-calculus also binary
channels between membranes. Channels are, to our knowledge, a novel abstraction
that allows us to capture an observable intermediate state in fusion and fission. In
this intermediate state the connected compartments may exchange material regu-
lated by diffusion. Formally, channels are formed by gates sharing a common name;
gates can be seen as abstractions for the various molecular-structures that constitute
the neck.

Membranes-enclosed cells are large structures compared to the typical protein.
While a eukaryotic cell may be around 10−100µm, the typical diameter of a globular
protein—like hemoglobin, for instance—is around 5nm. The difference in scale of
mass is far larger. Thus, from the perspective of cells and membranes, proteins can
be considered essentially atomic.

Proteins Proteins are linear chains of amino-acids. The string of amino-acids is
known as the backbone of a protein. Gene-sequences in the DNA enclosed in all
cells determines the amino-acid sequence for all the proteins that a cell can produce.
Production (synthesis) of proteins involves transcribing the DNA to mRNA, various
kinds of post-transcriptional modification, and translating the mRNA to proteins
by way of small cellular factories called ribosomes. Finally, most proteins fold into
three-dimensional structures called the conformation or the tertiary structure of the
protein. The tertiary structure may in turn hide or reveal some parts of the protein.3

The entire process of synthesis of proteins is complex, self-organized and, as nearly
all biological phenomena, highly regulated by various molecular signals.

The peptide bonds forming the backbone make proteins relatively stable struc-
tures. Proteins may also form weaker bonds with other proteins to form multi-
protein complexes. These bonds form on particular parts of the proteins referred to
as domains or sites.

In the C-calculus, our aim is to capture a domain-level description suitable for de-
scribing protein-protein interaction in a multi-compartment environment. To allow
for transmembrane-proteins, in the C-calculus proteins are represented as clusters
of domains sharing a common name. This name is a formal representative of the
backbone. Domain-domain bonds are also represented via name-sharing.

Formal foundation and sources of inspiration Formally, the calculus is founded
on bigraphical reactive systems (due to Milner et al. [JM04, Mil06b]) through the
BΣ,R-framework treated by Damgaard and Krivine [DK08] (see below). Thus,
the C-calculus admits a formally founded graphical language; and we inherit re-
sults for a tacit term syntax with well-understood structural congruence proper-
ties [Mil05, DB06], and a well-understood behavioral theory. Even further, due to

3Traditionally, biochemists refer to four distinct aspects of structure for proteins. Primary
structure, the amino-acid sequence; secondary structure, describing regular local structures (such
as so-called alpha-helixes or beta-sheets); tertiary structure, the 3-d structure; and, quaternary
structure, the structure of complexes formed from several proteins.
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recent results by Milner, Krivine, and Troina [KMT08], a stochastic extension of the
nondeterministic calculus presented in this paper, is well-founded. Implementation
of bigraphs has also been investigated [BDGM07], and a prototype implementation
is available [BPL07].

The BΣ,R-framework (presented in [DK08]) paves the way for our usage of bi-
graphical calculi for modelling biological interaction, in particular, by extending
bigraphical reaction rules to allow testing of contextual negative side-conditions. It
also introduces a self-contained and generic presentation of the operational seman-
tics for a subset of bigraphical calculi, in a structural style more in line with how
process calculi are typically presented. We shall make good use of this groundwork
in this paper, eliding most discussion of bigraphical idiosyncracies, and focusing on
the presentation and motivation of the calculus itself.

We are inspired by and combine features from several existing languages, in par-
ticular, the κ calculus [DL04], a rule-based language capturing domain-level protein-
protein interaction. We base our domain-level model of proteins closely on our expe-
rience with capturing the κ-calculus in the BΣ,R-framework (in [DK08]), only here
generalized to a multi-compartment setting. A main aim of the work presented in
this paper, has been to extend a κ-like language with dynamic compartments.

The model for membranes and their dynamics is influenced, in particular, by the
brane-family of calculi [Car04b, DP04], which deals solely with membrane interac-
tion; and the Bioambients [RPS+04], one of the first calculi to investigate at the
same time both molecular and membrane-level interaction.

We discuss in more detail the inspiration sources for the C-calculus both in the
main sections of the paper, and in Section 7.5.2.

An overview of the paper Having given an overview of the biology of cells
and introduced the background that the C-calculus builds on, in the next section
we present the C-calculus static model. In Sections 7.2.1 and 7.2.2, we introduce
and motivate the model of proteins and membranes, and in Section 7.2.3 we define
the grammar for C-calculus solutions and define an associated structural congruence
relation. In Section 7.2.4, we discuss how structural congruence classes of solutions
correspond to bigraphs. This paves the way for a graph-based description of well-
formed solutions, which we define and motivate in Section 7.2.5. We shall define
well-formedness to ensure that well-formed solutions are those that we can interpret
biologically.

In Section 7.3, we turn to the operational semantics of the calculus. The κ-
calculus has been one of several advocates for what we may call rule-based modelling.
Rules can be understood and manipulated separately, are easily visualized, and,
easily express possible overlapping behaviors of certain configurations. On the other
hand, we need to uphold certain well-formedness invariants to ensure that we can
interpret model configurations sensibly as biological states. Hence, we advocate
a middle-ground for the C-calculus: Modelling by rule refinement. We shall give
a set of rule-generators that each express a core biological action for membranes
and proteins. The key idea is that a domain expert, say a bio-chemist, may pick
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and refine those core generators to give a domain-specific sub-calculus for the study
of a particular biological application. He does this by giving a set of application
conditions that express when an action may be applied.

We start by defining C-calculus reactive systems and reaction rules in Sec-
tion 7.3.1. In Section 7.3.2 we describe formally so-called projective descriptions of
rules, inspired by the Projective Brane Calculus by Pradelier and Danos [DP04],
and, more recently, by the patch reactions treated by Cardelli for Bitonal Sys-
tems [Car08]. They let us describe conveniently sets of rules for reactions involving
regions separated by one or two membrane-surfaces, while eliding the orientation
of those separating membranes. In Sections 7.3.3 and 7.3.4, we introduce rules for
protein-protein interaction and membrane (or channel) reconfiguration, respectively.
In Section 7.3.5, we define refinements of rules and settle on a definition of those
rules that we allow in the C-calculus. Finally, in Section 7.3.6 we show that the
allowable rules preserve well-formedness.

In Section 7.4, we illustrate the calculus with two examples. We exemplify the
basic constituents of the calculus, by developing a model of simple cross-membrane
signalling via a G-protein coupled receptor protein. We continue by developing a
model illustrating part of the endocytic pathway—the formation of clathrin-coated
cytoplasmic vesicles, through budding from the plasma membrane (the cell-wall).

In Section 7.5, we conclude and discuss some related and future work.
In Appendix 7.A, we include a series of definitions for solutions inherited directly

from the BΣ,R-framework for such properties as free names, normal forms, and
substitution.

7.2 The C-calculus—a Model of Proteins and Membranes

In Sections 7.2.1 and 7.2.2, we introduce and motivate the foundation of the C-
calculus—the model of proteins and membranes. In Section 7.2.3, we define formally
the grammar for the C-calculus and its associated structural congruence relation. In
Section 7.2.4, we discuss how solutions up to structural congruence correspond to
bigraphs, and, finally, in Section 7.2.5 we define and motivate well-formedness for
the C-calculus.

7.2.1 Proteins

In the C-calculus, proteins are represented as groups of interaction domains sharing
a common name, which we call the backbone. Domain-domain bonds, which let pro-
teins form complexes, are also represented via name-sharing. While in the κ-calculus
proteins are atomic entities, domains are the atoms of the C-calculus. Domains are
represented via atomic function symbols, and thus depicted as atomic nodes (i.e.,
they cannot contain other nodes).

Formally, we derive the set of domains from a protein-signature. Protein-names
are drawn from a fixed set P, which we require to be disjoint from all other kinds
of names.
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Definition 7.2.1 (protein-signature). A protein-signature, ΣP , is a map from P to
N2.

The protein-signature, ΣP , maps each protein-name p to a pair of integers (a, r),
where a is the arity of the protein—it determines the number of domains of p—and,
r is the receptor-arity of p. We explain the receptor-arity below.

Definition 7.2.2 (domains). Given a protein-signature ΣP , let D ⊆ P ×N, the set
of domains induced by ΣP , be given as

D = {(p, i) | p ∈ P, ΣP(p) = (a, r), and 0 ≤ i < a}.

We choose a simple concrete language for expressing the domains of proteins.
Suppose the protein-name pro has the signature (4, 1). The arity 4 determines
that there are four domains in a protein of type pro. We write its four domains
as pro0, pro1, pro2, pro3. We interpret the receptor-arity for a protein-name in the
following manner: If the receptor-arity r is larger than zero, pro is a transmembrane
protein, and all well-formed instances of pro must take the shape of two subunits
separated by a single membrane: one with domains 0 to r − 1, and one with the
domains numbered r to n− 1.

Protein domains have one or two ports for connecting to named links. All do-
mains of a protein share a common backbone-link connected to their first port, and
pairs of bound domains may share a complexation-link on a second port. A domain
has an associated complexation-state, which determines their current ability to form
complexes. It may be bound to a link x; it may be in a hidden state due to the
overall conformation of the protein it is part of; or it may be currently unbound,
but visible and ready to form new complexation-links.4

We write proixa for the ith domain of a pro protein connected to the backbone a
and bound to the complexation-link x; we write proia for the domain in its visible,
but unbound state; and, we write proia for the domain in its hidden state. Figure 7.1
shows how we illustrate these three kinds of domains. Figure 7.2 contains an illus-
tration of an instance of the entire protein pro, which respects the protein-signature.
Figure 7.2) contains an illustration of a well-formed instance of a closed protein pro.
(We formally introduce the name-hiding operator (x) and the syntax for membranes
in the following sections.) 5

4We have some freedom in choosing exactly how to model as state. In particular, there is a
subtle difference in electing to model unbound, visible domains (i) via a separate state as inspired
by the κ-calculus, or (ii) via closed unary links. Model (i) allows us to use less names, while model
(ii) allows us to write a reconfiguration rule, which matches both bound and unbound domains. In
this paper, we have chosen model (i), thus building on the intuition from the κ-calculus.

5Our model and naming scheme for proteins and their domains is essentially a minimal extension
to a multi-locality setting of the BΣ,R-model of κ-calculus proteins described in [DK08]. Centrally,
the atom representing the protein backbone has been substituted for a shared link, allowing us to
conveniently model transmembrane proteins.

Though the protein-model and naming scheme is simplistic, it is sufficient for describing many
interesting examples (as we shall see later in Section 7.4). However, one may easily extend
the protein model with more complex kinds of state, as done for later versions of the κ calcu-
lus [DFF+07, DFFK07], or with more complex naming schemes, for instance, for proteins or do-
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proi proi proi

a a ax

proixa proia proia

Figure 7.1: Domain states.

pro0

pro1

pro2

pro3
m

(a, x) m[pro0a] | pro1x
a | pro2a | pro3x

a

Figure 7.2: A well-formed instance of pro.

7.2.2 Adding Dynamic Compartments

To model membranes and their dynamics in the C-calculus, we add two kinds of
function symbols to the language. In keeping with the tradition set out by Cardelli
et. al. for ambient and brane-calculi, we represent formal membranes by square
brackets [· · · ]. The syntactic space between the brackets induces a region in which
other entities, including other membranes, may float. As for proteins, it is convenient
to allow different kinds of membranes to be distinguished by names, allowing us to
distinguish, for instance, a vesicle from the plasma membrane encapsulating a cell.
For example, we may write an expression to model that a plasma membrane contains
an empty vesicle: plasma[ves[ ]]. We suppose that such membrane-names are drawn
from another fixed pool of names, M, disjoint from every other kind of names.

We add also gates to the language. They are the endpoints of binary channels
between membranes. Gates, and the channels they form, are an abstraction of the
molecular structure forming bonds between fusing or dividing membranes. We shall
discuss the channel abstraction in more detail in a separate section below. Gates have
one port to connect gates pairwise; for instance, the expression (x) ves[4x] | ves[4x]
denotes a channel formed between sibling vesicles.

mains. For instance, in later versions of the κ-calculus (see loc. cit.), the capability to write such
rules is added by introducing a small subtyping lattice for states and incorporating subtyping into
the matching relation.
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While our gates, 4g, are anonymous, one could certainly consider also allowing
gates to be named, as domains and membranes. This would allow us to distinguish
different kinds of channels, potentially convenient for some models. In this paper,
however, we shall focus on introducing the channel abstraction itself, and for that
purpose, anonymous gates suffice.

On the Channel Abstraction

Compared to existing calculi treating membranes [Car04b, RPS+04, PQ05, LT06,
Car08], channels allow us to capture an observable semi-fused intermediate state
in cell fusion or fission. In this state, the membranes are still separate, but may
exchange material regulated by diffusion. To capture partial fusion or fission as
described in the introduction, we need to keep the material in each compartment
separate.

In Figure 7.3, we illustrate the two most basic configurations of semi-fused mem-
branes, and show how they are represented in the calculus with the help of channels.
On the left, the surfaces of two co-located membranes are partially fused; on the
bottom-left we show the C-calculus representation of that situation. They may be
cells in the process of fusing or dividing; or it may be a cell in the process of budding
a small vesicle. On the right, we have a similar situation, only with one membrane
inside the other. In both cases, the partial fusing of the membranes allows diffusion
of material across the point where the membrane surfaces touch. On the left, the
channel allows diffusion between the two compartments inside the membranes. On
the right, the channel allows transport between the surroundings and the innermost
compartment.

m m

membrane membrane membrane

membrane

m
m

(g) m[4g] |m[4g] (g)4g |m[m[4g]]

Figure 7.3: Fused membranes, and their representation via channels in the C-
calculus.
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In the topmost part of Figure 7.4, we illustrate the three different stages in cell
fusion and fission that we wish to capture. The arrows indicate, that while the
process of fusing two membranes is deterministic (resulting in a single membrane
containing all the entities of both compartments), the division of the entities inside
a single compartment is a nondeterministic process.

Fission (non deterministic)

Fusion (deterministic)

m m

A B

m m

A BA B

m

Figure 7.4: Representing an observable intermediate state—for cell fusion and divi-
sion.

In nature, various kinds of cell division may be identified. For instance, due to
their different structure, the division processes are fundamentally different between
eukaryotic cells and prokaryotic cells. Common to them all are that they are quite
complicated and highly regulated processes—in particular, for determining the di-
vision of contained entities. By adding an intermediate state, we allow users of the
C-calculus to model such regulatory behavior during the process of division, in more
detail. In particular, it allows rules for diffusion to regulate the final division of
entities in the newly formed compartments.

At the bottom of Figure 7.4, we illustrate the three different stages as they are
captured in the C-calculus. We focus on membranes and gates, and use variables
to parameterize the model over the contents of the membranes. We shall return to
these stages, when we discuss the dynamics of the C-calculus in Section 7.3.

As a final remark, we may also note that while the main motivation for chan-
nels is to represent an intermediate step in division regulated by (nondeterministic)
diffusion, one might also envision using channels to model more stable kinds of trans-
port channels, such as so-called tunneling nano-tubes (TNTs) [RSM+04, GBG08].
TNTs are long and stable binary channels between co-located membranes that were
recently discovered and bear a striking resemblance to our binary gated channels.6

6We discuss TNTs in more detail under future work (see Section 7.5.1.)
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7.2.3 Signature and Syntax

In the previous section, we have informally introduced proteins, membranes, and
gates and their syntax. In this section, we formally define the signature and grammar
of the C-calculus.

Signature

The signature of the C-calculus defines the classes of function symbols in C-calculus,
and their type and number of ports for linkage.

Definition 7.2.3 (C-calculus signature). Given a protein-signature ΣP and a set of
membrane-names M, the signature for the C-calculus is

Σ = D × {v,h} : atomic(1)
] D × {b} : atomic(2)
] M : active(0)
] {4} : atomic(1)

where B : kind(n) is short for stating that the elements of B are assigned the type
kind and n ports.

The signature formally records what we have stated informally above. Function
symbols from the set of domains, D (as defined in Definition 7.2.2), are atomic and
exists in three states, visible (v), hidden (h), or bound (b). They all have one port
(for linking to a protein backbone) and in their bound state an extra port (linked to
a complexation-link). The function symbols used for membranes have no ports, but
are active—i.e., they may nest other solutions inside them—and gates are atomic
and have a single port (linked to another gate).

Grammar

We call the basic computing units in the C-calculus solutions, and we shall define
their grammar below. We use a small set of well-known operators from process
calculi equipped with pure names, in particular, we take an operator for hiding
names, (x), and parallel product, |. We shall also quotient the grammar over a
structural congruence relation ensuring, for instance, that bound names are alpha-
convertible and that parallel product is associative and commutative as usual. In
formally defining solutions, we presuppose an unbounded supply of pure names
(disjoint from all other kinds of names); we use lowercase italic letters a, b, c, . . . for
pure names.

For defining parametric reaction rules in the following section, we shall also need
solutions with variables (sometimes called holes), and groups—ordered sequences of
solutions that may share names. Variables in the C-calculus are numbered, i.e., they
are drawn from a countable set of variables V = {�0,�1, . . .}. Formally, we require
for any solution, that all variables in a solution are distinct (in the following, we
assume all solutions and groups to respect this requirement). We let metavariables
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x, y, z, . . . pure names
A,B,C, . . . variables

d, e generic domains
m, n generic membranes

Figure 7.5: Notational conventions—names, variables, domains, and membranes

A,B,C, . . . ,X, Y, Z, . . . range over variables. In practice, we shall not be concerned
with the actual numbers used for variables, only their order (i.e., relatively to the
other variables) in a solution. We record this in the structural congruence relation
below.

Formally, the C-calculus is a BΣ,R-calculus [DK08]. This means that the following
grammar, definitions for structural congruence, substitution, etc. for the C-calculus
is derived directly from the C-calculus signature, and the generic grammar given for
BΣ,R-processes. In this paper, we shall elide the full formal treatment of certain
definitions derived directly from the BΣ,R-framework, such as variables and their
ordering, substitution, definitions of free and bound names, and certain normal
forms. In this section, we limit ourselves to informal introductions. For a formal
treatment, we refer the reader to the paper introducing BΣ,R-calculi [DK08]; for
easy reference, we have included in Appendix 7.A the central definitions inherited
from BΣ,R.

In the remainder of the paper we shall overload the following names to be
metavariables for domain and membrane-names: d and e are generic domain-names,
m and n are generic membrane-names. Note, that this also means that later on, when
we give rules using these names, formally these rules should be read as schemas for
rules using concrete names. We summarize these metavariable conventions in Fig-
ure 7.5.

In Definition 7.2.4, we define formally solutions, and in Definition 7.2.5, we define
solution groups. A solution is a special case of a group—namely, a group with exactly
one solution. We use this in definitions and properties, and overload the symbols we
use for operations such as structural congruence and substitution to work for both
solutions and groups.

Definition 7.2.4 (solutions). Solutions are collections of protein-domains, and
channel-gates nested inside compartments induced by membranes. A solution may
either by empty; a combination of two colocated solutions; a solution with a hid-
den name x; a domain d ∈ D in one of three possible states linked to backbone b
and (when bound) to complexation-link x; a gate 4 linked to a channel-link g; a
membrane m ∈M; or, a variable X.
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We define solutions inductively as follows

S,T ::= 0 the empty solution
| S | T parallel product
| (x) S new name
| D a domain
| 4g a channel-gate
| m[S] a membrane
| X variable

where
D ::= dx

b a bound domain
| db a visible and unbound domain
| db a hidden domain

Definition 7.2.5 (groups). Groups are defined inductively as

G,F ::= S a single solution
| (x) G new name
| G || F wide parallel product
| ε the empty group

Call solutions or groups without variables ground. Call nonground solutions pres-
olutions, and nonground groups pregroups—in general, we call nonground solutions
or groups, contexts. We write SΣ for the solutions over the signature Σ.

We use parentheses for grouping as usual. We let | bind tighter than ||, which
in turn binds tighter than the operator (x). When x̃ = {x1, · · · , xn} we write
(x1 · · ·xn) S or (x̃) S to mean (x1) · · · (xn) S. Finally, as usual, we shall typically
elide the 0 in empty membranes, for instance, writing ves[ ] instead of ves[0].

As usual, the new name operator (x) S is a binder on pure names, that is, in-
stances of the pure name x in S are α-convertible. We define inductively the set
of free, fn(G), or bound (pure) names, bn(G), of an expression as usual (cf. Defini-
tion 7.A.3 in Appendix 7.A). (Recall that names for proteins, and membranes are
distinct and different from the pure names). We call a solution or group closed if
all its pure names are bound; and open if it is not closed. Generally, we shall refer
to pure names as just names, qualifying protein-names and membrane-names. We
say that two solutions S and T are connected if they share free names, that is, if
fn(S) ∩ fn(T) 6= ∅.

Structural congruence We quotient solutions and groups according to a struc-
tural congruence relation, ≡, enforcing prominently that names in the scope of a
binder are α-convertible and that (x) floats freely in a term, as long as we do not
capture free instances of the name x. We also allow order-preserving reordering of
variables, for instance, that �0 | �1 ≡ �0 | �2. This formalizes the notion that we
are only concerned with ordering of variables internal to an expression (cf. Defini-
tion 7.A.1 in Appendix 7.A). Furthermore, we make parallel product associative,
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allow reordering, and stipulate that we may introduce (or delete) empty solutions.
For groups, we make wide parallel product associative and make ε the neutral ele-
ment.

Definition 7.2.6 (structural congruence). Structural congruence, ≡, on solutions
and groups is the least congruence relation containing α-equivalence (i.e., bijective
renaming of bound names), order-preserving renumbering of variables, and s.t.:

• parallel product, |, is associative and commutative with 0 as neutral element;

• wide parallel product, ||, is associative with ε as neutral element;

and including the following scope extrusion laws

m[(x) S] ≡ (x) m[S] (extrusion - mem)
S | (x) T ≡ (x) S | T if x 6∈ fn(S) (extrusion - par)

((x) S) || T ≡ (x) S || T if x 6∈ fn(T) (extrusion - wide par left)
S || (x) T ≡ (x) S || T if x 6∈ fn(S) (extrusion - wide par right)
(x)(y) S ≡ (y)(x) S (reordering)

(x) S ≡ S if x 6∈ fn(S) (elision)

As usual, it is easy to check that free names are invariant under structural
congruence, that is, for solutions S ≡ T, fn(S) = fn(T).

Substitution Variables in a solution S may be substituted for a group of solutions
G. In the C-calculus, we shall find use for both total substitution S · G, and S / G.
The treatment of (variables and) substitution is transferred directly from the BΣ,R-
framework, so we introduce substitution only informally here (for easy reference, the
definitions are included in Appendix 7.A, cf. Definitions 7.A.7 and 7.A.9).

We may, for instance, substitute three variables in a solution S by a group G of
three solutions. Essentially, the resultant solution is computed by exchanging the
ith ordered variable in S by the ith solution in G. If S has exactly three variables,
the substitution is total, and we write S · G for the result. If S has more than three
variables, the substitution is partial, and we write S / G for the result; remaining
variables in S are reordered to have higher numbers than any variable in G. We
distinguish the two kinds of substitution because total substitutions are associative
while partial substitutions are not.

Notably, in parametric reaction rules, variables play the role of placeholders
serving only to carry parameters across a reaction. For this usage, neither the
numbers nor the ordering of variables matters (as we shall close the reaction relation
under substitution for arbitrarily ordered groups of solutions). We require only that
the same variables be used on both sides of a reaction rule. Therefore in reaction
rules, we overload the usage of the metavariables A,B,C, . . . to allow them to be
used instead of concrete variables (thus eliding the numbers of each variable).



182 A Language for the Cell

7.2.4 Solutions as Graphs

For programming in the C-calculus, and for giving and checking many properties, it
is convenient to have a concise and formal term-base language as we have defined
in the previous section. For visualization and for expressing certain properties and
conditions it is convenient also to consider solutions as certain kinds of graphs.

Up until now, we have used a number of illustrations to illustrate solutions. Since
the C-calculus is formally founded on bigraphs, through the BΣ,R-framework, these
illustrations are actually based on a fully formal graphical language for solutions
and groups, both ground and nonground. Formally, structural equivalence classes of
solutions and groups correspond to certain bigraphs over a corresponding bigraph
signature; hence, we may directly use the graphical language for bigraphs to describe
C-calculus-solutions. This is formally stated in [DK08, Proposition 5.4]; we shall not
go into detail with that here.

For expressing and checking well-formedness conditions, it is however convenient
to be able to describe and reason about solutions from a graph-based understanding
of solutions. Hence, below we describe informally how solutions correspond to certain
bigraphs—the combination of a tree and a hyper-graph sharing nodes.

First of all, every function symbol in the signature corresponds to the kind
(or control) for a node in a bigraph. Eliding names, we may view a solution as a
tree—sometimes called the place graph—with unordered children (parallel product is
commutative) induced by the containment relation for membranes, whose leaves are
domains, gates, variables, or empty solutions. In other words, the tree is simply the
abstract syntax tree of the expression for a solution, only with unordered children to
model directly the properties of the parallel product. Groups of solutions correspond
to place graphs that are forests, instead.

Name-sharing between domains and gates creates a separate graph—sometimes
called the link graph—of (hyper-)links across the tree. In closed solutions every link
is an unnamed edge, while in open solutions, the links that correspond to free names
are named.

When we depict bigraphs, instead of drawing the two graphs of bigraphs sepa-
rately, we draw them in one picture, indicating the place graph with containment—
just as we have done in the illustrations of C-calculus solutions up until now (e.g.,
in Figure 7.2).

Finally, it may be convenient to point out, that graphically, we may think of
substitution as inserting subtrees in the holes made by variables. Reactions, which
we shall consider later, induce changes in the graph by creating or deleting nodes,
by creating or severing links, or by moving entire subtrees (by way of parameters in
reaction rules).

7.2.5 Well-formedness

The grammar for the C-calculus allows us to write expressions for many solutions,
which may be hard to interpret biologically. We wish to restrict to those solutions,
which respect the motivations that we have given for each type of construct in the
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language.
To capture such solutions we give a set of well-formedness criteria. It is con-

venient to state the requirements on solutions as properties of the (bi)graphs that
C-calculus solutions correspond to. The key theorem in the following section, which
presents the operational semantics of the C-calculus, states that well-formedness is
preserved by the reaction relation induced by the class of reaction-rules that we
allow. In verifying this theorem, we shall also make use of the bigraphical underpin-
ning of the C-calculus. We motivate each of the criteria in the paragraphs following
the definition.

Definition 7.2.7 (well-formedness). We say that a solution is well-formed, if

• (link sorting) links are well-sorted, i.e., for any two function symbols u, v, if
the ith port of u and the jth port of v is part of the same link, then u and v
are either two gates, or two domains and j = i;

• (binary channels) all gates are linked pairwise;

• (binary complex ) complexation-links are binary;

• (local complex ) complexation-links are mono-located, i.e., if two domains d
and e are linked by their complexation-ports, then they are siblings;

• (fixed backbone) for any protein pro with signature (n, r), every domain proi is
linked by its backbone port to exactly n− 1 domains pro0, . . . , proi-1 , proi+1 ,
. . . , and pron-1 .
Further, if r = 0, all those domains of are siblings; else if r > 0, the domains
pro0, . . . , pror-1 are siblings, and the domains pror , . . . , pron-1 are siblings,
and these two subunits of the protein are separated by a single membrane.

• (bitonality) all connected gates are separated by either 0 or 2 membranes.

Each kind of function symbol represents different types of entities. We require
links to be sorted, such that links only connect entities from the same class. This
ensures us that we only have links that we can interpret as protein backbones,
domain-domain complexation links, and channels.

We require that channels and complex-formation links be binary. We have al-
ready discussed the motivation behind the channel-abstraction. Domain-domain
complexation links represent a variety of weak forces attracting certain parts of
proteins to each other. While at some level of abstraction, one could conceiveably
consider domains interacting with more than one other domain at a time, we shall
disregard that possibility in this exposition and require that complexation-links be
binary.

We require also for complexation links that they be local, that is, that they do not
cross membrane borders. The weakness of the forces working to establish complexes
also enforce a high degree of locality. Only the backbone of a protein may cross
membranes, the biological correspondent being that the amino-acid structure of a
transmembrane protein actually penetrates the membrane.
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We require that the backbone link of a protein is fixed, such that all instances
of proteins respect their protein-signature (cf. Definition 7.2.1). This simply means,
that for any protein pro with signature (n, 0), all instances of pro takes the form

pro0 | . . . | pron-1 .

For any protein pro with signature (n, r) for r > 0, the following two kinds of
configurations are well-formed

pro0 | . . . | pror-1 |m[pror | . . . | pron-1 | S]
m[pro0 | . . . | pror-1 | S] | pror | . . . | pron-1 ,

for some membrane-name m ∈M and arbitrary well-formed solutions S.
Thus, we may at all times identify the protein to which a domain belongs by its

backbone.
Finally, we require that channels respect bitonality. This requirement deserves a

bit more discussion.

On Bitonality

As discussed earlier, membranes consist of a lipid bilayer, two layers of lipids ’back-
to-back’. Such a layer works as an amphipathic layer, that is, a layer with both
hydrophilic and hydrophobic parts. This layer induces a strong barrier for fluids
on the two sides of the membrane. In fact, these forces are also a main stabilizing
factor of a membrane.

A direct consequence is that, in a calculus seeking to capture membrane inter-
action, we should try to enforce that entities may not cross membrane barriers, and
that the reconfigurations of membranes only happen in such a way that the orienta-
tion of membranes is respected. As discussed by Cardelli for brane calculi [Car04b],
we may abstractly capture this by considering the compartments induced by mem-
branes to be coloured alternately black and white according to their nesting depth;
and, essentially, then requiring of our operational semantics that it keeps black en-
tities and white entities separate.

We should remark also that, while bitonality serves as good design abstraction,
many important reactions in nature do, however, not respect bitonality. For in-
stance, the plasma membrane of cells, is penetrated by many structures, some of
which work as channels for the direct intake of smaller molecules.

In the C-calculus, any kind of transport between compartments involves chan-
nels, and we may enforce a correspondent to the bitonality constraint by requiring
that channels form and exist between compartments separated by two membrane
surfaces. This allows the basic configurations of membranes and channels that we
have illustrated in Figure 7.3, but disallows a variety of more exotic configurations.

The basic configurations that we wish to disallow are those with channels of odd
length, such as

(g)4g |m[4g].
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Although, as discussed, in nature limited transport across membranes do occur, we
wish to keep channels as an abstraction for the neck of partially fused membranes.

In Figure 7.6, we illustrate two other prominent configurations that are not well-
formed. We give the corresponding C-calculus solutions below each illustration. In
both cases, it is the h channel that is the perpetrator; it has been stretched, so to
speak. On the left, two fusing membranes have stretched across a channel between
another pair of partially fused membranes. On the right, we have a similar situation,
only with the direction of the fusing membranes inverted.

m m

m m

m
m

m

m

(g, h) m[4g |m[4h]] |m[4g |m[4h]] (g, h)4h |m[4g |m[m[4g |m[4h]]]]

Figure 7.6: Examples of disallowed membrane configurations, and their representa-
tion via channels in the C-calculus.

We disallow these configurations in our definition of bitonality, not because they
would allow colours to mix (only channels of odd length would do that), but because
we would struggle to interpret them biologically. Though biological membranes are
quite deformable, their plasticity still makes configurations such as those depicted
in Figure 7.6 very improbable. The examples are prominent, however; we need
to take care in the treatment of reaction rules that allow creating or transporting
membranes, to disallow reactions that lead to these configurations from well-formed
ones. Consider, for instance, this (well-formed) configuration

(g, h) m[4g |m[4h] |m[4h]] |m[4g].

If we allowed one of the membranes with a gate 4h to be transported across the
g channel, we get the leftmost configuration in Figure 7.6. We may write a similar
wellformed pre-configuration for the rightmost configuration. We shall discuss how
to avoid such mishaps in Section 7.3.

As a special case we allow degenerate channels such as

U = (g) m[4g | 4g].
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As shall be apparent when we introduce the operational semantics, they may be
formed when colocated membranes form several channels between themselves, before
fusing. For instance, we shall allow the following chain of reactions to form the
solution U:

m[ ] |m[ ]→ (g) m[4g] |m[4g]→ (g, h) m[4g | 4h] |m[4g | 4h]→ (g) m[4g | 4g].

We may illustrate this chain of reactions as in Figure 7.7.

Figure 7.7: Multi-touch may form degenerate channels.

The first reaction is a basic instance of a so-called touch; so is the second reaction.
The third reaction is a fusion around the h channel, which leaves the g channel as
a residual of the first touch.

One could contemplate giving side-conditions on touch-rules to disallow the sec-
ond reaction; it turns out that this is not sufficient for preserving well-formedness
across reaction, however. Multi-channels may be formed by fusion as consequence
of a sequence of earlier touch events, each of which should be locally allowable, in
the sense that no multi-channels are created. A minimal situation is illustrated in
Figure 7.8. In general, testing for multi-channels is highly non-local requiring a
traversal of the entire link graph of channels. And disallowing the final fusion in
Figure 7.8 would be counter-intuitive with regard to biological consistency. Indeed,
though multi-touches and the shape of membranes in the second step of Figure 7.8
are highly unlikely to happen in nature, they are not impossible.

For the reasons discussed above, we choose to allow multi-touches. This keeps
our reaction rules simpler, and it allows us to model membranes still separate, but
in different stages of fusing. In turn, the design choice has the side-effect that de-
generate channels can be formed. Such degenerate channels are, however, harmless;
no diffusion or reconfiguration may occur along them.7

7We may even consider extending the structural congruence with a rule to “garbage collect”
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touch

A B C
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C
B

C

A
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touch

Figure 7.8: A multi-touch as a consequence of earlier touches.

7.3 Dynamics

In this section, we introduce the operational semantics of the C-calculus.
A user develops a model in the C-calculus by selecting a set a proteins and

membranes to work with (by giving a protein-signature, and a set of membrane-
names), and a set of reaction rules. We cannot allow any collection of reaction rules;
such a loose policy would not allow us to maintain well-formedness. This would
also lay upon the shoulders of modellers the task of inventing their own abstractions
of biological events; this in turn would complicate, for instance, composition of
different models, something which we would like to be an easy task. Instead, we
characterize in this section a fixed set of canonical biological actions, encapsulated
in classes of certain reaction rules. We allow modellers to refine these actions by

them, i.e.: (g)4g | 4g ≡ 0. However, that would remove the 1-1 correspondence between solutions
and bigraphs, in turn preventing us from using bigraphical reasoning in the proofs. Hence, we leave
this idea for future work.
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giving contextual preconditions for rules. In all, we characterize a set of core rules,
which provide modellers with a toolbox of generic actions that can be incorporated
into a model by specializing them to a particular signature. Given this toolbox of
actions, a C-calculus reactive system can essentially be designed by domain experts
(rather than computer scientists).

In summary, modelling in C-calculus is done by giving a signature and choosing
and refining a set of core rules over this signature. Thus, as set out in the Introduc-
tion, the slogan for modelling in the C-calculus is: Modelling by rule refinement.

First, in Section 7.3.1 we define C-calculus reactive system and explain reaction
rules. In Section 7.3.2, we treat so-called projective descriptions of rules. They let
us describe conveniently sets of rules for reactions involving regions separated by
membrane-surfaces, while eliding the orientation of those separating membranes.
We continue to introduce reaction rules; they divide into two categories. In Sec-
tion 7.3.3, we discuss rules that involves protein-protein interaction, that is, forming
or breaking complexation-links, changing the state of domains, or creating or delet-
ing proteins. These kinds of rules work essentially in the κ-like fragment of the
calculus, and, as we have treated an encoding of the κ-calculus before [DK08], we
shall go into less detail with these kinds of rules. In Section 7.3.4, we discuss rules
involving membrane (or channel) reconfiguration; the rules for transport of material
along channels need special care—we shall discuss and motivate them at length. In
Section 7.3.5, we formally define the allowable rules, and, in Section 7.3.6 we verify
that any allowable rule preserves well-formedness.

7.3.1 C-calculus Reactive Systems

In the C-calculus, we work with reaction rules of the following format:(L → R, ϕ),
where L and R are expressions for solutions and ϕ is a side-condition. The expressions
may have a number of variables, which serve to carry parameters unchanged across
from the left-hand side to the right-hand side. The side-condition ϕ is a (possible
empty) predicate that tests parameters. We shall use side-conditions for expressing
contextual conditions on the surroundings of L and R for the rules handling transport.

The C-calculus reaction rules are fairly simple (as compared to the generality
allowed for bigraphical rules, say). We need only consider rules, where free names
are preserved, that is, fn(L) = fn(R), and where variables occur exactly once on
the left-hand side and on the right-hand side (i.e., all rules are linear). These are
exactly the kind of rules, we have treated in the BΣ,R-framework [DK08], and we
may instantiate the theory for reaction and reactive systems from that work. We
outline how reaction works below. (As verified in loc. cit., it also follows that C-
calculus reaction is bigraphical reaction modulo side-conditions, which ensures us
that we may reason (bi)graphically in proofs.)

Loosely, any ground solution S that is a substitution-instance of the left-hand
side of a rule may be rewritten with that rule. Given a rule (L→ R, ϕ), if for some
(ground) group G, we have S ≡ L · G, we may perform a reaction S→ S′ ≡ R · G, if
ϕ(G) is satisfied. We say that S matches L with the parameter G, since G consists of
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the group of solutions that we will substitute for the variables in R. Reactions may
occur in any solution context. We make this explicit in Definition 7.3.1.

We contextualize reactions according to standard tradition for process calculi.
We close reactions under syntactic constructions, structural congruence, and also
under (bijective) renaming of free names. Definition 7.3.1 records a set of rules that
together gives a simple characterization of the reactive system over solutions. The
definition is a straight instantiation of the generic operational semantics given for
BΣ,R (in [DK08, Definition 3.16]). Free names are preserved across reaction, that
is, if S→ S′, fn(S) = fn(S′).

As outlined in the introduction to this section, we do not wish, however, to allow
all kinds of reaction rules. Therefore, in the Definition 7.3.1, we have restricted to
a set of (as yet unspecified) allowable reaction rules. Informally, we wish to allow
rules that encapsulates a single biological action, such as breaking a domain-domain
bond or fusing two partially fused membranes. The following sections shall be con-
cerned with introducing core rules that incorporate biological actions (Sections 7.3.3
and 7.3.4).

Definition 7.3.1 (reactive system). Given a set of allowable reaction rules R and
a signature Σ, T RΣ the reactive system associated with R, is given by the reaction
relation →, the least binary relation over SΣ, s.t.

rule
(L→ R, ϕ) ∈ R ∃G s.t. S = L ·G and S′ = R ·G ϕ(G) satisfied

S→ S′

par
S→ S′

S | T→ S′ | T
membrane

S→ S′

m[S]→ m[S′]

close
S→ S′

(x)S→ (x)S′
struct

T ≡ S S→ S′ S′ ≡ T′

T→ T′

subst
S→ S′ ∃x̃.α : fn(S)↔ x̃

α(S)→ α(S′)

where α is a bijection between the free names of S and fresh names x̃, and α(S) is
the solution S with free names substituted by names x̃.

However, we also wish to allow a modeller to test parts of the surroundings, to
give application conditions for reactions. We allow a modeller to refine core rules by
adding extra context to rules. It turns out that we may capture refinement succinctly
with substitution. We define formally refinement and allowable rules in Section 7.3.5
(allowing us to explain and motivate refinement with a concrete example using a
core rule introduced in the previous sections). Figure 7.9 illustrates schematically
how refinement works. Suppose we have the core rule L → R, where L and R have
two variables each (depicted as dark triangles inside L and R). The user may refine
that rule by substituting both sides L and R into an external context, T (with one
variable), and by substituting a common group of solutions into the variables of
L and R, yielding the rule T · L · F → T · R · F. For full generality, we still need
to treat rules with side-conditions, however; we return to refinement in detail in
Section 7.3.5.
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Figure 7.9: Illustrating refinement of a rule.

7.3.2 Projective Descriptions

The model of membranes in the C-calculus is influenced by Cardellis brane cal-
culi [Car04b]. We build, however, also on the insights reported by Pradalier and
Danos on the so-called projective brane calculi [DP04], and, more recently, patch
reactions by Cardelly [Car08]. Their insights were to note, that for membrane cal-
culi all reactions that are described for membranes occur irrespective of membrane
orientation. For instance, the reaction

A B A

C C

B

is allowed, and so is

B

A

B A

C C

If we focus on the local patches of membranes that are merging (indicated by the
rectangular lenses), we may observe that from a local perspective, the preconditions
for the reactions look highly similar. Only the orientation of the curvature of the
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membranes is different—a property, which is hardly detectable in nature.8

Indeed, some descriptions of biological reactions abstract away from the orien-
tation of the membrane, describing instead only the conditions local to a patch of a
membrane wall. It does, of course, matter whether a signal propagates inwards or
outwards across the cellular membrane; the central observation is, that this is not
due to the orientation of the cellular membrane.

We wish to allow such descriptions for C-calculus reaction rules; adopting the
terminology introduced by Pradalier and Danos, we call the descriptions projective.
To that end, we start by defining lateral and horizontal projection of binary groups
of solutions.

Projective Contexts and Projective Groups

In essence, projective descriptions, involve two regions separated by a membrane
wall, as depicted below:

0

1

We may interpret such descriptions as a schema for two reaction rules, one for each
orientation of the separating membrane. In Figure 7.10, we illustrate the two ways
one may interpret a description of two regions separated by a single membrane wall.
As depicted, it simply boils down to determining which of the regions numbered 0
or 1 contain the other. We may colour the regions in accordance with the colouring
scheme discussed for the bitonality constraint in the previous section, and call the
descriptions heterogenous, as they involve differently coloured regions.

0

1

0

1

Figure 7.10: Heterogenous projective contexts illustrated.

Similarly projective descriptions of reactions involving regions separated by two
membranes, involve three regions as depicted below:

8Although, as reported in [HR05], curvature does occasionally matter and may serve to distin-
guish and sort vesicles by size.
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2

1

0

We call such descriptions homogenous as the regions 0 and 1 have equal colour. In
Figure 7.11, we illustrate the three ways one may orient the membranes, such that
the regions 0 and 1 are separated (three, as the first is symmetric). Consequentially,

2

1

0

2

1

0

2

1

0

Figure 7.11: Homogenous projective contexts illustrated.

we may read homogenous projective descriptions as a schema for three rules.
We may generate projections by substitution into sets of projective contexts,

defined to match each of the projections in Figures 7.10 and 7.11. Formally, we
let the two sets of projective contexts be parameterized over one or two names (for
heterogenous and homogenous contexts, respectively) to allow projection across any
kind of membrane(s).

Definition 7.3.2 (Projective contexts). For all m, n ∈M, the heterogenous projec-
tive contexts ηm

↓ and ηm
↑ , and the homogenous projective contexts ωm,n

↓ , ωm,n
↑ , and

ωm,n
↔ are

ωm,n
↓ = m[n[�1] |�2] |�0 ηm

↓ = m[�1] |�0

ωm,n
↑ = m[n[�0] |�2] |�1 ηm

↑ = m[�0] |�1

ωm,n
↔ = m[�0] | n[�1].

The sets of generic homogenous and heteregonous projective contexts are

ωδ = {S | ∃m, n ∈M.S = ωm,n
δ }, for δ ∈ {↑, ↓}

ηδ = {S | ∃m, n ∈M.S = ηm
δ }, for δ ∈ {↑, ↓,↔}.
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We shall typically use the sets of generic projective contexts, because we want
to refer to the set of projective contexts generated by all valid membrane-names; for
instance, ω↓ = {S | ∃m, n ∈ M.S = ωm,n

↓ }. In the following we shall allow ourselves
a convenient sloppyness: to use directly in expressions the unqualified projective
contexts, such as in the expression ω↓ /G. Formally, this means that we are talking
about a set of solutions {S / G | ∃m, n ∈ M.S = ωm,n

↓ }. This shall be particularly
convenient when writing schemas for rules.9

We depict the contexts defined in Definition 7.3.2 in Figures 7.12 and 7.13
(colouring the compartments for effect).

m m

0
1

1
0

ηm
↑ = m[�0] |�1 ηm,

↓ = m[�1] |�0

Figure 7.12: Heterogenous projective contexts.

m

0 1

n m

2 0

n

1

m

2 0

n

1

ωm,n
↔ = m[�0] | n[�1] ωm,n

↑ = m[n[�0] |�2] |�1 ωm,n
↓ = m[n[�1] |�2] |�0

Figure 7.13: Homogenous projective contexts.

Now we may define heterogenous and homogenous projection of binary groups
by way of substitution.

Definition 7.3.3. Given a binary group G = S | T, its heterogenous projections is
the sets of solutions generated by

η↓ / G, and η↑ / G,

and its homogenous projections is the sets of solutions generated by

ω↓ / G, ω↑ / G, and ω↔ / G.

9In the following definitions, we shall consistently use partial substitution G / S, though total
substitution G ·S would be sufficient in some cases (specifically, for heterogenous contexts). (Recall,
that / denotes partial substitution—see Section 7.2.3 and Def. 7.A.9).
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Letting δ range over the directions {↑, ↓,↔} (up, down, and lateral), we may
summarize Definition 7.3.3, by stating that the heterogenous projections are those
characterized by

ηδ / G,

while the homogenous projections can be characterized as

ωδ / G.

Projective Rules

We utilize our characterization of projective groups, to define projective descriptions
of reaction rules.

We define projective generators, projective descriptions that constitute schemas
for rules, which we project to form concrete rules.

Let ρ ∈ {ω, η}, and recall that δ ∈ {↑, ↓,↔}. We write projective generators as

ruleρ : L→ρ R,

using the subscripted ρ as reminder that these are rule-schemas that await a pro-
jective direction before application.

From generators, we generate projected rules. For homogenous generators we
have

ruleω
δ : ωδ / L→ ωδ / R,

and for heterogenous generators we have

ruleη
δ : ηδ / L→ ηδ / R.

For some generators, we shall declare once and for all, that they are either
heterogenously or homogenously projective, and elide the projection, ρ, from the
name of the rule. We depict generators in correspondence with the illustrations for
projective groups above, separating groups with one or two horizontal lines denoting
the projected membranes.

Expanding on the illustration of refinement in Figure 7.9, Figure 7.14 illustrates
schematically how generators are projected to form concrete rules, before giving
application conditions for them. In the illustration, L and R are groups containing
two solutions, and we suppose that L→ρ R is a heterogenous generator. By inserting
the group into the heterogenous projective contexts, we may obtain (projected) rules.
These rules we may refine as usual.

7.3.3 Protein-protein Interaction

Our domain-level model of proteins is closely related to that of the κ-calculus, only
generalized to a distributed setting by using backbone links instead of nodes to
connect domains of the same protein. In the C-calculus, we shall allow essentially
the same kind of reactions as in the κ-calculus, that is, rules creating or destroying
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Figure 7.14: Illustrating refinement of projective generators.

protein complexation-links and/or changing domain state. We also take rules that
create or delete proteins, whose domains are all unbound (i.e., visible or hidden).

For the κ-calculus it has been discussed in detail, how one may restrict to rules
with a suitable level of atomicity (see [DL04]). This level of atomicity may be en-
forced by restricting to so-called monotone and anti-monotone reaction rules. As
we have essentially imported a generalized version of the core κ-calculus inside the
C-calculus, we may adopt such (anti-)monotonicity requirements more or less di-
rectly. We elide such treatment here, as the restrictions are not central for the
main theorem—the preservation of well-formedness—that we wish to establish; and
because we wish to focus on the extension of a κ-like calculus with dynamic com-
partments.

We take instead a simpler set of rules that allow to us capture core κ-reactions.
Definition 7.3.4 defines base domain-level rules; a set of rules, which each incorporate
a single core biological action.

Definition 7.3.4 (base domain-level rules). For arbitrary domains d and e, we allow
the following rules:

bind : da | eb → (x) (dx
a | ex

b )
break : da | eb ← (x) (dx

a | ex
b )

show : da → da

hide : da ← da.

We allow also rules for synthesis, protein-creation, and for degradation, protein-
deletion. These kinds of rules come in two variants depending on the signature of



196 A Language for the Cell

the protein involved. For proteins p with ΣP(p) = (a, 0), they take the forms:

synth : 0→ (b)
(
ṗ0b | . . . | ˙pa-1b

)
degrade : 0← (b)

(
ṗ0b | . . . | ˙pa-1b

)
,

where we use the shorthand ṗi to range over visible or hidden domains pi , i.e.,
ṗi ∈ {pi , pi}. (In other words, we allow synth and degrade rules to create or
delete domains that are unbound—whether visible or hidden.)

For receptor-proteins p, with ΣP(p) = (a, r) for r > 0, synthesis and degradation
are described by the following projective generators:

synth : 0 || 0→η (b)
(
ṗ0b | . . . | ˙pr -1b || ṗrb | . . . | ˙pa-1b

)
degrade : 0 || 0←η (b)

(
ṗ0b | . . . | ˙pr -1b || ṗr b | . . . | ˙pa-1b

)
The rules are pairwise inverses. We can summarize the actions in the reaction

rules as follows:

• bind establishes binary complexation links between visible and co-located do-
mains;

• break breaks closed complexation links between (bound) domains;

• hide/show changes the domain-state between visible and hidden;

• synth allows creation of the domains and the backbone that constitutes a
protein; all domains should be unbound (i.e., visible or hidden); and,

• degrade allows deletion of the domains and the backbone that constitutes a
protein; all domains should be unbound (i.e., visible or hidden).

For synth (and degrade), we require further that the protein is created (or deleted)
in a configuration, which respects its protein signature (cf. Definition 7.2.1).

Together the actions incorporated into the base rules allow us to capture reaction
for proteins comparable to those in the κ-calculus, extended to a multi-compartment
setting, but with considerably tighter atomicity-requirements on reactions. In the
κ-calculus, one may, for instance, break several complexation-links in unison or
synthesize proteins and bind them to other proteins in one go. It is not particularly
hard to relax the atomicity requirements we have given on domain-level rules in the
C-calculus; however, in this paper, we shall make do with a few extra rules combining
the actions captured in the base domain-level rules.

Definition 7.3.5 (domain-level rules). Domain-level rules are those described by
bind, break, hide, show, synth, and, degrade above, and the following rules
(for arbitrary domains d, e and f):

bind+hide : da | eb | fc → (x)
(
dx

a | ex
b | fc

)
break+show : da | eb | fc ← (x)

(
dx

a | ex
b | fc

)
bind+show : da | eb | fc → (x) (dx

a | ex
b | fc)

break+hide : da | eb | fc ← (x) (dx
a | ex

b | fc) .
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Together the extra kinds of rules, bind+show, break+hide, bind+hide, and
break+show, allows us to model that creation or deletion of a complexation-link
may invoke a change of conformation on a protein.

One can also combine other of the base rules, obtaining rules such as synth+bind
to synthesize a protein and bind one of its domains to an existing domain, or
bind+bind to allow two complexation-links to be created in one go. For the concrete
examples we shall discuss in Section 7.4, the set of rules captured in Definition 7.3.5
is sufficient, however.

7.3.4 Membrane Reconfiguration

Membrane-based actions model structural reorganization of membranes such as fu-
sion or fission. As we discussed in Section 7.2.5, as studied by pioneering works [DP04,
Car08], oriented membrane interactions can be factored into a small set of projective
interactions, which do not take into account the global orientation of the involved
membranes. We capture this by giving generators for projective rules as defined in
Section 7.3.2.

Touch and Part

We start by describing generators incorporating the dual actions of establishing and
breaking a channel between colocated membranes. In terms of the bitonality con-
straint, these involve regions separated by two membrane surfaces; hence the gener-
ators are homogenous, that is, we generate rules by composing with the homogenous
contexts (cf. Definition 7.3.2).

The touch and part generators are each others inverses; they are depicted
in Figure 7.15. The part generator allows us to model the first step of a fusion
process. It creates a channel between two colocated membranes, bringing them into
a partially fused state.

B

A
A

B

touch (→ω) and part (←ω): A ||B ↔ω (x)(4x |A || 4x |B)

Figure 7.15: The homogenous generators touch and part.

The part generator is the counterpart of touch; it allows one membrane to
detach from another by severing a channel that links the two.
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Bud and Merge

In this section, we treat generators incorporating the actions of creating and de-
stroying a membrane. These generators are heterogenous; they involve a single
membrane, which bends and buds a new small compartment; or, which merges en-
tirely with another compartment that it is partially fused with.

The bud generator, on the left in Figure 7.16, describes how a membrane may
start to divide to create a new compartment.

B

A

B
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B

A

B

Am

C

C

bud: A ||B →η (x)(A |m[4x] ||B | 4x)

B

A

B

Am

B

A

B

Am

C

C

merge: (x)(A |m[4x | C] || 4x |B)→η A || C |B

Figure 7.16: The heterogenous generators bud and merge.

The merge generator, on the right in Figure 7.16, describes how a membrane
may finish its fusion with another membrane. A membrane merges into another by
releasing its content, C, into the second membrane. The merge generator clearly
generates left inverses of bud (take C to be empty).

Note, that the merge generator applies even if the involved membranes have
channels—to other membranes in the context, or to the projected membrane con-
taining B. (The latter case, is the one we have discussed already in Section 7.2.5.)
This neatly captures that after merging two membranes, the resulting membrane
inherits the partial fusings of both membranes.

The bud generator creates an empty compartment that is still connected to the
original membrane via a channel. This channel will allow us to model exchange of
materials between the two compartments (by diffusion, which we shall treat below).
For simple models where empty vesicles are budded from the cellular membrane,
this may be sufficient. However, in most natural cases, a bud is formed around
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something, for instance, a complex bound to the cell wall. (For a concrete example,
see the model of the formation of clathrin-coated vesicles in Section 7.4.2.) To allow
this, we need to allow the (deterministic) transfer of a parameter into the newly
formed membrane. To fullfill that need, in the following section we define the pinch
generator, a generalization of the bud generator.

Transport Rules

In this section, we shall discuss how to encapsulate transport. We define two gener-
ators, one that encapsulates the action of diffusion, and another, the pinch gener-
ator, a generalization of bud introduced above. These generators involve transport
of complexes across channels, and we need to take care to uphold well-formedness.
(The merge generator already allows transport, of course, but in a manner non-
problematic with regard to well-formedness.)

We start by developing a model of transport for the generator encapsulating
diffusion. We discuss and motivate in some detail the choices that we make; also
to show that the generators that we give are not cast in iron, but may be slanted
towards different scenarios depending on the biological model one has in mind. We
round off by applying our model of transport to generalize bud to pinch.

The action we need to encapsulate is fairly simple: “Should any complex find
itself beside a (non-degenerate) channel, it may travel across it.” From this specifi-
cation it is immediate that the generator is homogenous (since well-formed channels
go between compartments separated by two membrane-surfaces), and needs to be
parametric in the cargo, that is, the complex (or complexes) that it allows to diffuse.
Furthermore, in nature diffusion is typically highly regulated, so we need to allow a
modeller to specify that cargo-parameter.

Our first attempt is the following rule:

B

A

T
B

AT

(x) (A | 4x || 4x | T |B)→ω (x) (A | T | 4x || 4x |B), for any closed complexes T

Here T denotes the cargo-parameter given by the modeller. We certainly preserve
well-formedness if we restrict T to be a closed product of zero or more domains; that
is just another way to require that T contain zero or more fully specified complexes.
In other words, formally we require that T be on the form:

T ≡ (ỹ)(dx1
b1
| · · · | dxk

bk
),
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where all for i, xi ∈ ỹ and bi ∈ ỹ.
The generator above is computationally complete, in the sense that it allows

transport of arbitrary complexes. So we might leave it at that. It is, however,
also somewhat impractical to use; there is a huge number of possible configurations
of complexes (biologically speaking, species) in which a particular protein may be
a part. Furthermore, in many cases a central regulation mechanism of diffusion
consists of certain proteins or complexes that act as “chaperones”; they essentially
allow anything that they bind to to pass. In such situations it would be unfeasible
to require a modeller to enumerate all the possible complexes that a chaperone was
known to bind to, as well as being a somewhat unfaithful capture of the biological
knowledge. In essence, to help practical modelling, we want to be able to give a rule
to say that: “any complex(es) C bound to a chaperone (given in T) may diffuse”,
without having to specify any more than T.

Consequentially, we need to allow T to be open, to allow it to drag one or more
complexes along with it. Our next attempt is then the following rule:

B

A

T
B

A
T

C

C

fn(T | C) = ∅
(x) (A | 4x || 4x | T | C |B)→ω (x) (A | T | C | 4x || 4x |B)

T still denotes the user-given parameter, while C contains the complexes that are
dragged along with T. Again, we require that T be on the form

T ≡ (ỹ)(dx1
b1
| · · · | dxk

bk
),

but this time stipulating no conditions on the names (thus allowing T to be open).
Instead, we require that the product of T and C be closed. We state this formally
as a contextual side-condition, as it needs to be checked for the unknown parameter
C before a reaction may occur.10

This version of the diffusion-rule allows us to give diffusion-rules that only men-
tion chaperones, and not the cargo that they drag along. However, the generator
may also allow any solution not connected to T to travel along in C, thus under-
mining the possibility of modelling highly regulated chaperoning.

The generator above is also too fine-grained to allow a phenomenon known as
receptor-sliding.When a vesicle is forming on a cell membrane, receptors tied to the

10A central contribution of the BΣ,R-framework was to work out how such contextual side-
conditions may be adopted for bigraphically based calculi (see [DK08]).



7.3 Dynamics 201

membrane wall may on some occasions slide from the cytoplasm to the vesicle. The
figure below illustrates the pivot-motion that the receptor-protein follows:

Our generator, as stated above, locks receptors to their membranes; to allow re-
ceptors to travel, we need to allow an open complex to travel along a channel. In
conclusion, our second version is both too coarse, allowing any context to be dragged
along, and in a sense also too fine-grained, disallowing receptor-sliding.

Taking a lesson from these failings, let us try to specify more precisely what it
is that we would like to drag along with T: We want to capture the local, minimal
context of the parameter T. By local, we mean colocated with domains in T; by
minimal, we mean to restrict to domains connected to domains in T. In other words,
we want to capture the local connected component of domains in T. Let us first try
to formulate a non-constructive side-condition to capture this specification:

B ≡ B+ |B− B+ minimal s.t. fn(B−) ∩ fn(T |B+) = ∅ δ =↓: fn(T |B+) = ∅
(x) (A | 4x || 4x |B− |B+ | T) →ω (x) (A | 4x | T |B+ || 4x |B−)

,

allowing the same form for T as in our previous attempt.
First of all, note that instead of allowing any split of surroundings of T on the

left-hand side (as in the previous rule), we specify in the side-condition that the
parameters B− and B+ should be a certain split of the surroundings of T. Here,
we have simply stated informally, that B+ must be “minimal”, such that there are
no links between T plus its dragged cargo B+, and B−, the part of the context left
behind.11

Note also, that we have kept the side-condition requiring closure of the entire
cargo T | B+, for the downwards projection of the generator. This breaks from
the intuition that membrane reconfiguration is projective, which we described in
Section 7.3.2. Indeed, it turns out that in the C-calculus, because we model cross-
membrane links, such as receptor-backbones and channels, the intuition underpin-
ning projectivity does not hold for a certain kind of limit case. And, it is for that
reason that we keep the side-condition for the downwards projection. The limit case,
which the side-condition prevents, essentially breaks down to a simple geometrical
property, and can be illustrated as below:

11Note, that non-aliasing matching as introduced and discussed in [DK08] is necessary to infer
the lack of any immediate links from the lack of name-sharing expressed by the side-condition.
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We wish to transfer the domain d0 (indicated by the dotted rectangle) down the
channel. Trying to compute the minimal surroundings of d0, we find that it is
tied to a membrane in the context that encapsulates also the membranes with the
channel. Without breaking links or violating well-formedness we cannot perform any
transfer; the problem is precisely that the tied membrane surrounds the partially
fused membranes. If the tied membrane had had the inverse projection, a transfer
would in principle be possible, if we allow membranes to be diffused:

d0
d1

In this case, we may compute a closed cargo to be transfer along with d0 (indicated
by the outer dotted rectangle).

The conclusion is, that membrane curvature does matter when our transfer is
directed downwards. We cannot drag along enclosing membranes; thus the side-
condition restricts to closed cargoes for the downwards projection.

The fact remains that the side-condition is still non-constructive and informally
stated, however. More critically, our analysis also highlights another flaw: the min-
imal context of T may contain a membrane, as illustrated above.

In other words, as the generator is stated above, we also admit the dragging of
membranes in B+ bound to receptors in T. Though this preserves well-formedness
as we have defined it in Definition 7.2.7, it is hardly biologically feasible. Though
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on some occasions tiny vesicles may travel along certain special channels (such as in
tunneling nano-tubes [RSM+04]), our channels are intended mainly as an abstrac-
tion allowing transport of protein complexes, not membranes. The difference in
scale between proteins and membranes is such that, broadly speaking, the “pulling
power” of forces affecting proteins cannot drag along a membrane. In a situation
such as the one illustrated above, the most likely scenario would probably be that
the tied membrane prevented any transfer from happening at all; while for certain
applications, a more likely scenario might be that any tied complexation-links be
broken. In this paper, we shall make the first choice, as it equips diffusion with a
transactional guarantee.

Consequentially, in giving a concrete definition of “minimality”, we would like
to capture also that membranes are too large to travel in channels. However, as
the discussion above illustrates, it is probably beneficial not to hardwire exactly
the collection of the cargo. Hence, we choose to isolate and implement the final
version of the side-condition as a small function that computes the surroundings.
For certain applications this function may then be tweaked. We may, for instance,
specify in this function that under certain conditions the transport is not possible;
thus allowing us to prevent membrane-dragging.

We cannot get around, however, that computing the connected component of a
node in a graph requires iteration. In our case, we want to find a particular subset
of the connected component of the user-parameter T (following backbone-links and
complexation-links); namely the part of it that is colocated with T. Formally, we
can define the function that computes the local connected component by taking the
least fixed point of a function that computes the immediate (local) neighbours; as
usual, we may then compute this least fixed point by iterating the latter function.

We start by defining collect(T,S), the function that collects those top-level do-
mains in S (i.e., not nested inside membranes), which are connected with domains
in T.

Definition 7.3.6 (collecting immediate local neighbours). The function collect(T,S)
is defined for any solution T and any open solution

S ≡ (S0| . . . |Sn−1),

where each Si is either a domain, a gate or a membrane (empty or with another
solution inside).

The function is defined as follows (iterating over S from right to left):

collect(T, 0) = (T, 0)
collect(T,S | dx

b ) = collect(T,S) | (0, dx
b ), if {x, b} ∩ fn(T) = ∅

collect(T,S | db) = collect(T,S) | (0, db), if {b} 6∈ fn(T)
collect(T,S | db) = collect(T,S) | (0, db), if {b} 6∈ fn(T)

collect(T,S | 4g) = collect(T,S) | (0,4g)
collect(T,S |m[S′]) = collect(T,S) | (0,m[S′]),

where | is lifted pointwise to tuples of solutions.
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Formally, the normal form for solutions ensures us that collect(T,S) is defined for
all open solutions S (cf. Definition 7.A.4 in Appendix 7.A). The function collect(T,S)
returns another tuple of solutions (T′,S′), where those domains in S connected to T
(i.e., sharing names) have been removed from S and added to T, to form T′. This
can be summed up in the following little lemma.

Lemma 7.3.7. If collect(T,S) = (T′,S′) then there exists some solution S′′, s.t.
T′ ≡ T | S′′ and S ≡ S′ | S′′.

In other words, we always have collect(T,S | S′) ≡ (T | S,S′), for some S. It is
also easy to see that collect(T,S) has least fixed points; either collect(T,S) removes
part of S, making further progress towards the base case for collect(T, 0); or nothing
is removed from S, and we are done.

Lemma 7.3.8. The function collect has least fixed points.
The least fixed point can be computed by iterating collect; call the least fixed point

collect∗.

And finally, we can define lcc, the function that computes the draggable local
connected component. We define lcc(T,S) as a partial function, that uses collect∗

to compute the local connected component (T∗,S∗), and then tests whether the
resulting solutions are still connected, that is, still share names. If so, this is because
domains are tied across a membrane, and we let lcc be undefined in this case.

Definition 7.3.9 (draggable local connected component). For

T ≡ (x̃) T′,

where T ′ is a parallel product of domains, and

S ≡ (ỹ) S′,

where S′ is any open solution, s.t. x̃ ∩ ỹ = x̃ ∩ fn(S) = ỹ ∩ fn(T) = ∅,

lcc(T,S) =

{
((ỹ) T∗, (ỹ) S∗) if collect∗(T,S′) = (T∗,S∗) and fn(T ∗) ∩ fn(S∗) = ∅
⊥ else

The restrictions on the bound and free names of T and S are purely technical,
as we can always α-convert bound names to avoid any clashes.

We state in the following proposition the properties of the solutions computed by
lcc. The proposition is straight-forwardly verified from the definitions and lemmas
above.

Proposition 7.3.10. Either lcc(T, B+ | B−) is undefined or lcc(T, B+ | B−) ≡
(T|B+, B−), and B+ is solution that contains only domains, such that every domain
in B+ can trace a path of (backbone or complexation) links to a domain in T, and
such that no domain in B− can trace such a path.
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In other words, the result of invoking lcc on the user-parameter and its context,
lcc(T, B+|B−) is either undefined, indicating that a tied membrane prevents transfer,
or a result (T | B+, B−), such that B+ is a parallel product of domains; and, all
domains in B+ are in the connected component of T, while none of the domains in
B− are.

Having captured and isolated the computation of the solution that T drags along
in lcc, we may now state the final generator for diff. Figure 7.17 contains the defi-
nition and an illustration that slightly overloads our graphical language to illustrate
the computation of the draggable local connected component. We take Proposi-
tion 7.3.10 as verifying that we have implemented faithfully the last non-constructive
specification of the generator.

B+

A

T

A

B- B-

B+ T

diff(T):

lcc(T, B+ |B−) ≡ (T |B+, B−) δ =↓: fn(T |B+) = ∅
(x) (A | 4x || 4x |B− |B+ | T) →ω (x) (A | 4x | T |B+ || 4x |B−)

Figure 7.17: The homogenous generator diff.

We may similarly enhance the pinch-rule to allow also the transfer of an initial
parameter, as discussed in the previous section. The resulting generator is depicted
and defined in Figure 7.18.

As a final remark in this section, a note on expressivity: Not unlike the encoding
of κ into micro-κ [DL04], we may implement the lcc-function using vanilla reaction
rules encoding the traversal performed in lcc. It essentially requires the addition of
a single control for temporarily gathering the connected connect; and a number of
extra rules for recognizing preconditions corresponding to the left-hand sides of the
lcc-function. We find, however, that the higher abstraction-level gained by taking
the lcc-function is sufficiently important to justify our choice. Also, as the function
is inductively given, it lends itself directly to implementation.

Table 7.1 summarizes all the generators introduced in this section for membrane
reconfiguration.
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B+

A

T

A

B- B-

B+ T

m

pinch(T):
lcc(T, B+ |B−) ≡ (T |B+, B−) δ =↓: fn(T |B+) = ∅
A ||B− |B+ | T →η (x)(A |m[T |B+ |Gx] ||B− | 4x)

Figure 7.18: The heterogenous generator for parametric pinch.

7.3.5 Refinement and Allowable Rules

In the previous sections we have introduced a series of generators all encapsulating
a core biological action. And in Section 7.3.1, and Figures 7.9 and 7.14, we have
introduced refinement formally. We now turning to defining refinement, formally.

The idea is, that we want to allow in C-calculus any rule that is a suitable
refinement of (a projection of) one of the generators for membrane actions or domain-
level rules given in the previous section. All (projected) generators are certainly valid
rules by themselves. However, we want to allow a biochemist to specify that, for
instance, a vesicle may only touch the plasma membrane, if a protein pro attached
to its surface is bound to a receptor rec on the plasma membrane. Let is work out
this example in detail.

From the informal specification above, we want a rule that might look like this:

r0 = pro0x
a | ves[ pro1a |A] | rec0x

b | plasma[ rec1b |B]→
(y) pro0x

a | ves[4y| pro1a |A] | rec0x
b | plasma[4y|rec1b |B],

where, for effect, we have aligned counterparts on the left- and right-hand sides. Let
is spell out precisely in what sense r0 is a refinement of the lateral projection of
touch.

First, the lateral projection of touch, selecting the appropriate kinds of mem-
branes, yields the following rule:

ves[A] | plasma[B]→ (y) ves[4y |A] | plasma[4y |B].

Next, in refining a generated rule, we want to allow refinement of the parameters; in
practice, by substituting for any variable X, a solution S (that might in turn contain
variables). We call this inner refinement of X. Refining the parameters A and B in
the lateral projection of touch, we get:

ves[pro1a |A] | plasma[rec1b |B]→ (y) ves[4y | pro1a |A] | plasma[4y | rec1b |B]
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Homogenous generators

part (x)(4x |A || 4x |B) →ω A ||B

touch A ||B →ω (x)(4x |A || 4x |B)

diff(T)
lcc(T, B+ |B−) ≡ (T |B+, B−) δ =↓: fn(T |B+) = ∅

(x) (A | 4x || 4x |B+ |B− | T) →ω (x) (A | 4x | T |B+ || 4x |B−)

Heterogenous generators

merge (x)(A |m[4x | C] || 4x |B) →η A || C |B

pinch(T)
lcc(T, B+ |B−) ≡ (T |B+, B−) δ =↓: fn(T |B+) = ∅
A ||B+ |B− | T →η (x)(A |m[T |B+ |Gx] ||B− | 4x)

for any T ≡ (ỹ)(dx1
b1
| · · · | dxk

bk
) and for lcc as given in Def. 7.3.9.

Table 7.1: Summary of the generators for membrane reconfiguration.

And finally, we want to allow outer refinement of a reaction rule by specifying parts
of surrounding context, where the reaction occurs. In practice, for a rule L → R,
we want to allow any rule L | S → R | S. By contextualizing the rule above with
pro0x

a | rec0x
b , we get r0.

We may sum up refinement conveniently with the help of substitution. First
however, for full generality, we also need to consider rules with side-conditions.

Consider the following (somewhat artificial) rule and side-condition:12

r1 = A→ p |A, ϕ = ”A does not contain a p.”

If we perform inner refinement on A to get

r′1 = p |A→ p | p |A, ϕ′ = ?,

what should the side-condition ϕ′ say? We elect that A should be refined in the
side-condition, as well. This yields: ϕ′ = ”(p | A) does not contain a p.” This in
turn yields a valid rule (that, however, never applies, since the side-condition is
equal to falsity). In other words, when substituting a parameter X for T, we also
need to substitute that parameter in ϕ. We finally settle on the following definition
for refinement:

Definition 7.3.11 (refinement). For any rule (L → R, ϕ), any solution context S
with one hole, and any group of solutions G, s.t., the number of solutions in G is
equal to the number of variables in L and R, a refinement of this rule is (S / L /G→

12In writing side-conditions for reaction rules, it is convenient to overload the usage of variable-
names in the rule, such as A, to refer to the solution that instantiates the variable.
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S / R / G, ϕ′). The side-condition ϕ′ is true for a group of parameters F if ϕ(G / F)
holds.

We call the contexts S and G the outer and inner refinement, respectively. To-
gether, we call them the application conditions used to refine the rule L→ R.

In our case, for the generators in Table 7.1, the only parameters mentioned in
side-conditions are the B-parameters in pinch and diff. In practice, for those
rules, to ensure that refined rules not be unappliable, do not refine B− to include
a domain that is connected to T, and do not refine B+ to include a domain that is
not connected to T.

Our choice to refine also side-conditions ensures us that application conditions
only restrict the applicability of rules. In particular, we easily verify the following
convenient little lemma.

Lemma 7.3.12 (application conditions restrict rules). Suppose r′ = (L′ → R′, ϕ′)
is a refinement of r = (L,R, ϕ) as defined in Definition 7.3.11. Then, if T→ T′ by
r′, then also T→ T′ by r.

Suppose, we had not refined side-conditions also; then this lemma would not
hold. (To see this, consider the reaction p → p | p against the example rule r1 and
against the refined rule r′1 without refining also the application condition.)

Having treated the technicalities concerning refinement, we can sum up the al-
lowable rules.

Definition 7.3.13 (allowable rules). The allowable rules in the C-calculus are re-
finements of

• domain-level rules, as defined in Definition 7.3.5; and,

• projections of the generators in Table 7.1.

In Section 7.4, we give several concrete examples of rules.

7.3.6 Preservation of Well-formedness

In this section, we establish the promised property that any reaction due to an
allowable rule preserves well-formedness.

The main theorem is the following. We devote the rest of this section to prove
this theorem.

Theorem 7.3.14 (C-calculus reactive systems preserve well-formedness). If S is
well-formed, and S→ T, then T is well-formed.

Proof. Follows from Lemmas 7.3.12, 7.3.15, 7.3.16, and 7.3.17.

All well-formedness conditions stipulate conditions on links—on the presence, ar-
ity, or sorting of links or on the locality of the ports they connect. That fact, and the
nature of allowable C-calculus rules, makes graph-based reasoning on solutions most
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convenient. As explained in Section 7.2.4, solutions correspond to certain bigraphs.
Further, as recorded in [DK08, Theorem 4.5], reaction for any BΣ,R-calculus corre-
sponds 1-1 to bigraphical reaction (under so-called non-aliasing contexts). Hence,
due to the founding of C-calculus on bigraphs, we can directly apply (bi)graphical
reasoning to verify the following propositions.

We need to check the change(s) induced by a reaction rule against each of the
well-formedness conditions.

In outline, we proceed as follows: Most allowable rules, specifically domain-level
rules and those generated from touch, part, and bud create or break links (plus
some domains or membranes) contained entirely inside the left-hand side or right-
hand side of a rule. Consequentially, it is easily checked that they cannot break
well-formedness. We start by stating this in Lemmas 7.3.15 and 7.3.16. Those
rules that allow bunched transportation of subsolutions, contained in parameters
of the rules, need a bit more care. We check that rules generated from merge
are innocuous; and, for the rules generated from diff and pinch we check that
our development in Section 7.3.4 has been sound. We handle these three transport
rules in Lemma 7.3.17. Together the three lemmas imply that all reactions due to
allowable rules preserve well-formedness, as stated in Theorem 7.3.14.

A simple, but convenient corollary of Lemma 7.3.12 is that any reactive system T ′
over refined rules will be a sub-system of a reactive system T over the corresponding
unrefined rules. It follows that, if we prove preservation of well-formedness for
reactive systems over core rules without refinements, i.e., domain-level rules and the
projections of the generators in Table 7.1 without any application conditions, then,
in particular, any reactive systems using refined rules also preserves well-formedness.
Hence in the following lemmas, we shall simply check unrefined rules.

Lemma 7.3.15 (domain-level rules preserve well-formedness). If S is well-formed
and S→ S′ by a domain-level rule, then S′ is well-formed.

Proof. Below we sketch the proof in some detail. The proof is essentially a straight-
forward case-analysis of a number of cases corresponding to the kinds of links in
the bigraphs that correspond to well-formed solutions. We thus rely on bigraphical
reasoning. In this paper, we have not introduced bigraphical theory in full; however,
we refer the reader to the informal summary given in Section 7.2.4.

From Definition 7.3.5 we know that all domain-level rules L → R incorporate
one change (for the base rules) or two changes. Those changes translate directly to
changes which relate the (bi)graphs S to S′.

Let us consider first, what occurs under synth and degrade.

• synth All domains affected by this reaction have just been created in S and are
unbound. The only created link is the protein backbone, and it is explicitly
required to respect the well-formedness condition (fixed backbone), together
with the created domains it links.

• degrade No complexation-links are created or deleted by this reaction. A
backbone link is deleted, and it is explicitly required that every domain in a
protein is deleted together with it (ensuring us that (fixed backbone) is upheld).
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Now, we analyze each of the base rules, which change existing or newly created
domains or links, for their effect on a domain in S and consider well-formedness.

• bind Suppose d in S is affected by this reaction. Then it is visible and will be
bound to a co-located d′ in S′. In effect, S′ will have an added link compared
to S. We check this link against the well-formedness conditions; the three
interesting conditions are (binary complex ), (link sorting), and (local com-
plex ). They are all upheld, as it is explicitly required that the link be between
two complexation-ports of co-located domains. The remaining conditions are
voidly upheld.

• break Suppose d in S is affected by this reaction. Then it is bound, and
will be visible in S′ (as well as another d′ in S). In effect, S′ will have lost a
link compared to S. Checking against the well-formedness conditions, it easily
seen that no conditions are violated. In particular, note that since we explicitly
require the entire link to be matched and deleted in break, no faulty unary
links can be created (which would violate (binary complex )).

• hide/show These reactions change no links, making them non-problematic
with regard to well-formedness.

Finally, from the check of hide/show, it easily seen that the combinations of
bind and break with one of hide and show (i.e., bind+show, bind+hide,
break+show, and, break+hide) also preserve well-formedness.

In conclusion, no domain-level reaction rule may induce a change in S, which
breaks well-formedness in S′.

We turn to checking the generators described in Section 7.3.4 and the changes
they induce. We start by considering projections of the rules that do not involve
transport.

Lemma 7.3.16 (non-transport generators preserve well-formedness). If S is well-
formed and S → S′ by a rule generated from touch, part, or bud, then S′ is
well-formed.

Proof. We sketch the proof.
Any reaction rule generated from touch and part induces exactly the following

changes on S: The addition or deletion of two gates as well as the creation or deletion
of a link between them. By definition, the homogenous projections will ensure us
that these changes occur in compartments separated by exactly two membranes,
in turn ensuring us that any such channel respects (bitonality). It is immediate
from the definition of the generators that the conditions (link sorting) and (binary
channels) are upheld.

Any reaction rule generated from bud adds exactly one membrane as well as two
connected gates (as for touch above). The heterogenous projection in combination
with the created membrane ensures that the gates respect (bitonality). (Again, it is
immediate that the conditions (link sorting) and (binary channels) are upheld.)
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Figure 7.19: Depicting heterogeneous generators projectively, using unoriented
parenthood-edges.

It remains for us to consider those rules, which move subtrees—captured in
parameters in the rules—in the solution. To illustrate the reasoning in the following
proof, we shall sketch the parts of the tree corresponding to the solution, where the
reaction occurs.

We are reasoning about rules, which stem from generators projected to form
two or three rules. To concisely illustrate and reason about all projections in one
go, we may illustrate the subtrees corresponding to generators in the manner de-
picted for heterogenous projection in Figure 7.19 and for homogenous projection in
Figure 7.20. Below, we refer to such illustrations as projective. At the top of the
figures, projective groups are illustrate as in Section 7.3.2. When we consider so-
lutions as trees whose parenthood-relation is given by membrane-containment, this
corresponds to stating that one or two parenthood relations (for heterogenous and
homogenous, respectively) are unspecified. We can conveniently illustrate that by
leaving one or two parenthood-edges in the tree corresponding to a solution be un-
oriented. We depict that in the middle of Figures 7.19 and 7.20. At the bottom, we
illustrate how the projections work to produce the two or three trees corresponding
to the projective illustrations.

Lemma 7.3.17 (transport generators preserve well-formedness). If S is well-formed
and S→ S′ by a rule generated from merge, diff, or pinch, then S′ is well-formed.

Proof. Below we sketch and illustrate the proof in some detail. As for the proofs
above, the proof is a case-analysis of a number of cases for the kinds of links in bi-
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Figure 7.20: Depicting homogenous generators projectively, using unoriented
parenthood-edges.
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graphs corresponding to well-formed solution. We thus rely on bigraphical reasoning;
we refer the reader to the intuition given in Section 7.2.4.

We consider the generators merge and pinch, and discuss the links that we
need to check with the help of projective illustrations as explained above. We elide
a detailed sketch of the analysis for the case for diff, as the verification is similar
to that for pinch.

merge: A membrane and two connected channels are deleted; and the contents
of the membrane (captured in the parameter C) is transfered to the other end of the
channel. The deletion of the connected channels correspond to the action captured
in part, and we need not consider them further.

The projective illustration below illustrates the generator, and highlights repre-
sentatives of links, which we need to consider.

C

C

A B(2)

d

d

(3)
(1)

m

On the bottom-left is the subtree corresponding to C. The arrow pointing to the
right and the dotted subtree on the right indicates the transport that C will undergo
as a consequence of merge. C is inside a membrane (to illustrate, we indicate
this with a membrane M at the top of subtree illustrating C), which is inside a
compartment, which contains another subtree (A). This compartment either has a
parent or child (depending on the projection) containing the subtree B.

Those links that may prove problematic are those spanning regions, and it is clear
that we need only consider those connected to nodes inside C. On the illustration,
we have drawn representatives of each kind of link, that we need to consider.

Channels, whose gates lie within C, may come in two versions:

• Well-formed channels that are top-level in C may be connected to the region
that C is transported into. Such an example is illustrated and tagged with
(1) above. As a consequence of the transport such channels will be degenerate
(i.e., their length will be 0), but well-formed in S′.

• Well-formed channels that are inside a top-level membrane in C may only be
connected to the parent of C. We have illustrated and tagged such a link with
(2) above. As can be seen from the illustration, after the transport of C, the
channel will still span two membranes.
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Every other well-formed channel is either contained entirely within or outside C.
The link tagged with (3) illustrates a protein backbone that crosses the mem-

brane that is destroyed as a consequence of merge. Checking, we see that this
backbone also preserves its well-formed after the transfer.

pinch: A membrane and two connected channels are created, and the cargo T|B+

is transfered to the compartment inside the new membrane. It is simple to check
that the creation of the membrane itself and the connected channels respect well-
formedness. We concern ourselves with the links, whose endpoints change location.

We illustrate the generator projectively, and again we highlight representatives
of links that we need to consider more carefully.

B+T|

B- A
B+T|

m

(1)

(2)(5)

(4)

(3)

On the middle-left, we illustrate with a dotted region the compartment containing
the user-parameter T and the parameter, B+, it is dragging along. The parameter
that remains, B−, is a sibling. The compartment, that the new membrane is created
in, is a parent or a child (depending on the projection) of the compartment that T|B+

stems from. We illustrate the transfer with an arrow, and on the bottom-right, we
draw the newly created membrane and the transferred T |B+ with dotted lines.

The parent-compartment of the new membrane (on the top-right) has a subtree
A. Finally, in case the projection is downwards (i.e., in case the undirected parent-
edge is oriented from right to left), then we need to consider also links to the parent-
region of the compartment containing T, B+, and B− (illustrated on the top-left).

As for merge, we need concern ourselves mainly with links spanning compart-
ments. However, we should remark that this is only because we have already verified
(in Proposition 7.3.10) that the split of B into B+ and B− by lcc, ensures that there
are no links, channels or backbones, between T | B+ and B− (we illustrate such a
link above with a crossed link and tag it with (5)).

Also, the side-condition fn(T | B+) = ∅ given for the downwards projection,
ensures that there can be no links to a parent region (we illustrate such a link with
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a crossed link tagged with (4)).
Having treated the links that the side-conditions prevent, we turn to channels

captured partially in T | B+. However, lcc ensures ensures that no gates may be
captured in T |B+. Hence, the two possibilities for channels (illustrated with crossed
lines and tagged with (1) and (2) above), are prevented. It remains again to consider
backbones that span the projected membrane, such as the link tagged (3) above.
After the pinch they will instead span the newly created membrane—having fol-
lowed the pivot-motion illustrated and discussed in Section 7.3.4—and will still be
well-formed.

diff: The analysis is similar to that for pinch.

7.4 Examples

Now for some examples.

7.4.1 G-protein Coupled Receptor

We start by developing a model of cross-membrane signal transduction (i.e., propa-
gation of signals across say a cell wall in a signalling pathway) via G-protein coupled
receptor proteins (GCPRs). A GCPR is a kind of receptor belonging to a large
family of certain transmembrane proteins—proteins integral to the cell wall that
have protrusions on both sides. The family of GCPRs is large and diverse, but they
all employ a similar technique to implement a mechanism that allows extracellular
signals to cross the plasma membrane. In the following description and model of
GCPRs we shall abstract away from many details to develop a model illustrating
some of the central properties shared by GCPRs; in any case, the answers to many
questions pertaining to GCPRs are not known.

The extracellular part of a GCPR, illustrated in Figure 7.21, constitutes a recep-
tor site that is shaped to be able to bind certain ligands (signalling molecules). Its
inner part is bound to a partner G-protein (a guanine nucleotide-binding protein).
The G-protein in its inactive state is actually a little complex of three different
protein subunits bound to each other: Gα, Gβ , and Gγ .13 The β and γ subunits
are bound tightly together (together they are called the Gβγ-complex), while the
α complex is relased as part of the activation of the GCPR. Particular to GCPRs
are that they do not pass any substance through the membrane, but rely on struc-
tural changes to the folding shape of the receptor. The folding shape of a protein is
called its conformation, hence such structural changes are known as conformational
changes.

Loosely, the GCPR propagates a signal in the following manner: A ligand is
bound to the receptor site activating the GCPR by changing the conformation of
the receptor in such a way that the G-protein is activated, causing the Gα subunit to
bind to a molecule of GTP (guanosine triphosphate). This in turn causes it to release

13For simplicity, we restrict to treating here heterotrimeric G proteins, also called “large” G-
proteins.
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itself from the rest of the G-protein, as illustrated in Figure 7.22. The remaining
Gβγ-complex also detaches from the receptor. The release of the Gα subunit has
exposed sites on the Gβγ-complex that may interact with other molecules that serve
as effectors for further propagation of the signal. A receptor in an activated state
may bind to other G-proteins and activate them. Depending on the stability of
the ligand-receptor complex, the ligand is released at some point. At this point an
inactive G-protein may again bind to it to return the entire complex to the initial
inactive state.

Figure 7.21: A G-protein receptor before binding to a ligand (illustration
from [Coh07]).

A C-calculus model We work with the following protein signature:

{lig : (1, 0), re : (2, 1), gbc : (3, 0), ga : (2, 0), gtp : (1, 0), eff : (1, 0)},

and a single membrane type plasma to model plasma membranes.
In Figure 7.23, we give seven rules that encapsulates a model of the core reactions

involved in the firing of a G-protein coupled receptor. We explain the rules one-by-
one, below.

• Rule 0: This rule allows a ligand lig to bind to the extra-cellular domain of
the receptor, re0.

• Rule 1: The rule models the conformational change of the receptor induced
by the ligand binding in rule 0, by activating the Gα subunit, specifically
the domain ga1, able to bind to the GTP molecule, gtp. We make rule 1 η-
projective, i.e., we intend that it may be applied if the two solutions in the
groups in the left and right hand side are separated by exactly one membrane.
In this manner, we capture conveniently and consisely the fact that these
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Figure 7.22: A G-protein receptor firing due to a conformational change, after bind-
ing to a ligand (illustration from [Coh07]).

transmembrane receptors transfer signals across the membrane, independent
of the orientation of the membranes.

We should note, that though this serves as a nice illustration of projectivity,
in nature the particular family of transmembrane receptors we have chosen,
GCPRs, work only in the plasma membrane, working to propagate extra-
cellular signals inwards.Note also, that we disassociate the ligand-binding event
with the conformational change.

• Rule 2: In this rule the domain ga1 of the Gα subunit binds to the gtp.

• Rule 3: This rule allows the Gα subunit to break the assocation to the G-
protein leaving the Gβγ-complex bound to the receptor. The dissassociation
reveals (and activates) a part of the Gβγ-complex hidden by the Gα subunit.
We model that by the activation of the domain gbc1. Note that rules 2 and
3 are not causally dependent. The ga1 may bind to gtp before or after the
ga0 domain has broken the bond to gbc2 domain. In other words, we model
that the Gα subunit may bind to the GTP molecule independently of the
dissassocation from the Gβγ-complex.

• Rule 4: After the activation of gbc1, the Gβγ-complex may release itself from
the receptor to seek out an effector to propagate the signal further. Rule 4
captures this breakage of the complexation-link between the internal receptor-
domain, re1, and the domain of Gβγ , gbc0.

• Rule 5: And in rule 5 the Gβγ-complex, represented by the activated gbc1-
domain, binds to some effector-domain—here abstractly represented as an eff-
molecule. Note that for variation, here we have made the formation of the
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r0 ligl | re0r → (x) ligx
l | re0x

r

r1 (ligx
l | re0x

r ) ||
(
re1y

r | gbc0y
b | gbc2z

b | ga0z
a | ga1a

)
→η

(ligx
l | re0x

r ) ||
(
re1y

r | gbc0y
b | gbc2z

b | ga0z
a | ga1a

)
r2 ga1a | gtpg → (u) ga1u

a | gtpu
g

r3 (z) gbc1b | gbc2z
b | ga0z

a | ga1u
a | gtpu

g →
gbc1b | gbc2b | ga0a | ga1u

a | gtpu
g

r4 (x) re1x
r | gbc0x

b | gbc1b → re1r | gbc0b | gbc1b

r5 gbc1b | effe → (y) gbc1y
b | eff

y
e

r6 re1r | gbc0b | gbc1b | gbc2z
b | ga0z

a | ga1a →
(x) re1x

r | gbc0x
b | gbc1b | gbc2z

b | ga0z
a | ga1a

Figure 7.23: Rules for modelling a G-protein coupled receptor

bond between the effector and the Gβγ-complex dependent of the breakage of
the bond between the receptor and the Gβγ-complex.

• Rule 6: Finally, rule 6 captures that a receptor with no G-protein may bind
to another (inactive) G-protein.

7.4.2 Clathrin-dependent Endocytosis

For an example involving both formation and fusion of compartments, we turn to one
of the celebrities in the world of research organisms, the illustrious nematode worm
Caenorhabditis elegans (or C. elegans among friends). It exists in spades in common
dirt, and is a multicellular eukaryote, with a small enough amount of cells (959 in
adult hermaphrodites, 1031 in adult males) to have been extensively researched.
This has made it possible to document in great detail the developemental lineage of
every cell in the lifespan of a single organism. A key property for the tractability
of such a study has also been that unlike mammals, for instance, in C. elegans the
fate of cells are largely invariant between individual worms. The online compendium
WormBook [WB] documents all aspects of research into these wondrous creatures.

We shall focus on endocytosis—the process by which cells internalize various ex-
tracellular material—as studied for C. elegans. The best studied endocytic pathway
for both worms and mammals is the receptor-mediated endocytosis by formation of
clathrin-coated vesicles. We base the following high-level presentation on the ex-
cellent review by Grant and Sato [GS06, Section 1] (available in the WormBook).
The schematic illustration of clathrin-dependent endocytosis in Figure 7.4.2 we also
borrow from loc. cit.

We may describe the process of clathrin-dependent endocytosis as follows: On
the cell wall receptor proteins await, ready to bind to ligands, cargo molecules that
the cell wishes to internalize. The purpose of the uptake of such cargo molecules
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Figure 7.24: Mechanism of clathrin-dependent endocytosis. Clathrin and cargo
molecules are assembled into clathrin-coated pits on the plasma membrane together
with an adaptor complex called AP-2 that links clathrin with transmembrane recep-
tors, concluding in the formation of mature clathrin-coated vesicles (CCVs). CCVs
are then actively uncoated and transported to early/sorting endosomes (illustration
and caption from [GS06]).

may be diverse, and may be part of signalling pathways, but may also, for instance,
involve the uptake of molecules that the cell needs—such pathways inevitably lead
the digested particles to degradation (i.e., destruction) in the lysosomes (with the
suitable nickname, the “suicide sacs”). Over time, it so happens that clusters of
receptors bound to ligands tend to form on the plasma membrane. The intra-
cellular part of the receptors bind to adaptor complexes called AP2, who in turn
bind to so-called clathrin lattices. The macro-shape of clusters of clathrin is thought
to provide the down-force required to curve the plasma membrane into small inward
buds. These inward buds are mechanically constricted and snipped off to form
clathrin-coated vesicles floating freely in the cytoplasm. These coated vesicles are
subsequently uncoated actively (with the help of chaperone protein hsc-70 and its
compatriot the co-chaperone auxillin). With the aid of another GTPase, Rab5,
these uncoated vesicles now fuse with each other and with so-called early endosomes,
which serve a sorting purpose. These endosomes have a slightly reduced pH inside
their membranes, which tends to cause the receptors to let go of their ligands. From
the endosomes most receptors (some still with ligands bound) now form new vesicles
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and eventually recycle to the cell wall; while most ligands continue their transport—
possibly through further vesicle transport towards their endgoal, say, lysosomes.

At this point we shall leave our protagonists, and turn to developing a C-calculus
model. We underline again that, though detailed, the description above is quite high-
level. Most steps in the pathway involve intricate biochemical steps; to name one,
for instance, the snipping of buds happens through the intervention of a GTPase
dynamin—it works essentially by forming a coil around the invaginated bud and then
gradually, through a process of GTP hydrolysis, mechanically constricts until the
bud is closed off to form a coated vesicle. In our model, we shall aim at hitting the
same level of abstraction as in the description above, focusing mostly on illustrating
how C-calculus allows us to model induced vesicle formation, and later fusion of such
vesicles with each other and with endosomes.

A C-calculus model We make certain simplifications to make the model man-
ageable: We model the 4-subunit complex AP2 as a single protein with only the
two domains necessary for the reactions in this example. Also, we do not model
exactly how the chaperone and co-chaperone, hsc-70 and auxillin, or the GTPase
Rab5 work; we only require that they be present for certain reaction to take place.
(For the same reason, we shall elide the mention of any complexation-ports on these
three latter proteins.)

We arrive at the following protein signature:

{lig : (1, 0), re : (2, 1), ap : (2, 0), cla : (1, 0), hsc-70 : (0, 0), aux : (0, 0), rab : (0, 0)}.

We take three membrane types plasma, ves, and end; the latter two types model
endosomes and vesicles.

In Figure 7.25, we give a set of rules to model clathrin-dependent endocytosis as
described above. Again, we explain the rules one-by-one.

• Rules 0, 1, and 2: These rules allow a ligand to bind to the extra-cellular
receptor domain, re0, (rule 0); allow the receptor-binding domain, ap0, of
the adaptin AP2 to bind to the intra-cellular receptor domain re1, (rule 1)
inducing a conformational change that allows clathrin, cla, to bind to the
adaptin domain ap1 (in rule 2).

• Rule 3: Rule 3 is a refinement of pinch. (Since there is no need to repeat the
generic side-condition for pinch or diff, we just write by the rule ϕpinch(T =
. . .) to remind that the rule has a side-condition.)

We take the downwards projection of to model the clathrin-coating and forming
of a vesicle inside a cell. The rule allows creations of buds of vesicle-type,
ves[. . .]. We have refined the vanilla pinch-rule to require at least one receptor
coated with clathrin to be present for the bud to form, by setting T = re0x

r ,
requiring the extra-cellular part of the receptor to be bound (to a ligand), and
giving application conditions inside the plasma membrane to require the intra-
cellular part to clathrin-coated. (For simplicity, we suppose that the downforce
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r0 ligl | re0r → (x) ligx
l | re0x

r

r1 re1r | ap0a | ap1a → (x) re1x
r | ap0x

a | ap1a

r2 ap1a | clac → (x) ap1x
a | clax

c

r3 B− |B+ | re0x
r | plasma[re1y

r | ap0y
a | ap1z

a | claz
c ]→

(g)4g |B− | plasma[ves[4g |B+ | re0x
r ]|

re1y
r | ap0y

a | ap1z
a | claz

c ], ϕpinch(T = re0x
r )

r4 (g) (B− |B+ | ligx
l | 4g) || (4g |A)→ω

(g) (B− | 4g) || (4g |B+ | ligx
l |A) , ϕdiff(T = ligx

l )

r5 (g)4g | plasma[A | re1y
r | ap0y

a | ap1z
a | claz

c | re1v
s |

ap0v
b | ap1w

b | cla
w
d | ves[4g | re0x

r | re0u
s |B] ]→

plasma[A | re1y
r | ap0y

a | ap1z
a | claz

c | re1v
s |

ap0v
b | ap1w

b | cla
w
d | ves[re0x

r | re0u
s |B] ]

r6a (y, z) hsc-70h | auxb | re1y
r | ap0y

a | ap1z
a | claz

c →
(z) hsc-70h | auxb | re1r | ap0a | ap1z

a | claz
c

r6b (z) ap0a | ap1z
a | claz

c → ap0a | ap1a | clac

r7a rabr | ves[A ] | ves[B ]→ (g) rabr | ves[4g |A ] | ves[4g |B ]

r7b rabr | ves[A ] | end[B ]→ (g) rabr | ves[4g |A ] | end[4g |B ]

r8a (g) ves[4g |A ] | ves[4g |B ]→ ves[A |B ]

r8b (g) ves[4g |A ] | end[4g |B ]→ end[A |B ]

r9 (x) end[ ligx
l | re0x

r ]→ end[ ligl | re0r ]

Figure 7.25: Rules for modelling clathrin-dependent endocytosis
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of a single clathrin-coating is enough to create a small bud.) The extra-cellular
receptor-domain is pulled into the bud—dragging, in the surroundings, B+,
the bound ligand—and a channel is created.

• Rule 4: We refine the vanilla diff-generator to enable free diffusion of ligands
in and out of the pinched bud. For variation, in this rule we just take every
(homogenous) projection of the diff (indicated by keeping the ω-subscript on
the reaction-arrow)—for every kind of membranes in the signature. This allows
the rule to also allow diffusion among fused uncoated vesicles and endosomes
later in the process—which we comment on below. Note, that should the
ligand be bound to a receptor, then the receptor will be dragged into the bud
(or out of the bud) as well as part of the surroundings, B+. This may result
in further or lessened clathrin-coating of a bud.

• Rule 5: Having pinched a bud via rule 3, rule 5 allows the bud to break off
and part from the plasma membrane. Rule 5 is a straight refinement of the
downwards projection of the part-generator. For variation, we suppose, that
the downforce of two clathrin-coatings is necessary to break off a bud. This
necessitates the diffusion of more bound ligands into a formed bud—via rule
4.

• Rules 6a and 6b: These rules model, on a high level of abstraction, the un-
coating of vesicles (as discussed above) in two steps. We simple require the
presence of the two representatives of the chaperone hsc-70, hsc-70, and the
co-chaperone auxillin, aux, for the uncoating reaction to occur.

• Rules 7a, 7b, 8a, and 8b: These rules allow the two-step procedure of touch
and merge, that results on fusion of uncoated vesicles with each other (rules
7a and 8a) and with endosomes-compartments, end[. . .] (rules 7b and 8b). For
both fusions to occur, we require the GTPase Rab5, represented by rab, to
be present for initiating the process. To illustrate the leverage we have in
choosing refinements, for these rules, we take only the lateral projections of
the touch- and merge-rules; thus the reaction-arrows have no subscripts.

• Rule 9: Finally, rule 9 models that the cargo-ligand may be released when it
has been enveloped by an endosome.

As a final remark, we may note, that one might also consider adding a rule to
allow smaller clathrin-coated buds formed on the plasma membrane to merge, thus
forming larger buds. This is probably a biologically viable alternative explanation
to the formation of larger clusters of clathrin-coated receptors, resulting in larger
buds.

7.5 Conclusion

We have presented and motivated in detail a novel calculus, the C-calculus, for
modelling low-level interaction inside and among cells, the basic building blocks of
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all known life. The focus is on two main actors of cells, proteins and membranes.
The calculus takes inspiration from several calculi, in particular, the κ-calculus

and the brane-calculi. The extension of a κ-like calculus with dynamic compartments
is a novel contribution, in itself. The C-calculus also introduces a novel abstraction,
channels, for modelling partially fused membranes, and uses these to give a novel
treatment of transport of complexes through diffusion and parametric pinching of
buds. Furthermore, as opposed to most process calculi the C-calculus allows domain
experts considerable freedom in instantiating a domain-specific sub-calculus for the
study of a particular biological application.

A user develops a model in the C-calculus by selecting a set a proteins and
membranes to work with and selects reaction rules from a toolbox of core rules,
encapsulating basic biological actions. Subsequently, the core rules may be refined
by giving contextual application conditions for rules.

In summary, the slogan for modelling in the C-calculus is: Modelling by rule
refinement.

7.5.1 Future Work

We should start by underlining that the reason for including names for domains and
membranes was to be able to express directly the concrete examples in Section 7.4.
The central parts of the calculus—the core actions, captured in the projective genera-
tors, and the capture of diffusion and fission (via pinch)—could have been discussed
without names and state for domains, and does not rely on the specific model cho-
sen. In this first version of the calculus, the concrete model for representing names
and state for domains (and membranes) has been chosen mainly because it allows
readers familiar with the κ-calculus as presented in [DL04] to build on the intuition
from there. In future work, we expect to revise the model for names and state, to
allow the expression of rules that mention domains eliding their name or state, and,
more generally, to allow a more uniform treatment of names and state for all the
entities in the calculus.

The rules for transport in the C-calculus allow only transport of proteins and com-
plexes. However, by generalizing the pinch generator, we may model cell-division
in eukaryotic cells. As sketched in the introduction, this involves, in particular, the
division of membrane-enclosed organelles into two daughter-cells. We may model
this by allowing membranes and gates to travel across channels. Due to the isolation
of the computation of the connected component in the lcc function, it suffices with
a simple refinement of the pinch-rule and of the lcc-function.

The generic tool for working with bigraphs, the BPL tool [BPL07], allows ex-
perimentation with the fragment of the C-calculus without transport (i.e., the rules
pinch and diff). In experimenting with different semantics for the calculus, this
has very been useful. However, as for the κ-calculus [DFFK07], a dedicated imple-
mentation can be optimized directly for the C-calculus. For instance, knowing that
well-formedness is preserved across reaction allows an implementation to optimize
for this, utilizing, in particular, that all links except backbones are binary, and that
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backbone links are restricted to one or two specific shapes.
A good way to mature the language is to investigate larger models. In particular,

the level of abstraction in the C-calculus leads us to believe that we may capture
smoothly the steps from receptor transcription to placement (this is a part of the
so-called exo-cytic pathway). This involves, in particular, the steps of transcrip-
tion for exo-particles and transmembrane receptor proteins, which in turn involves
recognition of partial proteins in the cytosol during transcription by ribosomes. As
domains, not full proteins, are atoms in the C-calculus, we should be able to capture
these reactions by extending the allowable domain-level reactions. Recognition of
a partial protein induces a lodging of the partial protein in the endoplasmic retic-
ulum surrunding the nucleus—this is essentially a merging between two kinds of
membrane-enclosed compartments. After final transcription, a vesicle is formed to
encapsulate the exo-part of the protein, and the vesicle is transported through the
(3-layer) Golgi apparatus sorting mechanism, and finally merged with the plasma
membrane.

Our binary gated channels also bear a striking resemblance to a recent discov-
ery [RSM+04, GBG08], so-called tunneling nanotubes (TNTs), long and thin stable
membrane-enclosed nanotubes (diameter of of 50 to 200nm, several cell diameters
in length) tunneling through the divide between two cells. TNTs were originally re-
ported to allow transport only of vesicles (i.e., essentially diffusion of vesicles), but
seem later to have been found to permit direct intercellular transfer of organelles,
cytoplasmic molecules and membrane components [GBG08]. Many things are as yet
unknown about these entities and the mechanisms and conditions they work under.
They seem to be correspondents of membrane channels observed in plants, so-called
plasmodesmata (PD), membrane channels providing both membrane and cytoplas-
mic connectivity between cells. The paper by Gurke et al. [GBG08], provides a
recent overview and summary of the current knowledge about TNTs, and contains
an overview of three proposals on the nano-structure and mechanics of TNTs. It
would be valuable to investigate whether, in the C-calculus, we may model easily
each of these three different proposals.

We have also made a preliminary investigation of the analysis of causality for
pure bigraphs, which we expect to be instantiable for the C-calculus. Essentially,
we may give a presentation for describing causal relations in terms of modification-
testing dependencies, in which we may describe classical notions such as precedence,
weak permutation, casuality, and concurrency.

Finally, due to recent results by Milner, Krivine, and Troina [KMT08], a stochas-
tic extension of the nondeterministic calculus presented in this paper, is well-founded.

7.5.2 Related Work

Several languages have been proposed in order to model biomolecular systems. We
have already discussed in detail, how the C-calculus is inspired by several previ-
ous efforts, in particular, by the κ-calculus [DL04]. The Bio-κ-calculus by Laneve
and Tarissan extends the κ-calculus with basic brane-inspired membranes [LT06].
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However, splitting of membranes is a non-atomic procedure, which requires a con-
siderable amount of (computationally expensive) encoding. In comparison, in the
C-calculus we have taken the atomic pinch primitive for membrane division, and
isolated any associated splitting of proteins in a side-condition.

The idea to use formal calculi for mobile and distributed systems was launched
by Regev, Shapiro, and Silverman. They use the π-calculus to represent and sim-
ulate [RSS01] biomolecular processes underlying protein signalling networks. They
continue that work in the stochastic version of the π-calculus [PRSS01] (as treated
by Priami in [Pri95]) taking into account both the time and probability of bio-
chemical reactions. Proteins are encoded as parallel products of a series of do-
mains, encoded via channels. As in the C-calculus, name-sharing encodes both
protein-backbones and complexation. As is standard in the π-calculus locality (i.e.,
membrane-encapsulated compartments) is encoded via the sharing of names, and
mobility is encoded via name-passing. Conformational change is also encoded via
mobility. The basic combinators of π-calculus suffice to encode sequential events,
independent events (via parallel), or, mutually exclusive events (via sum). The line
of work on using languages inspired by the stochastic π-calculus is continued in the
school of work on β-binders [PQ05] lead by Priami and co-authors. In particular,
β-binders add syntactic constructs for modelling membranes, but do not offer any
solution to the problem of fission.

In Bio-ambients [RPS+04], Regev et al. extend their earlier work by developing
a modified version of the ambient calculus developed by Cardelli and Gordon [CG98,
CG00]. The ambient calculus is extended to include parent-to-child communication
as well as intra-ambient communication. The calculus is also equipped with a variety
of dual capabilities to allow actions such as entry, exit, and merging of ambients.
Named ambients model membrane-enclosed compartments; the ambient abstraction
is also used to model proteins, allowing merge to model certain kinds of complex-
formation and membrane fusion. The calculus encodes cross-membrane proteins
by parent-child communication—by allowing proteins to communicate outside the
membrane they are enclosed in. This has the side-effect of requiring the user to
not model cross-membrane proteins via ambients, but instead as naked processes.
Also, protein complex breakage is complicated by using merge to model complex-
formation.

Cardelli continues the investigation of membrane interactions in the family of
brane calculi [Car04a]. Here, the focus is aimed mainly at finding good abstractions
for membranes and their behavior. Molecular structures are limited to atomic struc-
tures attached to membrane-surfaces. Cardelli identifies a set of basic membrane-
actions that is motivated by the hydrophilic and hydrophobic properties of mem-
branes, and coin the concept “bitonality” to describe their constraints. In capturing
a small set of membrane-actions in the C-calculus, we are inspired by the brane cal-
culi, and, in particular, by the projective variant of the brane calculi, by Danos and
Pradellier [DP04]. Projective descriptions (which we explain and define in detail in
the paper) let us describe conveniently sets of rules for reactions involving regions
separated by membrane-surfaces, while eliding the orientation of those separating
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membranes.
In the recent paper on Bitonal Membrane Systems [Car08], Cardelli continues the

line of work on membrane calculi, and investigates further the notion of projectivity
and orientation to unify membrane-reactions that from a local perspective (a so-
called local patch of the membranes) involve the same pattern of reconfiguration.

Finally, also related is the school of work on P -systems [Pau02] initiated by
Paun. P -systems are essentially rewriting systems with locations at a high level
abstraction. The aim of P -systems is more angled towards developing a general
computational model inspired by biology, than towards giving a language for de-
scribing and investigating biology, however.
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7.A Definitions Inherited from the BΣ,R-framework

We include below, for easy reference, a few central definitions from the BΣ,R-
framework, instantiated to the signature used for the C-calculus. For more extensive
explanation and motivation, we refer the reader to [DK08].

Ordering of variables We are not interested in the particular numbers used
for variables in a given term, only in their relative ordering inside that term. For
instance, we do not wish to distinguish the solution �45 | �56 from �0 | �1. All
variables in terms are distinct, so we may order the variables in any term uniquely
according to their numbers. It is therefore clear what we mean, when we refer to
the ith variable in a given term.

Formally, we define order-preserving renumbering, and include it in the structural
congruence relation. Write nv(C) for the set of numbers of variables in C.

Definition 7.A.1 (order-preserving renumbering). Given a group G and an order-
preserving and injective map r : nv(C)→ N, let [G]r be the group G with all variables
renumbered according to r.

Order-preserving renumberings are partial maps on natural numbers. We de-
fine also the stratifying renumbering, the renumbering that maps every variable to
the number given by its relative order. To that end, we order the renumberings
themselves, pointwise.

Definition 7.A.2 (stratifying renumbering). The stratifying renumbering of vari-
ables in a group G is the least order-preserving renumbering defined on nv(G).

We write [G] for the group G renumbered according to this renumbering, and
call [G] stratified.
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Free and bound names The new name operator (x) S is a binder for pure
names—instances of the name x in S are α-convertible. We define inductively the
set of free or bound names of a term as usual.

Definition 7.A.3 (free and bound names). For solutions S the free names fn(S)
and the bound names bn(S) are defined inductively as:

fn(m[S]) = fn(m[S]) bn(m[S]) = bn(S)
fn(dx

b ) = {x, b} bn(dx
b ) = ∅

fn(db) = {b} bn(db) = ∅
fn(db) = {b} bn(db) = ∅

fn(4g) = {g} bn(4g) = ∅
fn(S | T) = fn(S) ∪ fn(T) bn(S | T) = bn(S) ∪ bn(T)
fn((x) S) = fn(S) \ x bn((x) S) = x ∪ bn(S)

fn(0) = ∅ bn(0) = ∅
fn(A) = ∅ bn(A) = ∅

For groups we extend the definition above to include also:

fn(G || F) = fn(G) ∪ fn(F) bn(G || F) = bn(G) ∪ bn(F)
fn((x) G) = fn(G) \ x bn((x) G) = x ∪ bn(G)

fn(ε) = ∅ bn(ε) = ∅

Normal form Using structural congruence laws we may push binders to the top
(performing α-conversion as needed), remove superfluous binders via elision, and
remove empty solutions or groups to bring every solution and group to a normal
form, resembling the standard form for CCS [Mil80].

Proposition 7.A.4 (normal forms). Every solution S is structurally congruent to
a normal form

S ≡ (x̃)(S0 | · · · | Sn−1)

where each S0, · · · ,Sn−1 is a domain, a gate, or a membrane (empty or with another
solution inside) containing no binders; and where x̃ ⊆ fn(S0) ∪ · · · ∪ fn(Sn−1). (If
n = 0, then S0 | · · · | Sn−1

def= 0, and if x̃ = ∅ then the binder (x̃) is not there.)
Every group G is structurally congruent to a normal form

G ≡ (x̃)(S0 || · · · || Sn−1)

where each S0, · · · ,Sn−1 is non-empty, contain no binders, and is otherwise on
(solution) normal form; and where x̃ ⊆ fn(S0) ∪ · · · ∪ fn(Sn−1). (If n = 0, then
S0 || · · · || Sn−1

def= ε, and if x̃ = ∅ then the binder (x̃) is not there.)
The forms are unique up to α-equivalence, and reordering of binders and parallel

solutions (i.e., up to the commutative law for |).
We write G ≡N G′, if G ≡ G′ and G′ is on normal form.

Definition 7.A.5 (width of group). For

G ≡N (x̃)(S0 || · · · || Sn−1)

let width(G) = n.
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Substitution Nonground solutions (and groups) have variables for which we may
substitute other solutions.

We start by defining basic substitution of the variables in a group G by a solution
S. (We define substitution only for groups, G. The definition for solutions follows
as a special case.) Substitution is capture-avoiding, as usual.

Definition 7.A.6 (raw substitution). Let ϕ be a bijective map from variables to
solutions S0,S1, . . . ,Sn−1.

The substitution Gϕ of variables in G by the solution in ϕ is defined when
| var(G)| = n, for all i ∈ n, bn(G)∩ fn(Si) = ∅. In that case, we define Gϕ inductively
over the structure of G,

m[S]ϕ = m[Sϕ]
dx

b ϕ = dx
b

db ϕ = db

db ϕ = db

4g ϕ = 4g

((x) S)ϕ = (x) (Sϕ)
(S | T)ϕ = (Sϕ | Tϕ)
0ϕ = 0

Xϕ =

{
Si if ϕ(X) = Si

X else

((x) G)ϕ = (x) (Gϕ)
(G || F)ϕ = (Gϕ || Fϕ)
ε ϕ = ε.

As each variable is a leaf in G it is easy to see that the substituted term respects
the grammar (i.e., in Definition 7.2.4 and in Definition 7.2.5). In general, however,
raw substitution is not well-behaved; it may lead to terms violating the requirement
that numbered variables occur only once in expressions. We shall only use raw
substitution as a means to define two versions of substitution, where this issue is
resolved.

We start by defining total substitution, G · F, the substitution of all variables in
a group G with the solutions in a group F.

We define total substitution by pushing the binders of F to the top of the created
term; hence, we also require that both bound and free names of G be distinct from
bound names in F. This is simply a technical requirement, as we can always α-
convert bound names of F to avoid any clashes.

Definition 7.A.7 (total substitution). Substitution G · F of variables in G by solu-
tions in F is defined when | var(G)| = width(F) and bn(G)∩ fn(F) = bn(G)∩bn(F) =
fn(G) ∩ bn(F) = ∅. In this case, for

F ≡N (x̃)(S0 || · · · || Sn−1)
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let
G · F = (x̃)[G]{�0 7→ S0, · · · ,�n−1 7→ Sn−1},

Note, that we use stratifying renumbering to renumber the variables in G before
substituting, to ensure that the variables in G are numbered severally from 0 to
n− 1. Substitution is associative.

Proposition 7.A.8 (total substitution is associative). (G · F) · H = G · (F · H).

We generalize our definition of substitution to partial substitution—where only
some of the variables of the context G are substituted. Definition 7.A.9 generalizes
Definition 7.A.7 to the cases, where F has fewer solutions than G has variables.

Definition 7.A.9 (partial substitution). Partial substitution G/F of variables in G
by solutions in F is defined when | var(G)| ≥ width(F) and (as for total substitution)
when bn(G) ∩ fn(F) = bn(G) ∩ bn(F) = bn(G) ∩ fn(F) = ∅. In this case, let

G / F = G · ([F] ||�k || · · · ||�k+n),

for | var(G)| − width(F) = n and | var(F)| = k.

It is immediate from the definitions, that in the case where | var(G)| = width(F),
G · F ≡ G / F. In the case, where G has more variables, than F has solutions, F is
extended with appropriately numbered variables.

Partial substitution is not in general associative; by convention we take it to be
left-associative.
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