
Abstract

We study the design of efficient algorithms for combinatorial pattern matching. More concretely, we study
algorithms for tree matching, string matching, and string matching in compressed texts.

Tree Matching Survey We begin with a survey on tree matching problems for labeled trees based on
deleting, inserting, and relabeling nodes. We review the known results for the tree edit distance problem,
the tree alignment distance problem, and the tree inclusion problem. The survey covers both ordered and
unordered trees. For each of the problems we present one or more of the central algorithms for each of the
problems in detail.

Tree Inclusion Given rooted, ordered, and labeled trees P and T the tree inclusion problem is to determine
if P can be obtained from T by deleting nodes in T . We show that the tree inclusion problem can be solved
in O(nT) space with the following running times:

min






O(lP nT),

O(nP lT log log nT + nT),

O(nP nT
log nT

+ nT log nT).

Here nS and lS denotes the number of nodes and leaves in tree S ∈ {P, T }, respectively, and we assume that
nP ≤ nT . Our results matches or improves the previous time complexities while using only O(nT) space.
All previous algorithms required Ω(nP nT) space in worst-case.

Tree Path Subsequence Given rooted and labeled trees P and T the tree path subsequence problem is
to report which paths in P are subsequences of which paths in T . Here a path begins at the root and ends
at a leaf. We show that the tree path subsequence problem can be solved in O(nT) space with the following
running times:

min






O(lP nT + nP),

O(nP lT + nT),

O(nP nT
log nT

+ nT + nP log nP).

As our results for the tree inclusion problem this matches or improves the previous time complexities while
using only O(nT) space. All previous algorithms required Ω(nP nT) space in worst-case.

Regular Expression Matching Using the Four Russian Technique Given a regular expression R and
a string Q the regular expression matching problem is to determine if Q matches any of the strings specified
by R. We give an algorithm for regular expression matching using O(nm/ log n + n + m log m) and O(n)
space, where m and n are the lengths of R and Q, respectively. This matches the running time of the fastest
known algorithm for the problem while improving the space from O(nm/ log n) to O(n). Our algorithm
is based on the Four Russian Technique. We extend our ideas to improve the results for the approximate
regular expression matching problem, the string edit distance problem, and the subsequence indexing problem.

iii

Regular Expression Matching Using Word-Level Parallelism We revisit the regular expression
matching problem and develop new algorithms based on word-level parallel techniques. On a RAM with a
standard instruction set and word length w ≥ log n, we show that the problem can be solved in O(m) space
with the following running times:






O(nm log w
w + m logw) if m > w

O(n log m + m log m) if
√

w < m ≤ w

O(min(n + m2, n log m + m log m)) if m ≤
√

w.

This improves the best known time bound among algorithms using O(m) space. Whenever w ≥ log2 n it
improves all known time bounds regardless of how much space is used.

Approximate String Matching and Regular Expression Matching on Compressed Texts Given
strings P and Q and an error threshold k, the approximate string matching problem is to find all ending
positions of substrings in Q whose unit-cost string edit distance to P is at most k. The unit-cost string
edit distance is the minimum number of insertions, deletions, and substitutions needed to convert one string
to the other. We study the approximate string matching problem when Q is given in compressed form
using Ziv-Lempel compression schemes (more precisely, the ZL78 or ZLW schemes). We present a time-space
trade-off for the problem. In particular, we show that the problem can be solved in O(nmk + occ) time and
O(n/mk + m + occ) space, where n is the length of the compressed version of Q, m is the length of P , and
occ is the number of matches of P in Q. This matches the best known bound while improving the space
by a factor Θ(m2k2). We extend our techniques to improve the results for regular expression matching on
Ziv-Lempel compressed strings.

iv

