
Abstract

Reasoning about programs that involve shared imperative data structures has
proven to be notoriously difficult over the years, mainly due to problems re-
lated to aliasing. A recent approach to these problem was presented by O’Hearn
and Reynolds; they devised a program logic in the style of Hoare, called sepa-
ration logic, and that is the main interest of this thesis. Here is a brief overview
of the main contributions.

Since separation logic is a relatively new logic, we should be able to “bench-
mark” it on realistic examples. We show that separation logic is indeed useful
by specifying and proving correctness of Cheney’s copying garbage collector,
a program which uses sophisticated pointer manipulations. The main contri-
bution of the work is an illustration of how additions of sets and relations to
the languages of expressions and assertions can be used in combination with
ideas from separation logic to specify and prove an isomorphism between the
states before and after execution of the algorithm.

The assertion language of traditional separation logic is a variant of first
order propositional BI. We make a straightforward extension of this logic to
higher-order predicate BI, and demonstrate how it can be used in separation logic.
In particular, we show that the extension can be applied to model data abstrac-
tion and polymorphism for a programming language with heap manipulating
constructs and calls to simple procedures. Moreover, we present a model for
this new logic (called higher order separation logic), using a general class of mod-
els called BI hyperdoctrines.

The programming language of standard separation logic is a simple exten-
sion of Hoare’s while-language with basic heap manipulating constructs. The
success of separation logic relies heavily on its ability to support local reasoning
via the so-called frame rule. We extend the scope of separation logic by de-
vising a separation-logic type system for a version of idealized algol with heap
manipulating constructs, allowing for local reasoning about higher-order pro-
grams which manipulate heaps. Moreover, we present a categorical model in
which one can soundly and coherently model the programming language in a
way that is adequate with respect to the standard semantics of idealized algol.
We also take some initial steps towards a parametric model for separation-logic
typing.

In Hoare’s work on refinement for imperative programs one starts with an
abstract specification of a data type and derives a concrete representation. This
method assumes a static separation of variables between representations of the
data type; however, the introduction of pointers into refinement breaks these
assumptions. We introduce a model that brings ideas from separation logic into
refinement, and prove an abstraction theorem for so-called separation contexts
which, intuitively, are client programs that are well-behaved with respect to
resources.


