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Progress is beyond improving what is;
Progress is moving towards what will be.
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Abstract

High-level transformation languages like TXL and Rascal, sim-
plify writing and maintaining transformations such as refactorings
and optimizations, by providing specialized language constructs
that include powerful pattern matching, generic traversals, and
fixed-point iteration. This expressivity unfortunately makes it hard
to reason about the semantics of these languages, and there ex-
ists few automated validation and verification tools for these lan-
guages.

The goal of this dissertation is to develop foundational tech-
niques and prototype tools for verifying transformation programs,
based on techniques from traditional programming language re-
search. At first, I present a systematic analysis of declarative high-
level transformation languages, like QVT and ATL, seeking to clar-
ify their expressiveness. The analysis showed that virtually all ex-
amined languages were Turing-complete and thus could not be
treated specially for verification.

I describe a joint effort in designing and validating an indus-
trial modernization project using the high-level transformation lan-
guage TXL. The transformation was validated using the translation
validation and symbolic execution, catching 50 serious bug cases in
an otherwise well-tested expert-written transformation, and thus
showing the need for verification tools in this domain.

Using these experiences, I develop a formal symbolic execu-
tion algorithm for a small transformation language capturing key
high-level constructs. A proto-type white-box test generation tool
was implemented using the algorithm, and evaluated on a series
of refactorings and model transformations comparing favorably
against baseline black-box test generator in terms of test coverage.

I present the first formal operational semantics for a large sub-
set of Rascal, called Rascal Light, which has been validated by for-
mally proving a series of semantic properties regarding strong typ-
ing, safety and termination. This creates a solid basis for further
foundational work on high-level transformation languages.

Finally, I develop a formal abstract interpreter for Rascal Light,
with a modular abstract domain design and a Schmidt-style ab-
stract operational semantics, adapting the idea of widening by trace
memoization to work with inputs from infinite domains. The tech-
nique is evaluated on real Rascal transformations, showing that it
is possible to effectively verify target type and shape properties.
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Resumé

Højniveau transformationssprog såsom TXL og Rascal gør det
nemmere at skrive og vedligeholde transformationer, f.eks. refak-
toreringer og optimeringer, ved at understøtte specielle sprogskon-
struktioner inklusiv kraftfulde mønstersamsvarsoperationer (orig.
pattern matching), generisk gennemgang af datastrukturer, og fiks-
punktsiteration. Denne ekspresivitet gør det dog desværre svært at
få en fuld forståelse for semantikken til disse sprog, og der eksiste-
rer derfor kun få automatiske værktøjer der understøtter validering
og verifikation af dem.

Hovedformålet med denne afhandling er at udvikle fundamen-
tale teknikker og værktøjsprototyper som understøtter verifikation
af transformationsprogrammer, baseret på teknikker fra traditionel
programmeringssprogsforskning. I starten, præsenterer jeg en sy-
stematisk analyse af deklarative højniveau transformationssprog,
såsom QVT og ATL, for at tydeliggøre deres ekspresivitet. Analy-
sen viste at stort set alle undersøgte sprog var Turing-komplette og
kunne derfor ikke blive særbehandlet i verifikationsøjemed.

Jeg beskriver en fælles indsats hvis formål er at designe og va-
lidere et industrielt moderniseringsprojekt ved brug af højniveau
transformationssproget TXL. Transformationen var valideret ved
brug af oversættelsesvalidering (orig. translation validation) og sym-
bolsk eksekvering, og opdagede 50 seriøse programfejl i en ellers
veltestet transformation skrevet af en ekspert, hvilket fremviser be-
hovet for verifikationsværktøjer i dette område.

Gørende brug af disse erfaringer, udvikler jeg en formel sym-
bolsk eksekveringsalgoritme for et lille transformationssprog der
modellerer de vigtigste højniveau konstruktioner. Jeg implemen-
terede en white-box testgenereringsværktøjsprototype ved brug af
algoritmen, og evaluerede denne vha. en række refaktoreringer og
modeltransformationer, hvilket viste gode resultater i forhold til
programgrensdækning sammenligned med black-box testgenere-
ringsværktøjet som blev brug som basislinje.

Jeg præsenterer den første formelle operationelle semantik for
en stor delmængde af sproget Rascal, kaldet Rascal Light, hvilket
er valideret ved at bevise en række semantiske egenskaber omkring
stært typedisciplin, sikkerhed, og programafslutning. Dette lægger
et solidt fundament for videre formelt arbejde omkring højniveau
transformationssprog.
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Afslutningsvis, udvikler jeg en formel abstrakt fortolker til Ra-
scal Light, med et tilhørende modulært abstrakt domæne og en
abstrakt operationel semantik i stil med Schmidt, og tilpasser kon-
ceptet om udvidelse (orig. widening) via memoisering af programs-
por til at virke med input fra uendeligt store domæner. Teknikken
evalueres ved brug af rigtige Rascal transformationsprogrammer,
hvilket viser at det er muligt at effektivt verificere de egenskaber
omkring typer og form som vi havde til mål.





Foreword

How long a time is three years? It is too long, you get to know your
project so well that you become an expert in its extremely narrow sub-
ject. It is too short, it ended at the moment you just started to know
enough in the field to dare to tackle more complex, more interesting
problems. Maybe, it is just enough time to earn a PhD.

The thing I recall most is my failing attempts at solving the prob-
lems I encountered, moreso than the successes that I present in this
dissertation. Yet, these failures, remaining hidden, under the carpet, in
my mind, are what makes research all the worthwile. For how can we
otherwise make worthwile contributions, if there is nothing to dare; is it
truly research if it can not fail, if it does not fail, if it will not fail again?
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Formal Notation

• For a binary relation r ⊆ A×A, r∗ is used to denote the reflexive-
transitive closure, and similarly r+ for the transitive (non-reflexive)
closure.

• For a set A, ℘(A) is used to denote the power set.

• For a function f ∈ A → B, dom f is used to represent all
defined inputs i.e., {x | ∃y.y = f (x)}, img f to represent all de-
fined outputs {y | ∃x.y = f (x)}, and graph f to represent the set
{(x, f (x)) | x ∈ dom f }.

• For a function f ∈ A → B, dom f , f [a 7→ b] is used to represent
function updates, so that f [a 7→ b](a) = b and f [a 7→ b](a′) = f (a′)
when a′ 6= a.

• Approximate (symbolic or abstract) semantic components, sets
and operations are marked with a wide hat â.

• A sequence of es is represented by either marked by an underline e
or explicitly summarized e1, . . . , en, the empty sequence is denoted
by ε and the concatenation of sequences e1 and e2 is denoted e1, e2.

• Notation is overloaded in an intuitive manner for operations on
sequences, so given a sequence v, vi denotes the ith element in the
sequence, and v : t denotes the sequence v1 : t1, . . . , vn : tn.

• Operators from different sets are distinguished with a subscript,
e.g., >A represents the top element of domain A; the subscripts are
left out when the intented use of operators is clear from context.
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Chapter 1

Introduction

1.1 Context

Domain-specific languages or DSLs [Bentley, 1986; Hudak, 1996; van
Deursen et al., 2000; Mernik et al., 2005; Fowler, 2011] allow express-
ing models and programs pertient to a business domain (e.g., fi-
nance [Christerson et al., 2013], robotics [Nordmann et al., 2014], cryp-
tography [Erkök and Matthews, 2009]) using a vocabulary familiar to
domain users. These languages eschew generality in favor of provid-
ing a clear correspondence between domain requirements and models,
being important for maintainability and evolution of modelled systems,
and easing communication between domain users and technical experts.

DSL engineering relies heavily on the use of transformations, which
allow converting between structured models or programs. Examples of
such transformations include:

Model Translation Translating between structured models preserving
consistency [Jouault et al., 2008], e.g., a class diagram to a relational
diagram.

Desugaring Transformation of constructs from a language extended
with syntactic sugar [Landin, 1964]—that primarily target easing
programming—to constructs in a core language, e.g., translating
for-loops to while-loops.

Refactoring Restructuring of source code [Fowler, 1999] to increase
readability and maintainability while largely preserving intented
semantics, e.g., renaming the field of a class.
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Code Generation Converting constructs from one language to another
for execution or further processing[Aho et al., 1986b], e.g., gener-
ating assembly code from an imperative language.

Optimization Transforming programs possibly given some static infor-
mation in order to improve runtime and memory use [Aho et al.,
1986c], e.g., software pipelining and partial evaluation [Jones et al.,
1993].

Most practical DSLs have large abstract syntax—often spanning hun-
dreds of syntactic elements—and correspondingly rich semantics; as
a result, this makes writing transformations for these languages a te-
dious and error-prone process, more so using traditional programming
languages like Java [Gosling et al., 2014], C] [Hejlsberg et al., 2011] or
Haskell [Marlow, 2010].

To simplify the task of writing and maintaining such transforma-
tions, specialized high-level transformation languages have been pro-
posed across different communities in software language engineering
(e.g. Rascal [Klint et al., 2011], Stratego/XT [Bravenboer et al., 2008]),
programming languages (e.g. TXL [Cordy, 2006], Uniplate [Mitchell and
Runciman, 2007]) and model-driven engineering (e.g. QVT [Object Man-
agement Group, 2016], ATL [Jouault et al., 2008], ETL [Kolovos et al.,
2008]). Common for these languages is that they all provide rich fea-
tures for traversing and manipulating abstract syntax, powerful pat-
tern matching and querying, backtracking and generalized looping con-
structs.

Figure 1.1 shows an example Rascal programs which uses these rich
features to inline constant declarations in a simple expression language.
The constsValid function pattern matches on the declarations inside a
module, checking whether there are duplicate declarations of constants
using arbitrary elements match patterns *_ to skip elements and non-
linear patterns to check existence of two equal names (notice the two
instances of x in the same pattern). The inlineConsts function iterates
over all constant declarations using a pattern matching for-loop, remov-
ing the constant declaration from the list of declarations and traversing
the body expression using bottom-up visit replacing all references to
the constant with the provided value.

I will further illustrate how these features are concretely realized in
Rascal:
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1 data Decl = constdecl(str name, int val)
2 | vardecl(str name);
3 data Expr = mult(Expr l, Expr r) | add(Expr l, Expr r)
4 | var(str name) | const(int val);
5 data Mod = \mod(list[Decl] decls, Expr body);
6
7 bool constsValid(Mod m) {
8 switch (m.decls) {
9 case [*_, constdecl(x, _), *_,
10 constdecl(x, _), *_]: return false;
11 case _: return true;
12 }
13 }
14 Mod inlineConsts(Mod m) {
15 assert constsValid(m);
16 for (cd: constdecl(x, v) <- m.decls) {
17 m.decls = m.decls - cd;
18 m.body = bottom-up visit(m.body) {
19 case var(x) => const(v)
20 };
21 };
22 return m;
23 }

Figure 1.1: Constant Inlining Transformation

• Traversals use visit which allows automated rewriting of abstract
syntax trees using a sequence of pattern matching cases using ei-
ther bottom-up ordering as in the example or top-down ordering.

• Pattern matching supports a rich set of operations, such as the
constructor matching, arbitrary elements matching, and non-linear
matching presented in the example. Other operations include
type-based matching, negative matching, and deep matching that
pattern matches arbitrarily nested values inside a structure.

• Backtracking happens both internally when constraints are en-
forced on non-deterministic matches—e.g., in our example when
looking for two equal constant declarations—and externally, where
a user can use fail in a target expression to rollback the state and
trigger another possible match in a non-deterministic pattern or
fall through.

• There are various looping constructs including the generalized for-
loop used in our example that supports pattern matching iteration,
a solve-loop that finds a fixedpoint of an operation over a set of
variables, and fixedpoint-iterating traversal strategies (innermost
and outermost).
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This power of expressiveness unfortunately comes with a heavy
price: the semantics of these languages becomes increasingly hard to
reason about. There exist few automated tools that can handle valida-
tion and verification of transformation programs, and those that exist
are limited in expressiveness of language constructs or supported prop-
erties. They can largely be divided in three categories:

1. Black-box techniques—e.g., Claessen and Hughes [2000], Yang et al.
[2011], Finot et al. [2013] and Mongiovi et al. [2014]—rely solely
on input and output specifications to validate the transformation
programs. These techniques are independent of transformation
program definitions which eases reuse for new languages, but can
rarely provide a complete verification and can potentially miss a
large amount of internal logic that is left unvalidated.

2. White-box techniques—e.g., Jackson et al. [2011], Büttner et al.
[2012], and Clarisó et al. [2016]—that use the definitions of pro-
gram definitions, but are limited in the the expressiveness of lan-
guage constructs they handle (non-Turing complete) and thus do
not support more interesting transformation programs such as
refactorings or optimizations. Furthermore, many rely on ad-hoc
encoding of the complete transformation programs to a logical for-
mula to use in a solver (e.g. SMT or CLP) which is a process that
is error prone, and hard to extend because there is a lack of ex-
plicit representation of the program state. Those that do use static
analysis-based—e.g., Cuadrado et al. [2017]—techniques seem to
scale better with regards to language expressiveness and proper-
ties, but currently only focus on simple type and structural prop-
erties and not on more complex properties such as abstraction of
data (integers, strings, etc.), inductive properties or shapes of col-
lections.

3. Translation validation-based techniques [Samet, 1976; Pnueli et al.,
1998; Rival, 2004] can automatically prove sophisticated seman-
tic properties about object programs, but only work for individual
runs of a transformation. The strong guarantees they provide how-
ever are only for the provided input programs at each run, and no
guarantees are provided on other inputs. This entails that errors
are only detected late in the process, and fixing the errors at that
stage can be very costly and time consuming.
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The existing work therefore leaves space for improvement with re-
gards to validating and verifying fully-expressive transformation pro-
grams effectively using their definitions.

1.2 Problem Definition

The void left by the existing work has consequences that go beyond mere
technical curiosity. The availability of quality assurance techniques (in-
cluding validation and verification) is a key characteristic for the trust-
worthiness of a programming language and paves way for adoption of
the language in use of critical software systems. This is especially true
of modern critical systems which are steadily increasing in complexity
and it is here the aforementioned transformation languages would really
shine in increasing readability and maintainability of such systems.

What particularly motivates this thesis is that despite the rich ap-
plied tradition of automated formal validation and verification methods
in programming language research—deductive methods, abstract inter-
pretation, symbolic execution, model checking—we paradoxically lack
tools for quality assurance of transformation languages. If we are able to
use these foundational techniques, we would benefit from the existing
wealth of experience, be able to more effectively verify target transfor-
mations, and allow extending the techniques towards supporting prop-
erties more relevant to these languages—pertaining to typed syntactic
structures and input/outpt relations—in ways more actively exploiting
the information provided by the high-level features.

In summary, the problem statement addressed by this dissertation is:

How is it possible to extend automated formal methods from tra-
ditional programming language research to scale to handling the
expressive features found in realistic high-level transformation lan-
guages?

Concretely, the problem statement will be addressed by addressing
each of the following subproblems:

P1 Unclarity regarding expressiveness of available features in model
and graph transformation languages. While some high-level
transformation languages like TXL and Rascal are clearly program-
ming languages with features targeting transformations, other lan-
guages that focus on transforming models or graphs like ATL and



6 Chapter 1. Introduction

ETL have a more declarative feel with limited use of explicit loops
and recursion. As a result, it is unclear whether these languages in
general are able to express general computation (Turing-complete),
and whether it is possible to exploit the lack of expressiveness to
provide better analysis methods. Clarifying this problem also clar-
ifies whether the existing techniques that handle limited subsets
are sufficient for handling more interesting transformations that
have more complete use of available language features.

P2 Available techniques for systematic testing of transformations do
not effectively exploit definition of transformation programs Tra-
ditionally, techniques that exploit program definitions (white-box)
often generate better test cases than those that only use input
specification (black-box), and I believe that this is also the case
for transformations. This problem therefore primarily concerns
how to extend existing effective white-box techniques to han-
dle the language constructs and derived constraints present in
fully-expressive transformation languages. This is further com-
plicated by the fact that transformations manipulate rich typed
data structures—containing a wealth of different types, that each
are often both deep (many nested containments) and wide (many
subcomponents)—and collections of these structures and so any
naive algorithm will easily hit a combinatorial explosion.

P3 Lack of formal techniques for automated verification of type and
shape properties for fully-expressive transformations Most inter-
esting transformations like normalization procedures, refactorings
and optimizations require the full expressive power of the high-
level transformation languages to be encoded. Existing techniques
which encode the complete transformation as a logical formula
for an SMT solver (or similar systems) are unlikely to scale to
this approach since their employed techniques are limited with
regards to loops and complex recursion and bounded model find-
ing approaches do not scale for large systems. Conversely, tech-
niques like translation validation are useful for verifying complex
properties but only work for individual runs of a transformation.
This problem thus regards finding a technique for verifying trans-
formations that i) runs automatically ii) is easily extensible, and
iii) works for all executions of a transformation.
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Importantly, the technique should be able to verify interesting
properties about the transformations themselves, i.e., properties
that relate to the typed abstract structures manipulated by the
transformations such as types and shapes relating input and out-
put values.

1.3 Aim and Scope

The primary aim of this thesis is to develop foundational theories and
tools for high-level transformation languages based on traditional pro-
gramming language techniques.

This aim will be fulfilled by satisfying the following objectives:

O1 Identify key features of high-level transformation languages, clas-
sifying the languages according to their computational expres-
siveness The purpose of this objective is two-fold i) it aims to set
the context for objectives O3 and O4 by identifying the key fea-
tures that should be handled by the respective analyses, and ii) it
addresses problem P1 by clarifying the expressiveness of declar-
ative transformation languages. I partly reach this objective by
systematically investigating the documentation and relevant pri-
mary and survey papers about a representative selection of high-
-level transformation languages, particularly focusing on declar-
ative model and graph transformation languages to clarify their
expressiveness. Formal proofs of expressiveness are deemed out
of scope, since most languages are not formally specified and it is
both infeasible to exhaustively try to combine available features in
a variety of distinct languages to check their expressiveness and
may also be practically useless if relying on combinations of un-
common constructs. To get a first-hand grasp on these features, I
use a selection of the languages to encode realistic transformations
and specify the semantics for core high-level transformation lan-
guage constructs in a way that makes it possible to formally reason
about them.

O2 Validate the semantic preservation for an industrial-scale trans-
formation using translation validation Having identified key fea-
tures of high-level transformation languages in O1, this objective
focuses on providing first-hand experience with understanding
and validating industrial-scale transformation programs.
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This serves two purposes: it pinpoints the language constructs
used in realistic transformations, providing a clearer direction for
objectives O3 and O4, and it provides a deeper understanding
of the strength and limitations of translation validation-based ap-
proaches.

O3 Develop a symbolic executor that supports identified high-level
language features for effective automatic testing of transforma-
tions This objective focuses on addressing problem P2 by develop-
ing a technique that is able to effectively generate test cases using
the source code of input transformation programs.

The approach I take is to model identified key transformation fea-
tures in a small formal language, and then use symbolic execu-
tion to run the transformation generating constraints representing
program paths which can be used to generate test cases trigger-
ing each explored path. The main challenge here is to accurately
track constraints on typed structured input during execution of the
available expressive language constructs such as deep traversal in
a sound way, while still can be provided to a solver to eliminate
infeasible path during execution and generate relevant test cases.

O4 Develop a formal abstract interpreter that supports verifying type
and shape properties for high-level transformation languages
Using the experiences gathered with the symbolic executor in ob-
jective O3, I will go beyond testing of high-level transformations
and focus on verification of type and shape properties. I use
Schmidt-style abstract interpretation [Schmidt, 1998] to build a so-
phisticated static analysis that supports verifying type and shape
properties for a large subset of a realistic high-level transforation
language like Rascal, which both requires handling complex con-
trol flow present in these languages—including various control op-
erators, backtracking and exceptions—and intelligently adapting
the core idea of memoization—a form of widening on the traces of
execution that the traces are finitely representable—to the various
looping constructs and recursion while still preserving necessary
precision.
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1.4 Contributions

Core Contributions

This thesis realizes the stated objectives by the following series of con-
tributions:

C1 Systematic study fulfilling objective O1 showing that all surveyed
declarative model and graph transformation languages, except bi-
directional ones, are as expressive as ordinary programming lan-
guages (Turing-complete). This is significant because it shows that
existing techniques that target less expressive subsets do not cover
the complete target languages, and are unlikely to be able to han-
dle more expressive transformations.

Technical Report Ahmad Salim Al-Sibahi. On the computational
expressiveness of model transformation languages. IT University.
Technical Report Series, January 2015. ISSN 1600-6100

C2 An application of translation validation to a large industrial soft-
ware modernization transformation written in the high-level lan-
guage TXL converting an imperative configuration system in C++
to declarative constraints. This provided a deeper understanding
of practical use of available high-level transformation constructs
fulfilling objective O2.

Conference Paper Alexandru Florin Iosif-Lazăr, Ahmad Salim Al-
Sibahi, Aleksandar S. Dimovski, Juha Erik Savolainen, Krzysztof
Sierszecki, and Andrzej Wąsowski. Experiences from designing
and validating a software modernization transformation (E). In
30th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2015, Lincoln, NE, USA, pages 597–607, 2015. doi:
10.1109/ASE.2015.84

C3 Symbolic execution technique with fully formal semantics support-
ing high-level transformation language features such as deep type-
directed querying, sets, and containment instantiated for a small
IMP-like transformation language called TRON. This technique
fulfills objective O3 showing that it is possible to extend symbolic
execution to support high-level features by state of the art tech-
niques like lazy initialization for pointers and symbolic set con-
straints with new innovation like deep containment constraints
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that provide access to all elements of a particular type reachable
for a given value abstracting over the intermediate structure. The
technique is compared experimentally of a series of realistic trans-
formations against a baseline black-box test generator optimizing
towards literature-recommended metrics, showing that it is pos-
sible to achieve a significant improvement in coverage for most
evaluation subjects.

Conference Paper Ahmad Salim Al-Sibahi, Aleksandar S. Di-
movski, and Andrzej Wąsowski. Symbolic execution of high-level
transformations. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, Amsterdam, The
Netherlands, pages 207–220, 2016. doi: 10.1145/2997364.2997382

Extended Technical Report Ahmad Salim Al-Sibahi, Aleksandar
Dimovski, and Andrzej Wąsowski. SymexTRON: Symbolic exe-
cution of high-level transformation languages: Symbolic execution
of high-level transformations. IT University. Technical Report Series,
September 2016. ISSN 1600-6100

C4 A formal semantics for a large subset of the Rascal language, called
Rascal Light, suitable for developing formal analyses of realistic
high-level transformation programs. This represents the first for-
malization of a large subset of Rascal, which can be useful both
for the Rascal community as a way to increase trust in the im-
plementation, and high-level transformation language verification
researchers who can use it as a basis for building their verification
tools and techniques. The subset supports all relevant high-level
features including the traversal construct visit with all available
strategies, the generalized pattern matching for-loop, general loop-
ing constructs while and solve, the expressive pattern matching
language with collection matches, deep matching and non-linear
matching, control operators including backtracking and rollback,
and exceptions. The semantics is based on the available documen-
tation, testing of constructs, and expert contributions from the Ras-
cal developers; I show the soundness of the semantics by proving
a series of core theorems.

Technical Report Ahmad Salim Al-Sibahi. The Formal Semantics
of Rascal Light. CoRR, abs/1703.02312, 2017a. URL http://arxiv.
org/abs/1703.02312

http://arxiv.org/abs/1703.02312
http://arxiv.org/abs/1703.02312
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C5 A Schmidt-style abstract interpreter derived from the formal op-
erational semantics of a large relevant subset of the high-level
transformation language Rascal supporting verification of induc-
tive type and shape properties. This contribution fulfills objective
O3 contributing theoretical insights including i) a modular domain
construction that can be used to abstract individual types of val-
ues in languages operation on large domains like Rascal, ii) adap-
tations of trace memoization (core technique of Schmidt-style ab-
stract interpretation) to various looping constructs, traversals and
recursion using available information by each construct to main-
tain precision, and iii) a representation of state that has a first–
class representation of control-flow operations to ensure a close
correspondence between abstract and concrete semantic rules. The
technique is evaluated on a series of real and realistic transforma-
tions and is able to show properties that include that a desugaring
correctly translates sugared constructs, that a normalization pro-
cedure produces an output in normal form and a rename field
refactoring produces programs that do not reference the old field
name.

Manuscript Ahmad Salim Al-Sibahi, Aleksandar S. Dimovski,
Thomas P. Jensen, and Andrzej Wąsowski. Verifying Transforma-
tions using Inductive Shape Analysis. 20171

Other Scientifc Activity

I have contributed to a series of papers on efficiently model checking
program families by abstracting variability, which I reference below. The
papers are indirectly related to my core objectives, since they use trans-
formations to convert a process model with variability to a small set of
process models where the variability has been abstracted away, making
them useable with off-the-shelf model checkers.

• Conference Paper Aleksandar S. Dimovski, Ahmad Salim Al-
Sibahi, Claus Brabrand, and Andrzej Wąsowski. Family-based
model checking without a family-based model checker. In Model
Checking Software - 22nd International Symposium, SPIN 2015, Stellen-
bosch, South Africa, August 24-26, 2015, Proceedings, pages 282–299,
2015a. doi: 10.1007/978-3-319-23404-5_18

1Author ordering to be determined, currently alphabetical.
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• Journal Paper Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi,
Claus Brabrand, and Andrzej Wąsowski. Efficient family-based
model checking via variability abstractions. International Journal on
Software Tools for Technology Transfer, pages 1–19, 2016. ISSN 1433-
2787. doi: 10.1007/s10009-016-0425-2. URL http://dx.doi.org/
10.1007/s10009-016-0425-2

Related to the papers above, I have held an invited talk at the 2015
Workshop on Software Product Line Analysis Tools (co-located with
SPLC 2015) on our joint work:

• Presentation Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi,
Claus Brabrand, and Andrzej Wąsowski. Family-based model
checking using off-the-shelf model checkers: extended abstract. In
Proceedings of the 19th International Conference on Software Product
Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015, page 397,
2015b. doi: 10.1145/2791060.2791119. URL http://doi.acm.org/
10.1145/2791060.2791119

In relation to my work on abstract interpretation of high-level trans-
formations, I presented a poster at the Student Research Competition at
POPL 2017. The poster presented work on shape abstractions for TRON,
which was used as a stepping stone to C5.

• Poster Ahmad Salim Al-Sibahi. Abstract interpretation of high-
level transformations. In Student Research Competition at 44th ACM
SIGPLAN Symposium on Principles of Programming Languages 2017,
POPL SRC 2017, Paris, France, January 15-21, 2017, 2017b. Poster

1.5 Overview

This thesis has seven further chapters explaining my stated contribu-
tions in detail. Chapter 2 provides background on high-level transfor-
mation languages and Chapter 3 summarizes our survey on expressive-
ness of a wide range of declarative model and graph transformation lan-
guages (C1). Chapter 4 summarizes the experiences behind validating a
realistic modernization transformation (C2), and Chapter 5 summarizes
a formal symbolic execution algorithm with support for high-level trans-
formation language features (C3). The formal semantics of Rascal Light
(C4) is presented in Chapter 6, and shape-based abstract interpreter (C5)
is presented in Chapter 7. Finally, Chapter 8 concludes my results.

http://dx.doi.org/10.1007/s10009-016-0425-2
http://dx.doi.org/10.1007/s10009-016-0425-2
http://doi.acm.org/10.1145/2791060.2791119
http://doi.acm.org/10.1145/2791060.2791119


Chapter 2

High-Level Transformation Languages

Taking into consideration the ubiquity of transformations in all aspects
of software engineering, it is no surprise that there exist various trans-
formation languages across different communities each specialized to
sets of relevant tasks. In this chapter, I summarize these approaches and
discuss the available features and what makes them unique.

2.1 Declarative Transformation Languages

Model transformation [Mens and Gorp, 2006; Czarnecki and Helsen,
2006] is one of the most central techniques employed in the field of
model-driven engineering. A model transformation language allows the
programmer to translate elements from one or more source models to
elements in one or more target models, given their formal descriptions
or meta-models.

Declarative model transformation languages are largely rule-based—
the programmer specifies how a subgroup of elements in the source
model maps to the desired target elements—and can be categorised fur-
ther based on whether they mainly use graph rewriting as a formalism
or not. To give a more concrete grasp on how these languages work, I
will use the traditional Families to Persons [Allilaire and Jouault, 2007]
transformation as a running example.

The meta-models for both source and target models for the model
transformation are shown in Figure 2.1. The source Families meta-
model (Figure 2.1a) models a traditional family with a common last
name, which contains a mother, father, sons and daughters, each hav-
ing their own first name; note, that the links are modelled bidirec-
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(b) Persons meta-model

Figure 2.1: Meta-models for the Families to Persons [Allilaire and
Jouault, 2007] transformation

tionally and so each member has a reference to the containing family
(familyMother, familyFather, familySon or familyDaughter). The tar-
get Persons meta-model (Figure 2.1b) models individual persons, either
male or female, including their full name.

Rule-based Model Transformation Languages

Purely rule-based languages focus on providing a set of declarative rules
to describe a transformation between source and target models, given
their meta-models. The rules in these languages usually support rich
predicate languages like OCL [Warmer and Kleppe, 1998] for constrain-
ing the scope of rule application, may allow explicit dependency be-
tween rules, and may allow the transformation to be handled impera-
tively for more precision. Examples of these types of languages include
ATL [Jouault et al., 2008], ETL [Kolovos et al., 2008], Tefkat [Lawley and
Steel, 2006] and QVT [Object Management Group, 2016].

The example Families to Persons transformation is shown imple-
mented in ETL1 in Figure 2.2. The transformation consists of two helper
operations and two transformation rules. The familyName operation re-
trieves the last name for a member using the reverse link to the family
that is defined—recall that a member is contained in a family and so

1Ported and simplified from the original ATL in Allilaire and Jouault [2007]
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1 @cached
2 operation Families!Member familyName(): String {
3 if (self.familyFather.isDefined())
4 return self.familyFather.lastName;
5 else if (self.familyMother.isDefined())
6 return self.familyMother.lastName;
7 else if (self.familySon.isDefined())
8 return self.familySon.lastName;
9 else return self.familyDaughter.lastName;
10 }
11
12 @cached
13 operation Families!Member isFemale(): Boolean {
14 return self.familyMother.isDefined()
15 or self.familyDaughter.isDefined();
16 }
17
18 rule Member2Female
19 transform member : Families!Member
20 to person : Persons!Female {
21 guard: member.isFemale()
22 person.fullName =
23 member.firstName + " " + member.familyName();
24 }
25
26 rule Member2Male
27 transform member : Families!Member
28 to person : Persons!Male {
29 guard: not member.isFemale()
30 person.fullName =
31 member.firstName + " " + member.familyName();
32 }

Figure 2.2: The Families to Persons [Allilaire and Jouault, 2007] transfor-
mation in ETL

there must exist exactly one reverse link—and the isFemale operation
determines whether a member is female (i.e., mother or daughter) or not
(i.e., father or son). The Member2Female rule converts Members to Female
persons, under the condition specified by guard that the input member is
female, assigning the output person’s full name using the first and fam-
ily names from the input member; the Member2Male works analogously
but converts to Male persons assuming the input member is not female.
In ETL (also ATL, QVT and similar languages) such rules are scheduled
automatically, so Member2Female and Member2Male are applied on each
matching element of type Member from the input model of type Family
potentially producing a collection of Persons, either Male or Female.

Bidirectional Languages Bidirectional-languages [Hidaka et al., 2016]
work similarly to other declarative transformation languages except that
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transformations must allow conversion back from the target model to
the source model. There are various approaches to this, for example
requiring reversible rules as in BOTL [Braun and Marschall, 2003] and
Triple Graph Grammars [Lauder et al., 2012], the requiring well-behaved
operations to extract and recompose data as in Boomerang [Bohannon
et al., 2008], or using an explicit synchronization mechanisms as for
example in BeanBag [Xiong et al., 2009], SyncATL [Xiong et al., 2007]
and X [Hu et al., 2008].

Graph Transformation Languages

Graph-based languages represent the source and target models using
graphs—optionally having types or attributes—and describe transfor-
mations using sets of conditional graph rewriting rules. The graph
rewriting rules specify how subgraphs in the source map to sub-
graphs in the target, and executing a transformation is done by
applying the rewrite rules using some strategy for rule schedul-
ing. Some graph-based languages like PROGReS [Schürr, 1994],
GReAT [Balasubramanian et al., 2007], GrGen.NET [Jakumeit et al.,
2010], Motif [Syriani and Vangheluwe, 2013], VIATRA2 [Varró and
Balogh, 2007], VMTS [Levendovszky et al., 2005], SDM [Fischer et al.,
2000] and GROOVE [Rensink, 2003] use a separate imperative control
language to let users define rule scheduling strategies, while other lan-
guages like AGG [Taentzer, 2010] and Atom3 [de Lara et al., 2004] in-
stead use a fixed strategy that applies rules as long as possible, but
allow some form of layering that allows ordering of rules.

Two graph rewriting rules in GROOVE for the Families to Persons
example transformation are presented in Figure 2.3. The rule in Fig-
ure 2.3a adds a label male (highlighted using + and is green colored)
in case the target member has a familyFather link defined and is not
already tagged by a female or male label (negative conditions are high-
lighted with ! and are red colored). The rule in Figure 2.3b corresponds
to the Member2Male rule in ETL, and translates a family member tagged
with a male label to a corresponding new Male person—if not already
translated as indicated by the negative condition—with the full name
being the concatenation of the first name and last name of the target
member (operations are defined as subgraphs which rewrite to produce
the correct value). This style of transformations is comparatively more
visual than the purely rule-based style by ETL, but at the expense of be-
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(a) Labelling fathers as male
(b) Translating male family members
to persons

Figure 2.3: Two graph rewriting operations in GROOVE for the Families
to Persons transformation

ing more low-level with regards to changes in the graph since additions
and deletions of nodes and edges are done more explicitly.

2.2 Program Transformation Languages

The line between model and program transformation languages is fluid,
but in general specialized program transformation languages focus
more on transformation of syntax—including dealing with concrete syn-
tax and parsing—and try to provide more expressive language features
such as supporting higher-order transformations. I will use the Nega-
tion Normal Form transformation (NNF, see Figure 2.4) as a running
example to present some of the different kinds of program transfor-
mation languages. The transformation converts propositional formula
(Figure 2.4a)—containing atoms, negation, conjunction, disjunction and
implication—to an equivalent formula where all negations are on atoms
and without implications (Figure 2.4b).

Rewriting Languages

Rule-based program transformation languages like TXL [Cordy, 2006]
are similar to rule-based transformation languages in that they repre-
sent a transformation as a set of rules that are scheduled automatically
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φ, ψ ::= x ∈ Atom | ¬φ | φ ∧ ψ | φ ∨ ψ | φ⇒ ψ

(a) Formula syntax
l ::= x ∈ Atom | ¬x φnnf, ψnnf ::= l | φnnf ∧ ψnnf | φnnf ∨ ψnnf

(b) Normalized Formula syntax

Figure 2.4: Negation Normal Form

during execution; the key difference is that TXL transforms concrete syn-
tax trees instead of structured models—-supporting specification of and
parsing using concrete grammars as first-class constructs—and supports
more expressive features like run-time re-parsing, syntactic substitution
and polymorphic rules.

Languages based more directly on term rewriting [Baader and Nip-
kow, 1998; Cirstea and Kirchner, 2001a,b] focus more on allowing on
providing rich composable rewriting using different types of evalu-
ation strategies that include support for backtracking, recursion and
term traversal. Languages that primarily follow this paradigm, include
programming languages like Stratego/XT [Bravenboer et al., 2008],
ELAN [Borovanský et al., 1998] and Maude [Clavel et al., 2007], and
frameworks like PLT Redex [Felleisen et al., 2009] for Racket [Felleisen
et al., 2015] and Kiama [Sloane, 2009] for Scala [Odersky et al., 2004].
Figure 2.5 presents the NNF transformation in Stratego/XT: formulae
are represented as terms using typed constructs, and the transformation
normalize executes the sequence of rewriting rules tagged with NNF us-
ing the outermost strategy, which rewrites terms in a top-down fashion
until a fixed-point is reached.

General Program Transformation Languages

General transformation languages like the aforementioned Rascal [Klint
et al., 2011], are ordinary programming languages that provide high-
level constructs suitable for transformation such as powerful pattern
matching, traversal and backtracking. Other examples include lan-
guages like Xtend [The Eclipse Foundation, 2014] and frameworks like
Uniplate [Mitchell and Runciman, 2007] for Haskell [Marlow, 2010]. Fig-
ure 2.6 presents the NNF transformation in Haskell using Uniplate; the
transformation uses the higher-order function rewrite that traverses in-
put formula exhaustively applying function nnf’, which is an ordinary
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1 module nnf
2 signature
3 constructors
4 Atom : ID -> Formula
5 Neg : Formula -> Formula
6 And : Formula * Formula -> Formula
7 Or : Formula * Formula -> Formula
8 Imp : Formula * Formula -> Formula
9 strategies
10 normalize = outermost(NNF)
11 rules
12 NNF : Neg(Or(e1, e2)) -> And(Neg(e1), Neg(e2))
13 NNF : Neg(And(e1, e2)) -> Or(Neg(e1), Neg(e2))
14 NNF : Neg(Neg(e)) -> e
15 NNF : Neg(Imp(e1, e2)) -> And(e1, Neg(e2))
16 NNF : Imp(e1, e2) -> Or(Neg(e1), e2)

Figure 2.5: Negation Normal Form Transformation in Stratego/XT

Haskell function defined by pattern matching that produces a possible
result value for each applicable case.

1 data Formula = FAtom String
2 | (:!:) Formula
3 | Formula :&: Formula
4 | Formula :|: Formula
5 | Formula :=>: Formula
6
7 nnf :: Formula -> Formula
8 nnf = rewrite nnf’
9 where nnf’ ((:!:) ((:!:) phi)) = Just phi
10 nnf’ ((:!:) (phi :&: psi)) = Just (((:!:) phi) :|: ((:!:) psi))
11 nnf’ ((:!:) (phi :|: psi)) = Just (((:!:) phi) :&: ((:!:) psi))
12 nnf’ (phi :=>: psi) = Just (((:!:) phi) :|: psi)
13 nnf’ _ = Nothing

Figure 2.6: Negation Normal Form Transformation in Haskell using
Uniplate

2.3 Programs and Paradigms

In principle, any programming language is a transformation lan-
guage, but I have in this chapter presented languages across different
paradigms which have features designed primarily towards transfor-
mation of models and programs. In the chapters to come, I will fo-
cus on the programming-oriented high-level transformation languages,
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because these allow expressing the more interesting transformations—
refactorings, normalization procedures, optimizations, translations—
and align the best with my goal of adapting techniques from program-
ming language verification. Furthermore, as we will see in Chapter 3
there is little to gain of choosing the more declarative model and graph
from a verification perspective.

In particular, later in this dissertation I describe an effort validat-
ing an industrial transformation in the mentioned TXL language (Chap-
ter 4), which provided a particularly good match for the target code
base because of its powerful capabilities for manipulating C++ syntax.
To get a good grasp of the verification challenges introduced by the
high-level transformation features, I develop a symbolic execution algo-
rithm (Chapter 5) for a small purposely defined formal transformation
language called TRON. Finally, I scale up the verification effort focusing
on a large expressive subset of the Rascal transformation languages, for
which I develop a verified formal semantics (Chapter 6) and an abstract
interpretation based static analysis tool (Chapter 7). Rascal is particu-
larly suitable as a target system because it provides a representative se-
lection of high-level transformation language features—traversal, back-
tracking, fixed-point iteration—modelled explicitly, has an available up-
to-date open source implementation,2 and plenty of realistic programs
that can be used for evaluation.

2https://github.com/usethesource/Rascal



Chapter 3

Expressiveness of Declarative Model
Transformation Languages*

The declarative model transformation languages presented in Chapter 2
provide a convient rule-based interface for translating between various
models. It is however unclear that the computational capabilities [Taylor,
1998] of such languages matches those of general programming lan-
guages, since modification of state can be limited and repetition can be
implicit or bounded. The computational expressiveness of a language
matters from a verification point of view, since a large variety of tech-
niques only apply on languages with limited computational expressive-
ness. This chapters presents a systematic analysis of a wide selection
of declarative model transformation languages, seeking to pinpoint the
constructs that enables or limits the level of expressiveness.

3.1 Surveys on Model Transformations

Language Expressiveness To the author’s knowledge there has been
no overall study on computational expressiveness of model transforma-
tion languages, but there do exist several studies that compare specific
aspects. Gomes et al. [2014] compare a variety of languages on their pat-
tern matching capabilities in order to clarify the performance implica-
tions of each system1. Different language features of ATL and SDM are

1Additionally, a source of inspiration for selection of transformation languages.

*This chapter is based on Al-Sibahi [2015], which is published as a technical report.
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compared in a case study [Patzina and Patzina, 2012], presenting a table
clarifying the capabilities of these languages, including support for re-
cursion and in-place transformation. Finally, several model transforma-
tion language implementation papers [Varró and Balogh, 2007; Syriani
and Vangheluwe, 2013] present small comparisons of language features;
however, these do not provide an analysis of language expressiveness,
and are neither comprehensive in their comparisons.

General Mens and Gorp [2006] provide definitions for kinds of model
transformations, and classifies them according to several characteristics
including whether they transform across different abstraction levels, be-
tween different meta-model definitions and are primarily syntactic or
semantic. Czarnecki and Helsen [2006] provide a detailed classification
of a large selection of model transformation languages according to the
set of available features including constraint and transformation rule
specifications, level of control over execution and modularity; Hidaka
et al. [2016] provides a similar feature-oriented classification for bidi-
rectional transformations. Several surveys [Amrani et al., 2012; Calegari
and Szasz, 2013; Rahim and Whittle, 2015] focus on summarizing the
state of the art in validation and verification of model transformation,
classifying according to the techniques used, transformation features
and properties supported. All of these surveys do not address my ob-
jective (O1, Section 1.3) which is to identify to identify the computational
expressiveness, except Hidaka et al. [2016] which does so only for bidi-
rectional languages.

3.2 Computational expessiveness

Computability is usually defined in terms of the Church-Turing the-
sis [Kleene, 1967; Copeland, 2015] which states that any effectively
computable mathematical function can be computed by a Turing ma-
chine [Hopcroft et al., 2007]. A language is said to be Turing-complete
if it is as expressive as a Turing machine, in the sense that it can com-
pute the same any function a Turing machine can compute. Known ex-
amples of Turing-equivalent systems include the λ-calculus [Barengdt,
1985; Alama, 2014] and term-rewriting systems [Post, 1947].

While it can be hard to pinpoint the combination of features needed
for a language to be Turing-complete, we can specify some general char-
acteristics:
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State change It should be possible to continue computation with a new
state, whether by writing on the tape as the Turing machines, by
reduction as in the λ-calculus or by subterm replacement as in
term rewriting.

Branching It should be possible to make different decisions on input,
similarly to how Turing-machines conditionally move the head de-
pending on the current symbol or how term-rewriting systems ex-
press rules conditional on patterns.

Unbounded execution time The language must not bound the number
of execution steps, e.g., by providing repetition constructs such as
recursion or iteration.

Unbounded memory There must be no bounds on memory, analo-
gously to the infinite extensibility of a tape in Turing-machines
and the unbounded term size in λ-calculus.

Determining the computational expressiveness for a language has
been long known to be important with regards to verification. In par-
ticular, it determines the class of interesting semantic properties we can
effectively decide [Rice, 1953] and thus also affects the verification tech-
niques applicable.

General results on graph rewriting

Graph rewriting is the base formalism for many declarative model trans-
formation languages, as mentioned in Chapter 2. Therefore, it is impor-
tant to understand the expressiveness of general graph rewriting sys-
tems, and clarify the conditions necessary to achieve expected expres-
siveness results.

Proposition 3.1. Graph rewriting systems can express Turing-complete com-
putation.

Proof. Shown by Plump [1998].

Existing research shows that graph rewriting systems can express
Turing-complete computation. Albeit similar, graph rewriting systems
are richer than term rewriting systems—possibly having cycles and
shared nodes—and do not share the same termination citeria; Plump
[1998] shows it is possible to translate a non-terminating term rewriting
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systems to a terminating graph rewriting systems and vice versa. Gen-
erally, a base requirement for graph rewriting systems to be terminating
is that all the rules contained must either delete nodes or have appli-
cation conditions [Plump, 1995; Bisztray and Heckel, 2010]. Any other
graph rewriting system is trivially non-terminating since the same rule
can be reapplied ad infinitum.

3.3 Analysis Method

The formal process to (dis)prove that a language is Turing-complete is by
reduction, so to show that it is (im)possible to encode another Turing-
equivalent system or an undecideable problem—e.g., Post correspon-
dence problem [Post, 1946]—in the language. It is however practically
infeasible to do such a formal proof for each of the various languages
examined, since it requires manually setting up each system, learning
the language sufficiently to perform a complete analysis, and verifying
that such analysis is semantically correct.

Instead, I perform a literature-based analysis whereby I use pub-
lished articles, language manuals and other related documentation to
check whether there is a combinations of features that make a language
Turing-complete. I will use the (semi-)formal semantics of target lan-
guage as a primary source if provided, but in most cases I use a combi-
nation of sources to establish an overview of the target language capa-
bilities. The results provided should be sufficiently accurate, and reflect
better the features that ordinary users meet.

Collection process

The collection process proceeded as follows:

• If the language documentation explicitly mentions or proves that
the language is Turing-complete, I note down the result and lan-
guage features required to achieve such expressiveness.

• Otherwise, I search the documentation for whether there is a
combination of constructs that make the target language Turing-
complete.

The constructs required for Turing-complete computation differ
across languages examined. For the subset of languages that directly
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allow use of imperative constructs, it is straightforward to check the ex-
pressiveness. If the target language supports creation and processing of
variably-sized data, conditionals and unbounded iteration or recursion,
then it is definitely Turing-complete.

For primarily rule-based transformation languages with implicit con-
trol flow, the problem is more subtle. The analysis must consider possi-
ble limitations of rule definition and execution, and check whether non-
terminating rules are rejected or iteration is only allowed on bounded
collections.

3.4 Analysis of computational expressiveness

Paradigms The investigated languages are summarized according to
supported paradigms in Table 3.1. All investigated declarative model
transformation languages are unsurprisingly rule-based, except the op-
erational subset of QVT and ATC which is a low-level implementa-
tion oriented language. The investigated languages are divided on
the underlying formalism, with more than half the languages being
primarily graph-oriented and the others being oriented towards meta-
models. Furthermore, I have chosen to include two primarily bidi-
rectional languages—BeanBag and BOTL—for comparison, although
a more comprehensive analysis of expressiveness of bidirectional lan-
guages is available in Hidaka et al. [2016]. Finally, Table 3.1 shows a di-
vision regarding imperative constructs such as state updates and loops,
spreading evenly between languages that do and do not support such
constructs.

Expressiveness The expressiveness of investigated languages is pre-
sented in Table 3.2, which summarizes available repetition constructs
and whether each language is Turing-complete. The repetition con-
structs supported are varied across different languages, but I divided
them in three main categories according to whether the investigated lan-
guages support explicit loops like for and while, whether they support
some form of recursion and whether they have implicit repetition in the
execution engine, so that execution of the specified rule set continues
until a fixed-point is reached.

All presented languages except the bidirectional ones are found to
be Turing-complete based on the detailed analysis in Section 3.4; this is
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consistent with the results by Hidaka et al. [2016] which argue that most
bidirectional languages are by construction non-Turing complete, since
they enforce functional relationships. Two of the presented languages
(AGG and VMTS) notably support checking termination of transforma-
tions, but these checks are optional and not enforced.

Detailed analysis

This section discusses the details of the results presented in Table 3.1 and
Table 3.2. It provides a summary for each langauge, whether the lan-
guage is Turing-complete and what combination of features contribute
to the expressiveness.

Language Rule-based Imperative

General Graph-oriented Bidirectional

PROGReS 3 3 7 3

AGG 3 3 7 7

GReAT 3 3 7 7

GrGen.NET 3 3 7 3

Motif 3 3 7 7

Atom3 3 3 7 AO1
Tefkat 3 7 7 7

QVT Rel. 3 7 3 QR1
QVT Op. 7 7 7 3

BOTL 3 7 3 7

BeanBag 3 7 3 7

VIATRA2 3 3 7 3

VMTS 3 3 7 VM1
ATL 3 7 7 3

ETL 3 7 7 3

SDM 3 3 7 3

ATC 7 7 7 3

AO1 Constraints are specified by python statements
QR1 Can call QVT Operational mappings
VM1 Transformation on attributes using XSLT

Table 3.1: Paradigms of transformation languages
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PROGReS The language supports specification of arbitrary graph
rewriting rules, whose execution is controlled by an imperative lan-
guage [Schürr, 1994; Patzina and Patzina, 2012; Rozenberg, 1997]. The
language is Turing-complete by Proposition 3.1 since the imperative con-
trol subset has an unbounded looping construct loop [The PROGReS
Developer Team, 1999], and it can therefore simulate a general graph
rewriting system.

AGG Arbitrary graph rewriting rules are supported in AGG [Taentzer,
2004; Runge, 2006], and the rule interpretation engine only terminates

Language Repetition Turing-complete

Looping Recursion Implicit

PROGReS 3 3 7 3

AGG 7 7 3 3 !
GReAT 7 3 7 3

GrGen.NET 3 3 7 3

Motif 3 3 7 3

Atom3 7 7 3 3

Tefkat 7 3 3 3

QVT Rel. 7 3 3 3

QVT Op. w 3 7 3

BOTL 7 7 w 7

BeanBag w 3 7 ?
VIATRA2 3 3 7 3

VMTS 7 3 7 3 !
ATL w AT1 w 3

ETL ET1 ET1 w 3

SDM SD1 SD1 7 3

ATC 3 3 7 3

w Bounded number of steps
? Status generally unknown
! Optional termination check
AT1 Using global helpers or lazy rules
ET1 Using Epsilon Object Language (EOL)
SD1 By setting up the required control flow and path expressions

Table 3.2: Expressiveness of transformation languages
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when no rule is further applicable. The language can check whether a
given rule-set of a program is within the terminating fragment, but since
this check is not enforced the language is considered Turing-complete
by Proposition 3.1.

GReAT The language [Balasubramanian et al., 2007; Agrawal et al.,
2003] supports defining transformation rules on graphs modularly as
blocks that can wired together, even recursively where the output of
a block can be wired as input to a block further back in the transfor-
mation sequence. Since a rule sequence is only terminating when no
further output is produced, the language is Turing-complete.

GrGen.NET The language user manual [Blumer et al., 2010] directly
shows an implementation of a Turing-machine. Notably, the languages
works on graphs, supports recursive rules [Jakumeit, 2008], unbounded
looping and general imperative constructs.

Motif The language [Syriani and Vangheluwe, 2013] transforms
graphs and supports unbounded looping (FRule, SRule), backtracking
and recursion (XRule), and it explicitly mentioned that it is possible to
construct non-terminating programs. Therefore, the language can sim-
ulate a general graph rewriting system and is thus Turing-complete by
Proposition 3.1.

Atom3 The framework uses graph-based meta-modelling [Vangheluwe
et al., 2002], and transformations are specified using graph rewriting
rules. The execution engine (Graph Rewriting Processor) [Levytskyy
and Kerckhoffs, 2003; de Lara et al., 2004] is not limited and applies
rules to exhaustion, making the language Turing-complete per Propo-
sition 3.1. Remarkably, Motif is implemented in Atom3 which further
strengthens the argument for Turing-completeness.

Tefkat This transformation language [Lawley and Steel, 2006] is based
primarily on the second revised submission report on QVT [Duddy
et al., 2004], which explicitly touts Turing-completeness. Transforma-
tion rules can specify expressive constraints on both source and target
models, and it supports unbounded recursion.
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QVT Relations The language [Object Management Group, 2016] is
Turing-complete since it can simulate general graph rewriting systems
by in-place transformations, where transformation rules (relations) are
re-applied until all required constraints are satisfied. Additionally, it is
possible further call imperative rules from the operational subset and
arbitrary external code using the QVT Blackbox mechanism.

QVT Operational The operational subset of QVT [Object Management
Group, 2016] is Turing-complete since it is possible to specify recursive
rules [Kraas, 2014], in combination with creation of intermediate data,
branching and looping. This makes it similar to many general-purpose
imperative programming languages.

BOTL Model transformations in BOTL [Braun and Marschall, 2003]
are bounded by the number of rules defined and only applied to fi-
nite sets of matches. Therefore, all transformations are known to be
terminating and the language is not Turing-complete.

BeanBag The language [Xiong et al., 2009] supports synchronisation
of two models by using expressions containing various equational con-
straints, including variable binding, bounded iteration (forall, exists)
and recursion. All the repetition constructs must however satisfy a sta-
bility property—ensuring there always exists a valid synchronisation for
given models—which limits the expressiveness of these constructs; the
only way to construct non-terminating programs in the language is by
using counter-intuitive circular equational constraints, and most pro-
gram in practice always terminate. It is unclear whether it is possible
to use circular constraints intuitively to perform arbitrary computation
without breaking the stability property, and without further formal anal-
ysis it can not be decided whether the language is Turing-complete or
not2. This formal analysis is left as future work, but the paper [Xiong
et al., 2009] presents a formal semantics which could be used as a start-
ing point.

VIATRA2 The language [Varró and Balogh, 2007; Balogh and Varró,
2006] is based on two formalisms: graph transformation (GT) which

2Confirmed by personal correspondence with the main author, Dr. Yingfei Xiong.
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allows the user to specify graph rewriting rules and abstract state ma-
chine (ASM) [Gurevich, 1995; Börger and Stärk, 2003]—a known Turing-
complete formalism—that can be used to control the flow of execution.
Notably, it is also possible to simulate a general graph rewriting system
by using GT and the unbounded iterate construct from ASM, and so
Proposition 3.1 applies.

VMTS This language [Levendovszky et al., 2005] is Turing-complete
by Proposition 3.1 since it supports graph rewriting using a combina-
tion of visual model processors (VMP) and the visual control flow lan-
guage (VCFL) [Lengyel et al., 2007]. Attribute transformations are per-
formed using XSLT [Kay, 2017], which is known to be Turing-complete
as well [Onder and Bayram, 2006].

ATL Ordinary ATL rules [Jouault et al., 2008; Troya and Vallecillo,
2011] cannot be recursive and are applied only a finite amount of times
by the execution engine [Wagelaar et al., 2014]. Lazy rules [Tisi et al.,
2011] can however be recursively called, which in combination with the
complex constraints on source and target models makes the declarative
part of ATL Turing-complete, similarly to Tefkat.

It is possible to call imperative OCL helpers from ATL rules, but all
imperative constructs are bounded on the size of collections [Cengarle
and Knapp, 2004]. OCL does however support recursion in helpers, and
so Turing-complete computation could still be done that way.

ETL Epsilon Transformation Language [Kolovos et al., 2008, 2014] sup-
ports both ordinary and lazy rules, making the declarative part Turing-
complete like ATL. Furthermore, it relies allows use of imperative con-
structs from the Epsilon Object Language (EOL), which includes un-
bounded loops (both for and while), branching and assignment.

SDM Story Driven Modelling (SDM) [Fischer et al., 2000] uses graph
transformation as an underlying mechanism, where story patterns are
used for describing modifications to models, similarly to graph rewrit-
ing rules. The patterns are executed via a control flow language that al-
lows unbounded recursion [von Detten et al., 2012; Patzina and Patzina,
2012], and is therefore capable of expressing Turing-complete computa-
tion.
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ATC As a low-level language [Estévez et al., 2006] for implementing
model transformation engines, ATC supports many necessary primi-
tives for model querying, matching, manipulation and transformation.
In addition it contains common imperative language constructs, includ-
ing unbounded while loops and is therefore Turing-complete.

3.5 Expressiveness and Verification

Eventhough the investigated languages focused more on providing a
high-level declarative constructs for transforming models, the analysis
presented in this chapter showed that virtually all the presented lan-
guages are very expressive and able to perform Turing-complete com-
putation; the only notable exceptions were the bidirectional languages,
BOTL and BeanBag, which were more limited by design.

This seems to indicate that transformation is a task that inherently
requires a high level of expressiveness. Even a languages like ATL which
typically bounds rule application and iteration, allows recursion via lazy
rules and OCL helpers, and languages with termination checkers like
AGG and VMTS chose to not strictly enforce termination.

These findings suggest that we can not treat declarative model trans-
formation languages specially with regards to verification when we are
interested in supporting the full feature set available. In particular, ex-
isting techniques that only support limited expressive subsets of trans-
formation languages will only work in very specific cases, and which
avoid features that are useful for more interesting transformations like
refactoring.

General purpose high-level transformation languages like TXL and
Rascal are known to also be Turing-complete, but provide several ad-
vantages from a verification point of view. Their data structures and ba-
sic control operations are similar to ordinary programming languages,
so it is possible to more directly apply verification techniques such
as symbolic execution and abstract interpretation from these commu-
nities. Furthermore, while they similarly to many of the declarative
transformation languages, support high-level transformation features—
backtracking, traversal and fixed-point iteration—they in contrast use an
explicit execution model which is easier to reason about statically.





Chapter 4

Validating a Software Modernization
Transformation*

Joint work with: Alexandru F. Iosif-Lazăr, Aleksandar S. Dimovski, Juha Erik Savolainen, Krzysztof
Sierszecki, Andrzej Wąsowski

Software modernization [Seacord et al., 2003] aims to tackle the chal-
lenge of growing size and complexity of legacy code by restructuring
it to use improved technologies while preserving core functionality. To
date, there is relatively little literature available on software modern-
ization projects in practice, especially in the safety critical domain. We
present experiences from an industrial software modernization project
that is done in collaboration between IT University of Copenhagen and
Danfoss Power Electronics,1 a global producer of components and solu-
tions for controlling electric motors. The modernization project is auto-
mated using a non-trivial code-to-model transformation written using
the high-level rule-based transformation language TXL [Cordy, 2006],
and has been particularly important for shedding light on the problems
that occur in transformations, and the necessity of developing formal
verification methods and tools.

1http://www.danfoss.com

*This chapter is based on Iosif-Lazăr et al. [2015] which is published a peer-
reviewed conference publication. The primary experiments, which concern validat-
ing the transformation, were performed by the main author Alexandru F. Iosif-Lazăr
based on an implementation that is done in collaboration between a separate team at
ITU (Rolf-Helge Pfeiffer, Aleksandar Dimovski and Andrzej Wąsowski) and Danfoss. I
participated in studying and classifying bugs in the transformation and contributed to
the observations and formal justification in the paper. The gathered experience from
this paper had an inspirational role for the rest of the dissertation.

http://www.danfoss.com
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Concretely, the modernization project involves a configuration tool
used to adapt Danfoss frequency converters to a particular application.
The configuration tool consists of thousands of C++ functions for ac-
cessing and validating the configuration parameters. The code base is
being modernized so each configuration parameter function must be
converted from the imperative C++ implementation to a declarative log-
ical specification, so that the configuration software can be managed
by an off-the-shelf constraint solver. Each existing function computes
a result—either the value of a particular parameter or a Boolean value
representing a check of accessibility and validity of parameters—and
the expected declarative specification should be an expression or logical
constraint that preserves the same result. The code modernization is
done the automated transformation on each function individually; the
transformation performs a sequence of syntactic replacements, gradu-
ally eliminating C++ pre-processor directives, local variables, C++ con-
trol statements and leaving behind a pure (side-effect free) expression.

TXL only ensures the syntactic correctness of transformations—
enforcing grammar constraints through pattern matching—and does not
guarantee that preservation of source program semantics. In the Dan-
foss case, determining the semantic equivalence is feasible due to the
particular shape of programs: the employed subset of C++ is small with
no recursion, small fixed bounds for loops, bounded input and no use
of esoteric features like inline assembly.

We assessed that symbolic execution [King, 1976] is mature enough
to handle this task efficiently, and implemented a lightweight wrapper
that compiles both input and output of the transformation and employs
the symbolic executor KLEE [Cadar et al., 2008] to assert their equiva-
lence for all possible input. As the result of symbolically executing the
programs, KLEE produces a set of path conditions that represent distinct
execution paths of the two programs along with their return values as
symbolic formulae; if the equivalence assertion is satisfied by all paths
then the two programs are equivalent, and otherwise if there is a pair of
compatible input-output path conditions where the assertion fails, then
it outputs the path condition pair and a counter-example containing a
set of concrete assignments to inputs that trigger the assertion failure.

Our contributions are:

• Synthesis of experiences from the design of a non-trivial modern-
ization transformation for an industrial project.
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• Designing and implementing a transformation validation tech-
nique for this case study that produces concrete counter-examples
when semantic equivalence is not preserved between input and
output programs.

• Lessons learnt from using the validation technique in the case
study, including an analysis of the kind of errors that have been
identified.

To the best of our knowledge this is the first analysis of transforma-
tion errors extracted from an industrial project of this scale and com-
plexity (4119 functions or 14502 lines of input code of which: 105 error
cases were found at transformation time, 104 error cases were found at
verification time and 3910 were successfully verified).

4.1 Motivating Example

We illustrate the technique for modernizing a function and validat-
ing its correctness by using an example containing a simplified and
anonymized version of an actual function from the Danfoss code base.

1 Configuration config = selectedConfParameter;
2 Option opt = selectedOptParameter;
3 bool result = false;
4 switch (config) {
5 case config1:
6 if (opt == option1) result = true;
7 break;
8 default:
9 result = true;
10 break;
11 }
12 return result;

(a) Example imperative parameter function

1 (selectedConfParameter == config1
2 && selectedOptParameter == option1)
3 ? true
4 : false

(b) Actual output constraint from
modernization transformation

1 (selectedConfParameter == config1)
2 ? (selectedOptParameter == option1)
3 : true

(c) The expected output constraint

Figure 4.1: Anonymized example validation function from the Danfoss
code base
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The input program (Fig. 4.1a) is a function that validates the
consistency of the values provided to two selected parameters
(selectedConfParameter and selectedOptParameter) with respect to
each other using constants config1 and option1. The goal of our mod-
ernization transformation is to produce a declarative constraint that for
the same inputs produces the same truth values.

Syntactically, the input program consists of a sequence of variable
initializations, a switch statement with two cases—one containing an
if-statement—and a return statement that returns the value stored in
the variable result. The corresponding output program should be a
pure C++ expression which produces the same result as the input given
the same values. Running the TXL modernization transformation pro-
duces a declarative C++ expression (Fig. 4.1b) using the following steps:

1. Replacing the switch-statement with a nested if-else conditional.

2. Simplifying the conditional statement, so local variables are re-
placed by their assigned values and we end up with a straightfor-
ward control flow.

3. Reducing the conditional statement a ternary expression of the
form e1 ? e2 : e3.

It is not immediately clear that the produced output (Fig. 4.1b) has
equivalent semantics to the input (Fig. 4.1a), despite this being a rela-
tively simple example. In order to check that this is indeed the case, we
perform symbolic execution on the input and output programs using
KLEE to gather path conditions for all possible execution paths of each
program; when there exists discrepency between the path conditions of
the input and output programs, KLEE reports the discrepant path as a
counter-example that acts as a witness of an execution that is possible
in one program but not in the other.

For example, the path condition

selectedConfigParmeter 6= config1

∧ selectedOptParameter = option1

∧ result = true

is generated for the input program in Fig. 4.1a but not for the trans-
formed program in Fig. 4.1b proving that these programs are not seman-
tically equivalent. By further investigation of the counter-example, we
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are able to determine that the expected output program should instead
be the one shown in Fig. 4.1c.

Furthermore, we were able to diagnose the trace of transformation
rules applied to the input program successfully finding the rule that
produced erroneous output. The erroneous rule was a rule which tried
to simplify nested if-statements forgetting to take the else-branch into
consideration. The validation technique thus proved itself incredibly
useful in accurately tracking where the bugs occured, allowing an expe-
rienced transformation specialist to fix this issue relatively swiftly.

4.2 The Modernization Case Study

The goal of the case study is to establish the feasibility of transforming a
large imperative C++ code base for a configuration tool to a declarative
model, in a manner that is automatic, trustworthy and cost effective. Cost
effectiveness is understood here as being cheaper than reimplementing
the code from scratch.

The modernization project combines transformation engineering and
verification research in an exploratory case study, which acts as a pilot
for larger modernization activities in the same organization. The re-
searchers have access to the legacy C++ code base and to three Danfoss
engineers/architects knowledgeable about the code, the context and the
use case.

The study has two key propositions: i) To establish that freely avail-
able transformation and validation tools are sufficiently mature to exe-
cute this modernization process, and ii) to explain what kind of errors
might appear in transformation projects involving complex code, even
if implemented by experienced model transformation developers and
language specialists.

Case Description

The configuration tool code base consists of 4119 C++ functions in total.
These functions encode dependencies, visibility constraints, and default
values of approximately one thousand configuration parameters of a
frequency converter. There is limited use of C++ features: no object-
oriented aspects are used, except for member access and limited encap-
sulation. Functions have straightforward control flow mostly consisting
of conditionals and switch-statements, with occasional use of bounded
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iteration via for-loops; there is no use of goto statements, unbounded
loops or recursion. Other constructs include variable declarations and
usage of local variables in arithmetic and comparison expressions, calls
to pure functions, singleton members and static members (e.g., to con-
vert physical units), and casts between different types (both C-style casts
and static_casts).

There are 14502 source lines of code (SLOC) that need to be mod-
ernized in the pilot project, and more similarly-looking configuration
tools for other products waiting for modernization afterwards. As many
as 3348 of the 4119 functions are already in expression form; these do
not need to be modernized, but should left intact by the modernization
transformation. The remaining 771 functions have 14.47 SLOC of code
on average.

The modernization to declarative logical expressions decreases the
burden of maintenance by allowing configuration to be done using an
off-the-shelf verifier [Felfernig et al., 2014]. The nature of the configu-
ration project puts some strict constraints on the implementation and
quality of the modernization transformation:

Automation It is infeasible to halt the normal development of the
project for an extensive period of time . An automated transfor-
mation can be developed in parallel to the actively developed code
base and can be efficiently run again on the updated code base in
minutes, ensuring minimal impact.

Trustworthiness The configuration code contains crucial domain infor-
mation and missing configuration constraints could lead to cre-
ation of unsafe configurations by customers.

Verification Background

In the general case, it is undecidable to show semantic preservation
for transformations, but in practice many analysis problems appearing
in engineering of real systems can be handled using incomplete and
(partly) unsound [Livshits et al., 2015] methods. This is true for our par-
ticular case where most inputs have a fixed shape, and it is perfectly
acceptable that there are few corner cases are manually handled during
modernization.

Our approach is aligned with translation validation [Samet, 1976;
Pnueli et al., 1998] in the sense that it validates concrete translations in-
stead of the transformation tool or algorithm itself. The path conditions
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produced by KLEE represent the semantic framework of the compared
subset of C++programs, and an SMT solver is used by KLEE to prove
the equivalence of the path conditions, providing a counter example if
they are not equivalent.

Research Questions and Methods

Our methodology generally follows the framework of action re-
search [Wohlin et al., 2012]. Our research questions are as follows:

RQ1 Is it feasible to design the aforementioned transformation using
off-the-shelf technology in a limited time?

RQ2 What are the main obstacles and challenges in designing and im-
plementing the transformation?

RQ3 Can high assurance methods be used at acceptable costs to vali-
date the transformation?

RQ4 What kind of errors are found in a transformation implemented
by experts?

Questions RQ1–3 are interesting for companies and researchers looking
into technology transfer in modernization projects, and the last research
question is more relevant for researchers in the fields of model and pro-
gram transformations. We are not aware of existing studies that provide
a detailed account on the number and type of errors in realistic software
transformations. This work hypothesizes the kinds of problems worth
addressing, and concretely inspired the verification efforts presented in
the later chapters of this thesis.

We decided to address RQ1 and RQ2 by systematically investigating
the most effective way to implement the transformation, and evaluating
a variety of approaches and technologies that fulfill the requirements
elicited from the industry partner. A similar process was executed for
investigating validation technologies to solve RQ3, where we recorded
experiences during the process to report them in this paper. We have
collected statistics about the effectiveness and efficiency of the trans-
formation for RQ2, and measure the ration of false positives for RQ3,
explaining why they appear when following our validation methods.
Regarding RQ4, we collected counterexamples from the validation pro-
cess, classified them, and qualitatively analyzed them to understand
what kind of errors arise in the transformation.
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Study Participants Three teams were involved in the project:

1. The industrial partner had a team of two engineers and an ar-
chitect, which presented the software modernization problem, re-
quirements and artifacts.

2. The transformation implementation team consisted of a transfor-
mation expert, a language semantics expert and a project leader;
the transformation expert designed and implemented the transfor-
mation in dialog with the other members of the team.

3. The validation team consisted of an applied verification researcher,
a junior PhD student in programming languages,2 and the same
language semantics expert and same project leader that were in-
volved in designing the transformation.

Threats to Validity

Construct Validity The case was selected by the industrial partner ac-
cording to the problem they wanted to solve, and the research team only
had access to the previously mentioned parts of the configuration tool.
It is entirely possible that the researchers could have misunderstood par-
ticular aspects of the software architecture, but given their expertise in
the relevant areas, we believe that the impact of this would only be lim-
ited. Furthermore, the results are still interesting from a research point
of view since transformation is of substantial complexity, and even if it
was slightly misaligned with the requirements it still sheds a lot of light
on pragmatics of such transformations. From the engineering point of
view, the validation method provides actual counterexample for the de-
tected errors and is easy to manually confirm any unwanted discrep-
ancy.

Internal Validity The validation procedure has been developed in the
same study in which it is evaluated, and there is certainly a risk that
it had overlooked some important errors. However, the transformation
and validation projects has been designed independently, and key de-
velopers of the two parts have not communicated in any significant mat-
ter; several months have passed between the end of the transformation
implementation project and the beginning of the validation project. In

2Me
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particular, the transformation had been designed with a focus on effec-
tiveness with no thought of later verification in mind. The only minor
risk of misinterpretation could be in the explanation of the program-
ming errors that caused each type of bug, since the mapping was done
by the validation team.

External Validity Limited external validity is in the very nature of an
individual study, which is why we take care to describe the properties of
the case in detail. In safety critical software, simple imperative code with
bounded for-loops is common, and we thus believe that the findings can
generalize to additional modernization projects.

Reliability The analyzed transformation errors can be biased towards
the weaknesses of the particular development team. It is unlikely that
the reported errors were trivial, since the involved teams were ex-
perts in model transformation and verification with more than 12 years
of combined experience. Nevertheless, we report these findings only
existentially—without generalizing—providing a single data point for
the research space where very little evidence is available so far. There
is a definite need for more studies to get a good understanding of the
nature of design errors in transformative and generative programming.

4.3 Designing the Transformation

We found that implementing an automatic transformation is superior to
a manual refactoring, as it allows minimizing down-time on the main
development of the code base. The code to be modernized only needs
to be frozen for the few minutes it takes to run the transformation and
it can be evolved freely while the transformation is being implemented
and tested. This is somewhat different from the standard use case for
transformations which is automating repetitive tasks in conversions of
data, code or models. This transformation was meant to be executed
only once, but automation was key to minimize disruptions in the reg-
ular development process.

Observation 4.1. Automatic transformations allowed us to decouple and
parallelize the regular development and the modernization activities.

Constructing a general transformation from imperative C++ code
into a declarative form is impossible in general, but our objective was
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much more modest: we only needed to handle programs with a fixed
shape that covers the code at hand. We settled on saving resources
whenever possible by sacrificing generality and even agreed to left a
small number of cases with complex fragments involving loops to be
modernized manually instead of designing rules that would handle
them correctly from first principles. The manual migrations can be hard-
coded into a transformation as special cases, so that the transformation
execution remains automatic.

Observation 4.2. Modernization is a one-time transformation, so it was
beneficial to focus only at the code at hand without eagerly generalizing.

To control the lack of generality, the implementation follows a fail-fast
programming style [Gray, 1986; Shore, 2004]: it succeeds on the inputs
that it was designed for, but fails as early as possible on inputs that vi-
olate specific assumptions required (e.g., use of unsupported language
elements). This was achieved by making preconditions for rules as pre-
cise as possible and writing explicit assertions when possible (where a
rule is in principle applicable but does not cover all the cases). Without
fail-fast programming we would have very limited trust that the trans-
formation works correctly on hundreds of input code fragments that we
were not able to inspect manually.

Observation 4.3. Fail-fast programming helped retaining quality on re-
quired inputs, safely avoiding supporting anything not necessary for
the modernization project.

Initially, we considered using semantic analysis techniques to solve
the task—e.g., static single assignment or type analysis—but it soon
became clear that this would considerably raise the complexity of the
implementation, and more importantly pollute the output with auto-
matically generated identifiers that are unfamiliar to developers. The
resulting models are not merely left as is, but are expected to be read
and modified by humans afterwards. Full understanding of static se-
mantics might only be required if one implements a general refactoring,
but for known code base it seems much easier to work with syntactic
transformations.

Observation 4.4. We found working with syntax directly significantly
more cost effective for ad-hoc transformation tasks than relying on se-
mantic information.
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Tool Selection

Since the input language (C++) is rather complex, we understood early
on that the transformation tooling should be driven by the availability
of a good C++ grammar, rather than our personal experiences. Thus
we considered several existing open source compiler front-ends (for in-
stance GCC3), and language tools (such as Eclipse CDT4) for the task,
but found them too challenging to use. We then considered transfor-
mation tools (see also Chapter 2) and found that both Spoofax [Kats
and Visser, 2010] and TXL [Cordy, 2006] have C++ grammars, and that
the latter had a better maintained grammar for the current version of
the tool. We thus ended up using TXL since in addition to having a
good C++ grammar, it handles grammatical ambiguities quite well and
provides mechanisms for relaxing the existing grammar, making it easy
to adapt to our needs. TXL is a standalone command-line tool, with
few dependencies, and we got a simple proof of concept transformation
working after only 4 hours of experiments with TXL.

Observation 4.5. Simplicity and integration with the languages to be
transformed had a stronger influence on the selection of tools than the
features or paradigm of the transformation language.

Transformation Implementation

TXL supports working with only one grammar at a time, and so the in-
put and output syntax must conform to the same grammar. To overcome
this we selected a subset of C++ expression language as our target lan-
guage, since it sufficiently well captures propositional constraints over
our finite set of domain variables. To handle this format we needed
to relax the C++ grammar slightly to allow top-level expressions, and
to preserve correctness we use a simple validation rule to that checks
whether the output program is an expression in the subset of interest.

An example transformation rule for our modernization project is pre-
sented in Figure 4.2; fully capitalized identifiers refer to syntax trees.
The rule matches a conditional statement without an else clause (line
3), translating it into a ternary expression (line 8) if the body statement
is neither a compound statement nor another conditional (Lines 4–5);
to fill in the missing branch in the ternary expression, a constant true

3https://gcc.gnu.org
4http://eclipse.org/cdt/

https://gcc.gnu.org
http://eclipse.org/cdt/
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expression is used (Lines 6–7). The specified rule preconditions, in com-
bination with the definition of the grammar and other rules, ensure that
the rule is only applied when the body statement is largely consisting
of a simple expression itself.

1 rule convert_simple_sel_stmt
2 replace [selection_statement]
3 ’if ’( EXP [expression] ’) STMT [statement]
4 where not STMT [contains_selection_stmt]
5 where not STMT [is_compound_stmt]
6 construct TRUE_STMT [true_case_statement]
7 ’TRUE ’;
8 by ’( EXP ’) ’? ’( STMT ’) ’: ’( TRUE_STMT ’)
9 end rule

Figure 4.2: Example TXL transformation rule from the modernization
project: translating a conditional statement into a ternary expression.

The overall algorithm applied by the transformation is:

1. The program fragment is checked for format assumptions: all
branches return a value, there are no loops and goto jumps, no
calls to non-pure methods, etc. The transformation is parametrized
by a list of names of pure functions, since it does not do any se-
mantic analysis to determine purity itself.

2. All preprocessor #ifdef directives in the program are cleaned up,
and converted to ordinary if statements.

3. Local variable assignments are inlined so that variable accesses are
replaced by assigned values—going from the last assignment to
the first to maintain correct ordering—and corresponding declara-
tions are removed.

4. All switch statements are converted to a series of if statements.

5. Sequenced if statements are simplified into nested if statements,
such that the fragments are reduced to a single root statement.

6. if statements are converted to ternary expressions and return
statements are replaced by the expression they return.

Observation 4.6. We succeeded in implementing a flow-aware syntactic
transformation, including variable inlining, which enabled us to pro-
duce a result declarative expression that preserves identifiers and has
reminiscent structure of the input programs.
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Readability and recognizeability of the final output is important in
modernization projects since developers are expected to further evolve
the generate code.

Basic metrics

The entire transformation (including grammar definitions) spans 6515
SLOC. The core C++ grammar—provided from the TXL website—
has 137 nonterminal rules (595 lines of code), and we additionally
(re)defined 98 grammar rules to adapt the grammar to our needs. The
transformation has 171 function definitions and 297 rule definitions,
making 468 definitions of operations in total.

It took 3 months full-time work of experienced software developer
to implement this transformation, including learning TXL, domain un-
derstanding, unit testing and meetings with the industrial partner. The
cost is deemed acceptable, especially given that the company has sev-
eral similar products to modernize for which the transformation and
accompanying experience would be largely reusable.

The transformation execution lasts 30 minutes on the 4119 functions
out of which 105 functions are not handled; these non-handled cases
were caught by our fail-fast approach, and marked by the transforma-
tion to be manually migrated.

4.4 Validating the Transformation

Our transformation uses the full expressiveness of TXL including the
expressive pattern matching capabilities, implicit tree traversals, and
shared global state. Furthermore, there is use of reflective features such
as dynamic reparsing which allows serialization of abstract syntax trees
to textual syntax and then reinterpretation as other syntactic structures.
Individual rules and functions are written non-modularly and might in-
termediately break syntactic and semantic correctness properties; this
makes it hard to verify individual rules compositionally, and the trans-
formation must be validated as a whole.

Observation 4.7. Our transformation was written non-modularly, which
made it impossible to do compositional verification of the transforma-
tion rules.
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An concrete example of a non-modular rule in our transformation is

if (E) return true→ return E

which is only correct under assumption that the if statement occurs
last in the main function. Since our input size and shape is fixed, we
decided it would be more feasible to treat the transformation as a black-
box than try to tackle the complexity of verifying rules using white-box
techniques.

Observation 4.8. We were able to treat a complex transformation as a
black-box, reducing validation to checking whether the provided input
and corresponding transformed output are semantically equivalent.

Approach

Ordinary TXL rules and functions are constrained to replacing well-
formed syntactic trees with newly built ones, making it hard for TXL
programs to produce syntactically incorrect output. The correctness cri-
terion of the transformation was to produce semantically equivalent C++
programs, and therefore our validation technique must be able to reason
about the semantics of C++ programs.

We considered several analysis techniques, finding that symbolic ex-
ecution [King, 1976] is able to build a very precise semantic model for
the programs we are considering. We decided on using the precise sym-
bolic executor KLEE [Cadar et al., 2008] that handles the majority of fea-
tures used in the code base, and integrating it in the automation process
proved to be cost-effective.

One of the challenges of using KLEE is that it requires compiling the
input code to LLVM [Lattner and Adve, 2004] intermediate representa-
tion (LLVM-IR), including all external libraries, because otherwise the
symbolic execution may provide incorrect results. Our code base how-
ever contained calls external functions with unknown implementations,
and therefore we had to instrument the code to get a closed program:

1. We created stubs for unknown functions—ordinary, static member
and singleton member functions alike—such that a set of argu-
ments is matched to the same symbolic result on every call.

2. We created stubs for the data structures with constructors that
straightforwardly initialize all members to symbols and over-
loaded equality to do structural comparison.
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Function stubs are created in the symbolic function style [Corin and
Manzano, 2011]. For each stub, a memoization table which matches
input arguments with symbolic return values is allocated. When the
function is called, it looks up the arguments in the memoization table: if
they are found, it returns the same symbolic result as before; otherwise,
a new record that stores the arguments along with a fresh symbolic
result variable is created in the table.

1 bool defined(int p) {
2 static node<int, bool> *results;
3 static int* counter = new int(0);
4 bool* val = new bool;
5 if(!getResult(&results, &results, p, counter, val)) {
6 char symbolicname[40];
7 sprintf(symbolicname, "defined%d", *counter);
8 *val = klee_range(0, 2, symbolicname);
9 }
10 return *val;
11 }

Figure 4.3: A stub for an unknown Boolean function.

The stub for the Boolean function defined with unknown concrete
implementation is presented in Figure 4.3. The static memoization table
results and call counter are reused for all calls to the function. The
function getResults looks up the input argument p in the memoization
table and updating the value of the pointer val if p was already memo-
ized. In case this is the first time p is encountered, then the call counter
is incremented and val points to a new memory address, that is marked
as symbolic by klee_range.

Observation 4.9. We were able to use off-the-shelf tools to perform se-
mantic verification of programs, with a moderate amount of effort re-
quired to instrument the input to be useable with the tool.

Validation Experiment

Our validation experiment answers the following three questions refin-
ing RQ3:

RQ3.1 How large a part of the transformed code base can be verified
automatically?

RQ3.2 How much additional effort would it require to verify the rest of
the code base?



48 Chapter 4. Validating a Software Modernization Transformation

RQ3.3 How can our verification effort be generalized to other similar
modernization projects?

We address RQ3.1 in Section 4.5 by running the verification proce-
dure on the input and transformed output, reporting and classifying the
results. Section 4.7 discusses the challenges (and solutions to these chal-
lenges) that appeared during verification (RQ3.2) and what parts of our
verification procedure is generalizable to other transformation tools and
projects (RQ3.3). Executing the validation procedure on all transformed
functions lasts 7 minutes, where 3348 of the functions are evaluated triv-
ially to pass verification–the output is identical to the input.

4.5 Bug Analysis

There were 771 functions out of 4119 in the code base that could not be
trivially validated. We present the statistics in Table 4.1.

Table 4.1: Erroneous transformation cases caught by each step of the
validation process.

Step #Cases

1 Failing transformation precondition (not handled, re-
quiring manual inspection)

105

2 Failing silently due to unhandled syntactic structures
(caught statically by TXL during preliminary steps of
verification)

3

3 Caught by C++compiler 3

4 Checked for equivalence using KLEE 640

4a Validated being equivalent 562

4b Concrete bug cases with provided counter-
examples

50

4c False positives with spurious counter-examples
(due to over-approximation of functions, and rep-
resentation mismatch)

28

5 Unhandled cases containing assertions (intentional,
due to design limitations of the validation technique)

20
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Observation 4.10. It was possible to analyze a substantial amount of the
modernized code automatically with only 20 corner cases left to be han-
dled manually.

We analyze the bugs found by verification (3 & 4b) below. In Sec-
tion 4.7 we will discuss the types of spurious counter-examples (4c), the
unhandled cases due to design limitations (5), and propose solutions for
these issues.

Analysis of Bugs Found by Verification

Our technique had identified seven bugs present in the transformation.
While these bugs varied in nature, they had one important thing in
common: they were all related to execution semantics and would have
been hard to find with a syntactic check or a static semantics check using
e.g., type analysis.

Observation 4.11. When the code base of our modernization project
reached a certain complexity it became infeasible to find all bugs
through expertise and unit testing. Validation of semantics was essential
to ensure that the output code worked correctly.

Bug 4.1: Function call is dropped in some paths. The most widespread
errors in the output expressions were missing function calls, that were
present in the original code. This was not contained to calls of a par-
ticular function or particular place in the output expression, and other
calls to the same function might still be present in the rest of the output
expression.

The bug was caused by an incomplete rewrite rule: the rule matched
a functional call in a return statement, but did not use the function call
when constructing the replacement.

Bug 4.2: Structure replaced by a constant integer. Another widespread
but simple bug is where the input function declares a variable with a
class type, calls its object initializer with multiple arguments and then
returns the variable. Here, the transformation seemed to instead return
the first argument given to the object initializer which often had an in-
compatible type like int.

This bug happened due to misuse of deep pattern search and a broken
rule assumption. The variable inlining procedure expected variables with
simple types and so used a deep pattern match to extract the target
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value; for structure types, the deep pattern will however simply match
the first argument value of the initializer—ignoring the rest—and use
that for the inlining.

Bug 4.3: Conditional branches are dropped. This bug was also caused
by incomplete rewrite rules, and made the transformation ignore all
branches following a nested if-statement (also referred to in Sec-
tion 4.1). The transformation rule matches a nested conditional pos-
sibly having an else-branch, correctly handling the nesting but not the
else-branch.

Bug 4.4: The unexpected exceptions. This bug was surprising since it
mostly happened in huge functions with heavy nesting of control flow.
While the input function seems total and returns a correct result on all
paths, the transformation produces an output which contains a branch
that throws an exception stating that the branch should be invalid.

This bug happens due to overconstrained pattern matching and broken
rule assumption. When a sequence of nested conditionals followed by a
return statement is matched by the transformation, it tries to put the
final return statement inside the branches of the previous conditional.
However, the pattern was overconstrained—not matching the inputs it
should have handled—and so the containing rule was never applied;
later, when the transformation tries to convert the statement to an ex-
pression it finds a branch with no return statements and replaces it
with a throw statement—as part of the fail-fast approach—since it did
not expect this case to be possible.

Bug 4.5: Use of undeclared variables. This bug was caught during com-
pilation, and happened when the original input contained declarations
to local variables that were not inlined correctly by the transformation.
Recall, that the transformation removes all local declarations after in-
ling, but in this case there were still some variable accesses that were
not inlined which resulted in undeclared variable errors when running
the result expression by the compiler.

This bug occurs due to a combination of dynamic reparsing capabilities
and wrong target type in expression. To control the number of iterations
of inlining substitution, the transformation replaces variable nodes with
the string representation of their assigned expressions, using the textual
output capabilities of TXL. This ensures that the substitution terminates,
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but might also be incorrect if the transformation has not finished migrat-
ing the serialised subtrees. In general, it is caused by challenges in im-
plementing a semantics-sensitive operation (i.e., inlining) syntactically.

Bug 4.6: Negation dropped in result. The simplest bug found by the
KLEE-based verifier is where the transformation had transformed the
whole input correctly except a negation operation which was missing in
the output. This bug occurs due to misuse of deep pattern search of TXL,
because a transformation rule searched for a more specific syntax type
than necessary and thus ignored more complex types of terms. This
bug is particularly interesting since it would not be caught by a simple
type-based static analysis, but would be caught by a more sophisticated
analysis such as the inductive shape analysis in Chapter 7.

Bug 4.7: Conditional with error code assignment dropped. A particu-
larly interesting bug is where the input has a function that contains a
conditional statement assigning a value to an error code pointer variable,
in addition to returning a separate value. In this case, the transformation
will produce output that will completely remove the conditional branch
and only keep the final return value, making the function produce an
incorrect result.

This bug happens due to the dynamic reparsing capabilities and eager
removal of source data. It originates in the inlining phase where some
abstract syntax is broken by wrongly inserted textual syntax, and sub-
sequently a rule that removed empty conditional branches was applied.

Bug 4.8: Variable declarations without assignment not handled. This
bug was caught statically in the cases when the transformation finished,
but the output was empty. Similar to Bug 4.2, a combination of a bro-
ken rule assumption and misuse of deep pattern search was the cause of this
bug. Inlining assumes that declaration and initialization of local vari-
ables happen in a single statement, but the cases triggering this bug
had separate declaration and initialization. The declaration removal
rule used deep search to identify statements containing local variable
assignments and since program consisted of a single large if-statement
with the assignments, it was completely removed.

Classification summary Most cases were affected by Bug 4.1 where
there were 23 cases in total, and followed by Bug 4.2 which had 15 cases
in total; both of which were simple in nature; this is unsurprising since
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function calls and object initialisations are common constructs in C++,
and a simple mistake in the transformation of these features will there-
fore affect a large number of analyzed functions. The more interesting
Bugs 4.3 and 4.4 had 5 cases in total each; this type of bugs often ap-
peared in larger files with a complex nesting of conditionals, and would
therefore have been hard to immediately spot manually or with simpler
unit tests. Finally, the remaining bugs (4.5, 4.6, 4.7, 4.8) had respectively
3, 1, 1 and 3 cases in total; these errors represent corner cases that were
either not caught by the preconditions of the transformation, or occurred
where an intermediate assumption of the transformation was wrong.

Observation 4.12. Simple bugs hit wide, complex bugs hit deep. Simple se-
mantic errors affected a large number of functions while complex errors
were found in a few but bigger functions.

4.6 Formal Justification of the Procedure

The transformation translates many functions individually, each of
which needs to be translated in a semantics preserving manner. We
view these functions (and programs in general) as black-boxes relating
input and output.

Definition 4.1. A program P is a set of imperative statements that state
how to calculate the designated output variable ret from a set of input
variables Xin = {x1, . . . , xn}.
Definition 4.2. A concrete store σ is a partial function mapping program
variables Var into values Val, i.e. σ : Var ⇀ Val. The set of values Val
range over constants from C++ base types: Boolean, bounded integer,
float, etc.

A concrete execution starts with an initial state, σin, where all input
variables are assigned some initial values. The effect of executing each
statement s of program P in a state σ is a successor state σ′, written as
σ

s−→ σ′. When all statements are executed, the program reaches a final
state σout, in which the value of the output variable ret is well-defined
(i.e., ret ∈ dom σ).

Definition 4.3. A concrete execution path π = σin, σ1, . . . σout of the program
P is a sequence of states, such that σin is an initial state, every next state
in the sequence is obtained by sequentially executing statements from P
one by one, and σout is the final state.
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Definition 4.4 (Concrete program path semantics). The path semantics of
program P—called JPKtrace—is defined to be the set of all valid concrete
execution paths π of P.

Definition 4.5 (Denotational program semantics). The denotational seman-
tics of program P is a partial function JPK : Valk ⇀ Val defined by:
JPK(σin(i1), . . . , σin(ik)) = σout(ret), for any concrete execution path
π ∈ JPKtrace = (σin, . . . , σout).

Definition 4.6 (Semantic equivalence). Two programs P and P′ are seman-
tically equivalent, written P ∼ P′, if for any collection of values v1, . . . , vk
it holds: JPK(v1, . . . , vk) = JP′K(v1, . . . , vk) .

Determining the semantic equivalence of programs using concrete
path semantics is intractable due to the immense range of input values.
Instead, we use a symbolic execution to cluster the input values using a
set of constraints called path conditions.

Symbolic execution

In symbolic execution the program does not assign concrete values to its
variables; instead, it assigns symbolic expressions containing uninter-
preted symbols abstractly representing user-assignable values in a con-
crete execution of the program. We let Sym represent the set of unin-
terpretered symbols x?, y?,∈ Sym which we write as variables with a
lifted question mark. In the initial execution state, each possible input
variable xi is usually assigned a corresponding unique symbol x?

i .
For example, let x and y be input integer variables, then the concrete

semantics of ret = x + y is the set {([x 7→ 0, y 7→ 0], [x 7→ 0, y 7→ 0, ret 7→
0]), ([x 7→ 0, y 7→ 1], [x 7→ 0, y 7→ 1, ret 7→ 1]), . . .}, where initial states
are all possible assignments of integer values to x and y. However, the
symbolic path semantics of ret = x + y will contain only one symbolic
execution path ([x 7→ x?, y 7→ y?], [x 7→ x?, y 7→ y?, ret 7→ x? + y?]),
where x? and y? are fresh symbols.

Symbolic execution approximates a set of different concrete paths
into a single symbolic one by following all branches whenever a branch-
ing or looping statement is encountered. In the same time, for each
branch it maintains a set of constraints called the path condition, which
must hold on the execution of that path.

Definition 4.7. A symbolic expression ê ∈ Êxp can be built out of constant
values from Val, symbols from Sym, and arithmetic-logic operations.
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Definition 4.8. A symbolic store σ̂ is a function mapping program vari-
ables Var into symbolic expressions Êxp, i.e. σ̂ : Var ⇀ Êxp. The initial
symbolic state σ̂in maps each input variable xi ∈ Xin to a fresh symbol
x?

i ∈ Sym.

Definition 4.9 (Constrained symbolic state). A constraint is any Boolean
symbolic expression b̂ ∈ B̂Exp. A constrained symbolic state is a pair
(σ̂, b̂), which constraints the symbolic expressions in σ̂ with a Boolean
symbolic expression b̂.

Definition 4.10 (Symbolic execution path). A symbolic execution path
of the program P is a sequence of constrained symbolic states
((σ̂in, true), (σ̂1, b̂1), . . . (σ̂out, b̂out)), where the initial state σ̂in is uncon-
strained, and the constraint produced for the final state, b̂out, represents
the path condition.

Note how the resulting set of symbolic execution paths partitions the
set of concrete execution paths. For the program that computes the abso-
lute value of an integer variable x, there are two different paths returned
by symbolic execution:

(
([x 7→ x?], true), ([x 7→ x?, ret 7→ x?], x? ≥ 0)

)
and

(
([x 7→ x?], true), ([x 7→ x?, ret 7→ −x?], x? < 0)

)
. If the initial value

of x is non-negative, then the return value is the symbolic expression x?;
otherwise, the return value is −x?. Hence, the set of all concrete execu-
tion paths—determined by the input values of x—has been partitioned
in two sets: those for which x ≥ 0 holds and those for which x < 0
holds.

Proposition 4.1. For each concrete execution path π = (σin, σ1, . . . σout) of
the program P, there exists the corresponding symbolic execution path π̂ =
((σ̂in, true), . . . (σ̂out, b̂out)), such that the following equations are satisfied:

σ̂in = [xi 7→ x?
1, . . . , xn 7→ x?

n]

θ = [x?
0 7→ σin(x0), . . . , x?

n 7→ σin(xn)]

((σ̂out)θ)(ret) = σout(ret)

(b̂)θ = true

Theorem 4.1. Two programs P and P′ are semantically equivalent P ∼ P′ iff
for each value v ∈ Val it holds:∨

(σ̂out,b̂out)∈Σ

(
σ̂out(ret) = v ∧ b̂out

)
⇐⇒

∨
(σ̂′out,b̂

′
out)∈Σ′

(
σ̂′out(ret) = v ∧ b̂′out

)
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where

Σ =
{
(σ̂out, b̂out)

∣∣∣ ((σ̂in, true) . . . (σ̂out, b̂out)) is a symbolic path of P
}

Σ′ =
{
(σ̂′out, b̂′out)

∣∣∣ ((σ̂in, true) . . . (σ̂′out, b̂′out)) is a symbolic path of P′
}

4.7 Experiential Reflections

Unreliability of academic tools is a know challenge in software engineer-
ing action research; due to lack of support services, these tools are rarely
adopted by companies, except in rare cases where the company is able
to further develop and maintain the tool in-house. Our experiences with
this project tells us that this issue is less detrimental for modernization
projects, since the tools are only required for use in a short transitional
period and there is more freedom for customization.

The applied design and validation principles translate easily to other
program and model transformation languages. Even though we ver-
ify expressive semantic properties between input and output, the trans-
formation itself is treated as black-box and the method is oblivious to
the choice of transformation language. Unclarity remain regarding the
generalizability of the technique with regards to transformations that
should support a broader variety of input, and whether the identified
bugs are specific to this case, this input and output languages, and TXL.

Validation Challenges

In practical projects, many of the idealized assumptions made in re-
search are not fulfilled, e.g., that data is represented in a particular way
or that we have access to all library code at validation time. We will
discuss three concrete issues we had when validating the transformed
code, and how we effectively mitigated them.

Representation of Boolean expressions

In C++ integer valued expression can be used as logical tests (inside
if-statements etc.), where any non-zero value counts as true and zero
counts as false. If an integer variable a is used only as a logical condition
both in the input and output programs it would be pragmatically fine.
However, our transformation contains simplification rules which con-
vert statements of form if (a) return true; else return false; to
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return a; which clearly has different semantics for non-Boolean val-
ues. In cases where we are certain that specific integer variables are
only used as conditionals we instruct KLEE to assume that these vari-
ables have values lying in range [0, 2).

Over-approximation of Function Semantics

We use stubs to model external functions whose implementation we do
not know, which is over-approximating since we only know that equal
arguments provide the same result values. If any of these functions how-
ever had equivalent implementations and we used a different stub for
each one, calling the two stubs with the same parameters would result
in distinct return values. This led to a number of false positives where
KLEE decided that the input and output programs were not equivalent,
and was solved by using the same stub for functions which were known
to be identical a priori.

Assertions

When KLEE meets a C++ assertion that fails on a possible path, it will
immediately halt execution for that particular path. This concretely
means that it will never check whether the input and output functions
have the same results, or in this case rather both fail. Instead of using
the default assertion function, one could instead use a stub that throws
a recoverable error on failing conditions; thereafter, one could check
whether both the input and output programs failed on the same paths
and if they did one could consider the paths to be equal. Our code
base contains 20 cases affected by this limitation, but implementing the
suggested solution was not feasible in the allocated time.

4.8 Related Modernization Efforts

Semantic Designs (SD)5 presents a similar automation-based modern-
ization effort is presented in a joint project with Boeing6 [Akers et al.,
2007] which uses Semantic Designs’s commercial transformation and
analysis tool DMS [Baxter et al., 2004] to convert an old component-
based C++ code base to a standardized CORBA [Siegel, 2000] architec-
ture. This is in contrast to our case study which relied solely on freely

5https://www.semanticdesigns.com
6http://www.boeing.com

https://www.semanticdesigns.com
http://www.boeing.com
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available tools like TXL and KLEE, and we more importantly had a sig-
nificantly more thorough validation effort with precise descriptions of
the challenges we encountered and the lessons we learned.

A series of papers [Selim et al., 2013, 2014, 2015] discuss a case study
that aims to design and verify a model transformation for moderniz-
ing an existing collection of proprietary models to conform to the stan-
dardised AUTOSAR [Bunzel, 2011] format. The transformation [Selim
et al., 2015] was initially encoded in a limited expressive subset of the
ATL model transformation language [Jouault et al., 2008] and then ver-
ified for structural properties [Selim et al., 2013]. The same verifica-
tion effort was then repeated [Selim et al., 2014] more efficiently by by
symbolically executing a version of the transformation re-encoded in
DSLTrans [Barroca et al., 2010]. While these verification tools and the
presented case study have significant contributions to the model trans-
formations community, they were not applicable in our study due to the
difference in expressiveness between TXL and the verified non-Turing-
complete subset of ATL/DSLTrans, and the complexity of the property
we wanted to check (behavioral equivalence versus structural proper-
ties).

4.9 Recap

This chapter presented a collaborative effort focusing on designing and
verifying an industrial modernization project implemented using the
high-level transformation language TXL. It showed the usefulness of
the high-level transformation language features—such as traversals and
fixed-point iteration in the rule-based execution—in providing a practi-
cal and cost-effective development cycle for migrating a large code base.
More importantly for this dissertation, the modernization project high-
lighted the practical need for formal verification methods such as sym-
bolic execution: even though our the modernization transformation was
written by an expert transformation programmer and had been well-
tested, the validation effort found seven serious bugs spread over 50
concrete instances. We furthermore provided a detailed analysis of the
bugs and their causes, which was a particularly useful inspiration for
directing the verification work in the rest of the thesis.





Chapter 5

Symbolic Execution of High-Level
Transformation Languages*

The rename field refactoring in Figure 5.1 is an example of a transforma-
tion that is best written in a high-level transformation language. The
transformation changes the name of a given field in the definition of
a class and ensures that all relevant field accesses use the new field
name [Fowler, 1999].

This transformation, while simple in nature, requires a lot of boiler-
plate to define in traditional programming languages—like C or Java—
since one needs to construct visitors that recursively traverse each of the
many cases in the target program syntax tree. In contrast, high-level
transformation languages provides these features directly in the form
of type-directed querying and manipulation. These operations allow deep
matching and rewriting of structures by following the types of objects
and references between them. In our example in Figure 5.1, a type-
directed query makes it possible to retrieve all accesses to the credit field
where the target expression has type Account, using only a couple of lines.

Transformations are complex programs and as such prone to bugs;
for our rename field example, a bug could be that we modified accesses
to fields with similar names but an unrelated class. Due to the complex-
ity of transformations these bugs are hard to find and expensive to fix;
this creates a need for automated formal techniques that support veri-
fying the correctness of transformations, which is an important step to-

*This chapter is based on Al-Sibahi et al. [2016] which is the technical report version
of the conference paper, Al-Sibahi et al. [2016].
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class Account {
  Money credit;
  MovieList purchases;
  …
  membershipLevel() {
    … this.credit …
  }
}

class PurchaseView {
  view() {
    Account a; Movie m;
    … a.credit … m.credit …
  }
}

rename credit 
to balance in 
Account

class Account {
  Money balance;
  MovieList purchases;
  …
  membershipLevel() {
    … this.balance …
  }
}

class PurchaseView {
  view() {
    Account a; Movie m;
    … a.balance … m.credit …
  }
}

Figure 5.1: An example execution of the Rename-Field refactoring: re-
name the definition of credit to balance and update all references accord-
ingly.

wards increasing the trustworthiness of our language implementations
and tools [Cadar and Donaldson, 2016; Schäfer et al., 2009; Hoare, 2005].

In this chapter, we present a foundational symbolic execution tech-
nique that handles high-level transformation features as first-class. Con-
cretely, our contributions are:

• A formal symbolic execution technique supporting complex con-
cepts such as symbolic sets, ownership constraints, type-directed
querying and manipulation, and fixed-point iteration.

• An evaluation of the symbolic execution technique when used
for white-box test generation using realistic model transforma-
tions and refactorings, showing that our symbolic executor makes
white-box test generation for transformation feasible.

• A comparison of our symbolic execution technique to object-
oriented symbolic executors, highlighting the difficulties of dealing
with target high-level features as second-class.

5.1 Overview

Let us start by discussing our motivating rename field example (Fig-
ure 5.1) in more detail. Observe that the refactoring program needs
two key components: type definitions (sometimes called meta-model) for
the data and the actual transformation code. We will use (minimalistic)
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name : String
…

Class
…

Method

name : String
…

Field

FieldAccessExpr

0.. * fields
target

0..* methods

type

body

…
Expr

field

…

ThisExpr

super

(a) Abstract syntax for simple object-oriented programs

1 input:
2 target_class: Class,
3 old_field: Field,
4 new_field: Field
5 precondition:
6 old_field ∈ target_class.fields
7 ∧ new_field /∈ target_class.fields
8
9 target_class.fields :=
10 (target_class.fields \ old_field) ∪ new_field
11 foreach faexpr ∈ target_class match? FieldAccessExpr do
12 if faexpr.field = old_field ∧
13 faexpr.target.type = target_class then
14 faexpr.field := new_field
15 else skip

(b) The Rename-Field Refactoring implemented in the small formal transforma-
tion language, TRON

Figure 5.2: A simplified version of the rename-field refactoring example
in TRON

class diagrams to show the former (e.g., Figure 5.2a), and a compact
formally defined transformation language TRON for the latter (e.g., Fig-
ure 5.2b). These two notational choices incorporate some key common
characteristics of transformations, which we discuss below.

Figure 5.2a shows the types for the abstract syntax of a hypothetical
object-oriented language, which we will use to model the programs we
are refactoring. We show the classes1 and properties relevant for our

1The abstract syntax types describe a hypothetical object-oriented programming
language and not of the formal core transformation language (TRON).
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refactoring, while omitting irrelevant details. In our example, each class
has a name (an attribute), and contains two collections, one for fields and
one for methods. Recall that in class diagrams, a black diamond is used
to represent containment references, which are traditionally found both
in object-oriented modeling languages and grammar-based languages
like TXL.

Additionally, each class may simply refer to a possible super-class,
which is denoted using a line without the diamond symbol. All the rep-
resented features—classes, containment references, simple references,
and simply-typed attributes—are typical of transformation languages
we want to handle by our technique.

For simplicity of presentation, we let the body of each method in
our example be an expression. Expressions themselves can come in
many different kinds (thus the use of inheritance), but we only show
expressions representing this and field access expressions since they are
the ones relevant for the example.

A simplified implementation of the rename field refactoring, is pre-
sented in Figure 5.2b using the core transformation language (TRON). We
will discuss the example based on general intuitions, presenting the for-
mal semantics of the core language in Section 5.2–Section 5.3. In the
start (Lines 1–4), we list the input parameters—references to a class, the
field with the old name, and the replacing field with the new name—
and the application precondition (Lines 5–7) which specifies that the old
field has to be contained in the fields of the input class, whereas the new
must not.

We begin the refactoring by removing the old field definition from
the fields of the class and adding the new field definition (Lines 9–10).
Then, in Line 11, all field access expressions in the class are matched
and gathered into a single set using a deep type-directed query, which col-
lects instances of FieldAccessExpr contained transitively in the input class.
After the deep type-directed query, Line 11 binds each element of the
matched objects to faexpr executing Lines 12–15 for each of these objects.
If the expression accesses the refactored field (Lines 12–13) then the field
reference is updated to point at the new field (Line 14). It is typical for
transformation languages that references are redirected or attributes are
changed.

The example demonstrates how TRON, despite being minimalis-
tic, supports the key high-level transformation features such as type-
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directed querying and iteration via foreach, collection operations, and
imperative updates for manipulation (like ATL or Rascal).

Symbolic Execution of Transformations

Symbolic execution is an effective way to check the presence of bugs in
transformations, since it systematically explores the various transforma-
tion program paths. Figure 5.3 presents an overview of our symbolic
execution technique for transformations; here, the symbolic executor
expects as input the transformation program, along with the required
type definitions. The initial step is to run the symbolic executor (see
Section 5.3) on the input transformation and generate a finite set of path
conditions. These path conditions are logical formulae constraining the
shape, types and range of input data, achieved by refining input con-
straints according to the semantics of each statement in the given trans-
formation.

We use the model finder to prune those paths which produce un-
satisfiable formulae so that only valid paths are considered. In our
implementation, the model finder uses the relational constraint solver
KodKod [Torlak and Jackson, 2007] to check the existence of a suitable
model satisfying a target formula within a bounded scope, possibly fail-
ing when either the formula is unsatisfiable or the scope is too small.

TransformationType 
Definitions

Symbolic 
Executor Model Finder⋮

h

h

Figure 5.3: High level architecture of the symbolic executor.

5.2 A Demonstration Language

We developed the small formal transformation language TRON as a
methodological device, to keep the formal work, discussions, and the
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presentation focused, and to allow agile experimentation; TRON is a de-
coy languagenot meant to be used by programmers, but is designed so
that our ideas remain applicable to real-world transformation languages.

Table 5.1 shows how TRON incorporates characteristic features of high-
level transformation languages. We present TRON in two parts: i) the
meta-model that captures structures of the manipulated data, and ii) the
operational part of the language that describes computations.

TRON Feature

Language
ATL Haskell Maude

Containment Containment
references

Algebraic
Data Types

Many-Sorted
Terms

Set expressions

OCL
collections

and collection
operations

Standard
library

Standard
library

Shallow
matching

Type testing
via

oclIsKindOf

Pattern
matching Rewrite rules

Deep matching Transformation
rule definition

Generic
traversal via

Uniplate

Rewrite rules
and strategies

Fixedpoint
iteration

Lazy rules,
recursive
helpers

Recursive
functions

Rewrite
strategies

Table 5.1: Relating TRON features to existing high-level transformation
languages

Data Model. The data in TRON is described by types that capture the
common features of high-level transformation languages: constructors,
containment, references and generalization. It is essentially a formal
model for the kind of structures like the one represented in Figure 5.2a.

A data model is a tuple: (Class, Field, gen, ref), where Class is the
set of classes, Field is the set of fields, partitioned into contained fields
Field♦ and referenced fields Field . Later, we use c to range over class
names (Class), and f to range over field names (Field). A class has at
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most one superclass, described by the generalization relation: gen ⊆
Class× Class, where c gen c′ means that c is a subtype of c′. Each field
has a corresponding type, a class. This is represented by the references
relation ref ⊆ Class × Field × Class, where ref(c, f , c′) means that the
class c has a field f of type c′. We generally expect that gen has the
expected properties of a generalization relation, namely that there is a
strict ordering of generalization (no cycles); similarly, we expect that
reference definitions in ref are not overriden by subtypes, i.e. if for any
class c a supertype has defined a typing for a field f , then c must have
the same typing for f .

To get all the fields defined for a class c or any of its supertypes, we
define the following function:

fields(c) =
{
( f , c′′)

∣∣ c gen∗ c′ ∧ ref(c′, f , c′′)
}

We do not explicitly handle simple types in our formal model, instead
they can be modeled theoretically as classes. For instance, we assume
a class Integer with instances representing integer numbers; integer at-
tributes can then be modeled as references to this class. We do handle
simple types in our symbolic execution tool by using symbolic variables
of corresponding simple types.

Heap Representation. Concrete TRON programs are executed over fi-
nite concrete heaps (h ∈ Instance× Field → ℘ (Instance)) that contain
instances organized into structures using containment links and simple
links (a link is a concrete instantiation of a field). In particular each link
f of an instance o, can point to a set of instances os. Instances are typed
at runtime using a type environment (Γ ∈ Instance→ Class). An exam-
ple heap is presented in Figure 5.4, which describes a possible definition
of the Account class used in Figure 5.1.

For the remainder of this chapter we will only consider well-formed
heaps where all instances are typed and their structure conforms to the
static typing provided by the data model. Furthermore, we assume that
in well-formed heaps each instance can at most be pointed to by a single
containment link (no sharing) and that there are no cycles in contain-
ment (acyclicity). Note that these restrictions do not apply for simple
links, which still allow cycles and sharing.

Abstract Syntax. The core TRON constructs include access to variables
and fields, constants, object construction, assignment, sequencing and
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:Class “Account” :String
methods

fields

:Field “balance” :String
:Field

name

name
“purchases” :String

name
:Method

:FieldAccessExpr

:ThisExpr

body

target

field… type

type

Figure 5.4: A heap instantiating one model of Figure 5.2a, inspired by
the Account class in Figure 5.1. Dots (•) represent instances, diamond
affixed lines represent containment links, dashed lines represent simple
links.

branching. The syntax is summarized in the following grammar:

SetExpr 3 e ::= x | ∅ | e1 ∪ e2 | e1 ∩ e2 | e1 \ e2

BoolExpr 3 b ::= e1 ⊆ e2 | e1 = e2 | ¬b | b1 ∧ b2

MatchExpr 3 me ::= e | e match c | e match* c

Statement 3 s ::= skip | s1; s2 | x := e | x := e. f

| x := new c | e1. f := e2 | if b then s1else s2

| foreach x in me do s | fix e do s

where x is a variable, f is a field name, and c is a class name. The
set expressions (e) and Boolean expressions (b) are standard. Match
expressions (me) include “e match c” which allows finding all objects
computed by e that are instances of class c. For example, consider a
set of objects representing program expressions to be referenced exprs =
{te1, te2, fae1, fae2} where tei is of type ThisExpr (Figure 5.2a) and faei is of
type FieldAccessExpr. The TRON expression “exprs match ThisExpr” re-
turns the set {te1, te2}, similarly “exprs match FieldAccessExpr” returns
{fae1, fae2} and “exprs match Expr” return the complete set exprs.

A deep variant of the pattern matching, e match∗ c, is also pro-
vided. It matches objects nested at an arbitrary depth inside other ob-
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jects, following the containment references (ref♦). This is similar to the
matching capabilities in many of the model transformation, term and
graph rewriting languages. A classical example here would be to get
all objects representing program variables in a term, i.e., the expression
expr match∗ Var—for a class Var representing variables—would return
a set that has all variables transitively contained in expr.

Most of the statements, s, are standard formulations from Java or
IMP; from left to right, the statements are: skip, sequencing, branching,
variable assignment, assignment of a field value, object creation (new)
and assignment to a field.

There are two looping constructs in TRON. The “foreach x in me do s”
iterates over the set of elements matched by me, binding each element
to x, and executes then statement s for each of them. The “fix e do s”
loop executes the body s, and continues to do so as long as the values
of e after and before iteration differ; therefore expression e defines the
part of the heap which is relevant for this fixed point iteration (a control
condition). By allowing the statement to explicitly depend on a local
control condition, it is possible to create temporary helper values on the
heap (outside e) without influencing the loop termination. This allows
explicit modeling of the implicit fix point iteration that is also supported
by many high-level transformation languages where rewrite rules are
repeatedly applied until no rule is further applicable.

Concrete Semantics

The formal concrete semantics of the TRON constructs is presented in Fig-
ure 5.5 and Figure 5.6. Most constructs are handled as expected from the
informal description: the only constructs that require more elaboration
are match expressions and field updates. Match expressions evalua-
tion requires the auxiliary functions match, which gathers the subset of
instances which are of a subtype of the target type, and the auxiliary
function dcs, which collects all are transitively contained instances for a
given set of instances in the heap. Field updates require that assigned
values are correctly typed via the typed relation, and ensure to remove
old containment references to the assigned instances in case of assign-
ment to a containment reference (change of ownership).
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Set Expressions

EJeKσ ∈ ℘ (Instance)
EJxKσ = σ(x) EJ∅Kσ = ∅
EJe1 ∪ e2Kσ = EJe1Kσ ∪ EJe2Kσ

EJe1 ∩ e2Kσ = EJe1Kσ ∩ EJe2Kσ

EJe1 \ e2Kσ = EJe1Kσ \ EJe2Kσ

Boolean Expressions

BJbKσ ∈ {tt, ff}
BJ¬bKσ = ¬BJbKσ

BJe1 ⊆ e2Kσ = EJe1Kσ ⊆ EJe2Kσ

BJe1 = e2Kσ = EJe1Kσ = EJe2Kσ

BJb1 ∧ b2Kσ = BJb1Kσ ∧ BJb2Kσ

Match Expressions

MJmeK(σ, Γ, h) ∈ ℘ (Instance)
MJeK(σ, Γ, h) = EJeKσ

MJe match cK(σ, Γ, h) = match(EJeKσ, c, Γ)
MJe match∗ cK(σ, Γ, h) = match(dcs(EJeKσ, h), c, Γ)

match(os, c, Γ) = {o|o ∈ os∧ Γ(o) gen∗ c}

dcs(os, h) =
{

o′
∣∣o ∈ os∧ o →♦ ∗

h o′
}

o →♦ h o′ iff ∃ f ∈ Field♦.o′ ∈ h(o, f )

Figure 5.5: Concrete semantics for TRON
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Statements

update(o, f , os, h) =

h[(o, f ) 7→ os] if f ∈ Field 

h′[(o, f ) 7→ os] if
f ∈ Field♦ ∧

@o′ ∈ os.o′ →♦ ∗
h o

where h′ = [(o, f ) 7→ do-f(h(o, f ), f , os) |(o, f ) ∈ dom h]

do-f(os′, f , os) =

{
os′ if f ∈ Field 
os′ \ os if f ∈ Field♦

typedΓ(o, f , os) iff ∃c.( f , c) ∈ Γ(o) ∧ ∀o′ ∈ os.Γ(o′) gen∗ c

skip, σ, Γ, h =⇒ σ, Γ, h

s1, σ, Γ, h =⇒ σ′′, Γ′′, h′′
s2, σ′′, Γ′′, h′′ =⇒ σ′, Γ′, h′

s1; s2, σ, Γ, h =⇒ σ′, Γ′, h′

σ′ = σ[x 7→ EJeKσ]

x := e, σ, Γ, h =⇒ σ′, Γ, h

o′ fresh
σ′ = σ[x 7→ {o′}] Γ′ = Γ[o′ 7→ c]
h′ = h [(o′, f ) 7→ ∅|( f ,−) ∈ fields(c)]

x := new c, σ, Γ, h =⇒ σ′, Γ′, h′

EJeKσ = {o} σ′ = σ[x 7→ h(o, f )]
x := e. f , σ, Γ, h =⇒ σ′, Γ, h

EJe1Kσ = {o} EJe2Kσ = os
typedΓ(o, f , os) update(o, f , os, h) = h′

e1. f := e2, σ, Γ, h =⇒ σ, Γ, h′

BJbKσ = tt s1, σ, Γ, h =⇒ σ′, Γ′, h′

if b then s1 else s2, σ, Γ, h =⇒ σ′, Γ′, h′
BJbKσ = ff s2, σ, Γ, h =⇒ σ′, Γ′, h′

if b then s1 else s2, σ, Γ, h =⇒ σ′, Γ′, h′

s, σ, Γ, h =⇒ σ′, Γ′, h′
EJeKσ = EJeKσ′

fix e do s, σ, Γ, h =⇒ σ′, Γ′, h′

s, σ, Γ, h =⇒ σ′′, Γ′′, h′′
EJeKσ 6= EJeKσ′′

fix e do s, σ′′, Γ′′, h′′ =⇒ σ′, Γ′, h′

fix e do s, σ, Γ, h =⇒ σ′, Γ′, h′

MJmeK(σ, Γ, h) = os x ← [ os ` s, σ, Γ, h each
==⇒ σ′, Γ′, h′

foreach x ∈ me do s, σ, Γ, h =⇒ σ′, Γ′, h′

x ← [ ∅ ` s, σ, Γ, h each
==⇒ σ, Γ, h

s, σ[x 7→ {o}], Γ, h =⇒ σ′′, Γ′′, h′′

x ← [ os ` s, σ′′, Γ′′, h′′ each
==⇒ σ′, Γ′, h′

x ← [ {o} ] os ` s, σ, Γ, h each
==⇒ σ′, Γ′, h′

Figure 5.6: Concrete semantics for TRON (Cont.)
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5.3 Symbolic Execution

We discuss the main design principles of our symbolic executor. Al-
though, the technique has been developed for TRON, the design decisions
were driven by the desire to handle the modeled high-level transforma-
tion language in general.

Representing Rich States Symbolically

Spatial Constraints. Transformations manipulate structured data, not
just simple values, and so the symbolic states of our executor describe
primarily the possible shapes of the memory heap. Following other
symbolic executors for object-oriented languages [Khurshid et al., 2003],
we use spatial constraints to restrict the shapes admitted by an execution
path. These constraints are first order formulae restricting values that
are pointed to by links. In the style of the Lazier# algorithm [Deng et al.,
2012], we distinguish between two kinds of symbolic objects: symbolic
instances and symbolic references.

A symbolic instance (ô∈ ̂Instance) abstracts over a unique instance. In-
stances cannot alias, so two different symbolic instances always point to
two different class instances in memory, even if they have the same type.
A symbolic reference (x?, y?∈ Symbol) points to a class instance that may
be aliased by other reference symbols, and, indeed, by some symbolic
instances. The separation of symbolic instances and symbolic references
allows separating reasoning about the structural representation of data
from aliasing by references. We can lazily reason about aliasing with-
out committing pre-maturely to a particular concretization of the heap
structure. This is particularly important for our symbolic executor, as it
handles deep containment constraints, which are hard to reason about
and are heavily affected by aliasing (more about deep containment con-
straints below).

In traditional symbolic execution [Khurshid et al., 2003], whenever
a field is accessed, the executor branches to initialize it to a new sym-
bolic instance, or to alias an existing symbolic instance. In contrast, the
Lazier# algorithm, simply assigns a distinct symbolic reference to each
fresh field access and aliasing is only explicitly treated if the substruc-
ture of that symbolic reference is further explored.

For objects created using new, we eagerly generate a new concrete
instance and exclude it from aliasing with pre-existing symbolic refer-
ences, as new objects cannot alias previously existing ones (assuming
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correctness of the memory manager). To emphasize this in the rules
below, we mark the explicitly created instances with a dagger (ô†).

Set Symbols. In addition to ordinary symbolic references, we intro-
duce set symbols, in the style of Cox et al. [2015] (X?, Y? ∈ SetSymbol),
which abstract over finite sets of instances with unknown cardinality.
This addition may seem very simple at first, but is key for our symbolic
executor: it allows us to range over sets without prematurely concretiz-
ing their cardinality, contained objects, or their structure and aliasing.

Set Expressions and Set Constraints. Set symbols can be combined
using symbolic set expressions:

̂SetExpr3 ê ::= X? | ∅ | {x?
0, . . . , x?

n} | ê1 ∪ ê2 | ê1 ∩ ê2 | ê1\ ê2

The symbolic set expressions mimic the set expressions of TRON, pre-
sented in Section 5.2, but without match expressions and with support
for literal set constructors over simple symbolic references {x?

1, . . . , x?
n}.

The meaning of the latter is a set of a fixed cardinality n, whose all ele-
ments are distinct (so, as a side effect, it also precludes aliasing between
symbols listed). We use it to concretize the cardinality and content of
sets during iteration.

Set expressions are embedded into constraints in a standard manner,
using subset and equality constraints:

̂BoolExpr3 b̂ ::= ê1 ⊆ ê2 | ê1 = ê2 | ¬b̂ | b̂1 ∧ b̂2

During symbolic execution the set comprehensions and reference sym-
bols interplay to our benefit, allowing to describe assumptions about
sets more lazily. For example, consider the constraint that equates two
sets of cardinality 3 of unknown references: {x?

1, x?
2, x?

3} = {y?
1, y?

2, y?
3}.

Generating this constraint allows to avoid deciding prematurely, which
of the six possible aliasing configurations between xis and yjs we are
seeing, something which would not scale if done repeatedly.

Containment Constraints. A special feature of our symbolic executor
is its ability to reason about the deep containment constraints of the
manipulated data structures, which are extremely common in language
processing (abstract syntax trees) and in data modeling. Besides elim-
inating many false positives, reasoning about containment also allows
implementing deep matching.
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To model deep containment constraints, we define a containment re-
lation as the union of all links typed by containment fields, and insist
that, for any two objects, their containments sets (the transitive closure
of the containment relation) are disjoint. Furthermore, we enforce the
acyclicity of the containment relation, ensuring that the irreflexive tran-
sitive closure of containment does not contain the identity pair for any
object. We are using a solver (KodKod) that allows reasoning about
transitive closures.

In order to perform symbolic deep matching, we on-demand bind
a symbolic containment set for each instance ô used in a deep-matching
query against a type c, to keep track of descendants. For example, this
allows us to track all instances representing program variables for a
some symbolic instance ô representing a program expression. This set is
further constrained and unfolded during execution, in order to maintain
sound access to instances that are contained by ô.

Type Constraints. We introduce type approximation in our symbolic
executor, in order to not concretize types of instances (objects) pre-
maturely. Many transformation rules operate on data constrained by
types with inheritance, so the actual type of parameters might be un-
known during symbolic execution. We maintain a bounding constraint
on types, and refine it during execution by-need during branching and
concretization cycles.

A type constraint environment (Γ̂) maps each symbolic reference, set
symbol, and each, symbolic instance ô to a type bound (csin, csex). The
bound restricts the types of concrete values assignable to a symbol in
question. A type bound is a tuple (csin, csex) where the first component
csin is a set of classes that specify the possible supertypes of a symbol
and the second component csex is a set of classes that specify excluded
supertypes of a symbol, e.g. ({Expr}, {ThisExpr, FieldAccessExpr})
represents all subtypes of Expr (expressions) that are not subtypes of
ThisExpr or FieldAccessExpr (’this’ and field access expressions).

We only consider type bounds (csin, csex) that are well-formed. That is:
(i) the set of possible super-types csin cannot be empty, and (ii) none of
the super-types is excluded: there is no class c ∈ csin which is a subtype
of an excluded super-type c′ ∈ csex. We also maintain an invariant that
the set of possible super-types csin given by Γ is a singleton for symbolic
instances. We will simply write c as a shorthand for ({c}, {c′ | c′ gen c})
when the type of an element is precisely known.
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Symbolic Heaps. A symbolic heap combines all types of constraints dis-
cussed above to describe possible concrete heaps and typings that could
have been created during the execution. We define a symbolic heap to be
a tuple (ẑ, ̂̀, d̂, Γ̂, b̂), where ẑ ∈ Symbol → ̂Instance is a symbolic refer-
ence environment—partial mapping of symbolic references to symbolic
instances that they are constrained to point to; ̂̀ ∈ ̂Instance× Field →
̂SetExpr collects the symbolic instances, by mapping fields of symbolic

instances to symbolic set expressions; d̂ is an environment storing deep
containment constraints d̂ ∈ ̂Instance× Class → ̂SetExpr for all sym-
bolic instances, Γ is the type constraint environment, and b is the path
constraint so far, in the execution leading to this symbolic heap.

An example symbolic heap is presented in Figure 5.7 using both
the above syntax and a diagram2. Dot vertices (•) denote symbolic in-
stances, white circles (◦) denote symbolic references and large double-
stroked white circles (}) denote symbolic reference sets.

Satisfiability of Symbolic Heaps We say that ĥ is satisfiable if there
is at least a pair of a concrete heap h and type environment Γ that
are consistent with the constraints present in ĥ. To check the consis-
tency of the concrete heap h and type environment Γ against the con-
straints in ĥ (h, Γ

m
ĥ) we need a model m ∈ (Symbol→ Instance) ∪

(SetSymbol→ ℘ (Instance)) which assigns to each symbolic reference
a concrete instance, and to each symbolic reference set a concrete
set of instances; we assume that symbolic instances are mapped di-
rectly one-to-one to concrete instances. The symbolic reference en-
vironment ẑ is satisfied by model m, if m is an extension of ẑ, i.e.,
∀x ∈ dom ẑ.ẑ(x) = m(x). The symbolic shape environment ̂̀ is con-
sistent with heap h, if they agree on the structure of all defined links
given the model m, i.e. ∀(o, f ) ∈ dom ̂̀.m(̂̀(o, f )) = h(o, f ); here
the application of m to set expressions is extended to work by re-
placing all sub symbolic references and symbolic reference sets in the
set expression with their value in m. The heap h and type environ-
ment Γ are consistent with the deep containment constraints d̂ if d̂ cap-
ture all necessary descendants for each class c for a particular instance

2We use our own diagram notation for objects instead of the UML one because it is
more compact and allows us to neatly represent non-standard concepts like symbolic
values and containment.
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M? : Method

methods

F? : Field

fields

name

name
name

c? : Class

n1
? : String

f1? : Field

n2
? : String

n3
? : Stringf2? : Field

o1

o2

o3

Symbolic references ẑ = [c? 7→ ô1, f ?
1 7→ ô2, f ?

2 7→ ô3]

Symbolic instances ̂̀= [ (ô1, name) 7→ n?
1, (ô1, methods) 7→ M?, (ô1, fields) 7→

F? ] { f ?
1}, (ô2, name) 7→ n?

2, (ô3, name) 7→ n?
3]

Containment constraints d̂ = [] (not accumulated yet)
Type constraints Γ̂ = [ô1 7→Class, ô2 7→Field, ô3 7→Field,
c? 7→ Class, n?

1 7→ String, f ?
1 7→ Field, n?

2 7→ String,
f ?
2 7→ Field, n?

3 7→ String, M? 7→ Method, F? 7→ Field]

Path condition b̂ = true (not accumulated yet)

Figure 5.7: An example heap for an initial state of an execution

o, i.e. m (d̂(o, c)) =
{

o′ | o owns+h o′ ∧ Γ(o′) gen∗ c
}

, where for two in-
stances o, o′ then o ownsh o′ iff there exists exactly one containment field
f̂ ∈ Field♦ such that h(o, f ) = o′.

The symbolic type environment Γ̂ is consistent with the concrete type
environment Γ if each symbolic expression (symbolic reference, sym-
bolic reference set or symbolic instance) has a type bound that is con-
sistent with the types assigned in Γ given mapping m; a type bound
(csin, csex) is consistent with a type c if there exist a c′ ∈ csin such that c
is a subtype of c′ (c gen∗c′) and there doesn’t exist a c′′ ∈ csex which c
is a subtype of (¬ (c gen∗c′′)). Finally, logical constraints in b̂ are consis-
tent with the model m if the expression m(b̂) we get by substituting all
symbols in b̂ with m is true.

One symbolic heap is stronger than the other if all models (here all
satisfying concrete heaps) of the former are also models of the latter. For
conciseness, we let (ẑ, ̂̀, d̂, Γ̂, b̂1) ∧ b̂2 mean (ẑ, ̂̀, d̂, Γ̂, b̂1 ∧ b̂2).
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Figure 5.8: One of the paths when symbolically executing the exam-
ple Rename-Field refactoring, starting with the symbolic state presented
in Figure 5.7. Double-stroked arrows represent deep containment con-
straints.

Manipulating Symbolic State During Execution

Figure 5.8 shows an example path of the symbolic executor when exe-
cuting the Rename-Field refactoring from Figure 5.2b starting with the
symbolic state presented in Figure 5.7. The execution proceeds in the
following steps:

• The initial statement on lines 9-10 replaces the old field (repre-
sented by symbol f ?

1 ) with the new field ( f ?
2 ), such that the ‘fields’

reference of the target class (c?) now points at f ?
2 instead of f ?

1 . Re-
mark, that changes are highlighted in red to ease understanding.

• Then we perform a deep matching on line 11, prompting the sym-
bolic executor to create a deep containment constraint with type
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FieldAccessExpr—represented by a double-stroked arrow (⇒)—
for the location assigned to c?; the containment constraint points
to a symbolic set reference FE?

0 (not shown in Figure) abstracting
the set of all concrete instances of type FieldAccessExpr reachable
from the concrete instance corresponding to c?.

• In order to iterate over the elements of FE?
0, we non-

deterministically chose to partition it into disjoint symbol fe? and
symbolic set FE?

1, executing the body of the foreach with faexpr
assigned to fe?.

• To check the condition of the if-statement at lines 7-8, we perform a
couple of field accesses, which triggers lazy initialization to creates
two new symbolic instances: one which is assigned to the symbolic
reference fe? and one which is assigned to its target field.

• We non-determinstically chose to execute the then branch—further
constraining the values of the fields of fe?—executing the field up-
date statement at line 9, which updates the field access expression
to point at the new renamed field instances.

• Finally, we are ready for another iteration at line 6, and this time
non-deterministically chose to stop, further constraining FE?

1 to be
∅ (thus disappearing in the figure).

We shall now define how these and other execution steps are realized.
We start discussing the basics of the presentation format and the simple
rules. Then we proceed to the four major ideas in our symbolic executor:
lazy initialization during heap access and modification, containment han-
dling when updating containment links, lazy iteration in foreach-loops,
and deep containment constraints for handling matching expressions.

Basics. During the execution we maintain a store σ mapping vari-
able names to symbolic set expressions. We use two symbolic eval-
uation functions for TRON’s set (ÊJeKσ̂ = ê) and Boolean expressions
(B̂JbKσ̂ = b̂). They take concrete expressions with a store, and return
resulting symbolic expressions by syntactically substituting all variables
with their symbolic values as defined by σ. For example, we have
B̂Jx ⊆ yK[x 7→ {x?} ∪ {z?}, y 7→ Y?] = {x?} ∪ {z?} ⊆ Y?.

The main judgement has the following format: s, σ̂, ĥ −→ σ̂′, ĥ′, de-
noting that the statement s evaluated in the symbolic store σ̂ and heap
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Skip

skip, σ̂, ĥ −→ σ̂, ĥ
Seq

s1, σ̂, ĥ −→ σ̂′′, ĥ′′

s2, σ̂′′, ĥ′′ −→ σ̂′, ĥ′

s1; s2, σ̂, ĥ −→ σ̂′, ĥ′

Agn

x := e, σ̂, ĥ −→ σ̂[x 7→ ÊJeKσ̂], ĥ

IfT
s1, σ̂, ĥ ∧ B̂JbKσ̂ −→ σ̂′, ĥ′

if b then s1 else s2, σ̂, ĥ −→ σ̂′, ĥ′
IfF

s2, σ̂, ĥ ∧ ¬B̂JbKσ̂ −→ σ̂′, ĥ′

if b then s1 else s2, σ̂, ĥ −→ σ̂′, ĥ′

FixS
s, σ̂, ĥ −→ σ̂′, ĥ′′ ĥ′ = ĥ′′ ∧

(
ÊJeKσ̂ = ÊJeKσ̂′

)
fix e do s, σ̂, ĥ −→ σ̂′, ĥ′

FixD

s, σ̂, ĥ −→ σ̂′′, ĥ′′′

ĥ′′ = ĥ′′′ ∧
(
ÊJeKσ̂ 6= ÊJeKσ̂′′

)
fix e do s, σ̂′′, ĥ′′ −→ σ̂′, ĥ′

fix e do s, σ̂, ĥ −→ σ̂′, ĥ′

New

x?, ô† fresh σ̂′ = σ̂[x 7→ {x?}] ẑ′ = ẑ[x? 7→ ô†]

Γ̂′ = Γ̂[x? 7→ c, ô† 7→ c] ̂̀′ = ̂̀[(ô†, f ) 7→ ∅ | f ∈ fields(c)]

x := new c, σ̂, (ẑ, ̂̀, d̂, Γ̂, b̂) −→ σ̂′, (ẑ′, ̂̀′, d̂, Γ̂′, b̂)

Figure 5.9: Symbolic execution rules for standard statements (σ is a
symbolic variable store, h is a symbolic heap)

ĥ, produces a new symbolic store σ̂′ and heap ĥ′. The basic symbolic ex-
ecution rules for statements are shown in Figure 5.9, including assign-
ments, sequencing, branching, object creation and the fix-loop. These
steps are essentially the same as in other existing symbolic executors.
For straight-line statements the branch condition b̂ remains unchanged
during execution (Skip, Agn, Seq, New). For branching statements it is
amended (cf. IfT, IfF, FixS and FixD). Any execution continues as long
as the heap is satisfiable, so satisfiability of ĥ is an implicit premise in
all the rules. The branching rules are also non-deterministic; the non-
determinism corresponds to branching (back-tracking) in the symbolic
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executor. Finally, the New rule, creates a new object of type c by allocat-
ing a symbolic instance and a symbolic reference x? pointing to it. All
fields of the new instance are initialized to be empty sets.

Loops with unbounded iteration count give rise to infinite paths in
symbolic execution (for instance by considering larger and larger in-
puts). In order for the symbolic execution algorithm to terminate, we
bound the number of paths to be explored: FixD can only be applied a
bounded number of times in a given execution of a given loop.

Lazy Initialization and Field Access. The rule for symbolic execution
of field access is as follows:

Acc

̂singleton
(
ÊJeKσ̂, ĥ

)
3 (x?, ĥ′′)

înst(x?, ĥ′′) 3 (ô, ĥ′) ĥ′ = (ẑ′, ̂̀′, d̂′, Γ̂′, b̂′)

x := e. f , σ̂, ĥ −→ σ̂[x 7→ ̂̀′(o, f )], ĥ′

Symbolically executing a field access x := e. f requires the following
steps:

1. Symbolically evaluating e to a symbolic set expression ê.

2. Using ̂singleton function3 to get a single symbol x? representing
the value of ê.

a) If ê is not already a single symbol, then the ̂singleton function
will generate a fresh symbol x? with the correct type and add
the constraint ê = x? to the heap, returning a new heap if
satisfiable.

3. Lazily assigning a symbolic instance ô to x?—if not already
assigned—using the inst function, which non-deterministically ei-
ther creates a new symbolic instance ô with the right type and
shape, or picks an existing symbolic instance ô with compatible
type bounds to treat aliasing.

4. Looking up the value of f of the assigned symbolic instance ô
in the spatial part of the heap ̂̀′ assigning the resulting value to
variable x.

3All our auxiliary functions are formally defined in Appendix B.
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Containment and Field Updates. The symbolic execution of a field
update statement e1. f := e2 follows a similar pattern to field access:

Upd

̂singleton
(
ÊJe1Kσ̂, ĥ

)
3 (x?, ĥ′′′)

inst(x?, ĥ′′′) 3 (ô, ĥ′′) ûpdate(ô, f , ÊJe2Kσ̂, ĥ′′) = ĥ′

e1. f := e2, σ̂, ĥ −→ σ̂, ĥ′

After evaluating and resolving e to a symbolic instance ô, the ûpdate
function is used to update field f of ô to point to the evaluated value of
e2 in the spatial constraints:

ûpdate(ô, f , ê,(ẑ, ̂̀, d̂, Γ̂, b̂)) =

{
(ẑ, ̂̀[(ô, f ) 7→ ê], d̂, Γ̂, b̂) if f ∈Field 
(ẑ, ̂̀′[(ô, f ) 7→ ê], d̂′, Γ̂′, b̂ ∧ b̂′) i f f ∈Field♦

where ̂̀′ = d̂isown(ê, ̂̀)
(d̂′, Γ̂′, b̂′) = ̂dc-containment(ê, c, ẑ, d̂, Γ̂)

If f is a containment field we must further ensure that ô is the unique
owner of ê which ûpdate does by calling d̂isown and ̂dc-containment.

d̂isown(ê, ̂̀) = [(ô, f ) 7→ d̂o-f(ê′, ê)
∣∣∣(ô, f , ê′) ∈ graph ̂̀]

where d̂o-f(ê′, ê) =

{
ê′ if f ∈ Fields 
ê′ \ ê if f ∈ Fields♦

The d̂isown function presented above modifies each containment link
in the spatial constraints ̂̀ to exclude the target symbolic expression ê.
The ̂dc-containment function analogously first excludes ê from all deep
containment constraints to ensure that there are no stale references to
the values of ê, and then tries to correctly propagate the effects of the
assignment of ê back to the containment constraints:

• For every containment constraint d̂(ô, c) = ê′ with the same type
as ê or a super-type of it, we generate a new set symbol X? with
the target type, replace ê′ with it and then add the constraint
X? = ê′ ∨ X? = ê∪ ê′ to the heap, which signifies that ê might have
been added to the deep containment constraints of ô; this high-
lights an interesting interaction between containment links and
deep containment constraints which is not immediately obvious,
but is necessary to maintain consistency while still keeping a high-
level of symbolic abstraction.
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• For subtypes of c, we do almost the same but use the constraint
(X? = ê′ ∨ X? = ê′ ∪ Y?) ∧ ê = Y? ] Z? instead, where Y? and Z?

are fresh set symbols with Y? having type c and Z? having the type
of ê excluding ĉ (in a type bound); this ensures that we refer to all
elements in ê of type c and only those.

Lazy Iteration with First-class Set Expressions. We introduce lazy it-
eration over first-class symbolic set expressions. In particular, consider
the operational rule for the foreach-loop below:

For

înit(me, ĥ) = (e, ς̂) x ← [ ÊJeKσ̂ ` s, σ̂, ĥ, ς̂
each−−→ σ̂′, ĥ′, ς̂′

foreach x ∈ me do s, σ̂, ĥ −→ σ̂′, ĥ′

The first step is to use the înit function to get the expression e to be
iterated over, and initialize a control state ς̂ used during iteration de-
pending on the kind of matching expression me provided; we will treat
ς̂ abstractly for now, and define it precisely later in this section. The

other step is to use the each−−→-judgement to iterate over the values of ê
depending on ς̂, executing the foreach-body s at each iteration. The two

rules for the each−−→-judgement, are provided below:

ForB
n̂ext(ê, ĥ, ς̂) 3 (break, ĥ′)

x ← [ ê ` s, σ̂, ĥ, ς̂
each−−→ σ̂, ĥ′, ς̂

ForC

n̂ext(ê, ĥ, ς̂) 3 (cont(x?, ê′, ς′′), ĥ′′′)

s, σ̂[x 7→ x?], ĥ′′′ −→ σ̂′′, ĥ′′ x ← [ ê′ ` s, σ̂′′, ĥ′′, ς̂′′
each−−→ σ̂′, ĥ′, ς̂′

x ← [ ê ` s, σ̂, ĥ, ς̂
each−−→ σ̂′, ĥ′, ς̂′

Both of the above rules depend on the n̂ext function which given tar-
get expression ê, current control state ς̂ and heap ĥ, provides a set of
possible next actions; a possible action â is either break which signals
that iteration should stop, or is cont(x?, ê′, ς̂′) which signals that another
iteration should happen with symbol x? bound to the range variable, ê′

(disjoint from x?) representing the rest of the values to be iterated over,

and new control state ς̂′. The first rule of the each−−→-judgement check
whether break is a possible next state and if so it will stop iteration with
new heap ĥ′. The second rule checks whether cont is a possible next
state, executes the loop body s with x? bound to the range variable x,
and finally continues iteration over ê’ in the updated states.
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Now, observe how laziness is achieved with two key ideas: we never
explicitly concretize me, leaving the level of concretization required to be
decided by the n̂ext function according to the control state ς̂, and we it-
erate using a symbolic reference x? without requiring an assignment of a
symbolic instance (to treat possible aliasing) as this point. Furthermore,
by parameterizing the rules for foreach over functions înit and n̂ext, it
would be easy to add new kinds of expressions without affecting the
rules.

Type-Directed Matching with Containment Constraints. We will now
discuss how the control state ς̂ and functions înit and n̂ext interact with
matching expressions. We define the control state as follows:

ς? ::= ns | ms(c) | ms∗(c, ê, d̂)

Each alternative control state contains the required components to ex-
ecute a given matching expression: ns is used for ordinary iteration,
ms(c) is used for shallow matching of elements against c and ms∗(c, ê, d̂)
is used for deep matching of elements against type c, a set of additional
elements that must be iterated ê and a copy of the deep containment
constraints d̂; the copy of containment constraints is kept in order to re-
trieve the deep containment constraint values that were available before
iteration, which would represent the concrete objects that would have
been matched by a concrete deep match operation at the time of evalua-
tion. The înit function is therefore defined to map each expression to its
initial control state:

înit(e, ĥ) = (e, ns) înit(e match c, ĥ) = (e, ms(c))

înit(e match∗ c, (ẑ, ̂̀, d̂, Γ̂, b̂)) = (e, ms∗(c, ∅, d̂))

The n̂ext function is more interesting since it calculates the possible next
actions for iteration. For sake of readability, we will define the n̂ext
function using inference rules, which describe the possible values in the
result set. We define two rules for ordinary iteration:

Iter-Emp

n̂ext(ê, ĥ, ns) 3 (break, (ĥ ∧ ê = ∅))

Iter-Cont

̂partition(ê, ĥ) = (x?, X?, ĥ′)

n̂ext(ê, ĥ, ns) 3 (cont(x?, X?, n̂s), ĥ′)
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There are two possible actions: we can stop iterating if it is possible to
constraint ê to be ∅ (Iter-Emp), and we can try to use ̂partition to split
ê into a symbol x?, and a disjoint set symbol X? which continue itera-
tion with (Iter-Cont). The ̂partition function essentially generates fresh
symbol x? and set symbol X? with the right types adding the constraint
ê = x? ] X? to ĥ.

For matching iterations, the rules for n̂ext are defined as follows:

IterM-Emp

n̂ext(ê, ĥ, ms(c)) 3 (break, (ĥ ∧ ê = ∅))

IterM-Sucs

̂partition(ê, ĥ) = (x?, X?, ĥ′′) m̂atch(x?, X?, c, ĥ′′) 3 (tt, ĥ′)

n̂ext(ê, ĥ, ms(c)) 3 (cont(x?, X?, ms(c)), ĥ′)

IterM-Fail

̂partition(ê, ĥ) = (x?, X?, ĥ′′) m̂atch(x?, X?, c, ĥ′′) 3 (ff, ĥ′)

n̂ext(ê, ĥ, ms(c)) 3 (break, ĥ′)

The terminating rule (IterM-Emp) is essentially unchanged, and the
other two continuation rules use ̂partition to divide the target symbolic
expression ê into a symbol x? and a symbolic reference set X?. The
symbol x? is then matched against c? using m̂atch which returns a set
of states each indicating whether matching x? against c was successful
or not; if the match is successful (IterM-Sucs)—(tt, ĥ′) is included in
the result—then ĥ′ constraints the type of x? to be a subtype of c, and
otherwise if the match failed (IterM-Fail)—so (ff, ĥ′) is included in the
result—then ĥ′ constraints the type bounds of x? and X? to exclude c as
a possible supertype. A match is always successful if the type of x? is
a subtype of c, always fails when the c is unrelated to or excluded from
type bounds of x?, and allows both when the type of x? is a supertype
of c.

Finally, the rule for n̂ext for deep matching delegates to an auxiliary
definition ̂next-ms (IterMS):

IterMS
̂next-ms(ê, c, ê′, d̂, ĥ) 3 (â, ĥ′)

n̂ext(ê, ĥ, ms∗(c, ê′, d̂)) 3 (â, ĥ′)

There are three possible rules for ̂next-ms, which are defined as fol-
lows:

IterMSA-Emp

n̂ext(ê′, ĥ ∧ ê = ∅, ns) 3 (â, ĥ′)

̂next-ms(ê, c, ê′, d̂, ĥ) 3 (â, ĥ′)
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IterMSA-Fail

̂partition(ê, ĥ) = (x?, X?, ĥ′′′′) m̂atch(x?, X?, c, ĥ′′′′) 3 (ff, ĥ′′′)
d̂cs(x?, c, d̂, ĥ′′′) 3 (ê′′, ĥ′′) ̂next-ms(X?, ê′ ∪ ê′′, ĥ′′) 3 (â, ĥ′)

̂next-ms(ê, c, ê′, d̂, ĥ) 3 (â, ĥ′)

IterMSA-Sucs

̂partition(ê, ĥ) = (x?, X?, ĥ′′′)
m̂atch(x?, X?, c, ĥ′′′) 3 (tt, ĥ′′) d̂cs(x?, c, d̂, ĥ′′) 3 (ê′′, ĥ′)

̂next-ms(ê, c, ê′, d̂, ĥ) 3 (cont(x?, X?, ms∗(c, ê′ ∪ ê′′, d̂)), ĥ′)

The first rule constraints ê to ∅, and continues iterating over the sym-
bolic set ê′ which is used by the other rules to collect deep containment
constraint values during iteration (IterMSA-Emp).

The second rule uses ̂partition and m̂atch on c getting an unsuccess-
ful match (IterMSA-Fail); we use the d̂cs function to assign a location
ô to x?, lookup the deep containment constraint value d̂(ô, c) = ê′′—
creating it in the provided heap if non-existing)—and adding ê′′ to the
control state. The rule then continues iterating over the rest X?, since x?

did not match the target type c and so must be skipped.
The third and final rule gets a successful match (IterMSA-Sucs) and

so we use the x? for the next iteration; we still need to consider possible
descendants of x? of type c and so use d̂cs to get the deep containment
constraint value and add it to the control state. Observe how the use
of deep containment constraints allows us to provide a higher-level ab-
straction over structures focusing only on instances of the target type,
and without explicitly considering all intermediate shapes of data.

Relating Concrete and Symbolic Semantics

To recover a deterministic semantics for programs from our provided
non-deterministic operational symbolic semantics, one could define the
symbolic semantics of a program as the set of all output pairs of sym-
bolic stores and heaps obtained from non-deterministically executing
each different feasible path in the program.

ŜJsK(σ̂, ĥ) =
{
(σ̂′, ĥ′)

∣∣∣s, σ̂, ĥ −→ σ̂′, ĥ′′
}

A useful property to show is then that the deterministic symbolic se-
mantics is sound with regards to the concrete semantics, i.e.:
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Theorem 5.1 (Soundness). If ∃m.σ = m(σ̂) ∧ Γ, h
m

ĥ and ŜJsK(σ̂, ĥ) =

M̂ then for all (σ̂, ĥ) ∈ M̂ there exists σ′, Γ′, and h′ such that we have a
concrete execution s, σ, Γ, h =⇒ σ′, Γ′, h′ and exists a model m′ such that σ′ =

m′(σ̂′) and Γ′, h′
m′

ĥ′.

5.4 Evaluation

We implemented our technique in a prototype tool,4 which we evaluate
to show the concrete benefits of our technique.

Test Generation

White-box test generation is a classical application of symbolic execu-
tion, and we aim to use it as an example for evaluating our symbolic
execution algorithm. We have built a white-box test generator and com-
pare its effectiveness against a baseline black-box test generator.

We aim to compare the test generators according to their effective-
ness, which is how well a test suite exercises the transformation-under-
test (TUT). We use branch coverage as the target metric, which we define
for TRON constructs as follows: for if-statements both branches must be
taken, for fix-loops we check whether it is run one or more times5 and
for foreach-loops we check whether it is run zero, one or more times.

White-box Test Generator. The white-box test generator is a simple
extension of the symbolic execution algorithm presented in Section 5.3,
requiring only two new additions:

1. Memoising a copy of the spatial constraints whose values are not
modified by field updates, thus keeping track of the initial struc-
ture of input.

2. A translator between the output model given by the model finder
to concrete data usable by the target TRON program.

4https://github.com/itu-square/SymexTRON
5fix-loops must run the body at least once, according to the semantics

https://github.com/itu-square/SymexTRON
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Black-box Test Generator. The black-box test generator optimizes to-
wards meta-model coverage, which is the literature-recommended met-
ric [Wang et al., 2006; Finot et al., 2013]. A test suite is said to have full
meta-model coverage if each subtype of relevant classes is present in at
least in one test case, and each relevant field is instantiated with each
valid multiplicity (i.e. zero, one or many).

Subject Programs. The subject programs were selected according to
three criteria: be an interesting representative variety of realistic trans-
formations, be independently specified to avoid bias, and be feasible
to implement in TRON. To fulfill the first criterion, we chose transforma-
tions from two categories: model transformations and refactorings. For
the second criterion, we ported the model transformations from the ATL
transformation zoo6 and chose the refactorings from Fowler’s classic col-
lection [Fowler, 1999]. The third criterion is achieved by picking suitably
sized transformations that satisfy our resource and design constraints,
since it takes time to manually port complex transformations correctly
(despite language similarity) and TRON lacks abstractions for modularity
that full languages have. We ended up with 3 model transformations
and 4 refactorings, all of which we describe below.

Refactorings.

• An extended version of the Rename field refactoring used as the
running example (see Figure 5.2).

• Rename method: renames a target method in a class, and ensures
that all calls to the correct overloading of this method (with the
right types) must refer to the updated name.

• Extract superclass: creates a common superclass of two classes with
similar structure ensuring that all common fields are pulled up
and that both classes inherit from it.

• Replace delegation with inheritance: Makes a class inherit directly
from a type instead of using a field for delegation, updating all
method calls targeting that field to use this as a target instead.

6https://www.eclipse.org/atl/atlTransformations/

https://www.eclipse.org/atl/atlTransformations/
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Model Transformations.

• The Families to Persons model transformation (Fam2Pers), converts
a model of a traditional family with a mother, father and possibly
children to a collection of individuals with explicit gender (male
or female).

• The classical Class to Relational model transformation (Class2Rel),
which converts an object-oriented class model to a relational
database schema.

• The Path expression to Petri net model transformation (Path2Petri),
which converts a path expression with states and transitions to
a full Petri net with named places, different types of arcs and
weighted transitions.

The characteristics and basline meta-model coverage is presented in
Table 5.2, and the source code of all the programs is available in Ap-
pendix D.

Porting Transformations to TRON. By design TRON is a minimal lan-
guage, and so there are non-core transformation languages features that
must be handled when porting transformations from fully-featured lan-
guages to TRON. In particular, three features had to be handled for the
considered subject programs: functions, implicit tracing links and cir-
cular data dependencies (the latter two present in model transforma-
tion languages like ATL). When a transformation is ported to TRON one
must take care to correctly inline function calls, which is done by re-
placing the calls with the function body, substituting the parameters
with the provided arguments, renaming local variables to avoid clashes,
and converting any explicit recursion to use the ‘foreach’-statement or
‘fix’-statement. To handle tracing links one must take care to augment
the meta-model to include them explicitly, and to explicate assignment
to the tracing links on object creation in the transformation; for circu-
lar data dependencies one must ensure to initialize all relevant objects
before the transformation.

Set-up. The experiment was set-up to automatically run both test gen-
erators automatically on all the described subject programs. The white-
box test generator was bounded in the number of iterations (2, except
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Program LOC Meta-model coverage (%)

Black-box White-box

RenameField 53 + 12 = 65 96.55 70.69
RenameMethod 53 + 28 = 81 96.55 93.10
ExtractSuper 53 + 29 = 82 98.28 31.03
ReplaceDelegation 53 + 30 = 83 100.00 85.19

Fam2Pers 21 + 56 = 77 100.00 88.00
Path2Petri 42 + 58 = 100 100.00 37.50
Class2Rel 34 + 100 = 134 100.00 100.00

Table 5.2: Characteristics and basline meta-model coverage for the sub-
ject programs. Here LOC indicates lines of code, where the first com-
ponent of the summation is the size of the data model and the second
component is the size of the transformation.

for Fam2Pers which uses 3 due to meta-model constraints) and instances
considered by the model finder (6 for model transformations, 10 for
refactorings), and a time-out of 1 hour was put in place. We also added
light-weight support for bidirectional fields in the model finder to better
support the model transformations. The prototype symbolic executor,
was implemented in Scala 2.11.7 [Odersky and Rompf, 2014] and the
evaluation was run on a 2.3 GHz Core i7 MacBook Pro (OS X 10.11).
The external model finder KodKod was configured to use the parallel
SAT solver Plingeling [Biere, 2014].

Test Generation Results. We ran a series of toy programs exercising
the various constructs of TRON as a warm up for our test generators; the
white-box test generator achieved 100% code coverage for all programs
beating the black-box test generator, and all under 30 seconds of execu-
tion time.

Table 5.3 shows the results of running the test generators on the se-
lected subject programs (model transformations and refactorings).

Refactorings. The white-box test generator achieves better code
coverage than the baseline black-box test generator for all the refactor-
ings, reaching 100% coverage for two. We hypothesise that refactorings
do many targeted modifications of complex models, making it hard to
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Program Branch coverage (%) Time (s)

Black-box White-box Black-box White-box

RenameField 60.00 100.00 141.5 336.6
RenameMethod 26.67 93.33 141.7 3600.0
ExtractSuper 75.00 100.00 124.8 386.4
ReplaceDelegation 47.06 76.47 115.5 3600.0

Fam2Pers 100.00 100.00 4.8 135.4
Path2Petri 88.89 33.33 1.8 3600.0
Class2Rel 70.83 75.00 3.8 3600.0

Table 5.3: Results of running the test generators on subject programs.
The branch coverage indicates the percentage of the total reachable
branches covered, and the time indicates the execution time of the tool
from start to finish on the evaluation subjects.

generate tests that cover the required paths without access to the trans-
formation code; The test generated by black-box had high meta-model
coverage (see Table 5.2) as expected, but achieved low branch coverage
since it did not fully exercise the transformation (Table 5.3); this is in
contrast to the white-box test generator which generated more focused
test cases.

Due to the nature of symbolic execution, the white-box test generator
was slower than the black-box test generator. We believe that the higher
precision in bug finding offsets the runtime cost; test generation is an
occasional offline task and 1 computer hour is not unreasonable to use
compared to the many hours a programmer would otherwise have spent
on the same task.

Model Transformations. The white-box test generator achieved
good results for model transformations, performing better than the
black-box test generator for the Fam2Pers and Class2Rel transforma-
tions, and worse for the Path2Petri transformation. We suspect that the
black-box test generator performs well on model transformations be-
cause they primarily translate structured data according to their meta-
model types, without relying on complex constraints and cases. There-
fore, having a test suite with high meta-model coverage will generate the
necessary different types to trigger the right execution paths resulting
in acceptable branch coverage. The white-box test generator performed
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less impressively on model transformations than refactorings because
the symbolic executor did not reach the right paths before the time-out
triggered. The sequential composition of complex for-loops results in
an explosion of paths to be explored, and so it takes significantly more
time to explore the whole program and generate interesting tests.

Comparing Coverage Criteria. The black-box test generator optimizes
towards achieving maximal meta-model coverage (see Table 5.3), but
seems to achieve mixed branch coverage results, and although it per-
formed better for model transformations than for refactorings, it never
reached full branch coverage. This indicates that there is little guaran-
tee that high meta-model coverage ensures high branch coverage, which
is an interesting experience for building both white-box and black-box
tools.

The symbolic executor achieved high branch coverage for most sub-
jects without achieving the same high meta-model coverage—the lowest
being 31.03% meta-model coverage for the ExtractSuper refactoring that
we achieved full branch coverage for—which indicates that there is no
correlation the other way as well. It would of course require a more
extensive empirical study to conclusively affirm our hypothesis.

Comparison with Symbolic Executors for Object-Oriented Languages

Two of the best known and well-supported symbolic ex-
ecutors for object-oriented programming languages are Sym-
bolic PathFinder [Pasareanu et al., 2013] and Microsoft Intel-
liTest/Pex [Tillmann and de Halleux, 2008]. We will describe our
experiences trying to encode various high-level transformation
features—sets, containment and deep matching—and the difficulties
faced when these features are not handled first-class.

Symbolic Support for Sets. The first challenge we faced was how
to symbolically encode sets in traditional symbolic executors. Sym-
bolic PathFinder does not directly support standard Java collections like
HashSet or TreeSet, and using those collections during symbolic exe-
cution leads to errors: a symbol does not have a hash value, and it is
not possible to symbolically compare two objects. One could try a more
cumbersome encoding by using lists and handling inequality constraints
explicitly, but it is unclear how to generate interesting instances of such
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sets automatically. Pex tries to dynamically construct instances of sets
using arrays, but it is hard in practice to make it generate an array of
distinct elements that is usable to construct an interesting set.

We treat set values first-class which exploits the support of set the-
ories in model finders like KodKod and SMT solvers [Kröning et al.,
2009]. We believe that implementing this could be beneficial for these
traditional symbolic executors as well.

Enforcing Deep Containment Constraints. Another challenge is en-
forcing containment-like constraints with acyclicity and non-sharing
for abstract syntax trees. Traditional symbolic executors support deep
containment constraints neither directly nor indirectly. Hypothetically,
acyclicity constraints could be enforced statically by giving all objects
unique identifiers and fixing an ordering between contained objects and
parents; however, this requires both the management of a complex sys-
tem on top of existing dynamic structures, and it is unclear how to
efficiently handle dynamic to such links. In contrast, first class support
of these constraints in TRON makes it easy to handle dynamic updates
and allows specialized techniques to be used to handle such constraints.

Deep Matching and Visitors. Deep matching is straightforward to en-
code using reflection, but reflection is not handled well by symbolic
executors, and so is to be avoided.

Traditionally traversal of abstract syntax is done using recursive vis-
itors, which uses plain classes and thus is better supported. However,
this approach is non-optimal from a symbolic execution point of view,
since to reach the relevant part of an abstract syntax tree—like a field
access expression—one has to consider and enumerate all intermediate
shapes—i.e., classes, methods, different kinds of statements and contain-
ing expressions in our example—which hits a combinatorial explosion,
even with reasonably small bounds.

In contrast, we abstract away intermediate shapes with deep con-
tainment constraints, which allows reasoning about only the parts of
the data structure we are interested in. Transformations like refactor-
ings often perform local changes on the abstract syntax trees, and so
this approach seems especially beneficial in those cases.
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Threats and Limitations

The main threat to validity of the experiment is that we implemented
the subject programs ourselves, introducing the possibility of bias and
errors in the implementation. For the model transformations, we mit-
igated this by choosing existing ones from ATL, and for the refactor-
ings we chose a number of standard ones from Fowler’s authoritative
book [Fowler, 1999]. Furthemore, minor implementation mistakes are of
lesser importance since the number of found errors is not an evaluation
criterion.

Inozemtseva and Holmes [2014] show that test coverage is not a
strongly correlative measure for effectiveness. However, arguably a test
suite which has low code coverage is going to miss bugs because it sim-
ply does not visit code present in some of the branches. The black-box
test generator has been implemented by us optimizing for the stan-
dard meta-model coverage metric [Finot et al., 2013; Wang et al., 2006]
to avoid bias, since we could not find an existing third-party tool that
was suitable for our purposes.

We are not experts on Symbolic PathFinder and Pex, and could have
missed better ways to encode high-level features. We mitigated this by
systematically reading the available documentation, and searching on
forums and mailing lists for answers to similar challenges.

5.5 Related Tools and Approaches

Symbolic Execution of High-level Transformation Languages. Sim-
ple symbolic execution algorithms [Lucio and Vangheluwe, 2013] exist
for significantly less expressive transformation languages like DSLTrans,
which bounds loops and does not permit dependent state and loop it-
erations. This lack of expressiveness allows the symbolic executor to be
heavily specialized and quick, but the algorithm is hard to generalize
for more expressive Turing-complete languages like TRON.

More complex whitebox-based algorithms are presented by ATL-
Test [González and Cabot, 2012] and TETRA Box [Schönböck et al.,
2013]. These tools only support a class of transformations that can not
modify input state. Therefore, it is not possible to easily express com-
plex transformations like the refactorings considered in this paper. Fur-
thermore, the method presented in this paper, is fully-formalized and
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evaluated, showing applicability of our framework for a broader range
of transformations.

Test Generation for Transformations. The latest survey on verification
of model transformations [Rahim and Whittle, 2015] shows that most
test generation techniques for model transformations focus on black-
box testing, which do not account for concrete transformation semantics
and thus may fail to cover program statements as shown in our eval-
uation. There is a test generation tool for Maude [Riesco, 2010, 2012]
based on bounded narrowing (practically, symbolic execution for rewrit-
ing languages). However, complex transformations are hard to write in
the style of term-rewriting systems—since they modify object graphs—
and the object-oriented extension is not as far as we understand sup-
ported by the test generator. A black-box test generation tool called
Dolly [Mongiovi et al., 2014] is used to test C and Java based refactor-
ing engines with promising results. As our evaluation results indicate
that white-box based techniques have better effectiveness than black-box
based ones, it could be interesting to see whether we could adapt some
of our novel ideas for a language like Java and increase the number of
bugs found.

Dynamic Symbolic Execution Our evaluation shows that it is rela-
tively cheap to generate random initial test input with acceptable cov-
erage. We believe that it might be fruitful to look at hybrid white-box
approaches like Dynamic Symbolic Execution [Korel, 1990; Godefroid
et al., 2005] to increase performance and scalability for larger transfor-
mations.

5.6 Recap

This chapter presented a formal symbolic execution algorithm for a
small formal transformation language TRON capturing key high-level
transformation features from Chapter 2. In order to feasibly model the
features symbolically without hitting a combinatorial explosion, we had
to combine ideas from existing work, i.e., lazy initialization and sym-
bolic reference sets, with novel ideas that were targeted towards the
modelled high-level features, i.e. containment handling, lazy iteration
and deep containment constraints. The symbolic technique was imple-
mented in a prototype white-box test generation tool, which compared
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favorably against the baseline black-box test generator, achieving high
test coverage for virtually all the selected subject transformation. This
shows great promise in adapting programming language techniques to
transformation languages, and made it possible for us in the later chap-
ters to tackle a large subset of Rascal by using the techniques and expe-
riences we gathered.





Chapter 6

The Formal Semantics of Rascal Light

Rascal [Klint et al., 2009, 2011] is a high-level transformation language
that aims to simplify software language engineering tasks like defining
program syntax, analyzing and transforming programs, and performing
code generation. The language provides several features including built-
in collections (lists, sets, maps), algebraic data-types, powerful pattern
matching operations with backtracking, and high-level traversals sup-
porting multiple strategies.

Interaction between different language features can be difficult to
comprehend, since most features are semantically rich. My goal is
to provide a well-defined formal semantics for a large subset of Ras-
cal called Rascal Light—in the spirit of (core) Caml Light [Leroy, 1997],
Clight [Blazy and Leroy, 2009], and Middleweight Java [Bierman et al.,
2003]—suitable for developing formal techniques, e.g., type systems and
static analyses.

Scope

Rascal Light aims to model a realistic set of high-level transformation
language features, by capturing a large subset of the Rascal operational
language. Unlike the small formal transformation language TRON (Chap-
ter 5), Rascal Light targets being practically usable, i.e., it should be pos-
sible to translate many realistic pure Rascal programs to this subset by
an expert programmer without losing the high level of abstraction. The
following Rascal features are captured in Rascal Light:

• Fundamental definitions including algebraic data-types, functions
with type parameters, and global variables.
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• Basic expressions, including variable assignment, definition and
access, exceptions, collections (including sets, lists and maps), if-
expressions, switch-statements, for-loops and while-loops includ-
ing control flow operators.

• Powerful pattern matching operations including type patterns,
non-linear pattern matching, (sub)collection patterns, and descen-
dant pattern matching.1

• Backtracking using the fail operator, including roll-back of state.

• Traversals using generic visit-expressions, supporting the
different kinds of available strategies: bottom-up(-break),
top-down(-break), innermost, and outermost.

• Fixed-point iteration using the solve-loop.

The following Rascal features are considered out of scope:

• Concrete syntax declaration and literals, string interpolation, reg-
ular expression matching, date literals and path literals

• The standard library including Input/Output and the Java foreign
function interface

• The module system, include modular extension of language ele-
ments such as datatypes and functions

• Advanced type system features, like parametric polymorphism,
the numerical hierarchy and type inference

In Rascal, Boolean expressions can contain pattern matching subexpres-
sions and backtracking is affected by the various Boolean operators (con-
junction, disjunction, implication). In Rascal Light, backtracking is more
restricted, which I believe heavily simplifies the semantics while losing
little expressiveness in practice; most programs could be rewritten to
support the required backtracking at the cost of increased verbosity.

Method

I have used the language documentation,2 and the open source imple-
mentation of Rascal,3 to derive the formalism. The syntax is primarily

1Similar to type-directed querying in TRON
2http://tutor.rascal-mpl.org/Rascal/Rascal.html
3https://github.com/usethesource/rascal

http://tutor.rascal-mpl.org/Rascal/Rascal.html
https://github.com/usethesource/rascal
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based on the µRascal syntax description [CWI Amsterdam, 2017], but
altered to focus on the high-level features. The semantics is based on
the description of individual language features in the documentation.
In case of under-specification or ambiguity, I used small test programs
to check what the expected behavior is. I thank the Rascal developers
for our personal correspondence which further clarified ambiguity and
limitations of the semantics compared to Rascal.

To discover possible issues, the semantics has been implemented as a
prototype and tested against a series of Rascal programs. To strengthen
the correctness claims, I have proven a series of theorems of interest in
Section 6.3, since as Milner et al. [1990] states:

The robustness of the semantics depends upon theorems

— The Definition of Standard ML

6.1 Abstract Syntax

Rascal Light programs are organized into modules that consist of defini-
tions of global variables, functions and algebraic data types. I will in the
rest of this chapter assume that modules are well-formed: top-level def-
initions and function parameters have unique names, all function calls,
constructors and datatypes used have corresponding definitions, and
all variables are well-scoped with no shadowing. To maintain a clean
presentation, I will not write the definition environment explicitly, but
mention the necessary definitions as premises when required.

Rascal Light has three kinds of definitions: global variables, func-
tions and algebraic data-types. Global variables are typed and are ini-
tialized with a target expression at module loading time. Functions
have a return type, a unique name, a list of typed uniquely named pa-
rameters, and have an expression as a body. Algebraic data-types have
unique names and declare a set of possible alternative constructors, each
taking a list of typed fields as arguments.

d ::= global t y = e (Global variables)

| fun t f (t x) = e (Function Definition)

| data at = k1(t x)| . . . |kn(t x) (Algebraic Data Type Definition)
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The operational part of Rascal consists of syntactically distinct cate-
gories of statements and expressions; I have chosen to collapse the two
categories in Rascal Light since statements also have result values that
can be used inside expressions. Most constructs are standard imperative
ones, such as blocks, assignment, branching and loops (including con-
trol operations); I have chosen to use local-in for representing blocks in
Rascal Light instead of curly braces like in Rascal, to distinguish them
from set literal expressions; blocks contain locally declared variables and
a sequence of expressions to evaluate.

Notable Rascal-specific constructs include a generalized version of
the switch-expression that supports rich pattern matching over both ba-
sic values and algebraic data types, the visit-expression which allows
traversing data types using various strategies (Example 6.1), and the
solve-expression which continuously evaluates its body expression un-
til target variables reach a fixed-point in assigned values (Example 6.2).
The fail control operator allows backtracking inside switch and visit
statements to try other possible matches (Example 6.3).

Example 6.1 (Expression simplifier). An expression simplifier can use
visit to completely simplify all sub-expressions no matter where they
are in the input expression:

1 data Expr = intlit(int v) | plus(Expr lop, Expr rop) | ...;
2
3 Expr simplify(Expr e) =
4 bottom-up visit(e) {
5 case plus(intlit(0), y) => y
6 case plus(x, intlit(0)) => x
7 };

N

Example 6.2 (Lattice fixed-point). The Kleene fixed-point of a continuous
function in a lattice for a domain Val with functions for the bottom
element and least-upper bound can be computed using solve:

1 Val fix(Fun f) = {
2 Val v = bottom();
3 solve(v) {
4 v = lub(v, apply(f, v))
5 };
6 }

N

Example 6.3 (Knapsack problem). The knapsack problem concerns find-
ing a subset of items with greatest value under a specified maximum
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weight. The function below uses backtracking to (slowly) find the opti-
mal solution.

1 set[Item] slowknapsack(set[Item] items, int maxWeight) = {
2 set[Item] res = {};
3 solve(res) {
4 switch(items) {
5 case {*xs, *ys}:
6 if (sumweights(xs) > maxWeight
7 || sumvalues(xs) < sumvalues(res)) fail;
8 else res = xs;
9 };
10 res
11 };
12 }

N

e ::= vb (Basic Values , vb ∈ {1, “foo”, 3.14, . . .})
| x (Variables, x, y ∈ Var)

| 	 e (Unary Operations,	 ∈ {−, . . .})
| e1 ⊕ e2 (Binary Operations,⊕ ∈ {+,−,×, . . .})
| k(e) (Constructor Applications, k ∈ Constructor)

| [e] (List Expressions)

| {e} (Set Expressions)

| (e : e′) (Map Expressions)

| e1[e2] (Map Lookup)

| e1[e2 = e3] (Map Update)

| f (e) (Function Calls, f ∈ Function)

| return e (Return Expressions)

| x = e (Variable Update Assignments)

| if e then e1 else e2 (Conditionals)

| switch e do cs (Case Matching)

| st visit e do cs (Deep Traversal)

| break | continue | fail (Control Operations)

| local t x in e end (Blocks)

| for g e (Iteration)

| while e e (While Expressions)

| solve x e (Fixedpoint Expressions)

| throw e (Exception Throwing)
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| try e1 catch x ⇒ e2 (Exception Catching)

| try e1 finally e2 (Exception Finalization)

cs ::= case p⇒ e (Case)

There are two kinds of generator expressions: enumerating assignment
where the range variable is assigned to each element in the result of a
collection-producing expression, and matching assignment that produces
all possible assignments that match target patterns (defined later).

g ::= x ← e (Enumerating Assignment)

| p := e (Matching Assignment)

The visit-expression supports various strategies that determine the or-
der a particular value is traversed w.r.t. its contained values. The
top-down strategy traverses the value itself before contained values,
and conversely bottom-up traverses contained values before itself.
The break versions stop the traversal at first successful match, and
the outermost and innermost respectively apply the top-down and
bottom-up until a fixed-point is reached.

st ::= top-down (Preorder Traversal)

| bottom-up (Postorder Traversal)

| top-down-break (First-match Preorder Traversal)

| bottom-up-break (First-match Postorder Traversal)

| outermost (Fixedpoint Preorder Traversal)

| innermost (Fixedpoint Postorder Traversal)

Like Rascal, Rascal Light has a rich pattern language that not only
includes matching on basic values and constructors, but also powerful
matching inside collections and descendant patterns that allow match-
ing arbitrarily deeply contained values.
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p ::= vb (Basic Value Patterns)

| x (Variable Patterns)

| k(p) (Deconstructor Patterns)

| t x : p (Typed Labelled Patterns)

| [?p] (List Patterns)

| {?p} (Set Patterns)

| !p (Negation pattern)

| /p (Descendant Patterns)

Patterns inside collections can be either ordinary patterns or star patterns
that match a subcollection with arbitrary number of elements.

?p ::= p (Ordinary Pattern)

| ?x (Star Pattern)

Rascal Light programs expressions evaluate to values, which either are
basic values, constructor values, collections or the undefined value (�).

v ::= vb (Basic Values)

| k(v) (Constructor Values, k ∈ Constructor)

| [v] (List Values)

| {v} (Set Values)

| (v : v′) (Map Values)

| � (Undefined Value)

6.2 Semantics

I present a formal development of the dynamic aspects of Rascal
Light, using a natural semantics specification. Natural (big-step) se-
mantics [Kahn, 1987] is particularly suitable for Rascal, because it
closely mimics semantics of an interpreter and the high-level features—
exceptions, backtracking, traversals—introduce a rich control-flow that
depends not only on the structure of the program but also on the pro-
vided input. There is no concurrency or interleaving in Rascal, and
so there is no need for a more fine-grained operational semantics like
(small-step) structural operational semantics (SOS) [Plotkin, 2004].
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Value Typing
Rascal (Light) is strongly typed and so all values are typed. The types
are fairly straight-forward in the sense that most values have a canoni-
cal type and there is a sub-typing hierarchy (explained shortly) with a
bottom type void and a top type value.

t ::= tb (Base Types, tb ∈ {Int, Rational, String, . . .})
| at (Algebraic Data Types, at ∈ DataType)

| set〈t〉 (Sets)

| list〈t〉 (Lists)

| map〈t1, t2〉 (Maps)

| void (Bottom Type)

| value (Top Type)

I provide a typing judgment for values of form v : t , which states that
value v has type t. Basic values are typed by their defining basic type,
the undefined value (�) has the bottom type void, and constructor val-
ues are typed by their corresponding data type definition assuming the
contained values are well-typed. The type of collections is determined
by the contained values, and so a least upper bound operator is de-
fined in types—following the sub-type ordering—which is used to infer
a precise type for the value parameters.

T-Basic

vb ∈ JtbK
vb : tb

T-Bot

� : void

T-Constructor

data at = . . . | k(t) | . . . v : t′ t′ <: t

k(v1, . . . , vn) : at

T-Set

v : t

{v} : set〈⊔ t〉
T-List

v : t

[v] : list〈⊔ t〉
T-Map

v : t v′ : t′

(v : v′) : map〈⊔ t,
⊔

t′〉

The subtyping relation has form t <: t′ , stating t is a subtype of t′.
We let t 6<: t′ denote the negated form where none of the given cases
below matches. Sub-typing is reflexive, so every type is a sub-type of
itself; void and value act as bottom type and top type respectively.

ST-Refl t <: t ST-Void

void <: t
ST-Value

t <: value
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Collections are covariant in their type parameters, which is safe since
all values are immutable.

ST-List
t <: t′

list〈t〉 <: list〈t′〉
ST-Set

t <: t′

set〈t〉 <: set〈t′〉

ST-Map

tkey <: t′key tval <: t′val

map〈tkey, tval〉 <: map〈t′key, t′val〉

The least upper bound on types is defined as follows:⊔
ε = void

⊔
t, t′ = t t

⊔
t′

t1 t t2 =



t1 if t2 = void∨ t1 = t2

t2 if t1 = void

list〈t′1 t t′2〉 if t1 = list〈t′1〉 ∧ t2 = list〈t′2〉
set〈t′1 t t′2〉 if t1 = set〈t′1〉 ∧ t2 = set〈t′2〉
map〈t′1 t t′2, t′′1 t t′′2 〉 if t1 = map〈t′1, t′′1 〉 ∧ t2 = map〈t′2, t′′2 〉
value otherwise

Expression Evaluation
The main judgment for Rascal Light expressions has the form
e; σ ==⇒

expr
vres; σ′ , where the expression e is evaluated in an initial store

σ ∈ Var → Val—mapping variables to values—returning a result vres
and updated store σ′ as a side-effect. The result vres is either an ordi-
nary success v signifying successful execution or an exceptional result
exres.

vres ::= success v | exres

An exceptional result is either a control operation (break, continue,
fail), an error that happened during execution, a thrown exception
throw v or an early return value return v. The difference between
success v and return v is that the latter should propagate directly from
sub-expressions to the surrounding function call boundary, while the
value in the former can be used further in intermediate computations
(Example 6.4).

exres ::= return v | throw v | break | continue | fail | error
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Example 6.4 (Early Return). The function that calculates producs, uses
the early return functionality to short-circuit the rest of the calculation
when a factor in the provided list is zero. If this branch is hit during
execution, evaluating the expression produces return 0 as result, which
is then propagated directly to function call boundary, skipping the rest
of the loop and sequenced expressions.

1 int prod(list[int] xs) {
2 int res = 1;
3 for (x <- xs) {
4 if (x == 0) return 0;
5 else res *= x;
6 };
7 res
8 }

N

Basic values evaluate to their semantic equivalent result values with-
out any side effect (E-Val).

E-Val

vb; σ ==⇒
expr

success vb; σ

A variable evaluates to the value it is assigned to in the store if available
(E-Var-Sucs), and otherwise result in an error (E-Var-Err).

E-Var-Sucs
x ∈ dom σ

x; σ ==⇒
expr

success σ(x); σ
E-Var-Err

x /∈ dom σ
x; σ ==⇒

expr
error; σ

Unary expressions evaluate their operands, applying possible side-
effects; if successful the corresponding semantic unary operator J	K is
applied on the result value (E-Un-Sucs), and otherwise it propagates
the exceptional result (E-Un-Exc).

E-Un-Sucs

e; σ ==⇒
expr

success v; σ′

	 e; σ ==⇒
expr

J	K(v); σ′
E-Un-Exc

e; σ ==⇒
expr

exres; σ′

	 e; σ ==⇒
expr

exres; σ′

Example 6.5 (Unary operator semantics). J−K(3) will evaluate to
success −3, while J−K({}) will evaluate to error N

Evaluating binary expressions is similar to unary expressions, requir-
ing both operands to evaluate successfully (E-Bin-Sucs) to apply the
corresponding semantic binary operator J⊕K; otherwise the exceptional
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results of the operands are propagated in order from left (E-Bin-Exc1)
to right (E-Bin-Exc2).

E-Bin-Sucs

e1; σ ==⇒
expr

success v1; σ′′ e2; σ′′ ==⇒
expr

success v2; σ′

e1 ⊕ e2; σ ==⇒
expr

J⊕K(v1, v2); σ′

E-Bin-Exc1
e1; σ ==⇒

expr
exres1; σ′′

e1 ⊕ e2; σ ==⇒
expr

exres1; σ′

E-Bin-Exc2
e1; σ ==⇒

expr
success v1; σ′′ e2; σ′′ ==⇒

expr
exres2; σ′

e1 ⊕ e2; σ ==⇒
expr

exres2; σ′

Constructor expressions evaluate their arguments first, and if they all
successfully evaluate to values, then check whether the types of values
match those expected in the declaration. If the result values have the
right types and are not �, a constructor value is constructed (E-Cons-
Sucs), and otherwise a (type) error is produced (E-Cons-Err). In case
any of the arguments has an exceptional result the evaluation of the
rest of the arguments halts and the exceptional result is propagated (E-
Cons-Exc).

E-Cons-Sucs

data at = . . . | k(t) | . . . e; σ ==⇒
expr?

success v; σ′

v : t′ v 6= � t′ <: t

k(e); σ ==⇒
expr

success k(v); σ′

E-Cons-Err

data at = . . . | k(t) | . . . e; σ ==⇒
expr?

success v; σ′

v : t′ ∃i.vi = �∨ t′i 6<: ti

k(e); σ ==⇒
expr

error; σ′

E-Cons-Exc

e; σ ==⇒
expr?

exres; σ′

k(e); σ ==⇒
expr

exres; σ′

Evaluating list expressions also requires evaluating all subexpressions
to a series of values; because of sequencing and necessity of early prop-
agation of exceptional results, evaluation of series of subexpressions
is done using a mutually recursive sequence evaluation judgment (see
page 115). If the evaluation is successful then a list value is constructed
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(E-List-Sucs), unless any value is undefined (�) in which case we pro-
duce an error (E-List-Err), and otherwise the exceptional result is prop-
agated (E-List-Exc).

E-List-Sucs

e; σ ==⇒
expr?

success v; σ′ v 6= �

[e]; σ ==⇒
expr

success [v]; σ′

E-List-Err

e; σ ==⇒
expr?

success v; σ′ ∃i.vi = �

[e]; σ ==⇒
expr

error; σ′
E-List-Exc

e; σ ==⇒
expr?

exres; σ′

[e]; σ ==⇒
expr

exres; σ′

Set expression evaluation mirror the one for lists, except that values
are constructed using a set constructor (E-Set-Sucs), which may reorder
values and ensures that there are no duplicates. If any contained value
was undefined (�) then an error is produced instead (E-Set-Err), and
exceptional results are propagated (E-Set-Exc).

E-Set-Sucs

e; σ ==⇒
expr?

success v; σ′ v 6= �

{e}; σ ==⇒
expr

success {v}; σ′

E-Set-Err

e; σ ==⇒
expr?

success v; σ′ ∃i.vi = �

{e}; σ ==⇒
expr

error; σ′
E-Set-Exc

e; σ ==⇒
expr?

exres; σ′

{e}; σ ==⇒
expr

exres; σ′

Map expressions evaluate their keys and values in the declaration se-
quence, and if successful construct a map (E-Map-Sucs). Similarly to
other collection expressions, errors are produced if any value is unde-
fined (E-Map-Err) and exceptional results are propagated (E-Map-Exc).

E-Map-Sucs

e, e′; σ ==⇒
expr?

success v, v′; σ′ v 6= � v′ 6= �

(e : e′); σ ==⇒
expr

success (v : v′); σ′

E-Map-Err

e, e′; σ ==⇒
expr?

success v, v′; σ′ ∃.vi = �∨ v′i = �

(e : e′); σ ==⇒
expr

error; σ′

E-Map-Exc

e, e′; σ ==⇒
expr?

exres; σ′

(e : e′); σ ==⇒
expr

exres; σ′

Lookup expressions require evaluating the outer expression to a map—
otherwise producing an error (E-Lookup-Err)—and the index expres-
sion to a value. If the index is an existing key then the corresponding
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value is produced as result (E-Lookup-Sucs) and otherwise the nokey
exception is thrown (E-Lookup-NoKey); here, I assume that

data NoKey = nokey(value key)

is a built-in data-type definition. Exceptional results are propagated
from sub-terms (E-Lookup-Exc1, E-Lookup-Exc2).

E-Lookup-Sucs

e1; σ ==⇒
expr

success (. . . , v : v′, . . . ); σ′′

e2; σ′′ ==⇒
expr

success v; σ′

e1[e2]; σ ==⇒
expr

success v′; σ′

E-Lookup-NoKey

e1; σ ==⇒
expr

success (v : v′); σ′′

e2; σ′′ ==⇒
expr

success v′′; σ′ ∀i.v′′ 6= vi

e1[e2]; σ ==⇒
expr

throw nokey(v′′); σ′

E-Lookup-Err

e1; σ ==⇒
expr

success v; σ′ v 6= (v′ : v′′)

e1[e2]; σ ==⇒
expr

error; σ′

E-Lookup-Exc1
e1; σ ==⇒

expr
exres; σ′

e1[e2]; σ ==⇒
expr

exres; σ′

E-Lookup-Exc2
e1; σ ==⇒

expr
success (v : v′); σ′′ e2; σ′′ ==⇒

expr
exres; σ′

e1[e2]; σ ==⇒
expr

exres; σ′

Map update expressions also require the outer expression to evaluate to
a map—otherwise producing an error (E-Update-Err1)—and the index
and target expressions to evaluate to values. On succesful evaluation of
both index and target value the map is updated, overriding the old value
of the corresponding index if necessary (E-Update-Sucs) unless the in-
dex or target value is equal to � in which case an error is produced (E-
Update-Err2). Finally, exceptional results are propagated left-to-right if
necessary (E-Update-Exc1, E-Update-Exc2, E-Update-Exc3).

E-Update-Sucs

e1; σ ==⇒
expr

success (v : v′); σ′′′ e2; σ′′′ ==⇒
expr

success v′′; σ′′

e3; σ′′ ==⇒
expr

success v′′′; σ′ v′′ 6= � v′′′ 6= �

e1[e2 = e3]; σ ==⇒
expr

success (v : v′, v′′ : v′′′); σ′
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E-Update-Err1
e1; σ ==⇒

expr
success v; σ′ v 6= (v′ : v′′)

e1[e2 = e3]; σ ==⇒
expr

error; σ′

E-Update-Err2

e1; σ ==⇒
expr

success (v : v′); σ′′′ e2; σ′′′ ==⇒
expr

success v′′; σ′′

e3; σ′′ ==⇒
expr

success v′′′; σ′ v′′ = �∨ v′′′ = �

e1[e2 = e3]; σ ==⇒
expr

error; σ′

E-Update-Exc1
e1; σ ==⇒

expr
exres; σ′

e1[e2 = e3]; σ ==⇒
expr

exres; σ′

E-Update-Exc2
e1; σ ==⇒

expr
success (v : v′); σ′′ e2; σ′′ ==⇒

expr
exres; σ′

e1[e2 = e3]; σ ==⇒
expr

exres; σ′

E-Update-Exc3

e1; σ ==⇒
expr

success (v : v′); σ′′

e2; σ′′′ ==⇒
expr

success v′′; σ′′ e3; σ′′ ==⇒
expr

exres; σ′

e1[e2 = e3]; σ ==⇒
expr

exres; σ′

Evaluation of function calls is more elaborate. Function definitions are
statically scoped, and the semantics is eager, so arguments are evaluated
using call-by-value. The initial step is thus to evaluate all the arguments
to values if possible—propagating the exceptional result otherwise (E-
Call-Arg-Exc)—and then check whether the values have the right type
(otherwise producing an error, E-Call-Arg-Err). The evaluation pro-
ceeds by evaluating the body of the function with a fresh store that con-
tains the values of global variables and the parameters bound to their
respective argument values. There are then four cases:

1. If the body successfully evaluates to a correctly typed value, then
that value is provided as the result (E-Call-Sucs).

2. If the body evaluates to a value that does not have the expected
type, then it produces an error (E-Call-Res-Err1).

3. If the result is a thrown exception or error, then it is propagated
(E-Call-Res-Exc).



6.2. Semantics 109

4. Otherwise if the result is a control operator, then an error is pro-
duced (E-Call-Res-Err2).

In all cases the resulting store of executing the body is discarded—since
local assignments fall out of scope—except the global variable values
which are added to the store that was there before the function call.

E-Call-Sucs

global ty y fun t′ f (t x) = e′

e; σ ==⇒
expr?

success v; σ′′ v : t′′ t′′ <: t

[y 7→ σ′′(y), x 7→ v]; e′ ==⇒
expr

vres; σ′

vres = return v′ ∨ vres = success v′ v′ : t′′′ t′′′ <: t′

f (e); σ ==⇒
expr

success v′; σ′′[y 7→ σ′(y)]

E-Call-Arg-Err

fun t′ f (t x) = e′ e; σ ==⇒
expr?

success v; σ′

v : t′′ t′′i 6<: ti

f (e); σ ==⇒
expr

error; σ′

E-Call-Arg-Exc

e; σ ==⇒
expr?

exres; σ′

f (e); σ ==⇒
expr

exres; σ′

E-Call-Res-Exc

global ty y fun t′ f (t x) = e′

e; σ ==⇒
expr?

success v; σ′′ v : t′′ t′′ <: t

[y 7→ σ′′(y), x 7→ v]; e′ ==⇒
expr

exres; σ′ exres = throw v′

f (e); σ ==⇒
expr

exres; σ′′[y 7→ σ′(y)]

E-Call-Res-Err1

global ty y fun t′ f (t x) = e′

e; σ ==⇒
expr?

success v; σ′′ v : t′′ t′′ <: t

[y 7→ σ′′(y), x 7→ v]; e′ ==⇒
expr

vres; σ′

vres = return v′ ∨ vres = success v′ v′ : t′′′ t′′′ 6<: t′

f (e); σ ==⇒
expr

error; σ′′[y 7→ σ′(y)]

E-Call-Res-Err2

global ty y fun t′ f (t x) = e′

e; σ ==⇒
expr?

success v; σ′′ v : t′′ t′′ <: t

[y 7→ σ′′(y), x 7→ v]; e′ ==⇒
expr

exres; σ′

exres ∈ {break, continue, fail, error}
f (e); σ ==⇒

expr
error; σ′′[y 7→ σ′(y)]
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The return-expression evaluates its argument expression first, and
if it successfully produces a value then the result would be an early
return with that value (E-Ret-Sucs); recall that early returns are treated
as exceptional values and so propagated through most evaluation rules,
except at function call boundaries (rules E-Call-Sucs and E-Call-Res-
Err1). Otherwise, the exceptional result is propagated (E-Ret-Exc).

E-Ret-Sucs

e; σ ==⇒
expr

success v; σ′

return e; σ ==⇒
expr

return v; σ′
E-Ret-Exc

e; σ ==⇒
expr

exres; σ′

return e; σ ==⇒
expr

exres; σ′

In Rascal Light, variables must be declared before being assigned,
and declarations are unique since shadowing is disallowed. Eval-
uating an assignment proceeds by evaluating the right-hand side
expression—propagating exceptional results (E-Asgn-Exc)—and then
checking whether the produced value is compatible with the declared
type. If it is compatible then the store is updated (E-Asgn-Sucs), and
otherwise an error is produced (E-Asgn-Err).

E-Asgn-Sucs

local t x ∨ global t x e; σ ==⇒
expr

success v; σ′

v : t′ t′ <: t
x = e; σ ==⇒

expr
success v; σ′[x 7→ v]

E-Asgn-Err

local t x ∨ global t x e; σ ==⇒
expr

success v; σ′

v : t′ t′ 6<: t
x = e; σ ==⇒

expr
error; σ′

E-Asgn-Exc

e; σ ==⇒
expr

exres; σ′

x = e; σ ==⇒
expr

exres; σ′

The if-expression works like other languages: the then-branch is
evaluated if the condition is true (E-If-True), otherwise the else-branch
is evaluated (E-If-False). If the conditional produces a non-Boolean
value then an error is raised (E-If-Err) and otherwise exceptional re-
sults are propagated (E-If-Exc).

E-If-True

econd; σ ==⇒
expr

success true(); σ′′ e1; σ′′ ==⇒
expr

vres1; σ′

if econd then e1 else e2; σ ==⇒
expr

vres1; σ′
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E-If-False

econd; σ ==⇒
expr

success false(); σ′′ e2; σ′′ ==⇒
expr

vres2; σ′

if econd then e1 else e2; σ ==⇒
expr

vres2; σ′

E-If-Err

econd; σ ==⇒
expr

success v; σ′ v 6= true() v 6= false()

if econd then e1 else e2; σ ==⇒
expr

error; σ′

E-If-Exc

econd; σ ==⇒
expr

exres; σ′

if econd then e1 else e2; σ ==⇒
expr

exres; σ′

The switch-expression initially evaluates the scrutinee expression (e),
and then proceeds to execute the cases (discussed on page 116) on the
result value (E-Switch-Sucs). The evaluation of cases is allowed to fail,
in which case the evaluation is successful and has the special value �
(E-Switch-Fail); other exceptional results are propagated as usual (E-
Switch-Exc1, E-Switch-Exc2).

E-Switch-Sucs

e; σ ==⇒
expr

success v; σ′′ cs; v; σ′′ ==⇒
cases

success v′; σ′

switch e cs; σ ==⇒
expr

success v′; σ′

E-Switch-Fail

e; σ ==⇒
expr

success v; σ′′ cs; v; σ′′ ==⇒
cases

fail; σ′

switch e cs; σ ==⇒
expr

success �; σ′

E-Switch-Exc1
e; σ ==⇒

expr
exres; σ′

switch e cs; σ ==⇒
expr

exres; σ′

E-Switch-Exc2
e; σ ==⇒

expr
success v; σ′′ cs; v; σ′′ ==⇒

cases
exres; σ′ exres 6= fail

switch e cs; σ ==⇒
expr

exres; σ′

The visit-expression has similar evaluation cases to switch (E-Visit-
Sucs, E-Visit-Fail, E-Visit-Exc1, E-Visit-Exc2), except that the cases
are evaluated using the visit relation that traverses the produced value
of target expression given the provided strategy.
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E-Visit-Sucs

e; σ ==⇒
expr

success v; σ′′ cs; v; σ′′
st

==⇒
visit

success v′; σ′

st visit e cs; σ ==⇒
expr

success v′; σ′

E-Visit-Fail

e; σ ==⇒
expr

success v; σ′′ cs; v; σ′′
st

==⇒
visit

fail; σ′

st visit e cs; σ ==⇒
expr

success v; σ′

E-Visit-Exc1
e; σ ==⇒

expr
exres; σ′

st visit e cs; σ ==⇒
expr

exres; σ′

E-Visit-Exc2
e; σ ==⇒

expr
success v; σ′′ cs; v; σ′′

st
==⇒
visit

exres; σ′ exres 6= fail

st visit e cs; σ ==⇒
expr

exres; σ′

The control operations break, continue and fail evaluate to them-
selves without any side-effects (E-Break, E-Continue, E-Fail).

E-Break

break; σ ==⇒
expr

break; σ
E-Fail

fail; σ ==⇒
expr

fail; σ

E-Continue

continue; σ ==⇒
expr

continue; σ

Blocks allow evaluating inner expressions using a local declaration
of variables, which are then afterwards removed from the resulting store
(E-Block-Sucs, E-Block-Exc). Recall, that we consider an implicit def-
inition environment based on scoping, and so the local declarations in
the block will be implicitly available in the evaluation of the body subex-
pression sequence.

E-Block-Sucs

e; σ ==⇒
expr?

success v; σ′

local t x in e end; σ ==⇒
expr

success last(v); (σ′ \ x)

E-Block-Exc

e; σ ==⇒
expr?

exres; σ′

local t x in e end; σ ==⇒
expr

exres; (σ′ \ x)
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The auxiliary function last is here used to extract the last element in
the sequence (or return � if empty).

last(v1, . . . , vn, v′) = v′

last(ε) = �

The for-loop evaluates target generator expression to a set of possible
environments that represent possible assignments of variables to values—
propagating exceptions if necessary (E-For-Exc)—and then it iterates
over each possible assignment using the each-relation (E-For-Sucs).

E-For-Sucs

g; σ ==⇒
gexpr

success ρ; σ′′

e; ρ; σ′′ ==⇒
each

vres; σ′

for g e; σ ==⇒
expr

vres; σ′
E-For-Exc

g; σ ==⇒
gexpr

exres; σ′

for g e; σ ==⇒
expr

exres; σ′

The evaluation of while-loops is analogous to other imperative lan-
guages with control operations, in that the body of the while loop is con-
tinuously executed until the target condition does not hold (E-While-
False). If the body successfully finishes with an value or continue then
iteration continues (E-While-True-Sucs), if the body finishes with break
the iteration stops with value � (E-While-True-Break), if the condi-
tional evaluates to a non-Boolean value it errors out (E-While-Err) and
otherwise if another kind of exceptional result is produced then it is
propagated (E-While-Exc1, E-While-Exc2).

E-While-False

econd; σ ==⇒
expr

success false(); σ′

while econd e; σ ==⇒
expr

success �; σ′

E-While-True-Sucs

econd; σ ==⇒
expr

success true(); σ′′ e; σ′′ ==⇒
expr

vres; σ′′′

vres = success v ∨ vres = continue
while econd e; σ′′′ ==⇒

expr
vres′; σ′

while econd e; σ ==⇒
expr

vres′; σ′

E-While-True-Break

econd; σ ==⇒
expr

success true(); σ′′ e; σ′′ ==⇒
expr

break; σ′

while econd e; σ ==⇒
expr

success �; σ′
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E-While-Exc1
econd; σ ==⇒

expr
exres; σ′

while econd e; σ ==⇒
expr

exres; σ′

E-While-Exc2

econd; σ ==⇒
expr

success true(); σ′′ e; σ′′ ==⇒
expr

exres; σ′

exres ∈ {throw v, return v, fail, error}
while econd e; σ ==⇒

expr
exres; σ′

E-While-Err

econd; σ ==⇒
expr

success v; σ′ v 6= true() v 6= false()

while econd e; σ ==⇒
expr

error; σ′

The solve-loop keeps evaluating the body expression until the pro-
vided variables reach a fixed-point; this is analogous to the TRON fix-
statement presented in Chapter 5. Initially, the body expression is eval-
uated and then the values of target variables is compared from before
and after iteration; if the values are equal after an iteration, then evalua-
tion stops (E-Solve-Eq) and otherwise the iteration continues (E-Solve-
Neq). If any of the variables do not have a value assigned, an error is
produced (E-Solve-Err), and otherwise if an exceptional result is pro-
duced, it is propagated (E-Solve-Exc).

E-Solve-Eq

e; σ ==⇒
expr

success v; σ′ x ⊆ dom σ ∩ dom σ′ σ(x) = σ′(x)

solve x e; σ ==⇒
expr

success v; σ′

E-Solve-Neq

e; σ ==⇒
expr

success v; σ′′ x ⊆ dom σ ∩ dom σ′′

∃i.σ(xi) 6= σ′′(xi) solve x e; σ′′ ==⇒
expr

vres; σ′

solve x e; σ ==⇒
expr

vres; σ′

E-Solve-Exc

e; σ ==⇒
expr

exres; σ′

solve x e; σ ==⇒
expr

exres; σ′

E-Solve-Err

e; σ ==⇒
expr

success v; σ′ xi 6∈ dom σ ∩ dom σ′

solve x e; σ ==⇒
expr

error; σ′
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The throw-expression, evaluates its inner expression first—
propagating exceptional results if necessary (E-Thr-Exc)—and then pro-
duces a throw result with result value (E-Thr-Sucs).

E-Thr-Sucs

e; σ ==⇒
expr

success v; σ′

throw e; σ ==⇒
expr

throw v; σ′
E-Thr-Exc

e; σ ==⇒
expr

exres; σ′

throw e; σ ==⇒
expr

exres; σ′

The try-finally expression executes the try-body first and then the
finally-body. If the finally-body produces an exceptional result during
execution then that result is propagated (E-Fin-Exc) and otherwise the
try-body result value is used (E-Fin-Sucs).

E-Fin-Sucs

e1; σ ==⇒
expr

vres1; σ′′ e2; σ′′ ==⇒
expr

success v2; σ′

try e1 finally e2; σ ==⇒
expr

vres1; σ′

E-Fin-Exc

e1; σ ==⇒
expr

vres1; σ′′ e2; σ′′ ==⇒
expr

exres2; σ′

try e1 finally e2; σ ==⇒
expr

exres2; σ′

The try-catch expression evaluates the try-body and if it produces a
thrown value, then it binds the value in the body of catch and continues
evaluation (E-Try-Catch). For all other results, it simply propagates
them without evaluating the catch-body (E-Try-Ord).

E-Try-Catch

e1; σ ==⇒
expr

throw v1; σ′′ e2; σ′′[x 7→ v1] ==⇒expr
vres2; σ′

try e1 catch x ⇒ e2; σ ==⇒
expr

vres2; (σ′ \ x)

E-Try-Ord

e1; σ ==⇒
expr

vres1; σ′ vres1 6= throw v1

try e1 catch x ⇒ e2; σ ==⇒
expr

vres1; σ′

Expression Sequences Evaluating a sequence of expressions proceeds
by evaluating each expression, combining the results if successful (ES-
Emp, ES-More) and otherwise propagating the first exceptional result
encountered (ES-Exc1, ES-Exc2).

ES-More

e; σ ==⇒
expr

success v; σ′′ e′; σ′′ ==⇒
expr?

success v′; σ′

e, e′; σ ==⇒
expr?

success v, v′; σ′
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ES-Emp success ε; σ ==⇒
expr?

ε; σ ES-Exc1
e; σ ==⇒

expr
exres; σ′

e, e′; σ ==⇒
expr?

exres; σ′

ES-Exc2
e; σ ==⇒

expr
success v; σ′′ e′; σ′′ ==⇒

expr?
exres; σ′

e, e′; σ ==⇒
expr?

exres; σ′

Cases The evaluation relation for evaluating a series of cases has the
form cs; v; σ ==⇒

cases
vres; σ′ , and intuitively proceeds by sequentially eval-

uating each case (in cs) against value v until one of them produces a non-
fail result. For each case, the first step is to match the given value against
target pattern and then evaluate the target expression under the set of
possible matches; if the evaluation of the target expression produces a
fail as result, the rest of the cases are evaluated in a restored initial state
(ECS-More-Fail) and otherwise the result is propagated (ECS-More-
Ord). If all possible cases are exhausted, the result is fail (ECS-Emp).

ECS-Emp

ε; v; σ ==⇒
cases

fail; σ

ECS-More-Fail

σ ` p
?

:= v ===⇒
match

ρ ρ; e; σ ==⇒
case

fail; σ′′

cs; v; σ ==⇒
cases

vres; σ′

case p⇒ e, cs; v; σ ==⇒
cases

vres; σ′

ECS-More-Ord

σ ` p
?

:= v ===⇒
match

ρ ρ; e; σ ==⇒
case

vres; σ′

vres 6= fail
case p⇒ e, cs; v; σ ==⇒

cases
vres; σ′

Evaluating a single case—with relation ρ; e; σ ==⇒
case

vres; σ′ —requires

trying each possible binding (in ρ) sequentially, producing fail if no
binding is available (EC-Emp). If evaluating target expression produces
a non-fail value then it is propagated (EC-More-Ord), otherwise the
rest of the possible bindings are tried in a restored initial state (EC-
More-Fail).
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EC-More-Fail

e; σρ ==⇒
expr

fail; σ′′ ρ′; e; σ ==⇒
case

vres; σ′

ρ, ρ′; e; σ ==⇒
case

vres; σ′

EC-Emp

ε; e; σ ==⇒
case

fail; σ
EC-More-Ord

e; σρ ==⇒
expr

vres; σ′ vres 6= fail

ρ, ρ′; e; σ ==⇒
case

vres; (σ′ \ dom ρ)

Traversals One of the key features of Rascal is visit-expressions which
provide generic traversals over data values and collections, allowing
for multiple strategies to determine the traversal ordering and halting
conditions. In a traditional object-oriented language or functional lan-
guage, transforming large structures is cumbersome and requires a great
amount of boilerplate, requiring a function for each type of datatype,
where each function must deconstruct the input data, applying target
changes, recursively calling the right traversal functions for traversal of
further contained data and reconstructing the data with new values.
Precisely, the first-class handling of these aspects combined with the
other features such as the powerful pattern matching makes Rascal par-
ticularly suitable as a high-level transformation language.

The main traversal relation cs; v; σ
st

==⇒
visit

vres; σ′ delegates execution

to the correct strategy-dependent traversal, and performs fixed-point
calculation if necessary. For the top-down-break and top-down strate-

gies it uses the top-down traversal relation cs; v; σ
br

====⇒
td−visit

vres; σ′ speci-

fying break and no no-break as breaking strategies respectively (EV-TD
and EV-TDB); this works analogously with the bottom-up-break (EV-BU

and EV-BUB) and bottom-up strategies using the cs; v; σ
br

====⇒
bu−visit

vres; σ′

relation.

EV-TD
cs; v; σ

no-break
====⇒
td−visit

vres; σ′

cs; v; σ
top-down
=====⇒

visit
vres; σ′

EV-TDB
cs; v; σ

break
====⇒
td−visit

vres; σ′

cs; v; σ
top-down-break
========⇒

visit
vres; σ′

EV-BU
cs; v; σ

no-break
====⇒
bu−visit

vres; σ′

cs; v; σ
bottom-up
=====⇒

visit
vres; σ′

EV-BUB
cs; v; σ

break
====⇒
bu−visit

vres; σ′

cs; v; σ
bottom-up-break
=========⇒

visit
vres; σ′
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The innermost streatgy evaluates the bottom-up traversal as long as
it produces a resulting value not equal to the one from the previous
iteration (EV-IM-Neq), returning the result value when a fixed-point is
reached (EV-IM-Eq); if any exceptional result happens during evaluation
it will be propagated (EV-IM-Exc). Analogous evaluation steps happens
with outermost streatgy and top-down traversal (EV-OM-Neq, EV-OM-
Eq, EV-OM-Exc).

EV-IM-Eq

cs; v; σ
no-break
====⇒
bu−visit

success v; σ′

cs; v; σ
innermost
=====⇒

visit
success v; σ′

EV-IM-Exc

cs; v; σ
no-break
====⇒
bu−visit

exres; σ′

cs; v; σ
innermost
=====⇒

visit
exres; σ′

EV-IM-Neq

cs; v; σ
no-break
====⇒
bu−visit

success v′; σ′′ v 6= v′

cs; v′; σ′′
innermost
=====⇒

visit
vres; σ′

cs; v; σ
innermost
=====⇒

visit
vres; σ′

EV-OM-Eq

cs; v; σ
no-break
====⇒
td−visit

success v; σ′

cs; v; σ
outermost
=====⇒

visit
success v; σ′

EV-OM-Exc

cs; v; σ
no-break
====⇒
td−visit

exres; σ′

cs; v; σ
outermost
=====⇒

visit
exres; σ′

EV-OM-Neq

cs; v; σ
no-break
====⇒
td−visit

success v′; σ′′ v 6= v′

cs; v′; σ′′
outermost
=====⇒

visit
vres; σ′

cs; v; σ
outermost
=====⇒

visit
vres; σ′

The top-down traversal strategy starts by executing all cases on the tar-
get value, scrutinee, applying possible replacements and effects to pro-
duce an intermediate result value; the traversal then continues on the
sequence of contained values of the this intermediate result, finally re-
constructing a new output containing the possible replacement values
obtained (ETV-Ord-Sucs1, ETV-Ord-Sucs2). If using the break strategy,
the traversal will stop at the first value that produces a successful result
(ETV-Break-Sucs); otherwise, if any sub-result produces a non-fail ex-
ceptional result it is propagated (ETV-Exc1, ETV-Exc2).

ETV-Break-Sucs

cs; v; σ ==⇒
cases

success v′; σ′ br = break

cs; v; σ
br

====⇒
td−visit

success v′; σ′
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ETV-Ord-Sucs1

cs; v; σ ==⇒
cases

vfres; σ′′ br = break⇒ vfres = fail

v′′ = if-fail(vfres, v) v′′′ = children(v′′)

cs; v′′′; σ′′
br

====⇒
td−visit?

fail; σ′

cs; v; σ
br

====⇒
td−visit

vfres; σ′

ETV-Ord-Sucs2

cs; v; σ ==⇒
cases

vfres; σ′′ br = break⇒ vfres = fail

v′′ = if-fail(vfres, v) v′′′ = children(v′′)

cs; v′′′; σ′′
br

====⇒
td−visit?

success v′′′′; σ′ recons v′′ using v′′′′ to rcres

cs; v; σ
br

====⇒
td−visit

rcres; σ′

ETV-Exc1
cs; v; σ ==⇒

cases
exres; σ′ exres 6= fail

cs; v; σ
br

====⇒
td−visit

exres; σ′

ETV-Exc2

cs; v; σ ==⇒
cases

vfres; σ′′ br = break⇒ vfres = fail

v′′ = if-fail(vfres, v) v′′′ = children(v′′)

cs; v′′′; σ′′
br

====⇒
td−visit?

exres; σ′ exres 6= fail

cs; v; σ
br

====⇒
td−visit

exres; σ′

Evaluating a sequence of top-down traversals, requires executing a
top-down traversal for each element, failing if the input sequence is
empty (ETVS-Emp) and otherwise combining the results (ETVS-More).
If the break strategy is used, then the iteration will instead stop at first
succesful result (ETVS-Break), and any non-fail exceptional result is
propagated (ETVS-Exc1, ETVS-Exc2).

ETVS-Emp

cs; ε; σ
br

====⇒
td−visit?

fail; σ

ETVS-Break

cs; v; σ
br

====⇒
td−visit

success v′′; σ′ br = break

cs; v, v′; σ
br

====⇒
td−visit?

success v′′, v′; σ′

ETVS-More

cs; v; σ
br

====⇒
td−visit

vfres; σ′′ br = break⇒ vfres = fail

cs; v′; σ′′
br

====⇒
td−visit?

vfres?′; σ′

cs; v, v′; σ
br

====⇒
td−visit?

vcombine(vfres, vfres?′, v, v′); σ′
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ETVS-Exc1
cs; v; σ

br
====⇒
td−visit

exres; σ′ exres 6= fail

cs; v, v′; σ
br

====⇒
td−visit?

exres; σ′

ETVS-Exc2

cs; v; σ
br

====⇒
td−visit

vfres; σ′′ br = break⇒ vfres = fail

cs; v′; σ′′
br

====⇒
td−visit?

exres; σ′ exres 6= fail

cs; v, v′; σ
br

====⇒
td−visit?

exres; σ′

Bottom-up traversals work analogously to top-down traversals, ex-
cept that traversal of children and reconstruction happens before travers-
ing the final reconstructed value (EBU-Break-Sucs, EBU-No-Break-
Sucs, EBU-Fail-Sucs). The analogy also holds with propagation of
exceptional results and errors (EBU-Exc, EBU-No-Break-Err, EBU-No-
Break-Exc).

EBU-Break-Sucs

v′′ = children(v) cs; v′′; σ
br

=====⇒
bu−visit?

success v′; σ′

br = break recons v using v′ to rcres

cs; v; σ
br

====⇒
bu−visit

rcres; σ′

EBU-No-Break-Sucs

v′′ = children(v) cs; v′′; σ
br

=====⇒
bu−visit?

success v′′′; σ′′

br = no-break recons v using v′′′ to success v′

cs; v′; σ′′ ==⇒
cases

vfres′; σ′

cs; v; σ
br

====⇒
bu−visit

success if-fail(vfres′, v′); σ′

EBU-Fail-Sucs

v′′ = children(v) cs; v′′; σ
br

=====⇒
bu−visit?

fail; σ′′

cs; v; σ′′ ==⇒
cases

vres; σ′

cs; v; σ
br

====⇒
bu−visit

vres; σ′

EBU-Exc

v′ = children(v) cs; v′; σ
br

=====⇒
bu−visit?

exres; σ′ exres 6= fail

cs; v; σ
br

====⇒
bu−visit

exres; σ′
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EBU-No-Break-Err

v′′ = children(v) cs; v′′; σ
br

=====⇒
bu−visit?

success v′′′; σ′

br = no-break recons v using v′′′ to error

cs; v; σ
br

====⇒
bu−visit

error; σ′

EBU-No-Break-Exc

v′′ = children(v) cs; v′′; σ
br

=====⇒
bu−visit?

success v′′′; σ′′

br = no-break recons v using v′′′ to success v′

cs; v′; σ′′ ==⇒
cases

exres; σ′

cs; v; σ
br

====⇒
bu−visit

exres; σ′

Evaluating a sequence of bottom-up traversals is analogous to evalu-
ating a sequence of top-down traversals. Each element in the sequence is
evaluated and their results is combined (EBUS-Emp,EBUS-More), stop-
ping at the first succesful result when using the break strategy (EBUS-
Break). Otherwise, non-fail exceptional results are propagated (EBUS-
Exc1, EBUS-Exc2).

EBUS-Emp

cs; ε; σ
br

=====⇒
bu−visit?

fail; σ

EBUS-Break

cs; v; σ
br

====⇒
bu−visit

success v′′; σ br = break

cs; v, v′; σ
br

=====⇒
bu−visit?

success v′′, v′; σ′

EBUS-More

cs; v; σ
br

====⇒
bu−visit

vfres; σ′′ br = break⇒ vfres = fail

cs; v′; σ′′
br

=====⇒
bu−visit?

vfres?′; σ′

cs; v, v′; σ
br

=====⇒
bu−visit?

vcombine(vfres, vfres?′, v, v′); σ′

EBUS-Exc1
cs; v; σ

br
====⇒
bu−visit

exres; σ′ exres 6= fail

cs; v, v′; σ
br

=====⇒
bu−visit?

exres; σ′
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EBUS-Exc2

cs; v; σ
br

====⇒
bu−visit

vfres; σ′′ br = break⇒ vfres = fail

cs; v′; σ′′
br

=====⇒
bu−visit?

exres; σ′

cs; v, v′; σ
br

=====⇒
bu−visit?

exres; σ′

Auxiliary The children function extracts the directly contained values
of the given input value.

children(vb) = ε children(k(v)) = v

children([v]) = v children({v}) = v

children((v : v′)) = v, v′ children(�) = ε

vfres ::= success v | fail

The if-fail function will return a provided default value if the first
argument is fail, and otherwise it will use the provided value in the
first argument.

if-fail(fail, v) = v if-fail(success v′, v) = v′

The vcombine function will combine success and fail results from
visitor, producing fail if both result arguments are fail otherwise pro-
ducing success result, possibly using default values

vcombine(vfres, vfres?′, v, v′) =


fail if

vfres = fail∧
vfres′ = fail

success

(
if-fail(vfres, v),

if-fail(vfres?′, v′)

)
otherwise

The reconstruction relation recons v using v′ to rcres tries to update

the elements of a value, checking whether provided values are type cor-
rect and defined (not �), otherwise producing an error.

rcres ::= success v | error
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RC-Val-Sucs

recons vb using ε to success vb

RC-Val-Err

recons vb using v′, v′′ to error

RC-Cons-Sucs

data at = . . . | k(t) | . . . v′ : t′ v′ 6= � t′ <: t

recons k(v) using v′ to success k(v′)

RC-Cons-Err

data at = . . . | k(t) | . . . v′ : t′ vi = �∨ t′i 6<: ti

recons k(v) using v′ to error

RC-List-Sucs

v′ 6= �
recons [v] using v′ to success [v′]

RC-List-Err

v′i = �
recons [v] using v′ to error

RC-Set-Sucs

v′ = �

recons {v} using v′ to success {v′}

RC-Set-Err

v′i = �
recons {v} using v′ to error

RC-Map-Sucs

v′′ 6= � v′′′ 6= �
recons (v : v′) using v′′, v′′′ to success (v′′ : v′′′)

RC-Map-Err

v′′i = �∨ v′′′i = �

recons (v : v′) using v′′, v′′′ to error

RC-Bot-Sucs

recons � using ε to success �

RC-Bot-Err

recons � using v′, v′′ to error
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Enumeration The enumeration relation e; ρ; σ ==⇒
each

vres; σ′ iterates

over all provided bindings (EE-More-Sucs) until there are none left (EE-
Emp) or the result is neither an ordinary value or continue from one of
the iterations (EE-More-Exc); in case the result is break the evaluation
will terminate early with a succesful result (EE-More-Break).

EE-Emp

e; ε; σ ==⇒
each

success �; σ

EE-More-Sucs

e; σρ ==⇒
expr

vres; σ′′ vres = success v ∨ vres = continue

e; ρ′; (σ′′ \ dom ρ) ==⇒
each

vres′; σ′

e; ρ, ρ′; σ ==⇒
each

vres′; σ′

EE-More-Break

e; σρ ==⇒
expr

break; σ′

e; ρ, ρ′; σ ==⇒
each

success �; (σ′ \ dom ρ)

EE-More-Exc

e; σρ ==⇒
expr

exres; σ′ exres ∈ {throw v, return v, fail, error}

e; ρ, ρ′; σ ==⇒
each

exres; (σ′ \ dom ρ)

Generator expressions The evaluation relation for generator expres-
sions has form g; σ ==⇒

gexpr
envres; σ′ . For matching assignments the tar-

get right-hand side expression is evaluated first—propagating possible
exceptional results (G-Pat-Exc) and then the value is matched against
target pattern (G-Pat-Sucs).

envres ::= success ~ρ | exres

G-Pat-Sucs

e; σ ==⇒
expr

success v; σ′ σ′ ` p
?

:= v ===⇒
match

~ρ

p := e; σ ==⇒
gexpr

success ~ρ; σ′

G-Pat-Exc

e; σ ==⇒
expr

exres; σ′

p := e; σ ==⇒
expr

exres; σ′

For enumerating assignments, each possible value in a collection is pro-
vided as a possible binding to the range variable in the output (G-Enum-
List, G-Enum-Set); for maps in particular, only the keys are bounds
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(G-Enum-Map). An error is raised if the result value is not a collection
(G-Enum-Err), and exceptions are propagated as always (G-Enum-Exc).

G-Enum-List

e; σ ==⇒
expr

success [v1, . . . , vn]; σ′

x ← e; σ ==⇒
gexpr

success [x 7→ v1], . . . , [x 7→ vn]; σ′

G-Enum-Set

e; σ ==⇒
expr

success {v1, . . . , vn}; σ′

x ← e; σ ==⇒
gexpr

success [x 7→ v1], . . . , [x 7→ vn]; σ′

G-Enum-Map

e; σ ==⇒
expr

success (v1 : v′1, . . . , vn : v′n); σ′

x ← e; σ ==⇒
gexpr

success [x 7→ v1], . . . , [x 7→ vn]; σ′

G-Enum-Err

e; σ ==⇒
expr

success v; σ′ v = vb∨ v = k(v′) ∨ v = �

x ← e; σ ==⇒
gexpr

error; σ′

G-Enum-Exc

e; σ ==⇒
expr

exres; σ′

x ← e; σ ==⇒
gexpr

exres; σ′

Pattern Matching

The pattern matching relation v ` σ
?

:= p ===⇒
match

ρ takes as input the cur-

rent store σ, a pattern p and a target value v and produces a sequence of
compatible environments that represent possible bindings of variables
to values. Pattern matching a basic value against target value produces
a single environment that does not bind any variable ([]) if the target
value is the same basic value (P-Val-Sucs) and otherwise does not pro-
duce any binding environment (ε), (P-Val-Fail).

P-Val-Sucs

σ ` vb
?

:= vb ===⇒
match

[]
P-Val-Fail

v 6= vb

σ ` vb
?

:= v ===⇒
match

ε
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Pattern matching against a variable depends on whether the variable
already exists in the current store. If it is assigned in the current store,
then the target value must the assigned value to return a possible bind-
ing (P-Var-Uni) and otherwise failing with no bindings (P-Var-Fail); if
it is not in the current store, it will simply bind the variable to the target
value (P-Var-Bind).

P-Var-Uni

x ∈ dom σ v = σ(x)

σ ` x
?

:= v ===⇒
match

[]
P-Var-Fail

x ∈ dom σ v 6= σ(x)

σ ` x
?

:= v ===⇒
match

ε

P-Var-Bind
x /∈ dom σ

σ ` x
?

:= v ===⇒
match

[x 7→ v]

When pattern matching against a constructor pattern, it is first
checked whether the target value has the same constructor. If it does,
then the sub-patterns are matched against the contained values of the
target value, merging their resulting environments (P-Cons-Sucs), and
otherwise failing with no bindings (P-Cons-Fail). The merging proce-
dure is described formally later in this section, but it intuitively it takes
the union of all bindings that have consistent assignments to the same
variables.

P-Cons-Sucs

σ ` p1
?

:= v1 ===⇒
match

ρ1 . . . σ ` pn
?

:= vn ===⇒
match

ρn

σ ` k(p)
?

:= k(v) ===⇒
match

merge(ρ1, . . . , ρn)

P-Cons-Fail

v 6= k(v′)

σ ` k(p)
?

:= v ===⇒
match

ε

When pattern matching against a typed labeled pattern, the target
value is checked to have a compatible type—failing with no bindings
otherwise (P-Type-Fail)— and then then the inner pattern is matched
against the same value. The result of the sub-pattern match is merged
with the environment where the target value is bound to the label vari-
able (P-Type-Sucs).

P-Type-Sucs

v : t′ t′ <: t σ ` p
?

:= v ===⇒
match

ρ

σ ` t x : p
?

:= v ===⇒
match

merge([x 7→ v], ρ)



6.2. Semantics 127

P-Type-Fail

v : t′ t′ 6<: t

σ ` t x : p
?

:= v ===⇒
match

ε

Pattern matching against a list pattern first checks whether the tar-
get value is a list—otherwise failing (P-List-Fail)—and then pattern
matches against the sub-patterns returning their result (P-List-Sucs).

P-List-Sucs

σ ` ?p
?

:= v | ∅
[] ,

===⇒
match?

ρ

σ ` [?p]
?

:= [v] ===⇒
match

ρ
P-List-Fail

v 6= [v′]

σ ` [?p]
?

:= v ===⇒
match

ε

Pattern matching against a set pattern is analogous to pattern match-
ing against list patterns (P-Set-Sucs, P-Set-Fail).

P-Set-Sucs

σ ` ?p
?

:= v | ∅
{} ]
===⇒
match?

ρ

σ ` {?p} ?
:= {v} ===⇒

match
ρ

P-Set-Fail

v 6= {v′}

σ ` {p} ?
:= v ===⇒

match
ε

Negation pattern !p matching succeeds with no variables bound if
the sub-pattern p produces no binding environment (P-Neg-Sucs), and
otherwise fails (P-Neg-Fail).

P-Neg-Sucs

σ ` p
?

:= v ===⇒
match

ε

σ `!p
?

:= v ===⇒
match

[]
P-Neg-Fail

σ ` p
?

:= v ===⇒
match

ρ ρ 6= ε

σ `!p
?

:= v ===⇒
match

ε

Descendant pattern matching applies the sub-pattern against target
value, and keeps applying the deep matching pattern against the chil-
dren values, concatenating their results (P-Deep). Notice here the simi-
larities with the deep type-directed match operation in TRON (see Chap-
ter 5); the operation in Rascal Light is however more general allowing
use of the complete pattern matching capabilities available, in contrast
to only types.

P-Deep

σ ` p
?

:= v ===⇒
match

ρ v′1, . . . , v′n = children(v)

σ ` /p
?

:= v′1 ===⇒
match

ρ′1 . . . σ ` /p
?

:= v′n ===⇒
match

ρ′n

σ ` /p
?

:= v ===⇒
match

ρ, ρ′1, . . . , ρ′n
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The star pattern matching relation has form

σ ` ?p
?

:= v | V
〈〉 ⊗
===⇒
match?

ρ which tries to match the sequence of

patterns ?p on the left-hand side with sequence of provided values v on
the right-hand side; the relations is parameterized over the construction
function (〈〉) and the partition relation (⊗), and because matching
arbitrary elements patterns ?x is non-deterministic we keep track of
a set of values V that have already been tried for the latest available
variable.

If both the pattern sequence and the value sequence is empty, then
we have successfully finished matching (PL-Emp-Both). Otherwise if
any of the sequences finish while the other is non-empty we produce
no possible bindings (PL-Emp-Pat, PL-Emp-Val); an exemption is made
for arbitrary match patterns because they can match empty sequences
of values.

PL-Emp-Both

σ ` ε
?

:= ε | V
〈〉 ⊗
===⇒
match?

[]

PL-Emp-Pat

σ ` ε
?

:= v, v′ | V
〈〉 ⊗
===⇒
match?

ε

PL-Emp-Val

σ ` p, ?p
?

:= ε | V
〈〉 ⊗
===⇒
match?

ε

When the initial element of the starred pattern sequence is an ordi-
nary pattern then it is matched against the initial element of the value
sequence, and the rest of the pattern sequence is matched against the
rest of the value sequence. The results of both submatches are then
merged together (PL-More-Pat).

PL-More-Pat

σ ` p
?

:= v ===⇒
match

ρ σ ` ?p
?

:= v′ | V
〈〉 ⊗
===⇒
match?

ρ′

σ ` p, ?p
?

:= v, v′ | V
〈〉 ⊗
===⇒
match?

merge(ρ, ρ′)

Like ordinary variables, arbitrary matching patterns depend on
whether the binding variable already exists in the current store. If the
variable is assigned in the current store then either there must exist a
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partition of values that has a matching subcollection (PL-More-Star-
Uni), or the matching fails producing any consistent binding environ-
ment (PL-More-Star-Pat-Fail, PL-More-Star-Val-Fail).

PL-More-Star-Uni

x ∈ dom σ σ(x) = 〈v′〉 v = v′ ⊗ v′′

σ ` ?p
?

:= v′′ | ∅
〈〉 ⊗
===⇒
match?

ρ

σ ` ?x, ?p
?

:= v | V
〈〉 ⊗
===⇒
match?

ρ

PL-More-Star-Pat-Fail

x ∈ dom σ σ(x) = 〈v′〉 @v′′.v = v′ ⊗ v′′

σ ` ?x, ?p
?

:= v | V
〈〉 ⊗
===⇒
match?

ε

PL-More-Star-Val-Fail

x ∈ dom σ σ(x) = v v 6= 〈v′〉

σ ` ?x, ?p
?

:= v′′ | V
〈〉 ⊗
===⇒
match?

ε

If the variable is not in the current store then there are two options:
either i) there still exist a partition that is possible to try, or ii) we have
exhausted all possible partitions of the value sequence. In the first case,
an arbitrary partition is bound to the target variable and the rest of
the patterns are matched against the rest of the values, merging their
results; additionally, the other partitions are also tried concatenating
their results with the merged one (PL-More-Star-Re). In the exhausted
case, the pattern match produces no bindings (PL-More-Star-Exh).

PL-More-Star-Re

x /∈ dom σ v = v′ ⊗ v′′ v′ /∈ V

σ ` ?p
?

:= v′′ | ∅
〈〉 ⊗
===⇒
match?

ρ

σ ` ?x, ?p
?

:= v | V∪ v′
〈〉 ⊗
===⇒
match?

ρ′

σ ` ?x, ?p
?

:= v | V
〈〉 ⊗
===⇒
match?

merge([x 7→ v′], ρ), ρ′

PL-More-Star-Exh

x /∈ dom σ @v′, v′′.v = v′ ⊗ v′′ ∧ v′ /∈ V

σ ` ?x, ?p
?

:= v | V
〈〉 ⊗
===⇒
match?

ε

Merging a sequence of possible variable bindings produces a se-
quence containing consistent variable bindings from the sequence: that
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is, all possible environments that assign consistent values to the same
variables are merged.

merge(ε) = []

merge(ρ, ρ′1, . . . , ρ′n) = merge-pairs(ρ×merge(ρ′1, . . . , ρ′n))

merge-pairs(〈ρ1, ρ′1〉, . . . , 〈ρn, ρ′n〉) = merge-pair(ρ1, ρ′1), . . . , merge-pair(ρn, ρ′n)

merge-pair(ρ, ρ′) =

{
ρρ′ if ∀x ∈ dom ρ ∩ dom ρ′.ρ(x) = ρ′(x)

ε otherwise

6.3 Semantics Properties

Backtracking is pure in Rascal (Light) programs, and so if evaluating a
set cases produces fail as result, the initial state is restored.

Theorem 6.1 (Backtracking purity). If
CS

cs; v; σ ==⇒
cases

fail; σ′ then σ′ = σ

Strong typing is an important safety property of Rascal, which I cap-
ture by specifying a theorems with two result properties: one about the
well-typedness of state, and the other about well-typedness of resulting
values.

Theorem 6.2 (Strong typing). Assume that semantic unary J	K and binary

operators J⊕K are strongly typed. If
E

e; σ ==⇒
expr

vres; σ′ and there exists a type

t such that
T

v : t
for each value in the input store v ∈ img σ, then

1. There exists a type t′ such that v′ : t′ for each value in the result store
v′ ∈ img σ′.

2. If the result value vres is either success v′′, return v′′, or throw v′′,
then there exists a type t′′ such that v′′ : t′′.
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Consider an augmented version of the operational semantics where
each execution relation is annotated with partiality fuel [Amin and
Rompf, 2017]—represented by a superscript natural number n—which
specifies the maximal number of recursive premises allowed in the
derivation. The fuel is subtracted on each recursion, resulting in a
timeout value when it reaches zero, and the rule set is amended by
congruence rules which propagate timeout results from the recursive
premises to the conclusion.

vtres ::= vres | timeout

For this version of the semantics, we can specify the property that
execution will either produce a result or it will timeout; that is, the
semantics does not get stuck.

Theorem 6.3 (Partial progress). It is possible to construct a derivation
e; σ ==⇒

expr
n vtres; σ′ for any input expression e, well-typed store σ and fuel

n.

Finally, consider a subset of the expression language described by
syntactic category efin, where while-loops, solve-loops and function
calls are disallowed, and similarly with all traversal strategies except
bottom-up and bottom-up-break. This subset is known to be terminat-
ing:

Theorem 6.4 (Terminating expressions). There exists n such that derivation
E

efin; σ ==⇒
expr

n vres; σ′ has a result vres which is not timeout for expression

efin in the terminating subset.

Remark 6.1. Why is the top-down traversal strategy potentially non-
terminating while the bottom-up traversal strategy is terminating? The
answer lies in that the top-down traverses the children of the target ex-
pression after evaluating the required case, which makes it possible to
keep add children ad infinitum as illustrated by the following example:

1 data Nat = zero() | succ(Nat pred);
2
3 Nat infincrement(Nat n) =
4 top-down visit(n) {
5 case succ(n) => succ(succ(n))
6 }
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6.4 Formal Semantics, Types and Intented Semantics

This formal specification of Rascal Light was largely performed when
the official type checker of Rascal (developed by CWI Amsterdam) was
only at the experimental stage. Useful extension of this formalization
include a deductive type system that includes polymorphic aspects of
Rascal to prove the consistency of the type system, and type safety with
regards to the dynamic semantics provided in this formalization.

The presented semantics was checked against the Rascal implemen-
tation in various ways: the existing implementation was used as a refer-
ence point, rules for individual were held up against the documentation,
and correspondence with the Rascal developers was used to clarify re-
maining questions. A more formal way to check whether the captured
semantics is the intended one, is to construct an independent formal se-
mantics which is related to the natural semantics presented in this chap-
ter. This could be an axiomatic semantics Hoare [1969], which modularly
specifies for each construct the intented effects using logical formulae as
pre and post-conditions, without necessarily specifying how each con-
struct is evaluated. The natural semantics would then be checked to
satisfy the axiomatic semantics for each construct, which will further
increase confidence that the captured semantics is the intented one.

6.5 Recap

I presented the formalization of a large subset of the operational part
of Rascal Klint et al. [2009, 2011], called Rascal Light. The formalization
was primarily based on the available open source implementation4 and
the accompanying documentation5, and personal correspondence with
the developers further clarified previous ambiguities and mismatches.

Unlike TRON, Rascal Light is meant to be both a formal and practical
language subset, and so supports a much broader range of both ordi-
nary language features—e.g., function definitions (including recursion)
loops (including control flow operators), case analysis, and exceptions—
and high-level transformation language features such as generic traver-
sals with strategies, backtracking and powerful pattern matching. This
subset has been verified against properties specifying strong typing and
safety, which provides further trustworthiness.

4https://github.com/usethesource/rascal
5http://tutor.rascal-mpl.org/



Chapter 7

Verifying Rascal Transformations using
Inductive Refinement Types

The established rich features in Rascal—first-class traversal, powerful
pattern matching, backtracking, fixed-point iteration— make it easy
to express complex programs in a succinct and maintainable manner.
Verification-wise, availability of these features is a double-edged. They
provide an opportunity to develop techniques that provide more effi-
cient and precise results for the different constructs, e.g., by better prop-
agating information during traversal and provide specialized abstrac-
tions for the different collections available. They however also bring
along challenges:

1. The manipulated data represents often large models or programs,
relying on large inductive algebraic data types and collections such
as lists, sets and maps.

2. There is a non-trivial control flow stemming from the presence
of exceptions and backtracking—allowing potentially non-local
jumps during execution—and the traversal constructs, where the
control flow depends on the type and shape of mached data in
addition to the current state.

In this chapter, we will discuss how we combine existing techniques
in abstract interpretation in order to deal with the aforementioned chal-
lenges. Concretely, we will discuss the following contributions:

• Modular domain design for abstract shape domains, that allows
easily extending and replacing abstraction for concrete types of
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elements, e.g. extending the abstraction for lists to include length
of elements in addition to shapes.

• Formal Schmidt-style abstract operational semantics [Schmidt,
1998] for a subset of Rascal, tuning the idea of trace-based memo-
ization to support the various expressive constructs in Rascal.

• An abstract interpretation-based static analysis tool for Rascal
Light that supports inferring inductive refinements types that char-
acterise the type and shape of manipulated data.

• An evaluation of the technique on a series of realistic program
transformations, including a desugaring transformation and a DSL
transpilation transformation taken from real Rascal projects.

These contributions together show the feasibility of using abstract
interpretation for constructing static analyses for expressive transfor-
mation languages and properties. We hope that our presented adapta-
tion of Schmidt-style abstract interpretation provides inspiration beyond
Rascal, and that more language designers will reuse their existing inter-
preters of other languages to build similar tools.

7.1 Motivating Example

As a motivating example, we will use a multiplicative expression sim-
plification transformation (Figure 7.1) which eliminates multiplications
by 0 and 1. The example is inspired by the constant folding transforma-
tion common in many compilers, and is implemented in Rascal using
bottom-up traversal for the required rewriting of sub-expressions.

1 data Nat = zero() | suc(Nat pred);
2 data Expr = var(str nm) | cst(Nat vl) | mult(Expr el, Expr er);
3
4 Expr simplify(Expr expr) =
5 bottom-up visit (expr) {
6 case mult(cst(zero()), y) => cst(zero())
7 case mult(x, cst(zero())) => cst(zero())
8 case mult(cst(suc(zero())), y) => y
9 case mult(x, cst(suc(zero()))) => x
10 };

Figure 7.1: Expression Simplification
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For similar transformations to this one, there are typically multiple
properties we want to verify:

Type properties concern that all executions of the program are type and
scope-safe. In our example, this would be that the result of the
visitor is of type Expr as expected by the simplify function.

Shape properties concern that the output data of our program has a
particular structure. For our example, this could be no multiplica-
tion sub-expression mult in its output which has cst(zero()) or
cst(suc(zero())) as a sub-expression.

The presented technique allows verifying such type and shape prop-
erties by inferring inductive refinements of algebraic data type defini-
tions, e.g., the Expr data type used in the motivating example. To illus-
trate this, we will abstractly interpret our motivating example, providing
a high-level overview of the required steps:

1. Let the initial abstract store be σ̂ = [expr 7→ Expr], so the input
variable expr abstractly represents any value of type Expr.

2. Execution proceeds by evaluating the visit-statement on Line 5;
since the traversal is bottom-up, it starts traversing the contained
values (children) and then the applies the required cases to the
top-level value.

a) The children of a datatype value dependent on the partic-
ular constructor used, and so the interpreter proceed to un-
fold expr to the possible constructor values: mult(Expr, Expr),
cst(Nat) and var(str).

b) The interpreter considers each of the possible constructor val-
ues separately, merging their results using the least upper
bound operator when execution is finished.

3. In case the analyzed value is mult(Expr, Expr) then the children
have type Expr twice.

a) Traversing the first child requires us to recursively consider
the type Expr again, which would result in non-termination
if the above steps were naively repeated.
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b) Instead we will apply a version of trace memoiza-
tion [Schmidt, 1998] where we return the value of the previous
recursive traversal to compute a new approximation of the re-
sul, and then recompute the recursive traversal again until a
fixed-point is reached.

c) Because this is the first recursion in the traversal, we will re-
turn the bottom value ⊥ is used as state and the traversal
continues evaluation at the other branches.

4. In case the analyzed value is cst(Nat) then there is a single child
of type Nat.

• Traversal proceeds with the type Nat, using a similar pro-
cedure of unfolding, merging, memoization and fixed-point
iteration as above.

• Since there is no case that affects the type Nat, the traversal
produces fail Nat; σ̂ as a result, signifying that the evaluation
did not match any case. Notice, that the failure result of case
evaluation, additionally contains an abstract value Nat—not
present in the concrete executor—which signifies a refinement
of the input value.

• We have to use the result to reconstruct an updated value
using the cst constructor for the rest of the traversal, which in
this case trivially succeeds producing the same value as our
input cst(Nat).

• Since cst(Nat) does not match any case either, we get
fail cst(Nat); σ̂ as a result for this branch.

5. In case of var(str) the traversal proceeds in the same way as the
cst case, with none of the cases matching and a result value of
fail var(str); σ̂.

6. We merge the result of the three branches which produces ⊥ t
(fail cst(Nat); σ̂) t (fail var(str); σ̂) = fail Expr#1; σ̂ as result,
where:

refine Expr#1 = cst(Nat) | var(str)

This refinement of input values on failure is important to maintain
precision during traversals, which is what allows us to produce
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precise result shapes. In particular, if we did not produce a refine-
ment as above, we would only have the input value shape (Expr)
and so we would not be able to infer any useful shape property.

7. Since we got a new result that was more over-approximating than
the previous state—i.e., ⊥ v (fail Expr#1; σ̂)—the trace memo-
ization technique requires us to re-execute the visit-statement, in
order to maintain soundness (via over-approximation).

8. We unfold to three possible constructor cases again:
mult(Expr, Expr), cst(Nat) and var(str). We only have to re-
consider the result for mult(Expr, Expr) since the result for the
other two cases remain the same.

9. In the case mult(Expr, Expr), so the children are of type Expr,
twice.

a) This time on the recursive traversal of Expr, trace mem-
oization will return the state from the previous iteration
fail Expr#1; σ̂.

b) We reconstruct the expression with the refined children val-
ues, to get value mult(Expr#1, Expr#1)

c) We unfold and match the cases, applying the right-hand sides
and get the following results:

i. On the first two cases (Line 6 and Line 7), we get
success cst(zero()); σ̂ as a result.

ii. On the second two cases (Line 8 and Line 9), we get
success Expr#2; σ̂ as a result, where:

refine Expr#2 = cst(suc(Nat)) | var(str)

since both the left and right component are refined to
not be cst(zero()) after matching the previous patterns,
and the multiplication with cst(suc(zero())) is rewritten
to only contain the other operand.

iii. In case of failure, we get fail mult(Expr#3, Expr#3); σ̂ as a
result, where:

refine Expr#3 = cst(suc(suc(Nat))) | var(str)

since both components are also refined to not be
suc(zero()) after matching the previous patterns.



138 Chapter 7. Verifying Rascal Transformations using Inductive Refinement Types

d) Combining the results for the different cases by taking the
least upper bound gives us

(success Expr#1; σ̂), (fail mult(Expr#3, Expr#3); σ̂)

as a result state which keeps track of separate shapes and
stores for each type of result (success and failure).

10. Then by combining all constructor branch results we get:

(success Expr#1; σ̂), (fail Expr#4; σ̂)

where we have

refine Expr#4 = cst(Nat) | var(str) | mult(Expr#3, Expr#3)

11. Since we got a new more over-approximating re-
sult from previous execution of visit-statement—i.e.,
(fail Expr#1) v (success Expr#1; σ̂), (fail Expr#4; σ̂)—the
fixed-point iteration must be continued. To ensure ter-
mination in a finite number of steps, we use widening
between the previous result state and the current result
state (fail Expr#1; σ̂)∇(success Expr#1; σ̂), (fail Expr#4; σ̂) =
(success Expr#1; σ̂), (fail Expr#4; σ̂), which produces the same
state as the new result because the previous result did not have
any recursively defined refinement.

12. After another iteration for the fixed-point computation of visit-
statement we get (success Expr#1; σ̂), (fail Expr#5; σ̂) as result,
where:

refine Expr#5 = cst(Nat) | var(str) | mult(Expr#6, Expr#6)
refine Expr#6 = cst(suc(suc(Nat))) | var(str) | mult(Expr#3, Expr#3)

13. By widening of the new result with the previous one, we get
a result state (success Expr#1; σ̂), (success Expr#6; σ̂). This uses
the widening algorithm presented in Section 7.3, to calculate the
widening on refinements: Expr#4∇Expr#5 = Expr#7 with previ-
ous inductive refinement definitions:

refine Expr#3 = cst(suc(suc(Nat))) | var(str)
refine Expr#4 = cst(Nat) | var(str) | mult(Expr#3, Expr#3)
refine Expr#5 = cst(Nat) | var(str) | mult(Expr#6, Expr#6)

refine Expr#6 = cst(suc(suc(Nat))) | var(str) | mult(Expr#3, Expr#3)
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and new refinement definitions:

refine Expr#7 = cst(Nat) | var(str) | mult(Expr#8, Expr#8)
refine Expr#8 = cst(suc(suc(Nat))) | var(str) | mult(Expr#8, Expr#8)

The core intuition behind the refinement is to combine the set of
constructors, recursively merging the arguments of the common
ones; additionally, when merging two inductive refinements, we
create a new refinement replacing the references to the old ones
with it. In our example, this means that merging Expr#3 and
Expr#6 creates Expr#8 which has the same set of constructors, but
the recursive references are to Expr#8 instead of Expr#3 or Expr#6.

14. After another iteration, we get the same result
(success Êxpr#1), (fail Expr#7; σ̂) and so we have reached a
fixed-point.

15. On failure, the visit-expression after traversal acts as a kind of
identity transformation producing a successful rules containing
the original input value. In our abstract interpreter we will do the
same on failure, but use the refined the result; we therefore con-
vert the possible failure state fail Expr#7; σ̂ to success Expr#7; σ̂

and merge with the other success state success Expr#1; σ̂ to get
success Expr#7; σ̂ as final result for the visit-expression.

On the result inductive shape, we can then perform checks whether
our target properties are satisfied. For example, we can easily see that
all constants have natural numbers of shape suc(suc(Nat)) (that is, ≥ 2),
and so the simplification procedure correctly eliminates all multiplica-
tions by 0 and 1.

7.2 Formal Language

The presented technique is meant to work with all of Rascal Light, but to
keep the formal presentation concise we will consider a further subset,
called Rascal UltraLight. We will deliminate this subset in this section,
and then use it to describe the general technique we use to derive ab-
stract operational semantics from the concrete operational semantics for
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Rascal Light.1 The constructs in this subset get their formal semantics
directly from the Rascal Light concrete semantics presented in Chap-
ter 6, but we will recall the rules when appropriate.

We consider the following value types: integers (int), finite sets
(set〈t〉) and algebraic data types (at). Each algebraic data type, at as-
sociates a set of unique constructors, so that each constructor k(t) has a
fixed set of typed parameters.

vt ∈ ValueType ::= int | set〈t〉 | at ∈ TyCons

Like the types in Rascal, there is support for subtyping where we have
void and value as bottom and top types specifically.

t ∈ Type ::= void | vt | value

The value domain Value is generated by the least fixedpoint of the
following semantic equations for the types:

JvoidK = ∅ JintK = Z Jset〈t〉K = ℘(JtK) JvalueK =
⋃
vt

JvtK

JatK =
{

k(v)
∣∣∣ k(t) is a constructor of at∧ ∀i.vi ∈ JtiK

}
Expression language We consider the following subset of Rascal ex-
pressions:

e ::= n ∈ Z | x ∈ Var | e⊗ e | x = e | e; e | k(e) | {e}
| fail | if e then e else e | bottom-up visit e cs

cs ::= case p⇒ e p ::= x | k(p) | {?p} ?p ::= p | ?x

The considered subset includes integer constants, variables, binary
operators, variable assignments, sequencing, constructor expressions,
set literal expressions, matching failure, conditionals and bottom-up vis-
itors. The pattern language consists of either variable patterns x, con-
structor patterns k(p) or set patterns {?p} which internally consists of
either ordinary patterns or star patterns ?x, which match a subcollection
and binds the value to the variable x.

1We will even for the Rascal UltraLight subset focus on presenting the high-level
ideas behind the general technique and not mechanically translate every rule and aux-
iliary function.
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7.3 Abstract Domains

Our abstract domain design focuses on providing a modular way to
compose individual abstract domains, such that it supports the follow-
ing properties:

Replacement Allowing changes to the abstract domain for a particular
concrete type of elements without affecting the rest of the complete
abstract domain, e.g. replacing the interval abstract domain with
the congruence abstract domain for integers.

Extension Adding abstract domains for new types of values, e.g. sup-
porting an abstraction for lists of elements.

Operational Compositionality Domain operations (e.g., least upper
bound, subsumption checking and widening) can be performed
effectively in a compositional fashion, e.g., that the widening for
lists does not dependent on the definition of the particular widen-
ing used for integers.

Our goal is to construct an abstract value domain v̂ ∈ V̂alue which
captures key shape and type properties for the different values in our
concrete domain (integers, set, algebraic data types). As with our mo-
tivating example, this includes capturing inductive shapes represented
by inductive data type refinements of form:

refine at#r = k1(v̂1) | · · · | kn(v̂n)

where the left hand side defines a refinement with name at#r that refines
a datatype at with a subset of possible constructors on the right hand-
side that have abstract value components refining the shape of elements
that are abstracted and can possibly inductively refer to at#r and other
refinements.

The modular abstract domain design generalizes parameterized ab-
stract domains initially suggested by Cousot [2003] to follow a design
inspired by the modular construction of types and domains suggested in
various literature in type theory and domain theory [Scott, 1976; Smyth
and Plotkin, 1982; Winskel, 1993b; Löh and Magalhães, 2011; Chapman
et al., 2010; Backhouse et al., 2007; Benke et al., 2003]. The idea is to
define domains parametrically—i.e. of form F̂(Ê) so that abstract do-
mains for subcomponents are taken as parameters, and instead of hav-
ing closed recursion the recursive references are replaced by an abstract
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domain parameter which is decided later. After defining the abstract do-
mains parametrically for each concrete domain we wish to abstract, we
can then use standard domain combinators [Winskel, 1993b] —products,
sums, fixed points—to combine the various domains into our target ab-
stract value domain. We assume it is possible to pass information for
operations recursively as long as it is done in a parametric fashion, so the
information only affects operations for elements of the same domain; to
avoid an overly abstract presentation we will only mention the relevant
information to be passed along when needed.

Integer shape domain

To abstract over integer values, we use the classic interval do-
main [Cousot and Cousot, 1977]. We chose this domain because it is
well-defined, familiar and easy to use with all arithmetic operations; be-
cause of our modular design, it is easy to replace it when needed with
another suitable numeric abstract domain such as sign, parity or con-
gruence2.

An interval [l; u] ∈ ̂Interval represents a continuous set of integers
{n ∈ Z | l ≤ n ≤ u} and we let n ∈ Z refer to the singleteon interval
[n; n]. The ̂Interval domain forms an infinite lattice, with the following
operations:

⊥Î = [∞;−∞] >Î = [−∞; ∞]

[l1; u1] vÎ [l2; u2] iff l2 ≤ l1 ∧ u1 ≤ u2

[l1; u1] tÎ [l2; u2] = [min(l1, l2); max(u1, u2)]

[l1; u1] uÎ [l2; u2] = [max(l1, l2); min(u1, u2)]

The ̂Interval also admits a widening, which is an upper bound of
elements that ensures finite convergence to a result when iteratively ap-
plied:

[l1; u1] ∇Î [l2; u2] = [if(l2 < l1,−∞, l1); if(u1 < u2, ∞, u1)]

2In theory one could allow even relational domains such as octagon, but it would
require a redesign of the presented modular framework.
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Proposition 7.1. The ̂Interval domain forms a Galois connection with the

power set of integers ℘ (Z) −−→←−−αÎ

γÎ ̂Interval, where:

αÎ(N) = [min(N); max(N)] γÎ([l; u]) = {n ∈ Z | l ≤ n ≤ u}

Set Shape Domain

Recall that the goal of our analysis is to capture type and shape prop-
erties, and so we must pick an abstraction that can reason about the
shape of elements inside sets (and other collections) to preserve pre-
cision, especially for inductive refinements; additionally, operations on
collections like pattern matching and iteration rely on the cardinality
of collections and it is likewise useful to provide an abstraction for this
component.

We therefore abstract finite sets using a parameterized abstract do-
main, ̂SetShape(Ê), consisting of a reduced product between a compo-
nent that abstracts the shape of elements ̂SetContent(Ê) and a compo-
nent that abstracts the cardinality of the set using non-negative intervals
̂Interval

+
. The set shape content abstraction ̂SetContent(Ê) is defined as

follows:

ŝc ∈ ̂SetContent(Ê) ::= {ê}, ê ∈ Ê

We will use the notation {ê}[l;u], where ê ∈ Ê describes the content and

[l; u] ∈ ̂Interval
+

describes the cardinality to represent ({ê}, [l; u]) ∈
̂SetShape(Ê).

Example 7.1. Using the ̂Interval domain as content abstract domain, we
can abstract sets of integers using ̂SetShape( ̂Interval) as follows:

αŜS({{1, 42}, 32}) = {[1; 42]}[1;2] αŜS({{−41}, ∅}) = {−41}[0;1]

N

If the content parameter domain Ê forms a lattice (with widening),
then we can lift all operations trivially to this domain:

⊥ŜC = {⊥Ê} >ŜC = {>Ê} {ê1} vŜC {ê2} iff ê1 vÊ ê2

{ê1} tŜC {ê2} = {ê1 tÊ ê2} {ê1} uŜC {ê2} = {ê1 uÊ ê2}
{ê1} ∇ŜC {ê2} = {ê1 ∇Ê ê2}
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Given a Galois connection for the content domains ℘ (E) −−−→←−−−αÊ

γÊ
Ê we

produce the following abstraction αŜS and concretization γŜS between
the concrete set of elements domain ℘ (℘ (E)) and abstract set shape
domain ̂SetShape(Ê):

αŜS(ess) =
⊔

es∈ess
{αÊ(es)}|es|

γŜS({ê}[l;u]) =
{

es
∣∣ es ⊆ γÊ(ê) ∧ |es| ∈ γÎ([l; u])

}
Theorem 7.1. Assuming Galois connection for element domains ℘ (E) −−−→←−−−αÊ

γÊ

Ê then we have a Galois connection for the set shape domain ℘ (℘ (E)) −−−→←−−−
αŜS

γŜS

̂SetShape(Ê)

Data Shape Domain

For the clear majority of transformations, we want to ensure that the
output captures the desired type and shape properties at all levels of
the abstract syntax, i.e., that a program is fully normalized or that all
subcomponents of a model have been suitably translated. A particu-
larly natural way to capture this is by representing the shape constraints
inductively, which we do using inductive refinements.

Inductive refinements are a generalization of refinement
types [Freeman and Pfenning, 1991; Xi and Pfenning, 1998; Rushby
et al., 1998] using ideas from regular tree abstractions [Aiken and Mur-
phy, 1991; Cousot and Cousot, 1995]. Like refinement types, we allow
constraining the constructors and content—in our case using classical
abstract domains like the aforementioned interval—and we build on
the regular tree operations to make it possible to infer inductive shapes.

Concretely, our abstraction of data type values is done using the
abstract domain ̂DataShape(Ê), which takes a parameter domain Ê that
abstracts the shape of elements in constructors. We define the elements
of the data shape domain as follows:

d̂ ∈ ̂DataShape(Ê) ::= ⊥D̂S | at#r ∈ ̂Refinement | >D̂S

We have the bottom ⊥D̂S and top >D̂S elements—respectively repre-
senting no data types value and all data type values— and references to
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inductive refinements at#r abstracting over the values of algebraic data
type at. For our parametrized data shape domain, the corresponding
definition of refinement at#r consists of a choice between a subset of
constructors of at where the arguments are abstracted using the content
domain Ê:

refine at#r1 = k1(ê1) | . . . | kn(ên)

When a refinement only has a single constructor, we may inline the
definition to simplify presentation.

Example 7.2. Given ̂Interval as the base domain, we can abstract values
of data type

data intoption = none() | some(int)

as follows:

αD̂S({none(), some(−2), some(3)}) = intoption#m23

αD̂S({some(41), some(42)}) = intoption#4142

with refinement definitions:

refine intoption#m23 = none() | some([−2; 3])
refine intoption#4142 = some([41; 42])

We can abstract shape of inductive data types by using the least fixed
point of our parameterized data shape domain, i.e., lfp X̂. ̂DataShape(X̂).

For example, we can abstract value of data type

data Nat = zero() | suc(Nat)

as follows:

αD̂S({zero(), suc(suc(zero()))}) = Nat#02

with refinement definitions:

refine Nat#02 = zero() | suc(Nat#1)
refine Nat#1 = suc(Nat#0) refine Nat#0 = zero()

N
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The lattice and widening operations on abstract elements follow di-
rectly from the refinement definitions, which we will describe after-
wards.

⊥D̂S vD̂S at#r vD̂S >D̂S at#r1 vD̂S at#r2 iff at#r1 vR̂ at#r2

⊥ t© D̂Sd̂ = d̂ t© D̂S⊥ = d̂ > t© D̂Sd̂ = d̂ t© D̂S> = >
at1#r1 t© D̂Sat2#r2 = if(at1 = at2, at1#r1 t© R̂at2#r2,>) t© ∈ {t,∇}

⊥ uD̂S d̂ = d̂ uD̂S ⊥ = ⊥ >uD̂S d̂ = d̂ uD̂S > = d̂

at1#r1 uD̂S at2#r2 = if(at1 = at2, at1#r1 uR̂ at2#r2,⊥)

Let the abstract content domain form a Galois connection with a
concrete content domain ℘ (E) −−−→←−−−

αD̂S

γD̂S
Ê, then we can create abstract αD̂S

and concretization γD̂S functions between

Data =
{

k(v)
∣∣∣ ∃at.k(v) ∈ JatK

}
and ̂DataShape(Ê) as follows:

αD̂S(ds) =
⊔

k(v)∈ds

if(∀i.vi ∈ E, αR̂({k(v)}),>D̂S)

γD̂S(⊥D̂S) = ∅ γD̂S(>D̂S) = Data γD̂S(at#r) = γR̂(at#r)

Theorem 7.2. Assuming a Galois connection for the leaf elements ℘ (E) −−−→←−−−αÊ

γÊ

Ê then we have a Galois connection for the data elements ℘(Data) −−−→←−−−
αD̂S

γD̂S

̂DataShape(Ê)

Inductive Refinement Operations Recall that the data shape oper-
ations depended on the operations for inductive shape refinements,
which we will now define. The lattice operations are based directly
on the definitions given by Aiken and Murphy [1991].

Let ∆ ⊆ ̂Refinement(Ê) × ̂Refinement(Ê) be a set of assumptions
containing pairs of refinements (at#r1, at#r2), such that at#r1 is assumed
to be included in at#r2. Checking inclusion between two refinements is
initially done in an empty set of assumptions, which is then possibly
extended and passed down when checking recursive references.
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We can then define inclusion using the following deductive rules:

(at#r1, at#r2) ∈ ∆
∆ ` at#r1 vR̂ at#r2

(at#r1, at#r2) /∈ ∆
refine at#r1 = k1(ê1) | · · · | kn(ên)

refine at#r2 = k′1(ê1
′) | · · · | k′m(êm

′)

∀i∃j.ki = k′j ∧ ∆, (at#r1, at#r2) ` êi vÊ êj
′

∆ ` at#r1 vR̂ at#r2

The inclusion rules state that either we already can determine the in-
clusion from the given set of assumptions, or otherwise we must check
that at#r2 has at least the same constructors as in at#r1 and that the ar-
guments of the same constructors are correspondingly included as well;
note, how we extended the set of assumptions on the recursive call,
which is required to detect inclusion for recursive references.

Example 7.3. The refinement Nat#1 is included in Nat#12, given the fol-
lowing definitions:

refine Nat#12 = suc(Nat#01)
refine Nat#01 = zero() | suc(Nat#0)

refine Nat#1 = suc(Nat#0)
refine Nat#0 = zero()

We check inclusion using the following steps:

1. We start with ` Nat#1 vR̂ Nat#12, and since the environment
is empty we proceed to use the second rule, which for the sole
suc constructor requires us to further check (Nat#1, Nat#12) `
Nat#0 vD̂S Nat#01

2. By definition, checking a data shape requires checking the corre-
sponding refinement (Nat#1, Nat#12) ` Nat#0 vR̂ Nat#01

3. Checking (Nat#1, Nat#12) ` Nat#0 vR̂ Nat#01 also requires using
the second rule, where we can see that Nat#01 contains the sole
zero() constructor of Nat#0, and because it has no arguments we
have fulfilled all required assumptions.

N
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The least upper bound and greatest lower bound operations re-
quire a memoization map Φ ∈ ̂Refinement(Ê) × ̂Refinement(Ê) →
̂Refinement(Ê) which keeps track of results for already merged refine-

ments. We define the least upper bound using the following rules:

Φ(at#r1, at#r2) = at#r3

Φ ` at#r1 tR̂ at#r2 = at#r3

(at#r1, at#r2) /∈ dom Φ
refine at#r1 = k1(ê1) | · · · | kn(ên) | k′n+1(ên+1

′) | · · · | k′m(êm
′)

refine at#r2 = k1(ê1
′′) | · · · | kn(ên

′′) | k′′n+1(ên+1
′′) | · · · | k′′m(êm

′′)

∀ij.k′i 6= k′′j ∀i.Φ[(at#r1, at#r2) 7→ at#r3] ` êi tÊ ê′′i = ê′′′i

refine at#r3 = k1(ê1
′′′) | · · · | kn(ên

′′′) | k′n+1(ên+1
′) | · · · | k′m(êm

′)

| k′n+1(ên+1
′) | · · · | k′′m(êm

′′)

Φ ` at#r1 tR̂ at#r2 = at#r3

This states that the upper bound is either the one given by the mem-
oization, or a refinement at#r3 which contains the constructors of both
at#r1 and at#r2 and where the arguments for the common constructors
are merged using the least upper bound with an updated memoization.
In practice, if the definition of at#r3 is not already existing in our con-
sidered set of refinements then we will create it.

Example 7.4. We will calculate the least upper bound of Nat#1 and Nat#2
given the following existing definitions:

refine Nat#2 = suc(Nat#1)
refine Nat#1 = suc(Nat#0)

refine Nat#0 = zero()

The calculation is done using the following steps:

• We first need to compute [] ` Nat#1 tR̂ Nat#2 = Nat#12, which
requires uses the second rule to create a refinement:

refine Nat#12 = suc(Nat#01)

which also requires us to calculate: [(Nat#1 tR̂ Nat#2) 7→
Nat#12] ` Nat#0tD̂S Nat#1 = Nat#01
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• By definition, this means that we need to calculate [(Nat#1 tR̂
Nat#2) 7→ Nat#12] ` Nat#0 tR̂ Nat#1 = Nat#01, which we do
using the second rule to get refinement:

refine Nat#01 = zero | suc(Nat#0)

• Since there was no common constructor, there are no more com-
ponents to merge, finishing the least upper bound calculation.

N

The greatest lower bound operator on refinements is defined simi-
larly as:

Φ(at#r1, at#r2) = at#r3

Φ ` at#r1 uR̂ at#r2 = at#r3

(at#r1, at#r2) /∈ dom Φ
refine at#r1 = k1(ê1) | · · · | kn(ên) | k′n+1(ên+1

′) | · · · | k′m(êm
′)

refine at#r2 = k1(ê1
′′) | · · · | kn(ên

′′) | k′′n+1(ên+1
′′) | · · · | k′′m(êm

′′)

∀i, j.k′i 6= k′′j ∀i.Φ[(at#r1, at#r2) 7→ at#r3] ` êi uÊ ê′′i = ê′′′i

refine at#r3 = k1(ê1
′′′) | · · · | kn(ên

′′′)

Φ ` at#r1 uR̂ at#r2 = at#r3

The main difference from the least upper bound is that the result refine-
ment only has common constructors and that constructor arguments are
recursively merged using greatest lower bounds as required.

The widening operator is more elaborate since it needs to infer in-
ductive rules in order to ensure that calling programs terminate. Our
widening operator is an extension of the definition given in Cousot and
Cousot [1995], and in particular it may need to transform the existing
refinement definitions3. The procedure can be written down fully for-
mally, but it quickly becomes incomprehensible. Instead we will de-
scribe the procedure in a step-by-step fashion:

1. Assume we want to widen the two refinements at#r1 and at#r2 to
a refinement at#r3 given the following definitions (so the construc-
tors k′ and the constructors k′′ are disjoint):

refine at#r1 = k1(ê1) | · · · | kn(ên) | k′n+1(ên+1
′) | · · · | k′m(êm

′)

refine at#r2 = k1(ê1
′′) | · · · | kn(ên

′′) | k′′n+1(ên+1
′′) | · · · | k′′m(êm

′′)

3To avoid breaking other abstract values, we in practice perform the transformation
on a local copy of the rule set and then add back the local refinement definitions that
are relevant for the result
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2. The first merging step is to create a refinement definition for at#r3
that contains both sets of constructor definitions:

refine at#r3 = k1(ê1) | · · · | kn(ên) | k′n+1(ên+1
′) | · · · | k′m(êm

′)

| k1(ê1
′′) | · · · | kn(ên

′′) | k′′n+1(ên+1
′′) | · · · | k′′m(êm

′′)

3. This may have multiple alternative definitions for the same con-
structor if there were any in common, so the second step is to
recursively merge the arguments of the common constructors.

4. On refinements that should be merged recursively, we will this
time not continue eagerly creating new definitions but instead up-
date the memoization environment Φ, so that the refinements to-
be-merged map to fresh target refinement names. For example, if
we need to recursively merge refinements at#r4 and at#r5 we pro-
duce a fresh refinement at#r6 that is used as the new value (without
a definition) along with environment Φ[(at#r4, at#r5) 7→ at#r6].

5. If the definition of at#1 (or at#2) has more the choice between more
than one constructor then we replace all references to it in the
existing refinement definitions and memoization environment Φ
with at#3.

6. We will then transform the definition for at#r3 to use the merged
result arguments êi

′′′, so we get:

refine at#r3 = k1(ê1
′′′) | · · · | kn(ên

′′′) | k′n+1(ên+1
′) | · · · | k′m(êm

′)

| k′′n+1(ên+1
′′) | · · · | k′′m(êm

′′)

7. Finally, if Φ is not empty, then we repeat the same widening proce-
dure to a new pair (at#r′1, at#r′2) ∈ dom Φ, merging it to the target
refinement Φ(at#r′1, at#r′2).

Example 7.5. We will calculate the widening of Nat#12 and Nat#123 to
Nat#s, given definitions

refine Nat#12 = suc(Nat#01)
refine Nat#123 = suc(Nat#012)

refine Nat#01 = zero() | suc(Nat#0)
refine Nat#012 = zero() | suc(Nat#01)

refine Nat#0 = zero()

We proceed by following the steps of the widening procedure:
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• The first step is to create the definition for Nat#s:

refine Nat#s = suc(Nat#01) | suc(Nat#012)

• Because there was a common constructor suc, we proceed by
widening the constructor arguments Nat#01∇D̂SNat#012.

• Since by definition the constructor arguments require recur-
sively widening two refinements, we create a fresh refinement
Nat#r as required and update the memoization map so we get
[(Nat#01, Nat#012) 7→ Nat#r]

• We then transform the definition of Nat#s to get:

refine Nat#s = suc(Nat#r)

• Since both Nat#12 and Nat#123 only had a single constructor, there
is no replacement with Nat#s necessary in the rest of the defini-
tions.

• We now continue merging Nat#01 and Nat#012 to Nat#r, by creat-
ing the definition:

refine Nat#r = zero() | suc(Nat#0) | suc(Nat#01)

• Because there again was a common constructor suc, we need
to merge recursively merge suc(Nat#0) and suc(Nat#01) to
fresh refinement Nat#p, getting new memoization environment
[(Nat#0, Nat#01) 7→ Nat#p] and transformed definition:

refine Nat#r = zero() | suc(Nat#p)

• Since Nat#01 had more than one constructor, we replace all oc-
currences of Nat#01 with Nat#r in the memoization environment
getting [(Nat#0, Nat#r) 7→ Nat#p] and similarly transform the def-
initions to:

refine Nat#s = suc(Nat#r)
refine Nat#r = zero() | suc(Nat#p)

refine Nat#0 = zero()

where we dropped definitions irrelevant for the rest of the widen-
ing.
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• We proceed create a definition for Nat#p, merging Nat#0 and
Nat#r to get:

refine Nat#p = zero() | suc(Nat#p)

• There are no duplicate constructors, and since Nat#r had more
than one possible constructor, we need to replace it in the defini-
tion with Nat#p, to get the following set of refinement definitions:

refine Nat#s = suc(Nat#p)
refine Nat#p = zero() | suc(Nat#p)

• Here we can see that Nat#p is simply the Nat datatype, so we
replace it and get the following final refinements:

refine Nat#s = suc(Nat)

N

Given a Galois connection ℘(E) −−−→←−−−αÊ

γÊ
Ê, we can define abstraction

αR̂ and concretization γR̂ functions between

PData(E) =
{

k(v)
∣∣∣ k(v) ∈ Data∧ ∀i.vi ∈ E

}
and refinements ̂Refinement(Ê) as follows:

αR̂(ds) =
⊔

k(v)∈ds

at#rk (where refine at#rk = k(αÊ({v})))

γR̂(at#r) =
{

ki(vi)
∣∣∣ i ∈ [1; n] ∧ vi ∈ γÊ(ei) ∧ ki(vi) ∈ JatK

}
(where refine at#r = k1(ê1) | · · · | kn(ên))

Theorem 7.3. Given a Galois connection ℘(E) −−−→←−−−αÊ

γÊ
Ê, then there is a Galois

connection PData(E) −−−→←−−−αR̂

γR̂ ̂Refinement(Ê)
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Choice Domain

To allow a choice between multiple data-types we use the classical choice
domain [Scott, 1976; Winskel, 1993a] enriched with top, defined as fol-
lows:

ea ∈
⊕

(A) ::= ⊥⊕ | >⊕ | ini(ai), i ∈N, ai ∈ Ai

Given that injections are exclusive ini(a) 6= inj(b) for i 6= j, then the
ordering is:

⊥⊕ v⊕ ini(a) v⊕ >⊕
ini(a) v⊕ ini(a′) iff a vAi a′

The least upper-bound is:

⊥⊕ t⊕ ea = eat⊕ ⊥ = ea >⊕ t⊕ ea = eat⊕ >⊕ = >⊕
ini(a) t⊕ ini(a′) = ini(a tÂi

a′) inj(a) t⊕ ini(b) = >⊕ iff i 6= j

Given a Galois connection for each option in the choice ℘ (Ai) −−−→←−−−
αÂi

γÂi

Âi, we can define abstraction α⊕ and concretization γ⊕ functions be-
tween the powerset of disjoint union of concrete domains ℘

(⊎
A
)

and

the choice domain
⊕
(Â) as follows:

α⊕(eas) =
⊔

ini(a)∈eas

ini(αÂi
({a}))

γ⊕(⊥⊕) = ∅ γ⊕(ini(â)) = {ini(â) | a ∈ γ⊕(â)}
γ⊕(>⊕) =

⊎
A

Theorem 7.4. Given ∀i
(
℘ (Ai) −−−→←−−−

αÂi

γÂi
Âi

)
then ℘

(⊎
A
)
−−−→←−−−α⊕

γ⊕ ⊕
(Â)

Fixedpoint Domain

For any parameterized domain ∀E.F(E), we can apply the least fixed-
point to get an inductive domain FX = lfp X.F(X) [Scott, 1976; Smyth
and Plotkin, 1982; Winskel, 1993b]. If we additionally have that for all
domains E that form a lattice then F(E) forms a lattice, then we get that
the fixedpoint domain FX also forms a lattice.
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Now let an abstract base domain form a Galois connection
℘ (F(E)) −−−→←−−−αF

γF
F̂(Ê) for any abstract base element domain Ê with Galois

connection ℘ (E) −−−→←−−−αE

γE
Ê, then we straightforwardly have the following

abstraction αFix and concretization γF̂ix functions between ℘(lfp X.F(X))
and ℘(lfp X̂.F̂(X̂)):

αFix(fs) = αF(fs) γF̂ix( f̂ ) = γF̂( f̂ )

Theorem 7.5. If that for continuous parametrized domains F, F̂ it holds

that for all E, Ê such that ℘ (E) −−−→←−−−αÊ

γÊ
Ê then ℘ (F(E)) −−−→←−−−αF̂

γF̂
F̂(Ê), then

℘ (lfp X.F(X)) −−−→←−−−
αF̂ix

γF̂ix
lfp X̂.F̂(X̂)

Value Domains

We presented the required components for abstracting abstractions, and
now all that is left is putting everything together using the fixedpoint
domain.

We first define a parameterized value shape domain that combine all
our different shape domains together:

̂PValueShape(Ê) = ̂Interval⊕ ̂SetShape(Ê)⊕ ̂DataShape(Ê)

We define a corresponding parameterized concrete domain:

PValue(E) = Z] ℘ (E) ]Data

Corollary 7.1. If given a Galois connection for the parameter element domain

℘ (E) −−−→←−−−αÊ

γÊ
Ê, then we have a Galois connection for the parameterized value

domain ℘ (PValue(E)) −−−−→←−−−−
αP̂VS

γP̂VS ̂PValueShape(Ê)

Finally, we define our complete value shape abstract domain using
the least fixedpoint domain and the parameterized value shape domain:
̂ValueShape = lfp X̂. ̂PValueShape(X̂). Similarly, we have the equivalence

Value = lfp X.PValue(X).

Corollary 7.2. We have a Galois connection ℘ (Value) −−−→←−−−
αV̂S

γV̂S ̂ValueShape
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Abstract State Domains

Given our shape and relational domains, we can construct abstractions
for our stores and results (control operators) which represent the state
that Rascal programs manipulate.

Abstract Store Domain Our abstract store maps variables to a pair
consisting of a Boolean indicating whether the variable is assigned and
the target abstract value:

σ̂ ∈ Ŝtore = Var→ {ff, tt} × ̂ValueShape

We lift our orderings and lattice operations from the value shape
domain to abstract stores (resp. v

Ŝtore
, t

Ŝtore
, u

Ŝtore
, ∇

Ŝtore
). We define

abstraction α
Ŝtore

and concretization γ
Ŝtore

operations between concrete

sets of stores ℘ (Store) and abstract stores Ŝtore:

α
Ŝtore

(Σ) =
⊔

σ∈Σ

λx.if(x ∈ dom σ, (ff, αV̂({σ(x)})), (tt,⊥V̂S))

γ
Ŝtore

(σ̂) =
{

σ
∣∣ ∀x.σ̂(x) = (b, v̂s) ∧ if(x ∈ dom σ, σ(x) ∈ γV̂(v̂s), b)

}
Theorem 7.6. We have a Galois connection ℘ (Store) −−−−→←−−−−

α
Ŝtore

γ
Ŝtore

Ŝtore

Abstract Result Domain A particularly interesting side-effect of
Schmidt-style abstract interpretation is that it enables to handle abstrac-
tion of control flow more directly. Traditionally, control flow is often
handled using a denotational collecting semantics or by explicitly con-
structing a control flow graph, but both these approaches are non-trivial
to apply for a rich language like Rascal.

Our idea is to model different kind of results—success, failure,
errors—that affect control flow directly in a ̂ResultSet domain which
keeps track of possible results for a particular execution case, in addi-
tion to managing a separate store for each possible result kind. Keeping
separate stores is cheap, since there are only three kinds of results, and
important to maintain precision, since different kind of results lead to
different paths in concrete programs.

v̂res ∈ ̂ValueResult ::= success v̂ | êxres

êxres ∈ ̂ExceptionalResult ::= fail | error

r̂es ∈ R̂esult ::= · | v̂res; σ̂ R̂es ∈ ̂ResultSet ::= r̂es
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The ordering of result sets checks is dependent on the presence of
result kinds and the ordering of contained values and stores. Formally,
we can define it as follows:

R̂es1 vR̂S R̂es2

iff

(success v1; σ1) ∈ R̂es1 ⇒
∃v2, σ2.v1 vV̂S v2 ∧ σ1 vŜtore

σ2 ∧
(success v2; σ2) ∈ R̂es2

∧
(êxres; σ̂1) ∈ R̂es1 ⇒ ∃σ̂2.σ̂1 vŜtore

σ̂2 ∧ (êxres; σ̂2) ∈ R̂es2

The least upper bound collects the different kinds of results avail-
able in both input result sets, merging the components—result value,
store—of the common ones. We formally define the least upper bound
as follows (widening analogous):

R̂es1 tR̂S R̂es2 = merge(R̂es1, R̂es2)

merge(R̂es) =



(success (v̂1 tV̂S v̂2); σ̂1 tŜtore
σ̂2), merge(R̂es

′
)

if R̂es = (success v̂1; σ̂1), (success v̂2; σ̂2), R̂es
′

(fail; σ̂1 tŜtore
σ̂2), merge(R̂es

′
)

if R̂es = (fail; σ̂1), (fail; σ̂2), R̂es
′

(error; σ̂1 tŜtore
σ̂2), merge(R̂es

′
)

if R̂es = (error; σ̂1), (error; σ̂2), R̂es
′

R̂es otherwise

The greatest lower bound contains the result kinds that were present
in both input results sets, and then calculates the greatest lower bound
of their components. Formally, we define the greatest lower bound as
follows:

R̂es1 uR̂S R̂es2 =
⊔

r̂es1∈R̂es1∧
r̂es2∈R̂es2

(r̂es1 uR̂s r̂es2)

r̂es1 uR̂s r̂es2 =


success (v̂1 uV̂S v̂2); σ̂1 uŜtore

σ̂2 if r̂esi = success v̂i; σ̂i

fail; σ̂1 uŜtore
σ̂2 if r̂esi = fail; σ̂i

error; σ̂1 uŜtore
σ̂2 if r̂esi = error; σ̂i

ε otherwise
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We define abstraction αR̂S and concretization γR̂S operations between
the concrete domain ℘ (ValueResult× Store) and abstract result sets
̂ResultSet as follows:

αR̂S(Res) =
⊔

(vres,σ)∈Res

αV̂R({vres}); α
Ŝtore

({σ})

αV̂R(Vres) =
⊔

value v∈Vres

(
value αV̂S(v)

)
t

⊔
êxres∈Vres

êxres

γR̂S(v̂res; σ̂) =
⋃

i

{
(vres, σ)

∣∣ vres ∈ γV̂R(v̂resi) ∧ σ ∈ γŜt(σ̂i)
}

γV̂R(value v̂s) =
{

value v
∣∣ v ∈ γV̂S(v̂s)

}
γV̂R(êxres) = {êxres}

Theorem 7.7. We have a Galois connection

℘ (ValueResult× Store) −−−→←−−−
αR̂S

γR̂S ̂ResultSet

7.4 Abstract Semantics

The genius of Schmidt-style abstract interpretation is that it allows us
to get abstract operational rules in a way that closely corresponds to
our existing concrete operational rules. The operational structure of the
rules can be derived almost mechanically [Schmidt, 1998; Bodin et al.,
2015], which we exemplify by translation of the operational rules for the
Rascal UltraLight subset. The creative work is therefore providing ab-
stract definitions for conditions and semantic operations such as pattern
matching, and defining trace memoization strategies for non-structurally
recursive operational rules in order to make it possible to finitely ap-
proximate an infinite number of concrete traces and produce a termi-
nating static analysis.

Abstracting Operational Rules

In Schmidt-style abstract interpretation, we have to for each concrete
judgment create an over-approximative abstract judgment that captures
the result for a set of possible traces. Recall, that the concrete operational
rules for expressions have a judgment of form e; σ ==⇒

expr
vres; σ′ which

states that evaluating an expression e in store σ produces the value re-
sult vres and store σ′. The corresponding abstract semantics judgment
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has form e; σ̂ ===⇒
a-expr

R̂es which evaluates expression e in store σ pro-

ducing a result set R̂es = (v̂res1; σ̂1), . . . , (v̂resn; σ̂n) consisting of pairs of
possible abstract value results and corresponding abstract stores. These
sets of pairs are meant to finitely over-approximate the possibly infi-
nite sets of concrete results from evaluating e by providing abstractions
of possible values and stores for each different kind of result (success,
failure, errors).

Collecting premise notation In concrete semantics we usually only
require that premises are satisfied by a single rule, but in abstract se-
mantics we have to consider all possible applicable rules to preserve
soundness. Thus, to reason about the generalized sets of results we
introduce the notation

⦃i⇒ O⦄ , O =
⊔
{o|i⇒ o}

to collect all derivations with input i into a single output O that is equal
to the least upper bound of the output of each individual derivation o.

Translating semantics To illustrate the steps required in Schmidt-style
translation of operational rules, we will use the operational rules for
variable accesses. Recall that the concrete semantics contains two rules
for variable accesses, E-V-S for successful lookup, and E-V-Er for pro-
ducing errors when accessing unassigned variables.

E-V-S x ∈ dom σ

x; σ ==⇒
expr

value σ(x); σ
E-V-Er

x /∈ dom σ
x; σ ==⇒

expr
error; σ

To translate the concrete rules for a syntactic element to abstract op-
erational rules, we follow three steps in general:

1. For each concrete rule, create an abstract rule that uses an judg-
ment for evaluation of a concrete syntactic form, e.g., variables.

2. Replace the concrete conditions and semantic operations with the
equivalent abstract conditions and semantic operations for target
abstract values.

3. Create a general abstract rule that collects all possible evaluations
of the syntax-specific judgment rules, over-approximating all pos-
sible result values.
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The translated abstract operational rules for evaluating variable ac-
cesses, are presented below:

AE-V-S
σ̂(x) = (b, v̂s)

x; σ̂ ====⇒
a-expr-v

value v̂s; σ̂
AE-V-ER

σ̂(x) = (tt, v̂s)
x; σ̂ ====⇒

a-expr-v
error; σ̂

AE-V
⦃x; σ̂ ====⇒

a-expr-v
R̂es
′
⦄

x; σ̂ ===⇒
a-expr

R̂es
′

In the first step, we create two abstract syntax-specific rules AE-V-S and
AE-V-Er corresponding to E-V-S and E-V-Er respectively. In the second
step, we must translate the conditions and semantic operations which
for our example requires:

• Translating the test x ∈ dom σ with a corresponding condition on
σ̂. Recall that in our abstract store, we have assigned a pair (b, v̂s)
for each variable x, where the first component b is a Boolean that
indicates whether the variable x is potentially unassigned; thus,
we look at this component to decide whether we have x /∈ dom σ

(if b = tt) and otherwise we may only have x ∈ dom σ.

• Translating the lookup σ(x) in the result of E-V-S to a lookup of
values in σ̂, which requires extracting the second component as-
signed to variable x.

Finally, in the last step we use abstract rule AE-V to collects the two
syntax-specific abstract operational rules AE-V-S and AE-V-Er.

The possible shapes of the result value depend on the pair assigned
to x in the abstract store; if the resulting value is ⊥, we propagate the
emptiness dropping the complete result value. We can use the following
examples, to illustrate the possible outcome result shapes:

Store Value Results Rules
σ̂[x 7→ (ff,⊥V̂S)] ∅ AE-V-S
σ̂[x 7→ (ff, [1; 3])] value [1; 3] AE-V-S
σ̂[x 7→ (tt, [1; 3])] {value [1; 3], error} AE-V-S, AE-V-Er

σ̂[x 7→ (tt,⊥V̂S)] error AE-V-S, AE-V-Er

The abstract operational semantics rules for the rest of the basic ex-
pressions (excluding visitors) are presented in Figure 7.2, Figure 7.3 and
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Figure 7.4. The rules are generally translated from the corresponding
concrete semantics rules in Chapter 6, using the steps we presented;
note that sequencing expressions are a special case of block expressions
which have no variable declarations and only two expressions in the
body. There are a few things to note regarding the abstract conditions
and semantic operations:

• When the concrete semantics checks that a result of evaluating an
expression has a particular shape, the abstract semantics checks
whether the particular shape is possibly included in the result set
of evaluating the same expression. E.g., to check that evaluation
of e has succeeded the abstract semantics uses e; σ̂ ===⇒

a-expr
R̂es and

(success v̂s; σ̂′) ∈ R̂es, as compared to e; σ ==⇒
expr

success v; σ′ in the

concrete semantics.

• Typing is now done using an abstract judgment v̂s :̂ t which works
analogously to the concrete one except t is over-approximates the
concrete type of values, because the given value shape v̂s is it-
self over-approximated. This means that the corresponding ab-
stract subtyping t <̂: t′ relation must take into account the over-
approximation of t and thus that it may be possible that both t <̂: t′

and t ̂6<: t′ is true.

• To check whether a particular constructor is possible, we use the
auxiliary function ûnfold(v̂s, t) which produces a refined value
of type t if possible—splitting alternative constructors in case of
refinements—and otherwise produces error if the value is possi-
bly not an element of t.

• We generalize the ̂ResultSet domain to work with sequences of val-
ues on successful evaluation for representing results of expression
sequences e. This is straightforward since a sequence of expres-
sions must produce a sequence of values of the same size, and
a fixed product of lattice domains forms a lattice (essentially the
iterated Cartesian product).
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Expressions (General)

AE-Val

n; σ̂ ===⇒
a-expr

success n; σ̂
AE-Bin

⦃e1 ⊗ e2; σ̂ =====⇒
a-expr-bin

R̂es⦄

e1 ⊗ e2; σ̂ ===⇒
a-expr

R̂es

AE-Asgn

⦃x = e; σ̂ ======⇒
a-expr-asgn

R̂es⦄

x = e; σ̂ ===⇒
a-expr

R̂es
AE-Seq

⦃x = e; σ̂ =====⇒
a-expr-seq

R̂es⦄

x = e; σ̂ ===⇒
a-expr

R̂es

AE-Cons

⦃k(e); σ̂ ======⇒
a-expr-cons

R̂es⦄

k(e); σ̂ ===⇒
a-expr

R̂es
AE-Set

⦃{e}; σ̂ =====⇒
a-expr-set

R̂es⦄

{e}; σ̂ ===⇒
a-expr

R̂es

AE-Fail

fail; σ̂ ===⇒
a-expr

fail; σ̂
AE-If

⦃if econd then e1 else e2; σ̂ ====⇒
a-expr-if

R̂es⦄

if econd then e1 else e2; σ̂ ===⇒
a-expr

R̂es

Expression Sequences

AES
⦃e; σ̂ =====⇒

a-expr?-1
R̂es⦄

e; σ̂ ====⇒
a-expr?

R̂es
AES-Emp

ε; σ̂ =====⇒
a-expr?-1

success ε; σ̂

AES-More

e; σ̂ ===⇒
a-expr

R̂es (success v̂s; σ̂′′) ∈ R̂es

e′; σ̂′′ ====⇒
a-expr?

R̂es?
′

(success v̂s′; σ̂′) ∈ R̂es?
′

e, e′; σ̂ =====⇒
a-expr?-1

success v̂s, v̂s′; σ̂′

AES-Exc1
e; σ̂ ===⇒

a-expr
R̂es (êxres; σ̂′) ∈ R̂es

e, e′; σ̂ =====⇒
a-expr?-1

êxres; σ̂′

AES-Exc2

e; σ̂ ===⇒
a-expr

R̂es (success v̂s; σ̂′′) ∈ R̂es

e′; σ̂′′ ====⇒
a-expr?

R̂es?
′

(êxres; σ̂′) ∈ R̂es?
′

e, e′; σ̂ =====⇒
a-expr?-1

êxres; σ̂′

Figure 7.2: Abstract Operational Semantics Rules for Basic Expressions
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Binary Expression

AE-Bin-Sucs

e1; σ̂ ===⇒
a-expr

R̂es (success v̂1; σ̂′′) ∈ R̂es

e2; σ̂′′ ===⇒
a-expr

R̂es
′

(success v̂2; σ̂′) ∈ R̂es
′′

v̂s1 ⊗ v̂s2 = V̂Res R̂es
′
=
⊔{

v̂res; σ̂′
∣∣∣ v̂res ∈ V̂Res

}
e1 ⊗ e2; σ̂ =====⇒

a-expr-bin
R̂es
′

AE-Bin-Exc1
e1; σ̂ ===⇒

a-expr
R̂es (êxres; σ̂′) ∈ R̂es

e1 ⊗ e2; σ̂ =====⇒
a-expr-bin

êxres; σ̂′

AE-Bin-Sucs

e1; σ̂ ===⇒
a-expr

R̂es (success v̂1; σ̂′′) ∈ R̂es

e2; σ̂′′ ===⇒
a-expr

R̂es
′

(êxres; σ̂′) ∈ R̂es
′

e1 ⊗ e2; σ̂ =====⇒
a-expr-bin

êxres; σ̂′

Assignment Expression

AE-Asgn-Sucs

local t x ∨ global t x e; σ̂ ===⇒
a-expr

R̂es

(success v̂s; σ̂′) ∈ R̂es v̂s :̂ t′ t′ <̂: t
x = e; σ̂ ======⇒

a-expr-asgn
success v̂s; σ̂′[x 7→ (ff, v̂s)]

AE-Asgn-Err

local t x ∨ global t x e; σ̂ ===⇒
a-expr

R̂es

(success v̂s; σ̂′) ∈ R̂es v̂s :̂ t′ t′ ̂6<: t
x = e; σ̂ ======⇒

a-expr-asgn
error; σ̂′

AE-Asgn-Exc

e; σ̂ ===⇒
a-expr

R̂es (êxres; σ̂′) ∈ R̂es

x = e; σ̂ ======⇒
a-expr-asgn

êxres; σ̂′

Sequencing Expression

AE-Seq-Sucs

e1, e2; σ̂ ====⇒
a-expr?

R̂es? (success v̂s1, v̂s2; σ̂′) ∈ R̂es?

e1; e2; σ̂ =====⇒
a-expr-seq

success v̂s2; σ̂′

AE-Seq-Exc

e1, e2; σ̂ ====⇒
a-expr?

R̂es? (êxres; σ̂′) ∈ R̂es?

e1; e2; σ̂ =====⇒
a-expr-seq

êxres; σ̂′

Figure 7.3: Abstract Operational Semantics Rules for Basic Expressions
(Cont.)
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Constructor Expression

AE-Cons-Sucs

data at = . . . |k(t)| . . . e; σ̂ ====⇒
a-expr?

R̂es?

(success v̂s; σ̂′) ∈ R̂es? v̂s :̂ t′ t′ <̂: t

k(e); σ̂ ===⇒
a-expr

success k(v̂s); σ̂′

AE-Cons-Err

data at = . . . |k(t)| . . . e; σ̂ ====⇒
a-expr?

R̂es?

(success v̂s; σ̂′) ∈ R̂es? v̂s :̂ t′ ∃i.t′i ̂6<: ti

k(e); σ̂ ===⇒
a-expr

error; σ̂′

AE-Cons-Exc

e; σ̂ ====⇒
a-expr?

R̂es? (êxres; σ̂′) ∈ R̂es?

k(e); σ̂ ===⇒
a-expr

êxres; σ̂′

Set Expression

AE-Set-Sucs

e; σ̂ ====⇒
a-expr?

R̂es? (success vs; σ̂′) ∈ R̂es?

{e}; σ̂ =====⇒
a-expr-set

success {v̂s}; σ̂′

AE-Set-Exc

e; σ̂ ====⇒
a-expr?

R̂es? (exres; σ̂′) ∈ R̂es?

{e}; σ̂ =====⇒
a-expr-set

exres; σ̂′

If Expression

AE-If-T

econd; σ̂ ===⇒
a-expr

R̂es (success v̂s; σ̂′′) ∈ R̂es

success true() ∈ ûnfold(v̂s, Bool) e1; σ̂′′ ===⇒
a-expr

R̂es
′

if econd then e1 else e2; σ̂ ====⇒
a-expr-if

R̂es
′

AE-If-F

econd; σ̂ ===⇒
a-expr

R̂es (success v̂s; σ̂′′) ∈ R̂es

success false() ∈ ûnfold(v̂s, Bool) e2; σ̂′′ ===⇒
a-expr

R̂es
′

if econd then e1 else e2; σ̂ ====⇒
a-expr-if

R̂es
′

AE-If-Er

econd; σ̂ ===⇒
a-expr

R̂es (success v̂s; σ̂′) ∈ R̂es

error ∈ ûnfold(v̂s, Bool)
if econd then e1 else e2; σ̂ ====⇒

a-expr-if
error; σ̂′

AE-IF-Ex

econd; σ̂ ===⇒
a-expr

R̂es (êxres; σ̂′) ∈ R̂es

if econd then e1 else e2; σ̂ ====⇒
a-expr-if

êxres; σ̂′

Figure 7.4: Abstract Operational Semantics Rules for Basic Expressions
(Cont. 2)
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Abstract Semantic Operators

We have already seen how the rules for basic expressions have been
systematically translated, including the required checks. As discussed
the same is also required for semantic operations, where we in partic-
ular will discuss operators (including unary and binary), and pattern
matching.

Semantic Operators In general for each semantic operator J⊕K cor-
responding to a language operator ⊕, we need to have a correspond-
ing abstract semantic operator J⊕̂K which works with the abstracted
values of the target type, e.g. for J+K ∈ Z → Z → Z we need
J+̂K ∈ ̂Interval → ̂Interval → ̂Interval and for J∪K ∈ ℘(Value) →
℘(Value) → ℘(Value) we need J∪̂K ∈ ̂SetShape( ̂ValueShape) →
̂SetShape( ̂ValueShape) → ̂SetShape( ̂ValueShape). Due to the over-

approximative semantics, operands might get evaluated to values that
are less precise than values in the supported range for the target abstract
semantics operator, and in that case we need to consider both cases of
where the abstract value lies in target range and where it lies outside
of target range. We can do this by introducing rules that check these
potential need for coercion when evaluating the syntactic operators, e.g.
the following rules for binary operators:

BOp

⦃v̂s1 ⊕ v̂s2 =1 V̂Res⦄

v̂s1 ⊕ v̂s2 = V̂Res

BOP1-1

J⊕̂K ∈ Jt̂1K× Jt̂2K→ Jt̂′K
value v̂s1

′ ∈ ûnfold(v̂s1, t1) value v̂s2
′ ∈ ûnfold(v̂s2, t2)

v̂s1 ⊕ v̂s2 =1 value J⊕̂K(v̂s1
′, v̂s2

′)

BOP1-2

J⊕̂K ∈ Jt̂1K× Jt̂2K→ Jt̂′K
error ∈ ûnfold(v̂s1, t1) ∨ error ∈ ûnfold(v̂s2, t2)

v̂s1 ⊕ v̂s2 =1 error

Pattern matching The concrete pattern matching judgments have

forms σ ` p
?

:= v ===⇒
match

ρ for a concrete pattern p matched against

value v under store σ—used for matching target value against assigned
variable values—producing a sequence of binding environments (each

ρ ∈ BindingEnv = Var ⇀ Value), and σ ` ?p
?

:= v | V ===⇒
match?

ρ for a
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sequence pattern ?p with similar construction but also having a set of
already matched values V to track already the set of already matched
partitions of values for non-deterministic matches of collection elements.

The corresponding abstract matching judgment for ordinary patterns

has form σ̂ ` p
?

:= v̂s ====⇒
a-match

$̂R where we pattern match on value

shapes v̂s and produce an output $̂R representing the set of possible
match results. Each match result triple (σ̂′, v̂s′, $̂) ∈ $̂R, has an abstract
store σ̂′ and abstract value shape v̂s′ that soundly refine the input store
σ̂ and value v̂s—so σ̂′ v σ̂ and v̂s′ v v̂s—assuming that matching the
pattern p produced the abstract set of binding environments $̂; this re-
finement is important to maintain precision during success and failure
of individual pattern matches. More formally, we can define refined
binding environments as follows:

$̂R ∈ ̂RBindingEnvs = ℘
(

Ŝtore× ̂ValueShape× ℘
(

̂BindingEnv
))

ρ̂ ∈ ̂BindingEnv = Var ⇀ ̂ValueShape

The AP-Var rule collects three possible rules for abstract pattern match-
ing against variable patterns: AP-Var-Uni, AP-Var-Fail and AP-Var-
Bind. AP-Var-Uni pattern matches the values shape against the pos-
sibly assigned value shape in the store, refining both shapes assuming
that they are equal. The AP-Var-Fail rule works analogously, but cap-
tures the case where they are possibly not equal. AP-Var-Bind captures
the case where the variable is unassigned in the store, and thus returns
a binding of the variable to the input value shape.

AP-Var

⦃σ̂ ` x
?

:= v̂s =====⇒
a-match-v1

$̂R⦄

σ̂ ` x
?

:= v̂s ====⇒
a-match

$̂R

AP-Var-Uni

σ̂(x) = (b, v̂s′) v̂s′ 6= ⊥V̂S v̂s′′ ∈ (v̂s=̂v̂s′)

σ̂ ` x
?

:= v̂s | v̂s′ =====⇒
a-match-v

(σ̂[x 7→ (ff, v̂s′′)], v̂s′′, {[]})

AP-Var-Fail

σ̂(x) = (b, v̂s′) v̂s′ 6= ⊥V̂S (v̂s′′, v̂s′′′) ∈ (v̂ŝ6=v̂s′)

σ̂ ` x
?

:= v̂s | v̂s′ =====⇒
a-match-v

(σ̂[x 7→ (ff, v̂s′′′)], v̂s′′, ∅)
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AP-Var-Bind

σ̂(x) = (tt, v̂s′)

σ̂ ` x
?

:= v̂s =====⇒
a-match-v

(σ̂[x 7→ (tt,⊥V̂S)], v̂s, {[x 7→ v̂s]})

The rule AP-Cons collects two rules for pattern matching against con-
structors: AP-Cons-Sucs and AP-Cons-Fail. AP-Cons-Sucs captures
the case where the target value shape can be unfolded to the constructor
required by the pattern, and then continues to match the inner patterns
and merge their results. AP-Cons-Fail in contrast considers the case
where target value can be unfolded to some other constructor or is not
a value of target type (producing error); in this case, the set of binding
environments is empty, and the input value is refined to exclude the
target pattern constructor from the result value shape if possible.

AP-Cons

⦃σ̂ ` k(p)
?

:= v̂s | at ======⇒
a-match-cons

$̂R⦄

σ̂ ` k(p)
?

:= v̂s ====⇒
a-match

$̂R

AP-Cons-Sucs

data at = · · · | k(t) | . . . (value k(v̂s′)) ∈ ûnfold(v̂s, at)

σ̂ ` p1
?

:= v̂s′1 ====⇒
a-match

$̂R1 . . . σ̂ ` pn
?

:= v̂s′n ====⇒
a-match

$̂Rn

(σ̂′1, v̂s′1, $̂1) ∈ $̂R1 . . . (σ̂′n, v̂s′n, $̂n) ∈ $̂Rn

σ̂ ` k(p)
?

:= v̂s | at ======⇒
a-match-cons

(
d

i σ̂i, k(v̂s′), m̂erge($̂))

AP-Cons-Fail

data at = · · · | k(t) | . . .

(value k′(v̂s′)) ∈ ûnfold(v̂s, at) ∧ k′ 6= k ∨ error ∈ ûnfold(v̂s, at)

σ̂ ` k(p)
?

:= v̂s | at ======⇒
a-match-cons

(σ̂, ̂exclude(v̂s, k), ∅)

The AP-Set rule collects two rules: AP-Set-Sucs and AP-Set-Fail. AP-
Set-Sucs tries to unfold the target value shape as a set, and then pro-
ceeds by pattern matching the against the inner sequence of patterns,
using the content shape and cardinality of the set. AP-Set-Fail pro-
duces a failure result with an empty binding environment set, if the
target value shape is possibly not a set.

AP-Set

⦃σ̂ ` {?p} ?
:= v̂s =====⇒

a-match-set
$̂R⦄

σ̂ ` {?p} ?
:= v̂s ====⇒

a-match
$̂R
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AP-Set-Sucs

value {v̂s′}[l;u] ∈ ûnfold(v̂s, set〈value〉) σ̂ ` ?p
?

:= v̂s | [l; u] ====⇒
a-match?

$̂R

σ̂ ` {?p} ?
:= v̂s =====⇒

a-match-set
$̂R

AP-Set-Fail

error ∈ ûnfold(v̂s, set〈value〉)

σ̂ ` {?p} ?
:= v̂s =====⇒

a-match-set
(σ̂, v̂s, ∅)

The rule APL collects nine abstract rules for matching sequences of pat-
terns, where each rule corresponding to a concrete pattern matching
rule for sequence of patterns. Notice that our abstract rules do not back-
track like our concrete rules since we only have a single fixed shape
abstraction for all the elements in a collection.

APL
⦃σ̂ ` ?p

?
:= v̂s | [l; u] =====⇒

a-match?-1
$̂R⦄

σ̂ ` ?p
?

:= v̂s | [l; u] ====⇒
a-match?

$̂R

There are two possible abstract rules for pattern matching against an
empty sequence of patterns: APL-Emp-Both and APL-Emp-Pat. APL-
Emp-Both accounts for the case where the abstracted sequence is possi-
bly empty (has cardinality 0) producing a set containing an empty bind-
ing environment (indicating a successful match with no variable bind-
ings). APL-Emp-Pat conversely accounts for the case where abstracted
sequence is possibly non-empty, and therefore produces an empty set of
binding environments (indicating a failing match).

APL-Emp-Both

l ≤ u l = 0

σ̂ ` ε
?

:= v̂s | [l; u] =====⇒
a-match?-1

(σ̂, {⊥V̂S}0, {[]})

APL-Emp-Pat

l ≤ u u 6= 0

σ̂ ` ε
?

:= v̂s | [l; u] =====⇒
a-match?-1

(σ̂, {v̂s}[max(1,l),u], ∅)

There is similarly two rules for pattern matching against a non-empty
pattern sequence starting, where the first element is an ordinary pattern:
APL-Emp-Val and APL-More-Pat. APL-Emp-Val accounts for the case
where the abstracted set of elements is possibly empty, and so produces
an empty set of bindings environments. APL-More-Pat accounts for
the case where the abstracted set of elements is non-empty, and there-
fore i) pattern matches the shape of elements against the first pattern,
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ii) matches the rest of the pattern sequence against the element shape
where the cardinality has been decreased by one, and iii) merges the
resulting binding set.

APL-Emp-Val

l ≤ u l = 0

σ̂ ` p, ?p
?

:= v̂s | [l; u] =====⇒
a-match?-1

(σ̂, {v̂s}0, ∅)

APL-More-Pat

l ≤ u u 6= 0 σ̂ ` p
?

:= v̂s ====⇒
a-match

$̂R
′

σ̂ ` ?p
?

:= v̂s | [l − 1; u− 1] ====⇒
a-match?

$̂R
′′

(σ̂′, v̂s′, $̂′) ∈ $̂R
′

(σ̂′′, v̂s′′, $̂′′) ∈ $̂R
′′

$̂R
′′′
= {(σ̂′ t σ̂′′, {v̂s′}1 t v̂s′′, m̂erge($̂′, $̂′′))}

σ̂ ` p, ?p
?

:= v̂s | [l; u] =====⇒
a-match?-1

$̂R
′′′

Finally, there are five rules for matching against star patterns. Three
of the rules are applicable when a value is bound in the store: APL-
Star-Uni, APL-Star-Pat-Fail and APL-Star-Val-Fail. APL-Star-Uni

is the most elaborate rule, since it has to account for the case where a
subset matched the assigned value in the store; essentially, it follows
these steps:

1. It checks whether the assigned value to the variable x can possibly
unfold to a set value.

2. It calculates the overlapping shape and cardinality, if there is any
overlap.

3. It matches the rest of the pattern sequence with a refined store, and
interval abstract the cardinality of the rest of elements (essentially
uses the interval difference).

4. It additionally takes into account the case where the concrete sets
do not match even though their value shapes and cardinality were
compatible and thus adds an empty set of binding environments
as a possibility. For example, the assigned value shape and the
analyzed value shape could both be {[1; 2]}1 which would have
both {1} and {2} as valid concretizations, which would not match
in a concrete evaluation.
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The APL-Star-Pat-Fail rule accounts for the case where either the as-
signed an analyzed shapes are incompatible, or where the cardinali-
ties are incompatible, producing an empty set of binding environments.
Finally, APL-Star-Val-Fail accounts for the case where the assigned
value shape is not a set at all.

APL-Star-Uni

l ≤ u σ̂(x) = (b, v̂s′)
value {v̂s′′}[l′′;u′′] ∈ ûnfold(v̂s, set〈value〉)

v̂s′′′ ∈ (v̂s=̂v̂s′′) [l′; u′] = [l′′; u′′] u [l; u]
[l′; u′] 6= ⊥ [l′′′; u′′′] = [min(0, l − u′); u− l′]

σ̂[x 7→ (ff, {v̂s′′}[l′;u′])] ` ? p
?

:= v̂s | [l′′′; u′′′] ====⇒
a-match?

$̂R
′′

$̂R
′′′
=
{
(σ̂′′, {v̂s′′′ t v̂s′′′′}[l;u], $̂

′′
)
∣∣∣ (σ̂′′, {v̂s′′′′}[l′′′′;u′′′′], $̂

′′
) ∈ $̂′′R

}
$̂R
′
= $̂R

′′′ ∪ {(σ̂[x 7→ (ff, {v̂s′′}I)], {v̂s}[l;u], ∅)}

σ̂ ` ?x, ?p
?

:= v̂s | [l; u] =====⇒
a-match?-1

$̂R
′

APL-Star-Pat-Fail

l ≤ u σ̂(x) = (b, v̂s′)
value {v̂s′′}[l′′;u′′] ∈ ûnfold(v̂s, set(value))

(v̂ŝ6=v̂s′′) 6= ∅ ∨ [l′′; u′′] u [l; u] = ⊥
$̂R
′
= {(σ̂[x 7→ (ff, {v̂s′′}I)], {v̂s}[l;u], ∅)}

σ̂ ` ?x, ?p
?

:= v̂s | [l; u] ====⇒
a-match?

$̂R
′

APL-Star-Val-Fail

l ≤ u σ̂(x) = (b, v̂s′) error ∈ ûnfold(v̂s, set(value))

σ̂ ` ?x, ?p
?

:= v̂s | [l; u] ====⇒
a-match?

(σ̂[x 7→ (ff, v̂s′)], {v̂s}[l;u], ∅)

The two final rules for star patterns—APL-Star-Re and
APL-Star-Exh—concern when the target variable is possibly not
assigned in the store. APL-Star-Re tries to bind a subcollection
of elements and continue matching the rest of the sequence, where
APL-Star-Exh abstracts over the case where backtracking has exhausted
all possible partitions and thus produces no binding environment.
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APL-Star-Re

l ≤ u σ̂(x) = (tt, v̂s′)

σ̂[x 7→ (tt,⊥V̂S)] ` ?p
?

:= v̂s | [0; u] ====⇒
a-match?

$̂R
′′

(σ̂′′, {v̂s′′}[l′′;u′′], $̂
′′
) ∈ $̂R

′′

$̂′R = (σ̂′′, {v̂s}[l;u], m̂erge({[x 7→ {v̂s}[l′;u′]]}, $̂
′′
))

σ̂ ` ?x, ?p
?

:= v̂s | [l; u] =====⇒
a-match?-1

$̂′R

APL-Star-Exh

l ≤ u σ̂(x) = (tt, v̂s′)

σ̂ ` ?x, ?p
?

:= v̂s | [l; u] =====⇒
a-match?-1

(σ̂, {v̂s}[l;u], ∅)

Trace Memoization and Traversals

In abstract interpretation and static program analysis in general, the
main challenge is usually how to perform fixed-point calculation for
unbounded loops and non-structural recursion. In Schmidt-style ab-
stract interpretation, the main technique to handle this is trace memo-
ization [Schmidt, 1998]. The core idea of trace memoization is to detect
non-structural re-evaluation of the same program element—i.e., where
the evaluation of a program element is recursively dependent on the
evaluation of itself, like a while-loop or traversal—and in such case ap-
ply a widening on the input values and state in order to get an over-
approximating finite circular dependency in the trace of the program
element. This circular dependent trace can be seen as a continuous func-
tion [Schmidt, 1998; Rosendahl, 2013], and to get an output we perform
classical fixed-point iteration.

The trace memoization strategies suggested by existing work, do
however not directly apply to the constructs present in Rascal. Schmidt
[1998] presents a simple technique which only works for constructs like
while-loops where the self-recursive evaluation happens in a tail po-
sition and so the resulting output is the same as the resulting output
as recursive dependency. The technique suggested by Rosendahl [2013]
supports more general recursive dependencies, but only works for finite
input domains, where our input domains are all infinite.

We have therefore further extended the trace memoization strategy
suggested by Rosendahl [2013] to work with abstract inputs that are
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from infinite domains. The extension is still terminating and sound—so
the function representing the potentially circular trace is continuous—
and additionally it allows calculating results with good precision. The
core idea is to partition the infinite input domain using a finite domain
of elements, and on recursion degrade input values using previously
met input values from the same partition. In particular, our technique
works as follows:

• Assume all our domains are widening lattices. Consider a each
non-structurally recursive operational semantics judgment i =⇒ o,
with i being an input from domain Înput, and o being the output
from domain Ôutput. For this judgment, we associate a memoiza-
tion map M̂ ∈ P̂Input → Înput× Ôutput where P̂Input is a finite
partitioning domain that has a Galois connection with our actual

input, i.e. Înput −−−→←−−−
αP̂I

γP̂I
P̂Input. The memoization map keeps track

of the previously seen input and corresponding output for values
in the partition domain. For example, for input from our value do-
main V̂alue we can for example use the corresponding type from
the domain Type as input to the memoization map.4 So for values
1 and [2; 3] we would use int, while for fieldaccessexpr(Expr, str)
we would use the defining data type Expr.

• We perform a fixed-point calculation over the evaluation of input
i. Initially, the memoization map M̂ is empty, and during evalu-
ation we check whether there was already a value from the same
partition as i, i.e., αP̂I(i) ∈ dom M̂. At each iteration, there is then
three possibilities:

Hit The corresponding input partition key is in the memoization
map and a less precise input is stored, so M̂(αP̂I(i)) = (i′, o′)
where i v

Înput
i′. In this case we return o′ directly as result

without further evaluation; this correctly preserves continuity
of the complete semantics since we are returning a less precise
result, the one for the less precise input i′, than the one that is
expected for the current input i.

Widen The corresponding input partition key is in the memoiza-
tion map, but an unrelated or more precise input is stored, i.e.,

4Provided that we put a fixed-bound on the depth of type parameters of collections.
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M̂(αP̂I(i)) = (i′′, o′′) where i 6v
Înput

i′′. In this case we con-

tinue evaluation but with a widened input i′ = i′′∇
Înput

(i′′t i)

and an updated map M̂′ = [αP̂I(i) 7→ (i′, oprev)], where oprev is
the output of the last fixed-point iteration for i′. If the output
of the evaluation of i′, o′ is different than the previous output
oprev, we continue fixed-point iteration.

Miss The corresponding input partition key is not in the memo-
ization map, so αP̂I(i) /∈ dom M̂ and so we continue evalu-
ation of i with an updated map M̂′ = M̂[αP̂I(i) 7→ (i, oprev)]
passed down recursively that assigns the input i and the out-
put of the previous iteration for i in the fixed-point calculation
oprev (initially ⊥

Ôutput
) to the relevant input partition key. If

the resulting output o is equivalent to the previous output
oprev then we stop the fixed-point calculation, and otherwise
we perform a new iteration with an updated previous output
value o′prev = oprev∇o.

We will now show how we constructor our abstract operational seman-
tics rules for visitors. The required steps to get the abstract rules for non-
structurally recursive constructs are the same as the ones for translating
rules of basic constructs, but we must additionally take into account the
memoization map and the fixed-point calculation.

The first step is to construct the top-level abstract evaluation rules for
evaluating the visit expressions, each translated from a concrete eval-
uation rule for the visit expression. This is done as usual using the
technique presented in the section. The AE-Visit rule collects the four
possible cases: AE-Visit-Sucs, AE-Visit-Fail, AE-Visit-Exc1 and AE-
Visit-Exc2.

AE-Visit

⦃bottom-up visit e cs; σ̂ =====⇒
a-expr-visit

R̂es⦄

bottom-up visit e cs; σ̂ ===⇒
a-expr

R̂es

AE-Visit-Sucs handles the case where both the evaluation of the tar-
get expression and the traversal succeeds. AE-Visit-Fail handles the
case where the traversal fails, and produces a success value with the
refined value shape given by fail; using the refined value is important
to maintain precision, since using the initial input to the traversal like
the concrete evaluation would not take into account information learned
by pattern matching. Finally, AE-Visit-Exc1 and AE-Visit-Exc2 handle
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the exceptional cases during evaluation of the target expression and the
traversal, respectively.

AE-Visit-Sucs

e; σ̂ ===⇒
a-expr

R̂es (success v̂s; σ̂′′) ∈ R̂es

cs; v̂s; σ̂′′ ======⇒
a−bu−visit

R̂es
′

(success v̂s′; σ̂′) ∈ R̂es
′

bottom-up visit e cs; σ̂ =====⇒
a-expr-visit

success v̂s′; σ̂′

AE-Visit-Fail

e; σ̂ ===⇒
a-expr

R̂es (success v̂s; σ̂′′) ∈ R̂es

cs; v̂s; σ̂′′ ======⇒
a−bu−visit

R̂es
′

(fail v̂s′; σ̂′) ∈ R̂es
′

bottom-up visit e cs; σ̂ =====⇒
a-expr-visit

success v̂s′; σ̂′

AE-Visit-Exc1
e; σ̂ ===⇒

a-expr
R̂es (êxres; σ̂′) ∈ R̂es

bottom-up visit e cs; σ̂ =====⇒
a-expr-visit

êxres; σ̂′

AE-Visit-Exc2

e; σ̂ ===⇒
a-expr

R̂es (success v̂s; σ̂′′) ∈ R̂es

cs; v̂s; σ̂′′ ======⇒
a−bu−visit

R̂es
′

(error; σ̂′) ∈ R̂es
′

bottom-up visit e cs; σ̂ =====⇒
a-expr-visit

error; σ̂′

The next step is to translate the actual traversal rules for visit using
the memoization technique. This requires setting up rules that follow
the extended steps for trace memoization and passing around the mem-
oization map between mutually recursive judgments. The AEBU rule
initializes memoization process, by delegating to the memoized judg-
ment with an initially empty memoization map.

AEBU
[] ` cs; v̂s; σ̂ ==========⇒

a−bu−visit−memo
R̂es

cs; v̂s; σ̂ ======⇒
a−bu−visit

R̂es

There are three rules for the memoized evaluation judgment—AEBUM-
Hit, AEBUM-Widen and AEBUM-Miss—each corresponding to one of
the described cases. The AEBUM-Hit finds a less precise input stored
at the memoization partition key, and can therefore soundly use the
memoized output result set. The AEBUM-Widen conversely finds a
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more precise input memoized at the partition key, and so must use the
current input for widening to a less precise value shape; we then do
a fixed-point calculation of the result of traversing the widened input
with the bottom value ⊥V̂S as initial pre-result. The AEBUM-Miss rule
handles the case where the target value shape does not have a corre-
sponding partition key in the memoization map, and so simply uses the
current value for fixed-point calculation with ⊥V̂S as initial pre-result.

AEBUM-Hit

M̂(αType(v̂s)) = (v̂s′, R̂es
′
) v̂s vR̂S v̂s′

M̂ ` cs; v̂s; σ̂ ==========⇒
a−bu−visit−memo

R̂es
′

AEBUM-Widen

M̂(αType(v̂s)) = (v̂s′′, R̂es
′
) v̂s 6vR̂S v̂s′′ v̂s′ = v̂s∇R̂S(v̂st v̂s′′)

M̂;⊥R̂S ` cs; v̂s′; σ̂ ============⇒
a−bu−visit−memo−fix

R̂es
′

M̂ ` cs; v̂s; σ̂ ==========⇒
a−bu−visit−memo

R̂es
′

AEBUM-Miss

αType(v̂s) /∈ dom M̂ M̂;⊥R̂S ` cs; v̂s; σ̂ ============⇒
a−bu−visit−memo−fix

R̂es
′

M̂ ` cs; v̂s; σ̂ ==========⇒
a−bu−visit−memo

R̂es
′

The AEBUMF-Stop and AEBUMF-More rules are used for fixed-point
calculation over the traversal result. The AEBUMF-Stop rule stops when
evaluating the traversal body produces the same result as before itera-
tion. Conversely, the AEBUMF-More takes an iteration where the result
is strictly decreasing in precision, and so it needs to widen the output
result states and repeat iteration. Because of monotonicity, it is not pos-
sible to get a result that gets more precise after a fixed-point iteration
(otherwise, termination and the existence of fixed-point is not certain).

AEBUMF-Stop

M̂[αType(v̂s) 7→ (v̂s, R̂esprev)] ` cs; v̂s; σ̂ ============⇒
a−bu−visit−memo−go

R̂es

R̂esprev = R̂es

M̂; R̂esprev ` cs; v̂s; σ̂ ============⇒
a−bu−visit−memo−fix

R̂es

AEBUMF-More

M̂[αType(v̂s) 7→ (v̂s, R̂esprev)] ` cs; v̂s; σ̂ ============⇒
a−bu−visit−memo−go

R̂es

R̂esprev @ R̂es R̂es
′′
= R̂esprev∇R̂SR̂es

M̂; R̂es
′′ ` cs; v̂s; σ̂ ============⇒

a−bu−visit−memo−fix
R̂es
′

M̂; R̂esprev ` cs; v̂s; σ̂ ============⇒
a−bu−visit−memo−fix

R̂es
′
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Having set-up the elaborate memoization machinery, we proceed by
translating the traversal rules as usual. The only difference is that the
memoization environment must be carried around and the memoized
judgment must be used on recursion. The AEBUMG collect the four dif-
ferent bottom-up traversal rules each roughly corresponding to a single
rule in the concrete semantics.5

AEBUMG

⦃M̂ ` cs; v̂s; σ̂ ========⇒
a−bu−visit−go

R̂es⦄

M̂ ` cs; v̂s; σ̂ ============⇒
a−bu−visit−memo−go

R̂es

The AEBUG-Sucs rule handles the case where the traversal succeeds
both for the contained values 6 and the reconstructed top-level value.
The AEBUG-Fail-Sucs rule handles the case where the traversal fails
for the contained values and thus must be carried out only on the top-
level value; here, we expect the reconstruction of values to always suc-
ceed, because the values returned in failure should be refinements of the
original values. The AEBUG-Exc rule handles errors when traversing
contained values, and AEBUG-Err rule handles the case where recon-
struction produces an error.

AEBUG-Sucs

(v̂s′, v̂s′′) ∈ ̂children(v̂s) M̂ ` cs; v̂s′′; σ̂ ======⇒
a−bu−visit?

R̂es?

(success v̂s′′′; σ̂′) ∈ R̂es? ̂recons v̂s′ using v̂s′′′ to R̂CRes

(success v̂s′′′′) ∈ R̂CRes M̂ ` cs; v̂s′′′′; σ̂′ ==========⇒
a−bu−visit−memo

R̂es
′

M̂ ` cs; v̂s; σ̂ ========⇒
a−bu−visit−go

R̂es
′

AEBUG-Fail-Sucs

(v̂s′, v̂s′′) ∈ ̂children(v̂s) M̂ ` cs; v̂s′′; σ̂ ======⇒
a−bu−visit?

R̂es?

(fail v̂s′′′; σ̂′) ∈ R̂es? ̂recons v̂s′ using v̂s′′′ to success v̂s′′′′

M̂ ` cs; v̂s′′′′; σ̂′ ==========⇒
a−bu−visit−memo

R̂es
′

M̂ ` cs; v̂s; σ̂ ========⇒
a−bu−visit−go

R̂es
′

AEBUG-Exc

(v̂s′, v̂s′′) ∈ ̂children(v̂s) M̂ ` cs; v̂s′′; σ̂ ======⇒
a−bu−visit?

R̂es?

(error; σ̂′) ∈ R̂es?

M̂ ` cs; v̂s; σ̂ ========⇒
a−bu−visit−go

error; σ̂′

5Not counting the additional rules for the −break version.
6We are here considering the case where the ̂children function was applied to data

values and so produces a fixed sequence of heterogeneous value shapes. In case of
collections or >, it may produce a value shape-cardinality pair instead.
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AEBUG-Err

(v̂s′, v̂s′′) ∈ ̂children(v̂s) M̂ ` cs; v̂s′′; σ̂ ======⇒
a−bu−visit?

R̂es?

(success v̂s′′′; σ̂′) ∈ R̂es? ̂recons v̂s′ using v̂s′′′ to R̂CRes

error ∈ R̂CRes
M̂ ` cs; v̂s; σ̂ ========⇒

a−bu−visit−go
error; σ̂′

We do a similar translation with bottom-up traversal of a sequence
of values. The AEBUS rule collects the four rules for traversing a se-
quence of expressions: AEBUSG-Emp, AEBUSG-More, AEBUSG-Exc1
and AEBUSG-Exc2. Note that in order we still need to carry around the
memoization environment and recursively use the memoized judgment.

AEBUS

⦃M̂ ` cs; v̂s; σ̂ =========⇒
a−bu−visit?−go

R̂es?⦄

M̂ ` cs; v̂s; σ̂ ======⇒
a−bu−visit?

R̂es?

The AEBUSG-EMP rule handles the case where the given abstract value
shape is sequence, and so fails to match any case. The AEBUSG-More

rule evaluates the first value shape in the sequence using the memoized
bottom-up traversal rule, continues traversal of the rest of the sequences
and combines the results. Finally, the AEBUSG-Exc1 and AEBUSG-Exc2
rules handle the cases where sub-traversals produced errors.

AEBUSG-Emp

M̂ ` cs; ε; σ̂ =========⇒
a−bu−visit?−go

fail ε; σ̂

AEBUSG-More

M̂ ` cs; v̂s; σ̂ ==========⇒
a−bu−visit−memo

R̂es (v̂fres; σ̂′′) ∈ R̂es

M̂ ` cs; v̂s′; σ̂′′ ======⇒
a−bu−visit?

R̂es?
′

(v̂fres?
′
; σ̂′) ∈ R̂es?

′

M̂ ` cs; v̂s, v̂s′; σ̂ =========⇒
a−bu−visit?−go

̂vcombine(v̂fres, v̂fres?
′
); σ̂′

AEBUSG-Exc1
M̂ ` cs; v̂s; σ̂ ==========⇒

a−bu−visit−memo
R̂es (error; σ̂′) ∈ R̂es

M̂ ` cs; v̂s, v̂s′; σ̂ =========⇒
a−bu−visit?−go

error; σ̂′

AEBUSG-Exc2

M̂ ` cs; v̂s; σ̂ ==========⇒
a−bu−visit−memo

R̂es (v̂fres; σ̂′′) ∈ R̂es

M̂ ` cs; v̂s′; σ̂′′ ======⇒
a−bu−visit?

R̂es?
′

(error; σ̂′) ∈ R̂es?
′

M̂ ` cs; v̂s, v̂s′; σ̂ =========⇒
a−bu−visit?−go

error; σ̂′
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As observed, the translation of the traversal rules with memoization
was done fairly systematically. This provides hope that the presented
trace memoization technique can be automated for operational seman-
tics rules of certain shapes, extending the technique presented by Bodin
et al. [2015].

Soundness of Abstract Interpreter

The main goal of abstract interpretation is to provide sound analyses,
where the properties shown on the approximated semantics can be de-
pended upon to hold for the concrete semantics. For our particular
abstract interpreter, the main meta-property we want to be satisfied is
that the abstract expression evaluation produces values that truly over-
approximate the results from all possible concrete evaluations. Formally,
this can be stated as:

Theorem 7.8 (Soundness). For all valid expressions e, concrete stores σ and
over-approximating abstract stores σ̂, so σ ∈ γ

Ŝtore
(σ̂), where we have a

concrete evaluation derivation e; σ̂ ==⇒
expr

vres; σ′ and corresponding abstract

evaluation derivation e; σ̂ ==⇒
a-expr

R̂es then it holds that the abstract result

set properly over-approximates the concrete result value result and store, i.e.,
(vres, σ′) ∈ γRS(R̂es).

7.5 Evaluation

The objective of our evaluation is to examine whether our presented
abstract interpretation technique works on a wide variety of the trans-
formations written in Rascal.

Research Questions To fulfill our objective, we aim to answer the fol-
lowing research questions:

• Is it possible to abstractly interpret realistic Rascal programs using
type and inductive shape analysis, to verify properties of interest?

• What interesting properties require more than inductive shapes to
capture, and what extensions are needed?
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Subject Selection Our selection of subject transformations is based on
three criteria:

1. the evaluated transformations must be realistic and preferrably
from independent code bases,

2. they must be translateable to our supported subset of Rascal,

3. they must exercise important Rascal constructs like visitors and
the expressive pattern matching capabilities.

The first criteria is there to reduce experimental bias from the au-
thors, the second criteria is there to ensure that our tool is able to suc-
cesfully run on the subjects, and the third is there to ensure that we are
not testing trivial or non-interesting transformations.

Subject Transformations We consider four subject transformations in
our evaluation, where two of the transformations are extracted directly
from real open source Rascal projects. The source code of the trans-
formations is included in Appendix G, but we will discuss them in a
high-level fashion here.

NNF The Negation Normal Form transformation [Harrison, 2009, Sec-
tion 2.5] is a classical transformation in automated reasoning,
which translates propositional formulae to a form that has con-
junction and disjunction as the only connectives (e.g., no implica-
tion), and where negations are only applied to atomic propositions.

RSF The Rename Struct Field refactoring changes the name of a field in
a struct, and correspondingly ensures that all field access expres-
sions of that field are renamed correctly as well.

DSO0 The Desugar Oberon-0 transformation, translates for-loops and
switch-statements—which are seen as syntactic sugar—to while-
loops and nested if-statements respectively. The transforma-
tion is part of the Oberon-0 [Wirth, 1996] implementation in Ras-
cal [Basten et al., 2015], which contains all the necessary stages for
compiling a structured imperative programming language.

G2PE Glagol7 is a DSL for REST-like web development, generating PHP
code as output. The Glagol to PHP Expression transpilation gen-
erates PHP code for input Glagol expressions.

7https://github.com/BulgariaPHP/glagol-dsl

https://github.com/BulgariaPHP/glagol-dsl
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The size and target verification properties for each transformation are
presented in Table Table 7.1. While the size of the transformation varies,
it should be noted that they all use the expressive high-level features in
Rascal and so are significantly more succinct than comparable code in
non-high-level transformation languages.

The properties checked mainly focus that the output of each transfor-
mation satisfies required shape constraints. For the NNF transformation
we check that the output indeed is in negation normal form, so it does
not have implications (P1) and that all negations are in front of atoms
(P2). For the structure field renaming transformation, we focus on prop-
erties that show that the old field has correctly been renamed to the new
field name and so the old field name is not defined in a structure any-
more (P3) and similarly with all field accesses (P4); note, that we need
to convert field names to finite enumerations—with constructors repre-
senting the old field name, new field name and other names—instead of
strings in order for our executor to be able to infer required properties.
For the Oberon-0 desugaring, we check that there are no syntactic sugar
constructs in the output, i.e. for-loops (P5) and switch-statements (P6),
and that auxiliary data values used intermediately in the transformation
are eliminated in the output (P7). Finally, we check that the Glagol to
PHP translation works as expected, by checking that given inputs with a
particular shape the output has a similar shape, e.g. that translating sim-
ple arithmetic-logic expressions produces similar arithmetic expressions
in PHP (P8)—with no object creation, field or array access, or method
invokation—and that Glagol expressions not using negation or unary
plus produce no unary PHP expressions.

Threats to Validity We have selected a sample of available Rascal
transformations to evaluate on, and so it can be hard to generalize
whether our technique is successful for other transformations. We mit-
igated this by selecting our subject transformations such that they are
from realistic projects and vary in authors, programming style and pur-
pose.

We have ported our subject transformations to the Rascal Light sub-
set in a self-contained manner to be readily executed by our tool; this
process could potentially introduce some minor differences in the se-
mantics. We mitigated this by only performing minimal changes re-
quired to the code, and ensuring that the changes done do not critically
affect the credibility of our overall abstract interpretation technique.
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Implementation

We have implemented our abstract interpretation technique8 as a proto-
type tool for the complete Rascal Light subset presented in Chapter 6.
The abstract semantics of the additional constructs follows is imple-
mented using the process described in Section 7.4; the major challenges
included fine-tuning the trace memoization strategies to the different
looping constructs and functions (to handle recursion), handling ex-
tended result state with more control flow constructs, and taking into
account possibly undefined values (�) during evaluation. Using types
for partitioning the input during trace memoization can be inprecise,
so we use a more precise partitioning strategy when needed, which for
data refinements additionally uses the set of present constructors.

8Currently with a simple one-value domain for integers instead of intervals, which
were not strictly needed for our evaluation subjects.

Transformation LOCs Target Property

P1 Implication is not used as a connective in
the result

NNF 15 P2 All negations in the result are in front of
atoms

P3 Structures should not define a fields with
the old field name

RSF 35 P4 There should not be any field access ex-
pression to the old field name

P5 For-loops should be correctly desugared to
while-loops

P6 Switch-statements should be correctly
desugared to if-statementsDSO0 125

P7 No auxiliary data in output

P8
Only have simple PHP expressions in out-
put given simple Glagol expressions in in-
put

G2PE 350 P9
Not have unary PHP expressions if there
were no sign markers or negations in the
input Glagol expression

Table 7.1: Subject Transformations Statistics and Target Properties
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Results

We ran our abstract interpretation tool on the evaluation subjects using
Scala 2.12.2 on a 2012 Core i5 MacBook Pro. We present an overview of
the results in Table 7.2 detailing the runtime and verified properties; the
complete output of each run is included in Appendix H.

The runtime of the analysis is reasonable given the expressiveness
of the available features, running around 4-39 seconds; separate run-
times for the G2PE transformation were included because the shape of
input varies between the specified properties. There is room for im-
proving performance, since during fixed-point calculation subterms are
re-evaluated despite providing the same results.

Transformation Runtime (s) Property Verified

P1 3NNF 31 P2 3

P3 7RSF 6 P4 3

P5 3

P6 3DSO0 36
P7 7

4 P8 3G2PE 39 P9 3

Table 7.2: Results of abstractly interpreting subject programs. Runtime
is median of three runs.

All the specified target properties were succesfully verified, except
for two where the result shape was not precise enough; we provide a
further discussion later to describe possible extensions that would allow
enough precision to capture these properties.

As an example of the the results, we show the inferred output shape
for our NNF transformation in Figure 7.5. To check that our properties
were satisfied, we simply had to check that implication is not part of the
set of available constructors (P1), and that the negation constructor only
allows atoms as subformulae instead of any general formula (P2).

Discussion

There were two properties, P3 and P7, which could not be verified from
the resulting shape of the inferred inductive data refinements. Using
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1 refine Formula#nnf = and(Formula#nnf, Formula#nnf) | atom(str)
2 | neg(atom(str)) | or(Formula#nnf, Formula#nnf)

Figure 7.5: Inferred shape for Negation Normal Form transformation

these properties as a starting point, we discuss three possible exten-
sions to our current abstract domain that could help us get more precise
results: relational constraints, abstract attributes and complement do-
mains.

Relational Constraints Relational abstract interpreteration [Mycroft
and Jones, 1985] allows specifying constraints that relate values across
different variables, and even inside and across substructures [Chang and
Rival, 2008; Halbwachs and Péron, 2008; Liu and Rival, 2017]. This al-
lows both maintaining a greater precision across results, and inferring
properties that are non-local, e.g., that two values not only have similar
shape but are actually equal.

Figure 7.6 shows the inferred refinement for the structure field re-
naming transformation: we can see that the structures contained in tar-
get packages remain unrefined and thus P3 does not hold since old field
name should not be in definitions. We assume that structures and fields
are stored in the containing maps using their names as key, but with-
out relational constraints it is not possible to express this property; this
disallows strong map updates and the update to the field definitions
is thus not captured. Relational properties would also allow support-
ing the version of the refactoring that works on classes and additionally
takes typing into account.

Abstract Attributes Property P7 provides more interesting verification
challenges that pertain particularly to transformations. Recall that the
property concerns proving elimination of auxiliary data from the result;
concretely the auxiliary statement begin is used to intermediately allow
returning a list of statements where a single statement is required, and a
separate pass is used to flatten the contained list of statements contained
with the surrounding list of statements (see Figure 7.7).

Verifying properties that only hold after fixed-point iteration, seems
suitably tackled using abstract attributes which extract additional infor-
mation about target structures. For this particular property, a general-
ization of the multiset abstraction suggested by Perrelle and Halbwachs
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1 refine Package#rnf =
2 package(map[str, Struct], map[str, Function#rnf])
3 data Struct = struct(str name, map[Nominal, Field] fields);
4 data Field = field(Nominal name, str typ);
5 refine Function#rnf =
6 function(str, str, list[Parameter], Stmt#rnf)
7 refine Stmt#rnf =
8 assignstmt(Expr#rnf, Expr#rnf) | block(list[Stmt#rnf])
9 | ifstmt(Expr#rnf, Stmt#rnf, Stmt#rnf) | returnstmt(Expr#rnf)
10 refine Expr#rnf =
11 fieldaccessexpr(Expr#rnf, Nominal#rnf)
12 | functioncallexpr(Expr#rnf, str, list[Expr#rnf]) | varexpr(str)
13 data Nominal = nfn() | ofn() | other();
14 refine Nominal#rnf = nfn() | other()

Figure 7.6: Inferred shape for Rename Struct Field transformation

1 public list[Statement] flattenBegin(list[Statement] stats) {
2 return innermost visit (stats) {
3 case [*Statement s1, begin(b), *Statement s2] =>
4 s1 + b + s2
5 }
6 }

Figure 7.7: Flattening auxiliary begin statement

[2010] for data types, could be useful to track the number of elements
of various sub-elements, e.g., the number of begin statements. Using
techniques from term rewriting [Dershowitz and Manna, 1979] one can
then show a decrease in number of elements each iteration, inferring
that they get eliminated when the fixed-point is reached. Other abstract
attributes—such as suggested by Bouajjani et al. [2012] and Pham and
Whalen [2013]—can capture other properties of interest like contained
set of elements or size of a data type, and in conjunction with relational
constraints show meaningful relations between input and output struc-
tures, e.g., that the output uses the same variables as the input.

Complement Domains The output for DSO0 and G2PE additionally
produced false positive errors, due to values being inferred as poten-
tially undefined �. The main culprit was that our analysis did not pre-
cisely enough capture complementary information—i.e. absence of type
or shape—for non-data type values during pattern matching, and so
some switch-statements fell-through. This can be solved by having a
complementary domain component of disallowed types and values for
pattern matching, similarly to what we had for TRON in Chapter 5.
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7.6 Related Work

Data and Shape Domains Our discussion presented future directions
that combine our inductive refinement with ideas from existing work
that support more expressive constraints. Bouajjani et al. [2012] allows
specifying a flexible set of abstract attributes on lists, both strucural such
as acylicity and data-relational such as equality of contained multi-sets
of elements. Techniques suggested by Chang and Rival [2008], Vazou
et al. [2013], and Albarghouthi et al. [2015] support inferring induc-
tive relational properties for general data-types—such as the binary tree
property—but require a pre-specified structure specifying the possible
places relational refinement could happen.

Modular Program Analysis Cousot and Cousot [2002] present a gen-
eral framework for modularly constructing program analyses, but it
requires a language with a compositional control flow which Rascal
does not have. The framework suggests using symbolic relational do-
mains for domain composition, but it is generally undecidable to in-
fer inductive properties for arbitrary sets of constraints [Padon et al.,
2016]. Calcagno et al. [2011] suggests using bi-abduction for composi-
tional analysis of programs, but their framework is primarily focused
towards pointer programs with only a fixed set of non-nested data types
supported. Toubhans et al. [2013] and Rival et al. [2014] further de-
velops the ideas of modular domain design for pointer-manipulating
programs supporting a rich set of data abstractions; our domain con-
struction focuses more on pure data-structures with a more heteroge-
neous construction—i.e., where we have differents kinds of algebraic
data types, collections, and basic values—still allowing modular and
automated inference of inductive refinements for these types.

Verification of Transformations There are various ap-
proaches [Jackson et al., 2011; Büttner et al., 2012; Wang et al., 2014] in
verification of model transformations that encode transformations as
declarative formulae for automated solvers, but such techniques only
work for transformations of limited expressiveness and are due to the
black-box nature of automated solvers hard to extend. Techniques for
model transformation verification based on static analysis such as in
Cuadrado et al. [2017] scale to more expressive transformation features,
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but are currently focused on verification of rule errors based on types
and undefinedness.

Semantic typing has been used by Castagna and Nguyen [2008] and
Benzaken et al. [2013] to infer recursive type and shape properties for
language with high-level constructs for querying and iteration. The lan-
guages considered are small calculi with limited expressiveness com-
pared to the fully feature transformation language subset of Rascal we
consider, we have a more flexible domain and abstract interpreter de-
sign, and an extensive evaluation showing that our works well with
realistic Rascal programs.

Another way to verify transformations using abstract interpretation
has been presented by Rival [2004], which uses translation validation
and symbolic transfer functions to verify equivalence between a pro-
gram annotated with abstract invariants and its translated assembly
output; The technique is complementary to ours, since it can verify very
rich semantic properties but only for concrete input, while our technique
verifies simpler properties as shapes but for all possible input.

7.7 Recap

We have presented a formal Schmidt-style abstract interpreter for Rascal
Light, that supports verifying type and inductive shape properties. Our
interpreter supported all the required high-level transformation features
including traversals, backtracking, exceptions and fixed-point iteration.
We further presented a practical technique for modularly constructing
abstract domains and adapted the idea of trace memoization to work with
data from infinite abstract domains by using finite input-determined
partitioning to widen input on recursion and ensure termination of our
algorithm. Finally, we evaluated our algorithm on a variety of realistic
transformations showing that it is possible to efficiently and effectively
verify inductive shape properties of interest.
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Conclusion

The primary goal for this dissertation was to use traditional techniques
in programming languages as a basis for developing foundational the-
ories and tools for transformation languages with high-level features
such as traversals, backtracking and fixed-point iteration. The goal of
this thesis has been successfully reached by a series of contributions
(C1-C5) which together fulfilled the stated objectives (O1-O4).

In Chapter 3, I presented a detailed analysis of a wide selection of
declarative transformation languages (C1) using available literature to
identify key features and clarify how they contributed to the target lan-
guages’ computational expressiveness (O1). My analysis showed that all
examined declarative transformation languages, except the bidirectional
ones, were Turing-complete and so could not be treated specially with
regards to verification. This compelled me to focus on general purpose
high-level transformation languages like TXL and Rascal, which had the
advantage of having and explicit control flow and more commonalities
with existing programming languages, making it easier to adapt target
programming language verification techniques.

Chapter 4 presented a joint effort to design and validate an industrial
transformation (C2) modernizing an industrial configuration tool from
a C++ imperative implementation to logical constraints. The effort con-
tributed to understanding how the high-level transformation features
were used in practice, and provided first-hand experience with transla-
tion validation and symbolic execution (O2). A major concrete outcome
was that it displayed the necessity of formal verification techniques for
transformations, catching 50 serious bug cases in an expert-written oth-
erwise well-tested transformation.
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To allow for effective automated white-box testing of transforma-
tions (O3), I had in Chapter 5 developed a formal symbolic execution
algorithm for a core transformation language, TRON, which captured key
high-level transformation language features such including deep type-
directed traversal (C3). The algorithm was implemented as a proto-
type tool and evaluated using a set of realistic refactorings and model
transformations against a baseline black-box algorithm optimizing for
litterature-suggested metrics; the evaluation showed that our algorithm
compared very favorably to the baseline black-box algorithm, achieving
almost full coverage on all subject programs, albeit at a cost of slower—
but still reasonable—execution time.

I formalized an extensive subset of the operational part of the Rascal
transformation language—called Rascal Light—in Chapter 6, which is
the first formalization for a large subset of the Rascal language we know
of (C4). The formalization has been based on the Rascal implementa-
tion, documentation and personal correspondence with developers, it
has been implemented as a prototype and tested with a set of Rascal
programs, and a series of semantic properties regarding strong typing,
safety and termination have been formally proven. The availability of
this formalization allows principled development of foundational ver-
ification techniques including abstract interpretation-based static anal-
ysis (O4), and other complementary semantics like a type system or
axiomatic semantics.

Finally, I implemented a Schmidt-style abstract interpreter (C5) for
Rascal in Chapter 7 that allowed verification of types and inductive
shape properties (O4). The work provided a practical path towards
modular design of abstract domains, and an adaption of the idea of
trace memoization—which allows discovering fixed-points in operational
semantics—to support working precisely with input from infinite do-
mains, by utilising input-determined finite partitioning. The technique
has been implemented as a prototype tool, which have been evaluated
on realistic transformations of different kinds written in Rascal, and
was able to infer complex shape properties such as that the output of
the negation normal form transformation only had negations in front
of atoms, and that a transpilation of an expression with no negative or
positive sign operators produced no output unary PHP expressions.
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Appendix A

Modernization Transformation Proofs

Proposition 4.1. For each concrete execution path π = (σin, σ1, . . . σout) of
the program P, there exists the corresponding symbolic execution path π̂ =
((σ̂in, true), . . . (σ̂out, b̂out)), such that the following equations are satisfied:

σ̂in = [xi 7→ x?
1, . . . , xn 7→ x?

n]

θ = [x?
0 7→ σin(x0), . . . , x?

n 7→ σin(xn)]

((σ̂out)θ)(ret) = σout(ret)

(b̂)θ = true

Proof. By induction on the length of the path π, and by showing that
each concrete transition σi

s−→ σi+1 from π can be simulated symboli-
cally with some transition (σ̂i, b̂i)

s−→ (σ̂i+1, b̂i+1) in a corresponding π̂.
Let θ be a substitution assigning each symbol x̂i the value σ0(x̂i). We say
that a constrained symbolic store (σ̂, b̂) simulates a concrete store σ if
σ = (σ̂)θ and (b̂)θ is true. Now, let σi

s−→ σi+1 be a transition in π and
σi be simulated by (σ̂i, b̂i); this transition can be symbolically executed
resulting in (σ̂i, b̂i)

s−→ (σ̂i, b̂i+1) so σi+1 is simulated by (σ̂i+1, b̂i+1).
This way, by simulating each transition from π symbolically, we can
generate the corresponding symbolic path π̂ fulfilling the stated require-
ments.

Theorem 4.1. Two programs P and P′ are semantically equivalent P ∼ P′ iff
for each value v ∈ Val it holds:∨

(σ̂out,b̂out)∈Σ

(
σ̂out(ret) = v ∧ b̂out

)
⇐⇒

∨
(σ̂′out,b̂

′
out)∈Σ′

(
σ̂′out(ret) = v ∧ b̂′out

)
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where

Σ =
{
(σ̂out, b̂out)

∣∣∣ ((σ̂in, true) . . . (σ̂out, b̂out)) is a symbolic path of P
}

Σ′ =
{
(σ̂′out, b̂′out)

∣∣∣ ((σ̂in, true) . . . (σ̂′out, b̂′out)) is a symbolic path of P′
}

Proof. Follows directly from Proposition 4.1 and Definition 4.6.
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SymexTRON Auxiliary Functions

̂singleton(ê, ĥ) =

{
{(x?, ĥ)} if ê = {x?}

̂mk-singleton(ê, ĥ) otherwise

̂mk-singleton(ê, (ẑ, ̂̀, d̂, Γ̂, b̂)) =
{
(x?, ĥ′)

∣∣∣ x? fresh∧ ĥ′ sat
}

where x? fresh

Γ̂′ = Γ̂[x? 7→ t̂ypes(ê, Γ̂, ẑ)]

ĥ′ = (ẑ, ̂̀, d̂, Γ̂′, b̂ ∧ ê = {x?})

înst(x?, ĥ) =

{
{(ẑ(x?), ĥ)} if x? ∈ dom ẑ
m̂k-inst(x?, ĥ) ∪ ̂alias-inst(x?, ĥ) otherwise

where ĥ = (ẑ, ̂̀, d̂, Γ̂, b̂)

m̂k-inst(x?, ĥ) =
{
(ô, ĥ′)

∣∣∣∣ c ∈ csin ∧
ĥ′ = ̂mk-inst-typ(x?, ô, c, csex, ĥ) ∧ ĥ′ sat

}
where ô fresh

ĥ = (ẑ, ̂̀, d̂, Γ̂, b̂)

(csin, csex) = Γ̂(x?)

̂mk-inst-typ(x?, ô, c, csex, ĥ) = (ẑ[x? 7→ ô], ̂̀′, d̂, Γ̂′, b̂)

where (f̂s, Γ′′) = ̂mk-fields(fields(c), Γ̂)̂̀′ = ̂̀ [(ô, f ) 7→ ê|( f , ê) ∈ fs]

Γ̂′ = Γ̂′′
[

ô 7→ ({c},
{

c′
∣∣∣∣ c′ gen∗ c ∧

c′ ∈ csex

}
)

]
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̂mk-fields(fsc, Γ̂) = ̂mk-fields
′
(∅, fsc, Γ̂)

̂mk-fields
′
(fse, fsc, Γ̂) =

{
̂mk-fields

′
(fse ∪ {( f , X?)}, fs′c, Γ̂′) if fsc = ( f , c) ] fs′c

(fse, Γ̂) otherwise

where X? fresh

Γ̂′ = Γ̂[X? 7→ c]

̂alias-inst(x?, ĥ) =

{
(ô, ĥ′)

∣∣∣∣∣ ô ∈ ̂type-insts(ĉsin, Γ̂) ∧
ĥ′ = ̂alias-inst-agn(x?, ô, csout, ĥ) ∧ ĥ′ sat

}
where (csin, csout) = Γ(x?)

̂alias-inst-agn(x?, ô, csout, ĥ) = (ẑ[x? 7→ ô], ̂̀, d̂, Γ̂′, b̂)

where ({c′}, cs′′out) = Γ̂(o?)

cs′out = cs′′out ∪
{

c
∣∣c ∈ csout ∧ c gen∗ c′

}
Γ̂′ = Γ̂[ô 7→ ({c′}, cs′out)] \ x̂

̂type-insts(cs, Γ̂) =
{

ô
∣∣∣∣ ({c′}, csout) = Γ̂(o) ∧

(∃c ∈ cs.c gen∗ c′ ∧ @c′′ ∈ csout.c gen∗ c′′)

}

̂dc-containment(ê, c, ẑ, d̂, Γ̂) = ̂dc-reown(ê, c, d̂cs
′
, ∅, ẑ, Γ̂, true)

where d̂cs
′
=
{
(ô, c′, ê′ \ ê)

∣∣∣(ô, c′, ê′) ∈ graph d̂
}

̂dc-reown(ê, c, d̂cs, d̂cs
′′

, ẑ, Γ̂, b̂) =

 ̂dc-reown(ê, c, dcs′, d̂cs
′′
∪ {d̂c

′}, Γ′, b̂ ∧ b̂′) if d̂cs = d̂c] dcs′[
(ô, c′) 7→ ê′′

∣∣∣(ô, c′, ê′′) ∈ d̂cs
′′]

otherwise

where (d̂c
′
, Γ̂′, b̂′) = ̂dc-reown-1(ê, ĉ, d̂c, ẑ, Γ̂)

̂dc-reown-1(ê, c, d̂c, ẑ, Γ̂) =


̂dc-reown-1-sub(ê, c, d̂c, Γ̂) if c <: c′

̂dc-reown-1-sup(ê, c, d̂c, ẑ, Γ̂) if c′ <: c ∧ c 6= c′

(d̂c, Γ̂, true) otherwise

̂dc-reown-1-sub(ê, c, (ô, c′, ê′), Γ̂) = ((ô, c′, ê′ ∪ X?), Γ̂[X? 7→ c], X? = ∅ ∨ X? = ê)

where X? fresh
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̂dc-reown-1-sup(ê, c, (ô, c′, ê′), ẑ, Γ̂) = ((ô, c′, ê′ ∪ X?), Γ̂′, b̂)

where X?, Y?, Z? fresh

(csin, csex) = t̂ypes(ê, Γ̂, ẑ)

Γ̂′ = Γ̂[X? 7→ c, Y? 7→ c′, Z? 7→ (csin, csex ∪ c′)]

b̂ = (X? = ∅ ∨ X? = Y?) ∧ ê = Y? ] Z?

m̂atch(x?, X?, c, ĥ) = ̂match-sucs(x?, c, ĥ) ∪ ̂match-fail(x?, X?, c, ĥ)

̂match-sucs(x?, c, (ẑ, ̂̀, d̂, Γ̂, b̂)) =

{
(tt, (ẑ, ̂̀, d̂, Γ̂′, b̂))

∣∣∣∣∣ (∃c′ ∈ csin.c′ <: c ∨ c <: c′) ∧
(@c′ ∈ csex.c′ <: c)

}
where (csin, csex) = t̂ypeof(x?, Γ̂, ẑ)

Γ̂′ =

{
Γ̂[ẑ(x?) 7→ (c, {c′|c′ ∈ csex ∧ c′ <: c})] if x? ∈ dom ẑ
Γ̂[x? 7→ (c, {c′|c′ ∈ csex ∧ c′ <: c})] otherwise

̂match-fail(x?, X?, c, (ẑ, ̂̀, d̂, Γ̂, b̂)) =

{
(ff, (ẑ, ̂̀, d̂, Γ̂′, b̂))

∣∣∣∣∣ (∃c′ ∈ csin.c ≮: c′) ∨
(∃c′ ∈ csex.c′ <: c)

}
where (csin, csex) = t̂ypeof(x?, Γ̂, ẑ)

(cs′in, cs′ex) = Γ(X?)

Γ̂′ =

{
Γ[ẑ(x?) 7→ (csin, csex ∪ c), X? 7→ (cs′in, cs′ex ∪ c)] if x? ∈ dom ẑ
Γ[x? 7→ (csin, csex ∪ c), X? 7→ (cs′in, cs′ex ∪ c)] otherwise

d̂cs(x?, c, d̂, ĥ) =
{
(ê, ĥ′)

∣∣∣(ô, ĥ′′) ∈ înst(x?, ĥ) ∧ (ê, ĥ′) = d̂cs
′
(ô, c, d̂, ĥ′′)

}

d̂cs
′
(ô, c, d̂o, ĥ) =

{
(d̂o(ô, c), ĥ) if (ô, c) ∈ dom d̂o

(X?, (ẑ, ̂̀, d̂′, Γ̂′, b̂)) otherwise

where X?fresh

ĥ = (ẑ, ̂̀, d̂, Γ̂, b̂)

d̂′ = d̂[(ô, c) 7→ X?]

Γ̂′ = Γ̂[X? 7→ c]

t̂ypes(X?, Γ̂, ẑ) = Γ(X?)

t̂ypes(∅, Γ̂, ẑ) = (∅, ∅)

t̂ypes({x?
1, . . . , x?

n}, Γ̂, ẑ) =
n⊔

i=1
t̂ypeof(x?

i , Γ, z)

t̂ypes(ê1 ∪ ê2, Γ̂, ẑ) = t̂ypes(ê1, Γ̂, ẑ) t t̂ypes(ê2, Γ̂, ẑ)

t̂ypes(ê1 ∩ ê2, Γ̂, ẑ) = t̂ypes(ê1, Γ̂, ẑ) t t̂ypes(ê2, Γ̂, ẑ)

t̂ypes(ê1 \ ê2, Γ̂, ẑ) = t̂ypes(ê1, Γ̂, ẑ)



222 Appendix B. SymexTRON Auxiliary Functions

t̂ypeof(x?, Γ̂, ẑ) =

{
Γ̂(ẑ(x?)) if x? ∈ dom ẑ
Γ̂(x?) otherwise

(csin, csex) t (cs′in, cs′ex) = ( ̂type-ub(csin, cs′in), ̂type-lb(csex, cs′ex))

where ̂type-ub(cs, cs′) =
{

c
∣∣c ∈ cs∪ cs′ ∧ @c′ ∈ cs∪ cs′.c <: c′

}
̂type-lb(cs, cs′) =

{
c
∣∣c ∈ cs∩ cs′ ∧ @c′ ∈ cs∩ cs′.c <: c′

}

̂partition(ê, (ẑ, ̂̀, d̂, Γ̂′, b̂)) = (ẑ, ̂̀, d̂, Γ̂′, b̂ ∧ ê = {x?} ] X?)

where x?, X? fresh

(csin, csex) = t̂ypes(ê, Γ̂, ẑ)

Γ̂′ = Γ̂[x? 7→ (csin, csex), X? 7→ (csin, csex)]
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SymexTRON Proofs

Theorem 5.1 (Soundness). If ∃m.σ = m(σ̂) ∧ Γ, h
m

ĥ and ŜJsK(σ̂, ĥ) =

M̂ then for all (σ̂, ĥ) ∈ M̂ there exists σ′, Γ′, and h′ such that we have a
concrete execution s, σ, Γ, h =⇒ σ′, Γ′, h′ and exists a model m′ such that σ′ =

m′(σ̂′) and Γ′, h′
m′

ĥ′.

Proof Sketch. The basic rules follow standard techniques from Gen-
eral Symbolic Execution Khurshid et al. [2003] and the Lazier# algo-
rithm Deng et al. [2012]. The only non-standard components of our
formal algorithm are type bounds, containment updates, lazy iteration
and deep containment constraints. We discuss the soundness of these
components:

• Type bounds are precise for symbolic instances, but may over-
approximate for symbols and symbolic references. In particular,
during partitioning of symbolic expressions, new symbols and
symbolic reference sets are created and their assigned types is
inferred from the symbolic expression. Despite this local over-
approximation soundness is still preserved, since partitioning con-
straints are never dropped globally and we can thus only assign
symbolic instances to symbols—which is an under-approximative
operation—if the assignment agrees with these global constraints
(otherwise the resulting heap is unsatisfiable and not considered).

• The containment property, means that each instance is at most con-
tained in a single other instance, and that containment is acyclic.
To ensure that this property is preserved in concrete field updates,
the rule checks acyclicity before rule assignment and then proceeds
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to remove the set of newly assigned instances from the other con-
tainment fields. Both acyclicity and unique ownership are corre-
spondingly ensured by the symbolic semantics. The acyclicity con-
straint is encoded in the symbolic constraints of containment, and
thus cyclic assignment produces an unsatisfiable heap. The unique
ownership constraint is ensured by the d̂isown function which in-
stead uses the set difference operation to ensure that the assigned
symbolic set references do not contain instances symbolically rep-
resented by the newly assigned symbolic expression; since con-
tainment constraints are also affected, it ensures to update these as
well with the ̂dc-ownership function.

• Lazy iteration should model concrete iteration and so should sym-
bolically represent the set of values matched in a particular state.
However, because of laziness of the operation and possibility of
state change at each iteration it is required that the n̂ext opera-
tion keeps track of the original set of descendant constraints when
performing a new iteration, since otherwise the heap can become
inconsistent with concrete iteration.

• Containment constraints are additionally to being consistently up-
dated as mentioned above, also encoded directly as a constraint in
the model finder for the symbolic heap. This means that it is only
possible to make assignments for referenced symbols to symbolic
instances in a way consistent with the type and containment con-
straints; any non-sound assignment will produce an unsatisfiable
symbolic heap, which is not further considered in the execution.
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TRON Subject programs

Data model for RenameField, RenameMethod, ExtractSuper, Re-
placeDelegation:

1 class Package {
2 classes :♦ Class?

3 }
4 class Class {
5 name : String
6 super : Class
7 fields :♦ Field?

8 methods :♦ Method?

9 }
10 class Field {
11 name : String
12 type : Class
13 }
14 class Method {
15 name : String
16 params :♦ Parameter?

17 body :♦ Statement
18 type : Class
19 }
20 class Parameter {
21 name : String
22 type : Class
23 }
24 class Statement {}
25 class IfStatement extends Statement {
26 then :♦ Statement
27 else :♦ Statement
28 cond :♦ Expr
29 }
30 class Return extends Statement {
31 value :♦ Expr
32 }
33 class Assign Statement {
34 left :♦ AssignableExpr
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35 right :♦ Expr
36 }
37 class Expr {
38 type : Class
39 }
40 class AssignableExpr extends Expr { }
41 class FieldAccessExpr extends AssignableExpr {
42 field_name : String
43 target :♦ Expr
44 }
45 class MethodCallExpr extends Expr {
46 method_name : String
47 target :♦ Expr
48 args :♦ Arg?

49 }
50 class Arg {
51 name : String
52 value :♦ Expr
53 }

RenameField:
1 class_fields := class.fields;
2 class.fields := (class_fields \ old_field) ∪ new_field;
3 foreach faexpr ∈ package match? FieldAccessExpr do
4 faexpr_field_name := faexpr.field_name;
5 old_field_name := old_field.name;
6 faexpr_target := faexpr.target;
7 faexpr_target_type := faexpr_target.type;
8 if faexpr_field_name = old_field_name ∧
9 class = faexpr_target_type then
10 new_field_name := new_field.name;
11 faexpr.field_name := new_field_name
12 else skip

RenameMethod:
1 class_methods := class.methods;
2 class.methods := (class_methods \ old_method) ∪ new_method;
3 foreach mcexpr ∈ package match? MethodCallExpr do
4 mcexpr_method_name := mcexpr.method_name;
5 old_method_name := old_method.name;
6 old_method_params := old_method.params;
7 mcexpr_target := mcexpr.target;
8 mcexpr_target_type := mcexpr_target.type;
9 mcexpr_args := mcexpr.args;
10 paramsmatched := new Any;
11 foreach omp ∈ old_method_params do
12 parammatched := ∅;
13 omp_name := omp.name;
14 foreach mcea ∈ mcexpr_args do
15 mcea_name := mcea.name;
16 if omp_name = mcea_name then
17 parammatched := paramsmatched
18 else skip;
19 if parammatched = ∅ then
20 paramsmatched := ∅
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21 else skip;
22 if mcexpr_method_name = old_method_name ∧
23 class = mcexpr_target_type ∧
24 ((¬(old_method_params = ∅) ∧ mcexpr_args = ∅)
25 ∨ paramsmatched = ∅)
26 then
27 new_method_name := new_method.name;
28 mcexpr.method_name := new_method_name
29 else skip

ExtractSuper:
1 sclass := new Class;
2 package_classes := package.classes;
3 package.classes := package_classes ∪ sclass;
4 class1.super := sclass;
5 class2.super := sclass;
6 sclass.name := sc_name;
7 new_sclass_fields := ∅;
8 rem_class1_fields := ∅;
9 rem_class2_fields := ∅;
10 class1_fields := class1.fields;
11 class2_fields := class2.fields;
12 foreach c1f ∈ class1_fields do
13 foreach c2f ∈ class2_fields do
14 c1f_name := c1f.name;
15 c2f_name := c2f.name;
16 c1f_type := c1f.type;
17 c2f_type := c2f.type;
18 if c1f_name = c2f_name ∧ c2f_type = c2f_type then
19 scf := new Field;
20 scf.name := c1f_name;
21 scf.type := c1f_type;
22 new_sclass_fields := new_sclass_fields ∪ scf;
23 rem_class1_fields := rem_class1_fields ∪ c1f;
24 rem_class2_fields := rem_class2_fields ∪ c2f
25 else
26 skip;
27 class1.fields := class1_fields \ rem_class1_fields;
28 class2.fields := class2_fields \ rem_class2_fields;
29 sclass.fields := new_sclass_fields

ReplaceDelegation:
1 class_fields := class.fields;
2 field_type := field.type;
3 class.super := field_type;
4 field_type_methods := field_type.methods;
5 class_methods := class.methods;
6 class_new_methods := ∅;
7 foreach ftm ∈ field_type_methods do
8 foreach cm ∈ class_methods do
9 ftm_name := ftm.name;
10 cm_name := cm.name;
11 if ¬(ftm_name = cm_name) then
12 class_new_methods := class_new_methods ∪ cm
13 else skip;
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14 class.methods := class_new_methods;
15 foreach mcexpr ∈ class match? MethodCallExpr do
16 mcexpr_target := mcexpr.target;
17 MCEXPR_TARGET := ∅;
18 foreach mcx in mcexpr_target match FieldAccessExpr do
19 MCEXPR_TARGET := mcx;
20 if ¬(MCEXPR_TARGET = ∅) then
21 mcexpr_target_target := mcexpr_target.target;
22 mcexpr_target_target_type := mcexpr_target_target.type;
23 mcexpr_target_field_name := mcexpr_target.field_name;
24 field_name := field.name;
25 if field_name = mcexpr_target_field_name ∧
26 class = mcexpr_target_target_type then
27 mcexpr.target := mcexpr_target_target
28 else skip
29 else skip;
30 class.fields := class_fields \ field

Data models for Fam2Pers:
1 // Families meta model
2 class Family {
3 lastName : String
4 father :♦ Member opposite familyFather
5 mother :♦ Member opposite familyMother
6 sons :♦ Member? opposite familySon
7 daughters :♦ Member? opposite familyDaughter
8 }
9 class Member {
10 firstName : String

11 familyFather : Family? opposite father

12 familyMother : Family? opposite mother

13 familySon : Family? opposite sons

14 familyDaughter : Family? opposite daughters
15 }
16 // Persons meta model
17 class Person {
18 fullName : String
19 }
20 class Male extends Person { }
21 class Female extends Person { }

Fam2Pers:
1 persons := ∅;
2 foreach member ∈ families match? Member do
3 self_familyMother := member.familyMother;
4 self_familyDaughter := member.familyDaughter;
5 // Start inlined isFemale helper
6 if ¬(self_familyMother = ∅) then
7 isFemale := new Any
8 else if ¬(self_familyDaughter = ∅) then
9 isFemale := new Any
10 else
11 isFemale := ∅;
12 // End inlined isFemale helper
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13 if ¬(isFemale = ∅) then
14 female := new Female;
15 self_familyFather := member.familyFather;
16 self_familyMother := member.familyMother;
17 self_familySon := member.familySon;
18 self_familyDaughter := member.familyDaughter;
19 // Start inlined familyName helper
20 if ¬(self_familyFather = ∅) then
21 familyName := self_familyFather.lastName
22 else if ¬(self_familyMother = ∅) then
23 familyName := self_familyMother.lastName
24 else if ¬(self_familySon = ∅) then
25 familyName := self_familySon.lastName
26 else
27 familyName := self_familyDaughter.lastName;
28 // End inlined familyName helper
29 member_firstName := member.firstName;
30 fullName := new Concat;
31 fullName.s1 := member_firstName;
32 fullName.s2 := familyName;
33 female.fullName := fullName;
34 persons := persons ∪ female
35 else
36 male := new Male;
37 self_familyFather := member.familyFather;
38 self_familyMother := member.familyMother;
39 self_familySon := member.familySon;
40 self_familyDaughter := member.familyDaughter;
41 // Start inlined familyName helper
42 if ¬(self_familyFather = ∅) then
43 familyName := self_familyFather.lastName
44 else if ¬(self_familyMother = ∅) then
45 familyName := self_familyMother.lastName
46 else if ¬(self_familySon = ∅) then
47 familyName := self_familySon.lastName
48 else
49 familyName := self_familyDaughter.lastName;
50 // End inlined familyName helper
51 member_firstName := member.firstName;
52 fullName := new Concat;
53 fullName.s1 := member_firstName;
54 fullName.s2 := familyName;
55 male.fullName := fullName;
56 persons := persons ∪ male

Data model for Path2Petri:
1 // Shared
2 class Element {
3 name : String
4 }
5 // Path expression meta model
6 class PathExp extends Element {
7 transitions :♦ PETransition?

8 states :♦ State?

9 }
10 class State extends Element {
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11 outgoing : PETransition? opposite source
12 incoming : PETransition? opposite target
13 }
14 class PETransition extends Element {
15 source : State opposite outgoing
16 target : State opposite incoming
17 }
18 // Petri net meta model
19 class PetriNet extends Element {
20 transitions :♦ PNTransition?

21 arcs :♦ Arc?

22 place :♦ Place?

23 }
24 class PNTransition extends Element {
25 outgoing : TransToPlaceArc? opposite source
26 incoming : PlaceToTransArc? opposite target
27 }
28 class Place extends Element {
29 outgoing : PlaceToTransArc? opposite source
30 incoming : TransToPlaceArc? opposite target
31 }
32 class Arc extends Element {
33 weight : Integer
34 }
35 class TransToPlaceArc extends Arc {
36 source : PNTransition opposite outgoing
37 target : Place opposite incoming
38 }
39 class PlaceToTransArc extends Arc {
40 source : Place opposite incoming
41 target : PNTransition opposite outgoing
42 }

Path2Petri:
1 places := ∅;
2 transitions := ∅;
3 eString := new Empty;
4 int1 := new Int;
5 // First pass to create places
6 foreach st ∈ pe match? State do
7 place := new Place;
8 st._Place := place;
9 place.name := eString;
10 places := places ∪ place;
11 foreach tr ∈ pe match? PETransition do
12 pntr := new PNTransition;
13 tr._PNTransition := pntr;
14 tr_name := tr.name;
15 pntr.name := tr_name;
16 pnia := new PlaceToTransArc;
17 tr._PN_IA := pnia;
18 pntr.incoming := pnia;
19 tr_source := tr.source;
20 tr_source_Place := tr_source._Place;
21 pnia.source := tr_source_Place;
22 pnia.target := pntr;
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23 pnia.weight := int1;
24 pnoa := new TransToPlaceArc;
25 tr._PN_OA := pnoa;
26 pntr.outgoing := pnoa;
27 pnoa.source := pntr;
28 tr_target := tr.target;
29 tr_target_Place := tr_target._Place;
30 pnoa.target := tr_target_Place;
31 pnia.weight := int1;
32 transitions := transitions ∪ pntr;
33 // Second pass to link places to arcs
34 foreach st ∈ pe match? State do
35 st_Place := st._Place;
36 pnoas := ∅;
37 st_incoming := st.incoming;
38 foreach inc ∈ st_incoming do
39 inc_PN_OA := inc._PN_OA;
40 pnoas := pnoas ∪ inc_PN_OA;
41 st_Place.incoming := pnoas;
42 pnias := ∅;
43 st_outgoing := st.outgoing;
44 foreach outg ∈ st_outgoing do
45 outg_PN_IA := outg._PN_IA;
46 pnias := pnias ∪ outg_PN_IA;
47 st_Place.outgoing := pnias;
48 pn := new PetriNet;
49 pe_name := pe.name;
50 pn.name := pe_name;
51 pn.places := places;
52 pn.transitions := transitions;
53 arcs := ∅;
54 foreach pntr ∈ transitions do
55 pnia := pntr._PN_IA;
56 pnoa := pntr._PN_OA;
57 arcs := arcs ∪ pnia ∪ pnoa;
58 pn.arcs := arcs

Data models for Class2Rel:
1 // Class meta model
2 class NamedElt {
3 name : String
4 }
5 class Package {
6 classifiers :♦ Classifier?

7 }
8 class Classifier extends NamedElt { }
9 class DataType extends Classifier { }
10 class Class extends Classifier {
11 isAbstract : Boolean
12 attributes :♦ Attribute? opposite owner

13 super : Class?

14 }
15 class Attribute extends NamedElt {
16 isMultivalued : Boolean
17 type : Classifier
18 owner : Class opposite attribute
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19 }
20 // Relational meta model
21 class Named {
22 name : String
23 }
24 class Schema {
25 tables :♦ Table?

26 types :♦ Type?

27 }
28 class Table extends Named {
29 columns :♦ Column?

30 key : Column
31 }
32 class Column extends Named {
33 type : Type
34 }

Class2Rel:
1 objectIdType := new Type;
2 objectIdType.name := integer_name;
3 schema := new Schema;
4 foreach dt ∈ package match? DataType do
5 dt_name := dt.name;
6 if dt_name = integer_name then
7 dt._Type := objectIdType
8 else
9 type := new Type;
10 dt._Type := type;
11 type.name := dt_name;
12 schema_types := schema.types;
13 schema.types := schema_types ∪ type;
14 idString := new String;
15 objectIdString := new String;
16 foreach at ∈ package match? Attribute do
17 at_type := at.type;
18 at_isMultivalued := at.isMultivalued;
19 foreach _ ∈ at_type match DataType do
20 if at_isMultivalued = ∅ then
21 at_name := at.name;
22 at_type_Type := at_type._Type;
23 column := new Column;
24 column.name := at_name;
25 column.type := at_type_Type;
26 at._Column := column
27 else
28 at_owner := at.owner;
29 at_owner_name := at_owner.name;
30 at_name := at.name;
31 at_type_Type := at_type._Type;
32 tableName := new Concat;
33 tableName.s1 := at_owner_name;
34 tableName.s2 := at_name;
35 idName := new Concat;
36 idName.s1 := at_owner_name;
37 idName.s2 := idString;
38 id := new Column;
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39 id.name := idName;
40 id.type := objectIdType;
41 value := new Column;
42 value.name := at_name;
43 value.type := at_type_Type;
44 table := new Table;
45 table.name := tableName;
46 table.key := id;
47 table.columns := id ∪ value;
48 schema_tables := schema.tables;
49 schema.tables := schema_tables ∪ table;
50 foreach _ ∈ at_type match Class do
51 if at_isMultivalued = ∅ then
52 at_name := at.name;
53 column_name := new Concat;
54 column_name.s1 := at_name;
55 column_name.s2 := idString;
56 column := new Column;
57 column.name := column_name;
58 column.type := objectIdType;
59 at._Column := column
60 else
61 at_owner := at.owner;
62 at_owner_name := at_owner.name;
63 at_name := at.name;
64 tableName := new Concat;
65 tableName.s1 := at_owner_name;
66 tableName.s2 := at_name;
67 idName := new Concat;
68 idName.s1 := at_owner_name;
69 idName.s2 := idString;
70 id := new Column;
71 id.name := idName;
72 id.type := objectIdType;
73 foreignKey := new Column;
74 foreignKey.name := at_name;
75 foreignKey.type := objectIdType;
76 table := new Table;
77 table.name := tableName;
78 table.key := id;
79 table.columns := id ∪ foreignKey;
80 schema_tables := schema.tables;
81 schema.tables := schema_tables ∪ table;
82 foreach class ∈ package match? Class do
83 class_name := class.name;
84 class_attributes := class.attributes;
85 key := new Column;
86 key.name := objectIdString;
87 key.type := objectIdType;
88 cols := key;
89 foreach at ∈ class_attributes do
90 at_isMultivalued := at.isMultivalued;
91 if at_isMultivalued = ∅ then
92 at_Column := at._Column;
93 cols := cols ∪ at_Column
94 else skip;
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95 table := new Table;
96 table.name := class_name;
97 table.key := key;
98 table.columns := cols;
99 schema_tables := schema.tables;
100 schema.tables := schema_tables ∪ table

Toy1:
1 containselem := ∅;
2 foreach sublist ∈ list match? IntList do
3 sublist_data := sublist.data;
4 if elem = sublist_data then
5 containselem := new Any
6 else skip

Toy2:
1 if list = ∅ then
2 res := new Any
3 else
4 head := list.data;
5 list_next := list.next;
6 if list_next = ∅ then
7 res := new Any
8 else
9 fix list_next do
10 list_next_next := list_next.next;
11 if list_next_next = ∅ then
12 tail := list_next.data
13 else
14 list_next := list_next_next;
15 if head = tail then
16 res := new Any
17 else
18 res := ∅

Toy3:
1 table := new Table;
2 idcol := new IdColumn;
3 table.id := idcol;
4 table.columns := idcol;
5 class_attributes := class.attributes;
6 foreach attr ∈ class_attributes do
7 col := new DataColumn;
8 attrtype := attr.type;
9 col.type := attrtype;
10 tablecolumns := table.columns;
11 table.columns := tablecolumns ∪ col

Toy4:
1 table := new Table;
2 idcol := new IdColumn;
3 table.id := idcol;table.columns := idcol;
4 foreach attr ∈ class match? Attribute do
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5 col := new DataColumn;
6 attrtype := attr.type;
7 col.type := attrtype;
8 tablecolumns := table.columns;
9 table.columns := tablecolumns ∪ col

Toy5:
1 timestamps := ∅;
2 foreach ts ∈ post match? Timestamp do
3 timestamps := timestamps ∪ ts

Toy6:
1 foreach sp ∈ post match? SinglePost do
2 sp_title := sp.title;
3 sp_title_value := sp_title.value;
4 new_sp_title := new CapitalisedTitle;
5 new_sp_title.value := sp_title_value;
6 sp.title := new_sp_title

Toy7:
1 invitationlist := ∅;
2 foreach person ∈ contactbook match? Person do
3 isadult := ∅;
4 person_age := person.age;
5 person_name := person.name;
6 foreach age ∈ person_age match Adult do
7 isadult := new Any;
8 if ¬(isadult = ∅) then
9 invited := new Invited;
10 invited.name := person_name;
11 invitationlist := invitationlist ∪ invited
12 else skip





Appendix E

Rascal Light Semantics Proofs

Theorem 6.1 (Backtracking purity). If
CS

cs; v; σ ==⇒
cases

fail; σ′ then σ′ = σ

Proof. By induction on the derivation CS :

• Case CS = ECS-Emp

ε; v; σ ==⇒
cases

fail; σ
, so cs = ε and σ′ = σ. Holds

by definition.

• Case CS = ECS-More-Fail

M
σ ` p

?
:= v ===⇒

match
ρ

C
ρ; e; σ ==⇒

case
fail; σ′′

CS ′
cs′; v; σ ==⇒

cases
fail; σ′

case p⇒ e, cs′; v; σ ==⇒
cases

fail; σ′
,

so cs = (case p⇒ e, cs′) and vres = fail.

– By inductive hypothesis of CS ′ we get σ′ = σ.

• Note: the rule ECS-More-Ord is inapplicable since its premise
states that the result value vres 6= fail.

In order to prove Theorem 6.2, we need to state some helper lemmas
about sub-derivations.

We have a lemma for the auxiliary merge function:
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Lemma E.1. If we have ρ′ = merge(ρ1, . . . , ρn) and for each value v ∈
img ρi,j in an environment in the input sequence of environment sequences
ρ1, . . . , ρn there exists a type t so that v : t, then we have that for each value
v′ ∈ img ρ′k in an environment in the resulting environment sequence ρ′ we
have a type t′ so that v′ : t′

Proof. Follows directly from the premises by induction of the input se-
quence of environment sequences ρ1, . . . , ρn

We have a lemma for the auxiliary children function:

Lemma E.2. For a value v such that we have v′ = children(v) and
T

v : t
,

then there exists a type sequence t′ such that v′ : t′

Proof. By induction on the syntax of v:

• Cases v = vb and v = �, so v′ = ε. Holds trivially.

• Case v = k(v′)

– By inversion we get

T-Constructor

data at = . . . | k(t′′) | . . .
T ′

v : t′
ST ′

t′ <: t′′

k(v′) : at

so t = at

– Here, T ′ exactly represents our target goal

• Case v = [v′]

– By inversion we get T = T-List

T ′
v′ : t′

[v′] : list(
⊔

t′)
, so t = list(

⊔
t′)

– Here, T ′ exactly represents our target goal

• Case v = {v′}

– By inversion we get T = T-Set

T ′
v′ : t′

{v′} : set(
⊔

t′)
, so t = set(

⊔
t′)

– Here, T ′ exactly represents our target goal
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• Case v = (v′′ : v′′′), so v′ = v′′, v′′′

– By inversion we get

T = T-Map

T ′′
v′′ : t′′

T ′′′
v′′′ : t′′′

(v′′ : v′′′) : map(
⊔

t′′,
⊔

t′′′)

– Here we take the concatenation of the premises T ′′, T ′′′ to
fulfill our goal.

We have two mutually recursive lemmas on pattern matching:
Lemma E.3 and Lemma E.4.

Lemma E.3. If
M

σ ` p
?

:= v ==⇒
match

ρ
and there exists a type t such that

T
v : t

and a type t′ such that v′ : t′ for each value in the input store v′ ∈ img σ, then
we have a type t′′ for each value v′′ ∈ img ρi in an environment in the output
sequence ρ.

Proof. By induction on the derivationM:

• Cases M = P-Val-Sucs, M = P-Val-Fail, M = P-Var-Uni,
M = P-Var-Fail, M = P-Cons-Fail, M = P-Type-Fail,
M = P-List-Fail, M = P-Set-Fail, M = P-Neg-Sucs, M =
P-Neg-Fail hold trivially since we have that the output environ-
ment sequence ρ = [] or ρ = ε, in both cases containing no values.

• CaseM = P-Var-Bind holds by the premise derivation T .

• CaseM = P-Cons-Sucs

M′
1

σ ` p′1
?

:= v′1 ===⇒
match

ρ′1
. . .

M′
n

σ ` p′n
?

:= v′n ===⇒
match

ρ′n

σ ` k(p′)
?

:= k(v′) ===⇒
match

merge(ρ′1, . . . , ρ′n)
,

so p = k(p′), v = k(v′) and ρ = merge(ρ′1, . . . , ρ′n)

– By inversion we get

T = T-Constructor

data at = . . . | k(t′′) | . . .
T ′

v : t′
ST ′

t′ <: t′′

k(v′1, . . . , v′n) : at

so t = at
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– Now by induction hypotheses ofM′ using T ′, and then using
Lemma E.1 we get that ρ has well-typed values.

• Case M = P-Type-Sucs holds by the premise derivation T and
Lemma E.1.

• Case M = P-List-Sucs

MS ′

σ ` ?p′
?

:= v′ | ∅
[] ,

===⇒
match?

ρ

σ ` [?p′]
?

:= [v′] ===⇒
match

ρ

, so p = [?p′] and

v = [v′]

– By inversion we get T = T-List

T ′
v′ : t′

[v′] : list(
⊔

t′)
, so t = list(

⊔
t′)

– Partitioning lists by splitting on concatenation , preserves typ-
ing since we can for each value pick the corresponding type
derivation in the sequence.

– By induction hypothesis (using Lemma E.4) ofMS ′ using T ′
and above fact we get that ρ has well-typed values.

• Case M = P-Set-Sucs

MS ′

σ ` ?p′
?

:= v′ | ∅
[] ,

===⇒
match?

ρ

σ ` {?p′} ?
:= {v′} ===⇒

match
ρ

, so p = {?p′} and

v = {v′}

– By inversion we get T = T-Set

T ′
v′ : t′

{v′} : set(
⊔

t′)
, so t = set(

⊔
t′)

– Partitioning sets using disjoint union ] preserves typing of
value sub-sequences, since we can for each value vi in a sub-
sequence pick the corresponding typing derivation T ′i

– By induction hypothesis (using Lemma E.4) ofMS ′ using T ′
and above fact we get that ρ has well-typed values.



241

• CaseM = P-Deep

M′

σ ` p′
?

:= v ===⇒
match

ρ′
v′1, . . . , v′n = children(v)

M′′
1

σ ` /p′
?

:= v′1 ===⇒
match

ρ′′1
. . .

M′′
n

σ ` /p′
?

:= v′n ===⇒
match

ρ′′n

σ ` /p′
?

:= v ===⇒
match

ρ′, ρ′′1 , . . . , ρ′′n

– By induction hypothesis onM′, we get that ρ′ has well-typed
values

– By using Lemma E.2 on v′, we get
T ′

v′ : t′

– By induction hypotheses on M′′ using T ′ we get that
ρ′′1 , . . . , ρ′′n is well-typed

– Now, we can show that ρ′, ρ′′1 , . . . , ρ′′n is well-typed using above
facts

Lemma E.4. If
MS

σ ` ?p
?

:= v | V
() ⊗
===⇒
match?

ρ
and the following properties hold:

1. There exists a type sequence t such that v : t

2. There exists a type t′ such that v′ : t′ for each value in the input store
v′ ∈ img σ

3. There exists a type t′ such that v′ : t′ for each value in the visited value
set v′ ∈ V

4. If for all value sequences v′, v′′, v′′′ where we have v′ = v′′ ⊗ v′′′ and
there exists a type sequence t′ so v′ : t′, then we have that there exists two
type sequences t′′ and t′′′ so that v′′ : t′′ and v′′′ : t′′′

Then we have a type t′ so that v′ : t′ for each value v′ ∈ img ρi in an environ-
ment in the output sequence ρ.

Proof. By induction on the derivationMS :

• Cases MS = PL-Emp-Both, MS = PL-Emp-Pat, MS =
PL-Emp-Val, MS = PL-More-Star-Pat-Fail, and MS =
PL-More-Star-Val-Fail hold trivially since we have ρ = [] or
ρ = ε, and there are no values in either [] or ε.
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• CaseMS = PL-More-Pat holds by induction hypotheses (includ-
ing Lemma E.3), and Lemma E.1.

• CaseMS = PL-More-Star-Uni

x ∈ dom σ σ(x) = (v′) v = v′ ⊗ v′′

MS ′

σ ` ?p′
?

:= v′′ | ∅
() ⊗
===⇒
match?

ρ

σ ` ?x, ?p′
?

:= v | V
() ⊗
===⇒
match?

ρ

,

so ?p = ?x, ?p′.

By property 4 we can derive that there exists a type sequence
t′′ such that v′′ : t′′. Then we can apply induction hypothesis on
derivationMS ′, and get our target result.

We have a lemma on the auxiliary function if-fail:

Lemma E.5. If we have v′ = if-fail(vfres, v′′), and:

1. If vfres = success v, then we have v : t for some type t

2. We have v′′ : t′′ for somet type t′′

Then there exists a type t′ such that v′ : t′

Proof. Straightforwardly by case analysis on vfres

Similarly, we have a lemma on the auxiliary function vcombine

Lemma E.6. If we have vfres?′′ = vcombine(vfres, vfres?′, v, v′), and:

1. If vfres = success v′′′, then we have v′′′ : t′′′ for some type t

2. If vfres?′ = success v′′′′, then we v′′′′ : t′′′′ for some typing sequence
t′′′′

3. We have v : t for somet type t

4. We have v′ : t′ for somet type t′

Then if vfres?′′ = success v′′ there exists a type sequence t′′ such that v′′ : t′′

Proof. Straightforwardly by case analysis on vfres and vfres?′ and using
Lemma E.5.
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We have a lemma on the reconstruct derivation:

Lemma E.7. If we have
RC

recons v using v′ to rcres , v : t for some type t, and

v′ : t′ for some type sequence t′, then when rcres = success v′′ there exists a
type t′′ such that if v′′ : t′′

Proof. By induction on the derivation RC:

• Cases RC = RC-Val-Err, RC = RC-Cons-Err, RC =
RC-List-Err, RC = RC-Set-Err, RC = RC-Map-Err, RC =
RC-Bot-Err hold trivially.

• Case RC = RC-Val-Sucs holds using the premises.

• Case RC = RC-Cons-Sucs holds using the premises and rule T-
Constructor.

• Case RC = RC-List-Sucs holds using the premises and rule T-
List.

• Case RC = RC-Set-Sucs holds using the premises and rule T-Set.

• Case RC = RC-Map-Sucs holds using the premises and rule T-
Map.

• Case RC = RC-Bot-Sucs holds using the premises and rule T-Bot.

We now have a series of mutually inductive lemmas with our Theo-
rem 6.2, since the operational semantics rules are mutually inductive
themselves. The lemmas are Lemma E.8, Lemma E.9, Lemma E.10,
Lemma E.11, Lemma E.12, Lemma E.13, Lemma E.14, Lemma E.15,
Lemma E.16, and Lemma E.17.

Lemma E.8. If
ES

e; σ ==⇒
expr?

vres? ; σ′ and there exists a type t such that v : t

for each value in the input store v ∈ img σ, then

1. There exists a type t′ such that v′ : t′ for each value in the result store
v′ ∈ img σ′.

2. If the result value vres? is success v′′, then there exists a type sequence
t′′ such that v′′ : t′′.
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3. If the result value vres? is either return v′′, or throw v′′, then there
exists a type t′′ such that v′′ : t′′

Proof. By induction on the derivation ES :

• Case ES = ES-Emp holds directly using premises.

• Cases ES = ES-More, ES = ES-Exc1 and ES = ES-Exc2 hold
directly from the induction hypotheses (including the one given
by Theorem 6.2).

Lemma E.9. If
EE

e; ρ; σ ==⇒
each

vres; σ′ , there exists a type t such that v : t for

each value in the input store v ∈ img σ, and there exists a type t such that
v : t for each value in an environment v ∈ img ρi in the environment sequence
ρ then

1. There exists a type t′ such that v′ : t′ for each value in the result store
v′ ∈ img σ′.

2. If the result value vres is either success v′′, return v′′, or throw v′′,
then there exists a type t′′ such that v′′ : t′′

Proof. By induction on the derivation EE :

• Case EE = EE-Emp holds directly using the premises.

• Cases EE = EE-More-Sucs, EE = EE-More-Break and EE =
EE-More-Exc hold directly from the induction hypotheses (includ-
ing Theorem 6.2), and the (trivial) facts that if any store σ is well-
typed then σ \X is well-typed for any set of variables X and σρ is
well-typed for any well-typed environment ρ.

Lemma E.10. If
G

g; σ ==⇒
gexpr

envres; σ′ , and there exists a type t such that v : t

for each value in the input store v ∈ img σ then

1. There exists a type t′ such that v′ : t′ for each value in the result store
v′ ∈ img σ′.
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2. If the result value envres is success ρ, then there exists a type t′′ for each
value in an environment v′′ ∈ ρi in the environment sequence ρ such
that v′′ : t′′

3. If the result value envres is either return v′′′, or throw v′′′, then there
exists a type t′′′ such that v′′′ : t′′′

Proof. By induction on the derivation G:

• Cases G = G-Pat-Sucs and G = G-Pat-Exc hold directly by induc-
tion hypothesis given by Theorem 6.2, and then using Lemma E.3
if necessary.

• Cases G = G-Enum-List, G = G-Enum-Set and G = G-Enum-Map

hold by the induction hypothesis given by Theorem 6.2 and then
using inversion on the type derivation of the result collection value
to extract the type derivations of the contained values in the result
environments (from rules T-List, T-Set, and T-Map respectively).

• Cases G = G-Enum-Err and G = G-Enum-Exc hold directly by
the induction hypothesis given by Theorem 6.2.

Lemma E.11. If
C

ρ; e; σ ==⇒
case

vres; σ′ , there exists a type t such that v : t for

each value in an environment v ∈ img ρi in the environment sequence ρ, and
there exists a type t such that v : t for each value in the input store v ∈ img σ,
then

1. There exists a type t′ such that v′ : t′ for each value in the result store
v′ ∈ img σ′.

2. If the result value vres is either success v′′, return v′′, or throw v′′,
then there exists a type t′′ such that v′′ : t′′

Proof. By induction on derivation C:

• Case C = EC-Emp holds directly using the premises.

• Case C = EC-More-Fail and C = EC-More-Ord hold directly
using induction hypotheses (including Theorem 6.2) and the facts
of well-typedness of store extension by well-typed environments
and well-typedness of variable removals from stores.
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Lemma E.12. If
CS

cs; v; σ ==⇒
cases

vres; σ′ , there exists a type t such that v : t

, and there exists a type t′ such that v′ : t′ for each value in the input store
v′ ∈ img σ, then

1. There exists a type t′′ such that v′′ : t′′ for each value in the result store
v′′ ∈ img σ′.

2. If the result value vres is either success v′′′, return v′′′, or throw v′′′,
then there exists a type t′′′ such that v′′′ : t′′′

Proof. By induction on the derivation CS :

• Case CS = ECS-Emp holds directly using the premises.

• Cases CS = ECS-More-Fail and CS = ECS-More-Fail hold using
Lemma E.3 and the induction hypotheses (including Lemma E.11).

Lemma E.13. If
V

cs; v; σ
st

==⇒
visit

vres; σ′
, there exists a type t such that v : t

, and there exists a type t′ such that v′ : t′ for each value in the input store
v′ ∈ img σ, then

1. There exists a type t′′ such that v′′ : t′′ for each value in the result store
v′′ ∈ img σ′.

2. If the result value vres is either success v′′′, return v′′′, or throw v′′′,
then there exists a type t′′′ such that v′′′ : t′′′

Proof. By induction on the derivation V :

• Cases V = EV-TD, V = EV-TDB, V = EV-OM-Eq, V =
EV-OM-Neq and V = EV-OM-Exc hold by induction hypotheses
(including Lemma E.14).

• Cases V = EV-BU, V = EV-BUB, V = EV-IM-Eq, V = EV-IM-Neq

and V = EV-IM-Exc hold by induction hypotheses (including
Lemma E.16).
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Lemma E.14. If
VT

cs; v; σ
br

====⇒
td−visit

vres; σ′
, there exists a type t such that v : t

, and there exists a type t′ such that v′ : t′ for each value in the input store
v′ ∈ img σ, then

1. There exists a type t′′ such that v′′ : t′′ for each value in the result store
v′′ ∈ img σ′.

2. If the result value vres is either success v′′′, return v′′′, or throw v′′′,
then there exists a type t′′′ such that v′′′ : t′′′

Proof. By induction on the derivation VT :

• All cases (VT = ETV-Break-Sucs, VT = ETV-Ord-Sucs1, VT =
ETV-Ord-Sucs2, VT = ETV-Exc1 and VT = ETV-Exc2) hold by
induction hypotheses (including Lemma E.11 and Lemma E.15),
Lemma E.5, Lemma E.2 and Lemma E.7.

Lemma E.15. If
VTS

cs; v; σ
br

=====⇒
td−visit?

vres ? ; σ′
, there exists a type sequence t

such that v : t , and there exists a type t′ such that v′ : t′ for each value in the
input store v′ ∈ img σ, then

1. There exists a type t′′ such that v′′ : t′′ for each value in the result store
v′′ ∈ img σ′.

2. If the result value vres ? is success v′′′ then there exists a type sequence
t′′′ such that v′′′ : t′′′

3. If the result value vres ? is either return v′′′, or throw v′′′, then there
exists a type t′′′ such that v′′′ : t′′′

Proof. By induction on the derivation VTS

• Case VTS = ETVS-Emp holds using the premises.

• Cases VTS = ETVS-Break, VTS = ETVS-More, VTS =
ETVS-Exc1 and VTS = ETVS-Exc2 holds using the induction hy-
potheses (including Lemma E.14) and Lemma E.6.
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Lemma E.16. If
VB

cs; v; σ
br

====⇒
bu−visit

vres; σ′
, there exists a type t such that v : t

, and there exists a type t′ such that v′ : t′ for each value in the input store
v′ ∈ img σ, then

1. There exists a type t′′ such that v′′ : t′′ for each value in the result store
v′′ ∈ img σ′.

2. If the result value vres is either success v′′′, return v′′′, or throw v′′′,
then there exists a type t′′′ such that v′′′ : t′′′

Proof. By induction on the derivation VB:

• All cases (VB = EBU-No-Break-Sucs, VB = EBU-Break-Sucs,
VB = EBU-Fail-Sucs, VB = EBU-No-Break-Exc, VB = EBU-Exc,
and VB = EBU-No-BreakErr) hold by induction hypotheses (in-
cluding Lemma E.11 and Lemma E.17), Lemma E.5, Lemma E.2
and Lemma E.7.

Lemma E.17. If
VBS

cs; v; σ
br

=====⇒
bu−visit?

vres ? ; σ′
, there exists a type sequence t

such that v : t , and there exists a type t′ such that v′ : t′ for each value in the
input store v′ ∈ img σ, then

1. There exists a type t′′ such that v′′ : t′′ for each value in the result store
v′′ ∈ img σ′.

2. If the result value vres ? is success v′′′ then there exists a type sequence
t′′′ such that v′′′ : t′′′

3. If the result value vres ? is either return v′′′, or throw v′′′, then there
exists a type t′′′ such that v′′′ : t′′′

Proof. By induction on the derivation VBS

• Case VBS = EBUS-Emp holds using the premises.

• Cases VBS = EBUS-Break, VBS = EBUS-More, VBS =
EBUS-Exc1 and VBS = EBUS-Exc2 holds using the induction hy-
potheses (including Lemma E.16) and Lemma E.6.
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Theorem 6.2 (Strong typing). Assume that semantic unary J	K and binary

operators J⊕K are strongly typed. If
E

e; σ ==⇒
expr

vres; σ′ and there exists a type

t such that
T

v : t
for each value in the input store v ∈ img σ, then

1. There exists a type t′ such that v′ : t′ for each value in the result store
v′ ∈ img σ′.

2. If the result value vres is either success v′′, return v′′, or throw v′′,
then there exists a type t′′ such that v′′ : t′′.

Proof. By induction on the derivation E :

• Cases E = E-Val, E = E-Var-Sucs, E = E-Var-Err, E = E-Break,
E = E-Continue and E = E-Fail hold directly using the premises.

• Cases E = E-Un-Exc1, E = E-Bin-Exc1, E = E-Bin-Exc2,
E = E-Cons-Err, E = E-Cons-Exc, E = E-List-Err, E =
E-List-Exc, E = E-Set-Err, E = E-Set-Exc, E = E-Map-Err,
E = E-Map-Exc, E = E-Lookup-Err, E = E-Lookup-Exc1, E =
E-Lookup-Exc2, E = E-Update-Err1, E = E-Update-Err2, E =
E-Update-Exc1, E = E-Update-Exc2, E = E-Update-Exc3, E =
E-Call-Arg-Err, E = E-Call-Arg-Exc, E = E-Ret-Sucs, E =
E-Ret-Exc, E = E-Asgn-Err, E = E-Asgn-Exc, E = E-If-True,
E = E-If-False, E = E-If-Err, E = E-If-Exc, E = E-Switch-Sucs,
E = E-Switch-Exc1, E = E-Switch-Exc2, E = E-Visit-Sucs,
E = E-Visit-Fail, E = E-Visit-Exc1, and E = E-Visit-Exc2,
E = E-For-Sucs, E = E-For-Exc, E = E-While-True-Sucs,
E = E-While-Exc1, E = E-While-Exc2, E = E-While-Err,
E = E-Solve-Eq, E = E-Solve-Neq, E = E-Solve-Exc, E =
E-Solve-Err, , E = E-Thr-Sucs, E = E-Thr-Err, E = E-Fin-Sucs,
E = E-Fin-Exc, and E = E-Try-Ord hold by induction hy-
potheses (including Lemma E.8, Lemma E.10, Lemma E.12 and
Lemma E.13).

• Case E = E-Un-Sucs holds by its induction hypothesis and strong
typing of J	K.
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• Case E = E-Bin-Sucs holds by its induction hypothesis and strong
typing of J⊕K.

• Case E = E-Cons-Sucs holds by its induction hypothesis given by
Lemma E.8, and then by using T-Constructor with the provided
typing premises.

• Case E = E-List-Sucs holds by its induction hypothesis given by
Lemma E.8, and then by using T-List.

• Case E = E-Set-Sucs holds by its induction hypothesis given by
Lemma E.8, and then by using T-Set.

• Case E = E-Map-Sucs holds by its induction hypothesis given by
Lemma E.8, and then by using T-Map.

• Case E = E-Lookup-Sucs holds by its induction hypotheses and
inversion of T to T-Map.

• Case E = E-Lookup-NoKey holds by its induction hypotheses and
using T-Cons on the definition of NoKey.

• Case E = E-Update-Sucs holds by its induction hypotheses and
by using T-Map to reconstruct the type derivation for the result.

• Cases E = E-Call-Sucs, E = E-Call-Res-Exc, E =
E-Call-Res-Err1, and E = E-Call-Res-Err2 hold by induction
hypotheses (including Lemma E.8) and by using the fact that ex-
tracting variables from and extending well-typed stores produces
well-typed stores.

• Cases E = E-Asgn-Sucs and E = E-Try-Catch hold by induction
hypotheses and the fact that extending well-typed stores with well-
typed environments preserves well-typedness.

• Cases E = E-Switch-Fail, E = E-While-False, and E =
E-While-True-Break hold by induction hypotheses and using
T-Void.

• Cases E = E-Block-Sucs, E = E-Block-Exc hold by the induc-
tion hypothesis given by Lemma E.8 and the fact that removing
variables from a well-typed store produces a well-typed store.
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We will for Theorem 6.3, also need to state some lemmas. We will
for the proof focus mainly on cases where the induction hypothesis does
not timeout, since if it does it is trivially possible to construct a timeout
derivation for the result syntax.

First, we need a lemma that specifies that the sequence of values
produced by the children is strictly smaller than the input value. Let
v ≺ v′ denote the relation that v is syntactically contained in v′, then our
target property is specified in Lemma E.18.

Lemma E.18. If v′ = children(v) then v′i ≺ v for all i.

Proof. Directly by induction on v.

We have a lemma for progress on reconstruction:

Lemma E.19. It is possible to construct a derivation
recons v using v′ to rcres for any well-typed value v and well-typed
value sequence v′.

Proof. Straightforwardly by case analysis on v.

We have two mutually recursive lemmas for pattern matching:
Lemma E.20 and Lemma E.21.

Lemma E.20. It is possible to construct a derivation σ ` p
?

:= v ==⇒
match

ρ for

any pattern p, well-typed value v, well-typed store σ.

Proof. By induction on syntax of p:

• Case p = vb: We proceed by testing whether v is equal to vb:

– Case v = vb then use P-Val-Sucs.

– Case v 6= vb then use P-Val-Fail.

• Case p = x: We proceed by testing whether x is in dom σ

– Case x ∈ dom σ: we proceed to test whether v is equal to
σ(x)

* Case v = σ(x) then use P-Var-Uni.
* Case v 6= σ(x) then use P-Var-Fail.

– Case x /∈ dom σ then use P-Var-Bind.
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• Case p = k(p′): We proceed to test whether v is equal to k(v′) for
some v′

– Case v = k(v′) then use P-Cons-Sucs using the induction
hypotheses of p′ with v′.

– Case v 6= k(v′) then use P-Cons-Fail.

• Case p = t x : p′: From our premise we know that v is well-typed,
i.e. that there exists a t′ such that v : t′. We proceed to test whether
t′ <: t.

– Case t′ <: t then use P-Type-Sucs using the induction hypoth-
esis on p′ with v.

– Case t′ 6<: t then use P-Type-Fail.

• Case p = [?p′]:

We proceed to test whether v = [v′] for some value sequence v′.

– Case v = [v′] then use P-List-Sucs induction hypothesis given
by Lemma E.21 on ?p′ with v′

– Case v 6= [v′] then use P-List-Fail

• Case p = {?p′}:
We proceed to test whether v = {v′} for some value sequence v′.

– Case v = {v′} then use P-Set-Sucs induction hypothesis
given by Lemma E.21 on ?p′ with v′

– Case v 6= {v′} then use P-Set-Fail

• Case p = /p′:

– Using the induction hypothesis on p′ with v, we get σ ` p′
?

:=
v ===⇒

match
ρ.

– Now, let v′ = children(v). In order to handle the self-
recursive calls using /p′, we proceed by inner well-founded
induction on the relation ≺ using value sequence v′:

* Using the inner induction hypothesis we get derivations

σ ` /p′
?

:= v′i ===⇒match
ρi for all i
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– Finally, we use P-Deep on the derivations we got from the
outer and inner induction hypotheses.

Lemma E.21. It is possible to construct a derivation σ ` ?p
?

:= v |V () ⊗
===⇒
match?

ρ

for any pattern p, well-typed value v, well-typed store σ, well-typed visited
value set V, type-preserving partition operator ⊗.

Proof. By induction on the syntax of ?p:

• Case ?p = ε

By case analysis on v:

– Case v = ε then use PL-Emp-Both

– Case v = v′, v′′ then use PL-Emp-Pat

• Case ?p = p′, ?p′′:

By case analysis on v:

– Case v = ε then use PL-Emp-Val

– Case v = v′, v′′ then use PL-More-Pat using induction hy-
potheses (including Lemma E.20).

• Case ?p = ?x, ?p′′: We proceed to test whether x is in dom σ

– Case x ∈ dom σ:

– Case x /∈ dom σ:
Because of backtracking we need to do an inner induction
to handle the cases which recurse to the same star patter se-
quence. Let Vall =

{
v′
∣∣∣∃v′′.v = v′ ⊗ v′′

}
, then we proceed by

inner induction on |Vall −V|
* Case |Vall −V| = 0:

Then we have V = Vall and so the only applicable rule
is PL-More-Star-Exh since Vall covers all partitions and
thus @v′, v′′.v = v′ ⊗ v′′ ∧ v′ /∈ V holds.
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* Case |Vall −V| > 0:
Then there exists V′ 6= ∅ such that Vall = V′ ]V and we
can pick v′ ∈ V′ such that v = v′ ] v′′ for some v′′.
We can now use PL-More-Star-Re by using the outer
hypothesis on ?p with v′′ and ∅, and the inner hypothesis
on V∪ v′ (since the size decreases by 1)

We now have a series of lemmas that are mutually recursive with
Theorem 6.3: Lemma E.22, Lemma E.23, Lemma E.24, Lemma E.25,
Lemma E.26, Lemma E.27, Lemma E.28, Lemma E.29, Lemma E.30, and
Lemma E.31.

Lemma E.22. It is possible to construct a derivation e; σ ==⇒
expr?

n vres ? ; σ′, for

any expression sequence e, well-typed store σ and fuel n.

Proof. By induction on n:

• Case n = 0 then use corresponding timeout-rule.

• Case n > 0, then by case analysis on the expression sequence e:

– Case e = ε then use ES-Emp.

– Case e = e′, e′′:

* Using induction hypothesis given by Theorem 6.3 on n−
1 with e′ and σ we get a derivation e′; σ ==⇒

expr
n−1 vres′; σ′′

By case analysis on vres′:
· Case vres′ = success v′:

By Theorem 6.2 we get that σ′′ is well-typed.
By induction hypothesis on n− 1 with e′′ and σ′′ we
get a derivation e′′; σ′′ ==⇒

expr?
n−1 vres ? ′′; σ′

By case analysis on vres ? ′′:
• Case vres ? ′′ = success v′′ then use ES-More

• Case vres ? ′′ = exres then use ES-Exc2
· Case vres′ = exres then use ES-Exc1
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Lemma E.23. It is possible to construct a derivation e; ρ; σ ==⇒
each

n vres; σ′ for

any expression e, well-typed environment sequence ρ, well-typed store σ and
fuel n.

Proof. By induction on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0:

By case analysis on the environment sequence ρ:

– Case ρ = ε then use EE-Emp

– Case ρ = ρ′, ρ′′:
By induction hypothesis given by Theorem 6.3 on n− 1 with
e and σρ we get a derivation e; σρ ==⇒

expr
n−1 vres′; σ′′.

By case analysis on vres′:

* Cases vres′ = success v′ and vres′ = continue then use
EE-More-Sucs with above derivation and the induction
hypothesis on n− 1 with ρ′′, e, and σ′′′ = σ′′ \ dom ρ′.

* Cases vres′ = break then use EE-More-Break

* Cases vres′ = throw v′, vres′ = return v′, vres′ = fail, and
vres′ = error then use EE-More-Exc

Lemma E.24. It is possible to construct a derivation g; σ ==⇒
gexpr

n envres; σ′ for

any generator expression g, well-typed store σ and fuel n.

Proof. By induction on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0:

By case analysis on g:

– Case g = p := e:
By induction hypothesis given by Theorem 6.3 on n− 1 with
e and σ we get a derivation e; σ ==⇒

expr
n−1 vres′; σ′

By case analysis on vres′:
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* Case vres′ = success v′ then use G-Pat-Sucs with above
derivation and the derivation from applying Lemma E.20
on p with σ′ and v′.

* Case vres′ = exres then use G-Pat-Exc:

– Case g = x ← e:
By induction hypothesis given by Theorem 6.3 on n− 1 with
e and σ we get a derivation e; σ ==⇒

expr
n−1 vres′; σ′

By case analysis on vres′

* Case vres′ = success v′

By case analysis on v′:
· Case v′ = [v′′] then use G− Enum− List
· Case v′ = {v′′} then use G− Enum− Set
· Case v′ = (v′′ : v′′′) then use G− Enum−Map
· Cases v′ = vb, v′ = k(v′′) and v′ = � then use

G-Enum-Err

* Case vres′ = exres then use G-Enum-Exc

Lemma E.25. It is possible to construct a derivation ρ; e; σ ==⇒
case

n vres; σ′ for

any well-typed environment sequence ρ, expression e, well-typed store σ and
fuel n.

Proof. By induction on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0:

By case analysis on the environment sequence ρ

– Case ρ = 0 then use EC-Emp.

– Case ρ = ρ′, ρ′′:
Using the induction hypothesis given by Theorem 6.3 on n− 1
with e and σ we get a derivation e; σ ==⇒

expr
n−1 vres′; σ′.

By case analysis on vres′

* Case vres′ = fail then use EC-More-Fail on above deriva-
tion and the derivation from applying the induction hy-
pothesis on n− 1 with ρ′′, e and σ.
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* Case vres′ 6= fail then use EC-More-Ord.

Lemma E.26. It is possible to construct a derivation cs; v; σ ==⇒
cases

n vres; σ′ for

any case sequence cs, well-typed value v, well-typed store σ and fuel n.

Proof. By induction on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0:

By case analysis on the case sequence cs

– Case cs = ε then use ECS-Emp

– Case cs = case p⇒ e, cs′:
Using Lemma E.20 on p with v and σ gives us a derivation

σ ` p
?

:= v ===⇒
match

ρ. By Lemma E.3 we know that ρ is well-

typed.
Using induction hypothesis given by Lemma E.25 on n − 1
with ρ, e and σ we get a derivation ρ; e; σ ==⇒

case
n−1 vres′; σ′.

By case analysis on vres′:

* Case vres′ = fail then use ECS-More-Fail using above
derivation and the derivation given by the induction hy-
pothesis on n− 1 with cs′, v and σ.

* Case vres′ 6= fail then use ECS-More-Ord

Lemma E.27. It is possible to construct a derivation cs; v; σ
st

==⇒
visit

n
vres; σ′ for

any case sequence cs, well-typed value v, well-typed store σ, traversal strategy
st and fuel n.

Proof. By induction on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0:

By case analysis on syntax of st
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– Case st = top-down then use EV-TD with the derivation from
the induction hypothesis given by Lemma E.28 on n− 1 with
cs, v, σ and no-break.

– Case st = top-down-break then use EV-TDB with the deriva-
tion from the induction hypothesis given by Lemma E.28 on
n− 1 with cs, v, σ and break.

– Case st = bottom-up then use EV-BU with the derivation
from the induction hypothesis given by Lemma E.30 on n− 1
with cs, v, σ and no-break.

– Case st = bottom-up-break then use EV-BUB with the deriva-
tion from the induction hypothesis given by Lemma E.30 on
n− 1 with cs, v, σ and break.

– Case st = outermost:
Using the induction hypothesis by Lemma E.28 on n− 1 with

cs, v, σ and no-break we get a derivation cs; v; σ
no-break
====⇒
td−visit

n−1

vres′; σ′′. We know the well-typedness of the output compo-
nents from Lemma E.14.
By case analysis on vres′:

* Case vres′ = success v′:
We proceed by checking whether v = v′:
· Case v = v′ then use EV-OM-Eq using above deriva-

tion.
· Case v 6= v′ then use EV-OM-Neq using above deriva-

tion and the derivation from the induction hypothesis
given by Lemma E.28 on n − 1 with cs, v′, σ′′ and
no-break.

* Case vres′ = exres then use EV-OM-Exc using above
derivation.

– Case st = innermost: Using the induction hypothesis by
Lemma E.30 on n − 1 with cs, v, σ and no-break we get a

derivation cs; v; σ
no-break
====⇒
bu−visit

n−1
vres′; σ′′. We know the well-

typedness of the output components from Lemma E.16.
By case analysis on vres′:

* Case vres′ = success v′:
We proceed by checking whether v = v′:
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· Case v = v′ then use EV-IM-Eq using above deriva-
tion.
· Case v 6= v′ then use EV-IM-Neq using above deriva-

tion and the derivation from the induction hypothesis
given by Lemma E.30 on n − 1 with cs, v′, σ′′ and
no-break.

* Case vres′ = exres then use EV-IM-Exc using above
derivation.

Lemma E.28. It is possible to construct a derivation cs; v; σ
br

====⇒
td−visit

n
vres; σ′

for any cs, well-typed value v, well-typed store σ, breaking strategy br and fuel
n.

Proof. By induction on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0:

Applying the induction hypothesis given by Lemma E.26 on n− 1

with cs, v and sigma we get a derivation
CS

cs; v; σ ==⇒
cases

n−1 vres′; σ′′

We proceed to check whether vres′ has syntax vfres′ for some vfres′:

– Case vres′ = vfres′:
We proceed to check whether vfres′ = success v′ and br =
break

* Case vfres′ = success v′ and br = break then use
ETV-Break-Sucs with CS .

* Case vfres′ 6= success v′ or br 6= break:
By Boolean logic, we have that br 6= break⇒ vfres′ = fail
is satisfied.
Let v′′ = if-fail(vfres, v) and v′′′ = children(v′′) (all well-
typed from Lemma E.5 and Lemma E.2).
By induction hypothesis given by Lemma E.15 on
n − 1 with cs, v′′′ and σ′′, we get a derivation

CS ′

cs; v′′′; σ′′
br

=====⇒
td−visit?

n−1
vres′′; σ′

.
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We know that the results are well typed from
Lemma E.15.
By case analysis on vres′′:
· Case vfres′′ = success v′′′′ then use ETV-Ord-Sucs2

with CS , CS ′ and the result derivation from applying
Lemma E.19.
· Case vfres′′ = fail then use ETV-Ord-Sucs1 with CS ,
CS ′.
· Case vfres′′ = exres where exres 6= fail then use

ETV-Exc2 with CS , CS ′.
– Case vres′ 6= vfres′: Necessarily, we then have that vres′ = exres

where exres 6= fail and so we use ETV-Exc1 with CS .

Lemma E.29. It is possible to construct a derivation cs; v; σ
br

=====⇒
td−visit?

n
vres ?

; σ′ for any cs, well-typed value sequence v, well-typed store σ, breaking strat-
egy br and fuel n.

Proof. By induction on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0: By case analysis on v:

– Case v = ε then use ETVS-Emp.

– Case v = v′, v′′:
By induction hypothesis given by Lemma E.28 on n− 1 with

cs, v and σ we get a derivation
VT

cs; v; σ
br

====⇒
td−visit

n−1
vres′′; σ′′

.

We proceed by checking whether vres′′ is syntactically a vfres′′

for some vfres′′:

* Case vres′′ = vfres′′:
We proceed by checking whether vfres′′ = success v′′′ and
br = break:
· Case vfres′′ = success v′′′ and br = break then use

ETVS-Break with VT .
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· Case vfres′′ 6= success v′′′ or br 6= break:
By Boolean logic, we have that br 6= break⇒ vfres′′ =
fail is satisfied.
By induction hypothesis on n− 1 with cs, v′′ and σ′′

we get a derivation
VTS

cs; v′′; σ′′
br

=====⇒
td−visit?

n−1
vres?′′′; σ′

.

By case analysis on vres?′′′:
• Case vres?′′′ = vfres?′′′ then use ETVS-More with
VT and VTS .

• Case vres?′′′ = exres where exres 6= fail then use
ETVS-Exc2 with VT and VTS .

* Case vres′′ 6= vfres′′:
Here we then have that vres′′ = exres, where exres 6= fail
and so we use ETVS-Exc1.

Lemma E.30. It is possible to construct a derivation cs; v; σ
br

====⇒
bu−visit

n
vres; σ′

for any cs, well-typed value v, well-typed store σ, breaking strategy br and fuel
n.

Proof. By case analysis on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0:

Let v′′ = children(v). We know that v′′ is well-typed from
Lemma E.2.

By induction hypothesis given by Lemma E.31 on n− 1 with cs, v′′

and σ we get a derivation
VBS

cs; v′′; σ
br

=====⇒
bu−visit?

n−1
vres′′; σ′′

. Recall

that the output is well-typed from Lemma E.17.

By case analysis on vres?′′:

– Case vres?′′ = vfres′′:
We proceed by case analysis on vfres′′
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* Case vfres′′ = success v′′′: We proceed by case analysis on
br:
· Case br = break then use EBU-Break-Sucs with VBS

and the derivation from applying Lemma E.19 on v
and v′′′.
· Case br = no-break:

By applying Lemma E.19 on v and v′′′ we get a deriva-

tion
RC

recons v using v′′′ to rcres .

By case analysis on rcres:
• Case rcres = success v′:

By induction hypothesis given by Lemma E.26
on n − 1 with cs, v′ and σ′′ we get a derivation

CS
cs; v′; σ′′ ==⇒

cases
n−1 vres′; σ′

By case analysis on vres′:
– Case vres′ = vfres′ then use EBU-No-Break-Sucs

with VBS , RC and CS .
– Case exres then use EBU-No-Break-Exc with
VBS , RC and CS .

• Case rcres = error then use EBU-No-Break-Err.
* Case vfres′′ = fail then use EBU-Fail-Sucs with the in-

duction hypothesis given by Lemma E.26 on n − 1 with
cs, v and σ′′.

– Case vres?′′ = exres where exres 6= fail then use EBU-Exc with
VBS .

Lemma E.31. It is possible to construct a derivation cs; v; σ
br

=====⇒
bu−visit?

n
vres ?

; σ′ for any cs, well-typed value sequence v, well-typed store σ, breaking strat-
egy br and fuel n.

Proof. By induction on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0:

By case analysis on v:
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– Case v = ε then use EBUS-Emp.

– Case v = v′, v′′: By induction hypothesis given by
Lemma E.30 on n − 1 with cs, v′ and σ we get a derivation

VB

cs; v′; σ
br

====⇒
bu−visit

n−1
vres′′; σ′′

.

By case analysis on vres′′:

* Case vres′′ = vfres′′:
By case analysis on vfres′′ and br:
· Case vfres′′ = success v′′′ and br = break: then use

EBUS-Break with VB.
· Case vfres′′ 6= success v′′′ or br 6= break:

By Boolean logic we have br = break⇒ vfres = fail.
By induction hypothesis on n− 1 with cs, v′′ and σ we

get a derivation
VBS

cs; v′′; σ′′
br

=====⇒
bu−visit?

n−1
vres?′; σ′

.

By case analysis on vres?′:
• Case vres?′ = vfres?′ then use EBUS-More with VB

and VBS
• Case vres?′ = exres then use EBUS-Exc2 with VB

and VBS
* Case vres′′ = exres then use EBUS-Exc1 with VB.

Theorem 6.3 (Partial progress). It is possible to construct a derivation
e; σ ==⇒

expr
n vtres; σ′ for any input expression e, well-typed store σ and fuel

n.

Proof. By induction on n:

• Case n = 0 then use the corresponding timeout-derivation.

• Case n > 0:

By case analysis on syntax e:

– Case e = vb then use T-Basic.
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– Case e = x
We proceed by checking x ∈ dom σ:

* Case x ∈ dom σ then use E-Var-Sucs.
* Case x /∈ dom σ then use E-Var-Err.

– Case e = 	 e′:
By induction hypothesis on n − 1 with e′ and σ we get a
derivation e′; σ ==⇒

expr
n−1 vres′; σ′.

By case analysis on vres′:

* Case vres′ = successv then use E-Un-Sucs with above
derivation.

* Case vres′ = exres then use E-Un-Exc with above deriva-
tion.

– Case e = e1 ⊕ e2: By induction hypothesis on n − 1 with e1

and σ we get a derivation
E1

e1; σ ==⇒
expr

n−1 vres1; σ′′ .

By case analysis on vres1:

* Case vres1 = success v1: By induction hypothe-
sis on n − 1 with e2 and σ′′ we get a derivation

E2
e2; σ′′ ==⇒

expr
n−1 vres2; σ′ .

By case analysis on vres2:
· Case vres2 = success v2 then use E-Bin-Sucs with E1

and E2.
· Case vres2 = exres then use E-Bin-Exc2 with E1 and
E2.

* Case vres1 = exres then use E-Bin-Exc1 with E1.

– Case e = k(e′):
Recall that all derivations in our paper are assumed to be well-
scoped so there must exist a corresponding data-type at that
has k(t) as a constructor.
By using induction hypothesis given by Lemma E.22 on n− 1

with e′ and σ we get a derivation
ES

e′; σ ==⇒
expr?

n−1 vres?′; σ′ .

By case analysis on vres?′:
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* Case vres?′ = success v′:
By Lemma E.8 we know that v′ is well-typed, i.e. that
we have v′ : t′ for some type sequence t′. We proceed to
check whether all values in the sequence are non-� and
each have a type t′i that is a subtype of the target type ti.

· Case v 6= � and t′ <: t then use E-Cons-Sucs with ES
and the required typing derivations.
· Case vi = � or t′i <: ti for some i then use E-Cons-Err

with ES .

* Case vres?′ = exres then use E-Cons-Exc with ES
– Case e = [e′]:

By induction hypothesis given by Lemma E.22 on n− 1 with
e′ and σ we get a derivation e′; σ ==⇒

expr?
n−1 vres?′; σ′.

By case analysis on vres?′:

* Case vres?′ = success v:
We proceed by checking whether all values v are non-�:
· Case v 6= � then use E-List-Sucs with above deriva-

tion.
· Case vi 6= � for some i then use E-List-Err with

above derivation.
* Case vres?′ = exres then use E-List-Exc with above

derivation.

– Case e = {e′}
By induction hypothesis given by Lemma E.22 on n− 1 with
e′ and σ we get a derivation e′; σ ==⇒

expr?
n−1 vres?′; σ′.

By case analysis on vres?′:

* Case vres?′ = success v:
We proceed by checking whether all values v are non-�:
· Case v 6= � then use E-Set-Sucs with above deriva-

tion.
· Case vi 6= � for some i then use E-Set-Err with above

derivation.
* Case vres?′ = exres then use E-Set-Exc with above deriva-

tion.
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– Case e = (e′ : e′′)
By induction hypothesis given by Lemma E.22 on n− 1 with
e′, e′′ and σ we get a derivation e′, e′′; σ ==⇒

expr?
n−1 vres?′; σ′.

By case analysis on vres?′:

* Case vres?′ = success v, v′:
We proceed by checking whether all values v and v′ are
non-�:
· Case v 6= � and v′ 6= � then use E-Map-Sucs with

above derivation.
· Case vi 6= � or v′i 6= � for some i then use E-Map-Err

with above derivation.
* Case vres?′ = exres then use E-Map-Exc with above

derivation.

– Case e = e1[e2]

By induction hypothesis on n − 1 with e1 and σ we get a

derivation
E

e1; σ ==⇒
expr

n−1 vres1; σ′′ .

By case analysis on vres1:

* Case vres1 = success v1:
By case analysis on v1:
· Case v1 = (v′ : v′′):

By induction hypothesis on n− 1 with e2 and σ′′ we

get a derivation
E ′

e2; σ′′ ==⇒
expr

n−1 vres2; σ′ .

By case analysis on vres2:
• Case vres2 = success v2:

We proceed to check whether ∃i.v′i = v2:
– Case v′i = v2 then use E-Lookup-Sucs with E and
E ′.

– Case @i.v′i = v2 then use E-Lookup-NoKey with
E and E ′.

• Case vres2 = exres then use E-Lookup-Exc2 with E
and E ′.

· Case v1 6= (v′ : v′′) then use E-Lookup-Err with E .
* Case vres1 = exres then use E-Lookup-Exc1 with E .
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– Case e = e1[e2 = e3]

By induction hypothesis on n − 1 with e1 and σ we get a

derivation
E

e1; σ ==⇒
expr

n−1 vres1; σ′′′ .

By case analysis on vres1:

* Case vres1 = success v1
By case analysis on v1:
· Case v1 = (v′ : v′′):

By induction hypothesis on n− 1 with e2 and σ′′′ we

get a derivation
E ′

e2; σ′′′ ==⇒
expr

n−1 vres2; σ′′ .

By case analysis on vres2:
• Case vres2 = success v2:

By induction hypothesis on n− 1 with e3 and σ′′ we

get a derivation
E ′′

e3; σ′′ ==⇒
expr

n−1 vres3; σ′ .

By case analysis on vres3:
– Case vres3 = success v3:

We proceed to check whether v2 and v3 are non-
�:
* Case v2 6= � and v3 6= � then use

E-Update-Sucs with E , E ′ and E ′′.
* Case v2 = � or v3 = � then use

E-Update-Err2 with E , E ′ and E ′′.
– Case vres3 = exres then use E-Update-Exc3 with
E and E ′.

• Case vres2 = exres then use E-Update-Exc2 on E
and E ′.

· Case v1 6= (v′ : v′′) then use E-Update-Err1 with E .
* Case vres1 = exres then use E-Update-Exc1 with E .

– Case e = f (e′)
By induction hypothesis given by Lemma E.22 on n− 1 with

e′ and σ we get a derivation
ES

e′; σ ==⇒
expr?

n−1 vres?′′; σ′′

By case analysis on vres?′′:
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* Case vres?′′ = success v′′

Recall that we assume that our function calls are well-
scoped and so there must exist a corresponding function
definition fun t′ f (t x) = e′′. By Lemma E.8 we know that
we have v′′ : t′′ for some type sequence t′′.
We proceed to check whether t′′ <: t:
· Case t′′ <: t

Let global ty y represent all global variable defini-
tions.
By induction hypothesis on n − 1 with e′′

and [y 7→ σ′′(y), x 7→ v′′] we get a derivation
E

e′; [y 7→ σ′′(y), x 7→ v′′] ==⇒
expr

n−1 vres′; σ′′′ .

By case analysis on vres′:
• Case vres′ = success v′ or vres′ = return v′.

By Theorem 6.2 we know that v′ : t′′′ for some type
t′′′. We proceed to check whether t′′′ <: t′:
– Case t′′′ <: t′ then use E-Call-Res-Sucs with ES

and E .
– Case t′′′ 6<: t′ then use E-Call-Res-Err1 with ES

and E .
• Case vres′ = throw v′ then use E-Call-Res-Exc

with ES and E
• Case vres′ ∈ {break, continue, fail, error} then use

E-Call-Res-Err2 with ES and E .
· Case t′′i 6<: ti for some i then use E-Call-Arg-Err

with ES .
* Case vres?′′ = exres then use E-Call-Arg-Exc with ES .

– Case e = return e′

By induction hypothesis on n − 1 with e′ and σ we get a
derivation e′; σ ==⇒

expr
n−1 vres′; σ′.

* Case vres′ = success v then use E-Ret-Sucs with above
derivation.

* Case vres′ = exres then use E-Ret-Exc with above deriva-
tion.
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– Case e = (x = e′)
Recall that our definitions are assumed to be well-scoped and
so there must exists either a local t x or global t x declaration
for the variable (with no overshadowing).
By induction hypothesis on n − 1 with e′ and σ we get a
derivation e′; σ ==⇒

expr
n−1 vres′; σ′′.

By case analysis on vres′:

* Case vres′ = success v: By Theorem 6.2 we know that
there exists a t′ such that v : t′.
We proceed by checking whether t′ <: t:
· Case t′ <: t then use E-Asgn-Sucs with above evalu-

ation and typing derivations.
· Case t′ 6<: t then use E-Asgn-Err with above evalua-

tion and typing derivations.
* Case vres′ = exres then use E-Asgn-Exc with above

derivation.

– Case e = if e1 then e2 else e3

By induction hypothesis on n − 1 with e1 and σ we get a

derivation
E

e1; σ ==⇒
expr

n−1 vres′′; σ′′ .

By case analysis on vres′′:

* Case vres′′ = success v′′

By case analysis on v′′:
· Case v′′ = false() then use E-If-False with E and

the derivation from the induction hypothesis on n− 1
with e2 and σ′′.
· Case v′′ = true() then use E-If-True with E and the

derivation from the induction hypothesis on n − 1
with e3 and σ′′.
· Case v′′ 6= true() and v′′ 6= false() then use E-If-Err

with E .
* Case vres′′ = exres then use E-If-Exc with E .

– Case e = switch e′ do cs
By induction hypothesis on n − 1 with e′ and σ we get a

derivation
E

e′; σ ==⇒
expr

n−1 vres′′; σ′′ .
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By case analysis on vres′′:

* Case vres′′ = success v′′

By induction hypothesis given by Lemma E.26 on
n − 1 with cs, v′′ and σ′′ we get a derivation

CS
cs; v′′; σ′′ ==⇒

cases
n−1 vres′; σ′ .

By case analysis on vres′:
· Case vres′ = success v′ then use E-Switch-Sucs with
E and CS .
· Case vres′ = fail then use E-Switch-Fail with E and
CS .
· Case vres′ = exres where exres 6= fail then use

E-Switch-Exc2 with E and CS .
* Case vres′′ = exres then use E-Switch-Exc1 with E .

– Case e = st visit e′ do cs:
By induction hypothesis on n − 1 with e′ and σ we get a

derivation
E

e′; σ ==⇒
expr

n−1 vres′′; σ′′ .

By case analysis on vres′′:

* Case vres′′ = success v′′

By induction hypothesis given by Lemma E.27 on
n − 1 with cs, v′′ and σ′′ we get a derivation

V
cs; v′′; σ′′

st
==⇒
visit

n−1
vres′; σ′

.

By case analysis on vres′:
· Case vres′ = success v′ then use E-Visit-Sucs with E

and V .
· Case vres′ = fail then use E-Visit-Fail with E and V .
· Case vres′ = exres where exres 6= fail then use

E-Visit-Exc2 with E and V .
* Case vres′′ = exres then use E-Visit-Exc1 with E .

– Case e = break then use E-Break.

– Case e = continue then use E-Continue.

– Case e = fail then use E-Fail.
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– Case e = local t x in e′ end then use either E-Block-Sucs

(when it produces a successful result) or E-Block-Exc (oth-
erwise) with the derivation of the induction hypothesis given
by Lemma E.22 on n− 1 with e′ and σ.

– Case e = for g e′:
By induction hypothesis given by Lemma E.24 on n− 1 with
g and σ we get a derivation g; σ ==⇒

gexpr
n−1 envres; σ′′.

By case analysis on envres:

* Case envres = success ρ then use E-For-Sucs with above
derivation and the derivation from the induction hypoth-
esis given by Lemma E.23 on n− 1 with e′, ρ and σ′′.

* Case envres = exres then use E-For-Exc with above
derivation.

– Case e = while e1 e2

By induction hypothesis on n − 1 with e1 and σ we get a

derivation:
E

e1; σ ==⇒
expr

n−1 vres′′; σ′′ .

By case analysis on vres′′:

* Case vres′′ = success v′′

By case analysis on v′′:
· Case v′′ = false() then use E-While-False with E .
· Case v′′ = true():

By induction hypothesis on n− 1 with e2 and σ′′ we

get a derivation
E ′

e2; σ′′ ==⇒
expr

n−1 vres′′′; σ′′′ .

By case analysis on vres′′′:
• Case vres′′′ = success v′′′ or vres′′′ = continue then

use E-While-True-Sucs with E , E ′ and the deriva-
tion from the induction hypothesis on n − 1 with
while e1 e2 and σ′′′.

• Case vres′′′ = break then use E-While-True-Break

with E and E ′.
• Case vres′′′ = exres ∈
{throw v′′′, return v′′′, fail, error} then use
E-While-Exc2 with E and E ′.
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· Case v′′ 6= true() and v′′ 6= false() then use
E-While-Err

* Case vres′′ = exres then use E-While-Exc1 with E .

– Case e = solve x e′:
By induction hypothesis on n − 1 with e′ and σ we get a

derivation
E

e′; σ ==⇒
expr

n−1 vres′′; σ′′ .

By case analysis on vres′′

* Case vres′′ = success v′′:
We proceed by checking whether the variable sequence x
is both in old and new stores.
· Case x ⊆ dom σ ∩ dom σ′′:

We then check whether any value in x has changed:
• Case σ(x) = σ′′(x) then use E-Solve-Eq with E .
• Case σ(xi) 6= σ′′(xi) for some i then use

E-Solve-Neq with E and the derivation from the
induction hypothesis on n− 1 with solve x e′ and
σ′′.

· Case xi /∈ dom σ ∩ dom σ′′ for some i then use
E-Solve-Err with E .

* Case vres′′ = exres then use E-Solve-Exc with E .

– Case e = throw e′:
By induction hypothesis on n − 1 with e′ and σ we get a
derivation e′; σ ==⇒

expr
n−1 vres′; σ′.

* Case vres′ = success v then use E-Thr-Sucs with above
derivation.

* Case vres′ = exres then use E-Thr-Exc with above deriva-
tion.

– Case e = try e1 catch x ⇒ e2:
By induction hypothesis on n − 1 with e1 and σ we get a

derivation
E

e1; σ ==⇒
expr

n−1 vres1; σ′′ .

By case analysis on vres1:
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* Case vres1 = throw v1 then use E-Try-Catch with E and
the derivation from the induction hypothesis on n − 1
with e2 and σ′′[x 7→ v1].

* Case vres1 6= throw v1 then use E-Try-Ord with E .

– Case e = try e1 finally e2

By induction hypothesis on n − 1 with e1 and σ we get a

derivation
E

e1; σ ==⇒
expr

n−1 vres1; σ′′ .

By induction hypothesis on n − 1 with e2 and σ′′ we get a

derivation
E ′

e2; σ′′ ==⇒
expr

n−1 vres2; σ′ .

By case analysis on vres2:

* Case vres2 = success v2 then use E-Fin-Sucs with E and
E ′

* Case vres2 = exres then use E-Fin-Exc with E and E ′.

Theorem 6.4 (Terminating expressions). There exists n such that derivation
E

efin; σ ==⇒
expr

n vres; σ′ has a result vres which is not timeout for expression

efin in the terminating subset.

Proof. The proof proceeds similarly to Theorem 6.3, except that instead
of doing the induction on n—which we know need to provide—we do
the induction on the relevant syntactic element starting with the efin for
this theorem. The only major complication is that for the bottom-up
visit rules, we need to do an inner well-founded induction on the ≺
relation on values when traversing the children in order to terminate.

The result n is simply taking to be n′ = 1+ n where n is the maximal
fuel used in a sub-term.
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Rascal Light Verification Proofs

Theorem 7.1. Assuming Galois connection for element domains ℘ (E) −−−→←−−−αÊ

γÊ

Ê then we have a Galois connection for the set shape domain ℘ (℘ (E)) −−−→←−−−
αŜS

γŜS

̂SetShape(Ê)

Proof. Since ̂SetShape(Ê) is a reduced product domain, then this prop-
erty follows directly from the element domain Galois connection, and
the interval domain Galois connection.

Theorem 7.2. Assuming a Galois connection for the leaf elements ℘ (E) −−−→←−−−αÊ

γÊ

Ê then we have a Galois connection for the data elements ℘(Data) −−−→←−−−
αD̂S

γD̂S

̂DataShape(Ê)

Proof. Follows directly by lifting from Theorem 7.3.

Theorem 7.3. Given a Galois connection ℘(E) −−−→←−−−αÊ

γÊ
Ê, then there is a Galois

connection PData(E) −−−→←−−−αR̂

γR̂ ̂Refinement(Ê)

Proof Sketch. In essence this Galois connection signifies a conversion be-
tween syntactic definitions and semantics of data type refinements, ex-
cept that the contained values have to respectively be in domains Ê and
E respectively, whose Galois connection follows from the premise. Note,
that in case of fixed-point domains used in Ê there is a possible hidden
recursion between the operations on Ê and R̂, but these are in such case
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also interpreted as least fixed-point equations whose validity depends
on Theorem 7.5.

Theorem 7.4. Given ∀i
(
℘ (Ai) −−−→←−−−

αÂi

γÂi
Âi

)
then ℘

(⊎
A
)
−−−→←−−−α⊕

γ⊕ ⊕
(Â)

Proof. We have to show eas ⊆ γ⊕(êa) if and only if α⊕(eas) v êa. We do
this by showing it holds in both directions, by case analysis on êa and
inversion of the definition v⊕, then delegating to the relevant Galois
connection.

Theorem 7.5. If that for continuous parametrized domains F, F̂ it holds

that for all E, Ê such that ℘ (E) −−−→←−−−αÊ

γÊ
Ê then ℘ (F(E)) −−−→←−−−αF̂

γF̂
F̂(Ê), then

℘ (lfp X.F(X)) −−−→←−−−
αF̂ix

γF̂ix
lfp X̂.F̂(X̂)

Proof. By definition of fixed-points[Scott, 1976; Smyth and Plotkin, 1982]
we have that

lfp X.F(X) =
⊔

n∈N

F(n)(0)

where 0 is the empty domain. It suffices to show that for all n, there

exists α′ and γ′ such that ℘
(

F(n)(0)
)
−−→←−−

α′

γ′

F̂(n)(0), which is done by

induction over n:

• Case n = 0: We have to show ℘ (0) −−→←−−
α′

γ′

0 which holds vacuously.

• Case n = k + 1: By induction hypothesis we have

℘
(

F(k)(0)
)
−−−→←−−−

α′′

γ′′

F̂(k)(0)

and we have to show(
F(k+1)(0)

)
−−→←−−

α′

γ′

F̂(k+1)(0)

which holds by application of the premise on the induction hy-
pothesis.
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Corollary 7.1. If given a Galois connection for the parameter element domain

℘ (E) −−−→←−−−αÊ

γÊ
Ê, then we have a Galois connection for the parameterized value

domain ℘ (PValue(E)) −−−−→←−−−−
αP̂VS

γP̂VS ̂PValueShape(Ê)

Proof. Follows directly from Proposition 7.1, Theorem 7.1, Theorem 7.2
and Theorem 7.4.

Corollary 7.2. We have a Galois connection ℘ (Value) −−−→←−−−
αV̂S

γV̂S ̂ValueShape

Proof. Follows directly from Corollary 7.1 and Theorem 7.5.

Theorem 7.6. We have a Galois connection ℘ (Store) −−−−→←−−−−
α

Ŝtore

γ
Ŝtore

Ŝtore

Proof. Follows from lifting of the reduced product domain of the
Boolean domain and V̂alue abstract domain, the latter which holds from
Corollary 7.2.

Theorem 7.7. We have a Galois connection

℘ (ValueResult× Store) −−−→←−−−
αR̂S

γR̂S ̂ResultSet

Proof Sketch. We are essentially representing an infinite set of value
result-store pairs in a finite set containing abstract values partitioned by
their kind of control flow. The proof can therefore be done in two steps,
one mapping directly the concrete value result-store pairs to abstract
value result-store pairs in the domain ℘

(
̂ValueResult× Ŝtore

)
—which

is holds by lifiting of Corollary 7.2 and Theorem 7.6)—and then show
that this domain has a Galois connection to ̂ResultSet which is straight-
forward since it simply takes the least upper bound of all subsets with
a particular kind of control flow.

Theorem 7.8 (Soundness). For all valid expressions e, concrete stores σ and
over-approximating abstract stores σ̂, so σ ∈ γ

Ŝtore
(σ̂), where we have a

concrete evaluation derivation e; σ̂ ==⇒
expr

vres; σ′ and corresponding abstract

evaluation derivation e; σ̂ ==⇒
a-expr

R̂es then it holds that the abstract result

set properly over-approximates the concrete result value result and store, i.e.,
(vres, σ′) ∈ γRS(R̂es).
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Proof Sketch. The soundness of our abstract interpreter concretely de-
pends on three aspects:

1. That the abstract evaluation rules over-approximate all possible
corresponding concrete evaluations. Because of the close cor-
respondence between abstract and concrete evaluation rules in
Schmidt-style abstract interpretation, this is done by showing that
there is a homomorphism [Schmidt, 1998] from the concrete rules
to the abstract rules, i.e. that for each concrete rule there exists a
set of abstract rules that covers its evaluation.

2. That the abstract conditions and semantic operations properly
over-approximate the concrete conditions and semantic operations.
This is done using classical abstract domain operation analysis, as
done for the theorems above.

3. That the chosen memoization strategies produce monotone results.
The argument largely follows the one presented in Rosendahl
[2013], but we must take into account the extension to infinite
inputs. This extension is sound since we on recursion maintain
monotonicity by using the least upper bound with the previous
occurrence of inputs from the same partition and terminating be-
cause the partitioning is finite and the additional widening on in-
put.



Appendix G

Rascal Subject programs

Negation Normal Form:
1 module NNF
2
3 data Formula = atom(str nm)
4 | and(Formula l, Formula r)
5 | or(Formula l, Formula r)
6 | imp(Formula l, Formula r)
7 | neg(Formula f);
8
9 Formula nnf(Formula phi) = top-down visit(phi) {
10 case neg(or(l,r)) => and(neg(l), neg(r))
11 case neg(and(l,r)) => or(neg(l), neg(r))
12 case neg(imp(l,r)) => and(l, neg(r))
13 case neg(neg(f)) => nnf(f)
14 case imp(l,r) => or(neg(l), r)
15 };

Rename Field of Struct:
1 module RenameStructField
2
3 data Nominal = nfn() | ofn() | other();
4 data Package = package(map[str, Struct] structures,
5 map[str, Function] functions);
6 data Struct = struct(str name, map[Nominal, Field] fields

↪→ );
7 data Field = field(Nominal name, str typ);
8 data Function = function(str name, str return_typ,
9 list[Parameter] parameters, Stmt

↪→ body);
10 data Parameter = parameter(str typ, str name);
11 data Stmt = ifstmt(Expr cond, Stmt thenb, Stmt elseb)
12 | returnstmt(Expr val)
13 | assignstmt(Expr lhs, Expr rhs)
14 | block(list[Stmt] stmts)
15 ;
16 data Expr = fieldaccessexpr(Expr target, Nominal

↪→ fieldname)
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17 | varexpr(str name)
18 | functioncallexpr(Expr target, str methodname,

↪→ list[Expr] args)
19 ;
20
21 Package renameField(Package pkg, str st,
22 Nominal oldFieldName, Nominal

↪→ newFieldName) {
23 assert (st in pkg.structures) &&
24 (oldFieldName in pkg.structures[st].fields) &&
25 (newFieldName notin pkg.structures[st].fields)

↪→ ;
26 Field fieldDef = pkg.structures[st].fields[

↪→ oldFieldName];
27 fieldDef.name = newFieldName;
28 pkg.structures[st].fields =
29 delete(pkg.structures[st].fields, oldFieldName)
30 + (newFieldName: fieldDef);
31 return top-down visit(pkg) {
32 case fieldaccessexpr(target, oldFieldName) =>
33 fieldaccessexpr(target, newFieldName)
34 };
35 }

Desugar Oberon
1 module DesugarOberon
2
3 data Module =
4 \mod(Ident name, Declarations decls, list[Statement]

↪→ body, Ident endName)
5 ;
6
7 data Declarations
8 = decls(list[ConstDecl] consts, list[TypeDecl] types,

↪→ list[VarDecl] vars)
9 ;
10
11 data ConstDecl
12 = constDecl(Ident name, Expression \value)
13 ;
14
15 data TypeDecl
16 = typeDecl(Ident name, Type \type)
17 ;
18
19 data VarDecl
20 = varDecl(list[Ident] names, Type \type)
21 ;
22
23 data Type
24 = user(Ident name)
25 ;
26
27 data MaybeExpression
28 = nothing()
29 | just(Expression e)
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30 ;
31
32 data Statement
33 = assign(Ident var, Expression exp)
34 | ifThen(Expression condition, list[Statement] body,
35 list[ElseIf] elseIfs, list[Statement] elsePart

↪→ )
36 | whileDo(Expression condition, list[Statement] body)
37 | skip()
38 | forDo(Ident name, Expression from, Expression to,
39 MaybeExpression by, list[Statement] body)
40 | caseOf(Expression exp, list[Case] cases, list[

↪→ Statement] elsePart)
41 | begin(list[Statement] body)
42 ;
43
44 data Expression
45 = nat(int val)
46 | \trueE()
47 | \falseE()
48 | lookup(Ident var)
49 | neg(Expression exp)
50 | pos(Expression exp)
51 | not(Expression exp)
52 | mul(Expression lhs, Expression rhs)
53 | div(Expression lhs, Expression rhs)
54 | amp(Expression lhs, Expression rhs)
55 | add(Expression lhs, Expression rhs)
56 | sub(Expression lhs, Expression rhs)
57 | or(Expression lhs, Expression rhs)
58 | eq(Expression lhs, Expression rhs)
59 | neq(Expression lhs, Expression rhs)
60 | lt(Expression lhs, Expression rhs)
61 | gt(Expression lhs, Expression rhs)
62 | leq(Expression lhs, Expression rhs)
63 | geq(Expression lhs, Expression rhs)
64 ;
65
66 data Ident
67 = id(str name)
68 ;
69
70
71 data Case
72 = guard(Expression guard, list[Statement] body)
73 ;
74
75 data ElseIf = elseif(Expression condition, list[Statement

↪→ ] body);
76
77 public Module desugar(Module \mod) {
78 \mod.body = flattenBegin(case2ifs(for2while((\mod.

↪→ body))));
79 return \mod;
80 }
81
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82 Statement cases2if(Expression e, list[Case] cs, list[
↪→ Statement] es) {

83 switch (cs) {
84 case []: return begin(es);
85 case [c, *cs2]: {
86 list[ElseIf] eis = [];
87 for (c2 <- cs2)
88 eis = eis + [elseif(eq(e, c2.guard), c.

↪→ body)];
89 return ifThen(eq(e, c.guard), c.body, eis, es

↪→ );
90 }
91 };
92 }
93
94 public list[Statement] case2ifs(list[Statement] stats) {
95 return visit (stats) {
96 case caseOf(e, cs, es) => cases2if(e, cs, es)
97 }
98 }
99
100 public list[Statement] for2while(list[Statement] stats) {
101 return visit (stats) {
102 case forDo(n, f, t, just(by), b) =>
103 begin([assign(n, f), whileDo(geq(lookup(n), t

↪→ ),
104 b + [assign(n, add(lookup(n), by))])

↪→ ])
105 case forDo(n, f, t, nothing(), b) =>
106 begin([assign(n, f), whileDo(geq(lookup(n), t

↪→ ),
107 b + [assign(n, add(lookup(n), nat(1))

↪→ )])])
108 }
109 }
110
111 public list[Statement] flattenBegin(list[Statement] stats

↪→ ) {
112 return innermost visit (stats) {
113 case list[Statement] ss =>
114 ({
115 list[Statement] res = [];
116 for (s <- ss) {
117 switch (s) {
118 case begin(b): res = res + b;
119 case _: res = res + [s];
120 };
121 };
122 res;
123 })
124 }
125 }

Glagol-to-PHP Expression Translation:
1 module Glagol2PHP
2
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3 data Unsuppported = unsupported();
4
5 data Expression
6 = integer(int intValue)
7 | string(str strValue)
8 | boolean(bool boolValue)
9 | \list(list[Expression] values)
10 | arrayAccess(Expression variable, Expression

↪→ arrayIndexKey)
11 | \map(map[Expression key, Expression \value])
12 | variable(str name)
13 | \bracket(Expression expr)
14 | product(Expression lhs, Expression rhs)
15 | remainder(Expression lhs, Expression rhs)
16 | division(Expression lhs, Expression rhs)
17 | addition(Expression lhs, Expression rhs)
18 | subtraction(Expression lhs, Expression rhs)
19 | greaterThanOrEq(Expression lhs, Expression rhs)
20 | lessThanOrEq(Expression lhs, Expression rhs)
21 | lessThan(Expression lhs, Expression rhs)
22 | greaterThan(Expression lhs, Expression rhs)
23 | equals(Expression lhs, Expression rhs)
24 | nonEquals(Expression lhs, Expression rhs)
25 | and(Expression lhs, Expression rhs)
26 | or(Expression lhs, Expression rhs)
27 | negative(Expression expr)
28 | positive(Expression expr)
29 | ternary(Expression condition, Expression ifThen,

↪→ Expression \else)
30 | new(str artifact, list[Expression] args)
31 | get(Type t)
32 | invoke(str methodName, list[Expression] args)
33 | invoke2(Expression prev, str methodName, list[

↪→ Expression] args)
34 | fieldAccess(str field)
35 | fieldAccess2(Expression prev, str field)
36 | emptyExpr()
37 | this()
38 ;
39
40 data Type
41 = integer2()
42 | string2()
43 | voidValue()
44 | boolean2()
45 | list2(Type \type)
46 | map2(Type key, Type v)
47 | artifact(str name)
48 | repository(str name)
49 | selfie()
50 ;
51
52 public data PhpOptionExpr = phpSomeExpr(PhpExpr expr) |

↪→ phpNoExpr();
53
54 public data PhpOptionName = phpSomeName(PhpName name) |

↪→ phpNoName();
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55
56 public data PhpOptionElse = phpSomeElse(PhpElse e) |

↪→ phpNoElse();
57
58 public data PhpActualParameter
59 = phpActualParameter(PhpExpr expr, bool byRef)
60 | phpActualParameter2(PhpExpr expr, bool byRef, bool

↪→ isVariadic);
61
62 public data PhpConst = phpConst(str name, PhpExpr

↪→ constValue);
63
64 public data PhpArrayElement = phpArrayElement(

↪→ PhpOptionExpr key, PhpExpr val, bool byRef);
65
66 public data PhpName = phpName(str name);
67
68 public data PhpNameOrExpr = phpName2(PhpName name) |

↪→ phpExpr(PhpExpr expr);
69
70 public data PhpCastType = phpIntCast() | phpBoolCast() |

↪→ phpStringCast() | phpArrayCast() | phpObjectCast
↪→ () | phpUnsetCast();

71
72 public data PhpClosureUse = phpClosureUse(PhpExpr varName

↪→ , bool byRef);
73
74 public data PhpIncludeType = phpInclude() |

↪→ phpIncludeOnce() | phpRequire() | phpRequireOnce
↪→ ();

75
76 public data PhpExpr
77 = phpArray(list[PhpArrayElement] items)
78 | phpFetchArrayDim(PhpExpr var, PhpOptionExpr dim)
79 | phpFetchClassConst(PhpNameOrExpr className, str

↪→ constantName)
80 | phpAssign(PhpExpr assignTo, PhpExpr assignExpr)
81 | phpAssignWOp(PhpExpr assignTo, PhpExpr assignExpr,

↪→ PhpOp operation)
82 | phpListAssign(list[PhpOptionExpr] assignsTo,

↪→ PhpExpr assignExpr)
83 | phpRefAssign(PhpExpr assignTo, PhpExpr assignExpr)
84 | phpBinaryOperation(PhpExpr left, PhpExpr right,

↪→ PhpOp operation)
85 | phpUnaryOperation(PhpExpr operand, PhpOp operation)
86 | phpNew(PhpNameOrExpr className, list[

↪→ PhpActualParameter] parameters)
87 | phpCast(PhpCastType castType, PhpExpr expr)
88 | phpClone(PhpExpr expr)
89 | phpClosure(list[PhpStmt] statements, list[PhpParam]

↪→ params, list[PhpClosureUse] closureUses,
↪→ bool byRef, bool static)

90 | phpFetchConst(PhpName name)
91 | phpEmpty(PhpExpr expr)
92 | phpSuppress(PhpExpr expr)
93 | phpEval(PhpExpr expr)
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94 | phpExit(PhpOptionExpr exitExpr)
95 | phpCall(PhpNameOrExpr funName, list[

↪→ PhpActualParameter] parameters)
96 | phpMethodCall(PhpExpr target, PhpNameOrExpr

↪→ methodName, list[PhpActualParameter]
↪→ parameters)

97 | phpStaticCall(PhpNameOrExpr staticTarget,
↪→ PhpNameOrExpr methodName, list[
↪→ PhpActualParameter] parameters)

98 | phpIncludeExpr(PhpExpr expr, PhpIncludeType
↪→ includeType)

99 | phpInstanceOf(PhpExpr expr, PhpNameOrExpr toCompare
↪→ )

100 | phpIsSet(list[PhpExpr] exprs)
101 | phpPrint(PhpExpr expr)
102 | phpPropertyFetch(PhpExpr target, PhpNameOrExpr

↪→ propertyName)
103 | phpShellExec(list[PhpExpr] parts)
104 | phpTernary(PhpExpr cond, PhpOptionExpr ifBranch,

↪→ PhpExpr elseBranch)
105 | phpStaticPropertyFetch(PhpNameOrExpr className,

↪→ PhpNameOrExpr propertyName)
106 | phpScalar(PhpScalar scalarVal)
107 | phpVar(PhpNameOrExpr varName)
108 | phpYield(PhpOptionExpr keyExpr, PhpOptionExpr

↪→ valueExpr)
109 | phpListExpr(list[PhpOptionExpr] listExprs)
110 | phpBracket(PhpOptionExpr bracketExpr)
111 ;
112
113 public data PhpOp = phpBitwiseAnd() | phpBitwiseOr() |

↪→ phpBitwiseXor() | phpConcat() | phpDiv()
114 | phpMinus() | phpMod() | phpMul() |

↪→ phpPlus() | phpRightShift() |
↪→ phpLeftShift()

115 | phpBooleanAnd() | phpBooleanOr() |
↪→ phpBooleanNot() | phpBitwiseNot()

116 | phpGt() | phpGeq() | phpLogicalAnd() |
↪→ phpLogicalOr() | phpLogicalXor()

117 | phpNotEqual() | phpNotIdentical() |
↪→ phpPostDec() | phpPreDec() |
↪→ phpPostInc()

118 | phpPreInc() | phpLt() | phpLeq() |
↪→ phpUnaryPlus() | phpUnaryMinus()

119 | phpEqual() | phpIdentical() ;
120
121 public data PhpParam
122 = phpParam(str paramName, PhpOptionExpr paramDefault,

↪→ PhpOptionName paramType, bool byRef, bool
↪→ isVariadic)

123 ;
124
125 public data PhpScalar
126 = phpClassConstant()
127 | phpDirConstant()
128 | phpFileConstant()
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129 | phpFuncConstant()
130 | phpLineConstant()
131 | phpMethodConstant()
132 | phpNamespaceConstant()
133 | phpTraitConstant()
134 | phpNull()
135 | phpInteger(int intVal)
136 | phpString(str strVal)
137 | phpBoolean(bool boolVal)
138 | phpEncapsed(list[PhpExpr] parts)
139 | phpEncapsedStringPart(str strVal)
140 ;
141
142 public data PhpStmt
143 = phpBreak(PhpOptionExpr breakExpr)
144 | phpClassDef(PhpClassDef classDef)
145 | phpConsts(list[PhpConst] consts)
146 | phpContinue(PhpOptionExpr continueExpr)
147 | phpDeclare(list[PhpDeclaration] decls, list[PhpStmt

↪→ ] body)
148 | phpDo(PhpExpr cond, list[PhpStmt] body)
149 | phpEcho(list[PhpExpr] exprs)
150 | phpExprstmt(PhpExpr expr)
151 | phpFor(list[PhpExpr] inits, list[PhpExpr] conds,

↪→ list[PhpExpr] exprs, list[PhpStmt] body)
152 | phpForeach(PhpExpr arrayExpr, PhpOptionExpr keyvar,

↪→ bool byRef, PhpExpr asVar, list[PhpStmt]
↪→ body)

153 | phpFunction(str name, bool byRef, list[PhpParam]
↪→ params, list[PhpStmt] body, PhpOptionName
↪→ returnType)

154 | phpGlobal(list[PhpExpr] exprs)
155 | phpGoto(str label)
156 | phpHaltCompiler(str remainingText)
157 | phpIf(PhpExpr cond, list[PhpStmt] body, list[

↪→ PhpElseIf] elseIfs, PhpOptionElse elseClause)
158 | phpInlineHTML(str htmlText)
159 | phpInterfaceDef(PhpInterfaceDef interfaceDef)
160 | phpTraitDef(PhpTraitDef traitDef)
161 | phpLabel(str labelName)
162 | phpNamespace(PhpOptionName nsName, list[PhpStmt]

↪→ body)
163 | phpNamespaceHeader(PhpName namespaceName)
164 | phpReturn(PhpOptionExpr returnExpr)
165 | phpStaticVars(list[PhpStaticVar] vars)
166 | phpSwitch(PhpExpr cond, list[PhpCase] cases)
167 | phpThrow(PhpExpr expr)
168 | phpTryCatch(list[PhpStmt] body, list[PhpCatch]

↪→ catches)
169 | phpTryCatchFinally(list[PhpStmt] body, list[

↪→ PhpCatch] catches, list[PhpStmt] finallyBody)
170 | phpUnset(list[PhpExpr] unsetVars)
171 | phpUseExpr(set[PhpUse] uses)
172 | phpWhile(PhpExpr cond, list[PhpStmt] body)
173 | phpEmptyStmt()
174 | phpBlock(list[PhpStmt] body)
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175 | phpNewLine()
176 ;
177
178 public data PhpDeclaration = phpDeclaration(str key,

↪→ PhpExpr val);
179
180 public data PhpCatch = phpCatch(PhpName xtype, str

↪→ varName, list[PhpStmt] body);
181
182 public data PhpCase = phpCase(PhpOptionExpr cond, list[

↪→ PhpStmt] body);
183
184 public data PhpElseIf = phpElseIf(PhpExpr cond, list[

↪→ PhpStmt] body);
185
186 public data PhpElse = phpElse(list[PhpStmt] body);
187
188 public data PhpUse = phpUse(PhpName importName,

↪→ PhpOptionName asName);
189
190 public data PhpClassItem
191 = phpPropertyCI(set[PhpModifier] modifiers, list[

↪→ PhpProperty] prop)
192 | phpConstCI(list[PhpConst] consts)
193 | phpMethod(str name, set[PhpModifier] modifiers,

↪→ bool byRef, list[PhpParam] params, list[
↪→ PhpStmt] body, PhpOptionName returnType)

194 | phpTraitUse(list[PhpName] traits, list[
↪→ PhpAdaptation] adaptations)

195 ;
196
197 public data PhpAdaptation
198 = phpTraitAlias(PhpOptionName traitName, str methName

↪→ , set[PhpModifier] newModifiers,
↪→ PhpOptionName newName)

199 | phpTraitPrecedence(PhpOptionName traitName, str
↪→ methName, set[PhpName] insteadOf)

200 ;
201
202 public data PhpProperty = phpProperty(str propertyName,

↪→ PhpOptionExpr defaultValue);
203
204 public data PhpModifier = phpPublic() | phpPrivate() |

↪→ phpProtected() | phpStatic() | phpAbstract() |
↪→ phpFinal();

205
206 public data PhpClassDef = phpClass(str className,
207 set[PhpModifier] modifiers,
208 PhpOptionName extends,
209 list[PhpName] implements,
210 list[PhpClassItem] members);
211
212 public data PhpInterfaceDef = phpInterface(str

↪→ interfaceName,
213 list[PhpName] extends

↪→ ,
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214 list[PhpClassItem]
↪→ members);

215
216 public data PhpTraitDef = phpTrait(str traitName, list[

↪→ PhpClassItem] members);
217
218 public data PhpStaticVar = phpStaticVar(str name,

↪→ PhpOptionExpr defaultValue);
219
220 public data PhpScript = phpScript(list[PhpStmt] body) |

↪→ phpErrscript(str err);
221
222 public data PhpAnnotation
223 = phpAnnotation(str key)
224 | phpAnnotation(str key, PhpAnnotation v)
225 | phpAnnotationVal(map[str k, PhpAnnotation v])
226 | phpAnnotationVal(str string)
227 | phpAnnotationVal(int integer)
228 | phpAnnotationVal(bool boolean)
229 | phpAnnotationVal(list[PhpAnnotation] items)
230 | phpAnnotationVal(PhpAnnotation v)
231 ;
232
233 // Changed because of lack of string abstractions of

↪→ built-in library functions
234 public str toLowerCaseFirstChar(str text) = text;
235
236 PhpExpr toPhpExpr(Expression expr) {
237 switch(expr) {
238
239 // literals
240 case integer(int i): return phpScalar(phpInteger(

↪→ i));
241 case string(str s): return phpScalar(phpString(s)

↪→ );
242 case boolean(bool b): return phpScalar(phpBoolean

↪→ (b));
243
244 // arrays
245 case \list(list[Expression] items): {
246 list[PhpArrayElement] phpItems = [];
247 for (i <- items)
248 phpItems = phpItems + [phpArrayElement(

↪→ phpNoExpr(), toPhpExpr(i), false)];
249 return phpNew(phpName2(phpName("Vector")),
250 [phpActualParameter(phpArray(phpItems

↪→ ), false)]);
251 }
252
253 case arrayAccess(Expression variable, Expression

↪→ arrayIndexKey):
254 return phpFetchArrayDim(toPhpExpr(variable),

↪→ phpSomeExpr(toPhpExpr(arrayIndexKey))
↪→ );

255 case \map(map[Expression key, Expression \value]
↪→ m): {
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256 list[PhpActualParameter] elements = [];
257 for (k <- m)
258 elements = elements +
259 [phpActualParameter(phpNew(

↪→ phpName2(phpName("
↪→ Pair")),

260 [phpActualParameter(
↪→ toPhpExpr(k),
↪→ false),

261 phpActualParameter(
↪→ toPhpExpr(m[k
↪→ ]), false)]),
↪→ false)];

262 return phpStaticCall(phpName2(phpName("
↪→ MapFactory")), phpName2(phpName("
↪→ createFromPairs")), elements);

263 }
264
265 case get(artifact(str name)):
266 return phpPropertyFetch(phpVar(phpName2(

↪→ phpName("this"))), phpName2(phpName("
↪→ _" + toLowerCaseFirstChar(name))));

267
268 case variable(str name):
269 return phpVar(phpName2(phpName(name)));
270
271 case ternary(Expression condition, Expression

↪→ ifThen, Expression \else):
272 return phpTernary(toPhpExpr(condition),

↪→ phpSomeExpr(toPhpExpr(ifThen)),
↪→ toPhpExpr(\else));

273
274 case new(str artifact, list[Expression] args): {
275 list[PhpActualParameter] phpParams = [];
276 for (arg <- args)
277 phpParams = phpParams + [

↪→ phpActualParameter(toPhpExpr(arg)
↪→ , false)];

278 phpNew(phpName2(phpName(artifact)), phpParams
↪→ );

279 }
280
281 // Binary operations
282 case equals(Expression l, Expression r):
283 return phpBinaryOperation(toPhpExpr(l),

↪→ toPhpExpr(r), phpIdentical());
284 case greaterThan(Expression l, Expression r):
285 return phpBinaryOperation(toPhpExpr(l),

↪→ toPhpExpr(r), phpGt());
286 case product(Expression lhs, Expression rhs):
287 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpMul());
288 case remainder(Expression lhs, Expression rhs):
289 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpMod());
290 case division(Expression lhs, Expression rhs):
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291 return phpBinaryOperation(toPhpExpr(lhs),
↪→ toPhpExpr(rhs), phpDiv());

292 case addition(Expression lhs, Expression rhs):
293 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpPlus());
294 case subtraction(Expression lhs, Expression rhs):
295 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpMinus());
296 case \bracket(Expression e):
297 return phpBracket(phpSomeExpr(toPhpExpr(e)));
298 case greaterThanOrEq(Expression lhs, Expression

↪→ rhs):
299 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpGeq());
300 case lessThanOrEq(Expression lhs, Expression rhs)

↪→ :
301 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpLeq());
302 case lessThan(Expression lhs, Expression rhs):
303 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpLt());
304 case greaterThan(Expression lhs, Expression rhs):
305 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpGt());
306 case equals(Expression lhs, Expression rhs):
307 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpIdentical());
308 case nonEquals(Expression lhs, Expression rhs):
309 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpNotIdentical());
310 case and(Expression lhs, Expression rhs):
311 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpLogicalAnd());
312 case or(Expression lhs, Expression rhs):
313 return phpBinaryOperation(toPhpExpr(lhs),

↪→ toPhpExpr(rhs), phpLogicalOr());
314
315
316 // Unary operations
317 case negative(Expression e):
318 return phpUnaryOperation(toPhpExpr(e),

↪→ phpUnaryMinus());
319 case positive(Expression e):
320 return phpUnaryOperation(toPhpExpr(e),

↪→ phpUnaryPlus());
321
322 case invoke(str methodName, list[Expression] args

↪→ ): {
323 list[PhpActualParameter] phpParams = [];
324 for (arg <- args)
325 phpParams = phpParams + [

↪→ phpActualParameter(toPhpExpr(arg)
↪→ , false)];

326 return phpMethodCall(phpVar(phpName2(phpName(
↪→ "this"))), phpName2(phpName(
↪→ methodName)), phpParams);
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327 }
328
329 case invoke2(Expression prev, str methodName,

↪→ list[Expression] args): {
330 list[PhpActualParameter] phpParams = [];
331 for (arg <- args)
332 phpParams = phpParams + [

↪→ phpActualParameter(toPhpExpr(arg)
↪→ , false)];

333
334 return phpMethodCall(toPhpExpr(prev),

↪→ phpName2(phpName(methodName)),
↪→ phpParams);

335 }
336
337
338 // Property fetch
339 case fieldAccess(str name):
340 return phpPropertyFetch(phpVar(phpName2(

↪→ phpName("this"))), phpName2(phpName(
↪→ name)));

341
342 case fieldAccess2(Expression prev, str name):
343 return phpPropertyFetch(toPhpExpr(prev),

↪→ phpName2(phpName(name)));
344
345 case this():
346 return phpVar(phpName2(phpName("this")));
347
348 case _: throw unsupported();
349 };
350 }
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Rascal Verification Output

Negation Normal Form:
1 refine Formula#19 = atom(string)
2 refine Formula#2045 = and(Formula#2045, Formula#2045) |

↪→ atom(string) | neg(Formula#19) | or(Formula#2045,
↪→ Formula#2045)

3
4 result:
5 success Formula#2045
6 store:
7 [phi -> Formula]

Rename Struct Field
1 refine Expr#564 = fieldaccessexpr(Expr#564, Nominal#442)

↪→ | functioncallexpr(Expr#564, string, list[Expr
↪→ #564]) | varexpr(string)

2 refine Function#6215 = function(string, string, list[
↪→ Parameter], Stmt#3305)

3 refine Nominal#442 = nfn() | other()
4 refine Nominal#nfn = nfn()
5 refine Nominal#ofn = ofn()
6 refine Package#23593 = package(map[string, Struct], map[

↪→ string, Function#6215])
7 refine Stmt#3305 = assignstmt(Expr#564, Expr#564) | block

↪→ (list[Stmt#3305]) | ifstmt(Expr#564, Stmt#3305,
↪→ Stmt#3305) | returnstmt(Expr#564)

8
9 result:
10 throw NoKey
11 store:
12 [st -> string,pkg -> Package,newFieldName -> Nominal#nfn

↪→ ,oldFieldName -> Nominal#ofn]
13
14 result:
15 success Package#23593
16 store:
17 [st -> string,pkg -> Package,newFieldName -> Nominal#nfn

↪→ ,oldFieldName -> Nominal#ofn]
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Desugar Oberon-0
1 refine ElseIf#104075 = elseif(Expression, list[Statement

↪→ #104076])
2 refine Module#207238 = mod(Ident, Declarations, list[

↪→ Statement#104076], Ident)
3 refine Statement#104076 = assign(Ident, Expression) |

↪→ begin(list[Statement#104076]) | ifThen(Expression
↪→ , list[Statement#104076], list[ElseIf#104075],
↪→ list[Statement#104076]) | skip() | whileDo(
↪→ Expression, list[Statement#104076])

4
5 result:
6 error // Due to over-approximation
7 store:
8 [mod -> Module]
9
10 result:
11 success Module#207238
12 store:
13 [mod -> Module#207238]

Glagol-to-PHP Simple Expressions:
1 refine Expression#0 = addition(Expression#0, Expression

↪→ #0) | and(Expression#0, Expression#0) | boolean(
↪→ Bool) | bracket(Expression#0) | division(
↪→ Expression#0, Expression#0) | emptyExpr() |
↪→ equals(Expression#0, Expression#0) | greaterThan(
↪→ Expression#0, Expression#0) | greaterThanOrEq(
↪→ Expression#0, Expression#0) | integer(int) |
↪→ lessThan(Expression#0, Expression#0) |
↪→ lessThanOrEq(Expression#0, Expression#0) |
↪→ negative(Expression#0) | nonEquals(Expression#0,
↪→ Expression#0) | or(Expression#0, Expression#0) |
↪→ positive(Expression#0) | product(Expression#0,
↪→ Expression#0) | remainder(Expression#0,
↪→ Expression#0) | string(string) | subtraction(
↪→ Expression#0, Expression#0) | ternary(Expression
↪→ #0, Expression#0, Expression#0) | variable(string
↪→ )

2 refine PhpExpr#187 = phpBracket(PhpOptionExpr#185) |
↪→ phpScalar(PhpScalar#90) | phpTernary(PhpExpr#187,
↪→ PhpOptionExpr#185, PhpExpr#187) |
↪→ phpUnaryOperation(PhpExpr#187, PhpOp#160) |
↪→ phpVar(PhpNameOrExpr#18)

3 refine PhpExpr#9207 = phpBracket(PhpOptionExpr#9206) |
↪→ phpScalar(PhpScalar#90) | phpUnaryOperation(
↪→ PhpExpr#9207, PhpOp#160) | phpVar(PhpNameOrExpr
↪→ #18)

4 refine PhpExpr#9794 = phpBinaryOperation(PhpExpr#9794,
↪→ PhpExpr#9794, PhpOp#9795) | phpBracket(
↪→ PhpOptionExpr#9796) | phpScalar(PhpScalar#90) |
↪→ phpUnaryOperation(PhpExpr#9794, PhpOp#160) |
↪→ phpVar(PhpNameOrExpr#18)

5 refine PhpExpr#9810 = phpBinaryOperation(PhpExpr#9794,
↪→ PhpExpr#9794, PhpOp#9795) | phpBracket(
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↪→ PhpOptionExpr#9206) | phpScalar(PhpScalar#90) |
↪→ phpTernary(PhpExpr#187, PhpOptionExpr#185,
↪→ PhpExpr#187) | phpUnaryOperation(PhpExpr#9207,
↪→ PhpOp#160) | phpVar(PhpNameOrExpr#18)

6 refine PhpNameOrExpr#18 = phpName2(PhpName)
7 refine PhpOp#160 = phpUnaryMinus() | phpUnaryPlus()
8 refine PhpOp#9795 = phpDiv() | phpGeq() | phpGt() |

↪→ phpIdentical() | phpLeq() | phpLogicalAnd() |
↪→ phpLogicalOr() | phpLt() | phpMinus() | phpMod()
↪→ | phpMul() | phpNotIdentical() | phpPlus()

9 refine PhpOptionExpr#185 = phpSomeExpr(PhpExpr#187)
10 refine PhpOptionExpr#9206 = phpSomeExpr(PhpExpr#9207)
11 refine PhpOptionExpr#9796 = phpSomeExpr(PhpExpr#9794)
12 refine PhpScalar#90 = phpBoolean(Bool) | phpInteger(int)

↪→ | phpString(string)
13 result:
14 throw Unsuppported
15 store:
16 [expr -> Expression#0]
17
18 result:
19 error // Due to over-approximation
20 store:
21 [expr -> Expression#0]
22
23 result:
24 success PhpExpr#9810
25 store:
26 [expr -> Expression#0]

Glagol-to-PHP No Unary Expression
1 refine Bool#130 = false()
2 refine Expression#0 = addition(Expression#0, Expression

↪→ #0) | and(Expression#0, Expression#0) |
↪→ arrayAccess(Expression#0, Expression#0) | boolean
↪→ (Bool) | bracket(Expression#0) | division(
↪→ Expression#0, Expression#0) | emptyExpr() |
↪→ equals(Expression#0, Expression#0) | fieldAccess(
↪→ string) | fieldAccess2(Expression#0, string) |
↪→ get(Type) | greaterThan(Expression#0, Expression
↪→ #0) | greaterThanOrEq(Expression#0, Expression#0)
↪→ | integer(int) | invoke(string, list[Expression
↪→ #0]) | invoke2(Expression#0, string, list[
↪→ Expression#0]) | lessThan(Expression#0,
↪→ Expression#0) | lessThanOrEq(Expression#0,
↪→ Expression#0) | list(list[Expression#0]) | map(
↪→ map[Expression#0, Expression#0]) | new(string,
↪→ list[Expression#0]) | nonEquals(Expression#0,
↪→ Expression#0) | or(Expression#0, Expression#0) |
↪→ product(Expression#0, Expression#0) | remainder(
↪→ Expression#0, Expression#0) | string(string) |
↪→ subtraction(Expression#0, Expression#0) | ternary
↪→ (Expression#0, Expression#0, Expression#0) | this
↪→ () | variable(string)

3 refine PhpActualParameter#2847 = phpActualParameter(
↪→ PhpExpr#2848, Bool#130)
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4 refine PhpActualParameter#2850 = phpActualParameter(
↪→ PhpExpr#2852, Bool#130)

5 refine PhpActualParameter#37391 = phpActualParameter(
↪→ PhpExpr#37393, Bool#130)

6 refine PhpActualParameter#37395 = phpActualParameter(
↪→ PhpExpr#37388, Bool#130)

7 refine PhpActualParameter#38501 = phpActualParameter(
↪→ PhpExpr#38510, Bool#130)

8 refine PhpActualParameter#38505 = phpActualParameter(
↪→ PhpExpr#38509, Bool#130)

9 refine PhpActualParameter#54145 = phpActualParameter(
↪→ PhpExpr#54146, Bool#130)

10 refine PhpActualParameter#54148 = phpActualParameter(
↪→ PhpExpr#54142, Bool#130)

11 refine PhpActualParameter#54658 = phpActualParameter(
↪→ PhpExpr#54659, Bool#130)

12 refine PhpActualParameter#54661 = phpActualParameter(
↪→ PhpExpr#54655, Bool#130)

13 refine PhpActualParameter#598 = phpActualParameter(
↪→ PhpExpr#607, Bool#130)

14 refine PhpActualParameter#602 = phpActualParameter(
↪→ PhpExpr#603, Bool#130)

15 refine PhpActualParameter#62410 = phpActualParameter(
↪→ PhpExpr#62411, Bool#130)

16 refine PhpActualParameter#62412 = phpActualParameter(
↪→ PhpExpr#62417, Bool#130)

17 refine PhpActualParameter#62413 = phpActualParameter(
↪→ PhpExpr#62414, Bool#130)

18 refine PhpArrayElement#2845 = phpArrayElement(
↪→ PhpOptionExpr#483, PhpExpr#2848, Bool#130)

19 refine PhpArrayElement#37389 = phpArrayElement(
↪→ PhpOptionExpr#483, PhpExpr#37393, Bool#130)

20 refine PhpArrayElement#38503 = phpArrayElement(
↪→ PhpOptionExpr#483, PhpExpr#38509, Bool#130)

21 refine PhpArrayElement#54143 = phpArrayElement(
↪→ PhpOptionExpr#483, PhpExpr#54146, Bool#130)

22 refine PhpArrayElement#54660 = phpArrayElement(
↪→ PhpOptionExpr#483, PhpExpr#54655, Bool#130)

23 refine PhpArrayElement#600 = phpArrayElement(
↪→ PhpOptionExpr#483, PhpExpr#603, Bool#130)

24 refine PhpArrayElement#62415 = phpArrayElement(
↪→ PhpOptionExpr#483, PhpExpr#62417, Bool#130)

25 refine PhpExpr#2848 = phpBracket(PhpOptionExpr#2842) |
↪→ phpMethodCall(PhpExpr#39, PhpNameOrExpr#38, list[
↪→ PhpActualParameter#2847]) | phpNew(PhpNameOrExpr
↪→ #38, list[PhpActualParameter#2850]) |
↪→ phpPropertyFetch(PhpExpr#39, PhpNameOrExpr#38) |
↪→ phpScalar(PhpScalar#140) | phpStaticCall(
↪→ PhpNameOrExpr#38, PhpNameOrExpr#38, list[void]) |
↪→ phpTernary(PhpExpr#2848, PhpOptionExpr#2842,
↪→ PhpExpr#2848) | phpVar(PhpNameOrExpr#38)

26 refine PhpExpr#2852 = phpArray(list[PhpArrayElement
↪→ #2845])

27 refine PhpExpr#37388 = phpArray(list[PhpArrayElement
↪→ #37389])

28 refine PhpExpr#37393 = phpBracket(PhpOptionExpr#37386) |
↪→ phpMethodCall(PhpExpr#39, PhpNameOrExpr#38, list[
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↪→ PhpActualParameter#37391]) | phpNew(PhpNameOrExpr
↪→ #38, list[PhpActualParameter#37395]) |
↪→ phpPropertyFetch(PhpExpr#37393, PhpNameOrExpr#38)
↪→ | phpScalar(PhpScalar#140) | phpStaticCall(
↪→ PhpNameOrExpr#38, PhpNameOrExpr#38, list[void]) |
↪→ phpVar(PhpNameOrExpr#38)

29 refine PhpExpr#38509 = phpBracket(PhpOptionExpr#38500) |
↪→ phpMethodCall(PhpExpr#38509, PhpNameOrExpr#38,
↪→ list[PhpActualParameter#38505]) | phpNew(
↪→ PhpNameOrExpr#38, list[PhpActualParameter#38501])
↪→ | phpPropertyFetch(PhpExpr#39, PhpNameOrExpr#38)
↪→ | phpScalar(PhpScalar#140) | phpStaticCall(
↪→ PhpNameOrExpr#38, PhpNameOrExpr#38, list[void]) |
↪→ phpVar(PhpNameOrExpr#38)

30 refine PhpExpr#38510 = phpArray(list[PhpArrayElement
↪→ #38503])

31 refine PhpExpr#39 = phpVar(PhpNameOrExpr#38)
32 refine PhpExpr#54142 = phpArray(list[PhpArrayElement

↪→ #54143])
33 refine PhpExpr#54146 = phpBracket(PhpOptionExpr#54140) |

↪→ phpMethodCall(PhpExpr#39, PhpNameOrExpr#38, list[
↪→ PhpActualParameter#54145]) | phpNew(PhpNameOrExpr
↪→ #38, list[PhpActualParameter#54148]) |
↪→ phpPropertyFetch(PhpExpr#39, PhpNameOrExpr#38) |
↪→ phpScalar(PhpScalar#140) | phpStaticCall(
↪→ PhpNameOrExpr#38, PhpNameOrExpr#38, list[void]) |
↪→ phpVar(PhpNameOrExpr#38)

34 refine PhpExpr#54655 = phpBinaryOperation(PhpExpr#54655,
↪→ PhpExpr#54655, PhpOp#54656) | phpBracket(
↪→ PhpOptionExpr#54657) | phpMethodCall(PhpExpr#39,
↪→ PhpNameOrExpr#38, list[PhpActualParameter#54661])
↪→ | phpNew(PhpNameOrExpr#38, list[
↪→ PhpActualParameter#54658]) | phpPropertyFetch(
↪→ PhpExpr#39, PhpNameOrExpr#38) | phpScalar(
↪→ PhpScalar#140) | phpStaticCall(PhpNameOrExpr#38,
↪→ PhpNameOrExpr#38, list[void]) | phpVar(
↪→ PhpNameOrExpr#38)

35 refine PhpExpr#54659 = phpArray(list[PhpArrayElement
↪→ #54660])

36 refine PhpExpr#603 = phpBracket(PhpOptionExpr#597) |
↪→ phpFetchArrayDim(PhpExpr#603, PhpOptionExpr#597)
↪→ | phpMethodCall(PhpExpr#39, PhpNameOrExpr#38,
↪→ list[PhpActualParameter#602]) | phpNew(
↪→ PhpNameOrExpr#38, list[PhpActualParameter#598]) |
↪→ phpPropertyFetch(PhpExpr#39, PhpNameOrExpr#38) |
↪→ phpScalar(PhpScalar#140) | phpStaticCall(
↪→ PhpNameOrExpr#38, PhpNameOrExpr#38, list[void]) |
↪→ phpVar(PhpNameOrExpr#38)

37 refine PhpExpr#607 = phpArray(list[PhpArrayElement#600])
38 refine PhpExpr#62411 = phpNew(PhpNameOrExpr#38, list[

↪→ PhpActualParameter#62412])
39 refine PhpExpr#62414 = phpArray(list[PhpArrayElement

↪→ #62415])
40 refine PhpExpr#62417 = phpBracket(PhpOptionExpr#62409) |

↪→ phpMethodCall(PhpExpr#39, PhpNameOrExpr#38, list[
↪→ PhpActualParameter#62412]) | phpNew(PhpNameOrExpr
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↪→ #38, list[PhpActualParameter#62413]) |
↪→ phpPropertyFetch(PhpExpr#39, PhpNameOrExpr#38) |
↪→ phpScalar(PhpScalar#140) | phpStaticCall(
↪→ PhpNameOrExpr#38, PhpNameOrExpr#38, list[
↪→ PhpActualParameter#62410]) | phpVar(PhpNameOrExpr
↪→ #38)

41 refine PhpExpr#90001 = phpBinaryOperation(PhpExpr#54655,
↪→ PhpExpr#54655, PhpOp#54656) | phpBracket(
↪→ PhpOptionExpr#54140) | phpFetchArrayDim(PhpExpr
↪→ #603, PhpOptionExpr#597) | phpMethodCall(PhpExpr
↪→ #38509, PhpNameOrExpr#38, list[PhpActualParameter
↪→ #38505]) | phpNew(PhpNameOrExpr#38, list[
↪→ PhpActualParameter#54148]) | phpPropertyFetch(
↪→ PhpExpr#37393, PhpNameOrExpr#38) | phpScalar(
↪→ PhpScalar#140) | phpStaticCall(PhpNameOrExpr#38,
↪→ PhpNameOrExpr#38, list[PhpActualParameter#62410])
↪→ | phpTernary(PhpExpr#2848, PhpOptionExpr#2842,
↪→ PhpExpr#2848) | phpVar(PhpNameOrExpr#38)

42 refine PhpNameOrExpr#38 = phpName2(PhpName)
43 refine PhpOp#54656 = phpDiv() | phpGeq() | phpGt() |

↪→ phpIdentical() | phpLeq() | phpLogicalAnd() |
↪→ phpLogicalOr() | phpLt() | phpMinus() | phpMod()
↪→ | phpMul() | phpNotIdentical() | phpPlus()

44 refine PhpOptionExpr#2842 = phpSomeExpr(PhpExpr#2848)
45 refine PhpOptionExpr#37386 = phpSomeExpr(PhpExpr#37393)
46 refine PhpOptionExpr#38500 = phpSomeExpr(PhpExpr#38509)
47 refine PhpOptionExpr#483 = phpNoExpr()
48 refine PhpOptionExpr#54140 = phpSomeExpr(PhpExpr#54146)
49 refine PhpOptionExpr#54657 = phpSomeExpr(PhpExpr#54655)
50 refine PhpOptionExpr#597 = phpSomeExpr(PhpExpr#603)
51 refine PhpOptionExpr#62409 = phpSomeExpr(PhpExpr#62417)
52 refine PhpScalar#140 = phpBoolean(Bool) | phpInteger(int)

↪→ | phpString(string)
53
54 result:
55 throw Unsuppported
56 store:
57 [expr -> Expression#0]
58
59 result:
60 error // Due to over approximation
61 store:
62 [expr -> Expression#0]
63
64 result:
65 success PhpExpr#90001?
66 store:
67 [expr -> Expression#0]
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