
Operating System Support for

High-Performance Solid State Drives
Matias Bjørling

A dissertation submitted to the PhD school at the IT University of Copenhagen
for the degree of Doctor of Philisophy.

Submitted: May 2015, Copenhagen
Defended:
Final version:

Advisors:
Philippe Bonnet, IT University of Copenhagen, Denmark
Luc Bouganim, INRIA Paris-Rocquencourt, France

Evaluation committee:
Peter Sestoft, IT University of Copenhagen, Denmark
Gustavo Alonso, ETH Zürich, Switzerland
Alejandro Buchmann, TU Darmstadt, Germany

Abstract

The performance of Solid State Drives (SSD) has evolved from hundreds
to millions of I/Os per second in the past three years. Such a radical
evolution is transforming both the storage and the software industries.
Indeed, software designed based on the assumption of slow IOs has be-
come the bottleneck in the era of high-performance SSDs.

In the context of the CLyDE project, a collaboration between the IT
University of Copenhagen and INRIA Rocquencourt, we recognized the
mismatch between software designed for hard drives and high- perfor-
mance SSDs. This thesis focuses on the role of the operating system in
reducing the gap, and enabling new forms of communication and even
co-design between applications and high-performance SSDs.

More specifically, we studied the storage layers within the Linux ker-
nel. We explore the following issues: (i) what are the limitations of the
legacy block interface and its cost in the context of high-performance
SSDs? (ii) Can the Linux kernel block layer cope with high-performance
SSDs? (iii) What is an alternative to the legacy block interface? How to
explore the design space? (iv) How about exposing SSD characteristics
to the host in order to enable a form of application-SSD co-design? What
are the impacts on operating system design? (v) What would it take to
provide quality of service for applications requiring millions of I/O per
second?

The dissertation consists of six publications covering these issues.
Two of the main contributions of this thesis (the multi-queue block layer
and LightNVM) are now an integral part of the Linux kernel.

iv

Acknowledgments

The following dissertation concludes my studies at IT University of Copen-
hagen. It is a synopsis of six papers: (i) Three papers published and one
under review. (ii) Two are workshop papers; one born out of the need of
simulating SSDs and the last one (iii) was created while Michael Wei was
visiting our research group December 2014. The years have gone by and
its incredible how fast the time have gone. It has been a pleasure to dive
deep into a topic, meet very talented researchers and explore a subject at
my own pace. For all this, I can thank:

My adviser, Philippe Bonnet, for guiding me through the life of uni-
versity. We have been working together since his first database course at
Copenhagen University and I did not think for a second that this would
be where we ended up ten years later. It has been a great ride.

Thanks to Luc Bouganim from INRIA and Steven Swanson from UCSD.
The former for letting me visit INRIA and long discussions about SSDs.
The latter for hosting my visit at UCSD. It was great to be part of his lab
for four months. His students were very welcoming and we had a great
time.

Thanks to Jens Axboe for guiding me through the industry and open-
ing a lot of opportunities that else would not have been possible.

Freja Krob Koed Eriksen and Christina Rasmussen from the ITU PhD
School. They have been a tremendous help while doing the PhD. I am
grateful for having such wonderful people taking care of us kids.

Friends and family for encouragement and support. Especially my
wife Trine, who has taken care of everything when things got busy up
to a deadline and to bear with me during times when I was in my own
bubble. She has been an inspiration to me on how to live a great life and
always brings the best out of me.

At last, thanks to all the great lab mates: Javier González, Jonathan
Fürst, Aslak Johansen, and Niv Dayan from IT University of Copen-
hagen for being part of a great research environment. A special thanks
to Michael Wei at UCSD, that made the stay at UCSD so much more fun.
I had never discussed new ideas as much as with him. Wish you all the
best of luck.

Contents

Contents v

1 Introduction 1

1.1 Context . 1

1.2 Solid State Drive Basics . 3

1.3 Problem . 4

1.4 Approach . 7

1.5 Contributions . 8

1.6 Structure of the Thesis . 13

Literature 15

2 The Necessary Death of the Block Device Interface 19

Literature 21

3 Linux Block IO: Introducing Multi-queue SSD Access on Multi-

core Systems 28

Literature 33

4 I/O Speculation for the Microsecond Era 44

Literature 47

5 LightNVM: Lightning Fast Evaluation Platform for Non-Volatile

Memories 55

Literature 58

6 Open-Channel Solid State Drives 61

Literature 65

7 AppNVM: A software-defined, application-driven SSD 79

Literature 83

8 Conclusion 88

8.1 Open Issues . 92

8.2 Perspectives for Industry . 93

8.3 Perspectives for Research 94

vi

Chapter 1

Introduction

1.1 Context

Millions of petabytes of data are generated each year and must be stored

and accessed efficiently for business, entertainment, government or sci-

ence. From the 80s until a couple of years ago, database systems have

relied on magnetic disks as secondary storage.

Successive generations of magnetic disks have complied with two

simple axioms: (1) locality in the logical address space is preserved in the

physical address space; (2) sequential access is much faster than random

access. The former axiom reflects the simple logic embedded in magnetic

disk controllers. The latter axiom is shaped by the physical characteris-

tics of rotational devices: startup costs involving disk head movement

are high, while running costs involving rotation of the disk platter are

low: Random accesses are slow, while sequential accesses are fast.

As long as magnetic disks remained the sole medium for secondary

storage, the block device interface proved to be a very robust operating

system abstraction that allowed the kernel to hide the complexity of I/O

management without sacrificing performance. The block device interface

is a simple memory abstraction based on read and write primitives and

a flat logical address space (i.e., an array of sectors). Since the advent of

Unix, the stability of disks characteristics and interface have guaranteed

the timelessness of major database system design decisions, i.e., pages

are the unit of I/O with an identical representation of data on-disk and

in-memory; random accesses are avoided (e.g., query processing algo-

rithms) while sequential accesses are favored (e.g., extent-based alloca-

tion, clustering).

Today, the advent of solid state disks (SSD) based on NAND flash

memory has transformed the performance characteristics of secondary

storage. SSDs rely on tens of flash chips wired in parallel to deliver high

throughput (hundreds of MB/s to GB/s) and latency in the microsecond

range. Over the last five years, the transition has been very fast from

magnetic disks providing throughput of 100s of random I/O per second

(IOPS), to SSDs providing hundreds of thousands of IOPS (OCZ Vertex 3)

and beyond a million IOPS (Fusion-io ioDrive Octal) for a single device.

Similarly, sequential throughput for a single device has increased from

hundred of MB/s to GB/s.

The adoption of flash-based SSDs has created a mismatch between

the simple disk model that underlies the design of today’s database sys-

tems and the complex flash devices of today’s computers. The CLyDE

(Cross Layer Database Engine for flash-based SSDs) research project, a

collaboration between the IT University of Copenhagen and the SMIS

Project at INRIA Paris-Rocquencourt, was funded in 2011 by the Danish

2

Independent Research Council to tackle this issue.

CLyDE is based on the insight that the strict layering that has been

so successful for designing database systems on top of magnetic disks is

no longer applicable with SSDs. In other words, the complexity of SSDs

cannot and should not be abstracted away if it results in unpredictable

and suboptimal performance. This PhD project has been funded by the

CLyDE project. This thesis, with the software I produced and the papers

collected in this manuscript constitute a significant part of its contribu-

tion.

1.2 Solid State Drive Basics

Before I proceed with the focus of my thesis, I need to introduce the ba-

sics of SSD design. Note that SSD basics are covered repeatedly through-

out the papers that constitute this manuscript. I describe SSD internals

in details in Chapter 2, where I also discuss misconceptions about their

performance characteristics.

The non-volatile storage in an SSD is NAND flash chips. They pro-

vide high performance, at low energy consumption. Unfortunately, flash

chips have severe constraints [1, 4]: (C1) Write granularity. Writes must

be performed at a page granularity (4KB-16KB); (C2) Erase before write.

A costly erase operation must be performed before overwriting a flash

page. Even worse, erase operations are only performed at the granular-

ity of a flash block (typically 64-256 flash pages); (C3) Sequential writes

within a block. Writes must be performed sequentially within a flash

block in order to minimize write errors resulting from the electrical side

3

effects of writing a series of cells; and (C4) Limited lifetime. Flash chips

can support thousands erase operations per block.

The software embedded into flash devices is called Flash Translation

Layer (FTL). Its goal is to hide flash chip constraints (erase-before-write,

limited number of erase-write cycles, sequential page-writes within a

flash block) so that flash devices can support the block device interface.

A FTL provides address translation, wear leveling and strives to hide

the impact of updates and random writes based on observed update fre-

quencies, access patterns, or temporal locality.

1.3 Problem

With magnetic disks, hardware was the bottleneck in the I/O stack. Soft-

ware should find interesting work to do while waiting for I/O to com-

plete. With SSDs however, it is software that has become the bottleneck.

The software that composes the I/O stack, including FTL, device driver,

operating system block layer to applications, must be streamlined and

possibly reorganized in order to keep up with hardware performance.

For years, the transport interface has bounded the performance of the

underlying storage hardware. The advent of SSDs quickly exposed the

relatively slow transfer speeds and latencies in these legacy protocols.

For example, SATA/SAS limited the throughput to 300-600 MB/s.

In 2007, Intel introduced the NVM Express [13] (NVMe) protocol to

fully leverage the PCI-e transport interface for storage devices. The PCI-e

bus, with its 1GB/s per lane in PCI gen3 standardilization enables SSDs

4

to scale their throughput. In terms of latency, PCI-e roundtrip is around

1us for a 4K I/O request [3].

NVMe exposes SSD parallelism so that it can be fully utilized by

host’s hardware and software. The first commercially available con-

trollers supporting NVMe were released in 2012. Today, NVMe has be-

come the standard interface for high-performance SSD on top of PCI-e.

I have focused my work on the consequences of the introduction of

high speed interfaces on system design. My core assumption is that the

operating system should be redesigned to fully utilize the parallelism of

SSDs exposed via NVMe. My thesis is that the operating system should

remain a mediator between diverse applications and a variety of high-

performance SSDs. The fundamental question is which form of media-

tion should the operating system perform. More specifically, I have stud-

ied the following questions:

1. Is the block device interface still relevant as a secondary storage abstrac-

tion? What are the alternatives? The block device interface hides the

complexity of the underlying storage devices behind a very simple

memory abstraction. System design has been based on the assump-

tion of a stable performance contract exists across the block device

interface. Such a contract ((i) contiguity in the logical address space

is reflected on disk, and (ii) sequential access is much faster than

random access) has driven the design of system software on both

sides of the block device interface.

For magnetic drives, rigorous performance models have been ex-

tensively studied [20, 1] based on the mechanical characteristics of

5

hard-drives (seek time, number of spindles, rotations per minute).

For SSDs however, my previous work has contributed to show-

ing the limits of SSD performance modeling. Together with Luc

Bouganim and Philippe Bonnet, I showed that the performance

characteristics and energy profiles vary significantly across SSDs,

and that performance varies in time based on the history of ac-

cesses.

SSD performance fluctuations are a product of the characteristics

of flash chips and of the complexity of the FTL that handles the

mismatch that exists between the interface that the SSD exposes

(read/write) and the internal interface for flash chips (read, write,

erase).

Back in 2011, Bill Nesheim, then Oracle VP for Solaris Platform En-

gineering, illustrated the consequences of SSD performance fluctu-

ations during his keynote at the Flash Memory Summit [17]: “An

average latency of about 1ms is irrelevant when the application is

waiting for the 100+ ms outlier to complete”. In 2015, this is still

true and poses a significant challenge for system design.

2. What are the bottlenecks in the operating system I/O stack? How to re-

move them? In the CLyDE project, the initial focus lied on cross-

layer optimizations between database system and SSD. However,

we quickly made two observations. First, it became apparent that

we could not oversee the crucial role of the operating system in the

I/O stack. Indeed, as SSD latency decreases, the overhead of the

operating system software stack becomes a significant part of the

6

time it takes to process I/Os [2]. Second, we realized that key-value

stores and other types of data management systems had become

important for increasingly large classes of applications and that

they should also benefit from SSD performance. Here again, the

operating system plays a central role in supporting various types

of applications. When I started my PhD, several initiatives had

been taken to improve the communication between operating sys-

tem and SSD: (a) the Trim command [23, 14] had been introduced

to notify SSDs of invalid sectors, (b) file-systems and applications

had the option to know whether an SSD was used as secondary

storage and (c) careful optimization of hot code paths for each I/O

had been applied. These initiatives increased I/O throughput and

lowered I/O latency. However, the Linux operating software stack

still exhibited a significant overhead as it had been designed for a

single core and was heavily optimized for traditional hard-drives.

I thus chose to focus on the following question: How to get Linux

to scale to millions IOPS and microsecond I/O latency?

1.4 Approach

The approach I have taken to study these problems is rooted in experi-

mental computer science [12]. First, the core of this thesis is based on the

design, implementation and experimental evaluation of operating sys-

tem components. Second, throughout this thesis, I have formulated hy-

potheses, and then directed effort at trying to confirm or falsify them

qualitatively, or quantitatively when appropriate.

7

Another important aspect of the approach I have taken to my thesis

concerns my contribution to open source software in general and to the

Linux kernel in particular. Early on in my thesis, I realized that I was

fortunate to work in an area where deep changes were taking places, and

that I might have an opportunity to contribute to some of these changes.

In order to maximize the impact of my work I wanted to engage the in-

dustry as well as the research community. This is why I spent 4 months

as an intern at Fusion-io in the summer 2012.

I had the privilege to work with Jens Axboe, previously at Fusion-

io, now at Facebook. Jens has been the maintainer of the Linux block

layer for many years. This internship and the collaboration with Jens

enabled me to establish a pattern that I followed throughout the thesis

based on (1) contributions to the Linux kernel and (2) a principled design

and experimental evaluation that could lead to scientific publication.

1.5 Contributions

This manuscript is composed of 6 publications I co-authored throughout

my thesis. Together, they form a contribution that can be represented as

a bottom up sweep of the operating system’s I/O stack in six steps.

Step 1: We observe that the interface between SSD and the host is re-

stricted to a narrow block interface that exposes a simple memory ab-

straction (read/write) on a flat address space. This interfaces leaves

no space for communicating the intent of the applications that run on

the host. There is thus a complete disconnect between what the disk

knows and what the host knows. For magnetic disks, this disconnect

8

was bridged by an implicit performance contract. For SSD, there is no

stable performance contract.

In the first paper, published at CIDR in 2013, we debunk some of the

common myths about SSD performance. We argue that the block device

interface has become an obstacle to principled system design due to the

non existence of a generic performance contract. We conclude this paper

by giving a vision of how database systems can efficiently interact with

SSDs and we argue that a deep redesign of the entire I/O stack, including

the operating system, is needed.

Step 2: Having laid the foundation for the upcoming research, we

tackle the block layer within the operating system. Research papers [2, 9,

3] have shown significant overhead per I/O within the operating system.

We expect that hardware performance will continue to outgrow software

performance for the foreseeable future. Moving our attention to the OS,

there are several parts that can be optimized.

The block I/O interface within a kernel is usually divided into sev-

eral parts: (a) Device driver that handle communication to and from the

block device, (b) the block layer that handle fairness, scheduling, etc. of

an I/O, and (c) libraries that are exported to the user-space through asyn-

chronous and synchronous mechanisms. The device drivers are device

specific and we leave any research on optimizations to the device ven-

dors. We instead focus on the block layer and submission/completion

libraries.

This work was published at SYSTOR in 2013 and is a direct result of

my internship at Fusion-io. The paper argues that the current block layer

within the Linux kernel is inadequate for current and future SSDs. We

9

present the design of a new block layer, that allows the number of I/O

per seconds available to scale with the number of cores in a system and

with the device itself. Additionally, the engineering work reported in the

paper led to significantly reduce the time spent by I/Os traversing the

block layer. The work was integrated in the Linux kernel and upstreamed

with Linux Kernel 3.13.

Step 3: In order to continue our endeavor, we needed to find new

ways to explore the design space of cross layer optimizations involv-

ing operating system and SSDs. We considered simulation or custom-

made hardware platforms. Both allow us to test our ideas. SSD sim-

ulators, such as DiskSim [1], FlashSim [3] and EagleTree [11], that Niv

Dayan built as an extension of the simulator I built during my MSc the-

sis, allow us to prototype ideas quickly and understand their implica-

tions. Unfortunately, all the simulators are defined in user-space. None

of them allow us prototype operating system kernel changes without

significant latency overhead. Conversely, hardware platforms, such as

OpenSSD [13, 16, 22] and Moneta [2], let us keep the code paths through

the software stack without breaking compatibility, but requires signifi-

cant plumping to yield a result. Moneta also assumes that applications

access a SSD directly, without mediation from the operating system (an

approach which is not a good match for our core thesis).

As a result, we decided to implement our own simulator, that per-

forms I/O scheduling at run-time and allows users to directly measure

the performance impact of any software and hardware design decision.

The paper included in this thesis was presented at the Non-Volatile Mem-

ory Workshop (NVMW) in 2014.

10

Step 4: Moving back to the original research question around the nar-

row block interface for SSDs, we extend the ideas that underlie the de-

sign of our simulator into an extension of the Linux block layer. A lot

of interesting research towards cross-layer stack ideas have been pro-

posed [10, 9] as well as extensions of block I/O interface [2, 18]. These

approaches look at the overhead and guarantees of the OS, and moves

parts or all OS logic into the SSD or the application. We take the dual

approach. We wish to explore how far can we move SSD processing into

the host software stack in order to improve performance.

We extend the narrow block interface, with additional commands so

that the SSD exposes its physical address space and flash commands di-

rectly to the host. We denote such SSDs, open-channel SSDs. Such SSDs

were envisaged by Philippe Bonnet and Luc Bouganim back in 2011 [19].

At the time it was science fiction. Today, all major Internet service and

public cloud providers rely on their own custom-made open channel

SSDs. SSD controller vendors are competing to define products adapted

for such SSDs. Memblaze already commercializes a version of its PBlaze3

SSD as open channel SSDs.

We defined the LightNVM specification1 , that describes a command

set to communicate the characteristics of SSDs, and allows the host to im-

plement a generic layer, which can either be used to implement a host-

side FTL, similarly to the Virtual Storage Layer provided by Fusion-io,

or move FTLs (we call these targets) into the applications itself. Light-

NVM allows applications to work together on the same address space,

and thus maintain access to storage, without going though the kernel (if

1LightNVM Specification Draft: http://goo.gl/BYTjLI

11

http://goo.gl/BYTjLI

that is the wish), but still consult the kernel for chunk accesses (1-16MB).

This provides a less granular split of accesses and thus allows the CPU

overhead to scale with the speed of the storage device. Allowing applica-

tions to directly optimize their data placement on top of SSDs, removes

the need for intermediate layers, such as file-systems. LightNVM2 is cur-

rently being prepared for the Linux kernel and will soon hit upstream,

with several SSD vendors implementing the command set to bringing

application-defined storage to the next-generation storage systems. The

paper included in this thesis will be submitted to FAST 2016.

Step 5: Looking forward, we consider the problem of processing

I/Os with future SSDs whose latency lies in the microsecond range with

throughput of millions of I/Os per seconds. Our work was inspired

by the FAST 2012 paper [4] introducing pull versus poll. For SSDs that

whose latency lied in the 5-10us range, it was not very clear if a pull or

poll model should be used. By introducing speculation into the mix, we

enable applications to keep on working, without waiting for I/O com-

pletion. The paper included in this thesis is a collaboration with Michael

Wei from UCSD. The paper was published at the Usenix Annual Techni-

cal Conference in 2014.

Step 6: For future high-performance SSDs, we looked at what kind

of processing could be moved back to the SSD, and possibly encoded

in hardware, in order to basically get the operating system out of the

data path, with quality of service guarantees enforced on the control

path. Today, performing fairness is fully disregarded for SSDs (CFQ and

other I/O schedulers are very often disabled for SSDs). We argue that a

2Website: http://github.com/OpenChannelSSD

12

http://github.com/OpenChannelSSD

rule-based approach, which could be efficiently supported in hardware,

would be a significant improvement of the state of the art. The position

paper included in this thesis was presented at the Non-Volatile Memory

Workshop in 2015 and constitutes the basis for a patent application.

In summary, this thesis has the following four major contributions:

• Questioning whether the narrow block interface is the right inter-

face for the future (Paper 1, 6);

• Defining a new block layer within the Linux Kernel to add scalabil-

ity for the storage stack in the Linux kernel (Paper 2);

• Defining a new software framework for controlling SSDs by mov-

ing data placement decisions into the host (Paper 4);

• At last, opportunities for enabling faster storage accesses and intel-

ligent I/O processing on SSDs with microsecond latency (Paper 3,

5).

1.6 Structure of the Thesis

The thesis is structured around these 6 contributions. Paper 1 “Neces-

sary Death of the Block Device Interface” [4] presented at CIDR 2013.

Paper 2, together with Jens Axboe, “Linux Block IO: Introducting Multi-

queue SSD Access on Multi-core Systems” [3] presented at SYSTOR 2013.

Paper 3, together with Michael Wei from UCSD, “I/O Speculation for

the Microsecond Era” [25] presented at USENIX ATC 2014. Paper 4,

“LightNVM: Lightning Fast Evaluation Platform for Non-Volatile Mem-

ories” [1] presented at the Non-Volatile Memory Workshop. Paper 5,

13

“Open-Channel Solid State Drives” short paper presented at the Non-

Volatile Memory Workshop and Linux Software Foundation Vault 2015.

Long version to be submitted to FAST 2016. At last Paper 6, “AppNVM:

A software-defined, application-driven SSD” [6] presented at the Non-

Volatile Memory Workshop 2015. Finally, the manuscript offers conclud-

ing remarks, open issues and directions for future work.

14

Literature

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, J.D. Davis, Mark
Manasse, and Rina Panigrahy. Design tradeoffs for SSD
performance. In USENIX 2008 Annual Technical Conference on Annual
Technical Conference, number June, pages 57–70. USENIX
Association, 2008.

[2] AC Arpaci-Dusseau and RH Arpaci-Dusseau. Removing the costs of
indirection in flash-based SSDs with nameless writes. HotStorage’10
Proceedings of the 2nd USENIX conference on Hot topics in storage and
file systems, 2010.

[3] Matias Bjø rling, Jens Axboe, David Nellans, and Philippe Bonnet.
Linux Block IO : Introducing Multi-queue SSD Access on Multi-core
Systems. Proceedings of the 6th International Systems and Storage
Conference, 2013.

[4] Matias Bjø rling, Philippe Bonnet, Luc Bouganim, and Niv Dayan.
The Necessary Death of the Block Device Interface. In 6th Biennial
Conference on Innovative Data Systems Research (CIDR), 2013.

[5] Matias Bjø rling, Jesper Madsen, Philippe Bonnet, Aviad Zuck,
Zvonimir Bandic, and Qingbo Wang. LightNVM: Lightning Fast
Evaluation Platform for Non-Volatile Memories. In Non-Volatile
Memories Workshop, NVMWorkshop’14, 2014.

[6] Matias Bjø rling, Michael Wei, Javier González, Jesper Madsen, and
Philippe Bonnet. AppNVM: A software-defined, application-driven
SSD. In Non-Volatile Memories Workshop, 2015.

[7] John S Bucy, Jiri Schindler, Steven W Schlosser, and Gregory R

Ganger. The DiskSim Simulation Environment. Parallel Data
Laboratory, 2008.

[8] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollow,
Rajesh K. Gupta, and Steven Swanson. Moneta: A
High-Performance Storage Array Architecture for Next-Generation,
Non-volatile Memories. 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 385–395, December 2010.

[9] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De,
Joel Coburn, and Steven Swanson. Providing safe, user space access
to fast, solid state disks. Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), page 387, 2012.

[10] Joel Coburn, Adrian M Caulfield, Laura M Grupp, Rajesh K Gupta,
and Steven Swanson. NV-Heaps: Making Persistent Objects Fast
and Safe with Next-Generation , Non-Volatile Memories. In ACM
SIGARCH Computer Architecture News, 2011.

[11] Niv Dayan, MK Svendsen, and Matias Bjø rling. EagleTree:
exploring the design space of SSD-based algorithms. Proceedings of
the VLDB Endowment, 2013.

[12] Peter J Denning. ACM President’s Letter: What is experimental
computer science? Communications of the ACM, 23(10), 1980.

[13] Amber Huffman. NVM Express Specification 1.1. 2012.

[14] Kim Joohyun, Haesung Kim, Seongjin Lee, and Youjip Won. FTL
Design for TRIM Command. The Fifth International Workshop on
Software Support for Portable Storage, pages 7–12, 2010.

[15] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan
Urgaonkar. FlashSim: A Simulator for NAND Flash-Based
Solid-State Drives. 2009 First International Conference on Advances in
System Simulation, pages 125–131, September 2009.

[16] Sang-won Lee and Jin-soo Kim. Understanding SSDs with the
OpenSSD Platform. Flash Memory Summit, 2011.

16

[17] Oracle Nesheim, Bill. Mythbusting Flash Performance. Flash
Memory Summit, 2011.

[18] Xiangyong Ouyang, David Nellans, Robert Wipfel, David Flynn,
and D.K. Panda. Beyond block I/O: Rethinking traditional storage
primitives. In High Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, pages 301–311. IEEE, 2011.

[19] Luc Bouganim Philippe Bonnet. Flash Device Support for Database
Management. 5th Biennial Conference on Innovative Data Systems
Research (CIDR), 2011.

[20] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3):17–28, March 1994.

[21] Mohit Saxena, Yiying Zhang, Michael M Swift, Andrea
Arpaci-Dusseau C, and Remzi H Arpaci-Dusseau. Getting Real:
Lessons in Transitioning Research Simulations into Hardware
Systems. In Proceedings of the 11th USENIX conference on File and
Storage Technologies (FAST), 2013.

[22] Yong Ho Song, Sanghyuk Jung, Sang-won Lee, and Jin-soo Kim.
Cosmos OpenSSD : A PCIe-based Open Source SSD Platform
OpenSSD Introduction. Flash Memory Summit, pages 1–30, 2014.

[23] Curtis E Stevens and Dan Colgrove. Technical Comittee TI13 - ATA
/ ATAPI Command Set - 2. 2010.

[24] Dejan Vučinić, Qingbo Wang, Cyril Guyot, Robert Mateescu, Filip
Blagojević, Luiz Franca-neto, Damien Le Moal, Hgst San, Trevor
Bunker, Jian Xu, Steven Swanson, San Diego, Santa Clara, and
Zvonimir Bandi. DC Express : Shortest Latency Protocol for
Reading Phase Change Memory over PCI Express. 12th USENIX
Conference on File and Storage Technologies (FAST), 2014.

[25] Michael Wei, Matias Bjø rling, Philippe Bonnet, and Steven
Swanson. I/O Speculation for the Microsecond Era. In USENIX
Annual Technical Conference, 2014.

[26] Jisoo Yang, DB Minturn, and Frank Hady. When poll is better than

17

interrupt. Proceedings of the 10th USENIX conference on File and
Storage Technologies (FAST), pages 1–7, 2012.

18

Chapter 2

The Necessary Death of the Block

Device Interface

The premise of the CLyDE project is that the strict layering that has been

so successful for designing database systems on top of magnetic disks is

no longer applicable with SSDs based on existing observation that SSD

performance varies a lot and in unpredictable ways [7, 8, 6, 9, 3, 14, 5, 12].

To start the thesis, I spent time reviewing the literature and surveying

existing assumptions about SSD performance model. I found that most

papers made a set of assumptions, most often implicitely about SSD per-

formance. the original plan was to evaluate these assumptions experi-

mentally. It turned out that an analysis based on a clear understanding

of SSD internals was sufficient to show that SSD complexity was not cap-

tured by existing performance models. The first part of the following

paper thus makes the case against the narrow block device interface.

But what then? If the block device interface is not appropriate, how

should secondary storage be abstracted? And how would hardware evo-

lution, in particular the advent of byte addressable persistent memory,

impact such an abstraction? We propose a vision that addresses these

questions in the second part of this paper.

This vision paper, called "The Necessary Death of the Block Device

Interface", was published at CIDR in 2013.

After the paper was published, it has been discussed at workshops

and presentations in the industry [1, 2]. Interfaces have been specifi-

cally designed to change the way the block device interface is used in

large cloud data-centers [11], moving from a block device abstraction

per SSD to a block device abstraction per flash chip in a SSD. Similarly,

NVMKV [10], NVMFS [2, 13] propose special purpose instantiations of

the storage block interface.

What was a slightly unconventional take on SSD performance char-

acterisation has now become a mainstream view. For example, it was

the view adopted by all indutrial presenters at the EMC University Flash

Forum in September 2014. Note though that some industry players are

still very much attached to the block device interface to keep the status

quo and a very profitable business as long as possible. So the block de-

vice interface is not going to disappear any time soon. The point I make

in the paper though is that it has become a legacy that should no longer

constraint system research.

20

Literature

[1] EMC University Flash Forum, September. 2014.

[2] Memblaze Flash Forum, May. 2015.

[3] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: A
Flash Translation Layer Employing Demand-based Selective
Caching of Page-level Address Mappings. ACM SIGPLAN Notices,
44(3):229, February 2009.

[4] William K. Josephson, Lars a. Bongo, Kai Li, and David Flynn.
DFS: A File System for Virtualized Flash Storage. ACM Transactions
on Storage, 6(3):1–25, September 2010.

[5] Dawoon Jung, Jeong-UK Kang, Heeseung Jo, Jin-Soo Kim, and
Joonwon Lee. Superblock FTL: A Superblock-Based Flash
Translation Layer with a Hybrid Address Translation Scheme.
ACM Transactions on Embedded Computing Systems, 9(4):1–41, March
2010.

[6] J KANG, J KIM, C PARK, H PARK, and J LEE. A multi-channel
architecture for high-performance NAND flash-based storage
system. Journal of Systems Architecture, 53(9):644–658, September
2007.

[7] Jesung Kim, Jong Min Kim, Sam H Noh, Sang Lyul Min, and
Yookun Cho. A space-efficient flash translation layer for
CompactFlash systems. IEEE Transactions on Consumer Electronics,
48(2):366–375, May 2002.

[8] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee,

Sangwon Park, and Ha-Joo Song. FAST: A log buffer-based flash
translation layer using fully-associative sector translation. ACM
Transactions on Embedded Computing Systems, 6(3), July 2007.

[9] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim.
LAST: locality-aware sector translation for NAND flash
memory-based storage systems. ACM SIGOPS Operating Systems
Review, 42(6):36–42, October 2008.

[10] Leonardo Mármol, Swaminathan Sundararaman, Nisha Talagala,
Raju Rangaswami, Sushma Devendrappa, Bharath Ramsundar,
and Sriram Ganesan. NVMKV: A Scalable and Lightweight Flash
Aware Key-Value Store. 6th USENIX Workshop on Hot Topics in
Storage and File Systems, 2014.

[11] Jian Ouyang, Shiding Lin, S Jiang, and Z Hou. SDF:
Software-defined flash for web-scale internet storage systems. In
Proceedings of the 19th international conference on Architectural support
for programming languages and operating systems, 2014.

[12] Dongchul Park, Biplob Debnath, and David H.C. Du. A
Workload-Aware Adaptive Hybrid Flash Translation Layer with an
Efficient Caching Strategy. In 2011 IEEE 19th Annual International
Symposium on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages 248–255. IEEE, July 2011.

[13] Mohit Saxena, Yiying Zhang, Michael M Swift, Andrea
Arpaci-Dusseau C, and Remzi H Arpaci-Dusseau. Getting Real:
Lessons in Transitioning Research Simulations into Hardware
Systems. In Proceedings of the 11th USENIX conference on File and
Storage Technologies (FAST), 2013.

[14] Qingsong Wei, Bozhao Gong, Suraj Pathak, Bharadwaj Veeravalli,
Lingfang Zeng, and Kanzo Okada. WAFTL : A Workload Adaptive
Flash Translation Layer with Data Partition. Symposium on Massive
Storage Systems and Technologies and Co-located Events, 2011.

22

The Necessary Death of the Block Device Interface
Matias	
 Bjørling1, Philippe Bonnet1, Luc Bouganim2,3, Niv	
 Dayan1

1 IT University of Copenhagen
Copenhagen, Denmark

{mabj,phbo,nday}@itu.dk

2 INRIA Paris-Rocquencourt
Le Chesnay, France

Luc.Bouganim@inria.fr

3 PRISM Laboratory
Univ. of Versailles, France

Luc.Bouganim@prism.uvsq.fr

ABSTRACT
Solid State Drives (SSDs) are replacing magnetic disks as
secondary storage for database management as they offer orders
of magnitude improvement in terms of bandwidth and latency. In
terms of system design, the advent of SSDs raises considerable
challenges. First, the storage chips, which are the basic component
of a SSD, have widely different characteristics – e.g., copy-on-
write, erase-before-write and page-addressability for flash chips
vs. in-place update and byte-addressability for PCM chips.
Second, SSDs are no longer a bottleneck in terms of IO latency
forcing streamlined execution throughout the I/O stack to
minimize CPU overhead. Finally, SSDs provide a high degree of
parallelism that must be leveraged to reach nominal bandwidth.
This evolution puts database system researchers at a crossroad.
The first option is to hang on to the current architecture where
secondary storage is encapsulated behind a block device interface.
This is the mainstream option both in industry and academia. This
leaves the storage and OS communities with the responsibility to
deal with the complexity introduced by SSDs in the hope that they
will provide us with a robust, yet simple, performance model. In
this paper, we show that this option amounts to building on
quicksand. We illustrate our point by debunking some popular
myths about flash devices and pointing out mistakes in the papers
we have published throughout the years. The second option is to
abandon the simple abstraction of the block device interface and
reconsider how database storage manager, operating system
drivers and SSD controllers interact. We give our vision of how
modern database systems should interact with secondary storage.
This approach requires a deep cross-layer understanding and a
deep re-design of the database system architecture, which is the
the only viable option for database system researchers to avoid
becoming irrelevant.

1. INTRODUCTION
For the last thirty years, database systems have relied on magnetic
disks as secondary storage [18]. Today, the growing performance
gap between processors and magnetic disk is pushing solid-state
drives (SSDs) as replacements for disks [10]. SSDs are based on
non-volatile memories such as flash and PCM (Phase-Change
memory). They offer great performance at an ever-decreasing
cost. Today, tens of flash chips wired in parallel behind a safe
cache deliver hundreds of thousands accesses per second at a
latency of tens of microseconds. Compared to modern hard disks,
this is a hundredfold improvement in terms of bandwidth and
latency, at ten-times the cost. New SSD technologies, such as
PCM, promise to keep on improving performance at a fraction of
the cost.

It has now been six years since Jim Gray pointed out the
significance of flash-based SSDs. Has a new generation of
database systems emerged to accommodate those profound
changes? No. Is a new generation of database systems actually
needed? Well, the jury is up. There are two schools of thoughts:

• The conservative approach, taken by all database
constructors, and many in the research community, is to
consider that the advent of SSDs does not require any
significant re-design. The fact that SSDs offer the same block
device interface as magnetic disks allows preserving existing
database systems, running them unchanged on SSDs (slight
adaptations being sold as SSD-optimizations). A fraction of
radical conservatives ignore SSDs and keep on writing
articles and grant proposals based on disks, as if we were in
the 90s (How will they teach about database systems in five
years, when none of their bachelor students has ever seen a
disk?) More moderate conservatives, focusing on storage
management, consider that database systems have to be
redesigned on top of the block device interface, based on the
new performance characteristics of SSDs. The hope is that
the storage and operating system communities provide a
robust, yet simple, performance model for the new
generation of storage devices.

• The progressive approach is to consider that the advent of
SSDs, and non-volatile memories more generally, requires a
complete re-thinking of the interactions between database
system, operating system and storage devices. The argument
is that SSDs challenge the strict layering established between
these components on the basis of a simple performance
contract, e.g., sequential access is no longer orders of
magnitude faster than random access, SSDs are no longer the
bottleneck in terms of latency, SSDs require a high-level of
parallelism, SSDs do not constitute a homogeneous class of
devices (as opposed to disks). This approach, that requires a
deep cross layer understanding, is mainstream in the
operating system and storage research communities [7,9,13];
not yet in the database systems research community.

The premise of the conservative approach is that the block device
interface should be conserved as a robust abstraction that allows
the operating system to hide the complexity of I/O management
without sacrificing performance. We show, in Section 2, that this
assumption does not hold; neither for flash-based nor for PCM-
based devices. Worse, we show that it leads to brittle research
based on myths rather than sound results. We debunk a few of
these myths, illustrating our points with mistakes published in the
articles we have written throughout the years.

In Section 3, we present the challenges that SSDs and non-volatile
memories raise in terms of system design and discuss how they
impact database systems. We present our vision of the necessary
collaboration between database storage manager and operating
system.
Note that we do not dispute that the conservative approach is
economically smart. Neither do we ignore the fact that disks still
largely dominate the storage market or that the block device
interface will live on as a legacy for years. Our point is that the
advent of SSDs and non-volatile memories has a deep impact on

23

system design, and that we, as database systems researchers, must
re-visit some grand old design decisions and engage with the
operating system and storage communities in order to remain
relevant.

2. THE CASE AGAINST BLOCK
DEVICES
2.1 SSD MYTHS
Even if the block device interface has been challenged for some
years [17], these critics have had, so far, a limited impact. For
instance, all research papers published in the database community,
proposing new storage models, indexing methods or query
execution strategies for flash devices still build on the premise of
SSDs encapsulated behind a block device interface [5]. All of
these approaches assume, more or less explicitly, a simple
performance model for the underlying SSDs. The most popular
assumptions are the following:

• SSDs behave as to the non-volatile memory they contain:
Before flash-based SSDs became widely available, there was
a significant confusion between flash memory and flash
devices. Today, we see a similar confusion with PCM.

• On flash-based SSDs random writes are extremely costly, and
should be avoided: This was actually always true for flash
devices on the market before 2009. Moreover, this rule makes
sense after a quick look at flash constraints and SSD
architecture. Many thus propose to avoid random writes using
buffering and log-based strategies

• On flash-based SSDs, reads are cheaper than writes: Again
this seems to make sense because, (1) reads on flash chips are
much cheaper than writes (the so-called program operations);
(2) flash chip constraints impact write operations (need for
copy-on-write as in-place updates are forbidden on a flash
chip); (3) flash devices have no mechanical parts. Some
proposals are built on this rule, making aggressive use of
random read IOs.

We will show in Section 2.3 that these assumptions about (flash-
based) SSDs are plain wrong, but first, let us review the internals
of a flash-based IO stack -- from flash chips to the OS block layer.

2.2 I/O STACK INTERNALS
A point that we would like to carry across is that we, as database
researchers, can no longer consider storage devices as black boxes
that respect a simple performance contract. We have to dig into
their internals in order to understand the impact of these devices
on system design. Here is a bottom up review of the IO stack with
flash-based SSDs. We discuss PCM in Section 2.4.

Flash chip: A flash chip is a complex assembly of a huge number
of flash cells1, organized by pages (512 to 4096 bytes per page),
blocks (64 to 256 pages per block) and sometimes arranged in
multiple planes (typically to allow parallelism across planes).
Operations on flash chips are read, write (or program) and erase.
Due to flash cells characteristics, these operations must respect the
following constraints: (C1) reads and writes are performed at the
granularity of a page; (C2) a block must be erased before any of
the pages it contains can be overwritten; (C3) writes must be
sequential within a block; (C4) flash chips support a limited
number of erase cycles. The trends for flash memory is towards an
increase (i) in density thanks to a smaller process (today 20nm),
(ii) in the number of bits per flash cells, (iii) of page and block

1 See [5] for a discussion of flash cells internals.

size, and (iv) in the number of planes. Increased density also
incurs reduced cell lifetime (5000 cycles for triple-level-cell
flash), and raw performance decreases. For now, this lower
performance can be compensated by increased parallelism within
and across chips. At some point though, it will be impossible to
further reduce the size of a flash cell. At that point, PCM might be
able to take over and still provide exponential growth in terms of
density.

Flash SSD: A flash-based SSD contains tens of flash chips wired
in parallel to the SSD controller though multiple channels. Flash
chips are decomposed into logical units (LUN). LUNs are the unit
of operation interleaving, i.e., operations on distinct LUNs can be
executed in parallel, while operations on a same LUN are
executed serially. We consider that SSD performance is channel-
bound if channels are the bottleneck and IOs wait for a channel to
be available before they can be executed. SSD performance is
chip-bound if chip operations are the bottleneck and IOs wait for a
chip operation to terminate before they can be executed. Figure 1
illustrates these notions on an example.

Figure 1: Example of channel transfer and chip operations on four
chips (we assume 1 LUN per chip) attached to the same channel.

SSD controller: The SSD controller embeds the so-called Flash
Translation Layer (FTL) that maps incoming application IOs –a
read, a write or a trim2 on a logical block address (LBA)– into
appropriate chip operations. As illustrated on Figure 2, FTL is
responsible for:
• Scheduling & Mapping: The FTL provides a virtualization of

the physical address space into a logical address space. This
mapping is done at the page (and possibly block) level. The
FTL implements out-of-place updates (copy-on-write) to
handle C2 and C3. It also handles chip errors and deals with
parallelism across flash chips. While each read (resp. trim)
operation is mapped onto a specific chip, each write operation
can be scheduled on an appropriate chip.

• Garbage Collection: Each update leaves an obsolete flash
page (that contains the before image). Over time such obsolete
flash pages accumulate, and must be reclaimed through
garbage collection.

• Wear Leveling: The FTL relies on wear-leveling to address
C4--distributing the erase counts across flash blocks and
masking bad blocks.

Figure 2: Internal architecture of a SSD controller

2 The Trim command has been introduced in the ATA interface standard
to communicate to a flash device that a range of LBAs are no longer used
by an application

Page program

Page program

Page program

Page program

chip bound Channel bound

Four parallel reads Four parallel writes

chip1
chip2
chip3
chip4

Page
transfer

Page
read

Command

chip bound

chip
chip
chip
…

chip
chip
chip
…

chip
chip
chip
…

chip
chip
chip
…

Read
Write
Trim

Lo
gi

ca
l a

dd
re

ss
 s

pa
ce

P
hy

si
ca

l a
dd

re
ss

 s
pa

ce Scheduling
& Mapping

Wear
Leveling Garbage

collection

Shared Internal
data structures

Read
Program

Erase

Flash memory array

24

Note that both the garbage collection and wear leveling modules
read live pages from a victim block and write those pages (at a
location picked by the scheduler), before the block is erased. The
garbage collection and wear leveling operations thus interfere
with the IOs submitted by the applications.

OS Driver: SSDs are not directly accessible from the CPU; the
operating system provides a driver that manages communications
to and from the device. Most SSDs implement a SATA interface
and are accessed via the generic SATA driver. Some high-end
SSDs (e.g., ioDrive from FusionIO) are directly plugged on the
PCI bus. They provide a specific driver, which implements part of
the SSD controller functionalities (leveraging CPU and RAM on
the server to implement part of the FTL).

Block Layer: The block layer provides a simple memory
abstraction. It exposes a flat address space, quantized in logical
blocks of fixed size, on which I/O (read and write) requests are
submitted. I/O requests are asynchronous. When an I/O request is
submitted, it is associated to a completion queue. A worker thread
then sends a page request to the disk scheduler. When the page
request completes, an interrupt is raised (within the device driver),
and the I/O request completes. In the last few years, the Linux
block layer has been upgraded to accommodate SSDs and multi-
cores. CPU overhead has been reduced– it was acceptable on disk
to reduce seeks –, lock contention has been reduced, completions
are dispatched on the core that submitted the request, and
currently, the management of multiple IO queues for each device
is under implementation.

Is it still reasonable to hide all this complexity behind a simple
memory abstraction? Let us now revisit the performance
assumptions popular in the database community.

2.3 DEBUNKING SSD MYTHS
(1) SSDs behave as to the non-volatile memory they contain.
Hopefully, the previous section will have made it very clear that
this statement is not true. We pointed out this confusion in [6].
Still, two years later, we proposed a bimodal FTL that exposed to
applications the constraints of a single flash chip [4]. We ignored
the intrinsic parallelism of SSDs and the necessary error
management that should take place within a device controller.
Exposing flash chip constraints through the block layer, as we
proposed, would in effect suppress the virtualization of the
physical flash storage. This would limit the controller’s ability to
perform garbage collection and wear leveling (as it could not
redirect the live pages of a victim block onto other chips) and its
ability to deal with partial chip failures. It would also put a huge
burden on the OS block layer if the application aimed at
efficiently leveraging SSD parallelism by scheduling writes on
multiple chips. Today, papers are published that attribute the
characteristics of a phase-change memory chip to a SSD, thus
ignoring that parallelism and error management must be managed
at the SSD level.

(2) On flash-based SSDs, random writes are very costly and
should be avoided.
While this statement was true on early flash-based SSDs, it is no
longer the case [2,3,5]. There are essentially two reasons why a
flash-based SSD might provide random writes which are as fast
as, or even faster than sequential writes. First, high-end SSDs now
include safe RAM buffers (with batteries), which are designed for
buffering write operations. Such SSDs provide a form of write-
back mechanism where a write I/O request completes as soon as it
hits the cache. Second, modern SSD can rely on page mapping,
either because mapping is stored in the driver (without much

RAM constraints), or because the controller supports some form
of efficient page mapping cache (e.g., DFTL [10]). With page
mapping, there are no constraints on the placement of any write –
regardless of whether they are sequential or random. Thus a
controller can fully benefit from SSD parallelism when flushing
the buffer regardless of the write pattern! An interesting note is
that random writes have a negative impact on garbage collection,
as locality is impossible to detect for the FTL. As a result, pages
that are to be reclaimed together tend to be spread over many
blocks (as opposed to sequential writes where locality is easy to
detect). Quantifying these effects is a topic for future work. To
sum up, the difference between random writes and sequential
writes on flash-based SSDs is rather indirect. We completely
missed that point in [4], where we ventured design hints for SSD-
based system design.
(3) On flash-based SSDs, reads are cheaper than writes.

While at the chip level reads are much faster than writes, at the
SSD level this statement is not necessarily true. First, for reads,
any latency or delay in the execution leads to visible latency in the
application. It is not possible to hide this latency behind a safe
cache, as it is the case for writes. So if subsequent reads are
directed to a same LUN and, if that LUN or the associated
channel is busy, then the read operation must wait (e.g., wait 3ms
for the completion of an erase operation on that LUN)! Third,
reads will benefit from parallelism only if the corresponding
writes have been directed to different LUNs (on different
channels). As we have seen above, there is no guarantee for this.
Fourth, reads tend to be channel-bound --while writes tend to be
chip-bound --, and channel parallelism is much more limited than
chip parallelism.

2.4 DISCUSSION
It is unlikely that the complexity of flash-based SSDs can be
tamed into a simple performance model behind the block device
interface. So what should we do? An option is to wait for the OS
and storage communities to define such a model. In the meantime,
we should stop publishing articles based on incorrect assumptions.
Another option is to skip the complexity of flash-based SSDs and
wait for PCM to take over, as the characteristics of PCM promise
to significantly reduce complexity (in-place updates, no erases,
on-chip error detection, no need for garbage collection). First,
there is a large consensus that PCM chips should be directly
plugged onto the memory bus (because PCM is byte addressable
and exhibits low latency) [7,15]. The capacity of each PCM chip
is unlikely to be much larger than RAM chips. That still leaves us
with the problem of secondary storage. Second, PCM is likely to
be integrated into flash-based SSDs, i.e., to expand buffer
capacity and performance. As a result, flash-based SSDs are
unlikely to disappear any time soon. Third, even if we
contemplate pure PCM-based SSDs [1], the issues of parallelism,
wear leveling and error management will likely introduce
significant complexity. Also, PCM-based SSDs will not make the
issues of low latency and high-parallelism disappear. More
generally, PCM and flash mark a significant evolution of the
nature of the interactions between CPU, memory (volatile as well
as non-volatile) and secondary storage. This is an excellent
opportunity to revisit how database systems interact with
secondary storage.

3. SECONDARY STORAGE REVISITED
For years, we have assumed that persistence was to be achieved
through secondary storage, via a memory abstraction embodied by

25

the block device interface. The advent of SSDs force us to
reconsider this assumption:

1. We can now achieve persistence through PCM-based SSDs
plugged on the memory bus and directly addressable by the
CPU [6], in addition to secondary storage, composed of
flash-based SSDs.

2. Flash-based SSDs are no longer accessed via a strict memory
abstraction. The TRIM command has been added to read and
write to make it possible to applications to communicate to a
SSD that a range of logical addresses were no longer used
and could thus be un-mapped by the FTL. SSD constructors
are now proposing to expose new commands, e.g., atomic
writes [17], at the driver’s interface. More radically,
FusionIO is now proposing direct access to its driver, entirely
bypassing the block layer (ioMemory SDK). The point here
is that the block device interface provides too much
abstraction in the absence of a simple performance model.

This evolution forces us to re-visit the nature of persistence in
database systems. We see three fundamental principles:
• We should keep synchronous and asynchronous patterns

separated, as Mohan suggested [16]. Until now, database
storage managers have implemented conservative
asynchronous I/O submission policies to account for
occasional synchronous I/Os [13]. Instead synchronous
patterns (log writes, buffer steals under memory pressure)
should be directed to PCM-based SSDs via non-volatile
memory accesses from the CPU, while asynchronous
patterns (lazy writes, prefetching, reads) should be directed
to flash-based SSDs via I/O requests.

• We should abandon the memory abstraction in favor of a
communication abstraction to manage secondary storage, as
we suggested in [4]. The consequence is that (a) the database
system is no longer the master and secondary storage a slave
(they are communicating peers), and (b) the granularity of
interactions is not limited to blocks. This has far reaching
consequences on space allocation and naming (extent-based
allocation is irrelevant, nameless writes are interesting), the
management of log-structured files (which is today handled
both at the database level and within the FTL), the
management of interferences between I/Os, garbage
collection and wear leveling. Interestingly, Jim Gray noted in
[11] that RAM locality is king. An extended secondary
storage interface would allow us to efficiently manage
locality throughout the I/O stack.

• We should seek inspiration in the low-latency networking
literature. Secondary storage is no longer a bottleneck in
terms of latency, and it requires parallelism to reach nominal
bandwidth. A similar evolution has been witnessed for some
years in the networking community, where the developments
of network cards, and the advent of 10/40/100 GB Ethernet,
forced them to tackle the problems caused by low-latency.
The solutions they explored including cross-layer design,
shared memory, use of FPGA, out-of-band signaling are very
much relevant in the context of a re-designed I/O stack, all
the way to a database system. Major differences include the
need to manage state for I/O completion and the need to
handle small requests.

Note that any evolution of the role of secondary storage will take
place in the context of multi-core CPUs. So, the staging
architecture [12], based on the assumption that all data is in-
memory, should be the starting point for our reflection.
Why don’t we let the OS community redefine the IO stack? Well,
they are not waiting for us. Proposals are flourishing for PCM-

based [9,7], flash-based [14] and even database storage [15]
systems. Note that these approaches are based on actual storage
hardware and complete system design. We argue that it is time for
database system researchers to engage other systems communities
to contribute to the on-going re-design of the I/O stack and re-
think the role of persistence in database systems.

4. CONCLUSION
In this paper, we established that the database systems research
community has a flash problem. We argued that the high-level of
abstraction provided by the block device interface is a significant
part of the problem. We joined the choir of those who preach a re-
design of the architecture of (single-site) database systems. We
argued that we ignore the evolution of secondary storage at our
own peril. First, because some of the assumptions we are making
are myths rather than sound results. Second, because the on-going
re-design of the I/O stack is an opportunity for intriguing research.

5. REFERENCES
[1] A. Akel, A. Caulfield, T.Mollov, R.Gupta, S. Swanson. Onyx: A

Prototype Phase Change Memory Storage Array. HotStorage
2011.

[2] M. Bjørling, P. Bonnet, L. Bouganim, and B. T. Jònsson.
Understanding the energy consumption of flash devices with
uFLIP. IEEE Data Eng. Bull., December, 2010.

[3] M. Bjørling, L. L. Folgoc, A. Mseddi, P. Bonnet, L. Bouganim,
and B. Jònsson. Performing sound flash device measurements:
some lessons from uFLIP. SIGMOD Conference, 2010.

[4] P. Bonnet and L. Bouganim. Flash Device Support for Database
Management. CIDR, 2011.

[5] P. Bonnet, L. Bouganim, I. Koltsidas, S. Viglas. System Co-
Design and Data Management for Flash Devices. VLDB 2011.

[6] L. Bouganim, B. T. Jònsson, and P. Bonnet. uFLIP:
Understanding flash I/O patterns. CIDR, 2009.

[7] A. Caulfield, T. Mollov, L. Eisner, A. De, J. Coburn, S.
Swanson: Providing safe, user space access to fast, solid state
disks. ASPLOS 2012.

[8] S. Chen, P. Gibbons, S. Nath: Rethinking Database Algorithms
for Phase Change Memory. CIDR 2011.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee, D.
Burger, D. Coetzee: Better I/O through byte-addressable,
persistent memory. SOSP 2009.

[10] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation
layer employing demand-based selective caching of page-level
address mappings. In ASPLOS, 2009.

[11] J. Gray. Tape is dead, disk is tape, flash is disk, RAM locality is
king. Pres. at the CIDR Gong Show, Asilomar, CA, USA, 2007.

[12] Stavros Harizopoulos, Anastassia Ailamaki: A Case for Staged
Database Systems. CIDR 2003

[13] Christoffer Hall, Philippe Bonnet: Getting Priorities Straight:
Improving Linux Support for Database I/O. VLDB 2005.

[14] H. Lim, B. Fan, D. Andersen, M. Kaminsky: SILT: a memory-
efficient, high-performance key-value store. SOSP 2011:1-13

[15] M. Mammarella, S. Hovsepian, E. Kohler: Modular data storage
with Anvil. SOSP 2009:147-160

[16] C.Mohan, S.Bhattacharya. Implications of Storage Class
Memories on Software Architectures. HPCA Workshop on the
Use of Emerging Storage and Memory Technologies. 2010

[17] X. Ouyang, D. W. Nellans, R. Wipfel, D. Flynn, D. K. Panda:
Beyond block I/O: Rethinking traditional storage primitives.
HPCA 2011.

[18] S. W. Schlosser and G. R. Ganger. MEMS-based Storage
Devices and Standard Disk Interfaces: A Square Peg in a Round
Hole? USENIX FAST, 2004.

[19] M. Stonebraker. Operating system support for database
management. Commun. ACM, 24(7):412–418, 1981.

26

27

Chapter 3

Linux Block IO: Introducing

Multi-queue SSD Access on

Multi-core Systems

In the previous paper, we made the case agains the block device inter-

face. The following paper proposes a new design for the Linux block

layer. How is that consistent? Should we get rid of the block layer or

should we improve it? There is a subtle difference between the block

device interface (which defines the logical address space and read/write

operations on secondary storage), and the operating system block layer,

which is responsible for IO submission and completion. In principle, the

block layer can support any form of storage abstraction. The focus of this

paper is thus on adapting IO handling to modern SSDs and multi-core

hosts (regardless of how secondary storage is actually abstracted).

For decades IO handling has been optimized for traditional hard-

drives. The software stack was specifically optimized for spinning hard-

drives, i.e. large block I/Os and sequential accesses. When SSDs were

introduced the read and write block interface typical of traditional hard-

drives was preserved. This design decision guaranteed adoption, but

quickly revealed significant bottlenecks in the storage stack.

In response, applications incorporate lighter and faster data struc-

tures and algorithms [3, 1, 4] and particular NoSQL databases, such as

MongoDB, LevelDB, Aerospike, etc. takes advantage of the new storage

media. Applications specifically optimized for SSDs rapidly revealed

that the operating system was the bottleneck and that it had to be im-

proved in order to increase application performance.

The kernel storage stack is composed by four core layers. From top to

bottom: (i) I/Os arrive through system calls with a file descriptor (pread-

/pwrite, ioctl, libaio, etc.). On submission, (ii) the I/O is submitted to the

file-system. The file-system maps the file I/O to its logical device sector

and issue it to the appropriate storage device through the (iii) block layer.

The block layer provides opportunity for merging I/Os, plugging, fair-

ness between processes, etc. and at last issues one or multiple requests

to a device driver. Finally, (iv) The device driver transforms the request

to the corresponding hardware commands and issues it to the hardware

device. The device completes the I/O and the host then complete the I/O

back up through the storage stack layers.

Bottlenecks occurs in all of these layers in one way or another. We

specifically target the block layer, as data-intensive applications often

uses little of file-system features and thus expose bottlenecks in the block

layer and device drivers. The block layer has traditionally optimized for

hard-drives and its design choices actively prevents utilization of high

29

performance SSDs.

Our contribution is a scalable block layer for high-performance SSDs.

The work is desbrived in “Linux Block IO: Introducing Multi-queue SSD

Access on Multi-core Systems”. It was presented at the SYSTOR 2013

conference. The contribution had three insights:

• The Linux kernel block layer is inadequate for high-performance

SSDs. Benchmarking the block layer and heavily optimize for

throughput showsthat the block layer is incapable to process more

than 800-1000K IOPS.

• SSDs that are capable of hundreds of thousands of IOPS, quickly

overflow the attached CPU with interrupts. At high interrupt rates,

a single CPU unit is dedicated to process I/O for other CPUs in the

system. This increases latency, work and overhead for the complete

system. To mitegate this, the new block layer allows I/Os to be

routed using IRQ steering. IRQ steering enables the I/O system to

send completion interrupt to the CPU that issued the I/O request,

without interrupting the CPU of which the SSD is attached to.

• A core design of the original block layer is its single queue design.

For each hard-drive in the system, there is a request queue allo-

cated. Every time this queue is manipulated, its locks must be ac-

quired and released. For each request, this can be multiple times.

As merged, reordering and similar operatings are performed before

its sent to the hard-drive for execution. This performs adequate on

single CPU systems, but significantly exacerbated in multi-core and

multi-nodes systems, preventing a scalable I/O stack.

30

These three insights underlie the design of the multi-queue block

layer (blk-mq). The new block layer introduces two sets of queues. A

set of per-core queues and another set of hardware dispatch queues. The

per-core queues are used for I/O merging, reordering, etc. of incom-

ing I/O on a specific core. Eliminating any need for coordination with

other queues in the set. The hardware dispatch queues matches the cor-

responding hardware capabilities. For example the AHCI standard for

hard-drives supports a queue depth of 32 outstanding I/Os. A hardware

dispatch queue is initialized with the same depth. When I/Os are sub-

mitted to the device driver, they are first added to the hardware dispatch

queue and then submitted to the device driver one at a time. If the hard-

ware has enough hardware queues to support all cores in a system. The

submission of I/Os are performed directly on a single core without any

synchronization across cores. The two queue set allows I/Os to be ma-

nipulated efficiently in a per-core data structures, and later when I/Os

are pushed to the device driver, and not manipulated again, they are

moved to the hardware dispatch queue for a specific hardware queue.

Note that, at the time the paper was published, there was no com-

mercial SSD equipped with several hardware queues. The open channel

SSDs that we discuss in Chapter 6 do provide several hardware queues.

In fact all commercial SSDs based on NVMe now provide several hard-

ware queues.

The new block layer scales from 800-1000K to 15M IOPS performing

512 bytes I/Os. Additionally, latency timings means are reduced both for

low and high contension workloads. The best case reported in an 8-node

setup. The latency was improved from 7.8x at full CPU utilization and

31

36x with half CPU utilization.

After the paper was published, blk-mq was accepted upstream in

Linux kernel version 3.13. It has been improved significantly since its

introduction with for example Scalable per-request data structures1, ad-

ditional removal of locks in the hot path2, prototyping of polling [4]3,

and converting significant amount of device drivers to blk-mq, includ-

ing Micron mtip driver4, Intel NVMe driver5, ATA/SCSI stack6, device

mapper7, virtio [2], and several others.

1https://lkml.org/lkml/2014/6/2/329
2https://lkml.org/lkml/2015/5/14/713
3https://lkml.org/lkml/2013/6/20/591
4https://lkml.org/lkml/2014/6/2/575
5http://lists.infradead.org/pipermail/linux-nvme/2014-October/001187.

html
6http://lwn.net/Articles/602159/
7https://www.redhat.com/archives/dm-devel/2015-March/msg00066.html

32

https://lkml.org/lkml/2014/6/2/329
https://lkml.org/lkml/2015/5/14/713
https://lkml.org/lkml/2013/6/20/591
https://lkml.org/lkml/2014/6/2/575
http://lists.infradead.org/pipermail/linux-nvme/2014-October/001187.html
http://lists.infradead.org/pipermail/linux-nvme/2014-October/001187.html
http://lwn.net/Articles/602159/
https://www.redhat.com/archives/dm-devel/2015-March/msg00066.html

Literature

[1] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and
Sang-Woo Kim. A case for flash memory ssd in enterprise database
applications. Proceedings of the 2008 ACM SIGMOD international
conference on Management of data - SIGMOD ’08, page 1075, 2008.

[2] Ming Lei. Virtio-blk Multi-queue Conversion and QEMU
Optimization KVM Forum 2014 Virtio-blk Linux driver evolution.
2014.

[3] Patrick O Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O
Neil. The log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):1–32, 1996.

[4] Dimitris Tsirogiannis and Stavros Harizopoulos. Query Processing
Techniques for Solid State Drives Categories and Subject
Descriptors. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, 2009.

[5] Jisoo Yang, DB Minturn, and Frank Hady. When poll is better than
interrupt. Proceedings of the 10th USENIX conference on File and
Storage Technologies (FAST), pages 1–7, 2012.

Linux Block IO: Introducing Multi-queue SSD Access on
Multi-core Systems

Matias Bjørling*† Jens Axboe† David Nellans† Philippe Bonnet*
*IT University of Copenhagen

{mabj,phbo}@itu.dk
†Fusion-io

{jaxboe,dnellans}@fusionio.com

ABSTRACT
The IO performance of storage devices has accelerated from
hundreds of IOPS five years ago, to hundreds of thousands
of IOPS today, and tens of millions of IOPS projected in five
years. This sharp evolution is primarily due to the introduc-
tion of NAND-flash devices and their data parallel design. In
this work, we demonstrate that the block layer within the
operating system, originally designed to handle thousands
of IOPS, has become a bottleneck to overall storage system
performance, specially on the high NUMA-factor processors
systems that are becoming commonplace. We describe the
design of a next generation block layer that is capable of
handling tens of millions of IOPS on a multi-core system
equipped with a single storage device. Our experiments
show that our design scales graciously with the number of
cores, even on NUMA systems with multiple sockets.

Categories and Subject Descriptors
D.4.2 [Operating System]: Storage Management—Sec-
ondary storage; D.4.8 [Operating System]: Performance—
measurements

General Terms
Design, Experimentation, Measurement, Performance.

Keywords
Linux, Block Layer, Solid State Drives, Non-volatile Mem-
ory, Latency, Throughput.

1 Introduction
As long as secondary storage has been synonymous with
hard disk drives (HDD), IO latency and throughput have
been shaped by the physical characteristics of rotational de-
vices: Random accesses that require disk head movement
are slow and sequential accesses that only require rotation
of the disk platter are fast. Generations of IO intensive al-
gorithms and systems have been designed based on these
two fundamental characteristics. Today, the advent of solid
state disks (SSD) based on non-volatile memories (NVM)

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SYSTOR ’13, June 30 - July 02 2013, Haifa, Israel
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-2116-7/13/06 ...$15.00.

201220112010

4K
 R

ea
d

IO
PS

0
200k
400k
600k
800k

1M
785000

608000
498000

9000060000

SSD 1 SSD 2 SSD 3 SSD 4 SSD 5

Figure 1: IOPS for 4K random read for five SSD
devices.

(e.g., flash or phase-change memory [11, 6]) is transforming
the performance characteristics of secondary storage. SSDs
often exhibit little latency difference between sequential and
random IOs [16]. IO latency for SSDs is in the order of tens
of microseconds as opposed to tens of milliseconds for HDDs.
Large internal data parallelism in SSDs disks enables many
concurrent IO operations which, in turn, allows single de-
vices to achieve close to a million IOs per second (IOPS)
for random accesses, as opposed to just hundreds on tradi-
tional magnetic hard drives. In Figure 1, we illustrate the
evolution of SSD performance over the last couple of years.

A similar, albeit slower, performance transformation has
already been witnessed for network systems. Ethernet speed
evolved steadily from 10 Mb/s in the early 1990s to 100 Gb/s
in 2010. Such a regular evolution over a 20 years period has
allowed for a smooth transition between lab prototypes and
mainstream deployments over time. For storage, the rate of
change is much faster. We have seen a 10,000x improvement
over just a few years. The throughput of modern storage de-
vices is now often limited by their hardware (i.e., SATA/SAS
or PCI-E) and software interfaces [28, 26]. Such rapid leaps
in hardware performance have exposed previously unnoticed
bottlenecks at the software level, both in the operating sys-
tem and application layers. Today, with Linux, a single
CPU core can sustain an IO submission rate of around 800
thousand IOPS. Regardless of how many cores are used to
submit IOs, the operating system block layer can not scale
up to over one million IOPS. This may be fast enough for
today’s SSDs - but not for tomorrow’s.

We can expect that (a) SSDs are going to get faster, by
increasing their internal parallelism1 [9, 8] and (b) CPU

1If we look at the performance of NAND-flash chips, access
times are getting slower, not faster, in timings [17]. Access
time, for individual flash chips, increases with shrinking fea-
ture size, and increasing number of dies per package. The
decrease in individual chip performance is compensated by
improved parallelism within and across chips.

34

performance will improve largely due to the addition of more
cores, whose performance may largely remain stable [24, 27].

If we consider a SSD that can provide 2 million IOPS, ap-
plications will no longer be able to fully utilize a single stor-
age device, regardless of the number of threads and CPUs
it is parallelized across due to current limitations within the
operating system.

Because of the performance bottleneck that exists today
within the operating system, some applications and device
drivers are already choosing to bypass the Linux block layer
in order to improve performance [8]. This choice increases
complexity in both driver and hardware implementations.
More specifically, it increases duplicate code across error-
prone driver implementations, and removes generic features
such as IO scheduling and quality of service traffic shaping
that are provided by a common OS storage layer.

Rather than discarding the block layer to keep up with im-
proving storage performance, we propose a new design that
fixes the scaling issues of the existing block layer, while pre-
serving its best features. More specifically, our contributions
are the following:

1. We recognize that the Linux block layer has become a
bottleneck (we detail our analysis in Section 2). The
current design employs a single coarse lock design for
protecting the request queue, which becomes the main
bottleneck to overall storage performance as device
performance approaches 800 thousand IOPS. This sin-
gle lock design is especially painful on parallel CPUs,
as all cores must agree on the state of the request queue
lock, which quickly results in significant performance
degradation.

2. We propose a new design for IO management within
the block layer. Our design relies on multiple IO sub-
mission/completion queues to minimize cache coher-
ence across CPU cores. The main idea of our design
is to introduce two levels of queues within the block
layer: (i) software queues that manage the IOs sub-
mitted from a given CPU core (e.g., the block layer
running on a CPU with 8 cores will be equipped with
8 software queues), and (ii) hardware queues mapped
on the underlying SSD driver submission queue.

3. We evaluate our multi-queue design based on a func-
tional implementation within the Linux kernel. We
implement a new no-op block driver that allows de-
velopers to investigate OS block layer improvements.
We then compare our new block layer to the existing
one on top of the noop driver (thus focusing purely
on the block layer performance). We show that a
two-level locking design reduces the number of cache
and pipeline flushes compared to a single level design,
scales gracefully in high NUMA-factor architectures,
and can scale up to 10 million IOPS to meet the de-
mand of future storage products.

The rest of the paper is organized as follows: In Section 2
we review the current implementation of the Linux block
layer and its performance limitations. In Section 3 we pro-
pose a new multi-queue design for the Linux block layer. In
Section 4 we describe our experimental framework, and in
Section 5, we discuss the performance impact of our multi-
queue design. We discuss related work in Section 6, before
drawing our conclusions in Section 7.

Figure 2: Current single queue Linux block layer
design.

2 OS Block Layer
Simply put, the operating system block layer is responsible
for shepherding IO requests from applications to storage de-
vices [2]. The block layer is a glue that, on the one hand,
allows applications to access diverse storage devices in a uni-
form way, and on the other hand, provides storage devices
and drivers with a single point of entry from all applica-
tions. It is a convenience library to hide the complexity
and diversity of storage devices from the application while
providing common services that are valuable to applications.
In addition, the block layer implements IO-fairness, IO-error
handling, IO-statistics, and IO-scheduling that improve per-
formance and help protect end-users from poor or malicious
implementations of other applications or device drivers.

2.1 Architecture
Figure 2 illustrates the architecture of the current Linux
block layer. Applications submit IOs via a kernel system
call, that converts them into a data structure called a block
IO. Each block IO contains information such as IO address,
IO size, IO modality (read or write) or IO type (synchronous/
asynchronous)2. It is then transferred to either libaio for
asynchronous IOs or directly to the block layer for syn-
chronous IO that submit it to the block layer. Once an IO
request is submitted, the corresponding block IO is buffered
in the staging area, which is implemented as a queue, de-
noted the request queue.

Once a request is in the staging area, the block layer may
perform IO scheduling and adjust accounting information
before scheduling IO submissions to the appropriate storage

2See include/linux/blk types.h in the Linux kernel (ker-
nel.org) for a complete description of the Block IO data
structure.

35

Figure 3: Simplified overview of bottlenecks in the
block layer on a system equipped with two cores and
a SSD.

device driver. Note that the Linux block layer supports plug-
gable IO schedulers: noop (no scheduling), deadline-based
scheduling [12], and CFQ [10] that can all operate on IO
within this staging area. The block layer also provides a
mechanism for dealing with IO completions: each time an
IO completes within the device driver, this driver calls up
the stack to the generic completion function in the block
layer. In turn the block layer then calls up to an IO com-
pletion function in the libaio library, or returns from the
synchronous read or write system call, which provides the
IO completion signal to the application.

With the current block layer, the staging area is repre-
sented by a request queue structure. One such queue is
instantiated per block device. Access is uniform across all
block devices and an application need not know what the
control flow pattern is within the block layer. A consequence
of this single queue per device design however is that the
block layer cannot support IO scheduling across devices.

2.2 Scalability
We analyzed the Linux kernel to evaluate the performance
of the current block layer on high performance computing
systems equipped with high-factor NUMA multi-core pro-
cessors and high IOPS NAND-flash SSDs. We found that
the block layer had a considerable overhead for each IO;
Specifically, we identified three main problems, illustrated
in Figure 3:

1. Request Queue Locking: The block layer fundamentally
synchronizes shared accesses to an exclusive resource:
the IO request queue. (i) Whenever a block IO is in-
serted or removed from the request queue, this lock
must be acquired. (ii) Whenever the request queue is
manipulated via IO submission, this lock must be ac-
quired. (iii) As IOs are submitted, the block layer pro-
ceeds to optimizations such as plugging (letting IOs ac-
cumulate before issuing them to hardware to improve
cache efficiency), (iv) IO reordering, and (v) fairness
scheduling. Before any of these operations can pro-
ceed, the request queue lock must be acquired. This is
a major source of contention.

2. Hardware Interrupts: The high number of IOPS causes
a proportionally high number of interrupts. Most of to-
day’s storage devices are designed such that one core
(within CPU 0 on Figure 3) is responsible for han-
dling all hardware interrupts and forwarding them to
other cores as soft interrupts regardless of the CPU

IO
PS

Number of Cores

 1 socket

0
250k
500k
750k

1M
1.25M
1.5M

1 2 3 4 5 6

2 socket

2 4 6 8 10 12

4 socket

0
250k
500k
750k

1M
1.25M
1.5M

5 10 15 20 25 30 10 20 30 40 50 60 70 80

8 socket

Figure 4: IOPS throughput of Linux block layer as
a function of number of CPU’s issuing IO. Divided
into 1, 2, 4 and 8 socket systems. Note: Dotted line
show socket divisions.

issuing and completing the IO. As a result, a single
core may spend considerable time in handling these
interrupts, context switching, and polluting L1 and L2
caches that applications could rely on for data local-
ity [31]. The other cores (within CPU N on Figure 3)
then also must take an IPI to perform the IO comple-
tion routine. As a result, in many cases two interrupts
and context switches are required to complete just a
single IO.

3. Remote Memory Accesses: Request queue lock con-
tention is exacerbated when it forces remote mem-
ory accesses across CPU cores (or across sockets in
a NUMA architecture). Such remote memory accesses
are needed whenever an IO completes on a different
core from the one on which it was issued. In such
cases, acquiring a lock on the request queue to remove
the block IO from the request queue incurs a remote
memory access to the lock state stored in the cache of
the core where that lock was last acquired, the cache
line is then marked shared on both cores. When up-
dated, the copy is explicitly invalidated from the re-
mote cache. If more than one core is actively issuing
IO and thus competing for this lock, then the cache
line associated with this lock is continuously bounced
between those cores.

Figure 4 shows 512 bytes IOs being submitted to the ker-
nel as fast as possible; IOPS throughput is depicted as a
function of the number of CPU’s that are submitting and
completing IOs to a single device simultaneously. We ob-
serve that when the number of processes is lower than the
number cores on a single socket (i.e., 6), throughput im-
proves, or is at least maintained, as multiple CPU’s issue
IOs. For 2, 4, and 8-socket architectures which have largely
supplanted single socket machines in the HPC space, when
IOs are issued from a CPU that is located on a remote socket
(and typically NUMA node), absolute performance drops
substantially regardless the absolute number of sockets in
the system.

Remote cacheline invalidation of the request queue lock is
significantly more costly on complex four and eight socket
systems where the NUMA-factor is high and large cache di-
rectory structures are expensive to access. On four and eight

36

socket architectures, the request queue lock contention is so
high that multiple sockets issuing IOs reduces the through-
put of the Linux block layer to just about 125 thousand
IOPS even though there have been high end solid state de-
vices on the market for several years able to achieve higher
IOPS than this. The scalability of the Linux block layer is
not an issue that we might encounter in the future, it is a
significant problem being faced by HPC in practice today.

3 Multi-Queue Block Layer
As we have seen in Section 2.2, reducing lock contention
and remote memory accesses are key challenges when re-
designing the block layer to scale on high NUMA-factor
architectures. Dealing efficiently with the high number of
hardware interrupts is beyond the control of the block layer
(more on this below) as the block layer cannot dictate how a
device driver interacts with its hardware. In this Section, we
propose a two-level multi-queue design for the Linux block
layer and discuss its key differences and advantages over the
current single queue block layer implementation. Before we
detail our design, we summarize the general block layer re-
quirements.

3.1 Requirements
Based on our analysis of the Linux block layer, we identify
three major requirements for a block layer:

• Single Device Fairness

Many application processes may use the same device.
It is important to enforce that a single process should
not be able to starve all others. This is a task for the
block layer. Traditionally, techniques such as CFQ or
deadline scheduling have been used to enforce fairness
in the block layer. Without a centralized arbiter of de-
vice access, applications must either coordinate among
themselves for fairness or rely on the fairness policies
implemented in device drivers (which rarely exist).

• Single and Multiple Device Accounting

The block layer should make it easy for system admin-
istrators to debug or simply monitor accesses to stor-
age devices. Having a uniform interface for system per-
formance monitoring and accounting enables applica-
tions and other operating system components to make
intelligent decisions about application scheduling, load
balancing, and performance. If these were maintained
directly by device drivers, it would be nearly impossi-
ble to enforce the convenience of consistency applica-
tion writers have become accustom to.

• Single Device IO Staging Area

To improve performance and enforce fairness, the block
layer must be able to perform some form of IO schedul-
ing. To do this, the block layer requires a staging area,
where IOs may be buffered before they are sent down
into the device driver. Using a staging area, the block
layer can reorder IOs, typically to promote sequential
accesses over random ones, or it can group IOs, to sub-
mit larger IOs to the underlying device. In addition,
the staging area allows the block layer to adjust its
submission rate for quality of service or due to device
back-pressure indicating the OS should not send down
additional IO or risk overflowing the device’s buffering
capability.

3.2 Our Architecture
The key insight to improved scalability in our multi-queue
design is to distribute the lock contention on the single re-
quest queue lock to multiple queues through the use of two
levels of queues with distinct functionally as shown in Fig-
ure 5:

• Software Staging Queues. Rather than staging IO for
dispatch in a single software queue, block IO requests
are now maintained in a collection of one or more re-
quest queues. These staging queues can be configured
such that there is one such queue per socket, or per
core, on the system. So, on a NUMA system with 4
sockets and 6 cores per socket, the staging area may
contain as few as 4 and as many as 24 queues. The
variable nature of the request queues decreases the pro-
liferation of locks if contention on a single queue is not
a bottleneck. With many CPU architectures offering
a large shared L3 cache per socket (typically a NUMA
node as well), having just a single queue per proces-
sor socket offers a good trade-off between duplicated
data structures which are cache unfriendly and lock
contention.

• Hardware Dispatch Queues. After IO has entered the
staging queues, we introduce a new intermediate queu-
ing layer known as the hardware dispatch queues. Us-
ing these queues block IOs scheduled for dispatch are
not sent directly to the device driver, they are instead
sent to the hardware dispatch queue. The number
of hardware dispatch queues will typically match the
number of hardware contexts supported by the device
driver. Device drivers may choose to support anywhere
from one to 2048 queues as supported by the message
signaled interrupts standard MSI-X [25]. Because IO
ordering is not supported within the block layer any
software queue may feed any hardware queue without
needing to maintain a global ordering. This allows
hardware to implement one or more queues that map
onto NUMA nodes or CPU’s directly and provide a
fast IO path from application to hardware that never
has to access remote memory on any other node.

This two level design explicitly separates the two buffering
functions of the staging area that was previously merged
into a single queue in the Linux block layer: (i) support for
IO scheduling (software level) and (ii) means to adjust the
submission rate (hardware level) to prevent device buffer
over run.

The number of entries in the software level queue can dy-
namically grow and shrink as needed to support the out-
standing queue depth maintained by the application, though
queue expansion and contraction is a relatively costly op-
eration compared to the memory overhead of maintaining
enough free IO slots to support most application use. Con-
versely, the size of the hardware dispatch queue is bounded
and correspond to the maximum queue depth that is sup-
ported by the device driver and hardware. Today many
SSD’s that support native command queuing support a queue
depth of just 32, though high-end SSD storage devices may
have much deeper queue support to make use of the high
internal parallelism of their flash architecture. The 32 in-
flight request limit found on many consumer SSD’s is likely
to increase substantially to support increased IOPS rates as

37

Figure 5: Proposed two level Linux block layer de-
sign.

a 1 million IOPS capable device will cause 31 thousand con-
text switches per second simply to process IO in batches of
32. The CPU overhead of issuing IO to devices is inversely
proportional to the amount of IO that is batched in each
submission event.

3.2.1 IO-Scheduling
Within the software queues, IOs can be shaped by per CPU
or NUMA node policies that need not access local memory.
Alternatively, policies may be implemented across software
queues to maintain global QoS metrics on IO, though at a
performance penalty. Once the IO has entered the hard-
ware dispatch queues, reordering i/Nums no longer possi-
ble. We eliminate this possibility so that the only con-
tenders for the hardware dispatch queue are inserted to the
head of the queue and removed from the tail by the device
driver, thus eliminating lock acquisitions for accounting or
IO-scheduling. This improves the fast path cache locality
when issuing IO’s in bulk to the device drivers.

Our design has significant consequences on how IO may be
issued to devices. Instead of inserting requests in the hard-
ware queue in sorted order to leverage sequential accesses
(which was a main issue for hard drives), we simply follow
a FIFO policy: we insert the incoming block IO submitted
by core i at the top of the request queue attached to core
i or the NUMA socket this core resides on. Traditional IO-
schedulers have worked hard to turn random into sequential
access to optimize performance on traditional hard drives.
Our two level queuing strategy relies on the fact that mod-
ern SSD’s have random read and write latency that is as fast
as their sequential access. Thus interleaving IOs from multi-
ple software dispatch queues into a single hardware dispatch
queue does not hurt device performance. Also, by inserting

requests into the local software request queue, our design
respects thread locality for IOs and their completion.

While global sequential re-ordering is still possible across
the multiple software queues, it is only necessary for HDD
based devices, where the additional latency and locking over-
head required to achieve total ordering does not hurt IOPS
performance. It can be argued that, for many users, it is
no longer necessary to employ advanced fairness scheduling
as the speed of the devices are often exceeding the ability
of even multiple applications to saturate their performance.
If fairness is essential, it is possible to design a scheduler
that exploits the characteristics of SSDs at coarser granu-
larity to achieve lower performance overhead [23, 13, 19].
Whether the scheduler should reside in the block layer or on
the SSD controller is an open issue. If the SSD is responsible
for fair IO scheduling, it can leverage internal device paral-
lelism, and lower latency, at the cost of additional interface
complexity between disk and OS [8, 4].

3.2.2 Number of Hardware Queues
Today, most SATA, SAS and PCI-E based SSDs, support
just a single hardware dispatch queue and a single comple-
tion queue using a single interrupt to signal completions.
One exception is the upcoming NVM Express (NVMe) [18]
interface which supports a flexible number of submission
queues and completion queues. For devices to scale IOPS
performance up, a single dispatch queue will result in cross
CPU locking on the dispatch queue lock, much like the previ-
ous request queue lock. Providing multiple dispatch queues
such that there is a local queue per NUMA node or CPU will
allow NUMA local IO path between applications and hard-
ware, decreasing the need for remote memory access across
all subsections of the block layer. In our design we have
moved IO-scheduling functionality into the software queues
only, thus even legacy devices that implement just a single
dispatch queue see improved scaling from the new multi-
queue block layer.

3.2.3 Tagged IO and IO Accounting
In addition to introducing a two-level queue based model,
our design incoporates several other implementation improve-
ments. First, we introduce tag-based completions within the
block layer. Device command tagging was first introduced
with hardware supporting native command queuing. A tag
is an integer value that uniquely identifies the position of the
block IO in the driver submission queue, so when completed
the tag is passed back from the device indicating which IO
has been completed. This eliminates the need to perform a
linear search of the in-flight window to determine which IO
has completed.

In our design, we build upon this tagging notion by al-
lowing the block layer to generate a unique tag associated
with an IO that is inserted into the hardware dispatch queue
(between size 0 and the max dispatch queue size). This tag
is then re-used by the device driver (rather than generating
a new one, as with NCQ). Upon completion this same tag
can then be used by both the device driver and the block
layer to identify completions without the need for redundant
tagging. While the MQ implementation could maintain a
traditional in-flight list for legacy drivers, high IOPS drivers
will likely need to make use of tagged IO to scale well.

Second, to support fine grained IO accounting we have
modified the internal Linux accounting library to provide
statistics for the states of both the software queues and dis-

38

patch queues. We have also modified the existing tracing
and profiling mechanisms in blktrace, to support IO tracing
for future devices that are multi-queue aware. This will al-
low future device manufacturers to optimize their implemen-
tations and provide uniform global statistics to HPC cus-
tomers whose application performance is increasingly dom-
inated by the performance of the IO-subsystem.

3.3 Multiqueue Impact on Device Manufac-
turers

One drawback of the our design is that it will require some
extensions to the bottom edge device driver interface to
achieve optimal performance. While the basic mechanisms
for driver registration and IO submission/completion remain
unchanged, our design introduces these following require-
ments:

• HW dispatch queue registration: The device driver must
export the number of submission queues that it sup-
ports as well as the size of these queues, so that the
block layer can allocate the matching hardware dis-
patch queues.

• HW submission queue mapping function: The device
driver must export a function that returns a mapping
between a given software level queue (associated to
core i or NUMA node i), and the appropriate hardware
dispatch queue.

• IO tag handling: The device driver tag management
mechanism must be revised so that it accepts tags gen-
erated by the block layer. While not strictly required,
using a single data tag will result in optimal CPU us-
age between the device driver and block layer.

These changes are minimal and can be implemented in
the software driver, typically requiring no changes to exist-
ing hardware or software. While optimal performance will
come from maintaining multiple hardware submission and
completion queues, legacy devices with only a single queue
can continue to operate under our new Linux block layer
implementation.

4 Experimental Methodology
In the remaining of the paper, we denote the existing block
layer as single queue design (SQ), our design as the multi-
queue design (MQ), and a driver which bypasses the Linux
block layer as Raw. We implemented the MQ block layer as
a patch to the Linux kernel 3.103.

4.1 Hardware Platforms
To conduct these comparisons, we rely on a null device
driver, i.e., a driver that is not connected to an underly-
ing storage device. This null driver simply receives IOs as
fast as possible and acknowledges completion immediately.
This pseudo block device can acknowledge IO requests faster
than even a DRAM backed physical device, making the null
block device an ideal candidate for establishing an optimal
baseline for scalability and implementation efficiency.

Using the null block device, we experiment with 1, 2, 4
and 8 sockets systems, i.e., Sandy Bridge-E, Westmere-EP,

3Our implementation is available online at http:
//git.kernel.dk/?p=linux-block.git;a=shortlog;
h=refs/heads/new-queue

Platform/Intel
Sandy
Bridge-E

Westmere-
EP

Nehalem-
EX

Westmere-
EX

Processor i7-3930K X5690 X7560 E7-2870

Num. of Cores 6 12 32 80

Speed (Ghz) 3.2 3.46 2.66 2.4

L3 Cache (MB) 12 12 24 30

NUMA nodes 1 2 4 8

Table 1: Architecture of Evaluation Systems

Nehalem-EX and Westmere-EX Intel platforms. Table 1
summarizes the characteristics of these four platforms. The
1, 2 and 4-sockets systems use direct QPI links as intercon-
nect between sockets, while the 8-nodes system has a lower
and upper CPU board (with 4 sockets each) and an intercon-
nect board for communication. We disabled the turbo boost
and hyper-threading CPU features as well as any ACPI C
and P-state throttling on our systems to decrease the vari-
ance in our measurements that would be caused by power
savings features.

4.2 IO Load Generation
We focus our evaluations on latency and throughput. We
experiment with latency by issuing a single IO per partici-
pating core at a time using the pread/pwrite interface of the
Linux kernel. We experiment with throughput by overlap-
ping the submission of asynchronous IOs. In the throughput
experiment we sustain 32 outstanding IOs per participating
core, i.e., if 8 cores are issuing IOs, then we maintain 256
outstanding IOs. We use 32 IOs per process context because
it matches the requirements of today’s SSD devices. Our IO-
load is generated using the flexible io generator (fio) [14] that
allows us to carefully control the queue-depth, type, and dis-
tribution of IO onto a the LBA space of the block device. In
all experiments we use 512 bytes read IO’s, though the type
of IO is largely irrelevant since the null block driver does
not perform any computation or data transfer, it simply ac-
knowledges all requests immediately.

4.3 Performance Metrics
The primary metrics for our experiments are absolute through-
put (IOPS) and latency (µ-seconds) of the block layer.

5 Results
In a first phase, we compare our new block layer design
(MQ) with the existing Linux block layer (SQ), and the op-
timal baseline (Raw). In a second phase, we investigate how
our design allows the block layer to scale as the number of
available cores in the system increases. We leave a perfor-
mance tuning study of MQ (e.g., quality of the performance
optimizations within the block layer) as a topic for future
work.

For each system configuration, we create as many fio pro-
cesses as there are cores and we ensure that all cores are
utilized 100%. For the 1 socket system, the maximum num-
ber of cores is 6. For the 2 (resp., 4 and 8) sockets system,
the maximum number of core is 12 (resp., 32 and 80), and
we mark the separation between both 6 (resp., 8 and 10)
cores sockets with a vertical dotted line. Unless otherwise
noted, for MQ, a software queue is associated to each core
and a hardware dispatch queue is associated to each socket.

39

Number of Cores

IO
PS

0
2.5M

5M
7.5M
10M

12.5M
15M

1 2 3 4 5 6

1 socket

2 4 6 8 10 12

2 socket 4 socket

5 10 15 20 25 30

8 socket

10 20 30 40 50 60 70 80

MQ
SQ
Raw

Figure 6: IOPS for single/multi-queue and raw on the 1, 2, 4 and 8-nodes systems.

5.1 Comparing MQ, SQ and Raw
Figure 6 presents throughput (in IOPS) for SQ, MQ and
Raw as a function of the number of cores available in the 1
socket, 2-sockets, 4-sockets, and 8-sockets systems respec-
tively. Overall, we can make the following observations.
First, with the single queue block layer implementation,
throughput is limited below 1 million IOPS regardless of
the number of CPUs issuing IO or of the number of sockets
in the system. The current Linux block layer implementa-
tion can not sustain more than 1 million IOPS on a single
block device.

Second, our new two layer multi-queue implementation
improves performance significantly. The system can sustain
up to 3.5 million IOPS on a single socket system. However,
in multi-socket systems scaling does not continue at nearly
the same rate.

Let us analyze those results in more details:

1. The scalability problems of SQ are evident as soon as
more than one core is used in the system. Additional
cores spend most of their cycles acquiring and releasing
spin locks for the single request queue and as such do
not contribute to improving throughput. This prob-
lem gets even worse on multi-socket systems, because
their inter-connects and the need to maintain cache-
coherence.

2. MQ performance is similar to SQ performance on a sin-
gle core. This shows that the overhead of introducing
multiple queues is minimal.

3. MQ scales linearly within one socket. This is because
we removed the need for the block layer to rely on syn-
chronization between cores when block IOs are manip-
ulated inside the software level queues.

4. For all systems, MQ follows the performance of Raw
closely. MQ is in fact a constant factor away from the
raw measurements, respectively 22%, 19%, 13% and
32% for the 1, 2, 4, 8-sockets systems. This overhead
might seem large, but the raw baseline does not im-
plement logic that is required in a real device driver.
For good scalability, the MQ performance just needs
to follow the trend of the baseline.

5. The scalability of MQ and raw exhibits a sharp dip
when the number of sockets is higher than 1. We see
that throughput reaches 5 million IOPS (resp., 3.8 and
4) for 6 cores (resp., 7 and 9) on a 2 sockets system
(resp., 4 and 8 sockets system). This is far from the

1 socket 2 sockets 4 sockets 8 sockets
SQ 50 ms 50 ms 250 ms 750 ms
MQ 50 ms 50 ms 50 ms 250 ms
Raw 50 ms 50 ms 50 ms 250 ms

Table 2: Maximum latency for each of the systems.

10 million IOPS that we could have hoped for. Inter-
estingly, MQ follows roughly the raw baseline. There
is thus a problem of scalability, whose root lies outside
the block layer, that has a significant impact on perfor-
mance. We focus on this problem in the next Section.

Let us now turn our attention to latency. As we explained
in the previous section, latency is measured through syn-
chronous IOs (with a single outstanding IO per participat-
ing core). The latency is measured as the time it takes to
go from the application, through the kernel system call, into
the block layer and driver and back again. Figure 7 shows
average latency (in µ-seconds) as a function of the number
of cores available for the four systems that we study.

Ideally, latency remains low regardless of the number of
cores. In fact, remote memory accesses contribute to in-
crease latency on multi-sockets systems. For SQ, we observe
that latency increases linearly with the number of cores,
slowly within one socket, and sharply when more than one
socket is active. For MQ, latency remains an order of mag-
nitude lower than for SQ. This is because, for MQ, the only
remote memory accesses that are needed are those concern-
ing the hardware dispatch queue (there is no remote memory
accesses for synchronizing the software level queues). Note
that, on 8 sockets system, the SQ graph illustrates the per-
formance penalty which is incurred when crossing the inter-
connect board (whenever 2, 4, 6 and 8 sockets are involved).

Table 2 shows the maximum latency across all experi-
ments. With SQ, the maximum latency reaches 250 millisec-
onds in the 4 sockets system and 750 milliseconds on the 8
sockets system. Interestingly, with SQ on a 8 sockets sys-
tems, 20% of the IO requests take more than 1 millisecond to
complete. This is a very significant source of variability for
IO performance. In contrast, with MQ, the number of IOs
which take more than 1ms to complete only reaches 0.15%
for an 8 socket system, while it is below 0.01% for the other
systems. Note Raw exhibits minimal, but stable, variation
across all systems with around 0.02% of the IOs that take
more than 1ms to complete.

40

Number of Cores

1 socket

La
te

nc
y

(u
s)

1

10

100

1k

10k

1 2 3 4 5 6

SQ
MQ
Raw

2 socket

2 4 6 8 10 12

4 socket

5 10 15 20 25 30 10 20 30 40 50 60 70 80

8 socket

Figure 7: Latency on the 1, 2, 4 and 8 node system using the null device.

IO
PS

0
2.5M

5M
7.5M
10M

12.5M
15M

Number of Cores
10 20 30 40 50 60 70 80

Raw
MQ
Raw (Original)
MQ (Original)

Figure 8: IOPS for MQ and raw with libaio fixes
applied on the 8-nodes systems.

5.2 Improving Application Level IO Submis-
sion

The throughput graphs from the previous Section exposed
scalability problem within the Linux stack, on top of the
block layer. Through profiling we were able to determine
that the asynchronous (libaio) and direct IO layers, used
within the kernel to transfer block IOs from userspace into
to the block layer, have several bottlenecks that have are
first being exposed with the new MQ block layer implemen-
tation. These bottlenecks are: (i) a context list lock is is-
sued for each request, (ii) a completion ring in libaio used
to manage sleep/wakeup cycles and (iii) a number of shared
variables are being updated throughout the library. We re-
moved these bottlenecks through a series of implementation
improvements.

First, we replaced the context list lock with a lockless list,
which instead of using mutexes to update a variable used the
compare-and-swap instruction of the processor to perform
the update. Second, we eliminated the use of the completion
ring as it caused an extra lock access when updating the
number of elements in the completion list, which in the worst
case, could put the application process to sleep. Third, we
used atomic compare-and-swap instructions to manipulate
the shared counters for internal data structures (e.g. the
number of users of AIO context) instead of the native mutex
structures.

Figure 8 demonstrates the IOPS of the raw and MQ de-
signs using this new userspace IO submission library, on the
8-socket system, which has the hardest time maintaining IO
scalability. We observe that both the MQ and Raw imple-
mentations, while still losing efficiency when moving to a
second socket, are able to scale IOPS near linearly up to the
maximum number of cores within the system. The multi-
queue design proposed here allows the block layer to scale up

IO
PS

0
2.5M

5M
7.5M
10M

12.5M
15M

Number of Cores
10 20 30 40 50 60 70 80

Per-core
Per-node
Single

Figure 9: IOPS for a single software queue with var-
ied number of mapped hardware dispatch queues on
the 8 socket system.

to 10 million IOPS utilizing 70s cores on an 8 socket NUMA
system while maintaining the conveniences of the block layer
implementation for application compatibility. We recognize
that the efficiency of the MQ (and Raw) implementations
drops significantly when moving from one socket onto a sec-
ond. This indicates that there are further bottlenecks to be
improved upon in Linux that lay outside the block layer.
Possible candidates are interrupt handling, context switch-
ing improvements, and other core OS functions that we leave
for future work.

5.3 Comparing Allocation of Software and
Hardware Dispatch Queues

As our design introduces two levels of queues (the soft-
ware and hardware dispatch queues), we must investigate
how number of queues defined for each level impacts perfor-
mance. We proceed in two steps. First, we fix the number
of software level queues to one and we vary the number
of hardware dispatch queues. Second, we fix the number
of software level queues to one per core and we vary the
number of hardware dispatch queues. In both experiments,
the number of hardware dispatch queues is either one, one
per core (denoted per-core) or one per socket (denoted per-
socket). All experiments with the MQ block layer on on the
8-socket system.

Figure 9 presents throughput using a single software queue.
We observe that all configurations show a sharp performance
dip when the second socket is introduced. Furthermore, we
observe that a single software and hardware dispatch queue
perform significantly worse on the second socket, but follow
each other when entering the third socket. Overall, this ex-
periment shows that a single software queue does not allow
the block layer to scape gracefully.

We show in Figure 10 the results of our experiments with

41

IO
PS

0
2.5M

5M
7.5M
10M

12.5M
15M

Number of Cores
10 20 30 40 50 60 70 80

Per-core
Per-node
Single

Figure 10: IOPS for per-core software queue with a
different number of hardware dispatch queues.

a software queue per core. We see that combining multiple
software and hardware dispatch queues enable high perfor-
mance, reaching more than 15 million IOPS using the least
contended per-core/per-core queue mapping. The per-node
hardware dispatch queue configuration also scales well up
to the fifth socket, but then the per-node slowly decrease
in throughput. This occur when the socket interconnect
becomes the bottleneck. Further performance is possible
as more processes are added, but they slightly suffer from
less available bandwidth. To achieve the highest through-
put, per-core queues for both software and hardware dis-
patch queues are advised. This is easily implemented on the
software queue side, while hardware queues must be imple-
mented by the device itself. Hardware vendors can restrict
the number of hardware queues to the system sockets avail-
able and still provide scalable performance.

6 Related Work
Our redesign of the block layer touch on network, hardware
interfaces and NUMA systems. Below we describe related
work in each of these fields.

6.1 Network
The scalability of operating system network stacks has been
addressed in the last 10 years by incorporating multiple
sender and receiver queues within a single card to allow a
proliferation of network ports [1, 21]. This allows a sin-
gle driver to manage multiple hardware devices and reduce
code and data structure duplication for common function-
ality. Our work builds upon the foundation of networking
multi-queue designs by allowing a single interface point, the
block device, with multiple queues within the software stack.

Optimization of the kernel stack itself, with the purpose of
removing IO bottlenecks, has been studied using the Mon-
eta platform [7]. Caulfield et al. propose to bypass the
block layer and implement their own driver and single queue
mechanism to increase performance. By bypassing the block
layer, each thread issues an IO and deals with its comple-
tion. Our approach is different, as we propose to redesign
the block layer thus improving performance across all de-
vices, for all applications.

6.2 Hardware Interface
The NVMe interface [18] attempts to address many of the
scalability problems within the block layer implementation.
NVMe however proposes a new dynamic interface to accom-
modate the increased parallelism in NVM storage on which
each process has its own submission and completion queue
to a NVM storage device. While this is excellent for scalabil-

ity, it requires application modification and pushes much of
the complexity of maintaining storage synchronization out
of the operating system into the application. This also ex-
poses security risks to the application such as denial of ser-
vice without a central trusted arbitrar of device access.

6.3 NUMA
The affect of NUMA designs on parallel applications has
been studied heavily in the HPC space [22, 30, 15, 20] and
big data communities [29, 3, 5]. We find that many of
these observations, disruptive interrupts, cache locality, and
lock-contention have the same negative performance penalty
within the operating system and block layer. Unfortunately,
as a common implementation for all applications, some tech-
niques to avoid lock contention such as message passing sim-
ply are in-feasible to retrofit into a production operating
system built around shared memory semantics.

One approach to improving IO performance is to access
devices via memory-mapped IO. While this does save some
system call overhead, this does not fundamentally change or
improve the scalability of the operating system block layer.
Additionally, it introduces a non-powercut safe fault domain
(the DRAM page-cache) that applications may be un-aware
of while simultaneously requiring a large application re-write
to take leverage.

7 Conclusions and Future Work
In this paper, we have established that the current design
of the Linux block layer does not scale beyond one million
IOPS per device. This is sufficient for today’s SSD, but not
for tomorrow’s. We proposed a new design for the Linux
block layer. This design is based on two levels of queues in
order to reduce contention and promote thread locality. Our
experiments have shown the superiority of our design and its
scalability on multi-socket systems. Our multiqueue design
leverages the new capabilities of NVM-Express or high-end
PCI-E devices, while still providing the common interface
and convenience features of the block layer.

We exposed limitations of the Linux IO stack beyond the
block layer. Locating and removing those additional bottle-
necks is a topic for future work. Future work also includes
performance tuning with multiple hardware queues, and ex-
periments with multiqueue capable hardware prototypes. As
one bottleneck is removed, a new choke point is quickly cre-
ated, creating an application through device NUMA-local
IO-stack is an on-going process. We intend to work with
device manufacturers and standards bodies to ratify the in-
clusion of hardware capabilities that will encourage adoption
of the multiqueue interface and finalize this new block layer
implementation for possible inclusion in the mainline Linux
kernel.

8 References

[1] Improving network performance in multi-core systems.
Intel Corporation, 2007.

[2] J. Axboe. Linux Block IO present and future. Ottawa
Linux Symposium, 2004.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schupbach, and
S. Akhilesh. The multikernel: a new OS architecture
for scalable multicore systems. Symposium on
Operating Systems Principles, 2009.

42

[4] M. Bjørling, P. Bonnet, L. Bouganim, and N. Dayan.
The necessary death of the block device interface. In
Conference on Innovative Data Systems Research,
2013.

[5] S. Boyd-wickizer, A. T. Clements, Y. Mao,
A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An Analysis of Linux Scalability to
Many Cores. Operating Systems Design and
Implementation, 2010.

[6] G. W. Burr, M. J. Breitwisch, M. Franceschini,
D. Garetto, K. Gopalakrishnan, B. Jackson, C. Lam,
and A. Luis. Phase change memory technology.
Journal of Vacuum Science and Technology B,
28(2):223–262, 2010.

[7] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation,
non-volatile memories. In Proceedings of The 43rd
Annual IEEE/ACM International Symposium on
Microarchitecture, 2010.

[8] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe, user space
access to fast, solid state disks. SIGARCH Comput.
Archit. News, 40(1):387–400, Mar. 2012.

[9] S. Cho, C. Park, H. Oh, S. Kim, Y. Y. Yi, and
G. Ganger. Active Disk Meets Flash: A Case for
Intelligent SSDs. Technical Report CMU-PDL-11-115,
2011.

[10] Completely Fair Queueing (CFQ) Scheduler.
http://en.wikipedia.org/wiki/CFQ.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. Symposium on
Operating Systems Principles, page 133, 2009.

[12] Deadline IO Scheduler. http:
//en.wikipedia.org/wiki/Deadline_scheduler.

[13] M. Dunn and A. L. N. Reddy. A new I/O scheduler
for solid state devices. Texas A&M University, 2010.

[14] fio. http://freecode.com/projects/fio.

[15] P. Foglia, C. A. Prete, M. Solinas, and F. Panicucci.
Investigating design tradeoffs in S-NUCA based CMP
systems. UCAS, 2009.

[16] Fusion-io ioDrive2. http://www.fusionio.com/.

[17] L. M. Grupp, J. D. David, and S. Swanson. The Bleak
Future of NAND Flash Memory. USENIX Conference
on File and Storage Technologies, 2012.

[18] A. Huffman. NVM Express, Revision 1.0c. Intel
Corporation, 2012.

[19] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H.
Noh. Disk Schedulers for Solid State Drives. In
EMSOFTâĂŹ09: 7th ACM Conf. on Embedded
Software, pages 295–304, 2009.

[20] F. Liu, X. Jiang, and Y. Solihin. Understanding How
Off-Chip Memory Bandwidth Partitioning in Chip
Multiprocessors Affects System Performance. High
Performance Computer Architecture, 2009.

[21] S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz, and
L. Stibor. 802.11e Wireless LAN for Quality of
Service. IEEE, 2012.

[22] J. Nieplocha, R. J. Harrison, and R. J. Littlefield.
Global Arrays: A Non-Uniform-Memory-Access
Programming Model For High-Performance
Computers. The Journal of Supercomputing, 1996.

[23] S. Park and K. Shen. FIOS: A Fair, Efficient Flash
I/O Scheduler. In USENIX Conference on File and
Storage Technologies, 2010.

[24] J. Parkhurst, J. Darringer, and B. Grundmann. From
single core to multi-core: preparing for a new
exponential. In Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design,
2006.

[25] PCI-SIG. PCI Express Specification Revision 3.0.
Technical report, 2012.

[26] L. Soares and M. Stumm. Flexsc: Flexible system call
scheduling with exception-less system calls. In
Proceedings of the 9th USENIX conference on
Operating systems design and implementation, 2010.

[27] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30(3):202–210, 2005.

[28] V. Vasudevan, M. Kaminsky, and D. G. Andersen.
Using vector interfaces to deliver millions of iops from
a networked key-value storage server. In Proceedings of
the Third ACM Symposium on Cloud Computing,
2012.

[29] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum.
Operating System Support for Improving Data
Locality on CC-NUMA Compute Servers. In
International Conference on Architectural Support for
Programming Languages and Operating Systems, 1996.

[30] J. Weinberg. Quantifying Locality In The Memory
Access Patterns of HPC Applications. PhD thesis,
2005.

[31] J. Yang, D. B. Minturn, and F. Hady. When Poll is
Better than Interrupt. In USENIX Conference on File
and Storage Technologies, 2012.

43

Chapter 4

I/O Speculation for the

Microsecond Era

Microsecond latencies and access times will soon dominate most data-

center I/O workloads. With the introduction of enterprise SSDs that em-

ploys advance buffering techniques and new types of persistent memo-

ries, such as PCM [2], SSD write latency is approaching low tens micro-

seconds [3]1.

A core principle for system design is to aim for high resource utiliza-

tion. For example, a process issuing an IO to a slow storage device should

yield the processor just after IO submission to let other processes do use-

ful work. The resulting context switch requires 10-20us of in-kernel pro-

cessing time. If I/Os complete with hundreds of millisecond latency, this

overhead is negligible. If now I/Os complete with sub-millisecond la-

tency, the context switch becomes significant. In that case, it can be bene-

ficial to poll for I/O completion instead of yield [4]. However, for devices

1Intel P3700 SSD reports a 20us write latency

with low tens of microsecond latency, polling for 10-20us is a waste of re-

sources.

Similarly, Asynchronous I/Os [1] allow applications to submit I/O

without yield. Instead checks for completion are required at a later point.

At that point, the processor could be executing code in another thread or

on an interrupt context. Thus, an I/O completion causes rescheduling

of process no matter what. We argue for a third method: Speculation.

I/O speculation allows processes to continue execution, after submitting

a write, without checking for I/O completion. In case, the I/O completes

successfully, all is fine. Now, if the I/O fails to complete, some form of

reparation or compensation must be enforced.

Several approaches to speculation are evaluated in our contribution

"I/O Speculation in the Microsecond Era" published at the Usenix ATC

2014 conference.

The insight of speculation is that I/Os rarely fail. An application

therefore can continue execution directly after submission of a syn-

chronous I/O. Contrary to asynchronous I/O, there is no need to check

for the following completion. Execution continues until there is a visible

external side-effects. Such a side-effect would for example be additional

I/O or irreversible system calls.

To understand which application types would benefit from I/O spec-

ulation, the paper evaluates three types of application I/O patterns: pure

I/O, I/O intensive and compute intensive. For each type, the number

of instructions is measured between visible side-effects. For a subset of

applications, this amount to tens of thousands of instructions and those

may benefit from speculation.

45

The paper evaluates several techniques to enable speculation. It is

up to the technique to rollback to the previous execution point if an I/O

fails. Four approaches were evaluated. Neither were optimal.

Two approaches use execution check-points. The first copies the pro-

cess address space after I/O submission using copy-on-write (COW). On

failure, it rolls back to previous check-point and reenter with the failed

I/O logic. The COW creation was measure to evaluate this. Already at

small process sizes it took more time than actually poll for I/O comple-

tion. The second study if the Intel TSX [5] transaction extension can be

applied. This was quickly dismissed because of early abort and the scope

of transactions.

Check-point free speculation was evaluated as well. In that case

the application roll-back itself by keeping extra structures, or I/Os was

buffered in the kernel. However, this similarly did not solve the problem,

as I/Os must be buffered in kernel space and thereby copied, which also

is a significant overhead for microsecond storage.

The contribution of this paper is the evaluation of current state-of-art

in techniques for providing speculation. Future research can benefit from

our work and avoid the common pitfalls.

46

Literature

[1] Janet Bhattacharya, Suparna and Pratt, Steven and Pulavarty, Badari
and Morgan. Asynchronous I/O support in Linux 2.5. Proceedings of
the Linux Symposium, 2003.

[2] HGST. HGST Research Demonstrates World’s Fastest SSD.
Technical report, Flash Memory Summit (FMS), 2014.

[3] Dejan Vučinić, Qingbo Wang, Cyril Guyot, Robert Mateescu, Filip
Blagojević, Luiz Franca-neto, Damien Le Moal, Hgst San, Trevor
Bunker, Jian Xu, Steven Swanson, San Diego, Santa Clara, and
Zvonimir Bandi. DC Express : Shortest Latency Protocol for
Reading Phase Change Memory over PCI Express. 12th USENIX
Conference on File and Storage Technologies (FAST), 2014.

[4] Jisoo Yang, DB Minturn, and Frank Hady. When poll is better than
interrupt. Proceedings of the 10th USENIX conference on File and
Storage Technologies (FAST), pages 1–7, 2012.

[5] Ravi Yoo, Richard M and Hughes, Christopher J and Lai, Konrad
and Rajwar. Performance evaluation of Intel transactional
synchronization extensions for high-performance computing.
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2013.

I/O Speculation for the Microsecond Era

Michael Wei†, Matias Bjørling‡, Philippe Bonnet‡, Steven Swanson†

†University of California, San Diego ‡IT University of Copenhagen

Abstract

Microsecond latencies and access times will soon domi-
nate most datacenter I/O workloads, thanks to improve-
ments in both storage and networking technologies. Cur-
rent techniques for dealing with I/O latency are targeted
for either very fast (nanosecond) or slow (millisecond)
devices. These techniques are suboptimal for microsec-
ond devices - they either block the processor for tens
of microseconds or yield the processor only to be ready
again microseconds later. Speculation is an alternative
technique that resolves the issues of yielding and block-
ing by enabling an application to continue running un-
til the application produces an externally visible side ef-
fect. State-of-the-art techniques for speculating on I/O
requests involve checkpointing, which can take up to a
millisecond, squandering any of the performance bene-
fits microsecond scale devices have to offer. In this paper,
we survey how speculation can address the challenges
that microsecond scale devices will bring. We mea-
sure applications for the potential benefit to be gained
from speculation and examine several classes of specu-
lation techniques. In addition, we propose two new tech-
niques, hardware checkpoint and checkpoint-free spec-
ulation. Our exploration suggests that speculation will
enable systems to extract the maximum performance of
I/O devices in the microsecond era.

1 Introduction

We are at the dawn of the microsecond era: current
state-of-the-art NAND-based Solid State Disks (SSDs)
offer latencies in the sub-100µs range at reasonable
cost [16, 14]. At the same time, improvements in net-
work software and hardware have brought network laten-
cies closer to their physical limits, enabling sub-100µs
communication latencies. The net result of these devel-

Device Read Write
Millisecond Scale
10G Intercontinental RPC 100 ms 100 ms
10G Intracontinental RPC 20 ms 20 ms
Hard Disk 10 ms 10 ms
10G Interregional RPC 1 ms 1 ms
Microsecond Scale
10G Intraregional RPC 300 µs 300 µs
SATA NAND SSD 200 µs 50 µs
PCIe/NVMe NAND SSD 60 µs 15 µs
10Ge Inter-Datacenter RPC 10 µs 10 µs
40Ge Inter-Datacenter RPC 5 µs 5 µs
PCM SSD 5 µs 5 µs
Nanosecond Scale
40 Gb Intra-Rack RPC 100 ns 100 ns
DRAM 10 ns 10 ns
STT-RAM <10 ns <10 ns

Table 1: I/O device latencies. Typical random read and
write latencies for a variety of I/O devices. The major-
ity of I/Os in the datacenter will be in the microsecond
range.

opments is that the datacenter will soon be dominated by
microsecond-scale I/O requests.

Today, an operating system uses one of two options
when an application makes an I/O request: either it can
block and poll for the I/O to complete, or it can com-
plete the I/O asynchronously by placing the request in
a queue and yielding the processor to another thread
or application until the I/O completes. Polling is an
effective strategy for devices with submicrosecond la-
tency [2, 20], while programmers have used yielding
and asynchronous I/O completion for decades on devices
with millisecond latencies, such as disk. Neither of these
strategies, however, is a perfect fit for microsecond-scale
I/O requests: blocking will prevent the processor from
doing work for tens of microseconds, while yielding may

48

reduce performance by increasing the overhead of each
I/O operation.

A third option exists as a solution for dispatching I/O
requests, speculation. Under the speculation strategy, the
operating system completes I/O operations speculatively,
returning control to the application without yielding. The
operating system monitors the application: in the case of
a write operation, the operating system blocks the appli-
cation if it makes a side-effect, and in the case of a read
operation, the operating system blocks the application if
it attempts to use data that the OS has not read yet. In
addition, the operating system may have a mechanism to
rollback if the I/O operation does not complete success-
fully. By speculating, an application can continue to do
useful work even if the I/O has not completed. In the
context of microsecond-scale I/O, speculation can be ex-
tremely valuable since, as we discuss in the next section,
there is often enough work available to hide microsecond
latencies. We expect that storage class memories, such
as phase-change memory (PCM), will especially benefit
from speculation since their access latencies are unpre-
dictable and variable [12].

Any performance benefit to be gained from specu-
lation is dependent upon the performance overhead of
speculating. Previous work in I/O speculation [9, 10]
has relied on checkpointing to enable rollback in case
of write failure. Even lightweight checkpointing, which
utilizes copy-on-write techniques, has a significant over-
head which can exceed the access latency of microsec-
ond devices.

In this paper, we survey speculation in the context
of microsecond-scale I/O devices, and attempt to quan-
tify the performance gains that speculation has to of-
fer. We then explore several techniques for speculation,
which includes exploring existing software-based check-
pointing techniques. We also propose new techniques
which exploit the semantics of the traditional I/O inter-
face. We find that while speculation could allow us to
maximize the performance of microsecond scale devices,
current techniques for speculation cannot deliver the per-
formance which microsecond scale devices require.

2 Background

Past research has shown that current systems have built-
in the assumption that I/O is dominated by millisecond
scale requests [17, 2]. These assumptions have impacted
the core design of the applications and operating systems
we use today, and may not be valid in a world where
I/O is an order of magnitude faster. In this Section, we
discuss the two major strategies for handling I/O and
show that they do not adequately address the needs of
microsecond-scale devices, and we give an overview of
I/O speculation.

2.1 Interfaces versus Strategies
When an application issues a request for an I/O, it uses an
interface to make that request. A common example is the
POSIX write/read interface, where applications make
I/O requests by issuing blocking calls. Another example
is the POSIX asynchronous I/O interface, in which ap-
plications enqueue requests to complete asynchronously
and retrieve the status of their completion at some later
time.

Contrast interfaces with strategies, which refers to
how the operating system actually handles I/O requests.
For example, even though the write interface is block-
ing, the operating system may choose to handle the I/O
asynchronously, yielding the processor to some other
thread.

In this work, we primarily discuss operating system
strategies for handling I/O requests, and assume that ap-
plication developers are free to choose interfaces.

2.2 Asynchronous I/O - Yielding
Yielding, or the asynchronous I/O strategy, follows the
traditional pattern for handling I/O requests within the
operating system: when a userspace thread issues an I/O
request, the I/O subsystem issues the request and the
scheduler places the thread in an I/O wait state. Once
the I/O device completes the request, it informs the oper-
ating system, usually by means of a hardware interrupt,
and the operating system then places the thread into a
ready state, which enables the thread to resume when it
is rescheduled.

Yielding has the advantage of allowing other tasks to
utilize the CPU while the I/O is being processed. How-
ever, yielding introduces significant overhead, which is
particularly relevant for fast I/O devices [2, 20]. For ex-
ample, yielding introduces contexts switches, cache and
TLB pollution as well as interrupt overhead that may ex-
ceed the cost of doing the I/O itself. These overheads
are typically in the microsecond range, which makes the
cost of yielding minimal when dealing with millisecond
latencies as with disks and slow WANs, but high when
dealing with nanosecond devices, such as fast NVMs.

2.3 Synchronous I/O - Blocking
Blocking, or the synchronous I/O strategy, is a solution
for dealing with devices like fast NVMs. Instead of
yielding the CPU in order for I/O to complete, block-
ing prevents unnecessary context switches by having the
application poll for I/O completions, keeping the entire
context of execution within the executing thread. Typi-
cally, the application stays in a spin-wait loop until the
I/O completes, and resumes execution once the device
flags the I/O as complete.

49

Blocking prevents the CPU from incurring the cost of
context switches, cache and TLB pollution as well as in-
terrupt overhead that the yielding strategy incurs. How-
ever, the CPU is stalled for the amount of time the I/O
takes to complete. If the I/O is fast, then this strategy is
optimal since the amount of time spent waiting is much
shorter than the amount of CPU time lost due to soft-
ware overheads. However, if the I/O is in the millisec-
onds range, this strategy wastes many CPU cycles in the
spin-wait loop.

2.4 Addressing Microsecond-Scale Devices

Microsecond-scale devices do not fit perfectly into either
strategy: blocking may cause the processor to block for a
significant amount of time, preventing useful work from
being done, and yielding may introduce overheads that
may not have been significant with millisecond-scale de-
vices, but may exceed the time to access a microsecond
scale device. Current literature [2, 20] typically recom-
mends that devices with microsecond (≥ 5µs) latencies
use the yielding strategy.

2.5 I/O Speculation

Speculation is a widely employed technique in which a
execution occurs before it is known whether it is needed
or correct. Most modern processors use speculation: for
example, branch predictors resolve branches before the
branch path has been calculated [15]. Optimistic con-
currency control in database systems enables multiple
transactions to proceed before conflicts are resolved [5].
Prefetching systems attempt to make data available be-
fore it is known to be needed [8]. In all these speculative
systems, speculation has no effect on correctness – if a
misspeculation occurs either it has no effect on correct-
ness or the system can rollback state as if no speculation
had occurred in the first place.

I/O requests are a good speculation candidate for sev-
eral reasons. The results of an I/O request are simple
and predictable. In the case of a write, the write either
succeeds or fails. For a read, the request usually returns
success or failure immediately, and a buffer with the re-
quested data is filled. In the common case, I/Os typically
succeed – failures such as a disk error or an unreachable
host are usually exceptional conditions that do not occur
in a typical application run.

We depict the basic process of speculation in Fig-
ure 1. In order to speculate, a speculative context is cre-
ated first. Creating a speculative context incurs a per-
formance penalty (tspeculate), but once the context is cre-
ated, the task can speculatively execute for some time
(tspec execute), doing useful work until it is no longer safe
to speculate (twait). In the meantime, the kernel can dis-

Yielding

tio_start

tio_start

tdevice

tio_comp

tio_comp

tsched tsched

tapp2

tpolling

tdevice

tdevice

tspeculate

Blocking

Speculating
twait

User Time

Kernel / Wait Time

Device Time

tspec_execute

Figure 1: Cost breakdown by strategy. These dia-
grams show the relative costs for the yielding, blocking
and speculating strategies.

patch the I/O request asynchronously (tio start). Once
the I/O request completes (tio comp), the kernel commits
the speculative execution if the request is successful, or
aborts the speculative execution if it is not.

In contrast to the blocking strategy, where the appli-
cation cannot do useful work while the kernel is polling
for the device to complete, speculation allows the appli-
cation to perform useful work while the I/O is being dis-
patched. Compared to the yielding strategy, speculation
avoids the overhead incurred by context switches.

This breakdown indicates that the perofrmance ben-
efits from speculation hinges upon the time to create a
speculative context and the amount of the system can
safely speculate. If the cost is zero, and the device
time (tdevice) is short, then it is almost always better to
speculate because the CPU can do useful work while
the I/O is in progress, instead of spinning or paying the
overhead of context switches. However, when tdevice is
long compared to the time the system can safely specu-
late (tspecexecute), then yielding will perform better, since
it can at least allow another application to do useful
work where the speculation strategy would have to block.
When the time to create a context (tspeculate) is high com-
pared to tdevice, then the blocking strategy would be better
since it does not waste cycles creating a speculative con-
text which will be commited before any work is done.

For millisecond devices, yielding is optimal because
tdevice is long, so the costs of scheduling and context
switches are minimal compared to the time it takes to
dispatch the I/O. For nanosecond devices, blocking is op-
timal since tdevice is short, so overhead incurred by either
speculation or yielding will be wasteful. For microsec-
ond devices, we believe speculation could be optimal if

50

Application Description
bzip2 bzip2 on the Linux kernel source.
dc NPB Arithmetic data cube.
dd The Unix dd utility.
git clone Clone of the Linux git repository.
make Build of the Linux 3.11.1 kernel.
mongoDB A 50% read, 50% write workload.
OLTP An OLTP benchmark using MySQL.
postmark E-mail server simulation benchmark.
tar Tarball of the Linux kernel.
TPCC-Uva TPC-C running on postgresql.

Table 3: Applications. A wide array of applications
which we analyzed for speculation potential.

there are microseconds of work to speculate across, and
the cost of speculating is low.

3 The Potential for Speculation

In order for speculation to be worthwhile, tspec execute
must be significantly large compared to the cost of spec-
ulation and the device time. In order to measure this po-
tential, we instrumented applications with Pin [13], a dy-
namic binary instrumentation tool, to measure the num-
ber of instructions between I/O requests and the point
speculation must block. For writes, we measured the
number of instructions between a write system call and
side effects-causing system calls (for example, kill(2)
but not getpid(2)), as well as writes to shared mem-
ory. For reads, we measure the number of instructions
between a read system call and the actual use of the re-
sulting buffer (for example, as a result of a read instruc-
tion to the buffer), or other system call, as with a write.
Our estimate of the opportunity for speculation is an ex-
tremely conservative one: we expect that we will have to
block on a large number of system calls that many sys-
tems we discuss in section 4 speculate through. However,
by limiting the scope of speculation, our findings reflect
targets for speculation that produce a minimal amount of
speculative state.

We instrumented a wide variety of applications (Ta-
ble 3), and summarize the results in Table 2. In gen-
eral, we found applications fell into one of three cate-
gories: pure I/O applications, I/O intensive applications,
and compute intensive applications. We briefly discuss
each class below:

Pure I/O applications such as dd and postmark per-
formed very little work between side-effects. For exam-
ple, dd performs a read on the input file to a buffer, fol-
lowed by write to the output file repeatedly. On average,
these applications perform on the order of 100 instruc-
tions between I/O requests and side effects.

We also looked at database applications including
TPCC-Uva, MongoDB and OLTP. These applications are

I/O intensive, but perform a significant amount of com-
pute between side effects. On average, we found that
these applications perform on the order of 10,000 in-
structions between read and write requests. These work-
loads provide an ample instruction load for microsecond
devices to speculate through.

Compute intensive applications such as bzip2 and dc

performed hundreds of thousands to millions of instruc-
tions between side-effects. However, these applications
made I/O calls less often than other application types,
potentially minimizing the benefit to be had from specu-
lation.

Many of the applications we tested used the buffer
following a read system call immediately: most appli-
cations waited less than 100 instructions before using a
buffer that was read. For many applications, this was due
to buffering inside libc, and for many other applications,
internal buffering (especially for the database workloads,
which often employ their own buffer cache) may have
been a factor.

4 Speculation Techniques

In the next section, we examine several techniques for
speculation in the context of the microsecond era. We
review past work and propose new design directions in
the context of microsecond scale I/O.

4.1 Asynchronous I/O Interfaces
While asynchronous I/O interfaces [1] are not strictly
a speculation technique, we mention asynchronous I/O
since it provides similar speedups as speculation. Indeed,
just as in speculation, program execution will continue
without waiting for the I/O to complete. However, asyn-
chronous I/O requires the programmer to explicitly use
and reason about asynchrony, which increases program
complexity. In practice, while modern Linux kernels
support asynchronous I/O, applications use synchronous
I/O unless they require high performance.

4.2 Software Checkpoint Speculation
In order to perform speculation, software checkpointing
techniques generate a checkpoint, which is a copy of an
application’s state. To generate a checkpoint, we call
clone(2), which creates a copy-on-write clone of the
calling process. After the checkpoint has been created,
the system may allow an application to speculatively
continue through a synchronous I/O call before it com-
pletes (by returning control to the application as if the
I/O had completed successfully). The system then mon-
itors the application and stops it if it performs an action
which produces an external output (for example, writing

51

Writes Reads
Application Instructions Calls/s Stop Reason Instructions Calls/s Stop Reason
Pure I/O Applications
postmark 74±107 518 close 15±11 123 buffer
make (ld) 115±6 55 lseek 8,790±73,087 180 lseek (31%)

buffer (68%)
dd 161±552 697 write 69±20 698 write

tar 248±1,090 1,001 write (90%)
close (9%)

144±11 1,141 write

git clone 1,940±11,033 2,833 write (73%)
close (26%)

14±10 1,820 buffer

I/O Intensive Applications
MongoDB 10,112±662,117 13,155 pwrite (94%) 62±196 <1 buffer
TPCC-Uva 11,390±256,018 115 write (49%)

sendto (22%)
37±8 22 buffer

OLTP 22,641±342,110 141 pwrite (79%)
sendto (7%)

31±21 19 buffer

Compute Intensive Applications
dc 1,216,281±13,604,751 225 write 8,677±66,273 156 buffer
make (cc1) 1,649,322±819,258 12 write 165±21 431 buffer
bzip2 43,492,452±155,858,431 7 write 1,472±345,827 18 buffer

Table 2: Speculation Potential. Potential for speculation in the read/write path of profiled applications. We list only
the stop reasons that occur in >5% of all calls. Error numbers are standard deviations, and “buffer” indicates that
speculation was stopped due to a read from the read buffer.

0

10 µs

100 µs

1 ms

10 ms

8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M
128M

256M
512M

1G 2G 4G

Ti
m

e
(s

ec
on

ds
)

Virtual Memory Size (bytes)

Cloning Cost vs. vmsize

Figure 2: Cloning Cost. The cost of copy-on-write
cloning for applications of various virtual memory sizes.
Note that the axes are in log scale.

a message to a screen or sending a network packet) and
waits for the speculated I/O to complete. If the I/O fails,
the system uses the checkpoint created earlier to restore
the application state, which allows the application to con-
tinue as if the (mis)speculation never occurred in the first
place.

Software-based checkpointing techniques are at the
heart of a number of systems which employ speculation,
such as Speculator [9] and Xsyncfs [10]. These systems
enabled speculative execution in both disks and over dis-
tributed file systems. These systems are particularly at-
tractive because they offer increased performance with-
out sacrificing correctness. Checkpoint-based specula-

tion techniques hide misspeculations from the program-
mer, enabling applications to run on these systems un-
modified.

However, providing the illusion of synchrony using
checkpoints has a cost. We examined the cost of the
clone operation, which is used for checkpointing (Fig-
ure 2). We found that for small applications, the cost was
about 50µs, but this cost increased significantly as the
virtual memory (vm) size of the application grew. As the
application approached a vm size of 1GB, the cloning
cost approached 1ms. While these cloning latencies may
have been a small price to pay for slower storage tech-
nologies, such as disk and wide area networks, the cost of
cloning even the smallest application can quickly eclipse
the latency of a microsecond era device. In order for
checkpoint-based speculation to be effective, the cost of
taking a checkpoint must be minimized.

4.3 Hardware Checkpoint Speculation

Since we found checkpointing to be an attractive tech-
nique for enabling speculation given its correctness prop-
erties, creating checkpoints via hardware appeared to be
a reasonable approach to accelerating checkpointing. In-
tel’s transactional memory instructions, introduced with
the Haswell microarchitecture [21] seemed to be a good
match. Hardware transactional memory support has the
potential of significantly reducing the cost of speculation,
since speculative execution is similar to transactions. We
can wrap speculative contexts into transactions which are

52

committed only when the I/O succeeds. Checkpoints
would then be automatically created and tracked by hard-
ware, which buffers away modifications until they are
ready to be committed.

We examined the performance of TSX and found that
the cost of entering a transactional section is very low
(<20 ns). Recent work [18, 21] suggests that TSX trans-
action working sets can write up to 16KB and <1 ms
with low abort rates (<10%). While TSX shows much
promise in enabling fast, hardware-assisted checkpoint-
ing, many operations including some I/O operations,
cause a TSX transaction to abort. If an abort happens
for any reason, all the work must be repeated again,
significantly hampering performance. While hardware
checkpoint speculation is promising, finer-grained soft-
ware control is necessary. For example, allowing soft-
ware to control which conditions cause an abort as well
as what happens after an abort would enable speculation
with TSX.

4.4 Checkpoint-Free Speculation

During our exploration of checkpoint-based speculation,
we observed that the created checkpoints were rarely, if
ever used. Checkpoints are only used to ensure correct-
ness when a write fails. In a system with local I/O, a
write failure is a rare event. Typically, such as in the
case of a disk failure, there is little the application de-
veloper will do to recover from the failure other than re-
porting it to the user. Checkpoint-free speculation makes
the observation that taking the performance overhead of
checkpointing to protect against a rare event is ineffi-
cient. Instead of checkpointing, checkpoint-free specu-
lation makes the assumption that every I/O will succeed,
and that only external effects need to be prevented from
appearing before the I/O completes. If a failure does oc-
cur, then the application is interrupted via a signal (in-
stead of being rolled back) to do any final error handling
before exiting.

Unfortunately, by deferring synchronous write I/Os to
after a system call, the kernel must buffer the I/Os until
they are written to disk. This increases memory pressure
and requires an expensive memory copy for each I/O.
We continue to believe that checkpoint-free speculation,
if implemented together with kernel and user-space pro-
cesses to allow omitting the memory copy, will result in
a significant performance increase for microsecond-scale
devices.

4.5 Prefetching

While the previous techniques are targeted towards spec-
ulating writes, prefetching is a technique for speculating
across reads. In our characterization of speculation po-

tential, we found that speculating across read calls would
be ineffective because applications are likely to immedi-
ately use the results of that read. This result suggests
that prefetching would be an excellent technique for mi-
crosecond devices since the latency of fetching data early
is much lower with microsecond era devices, reducing
the window of time that a prefetcher needs to account
for. We note that the profitability of prefetching also
decreases with latency - it is much more profitable to
prefetch from a microsecond device that a nanosecond
device.

Prefetching already exists in many storage systems.
For example, the Linux buffer cache can prefetch data
sequentially in a file. However, we believe that more
aggressive forms of prefetching are worth revisiting for
microsecond scale devices. For example, SpecHint and
TIP [3, 11] used a combination of static and dynamic
binary translation to speculatively generate I/O hints,
which they extended into the operating system [4] to im-
prove performance. Mowry [7] proposed a similar sys-
tem which inserted I/O prefetching at compile time to
hide I/O latency. Since microsecond devices expose or-
ders of magnitude more operations per second than disk,
these aggressive techniques will be much more lucrative
in the microsecond era.

4.6 Parallelism
Other work on speculation focuses on using speculation
to extract parallelism out of serial applications. For ex-
ample, Wester [19] introduced a speculative system call
API which exposes speculation to programmers, and Fast
Track [6] implemented a runtime environment for spec-
ulation. This work will likely be very relevant since mi-
crosecond devices expose much more parallelism than
disk.

5 Discussion

As we have seen, a variety of different techniques exist
for speculating on storage I/O, however, in their current
state, no technique yet completely fulfills the needs of
microsecond scale I/O.

Our study suggests that future work is needed in two
areas. First, more work is needed to design appropri-
ate hardware for checkpointing solutions. Second, the
opportunity for checkpoint-free speculation needs to be
studied in depth for both compute intensive and I/O in-
tensive database applications.

6 Conclusion

This paper argues for the use of speculation for
microsecond-scale I/O. Microsecond-scale I/O will soon

53

dominate datacenter workloads, and current strategies
are suboptimal for dealing with the I/O latencies that fu-
ture devices will deliver. Speculation can serve to bridge
that gap, providing a strategy that enables I/O intensive
applications to perform useful work while waiting for I/O
to complete. Our results show that the performance of
microsecond-scale I/Os can greatly benefit from specu-
lation, but our analysis of speculation techniques shows
that the cost of speculation must be minimized in order
to derive any benefit.

7 Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant No. DGE-
1144086, as well as C-FAR, one of six centers of STAR-
net, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

References

[1] S. Bhattacharya, S. Pratt, B. Pulavarty, and J. Morgan.
Asynchronous I/O support in Linux 2.5. In Proceedings
of the Linux Symposium, pages 371–386, 2003.

[2] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe, user space
access to fast, solid state disks. In ACM SIGARCH
Computer Architecture News, volume 40, pages 387–400.
ACM, 2012.

[3] F. Chang and G. A. Gibson. Automatic i/o hint gener-
ation through speculative execution. In Proceedings of
the Third Symposium on Operating Systems Design and
Implementation, OSDI ’99, pages 1–14, Berkeley, CA,
USA, 1999. USENIX Association.

[4] K. Faser and F. Chang. Operating System I/O Specula-
tion: How Two Invocations Are Faster Than One. In
USENIX Annual Technical Conference, General Track,
pages 325–338, 2003.

[5] J. Huang, J. A. Stankovic, K. Ramamritham, and D. F.
Towsley. Experimental evaluation of real-time optimistic
concurrency control schemes. In VLDB, volume 91, pages
35–46, 1991.

[6] K. Kelsey, T. Bai, C. Ding, and C. Zhang. Fast Track: A
software system for speculative program optimization. In
Proceedings of the 7th annual IEEE/ACM International
Symposium, pages 157–168, 2009.

[7] T. C. Mowry, A. K. Demke, and O. Krieger. Automatic
compiler-inserted i/o prefetching for out-of-core applica-
tions. In Proceedings of the Second USENIX Symposium
on Operating Systems Design and Implementation, OSDI
’96, pages 3–17, New York, NY, USA, 1996. ACM.

[8] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC:
An adaptive data cache prefetcher. In Proceedings of the
13th Conference on Parallel Architectures, pages 135–
145, 2004.

[9] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative
execution in a distributed file system. ACM Transactions
on Computer Systems (TOCS), 24(4):361–392, 2006.

[10] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and
J. Flinn. Rethink the sync. ACM Transactions on Com-
puter Systems (TOCS), 26(3):6, 2008.

[11] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. In
Proceedings of the Fifteenth ACM Symposium on Operat-
ing Systems Principles, pages 79–95. ACM, 1995.

[12] M. Qureshi, M. Franceschini, A. Jagmohan, and L. Las-
tras. Preset: Improving performance of phase change
memories by exploiting asymmetry in write times. In 39th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 380–391. IEEE, 2012.

[13] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn.
PIN: a binary instrumentation tool for computer architec-
ture research and education. In Proceedings of the 2004
workshop on Computer architecture education, 2004.

[14] S.-H. Shin, D.-K. Shim, J.-Y. Jeong, O.-S. Kwon, S.-Y.
Yoon, M.-H. Choi, T.-Y. Kim, H.-W. Park, H.-J. Yoon, Y.-
S. Song, et al. A new 3-bit programming algorithm using
SLC-to-TLC migration for 8MB/s high performance TLC
NAND flash memory. In VLSI Circuits (VLSIC), 2012
Symposium on, pages 132–133. IEEE, 2012.

[15] J. E. Smith. A study of branch prediction strategies. In
Proceedings of the 8th annual symposium on Computer
Architecture, pages 135–148, 1981.

[16] H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Kat-
sumata, M. Kito, Y. Fukuzumi, M. Sato, Y. Nagata,
Y. Matsuoka, et al. Bit cost scalable technology with
punch and plug process for ultra high density flash mem-
ory. In IEEE Symposium on VLSI Technology, pages 14–
15. IEEE, 2007.

[17] H. Volos. Revamping the system interface to storage-class
memory, 2012. PhD Thesis. University of Wisconsin at
Madison.

[18] Z. Wang, H. Qian, J. Li, and H. Chen. Using re-
stricted transactional memory to build a scalable in-
memory database. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, pages
26:1–26:15, New York, NY, USA, 2014. ACM.

[19] B. Wester, P. M. Chen, and J. Flinn. Operating System
Support for Application-specific Speculation. In Proceed-
ings of the Sixth European conference on Computer sys-
tems, pages 229–242. ACM, 2011.

[20] J. Yang, D. B. Minturn, and F. Hady. When poll is bet-
ter than interrupt. In Proceedings of the 10th USENIX
conference on File and Storage Technologies, 2012.

[21] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Per-
formance Evaluation of Intel(R) Transactional Synchro-
nization Extensions for High-Performance Computing. In
Proceedings of SC13: International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, page 19. ACM, 2013.

54

Chapter 5

LightNVM: Lightning Fast

Evaluation Platform for

Non-Volatile Memories

The previous papers argue for a form of cross-layer optimization involv-

ing applications, operating system and SSDs. The approach I have taken

for this thesis led me to consider cross-layer optimizations in the con-

text of actual software components. More specifically I intended to study

cross layer optimizations in the context of the Linux I/O stack. None of

the existing simulators enabled me to explore this design space. I thus

decided to design my own.

Before my thesis, trace-based simulators, such as DiskSim with SSD

extensions [1], FlashSim [3] and others [4] were the only possibilities to

model and explore SSD internals.

As SSDs become more complex and employ garbage collection in

the background, they become non-deterministic. Their state, FTL and

NAND flash health all contributes to the timing accuracy. For example,

garbage collection might be triggered based on the state of the device,

and therefore interfere with incoming user I/O. A trace-based simulator

therefore should capture the state of NAND flash and FTL, as well as the

SSD state at run-time.

To capture the run-time state, an SSD simulator must run as a real

live SSD. A simulator that supports this is VSSIM [5]. It implements an

SSD simulator in a virtual machine hypervisor, that exposes a live SSD

as a block device inside the guest. Accurately tracking the behavior of

an SSD implementation at run-time. The approach captures the internal

state of SSD, while also reporting accurate timings. However, a single

caveat influence the performance of the simulator. For each I/O a hyper-

visor context switch between host and guest is required. That effectively

limits VSSIM to thousands of IOPS. Modern SSDs execute hundred of

thousand of IOPS. This limits the evaluation background garbage collec-

tion routines, etc. that are time-dependent.

I designed the LightNVM simulator in order to simulate high-

performance SSDs. To accomplish this, the simulator is implemented

in the host kernel, instead of being encapsulated inside a virtual ma-

chine, and similarly to VSSIM, it exposes itself as a block device. Its flash

mapping strategy, garbage collection, and internal logic are implemented

within the host.

By implementing the logic within the host, it creates the foundation

for host-managed SSDs. The LightNVM simulator may simulate timings

using real hardware. Where non-volatile memory with its characteris-

tics is embedded or simulated [2]. The management of flash is thereby

56

always managed by the host, similarly to how direct attach flash is man-

aged by the host. However, our solution is different in that the flash con-

troller continues to managed the physical flash. The host only takes con-

trol of internal data placement. Thereby getting the best of both worlds.

The simulator is described in the paper "LightNVM: Lightning Fast

Evaluation Platform for Non-Volatile Memories" and presented at the

Non-Volatile Memory Workshop (NVMW) 2014. It presents the evalu-

ation of four types of SSDs. The OpenSSD platform, HGST NVMe null

block PCI-e device, simulated NAND flash, and a memory backend, of-

fering a large amount of variability.

Integration with the OpenSSD platform shows that the simulator can

be applied to SATA/SAS interfaces and run in a real SSD. The HGST

drives shows the overhead of faster interfaces. The simulated NAND

flash allows us to experiment with various NAND flash latencies, and at

last the memory backend exposes bottlenecks in the host stack.

The key contribution consists of a high-performance SSD simulator,

that execute with a large range of flexibility. It is also the beginning of the

Open-Channel SSD project. It allows the host FTL to control one or more

SSDs and take advantage of data placement, controlled garbage collec-

tion and exposing several SSDs under a single level address space. This

simplifies hardware firmware and puts detailed control from the host. I

believe this is the right approach to obtain predictability and consistent

performance of future SSDs.

57

Literature

[1] John S Bucy, Jiri Schindler, Steven W Schlosser, and Gregory R
Ganger. The DiskSim Simulation Environment. Parallel Data
Laboratory, 2008.

[2] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollow,
Rajesh K. Gupta, and Steven Swanson. Moneta: A
High-Performance Storage Array Architecture for Next-Generation,
Non-volatile Memories. 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 385–395, December 2010.

[3] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan
Urgaonkar. FlashSim: A Simulator for NAND Flash-Based
Solid-State Drives. 2009 First International Conference on Advances in
System Simulation, pages 125–131, September 2009.

[4] Jongmin Lee, Eujoon Byun, Hanmook Park, Jongmoo Choi,
Donghee Lee, and Sam H Noh. CPS-SIM: Configurable and
Accurate Clock Precision Solid State Drive Simulator. Proceedings of
the 2009 ACM symposium on Applied Computing, pages 318–325, 2009.

[5] Jinsoo Yoo, Youjip Won, Joongwoo Hwang, and Sooyong Kang.
Vssim: Virtual machine based ssd simulator. Proceeding of Mass
Storage Systems and Technologies (MSST), 2013.

LightNVM: Lightning Fast Evaluation Platform for Non-Volatile Memories

Matias Bjørling†, Jesper Madsen†, Philippe Bonnet†, Aviad Zuck‡, Zvonimir Bandic∗, Qingbo Wang∗
†IT University of Copenhagen, ‡Tel Aviv University, ∗HGST San Jose Research Center

†{mabj, jmad, phbo}@itu.dk, ‡aviadzuc@tau.ac.il, ∗{zvonimir.bandic,qingbo.wang}@hgst.com

Abstract
The IO performance of storage devices has increased by three

orders of magnitude over the last five years. This is due to the
emergence of solid state drives (SSDs) that wire in parallel tens
of non-volatile memory chips. How can software systems keep
up with this radical evolution? Commercial SSDs are black
boxes, whose behavior and performance profile are largely un-
documented. Today, the evaluation of SSD-based algorithms and
systems is thus, mostly, trace-driven on top of simple SSD mod-
els. Only few academic groups or software companies have the
resources to implement their own platform and lead a principled
exploration of the design space for SSD-based systems. In order
to lower the barrier for the evaluation of systems and software
research on top of NVM-based SSDs, we introduce LightNVM,
a new SSD evaluation platform. Our evaluation shows that
LightNVM is fast, scalable and modular enough to capture the
characteristics of actual SSD as well as simulated low-latency
memory components.

1. Introduction
Solid State Drives, based on non volatile memories (NVM),
constitute a radical departure from traditional, magnetic disk-
based, secondary storage. First, they exhibit orders of magnitude
improvements in terms of performance, with sub-millisecond
access times, and millions of IO per seconds for a single device.
Second, the complexity they introduce on each device changes
the nature of the storage abstraction exported to the Operating
System. As a result, designing SSD-based algorithms and sys-
tems requires challenging the assumptions and design principles
that have been defined over the past thirty years with magnetic
disks. But how can we explore this design space?

One option is to work with proprietary platforms, such as Fu-
sionIO ioDrives, [9, 6], or the Moneta platform designed at UC
San Diego [3]. Such outstanding work is the result of multi-year
efforts, so this option cannot be generalized to the systems and al-
gorithms communities at large. Only few companies or research
groups have the necessary expertise or resources to develop and
maintain their own development platform. A second option, is to
rely on trace-based simulators [7, 5] or memory-backed emula-
tors. E.g. VSSIM [10]. However, generating realistic workloads
for such simulators is difficult and requires abstracting away sig-
nificant portions of the IO subsystem complexity. A third option
is to rely on a hardware SSD evaluation platform [3, 4, 1, 8].
Such platforms are readily available and allow the evaluation of
real-time workloads; but they are specific to a given technology

NVM Device

Evaluation Host

Kernel

Userspace

Block/object/etc. Interface

Process

File-system

Block-layer

Process Process

LightNVM Host

LightNVM Kernel Module

Wear-leveling

HintsTranslation Tables

Garbage Collection Compression

Deduplication

Custom (Btree, KV, etc.)

Ethernet (10Gbit/40Gbit), Infiniband (56Gbit), PCI-E, Local, etc.

NVM NVMNVMNVM

Required Functionality Evaluation Functionality

ECC

LightNVM

LightNVM Hardware

Controller

Figure 1: LightNVM architecture. Upper part is software-based, while lower
part implements the LightNVM hardware interface.

and are quickly outdated. We summarize and compare some of
these options in Table 1.

In this work, we propose a new option to researchers and
practitioners interested in evaluating SSD-based systems. We
propose LightNVM, a new SSD research platform, that uses
publicly available hardware to evaluate novel ideas, but also
allows simulation whenever hardware is inadequate or unnec-
essary. LightNVM thus combines the robustness of hardware
based platform and the flexibility of simulators and emulators.

2. LightNVM Design

The LightNVM architecture, detailed in Figure 1, consists of
two layers: the hardware layer and the software layer. The Light-
NVM hardware subsystem can be organized in two different
ways:
1. In-memory. In this mode, LightNVM relies on a simulated,

memory-backed storage for IO operations. Waiting times are
simulated to reflect the physical characteristics of the SSD
and of the underlying NVM components. For simplicity, the
In-memory hardware layer abstracts the SSD internals, as a
collection of hardware channels, each supporting NVM oper-
ations with fixed access time. The in-memory hardware layer
is responsible for (1) serializing accesses to each hardware

59

Platform BlueSSD VSSIM OpenSSD FRP Moneta LightNVM
Type Custom HW SW HW Custom HW Custom HW HW/SW
NVM NAND NAND NAND NAND PCM NAND/PCM/etc.
Interface SATA N/A SATA PCI-E/Net PCI-E/Net SATA/PCI-E/Net/Local
Cost Low N/A Low High High N/A / Low
Processing Power Low N/A Low High Low High

Table 1: Architecture of Evaluation Systems

channel (to reflect the limits of SSD parallelism), and (2) im-
plementing kernel page copy to private storage (to reflect the
constraints on NVM access time). This approach exhibits no-
ticeable software overhead. It is thus less appropriate to study
very high throughput workloads. However it is sufficient for
less stressful workloads and for evaluating the feasibility of
new SSD features, e.g., new storage hints,.

2. With hardware. In this mode, the LightNVM hardware layer
integrates a full-fledged SSD hardware platform, e.g. the
OpenSSD hardware platform. OpenSSD is a NAND flash-
based SSD exposed through the SATA interface and offers
a small programmable controller. Additionally the SATA,
Flash, ECC functionalities are offloaded onto dedicated con-
trollers. Management of mapping information, GC, wear-
leveling can be handled within the device itself. However,
to enable easy prototyping, LightNVM moves these crucial
features outside of the firmware, into the host, in the con-
text of a LightNVM kernel module coupled with a custom
OpenSSD firmware. This design allows the LightNVM hard-
ware layer to efficiently handle the control paths within the
host. This full-fledged hardware layer enables experiments
that use the superior computing resources of the host to per-
form storage actions, thus transforming the host into a device
controller. This design also simplifies development, as the
minimal firmware embedded on the device does not need
to be changed to incorporate new developments within the
hardware layer. A device may also provide only a subset
of the SSD features. E.g., NVM hardware mode, where the
capabilities of the hardware components are complemented
by simulated components to support the LightNVM hardware
layer interface.

The IOPS write performance of several hardware layer designs
is shown in Figure 2. The throughput obtained for random 4KB
write requests with four different hardware layer configurations
is compared to the throughput results published for two exist-
ing evaluation platforms FRP [4] and Moneta-D [2]. The four
hardware layer configurations are OpenSSD, NVMe device, Sim-
ulated NAND, and In-memory (Denoted as LNVM-OpenSSD,
LNVM-NVMe, LNVM-SimNAND and LNVM-Mem in Fig-
ure 2). The graph shows the write IOPS for each of the plat-
forms. The OpenSSD exposes the raw NAND operations, while
the NVMe device shows the overhead of communicating with the
hardware. It completes an IO as it is submitted and is currently
limited by the PCI-E bus. The LNVM-SimNAND simulates an
8 channel SSD with NAND flash, and at last the LNVM-Mem
shows the IOPS without simulating NVM timings.

Figure 2: Write IOPS performance measured for four LightNVM hardware
configurations, compared to FRP and Moneta published performance.

The software layer of LightNVM is implemented within the
Linux kernel to exhibit the highest control of process scheduling,
and to make NVM timings as accurate as possible. It imple-
ments logical-to-physical address translation, garbage collection,
wear-leveling, etc. and allows further extensions to be easily
implemented, such as hints, features and custom interfaces. The
platform is specifically optimized for scalability, high IOPS, low
latency and low overhead. It employs data structures such as
per-core reference counting for in-flight data, per-core account-
ing for internal counters, and offers a streamlined design, that
lets a device either be accessed through a block interface or
byte-addressable interface, depending on the requirements of the
controller. Currently only 4K block IOs are supported, but it is
trivial to extend to a byte-addressable mapping tables. Compared
to full hardware solutions, the platform exhibits overheads in
the form of increased host CPU utilization and memory require-
ments. However, this is minor, compared to flexibility achieved.
Additionally, LightNVM is being pushed toward the Linux ker-
nel as a separate work, allowing LightNVM to be shipped in
future kernel versions and lower the barrier for experimentation
on SSD-based systems.

References
[1] “OpenSSD Platform.” [Online]. Available: http://openssd-project.org
[2] A. M. Caulfield, “Providing safe, user space access to fast, solid state

disks,” in SIGARCH, vol. 40, no. 1. ACM, 2012, pp. 387–400.
[3] A. M. Caulfield et al., “Moneta: A High-Performance Storage Array

Architecture for Next-Generation, Non-volatile Memories,” Micro, 2010.
[4] J. D. Davis et al., “Frp: A nonvolatile memory research platform targeting

nand flash,” in WISH, 2009.
[5] B. Dayan et al., “EagleTree: Exploring the Design Space of SSD-Based

Algorithms ,” in VLDB (Demo), 2013.
[6] W. K. Josephson et al., “DFS: A File System for Virtualized Flash Storage,”

ACM Transactions on Storage, vol. 6, no. 3, pp. 1–25, Sep. 2010.
[7] Y. Kim et al., “FlashSim: A Simulator for NAND Flash-Based Solid-State

Drives,” SIMUL, pp. 125–131, Sep. 2009.
[8] S. Lee et al., “Bluessd: an open platform for cross-layer experiments for

nand flash-based ssds,” in WARP, 2010.
[9] X. Ouyang et al., “Beyond block I/O: Rethinking traditional storage prim-

itives,” in HPCA. IEEE, 2011, pp. 301–311.
[10] J. Yoo et al., “Vssim: Virtual machine based ssd simulator,” in MSST,

2013.

60

Chapter 6

Open-Channel Solid State Drives

This Section builds on the host-based simulator described in the previous

Section [1], and introduces a host-managed SSD solution named Open-

Channel SSDs. The term was first coined by the Baidu’s SDF project [5, 4],

which exposes individual flash units embedded on a SSD as independent

block devices to the host. Thus allowing applications to directly control

each flash unit (LUN) separately. This was a departure from the tradi-

tional SSDs, where SSD complexity (i.e., both hardware and software) is

hidden behind the block device interface. With SDF, it is no longer the

SSD but the host, more specifically each application, which is handling

both SSD parallelism and NAND flash constraints. The operating system

is tricked into considering a SSD as a collection of block devices.

I reuse this term and make it more general. I denote an open-channel

SSD as a SSD that is host-managed, either with a full-fledged host-based

FTL or using some form of hybrid approach, regardless of the nature of

the storage abstraction exposed by the SSD to the host.

I propose a generic framework for (i) making open-channel SSDs ac-

cessible through Linux, and (ii) specializing part or all of the host-based

FTL for a given application. Concretely, my contribution consists of an

interface specification and a kernel library which application and sys-

tem designers can expand to program SSDs. This work is thus the first

generic framework for applications SSD co-design. Note that the name

LightNVM has stuck and is now applied to both the simulator and the

open channel SSD host driver.

In contrast to Baidu SDF [4] and Fusion-io VSL [3] architectures that

either exposes the flash as a collection of block devices (one per LUN) or

as a single block device accessed through a proprietary host-based driver,

I propose a new form of storage abstraction which is available for a range

of different open channel SSDs. In contrast to NVMKV [3], NVMFS [2],

Baidu LSM [5] we do not require that applications take full responsibility

for SSD management. Instead, we introduce operating system abstrac-

tions, as an extension of the Linux storage stack, that are responsible for

SSD management.

Our definition of open-channel SSDs opens up a design space in terms

of how responsibilities are split between host and SSD. At one extreme,

the FTL is embedded on the SSD. At another extreme, the host is fully re-

sponsible for the FTL without any form of management embedded on the

SSD. In the following paper, I consider an hybrid approach. I assume that

the logic that can be kept within the SSD is kept within the SSD. Thus,

the novelty of this paper is not that the SSD exposes direct control to both

operating system and applications. Its core contribution is a hybrid inter-

face, that allows host and SSDs to establish which functionalities remain

62

on the SSD, while providing applications control of (i) data placement,

(ii) garbage collection, and (iii) scheduling. Exploring this design space

is crucial to enable host software to scale with high-performance SSDs.

Several industry vendors as well as academic partners are showing

strong support for open channel SSDs. At the time of writing (May 2015),

Memblaze, PMC Sierra, Micron, IIT Madras and several other companies

have working or in progress implementation of the specification. They

are the pioneers of the technology and the feedback from their implemen-

tations is incorporated into the specification. Our longer term goal is to

push for the integration of our specification into standard organizations

such as NVM Express and RapidIO.

The library is being upstreamed to the Linux kernel and has been

described by Jonathan Corbet in Linux Weekly News (LWN)1. It has been

presented at both the Linux Software Foundation Vault 2015 Conference

and Non-Volatile Memory Workshop (NVMW) 2015.

To become a long term success, open channel SSDs must overcome

the following two obstacles: (i) Hardware support. There are today proto-

type open channel SSDs from different vendors (in my office). We know

that such devices have been used for some time by leading cloud ser-

vice providers, but this is not documented. SSD and controller vendors

tell us that they expect many commercial open channel SSDs mid 2016.

(ii) Application support. We expect key value stores to be able to leverage

open channel SSDs in a straightforward way. This is the first application

I study in the following paper. The reason is that KV store can be ac-

celerated without any re-engineering. Other data-intensive systems, e.g.,

1$http://lwn.net/Articles/641247/$

63

$http://lwn.net/Articles/641247/$

relational database systems will need to be redesigned to full leverage a

SSD co-design approach. This is a topic for future work.

64

Literature

[1] Matias Bjø rling, Jesper Madsen, Philippe Bonnet, Aviad Zuck,
Zvonimir Bandic, and Qingbo Wang. LightNVM: Lightning Fast
Evaluation Platform for Non-Volatile Memories. In Non-Volatile
Memories Workshop, NVMWorkshop’14, 2014.

[2] William K. Josephson, Lars a. Bongo, Kai Li, and David Flynn. DFS:
A File System for Virtualized Flash Storage. ACM Transactions on
Storage, 6(3):1–25, September 2010.

[3] Leonardo Mármol, Swaminathan Sundararaman, Nisha Talagala,
Raju Rangaswami, Sushma Devendrappa, Bharath Ramsundar, and
Sriram Ganesan. NVMKV: A Scalable and Lightweight Flash Aware
Key-Value Store. 6th USENIX Workshop on Hot Topics in Storage and
File Systems, 2014.

[4] Jian Ouyang, Shiding Lin, S Jiang, and Z Hou. SDF:
Software-defined flash for web-scale internet storage systems. In
Proceedings of the 19th international conference on Architectural support
for programming languages and operating systems, 2014.

[5] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin,
Chen Zhang, and Jason Cong. An efficient design and
implementation of LSM-tree based key-value store on open-channel
SSD. Proceedings of the Ninth European Conference on Computer Systems
- EuroSys ’14, pages 1–14, 2014.

Open-Channel Solid State Drives

Matias Bjørling Jesper Madsen Philippe Bonnet
IT University of Copenhagen

Abstract

Solid state drives (SSDs) are based on tens of non-
volatile memory chips wired in parallel to a storage
controller. Most SSDs embed a flash translation layer
that provides a full virtualization of the physical storage
space. This way, SSDs appear to the operating system
as regular block devices that can readily replace hard
disk drives. While this approach has favoured SSDs’
widespread adoption, it is now becoming an increasing
problem in the context of data-intensive applications.
Indeed, as SSD performance keeps on improving, re-
dundancies and missed optimizations between host and
SSDs, across the block device interface, lead to perfor-
mance bottlenecks. To align data placement optimally
on flash and control predictability, we consider Open-
Channel SSDs. They are a hybrid between SSDs that
expose its physical storage space directly to the host
and conventional SSDs. We describe a common inter-
face (LightNVM) for Open-Channel SSDs, which allows
SSDs to describe extensions and responsibilities in ad-
dition to its physical flash characteristics. We describe
the design and implementation of an open-channel SSD
management library for Linux andwe evaluate our im-
plementation with real hardware as well as a null de-
vice to identify performance bottlenecks. Our experi-
ments show that LightNVM has low overhead and that
the LightNVM library enables applications to tightly in-
tegrate with SSD data placement and management logic.

1 Introduction

The advent of high performance SSDs is exposing bottle-
necks at the software level, throughout the I/O stack [2].
In the case of flash-based SSDs, complex decisions about
mapping and scheduling are taken on both sides of the
block device interface. Applications map their data struc-
tures onto the logical address space, which SSDs then
map onto the physical address space. However, applica-

tions no longer have robust performance models to mo-
tivate their mapping, while the Flash Translation Layer
(FTL) embedded on SSDs guesses I/O locality in or-
der to avoid contention, optimize its mapping, and re-
duce GC overhead on NAND flash chips. This leads to
waste of resources, unpredictable performance and bot-
tlenecks [28, 26, 2, 25].

There is thus a need for a tighter form of collabora-
tion between data-intensive applications, operating sys-
tem and FTL to reconcile the complexity of SSD man-
agement with the high-performance goals of modern ap-
plications. Examples of tight integration can be found
in the context of database systems, with database appli-
ances (e.g., Exascale1 or Netezza2) or custom-firmware
SSD for SQL Server [9]. But, how about applications
running in large-scale data centers? How can data-center
SSD arrays implement optimized Flash Translation al-
gorithms to cater to the (ever changing) idiosyncrasies
of a given application workload? A solution is to de-
couple SSD management from physical storage. More
concretely, a solution is to consider open-channel SSDs,
i.e., SSDs that expose the physical storage space directly
to the host [26, 21]. The problem then, is to orga-
nize SSD management, in a way that efficiently supports
high-performance, data-intensive applications. This is
the problem we tackle in this paper.

2 Requirements

In order to integrate SSDs a mismatch between SSD
and host, the primary requirement is that there should
be a single level of indirection between application data
structures and physical storage. From a system design
point of view, that gives us three options:

1. Physical storage directly supports application-level
data structures. Incremental improvements in this

1http://www.oracle.com/engineered-systems/exadata
2http://www-01.ibm.com/software/data/netezza/

66

direction have been proposed with new storage
primitives such as nameless writes [35], aimed to
delegate data placement and allocation to the SSD,
or atomic write [26, 7], aimed to leverage Copy on
Write within the SSD driver and thus avoid double
buffering at the database system level.

2. Application-level data structures are directly
mapped onto physical storage. Memory-mapped
persistent data structures have been proposed such
as NV-heaps [8] and Mnemosyne [32], as well as
mechanisms to allocate persistent data structures
explicitly [24, 11] or implicitly [32] within the
application. Such memory-mapped persistent data
structures target memory drives [4] or open-channel
SSDs [26, 21].

3. A SSD allocation layer. The third option is to con-
sider a layer, independent from applications and
storage devices, whose primary goal is to manage
the interactions between application data structures
and physical storage. This requires that physical
storage is directly exposed to the host, which is the
case with open-channel SSDs. It is the option we
explore in this paper. More specifically, we ex-
tend and open up the functionalities of solid state
drives so that data-intensive applications (such as
key-value stores or database systems) can interact
efficiently.

We propose an interface, that not only exposes SSDs
non-volatile memory directly to the host, but also takes
hardware acceleration into account. A SSD already em-
ploys a large amount of processing power, and thus even
if data placement, garbage collection, etc. are host-
managed, several extensions can be made to offload the
host.

Given that SSD logic is moved into the host, we con-
sider the following requrements for a sucessful integra-
tion:

• Hardware-independent: A SSD management
layer should accommodate various storage devices,
as long as they export physical storage directly to
the host. In fact, the management layer can effi-
ciently organize interactions with multiple devices.

The main problem here is to deal with physical stor-
age on the host. As opposed to the FTL embedded
on a SSD controller and expose a read/write inter-
face, the processor cores running the operating sys-
tem are not directly wired to the underlying flash
chips. A second problem is to efficiently integrate
multiple SSDs and present them as a uniform stor-
age space available to applications.

• Extensible: An generic management library should
be specialized and extended to adapt to various
application-level data structures (e.g., key-value
pairs or index records).

• Low overhead: SSD performance has been tuned
over years. Introducing significant overhead by
moving logic into the host is not acceptable. The
overhead introduced by the host-side mapping layer
should be low.

• Durable and consistent: When data has been writ-
ten by the application onto the SSD, it remains
durable, even in the case of a power loss on the host.
The host-side management layer should not intro-
duce any durability anomaly. Likewise, the state of
the SSD should remain consistent. The host-side
mapping layer should not introduce any consistency
anomaly.

We integrate a library that fulfill these requirements
in a Linux kernel library similarly to the device mapper
(dm) and memory technology devices (mtd) kernel sub-
systems. The library is placed in the kernel, to both inte-
grate directly with device drivers and to enable the phys-
ical address space as either exposed directly to applica-
tions, but also more traditional file-systems as a block
device. More specifically, this paper makes three contri-
butions:

• We propose a set of abstractions (LightNVM) for
open-channel SSDs.

• We explore the design choices for building a man-
agement library in the context of the Linux kernel.

• We describe a prototype implementation and eval-
uate it with both virtualized and physical open-
channel SSD hardware.

The abstractions are operating-system independent,
and can easily be migrated to other operating systems.
The proposed library is publically available on Github
and licensed under GPL-2. It provides a resource for re-
searchers and practitioners that intend to develop innova-
tive solutions based on open-channel SSDs.

3 Background and Related Work

SSDs are built from NAND flash, which uses a FTL to
expose it the physical flash a block device interface. The
behavior of an SSD are given from its NAND flash and in
large part its FTL implementation. As no FTL are good
for all workloads, it is usually seen that consumer SSDs
often are optimized to reads, and burst writes, while en-
terprise drives cater to long running workloads. To cater

67

for various workloads, each vendor implement differ-
ent FTLs depending on a given application workload.
As the FTLs are hidden behind a block device inter-
face, this information cannot be communicated, leading
to unpredictable performance and missed opportunities
for application-specific optimizations.

Figure 1 illustrates how the random write performance
of two common SSD models differ significantly. With
such devices, it is up to applications to deal with the
performance characteristics of the idiosyncrasies of SSD
management. With open-channel SSDs, the goal is, on
the contrary, to adapt SSD management to the idiosyn-
crasies of applications. In this section, we review the
constraints that flash chips introduce for SSD manage-
ment, first in the context of traditional FTLs, then in the
context of open-channel SSDs.

3.1 Flash Constraints
A flash chip is a complex assembly of flash cells, orga-
nized by pages (512 to 8192 bytes per page), blocks (64
to 256 pages per block) and sometimes arranged in multi-
ple planes (typically to allow parallelism across planes).
Operations on flash chips are read, write (or program)
and erase. Due to flash cell characteristics, these opera-
tions must respect the following constraints: (C1) reads
and writes are performed at the granularity of a page;
(C2) a block must be erased before any of the pages it
contains can be overwritten; (C3) writes must be sequen-
tial within a block; (C4) flash chips support a limited
number of erase cycles. The trends for flash memory
is towards an increase (i) in density thanks to a smaller
process (today 20nm), (ii) in the number of bits per flash
cells, (iii) of page and block size, and (iv) in the num-
ber of planes. Increased density also incurs reduced cell
lifetime (5000 cycles for triple-level-cell flash), and raw
performance decreases. For now, this lower performance
can be compensated for by increasing parallelism within-
and across chips. At some point though, it will be impos-
sible to further reduce the size of a flash cell.

A flash-based SSD contains tens of flash chips wired
in parallel to the SSD controller though multiple chan-
nels: (C5) Operations on distinct chips can be executed
in parallel, so long as there is no contention on the chan-
nel. (C6) Operations on a same flash chip are executed
serially.

3.2 Embedded FTLs
Traditional SSDs embed a so-called Flash Translation
Layer (FTL) on their controller in order to provide a
block device interface, hide the aforementioned con-
straints and leverage parallelism across flash chips and
channels. Typically, the FTL implements out-of-place

W
rit

e
La

te
nc

y
(u

s)

Intel 720 100GB

100

1k

10k

100k

Samsung 840 Pro 240GB

100

1k

10k

100k

IO Request # (4K)
0 1000 2000 3000 4000

Figure 1: Response time of two SSDs for 16MB Random
write using 4KB IOs.

updates to handle C2. Each update leaves, however,
an obsolete flash page (that contains the before image).
Over time such obsolete flash pages accumulate, and
must be reclaimed by a garbage collector. A mapping
between the logical address space exposed by the FTL
and the physical flash space is necessary (a) to support
random writes and updates that address C2 and C3 and
(b) to support the wear-leveling techniques that distribute
the erase counts across flash blocks and mask bad blocks
to address C4. How is such a mapping implemented?
Page mapping, with a mapping entry for each flash page,
is impractical with large capacity devices due to the huge
size of the map. Block mapping drastically reduces the
mapping table to one entry per flash block[15]—the chal-
lenge then, is to minimize the overhead for finding a flash
page within a block. However, block mapping does not
support random writes and updates efficiently. More re-
cently, many Hybrid mapping techniques [19, 17, 12]
have been proposed that combine block mapping as a
baseline and page mapping for update blocks (i.e., the
blocks where updates are logged). While each read oper-
ation is mapped onto a specific chip, each write operation
can be scheduled on an appropriate chip. Besides map-
ping, existing FTL algorithms also differ on their wear-
levelling algorithms [5], as well as their management of
log blocks, scheduling and garbage collection(block as-
sociative [16], fully associative [19], using detected pat-
terns [17] or temporal locality [15]).

Both garbage collection and wear-levelling read live
pages from a victim block and write those pages, at a
location picked by the scheduler, before the block is
erased. The garbage collection and wear-levelling op-
erations thus interfere with the IOs submitted by the ap-
plications. This is what explains the noise we observe in
Figure 1.

68

Open-Channel SSD

NAND

Controller

Host Interface

Channel

Queue

Channel

Queue

CPUCPUGPCPUs

NAND FlashNAND FlashNAND Flash
NAND FlashNAND FlashNAND Flash

...
DRAM

Controller

NAND FlashNAND FlashDRAM

Host interface

Controller

Shared Bus

Figure 2: Overview of the logical architecture of an
open-channel SSD.

3.3 Open-Channel SSDs
Open-channel SSDs are flash-based SSDs that do not
embed a traditional FTL. They directly expose internal
flash commands to the host: read and write at the page-
level granularity, and erase at block-level granularity.

The logical architecture of an open-channel SSD is de-
picted in Figure 3. At a minimum it consists of (i) a
host interface, such as SATA/SAS [31], NVMe[13], or
RapidIO [1], (ii) General purpose CPU(s), (iii) some on-
board volatile memory for buffering and processing, and
(iv) non-volatile NAND flash for the non-volatile stor-
age.

The directly exposed flash enables the host to direct
data placement and control garbage collection at a fine
granularity. This also means that the host itself is in
charge of managing the flash in an appropriate way. A
general FTL have a lot of responsibility. In particular (i)
bad blocks management, (ii) accesing flash in regard to
flash requirements, (iii) maintain consistency of written
data, and (iv) manage metadata. These are all require-
ments, which the host has to take into account.

In Section 4, we derive the design of LightNVM
from these responsibilities. We also explore how open-
channel SSDs can embed additional functionalities to en-
hance performances.

3.4 Products and Prototypes
Companies, such as Fusion-IO and Virident have based
their product on a form of open-channel SSD. They em-
ploy a host-side driver together with their devices, im-
plementing FTL and garbage collection within the host.
This approach enables them to take advantage of the host
resources in order to manage their device. The host-
managed flash is then both exposed through a generic
block interface, but also exposed through optimized in-

terfaces [14, 26, 23]. Fusion-IO exposes these imple-
mentation APIs through the OpenNVM initiative, pro-
viding an API for applications to take advantage of. The
API is a thin layer on top of the actual vendor host driver,
thus tightly coupled to the vendor’s features.

Organizations that own warehouse scale computers
implement their own flash storage [25] to accommodate
specific needs [33], co-optimizing their in-house applica-
tions and flash-based SSDs. So far, the efforts that have
been documented relate to co-design between one appli-
cation and one SSD.

Open platforms, such as the OpenSSD Jasmine[18], is
a hardware platform, that makes it possible to implement
custom SSD firmware. This has been used to experiment
with the FlashTier and Nameless Writes [27] and im-
plement external sorting using on-the-fly merging [20].
The OpenSSD Jasmine platform is being replaced by
OpenSSD Cosmos [30] (Cosmos) that employs better in-
terface and processing power.

To support open-channel development, commercially
available, academic and open platforms are all possible
to use. Provided they implement the minimum control
flow as depicted in Figure 2. I.e., (i) host interface,
(ii) general purpose CPU(s), (iii) some onboard volatile
memory for fast processing, and (iv) non-volatile NAND
flash for the actual storage.

4 LightNVM Design

4.1 Architecture
We propose a set of abstractions (LightNVM) for open-
channel SSDs that abstracts a range of open-channel
SSDs and makes them available as a common building
block for data-intensive applications. Our design is based
on the functional (hardware-independent and extensible,
durable and consistent) and non-functional (low over-
head) requirements listed in Section 1, as well as the
constraints introduced by open-channel SSDs, listed in
Section 3.3. LightNVM is organized in two layers:

• A core layer that provides common services for
open-channel SSDs: address space management,
channel management, and block health manage-
ment. We detail these common abstractions in Sec-
tion 4.2.

• A layer that provides an open-channel SSD abstrac-
tion, that we denote a target type, tailored to the
needs of a class of applications. We detail the target
type abstraction in Section 4.3.

Figure 3 shows LightNVM in the context of the op-
erating system kernel I/O stack. At its core, Light-
NVM provides block allocation, channel strategies, and

69

Block-based File-systems

Flash API

Null device

Direct Flash Target

VFS API

LightNVM (Block mgmt., Flash Ops., Health)

Open-Channel SSDs

NVMe PCIe-based

Kernel

User-space

Block Target

Block Layer

Figure 3: LightNVM Architecture.

flash management (more details in Figure 4). While re-
quest flow management is provided by the native Linux
block layer. Underneath, the device driver interfaces
are hooked into LightNVM. Additional layers contain
application-specific SSD management for various tar-
gets, including blocks, key-value, or direct-flash. Spe-
cialized APIs, or generic interfaces such as the VFS API,
expose file-based storage to user-space.

4.2 Common Services
Address space management: LightNVM manages a
global pool of physical flash blocks, which is organized
as luns. Each lun is a parallel unit withinan SSD. This
organization can be leveraged to isolate garbage collec-
tion from application workload, or to favor throughput
over multiple channels simultaneously, while latency can
be decreased if writes are not targeted to chips targeted
by reads. Other organizations of the flash block latency
(and vice versa). To increase throughput, a buffer writes
to multiple pool are possible, e.g., it could be partitioned
into groups of blocks sharing similar update frequencies.
This is all up to the target to decide how to utilize the
underlying flash.

When a target have allocated a flash block, it owns
it, and cannot be used by other targets. This allows the
library to act as a gatekeeping if QoS is needed. The li-
brary can rate-limit the number of blocks that are given
to a target, and thus limit the target performance against
other targets using same luns. This is very important, as
this allows software to provide QoS at a coarser granular-
ity and thus enable million IOPS QoS, without perform-
ing inspecting each IO. Thus, QoS decisions are moved
outside of the hot data path.

For each active block, the kernel library maintains in-
formation about the drive and flash block information.

Block Health Mgmt.

LightNVM

Null Device

Unified Interface

NVMe Device Driver PCI-e/Other

NVMe Interface Ext. Interface Ext.

Address Space Manager

Channel Manager

Block Target Direct Flash Target ...

Figure 4: Internal structure of LightNVM.

For a drive, it maintains the attached flash latencies, in-
ternal device queue depth, pointers to in-use blocks, free
blocks and blocks that can be garbage collected. This
data is retrieved from the device at boot time, and thus
used for bringing up targets with populated data struc-
tures. For flash block information, each block has base
metadata and target-specific metadata. The metadata
maintained by all target types is block state handling, e.g.
whether a block is being garbage collected, and pointers
reflecting the organization of the global pool of blocks.
Each target can maintain its own specialized metadata. A
page target might keep information such as the next page
to write to, invalidated pages, and when all pages have
been written. While a block-based target can omit these
and rely on data being written sequentially.

LUN management: Controlled placement is key to
achieving a well-balanced storage system. If all writes
and subsequently reads are directed to the same lun, then
performance is limited to the performance of the single
lun. However, if accesses are distributed across multiple
luns, higher throughput is archieved, but higher latency
may occur. In the worst case when reads must wait on a
full erase.

Depending on the strategy, various performance char-
acteristics are exposed in the SSD. For example, the
block target issues write requests in a round-robin fash-
ion across all available luns to utilize the available
lun bandwidth. This default placement algorithm can
be replaced with more advanced approaches such as
CAFTL [6], or adaptive scheduling methods that adapt
the placement of writes to the targetet luns.

Block health management: As flash blocks erase
count increases, the block fails gradually, with single
bits being faulty until, at last, no bits can be stored
successfully. SSDs typically protect the integrity of
each flash block by incorporating an error correction
code (ECC) [10] within each block or over multiple
blocks [29]. Depending on the scheme, an open-channel
SSD vendor might not expose the finest granularity of
its flash blocks, but instead expose superblocks, which
performs ECC at a higher level in hardware.

70

DRAM

Get Page (e.g. RR)

Block Target

Page GC

(e.g. Cost-

based)

Get Block (e.g. RR)

Address Lookup

Page P2L

Page L2P

Read

Write

Flash Block

Health Manager

Address Space

Manager

Channel

Manager

Figure 5: Logical architecture of a block based target.

Generally, ECC should be handled by hardware, and
only in very elaborate schemes should the library be in-
volved. However, when a flash block fails, it is up to
the library to maintain a parity scheme (at the block
level) for retrieving the lost data, or let other layer (e.g.,
file-systems, such as Ceph or GlusterFS) provide error-
recovery.

4.3 Target Types

A target is associated with a group of physical block and
exposes a logical address space to the upper layers. The
layers could be expose a traditional sector-based inter-
face optimized for subpage writes, key-value accesses,
or enabling applications to build their own application
targets. Each target thus defines how the physical flash
is exposed. For sector-based, over-provisioning ratio and
maintaining a logical- to physical (L2P) mapping table
are important, while others have other requirements. A
target is also responsible for reclaiming blocks through
garbage collection. Thus, before a flash block is returned
to the library, it should have been erased and ready for
new writes.

To evaluate the library, we implemented two target
types:

Sector-Based Target Type: The logical address space
is a contiguous array of pages, that can be read, written
or trimmed. This target provides a fully associative page
allocation scheme. This is efficient for random writes, as
writes can be buffered sequentially and written in paral-
lel onto flash. The garbage collector picks victim block
using a cost-based approach that takes active pages and
wear into account [12]. The design can be seen in Fig-
ure 5.

Inspiration can be drawn from existing literature while
revisiting trade-offs in light of the increased computa-
tional resources of operating on the host. For example,
Superblock [15] and DFTL [12] represent two possible
approaches maintain full associativity at lower memory

overhead. A naive approach uses approximately 1GB of
metadata per 1TB of flash managed.

Sub flash page allocation poses a significant challenge
in terms of durability. As flash page writes are atomic,
and flash pages typically are 16-32KB, 4K writes only
writes partial of a given flash block. These there have to
be buffered either in host or device memory. As the host
does not provide power-safety. A method for providing
durability is required.

One such approach is used by [12], where only a part
of the translation table is kept in memory on the host
at any time. We propose a different approach, where
the host does not maintain the on-disk translation table
durably. Instead we maintain a dual translation map ap-
proach, with a global and local translation map.

For each logical address request, a device driver sup-
ports a number of physical addresses. In our case, the
NVMe implementation supports 64 physical addresses
together with a logical address. This enables us to com-
municate the mapping directly to the device, and thereby
the device maintains metadata consistency and durabil-
ity. On device bring up, the mapping table is loaded from
disk and used to retrieve the state of a given target.

To support multiple targets, the device or host will
have to implement a form for multiplexing the address
space. This either by a device supporting a sparse ad-
dress space (larger than the physical address space), or
by having the host maintain a table of chunks that each
are allocated to a given target. We currently only evaluate
using a single sector-based target.

Key-value with Flash Blocks Target Type: The log-
ical address space is a key-value store, implementated
as a hash table. A block-level allocator, translates log-
ical flash block to physical block by a fully-associative
translation map. This mapping is geared toward data re-
quests at the size of a block and/or sequential data pat-
terns. The data must be the size of the physical flash
blocks. If smaller data keys are needed, an approach as
in NVMKV [22] can be used.

The storage requirement for a complete map is only
O(log2(N) ∗ 2N), where N is the number of physical
blocks. This can further be improved by grouping blocks
together in superblocks if needed. Typically, this allows
all blocks to be kept in main-memory and thus supports
very fast lookup. Compared to sector-based targets, a
garbage collector is not necessary as a key-value delete
request is similar to a block erase.

4.4 IO Management
When file-systems submit requests to the underlying
storage, they do it in the form of a data structure known
as a block io (bio), it contains an address, size and pointer
to data. This bio is sent to the block layer [2] that takes

71

Area Lines Added Lines Removed
Library 1222 -
Sector-target 1404 -
Null-block device driver 125 16
SCSI subsystem 128 3
NVMe device driver 1348 746
NVMe QEMU driver 722 27
OpenSSD firmware 860 10
Total 5809 802

Table 1: Lines of code changed to enable LightNVM in-
tegration.

specific limitations of the device into account and sub-
mits it to the block device. For example, if a bio is too
large to fit into a single device request, it is split into sev-
eral requests and sent to the device driver one at a time.

The library is attached around the block layer. At the
top, there is a target, which can span multiple devices,
that takes a request and send it to the appropriate device.
After a request has been handled by the block layer, the
request is passed onto the device driver. In the device
driver, the request has its logical address mapped to its
physical counter parts.

In the case of NVMe, the read/write command is ex-
tended with support to carry physical addresses. With a
single address access, the physical address is mapped one
to one. While if multiple sectors are accessed, a metadata
page is followed with a list of the physical addresses that
the logical address maps to. On completion, the comple-
tion is similarly extended to communicate if any of the
physical addresses had an error. If error, it is up to the
library to resubmit requests or return error to the layers
above.

4.5 Perspectives
The library is in the process of upstreamed to the Linux
kernel. Linux is targeted, as it is the most widely used
data center operating system. The version of LightNVM
that might be integrated into the Linux kernel will likely
differ from the current version on a multitude of de-
tails. In particular, there is room for both performance
and logic optimizations, as well as the implementation
of known concepts in new setting, e.g., deduplication,
compression, thin provisioning, integration with virtual-
ization techniques and so forth. However we expect that
the core abstractions presented in this paper will remain
unchanged.

5 Experimental Framework

We use three storage interfaces to evaluate LightNVM:
(i) a SATA interface, through which we access the

OpenSSD Jasmine platform [18], (ii) a NVMe target
through which we access QEMU with a NVMe null-
device, and (iii) a null block device driver to evaluate
the host performance.

We enabled the SATA interface to make use of the
OpenSSD Jasmine platform. The OpenSSD is a ref-
erence SSD implementation, built on top of the In-
dilinx Barefoot controller. The SSD consists of an
ARM7TDMI-S core, SATA 2.0 host controller, and
64MB of SDRAM. It is configured with two active chan-
nels with 64GB of NAND flash. Flash timings are 250us
read, 1.3ms program, 1.5ms and erases. The page gran-
ularity is configured to 2x8KB and block granularity is
2x1MB per physical block.

The OpenSSD firmware was extended with a
LightNVM-compatible FTL. It exports the flash erase
command to the host and buffers writes to its DRAM
store before writing them to flash. See Table 1 for lines
of code changed for all the components.

As a point of comparison, the “Greedy” FTL supplied
with the OpenSSD is used for comparson. It a page-
based FTL, that implements a greedy garbage collector,
that only kicks in when no pages are left on the device.

The OpenSSD does not supply any power-safe failure
mode, and thus FTL metadata should be written at the
same time as the data is written. The OpenSSD platform
is from 2011, and today, most SSDs have some form of
safe RAM. We therefore ignore the power-safety issue
and assume that metadata is safely stored on power fail-
ure. A commercial solution would have to implement the
necessary fallback modes.

To experiment with faster hardware, we first extended
the QEMU NVMe simulator [3] with support for Light-
NVM. The NVMe device driver was changed to use the
block layer and use its framework for splitting IOs. With
the simulator it was easy to prototype interfaces and ex-
tensions.

With the NVMe implementation in place, a NVMe de-
vice without an backing store. is used to measure the host
overhead together the overhead of driving the device-
driver. The NVMe null device has a 35µs latency for
4KB accesses and a maximum bandwidth of 380MB/s.

Finally, we modified the Linux kernel null block de-
vice driver to work with LightNVM to test its raw per-
formance. The null block device driver, signals request
completion upon its receipt, thus purely stressing the pro-
cessing overhead of forwarding requests through to a de-
vice. In this manner, we achieve throughput not possible
present hardware, and bottlenecks otherwise obscured by
storage hardware performance are revealed.

All the experiments are performed on a system con-
sisting of an quad-core Intel i7-4770 3.4Ghz CPU, 32GB
1333Mhz DDR3 memory. The software system consists
of Ubuntu 14.04, with a LightNVM-patched kernel ver-

72

Random Read

Th
ro

ug
hp

ut
 (G

B
/S

)

0

5

10

15

20

25

4k 8k 16k 32k 64k 128k 256k 512k

Random Write

Request Size
4k 8k 16k 32k 64k 128k 256k 512k

Random Read/Write (50%/50%)

Optimal
COSL

4k 8k 16k 32k 64k 128k 256k 512k

Figure 6: Throughput for 4KB to 512KB request IO accesses at queue depth 32 using the null block device. Left:
100% RR. Middle 100% RW. (3) 50% RR/RW. A slight overhead of LightNVM can be seen on small writes, while it
is negligible at high request sizes. The deterioration in throughput for requests larger than 64KB is a consequence of
the block layer segmenting them, thus multiple requests are submitted for the larger IO sizes. This can be changed if
larger throughput is needed.

sion 3.17-rc3.

6 Experimental Results

We first evaluate our micro-benchmark workloads with
the null block device driver and NVMe null-device to
show the raw performance of LightNVM and its over-
head. We then dig deeper into the overhead of Light-
NVM from a request perspective and qualify the spe-
cific overheads of its implementation. We then compare
with the OpenSSD hardware and compares its greedy
firmware with our LightNVM firmware. At last we look
at the key-value target and evaluate future benefits.

6.1 Microbenchmarks
We use throughput/IOPS, response latency and CPU us-
age as our main metrics. With respect to evaluating the
LightNVM implementation, throughput and latency is
used together with CPU overhead, we compare the over-
head of LightNVM at the cost of the other two metrics.

6.1.1 Raw Performance

We use the null block driver to represent the optimal
throughput attainable on our architecture. Benchmark-
ing with- and without LightNVM yields the overhead in-
curred by the additional work of translating logical ad-
dress space requests and maintaining the state of each
block on the device. Figure 6 depicts workloads of ran-
dom read, random write and mixed random reads and
writes, respectively. We measure the overhead of address
translation compared to not using LightNVM. We call
this point “Optimal”, as its the baseline for comparison.

The highest overhead is 16% for random 4KB reads
and the lowest 1.2% for 512KB. The high 4KB load is
caused by the extra overhead in tracking in-flight IOs,
larger mapping overhead and IO request cleanup being

Bandwidth approx. 380000KB/s

COSL
Optimal

IO
P

S

0

20k

40k

60k

80k

100k

4k 8k 16k 32k 64k 128k 256k 512k

COSL
Optimal

C
P

U
 U

sa
ge

 /
K

er
ne

l %

0

5

10

15

20

25

30

Request Size
4k 8k 16k 32k 64k 128k 256k 512k

Figure 7: IOPS and CPU kernel usage of 4KB to 512KB
random write IO sizes with the null NVMe hardware de-
vice. The maximum bandwidth is 380.000KB/s and both
4KB and 512KB utilizes the full bandwidth. The over-
head of LightNVM can be seen in CPU usage, with a
6% increase in CPU usage for 4KB to 0.3% increase for
512KB IOs.

executed in interrupt context of the null block driver, thus
stalling the IO pipeline. The deterioration in throughput
for requests of 64KB and above is a consequence of the
block layer segmenting large IOs, thus performing mul-
tiple IOs for each large IO. This is by design, though this
behavior can be overridden if necessary.

This suggests that the overhead is negligible and
LightNVM can be used on top of open-channel SSDs.
The 4KB accesses are still high, and it could be a vi-
able work to improve the CPU utilization by introduc-
ing per-CPU data structures to reduce lock contention,
and/or moving IO request cleanup outside the fast inter-
rupt path.

To compare the overhead on real hardware, we bench-
73

mark the NVMe null device. We show the measure-
ments in Figure 7, which considers the CPU overhead
of LightNVM, while attaining a constant write speed of
380MB/s. Looking at 4KB IO request sizes, the normal
overhead is 20% CPU time when managing nearly 100k
IOPS. LightNVM increases the CPU load by 6% over-
head, declining to 1.3% for 512KB IO requests. For de-
vices, where we also have to pay the price for overhead
in regard to DMA buffer management, data transfer, etc.

Because LightNVM increased CPU utilization by 30%
in the case of 4KB IO request size, we looked into where
the overhead originated. We found that the bottleneck
was from IOs being stalled by the heavy in-flight tracking
in the IO clean path. Similarly to the null block driver,
this could be mitigated by using per-CPU data structures
for in-flight tracking. However, in case of the NVMe
device, an additional optimization would be to increase
the number of hardware queues available, as the device
only exposed a single hardware queue and we therefore
cannot take advantage of multi-queue opportunities.

6.1.2 Timing Analysis

Table 2 shows an analysis of where time is spent within
the block layer, LightNVM, and the three devices for a
single request. We focus on the timings of the block layer
and LightNVM specifically, as the block layer is known
for having the largest overhead, measured to 2-3µs to
pass the block layer [4, 34]. The new block layer [2] has
significantly decreased this to only 0.333µs on our sys-
tem. This makes LightNVM stand out more, as it takes
up a modest 0.133µs for reads, and 0.308µs for writes.
LightNVM is thus a significant overhead compared to the
block layer. The overhead is contributed by locks around
in-flight tracking and allocation of pages and blocks by
introducing contention. However, the overhead is pri-
marily attributed to post-completion processing of IOs in
interrupt context, effectively monopolizing the hardware
for the duration of that task.

6.1.3 OpenSSD Comparison

Figure 8 and Table 3 show the performance of the
OpenSSD greedy firmware compared with the OpenSSD
LightNVM firmware together with the LightNVM host
layer. All data is based on 4KB accesses where the disks
have been cleanly formatted before use and no garbage
collection was run during the benchmarks.

We note that writes for Greedy is significantly slower
than LightNVM. This is attributed to the need for Greedy
to implement read-modify-write for writes less than
16KB, where the LightNVM firmware instead buffers the
incoming writes, efficiently transforming random writes
to sequential writes. This is efficient for write through-

Benchmark IOPS Average (µ) Std.Dev
OpenSSD Greedy

Random Read 1630 1224 114
Sequential Read 1635 1220 87
Random Write 721 2768 1415
Sequential Write 522 3823 1448

OpenSSD LightNVM
Random Read 2082 958 222
Sequential Read 4030 494 48
Random Write 4058 490 30
Sequential Write 2032 981 237

Table 3: We compare performance differences ob-
served between the OpenSSD Greedy firmware and
the OpenSSD LightNVM firmware and LightNVM host
layer for 128MB 4KB writes.

put, but affects latency, as there are less opportunities for
reads.

For LightNVM random writes, we observe three
states: (1) a high timing, (2) a more stable writes and
(3) finally stable writes with the expected write latency.
The first two are a consequence of the aged flash that has
been erased intensively during development and there-
fore exhibits larger program timings. Writing to less used
blocks yields a significant drop in latency. This suggests
that further tracking of blocks can be beneficial to use
for data placement decisions within the host. Targets that
wish to take advantage of this can measure write timings
and use it to orchestrate its accesses.

The read performance for both approaches are similar.
LightNVM is slightly faster at random reads and twice
as fast in sequential reads. For random reads, Greedy
translates the logical address to the physical address by
accessing its DRAM. This allows LightNVM to perform
reads faster, as these already have been mapped by the
host system, which is significantly faster. Writes must
still perform additional work if an on-disk translation
map is managed next to the host translation tables. For
sequential reads, LightNVM takes advantage of the par-
allelism in the OpenSSD, while Greedy keeps on reading
from the same channel. The trade-offs between the two
firmwares show the flexibility in tailoring channel access
patterns to its workload, and the resulting difference in
behavior.

6.2 Key-Value Store Target

As part of our evaluation of the LightNVM platform, we
created an implementation of a key-value-store (KV) uti-
lizing LightNVM to manage the storage. For lookups,
it translates a given key into the corresponding physical
block. Inserts are handled by allocating a new block from
the address space manager, associate the key to it and

74

Component Description
Latency(us)

Read Write

Block Layer

Map application IO to request structure 0.061
Insert request into request queue 0.125
Prioritization, merging, queuing to device driver 0.086
Cleanup and completion of IO to process 0.061

LightNVM
Address translation / request mapping 0.045 0.211
Cleanup and completion 0.093 0.097

Time to complete request by HW
Null block device 0.060
Null NVMe hardware device 35
OpenSSD with LightNVM firmware device 350

Table 2: Time spent at completing a 4K IO request within the block layer, LightNVM, NVMe and OpenSSD hardware.

Random Read

Ti
m

e
(u

s)

0

2k

4k

6k

8k
Seq. Read

Ti
m

e
(u

s)

0

2k

4k

6k

8k

Random Write

Ti
m

e
(u

s)

0

2k

4k

6k

8k

IO Request #
0 1000 2000 3000 4000

Seq. Write

Ti
m

e
(u

s)

0

2k

4k

6k

8k

IO Request #
0 1000 2000 3000 4000

Random Read

Ti
m

e
(u

s)

0

2k

4k

6k

8k
Seq. Read

Ti
m

e
(u

s)

0

2k

4k

6k

8k

Random Write

Ti
m

e
(u

s)

0

2k

4k

6k

8k

IO Request #
0 1000 2000 3000 4000

Seq. Write

Ti
m

e
(u

s)

0

2k

4k

6k

8k

IO Request #
0 1000 2000 3000 4000

3
2

1

OpenSSD COSL

OpenSSD "Greedy FTL"

Figure 8: We compare the OpenSSD “Greedy FTL” and the OpenSSD LightNVM firmwares. 4096 4KB requests are
issued with respect to random read/write and sequential read/write and its response time is measured in microseconds.

75

Metric Optimal LightNVM-Page Key-value
Throughput 29GB/s 28.1GB/s 44.7GB/s
Latency 32.04 33.02µs 21.20µs
Kernel Time
%

66.03% 67.20% 50.01%

Table 4: Table summarizing the performance differences
observed between the page-based block device inter-
face, LightNVM page and key-value target issuing 1MB
writes.

write the data to the physical block. The translation map
is managed by a hash-table, that implements a bounded
array for each of the buckets. The KV store is accessed
through an IOCTL interface, and thus we created an API
user-space applications to issue requests.

In Table 4 we compare sequential read throughput be-
tween the Optimal configuration using page-mapping,
LightNVM’s block device interface utilizing page-based
mapping and the key value-store implementation in
which each value is being assigned a unique physical
block. We find the latency in processing a 1MB sequen-
tial write reduced by 14.29%, from 33.02µs to 22.20µs
with a corresponding 55.8% improvement in throughput,
from 28.1GB/s to 44.7GB/s all while managing a 17.2%
reduction in CPU-usage in kernel-space.

The higher performance of LightNVM KV interface
is due to the lower overhead of traversing the IO stack
for common page IOs. By issuing IO requests through
IOCTL commands, we bypass a large part of the legacy
IO stack. However, for high-performance applications,
where multiple requests are outstanding, a thread must be
spawned for each request to account for the synchronic-
ity of IOCTL requests. This uses extra resources and
increases latency. This can be mitigated by taking ad-
vantage of the existing libaio API, and use it to imple-
ment an asynchronous KV interface, allowing the kernel
to handle submission and completion of IOCTL within
its existing framework.

While the scenario outlined above is tailored to the
characteristics of our virtual disk, 1MB values corre-
sponding perfectly to blocks of 128 8KB pages, it clearly
exemplifies the potential benefits of exerting direct con-
trol over storage device allocation and data management.
Mapping overhead is significantly reduced with the over-
head of garbage collection reduced correspondingly.

7 Conclusions and Future Work

We proposed a new library that supports a tight integra-
tion of open-channel SSDs with applications in Linux.
Our design is modular and extensible. Our implementa-
tion exhibits low overhead, and good performance even
with LightNVM default policies in terms of data place-

ment or garbage collection. Future work includes (i) in-
tegrating LightNVM with other types of open-channel
SSDs, such as Cosmos, or from vendors that make their
products available, (ii) experimenting with LightNVM
in the context of various applications, including a key-
value store, a distributed object storage and a database
system, (iii) experimenting with advanced SSD manage-
ment policies. Finally, we will push for an adoption
of LightNVM in the Linux kernel and thus address the
performance optimization opportunities revealed by our
evaluation.

References

[1] ASSOCIATION, R. T. RapidIO Interconnect Speci-
fication 3.0, 2013.

[2] BJØRLING, M., AXBOE, J., NELLANS, D., AND
BONNET, P. Linux block IO: Introducing multi-
queue SSD access on multi-core systems. In Pro-
ceedings of the 6th International Systems and Stor-
age Conference (New York, NY, USA, 2013), SYS-
TOR ’13, ACM, pp. 22:1–22:10.

[3] BUSCH, K. QEMU NVM-Express implemen-
tation. http://git.infradead.org/users/kbusch/qemu-
nvme.git.

[4] CAULFIELD, A. M., DE, A., COBURN, J., MOL-
LOW, T. I., GUPTA, R. K., AND SWANSON,
S. Moneta: A High-Performance Storage Ar-
ray Architecture for Next-Generation, Non-volatile
Memories. 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (Dec.
2010), 385–395.

[5] CHANG, L.-P., AND DU, C.-D. Design and imple-
mentation of an efficient wear-leveling algorithm
for solid-state-disk microcontrollers. ACM Trans.
Des. Autom. Electron. Syst. 15, 1 (2009), 1–36.

[6] CHEN, F. CAFTL : A Content-Aware Flash Trans-
lation Layer Enhancing the Lifespan of Flash Mem-
ory based Solid State Drives. In Proceedings of
FAST’11 (2010).

[7] COBURN, J., BUNKER, T., SCHWARZ, M.,
GUPTA, R., AND SWANSON, S. From aries
to mars: Transaction support for next-generation,
solid-state drives. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2013), SOSP ’13,
ACM, pp. 197–212.

[8] COBURN, J., CAULFIELD, A. M., AKEL, A.,
GRUPP, L. M., GUPTA, R. K., JHALA, R.,

76

AND SWANSON, S. Nv-heaps: Making persis-
tent objects fast and safe with next-generation, non-
volatile memories. SIGPLAN Not. 47, 4 (Mar.
2011), 105–118.

[9] DO, J., KEE, Y., PATEL, J., AND PARK, C. Query
processing on smart SSDs: opportunities and chal-
lenges. Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data
(2013).

[10] DONG, G., XIE, N., AND ZHANG, T. On the use
of soft-decision error-correction codes in NAND
flash memory. IEEE Transactions on Circuits and
Systems 58, 2 (2011), 429–439.

[11] DULLOOR, S. R., KUMAR, S., KESHAVA-
MURTHY, A., LANTZ, P., REDDY, D.,
SANKARAN, R., AND JACKSON, J. System
Software for Persistent Memory. In Proceedings
of the Ninth European Conference on Computer
Systems (2014), EuroSys ’14, pp. 15:1–15:15.

[12] GUPTA, A., KIM, Y., AND URGAONKAR, B.
DFTL: A Flash Translation Layer Employing
Demand-based Selective Caching of Page-level
Address Mappings. ACM SIGPLAN Notices 44, 3
(Feb. 2009), 229.

[13] HUFFMAN, A. NVM Express Specifica-
tion 1.1. www.nvmexpress.org/wp-content/

uploads/NVM-Express-1_1.pdf, 2012.

[14] JOSEPHSON, W. K., BONGO, L. A., LI, K., AND
FLYNN, D. DFS: A File System for Virtualized
Flash Storage. ACM Transactions on Storage 6, 3
(Sept. 2010), 1–25.

[15] JUNG, D., KANG, J.-U., JO, H., KIM, J.-S.,
AND LEE, J. Superblock FTL: A Superblock-
Based Flash Translation Layer with a Hybrid Ad-
dress Translation Scheme. ACM Transactions on
Embedded Computing Systems 9, 4 (Mar. 2010), 1–
41.

[16] KIM, J., KIM, J. M., NOH, S. H., MIN, S. L.,
AND CHO, Y. A space-efficient flash translation
layer for CompactFlash systems. IEEE Transac-
tions on Consumer Electronics 48, 2 (May 2002),
366–375.

[17] LEE, S., SHIN, D., KIM, Y.-J., AND KIM,
J. LAST: locality-aware sector translation for
NAND flash memory-based storage systems. ACM
SIGOPS Operating Systems Review 42, 6 (Oct.
2008), 36–42.

[18] LEE, S.-W., AND KIM, J.-S. Understanding SSDs
with the OpenSSD Platform. Flash Memory Sum-
mit (2011).

[19] LEE, S.-W., PARK, D.-J., CHUNG, T.-S., LEE,
D.-H., PARK, S., AND SONG, H.-J. FAST: A
log buffer-based flash translation layer using fully-
associative sector translation. ACM Transactions
on Embedded Computing Systems 6, 3 (July 2007).

[20] LEE, Y., QUERO, L., LEE, Y., KIM, J., AND
MAENG, S. Accelerating External Sorting via On-
the-fly Data Merge in Active SSDs. HotStorage’14
Proceedings of the 5th USENIX conference on Hot
topics in storage and file systems (2014).

[21] LEE, Y.-S., KIM, S.-H., KIM, J.-S., LEE, J.,
PARK, C., AND MAENG, S. OSSD: A case for
object-based solid state drives. 2013 IEEE 29th
Symposium on Mass Storage Systems and Tech-
nologies (MSST) (May 2013), 1–13.

[22] MARMOL, L., SUNDARARAMAN, S., TALA-
GALA, N., RANGASWAMI, R., AND DEVEN-
DRAPPA, S. Nvmkv: A scalable and lightweight
flash aware key-value store. In 6th USENIX Work-
shop on Hot Topics in Storage and File Systems
(HotStorage) (2014).

[23] MÁRMOL, L., SUNDARARAMAN, S., TALA-
GALA, N., RANGASWAMI, R., DEVENDRAPPA,
S., RAMSUNDAR, B., AND GANESAN, S.
NVMKV: A Scalable and Lightweight Flash Aware
Key-Value Store. 6th USENIX Workshop on Hot
Topics in Storage and File Systems (2014).

[24] MORARU, I., ANDERSEN, D., KAMINSKY, M.,
BINKERT, N., TOLIA, N., MUNZ, R., AND RAN-
GANATHAN, P. Persistent, protected and cached:
Building blocks for main memory data stores.
CMU-PDL-11-114, 2011.

[25] OUYANG, J., LIN, S., JIANG, S., AND HOU, Z.
SDF: Software-defined flash for web-scale inter-
net storage systems. In Proceedings of the 19th
international conference on Architectural support
for programming languages and operating systems
(2014).

[26] OUYANG, X., NELLANS, D., WIPFEL, R.,
FLYNN, D., AND PANDA, D. Beyond block I/O:
Rethinking traditional storage primitives. In High
Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on (2011),
IEEE, pp. 301–311.

77

[27] SAXENA, M., ZHANG, Y., SWIFT, M. M.,
ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Getting Real: Lessons in
Transitioning Research Simulations into Hardware
Systems. FAST (2013), 215–228.

[28] SCHLOSSER, S. W., AND GANGER, G. R. Mems-
based storage devices and standard disk interfaces:
A square peg in a round hole? In In Proceedings of
the USENIX Conferenceon File and Storage Tech-
nologies (FAST) (2004), pp. 87–100.

[29] SHADLEY, S. NAND Flash Media Management
Through RAIN. Tech. rep., Micron2011, 2011.

[30] SONG, Y. H., JUNG, S., LEE, S.-W., AND
KIM, J.-S. Cosmos OpenSSD : A PCIe-based
Open Source SSD Platform OpenSSD Introduc-
tion. Flash Memory Summit (2014), 1–30.

[31] STEVENS, C. E., AND COLGROVE, D. Technical
Comittee TI13 - ATA / ATAPI Command Set - 2.
ATA / ATAPI Command Set - 2, 2010.

[32] VOLOS, H., TACK, A. J., AND SWIFT, M. M.
Mnemosyne: Lightweight persistent memory. In

Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (New York, NY,
USA, 2011), ASPLOS XVI, ACM, pp. 91–104.

[33] WANG, P., SUN, G., JIANG, S., OUYANG, J.,
LIN, S., ZHANG, C., AND CONG, J. An efficient
design and implementation of LSM-tree based key-
value store on open-channel SSD. Proceedings of
the Ninth European Conference on Computer Sys-
tems - EuroSys ’14 (2014), 1–14.

[34] YANG, J., MINTURN, D. B., AND HADY, F.
When poll is better than interrupt. In Proceed-
ings of the 10th USENIX Conference on File and
Storage Technologies (Berkeley, CA, USA, 2012),
FAST’12, USENIX Association, pp. 3–3.

[35] ZHANG, Y., ARULRAJ, L. P., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. De-
indirection for flash-based ssds with nameless
writes. In Proceedings of the 10th USENIX Confer-
ence on File and Storage Technologies (Berkeley,
CA, USA, 2012), FAST’12, USENIX Association,
pp. 1–1.

78

Chapter 7

AppNVM: A software-defined,

application-driven SSD

The open-channel SSDs presented in the previous paper constitute a first

step towards application-SSD co-design. With open-channel SSDs, the

fundamental role of the operating system remains unchanged compared

to legacy approaches based on hard drives: It mediates every single IO.

As SSD performance keeps on improving, the overhead of traversing lay-

ers of operating system code for each IO will become a significant over-

head. In this paper, we propose a vision for reorganizing the way appli-

cations, operating systems and SSDs communicate.

Large-scale data centers, such as those operated by Google, Facebook,

Amazon, and similar require consistent low latency from their network

and storage [1, 8]. A user request end-to-end should be served consis-

tently in the low hundred miliseconds. As SSDs approach million IOPS,

overhead of host fairness, I/O scheduler, and control of I/Os is signifi-

cant.

Applications are specially sensitive to I/O outliers [2]. Outliers occur

when internal garbage collection or similar is scheduled when user data

is scheduled simultaneously. SSDs mitigate outliers by for example lim-

iting incoming requests and allow any background work to be carried

out without affecting user I/O performance or data is duplicated multi-

ple locations, where the same request is sent all of them. The first request

to serve the content is used. Both examples requires either duplication of

data or must deal with subtle scheduling issues.

The problem is furthermore exacerbated in multi-tenancy systems [7,

4]. Fairness is typically achieved by introducing flow barriers. They

are controlled by continuously monitor resource utilization and inser-

ing flow barries. For tenant I/O, the flow barrier acts as a synchronous

point. Similar to blk-mq in Chapter 3, this is incapable to scale to million

of IOPS. The question therefore is; How can multi-tenancy systems scale

its I/O systems to million of IOPS?

Inspiration from software-defined networking [5] and the recent Ar-

rakis [6] work provide a novel approach. The SSD I/O path is split into

a data and control plane. The data plane services user I/Os to the de-

vice. Directly outside of the control plane, which in our case the operat-

ing system kernel. The control plane controls security and isolation be-

tween processes. When the data path is setup between applications and

the storage device. It is up to the device to provide the guarantees that

the kernel provided. Additionally, to support multi-tenancy systems, the

device also provides fairness. The security and isolation are provided

by memory mapping queues into the process address space. Fairness is

provided by hardware between these queues.

80

This approach is described in the vision paper “AppNVM: A

software-defined application-driven SSD” which was presented at the

Non-Volatile Memory Workshop (NVMW) 2015.

AppNVM consists of three parts, that forms a solution where appli-

cations bypass kernel for data I/O and fairness is provided by hardware,

without kernel being the arbitrator:

• User-space hardware queues; Hardware provides queue and buffer

management for the I/O data path. This can either be though vir-

tualized IOMMUs (VT-d) or solutions such as Intel DPDK [3].

• Shared address space; Multiple processes shares the limited stor-

age media. Orchestration is required, either by manually dividing

the storage address space into partitions or using a chunk allocator.

For example the flash block allocater provided by LightNVM or a

traditional file-system block allocator.

• Rule-based interface to define queue characteristics; For each ap-

plication queue, specialized configuration is possible. The special-

ization is described through rules in the form quality of service and

behaviors. Rules are expressed similar to the OpenFlow rule lan-

guage, and sets up rules to characterize flow. When the flow has

been configure, the kernel gets out of the data I/O path.

The first two points are engineering challenges. We will not go further

into it. The last is important for adoption. A rule-based interface, such as

found in OpenFlow [5], provides control based on flows. This is efficient

81

for networking, as data is captured as flows with various rules applied

to it. This can similarly be applied to storage.

The rule-based interface is built on top of the interface of the SSD

using the LightNVM specification to control internal operations. A rule

consists of a condition, state change, action and a priority.

The condition is when the rule is applied. The state change describes

any metadata changes within the SSD. Such as mapping table updates

or type of garbage collection. The action describes placement of the data

onto individual flash dies. This allows data flows to be partitioned inter-

nally onto internal flash dies. Applications and kernel can express strict

rules for quality of service and the device can provide the required back-

ing storage. Finally, the priority field is to convey any priority between

competing rules.

Future work includes building a device prototype that separates data

and control plane and implements the logic in the kernel to provide se-

tup/teardown of process I/O queues. Additionally, a full rule-based lan-

guage must be defined to enable users to express their quality of service

requirements.

The long-term goal is to provide an interface for programmable SSDs.

Such SSDs allow applications to describe their workload and implements

rules which in turn implements a specialized FTL for their workload.

Thus, an SSD becomes multi-faceted and optimized for each type of ap-

plication, be it read-heavy, write-heavy or a mix of both.

82

Literature

[1] Mohammad Alizadeh, Abdul Kabbani, and Tom Edsall. Less is
more: trading a little bandwidth for ultra-low latency in the data
center. Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, 2012.

[2] Luc Bouganim, B. Jónsson, and P. Bonnet. uFLIP: Understanding
flash IO patterns. In 4th Biennial Conference on Innovative Data
Systems Research (CIDR), 2009.

[3] Intel Corporation. .Intel Data Plane Development Kit (Intel DPDK)
Programmer’s Guide. Technical report, 2013.

[4] Rishi Kapoor, George Porter, and Malveeka Tewari. Chronos:
predictable low latency for data center applications. In Proceedings of
the Third ACM Symposium on Cloud Computing, 2012.

[5] N McKeown and Tom Anderson. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication
Review, 38(2), 2008.

[6] Simon Peter, Jialin Li, Irene Zhang, Dan R K Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, Timothy Roscoe, and
E T H Zürich. Arrakis : The Operating System is the Control Plane.
In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), 2014.

[7] David Shue, MJ Freedman, and Anees Shaikh. Performance
Isolation and Fairness for Multi-Tenant Cloud Storage. In
Proceedings of the 10th USENIX conference on Operating Systems Design
and Implementation, 2012.

[8] David Zats, T Das, and P Mohan. DeTail: reducing the flow
completion time tail in datacenter networks. ACM SIGCOMM
Computer Communication Review, 42(12):139—-150, 2012.

84

AppNVM: A software-defined, application-driven SSD

Matias Bjørling† Michael Wei∗ Jesper Madsen† Javier González† Steven Swanson∗ Philippe Bonnet†
†IT University of Copenhagen ∗University of California, San Diego

Abstract
We present the design of AppNVM, a software-defined,

application-driven solid state drive (SSD) inspired by software-
defined networking. AppNVM exposes an application-defined
interface without sacraficing performance by seperating the
data plane from the control plane. Applications control App-
NVM SSDs by installing rules, which define how application
requests are handled. A controller then transforms those rules
and installs them onto the device, enforcing permissions and
global policies such as wear-leveling and garbage collection.
The setup enables the application to send requests to the device
which are handled in an application specific manner. By seperat-
ing the data plane from the control plane, AppNVM easily scales
to high-performance million-IOP devices and beyond.

1. Introduction
Current state-of-the-art solid state drives (SSDs) can perform
millions of I/O operations per second, and we can only expect
future SSDs to scale as the industry continues to make advance-
ments in integration and memory technologies. At the same time,
SSDs need to make decisions to map this torrent of I/O requests
to the underlying flash. Due to the idiosyncrasies of flash, SSDs
must also perform wear-leveling and garbage collection, which
only complicates data placement and leads to unpredictable per-
formance. This is at at odds with application developers which
want stronger predictability and more control of how the SSD
decided to place data.

In the networking community, a similar phenomenon has taken
place. As switches evolved from gigabit to 10-gigabit, it quickly
became clear that giving system designers the flexibility to route
packets is at odds with delivering low latency. Network designers
needed a way to control how data flows without being in the
path of data itself. As a result, software-defined networking was
born. Today, OpenFlow[3] has emerged as the de facto standard.
Unlike a traditional switch, which performs packet forwarding
and routing decisions on the same device, OpenFlow separates
the data plane from the control plane by moving routing decisions
to a higher level device, called the controller. OpenFlow uses
an abstraction called a flow to bridge the data plane and control
plane. Every OpenFlow switch contains a flow table, which
controls how packets are routed. OpenFlow controllers install
entries into the table, and can inspect the state of flows through
counters and messages from the switch.

Given the success of OpenFlow in the networking commu-
nity, we felt that it would be prudent to analyze how OpenFlow
concepts could be used to solve data-placement problems in
SSDs. We see the traditional Flash Translation Layer (FTL) as

Rule Engine

Mapping
Tables

Rules

N
etw

ork
(e.g, other SSD

s)

Channels
Con�g

Controller

Flash
LUN

Flash
LUNDevice

Kernel

Userspace App 2

App 1

Figure 1: The AppNVM Architecture. Components highlighted in blue on the
left belong to the data plane, whereas components highlighted in pink
on the right belong in the control plane.

analogous to the traditional switch: a black box which performs
both data placement and the placement decisions on the same
device. The black box nature of the FTL makes it difficult for
the FTL to meet application requirements, which may require
flexibility in where data is placed. Furthermore, an FTL cannot
reason efficiently about the state beyond the device (for instance,
across SSDs which may be potentially in different hosts). Our
goal is to move the placement decision logic into a controller,
while maintaining the SSDs ability to do fast and efficient data
placement.

In this paper, we analyze and describe how an OpenFlow-
inspired system can be used to control data placement in SSDs.
We explore in particular the challenges of dealing with storage:
for example, how to deal with garbage collection, wear-leveling
and temperature managmement.

2. Architecture
Our system design is guided by the principle of seperating the
data plane and control plane [4]. Figure 1 illustrates our system
architecture. Central to our design are channels, which consist
of a pair of submission and completion queues. Applications
communicate directly to the storage device by sending requests
through a channel mapped into user space, bypassing the kernel.
Flash channels, or LUNs, are also connected to channels, and
there may be several “virtual” channels used by internal pro-
cesses. In addition, channels may map to a network of remote
SSDs, enabling AppNVM to communicate with a storage fabric.

To move data between channels, the SSD applies a set of
rules to incoming traffic on each queue. Rules are installed

85

Condition State Change Action Priority
channel.appid == App0 and
header.write

MAP APP0, header.LBA = NEXT_ADDR WRITE header.addr = NEXT_ADDR; INSERT
TO_LUN

0

header.write PERFORM GC GREEDY ALL APP WRITE header.block = VICTIM_BLOCK; INSERT
VALID TO ANY_LUN

0

channel.appid == App0 and
header.read

WRITE header.addr = MAP App0, header.LBA; IN-
SERT ANY_LUN

1

Table 1: A simple set of rules which implement a minimally functional SSD.

to the SSD by a controller, and each rule consists of a set of
conditions, state changes, actions and a priority. Conditions
control whether or not a rule is evaluated for a particular input.
For example, a condition may check whether the input is a read,
or the value of a certain header. State changes affect the internal
state of the device. For example, a state change may update a
mapping table or internal counter. Actions define what the SSD
should do with a given input. For example, the device could drop
a request, rewrite some headers or place the input on another
channel. Finally, the priority of the rule determine which rule
is evaluated first, in the event that multiple conditions match a
given input.

If a rule does not exist for some input, the device sends the
input to the controller and requests a new rule. This enables
the controller to dynamically learn about traffic and install rules
based on incoming requests.

In our current design, the controller is provided as a ker-
nel module. The kernel module makes use of the LightNVM
framework [1] to retrieve device configuration and implements a
rule-based target. Userspace applications request channels from
the kernel using a library. During channel setup, applications can
request a set of rules to be installed, or choose from a number of
template rules provided by the kernel. These rules may tradeoff
parameters such as performance, predictability and media life
depending on application requirements. The kernel then inspects
those rules and applies any transformations which are necessary
to enforce permissions and applies any global policies such as
wear leveling and garbage collection. Subsequent I/O requests
from the application are then sent directly to the device via the
allocated channel without the intervention of the kernel.

2.1. Comparison to Other Architectures

Figure 2 compares AppNVM to other storage architectures. Tra-
ditional SSDs present a block-based interface where the data
placement is controlled exclusively by the device. Various ven-
dors have produced SSDs which move data placement decisions
to the storage fabric or the host.

Willow [5] allows applications to drive an SSD by installing
custom software on small processors running within the SSD.
However, unlike AppNVM, Willow requires applications to be
aware of the internals of the SSD (i.e, programming DMA en-
gines). AppNVM rules, on the other hand, are intended to be
device agnostic.

The NVMe standard [2] allows devices to directly expose
namespaces to application using user-space submission and com-
pletion queues. However, the IO requests are at most controlled

In
te

rf
ac

es

Block

Data Placement
Device Storage Fabric Host

Application
De�ned

Application
Driven

Traditional
SSD

Host-Based
SSD

Fabric-Based
SSD

LightNVM

AppNVM / Willow

Figure 2: AppNVM compared to other architectures

using the priority bits and thus decisions are taken on every
request, while AppNVM have separated the responsibility.

3. Challenges

While rules provide a flexible interface for applications to con-
trol SSD behavior, there are a number of challenges which any
data-placement engine must solve. Due to space constraints, we
briefly address each challenge below:
Wear-Leveling and Temperature Management. App-
NVM rules can be used to track the temperature of data, and
rules can also be used to move cold data to provide wear-leveling.
These policies could be enforced at the application level or the
global level.
Garbage Collection. Garbage collection can be provided by
idle rules, and rule priority and the conditions of the garbage
collector rules can be used to control when garbage collection
takes place.
Allocation. Depending on application requirements, applica-
tions can be thin-provisioned, enabling multiplexing, or thick-
provisioned, which would provide better performance guaran-
tees.
Quality of Service. While AppNVM does not directly provide
quality of service (i.e., an application cannot simply write a rule
for 5µs write latency), AppNVM provides a mechanism for a
future framework to provide QoS.
Device / Industry on-boarding. AppNVM represents a radi-
cal change in SSD design, and AppNVM devices must present
channels to the application and be capable of processing rules.
Since these devices do not yet exist, we propose a software-based
rule engine, similiar to ovswitch for OpenFlow, which enables

86

AppNVM to run on SSDs which support data placement (e.g.,
Open-Channel SSDs).

References
[1] BJØRLING, M., MADSEN, J., BONNET, P., ZUCK, A., BANDIC, Z., AND

WANG, Q. Lightnvm: Lightning fast evaluation platform for non-volatile
memories.

[2] HUFFMAN, A. NVM Express Specification 1.2. www.nvmexpress.org/
wp-content/uploads/NVM-Express-1_1.pdf, 2014.

[3] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR, G.,
PETERSON, L., REXFORD, J., SHENKER, S., AND TURNER, J. Openflow:
enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review 38, 2 (2008), 69–74.

[4] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D., KRISHNA-
MURTHY, A., ANDERSON, T., AND ROSCOE, T. Arrakis: The operating
system is the control plane. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14) (Broomfield, CO, Oct. 2014),
USENIX Association, pp. 1–16.

[5] SESHADRI, S., GAHAGAN, M., BHASKARAN, S., BUNKER, T., DE, A.,
JIN, Y., LIU, Y., AND SWANSON, S. Willow: A user–programmable
ssd. In Proceedings of the 11th USENIX conference on Operating Systems
Design and Implementation (2014), USENIX Association, pp. 67–80.

87

Chapter 8

Conclusion

The advent of SSDs has already transformed the storage industry. The

advent of high-performance SSDs is promising to revolutionize the soft-

ware industry too. Indeed, secondary storage is no longer a bottleneck;

software has to be re-designed to remove bottlenecks and to streamline

the data path. The key challenge for data-intensive applications and op-

erating system designers is now to keep up with storage hardware per-

formance and to design software that scales.

In this thesis, my goal has been to tackle this challenge with a focus on

operating system support for high-performance SSDs. I have been driven

by the opportunity to contribute to the evolution of the Linux kernel IO

stack. More specifically, I organized my thesis around two research ques-

tions:

1. Is the block device interface still relevant as secondary storage ab-

straction? I have explored whether and how to transform sec-

ondary storage from a memory to a communication abstraction.

2. What are the bottlenecks in the operating systems I/O stack? Be-

yond the engineering effort required to explore this question, my

contribution defines avenues of new research concerning the nature

of the communication between applications and secondary storage.

The contributions from this thesis are organized around 6 publica-

tions that address various aspects related to these two questions.

First, I analyzed the drawbacks of the block device interface in the

context of high-performance SSDs. In the absence of stable performance

contract, this narrow interface forces software components on both sides

of the interface (i.e., applications and operating system on the host, and

FTL on the SSD) to take arbitrary decisions about I/O scheduling and

data placement, resulting in sub-optimal decisions, redundancies and

missed optimizations. This contributes to unpredictable latency varia-

tions, which are increasingly harmful as SSD performance improves.

Exploring novel I/O interfaces requires the ability to evaluate design

choices both on the host and on SSDs. My goal was to explore the de-

sign space for supporting applications running at hundred of thousands

of IOPS. Midway through my thesis, the only form of programmable

SSD was the OpenSSD Jasmin SSD. Because of the slow interface speed

(300MB/s) and the limited on board processing capabilities, we could

only achieve throughput in the tens of thousands IOPS with that device.

To evaluate high-performance SSD with novel interfaces, I therefore had

to simulate the SSD logic in the host.

This led me to the design of LightNVM, where SSD management was

moved to the host in order to simulate high-performance SSDs that could

be plugged into a live system and accessed from actual operating system

89

and applications. The initial motivation was to bring SSD simulation

from approximate architectural simulators running in simulated time to

full-system simulator running in real-time.

The engineering work required to move SSD management to the host

opened up a new opportunity: the integration of host-based FTL into the

Linux kernel. Even more interesting, LightNVM makes it possible to (a)

explore a range of design options for the communication interface be-

tween host and SSD, and (b) explore how to specialize SSD management

for specific applications. These two aspects constitute a radical trans-

formation of how applications access secondary storage from a model

where applications and SSDs are designed independent based on dis-

tinct and possibly conflicting goals, to a model where applications and

SSDs are co-designed.

My work on open-channel SSDs introduces host-managed SSDs and

explores a portion of the co-design space for applications and SSDs. The

contribution is a building block for direct storage integrations into appli-

cations. By moving parts of the SSD management logic into host-space,

software layers that implement duplicated logic can be collapsed into a

single layer. For example, today, database systems implements log struc-

tured merge tree on top of an extent-based file-system on top of a log-

structured FTL. There are obvious redundancies across three layers that

manage data placement in a similar way. An Open-Channel SSD enables

these layers to be combined into a single layer and exposed as a novel

interface, thus removing redundancies and increasing performance.

But if we take this co-design logic even further, the very role of the

operating system becomes an issue. What is the role of the operating

90

system when co-designing applications and SSDs? Is it a just overhead?

I studied these questions first by focusing on bottlenecks in the Linux

kernel and then by laying down new visions.

The work on the multi-queue block layer has shown that the legacy

block layer, designed for hard disk drives and single core hosts could be

considerably optimized. The inclusion of blk-mq into the Linux kernel

has enabled a lot of new work on improving the performance of SSDs.

After the paper was published, optimizations have continuously been

conducted: e.g., moving a large portion of the device driver stacks to

blk-mq, micro-optimizing drivers by removing unneeded locks, preallo-

cating hot-code patch memory allocations, etc. Chasing bottleneck is a

continuous process as each fix exposes a new bottleneck somewhere in

the IO stack.

Beyond bottleneck chasing, the continuous improvement of SSD per-

formance forces system designers to reconsider basic assumptions about

IO processing and software design. In this thesis, I focused on two issues

and proposed initial solutions:

1. Should IO block waiting for completion? Until now, it was obvi-

ous that any thread issuing an IO should yield the CPU core to

make room for useful work. But when SSDs complete an IO in a

few microseconds, is blocking still a good option? I conjectured,

together with Michael Wei, that speculation was a viable option,

which could prove superior to blocking or spinning for next gener-

ation SSDs.

2. How to ensure fairness between cores submitting IOs to the same

91

SSD? Until now, fairness was managed by I/O schedulers, such as

CFQ, that is now insufficient for high-performance SSDs because

of their large synchronization overhead. I presented AppNVM as

a novel way enable SSDs to ensure fairness and even provide qual-

ity of service (QoS) guarantees for applications co-designed with a

new generation of high-performance SSDs.

The vision is divided into how the host becomes aware of applica-

tion processes and the other how to communicate the fairness (or

QoS) constraints the device. For the first, the storage communi-

cation path is split into a data and control path. The data path is

provided by exposing the storage address space directly into the

application address space. That allows applications to completely

bypass the kernel for I/Os. To provide security and isolation for

the application, the kernel is used as control path. It sets up chan-

nels for each application in the device. This allows the device to be

aware of applications and provide fairness across channels.

The second part comes in the form of how to communicate fairness

in storage. This is achieved by providing a rule-based interface,

which describes the flow of data and processes. The device can

then schedule I/O appropriately, without the host uses CPU time

to provide fairness.

8.1 Open Issues

The story of this thesis has largely been about creating building blocks

for others to build on. We see this with all of the papers. They take a

92

step toward where I saw opportunities, and then allow others to take it

further.

The blk-mq paper implemented a new way for IO devices to receive

IO requests from applications. There is still significant work needed in

the kernel to revamp device drivers to take advantage of this new archi-

tecture.

The SSD simulator still requires actual FTL implementations to be

useful. Together with the Open-Channel SSD contribution, this enables

a coherent implementation of device logic and behavior. The simulator

can then be used to evaluate new FTLs on SSDs and allow cross-layer

optimizations to be applied, before they are put into hardware.

At last, the work on AppNVM is still a vision. The framework for en-

abling such a storage system will be a multi-year undertaking, with both

industry vendors, academia and user-space developers coming together

to build novel ways to co-design applications and SSDs.

8.2 Perspectives for Industry

The storage industry is changing. High-performance SSDs and persistent

memories are bound to require a redesign of many of the core pieces of

technology that we use today.

The multi-queue block layer has been successful since its adoption

into the 3.13 kernel. Device drivers are continuously being ported to

the new block layer and upper layers such as device mapper, memory

technology devices, etc. are redesigned to take advantage of it. Future

work is to continue building convert drivers to this new block layer, pro-

93

vide additional optimizations and removing deprecated code. When all

architectures have been redesigned the old block layer can be removed

and data structures, etc. can be reduced.

The multi-queue block layer has now been in the kernel for one and

a half year. The Open-Channel SSD library is now being accepted up-

stream. As with the block layer, a lot of work lies ahead in order to enable

the software stack to take advantage of these new storage devices. Con-

trary to the multi-queue block layer, which supports traditional block de-

vices, the open-channel SSDs require new devices on the market. There-

fore the adoption of open channel SSDs is tied to the availability of these

devices. I have been contacted by many vendors in the last months of

my thesis. It appears certain that different models of open channel SSDs

will be commercially available in mid 2016. My first goal is to prepare

the Linux kernel for such devices. The longer term goal is to move to a

single level address space using scale-out storage and share the address

space in a distributed system across many diverse applications.

8.3 Perspectives for Research

This thesis has opened up a range of avenues for future research. First,

the gap between CPU and IOs has been much reduced with flash mem-

ory and promises to be even smaller with next generation Non Volatile

Memories (e.g., PCM). Design decisions that assume that storage be-

comes slower over time is simply not true for NVM-based SSDs. There

is an increasing need for solutions that scale with the shrinking gap. An

example is how to move computation closer to storage, and make use of

94

its locality revisiting vintage work on active disks and virtual memory in

a heterogeneou

Given the increase of performance of SSDs, and the shrinking gap

between CPU and IO overhead, quality of service has long seemed out of

reach because of the large synchronization overhead it incurs. Solutions

based on moving the operating system out of the data path open up for

a fresh look on how to provide QoS for secondary storage at low latency.

95

	Contents
	1 Introduction
	1.1 Context
	1.2 Solid State Drive Basics
	1.3 Problem
	1.4 Approach
	1.5 Contributions
	1.6 Structure of the Thesis

	Literature
	2 The Necessary Death of the Block Device Interface
	Literature
	3 Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems
	Literature
	4 I/O Speculation for the Microsecond Era
	Literature
	5 LightNVM: Lightning Fast Evaluation Platform for Non-Volatile Memories
	Literature
	6 Open-Channel Solid State Drives
	Literature
	7 AppNVM: A software-defined, application-driven SSD
	Literature
	8 Conclusion
	8.1 Open Issues
	8.2 Perspectives for Industry
	8.3 Perspectives for Research

