
A Bigraph Reactive Systems Realtion Model

Maxime Beauquier
Carsten Schürmann

IT University Technical Report Series TR-2010-TR 2010-126

ISSN 1600–6100 June 2010

Copyright c© 2010, Maxime Beauquier
Carsten Schürmann

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 9788779492158

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Abstract. In this paper, we present a model based on relations for bi-
graphical reactive systems [6]. Its defining characteristics are that validity
and reaction relations are captured as traces in a multi-set rewriting sys-
tem. The relational model is derived from Milner’s graphical definition
and directly amenable to implementation.

Introduction

Milner’s bigraphical reactive systems [6], or brss in short, are formulated in
terms of category theory. They encompass earlier models, such as ccs [4], the
π-calculus [5], and Petri nets [7]. However, as with other categorical models,
it is not immediately clear how to implement a logical framework that could
check, for example, the well-formedness or correctness of a brs, or just execute
reaction rules. On the other hand there are mature implementations of logical
frameworks, e.g. Celf [8] that already provide many of the algorithms that one
would need for such an implementation. In particular, Celf provides support
for linearity and concurrency using a kind of structural congruence that arises
naturally from the definition of equivalence in the type theory CLF [2]. In this
paper we show that the two are deeply connected. In particular, we formulate a
bigraph relational model for brss and demonstrate how to piggy-bag on Celf’s
implementation by reusing algorithms, such as unification, type checking, type
inference, logic programming, and multi-set rewriting.

A brs consists of a bigraph and a set of reaction rules. The bigraph consists
of a place graph, that usually models the hierarchical (physical) structure of the
concurrent system to be modeled, and the link graph that establishes the com-
munication structure between the different places. By the virtue of this definition
alone, a bigraph does not have any dynamic properties. It is best understood as
a snapshot of a concurrent system at a particular point of time.

What makes a bigraph reactive is the accompanying set of reaction rules. A
reaction rule can be thought of as a rewrite rule, except that the left and the right
hand side are graphs rather than terms. Consequently, matching the left hand
side of a reaction rule with a subgraph of the current bigraph is conceptually and
computationally not as straightforward as for example first-order unification.

As an alternative, we relate bigraphical reactive systems to something that
we understand well: unification modulo structural congruence in the setting of
CLF [9]. CLF is a type theory that conservatively extends the λ-calculus and
serves to model truly concurrent systems. CLF follows the standard judgements-
as-types encoding paradigm, which means that derivations of the validity of a
brs, traces of the operational semantics, etc. are encoded as CLF objects of
the corresponding CLF type. The extensions include, for example, type families
that are indexed by objects, a dependent type constructor Πx : A.B(x) as a
generalisation of the usual function type constructor, linear type constructors,
for example A(B, that capture the nature of resource consumption, and also
a monadic type constructor {A}. This type is inhabited by objects of type A,
such that two objects are considered (structurally) congruent if and only if they
differ only in the order in which subterms are evaluated.

3

The Celf [8] system is an implementation of CLF type theory that provides
a concept of logic variables that are logically well understood in terms of lin-
ear contextual modal type theory and a rich set of algorithms, including a so-
phisticated unification algorithm, type inference, type checking, and a logical
programming language that supports both backward chaining proof search and
forward chaining multi-set rewriting.

The main contribution of this paper is a model for brs that we will call
bigraph relational model that follows closely the graphical interpretation of the
categorical model proposed by Milner [6]. The key idea is to encode the valid-
ity relation of a bigraph by a set of rewrite rules. A specific bigraph is valid if
and only if a multi-set of assumptions (representing the structure the bigraph)
can be rewritten to the empty multi-set. We also give a direct and elegant en-
coding of reaction rules in CLF. Furthermore, we prove that Celf’s operational
interpretation of these rules is adequate in the sense that it coincides with the
intended meaning of those rules. As a consequence, Celf’s multi-set rewriting
engine implements the reactive behaviour of a brs.

The running example of this paper is ccs without replication and nam-
ing. For illustrative purposes, we sketch the corresponding bigraph relational
model and give the implementation in Celf. The source code is available from
www.itu.dk/∼beauquie/brs.

The remainder of this paper is structured as follow: in Section 1 we reiterate
the formal definition of the bigraph structure. In Section 2 we define reaction
rules and therefore brs. Then, we define the bigraph relational model in Sec-
tion 3, and show that the structures properties of bigraphs are respected. Fur-
thermore we define encoding and interpretation functions, and show that the
bigraph relational model is adequate. We define the encoding of the reaction
rules and prove adequacy in Section 4. Finally, we show the implementation in
Celf in Section 5 before we conclude and assess results in Section 5.

1 Bigraphs

The definition used in this paper can be found in [6]. A bigraph consists of a
set of nodes. Each node is characterised by a type, which we call control. Each
control is defined by a number of ports. We write K for the set of controls, and
arity : K → N a map from controls to the number of ports. Together they form
what we call the signature Σ = (K, arity) of a bigraph. The roots of the place
graph and the link graph, are called roots and outer names, respectively. They
form the outer interface of the bigraph. The leafs of the place graph and the
link graph, are called sites and inner names, respectively. They form the inner
interface. A site should be thought of as a hole, which can be filled and properly
connected with another bigraph. More formally, we define:

Definition 1 (Bigraph). A bigraph B under a signature Σ is defined as

B = (VB , EB , PB , ctrlB , prntB , linkB) : 〈m,X〉 → 〈n, Y 〉,

4

sum

send
sum
get send

sum
get

send
sum
get

sum

tcoc

a

b
d

e

g

h
i

j

k
l

f

0

p(g,1)
p(e,1) p(i,1)

p(j,1)

p(l,1)

p(b,1)

Fig. 1. Vending machine example.

where m and n are finite ordinals that respectively refer to the sites and the
roots of the bigraph structure. X (resp. Y, VB , EB) refers to a finite set of
inner names (resp. outer names, nodes, edges). PB represents a set of ports. It
is defined as

PB = {(v, i)|i ∈ arity(ctrlB v)}

ctrlB : VB → K assigns controls to nodes. The place graph establishes a tree
shaped parent ordering among all nodes and is defined by prntB : VB ∪ m →
VB ∪ n. The relation linkB : X ∪ PB → EB ∪ Y maps the union of inner names
and ports to the union of edges and outer names, which represents the hyper-
graph called the link graph.

In this definition, m,n,X, Y, VB , and EB are all assumed to be disjoint. The
functions arity, ctrlB, prntB , and linkB are assumed to be total.

〈m,X〉 and 〈n, Y 〉 are called the interfaces of the bigraph, whereby the former
is also referred to as the inner interface and the latter the outer interface.

Definition 2 (Ground Bigraph). A bigraph is ground, if its inner interface
is empty: 〈0, ∅〉, also written ε.

As a running example we use ccs without replication (!) and new name (ν)
used to model a vending machine: c.co | c.co + c.t. Here c represents a coin, co
a cup of coffee, and t a cup of tea. The corresponding bigraph is presented in
Figure 1, where

5

Σ = ({get, send, sum}, {(get, 1), (send, 1), (sum, 0)}),
VB = {a, b, d, e, f, g, h, i, j, l}, EB = ∅,
PB = {p(b,1), p(e,1), p(g,1), p(i,1), p(j,1), p(l,1)},
ctrlB = {(a, sum), (b, send), (d, sum), (e, get), (f, sum), (g, get),

(h, sum), (i, send), (j, get), (k, sum), (l, send)},
prntB = {(a, 0), (f, 0), (b, a), (d, b), (e, d), (g, f), (h, g), (i, h), (j, f), (k, j), (l, k)},
linkB = {(p(b,1), c), (p(e,1), co), (p(g,1), c), (p(i,1), co), (p(j,1), c), (p(l,1), t),
m = 0, X = ∅, n = 1, and, Y = {c, co, t}

Bigraphs are closed by composition and juxtaposition, which are defined as
follows:

Definition 3 (Composition). Let F : 〈k,X〉 → 〈m,Y 〉 and G : 〈m,Y 〉 →
〈n,Z〉 be two bigraphs under the same signature Σ with disjoint sets of nodes
and edges. The composition G ◦ F is defined as:

G ◦ F = (V,E, P, ctrl, prnt, link) : 〈k,X〉 → 〈n,Z〉

where: V = VG] VF , E = EG] EF , ctrl = ctrlG] ctrlF

prnt x =


prntF x if x ∈ k] VF and prntF x ∈ VF

prntG j if x ∈ k] VF and prntF x = j ∈ m
prntG x if x ∈ VG

and

link x =


linkF x if x ∈ X] PF and linkF x ∈ EF

linkG y if x ∈ X] PF and linkF x = y ∈ Y
linkG x if x ∈ PG

Intuitively, prnt(G◦F) is defined as the union of prntG and prntF where each
root r of F and each site s of G such that s = r satisfies the following: If
prntG s = y and prntF x = r then prnt(G◦F) x = y for all x, y. The definition
of link(G◦F) is defined analogously.

Definition 4 (Juxtaposition). Let F = (VF , EF , PF , ctrlF , prntF , linkF) :
〈k,X〉 → 〈m,Y 〉 and G = (VG, EG, PG, ctrlG, prntG, linkG) : 〈l,W 〉 → 〈n,Z〉 be
two bigraphs under the same signature Σ that as above have disjoint nodes and
edges. The juxtaposed bigraph G⊗ F is defined as follows.

G⊗ F =(VF] VG, EF] EG, PF] PG, ctrlF] ctrlG, prntF] prnt′G,
linkF] linkG) : 〈k + l,X]W 〉 → 〈m+ n,X] Z〉,

where prnt′G (k + i) = m+ j whenever prntG i = j.

The composition of two bigraphs can be seen as plugging one bigraph struc-
ture into the other. The juxtaposition on the other hand can be seen as putting
two disjoint bigraphs next to each other.

6

2 Bigraphical Reactive System

A brs consists of a ground bigraph, which is also called the agent and a set of
reaction rules. In this paper, we discuss two kinds of reaction rules, those that
disallow the matching of sites (which are said to be ground) and those that do
not (which are said to be parametric).

Definition 5 (Ground Reaction Rule). A ground rewriting rule consists of
two ground bigraphs, the redex and the reactum, with the same interfaces (L :
ε→ J, R : ε→ J).

When we apply a ground reaction rule to an agent B, we require that it
can be decomposed into B ≡ C ◦ L. The result of the application is an agent
B′ ≡ C ◦R, which is justified because L and R have the same interface.

Parametric reaction rules differ from ground reaction rules by allowing L
and R to contain sites, which may move from one to another node, be copied,
or simply deleted. To this effect parametric reaction rules define a relation η
between sites of the reactum and sites of the redex. Note the particular direction
of η and the link graph inner interfaces of the redex and the reactum are empty.

Definition 6 (Parametric Reaction Rule). A parametric reaction rule is a
triple of two bigraphs and a total function from R’s sites to L’s sites η

(L : 〈m,X〉 → J, R : 〈m′, X〉 → J, η : m′ → m)

The semantics of parametric brs is also based on decomposition of the agent,
where an instantiation function is deduced from η to compute the new tails of
the bigraph structure. This function is defined up to an equivalence. The l-
equivalence is defined as follows:

Definition 7 (Equivalence). Let B and G be two bigraphs with the same in-
terface 〈k,X〉 → 〈m,Y 〉. B and G are called l-equivalent (lean equivalent) if
there exist two bijections ρV : VB → VG and ρE : EB → EG that respect the
structure, in the following sense:

– ρ preserve controls, i.e. ctrlG ◦ ρV = ctrlB, and therefore induces a bijection
ρP : PF → PG defined as ρP (v, i) = ((ρV v), i).

– ρ commutes with the structural maps as follow:

prntG ◦ (Idm] ρV) = (Idn] ρV) ◦ prntB
linkG ◦ (IdX] ρP) = (IdY] ρE) ◦ linkB .

Definition 8 (Instantiation). Let F ≡ G◦(d0⊗· · ·⊗dm−1) : 〈n, Y 〉 → 〈m,X〉
be a bigraph where G is a link graph, the d’s have no inner names and a unary
outer face and η : m′ → m the relation on sites from Definition 6. We refer to
an instantiation of η on F as η that is defined as follows:

η F = G ◦ (d′0‖ . . . ‖d′m′−1)

where ∀j ∈ m′, d′j l d(η j). Following [6] we write d‖d′ for d ⊗ d′ where d and
d′ can share edges and outer names.

7

0 1

0

1

send

2

3

get

sum sum

0

0

α

α

Fig. 2. The bigraph encoding for the ccs τ -transition rule.

The τ -reaction rule of ccs, (α.P + P ′) | (α.Q+Q′)→τ Q | P is encoded as
parametric reaction rule presented in figure 2, in this case η = {(0, 0), (1, 2)}.

Let (B,R) be a brs, and (L,R, η) ∈ R the parameterised reaction rule. If
B ≡ C ◦ (D ⊗ L) ◦ C ′ then we can apply the reaction rule R and rewrite the
bigraph B into B′ ≡ C ◦ (D ⊗R) ◦ (η C ′).

Finally, it is possible to derive ground reaction rules as ground instances of
parametric reaction rules.

It has been shown in [6] that a rewriting step in a brs (B,R) with a para-
metric rewrite rule corresponds a rewriting step in the ground bigraph reactive
system (B,R′) where R′ is the set of reaction rules obtained as ground instances
of R and B.

3 Bigraph Relational Model

Next, we tackle the definition of the bigraph relational model that arises form
the graphical presentation of the categorical model. In our model, bigraphs are
identified by name. The disjoint sets of names n, VB , m, PB , Y , X, EB , K are
expressed as base relation symbols bigraph, root, node, site, port, o name,
i name, e name, control. The arity function is encoded as arity, a ternary
relation symbol indexed by control, a natural number, and a bigraph. And
similarly, relations prntB , linkB , ctrlB , and PB are encoded by the following
operational relation symbols:

– prnt S D B where S ∈ node ∪ site and D ∈ node ∪ root,
– link S D B where S ∈ i name ∪ port and D ∈ o name ∪ e name,
– lc A K B where A ∈ node and K ∈ control,
– lp P A B where P ∈ port and A ∈ node,

8

base cases

{is root R, has child p (dst r R) z}]∆ 7→ ∆ (dr)

{is o name O, has child l (dst o O) z}]∆ 7→ ∆ (do)

{is e name E, has child l (dst e E) z}]∆, 7→ ∆ (de)

recursive cases

{is port P, lp P A, vp A (s z), link (src p P) D, (lgpsz)

has child l D (s N)}]∆ 7→ {has child l D N}]∆
{is i name I, link (src i I) D, has child l D (s N)} (lgi)

]∆ 7→ {has child l D N}]∆
{is site S, prnt (src s S) D, has child p D (s N)}]∆ (lgs)

7→ {has child p D N}]∆
{is node A, has child p (dst n A) z, prnt (src n A) D, (pgnz)

has child p D (s N), lc A K}]∆ 7→ {has child p D N}]∆ if arity K = 0

{is node A, has child p (dst n A) z, prnt (src n A) D, (pgns)

has child p D (s N), lc A K}]∆
7→ {has child p D N, vp A N’}]∆ if arity K = N ′ > 0

{is port P, lp P A, vp A (s (s N’)), (lgps)

link (src p P) D, has child l D (s N)}]∆
7→ {vp A (s N’), has child l D N}]∆

Fig. 3. Bigraph Validity

We declare the following structural relation symbols as well:

– is root R B where R ∈ root and R belongs to B,
– is node N B where N ∈ node and N belongs to B,
– is site S B where S ∈ site and S belongs to B,
– is port P B where P ∈ port and P belongs to B,
– is o name O B where O ∈ o name and O belongs to B,
– is i name I B where I ∈ i name and I belongs to B,
– is e name E B where E ∈ e name and E belongs to B.

Next, we sketch an algorithm for deciding the validity of a bigraph in the
relational model. The algorithm is deceptively simple: using the rules depicted in
Figure 3, we rewrite the encoding of a bigraph to the empty set by checking the
validity of the place graph and the link graph and the valid use of control’s arity.
As we will show below, the algorithm is confluent and strongly normalising. The
rules are partially sequentialised in such a way that children are rewritten before
the parents and nodes before ports. We make this information explicit and define
three more operational relational symbols one for the place graph, an other one
for the link graph, and one for the control’s arity.

9

JBK =

|VB |−1⊎
i=0

(
is node ai] lc ai (ctrlB ai)] prnt ai (prntB ai)

] has child p ai |{y | prntB y = ai}|
)

|EB |−1⊎
i=0

(
is e name bi

)
]
|Y |−1⊎
i=0

(
is o name gi

)
|PB |−1⊎

i=0

(
is port ci] lp ci (π1 ci)

] link ci (linkB ci)
)

m−1⊎
i=0

(
is site di] prnt di (prntB di)

)
|X|−1⊎
i=0

(
is i name ei] prnt ei (prntB ei)

)
n−1⊎
i=0

(
has child p fi |{y | prntB y = fi}|

] is root fi
)

Fig. 4. Encoding function from a bigraph structure.

– has child p D N B where D ∈ node ∪ root, N a natural number, and B a
bigraph name.

– has child l D N B where D ∈ e name ∪ o name, N a natural number, and B

a bigraph name.

– vp A N B where A ∈ node, N a natural number, and B a bigraph name.

The encoding of bigraph B is now straightforward. It is defined as the multi-
set S = JBK in Figure 4.

10

Example 1. The bigraph B from Figure 1, is represented as follows:

JBK = {is root 0 B, has child p 0 (s (s z)) B

is node a B, lc a get B, has child p a (s z) B,

is node b B, lc b send B, has child p b (sz) B,

is node d B, lc d sum B, has child p d (s z) B,

is node e B, lc e get B, has chidl p e z B,

is node f B, lc f sum B, has child p f (s (s z)) B,

is node g B, lc g get B, has child p g (s z),

is node h B, lc h sum B, has child p h (s z) B,

is node i B, lc i send B, has child i g z,

is node j B, lc j get B, has child p d (s z) B,

is node k B, lc k sum B, has chidl p k z B,

is node l B, lc l send B, has child p l z B,

is port p(b,1) B, lp p(b,1) b B, is port p(e,′1) B, lp p(e,1) e B,

is port p(g,1) B, lp p(g,1) g B, is port p(i,1) B, lp p(i,1) i B,

is port p(j,1) B, lp p(j,1) j B, is port p(l,1) B, lp p(l,1) l B,

is o name c B, has child l c (s (s (s z))) B,

is o name co B, has child l co (s (s z)) B,

is o name t B, has child l t (s z) B,

prnt a 0 B, prnt f 0 B, prnt b a B, prnt d b B, prnt e d B, prnt g f B,

prnt h g B, prnt i h B, prnt j f B, prnt k j B, prnt l k B,

link p(b,1) c B, link p(e,1) c B, link p(g,1) c B,

link p(i,1) co B, link p(j,1) co B, link p(l,1) t B}

For reasons of convenience, we omit bigraph names from relations, and we
use uppercase characters for logic variables in rewrite rules. Furthermore we use
lower case z and s for zero and successor.

We show that the rewriting system is strongly normalising and implements
a decision procedure for checking the validity of bigraphs.

Lemma 1 (SN). This multi-set rewriting system is strongly normalising for
any finite multi-set S.

Proof. By a trivial induction of the size of the set S.

In the following we write S −→ S′ for transitive closure of 7→ from Figure 3.
We say S is valid if and only if S −→ ∅, S contains only unique elements and
operational symbols has child p, has child l and vp are unique on their first
argument, respectively node ∪ root, o name ∪ e name and port.

Lemma 2. Let S be valid. Then the relations in S defined by the operational
symbols are total, acyclic, and single valued.

11

Proof. Every operational symbols are consumed by the rewriting rules with their
structural symbols associated, which also defined their domain. Therefore oper-
ational relations are total and since every structural element is unique they are
also single valued relations.

By typing, link, lc and lp are acyclic but prnt.

Proof by contradiction, suppose that prnt represent an acyclic relation, then
there exists x0, . . . , x(n−1) ∈ node such that ∀j < n, prnt xj x(j+1) ∈ S and
prnt x(n−1) x0. Only rules and are able to consume a prnt symbol, there-
fore prnt xi x(i+1) and prnt x(n−1) x0 are consumed with the has child p

symbol for xi and x(n−1), and the has child p symbol for x(i+1) and x0 are
decremented. In particular, prnt x0 x1 is consumed with has child p x0 z and
has child p x(n−1) sn is decremented and prnt x(n−1) x0 is consumed with
has child p x(n−1) x0 and has child p x(n−1) sn

′ is decremented. Therefore,
the has child p symbols of x0 and x(n−1) have both to be decremented and
consume, which leads to a contradiction with the hypothesis S is valid: either
S 6−→ ∅ or S do not have at most one has child p symbol for each different
node.

Lemma 3. Let S be valid.

– ∀y ∈ node ∪ root, ∀N a natural number, has child p y N ∈ S implies |{x |
prnt x y ∈ S}| = N

– ∀y ∈ edge ∪ o name, ∀N a natural number, has child l y N ∈ S implies |{x |
link x y ∈ S}| = N

– ∀v ∈ node, ∀N a natural number, vp v N ∈ S implies |{x | lp x v ∈ S}| = N .

Proof. – has child symbol: let n, the natural number in argument of one
of these symbols. Let x be something involve in a has child symbol, by
induction on n.

• n = 0, if there is an other prnt where x is in the parent position, then
it will broke the hypothesis.

• n = n′ + 1, then there exists a set S′ such that S −→ S′ −→ ∅ where a
prnt symbol with x as parent is consumed and the has child symbol of
x is decremented from n to n′. Since the rewriting rules does not break
the unicity and S′ −→ ∅, by the induction hypothesis, n′ is the number
of prnt symbols that involve x as a parent in S′.

– vp symbol: let v a node, p a port and n a natural number such that vp v n ∈
S. Note that, by S −→ ∅, n < 0. By the validity of S, S −→ S′ −→ ∅, where
vp p (s n’) ∈ S and s n′ = n, if the Rule (pgnz) is used, n = 1 and there is
no more vp symbols related to p. Otherwise, the Rule (pgns) is used, n < 1,
vp p n’ ∈ S′ and the induction hypothesis can be applied on S′.

Lemma 4 (Normal Form). Let S be valid. Then ∅ is the unique normal form
of S with respect to −→.

12

JSK? =


(VB , EB , PB , prntB , ctrlB , linkB) : 〈m,X〉 → 〈n, Y 〉

under the signature (K, arity) if S −→ ∅.
undefined otherwise.

where for some B bigraph name

K = {k | ∀A a node, lc k A B ∈ S},
arity = {(k, n) | ∀A a node, vp A n B ∈ S ∧ lc A k B ∈ S},
∨ lc A k B ∈ S ∧ ¬∃n′, vp A n′ B ∈ S ∧ n = 0}

VB = {v | is node v B ∈ S}, EB = {e | is e name e B ∈ S}
EB = {(v, i) | is port (v, i) B ∈ S}, prntB = {(x, y) | prnt x y B ∈ S}
ctrlB = {(v, k) | lc v k B ∈ S}, linkB = {(x, y) | link x y B ∈ S}
m = {r | is root r B ∈ S}, X = {x | is i name x B ∈ S}
n = {s | is site s B ∈ S}, Y = {y | is o name y B ∈ S}

Fig. 5. Interpretation function.

Proof. Since strong normalisation has already been proven in Lemma 1, we prove
local confluence in order to apply the Newman’s lemma. There are 81 critical
pairs that respect the hypothesis, some are trivial, and show that rules are
truly commutative, the Rules (dr) and (do) for instance. Some others are almost
commutative, basically, for parent relation symbols, such as prnt or link, or
when a port structural symbol is consumed, they share respectively a has child

symbol or a vp symbol. It is not truly commutative because the rule does not
use the same instance of these additional symbols, but the critical pair can be
join by applying the other rule with the new additional symbol.

By induction over the rewrite trace, we can easily convince ourselves that
validS holds if and only if S encodes a bigraph.

Theorem 1 (Inversion). If S is valid then there exists a bigraph B, s.t. JBK =
S.

Proof. Lemma 2 and 3 ensure that the set holds the properties of the graphical
definition of a bigraph.

This theorem guarantees that the encoding as defined in Figure 4 has an
inverse (which is only defined on valid sets). It is defined in Figure 5 and for
which we write JSK?. Furthermore, we have shown that there exists a bijection
between bigraphs and their representations as valid multi-sets.

Theorem 2 (Adequacy). Let B be a bigraph under a signature Σ = (K, arity),
then

q
JBK

y?
l B.

Proof. With theorem 1, we provide by cases on element of B:

13

– ∀r ∈ mB , root r ∈ JBK there are only r ∈ mq
JBK

y.

– ∀n ∈ VB , k ∈ K, ctrlB n = k,∀d ∈ VB] m, prnt n = d, node n, lc n

k and prnt n d ∈ JBK, there are only n ∈ Vq
JBK

y, ctrlq
JBK

y n = k and

prntq
JBK

y n = d.

– ∀o ∈ YB , is o name o ∈ JBK there are only o ∈ Yq
JBK

y

– ∀e ∈ EB , is e name e ∈ JBK there are only e ∈ Eq
JBK

y

– ∀s ∈ nB , is site s ∈ JBK there are only s ∈ nq
JBK

y

– ∀i ∈ XB , is i name i ∈ JBK there are only i ∈ Xq
JBK

y

– ∀k ∈ KB ,∀n ∈ N, arityB k = n, arity k n ∈ JBK, then arityq
JBK

y k = n.

Next, we show that composition and juxtaposition of bigraphs are provided
“for free” in the bigraph relational model. They basically correspond to multi-set
union.

Let C be a bigraph. Next, we partition JCK into three parts, C̃] outC] inC
where

1. outC contains only references to roots is root, outer names is o name, place
graph parent relations prnt on roots and link graph parent relations link

on outer names,
2. inC contains only references to sites i site, inner names is i name, place

graph parent relations prnt on sites and link graph parent relations link on
inner names,

3. and C̃ = JCK \ outC \ inC .

Also, let B be a bigraph such that B = C ◦ C ′ for two bigraphs, C and C ′.
We define the set eqCC′ as follows :

eqCC′ ={prnt x y | is root r ∈ JC′K ∧ is site s ∈ JCK
∧ | s |=| r | ∧ prnt x r ∈ JC′K ∧ prnt s y ∈ JCK}
∪ {link x y | is i name i ∈ JCK ∧ is o name o ∈ JC′K
∧ | i |=| o | ∧ link i y ∈ JCK ∧ link x o ∈ JC′K}

Note, that eqCC′ is built from outC′ and inC .

Lemma 5. Let B be a bigraph. If B ≡ C ◦C ′ then JBK = outc ∪ C̃ ∪ eqCC′ ∪
C̃ ′ ∪ inC′ .

Proof. Following the definition 3 of composition, the outer interface of B is the
one of C, here outc.the inner interface is the one of C ′, here inC′ . VB = VC ∪VC′

with VC ∩ VC′ = ∅, here it is the union of nodes of JCK and JC ′K. Same things
for EB and ctrlB . The prnt and link maps, that does not involve sites in C and
roots in C ′ are in C̃ ′ and C̃. And the actual composition is defined in eqCC′ by
fB x = fC j where f is a short cut for prnt or link, f ′C x = i and i = j.

Lemma 6. Let B be a bigraph. If B ≡ C ⊗ C ′ then JBK = C̃ ∪ C̃ ′ ∪ outC ∪
inC ∪ outC′ ∪ inC′ = JCK ∪ JC ′K .

Proof. The definition of the juxtaposition directly implies this statement.

14

4 Modeling Reaction Rules

In this section, we illustrate how we model reaction rules.

4.1 Ground Reaction Rule

Recall that applying a ground reaction rule (L,R) to an agent B proceeds by
decomposing B into C ◦ L for some bigraph C and then replacing L by R.
Therefore, in the model, we only need to partition the agent JBK into two sets

with respect to C, one that is affected by the reaction rule (here L̃ ∪ eqCL) and
the other that is not.

JC ◦ LK = outC ∪ C̃ ∪ eqCL ∪ L̃

↓

JC ◦RK = outC ∪ C̃ ∪ eqCR ∪ R̃

For a given bigraph C, we can think of a ground reaction rule as a multi-set
rewrite rule that replaces among other things the set eqCL by eqCR:

L̃ ∪ eqCL 7→ R̃ ∪ eqCR

We can rid this rule of the dependency on C. We know, first, that the inner
interface of C must be the same as the outer interface of L (and therefore also
R). Second, the components in the interface that depend on C are only roots
and outer names. Therefore, instead of quantifying over C, we can reformulate
the rule by simply quantifying over the aforementioned components.

4.2 Parametric Reaction Rule

The parametric reaction rule from Definition 6 is a triple that consists of two
bigraphs, and a function η that maps sites from the reactum to sites in the redex.

A parametric reaction rule is applied to an agent B if B can be decomposed
into C ◦ (D ⊗ L) ◦ C ′ where C,D and C ′ are bigraphs and L is the redex. The
result of the application is the agent C ◦ (D ⊗ R) ◦ (η C ′) where η is defined
in Definition 8. The basic idea is essentially the same as in the ground case,
therefore we proceed analogously and model decomposition by partition

JC ◦ (D ⊗ L) ◦ C ′K = outC ∪ C̃ ∪ eqC((D⊗L)◦C′) ∪ ˜((D ⊗ L) ◦ C ′) ∪ eqLC′

∪ C̃ ′ ∪ in((D⊗L)◦C′)

= outC ∪ C̃ ∪ eqC((D⊗L)◦C′) ∪ L̃ ∪ D̃ ∪ eqDC′ ∪ eqLC′ ∪ C̃ ′

and model parametric reaction rule as a multi-set rewriting rule.

15

eqC((D⊗L)◦C′) ∪ L̃ ∪ D̃ ∪ eqDC′ ∪ eqLC′ ∪ C̃ ′

7→ eqC((D⊗R)◦(η C′)) ∪ R̃ ∪ D̃ ∪ eqD(η C′) ∪ eqL(η C′) ∪ (̃η C ′)

Differently from above, the formulation of the rule is not only dependent on
C, but also on C ′. This time, however things are not as direct, in part because
the inner interfaces of the redex and the reactum do not match. In Definition 6,
we use η to coerce one to the other, which means that the interfaces between
(η C ′) and R actually do match.

Applying η to C ′ is algorithmically simple: on the place graph, the operation
recursively deletes all sites that are not in the range of η, moves all sites that
have a unique image under η, or copies all sites that do not have a unique
image under η; on the link graph, it only administers links from and to ports
(as proposed in [6]). The computational essence of these operations is captured
in terms of a few multi-set rewriting rules, that iterates over the place graph,
which we discuss in more detail in Section 5.

4.3 Meta Theory

We show that modeling ground and the parametric reduction rules as rewrite
rules is sound and complete.

Theorem 3 (Soundness). Let B,B′ be agents, R a set of reaction rules and
(L,R, η) ∈ R. If B can be rewritten into B′ by L,R, η and W 7→ Z is the
corresponding rewriting system, then the following diagram commutes:

B B′

JBK JB′K

(L,R, η)

J·K J·K

W 7→ Z

Proof. Ground reaction rule. L and R are ground and the graph of η is empty.
B ≡ C ◦ L and B′ ≡ C ◦R, by Lemma 5 and because interfaces of L and R are
the same, JBK = C̃ ∪ L̃ ∪ outC ∪ inL ∪ eqCL and JB′K = C̃ ∪ R̃ ∪ outC ∪
inL ∪ eqCR, therefore JB′K is the result of one step of the multi-rewriting system

L̃ ∪ eqCL → R̃ ∪ eqCR applied on JBK. Parametric reaction rule. Analogous.

Conversely, all multi-set rewriting system that encode a ground reaction rule
respects the semantics of ground brs.

Theorem 4 (Completeness). Let X,Y be valid sets. Furthermore let W 7→ Z
be sets such that there exists an (L,R, η) that is a reaction rule that can be
applied on JXK? and W 7→ Z is the modeled reaction rule of (L,R, η), then the
following diagram commutes:

16

X Y

JXK? JY K?

W 7→ Z

J·K? J·K?

(L,R, η)

Proof. Ground reaction rule. Using Lemma 5 and Theorem 2, L̃ ∪ eqXL ∈ X
implies that JXK? ≡ C ◦L. Therefore R̃ ∪ eqXR ∈ X implies that JY K? ≡ C ◦R.
Parametric reaction rule. Analogously.

5 Implementation in Celf

We turn now to the original motivation of this work and evaluate the bigraph
relational model empirically. The very nature of the rules depicted in Figure 3
suggests a language based on multi-set rewriting, such as Maude, Elan, λProlog,
CHR, or Celf. Because of Celf’s features, in particular linearity and higher-order
abstract syntax, we have decided to use Celf as our implementation platform.

And indeed, the implementation of the bigraph relational model is straight-
forward. Roots, nodes, sites, etc. are encoded using Celf’s intuitionistic features,
and the evidence that something is a root, a parent, or a port is captured by lin-
ear assumptions using dependent types. Consequently a bigraph is represented
by the Celf context. The multi-set rewriting rules as depicted in Figure 3 and the
reaction rules from Section 4 are encoded using linear types and the concurrency
modality. For example, the rewrite rule

{is root R, has child p (dst r R) z}]∆ 7→ ∆

is implemented in Celf as a constant

dr : is_root R B * has_child_p (dst_r R) z B -o {1}.

where is_root carries a reference to the bigraph it is a root for, and all uppercase
variables are implicitly Π quantified. Celf provides a sophisticated type inference
algorithm that infers all omitted types (or terminates with an error if those
cannot be found).

Celf also comes with a forward directed logic programming engine in the style
of Lollimon [3], which resembles the CHR evaluation engine. During operation,
the uppercase variable names are replaced by logic variables, which are subse-
quently instantiated by unification if the rule is applied. Note that the properties
of the encoded bigraph reactive system are preserved: If the reaction rules are
strongly normalising then so is their encoding. As an illustration of our experi-
ments we depict an encoding of bigraph validity (see Figure 3) as a type family
valid and a few Celf declarations in Figure 5. Note how similar the two figures
are.

The higher-order nature of Celf allows us to express rewriting rules that
dynamically introduce new rewriting rules on the fly. In Celf, rewriting rules are

17

%% base cases

dr : is_root R B * has_child_p (dst_r R) z B -o {1}.

do : is_o_name O B * has_child_l (dst_o O) z B -o {1}.

de : is_e_name E B * has_child_l (dst_e E) z B -o {1}.

%% recursive cases

lgpsz : is_port P Bi * lp P A Bi * vp A (s z) Bi * link (src_p P) D Bi

* has_child_l D (s N) Bi -o {has_child_l D N Bi}.

lgi : is_i_name I Bi * link (src_i I) D Bi

* has_child_l D (s N) Bi -o {has_child_l D N Bi}.

pgs : is_site S Bi * prnt (src_s S) D Bi * has_child_p D (s N) Bi

-o {has_child_p D N Bi }.

pgnz : is_node A Bi * has_child_p (dst_n A) z Bi * prnt (src_n A) D Bi

* has_child_p D (s N) Bi * lc A K Bi -o arity K z -> {has_child_p D N Bi}.

pgns : is_node A Bi * has_child_p (dst_n A) z Bi * prnt (src_n A) D Bi

* has_child_p D (s N) Bi * lc A K Bi -o arity K (s N’)

-> {has_child_p D N Bi * vp A (s N’) Bi}.

lgps : is_port P Bi * lp P A Bi * vp A (s (s N)) Bi

* link (src_p P) D Bi * has_child_l D (s N’) Bi

-o {vp A (s N) Bi * has_child_l D N’ Bi}.

Fig. 6. The implementation of the valid relation in Celf.

first-class citizens. The logical principle behind this technique is called embedded
implications, as popularised by λProlog. By nesting them we achieve elegant
encodings.

An example is the encoding of a parametric bigraph reaction rule (L,R, η).
The definition of the Celf signature is rather involved, where we use linearity
and token system (J∅, ∅K) in order to sequentialise the reaction rule. Below we
give an algorithm that computes the Celf declaration

rule(L,R,η) : J(m, η)K⊗
(
J(∅, ∅)K ({L̃⊗ eqXL ({R̃⊗ eqXR)}}

)
from the sites m in L and η.1 Recall the three auxiliary operations delete, move,
and copy that are triggered depending on the cardinality c = |{x | x ∈ m, (x, y) ∈
η}|. In the case that is c = 0, we first colour all the direct children of node prntL x
(using tmp) that contain the site x with colour tmp prnt. Second we remove the
colour information from all of siblings of x that are also present in L. Third, for
each coloured node, we start a recursive descent phase (using del) to trigger the
deletion of the node and its children.

1 In the interest of clarity, we omit all references to the bigraph identifiers from Celf
type constructors.

18

Jx ∈ m, (x, y) 6∈ ηK =

has child p (prntL x) (sk N)⊗ tmp (prntL x) (sk N)

⊗ (tmp (prntL x) z ({
k⊗
i=0

tmp prnt Si Di

({
k⊗
i=0

prnt Si Di ⊗ del (prntL x) N ⊗ (del (prntL x) z

({has child p (prntL x) (skz)⊗ Jm \ {x}, ηK})}})

In the case that c = 1, we do something very similar as in the previous case,
except that we move instead of delete. This case is conceptually easier because
we can skip the recursive descent phase.

Jx ∈ m, (x, y) ∈ ηK =

has child p (prntR y) (sk N)⊗ tmp move (prntL x) (sk N)

⊗ (tmp move (prntL x) z ({move (prntL x) (prntR x) N

⊗ (move (prntL x) (prntR x) z

({has child p (prntR y) (sk z)⊗ Jm \ {x}, η \ {(x, y)}K})})

The case that c > 1 is again similar, except that this time we need to recursively
copy the graph rooted in prntL x. While copying we are forced to create new
nodes, ports, etc., which we get for free from the Exists connective that is part
of Celf.

Jx ∈ m, (x, y) ∈ ηK =

has child p (prntR x) (sk N)⊗ tmp copy (prntL x)(sk N)

⊗ (tmp copy (prntL x) z ({
k⊗
i=0

tmp prnt Si Di

({
k⊗
i=0

prnt Si Di ⊗ copy (prntL x) (prntR y) N

⊗ (copy (prntL x) (prntR y) z

({has child p (prntR x) (sk N)⊗ Jm, η \ {(x, y)}K})}})

In the base case, we define J∅, ∅K as a Celf type constructor. Note that some cases,
in particular move and copy, need additional rule in the case that the source node
and the destination node are the same. This definition is well-formed because
during the recursive calls either, m, η, or both get smaller.

Finally, we address the question of adequacy. Let (B,R) be a brs, and Γ
the intuitionistic Celf context that contains the names of all ports, sites, roots,

19

inner names, outer names, edges, nodes, controls, the graph of the arity function
in B, and the translation of all reaction rules declared in R.

Theorem 5 (Adequacy). The agent B reduces to agent B′ using the rules in
R if and only if (in Celf) ΠΓ.

⊗
JB′K ({C} implies that ΠΓ.

⊗
JBK ({C}.

Proof. By induction on the reduction sequence, using the definition of J(m, η)K
and Theorems 3, 4.

Conclusion

In this paper we have describe a model for bigraph reactive systems, which we
refer to as the bigraph relational model. We have shown that this model that
is based on a multi-set rewriting system is amenable to implementation. The
rewriting system ensures the validity of the encoding with respect to the bigraph
structural properties. We have also shown that the semantics of brs is precisely
captured by the multi-set rewriting rules. Finally, we give an implementation of
the bigraph relational model in Celf. Celf is a powerful tool: Linearity allows us
to implement the reaction rules directly, its higher-order features take care of
dynamic introduction of new rewrite rules and the creation of fresh names while
copying the place graph where warranted.

References

1. Maxime Beauquier and Carstern Schürmann. Bigraphs in CLF. Technical report,
tr 2010-126, IT University of Copenhagen, 2010.

2. Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concurrent
logical framework ii: Examples and applications. Technical report, cmu-cs-02-102,
Caregie Mello University, Pittsburgh, PA 15213, 2002.

3. Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic con-
current linear logic programming. In Pedro Barahona and Amy P. Felty, editors,
Proceedings of the 7th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, pages 35–46, Lisbon, Portugal, 2005.

4. Robin Milner. A calculus of communicating systems. Springer-Verlag, 1980.
5. Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge

University Press, 1999.
6. Robin Milner. The Space and Motion of Communication Agents. Cambridge Uni-

versity Press, 2009.
7. Wolfgang Reisig. Petri Nets. Springer-Verlag, Berlin, 1985.
8. Anders Schack-Nielsen and Carsten Schürmann. Celf — a logical framework for

deductive and concurrent systems (system description). In IJCAR ’08: Proceedings
of the 4th international joint conference on Automated Reasoning, pages 320–326,
Berlin, Heidelberg, 2008. Springer-Verlag.

9. Anders Schack-Nielsen and Carsten Schürmann. Pattern Unification for the Lambda
Calculus with Linear and Affine Types. Electronic Proceedings in Theoretical Com-
puter Science, 34:101–116, 2010. In Proceedings LFMTP 2010.

20

