

The YUIO Language:
Supporting Evaluation and
Implementation of Virtual Windows

Jacob Winther Jespersen

IT University Technical Report Series TR-2006-79

ISSN 1600-6100 January 2006

Copyright 2006, Jacob Winther Jespersen

 IT University of Copenhagen
 All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

 ISSN 1600-6100

 ISBN 87-7949-117-0

Copies may be obtained by contacting:

 IT University of Copenhagen
 Rued Langgaards Vej 7
 DK-2300 Copenhagen S
 Denmark

 Telephone: +45 72 18 50 00
 Telefax: +45 72 18 50 01
 Web: www.itu.dk

The YUIO Language: Supporting Evaluation and
Implementation of Virtual Windows

Jacob W. Jespersen
IT University of Copenhagen

Rued Langgaards Vej 7
DK-2300 S
Denmark

Tel: +45 72185000
jwj@itu.dk

ABSTRACT
The Virtual Windows method is a systematic approach to
the design of user interfaces to information systems that
support users’ tasks efficiently. This paper introduces Yuio,
a complementary declarative user interface description lan-
guage (UIDL) that allows a formal specification of virtual
windows, and of their behavior during interaction with the
user. We find that Yuio is well suited to express the essen-
tial design choices made during design and implementation
of user interfaces based on the approach, and that it pro-
vides a gentle slope of complexity when refining designs.

Our work includes a tool that makes it possible to quickly
evaluate virtual windows designs in practice by creating a
virtual prototype. Among future work is a designer-guided
transformation of a virtual prototype to a final system tak-
ing into account characteristics of a target platform.

ACM Classification: H.5.2. [Information Interfaces and
Presentation]: User Interfaces; D.2.2. [Software Engineer-
ing]: Design Tools and Techniques

General terms: Design, Experimentation, Languages.

Keywords: Virtual Windows, User Interface Design, User
Interface Modeling, Object Orientation.

INTRODUCTION
Design and construction of interactive systems has been a
research topic for a long time with steady progress in terms
of methods, models, and tools. User interface software
tools [1] have evolved from toolkits to UIMSs to the
model-based approaches and environments (MB-UIDE). A
recurring theme in this evolution is the relationship be-
tween a system’s data and the user’s tasks. In particular
since second-generation MB-UIDE’s, such as Adept [2], the
task and data perspectives have been the dominant abstrac-
tions in user interface software tools for information system
development.

The Virtual Windows (VW) method [3] is a method to user
interface design that has proven to be successful in practice

dealing with complex systems design. It involves domain
modeling (data and task) in a traditional way, e.g. data as
an E/R-diagram and task descriptions in textual form. An
apparent strength in the VW-method seems to stem from
its focus on early graphical design of the logical parts
(called virtual windows) that make up final screen contents.
This explicit focus is in opposition to keeping screen con-
tents in some abstract form until late in the design process
before choosing the concrete graphical form.

Yuio is a declarative language designed to express the rela-
tionship between data and its articulation in the context of
using an interactive system. As we will show, the design
of Yuio folds several aspects of user interface specification
into a single pattern that through composition can describe
also complex user interfaces. Yuio fundamentally builds on
the notion of types and dynamic type inheritance. We find
that virtual windows are essentially type-specific articula-
tions of data that support the user’s understanding of data
in a particular context, e.g. while carrying out a task.

Currently, there is no special tool support for the Virtual
Windows method. Data and task models are produced on
paper, or in a general-purpose tool (word processor, draw-
ing program, etc.) as convenient. What comes out of fol-
lowing the VW method – the design product – is a paper-
based specification of the set of virtual windows (and their
composition into final graphical screens) that are required
to efficiently support users in the given domain (of task
and data). On this basis the designer creates the necessary
dialog design.

Language as tool
We have worked to create tool support for developing user
interfaces based on the VW approach. This paper introduces
the user interface description language Yuio that embraces
and extends the notion of virtual windows in order to sup-
port the designer’s steps towards implementation. The ex-
tension primarily concerns the behavior associated with
interaction, e.g. feedback from selections, and variations of
the user interface based on the run-time context.

The activities supporting the design of virtual windows,
specifically the domain analysis and its integration into the
design process, are unaffected by our current work.

This paper is organized as follows: First, we detail the Vir-
tual Windows method and why we find it interesting to
introduce tools to support it. Then we explain the architec-
ture of a run-time environment that allows running virtual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
UIST’05, October 23–27, 2005, Seattle, Washington, USA.
Copyright ACM 1-59593-023-X/05/0010...$5.00.

prototypes based on Yuio specifications. (By ‘virtual proto-
type’ we mean a functional prototype running on a pseudo
platform.)

In the sections following we introduce the language and
give several examples, and end with related work, which is
primarily the model-based UI development approaches [4].

THE VIRTUAL WINDOWS APPROACH
According to its authors, the important insight supporting
virtual windows is that user interface design must consider
task and data at the same time. Giving a single perspective
the dominant position is likely to cause undesirable effects.
A too task-oriented design results in the ‘soda-straw effect’:
it is hard to get an overview if each window shows only
what is strictly needed for a task and thus hides the task’s
context. A too data-oriented design mechanically aligns
windows with the data model’s entity boundaries, which
may require the user to inefficiently navigate back and forth
to get to the data needed for a task. Good user interface
designs balance the task and data perspectives properly; the
VW method aims to make it easier to reach the right bal-
ance.

In Lauesen[3] is this description:

“A virtual window is a picture on an idealized screen. With
a PC application, think of it as a GUI window on a large
physical screen. This window shows data but has no but-
tons, menus, or other functions. For devices with special-
ized displays, think of the virtual window as a picture on a
large display; for Web systems, think of it as a page or
frame. A complex application needs several virtual win-
dows.”

As said here, the graphical expression of data intentionally
takes precedence over functions. Which functions should be
available to users in each window, and the choice of syntax
for function activation, is part of a later dialog design step.

A virtual window articulates data from one or more data
entities in order to support one or more tasks. Likewise,
each task may require one or more virtual windows on
screen simultaneously. The most difficult part of the design
method is identifying the required virtual windows. A
handful of guidelines steer this high-level design: minimize
the number of window types, minimize the needed number
of window instances (per type) for each task, avoid show-
ing the same data in more than one window, and keep the
size of the virtual windows within the limits of the likely
target platform(s). See Lauesen [3] for a discussion of the
human factors in support of the guidelines.

Designers make compromises
It is seldom possible to respect all of the guidelines when
doing a design; conflicting demands almost always require
deliberate compromises. Consequently, a designer needs to
revise the virtual windows several times during the design
phase as he discovers the consequences of a compromise.
The iterative approach to refine the design by continually
testing if it deals well with realistic (and extreme) data
from the domain is important to achieve a good design.

Advanced graphical display of data is not prohibited by the
virtual windows method. On the contrary, designers are
encouraged to experiment with graphical representations of

domain data and go beyond form fill-in. Understandability
tests are the means by which the designer checks if his
graphical virtual windows (with an advanced display or
not) fulfill their mission to convey domain data. The de-
signer tests understandability by showing the virtual win-
dows one by one to a relevant user and asking her/him to
explain what they show. Windows must show realistic and
coherent data to give the user a fair chance of interpretation.

Design steps
All in all, the Virtual Windows method prescribes five
overall steps. The following section gives a quick overview
by the example given in [3]: supporting a hotel receptionist
managing guests, rooms and services. Illustrations are re-
used with permission from the author.

Make a task list
In this step the designer describe session tasks and subtasks
with variants. In a hotel the receptionist must accomplish
these tasks:

• Book guest

• Check-in guest

• Change a guest’s room

• Check-out guest

• Enter breakfast list

Subtasks and variants are omitted for brevity.

Make a data model
A data model expresses what data the hotel system stores
in terms of entities, their attributes and relationships.

Figure 1. Data model as E/R diagram

Outline virtual windows
A virtual window plan shows the relation between tasks
and virtual windows in an outline. In this case, outline
means an abstract form without concrete data presentation.

Figure 2. Plan that links tasks to virtual windows.

Detail the graphics and populate windows
A concrete presentation is the goal of this next step. The
designer chooses widgets and shows realistic data for each
virtual window. Notice that the Guest and Breakfast win-
dows have a ‘multiple sheet’ signature, which means that
several instances of these windows may be visible to the
user when the system runs. But there can only be a single
Rooms and Service Charges window shown at any time.

Figure 3. Virtual windows in final graphical form.

Check the design
In the final step the designer checks completeness (task/data
coverage) and understandability, i.e. do users perceive the
intended concepts satisfactorily? In case defects are found,
the designer should revise the virtual windows.

Dialog design
In our line of work, dialog design usually involves func-
tion design (what actions should be available to the user in
each window), navigation design (how does the user con-
trol the flow among windows), and user guidance design
(help/messaging). Navigation and guidance issues depend
heavily on the target system platform, which is why the
integration of virtual windows, functions (including navi-
gation), and guidance facilities should take place knowing
the platform’s characteristics.

When this final design step is taken the design is fine-
grained enough that it is possible to do a usability test
based on a prototype; the defects found here feed into the
design cycle and inform the next iteration, if one is neces-
sary.

VIRTUAL WINDOWS BENEFITS
Individually, the elements of the virtual windows design
method are known and recognized by the HCI community
[5]. It is firmly founded on task analysis, short-cycled itera-
tive design, and usability evaluation. However, as its
authors also point out, we find that the VW approach in-

troduces three valuable variations of common elements in a
design phase:

Early graphical design
Articulating pieces of related data and forming logical win-
dows early on gives the designer a good feel of the design
artifact, which in turn lets her or him make informed de-
sign compromises. Giving priority to a concrete manifesta-
tion of data (its graphical appearance) and letting this in-
form the delineation of the abstract outline is important.

Continuous checks with realistic data
This point is a consequence of the former; it is impossible
to judge the graphical design if it does not show realistic
data in the text fields, menus, or other kind of articulation
chosen. Representative data must be part of the design en-
vironment to inform design decisions.

Late design of functions
Finding the right articulation of data (that the functions
work on) should have first priority; function design follows
data articulation, not vice versa. Postponing function de-
sign achieves this effect.

OUR MOTIVATION
The primary motivation for the work presented here is to
facilitate realistic or close-to-realistic evaluation of user
interface designs based on virtual windows. First of all to
inform the design process (from initial sketches to under-
standability tests), secondly to produce prototypes that can
be used for usability evaluation. Thirdly, to form a basis
for transformations to final systems. The transformation
part is not covered in this paper.

We set up a number of initial requirements for our tool
design. They are listed here with a comment suggesting
their most important rationale:

Acknowledge the virtual windows approach
to leverage the benefits of the design method

Facilitate prototyping of virtual window designs
to support usability evaluations

Allow short cycles of design-test-evaluate
to promote iterative development

Support abstraction (design-time and in domain)
to handle large and complex data sets

Declarative specification style
to avoid complexity of explicit flow-of-control

Two-way constraints link data and articulation
to provide transparent data/view synchronization

Implicit input event handling
to hide the complexity inherent in asynchronous events

Most of these requirements are motivated by existing re-
search in design and implementation of interactive systems,
e.g. [6], [7], [8], and have been addressed in a number of
tools; however, none of them have acknowledged the vir-
tual windows design method. On its own, this requirement
spawns additional expectations:

• The VW semantics must be maintained during de-
sign iterations

• Specifications must be robust to frequent changes
as a consequence of incremental refinement

• Support for advanced graphical displays. So-called
‘black’ boxes, i.e. screen regions that an applica-
tion controls directly, must be avoided.

We do not detail how the individual requirements are met;
in the following we prioritize a coherent description of the
tool design.

LANGUAGE AS TOOL
Owing to its graphical nature, the Virtual Windows ap-
proach calls for graphical tool support. The most natural
way of designing graphical appearance is ‘by demonstra-
tion’, so to speak. However, as shown earlier, VW design
is not exclusively about appearance but about appearance in
relation to a meaning given by some underlying data.

One may sketch appearance freely, and then infer a suitable
data model as suggested in [9], or alternatively, adopt a
data model first and design appearance accordingly. Design
practice often ends up being a mix of both; domain conven-
tions dictate certain models of domain data while other
concerns (for security, data persistence, performance, etc.)
and the designer’s preferences motivate final data modeling.

However, establishing the relationship between data and
appearance in the context of use is a necessary step towards
system implementation even if either data or appearance
may have precedence during the design. We use the term
articulation to mean the use-dependent relation between
data and appearance that is characteristic of an interactive
system.

Since articulation depends on conditional checks of data
values at runtime, and since we want to provide abstraction
mechanisms to deal with complex domains, it follows that
the kind of virtual window specification we seek is close
enough to being programming that a suitable diagramming
technique is non-trivial [10]. As a consequence, the Yuio
language that we propose here is a textual language for user
interface specification. Future work may integrate visual
tools to specify inherently visual features of such specifica-
tions.

Tool for virtual prototyping
This section outlines the architecture of the pseudo plat-
form we have built (in Java) to realize virtual prototypes
based on Yuio specifications. It also acts as a straightfor-
ward user interface development environment (UIDE) as it
allows the designer to edit specifications and see results
immediately. We label it a ‘pseudo platform’ as it has lim-
ited capabilities and (with a few exceptions) does not inte-
grate with the underlying real (Java) platform widget set.

We have not designed Yuio with only prototyping in
mind; the intention is to provide a language for expressing
user interfaces based on virtual windows per se. Yuio can-
not and should not express complete systems either. The
scope of a Yuio specification depends on the environment
that runs it; this paper describes the particular environment
we built to facilitate prototyping.

A virtual prototype is a stand-alone application with its
main window titled Workspace. The Workspace is where
the effects of Yuio programs show; at any point the de-

signer can see and edit the running program in a separate
Editor window. During usability evaluations the designer
usually keeps the Editor window closed.

When a virtual prototype runs, it integrates a Yuio pro-
gram, a typed data layer, and a set of articulation primi-
tives. The latter mostly have names similar to widgets
found in user interface toolkits, such as Form, List, Table,
and so on, but as is explained later on, they are not simply
widgets.

Figure 4. Yuio programs articulate typed data

In practice, data sources are data object graphs, application
data structures, databases, or any other kind of structured
data. Figure 4 shows the runtime architecture of a virtual
prototype. Mapping 1 takes place independently of the
Yuio program by means dependent on the data sources; we
use a data interactor abstraction to shape this mapping.
For example, a data interactor takes data describing a guest
(e.g. an object of class Guest, or a row in a Guest table)
and forms an instance of type Guest. It also establishes
instance attributes, e.g. the attributes of a Guest (Name,
Passport, etc.). Instance attributes are themselves consid-
ered typed instances.

On the basis of such typed data instances a Yuio program
defines Mapping 2 which results in instances of articulation
types. These show up in the workspace and provide an in-
teractive environment for the user, i.e. they handle user
input events (e.g. click, drag, and type) and manipulate the
typed data layer. If the data interaction (Mapping 1) is bi-
directional, then this manipulation may cause changes to
the underlying data sources.

YUIO LANGUAGE BASICS
At runtime, a virtual prototype continually exchanges data
with its data sources, and instantiates articulation types
according to a given Yuio specification. Yuio specifications
express the relationship between data and its articulation in
the context of using an interactive system. The language
builds on the notion of types and dynamic type inheritance
to support specification of virtual windows and their behav-
ior in use. The basic premise is that virtual windows are
essentially type-specific articulations of data that support
the user’s understanding of that data in a particular context,
e.g. while carrying out a task.

The typed data layer
A Yuio specification relies on a typed data layer, but it has
no language facilities to establish neither the layer nor the
mapping to it (Mapping 1 in Figure 4), thus the runtime
environment must provide and maintain the layer.

The logical organization of the data layer corresponds to the
domain data model – and can be derived from it – but im-
poses a certain abstraction on the entities, attributes and
relationships. Just as an E/R diagram abstracts away the
details of how entity relationships manifest (uni-
directional, bi-directional, or inferred), the Yuio typed data
layer abstracts away the difference in manifestation of entity
attributes and entity relationships. Attribute and relation-
ship is unified in a single abstraction: slot value. In this
view, a given type of entity has a number of slot values,
each being either an attribute or a relationship to another
entity.

Guest
Type

Guest
Instance

Thomas
Thomson

Name

Service

Payment

VISA

$20

Figure 5. Yuio's data abstraction unifies attributes
and relationships into slot values.

By comparing the illustration in Figure 5 to the data model
in Figure 1, it can be seen that the attributes Name and
Payment exist as slot values in the same manner as the
relationship to a number of Service instances. Conse-
quently, in a Yuio specification, the designer is able to
refer to the slot values by name (Name, Payment, Service)
without caring for the underlying manifestation, which is
either an attribute or an entity relationship.

Note the formal distinction between slot and slot value.
For example, an instance of Guest always has a Service
slot, but not necessarily any Service slot values. Service
slot values represent a guest’s use of hotel services, so if
the guest has just arrived, there won’t be any.

In informal descriptions it is usually not necessary to dis-
tinguish between slot and slot values; in the following we
use the term attribute informally to mean a slot with val-
ues.

Virtual Window as independent articulation
In our understanding a graphical virtual window defines an
independent articulation for a single type of data. By inde-
pendent is meant an articulation that abstracts away a con-
crete context for its data. For example, the Rooms window
shows how to present instances of type Room collectively
as a table. On its own it does not tell in context of which
task(s) this presentation is useful.

Not every type of data needs an independent articulation; in
the hotel system neither Room state nor Service has an in-
dependent articulation. Data from these entities has only
dependent articulations, i.e. they are integral parts of other
virtual windows.

In our perspective, the essence in the virtual windows ap-
proach is about (1) identifying which types need an inde-
pendent articulation, and (2) finding proper dependent ar-
ticulations of their associated types. The design of Yuio
adopts this essential structure. Going from domain abstrac-
tions to user interface constructs, known in the user inter-
face modeling community as the mapping problem [11], is
with Yuio first and foremost a matter of declaring how
types from the data layer map to articulation types (that
represents user interface constructs) dependent on context.
Secondly, it involves explicitly sharing state between in-
stances of articulation types. In the following sections we
will detail what constitutes context, and we describe the
nature of the type mapping.

ARTICULATION TYPES
In the Yuio language named types represent the possible
concrete user interface constructs. These types are articula-
tion types whose semantics stem from the use environment
(Element, List, Table, Form, Choice, etc.), whereas the
data types discussed so far are abstractions from the do-
main (Guest, Room, Service, etc.). We use the hotel case
to illustrate the language. A complete Yuio specification of
the virtual windows in Figure 3 is in Appendix A.

Primarily, Yuio specifications express rules of dynamic
type inheritance, more specifically of articulation type in-
heritance. The basic idiom is:

do <data type> as <articulation type>

which unconditionally binds a particular type of data to a
particular type of articulation. ‘Do’ and ‘as’ are keywords of
the language. As an example, consider the following state-
ment: do Guest as Form

By this specification, whenever data of the type ‘Guest’
comes into focus, it inherits the abilities of the articulation
type Form; logically, the Guest type dynamically acquires
Form as its supertype. Since Form is a kind of articulation,
the guest data may now appear visually. The actual effect is
dependent on the environment; when a Yuio program runs
in a virtual prototype, data of articulation types show up in
the Workspace window. How data come into focus, and
leaves again, is discussed later on.

The following less trivial example is a specification of the
virtual window ‘Guest’ of Figure 3. Line numbers are
added just to allow references in this text:

 1: do CommonGuest as Form {

 2: do ‘First Name’* as Label {

 3: do ‘First Name’ as Choice

 4: }

 5: do Address* as Label {

 6: do Address as Choice

 7: }

 8: do Payment* as Label {

 9: do Payment as Choice

 10: }

 11: do Service* as List {

 12: do Service as Row {

 13: do Date as Row.Column

 14: do ‘Service Type’ as {

 15: do Name as Row.Column

 16: }

 17: do Count as Choice

 18: do Price as Element

 19: }

 20: } with (.Title: “Charges”)

 21: }

 22: do Guest as CommonGuest

Figure 6. Specializing a Form to make it a Guest
form

For the sake of clarity we use the verbose syntactical form
in the code examples. There are shorter versions available.

The effect on running this example is shown in Figure 7. It
introduces several aspects of the language that we will seek
to motivate in the following sections:

Linear composition
Statements are composed in a linear fashion to articulate
the individual slots of an instance, e.g. lines 13-18 address
the attributes of a service.

Specialization through hierarchical composition
Statements are composed hierarchically to specialize a par-
ticular articulation of a type, e.g. lines 2-20 comprise the
statements (surrounded by curly brackets) that specialize the
outermost statement in line 1.

Type slots are first-class citizens
Statements articulate individual types as well as their slots
in a uniform way. As described earlier, a slot is a
placeholder for a slot value. Syntactically, appending an
asterisk to a type name denotes the slot for that type.

Articulation types may be interdependent
An articulation type may be dependent on another type to
provide context for the articulation. One example is in lines
13 and 15 that use the Row.Column type. Here, line 12
provides the required Row type scope.

Before diving into the details with these aspects, we will
introduce the conceptual framework we draw on to cope
with the intrinsic complexity of user interface specification.

Figure 7. Articulation resulting from a guest in-
stance

DEALING WITH COMPLEX DOMAINS
Yuio provides language mechanisms to break complex do-
mains into conceptually simpler parts to ease specification.
Most importantly, the designer can express single-
inheritance relationships between articulation types. As an
example continuing the hotel system design in Figure 6,
consider that returning guests and VIP guests need special
treatment.

 23: do ReturningGuest as CommonGuest {

 24: do ‘Last Stay’* as Label {

 25: do ‘Last Stay’ as Element

 26: } with (.XPos:248, .YPos:0)

 27: }

 28: do VIPGuest as ReturningGuest {

 29: do ‘Preferred Room’* as Label {

 30: do ‘Preferred Room’ as Choice

 31: } with (.XPos:210, .YPos:26)

 32: }

 33: do Guest where (‘Last Stay’ != Void)

 34: as ReturningGuest

 35: do Guest where (SpentLast12Months > 2000)

 36: as VIPGuest

Figure 8. Articulation types may form inheritance
trees

The example in Figure 8 shows the use of the ‘where’ key-
word to guard a statement by criteria. In this case, the
guard causes special treatment of a Guest element based on
the actual values of the attributes Last Stay and Spent-
Last12Months that exist at runtime. The effect of lines
33-36 is that Guest elements inherit a particular articulation
type dependent on their attributes. A ReturningGuest is
modeled as a special kind of CommonGuest, and VIPGuest
as a special kind of ReturningGuest. Figure 9 shows the
result of the specification when articulating a VIP guest.

Guards that depend on a single boolean attribute may be
prefixed, e.g.:

do (isCheckedOut) Guest as SomeType

Note that the attributes isCheckedOut, Last Stay, Preferred
Room, and SpentLast12Months used in the last two exam-
ples are not part of the initial data model in Figure 1, but
exist in the virtual prototype we built to provide illustra-
tions for this paper.

Figure 9. Result of specializing the guest form to fit
VIP guests

Object-oriented features
Inheriting properties from a ‘parent’ abstraction, as is done
in the example, is a classical feature of object orientation.
We draw on this conceptual framework to promote clarity,
reusability, and maintainability of Yuio specifications;
however, Yuio is not an object-oriented language in the
traditional sense. Throughout this paper we note the heri-
tage of this tradition and point out relevant differences.

The basic inheritance mechanism in Yuio follows a com-
mon single-inheritance OO scheme. A number of articula-
tion base types exist: Form, Label, Element, Choice, List,
Table, Map, Button, Row, Column, etc. As usual, base
types are a special. Yuio base types are special since a side
effect of their instantiation is some sort of manifestation in
the user interface. The details here follow later.

Linear composition
We think of a Yuio specification as a contract between the
user interface designer and a technology provider. As such,
a Yuio specification details what should take place in the
user interface, not how it should take place. Thus, the se-
quence of statements does not imply flow of control, but
(1) the sequence of evaluation and (2) the layout sequence
of elements. Treatment of these two aspects differs in order
to serve different purposes.

First of all, to allow incremental refinement it should be
possible to specialize behavior at a certain point in a speci-
fication without changing existing statements. Secondly,
the order in which elements appear in a user interface is
important (a Name entry field usually appears before an
Address entry field) and tightly bound to domain conven-
tions. We achieve the desired effect by evaluating state-
ments backwards, but maintaining layout sequence based
on forward first-occurrence. This way specialization is a
simple matter of extending a specification, and it is done
without spoiling the ability to spot the layout sequence.
Thus, in the example below (Figure 10), line 3 does not
change the layout sequence.

 1: do Name* as SimpleInputField

 2: do Address* as SimpleInputField

 3: do Name* where (size of Name >100)

 4: as LongField

Figure 10. Specializing treatment of Name in-
stances dependent on their length

The layout sequence remains (Name, Address) but when-
ever a given Name instance has a length larger then 100,
the corresponding articulation type instances are (Long-
Field, SimpleInputField) and not (SimpleInputField, Sim-
pleInputField).

Specialization through hierarchical composition
In the trivial first example, do Guest as Form, it is obvi-
ous that further specialization is required. It is not suffi-
cient to show a guest element as just any form; it has to be
a guest form, i.e. a form that reveals the necessary attrib-
utes of a guest. As Figure 6 shows, this kind of specializa-
tion is done by placing a statement block (within curly
brackets) immediately after the name of the articulation
type, in casu Form. The context for the block specializing
the Form is guest data, thus the statements in the block

may refer directly to Guest attributes in order to articulate
them individually, as it is done in the example.

Since Yuio supports inheritance among articulation types,
as described earlier and shown in Figure 8, the type on
which we base a specialization may itself be a specialized
type. This is a common case in object-oriented modeling,
and is supported in Yuio as well; the new type is logically
a linear composition of its supertype and the specializing
statement block.

Type slots are first-class citizens
When we studied the relationship between data and articula-
tion in user interfaces of commercial information systems
(most frequently built using conventional user interface
toolkits [12]), we found a strikingly simple pattern: If type-
dependent articulation takes place, it either wraps or juxta-
poses any corresponding instance-dependent articulation.
Type-dependent articulation is commonly a label, a wrap-
ping of a list, or the name of a table column; instance-
dependent articulation is then the data entry field next to a
label, or the elements of a list or column.

This observation leads us to promote type slots to first-
class citizens of the language and in this way be subjects to
articulation just as the slot values are. Syntactically, an
asterisk following a type name signifies a slot.

Articulation types may be interdependent
Often, an articulation type existentially depends on a cer-
tain context given by another type. As in Figure 6, a
Row.Column is well defined only within the scope of a
Row. If there is no Row, there can be no column in that
row. Semantically, such dependent types are similar to the
OO concept of nested classes (called inner classes in Java);
in Yuio specifications nested types are useful to establish
relationships across a hierarchically organized articulation.
There are no restrictions on the number of nesting levels.
Base types have a fixed set of nested types, but as with any
type, sub-typing can manipulate this set.

The following is a simple example of a nested type. The
articulation type DoubleLineInput is declared as a subtype
of the base type Label with an extension that declares two
nested types FirstLine and SecondLine each with the base
type Choice as supertype.

 1: do InputField as Label {

 2: do FieldValue as Choice

 3: }

 4: do DoubleLineInput as Label {

 5: do FirstLine as Choice

 6: do SecondLine as Choice

 7: }

 8: do Guest as Form {

 9: do Name* as InputField

 10: with (Name as FieldValue)

 11: do Address* as DoubleLineInput {

 12: do Address where (index = 0)

 13: as FirstLine

 14: do Address where (index = 1)

 15: as SecondLine

 16: }

 17: }

INTERACTIVITY
The foundation for interaction in a user interface based on a
Yuio specification is the manifestation that is due to in-
stantiation of the base types. As stated earlier, Yuio base
types are special as their instantiations cause some kind of
manifestation in the use environment.

When run in our virtual prototype environment, base type
instantiations appear visually in the workspace window
where the user can point, type, click, and drag. The work-
space window provides a 2-dimensional space for the ap-
pearance in which each instance can occupy a region. In
such a use environment, the workspace easily provides a
mapping between the user’s actions and the corresponding
base type instances based on 2-d coordinates of the point-
ing device. Other mapping schemes are possible dependent
on use environment characteristics.

User interface tools have traditionally dealt with dialog
control in 3 ways: by state diagrams, based on a grammar,
or as input events triggering event handlers. The event-
based model is inherently asynchronous and often quite
complex to configure, but it is also the most expressive.

Yuio’s dialog control facilities are a mix of state diagrams
and event handlers. At the language level a user’s actions
surface as attributes of base type instances, and are available
to guard statements:
do Guest as Element
do (hovered) Guest as Element

with (.Color: “Red”)
do (clicked) Guest as SelectedGuest

With this specification Guest instances show up as plain
elements, turn red when pointed at, and become a Select-
edGuest instance when clicked. (The SelectedGuest type is
not shown in the code.)

JOINING THE PIECES
In this last section, we will attempt to provide an overview
of our work, and how the pieces fit together.

The design of Yuio adopts the notion of virtual windows,
which are domain dependent graphical presentations of data
organized to provide a proper framing of users’ domain
tasks. Programmatically, Yuio specifications articulate do-
main data to form virtual windows on the basis of a dy-
namic type mapping. The designer controls which map-
pings take place during interaction with the user by ex-
pressing rules that depend on domain data and on abstrac-
tions of the user’s actions (e.g. clicks). Rule evaluation
takes place at the discretion of the implementation.

Logically, rules specify when domain data dynamically
acquires capabilities of articulation types, thus become ar-
ticulation instances. Such instances have as side effect that
they manifest in the user interface. There, they are subjected
to user’s actions (clicking, dragging, typing, and hovering),
which may cause them to change state. Changing state may
subsequently cause another type change.

Functions exist as type slots. Yuio lets the designer articu-
late slots as easily as slot values; a common articulation of
a function is the Button and Link articulation types.

Getting into focus
As stated earlier, a Yuio specification details what happens
when domain data comes into focus, but we haven’t yet
explained what this means. Focus is a concept that covers
the domain data instances that have an independent articula-
tion at a point in time during use. As an example, consider
again the hotel system case. It is likely that the receptionist
quite often will have more than one guest on screen at a
time, i.e. have several instances of the guest window open
at a time. Either because tasks are interleaved (a check-in
and a booking), or perhaps when checking in a family.

In this case, some number of Guest instances constitutes
Focus. Data instances move into Focus either at the request
of the user, or by an external request (e.g. an application
notification). Data instances move out of Focus either at
the request of the user (e.g. hitting a close box), or because
an instance disappears from the data layer.

RELATED WORK
Yuio shares the ambition to raise the level of abstraction in
user interface development with the model-based tools. In
comparison with these tools, Yuio specifications most eas-
ily compares with the concrete user interface specification
[13]; however, in most MB-UIDEs the concrete specifica-
tion is more or less a derivative of explicit abstract compo-
nent models (among them usually a task model). MB-
UIDEs promote multiple models so designers can address
relevant design dimensions individually [14], but there are
also concerns that the segregation and resulting complex
model integration hinders efficient specification [15].

ITS [16] is a famous early model-based tool which em-
ploys style rules to control presentation and interaction
style dependent on the runtime environment in terms of
dialog attributes and the data pool. Yuio’s rule evaluation
achieves a comparable effect as an integral part of an object-
oriented framework, whereas ITS’ rules have a custom con-
ceptual basis. Yuio’s typed data layer features the type slot
concept but is otherwise logically like the ITS data pool.

CONCLUDING REMARKS
This paper has described the constituents of the conceptual
framework supporting the Yuio language: virtual window
semantics, object-oriented type declaration, and dynamic
type inheritance. Details of layout facilities, dialog control,
and articulation base types have been omitted for brevity.

Even if Yuio as a language is still progressing, we believe
its current position contributes to the research into efficient
means for user interface development. Conceptually, Yuio
strengthens the role of the concrete user interface specifica-
tion. First by giving it clear semantics based on the notion
of virtual windows, next by allowing descriptions in a hu-
man-readable declarative language, and finally by using
proved object-oriented techniques to facilitate its specifica-
tion.

Object orientation is characterized by the ability to use the
same conceptual framework during analysis, design and
implementation. This is useful as it allows development
teams to re-use modeling and knowledge through these
phases. In this perspective, Yuio represents a continuation
of domain modeling, but at a higher though still concrete
level.

REFERENCES
1. Myers, B.A., User Interface Software Tools. ACM

Trans. Comput.-Hum. Interact., 1995. 2(1): p. 64--
103.

2. Markopoulos, P., et al. Adept - a task based design
environment. in Proceedings of the Twenty-Fifth Ha-
waii International Conference on System Sciences.
1992.

3. Lauesen, S. and M.B. Harning, Virtual Windows:
Linking User Tasks, Data Models, and Interface De-
sign IEEE Softw. , 2001 18 (4): p. 67-75

4. da Silva, P.P. User interface declarative models and
development environments: A survey. in DSV-IS2000.
2000. Limerick, Ireland: Springer-Verlag.

5. Maguire, M., Methods to support human-centred de-
sign Int. J. Hum.-Comput. Stud. , 2001 55 (4): p.
587-634

6. Myers, B.A., et al., Garnet: Comprehensive support
for graphical, highly interactive user interfaces.
Computer, 1990. 23(11): p. 71-85.

7. Singh, G., Requirement for user interface program-
ming languages, in Languages for developing user in-
terfaces, B.A. Myers, Editor. 1992. p. 115--123.

8. Zanden, B.V., An active-value-spreadsheet model for
interactive languages, in Languages for developing
user interfaces, B.A. Myers, Editor. 1992, Jones and
Bartlett.

9. Landay, J.A. and B.A. Myers, Interactive sketching
for the early stages of user interface design, in Pro-
ceedings of the SIGCHI conference on Human factors
in computing systems. 1995, ACM Press/Addison-
Wesley Publishing Co.: Denver, Colorado, United
States. p. 43-50.

10. Blackwell, A.F., et al., Cognitive Factors in Pro-
gramming with Diagrams. Artif. Intell. Rev., 2001.
15(1-2): p. 95-114.

11. Puerta, A. and J. Eisenstein, Towards a general com-
putational framework for model-based interface devel-
opment systems in Proceedings of the 4th interna-
tional conference on Intelligent user interfaces 1999
ACM Press: Los Angeles, California, United States p.
171-178

12. Myers, B.A., S.E. Hudson, and R. Pausch, Past, Pre-
sent, and Future of User Interface Software Tools.
ACM Trans. Comput.-Hum. Interact., 2000(7): p. 3-
28.

13. Szekely, P., Retrospective and Challenges for Model-
Based Interface Development, in Computer-Aided De-
sign of User Interfaces. 1996, Namur University
Press.

14. Szekely, P.A., et al. Declarative interface models for
user interface construction tools: the MASTERMIND
approach. in Proceedings of the IFIP TC2/WG2.7
Working Conference on Engineering for Human-
Computer Interaction. 1996: Chapman \& Hall, Ltd.

15. da Silva, P.P., Object modelling of interactive sys-
tems: The UMLi approach, in Department of Com-
puter Science. 2002, University Of Manchester.

16. Wiecha, C., et al., ITS: a tool for rapidly developing
interactive applications. ACM Trans. Inf. Syst., 1990.
8(3): p. 204-236.

APPENDIX A

do Guest as Form {

do ‘First Name’* as Label {

do ‘First Name’ as Choice

}

do Address* as Label {

do Address as Choice

}

do Payment* as Label {

do Payment as Choice

}

do Service* as List {

do Service as Row {

do Date as Row.Column

do ‘Service Type’ as {

do Name as Row.Column

}

do Count as Choice

do Price as Element

}

} with (.Title: “Charges”)

}

>> as Table {

do Date as Table.Column

do Room as Table.Row {

do Room# as Element

do Bath as Element

do Bed# as Element

do Price1 as Element

do Price2 as Element

do RoomState as {

do Date as silent Table.Cell {

do RoomState where(State=”Occupied”)

as Element with (.Title:”O”)

do RoomState where(State=”Booked”)

as Element with (.Title:”B”)

}

}

}

}

do ServiceFinder as Form {

do ‘Date Criteria’* as Label {

do ‘Date Criteria’ as Choice

}

do Service* as List {

do Service as silent Row {

do Room as Element

do BreakfastInRestaurant as Choice

do BreakfastInRoom as Choice

}

}

} with (‘Type Criteria’=”Breakfast”)

