
Skeleton-Based Modeling in Badminton
Unlocking Insights for Stroke Recognition and Forecasting

by

Magnus Andreas Petersen Ibh

a dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Computer Science

IT University of Copenhagen

October, 2024

© Magnus Andreas Petersen Ibh
all rights reserved, 2024

Abstract

This thesis uses skeleton poses as the primary modality for analyzing badminton video
sequences. The topic is approached through three central computer vision tasks: Ac-
tion recognition, action forecasting, and 3D shuttle reconstruction.
One part of the research explores and develops models that best capture informative
motion representations from skeleton sequences to infer the performed stroke. Addi-
tional features such as shuttlecock position and player court location are integrated to
improve recognition performance.
Another focus is on identifying limitations in stroke recognition, such as limited and
inconsistent annotation conventions and type imbalance, and exploring potential so-
lutions. Pretraining, especially self-supervised learning, is explored. The models are
pretrained using masked autoencoders, reconstructing parts of the skeleton sequences
hidden in the input. The findings show that these approaches improve model perfor-
mance on downstream tasks like stroke recognition.
Achieving the best model performance is not the only goal of the thesis. Part of the
research tries to identify which elements of a player’s stroke motion carry the most
descriptive information on a particular action. Through model inspection, the differ-
ent phases of the stroke motion and various modalities are examined using ablation
and qualitative attention studies to determine which offers the most relevant informa-
tion to the model. The results are compared to the human perspective of analysts and
coaches to gauge how the findings could benefit coaches and players in match prepara-
tion.
Expanding on this, the thesis investigates the model forecasting capabilities for pre-
dicting the next strokes. Usually, in sequence modeling, the next stroke in a rally
would be predicted based on the sequence of stroke exchanges up to that point. Here,
instead, a model architecture is proposed that learns a stroke representation from
the player’s skeleton motion, identity, and shuttle position to condition the predic-
tion probability of the next stroke. The model design reflects the turn-based nature
of badminton to capture a basic understanding of the game to make informed predic-
tions.
Using 3D information can extract valuable physical and shot statistics while eliminat-

3

ing ambiguities found in 2D image representations. However, the limited availability
of 3D badminton data inhibits the development of effective reconstruction models.
A physics-based model trained on synthetic 3D shuttlecock trajectories is proposed
to overcome this challenge. The developed model, TrajTrans, predicts the initial 3D
conditions based on 2D image projections. The results generalize well to real data by
implementing shot filtering criteria of the synthetic data that ensure realistic trajecto-
ries.
Ultimately, the findings contribute to the field of sports analytics by providing foun-
dational knowledge and guidelines that can advance the development of future tools
for analysts and coaches.

4

Resume

Denne afhandling fokuserer på at anvende skelet-positurer som den primære modalitet
til at analysere badminton-videosekvenser ved at adressere tre centrale computer
vision-opgaver: Slag-genkendelse, slag-forudsigelse og 3D rekonstruktion af data fra
2D.
En del af forskningen udforsker og udvikler modeller, der bedst indfanger informative
bevægelses-repræsentationer fra skelet-sekvenser til at afgøre, hvilket slag der udføres.
Yderligere input, som fjerboldens position og spillerens placering på banen, integreres
for at forbedre modellerne og deres genkendelses-performance.
Et andet fokus er at identificere begrænsninger indenfor slag-genkendelse, herunder
begrænset og inkonsekvent annoteringspraksis samt ubalance mellem slagtyper, og at
undersøge mulige løsningsstrategier. Fortræning, især selv-superviseret fortræning, af
modeller undersøges og resultaterne viser, at disse tilgange forbedrer modelpræstatio-
nen på efterfølgende opgaver, som slag-genkendelse.
At opnå den bedst mulige modelpræstation er dog ikke det eneste mål med afhan-
dlingen. En del af forskningen søger at identificere, hvilke elementer af spillerens slag-
bevægelse der rummer den mest beskrivende information om en given handling. Gen-
nem modelinspektion undersøges de forskellige faser af slagbevægelsen samt forskellige
modaliteter, for at forstå, hvilke der giver den mest relevante information til modellen.
Resultaterne sammenlignes med analytikeres og træneres menneskelige perspektiv for
at vurdere, hvordan disse indsigter kan gavne trænere og spillere i deres kampforbere-
delse.
Et andet centralt punkt i afhandlingen, er udviklingen af en model der kan forudsige
fremtidige slag i en badminton duel. Normalt i sekvens-modellering vil man forsøge
at forudsige det næste slag i en duel kun baseret baseret på sekvensen af slag i en
duel frem til det pågældende tidspunkt. Her foreslås i stedet en modelarkitektur, som
lærer en slag-repræsentation ud fra spillerens skeletbevægelse, identitet og fjerboldens
banekurve, og medregner det i forudsigelsen af det næste slag i duellen.
Anvendelsen af 3D-information fra både spiller-skeletter og fjerboldbevægelse giver
mulighed for at udlede værdifulde fysiske og slagrelaterede statistikker og kan po-
tentielt udrede tvetydigheder, der findes i 2D billedrepræsentationer. Dog vanskel-

5

liggør den begrænsede tilgængelighed af 3D-data for badminton udviklingen af effek-
tive rekonstruktionsmodeller. Som en mulig løsning til denne udfordring foreslås en
fysikbaseret model, der er trænet på syntetisk genererede 3D fjerbold-data. Modellen
forudsiger de indledende 3D startbetingelser baseret på 2D video-sekvenser. Den ud-
viklede model TrajTrans, trænet på syntetiske data, viser lovende resultater anvendt
på badminton-data fra virkelige kampe.
Samlet set bidrager resultaterne i afhandlingen til machine learning i sportsanalyse
ved at etablere et fundament af viden og retningslinjer, der kan fremme udviklingen
af værktøjer til analytikere og trænere i fremtiden.

6

Contents

Abstract 3

Resume 4

Abbrivations 8

Acknowledgments 11

1 Introduction 12
1.1 Motivation . 12
1.2 Thesis Goals . 13
1.3 Thesis overview . 14
1.4 Badminton . 19

2 Neural components 24
2.1 Graph Convolutional Networks . 24
2.2 Temporal Convolutional Networks . 32
2.3 Transformer . 35
2.4 Chapter Conclusion . 41

3 Human Pose Estimation 42
3.1 Introduction . 42
3.2 Methods of Human Pose Estimation . 43
3.3 Quality of Pose Estimation on Badminton videos 49
3.4 Chapter Conclusion . 53

4 Data pipeline & Datasets 54
4.1 Homogenous Coordinates and Perspective Transfomation 55
4.2 Data Features . 57
4.3 Datasets . 63
4.4 Chapter Conclusion . 71

7

5 Skeleton-based Stroke Recognition 76
5.1 Raw Video Frames vs. Skeleton Features for Stroke Recognition in Bad-

minton . 77
5.2 Related Work . 80
5.3 TemPose: A Multimodal Factorized Transformer for Fine-Grained Stroke

Recognition in Badminton . 82
5.4 Experiments . 88
5.5 Skeleton-based Pretraining Methods . 101
5.6 Chapter Conclusion . 107

6 Stroke Forecasting 109
6.1 Related Work . 111
6.2 Forecating task formulation . 114
6.3 RallyTemPose . 115
6.4 Experiments . 121
6.5 Discussion . 125
6.6 Chapter Conclusion . 131

7 3D Reconstruction of Shuttlecock Trajectories 133
7.1 Camera models . 135
7.2 3D shuttle-trajectory estimation with Physics-based modeling 139
7.3 Shuttle Experiments . 153
7.4 Discussion . 165
7.5 Chapter Conclusion . 167

8 Conclusion 168
8.1 Main Takeaways . 168
8.2 Limitations & Short-comings . 169
8.3 Future Prospects . 170
8.4 Key Insights for Collaboration . 171
8.5 Overall Message . 172

References 185

Appendix Paper 1: TemPose: A new approach skeleton-based action recog-
nition 186

Appendix Paper 2: A stroke of Genius: Predicting the next move in bad-
minton 197

Appendix Paper 3: SynthNet: 3D trajectory reconstruction from syn-
thetic training data 208

8

Abbrivations

HPE Human Pose Estimation

MLP Multi-Layer Perceptron (used synonymously with FCNN and FC)

GCN Graph Convolutional Network

TCN Temporal Convolutional Network

MHSA Multi-head Self-Attention

PE Positional Encoding

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gate Recurrent Unit

CNN Convolutional Neural Network

ReLU Rectified Linear Unit

GELU Gaussian Error Linear Unit

MSE Mean Square Error

PCK Percentage of Correct Keypoints

OKS Object Keypoint Similarity

TP True Positives

FP False Positives

FN False Negatives

PoT Pose Transformer

9

RGB Red-Green-Blue (Synonym for color video footage)

ViViT Video Vision Transformer

ViT Vision Transformer

ST SpatioTemporal

TS temporospatial

NLP Natural Language Processing

BadPL Badminton Placement

BadOL Badminton Olympics

Sset Shuttleset

Sset22 Shuttleset 22

STB Spatial Transformer Block

TTB Temporal Transformer Block

10

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to my girlfriend, Cé-
cile, and family, especially my parents, for their unwavering support and encourage-
ment throughout my academic journey. Their belief in me has been a constant source
of motivation and strength.
I would also like to extend my deepest thanks to my supervisor, Dan Witzner Hansen,
for his invaluable guidance and insights, which have significantly shaped this thesis. I
sincerely thank Stella Grasshof and Pascal Madeleine for their support and construc-
tive feedback, which was instrumental in refining my work. I am grateful to my fellow
PhD colleagues, whose camaraderie and intellectual discussions have made this jour-
ney both enriching and enjoyable.
Furthermore, I wish to express my appreciation to Team Danmark and Badminton
Danmark for their collaboration and the insights they provided regarding the analysis
of professional badminton. Their expertise and willingness to share knowledge have
been crucial to the success of this thesis.
Additionally, I am grateful for the financial support from Novo Nordisk Fonden, which
partially funded this project as part of TeamSPORTek.
Thank you to all those who have supported and inspired me along the way.

Copenhagen, Dec. 2024
Magnus Ibh

11

Chapter 1

Introduction

Technological advances have led to the development of analysis tools to refine ath-
letes’ performance, enhance coaching strategies, and enrich viewers’ experiences. In
this context, human pose estimation and action recognition technologies have emerged
as viable fields, especially in sports such as badminton, where minor differences in
posture and technique can significantly impact performance outcomes. This thesis
explores the application of skeleton-based action recognition and forecasting for stroke
analysis in badminton. In this context, the term ”skeleton” refers to a human body
model consisting of connected joints indicating key points on the human body. In this
capacity, the potential of human skeleton data to provide meaningful representations
of athletic motion without the distractions presented by lighting, backgrounds, and
other redundant information is examined.
Despite the wealth of possibilities computer vision offers in sports analytics, the scarcity
of annotated sports data poses a significant challenge. Annotated datasets are crucial
for training accurate and reliable models; however, they are often limited, especially
for sports that do not enjoy as wide coverage as others. This limitation inhibits the
development of models that capture the essence of sport-specific movements and pre-
dict future actions with high precision.

1.1 Motivation

The motivation for focusing on skeleton data arises from its potential to condense de-
tailed athlete movements into a simplified yet informative format. Unlike traditional

12

video data, which require substantial processing to filter out irrelevant background in-
formation, skeleton data provide a distilled representation of motion, focusing solely
on the athletes’ poses. This abstraction facilitates a more focused analysis of move-
ments and techniques and significantly reduces the computational resources required
for processing, making it an efficient choice for real-time applications.
The sparse nature of annotated sports data necessitates innovative approaches to
model training. This thesis explores the use of skeleton/joint data of both players and
the shuttle fused with self-supervised learning techniques to utilize the vast amounts
of unlabeled data, thereby circumventing the limitations of dataset sparsity. This ap-
proach enhances the model’s understanding of complex motions and broadens its ap-
plicability across different athletes and conditions without requiring extensive anno-
tated datasets. This thesis aims to address the challenges presented by sparse data
using skeleton data and deep learning techniques. The focus is badminton, a sport in
which precision and technique play a critical role.
Deep learning applications in sports analytics have increased significantly in popu-
larity. Despite this growth, many specific use cases for athletes and coaches have yet
to be established. This thesis addresses this gap by focusing on the practical applica-
tions of deep learning for badminton, emphasizing the analysis of skeleton-extracted
motions during matches.

1.2 Thesis Goals

Stroke Recognition This research aims to investigate specific downstream tasks
that utilize skeleton-based data to capture essential properties of badminton matches.
The thesis employs machine learning architectures tailored for stroke recognition, con-
ducting several experiments to determine the most effective input modalities and fea-
tures for accurate stroke recognition. It will also explore the temporal dynamics of
stroke sequences and tackle the challenge posed by the scarcity of annotated stroke
data. The approach includes exploring a self-supervised method for pretraining, lever-
aging the abundant unannotated badminton video material available to improve the
robustness and generalizability of recognition algorithms.

Stroke Forecasting The thesis extends beyond basic recognition tasks to explore
in-depth the analytical capabilities of deep learning models. Although automatic an-

13

notation of video events is beneficial, it often does not interact directly with real-time
match analysis. The thesis progresses into action forecasting, using previous stroke
data to predict an opponent’s next actions. This requires the integration of motion
representation and sequence analysis to inform predictions about future strokes, ne-
cessitating that the model comprehends underlying tactical and positional dynamics.

3D Data Reconstruction Another aspect of this thesis investigates the poten-
tial for reconstructing 3D information from 2D match footage. The transition from
image to real-world data significantly enhances the information inferred from the ex-
tracted data, such as player movements and shuttle trajectories, facilitating a more
comprehensive analysis of matches. Comparing the benefits of 3D over traditional 2D
data, this research seeks to show new insights and improve the predictive capabilities
of sports analytics models. The work in this thesis is limited to 3D reconstruction of
the shuttle, but in future work, extracting accurate 3D player motion should be of
high priority.

Main Takeaway The findings of this thesis are intended to provide a current overview
of potentially useful applications of neural machine learning methods in badminton.
Furthermore, the proposed methods highlighted issues and challenges that are sup-
posed to provide direction for the future development of concrete tools and applica-
tions for analysts, coaches, and athletes.

1.3 Thesis overview

The following section summarizes the main focus of each chapter of the thesis:

• Neural Components: In this chapter, relevant fundamental components for
neural network models are introduced. The chapter covers the following model
types: Temporal convolution Networks (TCN), Graph Convolutional Networks
(GCN), and Transformer models.

• Human Pose Estimation: This chapter introduces the core focus of the the-
sis, human keypoint/skeleton data that is used as the main feature for many
computer vision tasks in the remaining part of the thesis. Finally, this section

14

uses a self-annotated badminton dataset to evaluate different pre-training hu-
man pose estimation (HPE) models.

• Data Pipeline and Datasets: This chapter defines the main features and
modalities used throughout the model. The modalities refer to. Skeleton joint
data (S) and skeleton bone data (B). Shuttlecock coordinates (U) and player
court position (G). Followed by a description of the procedure and methods to
extract skeleton (pose) and 2D shuttle trajectories from match videos, along
with preprocessing to refine for use as model input features. Last, the chapter
introduces the annotated badminton datasets used for the experiments in the
thesis.

• Stroke Recognition: This chapter is comprised of the main contributions
from the Paper 1 ”TemPose: a new skeleton-based transformer model designed
for fine-grained motion recognition in badminton”. It includes prior related work
on skeleton-based action recognition in sports and the TemPose model archi-
tecture, along with results on fine-grained badminton datasets. Additional ex-
periments into more complex transformer architectures and self-supervised pre-
training methods are also included in the chapter.

• Stroke Forecasting: In this chapter, skeleton condition forecasting of bad-
minton strokes is explored based on the main contribution of the Paper 2 ”A
Stroke of Genius: Predicting the Next Move in Badminton” an extension of
the TemPose model RallyTemPose is proposed badminton tailored stroke fore-
casting. Furthermore, application for the forecasting model is explored, such
as player similarity and player style comparisons. One addition to the paper
includes an experiment redefining the prediction focus from the player’s entire
stroke motion to the motion during the shuttle flight.

• 3D Reconstruction of Shuttlecock Trajectories: This chapter builds upon
our Paper 3 ”SynthNet: 3D trajectory reconstruction from synthetic training
data”, which proposes a synthetic model training method shuttlecock 3D re-
construction. In the paper, the method is applied to tennis matches, but in this
chapter, the method is improved and repurposed for broadcasted badminton
matches. Additional content includes a comparison of 3D data and 2D data for
badminton shot recognition.

15

• Discussion and Conclusion Discussion of the current landscape of deep-
learning applications for sports. Addressing limitations and future work for suc-
cessfully integrating deep-learning-based analysis in Badminton and sport in
general.

The raw data used throughout the thesis are segmented – or annotated – video clips
of broadcasted badminton matches. The actual segmentation of raw badminton videos
into segmented strokes/actions is not part of the work in this thesis, which entirely
uses available annotated data. However, during the course of the project, several stu-
dent projects have looked into this particular area, and while not in this thesis, it is
certainly an essential part of badminton-related deep-learning tasks, which could be
integrated as pre-processing for the models developed in this thesis and similar.

1.3.1 Reuse of Published Work

This thesis incorporates material from the following previously published works by the
author:

• Paper 1
M. Ibh, S. Grasshof, D. Witzner, and P. Madeleine, ”TemPose: a new skeleton-
based transformer model designed for fine-grained motion recognition in bad-
minton,” 2023 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pp. 5199–5208, 2023. © 2023 IEEE. Reprinted,
with permission, from [57].

• Paper 2
M. Ibh, S. Graßhof, and D. Witzner, ”A Stroke of Genius: Predicting the Next
Move in Badminton,” Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pp. 3376–3385, June 2024.
© 2024 IEEE. Reprinted, with permission, from [56].

• Paper 3
M. Holck Ertner, S. S. Konglevoll, M. Ibh, and S. Graßhof, ”SynthNet: Lever-
aging Synthetic Data for 3D Trajectory Estimation from Monocular Video,”
Proceedings of the 7th ACM International Workshop on Multimedia Content
Analysis in Sports (MMSports ’24), pp. 51–58, Melbourne VIC, Australia, 2024.
© 2024 ACM. Reprinted, with permission, from [38].

16

The copyright for these works is retained by their respective publishers. The content
has been reproduced in compliance with the publishers’ copyright policies, and proper
acknowledgment has been provided. Any further use of this material requires permis-
sion from the original publishers.

1.3.2 Badminton Danmark & Team Danmark

Badminton Danmark and Team Danmark deserve gratitude and acknowledgment
for their participation, including data collection and expert insights into badminton.
Most badminton domain knowledge presented in this thesis is obtained through dia-
log, conversation, and meetings with Badminton Danmark.

17

Figure 1.1: Flowchart that shows the thesis structure. The badminton videos (orange) are the raw ma-
terial used in the thesis. Pose Estimation, Shuttle Detection, Player Position, and Court Mapping (blue)
comprise the extracted and processed features for deep-learning-based badminton tasks. Stroke Recogni-
tion, Stroke Forecasting, and 3D Reconstruction (green) are computer vision research areas tackled in the
thesis for application in badminton. The experimental results in each research area are discussed, empha-
sizing their implication for Analysis (red) in badminton.

18

1.4 Badminton

Badminton, a popular racket sport, can be played in singles (one-on-one) or doubles
(two-on-two). The ”ball” in badminton is a so-called shuttlecock (or just shuttle)
made from a rounded peace of cork with a conical arrangement of feathers providing
just the right amount of air resistance to make the shuttle ”playable”. The main ob-
jective is to score points by hitting a shuttle with a racket so that it passes over a net
and lands within the opponent’s court area without being successfully returned. The
racket is lightweight and stiff, typically made from carbon composite material and
strung with thin high-tension polymer strings. This construction reflects the compar-
atively low mass of the shuttle (e.g. compared to tennis or squash balls) and enables
the player to impact and launch the shuttle with significant speed when so desired. In
Figure 1.2, a picture of a typical racket and shuttlecock is shown.
Each rally in the game starts with the serve, which must be hit underhand with the
racket pointing downwards from horizontal and below the waist of the server. The
shuttle must be hit diagonally across the net into the designated service area. Points
are scored when the shuttlecock lands in the opponent’s court or if the opponent com-
mits a fault, such as hitting the shuttlecock into the net or out of bounds.
A standard badminton match is typically structured as a best-of-three sets game, with
each set played to 21 points. A player or team must lead by at least two points to win
the set; if the score reaches 20-20, play continues until one side leads by two points. If
the score reaches 29-29, the next point determines the winner of that set.

1.4.1 Court Dimensions

The dimensions of a badminton court vary depending on whether it’s a singles or dou-
bles match:

• The court is rectangular and divided into halves by a net. Courts are marked
for both singles and doubles play. The doubles court is wider.

• The full width of the court is 6.1 meters, and in singles, this width is reduced to
5.18 meters.

• The full length of the court is 13.4 meters.

• The net is 1.55 meters high at the edges and 1.524 meters high at the center.

19

(a) Racket, the tool players use to hit the shuttle-
cock over the net.

(b) Shuttlecock or shuttle, the object players try to
hit over the net.

Figure 1.2: The racket and the shuttlecock, the two central objects used in badminton

• The service courts are marked by a center line dividing the width of the court,
by a short service line at a distance of 1.98 meters from the net, and by the
outer side and back boundaries. The service court is also marked by a long ser-
vice line 0.76 meters from the back boundary.

The badminton court – with dimensions – is depicted in Figure 1.3.

1.4.2 Stroke definition

In badminton, a ”stroke” refers to the act of hitting the shuttlecock with the racket,
which is the fundamental element of the game. Specifically, the stroke refers to the
motion a player performs with their body and, by extension, the racket to hit a shut-
tle across the net. The shuttle motion produced by the player’s stroke is commonly
referred to as a shot. The terms stroke and shot can sometimes be intertwined, but in
this work, the convention is applied: A stroke is centered around the player’s motion,
while a shot centers around the shuttlecock motion. Detailed biomechanics aspects
are considered when teaching proper technique to badminton players to maximize
speed, precision, and efficiency when hitting the shuttle. This work will deal with the
image-based skeleton motion of the players. Thus, detailed biomechanical considera-
tions will not be directly extracted or analyzed. However, the deep-learning models
may still implicitly learn them. Depending on the player motion and racket orienta-
tion, many different shots can be produced, ranging from an offensive smash and a
neutral clear to a defensive block. The basic categories a stroke can be divided into

20

Figure 1.3: The badminton court with respective dimensions.

are listed in Table 1.1. The placement of each stroke holds relevance since a specific
stroke might have a different value depending on the placement.
This paper explores two primary ways to define and analyze badminton strokes, fo-
cusing on different aspects relevant to the sport’s action recognition and anticipation
strategies.
The first definition, called Split-M, emphasizes the stroke motion itself, which is di-
vided into several phases: preparation, forward acceleration, contact with the shuttle,
and follow-through and recovery. The different phases are shown in Figure 1.4. This
approach examines the player’s movements to analyze racket speed and shuttle tra-
jectory during the hit. By understanding these phases, we can gain insight into the
player-specific motions crucial for recognizing and categorizing different strokes.
The second definition, Split-T, focuses on the shot, i.e., the shuttle’s trajectory as in-
fluenced by the stroke. This perspective is particularly useful for predicting and antic-
ipating in-game actions, as it provides a pragmatic view of how matches are analyzed
in real-time. Players use this information to predict their opponent’s next moves, al-
lowing them to position themselves more effectively on the court.
Both definitions overlap and contribute to our understanding of badminton dynam-
ics, but also serve distinct purposes. Split-M is more about the technical execution

1Stroke types are based on https://development.bwfbadminton.com/coaches/level-1

21

https://development.bwfbadminton.com/coaches/level-1

Table 1.1: Summary of Different Types of Badminton Strokes, according to the BWF coaches manual 1

Stroke Description
Serve Start of the rally. Two serves are the most commonly

used. A forehand serve hits the shuttle too high to the
opponent’s backcourt. A short backhand serve chipped low
over the net, not allowing the opponent to attack.

Clear A high, deep shot hit overhead from the backcourt di-
rected to the back of the opponent’s court. It has a long
preparation time and serves as a transport stroke.

Drop Shot A soft, precise shot that falls just over the net, forcing the
opponent to move forward. The drop shot is played from
the backcourt.

Smash A powerful, downward shot aimed at the opponent’s court,
intended to end the rally.

Drive A fast, flat shot that travels parallel to the floor, usually
aimed at the opponent’s mid court to maintain pressure.

Net Shot A delicate shot played close to the net, often with spin
to make it difficult for the opponent to return. Includes
variations like the tumbling or brush net shot.

Lift A defensive shot that sends the shuttle high and deep into
the opponent’s court, typically used when under pressure.

Push A controlled, gentle shot with minimal backswing, push-
ing the shuttle into the opponent’s mid or backcourt to
maintain or change the pace of the rally.

Block A defensive stroke used to return a smash, gently blocking
the shuttle back over the net to neutralize the attack.

of strokes, ideal for training and technique refinement. In contrast, Split-T is geared
toward strategic gameplay, helping players and coaches to simulate and respond to
competitive scenarios.
With this basic introduction to badminton concluded, the focus will now be shifted
to the fundamental neural network components constituting the basis of the more ad-
vanced network architectures presented in the thesis.

22

Figure 1.4: Badminton strokes can be divided into two different groups, motion-focused (left) or
trajectory-focused (right).

23

Chapter 2

Neural components

This chapter will cover the necessary but fundamental concepts in neural learning
components present throughout the thesis. This section will introduce the Graph
Convolutional Network (GCN), Temporal Convolutional Network (TCN) block, and
transformer block.
Graph Convolutional Networks (GCNs) and Temporal Convolutional Networks (TCNs)
are specialized neural network architectures for graph-structured and sequential data
using specialized convolutional operations.

2.1 Graph Convolutional Networks

Graph Convolutional Networks (GCNs), first proposed in [63], are neural networks
designed to operate on graph-structured data by aggregating information from neigh-
boring nodes akin to convolutional networks. GCNs extend the concept of convolu-
tion from regular grids (such as images) to graphs, making them effective for tasks
involving relational data, such as social networks, and, notably in this context, model-
ing of human skeleton data.
An undirected graph G = (V,E) consists of a finite set of vertices (or nodes) V and
a set of edges E ⊆ V × V , where each edge (u, v) connects two vertices u and v. In
an undirected graph, edges have no direction, so (u, v) = (v, u). Each node vi has an
associated feature vector xi ∈ RC , where C is the dimensionality of the node features.
The structure of a graph can be represented by the adjacency matrix A ∈ Rn×n,

24

Figure 2.1: Illustration of a simple undirected graph with five nodes and five edges (excluding self-
connections). Each node vi is connected to others as indicated by the edges, demonstrating the basic
structure of a graph used in GCNs.

where n = |V | is the number of nodes. The element Aij is defined as:

Aij =

1, if there is an edge between nodes vi and vj ,

0, otherwise.
(2.1)

The degree matrix D ∈ Rn×n is a diagonal matrix where each diagonal element Dii

is the degree of node vi, defined as the number of edges connected to it:

Dii =
n∑

j=1

Aij . (2.2)

These components are sufficient to construct the local Graph convolutional update
law from [63], which modifies the value of each node xi features based on a weighted
sum of the features of nodes connected to it:

H(l+1) = σ
(
ÂH(l)W (l)

)
, (2.3)

25

where x ≡ H(l) ∈ Rn×Cl is the feature matrix at layer l, W (l) ∈ RCl×Cl+1 is the learn-
able weight matrix at layer l, Â is the renormalized adjacency matrix1. Information
can be propagated throughout a graph by stacking layers of the GCN-update law,
where the information in each node is adjusted based on the representation in the
neighboring nodes2, expanding the receptive field for each repeated layer. However,
the conceptualization of GCNs is based on graph spectral convolutions from spectral
graph theory (SGT) [27]. Following the key theoretical concepts of SGT leading to
the development of GCNs provides a more thorough understanding of the benefits
and use cases of GCNs.
A central concept in spectral graph theory is the graph Laplacian. The combinato-
rial Laplacian L is defined as:

L = D −A. (2.4)

Alternatively, the normalized Laplacian LNorm is defined as:

LNorm = I −D− 1
2AD− 1

2 , (2.5)

where I is the identity matrix. The Laplacian operator reflects the connectivity of
the graph and measures the rate at which a signal at a vertex changes relative to its
neighbors.
The Laplacian matrices L and LNorm are symmetric and positive semi-definite, and
their eigenvalues λi and eigenvectors ui ∈ Rn capture important properties of the
graph’s structure. Specifically, the eigenvalues represent graph frequencies, i.e., the
transmission of information in the graph. The eigenvectors form an orthogonal ba-
sis representing these graph variations. The eigen-decomposition of the normalized
Laplacian LNorm is given by:

LNorm = UΛU⊤, (2.6)

where U = [u1,u2, . . . ,un] is the matrix of eigenvectors, Λ = diag(λ1, λ2, . . . , λn) is
the diagonal matrix of eigenvalues.

1Will be introduced down below
2And the node itself through self-loops

26

2.1.1 Graph Fourier Transform

In spectral graph theory, equivalently to the classical Fourier transform, the Graph
Fourier Transform (GFT) can be used to represent signals on a graph in the spec-
tral domain. Given a graph signal x ∈ Rn, where fi is the signal value at node vi, the
GFT and its inverse IGFT are defined as:

x̂ = U⊤x, x = U x̂. (2.7)

with x̂ = (x̂(λ1), x̂(λ2), . . . , x̂(λm))⊤ being the signal expressed in the Fourier basis.
The transformation enables the analysis of graph signals expressed through their fre-
quency components since any signal can be expressed through the Laplace eigenvector
basis:

f = x̂(λ1)u1 + x̂(λ2)u2 + · · ·+ f̂(λn)un =
n∑

i=1

f̂(λi)ui, (2.8)

2.1.2 Spectral Graph Convolution

The core idea of spectral graph convolution is to perform convolution operations in
the spectral domain by leveraging the eigenvalues and eigenvectors of the Laplacian.
The convolution theorem states [80] that the convolution operation between two sig-
nals in the Fourier domain is simply the point-wise product of their respective Fourier
transformers. The convolution of a signal x with a filter gθ is defined as:

gθ ⋆ x = IGFT (GFT (gθ)⊙ GFT (x)) (2.9)

= U(U⊤gθ ⊙ U⊤x) (2.10)

= Ugθ(Λ)U
⊤x, (2.11)

where ⊙ is the Hadaman product, and gθ(Λ) is a diagonal matrix of spectral filter
coefficients parameterized by θ, i.e.,

27

gθ(Λ) =

gθ(λ1)

gθ(λ2)
. . .

gθ(λn)

 (2.12)

The operation U⊤x transforms the signal to the spectral domain, gθ(Λ) applies the
filter, and U transforms the result back to the spatial domain.
While the concepts are presented for scalar signals x ∈ Rn for clarity, they naturally
extend to signals with multiple features X ∈ Rn×C by applying the operations to each
feature channel independently:

gθ ⋆X = Ugθ(Λ)U
⊤X. (2.13)

This allows Graph Convolutional Networks to process complex node features in prac-
tical applications, which is how they are used in practice.
Computing the eigen-decomposition U is computationally expensive for large graphs
(complexity O(n3)). To address this issue, Defferrard et al. [29] proposed approxi-
mating the spectral filter gθ(λ) using a truncated expansion in terms of Chebyshev
polynomials Tk(λ̃), which allows efficient recursive computation without the need for
explicit eigen-decomposition. The filter gθ(λ) is approximated as:

gθ(Λ) ≈
K∑
k=0

θkTk(Λ̃), (2.14)

=

∑K−1

k=0 θkTk(λ1) ∑K−1
k=0 θkTk(λ2)

. . . ∑K−1
k=0 θkTk(λn)

 , (2.15)

where λ̃ = 2λ
λmax

− 1 scales the eigenvalues to the range [−1, 1], λmax is the largest
eigenvalue of LNorm (for the normalized Laplacian, λmax ≤ 2, so λmax can be set to
λmax ≈ 2), θk are the Chebyshev coefficients (learnable parameters), Tk(λ̃) are the

28

Chebyshev polynomials, defined recursively as:

T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x)− Tk−2(x). (2.16)

Substituting this approximation into Equation (2.11), the convolution becomes:

gθ ⋆ x ≈
K∑
k=0

θkTk(L̃Norm)x, (2.17)

where L̃Norm = 2
λmax

LNorm − I. This formulation avoids explicit computation of U
and leverages the sparsity of LNorm for efficient computation. Moreover, the filters are
localized, capturing information within K hops of each node.

2.1.3 Simplified Graph Convolutional Network

For further simplification, [63] explored setting K = 1 and approximating λmax ≈ 2,
which is reasonable for the normalized Laplacian. The Chebyshev polynomials sim-
plify to:

T0(L̃Norm) = I, T1(L̃Norm) = L̃Norm. (2.18)

The convolution operation becomes:

gθ ⋆ x ≈ θ0x+ θ1L̃Normx. (2.19)

By setting θ = θ0 = −θ1, this simplifies to:

gθ ⋆ x ≈ θ(I +D− 1
2AD− 1

2)x. (2.20)

To prevent numerical instabilities and ensure consistent scaling, a renormalization
trick is applied by adding self-connections to the graph and modifying the adjacency
matrix:

Ã = A+ I, (2.21)

29

and updating the degree matrix accordingly:

D̃ii =
n∑

j=1

Ãij . (2.22)

This leads to the normalized adjacency matrix:

Â = D̃− 1
2 ÃD̃− 1

2 . (2.23)

The convolution operation simplifies to:

gθ ⋆ x ≈ θÂx. (2.24)

This relation is for the convolution of a single feature vector x. It can be generalized
to multiple features and multiple filters. For node features X ∈ Rn×C with C feature
channels, and filters represented by the weight matrix Θ ∈ RC×F , the convolution
becomes:

Z = ÂXΘ, (2.25)

where Z ∈ Rn×F is the output feature matrix, and F is the number of output feature
channels.

2.1.4 Layer-wise Propagation in GCNs

Using a non-linear activation function σ such as ReLU[2] or GELU [53]), the layer-
wise propagation rule for a GCN becomes:

H(l+1) = σ
(
ÂH(l)W (l)

)
, (2.26)

where H(l) ∈ Rn×Cl is the feature matrix at layer l, W (l) ∈ RCl×Cl+1 is the learnable
weight matrix at layer l, Â is the normalized adjacency matrix.
Equation (2.26) shows how the graph convolution operation aggregates information
from neighboring nodes, effectively performing a form of Laplacian smoothing.
The operation ÂH(l) updates each node’s feature vector by combining its features
with those of its neighbors, weighted by the renormalized adjacency matrix. The com-

30

Figure 2.2: Visualization of a two-layer GCN network. Each layer performs feature transformation and
neighborhood aggregation, expanding the receptive field to capture local and global graph structures.
Adapted from [91].

plete GCN architecture consists of stacking multiple layers of the propagation rule in
Equation (2.26). As stated, when the GCN update law was introduced, the receptive
field expands by stacking layers, allowing the network to capture information from
nodes multiple hops away. For example, a two-layer GCN can be expressed as:

H(2) = σ2

(
Â σ1

(
ÂH(0)W (0)

)
W (1)

)
, (2.27)

where H(0) = X is the input feature matrix,H(2) = Xout is the output feature matrix,
W (0) and W (1) are the learnable weight matrices, σ1 and σ2 are activation functions.
By aggregating each node’s weighted node features in the second layer, each node will
be influenced by (at most) its neighbors’ neighbors. The information would, therefore,
be localized to 2 jumps on the graph in this case, and thus, for nodes to obtain global
information from a GCN, the layers must be stacked multiple times.

31

Input

Hidden

Output

d = 1

d = 2

d = 4

k = 2

Figure 2.3: Visualization of a TCN with a kernel of 2, stride of 1, and dilations of 1, 2, and 4, respec-
tively. Note that, for clarity, not all connections between layers are included.

2.2 Temporal Convolutional Networks

Temporal Convolutional Networks (TCNs) are a subcategory of CNNs designed to
model 1D sequential input, in contrast to general CNNs typically applied to 2D data
structures like images. TCNs apply convolutional operations on temporal sequences
to capture temporal dependencies. They offer several benefits compared to sequential
models like Recurrent Neural Networks (RNNs), primarily because TCNs are feed-
forward architectures. This feed-forward nature allows for parallel processing of kernel
convolutions on the sequence elements. Thus, it alleviates issues with vanishing or
exploding gradients commonly encountered in RNNs, as gradients in TCNs do not
need to pass through recurrent connections over many time steps. Another trait of
TCNs (and convolutional networks in general) is the inductive bias of locality, which
is achieved by utilizing local kernels to process a sequence iteratively. The inductive
bias is a trade-off differentiating TCNs from the Transformer models with no induc-
tive biases. As a result, TCNs are often faster and more efficient to train than Trans-
former models, which tend to require more data to learn the general properties of a
task.
Although the operation is identical, TCNs are distinguished by performing causal or
acausal convolutions. In causal TCNs, the convolution is designed such that the out-
put at time t depends only on inputs from time t and earlier, ensuring no information
leakage from the future. This is achieved by shifting the convolution operation, which

32

is described by the following equation:

y(t) =

k−1∑
i=0

W (i) · xt−i (2.28)

Here, W (i) ∈ RD×C is the element-specific filter/weight matrix that y(t) ∈ RD is
the output at time t, and the inputs xt−i ∈ RC are restricted to previous time steps
(including t), but in tasks like time-series forecasting y(t) is trying to predict future
events (which it only has ”historic” knowledge about.
The kernel size k is a hyperparameter describing the number of temporal inputs pro-
cessed by 1D filters at each step. Similarly, the stride s controls the step size with
which the filter moves across the input sequence.3 Since increasing the stride reduces
the dimensionality of the output, it is often used for sequence downsampling but as a
trade-off, reducing the temporal resolution. 4

In contrast, acausal TCNs use past and future information by symmetrically centering
the convolutional filter around the current time step. The formula for acausal convo-
lution is:

y(t) =

⌊k/2⌋∑
i=−⌊k/2⌋

W (i) · xt+i, (2.29)

where variables and parameters are the same as in Equation 2.28 but now y(t) de-
pends on inputs from past and future time steps, seen by the shift of indexing on
x relative to the kernel (receptive field). In this thesis, Acausal TCN variants will
mainly be used in the thesis, but bidirectional causal TCNs are also explored [130].
Bidirectional TCNs (BiTCN) operate causally from 0 to T in the sequence. Subse-
quently, a new TCN operates causally from T to 0 in the sequences, allowing the
model to look at the signal in both temporal directions. Lastly, like the 2D version,
TCN architectures also use dilated convolutions to expand the receptive field with-

3Note that the stride does not appear Equation 2.28equation since it is the temporal convolution
at a single timestep t. But is introduced when iterating over the entire sequence.

4Note that compared to the typical formulation of 2D convolutions that relies on the cross-
correlation operation, W (i) · xt−i is here a matrix/inner product, which is because the equation has a
sum over the time-steps in the receptive field instead of the cross-correlation product.

33

out increasing the parameters (increasing filter size k) or the depth of the network by
adding layers. The dilation factor, d, determines the spacing between elements in the
convolutional kernel. Increasing the dilation factor d > 1 does not lower the output
dimensionality. The formula for dilated convolutions is:

y(t) =

⌊k/2⌋∑
i=−⌊k/2⌋

W (i) · xt+d·i (2.30)

In this equation, the dilation factor d modifies the indexing of the input sequence x ∈
RT×C . A visualization of a three-layer causal TCN with different dilation factors in
each layer is shown in Figure 2.3.
The training of deeper TCNs often benefits from including residual connections. Where
the residual blocks can be expressed as:

O = σ(X + F (X)), (2.31)

where F (x) ∈ RT×D represents the output from the convolutional layers, XRT×C is
the input to the block, and O ∈ RT×D is the layer output. A non-linear activation
function, σ (e.g., ReLU/GELU), is applied after aggregating the input and the pro-
cessed signal. If the input channel size changes during the convolutional layer, i.e.,
D ̸= C, a 1×1 convolution is added to X in Equation 2.31 to match the dimensions.
For the computation of single output elements, the stride s does not play a role in the
output value at a specific timestep t. However, s affects the overall output sequence
length. If the input sequence X has length T , the length of the output sequence O

with stride s can be calculated as:

Length(y) =
⌈
T − k + 2p+ 1

s

⌉
, (2.32)

where p is the amount of padding applied to one side of the sequence (total padding
is 2p). Padding (typically zero-padding) preserves the length of the input sequence
with 2p = k − 1 when s = 1. This TCN introduction considers single-batch input.
Otherwise, the input X ∈ RN×T×C would be a 3-tensor instead, with N being the
batch size.

34

2.3 Transformer

The transformer neural architecture, introduced by Vaswani et al. [108], greatly changed
the handling of sequential data by relying entirely on self-attention mechanisms with-
out relying on recurrence. Transformers are designed to handle sequential data effi-
ciently, and their core self-attention mechanism allows for increased parallelization
during training compared to previous approaches like RNNs. After Dosovitskiy et al.
[34] demonstrated that a Vision Transformer (ViT) achieved remarkable results for
image classification tasks, transformers have since been used for many vision-related
tasks. The subsequent introduction to transformers takes inspiration from [34] and
[108].
Before being passed to the transformer block, the input data is converted to a se-
quence of tokens x with

x = [Wembx1, . . . , Wembxn, . . . , WembxN]T ∈ RN×DL , (2.33)

where each token xn ∈ RC is a vector representation of token n in the sequence, and
Wemb ∈ RC×DL is a learned weight matrix that maps each token to the embedded
feature space with dimension DL. Converting raw input data into tokens is called to-
kenization. For 2D data (e.g., images or skeleton sequences), tokenization is done by
dividing the signal into N vectors,e.g., image patches or individual skeleton poses,
which are then flattened to dimension C and mapped to the embedded space, result-
ing in a transformer-ready input signal x. For 1D signals like text strings, an embed-
ding table is most commonly used to create the token sequence.
The embedded tokens defined in (2.33) are then passed to the transformer block,
which consists of L transformer layers, where L is the transformer depth. To dis-
tinguish between the tokens at different layers, they are defined as x(l) after hav-
ing passed through layer l, where x(0) is the embedded input sequence, and x(L) is
the output of the transformer, which is still of size N × DL. Each layer is composed
of a multi-head self-attention (MHSA) module, layer normalization (LN) [6], and a
multi-layer perceptron (MLP), which consists of two linear projections separated by
a GELU activation [53] and dropout. The design of a single transformer layer is illus-
trated in Figure 2.4 on the left.
The following equations describe the transformer layer:

35

Figure 2.4: Components in a transformer layer are shown in the block to the left. The right block shows
the composition of a single-head self-attention module. The Mask leaves out the (zero) padded tokens in
the attention map, which allows the model to handle sequences of varying lengths proficiently.

x̃(l+1) = x(l) + MHA(LN(x(l))) (2.34)

x(l+1) = x̃(l+1) + MLP(LN(x̃(l+1))), (2.35)

where x̃(l+1) is the intermediate representation obtained after the self-attention mod-
ule.

Self-Attention Mechanism The self-attention mechanism computes attention
scores between all pairs of tokens in the sequence, allowing the model to weigh the
relevance of each token when encoding a particular token. The attention mechanism
is defined as:

Attention(Q,K, V) = softmax
(
QKT

√
Dk

)
V, (2.36)

where Q, K, and V are the queries, keys, and values, which are linear projections of
the input tokens x(l):

Q = x(l)Wq ∈ RN×Dk , K = x(l)Wk ∈ RN×Dk , V = x(l)Wv ∈ RN×Dv , (2.37)

36

where Wq ∈ RDL×Dk , Wk ∈ RDL×Dk , and Wv ∈ RDL×Dv are learnable weight matri-
ces, and Dk and Dv are the dimensions of the queries/keys and values, respectively.
After scaling and applying the softmax function, (2.36) serves as an attention map
that provides context to the value array V . This mechanism enables the model to fo-
cus on relevant parts of the sequence when encoding each token.

Multi-Head Attention Transformers use multi-head attention to capture infor-
mation from different representation subspaces at different positions. The multi-head
attention mechanism is defined as:

MHA(Q,K, V) = Concat(head1, . . . , headh)W
O (2.38)

where headi = Attention(QWq, i, KWk, i, V Wv, i), (2.39)

where h is the number of attention heads, Wq,i ∈ RDL×Dk , Wk,i ∈ RDL×Dk , and
Wv,i ∈ RDL×Dv are the weight matrices for queries, keys, and values for head i, and
WO ∈ Rh·Dv×DL is the output projection matrix. While the latent dimensions of Q, K
and V i.e.,Dk and Dv are customizable hyperparameters, it is standard, as proposed
in [108], to set Dk = Dv = DL/h. Such that the entire concatenated array of h single-
head representation has the same embedded dimension as a single-head self-attention
representation with Dk = DL

5. This has been shown to produce a more efficient rep-
resentation with less computational cost.

Cross-Attention Mechanism In addition to self-attention, transformers utilize
cross-attention mechanisms, especially in decoder layers, to allow the model to focus
on relevant parts of the input sequence when generating outputs. In cross-attention,
the queries (Q) come from the previous decoder layer (or decoder input), while the
keys (K) and values (V) come from the encoder’s output. This mechanism enables
the decoder to attend to the encoder’s representations, effectively integrating informa-
tion from the input sequence into the output generation process.
The cross-attention mechanism is mathematically similar to self-attention but with

5Unless explicitly stated otherwise Dk = DL/h can be assumed.

37

different inputs:

Qdec = y(l)W dec
q ∈ RM×Dk , Kenc = x(L)W enc

k ∈ RN×Dk , Venc = x(L)W enc
v ∈ RN×Dv ,

(2.40)

where y(l) is the decoder’s input at layer l, and x(L) is the final output of the encoder.
The cross-attention is then computed as:

Cross-Attention(Qdec,Kenc, Venc) = softmax
(
QdecK

T
enc√

Dk

)
Venc (2.41)

2.3.1 Encoder and Decoder Blocks

The transformer architectures exist in two forms: Encoder-only and encoder-decoder
models. The encoder-only model simply consists of a transformer block, which creates
an embedded representation of the input sequence. On the other hand, the encoder-
decoder model consists of two components: The encoder and the decoder. The en-
coder block processes the input sequence and transforms it into a continuous repre-
sentation that captures the relevant information from the input. It uses self-attention
mechanisms to weigh the importance of different tokens relative to each other. Each
encoder layer comprises a multi-head self-attention module and a feed-forward net-
work wrapped with layer normalization and residual connections.
In an encoder-decoder model, the decoder block, however, generates the output se-
quence by predicting each token step-by-step. It employs self-attention to consider the
generated tokens and cross-attention to incorporate information from the encoder’s
output, ensuring that the predictions are contextually relevant to the input. Each de-
coder layer includes a masked multi-head self-attention module (to prevent access to
future tokens), a cross-attention module and a feed-forward network, all with layer
normalization and residual connections.

Output Representations for Downstream Tasks Encoder-decoder architec-
tures such as masked autoencoders [51] can be used for self-supervised representation
learning of vision tasks. After pretraining, the final output representation of the en-
coder module x(L) is suitable for numerous downstream tasks such as classification.
One way to do this is by prepending a class token xcls on the token sequence of the
input before passing it to the transformer block:

38

x = [xcls, x1, . . . , xn, . . . , xN]T ∈ R(N+1)×DL , (2.42)

where xcls ∈ RDL is a learned class token. The representation of xcls at the final trans-
former layer x

(L)
cls is used by the MLP head to make predictions. Alternatively, global

pooling of x(L) can be used:

O =
1

N

N∑
n=1

x(L)
n , (2.43)

where the aggregated output O is fed to the prediction head.

2.3.2 Masking Techniques

Masking techniques in transformers ensure that the attention mechanism operates
correctly for different contexts, including handling sequences of different lengths (padding),
preserving autoregressive properties (causal mask), and respecting graph structures
(adjacency mask).

Padding Masking : To handle variable-length sequences within a batch, sequences
are often padded to a uniform length. Padding tokens should not influence the atten-
tion mechanism. This is achieved by setting the attention scores of padding tokens to
a large negative value, effectively ignoring them in the softmax computation. If A is
the attention score matrix and M is the padding mask, the modified scores Ã are:

Ãij = Aij +Mij , (2.44)

where Mij is −∞ for padding positions and 0 elsewhere.

Causal Masking For autoregressive tasks, causal masking ensures that each token
can only attend to previous tokens in the sequence, preventing information leakage
from future tokens. This is achieved by masking out future positions in the attention
computation:

39

Ãij =

Aij, if j ≤ i

−∞, if j > i.
(2.45)

Adjacency Masking In graph transformers, masking retains the graph’s topology.
The adjacency matrix Aij can be used to enforce that each node only attends to its
neighbors. The attention scores between unconnected nodes are masked out:

Ãij =

Aij , if Aij = 1,

−∞, if Aij = 0.
(2.46)

2.3.3 Positional Encoding

Transformers treat each position in the input sequence equally, lacking an inherent
notion of sequential order. To provide positional information, positional encodings are
added to the input embeddings.

Absolute Positional Encoding A learnable positional embedding matrix6 Epos ∈
R(N)×DL is added to the token embeddings:

x(0) = x+ Epos, (2.47)

where x is the embedded input sequence from (2.47) (including the class token if
used).
Alternatively, sinusoidal positional encodings use sine and cosine functions of different
frequencies, as first proposed in [108]:

PE(n, 2i) = sin
(n

100002i/DL

)
, PE(n, 2i+ 1) = cos

(n

100002i/DL

)
, (2.48)

where n is the position index (from 0 to N), and i is the dimension index (from 0 to
DL/2 − 1). The positional encoding vector for position n is constructed by concate-

6Epos ∈ R(N+1)×DL including the xcls token.

40

nating these values:

Epos,n = [PE(n, 0), PE(n, 1), . . . , PE(n,DL − 1)] ∈ RDL . (2.49)

2.3.4 Graph Attention and Graph Transformers

Transformers can be viewed as a generalization of graph-based models by interpreting
each token as a node and the attention mechanism as a learned adjacency structure.
Previously, attention was introduced as a means of computing context-dependent
weights between sequence elements. When applied to graph data, attention operates
on node embeddings and dynamically determines which nodes to highlight. In Graph
Attention Networks (GATs) [110], the model learns to focus on informative neighbors
rather than relying solely on predefined edges. GATs adaptively refine graph connec-
tivity based on node features and the specific prediction task by treating node-to-node
interactions as a learned attention pattern. Graph Transformers [37] extends these
concepts further. Rather than restricting their receptive field to local neighborhoods,
they leverage global self-attention, potentially allowing any node to attend to any
other node. Though still guided by the underlying graph structure through masking
or positional encodings, these models can more naturally capture long-range depen-
dencies and complex topological relationships than standard GCNs. The resulting
architecture combines the structural awareness of graph methods with the power-
ful representational flexibility of transformers, enabling more effective learning from
graph-structured data.

2.4 Chapter Conclusion

This chapter introduced GCNs, TCNs, and Transformers, which will serve as the pri-
mary building blocks for the more complex model architectures used throughout the
thesis.

41

Chapter 3

Human Pose Estimation

3.1 Introduction

This chapter introduces human pose estimation (HPE). HPE’s objective is to locate
key body joints and capture the posture and movements of subjects within an im-
age or video frame. HPE is central to various applications such as motion analysis,
surveillance, action recognition, etc., and plays an important role in this thesis, as
skeleton data are the main input feature in most studies.
Skeleton features represent the human body using key joint positions, offering a dis-
tilled but highly informative view of human motion. They allow models to efficiently
process and analyze the core aspects of physical actions without the computational
overhead and potential redundant information presented by full video data such as
coloring, background clutter, lighting differences, etc. Using the lower-dimensional
data enhances the efficiency and improves the robustness of action recognition sys-
tems, improving generalization across different settings and environments, since all
nuisances of the environment are removed with skeleton features.

Input Image Joint Detection Joint Grouping

Refinement

Estimated Poses

loop

Figure 3.1: The procedure of Human Pose Estimation

42

(a) Top-Down Pose Estimation Pipeline

(b) Bottom-Up Pose Estimation Pipeline

Figure 3.2: Comparison of top-down and bottom-up pose estimation pipelines.

3.2 Methods of Human Pose Estimation

Human pose estimation can be divided into two approaches: Bottom-up and Top-
down. Below is a description of the two approaches’ main ideas, similarities, and dif-
ferences. OpenPose [13] (Bottom-up) and HRNet [100] (Top-down). The figure also
illustrates the relevant features of HPE models.

3.2.1 Bottom-Up Methods

The bottom-up approach first detects all key joint point candidates across an image
with a deep learning architecture, commonly CNNs [13, 23, 84], that outputs confi-
dence maps for each joint type, indicating the likelihood of each joint’s presence at a
specific pixel coordinate. For bottom-up HPE models, the next step involves grouping
these joints into individual human poses, which is often difficult in crowded scenes.
Techniques such as Part Affinity Fields (PAFs), which predict vector fields to rep-
resent the association and orientation between joint pairs, are used by [13, 84]. [81]
uses hierarchical clustering, which creates high-dimensional associative embeddings of

43

joints to place joints belonging to the same person close together such that a cluster-
ing algorithm can be used to group the embedded joints into individual poses. They
also use graph-based matching methods to select appropriate joint detections for each
individual [84]. These methods construct a graph where joints are nodes and poten-
tial limb connections are edges, using graph partitioning algorithms to delineate indi-
vidual poses. This grouping may be refined through iterative processes or additional
network layers to improve accuracy, particularly in complex scenarios like occlusions
or closely interacting individuals, as illustrated in Figure 3.1. OpenPose [13] is a well-
known bottom-up method used as an inference model due to decent generalization on
various datasets.

OpenPose

OpenPose architecture utilizes sequences of convolutional blocks to estimate keypoint
candidates first, followed by estimates of their proposed PAFs for keypoint grouping.
The model scales well for multi-person pose estimation using a parsing algorithm that
splits the grouping of detected body parts into the matching of multiple bipartite (un-
connected) graph line integrals of the PAFs between candidates.
PAFs are a set of 2D vector fields representing limbs of the human body (e.g., a fore-
arm from the elbow to the wrist) to encode both the position and orientation of limbs
between potentially associated joint candidates in the image. For each pixel in the
image, the PAF encodes the direction of the limb in that pixel and the degree of as-
sociation between connected body parts. OpenPose has a unique solution for creating
ground truth data. If p is a coordinate in a PAF, Lc(p), for limb c, The ground truth
PAF, L∗

c(p), is defined as a unit vector pointing from xj1 to xj2 , where xj2 and xj2

are the two joints connected by the limb. This vector is nonzero only along the limb
and is zero elsewhere. The ground truth PAF, L∗

c , at a point p on the limb of person
k is given by:

L∗
c,k(p) =

v if p on limb c, k

0 otherwise,
(3.1)

where v is the unit vector in the direction of the limb from one joint to another.
OpenPose uses confidence maps to indicate the probability of a specific joint at each
location in the image. For each body part j, a confidence map Sj is created where

44

each pixel value represents the likelihood of that part appearing at that location.
Given the ground truth position xj,k of part j for person k, the confidence value at
location p is given by:

S∗
j,k(p) = exp

(
−
||p− xj,k||2

σ2

)
, (3.2)

where σ is the standard deviation, a hyperparameter, that dictates confidence spread
around the part location.
The final pose estimate from the PAFs and confidence maps is handled by a so-called
greedy parsing algorithm. The algorithm evaluates the degree of alignment between
the detected body parts and the vector fields in the PAFs by computing a line integral
(in practice, a sum of uniformly spread points) along the line segment connecting two
candidate body part locations. The integral of the vector field along the line segment
between two points dj1 and dj2 (part detections) is given by:

E =

∫ 1

u=0
Lc(p(u)) ·

dj2 − dj1
||dj2 − dj1||

du, (3.3)

where p(u) = (1 − u)dj1 + udj2 interpolates between the two body parts. Using the
above measure, candidate limbs are scored and assembled into complete poses using
a method akin to bipartite graph matching [120], where the objective is to maximize
the total association score.
Through these implementations, OpenPose can robustly detect and assemble human
poses in real-time, even in complex multi-person scenes, by effectively balancing detail
capture (via PAFs) and computational efficiency (via greedy parsing).

3.2.2 Top-Down Methods

The top-down approach to human pose estimation operates in two distinct phases: In-
dividual (object) detection and subsequent pose estimation, as shown in Figure 3.2.
Before doing pose-estimation, top-down models employ object detection models such
as Faster R-CNN [93], YoloX [45] or a ResNet detection model [52] to scan the image
or video frame to identify each individual. A bounding box is provided for each pro-
posed individual, isolating them from the background and other individuals in the
scene (Occlusion and overlapping individual bounding boxes are a persisting chal-

45

lenge).
Once individuals are detected, the next phase focuses exclusively on analyzing the
contained regions to estimate the pose of the single individuals. The main model per-
forms single-person pose estimation using a deep neural architecture. Many CNN
(Residual) backbones [100, 82, 21, 121] have shown good results. They excel at multi-
scale, capturing relevant information at different image resolutions. Recently, attention-
based [123, 69, 23] models utilize a hybrid of attention mechanisms (Transformer
blocks) and CNNs to improve spatial relationship handling and scene contextual un-
derstanding.
Although less common, top-down approaches also use GNN-based architecture, such
as [10] to provide spatial awareness between keypoint representations. However, joint
matching techniques are less needed since top-down approaches are trained for single-
person pose estimation. In principle, top-down models can be trained for bottom-up
pose estimation and vice versa. The models’ architecture choice affects the perfor-
mance in top-down/bottom-up approaches, but most of the difference lies in the task
(training procedure) rather than the model structure.
Additionally, other research have suggested advancements in training strategies. In
adversarial training [20, 106] uses a discriminator to improve model robustness against
occlusion and other challenges. In [123] they use pretraining and [55] semi-self-supervised
learning to improve performance and generalization of their respective pose estimation
models by pretraining on ImageNet [30]. The pretraining benefits especially the data-
hungry transformer HPE models.
Despite the extra computation step associated with the initial detection of each indi-
vidual, top-down approaches are more accurate than multi-person / bottom-up mod-
els and more valued in applications such as sports analytics, where understanding the
detailed dynamics of individual movements is crucial. HRNet [100] [23] has been a
reliable off-the-shelf / pretrained model for doing HPE on unseen datasets.1

HRNet

HRNet can predict human pose accurately by keeping high-resolution information
throughout the network. HRNet consists of 3 main components: Residual convolu-

1As noted in the last paragraph HRNet is capable of both top-down and bottom-up but is used
predominantly as a top-down HPE.

46

Figure 3.3: Overview of the HRNet architecture. The figure is adapted from a Matlab tutorial, Matlab
HRNet.

tional units, adapted from Resnet-50 [52], parallel multi-resolution subnetworks, and
repeated exchange blocks. The full architecture is shown in Figure 3.3 for the full ar-
chitecture.
The output y of the bottleneck residual unit, assuming matching in/out dimensions,
is given by:

y = F(x, {Wi}) + x, (3.4)

where the function F(x, {Wi}) consists of three convolutional layers, giving the com-
plete equation:

y = BN(Conv1×1(W3, σ(BN(Conv3×3(W2, σ(BN(Conv1×1(W1,x)))))))) + x, (3.5)

where Convk×k(W,x) refer to 2D convolution operations with kernel size k × k and
weights W , applied to input x. BN(·) denote batch normalization, and σ is the acti-
vation function, in this case ReLU (Rectified Linear Unit) activation function, applied
element-wise.
HRNet starts with a high-resolution subnetwork (stage 1) and gradually adds lower-

47

https://www.mathworks.com/help/vision/ug/getting-started-with-hrnet.html#d126e70321
https://www.mathworks.com/help/vision/ug/getting-started-with-hrnet.html#d126e70321

resolution subnetworks at each stage while maintaining the connections in parallel.
Specifically, HRNet utilizes four subnetworks in parallel across four stages (see Fig-
ure 3.3).
Another central part of the HRNet is exchanging information between different sub-
networks. This is achieved using exchange units that share feature information across
resolution subnetworks. The exchange unit uses strided convolutions and nearest-
neighbor interpolation for up and down sampling. All subnets then receive the ag-
gregated contribution from the other subnetworks (and identity residual connection).
The exchange unit Es

i is potentially repeated i times between residual units to facili-
tate the exchange between subnetworks effectively. The repeated exchange units make
up an exchange block E. Below, a 2-unit exchange block is depicted.

E =

C1
31 ↘ ↗ C2

31 ↘ ↗
C1
32 → E1

3 → C2
32 → E2

3 →
C1
33 ↗ ↘ C2

33 ↗ ↘
, (3.6)

where Ci
sr denotes the residual unit at resolution r and unit i. The number of ex-

change units in a block is different for each stage of the main network. The entire
network is shown in Figure 3.3.
Ultimately, the heatmaps are estimated from the high-resolution outputs at the last
stage of the subnetworks by an MLP head. The model is optimized by minimizing the
Mean Squared Error (MSE) between predicted and ground truth keypoint/heatmaps,
which similarly to [13] generates a heatmap for each annotated keypoint with mean of
the image coordinates and std of 1. The MSE loss is computed as follows:

L =
1

N

N∑
i=1

∥Hpred,i −Hgt,i∥2, (3.7)

where Hpred,i is the predicted heatmap, Hgt,i is the ground truth heatmap, and N is
the number of keypoints.

48

Figure 3.4: Coco Keypoints visualization for a badminton example. Credit for the original foto to the left
goes to @Badmintonphoto

3.3 Quality of Pose Estimation on Badminton videos

This section evaluates the pretrained HPE models, HRNet[100] and OpenPose [13]
on a badminton-specific dataset constructed for images of badminton broadcasted
matches.

3.3.1 Pretrained on MS COCO dataset.

The weights of both models are from training on the Microsoft COCO dataset [70]
with 250,000 individuals labeled with keypoints. The annotation format has 17 pos-
sible keypoints on the human body. They include ears, eyes, nose, shoulders, elbows,
hands, hips, knees, and ankles. The complete skeleton with the respective keypoints is
shown in Figure 3.4.

3.3.2 Metrics

First, a brief introduction to the two metrics used to evaluate the quality of predicted
poses in an image: The Percentage of Correct Keypoints (PCK) and the precision of
the Object Keypoint Similarity (OKS). The fundamental metrics of recall, precision,
and F1-score are also introduced in this section.

49

Percentage of Correct Keypoints (PCK)

PCK measures the proportion of keypoints predicted within a specified threshold dis-
tance from the true keypoint positions.

PCK =
100

N

N∑
i=1

[d(pi, gi) < θ] , (3.8)

where N is the total number of keypoints, pi is the predicted position of the i-th keypointgi
is the ground truth position of the i-th keypoint, and θ is the predefined threshold
distance for correctness. Finally, [·] denotes the Iverson bracket, which is 1 if the con-
dition is true and 0 otherwise.

Object Keypoint Similarity (OKS)

OKS calculates the similarity between the predicted keypoints (of a whole individual)
and the ground truth keypoints, accounting for keypoint visibility and importance.

OKS = exp

−

∑K
i=1

d2i
2s2k2i∑K

i=1[vi > 0]

 , (3.9)

where K is the number of keypoints per individual, di is the Euclidean distance be-
tween the predicted and actual positions of the i-th keypoint. s is the scale of the in-
dividual (the area of the bounding box is the default value used for s), and ki are per-
keypoint constants modulating the impact of the distance. Last, vi indicates whether
the i-th key point is visible (1 if visible, 0 otherwise). The OKS value of an individual
∈ [0, 1].

Recall and Precision with OKS

Precision and recall are fundamental metrics in evaluating a model’s performance,
including the task of HPE. Precision is the ratio of true positive predictions to the to-
tal number of predicted positives (true and false positives), measuring the accuracy
of the positive predictions. On the other hand, recall is the ratio of true positive pre-
dictions to the total number of actual positives (true positives and false negatives).

50

Thus, recall measures the completeness of the positive predictions. Given by the fol-
lowing equations:

Precision =
TP

TP + FP (3.10)

Recall = TP
TP + FN , (3.11)

where TP are true positives, FP are false positives, TN are true negatives, and FN
are false negatives. The F1-score is closely connected to precision and recall, defined
as the harmonic mean of precision and recall. The F1 performance metric is especially
useful when classes are imbalanced. The F1-score is given by the formula:

F1 = 2 · Precision · Recall
Precision + Recall (3.12)

In evaluating HPE models, precision (and recall) use OKS as the threshold for cate-
gorizing true and false predictions of ground truth key points. These metrics are com-
puted based on how well the predicted key points match the ground truth key points
across varying OKS thresholds.2. The practice from COCO evaluation, which uses
thresholds from 0.50 to 0.95 in steps of 0.05, will also be used in the badminton ex-
periment. First, the OKS between the ground truth and predicted keypoints of each
detected individual in the images are computed. For each OKS threshold, a predic-
tion (keypoints of an individual) can be a TP, an FP, or an FN. A prediction is a
true positive if its OKS score with a ground truth keypoint set exceeds the current
threshold. A prediction is a false positive if it does not match any ground truth key-
point set/individual with an OKS score exceeding the threshold. Last, a false nega-
tive is counted when any prediction does not match a ground truth keypoint set with
an OKS score exceeding the threshold. The number of TP, FP, and FN are counted
for each OKS threshold t of the test data such that the precision can be calculated:

Precision(t) = TP(t)
TP(t) + FP(t) (3.13)

The average precision (AP) evaluates the average of the precision values at differ-
2The evaluation procedure follows the recommended coco evaluation met-

rics:https://cocodataset.org/#keypoints-eval

51

https://cocodataset.org/#keypoints-eval

ent OKS thresholds.

AP =
1

T

T∑
t=1

Precision(t), (3.14)

where T is the total number of OKS thresholds considered.

3.3.3 Badminton poses

To gauge the quality of both off-the-shelf HPE models, OpenPose [13] and HRNet
[100], estimated poses on broadcasted badminton videos, the primary data video ma-
terial for the application, a badminton-specific keypoint dataset is annotated. The
keypoint style follows Coco [70], 62 badminton player images have been annotated
across different settings and challenging human poses with occlusion and motion blur.
Spectators and other non-players might sometimes be detected by pose inference.
Still, the non-player detections outside the court are filtered out during evaluation us-
ing the ground plane position of the player retrieved from a homography 3 mapping of
the image coordinates of the detected individual’s feet. The performance is compared
to the COCO validation data4 to estimate the quality of the off-the-self HPE mod-
els on badminton data. The evaluation of the annotated keypoints for the badminton
test data follows the [70] evaluation pipeline https://cocodataset.org/#keypoints-eval.
The only difference between the COCO and badminton data is that in COCO valida-
tion data, all individuals in the images are evaluated, but in badminton data, spec-
tators are filtered out, and only player keypoints are considered in the evaluation. A
natural choice since only the player keypoints are used in the downstream recognition
and forecasting tasks. Additionally, even occluded (non-visible) keypoints are anno-
tated and evaluated for the badminton data. Occluded or blurry keypoints can be
annotated accurately based on previous and future frames. The intention is to assess
how well the HPE models can estimate even difficult poses with motion blur or oc-
clusion and thus, how well-suited the HPE models are to create quality input data for
the intended tasks.

3The preprocessing pipeline will be explained in greater detail in chapter 4
4Note that the performance score for the COCO dataset is the reported results in their respective

papers.

52

https://cocodataset.org/#keypoints-eval

Table 3.1: Performance Metrics for OpenPose and HRNet on Different Datasets

Dataset Model PCK AP AP50 AP75

COCO Validation OpenPose - 64.2% 86.2% 70.1%
HRNet - 81.4% 88.3% 77.7%

Badminton Data OpenPose 57.8% 57.7% 93.6% 64.5%
HRNet 80.7% 86.5% 98.4% 93.6%

3.3.4 Results

Table 3.1 below compares the performance of the two pretrained human pose estima-
tion models, OpenPose and HRNet, for PCK and AP (based on OKS thresholds) on
the badminton keypoint testset. The experiments show that HRnet is the superior ar-
chitecture for badminton data, as it outperforms OpenPose on all evaluation metrics.
Similarly, HRnet also appears to generalize quite well to the badminton scenarios, as
there is an increase in performance compared to the COCO validation data. However,
given that all pose candidates outside the court have been removed, the increase in
performance is quite sensible.

3.4 Chapter Conclusion

In summary, this chapter introduces the two main HPE approaches, and two central
model architectures, which are tested on broadcasted badminton matches with self-
annotated keypoints of the players. HRNet generalized to badminton data performs
better than OpenPose and will serve as the primary HPE model in the skeleton data
extraction pipeline used in this work.

53

Chapter 4

Data pipeline & Datasets

An often overlooked aspect when assessing the capabilities of deep-learning-based
models is the quality of the available data. That includes extraction and preprocess-
ing of input features, i.e. in the case of this work, skeleton-data and shuttlecock tra-
jectories and inspection annotated training. If these aspects are lacking, it will affect
the performance of the models developed from the data. Thus, identifying limiting
factors in the available training data, such as small data volume, unbalanced class dis-
tribution, or inconsistent annotations, allows to focus on methods that will mitigate
the challenges and, if necessary, provide guidelines on refining data collection for fu-
ture works.
This chapter focuses on these considerations and outlines the data processing pipeline
for curating skeleton data and shuttlecock information used for model development.
This includes the extraction process and preprocessing steps. Furthermore, the differ-
ent datasets used for experiments in the remaining part of the thesis are presented.
The statistics and properties of each dataset, such as the class/stroke distribution,
are outlined. The datasets are finally compared to the definitions of the badminton
strokes in chapter 1 to address the relevancy and potential of each dataset.
To refine and filter the skeleton poses effectively, the feet joints are mapped to the
real-world court position using a homography map. A homography is a collineation
that can map points from one projective space onto another and, therefore, can be
used to map from the image-to-ground plane and reverse. The main principles re-
quired for projective geometry are introduced in the following section.

54

4.1 Homogenous Coordinates and Perspective Transfo-
mation

Mapping between the world and the image is a necessary part of this thesis’s filtering
of skeleton data, and later camera models are central in the training pipeline for 3D
reconstruction of skeleton and shuttle data. Specifically, the homography perspective
transform basics will be covered, following [50], and in chapter 7, the pin-hole camera
model is introduced.
Homogeneous coordinates is a representation used in projective geometry, which al-
lows affine transformations to be expressed linearly. A vector, here in Cartesian coor-
dinates, P can be converted to a homogeneous vector Ph by adding an extra dimen-
sion with the value 1. The reverse process going from Ph → P ”removes” the last
dimension of the vector and scales the other dimensions with the removed one. Below,
the conversion is shown for a 3D Cartesian vector and the reverse process for a 2D
homogeneous vector:

X

Y

Z

→

X

Y

Z

1

 ,

X

Y

W

→

(
X/W

Y/W

)
for W ̸= 0 (4.1)

P → Ph ph → p, (4.2)

When working with homogenous coordinates, uppercase vectors are 3D, lowercase vec-
tors are 2D, and in this case homogeneous vectors are given h subscript for clarity.

4.1.1 Homography

A homography, or projective transformation, is derived from the principles of projec-
tive geometry and describes how points in one plane can be transformed into points in
another plane through a projective transformation. Given a point in one image plane
(x, y) and its corresponding point in another image plane or surface (x′, y′), the ho-

55

Figure 4.1: The figure visually illustrates how a homography can map points between the image and the
world ground plane.

mography H maps points from one plane to another as follows:x′

y′

w

 = H

x

y

1

 (4.3)

where H is the 3x3 homography matrix with the following structure:

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (4.4)

The process is shown in Figure 4.1. The Cartesian coordinates of the corresponding
points in the target plane can be obtained from homogeneous coordinates by scaling
with w:

x′ =
x′

w
y′ =

y′

w
(4.5)

56

Figure 4.2: Using the known dimensions of a badminton court, a homography transformation is calculated
to map image coordinates to court coordinates, facilitating the estimation of court positions and camera
parameters. Corresponding points between the image and the court are used to compute the transforma-
tion.

The parameters of H can be estimated from several pairs of corresponding points in
the two planes. A minimum of four point pairs are needed to solve for the eight un-
knowns in H. Specifically for badminton videos, the court’s dimensions are known
and can be exploited to calculate the homography for each setting. The autonomous
identification of courts in badminton (among others) has been proposed in [95, 72].
The quality of estimated points is quite high, even across challenging settings, and
can be used in practice. However, manually annotated corresponding points on the
courts are still more accurate and reliable. The number of matches and, by extension,
unique camera settings used in the thesis is ∼ 100, where corresponding points have
manually been annotated for each match, as seen in Figure 4.2. Since the datasets
used in this thesis are fully annotated broadcasted matches, the number of matches to
calibrate camera parameters is manageable.

4.2 Data Features

A visual representation of the data retrieval and feature extraction pipeline is shown
in Figure 4.3.

57

4.2.1 Overview of Input Features

Our action recognition framework utilizes multiple features extracted from video se-
quences to predict strokes in badminton. The primary features include:

• Skeleton Data: Capturing the player’s body poses over time, consisting of
joints, bones, and motion features.

• Player Court Position (G): Representing the player’s location on the court in
each frame.

• Shuttlecock Position (U): Tracking the shuttlecock’s trajectory throughout
the sequence.

These features collectively provide spatial and temporal information crucial for un-
derstanding player movements and actions.

4.2.2 Skeleton Data Definition

In a video sequence with T frames, the skeleton data captures the player’s body pose
in each frame.

Joint Positions

The pose at each frame t is represented by J keypoints (joints), each with 2D coordi-
nates:

P = [P1,P2, . . . ,PT]
⊤ ∈ RT×J×2, (4.6)

where Pt ∈ RJ×2 is the set of joint positions at frame t:

Pt =
[
j
(t)
1 , j

(t)
2 , . . . , j

(t)
J

]⊤
, (4.7)

and j
(t)
i =

(
x
(t)
i , y

(t)
i

)
represents the 2D coordinates of joint i at time t. The sequence

P captures the spatial configuration of the player’s body over time.

58

Bone Data

Bones are vectors connecting specific pairs of joints, representing the limbs of the
skeleton. Let B denote the set of bones, with each bone defined by a pair of joint in-
dices (i, j). The bone vectors at frame t are computed as:

Bt =
[
b
(t)
1 ,b

(t)
2 , . . . ,b

(t)
K

]⊤
∈ RK×2, (4.8)

where K is the number of bones, and each bone vector b
(t)
k is:

b
(t)
k = j

(t)
ik

− j
(t)
jk

=

(
x
(t)
ik

− x
(t)
jk

y
(t)
ik

− y
(t)
jk

)
, for (ik, jk) ∈ B. (4.9)

By convention, bones are directed vectors, and their direction models the kinetic chain
of a badminton stroke, starting from the feet and moving upwards, ending at the
hands and head. This approach attempts to model biomechanical aspects relevant
to stroke production in the Bone data (see Figure 4.4).

4.2.3 Player Court Position (G)

The player’s court position represents their location on the court in each frame. It is
computed as the midpoint between the left foot and right foot joints, mapped to the
ground plane using a homography transformation H:

Gt = H

(
jlf(t) + jrf(t)

2

)
, (4.10)

where jlf(t) and jrf(t) are the positions of the left and right foot joints at time t. The
sequence of court positions is then:

G = [G1,G2, . . . ,GT]
⊤ ∈ RT×2. (4.11)

59

4.2.4 Shuttlecock Position (U)

The shuttlecock’s position provides essential context for stroke prediction. For each
frame t, the shuttlecock’s position is represented as:

Ut =
(
x(t), y(t), c(t)

)
, (4.12)

where (x(t), y(t)) are the image coordinates, and c(t) is the confidence score of the de-
tection. Only predictions with a confidence score above a threshold (e.g., c(t) ≥ 0.75)
are considered. Positions with low confidence are padded with zeros. The shuttlecock
trajectory sequence is then:

U = [U1,U2, . . . ,UT]
⊤ ∈ RT×3. (4.13)

4.2.5 Feature Sequence

The comprehensive feature sequence for the model input combines the skeleton data
(joints, bones), court positions, and shuttlecock positions:

F = [F1,F2, . . . ,FT]
⊤ , (4.14)

where each frame’s feature vector Ft is constructed by concatenating the following
components:

Ft = [Pt,Bt,Gt,Ut] . (4.15)

The overall feature sequence F has dimensions:

F ∈ RT×D, (4.16)

where D is the total dimensionality of the concatenated features for each frame.

4.2.6 Data Extraction and Preprocessing

A systematic extraction and preprocessing pipeline is used to obtain skeleton, court
position, and shuttle features from raw video data.

60

Skeleton Pose and Court Position Extraction

A two-stage pipeline is employed for the extraction of skeleton data and court posi-
tions, using tools from [28, 18]:

1. Human Detection: Detect players in each frame using object detection tech-
niques.

2. Pose Estimation: Estimate 2D poses of detected players using HRNet [101].

To focus on the relevant players and exclude non-participants (e.g., spectators):

• Homography Transformation: Calculate a homography H using the known
dimensions of the badminton court (again see Figure 4.2 visualization of corre-
sponding points).

• Court Mapping: Map detected individuals’ feet positions to the ground plane
to determine if they are within court boundaries.

• Player Identification: Identify the top and bottom players based on their
court positions.

In cases where a player’s feet are missing in a frame, it is replaced with the pose from
the previous frame to maintain sequence continuity. The pseudo-code for the extrac-
tion process is depicted in algorithm 1.

Shuttlecock Detection

The shuttlecock’s image trajectories are extracted using the pretrained models Track-
Net [102] and WASB [105]. Both models detect the shuttle image coordinates in each
frame but use different backbones.

TrackNet TrackNet is a deep learning model designed to detect and track high-
speed, small objects – such as the shuttle – in sports videos. Utilizing a U-Net [94]
CNN architecture, TrackNet processes multiple consecutive frames to generate heatmaps
that pinpoint the shuttle position in each frame. This approach enables the model to
learn both the visual characteristics of the shuttle and its motion patterns, retaining
detection accuracy even when the ball is blurry or momentarily occluded.

61

WASB WASB (Widely Applicable Strong Baseline) is a model developed for ball
detection and tracking across various sports, including soccer, tennis, badminton, vol-
leyball, and basketball. WASB performs high-resolution feature extraction utilizing
modules from an HRNet backbone to capture detailed spatial information. Addition-
ally, inference incorporates multiple frames information for temporal consistency to
maintain consistent ball tracking across frames, improving detection accuracy during
occlusions or rapid movements.

Inference By collecting the shuttle image positions for each video frame – later
split into the segmented badminton shots – the shuttle’s trajectory can be determined
throughout the video.
Only shuttle predictions with a confidence score above 0.75 are kept. Failed or low-
confidence predictions are padded with zeros.
TrackNet detected the shuttle position in the Badminton Olympics (BadOL) and
Badminton Placement (BadPL) datasets, see section 4.3. WASB outperforms Track-
Net on their test set, and was hence used for shuttle detection in the more recent
shuttleset and shuttleset22 datasets. WASB has a much shorter inference time than
TrackNet. However, it is not apparent from visual inspection that the detection qual-
ity for WASB is superior to TrackNet for inference on in-the-wild broadcasted bad-
minton sequences.

Normalization and Centering

To ensure consistency across different sequences and reduce variability due to camera
zoom or player distance:

• Centering: Center each pose by subtracting the center of the player’s bounding
box.

• Scaling: Scale poses by dividing by the diagonal length of the largest player
bounding box in the sequence.

Feature Computation

From the preprocessed sequences, all input features are calculated as previously de-
fined:

62

Figure 4.3: Illustration of the input data utilized by the proposed action recognition framework, TemPose.
The framework takes in centered and normalized skeleton data of the badminton players, along with their
court positions and the scaled positions of the shuttlecock, all extracted from RGB video input. Specifi-
cally, HRNet [101] estimates the players’ poses, while TrackNet [102] estimates the shuttlecock’s position.

1. Bones: Compute bone vectors using the joint positions and the defined bone
pairs, ensuring bone directions align with the kinetic chain of badminton strokes.

2. Court Positions: Compute the player’s court position using the homography
transformation.

3. Shuttlecock Positions: Use the extracted shuttlecock positions from the pre-
trained model.

Feature Concatenation

Finally, all computed features are concatenated to form the comprehensive feature
sequence F , which serves as input to our models.

4.3 Datasets

This section presents the different badminton datasets utilized for experiments during
the project.

63

Figure 4.4: Depiction of bone conventions used in the model. Bones are directed vectors connecting spe-
cific joints, following the kinetic chain of badminton strokes. The numbering corresponds to joint indices,
and arrows indicate bone directions.

4.3.1 Dataset on Badminton Stroke Placement (BadPL)

A confidential dataset provided by Badminton Danmark and TeamDanmark. The
dataset contains 5566 samples of backcourt badminton strokes categorized into ei-
ther attack or transport strokes. Additionally, the dataset includes information on
the approximate location of the shuttlecock placement for each stroke grouped into
different areas on the court: left backcourt, middle midcourt, left front court, etc.
The placement annotations are quite unevenly distributed, but that primarily re-
flects the natural placement of backcourt shorts in professional badminton. Specific
areas are rarely aimed at, e.g., the middle midcourt. As a result, the choice was made
to group the labels into 12 classes for training and testing. The labels are grouped
based on stroke type, horizontal placement of the shuttle (Left, Middle, Right), and
courtside placement (near/far) with respect to the camera. The distribution of the
stroke/placement classes is shown in Table 4.1. It can be observed that the amount
of attacking/transport strokes is balanced. The amount of near/far strokes is split
evenly. The horizontal placement categories are unbalanced, for example, a trans-
port stroke is rarely placed in the middle of the court. This is disadvantageous from a

64

Algorithm 1: Pose Extraction and Preprocessing Algorithm
Require: Video frames {I1, I2, . . . , IT }, court dimensions
Ensure: Skeleton sequence P

1: Compute homography transformation H using court dimensions
2: Initialize empty feature sequence F
3: for t = 1 to T do
4: Human Detection: Detect humans in frame It to obtain bounding boxes
5: Pose Estimation: Estimate poses {P(n)

t } for each detected individual
6: for all detected individuals n do
7: Foot Position Mapping: Compute p

(t,n)
foot using H

8: if p
(t,n)
foot within court boundaries then

9: Assign skeleton P
(n)
t to player (top or bottom)

10: end if
11: end for
12: if player’s skeleton Pt is missing then
13: Handling Missing Poses: Set Pt = Pt−1 (if t > 1)
14: end if
15: Normalization and Centering:
16: Compute bounding box center ct and diagonal length dmax
17: Center pose: Pcentered

t = Pt − ct
18: Normalize pose: Pnormalized

t = Pcentered
t /dmax

19: Append Pt to P
20: end for
21: return P

model training perspective, but it reflects interesting properties of badminton.
The train/test splitting is done cross-matches, meaning the test and training dataset
contains strokes from randomly mixed matches1. The matches are not densely anno-
tated, i.e., the number of strokes annotated for each match varies quite a bit. Thus,
random-seed splitting for the train-test sets seemed the best option.

Advantages: BadPL consists of manual annotations made by analysts for match
reports tailored for coaches and players. Hence, the annotations contain helpful in-
formation for high-level discussions and insights. A model trained on such data could
provide consistent, customized information and/or analysis tailored to the needs of

1Seed 12 in scipy.train_test_split

65

Table 4.1: Bad PL Stroke Placement Distribution

Stroke Type Placement Count

Attack

Near/Left 718
Near/Middle 213
Near/Right 715
Far/Left 703
Far/Middle 288
Far/Right 658

Transport

Near/Left 607
Near/Middle 71
Near/Right 481
Far/Left 658
Far/Middle 99
Far/Right 467

the coaches and players. Additionally, annotating the stroke placement can be used to
train a model to forecast future stroke placement.

Limitations: Unfortunately, BadPL has some pretty severe limitations. Only a
single timestamp is annotated for each stroke, and since the dataset is not densely
annotated, the duration of a stroke motion cannot be determined. Instead, a fixed
sequence length for each stroke is decided (±25 frames) around the annotated times-
tamp. Moreover, the timestamps for the strokes are inconsistent. Sometimes, the time
stamps signify the beginning of motion for the stroke, and sometimes, the timestamp
is when the player hits the stroke. The dataset can also not be applied to forecasting
tasks. It does not contain continuous stroke annotation of the entire rally and, by ex-
tension, matches. Finally, only 5500 samples are provided, which is quite limited for
training even moderately complex recognition models. For this reason, BadPL was
only utilized for experiments in the initial part of the project at which time no alter-
native datasets were available.

4.3.2 Badminton Olympics (BadOL)

A badminton dataset annotated by [46]. The dataset contains badminton-related
actions from broadcasted matches at the 2012 Olympics. The dataset consists of 10
videos with 15300 samples belonging to 13 different classes of badminton strokes with

66

Figure 4.5: Badminton Olympics (BadOL) dataset characteristics.

the following classes: forehand, backhand, smash, lob, react motion, and a none class.
This only constitutes seven different classes, but the strokes except for the None class
are additionally divided into top/bottom strokes. All top strokes are performed at
the side the furthest from the camera, i.e., the top of the image, and strokes closest
to the camera are the bottom strokes. The react class is a unique part of the BadOL
dataset. The react class corresponds to a player’s motion when they react to the stroke
performed by the opponent.
In the experiments for Paper 1, match splitting is used for the train/test splitting of
the data. Thus, all clips from one video (match) are kept as the test set. The Test
match chosen was: Firdasari-Zaitsava-GrpO-LondonOlympics-2012.txt. Compared to
BadPL, all strokes (visible) in the 10 games are annotated, but the dataset was only
used for recognition tasks.
BadOL is, in many ways, an improvement from BadPL. It contains three times more
data, and the beginning and end of each class action are annotated. The dataset also
has some prominent drawbacks inhibiting its usefulness for badminton stroke recog-
nition. The None class is helpful if one wants to develop a model that can divide the
segments of active rallies and inactive segments between points. Similarly, the dura-
tion of the react class can be used to model and gauge the pace of a match, i.e., long
react motions mean a slow pace and short reach motions are the opposite. However,
both None and React classes are not tied to a stroke motion. Thus, BadOL is more

67

accurately used for badminton action recognition rather than stroke recognition. The
stroke types are also less detailed than other datasets in the thesis. Another effect of
the less fine-grained data is that discrimination between the classes is more straight-
forward compared to more finely defined stroke types. Finally, the distribution of the
classes and the class durations is shown with a bar and violin plot in Figure 4.5. The
react class makes up half of the data samples since it is a response to a stoke class.
Thus, the dataset is not particularly well balanced. The None class is also far longer
than the other actions2. When counting just stroke classes, BadOL only has 7000

samples. For these reasons, BadOL was no longer used when improved datasets be-
came available.

ShuttleSet + ShuttleSet22 The ShuttleSet [115] dataset contains 42 professional
matches from 2018 to 2021, featuring 27 players across men’s and women’s singles
categories. It is composed of about 3400 rallies and 34500 strokes, with an average
rally length of 10 strokes. Domain experts annotated the strokes in the dataset into
10 distinct shot types: {net shot, clear, push/rush, smash, defensive shot, drive, lob,
dropshot, serve, unknown/error}. The number of strokes for each type can be seen in
Figure 4.6. The following year, an extension to the dataset was released called shut-
tleset22 [114]. Shuttleset22 has with 47 different matches – 41000 strokes and 35 dif-
ferent athletes – from 2021 to 2022 with an identical annotation style to shuttleset.
The shuttleset datasets are better balanced than previous datasets, with reasonably
detailed annotations and a significant increase in training samples.
All strokes in the given matches are annotated, making the datasets suitable for stroke
recognition and forecasting. Although not perfect, the stroke timestamps are consis-
tently annotated in the videos when the player performing the shot hits the stroke.
This allows for segmenting the strokes into the split-T strokes (recall Figure 1.4 di-
rectly from the annotations. The strokes are manually converted from split-T to split-
M by assuming a stroke is 70% preparation (before hitting) and 30% follow through
and recovery. While this assumption cannot be perfect, it seems to work well by vi-
sual inspection.

Train-Test splitting Shuttleset [115] and the extension Shuttleset22 [114] are tested
differently for recognition and forecasting tasks. For Stroke forecating training and

2However, a solution to this is to downsample the None actions

68

testing, the datasets are (random, seed 12) divided such that 80% of the rallies from
each match are used for training, ensuring comprehensive player history, and the re-
maining 20% for testing.
For Stroke recognition a number of full matches are chosen for testing only (match-
splitting)34. Seven and six test matches are chosen from shuttleset and shuttleset22,
respectively. This was done in an attempt to select a nuanced collection of matches
containing both women and men. The shuttleset datasets provide the best conditions
for implementing badminton-oriented deep learning models.
The two shuttleset datasets are merged, particularly for pretraining in section 5.5.

BadmintonDB The BadmintonDB [8] dataset consists of 9 annotated video data
professional men’s singles matches. The dataset includes 811 rallies and 9,671 strokes,
all featuring the players Kento Momota and Anthony Sinisuka Ginting. The dataset
provides annotation dividing the strokes into 10 distinct types that follow the rec-
ommended coaches’ guide of the Badminton World Federation (BWF), also shown in
Table 1.1. The BadmintonDB paper suggests a specific badminton annotations proce-
dure and tool. In the current dataset is provided as a proof-of-concept. The same two
players play in all matches. Hence, the recognition and forecasting train-test split-
ting can be the same, since the two players are always equally represented in the train
and test data. Two complete matches are reserved for testing5, and the remaining
seven are used for training. Furthermore, the shot types are almost identical to the
shuttleset data, see Figure 4.7 for the stroke distribution. It shows that the distri-
bution of shot types is strongly imbalanced. This complicates training a model on
badmintonDB without overfitting on overrepresented classes. However, it also indi-

3Shuttleset the test matches are: [’Kento_MOMOTA_Viktor_AXELSEN_Malaysia_Masters_2020_Finals’,
’Viktor_AXELSEN_CHEN_Long_Malaysia_Masters_2020_QuarterFinals’, ’An-
ders_ANTONSEN_Jonatan_CHRISTIE Indonesia_Masters_2020_QuarterFinals’, ’Car-
olina_Marin_An_Se_Young_TOYOTA_THAILAND_OPEN_2021_SemiFinals’, ’Car-
olina_Marin_Supanida_Katethong_YONEX_Thailand_Open_2021_QuarterFinals’, ’Vik-
tor_Axelsen_Jonatan_Christie_YONEX_Thailand_Open_2021_QuarterFinals’]

4Shuttleset22 test matches are:[’Viktor_AXELSEN_LEE_Zii_Jia_EAST_VENTURES_Indonesia_Open_2022_Semifinals’,
’Viktor_AXELSEN_Rasmus_GEMKE_French_Open_2022 _Finals’, ’Kento_MOMOTA_Kunlavut_VITIDSARN_Malaysia_Open_2022_Semi_finals’,
’Carolina_MARIN_Akane_YAMAGUCHI_French_Open_2022_SemiFinals’,
’An_Se_Young_Chen_Yu_Fei_PERODUA_Malaysia_Masters_2022_Finals’,
’CHEN_Yu_Fei_Ratchanok_INTANON_Denmark_Open_2022_SemiFinals’]

52019-43-3QF-MS-Anthony Sinisuka GINTING (INA)-Kento Momota (JPN)-YONEX French
Open and 2019-50-5F-MS-Anthony Sinisuka GINTING (INA)-Kento MOMOTA (JPN)-HSBC BWF
World Tour Finals

69

cates that players chose different strokes in certain matchups. On the other hand, the
stroke distribution was more balanced in the shuttleset dataset, which contained more
than 35 players.
The limited amount of data samples and uneven stroke type distribution makes bad-
mintonDB well-suited for fine-tuning and testing pretrained models.

4.3.3 Evolution of Annotated Data

As seen in this section, the publicly available annotated badminton videos have changed
considerably in terms of data amount, consistency, and detail of the annotations dur-
ing the course of this research project. The annotated data samples for the differ-
ent datasets are shown in Figure 4.8. If this evolution continues, the quality and ro-
bustness of deep-learning models for badminton analysis will certainly continue to
increase.

4.3.4 Evaluation Metrics for Recognition and Forecasting

This section introduces the performance metrics used to evaluate the models for stroke
recognition and stroke forecasting tasks in badminton. Specifically, multi-class accu-
racy (Acc), top- k accuracy (Acc-k), and the F1 macro score (F1-M) are employed.
The metrics capture different aspects of predictive performance, to provide a nuanced
assessment of model performance.
Acc provides the single most likely prediction, (Acc-k) evaluates the quality of the
model alternative predictions, and F1-M provides a metric robust to potential class
imbalance across multiple stroke types.

Accuracy and Top-k Accuracy Accuracy (Acc) computes the fraction of correct
predictions relative to the total number of samples. Given the total number of sam-
ples N , yi the true label for the i-th instance, and ŷi the predicted label for the i-th
instance. Then the accuracy is specified by:

Acc =
1

N

N∑
i=1

1
(
yi = ŷi

)
, (4.17)

where 1(·) denotes the indicator function, returning 1 if the condition is true and 0

otherwise.

70

In multi-class settings, more than one stroke choice can be plausible. Therefore, top-
k accuracy (Acc-k) is also measured to evaluate whether the true label yi appears
among the model’s top- k predictions Ŷ

(k)
i :

Acc-k =
1

N

N∑
i=1

1
(
yi ∈ Ŷ

(k)
i

)
, (4.18)

where k represents how many top model predictions are considered. When k = 1,
Acc-1 reduces to standard accuracy (Acc). For larger values of k, such as Acc-2 or
Acc-3, the metric reflects the frequency with which the correct stroke type is included
among the top- k predictions. This is particularly useful in badminton stroke forecast-
ing, where multiple options may be valid.

F1 Macro Score The F1 macro score (F1-M) addresses potential class imbalance
among different stroke types by treating each stroke class equally regardless of how
frequently it appears in the dataset. Given the total number of stroke types (classes)
N . For each stroke type i, an F1 score, denoted F1i, is computed using the precision
and recall for that class (Precisioni and Recalli) found similarly to Equation 3.12:

F1i = 2 · Precisioni · Recalli
Precisioni + Recalli

. (4.19)

The F1 macro score then averages the class-specific F1 values:

F1-macro =
1

N

N∑
i=1

F1i. (4.20)

By averaging over all classes without weighting by class frequency, F1-macro provides
a balanced view of model performance, even for an imbalanced dataset.

4.4 Chapter Conclusion

In the previous chapter, the extraction and processing pipeline for the features used
as model input in the upcoming predictive tasks – stroke recognition (chapter 5) and
stroke forecasting (chapter 6) – was introduced. The specific datasets used for recog-
nition and forecasting were also described, and their respective train and test splits

71

were outlined. Finally, the relevant metrics for evaluating task performance were pre-
sented.

72

(a) Statistics for the strokes in the shuttleset data.

(b) Statistics for the strokes in the shuttleset data.

(c) Statistics for the strokes in the shuttleset data.

Figure 4.6: Statistics for the strokes in different shuttleset dataset versions.
73

Figure 4.7: BadmintonDB (BadminDB) dataset characteristics. The left plot shows the stroke type distri-
bution. The right figure shows violin plots that clarify how the duration of the strokes are distributed.

74

Figure 4.8: Training and Testing Sample Distribution Across Datasets

75

Chapter 5

Skeleton-based Stroke
Recognition

This thesis aims to explore how data-driven deep-learning approaches can benefit
badminton analysis. For that purpose, this chapter focuses on skeleton-based action
recognition in badminton, investigating how factors such as skeleton data quality,
model design, and input modality can influence the performance and generalization
of stroke recognition. However, the goal is not only to design the best possible model
architecture for identifying actions in badminton. The goals are:

1. To examine which factors are essential for improving stroke recognition in bad-
minton.

2. To identify the main challenges and aspects limiting action recognition.

3. To explore solutions that address the factors limiting autonomous recognition in
the field.

The content of Paper I provides the basis for this chapter, integrating its primary
concepts along with supplemental experiments performed post-publication. The added
content includes experiments on the Shuttleset data, a more substantial modality-
ablation study, and tests of different encoder structures. Furthermore, the importance
of the different phases of the stroke motion defined in chapter 1 is estimated by leav-
ing out sections of the stroke sequences. Lastly, self-supervised pretraining methods
on skeleton sequences are tested to address annotation limitations in the field.

76

The chapter contains the following sections:

• An experiment assessing the performance of RGB-based models against skeleton-
based action recognition models using the Badminton Olympics dataset.

• A review of related works, introducing relevant skeleton-based recognition mod-
els and sports-centered research.

• An introduction to the proposed model from Paper I, TemPose, along with ex-
periments demonstrating the performance on badminton data.

• Experiments assessing action recognition capabilities specific to badminton using
skeleton and shuttlecock information.

• An exploration of a self-supervised approach to skeleton-based model learning.

5.1 Raw Video Frames vs. Skeleton Features for Stroke
Recognition in Badminton

One of the main goals of the thesis is to explore capabilities and contribute towards
the automatic detection of actions in badminton using deep-learning approaches. This
can be considered part of the field of human action recognition (HAR).
Racket sports comprising badminton are highly technical disciplines that require high
precision and accuracy in movement execution. Badminton stroke recognition is, thus,
tied to the domain of fine-grained action recognition. Fine-grained action recognition
deals with closely related action classes, e.g., Different types of badminton strokes.
This typically coincide with the actions being tied to similar motion. Different stroke
type are often differentiated by minute and subtle differences in how players execute
specific movements, which is difficult to capture from raw video (RGB) data [130].
Instead, skeleton-data sequences provide a compact and background-invariant repre-
sentation of human motion.
Skeleton motion as a primary feature in fine-grained action recognition has been ef-
fective in various sports disciplines [32, 65], including badminton [71, 72]. Skeleton
data provide a focused representation of the body movement through spatiotemporal
sequences of joint and bone positions. By capturing the detailed representation, dis-

77

criminating between subtle movements becomes possible, even those evading imaging
techniques.
Thus, an initial experiment is performed to motivate and validate using skeleton fea-
tures, and other modalities1, which has compact discriminative information related to
human motion, compared to raw image/video features. The experiment compares two
baseline skeleton-based action recognition models to state-of-the-art RGB recognition
models.

5.1.1 Experiment setup

The experiment was performed on the badminton Olympics (BadOL) [43] dataset, see
Figure 4.5, with two models using skeleton-data and one using RGB video frame fea-
tures. Thus, the initial experiment requires the preparation of RGB video snippets
for each action. Recall BadOL is a dataset comprising 10 full badminton videos from
the 2012 Olympics, with annotations of 7 distinct stroke types: serve, forehand, back-
hand, smash, net shot, react, and None. Additionally, the classes are split between
the top and bottom players of the image. The 10 matches amount to approximately
15300 samples in the entire dataset. For this experiment, data train-test splitting is
done across matches. The first 8 are used for training, and the remaining 22 are used
for evaluation/testing.

Raw Video Frames

Video frames were extracted at a temporal resolution of 30fps and resized to 224x224
pixels, and pixel values were standardized using the training datasets mean and stan-
dard deviation.

Skeleton Features

The experiment is performed on two sets of skeleton data: One extracted using Open-
Pose (25 joints) and one set from HRnet (17 joints). All remaining preprocessing fol-
lows the preprocessing pipeline from chapter 4

1Specifically player Court Position (U) and Shuttle Position (G) also introduced in chapter 4.
2Test matches: WeiLee v Long Mens Semifinal & Yihan v Nehwal Women’s semifinals.

78

5.1.2 Baseline Models

ViViT [4] is a factorized spatiotemporal encoder that utilizes both spatial (frame-
wise) and temporal transformer blocks to recognize actions in videos. On the other
hand, for skeleton-based models, two simple baselines are used to showcase the rele-
vancy of the modality.

1. A Pose Transformer modified from ViT [34] with skeleton poses as tokens as
opposed images patches. The PoT transformer uses a Dembed = 128, Nhead = 6,
and L = 4.

2. A TCN model with 2 hidden layers (refer to earlier chapter). A kernel size of
K = 5 and a dilation of d = [1, 2, 4] at layer 1 (input),2, and 3, respectively.
Similarly, the channel size from each layer is set to Cin = [100, 125, 150]. The
output of the final layers is flattened and passed through a two-layer MLP with
GELU activation to get the stroke prediction.

5.1.3 RGN vs. Pose Results

Table 5.1 shows the performance comparison between skeleton-data and RGB data.
A minimal performance boost of ∼ 2 − 3% is observed across both skeleton models
using HRNet skeleton data compared to OpenPose. The TCN using HRNet skeleton
features reaches the highest accuracy, achieving an accuracy of around 81%, compared
to ViViT, achieving a significantly lower score of 55% accuracy on video RGB input.
Even when using the ViViT model pre-trained on kinetics-400 dataset [61], the RGB
model fails to reach performance levels close to the skeleton-based models. Taking
skeleton data as input, the TCN model outperforms the ViViT model by 26%. The
experiments signify that skeleton-data models are more robust in cross-match general-
ization (since the train/test data is split across different matches) and perform better
on the relatively limited annotated data available for badminton stroke recognition.
The findings indicate that using skeleton features enhances model accuracy and low-
ers computational demands by reducing the dimensionality of the input space and
removing redundant background information. An interpretation of the result could
be that skeleton features are particularly beneficial in detailed motion-focused scenes,
like sports, where condensed features provide higher informational efficiency, which is
beneficial with limited training data. This is considered sufficient motivation and vali-

79

Table 5.1: Performance Comparison of Different Models and Feature Types

Feature Type Model Pose Estimator ACC (%) F1 (%)
Skeleton Features PoT OpenPose 77 70
Skeleton Features TCN OpenPose 80 67
Skeleton Features PoT HRNet 78 72
Skeleton Features TCN HRNet 81 73
RGB Video
Frames

ViViT N/A 45 34

RGB Video
Frames

ViViT (Pre K-400) N/A 55 50

dation for exploring the stroke recognition capabilities of deep-learning models trained
on skeleton data.

5.2 Related Work

Action recognition is a central field in computer vision, and many prominent works
have influenced this thesis.

Action Recognition in Sports Most work on action recognition in badminton
uses convolutional neural network (CNN) architectures for feature extraction on RGB
images [88, 90, 89]. Decision-making algorithms like Support Vector Machines then
use the extracted features to make predictions. Other approaches involve using hand-
crafted features such as Histogram of Oriented Gradients and temporal convolutional
networks (TCN) to process the action’s spatial and temporal aspects [46, 26]. Instead
of using image data, skeleton data have been successfully used for analysis and recog-
nition tasks in other sports, such as Tai Chi [35, 32, 113] and fencing [130, 78]. De-
spite its potential, skeleton poses have yet to be thoroughly tested for badminton
tasks. In one recent example [72], skeleton data are used in a Gated Recurrent Unit
(GRU) model to perform binary hit detection. However, like other recurrent models,
GRUs can struggle with exploding gradient training issues, especially for longer se-
quences. While badminton is a fast-paced sport, stroke duration varies, and specific
strokes like clears can take more than 2 seconds (60+ frames. TemPose from Paper 1
is a transformer model that does not suffer from the same gradient issues and there-

80

fore can handle sequences of flexible length.
Another interesting approach [97] uses 3D motion-captured skeleton data for binary
classification of tennis strokes using a backbone spatiotemporal GCN (ST-GCN)[127]
model to predict forehand or backhand strokes in badminton. While the work holds
potential, the binary classification task and controlled environment for data collection
limit the relevancy of their work.

Human Action Recognition Using Skeleton Data Graph Convolutional Net-
works (GCNs) are a popular method for skeleton-based action recognition [112, 127].
GCNs use nodes to represent every human joint in every time step. Connecting spa-
tially and temporally to other nodes via edges allows GCNs to capture both spatial
and temporal aspects of human motion.
To address the limitations of traditional GCNs, such as their bias towards very lo-
cal connections, MSG3D, [74] introduces multi-scale graph convolutional networks by
creating different scale adjacency matrices. This allows the network to capture multi-
scale spatial relationships between joints. In this work and several others, GCN meth-
ods are often paired with Temporal Convolutional Networks (TCNs) to handle the
temporal aspects of the skeleton signal. While the GCN components model the con-
nections between joints within specific frames, the TCN looks across different frames
of each joint to model motion.
CNNs are also commonly used to analyze skeleton data. One approach is to stack
heatmaps along the temporal dimension into a 3D input and use 3D-CNNs to extract
information [36, 14]. Other studies, such as [130, 65], generate a temporal sequence of
joint coordinates and use TCNs to encode the information.

Transformers for Human Action Recognition The emergence of Vision Trans-
formers (ViT) [34] has led to many applications of transformer backbones in computer
vision [73, 9, 124, 117], including Human Action Recognition (HAR) [68, 39, 5, 73].
These works are typically trained on large datasets like Kinetics-400 [61] to mitigate
overfitting issues.
Existing methods for skeleton-based action recognition achieve good results on con-
trolled action benchmark datasets [74, 128], but many tend to lack robustness and
scalability for new tasks like stroke recognition in badminton [36]. An approach to
address this issue is to use more general transformer models, which have shown excel-

81

lent capabilities in natural language processing (NLP) [31] and image segmentation
[34, 51], to model sequential data for video action recognition [73, 5, 68].
When Paper 1 was published, only a few works considered transformers on modali-
ties other than RGB data, such as skeleton data, and to our knowledge, it had not
been applied to action recognition in sports at the time. Utilizing transformer-based
models on skeleton data has been attempted in other recent work. [86] combine self-
attention with a GCN and TCN to model spatial and temporal attention. Similarly,
[79] performs temporal encoding of the skeleton poses with a sequence of temporal
transformer layers.
The combination of graph and transformer methods is becoming increasingly pop-
ular because it allows the strong benefits of graph methods to be complemented by
the more general architecture of transformers. An example of this is InfoGCN [24],
which utilizes intrinsic topology, i.e. the graph connections of the skeleton, in an en-
tirely learned manner through the self-attention mechanism of the tokenized joints,
multiplied by a learned adjacency matrix. InfoGCN also incorporates an information
bottleneck, aiming to minimize the mutual information between the input signal and
the learned representation while maximizing discriminative information in the latent
representation. Like other methods, they also use TCN blocks to capture temporal
aspects of the skeleton sequences.

5.3 TemPose: A Multimodal Factorized Transformer for
Fine-Grained Stroke Recognition in Badminton

TemPose, a skeleton-based transformer model designed to improve fine-grained stroke
recognition in badminton, was proposed in Paper 1. The model consists of a factor-
ized transformer model that combines temporal and interaction layers, allowing for
the modeling of multi-person interactions and the fusion of multi-model badminton-
relevant features.
A graphical outline of TemPose, is shown in Figure 5.1. The model takes processed
skeleton data as input and passes it through a sequence of transformer layers in the
TemPose encoder. This process creates tokens of the temporal data and captures the
temporal body dynamics and sequential interactions between an arbitrary number of
people involved in the action. The MLP head at the top predicts the action based on

82

Figure 5.1: Illustration of the proposed action recognition framework, TemPose. The framework uses hu-
man skeleton data, consisting of joint and bone information, and incorporates additional features such as
player court position and shuttlecock position from a badminton action (e.g., smash). The TemPose en-
coder, composed of multiple transformer layers, processes the input to embed relevant features into a class
token. Finally, an MLP head utilizes these features to predict the action class. The composition of the
MLP block is shown in the upper right corner.

the information embedded in a class token.
Figure 5.1 Shows the primary and badminton-specific version of the model, including
the fusion of skeleton data with player court positions (G) and shuttlecock positions
(U). Two different versions of TemPose are investigated, where the additional modal-
ities are integrated at different stages of the TemPose encoder. The two encoder ver-
sions are shown in Figure 5.2. In one version (TemPose-NF), the G and U sequences
are tokenized and appended to the embedded skeleton data before the interaction
transformer layers. Figure 5.2a depicts TemPose-NF. The other version (TemPose-
TF) prioritizes an early fusion of the skeleton, U , and G modalities, see Figure 5.2b
for a visualization. Since the publication, many interesting encoder structures with
transformers have been explored, and in the experiments section, modifications to the
temporal encoder structure that combines GCN, TCN, and transformer blocks are
tested.
The overview of TemPose builds upon the transformer fundamentals discussed in
Chapter 2 and the data preprocessing methods detailed in Chapter 4. Initially pro-

83

(a) TemPose-NF: Interaction fusion encoder (b) TemPose-TF: Temporal fusion encoder.

Figure 5.2: The two – badminton specific – encoder version explored during the chapter.

posed in Paper 1, TemPose comprises a factorized transformer architecture that mod-
els multi-person interactions and fuses multimodal badminton-relevant features.
The factorized transformer encoder combines temporal and interaction layers to cap-
ture individual and interactive dynamics in badminton strokes. An illustration of the
TemPose encoder is shown in Figure 5.3. The model processes preprocessed skeleton
data and, optionally, integrates player court positions (G) and shuttlecock positions
(U) to enhance recognition performance.

5.3.1 Input Modalities

Skeleton Data

As detailed in Chapter 4, the skeleton data for each player in a stroke sequence in-
cludes joint coordinates and bone vectors. For a sequence with T frames, the skeleton
features of a person are represented as:

S = [[P1, B1] , [P2, B2] , . . . , [PT , BT]]
T ∈ RT×2(J+B), (5.1)

where:

• Pt ∈ RJ×2 contains the 2D coordinates (x
(t)
i , y

(t)
i) of the J keypoints at frame t.

• Bt ∈ RB×2 contains the bone vectors computed as (x
(t)
i − x

(t)
j , y

(t)
i − y

(t)
j) for

each bone connecting joints i and j.

84

Figure 5.3: Illustration of the TemPose encoder showing the factorized transformer structure. First, tem-
poral tokens for each person are encoded by temporal transformer layers. Second, interactions between
players are modeled based on the temporal context of each person.

Including bone vectors provides additional information about the motion dynamics
and kinetic chains of the athletes’ motion, attempting to enhance the model’s ability
to recognize subtle differences in strokes.

Player Court Positions and Shuttlecock Positions

Player court positions (G) and shuttlecock positions (U) offer valuable context for
distinguishing between strokes. The extraction and preprocessing of G and U data
have been covered in Chapter 4. Briefly, G data captures players’ 2D ground plane
positions, while U data tracks the shuttlecock’s image coordinates over time. See Fig-
ure 4.3 for a depiction of the features.

85

5.3.2 Model Architecture

Skeleton-Based Temporal Self-Attention

First, the skeleton sequence of each player is processed individually using temporal
transformer layers to capture temporal body dynamics. For each player, the skeleton
sequence S is mapped through a linear projection to a sequence of temporal tokens:

x = [xcls, We(S)]
T + ET (5.2)

= [xcls, x1, x2, . . . , xT]
T + ET ∈ R(T+1)×DL , (5.3)

where xcls ∈ RDL is a learned class token. DL is the embedding dimension. ET ∈
R(T+1)×DL is a learnable temporal positional embedding. We ∈ RDL×2(J+B) is a
learned linear projection matrix mapping the input features to the embedding space.
The tokens are passed through LT temporal transformer layers, as described in Chap-
ter 2, to model the temporal relationships within each player’s movement. After pro-
cessing through the temporal layers, the final representation of the class token for
player n is denoted as τ

(LT)
cls,n .

Factorized Temporal and Interaction Structure

A factorized encoder structure inspired by ViViT [5] is employed to model interac-
tions between multiple players. After obtaining the temporal class tokens for all N
players, the input for the interaction encoder is constructed:

z =
[
ηcls, τ

(LT)
cls,1 , τ

(LT)
cls,2 , . . . , τ

(LT)
cls,N

]T
+ EI ∈ R(N+1)×DL , (5.4)

where ηcls ∈ RDL is a learned interaction class token. EI ∈ R(N+1)×DL is a learn-
able interaction positional embedding. The tokens z are passed through LI interac-
tion transformer layers to capture player interactions. The final representation of the
interaction class token η

(LI)
cls is used by an MLP head to predict the action class:

xact = MLP
(
η
(LI)
cls

)
, (5.5)

where xact ∈ RDcls is the model’s prediction, and Dcls is the number of action cate-
gories.

86

(a) TCN Block for Temporal Fusion (b) MLP Block for Interaction Fusion

Figure 5.4: Fusion blocks used in TemPose-NF (Interaction Fusion) and TemPose-TF (Temporal Fusion),
respectively.

Integration of Position and Shuttle Data

As previously introduced, two configurations are explored for integrating G and U

data into the TemPose encoder, referred to as TemPose-NF (Interaction Fusion) and
TemPose-TF (Temporal Fusion). TemPose-V referes to the vanilla version of temPose
with no modality fusion. In TemPose-V only the representations of the players’ mo-
tions are considered in the interaction layer.

Temporal Fusion (TemPose-TF) In the TemPose-TF configuration, G and U

sequences are processed through separate Temporal Convolutional Network (TCN)
blocks, each consisting of two 1D convolutional layers with GELU activation and
dropout, as illustrated in Figure 5.4a. The TCN blocks transform the G and U data
to match the embedding dimension DL. The outputs of the TCN blocks are treated
as additional temporal tokens and appended to the transformer input along with the
skeleton tokens for each player. This approach allows the temporal transformer layers
to jointly model the temporal dynamics of skeleton data G and U .

Interaction Fusion (TemPose-NF) In the TemPose-NF configuration, G and U

data are integrated after the temporal transformer layers. To obtain fixed-size embed-
dings, the G and U sequences are flattened and passed through separate MLP blocks,
as shown in Figure 5.4b. These embeddings are appended to the interaction tokens z

in (5.4), adding two additional tokens representing G and U in the interaction trans-
former layers. This approach allows the model to capture interactions between players
and the additional modalities at a higher level.

87

Table 5.2: Hyperparameters for the TemPose training procedure. The right part of the table includes
regularization and data augmentation choices.

Training
Batch size 64
Optimizer AdamW
Warm-up 25%
Learning rate 1e-04
LR scheduler cosine decay

Regularization
Label smoothing 0.1
Flipping 30%
Random shifting 30%
Dropout 0.3
Weight decay 0.01

5.3.3 Handling Variable Sequence Lengths and Number of Players

Transformers inherently handle sequences of varying lengths. In TemPose, the max-
imum number of temporal tokens T is fixed to correspond to the longest clip length
in the dataset. For shorter sequences, the input is padded with zeros, and padding
masks are used in the self-attention mechanism to ignore these positions, as discussed
in Chapter 2. Similarly, an upper limit of N is set for the number of players to model
interactions. Sequences with fewer players are padded with zeros, and padding masks
ensure that these positions do not contribute to the attention computations in the
interaction layers.

5.4 Experiments

This section presents the results of our experiments to assess the performance of the
factorized transformer layers compared to other state-of-the-art skeleton-based recog-
nition models. Specifically,TemPose is evaluated on two stroke-annotated badminton
datasets [46], but contains results for two additional datasets, shuttleset and shuttle-
set22 [115]. Recall that all datasets were introduced and examined in section 4.3.

5.4.1 Implementation details

Table 5.2 list all settings and hyperparameters used for the training procedure of the
experiments performed in Paper 1. The hyperparameters were chosen based on a
heuristic hyperparameter testing. Later in the project, the hyperparameter optimiza-
tion tool Optuna [3] was used to select the best hyperparameters. The AdamW opti-
mization algorithm [76] is used for all training runs along with cosine-annealing [77].
Each training run is initialized with a sequence of warm-up epochs, slowly increas-

88

ing the learning rate linearly from 0 to prevent overfitting. Unless specified otherwise,
joint and bone data, J and B, respectively, are used together as skeleton data input.
The follow-up experiments on the shuttleset dataset utilize almost identical hyperpa-
rameters for the training procedure. However, they were subjected to slight changes in
learning rate, batch size, and number of training iterations (epochs).

5.4.2 Stroke Recognition Metrics

As introduced in subsection 4.3.4, the metrics used to evaluate stroke recognition
in this chapter are accuracy (Acc), top-2 accuracy (Acc-2), and the F1 macro score
(F1-M).

5.4.3 Component studies

The individual components and different model configurations of TemPose were cho-
sen based on transformer depth and configuration studies. The default model configu-
ration uses the depth LT = LN = 2, Nheads = 6, embedded dimensions of DL = 100

and Dk = 128, and lastly, an MLP scale factor of 4 between the input and hidden
layers in MLP blocks.

Model configurations To validate the multi-modal fusion approaches of the G and
U data, the performance of TemPose-V, TemPose-TF, and TemPose-NF are examined
for different model settings shown in Table 5.5. AcT [79], a purely temporal skeleton-
based model, is shown as the baseline model. Among the TemPose versions, TemPose-
TF with DL = 100 and Dk = 128 has the highest accuracy of 90.7% while only having
1.7 million parameters. The results suggest that temporal fusion of U and G is the
best approach, achieving the highest accuracy using the fewest parameters.

5.4.4 Modality Ablation study

One small experiment shows the benefit of combining bone information with the joint
data on the BadOL dataset. The results presented in Table 5.3 show the TemPose
performance with only joint data input versus the combined joint and bone data. Our
findings are consistent with previous studies [74, 36, 24], where bone data are shown
to improve performance. The performance of TemPose significantly improves by uti-
lizing both bone and joint data as input in this experiment.

89

Table 5.3: Joint + Bone architecture study. TemPose-V (Vanilla) refers to TemPose without any modality
fusion. Thus, only player motion representations in the interaction encoder.

Models Acc
Baseline (AcT[79])

with (J) 81.8%
with (J+B) 83.7%

TemPose-V
with (J) 81.4%
with (J+B) 85.6%

The impact of the different input modalities is examined in Table 5.4 for an ablation
experiment with the TemPose-TF architecture. The experiment shows the model’s
performance on the shuttleset (Sset) data for the four input features. The founda-
tional input of skeleton joint data is always included, but it shows the difference in
performance when the bone, shuttle, and court position data are absent.
Not including both U and G data corresponds to TemPose without fusion as in Ta-
ble 5.3. The results show that the model, used on the Sset data, does not change sig-
nificantly depending on the input features. All data features offer incremental im-
provements to the performance. The best accuracy of 86.4% and macro F1-score 79.5%

is observed when all modalities are included in the model. Apart from skeleton fea-
tures, the ground position data provide the largest performance boost to the model,
as the P + G model performs the second best. However, the relative increase in per-
formance is minor compared to the Joint+Bone experiment compared to the model
in Table 5.3. It can be concluded that the more generally defined classes from the
BadOL appear to be more dependent on the Bone features compared to stroke classes
in Shuttleset.

Importance of transformer depth. A transformer depth study was performed
to exhaustively test the TemPose model. Figure 5.5 shows the accuracy performance
on the TemPose-TF model tested on the BadOL dataset. All other model settings,
except for the number of training epochs, are kept constant throughout the study.
Initial results presented in Paper 1 indicated that increasing the transformer depth
beyond four layers would begin to impact the performance negatively. However, Fig-
ure 5.5 shows a more extensive depth study, where all different layer combinations are
tested until LN = LT = 8. The results differ somewhat from the limited study in the

90

Table 5.4: Performance evaluation on the Sset dataset For TemPose-TF using different modality combina-
tions. P: Skeleton joints , B: Bones, G: Court Position, U : Shuttle Position.

Modality Performance
P B G U F1-MA Acc
✓ 77.9% 85.1%
✓ ✓ 77.8% 85.4%
✓ ✓ 78.2% 85.9%
✓ ✓ 78.4% 85.5%
✓ ✓ ✓ ✓ 79.5% 86.4%

paper as no clear performance trend is observed.
While the best-performing combinations all have LN < 5 and LT < 5, the drop in
performance for larger depth models is insignificant. One pattern does emerge; the
increasing depth of the temporal transformer block does not affect the model signifi-
cantly, but having too many layers in the interaction transformer block overall leads
to worse performance. The best accuracy is achieved for the combination of LT = 2

and LN = 2, with a top-1 accuracy of 90.7%.
One crucial factor is that the number of epochs is adjusted for each model. Other-
wise, the models with more layers in the transformer blocks would quickly overfit,
leading to a drastically worse performance. However, they still perform similarly when
the number of training iterations is adapted accordingly. Another observation is that
variance in the performance sometimes changes 3% between similar depth combina-
tions. The training instability can be attributed to limited training samples in the
BadOL dataset. The results align well with the limitations of the BadOL dataset,
which have already been discussed in section 4.3.
The results motivated the exploration of additional annotated data resources and
other training approaches, such as self-supervised learning, which is included at the
end of this chapter.

5.4.5 Evaluation

Stoke recognition The stoke-recognition results of TemPose compared to state-
of-the-art skeleton-based recognition models are shown in Table 5.6 and Table 5.7.
Table 5.6 shows the Top-1 accuracy results for TemPose-TF and TemPose-NF on the
BadPL and BadOL datasets following the training/test split outlined in section 4.3,

91

Table 5.5: Accuracy and model size for different settings of the 3 TemPose versions. The number of at-
tention heads Nheads = 6 and depth LT = LN = 2 are shared for all model configurations.

Model configuration Params Acc
Baseline (AcT[79]) 2.1M 83.7%
TemPose-V

with (DL = 75, Dk = 100) 0.9M 85.6%
with (DL = 200, Dk = 200) 5.2M 83.6%

TemPose-TF
with (DL = 50, Dk = 75) 0.5M 88.6%
with (DL = 100, Dk = 128) 1.7M 90.7%
with (DL = 200, Dk = 256) 6.7M 88.0%

TemPose-NF
with (DL = 50, Dk = 75) 2.5M 88.1%
with (DL = 100, Dk = 128) 3.8M 89.3%
with (DL = 200, Dk = 256) 9.0M 86.2%

Table 5.6: Top-1 accuracy results for TemPose with temporal (TF) and interaction (NF) fusion, to state-
of-the-art (HAR) models on Badminton placement (BadPL) and Badminton Olympics (BadOL).

Model BadPL BadOL Params
Bi-TCN [130] 80.4% 86.1% 4.1M
TCN Hog [46]3 66.6% 77.0% 1.1M
ST-GCN [127] 72.3% 82.0% 3.4M
AcT-M [79] 77.9% 83.7% 2.1M
MS-G3D [74] 78.0% 83.2% 3.2M
TemPose-TF 83.9% 90.7% 1.7M
TemPose-NF 84.3% 89.3% 3.8M

which is the exact datasets and by extension results that were reported in the Pa-
per 1. Overall, the results show that TemPose outperforms all other models on both
datasets, with TemPose-TF achieving the highest accuracy on BadOL and TemPose-
NF achieving the highest accuracy on BadPL. As observed in the configuration study,
both fusion approaches achieve strong results, and no method is superior by a signifi-
cant margin.
Since Paper 1, the two shuttleset datasets have been released, which contained signif-
icantly more data samples, with more detailed and more consistent stroke annotation
shown in Table 5.7. Again, the TemPose model performs the best across both met-

92

Figure 5.5: 8 × 8 grid showing the accuracy TemPose-TF for different depth values LT and LN of the
interaction and temporal transformer layers, respectively.

rics, Acc and F1-M. Acc was 86.4% and F1-M 79.5%, on shuttleset and Acc 91.4%

and F1-M 85.0%, on shuttleset22. All tested models are observed to achieve signifi-
cantly higher evaluation scores on shuttleset22 than shuttleset. Both datasets train-
test splits are across matches, defined in section 4.3. This showcases that the type
and predictability of strokes vary from match to match, which resulted in the matches
chosen for shuttleset22 being more straightforward to predict.
The results on the shuttleset and shuttleset22 are consistent with results from Pa-
per 1. However, compared to the experiments on BadOL and BadPL. the gap be-
tween TemPose-TF and other state-of-the-art, models [98, 74, 22] has decreased slightly.
The reason is likely that the increased dataset size has greatly benefited those mod-
els. Another possibility could be that the misclassified samples are very ambiguous
or flawed, leaving the specific model choice less relevant. Still, the results support
the claim that TemPose can accurately classify the different types of strokes in bad-
minton.

93

Table 5.7: Evaluation metrics for various models on the sset and sset22 datasets, with match and ratio
splits. The best score for each metric is highlighted in bold.

sset sset22
Model F1-M Acc F1-M Acc
Bi-TCN [130] 77.0% 84.5% 83.6% 90.4%
ST-GCN [128] 77.8% 85.2% 84.2% 90.7%
AcT-M [79] 77.8% 84.2% 83.6% 90.6%
GRU [72] 76.7% 83.9% 84.0% 90.5%
CTR-GCN [22] 79.2% 86.0% 84.6% 91.1%
MotionAGFormer[128] 76.9% 84.2% 83.4% 90.5%
MS-G3D [74] 79.1% 85.7% 84.8% 91.0%
TemPose-TF 79.5% 86.4% 85.0% 91.4%

5.4.6 Importance of the phases in Strokes

One factor regarding stroke recognition in badminton that should not be overlooked
is the impact the different phases of a stroke motion have on recognition performance.
As stated at the beginning of the section, all recognition experiments are based on
the Split-M definition of the stroke, i.e. the duration of a stroke sequence is set as the
time of executing the stroke-motion. From the annotations, the motion can be divided
into motion before shuttle contact (preparation + forward acceleration phases) and
motion post shuttle contact (follow through + recovery phases). It is apparent from
qualitative inspection that it is much harder to anticipate which stroke the player will
execute, looking only at motion before they hit the shuttle. The athletes are proficient
in masking/faking their intended stroke before hitting the shuttle, making it more
difficult for the opponent to prepare for the incoming shot.
The TemPose-TF model has been exposed to a similar exercise. Here, the multi-modal
input sequence has been divided between before the player hits the shuttle (before
hit) and after the player hits the shuttle (after hit). For reference, the results from the
full sequence are also provided. The results are shown in Table 5.8. TemPose-TF has
a performance difference of 19% for accuracy, F1-macro, and balanced accuracy be-
tween the after-hit motion and the before-hit motion, which supports that the model
experiences the same difficulties using only the motion before the hit.
Furthermore, using the full sequence input only results in slight (∼ 6%) improvement
to performance metrics compared to the after-hit motion sequence. This suggests the

94

Table 5.8: Performance of TemPose-TF on the sset22 dataset with different stroke sequence configura-
tions: sequences cut before and after hitting the shuttle, and full sequences.

Stroke Sequence F1-MA Acc Acc-2
After Hit 71.9% 80.3% 94.2%
Before Hit 55.2% 61.0% 92.0%
Full Sequence 79.5% 86.4% 96.6%

model can extract enough information to differentiate between the strokes from the
post-hit motion, shuttle, and court position. The last observation is that the top-2
accuracy is similar for all three input sequences. An explanation for this is that in
badminton, only a few shots are viable in a given situation. Thus, players will still de-
cide between 1-3 options even when they mask their strokes, i.e., when a shuttlecock
is lifted with a high trajectory toward the backcourt, only a smash, clear, or drop are
viable options for the next stroke. Thus, even when a player can hide whether they
intend to perform a smash or a clear, it is still apparent that it will be one of the two.
The top-2 accuracy confirms that the model can infer this from the before-hit motion.

Encoder blocks testing

The TemPose-TF encoder is comprised of two main parts. First, a feature represen-
tation learning component. Second, a feature representation fusion component. The
feature fusion, or mixing, happens in the interaction transformer block, where indi-
viduals’ different features and motion representations are passed as tokens through a
transformer block.
In TemPose, the motion representation is captured through a temporal transformer
block. While the representations captured by the temporal transformer block are suf-
ficient to outperform concurrent action recognition methods, it is conceptually a sim-
ple transformer block considering embeddings of entire skeleton poses as tokens, with
no explicit spatial, i.e., skeleton structure components incorporated.
In related works, other architectures for capturing relevant motion representations
were outlined, some relying on both spatial (body structure) and temporal (keypoints
between time steps) using architectures integrating GCN, TCN, and transformer blocks.
None of the suggested methods contest the TemPose architecture for stroke recogni-

95

tion. However, one could attribute this to integrating additional modalities through
the interaction block, partially supported by the modality ablation study in Table 5.4.
Thus, testing extensions to the temporal transformer block could yield improved recog-
nition performance. This is accomplished by replacing the temporal transformer block
with more intricate encoding modules and observing the effect. Recall the 2D skeleton-
joint sequences for a single individual is given by

S ∈ RT×J×Cin ,

where T is the Number of time frames (temporal dimension). J is the Number of
joints (spatial dimension). Cin is the number of input channels (e.g., coordinates per
joint or Bone vector etc).
Thus far, the transformer block has been operating on the sequence by projecting the
combined J · Cin channel to DL embedding dimension and attending to the time step
tokens with x(0) ∈ RT×DL . In the following two alternative forms of Multi-Head Self-
Attention (MHSA) are introduced:

1. Spatial Multi-Head Self-Attention (S-MHSA): Models relationships among
joints within the same time step.

2. Temporal Multi-Head Self-Attention (T-MHSA): Models relationships of
each joint across different time steps.

The key difference is that now the input features projected (or tokenized) to DL is
Cin, i.e, single keypoint channels and not the complete skeleton, which results in joint
ST-tokens x(0) ∈ RT×J×DL , i.e. rank-3 tensors now. The Positional encoding of the
tokens also changes slightly, now

x(0) = Linear(S) +Ppos, (5.6)

where x(0) ∈ RT×J×DL , and Ppos represents a learned positional encoding to incor-
porate spatial and temporal positional information, where Ppos = PES + PET . PET

is learnable temporal parameters repeated over the joint dimension. PES is learnable
spatial parameters repeated over the temporal dimension.
Apart from operating on a single dimension of the ST-tokens, S-MSHA, and T-MSHA
are equivalent to the previously defined self-attention and multi-head attention mech-

96

anisms in chapter 2. The classification token becomes xcls ∈ R1×1×DL which after the
spatiotemporal transformer is passed on to the interaction transformer precisely as in
the base TemPose-TF. 4

5.4.7 Encoders

The following extended motion-encoder blocks are considered:

1. Joint Spatiotemporal (ST) Transformer, where the S-MSHA and T-MSHA are
performed sequentially inside a single transformer layer.

2. Parallel Joint Spatiotemporal Transformer (ST+TS), in a single transformer
block ST and TS attention attention is performed in parallel and implemented
from [131].

3. Joint Spatiotemporal transformer block + with TCN-GCN block in parallel,
inspired by [98].

4. Graph Transformer; In parallel, performs ”Global” S-MSHA, and ”Local” S-
MSHA inspired by [110].

The extended motion encoders are shown in Figure 5.6.

Joint ST-Transformerblock The Joint ST-Transformer block integrates S-MHSA
and T-MHSA in the transformer layer to model spatiotemporal dependencies. At each
layer l, the processing flow in the encoder block is as follows:

4Note that tests with the average token embedding representations were performed instead of clas-
sification tokens. Like many other works, [108, 34, 4], no performance difference was observed, and as
such, the xcls implementation is kept throughout the experiments for simplicity.

97

Joint Spatiotemporal Transformer

Input: x(l) ∈ RT×J×DL

Spatial Attention:

x′(l+1)
= x(l) + S-MHSA(LN(x(l))), (5.7)

x′′(l+1)
= x′(l+1)

+ MLP(LN(x′(l+1)
)). (5.8)

Temporal Attention:

x′′′(l+1)
= x′′(l+1)

+ T-MHSA(LN(x′′(l+1)
)), (5.9)

x(l+1) = x′′′(l+1)
+ MLP(LN(x′′′(l+1)

)). (5.10)

Output: x(l+1) ∈ RT×J×DL

The composition of the joint ST-transformer block is shown in Figure 5.6 to the far
left. All attention modules contain renormalization, a residual connection and a resid-
ual MLP operation. In the following descriptions of the different extended encoder
blocks, the normalization, residual connections and MLP operations are left out for
simplicity since they are present and kept the same for all attention operations in the
extended encoder.

Joint ST+TS transformer Joint ST refers to spatiotemporal, which means the
embeddings are first subjected to spatial attention (S-MHSA) and then a temporal at-
tention operation (T-MSHA). Similarly, Joint TS refers to temporospatial, where the
embedded representation is first subjected to a temporal attention operation followed
by a spatial attention operation. The Joint ST+TS transformer block follows an im-
plementation from [131], where ST and TS are performed in parallel. The ST and TS
representations are aggregated adaptively at the end of the block. This means each

98

representation is weighted based on the value of each representation as follows

x(l+1) = α0x
(l+1)
ST + α1x

(l+1)
TS ,

(
α0

α1

)
= Wα[x

(l+1)
TS ,x

(l+1)
TS], (5.11)

where Wα ∈ R2DL×2 is a learnable projection matrix.

Joint ST Transformer + GCN-TCN The implementation of this encoder block
is heavily influenced by [98]. Similar to the Joint ST+TS encoder, this encoder has
two parallel streams of embedded representations. The first stream mirrors the Joint
ST encoder block, i.e., S-MSHA attention, followed by T-MSHA. In the second stream,
a single layer GCN, see subsection 2.1.4, is applied to the spatial dimension of the
representation (+ Batch normalization [58]), followed by a single layer TCN, see Equa-
tion 2.29, and a batch norm. The key idea is that both the single-layer GCN and
TCN are locally processing the representation spatially and temporally, respectively.
Thus, the GCN-TCN stream focuses on the local structure of the data, whereas S-
MHSA and T-MHSA process the global structure in the first streams.

Spatial Graphformer + Temporal Transformer block This transformer block
utilizes graph attention described in subsection 2.3.4 in parallel with spatial atten-
tion. In the graph attention, the adjacency matrix representing the skeleton topology
is multiplied with the attention matrix to keep only local attention scores. Thus, the
S-MHSA can access the global spatial structure, while the graph attention focuses
on the local intrinsic topology. As depicted in Figure 5.6 (far right), the two repre-
sentations are subsequently concatenated and passed to the T-MHSA section. The
principle is similar to the Joint ST Transformer + GCN-TCN encoder. The main
difference is that for Graphformer, the local and global spatial representations are
concatenated before the T-MHSA. In contrast, the GCN-TCN keeps the local and
global spatial representations separated until after the temporal modules (Global:T-
MHSA,local:TCN), where they are subjected to adaptive aggregation. Thus, the Graph
attention temporal module can access local and global considerations of the current
layer.

Encoder Extension Performance The result of the experiment is shown in Ta-
ble 5.9. The different choices of motion encoder do not heavily affect the model’s

99

Figure 5.6: Shows the four different Joint ST transformer block testes as potential extensions to the Tem-
poral transformer block.

Table 5.9: Performance comparison of different TemPose-TF encoder modules on the shuttleset dataset.

TemPose-TF Encoder Modules F1-MA Acc Acc-2
Temporal (Base) 78.8% 86.4% 96.6%
Graph Transformer 76.4% 84.8% 96.0%
Joint ST Transformer 77.6% 84.7% 95.6%
Joint ST-TS Transformer 76.4% 85.0% 95.9%
Joint ST-Transformer + TCN-GCN [98] 77.5% 85.0% 90.9%

performance. The Base temporal encoder still shows the best performance, but all
achieve comparable results, within 1 − 2% accuracy of each other. However, extend-
ing the temporal encoder module with ideas from other state-of-the-art skeleton-based
action recognition models does not improve performance.
The result here supports the conjecture from [129], where they argue that the over-
all structure of the transformer block is the most critical aspect of a transformer or
”MetaFormer”. The ”mixing” methods of the tokens, i.e., utilizing MHSA or MLPs,
are less important, and even basic mixing techniques can come close to state-of-the-
art performance. The experiment suggests extending the complexity of the motion
transformer block 5 does not result in measurable performance increase and thus,
might be adding unnecessary complexity to the architecture.

5Originally, the temporal transformer block

100

5.4.8 Qualitative analysis of temporal and interaction attention

The attention maps of the transformer layers can be examined to inspect what infor-
mation the encoder captures. The temporal attention maps of two forehand strokes
shown in Figure 5.7 reveal that similar patterns emerge between actions of the same
class. The similar attention maps suggest that the model has learned to focus on spe-
cific temporal aspects of the actions to predict the entire sequence.
The attention maps determine a temporal and interaction attention score for all ac-
tions. We define the attention score as the self-attention of the xcls-token in the last
transformer layer, aggregated and normalized across all attention heads. The tem-
poral attention score is averaged over all individuals but weighted according to their
interaction attention score.
For a badminton smash, the attention score is depicted in Figure 5.8. TemPose iden-
tifies the frames around contact with the shuttlecock as the most significant section.
The red and purple text represent the target and prediction class of the action, re-
spectively. The model accurately predicts the action as a smash from the bottom
player.
Additionally, more attention is given to the smashing individual. The logical distri-
bution of attention suggests that the model has developed the ability to gauge the
relevance of each individual for the action based on their skeleton movements.
TemPose demonstrates top results on badminton action recognition tasks. However,
in the experiments, the larger configurations of TemPose show signs of overfitting/unstable
convergence. The result indicates that the performance of TemPose may be further
improved if additional steps are taken to prevent overfitting. In general, increasing
the amount of training data would be worthwhile. One prospect involves generating
synthetic data to increase the amount of training data. Another possibility would be
to leverage unlabelled information in the skeleton data as a pretraining task to obtain
higher-quality motion representations before fine-tuning for the specific recognition
task.

5.5 Skeleton-based Pretraining Methods

In this section, we explore pretraining approaches for representation learning. Self-
supervised learning utilizes inherent ”unlabeled” information from the video/skeleton

101

Figure 5.7: Temporal attention maps for a forehand by the bottom player (from BadOL). The distribution
of attention shows that TemPose prioritizes similar information when the actions are of the same class.
Additionally, the attention maps also show the effect of the padding mask. The padding tokens are given
no attention.

sequences to pretrain the models, in this case TemPose-TF, before fine-tuning it on a
downstream task such as stroke recognition. The limited availability6 of high-quality
annotated video material in sports presents an explicit limitation for reaching human-
level recognition capabilities. However, unlabeled video material exists in abundance.
The possibility of leveraging unlabeled data to achieve more robust latent representa-
tions manifesting in an incremental performance gain holds great potential due to the
scale of data available in this category.
In this section, pretraining methods for the skeleton-based models are explored. First,

6Due to their immense value, existing high-quality datasets are proprietary in popular sports like
football, badminton, and tennis with large monetary incentives.

102

Figure 5.8: Prediction and attention score produced by TemPose-V for a skeleton sequence from Bad-
minton Olympics. (t,p) refers to t as the target and p as the prediction. The interaction attention score is
shown at the left, with the color corresponding to the person in the action sequence. The weighted tempo-
ral attention score is shown atop each frame in the sequence. For visual clarity, the frames are grouped by
three, showing only the middle one, and the listed attention score is the average between them.

Figure 5.9: Proposed Masked Auto Encoder structure, using transformer-based encoder/decoder modules
to reconstruct masked skeleton poses.

we examine self-supervised pretraining tasks to enhance performance in downstream
action recognition tasks [7]. Second, the performance of the two methods is assessed
by comparing the quality of trained and fine-tuned latent representations. The follow-
ing pre-training approaches are considered:

1. Pretraining on different larger datasets.

2. Masked autoencoder pose reconstruction. [51]

5.5.1 Masked Autoencoder for Pretraining

The Masked Autoencoder (MAE) framework in [51] works by reconstructing an origi-
nal image from a partially observed input. MAE contains the following stages: input

103

representation, patch masking, encoding of visible patches, decoding with mask to-
kens, and calculating the reconstruction loss.
The input image is divided into N non-overlapping patches. Each patch is represented
as a vector in RCp . Cp being the flattened resolution of an image patch. The collec-
tion of all patch embeddings is denoted by:

X = {x1,x2, . . . ,xN} ∈ RN×Cp , (5.12)

where xi represents the embedding of the i-th patch.
A subset of patches is randomly selected to be visible while the remaining patches are
masked. The indices of the masked patches are denoted by M ⊂ {1, 2, . . . , N}, and
the indices of the visible patches are V = {1, 2, . . . , N} \M.
The encoder processes only the visible patches. Each visible patch xi is first linearly
projected and combined with a positional embedding pi:

zi = Wexi + pi ∀i ∈ V (5.13)

Here, We ∈ RDL×Cp is the embedding matrix that projects the patch embeddings to a
latent dimension DL. The set of embedded, visible patches is:

Z = {zi}i∈V ∈ R|V|×D (5.14)

These embeddings are then processed through the encoder, composed of multiple
Transformer blocks, to obtain the latent representation H:

H = Encoder(Z), (5.15)

where H ∈ R|V|×DL captures the encoded information from the visible patches.
To reconstruct the full image, the decoder receives both the encoded visible patches
and mask tokens corresponding to the masked patches. Each masked patch is repre-
sented by a shared learnable mask token m ∈ RD

L . The complete set of tokens input
to the decoder is:

T = {hi}i∈V ∪ {m}j∈M (5.16)

104

Positional embeddings EP ∈ RN×DL are added to each token to retain spatial infor-
mation:

Tpos = T+EPos (5.17)

The combined tokens are then processed by the decoder, which is a lightweight trans-
former architecture:

X̂ = Decoder(Tpos) (5.18)

The decoder outputs reconstructed patch representations x̂′
i ∈ RCp for each masked

patch.
The final step involves mapping the decoder’s output back to pixel space using a lin-
ear projection matrix Wd ∈ RCp×DL :

x̂i = Wdx̂
′
i ∀i ∈ M (5.19)

The reconstructed image X̂ is formed by assembling the predicted patches x̂i for all
masked indices i ∈ M.
The model is trained by minimizing the Mean Squared Error (MSE) between the re-
constructed patches and the original patches, focusing solely on the masked regions:

L =
1

|M|
∑
j∈M

∥x̂j − xj∥22 (5.20)

The encoder is implemented with more layers and model parameters to process only
the visible patches, while the decoder is more lightweight, handling the full image re-
construction. The design facilitates that the computational resources are predomi-
nantly allocated to the encoder, allowing for scalability and efficiency in training.
For the stroke recognition pretraining, the masked autoencoder design is repurposed
for skeleton sequences, employing a similar asymmetric encoder-decoder architecture
based on the temporal transformer block from the TemPose model for the skeleton-
pretraining architecture.
The encoder compresses the input into a latent representation while the decoder re-
constructs masked portions of the sequence. During training, masking is applied to
random time steps and joints, forcing the model to learn temporal dynamics and the

105

intrinsic skeleton topology necessary to reconstruct the removed elements.
This has been researched in another work that have implemented similar ideas, namely,
SkeletonMAE [126] in which the researchers adopt the masking and encoder mod-
ule of the MAE to handle skeleton data. Instead of a transformer, they implement
an asymmetric encoder-decoder GCN architecture that works on frame-wise skeleton
poses in a sequence, i.e., no temporal component. Skeletons with fractions of their
joints hidden are provided as input to the encoder, creating a skeleton representation.
Then the decoder uses the representation to reconstruct the missing joints based on
the human topology and information from the visible joints.
All work presented here is not based on this publication (with no released source
code) but purely takes inspiration from MAE. Currently, the pretraining is limited
to components until and including the temporal transformer block. Future work could
benefit from suggesting pretraining methods for the interaction part of the encoder.
Additionally, only skeleton data is considered for the pretraining experiments. Includ-
ing similar approaches for shuttle trajectories and court position could also benefit the
model.

5.5.2 Pretraining task

The TemPose MAE is initially trained to minimize the reconstruction loss of the masked
sequence elements, given by

L = ||x− Dec(Enc(x))||2, (5.21)

where x is the input sequences, and Enc and Dec are the temporal part of TemPose
encoder and a Transformer-decoder, respectively (see fig.Figure 5.9).
After pretraining, the encoder is fine-tuned for action recognition on subsets of the
training dataset to explore the efficacy of the pre-training method.

5.5.3 Pre-training Results

Experiments use a TemPose model architecture subjected to different training rou-
tines (with or without pretraining and fine-tuned on subsets of the BadminDB dataset).
The classification accuracy and F1-macro score on the BadmintonDB dataset (small
dataset) are reported for the two pretraining methods. Results are shown in Table 5.10.

106

Table 5.10: Accuracy (%) Across Different Pre-training Methods and Models on the BadminDB dataset
after being trained on the merged SSet data.

Fine-tuning Data Usage 25% 50% 75% 100%
Fine-tuning only (on BadminDB)

TemPose-V 57.0 61.3 62.8 63.6
Action Recognition Pre-training (AR)

TemPose-V 61.0 63.9 63.7 65.1
Skeleton Reconstruction Pre-training (SR)

TemPose-V 58.0 63.0 62.7 64.0

The results show that both pretraining methods improve the recognition performance
on BadmintonDB after subsequent pretraining. The results further show that the su-
pervised pretraining method, i.e., training on the combined shuttleset + shuttleset22
dataset before fine-tuning, actually leads to better performance than doing masked
skeleton-reconstruction (SR) pretraining, also on shuttleset + shuttleset22, before
fine-tuning. This makes good sense since the supervised pretraining dataset contains
closely related action classes (stroke types), with only minor differences in stroke type
definitions. However, the skeleton reconstruction methods hold much greater promise
in constructing foundation models for badminton recognition. This experiment used
a similar amount of data to pretrain the model, but raw broadcasted matches are
abundant compared to annotated data. Thus, observing a boost in performance from
(SR) pretraining on this small (compared to what is accessible) amount of skeleton
sequences shows promise for future development. Another observation from this ex-
periment is that the TemPose recognition performance on the badmintonDB dataset
is lower than on the two shuttleset datasets. This could be attributed to the more
detailed stroke types and lower data amount. It could also be because of the heavy
imbalance of stroke classes in BadminDB.

5.6 Chapter Conclusion

This Chapter explored different areas of action recognition with a focus on the sport
of badminton.
First, it was verified that for badminton recognition tasks, skeleton data outperforms
RGB video as an input feature modality.

107

Next, from Paper 1, TemPose was introduced, a skeleton-based action recognition
model that uses temporal transformer layers to capture human motion dynamics and
factorized interaction transformer layers to model human interaction and multi-modality
integration.
Experiments on multiple datasets shows that TemPose outperforms existing meth-
ods in recognizing fine-grained badminton strokes by fusing shuttlecock data, player
court positions, and skeleton movements. The model is still slightly below human-
level recognition, but there is room for improvement in multiple areas.
One possibility would be increasing the quality and amount of training data. The
most easily accessible data are online broadcasted badminton videos. An experiment
into different pretraining methods for stroke recognition showed that pretraining on
unlabeled badminton sequences improved the performance of TemPose on BadminDB.
Thus, utilizing self-supervised learning shows great promise for improvement and
should be explored further.
Additionally, TemPose was used to show that using different phases of the stroke mo-
tion as input strongly affects the prediction accuracy of strokes. The follow-through
motion (and shuttle) has a ∼ 20% accuracy compared to the preparation and acceler-
ation phase. This will serve as the starting point of the next chapter, where forecast-
ing of badminton strokes will be explored.

108

Chapter 6

Stroke Forecasting

In this chapter, the focus shifts from action recognition to stroke forecasting in bad-
minton, examining how future strokes can be anticipated based on the sequence of
previous strokes during a rally. Unlike the previous chapter, which emphasized recog-
nizing actions from complete sequences, this chapter explores the predictive aspects of
gameplay by considering only the data available up to a certain time to predict future
actions.
Stroke forecasting in badminton is challenging due to the fast-paced and detailed na-
ture of the rallies and the probabilistic elements inherent in player decision-making.
Players often have multiple viable actions at any given moment, and an interplay of
physical condition, psychological state, and tactical strategies influences their choices.
This unpredictability complicates predictive analytics, making it difficult for models
to anticipate future strokes based solely on historical data accurately.
This chapter’s main hypothesis is that stroke forecasting can be improved by design-
ing a model that fuses visual and player-specific information into a sequential predic-
tion framework. The model aims to capture the underlying processes behind stroke
selection in racket sports by incorporating additional contextual information such as
player skeleton data sequences, player identity (ID), and turn-based rally awareness.
This chapter is predominantly based on Paper II, which explores how stroke forecast-
ing can be enhanced by conditioning the current exchange of strokes with motion and
player characteristics to make more informed predictions of the next stroke in a rally.
Additionally, later experiments not included in the paper are discussed, specifically
addressing the two stroke definitions outlined in Chapter 1. Paper 2 primarily focused

109

on strokes split based on the player’s motion (split-M), where stroke anticipations
were provided contextual information purely from the player’s motions of previous
strokes. While this yields small prediction improvements, relying only on prior motion
is exceedingly difficult, and results do not show significant improvements compared
to sequential stroke prediction with no added context. In contrast, a method using
shuttle trajectory-based stroke definitions (split-T) includes the entire preparation
and acceleration phase of the next stroke in the sequence. This could be argued to re-
semble an action recognition task rather than forecasting, but this stroke definition
actually quite well reflects real-match conditions for players. Players must anticipate
their opponent’s stroke selection based on information available until shuttlecock con-
tact. Thus, this approach investigates how well a player’s strokes can be predicted in
a realistic match setting.
One strategy to reduce the uncertainty associated with subsequent stroke predictions
involves incorporating various contextual factors into the model:

Player skeleton data sequences: These sequences contain the movements and
positions of a player’s joints over time and have shown promising results in general ac-
tion recognition [127, 79, 86, 49] and sports applications [32, 130, 72, 65]. By reveal-
ing patterns in a player’s technique and movement, this data can provide information
about future strokes, allowing models to account for individual players’ physical capa-
bilities and limitations.

Player identification (ID): Incorporating player IDs enables predictive models
to consider historical performance data and personal playing styles. Recognizing that
each player has unique characteristics, e.g., strengths, weaknesses, and strategic pref-
erences, can help the model better predict a player’s likely actions in various game
situations.

Turn-based rally awareness: This introduces an additional contextual layer by
specifying the actor and reactor behind each stroke, partially inspired by [116]. In-
cluding turn-based nuances allows the model to isolate individual player motions and
obtain a clearer representation of each stroke.
The architecture proposed in this chapter builds upon concepts from the previous
chapter to present a transformer-based model for action forecasting in badminton.

110

The primary contributions of this research include:

1. Developing a skeleton-based spatiotemporal encoder that uses transformer and
pooling blocks to learn representations for enhancing next-stroke predictions in
badminton.

2. Introducing an adaptive cross-attention decoder that incorporates contextual
stroke descriptors from high-dimensional embeddings of a pre-trained language
model.

3. Demonstrating how the latent variables can be used for match and playstyle
analysis, providing insights into athletes’ shot selection and aiding strategic ad-
justments in competitive settings.

4. Implementing stroke embeddings from text embeddings of detailed stroke de-
scription using a pretrained language model.

The chapter is organized as follows: Section 6.1 outlines related research on forecast-
ing models and probabilistic modeling that has both inspired and contributed to the
development of the work in this chapter. Section 6.3 details the methodology behind
the proposed forecasting approach, including the architecture of the transformer-based
model. Section 6.4 presents the findings from various experimental evaluations, in-
cluding experiments not included in Paper II that address the different stroke defini-
tions. Finally, Section 6.5 discusses prospects for how the forecasting model could be
used for match preparation and directions for future research.

6.1 Related Work

6.1.1 Action forecasting

Prior works have attempted to develop a wide range of neural network models to fore-
cast future action sequences from observed action labels or extracted video features.
The paper [40] introduced a method using a recurrent neural network (RNN) - hid-
den Markov model to classify actions from video frames, followed by a convolutional
neural network (CNN) or RNN that predicted the following actions in the sequence.

111

In [1], one-hot encodings of the action labels were processed by a Gated Recurrent
Unit (GRU) to estimate the probability of the next action in the sequence and sub-
sequently predict the duration of said action. In [75], they expanded on this and em-
ployed a variational multi-headed GRU to predict future actions and their duration.
They showed that their approach worked for both one-hot action labels and extracted
video features.
In [44], they suggested jointly using both frame and annotation features to improve
the prediction capacity of their model. [83] employed sequence-to-sequence models
using a gated recurrent unit (GRU) encoder-decoder architecture to predict future
actions from RGB frames alone.
Recently, transformer architecture has been used for this task. In Uncertainty-aware
Action Decoupling Transformer for Action Anticipation [48], the authors used decou-
pled transformers to separately predict nouns and verbs of future human actions in a
video. Moreover uncertainty-based fusing of the verb and noun predictions is used to
predict the complete action.
Skeleton data are not commonly used as a modality for action sequence forecasting.
However, a recent publication, called InfoGCN++ [25] extended their action recogni-
tion architecture to first process a given skeleton sequence. The representation of the
skeleton sequence is then evolved in time using a neuralODE1 [19] to predict the fu-
ture skeleton motion. Subsequently, the current and future skeleton motion is used to
predict the action of the sequence.
This area of research, called early action prediction, is closely related to action an-
ticipation. Unlike in action forecasting, where the anticipated action is entirely un-
observed, early action prediction has some incomplete information about the actions.
This distinction is similar to the separation between split-M and split-T forecasting
outlined for stroke forecasting in this thesis. Early action recognition has been at-
tempted for both video [99, 118] and skeleton-based models [67, 62]. With the differ-
ent splitting of the input data, this forecasting chapter explores the boundary between
the two domains of action anticipation and early action prediction.
Lastly, a skeleton data-oriented area that has seen attention recently is motion pre-
diction, where action labels are used to condition observed skeleton sequences to gen-

1NeuralODEs perform standard iterative numerical integration for each timestep to solve a differ-
ential equation, but initial values (state), computed by a neural architecture usually, the network can
be optimized at arbitrary timesteps.

112

erate subsequent motion of the sequences. [85, 47] employs variational autoencoders
for this task. Both transformer and TCN-GCN architectures are actively being used
to model the prediction of unobserved skeleton sequences. [66] introduces SPGSN, a
cascaded multi-part graph scattering block to adaptively model diverse body parts.
Whereas [54] utilizes an encoder-decoder architecture with spatial and temporal TCN-
GCN layers to capture motion representation to predict future motion.
Similarly, [104] introduces a model that combines Recurrent Neural Networks (RNNs)
with attention mechanisms to capture spatial and temporal dynamics in human mo-
tion, which are then used to predict future motion. [60] performs multi-agent fore-
casting using an interaction-aware transformer-based architecture Trajectory2Pose.
The architecture first predicts the global trajectories of all agents and then predicts
individual poses conditioned on the trajectories. [66] introduces SPGSN, a cascaded
multi-part graph scattering block to adaptively model diverse body parts.

6.1.2 Data analytical sports applications

Action recognition tasks fill up the majority of sports focused research in the field of
computer vision. Here, convolutional neural networks (CNN) have been used for fea-
ture extraction on RGB images [88]. Classification algorithms such as Support Vector
Machines then use the extracted features to make predictions. Transformer models
have also gained traction for sports application tasks. In [16], a Vision Transformer
(ViT) [34] is used as the backbone to do group activity recognition (GAR) in Volley-
ball and basketball.
Skeleton data, as opposed to image data, has proven effective for the analysis and
recognition of activities in various sports, including Tai Chi [35, 32, 113] and fenc-
ing [130, 78]. Skeleton-based Temporal convolutional networks (TCN) have seen use
for action recognition in table tennis [65], where TCNs performed better than LSTM
models.
In badminton, [72] used skeleton data and shuttle trajectory data in a GRU model
to perform binary hit detection. They further improved the detection rate by using
badminton-specific rules. Specifically for stroke prediction [116] employed a transformer-
based player and position-aware model that used prior stroke types and shuttle place-
ment to predict future position and type of strokes. Instead of the shuttle placement,
this work uses the players’ skeleton and ground motion to provide a dynamic under-

113

standing of each stroke as the basis for predicting the subsequent strokes in the se-
quence.

6.2 Forecating task formulation

In action forecasting for racket sports such as badminton, the strokes are the central
actions. A stroke is the motion of a player preparing to hit the shuttle until shortly
after contact between the racket and the shuttle. The exchange of strokes between
players is called a rally, and it continues until one player fails to return the oppos-
ing player’s stroke. The objective is to predict the next stroke within a rally based
on previously executed strokes while also considering the actual motion of players by
incorporating 2D skeleton pose data.
A rally R is denoted R = [s1, . . . , sN], where si is the ith stroke within the rally. Each
stroke is described by a sequence of skeleton data S

(i)
1 , . . . , S

(i)
T , with T representing

the duration of a stroke sequence and N the number of strokes in a rally.
A player skeleton S

(i)
j within a stroke si (ith stroke in the sequence) captures the spa-

tial configuration of the player’s body at a given time frame j, represented by a set of
key points that denote the 2D image positions of the body joints. Additionally, the
sequence G = G

(i)
1 , .., G

(i)
j , ..G

(i)
T , representing the 2D positions of the players’ feet2

on the ground plane for each frame, is sampled and structured as G
(i)
j ∈ RT×2, as an

additional data source.
The goal is to predict the subsequent stroke si+1 in the rally sequence R and show
that leveraging both the historical sequence of strokes and motion provided by the
2D skeleton poses improves the prediction rate. The input data structure with the
segmented skeleton sequences for each stroke in the rally are shown in Figure 6.1.
The forecasting task is additionally split into Split-M and Split-T forecasting. In split-
M, the feature sequence is cut off after the previous player’s motion of the current
stroke is done. On the contrary, for split-T strokes, the motion (and shuttle trajec-
tory) is cut off right before a player hits the shuttle for the next stroke st+1. Recall,
Figure 1.4 depicts the stroke definitions.

2Average of left and right foot position

114

Figure 6.1: Data structure overview: Each stroke/action in a rally, i.e., stroke sequence, is provided the
skeleton motion sequence of the stroke for additional context.

6.3 RallyTemPose

This section presents the causal stroke prediction model, RallyTemPose. The primary
contribution of the model is an encoder-decoder architecture that leverages skeleton
data and player court position to predict the next stroke in a badminton rally. The
encoder computes an embedded representation that conditions the rally sequence, en-
abling the prediction of the subsequent stroke:

p(si+1 | si,K1:i, G1:i, Id) = Dec(s1:i,Enc(S1:i, G1:i, Id)), (6.1)

where s1:i denotes the sequence of strokes up to time i, S1:i represents the skeleton
seqeunce from the initial timestep to timestep i. Likewise, G1:i is the player ground
position data, and Id is a player identification index. Thus, the encoder module Enc
captures the representation of the stroke motion and player identifiers, which the de-
coder is tasked with fusion with the embedded stroke sequence s1:i to predict the next
stroke si+1. An overview of RallyTemPose architecture is shown in Figure 6.2.

6.3.1 Encoder

The encoder processes raw data frames of player positions and skeleton poses to pro-
duce embedded representations for stroke prediction. It consists of several key compo-
nents. First, a linear projection layer embeds the raw skeleton poses and player posi-

115

Figure 6.2: Overview of RallyTemPose architecture with individual model components.
The abbreviations refer to the following: JE: learned joint Encoding added to each pose keypoint, TE:
learned Temporal Encoding added to the frame level tokens in a stroke, STB: Spatial Transformer Block,
TTB: Temporal Transformer Block, GPB: Group Pooling Block, MLP: Multi-Layer Perceptron, TCN: Tem-
poral convolutional Network smoothing over the player ground positions, DB: decoder block, LM: Lan-
guage Model.

tions into tokens suitable for transformer processing. A learnable joint encoding (JE)
is added to the tokenized data to provide information about the joint arrangement in
the skeleton data.
Next, the Spatial Transformer Block (STB) applies a pose-wise transformer mech-
anism focusing on spatial relationships between keypoints in the players’ movements.
The STB captures spatial dependencies within each player’s pose at a single time
frame. This block follows the standard transformer architecture introduced in sec-
tion 2.3, consisting of multi-head self-attention (MHSA), layer normalization, and
feed-forward networks. However, it is adapted to include self-attention (intra-player
attention) and cross-attention (inter-player attention) to capture interactions between
players and individual movements.
Following the STB, a Grouped Pooling Block (GPB) aggregates information for a
tensor X ∈ RG×N×D and emphasizes useful global features of X while maintaining
relevant local features of the local groups in the N -dimension. The GPB operates by

116

performing global and local max pooling over the embedded features, allowing the
model to pick out the most important features globally and locally within each group.
Specifically, operating on an embedded tensor X ∈ RG×N×D, where G is the group
size, N is the number of groups (e.g., keypoints or time frames), and D is the feature
dimension, the GPB performs global max pooling:

Md = Gpool(X)d = max
n,g

Xn,g,d, (6.2)

and local max pooling within each group:

Qn,d = Lpool(X)n,d = max
g

Xn,g,d. (6.3)

The locally pooled features Q are concatenated with the globally pooled features M

(expanded to match dimensions), resulting in a tensor Y ∈ RN×2D:

Yn,d = Concat[Qn,d,Md]. (6.4)

In the end, a linear weight matrix layer maps Y ∈ RN×2D to the feature dimension D.
The encoder continues with the Temporal Transformer Block (TTB), which fo-
cuses on temporal dynamics by processing the sequence of poses over time. Like the
STB, the TTB captures temporal dependencies across multiple time frames for each
player and incorporates self-attention and cross-attention mechanisms to model inter-
actions over time.
After the TTB, another GPB pools over the embedded temporal representation. The
encoder outputs three latent variables (see Figure 6.2): a stroke representation zs and
player-specific representations z1 and z2. The stroke representation zs merges infor-
mation from both players for each stroke, providing complete context, while z1 and z2

focus on individual players.
In both the STB and TTB, the block compute both inter-player attention (cross-
attention) and intra-player attention (self-attention), enabling the model to capture
interactions between players as well as individual movements. Figure 6.3 illustrates
the different types of attention in the encoder module. The stroke representation zs

receives a concatenated array of both player representations, then focused through
GBP.

117

Figure 6.3: Illustration of the different types of attention present in the encoder module.

6.3.2 Decoder

The decoder predicts the next stroke in the sequence using the encoded representa-
tions. It incorporates modifications beyond the standard transformer decoder archi-
tecture to suit the specific requirements of stroke prediction in badminton. An em-
bedding layer maps the one-hot encoded stroke sequences into stroke tokens. Exploit-
ing the turn-based nature of badminton, the player-specific representation (z1 or z2)
of the player performing the current stroke is added to the corresponding stroke to-
ken. The decoder block then processes this enriched sequence.
The Decoder Block (DB) combines self-attention, dual cross-attention, and an adap-
tive fusion mechanism, extending on the transformer decoder structure from [108] out-
lined in Chapter 2.3. The block begins by applying masked multi-head self-attention
to the embedded stroke sequence, ensuring that the model attends only to previous
strokes and maintains causality.
Following self-attention, the DB employs two forms of cross-attention in parallel:
Encoder-to-Decoder Cross-Attention: This module performs cross-attention us-
ing the stroke representation zs as Key (K) and Value (V) while using the a linear
transformation of the Stroke type embeddings as Query (Q).
Decoder-to-Encoder Reverse Cross-Attention: This mechanism utilizes the re-
verse procedure as the Encoder-Decoder cross attention. Here the representation of
the stroke embeddings are used for computing the K and V, while Q is determined
based on zs.
Subsequently, an adaptive fusion layer linearly combines the outputs of these dual

118

cross-attention mechanisms, effectively merging the different sources of information.
This fusion allows for capturing the dependencies between past strokes, player move-
ments, and the context provided by the encoder. An additional transformer layer pro-
cesses the output of the fusion layer to refine the combined representation further.
The transformer block includes the standard feed-forward network (MLP) with GELU
activations [53], layer normalization, and residual connections, following Figure 2.4.
The decoder’s architecture is tailored to enhance the integration of spatial and tempo-
ral context from the encoder with the sequence of past strokes, improving the predic-
tion of the next stroke. By incorporating player-specific representations and modified
attention mechanisms, the decoder effectively models the dynamics of badminton ral-
lies.

6.3.3 Enhanced Stroke Embeddings

Another aspect of the model is using a pretrained language model to provide richer
representations of stroke types. Specifically, BERT [31] is used to generate stroke em-
beddings. Each stroke type is annotated with a textual description of its characteris-
tics and typical use cases. These descriptions are processed through BERT to extract
high-dimensional embeddings from its latent layers.
Figure 6.4 shows the three types of stroke-embeddings explored in this work. The
language model-derived embeddings offer more detailed representations than those
learned from the comparatively smaller badminton datasets for training the prediction
model. Incorporating these enhanced stroke embeddings allows the model to leverage
semantic information about the strokes, potentially improving its ability to generalize
and adapt to strokes with similar characteristics.

6.3.4 Training

The design of a transformer allows for N − 1 training samples to be created from a
N stroke rally S. In each training sample, the last stroke functions as the prediction
target of the model, while all prior strokes in the rally serve as the observed sequence.
This strategy allows for variable-length training sequences, allowing the model to ob-
serve the connection between all possible strokes in a rally during training. Sequence
diversity helps the model avoid overfitting. The network is trained using two loss
functions.

119

Figure 6.4: The 3 different stroke embeddings explored for the forecasting model. 1) A learned embedding
table for the different stroke classes, 2) Pre-trained text-embeddings of very brief stroke descriptions. 3)
Pre-trained text embeddings of detailed stroke descriptions.

First, the cross-entropy loss is minimized between the target and predicted strokes:

Lmain(si+1, p̂i+1) = −
C∑

j=1

s
(j)
i+1 log(p̂

(j)
i+1), (6.5)

where C is the number of stroke classes, si+1 is the one-hot encoded target stroke,
and p̂i+1 is the predicted stroke type probability vector.
Second, an auxiliary objective is defined on the output of the encoder’s latent stroke
variable, zs. The cross-entropy of the linear projection, âi, of the latent stroke variable
zs(i) and the corresponding stroke type si is minimized as

âi = Wauxzs(i) + baux, (6.6)

Laux(si, âi) = −
C∑

j=1

s
(j)
i log(â

(j)
i). (6.7)

Here, both objectives are described for a single stroke denoted by the subscript i, but
in practice, the loss is the average of all strokes in a sequence. The total loss is the
weighted sum of the two losses

L = γLaux + Lmain, (6.8)

where γ is a hyperparameter, γ = 0.3 during experiments.

120

6.4 Experiments

6.4.1 Evaluation metrics

In badminton, more than one stroke is often a viable choice, which should be reflected
in the evaluation metrics. The performance of the models is judged based on the ac-
curacy (Acc) of their prediction, the top-2 accuracy Acc-2), and the top-3 accuracy
(Acc-3). Additionally, the F1-score is included to inspect the model’s ability to handle
stroke-type imbalance in the sequences. The metrics were all introduced in subsec-
tion 4.3.4.

6.4.2 Baselines

To my knowledge, no other existing work uses stroke skeleton data to enhance future
stroke prediction capabilities. Therefore, the model performance is compared to other
sequence and action prediction baselines not explicitly designed for badminton. All
model baselines consist of current state-of-the-art concepts for sequence prediction,
and thus, while not intentionally designed for badminton stroke prediction, comparing
to the baselines allows for a reasonable validation of the prediction capabilities of the
RallyTemPose model. The following baselines are used for comparison:

• Seq2Seq [103]

• Transformer [109]

• Actionformer [79] + Transformer decoder

6.4.3 Implementation details

The dimension of embedded representation (d) per head is set to 16, the number of
heads (h) in the MHSA is set to 4, and the forward expansion in the inner dimension
of feed-forward layers is set to 4 following [51]. A rally’s max sequence length (s) is
set to 35, and T varies for different rallies. Similarly, the max temporal length of each
stroke motion (T) is set to 30. Dropout and attention dropout are utilized in each
MHSA block with a drop rate of 0.3. The models are trained with a batch size of 1
using AdamW with a learning rate set to 10−4. Zero padding is performed for individ-
ual stroke motion sequences. Padding the rallies was also tested but did not improve
performance.

121

Table 6.1: Accuracy (Acc), Top-2 Accuracy (Acc-2), and Top-3 Accuracy (Acc-3) of the models of this
work and other baselines on the ShuttleSet and BadminDB datasets.

Split-M ShuttleSet BadminDB
Model Acc (%) Acc-2 (%) Acc-3 (%) Acc (%) Acc-2 (%) Acc-3 (%)
Seq2Seq (LSTM) 47.9 72.4 83.5 57.3 82.3 86.0
Transformer 49.8 73.9 87.2 61.5 85.4 92.5
POT + Trans Dec 52.1 74.1 91.2 58.4 82.0 91.7
RallyTemPose 54.3 77.3 92.5 62.8 83.5 93.1

Table 6.2: Accuracy (Acc), Top-2 Accuracy (Acc-2), and F1-Macro (F1-M) are reported on the shuttleset
+ shuttleset22 rallies [115] with split-T data for the baseline models and RallyTemPose (RTP).

split-T ShuttleSet ShuttleSet22
Model Acc (%) Acc-2 (%) F1-Ma Acc (%) Acc-2 (%) F1-Ma
Seq2Seq (LSTM) 48.4 73.0 39.7 49.0 76.3 40.4
Transformer 49.1 73.9 40.0 51.3 76.1 41.6
PoT + Trans Dec 52.9 78.5 43.9 56.3 81.0 47.1
TemPose-TF 51.6 72.7 42.0 54.7 73.3 46.4
RallyTemPose 61.2 85.1 52.4 61.0 85.5 51.8

6.4.4 Main Experiments

Split-M Forecasting: Experiments from Paper 2 compare forecasting models on
the ShuttleSet and BadminDB datasets with Split-M input data. RallyTemPose out-
performs the other baseline models in standard and top-3 accuracy. On the Shut-
tleSet dataset, it achieves an accuracy of 54.3%, a top-2 accuracy of 77.3%, and a
top-3 accuracy of 92.5%, indicating its ability to rank the correct outcome within
the top three predictions in over 90% of the cases. In the BadminDB dataset, the
model achieves an accuracy of 62.8% and a top-3 accuracy of 93.1%. The BadminDB
is much smaller than ShuttleSet, which resulted in the model often overfitting. As a
result, the much simpler sequential models perform better on BadminDB compara-
tively. Here, RallyTempose shows only marginally better prediction accuracy than the
baselines.
The results show the model’s prediction prowess and reflect its ability to select the
most logical outcomes. For a given situation, multiple stroke candidates can be per-

122

Figure 6.5: Comparisons of class accuracy for the different stroke types in the ShuttleSet dataset.

fectly viable simultaneously. The results in both accuracy metrics, especially in the
top-3 accuracy, suggest that the RallyTemPose model’s way of incorporating skeleton
motion and player-specific information improves the prediction logic compared to the
baselines in the context of badminton datasets.

Split-T Forecasting: Post-publication of Paper 2, experiments have been pur-
sued for the Split-T input data, where the trajectory of the shuttlecock comprises the
stroke. As previously stated, this is on the border between action anticipation and
early action prediction (of the next stroke) since the preparation phase for the next
stroke motion includes some of the preparation movement but none of the shuttle tra-
jectory information.
From a practical perspective, it presents a more player-realistic situation for predict-
ing the stroke choice of the opponent. The results are shown for the baseline mod-
els and RallyTemPose in Table 6.2 with the top results for each metric and dataset
shown in bold. The experiments show that RallyTemPose (in the table RTP) outper-
forms all other baselines by a > 3% margin.
Another apparent observation is that the PoT + Transformer decoder also has a sig-

123

Figure 6.6: To the left is the confusion matrix for the shuttles data, and to the right is the confusion
matrix grouped according to logical classes.

nificant performance improvement compared to the other baselines, which makes
sense since the PoT + Dec skeleton-based transformer model also benefits from the
added information of the preparation motion of the player performing the shot. Com-
pared to the Split-M forecasting, the performance is improved by 5− 7%, which seems
reasonable given the extra information presented to the models. Including the shuttle
trajectory U and Bone information B results in a minor performance increase across
the metrics. However, including the shuttle position has a much smaller effect than
anticipated. One possibility is that the current model architecture is not well-suited
for handling the shuttle data, which is handled identically to the player court position
in RallyTemPose.
Lastly, compared to the results from the cut-off experiments in chapter 5 Table 5.8 it
might appear strange that TemPoseTF based only on the preparation phase skeleton
motion (+ U and G), i.e not information from the other strokes in the rally, can ap-
pear to perform better than RallyTemPose. However, that is actually not the case.
The data is evaluated differently for the stroke recognition and forecasting experi-
ments, as described in chapter 4. For example, the model will never encounter serves
as the output target in forecasting experiments since the first stoke is always given
as an observable input. To make a fair assessment of the two, the performance of the
TemPoseTF is included in the comparison. This model sees no historical rally infor-
mation, only prior stroke trajectory and current stroke preparation according to the

124

forecasting experiments procedure. Here, it can be observed that TemPoseTF per-
forms slightly worse but is comparable to the Seq2Seq and Transformer baselines.
Thus, having information about the rally does boost performance significantly.

Logical misclassifications: In Figure 6.5, the specific accuracy for all stroke types
is plotted. Strokes like smash are accurately predicted, while strokes like clear and
drives are only correctly predicted 12% and 14% of the time, respectively. However,
by examination of the confusion matrix in Figure 6.6, most classifications can be at-
tributed to logical reasoning, and all misclassifications belong to sensible groups (Net-
shots, push-rush, and lobs), (drives and defensive shots) and (smash, clears and drops).
For example, a clear is predominantly hit from the backcourt on shuttle trajectories
and racket swings similar to a smash and, to a lesser degree, a drop. This is consis-
tent with the faulty prediction of clears being smashes or drops. Thus, the mispredic-
tions follow the underlying logic of the game. Similarly, a drive can easily be confused
with a defensive reaction shot.
The prediction model can still be improved further. One hypothesis is that a deeper
strategic understanding of each situation can increase accuracy even more. However,
the results indicate that the model, through a purely next-stroke action prediction,
has developed a rudimentary understanding of the game of badminton.

6.5 Discussion

6.5.1 Ablation Study

The impact of the skeleton-based stroke condition on the prediction capability is ex-
amined through an ablation study. Three relative contribution are examined:

1. Skeleton data S

2. Ground position of the players G

3. The specific player embedding Id

Based on model input, the RallyTemPose encoder is altered, e.g., when the court po-
sition is not included, logically, the TCN block is left out of the encoder. Thus, the
ablation study was performed for six different model variants. After removing specific
model inputs and their corresponding model components, the respective prediction
accuracies are shown in Table 6.3. The results show that the most critical factor is

125

Table 6.3: Ablation Study of RallyTemPose model. The Keypoint corresponds to skeleton data S, Ground
to the court position G, and Player rep to the player IDs I. The experiment was performed on the Shuttle-
set data using motion-based splitting (split-M).

Keypoint Ground Player Rep Accuracy (%)
48.3

✓ 49.2
✓ 46.9

✓ 51.6
✓ ✓ 50.1

✓ ✓ 52.4
✓ ✓ 51.7
✓ ✓ ✓ 54.3

the inclusion of the player ground position, as leaving out this data along with the
TCN block leads to a 2.6% drop in performance. The encoder version made solely of
a TCN block achieves a 51.6% accuracy. Thus, ground position is by itself the clearly
most important input for the encoder module. This is consistent with the [116] re-
search, where they used only the player and shuttle hitting position for predicting the
next stroke type. The court position strongly dictates which strokes a player can vi-
ably hit and, therefore, is also consistent with basic understanding of the sport.
The skeleton keypoint data only slightly outperforms the decoder-only benchmark,
which takes the sequences of embedded stroke labels as input. By itself, the skeleton
data provides insufficient information to affect the forecasting performance positively.
However, when supported by other information modalities, the skeleton data do lead
to a positive performance improvement, achieving accuracies of 51.7% and 52.4% for
player ID and court position, respectively.
Finally, the experiments indicate that the player-specific information does not signif-
icantly boost the prediction accuracy. Moreover, when player information is the only
encoder input, the performance is even worse than that of the decoder-only baseline.
Thus, player information does not bring significant value. However, as shown in the
next section, learning player-specific representations allows for introspective player
analysis that can be extrapolated from the model. Including the players’ ground po-
sitions results in a significant performance boost. A potentially even greater perfor-
mance increase could also be obtained by including precise 3D skeleton motion.

126

Table 6.4: Comparison of Text Embedding (TE) Methods, using either a learned embedding table for the
stroke classes or a pre-trained bert for Text embedding of stroke descriptions.

Embedding Method Acc (%) Acc-2 (%) F1-M (%)
Learned Embedding 58.5 83.7 49.6
BERT TE (Brief) 57.4 82.1 48.2
BERT TE (Detailed) 61.2 85.1 52.4

6.5.2 Text-embedding study

Table 6.4 shows the results of experimenting with different stroke sequence embedding
methods. The performance for the top-1 and top-2 accuracy and the F1- macro scores
are shown. The results show that the text embeddings of the detailed stroke descrip-
tions lead to the best performance with about 1%. This gives a high probability that
detailed-text embedding is the best-suited stroke embedding method for the forecast-
ing model.
On the other hand, the brief descriptions actually yield a slightly worse performance
than the learned stroke embeddings. This shows that the amount of detail in the de-
scriptions actually has a significant impact on the performance. Doing more detailed
experiments regarding the text descriptions in future experiments could be interest-
ing, in two areas in particular. First, what information in the text is actually useful,
and which details cause confusion? Second, can player characteristics be encoded in
the stroke embeddings jointly with the stroke descriptions to provide more nuanced
embeddings?

6.5.3 Match Analysis Prospects

The model’s design allows for player comparison by analyzing the latent variables of
the model, for both zs – the encoder representation of a stroke – and z1, z2 the player
representations for a stroke. Figure 6.7 and Figure 6.8 show t-SNE plots of the la-
tent variables. t-SNE [12] is a dimensionality reduction method that reduces the di-
mensionality of the latent variables from DL → 2, allowing the representations to be
visualized. In the visualization, zs are colored based on the target stroke they rep-
resent, whereas z1 and z2 are colored according to the players they represent. Clear
groupings are observed for the different zs stroke variables and partial groupings of
the player variables. This indicates that zs and, to a lesser degree, z1 and z2 store

127

relevant information about strokes and playing styles, respectively. While the specific
player embedding does not significantly improve the model’s prediction accuracy, it
allows for model intrinsic playstyle comparisons. Ensuring that the player information
is stored properly in the z1 and z2 representations can surely be improved. One ap-
proach briefly explored was adding a regularizing loss-term based on predicting player
IDs from z1 and z2. However, this yielded significantly worse prediction accuracy and
has not been pursued further for the moment. Nevertheless, this direction will poten-
tially be important for the development of a useful player comparison method.

Player Similarity Playstyle similarity of different players can be projected by look-
ing at the cosine similarity of the player-specific latent variable for the other players
in the dataset. The cosine similarity is calculated by random sampling of N = 1000,
strokes, for each of the pair combinations of players and calculating the average cosine
similarity between the latent player variables as

Player Simi,j =

N∑
n=1

zni · znj
∥zni ∥∥znj ∥

. (6.9)

Table 6.5 shows the cosine similarity between the latent variables of players for five
players. Observe that there is a notable difference in similarity between the players.
On average, the male (first three players) and female (last two players) have a lower
similarity, whereas the same gender similarity scores are higher. However, the player
similarity score is also quite low between the three males. This is quite meaningful
since Male 3, known for a unique, endurance-based, hard-to-read playstyle, Male 2,
with a very fast-paced style, and Male 1, with a physical and powerful playstyle, are
very different player types and the similarity score seems to reflect just that. Future
work could include categorizing distinct playstyles and attempt to interpret them as
defensive, offensive, power, placement, etc.

Playstyle analysis In Figure 6.9, a bar plot of the average accuracy for each player
in the ShuttleSet dataset is shown. There is a notable gap of more than 20% average
accuracy between the players for which strokes are predicted the best compared to
the player predicted the worst. The prediction accuracy of specific players could po-
tentially be used to indicate how well players can mask their strokes. However, that

128

Figure 6.7: t-SNE plot over the latent stroke zs representation, colored according to the observed stroke
types.

approach would have to assume that the model can flawlessly predict straightforward
unmasked strokes, which is not yet guaranteed. Still, through continuous improve-
ment of the model, this could be a helpful asset for player analysis.

6.5.4 Future prospects

One aspect that could prove valuable for analysts doing match preparation would be
the potential to generate realistic rallies for different match situations (game states)
since that would allow in-depth sampling of the model’s top suggestions for best con-

Table 6.5: Cosine similarity between latent player variables of different classes. (M: male, F: female)

Player sim M1 M2 M3 F1 F2
M 1 0.61
M 2 0.43 0.58
M 3 0.37 0.41 0.67
F 1 0.21 0.19 0.31 0.71
F 2 0.23 0.51 0.49 0.57 0.65

129

Figure 6.8: t-SNE plot over the latent player representation (z1 and z2), colored according to the tar-
get player Id. Note the lack of distinct groupings of the player variables, which could be explained by the
difference/similarity in how players perform certain strokes.

tinuation (choice of stroke) in the given conditions. The forecasting architecture is the
primary component in such a pipeline. While not yet implemented, a possible com-
plete rally forecasting architecture would include the following 3 extensions to the cur-
rent architecture:

1. The Stroke prediction decoder is tasked with predicting the duration of the next
stroke in the rally, similarly to [75], where the stroke type prediction would be
used to predict the stroke duration.

2. An additional Skeleton-motion decoder module would be added, fx based on [25]
This would be based on the Stroke and player embedding + the stroke predic-
tion/label. The skeleton motion would be predicted using an Inverse RallyTem-
Pose encoder module with the duration dictated by the output of the Stroke
prediction decoder.

3. The complete architecture would be trained in two phases. Firstly, skeleton-
prediction decoders and the RallyTemPose decoders are trained separately on

130

Figure 6.9: The average accuracy of next stroke predictions for all the players in the dataset.

their task. Secondly, joint training of the two model components, which can be
trained separately in pertaining steps and then jointly.

Not only would a ”complete” rally generation pipeline be a valuable tool for analysts
and coaches. A more coarse rally generation architecture could also significantly im-
prove stroke recognition models. As discussed in section 5.5, even slightly inaccurate
sequences could be used to pretrain recognition models before fine-tuning on curated
real stroke sequences.
Another prospect involves enhancing the model’s capabilities by incorporating addi-
tional variables, such as match outcomes (win/loss) to facilitate more sophisticated
tactical analysis. Regularizing stroke-embedding and player-embedding loss terms
might also improve the stability of the model training, while enhancing performance
on the evaluation metrics.

6.6 Chapter Conclusion

This research introduced the RallyTemPose model designed specifically for stroke pre-
diction in badminton, utilizing an encoder-decoder architecture. The model integrates
skeleton data and player-specific information using a spatiotemporal transformer en-
coder.
Experiments conducted on two different real-world badminton datasets show an in-
crease in performance for this approach compared to other forecasting baselines. Fur-

131

thermore, the extracted latent representations show potential use for player analysis
and match preparation.

132

Chapter 7

3D Reconstruction of Shuttlecock
Trajectories

In the previous chapters, badminton-specific downstream tasks were attempted us-
ing extracted features with the player skeleton, and shuttle position coordinates as
input. However, all features (except player court position) were expressed in image
coordinates. This final chapter looks into estimating real-world 3D coordinates of the
shuttle trajectory for in-the-wild scenarios such as broadcasted badminton matches.
While the skeleton modality was the primary modality focused on throughout the the-
sis, the previous chapters show that the shuttlecock provides valuable information to
distinguish between and predict badminton strokes. Additionally, accurate estima-
tion of the world space (i.e., real-world 3D) coordinates allows for direct extraction of
specific player performance metrics, such as shuttle placement, shuttle speed of shots,
hitting positions, shot height, flight time, etc. This information is essential to profiling
players and helpful when broadcasting matches.
The central theme of the chapter is addressing the issue of the limited availability of
3D ground truth data. Publicly available data is either limited in its variety or the
sheer number of training samples, which proves insufficient for teaching robust 2D
to 3D lifting models that generalize to in-wild videos. Badminton videos present ad-
ditional challenges because detailed, precise movements make up the stroke motion
and shot trajectories. Badminton shots can reach velocities of up to 420km/h, and
the trajectories can reach a height beyond 10 meters, often moving out of the cam-
era frame. High-quality 3D data does exist, but it is mostly proprietary and owned

133

by specialized companies such as HawkEye, stemming from their multi-view camera
recordings of badminton matches.
In the absence of real available 3D ground truth material, an alternative approach is
necessary. This chapter will explore the potential of creating viable synthetic 3D data
from 2D image projection combined with physical 3D shuttle flight modeling.
The chapter is divided into two sections.

1. The pin-hole camera model is introduced, which allows projecting 3D world co-
ordinates to an image plane specified by the given camera parameters.

2. Estimating or ”lifting” shuttle trajectories from 2D image coordinates to real-
world 3D coordinates. The chapter extends on ideas from the Paper 3.

The key distinction between strokes and shots was defined at the beginning of the
thesis in subsection 1.4.2. A stroke is attached to the motion of the player, which is
referred to as a split-M motion sequence. Correspondingly, the trajectory of the shut-
tle produced by the stroke motion is defined as a shot. The motion (shuttle and skele-
ton) during the shot’s trajectory is called a split-T motion sequence. Since this chap-
ter looks deeper into the shuttle trajectory and reconstruction of the 3D trajectory,
the data sequences will be referred to as shots.
The premise for the 3D shuttlecock reconstruction is centered around the physical
modeling of the shuttle trajectories. The trajectories can be viewed as an initial value
problem (IVP), with the equations of motion constituting the differential equations
that describe the shuttle flight and the initial position and velocity providing the ini-
tial conditions of the system. This way the trajectory of different shots can be simu-
lated numerically just by choosing realistic starting values. By sampling camera posi-
tions from known broadcasted matches, it is possible to create (2D,3D) pairs with no
practical upper bound on the number of samples that can be simulated.
It is then demonstrated that the lifting model trained on the synthetic trajectories
generalize well to the real-world broadcasting matches, using a combination of unique
evaluation metrics to support the 2D projection error.
The shuttlecock 3D reconstruction section is an extension of Paper 3, a paper pub-
lished in collaboration with two master’s students based on their thesis work. The pa-
per focuses on the potential of physical modeling to generate synthetic training data

134

https://www.hawkeyeinnovations.com

for ball trajectory estimation in tennis 1. Since the publication, the premise has been
repurposed for badminton, with an entirely new code-base and improvements and ex-
tensions of the original Paper 3 suggested.
The contribution of the chapter and extensions to Paper 3 consists of the following:

1. Redefinition and code implementation of the synthetic reconstruction method
for badminton.

2. Increased attention to detail for simulation of synthetic badminton strokes to
allow for better generalization to real data.

3. Increasing robustness of the model by sampling camera positions from the dis-
tributions of camera positions of the broadcasted matches in [114]. All camera
parameters were calibrated manually.

4. Testing more complex network architectures for the synthetic training pipeline,
Transformer, TCN, LSTM, etc.

5. A unique cross-view consistency metric assesses the robustness of the predictions
from several different angles.

6. Shot classification using shuttle trajectories, strictly comparing 2D vs 3D data.

Transitioning between real-world 3D coordinates (world space) and camera coordi-
nates is important in training lifting models, especially in pseudo-self-supervised ap-
proaches with no ground-truth 3D data.

7.1 Camera models

Recall, the brief introduction to homogeneous coordinates section 4.1. A property of
homogeneous coordinates is that all non-zero scalar multiples, i.e., sPh (and s ̸= 0),
represent the same point. This is the defining property of perspectivity [50], which re-
sults in the points along a ray in the pinhole camera all projecting to the same image
point.

1Credit goes to the students for writing most of the code, and the paper is based mainly on their
thesis. As their supervisor, the contribution of the undersigned suggested the main idea behind the
paper (and thesis) and played an important role in shaping the paper’s development

135

7.1.1 Pinhole Camera Model

The pinhole camera model can project a 3D scene point in an arbitrary world frame
system Pw = (Xw, Yw, Zw, 1)

T into a 2D image plane point p = (u, v, 1)T through a
perspective transformation. Both Pw and p are in homogeneous coordinates, making
them 4D and 3D vectors, respectively. For simplicity, the ’homogeneous’ part is often
dropped and referred to as vectors.
The pinhole camera model’s transformation 2 can be represented by the following ma-
trix equation:

sp = K [R|t]Pw (7.1)

where Pw is the 3D3 point in the world frame, p is the 2D point in the image plane,
K is the camera intrinsic matrix, [R|t] is the joint rotation-translation matrix, where
R and t are the rotation matrix and translation vector, and s is an arbitrary scale
factor. Per Equation 7.1, the mapping from world to image coordinates is composed
of two steps. First, the 3D point Pw = (Xw, Yw, Zw, 1)

T is mapped from the world
frame to the camera frame Pc = (Xc, Yw, Zw, 1)

T 4. Second, the 3D position in the
camera basis is projected onto the 3D homogeneous image coordinates using the in-
trinsic camera matrix.
The change of basis from world frame to camera frame coordinates is a product of 2
different matrix operations. The changing of the basis from the world frame to the
camera frame can be represented by the following linear mapping/matrix operation:

Pc =

rxx rxy rxz tx

ryx ryy ryz ty

rzx rzy rzz tz

0 0 0 1

Xw

Yw

Zw

1

 =

[
R t

0 1

]
Pw (7.2)

where the rij and ti are the rotation parameters. Both the rotation and translation
2Assuming distortion-free projection
34D vector since it is represented in homogeneous coordinates.
4I.e. a change of basis from world frame to camera frame.

136

matrix have 3 degrees of freedom (DoF)5. Subsequently, the projective operation

Xc

Yc

Zc

 =

1 0 0 0

0 1 0 0

0 0 1 0

Xc

Yc

Zc

1

 = [I|0]Pc (7.3)

extracts the 3D camera coordinates from the 4D homogeneous vector Pc. Thus, the
extrinsic part of the camera projection can be governed by the joint rotation-translation
matrix:

Xc

Yc

Zc

 = [I|0]

[
R t

0 1

]
Xw

Yw

Zw

1

 =

rxx rxy rxz tx

ryx ryy ryz ty

rzx rzy rzz tz

Xw

Yw

Zw

1

 = [R|t]Pw (7.4)

The 3D point in camera coordinates are projected onto the 2D image plane using the
intrinsic parameters. Intrinsic parameters describe the internal characteristics of the
camera. They include the focal lengths fx and fy in the x and y directions, and the
principal point coordinates (cx, cy). The focal length dictates the scale of the image
the camera sees along the x, y axes in pixel units. The optical center is the point in
the image coordinates corresponding to the projection of the camera center in the im-
age plane. The parameters make up the intrinsic matrix K

K =

fx 0 cx

0 fy cy

0 0 1

 (7.5)

5Even though the rotation matrix has 9 parameters, only 3 are independent. These 3 DoF corre-
spond to the rotational orientation of the camera, i.e., rotation around the X-axis, Y-axis, and Z-axis.

137

from which the projection to image coordinates can be expressed as:

p =

u

v

1

 = K

Xc

Yc

Zc

 =

fx 0 cx

0 fy cy

0 0 1

Xc

Yc

Zc

 (7.6)

=

fxXc + cxZc

fyYc + cyZc

Zc

 = Zc

fxXc+cxZc

Zc
fyYc+cyZc

Zc

1

 = Zs

fx
Xc
Zc

+ cx

fy
Yc
Zc

+ cy

1

 (7.7)

Because the product of K and the 3D camera coordinates can be expressed as a 3D
homogeneous vector (in the image coordinates), the scale ambiguity in the pinhole
camera model emerges. The point’s true scale (or depth) along the viewing ray is lost
due to the fundamental property of perspective transformations.
By combining both steps, the transformation from a 3D world point to a 2D image
point represented by the Equation 7.1:

sp = K[R|t]Pw (7.8)

Zc

fx
Xc
Zc

+ cx

fy
Yc
Zc

+ cy

1

 =

fx 0 cx

0 fy cy

0 0 1

rxx rxy rxz tx

ryx ryy ryz ty

rzx rzy rzz tz

Xw

Yw

Zw

1

 (7.9)

The projective transformation of the 3D points has 10 DoF, which means that to cal-
ibrate a camera to perform the projection, 5 corresponding (p,Pw) sets of points are
needed. In practice, the image produced by the camera will be subject to some degree
of distortion. The equations for the two most common distortion types, radial and
tangential, are provided. Including the distortion parameters, at least 8 correspond-
ing points are needed to estimate the camera parameters. Accounting for distortion is
done with a few additional equations, but will not be elaborated further in this thesis.

138

Figure 7.1: Complete End-to-End Pipeline. For training, synthetic data is generated by sampling initial
conditions (γ0). This data creates 3D and image trajectories along with sampled camera parameters. The
model predicts initial conditions based on image trajectories and court corners. The lifting model is itera-
tively trained using Mean Squared Error (MSE) between true γ0 and predicted γ̂0 as the loss function. For
inference, features are extracted from segmented video data of competitive matches in shuttleset22. Indi-
vidual shots are then used alongside court corners as input to the model. The Lifting model (TrajTrans)
predicts a set of initial conditions, enabling the estimation of 3D shot trajectories.

7.2 3D shuttle-trajectory estimation with Physics-based
modeling

In high-level racket sports, accurate 3D information on the ball/shuttle holds great
value, assisting umpires in calling the game and gathering player and shot informa-
tion for analytical purposes. Currently, the most precise commercially available 3D
reconstruction technology is the Hawk-Eye system6, which uses multiple cameras and
triangulation to capture the ball’s 3D position with an error margin of less than 3.6

millimeters. However, such a system is expensive and accordingly only available for
the highest level of play. Most athletes will lack access to that quality of data. En-
abling the tracking of the shuttle’s 3D position using a single, everyday camera de-

6https://www.hawkeyeinnovations.com

139

https://www.hawkeyeinnovations.com

vice, such as a mobile phone, would allow the average players to access game statistics
previously reserved for professionals.
Estimating 3D ball positions from monocular video has been attempted in sports like
volleyball [17], basketball [15], and badminton [72], but none has explored the syn-
thetic training approach that was presented in Paper 3, which aims to enable efficient
estimation of 3D trajectories from monocular video in racket sports. Emphasis in this
chapter is for obvious reasons on Badminton.
Direct 2D-to-3D lifting of ball coordinates presents a significant challenge since (2D, 3D)

— pairs of ball coordinates are generally not publicly available. Instead, segmented
individual shots can be modeled by kinematic motion equations including air resis-
tance. The physical laws of motion set up differential equations for the trajectories,
after which a numerical ordinary differential equation (ODE) solver is used to esti-
mate the 3D positions of the shuttle iteratively for the full trajectory. The 3D coor-
dinates can be mapped to 2D image coordinates using the camera parameters gener-
ating synthetic ”pseudo” ground truth input-output pairs. Usually, a training loop
involving iterative time integration and subsequent 3D-2D camera projection is too
unstable to converge. Instead, a transformer architecture that predicts the initial
conditions (γ0), given the image (2D) trajectories as input, provides a significantly
smoother training routine.
Before training the model, the input/output pairs are obtained by selective sampling
of initial conditions and subsequent trajectory simulation using a 4th-order runge-
kutta time integration method. Then, only keeping trajectories, passing the net, and
landing within the court allows for the acquisition of 3D shot trajectories. Finally,
the image (input) coordinates are retrieved by projection to the image plane using
sampled camera positions from the distribution of known camera settings (extrinsic
and intrinsic parameters) from shuttleset22 matches.
A model could also be trained on the synthetic (2D,3D) pairs. However, compressing
input image trajectories to initial condition predictions allows for better generalization
of real-world trajectories.
The work of this thesis does not dive into segmentation/localization of stroke/shots
from full badminton matches. Instead, the starting point of the thesis is an already
segmented shot/stroke. Student projects, etc have looked into the segmentation/localization
task. For example, a section of Paper 3 looks into hit segmentation to predict the du-
ration of a shot (ball trajectory) where the start and end of each shot were identified

140

by detecting hits and bounces (in tennis). The SynthNet pipeline can be seen in Fig-
ure 7.1. This chapter focuses on badminton, which can be generalized to any racket
sport with minor additional effort granted .

7.2.1 Related work for 3D trajectory estimation

Prior works in the field of computer vision in sports have focused on extracting indi-
vidual components from video, such as court detection [41, 119, 111], ball/projectile
tracking [64, 107, 102] or human pose estimation [11, 59] where the extracted features
has mainly been utilized to perform downstream tasks, e.g., action recognition and
forecasting, which have already been demonstrated in the earlier chapters of the the-
sis.
When doing 3D tracking of sports balls, the most used and most reliable way is to
use a multi-camera setup [92, 122, 125, 42], where the scene is captured from multiple
angles and triangulation is used to estimate the balls 3D location. While this can give
accurate results, it is less cost-efficient than using a single camera as one needs access
to multiple cameras and the possibility and permission to set them up.
Research in 3D ball tracking from monocular video has been done in several sports
such as volleyball [17], table tennis [96], basketball [15] and badminton [72], all us-
ing a similar approach. Like in the case of this thesis, they view the 3D estimation
task as an Initial Value Problem (IVP), where the projectile kinematic equations gov-
ern the motion of the balls. With accurate initial conditions the motions can be de-
termined through numerical integration. Thus, they extract video features and use
optimization techniques to find the best initial conditions for a reconstructed 3D tra-
jectory. This method has evident flaws. First, using optimization techniques means
optimizing each shot one at a time, resulting in long inference times. Secondly, the
reprojection error between the reconstructed 3D trajectory and the image trajectory
is used as part of the loss function, which is undesirable as this can lead to unrealistic
trajectories. Instead, this thesis proposes using a neural network to predict the ini-
tial condition, train this network on synthetic data, and use the ground truth initial
condition for loss during training.

141

7.2.2 3D Reconstruction Task Definition

The objective is to develop a model capable of reconstructing 3D shuttlecock shot tra-
jectories from monocular video. Given segmented shot video segments, the process in-
volves extracting the shuttle and court image coordinates, which a lifting model uses
to predict the 3D initial conditions. The 3D trajectory can then be estimated through
numerical integration with an ordinary differential equation (ODE) solver. The lifting
model is trained exclusively on synthetic data to estimate initial conditions γ0 for bal-
listic 3D trajectories using projected 2D image trajectories. Thus, the actual training
dataset consists of image trajectories and γ0 input-output pairs. The synthetic data
generation process will be explained in detail in the following section. The model is
evaluated on synthetic and real data using reprojection error metrics and a consis-
tency loss, which tests whether perturbations to the camera position affect the pre-
dicted 3D trajectories. To reach a robust lifting model capable of generalizing to real
flawed image input, much emphasis is put on the simulation and augmentation of the
synthetic 3D trajectories, such that a diverse dataset reflecting accurate match shots
is procured.

7.2.3 Synthetic Learning Procedure

Dividing each match (video) into a sequence of 3D shot trajectories (split-T) means
each shot can be modeled as a projectile under drag:

d2x(t)
dt2

= g − D

m
|v(t)|v(t), (7.10)

where m is the mass of the shuttlecock, x and v are the 3D position and velocity vec-
tors, g is the gravitational constant, and D is the drag constant, which is a multiplica-
tion of the following physical constants:

D =
1

2
ρACD =

1

2
ρ

(
R2π

4

)
CD, (7.11)

with ρ being the air density at 20◦, A is the cross-sectional area, R is the cross-sectional
radius of the shuttlecock end, and CD is the drag coefficient. The actual values of the
constants used for simulating the trajectories can be found in Table 7.1, which uses
the values from an empirical study [87], where the CD estimate in particular is based

142

Table 7.1: Physcial constants for modeling shot trajectories, i.e., constructing proper equations of motion.
The value of the constants are taken from [87].

Constants g (cm/s2) m (kg) A (cm2) R(cm) ρ (kg/cm3) CD

9.82 · 102 5.85 · 10−3 33.39 6.53 1.2 · 10−6 0.65

on free-fall testing of the shuttlecock.
The 3D equations of motion in Equations 7.10 constitute three coupled partial dif-
ferential equations, which have no analytical solution but can be solved numerically
by ODE solvers to retrieve a discretized version of the shuttle position with N time
steps. Forward Euler’s time integration provides a simple solution method. At each
step, the acceleration is assumed constant for a sufficiently small time step ∆t =

tn+1 − tn, where n ∈ N is the current step. Thus, for each small ∆t, we calculate ac-
celeration an+1, velocity vn+1, and position xn+1, based on the acceleration, velocity,
and position of the current time n step as follows:

an+1 = g − D

m
|vn|vn (7.12)

vn+1 = vn + an∆t (7.13)

xn+1 = xn + vn∆t. (7.14)

To create a 3D trajectory initial conditions v0 = (vx0,vy0,vz0)
T and x0 = (x0, y0, z0)

T

are required. A visualization of this process can be seen in Figure 7.2. Origin of the
world space is placed in the middle of the badminton court. The x-axis is oriented
parallel to the net (width) of the court, with the positive direction being from left to
right. The y-axis direction is oriented perpendicular to the net, with positive pointing
away from the camera. The z-axis is oriented vertically, perpendicular to the ground,
pointing upwards.
Above, Eurler’s method was used to demonstrate how differential equations can be
solved numerically. The actual trajectory simulation procedure uses the 4th order
Dormand-Prince pair Runge-Kutta formula [33], which can model the 3D trajecto-
ries more efficiently as a smaller number of timesteps are required to obtain accurate

143

Figure 7.2: Visual presentation of creating 3D trajectory given a set of initial conditions (IC). The loop
runs in N iterations, creating a position and velocity with each time step. Figure taken from Paper 3 [38]

3D solutions to the trajectories.

Sampling procedure The practical generation of synthetic dataset trajectories
involves two overall generation steps:

1. Sampling γ0 that, through simulation, leads to realistic and diverse shot trajec-
tories.

2. Sampling of the camera parameters for projecting 3D trajectories to 2D ”image”
coordinates that can be used for input.

The simulated trajectories should span a broad range of trajectories, mimicking most
strokes performed during a match. Therefore, the initial conditions + flight duration
are defined for the different shot types: {Smash, Clear, Block, Lob, Drive, Net-Kill,
Drop }. The different shot types are shown in Figure 7.3. The start conditions for
simulating different shot types can be found in Table 7.2. They encompass the shut-
tlecock’s starting position, speed, and spherical launch angles. The initial velocity is

144

Figure 7.3: 3D Trajectories of the shuttle produced by Initial Conditions for different stroke types.

Table 7.2: Simulation Parameters for Badminton Strokes. v0: Initial speed [cm/s], θ: Elevation angle
[degrees], ϕ: Azimuth angle [degrees], x0: Initial x-axis court position [cm], y0: Initial y-axis court position
[cm], z0: Initial height [cm], t: Time [s].

Stroke v0 θ ϕ x0 y0 z0 t

Clear [3500; 8000] [30; 55] [70; 110] [−305; 305] [450; 670] [150; 275] [0.82; 1.0]
Drop [2000; 4500] [5; 15] [40; 140] [−305; 305] [300; 650] [100; 225] [0.80; 1.0]
Smash [6000; 10000] [−50; 0] [60; 120] [−305; 305] [500; 600] [200; 300] [0.5; 1.0]
Drive [3000; 4500] [−5; 8] [60; 120] [−305; 305] [150; 450] [100; 180] [0.4; 1.0]
Net Shot [500; 2000] [30; 80] [30; 150] [−305; 305] [10; 180] [30; 145] [0.5; 1.0]
Net Kill [2500; 5500] [−80;−15] [45; 135] [−305; 305] [20; 100] [160; 220] [0.90; 1.0]
Lift [4000; 5000] [40; 75] [70; 110] [−305; 305] [30; 400] [20; 60] [0.80; 1.0]
Block [2500; 4500] [10; 50] [45; 135] [−305; 305] [150; 450] [10; 150] [0.70; 1.0]

145

sampled in spherical coordinates since it allows for a more homogenous sampling of
shots with a specific speed and launch direction compared to cartesian coordinates.
The sampled initial conditions are then input into a numerical ODE solver, in this
case, based on the Runge-Kutta method, to compute the shuttlecock’s trajectory.
The resulting trajectory is evaluated to ensure it passes over the net and lands within
the court boundaries, aligning with realistic play scenarios. If the trajectory does not
meet these criteria, the initial conditions are resampled, and the simulation is rerun
until a valid trajectory is achieved. Thus, the trajectories are generated using a Monte
Carlo accept-reject methodology. The iterative process ensures that the simulated
trajectories closely mimic real-world shuttlecock behavior. The generation procedure
is shown in algorithm 2.
The camera setting parameters of the synthetic are sampled from the position dis-
tribution of the 47 different camera positions of the shuttleset22 matches. As seen in
Figure 7.4a, broadcasting cameras are permanently placed directly behind the court
for broadcasting matches. This is very natural since it produces the best viewing ex-
perience. However, this does provide a narrow diversity in viewing perspectives of
projected 2D trajectories. This lack of variety in 2D input could inhibit learning for
the lifting model and limit generalization to real-world inference. This is addressed
by:

1. converting a sampled position from cartesian to spherical coordinates.

2. Rotating the position along the azimuthal and polar angle while keeping the
same radius.

3. Orienting the camera direction toward the middle of the net and converting
back to cartesian coordinates.

This produces much more diverse 2D input trajectories from which the model can
learn. The effect is shown in Figure 7.4, where six sampled camera settings are shown
along with the original (yellow) camera placement from shuttleset22.

Model

The prediction capabilities of several time-series models (TCN, GRU, LSTM) along
with the FNN (MLP) baseline from the synthnet paper (Paper 3) are tested. How-
ever, the primary model proposed is a trajectory transformer (TrajTrans), taking

146

Algorithm 2: Shuttlecock Trajectory Simulation
Data: Shot parameters for each type and side
Result: Valid trajectories for each shot type and side
Function ProjectileMotion3D(t, y):

Extract position (x, y, z) and velocity (vx, vy, vz) from y;
Compute speed v =

√
v2x + v2y + v2z ;

Compute drag forces Fdrag,i = −1
2CdρAvvi for i ∈ {x, y, z};

Compute accelerations ai =
Fdrag,i

m for i ∈ {x, y};
Compute acceleration az = −g +

Fdrag,z
m ;

return [vx, vy, vz, ax, ay, az];
foreach shot type do

foreach court side do
repeat

Sample initial conditions (x0, y0, z0, v0, θ, ϕ);
Convert θ and ϕ to radians;
Compute initial velocities vx0 = v0 cos θ cosϕ, vy0 = v0 cos θ sinϕ,
vz0 = v0 sin θ;

Initialize ODE solver with state [x0, y0, z0, vx0, vy0, vz0] and
ProjectileMotion3D();

while solver successful and z ≥ 0 do
Integrate to next time step;
Append (x, y, z) to trajectory;

Verify trajectory passes over net and lands within court;
until valid trajectory obtained;
Store shot data: type, side, initial conditions, trajectory;

147

(a) Fixed camera settings from shuttleset22
(b) Camera setting sampled from shuttleset22
distribution with rotated augmentations in
spherical coordinates.

(c) Positional perturbations + orientation on
original match camera placement.

Figure 7.4: Different camera view ”sampling methods”

the image trajectories and court corners as input to predict initial conditions. Trans-
formers scale well with a large amount of training data. They are, therefore, a logical
model choice given the virtually unlimited amount of synthetic data that can be gen-
erated for training. The composition of a standard transformer layer can be seen in
Figure 2.4. The specific TrajTrans architecture is depicted in Figure 7.6.

Multi-view Supervised Learning with Consistency Regularization

The training objective of the model is to predict a set of the six initial conditions γ̂0,
compared to the ground truth γ0 = (x0, y0, z0, vx0, vy0, vz0). Since γ0 are used to simu-
late the 3D trajectories with the numerical ODE, the objective is implicitly to predict

148

the best-fitting 3D trajectory. Since the synthetic data provides ground-truth initial
conditions (a target vector γ0 ∈ Rm) viewed from different camera projections, the
variety in 2D viewpoints can be used to improve robustness and consistency for the
model. This is realized through implementing a regulatory cross-view consistency loss
and the mean-squared error (MSE) loss between prediction γ̂0 and ground truth tar-
get for γ0 for each view.
Concretely, MSE is computed with respect to the ground truth γ0 and the model pre-
diction for each view vi, the model prediction γ̂0

(vi) = f(x(vi)).

Lsup =
1

N

N∑
i=1

1

V

V∑
j=1

∥γ̂0
(vj)
i − γ0∥22, (7.15)

where γ0 is the ground truth initial conditions and γ̂0 the predicted initial conditions.
Implicitly, averaging over all views ensures the model learns to produce consistent and
accurate predictions regardless of which view it sees.
Additionally, the model can be further encouraged for predictions across different
views of the same shot to be similar by imposing a consistency constraint:

Lconsistency =
1

N

N∑
i=1

1

Vj ̸=l

∑
j ̸=l

∥γ̂0
(vj)
i − γ̂0

(vl)
i ∥22. (7.16)

Thus, the overall loss becomes:

L = Lsup + λLconsistency, (7.17)

where λ is a hyperparameter controlling the strength of the consistency regulariza-
tion. For experiments performed in this chapter λ = 0.5.
This term ensures that the model tries to align predictions across views, even if one
view is noisy or incomplete. Combined with the supervised loss, this encourages the
model to produce stable, view-invariant predictions that match the target. 3 different
camera view input – and predictions – are shown with the simulated 3D trajectory in
Figure 7.5.

Synthetic Data Augmentation The lifting model is trained purely on simulated
3D shot trajectories and has not seen any real trajectories during training. As such,

149

Figure 7.5: A simulated 3D trajectory (blue) is shown together with predictions from 3 different camera-
view 2D inputs. Each view has a different color: yellow, red, and green.

the synthetic data can be flawless, which is not true for the image trajectories esti-
mated by the pretrained ball (shuttle) detection model in the case [105]. Thus, an-
other crucial step taken to improve generalization towards the noisy real image trajec-
tories is that the synthetic input 2D trajectories are subjected to three types of aug-
mentation during training.

1. All trajectories are subjected to a small amount of Gaussian noise.

ui = ui +N ϵs∀ui ∈ U ∈ RT×2

2. A small fraction of the image coordinates in particular trajectories are assigned
a much larger random noise, which simulates significant input coordinate out-
liers, sometimes present in the extracted image trajectories.

3. Removing a small fraction of shuttle coordinates in a number of training trajec-
tories. This stimulates failed detections by the shuttle extraction model.

This is in addition to the noise added through distorting the image by including dis-
tortion parameters in the sampling procedure of the camera parameters, which adds
”realism” to the synthetic trajectories. The cross-view consistency loss complements

150

the data augmentation excellently as strongly augmented, and thus, flawed input tra-
jectories are compared and aligned with clean trajectories from different camera an-
gles. Thus, the model should implicitly be able to infer information on the effect of
missing/distorted input coordinates.

7.2.4 Model Evaluation

To evaluate the model, two different sets of trajectories are defined or selected:

1. The 40000 synthetically created trajectories for all primary stroke types present
in [8, 115, 114]. All shots are projected to image coordinates for six unique sam-
pled camera settings. 32000 Shots are used for training, and the remaining 8000
for testing, corresponding to a (80/20) train/test split. The splitting is random
with seed 12.

2. The ground truth annotations and image shuttle trajectories from the [114]
dataset. The synthetic data allows for calculating both reconstruction (3D) and
reprojection (2D) distance errors since both ground truth 2D and 3D data are
available.

Shuttle Trajectories Evaluation Metrics

The lifting model uses the 2D coordinates and court corners (extracted from the videos)
to predict initial conditions for inference. Subsequently, the 3D trajectories are found
using the numericalODE solver to find the discretized solution to the projectile equa-
tions of motion. The reprojected image coordinates can be found using the perspec-
tive transformation of the pinhole camera model. The camera parameters for each
match (i.e., camera setting) are estimated using the badminton court’s known world
coordinates and corresponding image coordinates following a similar procedure for
calculating the homography map in chapter 4. The corresponding coordinates com-
prise the court corners from Figure 4.2 and manually annotated net-pole coordinates.
Given the real image trajectory (U) and predicted image trajectory (Û), the trajectory-
average reprojection error E

(n)
RE for the nth trajectory in a dataset, can be calculated

as the Euclidian distance between the coordinates over span of the trajectory:

E
(n)
RE =

1

T

∑
t=1

||ut − ût||2 =
1

T

T∑
t=1

√
(ut − ût)2, (7.18)

151

where ut ∈ U ∈ RT×2 is the image coordinate at time step t belonging to the input
trajectory U , and ût is the predicted image coordinate at time step t.
Hence, the mean reprojection error ¯ERE can be found by averaging over all N trajec-
tories in the tested dataset.

ĒRE =
1

N

N∑
n=1

E
(n)
RE (7.19)

Similarly, the median reprojection error ẼRE over a dataset can be found.
The ERE does provide insight into the accuracy of the predictions and, thus, the ca-
pabilities of the lifting model. However, as will be shown later, in many instances, the
reprojection error can be a misleading metric for the actual quality of a prediction.
Therefore, additional metrics will complement the ERE . Specifically for the synthetic
dataset, the (trajectory-averaged) 3D reconstruction error Erec is given by:

Erec =
1

T

∑
t=1

||Xt − X̂t||2, (7.20)

where || · ||2 is the Euclidean distance, and the X and X̂ are ground truth and pre-
dicted 3D world space trajectories, respectively. Like for Eq 7.19 the mean reconstruc-
tion error Ērec can be found. Furthermore, for the synthetic trajectories, the Mean
Absolute Error (MeanAE) between the ground truth and predicted initial condition
γ0 and γ̂0 determine the mean absolute difference between each component of the ini-
tial condition vector γ0 = (x0, y0, z0, vx0, vy0, vz0).
Finally, for real datasets a consistency error EC is utilized. EC follow the same pro-
cedure as the reprojection error for generating the 3D prediction X̂ but now, instead
of projecting the prediction to image coordinates with the match-specific camera pa-
rameters, the camera position is subjected to 8 small perturbations, which rotates or
elevates the camera position by a few degrees.
The principal idea of the perturbations is shown in Figure 7.4c. The predicted 3D tra-
jectories are projected to image coordinates using the new perturbed camera positions
(the intrinsic camera parameters are kept the same). The new image trajectories are
then fed back into the TrajTrans model to predict new initial conditions and, after
subsequent simulation based on each, new perturbed 3D predictions X̂p. X̂ now func-
tion as pseudo ground truth 3D data, while X̂p functions as the 3D trajectory predic-
tions. Thus, the mean consistency error ĒC and median consistency error ẼC for the

152

Figure 7.6: Transformer Model Architecture.

real dataset can be calculated between X̂ and X̂p exactly like X and X̂ for Erec for
the synthetic dataset. This metric, however, has several limitations compared to ERE .
Specifically, the error is only concerned with the consistency between the initial and
perturbed predictions. Thus, the quality of the initial prediction does not influence
the EC as long as the perturbed prediction is consistent with the original prediction.

7.3 Shuttle Experiments

7.3.1 Dataset and Implementation Details

The lifting model is evaluated on synthetic data and actual broadcasted shot sequences
from shuttleset22. The synthetic test set comprises 20% of the generated data, corre-

153

Table 7.3: Traning augmentation parameters.

Augmentation fraction Small noise Outlier noise Outlier rate Removal rate
0.3 0.002 0.5 0.05 0.2

sponding to 8000 3D initial conditions γ0 and 48000 input ”image” trajectories.
The augmentations to the synthetic data during the training are specified by the pa-
rameters shown in Table 7.3. The augmentation fraction is the number of trajectories
where any augmentation is applied to a trajectory. The Small and outlier noise pa-
rameters are the standard deviation of the 0-mean Gaussian noise types added to the
augmented data; 0.002 corresponds to about 2 pixels for normalized data, whereas 0.5
corresponds to an augmentation by ∼ 450 pixels, i.e., 68% of trajectories with outliers
applied are augmented by 0 to 450 pixels. The outlier rate is the number of shuttle
coordinates where the outlier augmentation is used. Hence, the number of coordinates
added outlier noise is 0.3 · 0.05 = 1.5%.
The Shuttleset22 [114] matches and annotated shot segmentations are used for real-
world testing of the 2D to γ0 (3D) lifting model. WASB estimates the image trajec-
tories [105], a model using HRnet as a backbone. All available 47 matches are used
for testing, constituting 41000 test samples. The matches are recorded with a static
camera from an overhead broadcast view behind one of the backlines, with a resolu-
tion of 1280x720 pixels and a frame rate of 30 fps.
The image trajectories are zero-padded to have a length of Tmax = 100 frames to cre-
ate inputs of equal length. The image resolution 1280×720 scales down trajectory and
court coordinates. As shown in the model visualization in Figure 7.6, the court cor-
ners are concatenated to the models as additional points in the temporal dimension.
This approach is perhaps not intuitive, and court dimensions could be incorporated in
other ways, such as an additional input channel for each trajectory. However, testing
different methods showed no significant difference in performance, so this method was
selected for its simplicity. The TrajTrans for is implemented with L = 5, heads = 8,
dimhead = 8, DL = 256, Dropout = 0.3.

Synthetic Evaluation Table 7.4 shows the performance metrics of different mod-
els on both the real-world and synthetic test data. The real-world data are trajecto-
ries from all non-failed annotations (unknown shots and shots with a duration un-

154

der five frames removed). Unsurprisingly, the results show that the models consis-
tently perform the best on the synthetic trajectories. This is expected since a γ̂0 ex-
ists, which can perfectly follow the simulated synthetic 3D trajectories. In practice,
this is not easy as the model has to capture a representation that can do this based
only on the image (2D) trajectory for ∼ 200000 different and augmented trajectories.
If the dataset was narrowed down to ∼ 50 samples (with no augmentations), then
the model could estimate the trajectories perfectly. This approach would mirror the
optimization-based approaches like [72], just on the initial conditions and not the 2D
reprojection loss.
On the synthetic data, TrajTrans performs the best with a reprojection error of 20.4
pixels. Compared to Paper 3, this extended training approach appears to perform
worse. However, that is not actually the case. It is a consequence of the synthetic
dataset with the different viewing angles and greater shot diversity being a much
more challenging dataset. The results for the exact FFN model from the paper are
also shown, with an average Euclidean pixel distance of 65.0px. This increased com-
plexity of the artificial data results in better relative generalization of the models on
the real-world dataset, and the capabilities of TrajTrans model be shown by compar-
ing to the previous baseline.

Real-world Evaluation The TrajTrans model can limit the mean reprojection er-
ror to 52.0px. Again, the results do not appear overly remarkable, but when com-
pared to the different lifting models, TrajTrans performs significantly better. More-
over, poor data input and poorly segmented shot sequences can most likely explain
the non-optimal reconstruction. This will be elaborated on in the discussion section.
The median reprojection ẼRE of TrajTrans is 23.6px. Thus, a significant difference
between the mean and median of reprojection error is observed for the real-world
data. This indicates that a minority of outliers mainly contribute to the larger er-
ror. While the majority of the predicted trajectories have a much lower reprojection
error ERE . The differences between mean and median values on the synthetic data
are smaller, showing fewer outliers. The model can be evaluated using reconstruc-
tion Erec error on the synthetic data, where an average distance (error) of 48 cm is
observed. Finally, the consistency loss EC is pretty consistent. The baseline models
score around 1 − 2m ĒC . Indicating that the models have benefitted from multiview
training.

155

Table 7.4: Model performance on the two different test sets of trajectories. ĒRE denotes the mean recon-
struction error, ẼRE the median reconstruction error, ĒC the mean consistency error, and ẼC the median
consistency error. Finally, Ērec is the 3D reconstruction error.

Image World

ĒRE ẼRE ĒC ẼC Ērec

TrajTrans
Real 52.0 px 23.6 px 1.64 m 1.36 m -
Synthetic 20.4 px 16.8 px - - 0.48 m

BiTCN
Real 60.2 px 33.8 px 200 m 1.25 m -
Synthetic 37.8 px 22.8 px - - 0.62 m

FNN
Real 93.2 px 56.2 px - m - -
Synthetic 65.0 px 46.6 px - - 0.87 m

GRU
Real 111.0 px 84.4 px 1.91 m 1.42 m -
Synthetic 70.8 px 58.9 px - - 1.16 m

LSTM
Real 107.7 px 89.2 px 1.67 m 1.37 m -
Synthetic 78.7 px 63.0 px - - 1.45 m

Outlier assesment As observed in Table 7.4, all models show a large gap between
the mean and median reprojection error on the real data reprojection error. This sug-
gests that the distribution of the trajectory-averaged pixel distance is skewed, and a
small fraction of outliers strongly influence the average. In Figure 7.7 ERE is plot-
ted for the shuttleset22 data, verifying the hypothesis, as it can be observed that the
distribution has a long tail of large ERE , which can be considered outliers. Visual in-
spection shows that the samples the model scores poorly on fall into distinct cate-
gories.
A significant number of the poorly scoring samples can be attributed to poor detec-
tion of the shuttle by WASB [105], which often leads to the predicted shuttle tra-
jectory being better than the reference detected image trajectory, but still getting a
larger average reconstruction error. Likewise, there are inaccurate annotations of the
player hitting the shuttle, which causes the model to predict nonsensical 3D trajecto-

156

Figure 7.7: The two plots show the reprojection error distribution before and after removing clear outliers
from the real-world dataset.

ries.
Removing a small fraction of the worst performing trajectories, specifically 3500/41000 ≃
8.5%, leads to a much less skewed distribution of errors where the mean and median
are only ∼ 3 pixels apart. Thus, this could be one logical way to explain the out-
liers. Granted, some of the removed samples were not overly flawed input trajecto-
ries but simply poor predictions by the model. An explanation for these samples was
not present in the synthetic data and therefore, the models struggle to predict these
samples accurately. These should, of course, not be removed as they represent the
model’s actual capabilities. However, it is impossible to differentiate between the two
when filtering the dataset. The different cases are discussed with examples in subsec-
tion 7.3.2.

Intial condition evaluation The γ0 predictions on the synthetic data also pro-
vide valuable insight into the model capabilities. The average absolute error for the
initial position and initial velocity is shown in Table 7.5 in meters and meters per
second, respectively. The model does well in estimating the starting position of the
stroke in the x and z-coordinates, with the error ∼ 0.1m while the y-coordinate is,
on average, 0.35m away from the true y-coordinate. This results in an average error
distance of

√
(0.08m)2 + (0.35m)2 + (0.10m)2 ≃ 0.37m, which is an improvement

compared to results on the tracknetV2 tennis dataset from Paper 3. However, the er-
rors in the predictions of the initial velocities are larger on average for the badminton
data, with an error, i.e., model uncertainty above 1m/s in y and z directions. This
could partially be caused by the synthetic dataset being more complex and challeng-

157

Table 7.5: Average absolute differences and standard deviations on initial conditions on synthetic test
data.

γ0 Direction Absolute Error

Position (x0)
x 0.08 ± 0.07 m
y 0.35 ± 0.33 m
z 0.10 ± 0.09 m

Velocity (v0)
x 0.90 ± 0.79 m/s
y 3.57 ± 3.62 m/s
z 1.21 ± 1.18 m/s

ing to model compared to Paper 3.
Another likely explanation could be the relative velocities compared to the distance
covered are much higher for badminton than for tennis. Hence, the model is generally
better at estimating the initial position than the initial velocity.
Consistent with the equivalent experiment in Paper 3, the y-direction still causes the
most significant error for both the initial velocity and the initial launch position pre-
dictions. This is caused by the camera’s optical axis being closely aligned with the
y-axis in the world space coordinate system for most camera positions. However, com-
pared to the results Paper 3, the relative error in the y-direction compared to the
total error is reduced for both the velocity and position estimates. This suggests in-
cluding more variety in the sampled camera positions, i.e., diversity in the viewing an-
gle, for the synthetic data to help reduce the ambiguity in the direction of the optical
axis.
Observing the 3D trajectories produced from real-world 2D input reveals some addi-
tional tendencies: The model has added difficulties determining the proper 3D start
position of the shot when the trajectory starts from the side of the court furthest
away from the camera. This is again due to the model finding predictions in the di-
rection of the optical axis difficult. On the side, of the court, the furthest away from
the player is a single pixel corresponding to a much larger real-world distance. This
manifests in issues for not only the model-making prediction but also for the shuttle
detection model WASB. Thus, it is logical that the compounding effect of these fac-
tors inhibits the model predictions further away from the shuttle.

158

Figure 7.8: Bar plots showing the reprojection error of the different shot types of real-world matches.
Lobs, Clear, and Serves, in particular, appear more difficult for the model to predict than the rest.

Shotwise reconstruction performance The average trajectory-wise reconstruc-
tion error is shown in the Figure 7.8 for the different shot types in shuttleset22 [114].
Most shot types have an average reconstruction error clearly below 40 pixels, which
for a 1280 × 720 image resolution corresponds to a relative pixel error of 2.7%. How-
ever, the serve, clear, and lob all have errors above 100 pixels. Limitations of the
physical modeling of the trajectories could cause this. The lobs and clears (and long
serves) have the longest trajectories, which would result in the most significant re-
projection errors if the modeling of the trajectories does not exactly capture the real
shuttle trajectories. The limitations and approximation behind the modeling of the
shuttle trajectories are further discussed in the limitations section. Additionally, for
serve, in particular, the footage of the segmented shots is less consistent. Sometimes,
the broadcast contains close-ups of the players, which results in less consistent detec-
tion of the shuttle image trajectory.

Trajectory-based Shot classification One way to estimate the quality of the in-
ferred 3D trajectories is to perform shot recognition using those same trajectories.
In contrast to chapter 5, where action recognition involved multiple modalities, the
approach here relies solely on shuttle trajectories. Specifically, the TrajTrans model

159

Table 7.6: Showing performance metrics of comparing 2D image trajectories vs predicted 3D trajectories
for shot classification on the shuttleset22 dataset. The TrajTrans model is here predicting the shot types
instead of the initial conditions.

Input Acc (%) F1-M
2D Trajectory 71.4 59.7
2D Traj + Court 73.1 61.5
3D Trajectory 73.4 63.2

was trained on the train-test match split of the ShuttleSet22 dataset [114] to estimate
action classes instead of initial conditions. It was trained with three different input
types: (1) 2D WASB-detected [105] image trajectories, (2) 2D image trajectories plus
2D court corners, and (3) the inferred 3D trajectories.
As shown in Table 7.6, the 3D trajectory input achieves the best accuracy and F1-
macro (F1-M) scores, yet only by a small margin—0.3% in accuracy and 1.8 in F1-M.
In comparison, the TemPose model (which uses multi-modal input features) achieves
an accuracy greater than 90% and an F1-M of about 78.8 on the same train-test split
Table 5.7.
One interpretation is that the inferred 3D trajectories might be insufficiently accu-
rate when coupled with the 2D input data. However, other evaluation methods have
shown promising results, suggesting this may not be the primary issue. Another pos-
sibility is that TrajTrans is not the optimal architecture for shot classification. Yet,
most experiments thus far suggest that choosing GCN, TCN, or transformer-based
models does not drastically affect performance. Therefore, the most likely explanation
is that the shuttle trajectories alone do not provide enough discriminative informa-
tion to distinguish shot classes. The ablation study in Table 5.4 supports this idea, al-
though the underlying reasons remain unclear. Intuitively, shuttle trajectories should
contain nearly as much discriminative information as the skeleton motion, but that
does not appear to be the case. Further studies are needed to identify the root cause
of this discrepancy.

7.3.2 Qualitative Assessment of 3D Trajectories

In Figure 7.9, the image coordinates of the shuttle extracted by WASB [105] (blue)
and the model’s predicted 3D trajectory with its reprojection (orange) are shown

160

Figure 7.9: WASB image trajectory and the reprojected predicted 3D shot examples. Left: WASB image
trajectory (blue) and the reprojected predicted 3D shot (orange). Middle: The predicted 3D shot viewed
from the side. Right: The predicted 3D shot viewed from above.

alongside two views of the corresponding 3D prediction. These examples indicate that
the reprojection closely follows the input trajectory and that the 3D prediction ap-
pears reasonable. Both examples are positive cases, where the model accurately esti-
mates the 3D trajectory.
By contrast, Figure 7.10 highlights the challenges and limitations of the current lifting
model. In the first row, two high-quality 3D predictions demonstrate the TrajTrans
model’s capabilities: From fairly challenging input trajectories, the model accurately
predicts γ̂0, which by visual inspection seems correct. In the second row, the model
still makes correct predictions despite compromised image trajectories. In the exam-
ple on the left, the input trajectory has no glaring outliers but does contain missing
coordinates. Because missing detections do not affect the reprojection loss, this sam-
ple has a reprojection loss close to zero, consistent with a high-quality prediction. On
the right, however, the input includes several missing coordinates and outliers (e.g.,
a body part is occasionally misidentified as the shuttle). Despite these issues, the 3D
trajectory looks accurate when visually inspected.
In these cases, the outlier coordinates do affect the ERE reprojection error. As a re-

161

sult, ERE may misrepresent prediction quality. This outcome is fairly common and
shows that the model generally makes logical and sensible predictions even if ERE ex-
ceeds 40 pixels. Visual inspection further suggests that certain match conditions (e.g.,
camera angle, lighting, or saturation) were not well-represented in the WASB [105]
training data, leading to lower-quality 2D detections. It is also clear that the model
would benefit significantly from better 2D inputs. Although the valid data channel
and training augmentations enhance robustness to flawed inputs, there are scenarios
where accurate predictions are impossible if the 2D detections are poor. Thus, im-
proving the 2D detection pipeline is the most critical next step. Another potential
solution is outlined in subsection 7.4.3.
Rows 3, 4, and 5 in Figure 7.10 show cases where the model’s predictions are incor-
rect but appear logical given the input data. In Row 3, for example, the first few
image frames fail to detect the shuttle correctly. In these situations, the model of-
ten predicts a backcourt launch position away from the camera, even when the player
nearest to the camera makes the stroke. If one relies solely on the (faulty) 2D input,
it becomes impossible—even for a human observer—to infer the correct starting posi-
tion. Consequently, the model’s mistake is unsurprising.
Regarding detection improvements, note that the shuttle travels rapidly after contact
with the racket. At a launch speed of around 250km/h and a frame rate of 30fps, the
shuttle moves about 2.3 meters per frame. It is, therefore, challenging to accurately
detect the start of a shot. Training a detection model using high-speed cameras (60–
120fps) could improve reconstruction accuracy, though this remains a conjecture as no
such experiments were conducted to verify this claim in the thesis.
Another approach could incorporate side-of-court information within the TrajTrans
model and train it on more samples where the initial frames of the trajectory are
explicitly removed, thereby teaching it to handle missing start positions more effec-
tively.
In another Row 3 example, the model again places the launch position on the side
farthest from the camera. Although the predicted 3D trajectory fits well with the
(faulty) 2D input, it is entirely inaccurate. ERE remains low but does not capture the
inaccuracy—demonstrating a limitation of using reprojection error in isolation. Mean-
while, EC also fails to offer helpful information, emphasizing the importance of visual
inspection. In Row 4, the annotated timestamps for the shot segments are incorrect,
producing unreasonable input trajectories. This leads the model to fail, demonstrat-

162

ing the necessity of precise segmentation for reliable 3D reconstructions. Although
segmentation was not a primary focus of this thesis, it remains crucial for accurate
information extraction in badminton.
Row 5 contains more extreme examples of poor input trajectories where the model
cannot accurately predict γ0. On the right, the detection is essentially random noise,
illustrating how severely flawed 2D detections can be. On the left example, there are
no initial 2D detections, outliers, and slightly incorrectly annotated shot segmenta-
tion. Given these inputs, the model’s erroneous prediction is still understandable.
Finally, the last row in Figure 7.10 shows suboptimal model predictions despite hav-
ing relatively good input trajectories. In the left example, the hitting position is cor-
rectly estimated, but the shot’s direction is off, indicating that the model still has
room for improvement. In the right example, the model misidentifies which side of
the court the shuttle is on—a common issue when the input trajectory is near the net
or the hitting side is ambiguous due to the camera perspective. Including player po-
sitions or additional side-of-court information as part of the model, input could miti-
gate this issue, as also suggested for the Row 3 examples.

7.3.3 Ablation Studies

An ablation study explored the effect of using the court corners as input along with
the image trajectory. The results presented in Table 7.7 show a significant perfor-
mance increase in all metrics when the input includes the court corners. This suggests
knowing the court position and size (in image coordinates) yields more accurate tra-
jectories. The reason for this is likely two-fold. First, the court corners are static in
the world coordinates. Hence, the changing image position of the corners provides the
model with information about the camera position and trajectory perspective. Sec-
ond, the court corners provide a reference boundary for the model, indicating limits
for the shot placement.
A second ablation study explores the effect of multi-view data, data augmentation,
and regularizing view consistency loss. The results are shown in Table 7.8. The first
observation is that the trained model with Data aug + Multiview + View Consis-
tency loss (VCL) performs best on both the real and the synthetic datasets. How-
ever, the model that leaves out the augmentations but still trains on the multiview
data and views consistency loss experiences a significant drop in performance. On the

163

Figure 7.10: Inspection of the 3D predictions from real-world shot sequences. This figure presents six
rows of prediction examples, each illustrating different attributes and limitations of the TrajTrans model.
Every row contains two examples. In each example, the left image shows the first frame of the segmented
shot video, with the input 2D trajectory (blue) and the reprojected 3D prediction (orange). The middle
image presents the side view of the 3D prediction, while the rightmost image shows the top view.

164

Table 7.7: Ablation study of input features on all real-match trajectories.

Input ĒRE (px) ẼRE (px) ĒC (m) ẼC (m)
2D Trajectory 158.3 89.1 1.78 1.36
2D Trajectory + corners 52.0 23.6 1.64 1.36

Table 7.8: Performance evaluation on the Synth vs Real (Sset22) for different synthetic training initia-
tives. Data Aug: Training Data Augmentation, MvD: Multiview Data, VCL: View Consistency Loss

Modality Performance
Data Aug MultivD VCL Synth:ĒRE (px) Real: ĒRE (px)

32.1 70.0
✓ 92.8 110.8

✓ 25.9 58.3
✓ ✓ 56.7 77.5

✓ ✓ ✓ 20.4 52.0

other hand, the model performs well, having not experienced any regularization or
training data augmentation. The multiview – data – trained model outperforms the
other single-view trained model by ∆ĒRE > 6px for both datasets. From this, it is
reasonable to conclude that multiview data improves 3D recognition performance to
some degree.
Models trained with data-augmented data – without VCL – also perform terribly.
This indicates a balance between augmenting the data and regularizing for view con-
sistency is reached for the best-performing model. Since the regularization amplitude
and data augmentation parameters were kept the same for all models in the experi-
ment, it is possible that the model could reach a better performance with either data
augmentation or VCL regularization by tweaking the parameters. Nevertheless, the
model trained with (Data aug + Multiview + VCL) performing the best suggests the
training method is valid for improving shuttle reconstruction performance.

7.4 Discussion

7.4.1 Analytical Prospects

Extracting 3D player shots enables storing and examining physical properties such
as speed, hitting position, and shot placement, which can vary between players and

165

playing styles. These properties provide rich opportunities for analysis, potentially in-
forming training strategies, performance comparisons, and coaching methodologies.
As more 3D trajectory data is collected, conducting more comprehensive and robust
investigations into player-specific traits and competitive behaviors will become possi-
ble.

7.4.2 Limitations

A key limitation of the current 3D trajectory estimation pipeline is its dependence on
2D shuttle detection models. For instance, WASB [105] can misdetect or completely
miss the shuttle under challenging lighting conditions or, when the shuttle moves too
quickly, leading to unreliable or missing initial frames. Since the earliest segment of
the shuttle’s flight is crucial for estimating initial position and velocity, inaccuracies in
these frames propagate through the model and reduce final prediction accuracy.
A related issue arises from side ambiguity when the camera viewpoint allows the shut-
tle’s 2D path to be interpreted from multiple perspectives. Although incorporating a
side embedding partially mitigates this problem, it remains especially troublesome if
early trajectory coordinates are absent or mislabeled (see Figure 7.10, row 3).
Another set of limitations stems from the simplified physical assumptions in the Ini-
tial Value Problem (IVP) framework. Abrupt trajectory changes, such as hitting the
net, are not modeled correctly. Moreover, factors like wind, spin, and the non-constant
nature of the drag coefficient are not considered, thus reducing the realism of the sim-
ulated or inferred trajectories.

7.4.3 Future Work

The current 3D reconstruction framework can be improved in several directions. One
avenue involves enhancing view consistency by incorporating contrastive or momentum-
based learning strategies. Leveraging NeuralODE to optimize the initial value prob-
lem on real data through reprojection loss could further refine the transition from syn-
thetic to actual match conditions.
Another critical direction lies in denoising or reconstructing 2D shuttle trajectories
that are missing early frames, possibly through a masked autoencoder approach simi-
lar to what was done for skeleton data in chapter 5.

166

Another limitation could be addressed by extending the model architecture to incor-
porate information about the starting side in the model. This information is implic-
itly known from the player position and shot segmentation. Hence, including it in the
model would not exploit difficult-to-retrieve information. Still, it would likely allow
the model to avoid confusion about the direction of a shot with an ambiguous viewing
angle or flawed input.
Additionally, modeling more nuanced aerodynamic factors – such as spin, wear-and-
tear on the shuttle, and varying drag coefficients – could bring simulated conditions
closer to real-world scenarios and improve accuracy. Finally, training on a wider va-
riety of synthetic camera parameters, followed by targeted fine-tuning on real data,
may bolster the robustness of the model to different match setups and camera per-
spectives.

7.5 Chapter Conclusion

In this chapter, the TrajTrans transformer model was trained on synthetic 2D trajec-
tory and initial-condition pairs to estimate real-world 3D shuttle trajectories in bad-
minton matches. The model achieves promising results, reflected by low reprojection
errors and favorable consistency metrics on synthetic multiview datasets. Visual in-
spections further support the idea that the generated 3D trajectories appear realistic.
Nevertheless, the model’s performance is hindered by missing or inaccurate 2D de-
tection of the shuttle in the earliest frames and ambiguity when the camera angle al-
lows multiple interpretations. These issues most notably affect the estimation of the
shuttle’s initial velocity. Despite these limitations, TrajTrans demonstrates the poten-
tial to be a cost-effective and efficient solution for capturing 3D shuttle trajectories in
real-world settings.
Relatively simple yet strategic improvements – such as refining data preprocessing
and enhancing physical modeling – could yield significant gains in accuracy and over-
all reliability.

167

Chapter 8

Conclusion

This thesis has investigated three areas in computer vision in the context of bad-
minton analytics: Stroke recognition, Stroke forecasting, and 3D shuttle reconstruc-
tion. Focusing on skeleton motion, shuttle trajectories, and domain-targeted neural
architectures, the work has demonstrated that computer vision and machine learning
approaches can automate nuanced match analyses and generate insights at a level of
detail previously only accessible through excessive manual effort or advanced multi-
camera systems.
The following sections summarize key findings, highlight limitations, and propose
future directions leveraging collaboration between machine learning researchers and
sports practitioners.

8.1 Main Takeaways

A primary conclusion from the stroke recognition experiments is that skeleton-based
representations, especially those integrating bone, joint, and shuttle information, sur-
pass purely image-centric solutions in detecting fine-grained badminton strokes. Mod-
els such as the proposed TemPose capitalize on these compact – but discriminative –
action-focused features to ease the task of differentiating smashes, clears, net shots, or
drives. The recognition performance is close to human-level recognition. It can there-
fore reduce heavy annotation requirements and establish a realistic opportunity for
large-scale, in-depth analyses of player patterns and stroke usage.
In stroke forecasting, the thesis explored how partial or complete knowledge of past

168

strokes informs the prediction of the next action in a rally. While players sometimes
disguise upcoming shots, results indicate that even partial skeleton sequences and
player context can yield meaningful next-stroke probability estimates. These insights
can expand real-time coaching feedback, improve strategic preparation, and provide
dynamic information for match commentary. The initial results in stroke forecasting
also open opportunities for future techniques that adapt to specific match situations
or player tendencies.
Finally, 3D shuttlecock reconstruction was pursued using a monocular framework and
synthetic data. A simplified aerodynamic model was employed to generate (2D, 3D)
training pairs utilizing sampled camera parameters, removing the reliance on expen-
sive ground truth 3D data. Although contingent on accurate 2D detection and a bal-
listic model of shuttle flight, the results demonstrated that a reconstruction pipeline
can uncover shot-level information about speed, altitude, and flight path that coaches
and analysts can leverage for a deeper understanding of the performance.

8.2 Limitations & Short-comings

The experimental findings and subsequent analysis have uncovered several shortcom-
ings and limitations in relation to the investigated approaches.

Model Specialization vs. Practical Gains. Substantial effort was invested in
designing or adapting neural network layers (e.g., TCNs, GCNs, or transformers)
specifically for badminton tasks. Results generally showed that although such cus-
tomization yields small performance differences, bigger effects stem from data factors
– size, annotation quality, modality completeness – rather than fine architectural nu-
ances. Hence, while model architectural improvements are welcome, data considera-
tions appear to dominate the performance gains.

Data Size and Quality. Throughout, training efficacy proved sensitive to dataset
scale and consistency. Where large, accurately labeled segments were available, model
performance rose noticeably. In contrast, label noise, missing frames, or camera-angle
inconsistencies often undermined the benefits of architectural refinements. Thus, en-
couraging standardized annotation protocols, collaborative data sharing, or construct-

169

ing comprehensive match repositories remains essential for robust, generalizable mod-
els.

Overlapping Modalities and Complementary Features. It became evident
that skeleton data alone supported decent stroke classification and shuttle trajectories
offered relevant information for certain tasks. However, fusing multiple input streams
(e.g., skeleton + shuttle + court position) often led to incremental but consistent im-
provements. Each modality supplies subtle but unique differences, so more advanced
and further domain-specific data integration can likely yield further gains.

Unsuccessful or Unfinished Approaches. Attempts at incorporating player
Identification into the RallyTemPose stroke forecasting network did not yield the ex-
pected performance gain compared to player-unaware approaches. Different playstyles
and player tendencies certainly exist. Hence, intuitively, the inclusion of such infor-
mation should improve forecasting capabilities. The reasons for this are unknown.
Perhaps it is caused by an imperfect model design. Another possibility is that not
enough matches of all players are covered. Hence, the model captures different, more
elementary shot selection rules instead.
Similarly, sophisticated block architectures that intertwined GCN and transformer
layers in parallel streams provided only marginal recognition gains. The experiments
indicate that broad leaps in performance may hinge more on better data, rather than
highly specific model assemblies.

8.3 Future Prospects

The contributions outlined in this thesis form the basis of a badminton analytics pipeline
capable of classifying strokes at scale, forecasting future actions, and reconstructing
shuttle flights in 3D. Ongoing and prospective research may include:

• Fine-tuning and enhancement of aerodynamic model to close the gap between
synthetic and real shuttle trajectories. (e.g., adding effect of gyro-spin and non-
constant drag coefficient Cd)

• Improving the fidelity of 2D detection – for both shuttle and player skeletons
– perhaps through higher-frame-rate cameras. To this end, developing a racket

170

detection model could prove useful. However, for the current image quality of
broadcasted matches, this seems improbable, and hence, higher fidelity is needed
here.

• Scaling up the datasets (in collaboration with sports organizations), fostering
cross-organization unifying annotation standards.

As these capabilities mature, the sport of badminton will benefit from increasingly
data-driven performance tracking, advanced practice drills informed by stroke fore-
casting, and fully realized 3D analyses of both player movement and shuttle motion,
bridging the gap between raw footage and actionable knowledge of the game’s techni-
cal and strategic elements.

8.4 Key Insights for Collaboration

Implementing advanced methods, as those described in this thesis, calls for targeted
collaboration between machine learning specialists and sports practitioners. Domain
experts – coaches, analysts, and experienced players – play a vital role in specifying
which stroke details, shot parameters, etc., truly matter in coaching and match strat-
egy planning and analysis. Their input ensures that the objective of the deep-learning
methods remains meaningful. At the same time, educating and informing the domain
users about the fundamentals of deep-learning methods is essential for fruitful collab-
oration.
One unfulfilled desire during this project would be the emphasis on field trials, where
predicted strokes or reconstructed flights were tested against real player input to help
refine data requirements (to fill persistent gaps). Since top athletes are typically very
occupied, an initial target could be up-and-coming junior athletes instead.
A gap seems to exist between demonstrated machine-learning-based analytical ca-
pabilities and practical usability. In research, these methods are often in-between
generic analysis and relevant analytical considerations due to the researcher’s lack of
domain knowledge. For this reason, players and coaches often find such tools, more
tailored to a broader audience, inconvenient, if not redundant. Therefore, players and
coaches can be reluctant to spend much effort developing concrete objectives for the
use of autonomous machine-learning methods. Expectedly, that attitude will gradu-
ally change as AI-based analysis and services continuously integrate more and more

171

into society and daily life. Emphasizing intuitive visualization and interpretability of
results for domain experts will be vital to encouraging this transition and adaptation.
For example, suppose coaches are able to see and understand a model’s stroke predic-
tions and how specific frames or joints strongly influenced the classification. In that
case, they can connect such input with their current understanding to provide crucial
player feedback and integrate their new perspective into training regimes.

8.5 Overall Message

Through careful modeling of skeleton motion, stroke sequences, and ballistic shuttle
flight, this thesis has demonstrated how machine learning can automate significant
components of badminton analysis and reveal detailed motion and stroke dynamic
insights.
While architectural refinements contributed incremental gains, the overarching les-
son is that data availability, consistency, and feature synergy overshadow most other
considerations for robust performance.
Improving data pipelines, fusing complementary modalities, and extending physical
assumptions about shuttle or player motion all promise further progress. When imple-
mented thoughtfully, these tools can empower athletes, coaches, and even spectators’
experience.

172

References

[1] Abu Farha, Y. and Gall, J. (2019). Uncertainty-aware anticipation of activities.
In Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, pages 0–0.

[2] Agarap, A. F. (2018). Deep learning using rectified linear units (relu). ArXiv,
abs/1803.08375.

[3] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining.

[4] Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lucic, M., and Schmid, C.
(2021a). Vivit: A video vision transformer. CoRR, abs/2103.15691.

[5] Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., and Schmid, C.
(2021b). Vivit: A video vision transformer. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6816–6826.

[6] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

[7] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T.,
Bordes, F., Bardes, A., Mialon, G., Tian, Y., Schwarzschild, A., Wilson, A. G.,
Geiping, J., Garrido, Q., Fernandez, P., Bar, A., Pirsiavash, H., LeCun, Y., and
Goldblum, M. (2023). A cookbook of self-supervised learning.

[8] Ban, K.-W., See, J., Abdullah, J., and Loh, Y. P. (2022). Badmintondb: A bad-
minton dataset for player-specific match analysis and prediction. In Proceed-
ings of the 5th International ACM Workshop on Multimedia Content Analy-
sis in Sports, MMSports ’22, page 47–54, New York, NY, USA. Association for
Computing Machinery.

[9] Bertasius, G., Wang, H., and Torresani, L. (2021). Is space-time attention all
you need for video understanding? In Meila, M. and Zhang, T., editors, Pro-
ceedings of the 38th International Conference on Machine Learning, ICML

173

2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 813–824. PMLR.

[10] Bin, Y., Chen, Z.-M., Wei, X.-S., Chen, X., Gao, C., and Sang, N. (2020).
Structure-aware human pose estimation with graph convolutional networks.
Pattern Recognition, 106:107410.

[11] Brumann, C., Kukuk, M., and Reinsberger, C. (2021). Evaluation of open-
source and pre-trained deep convolutional neural networks suitable for player
detection and motion analysis in squash. Sensors, 21(13):4550.

[12] Cai, T. T. and Ma, R. (2022). Theoretical foundations of t-sne for visualizing
high-dimensional clustered data.

[13] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., and Sheikh, Y. A. (2019).
Openpose: Realtime multi-person 2d pose estimation using part affinity fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14] Carreira, J. and Zisserman, A. (2017). Quo vadis, action recognition? a new
model and the kinetics dataset. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4724–4733.

[15] Chao, V., Jamsrandorj, A., Oo, Y. M., Mun, K.-R., and Kim, J. (2023). 3D
Ball Trajectory Reconstruction of a Ballistic Shot from a Monocular Basketball
Video. In IECON 2023- 49th Annual Conference of the IEEE Industrial Elec-
tronics Society, pages 1–6. IEEE. ISSN: 2577-1647.

[16] Chappa, N. V. R., Nguyen, P., Nelson, A. H., Seo, H.-S., Li, X., Dobbs, P. D.,
and Luu, K. (2023). Spartan: Self-supervised spatiotemporal transformers ap-
proach to group activity recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) Workshops, pages
5158–5168.

[17] Chen, H.-T., Tsai, W.-J., Lee, S.-Y., and Yu, J.-Y. (2012). Ball tracking and
3D trajectory approximation with applications to tactics analysis from single-
camera volleyball sequences. Multimedia Tools and Applications, 60(3):641–667.

[18] Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu,
Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X.,
Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D.
(2019). MMDetection: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155.

174

[19] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. (2018). Neu-
ral ordinary differential equations. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18, page 6572–
6583, Red Hook, NY, USA. Curran Associates Inc.

[20] Chen, Y., Shen, C., Wei, X.-S., Liu, L., and Yang, J. (2017a). Adversarial
posenet: A structure-aware convolutional network for human pose estimation.
In 2017 IEEE International Conference on Computer Vision (ICCV), pages
1221–1230.

[21] Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., and Sun, J. (2017b). Cascaded
pyramid network for multi-person pose estimation. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7103–7112.

[22] Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., and Hu, W. (2021). Channel-
wise topology refinement graph convolution for skeleton-based action recogni-
tion. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 13359–13368.

[23] Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T. S., and Zhang, L. (2020).
Higherhrnet: Scale-aware representation learning for bottom-up human pose
estimation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5385–5394.

[24] Chi, H.-G., Ha, M. H., Chi, S., Lee, S. W., Huang, Q., and Ramani, K. (2022).
Infogcn: Representation learning for human skeleton-based action recognition.
In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 20154–20164.

[25] Chi, S., Chi, H.-g., Huang, Q., and Ramani, K. (2024). Infogcn++: Learning
representation by predicting the future for online skeleton-based action recogni-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages
1–14.

[26] Chu, W.-T. and Situmeang, S. (2017). Badminton video analysis based on spa-
tiotemporal and stroke features. In Other Conferences, pages 448–451.

[27] Chung, F. (1997). Spectral Graph Theory. Number nr. 92 in CBMS Regional
Conference Series. Conference Board of the Mathematical Sciences.

[28] Contributors, M. (2020). Openmmlab pose estimation toolbox and benchmark.
https://github.com/open-mmlab/mmpose.

175

https://github.com/open-mmlab/mmpose

[29] Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neu-
ral networks on graphs with fast localized spectral filtering. In Proceedings of
the 30th International Conference on Neural Information Processing Systems,
NIPS’16, page 3844–3852, Red Hook, NY, USA. Curran Associates Inc.

[30] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Ima-
geNet: A Large-Scale Hierarchical Image Database. CVPR, page 8.

[31] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: pre-training
of deep bidirectional transformers for language understanding. In Burstein, J.,
Doran, C., and Solorio, T., editors, Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association for
Computational Linguistics.

[32] Dong, L., Li, D., Li, S., Lan, S., and Wang, P. (2019). Tai chi action recognition
based on structural lstm with attention module. In Other Conferences.

[33] Dormand, J. and Prince, P. (1980). A family of embedded runge-kutta formulae.
Journal of Computational and Applied Mathematics, 6(1):19–26.

[34] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J.,
and Houlsby, N. (2021). An image is worth 16x16 words: Transformers for im-
age recognition at scale. In 9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

[35] Du, Y., Wang, W., and Wang, L. (2015). Hierarchical recurrent neural network
for skeleton based action recognition. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1110–1118.

[36] Duan, H., Zhao, Y., Chen, K., Lin, D., and Dai, B. (2022). Revisiting skeleton-
based action recognition. In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2959–2968.

[37] Dwivedi, V. P. and Bresson, X. (2021). A generalization of transformer net-
works to graphs. AAAI Workshop on Deep Learning on Graphs: Methods and
Applications.

[38] Ertner, M. H., Konglevoll, S. S., Ibh, M., and Graßhof, S. (2024). Synthnet:
Leveraging synthetic data for 3d trajectory estimation from monocular video.
In Proceedings of the 7th ACM International Workshop on Multimedia Content
Analysis in Sports, MMSports ’24, page 51–58, New York, NY, USA. Associa-
tion for Computing Machinery.

176

[39] Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., and Feichtenhofer,
C. (2021). Multiscale vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6824–6835.

[40] Farha, Y. A., Richard, A., and Gall, J. (2018). When will you do what? - antic-
ipating temporal occurrences of activities. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5343–5352.

[41] Farin, D., Krabbe, S., De With, P. H. N., and Effelsberg, W. (2003). Robust
camera calibration for sport videos using court models. In Yeung, M. M., Lien-
hart, R. W., and Li, C.-S., editors, Storage and Retrieval Methods and Applica-
tions for Multimedia 2004, volume 5307, pages 80–91, San Jose, CA. SPIE.

[42] Fazio, M., Fisher, K., and Fujinami, T. (2018). Tennis ball tracking: 3-d trajec-
tory estimation using smartphone videos. Department of Electrical Engineering,
Stanford University.

[43] Feichtenhofer, C., Fan, H., Malik, J., and He, K. (2019). SlowFast Networks for
Video Recognition. arXiv:1812.03982 [cs] version: 2.

[44] Gammulle, H., Denman, S., Sridharan, S., and Fookes, C. (2019). Forecasting
future action sequences with neural memory networks. In British Machine Vi-
sion Conference.

[45] Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021). Yolox: Exceeding yolo
series in 2021. arXiv preprint arXiv:2107.08430.

[46] Ghosh, A., Singh, S., and Jawahar, C. V. (2018). Towards structured analysis of
broadcast badminton videos. In 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 296–304.

[47] Guo, C., Zuo, X., Wang, S., Zou, S., Sun, Q., Deng, A., Gong, M., and Cheng,
L. (2020). Action2motion: Conditioned generation of 3d human motions. In
Proceedings of the 28th ACM International Conference on Multimedia, pages
2021–2029.

[48] Guo, H., Agarwal, N., Lo, S.-Y., Lee, K., and Ji, Q. (2024). Uncertainty-aware
action decoupling transformer for action anticipation. In 2024 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 18644–
18654.

[49] Hachiuma, R., Sato, F., and Sekii, T. (2023). Unified keypoint-based action
recognition framework via structured keypoint pooling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 22962–22971.

177

[50] Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edition.

[51] He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. B. (2021). Masked
autoencoders are scalable vision learners. CoRR, abs/2111.06377.

[52] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for im-
age recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778.

[53] Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415.

[54] Huang, J. and Kang, H. (2024). 3d skeleton-based human motion prediction
using spatial–temporal graph convolutional network. International Journal of
Multimedia Information Retrieval, 13(3):33.

[55] Huang, L., Li, Y., Tian, H., Yang, Y., Li, X., Deng, W., and Ye, J. (2023).
Semi-supervised 2d human pose estimation driven by position inconsistency
pseudo label correction module. In 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 693–703.

[56] Ibh, M., Graßhof, S., and Hansen, D. W. (2024). A stroke of genius: Predict-
ing the next move in badminton. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 3376–
3385.

[57] Ibh, M., Graßhof, S., Witzner, D., and Madeleine, P. (2023). TemPose: a new
skeleton-based transformer model designed for fine-grained motion recognition
in badminton. In 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 5199–5208. ISSN: 2160-7516.

[58] Ioffe, S. and Szegedy, C. (2015). Batch normalization: accelerating deep net-
work training by reducing internal covariate shift. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning -
Volume 37, ICML’15, page 448–456. JMLR.org.

[59] Javadiha, M., Andujar, C., Lacasa, E., Ric, A., and Susin, A. (2021). Estimat-
ing player positions from padel high-angle videos: Accuracy comparison of re-
cent computer vision methods. Sensors, 21(10):3368.

[60] Jeong, J., Park, D., and Yoon, K.-J. (2024). Multi-agent long-term 3d human
pose forecasting via interaction-aware trajectory conditioning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1617–1628.

178

[61] Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan,
S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M., and Zisserman, A.
(2017). The kinetics human action video dataset. CoRR, abs/1705.06950.

[62] Ke, Q., Bennamoun, M., Rahmani, H., An, S., Sohel, F., and Boussaid, F.
(2020). Learning latent global network for skeleton-based action prediction.
IEEE Transactions on Image Processing, 29:959–970.

[63] Kipf, T. N. and Welling, M. (2017). Semi-Supervised Classification with Graph
Convolutional Networks. Pre-print. arXiv:1609.02907 [cs, stat].

[64] Komorowski, J., Kurzejamski, G., and Sarwas, G. (2019). Deepball: Deep
neural-network ball detector. In Proceedings of the 14th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications. SCITEPRESS - Science and Technology Publications.

[65] Kulkarni, K. M. and Shenoy, S. (2021). Table tennis stroke recognition using
two-dimensional human pose estimation. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 4571–
4579.

[66] Li, M., Chen, S., Zhang, Z., Xie, L., Tian, Q., and Zhang, Y. (2022a). Skeleton-
parted graph scattering networks for 3d human motion prediction. In Avidan,
S., Brostow, G., Cissé, M., Farinella, G. M., and Hassner, T., editors, Computer
Vision – ECCV 2022, pages 18–36, Cham. Springer Nature Switzerland.

[67] Li, T., Liu, J., Zhang, W., and Duan, L. (2020). Hard-net: Hardness-aware
discrimination network for 3d early activity prediction. In Computer Vision
– ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XI, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pages 420–436. Springer, Cham.

[68] Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., and Feichten-
hofer, C. (2022b). Mvitv2: Improved multiscale vision transformers for classifi-
cation and detection. In CVPR.

[69] Li, Y., Zhang, S., Wang, Z., Yang, S., Yang, W., Xia, S.-T., and Zhou, E.
(2021). Tokenpose: Learning keypoint tokens for human pose estimation. In
2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages
11293–11302.

[70] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer.

179

[71] Liu, J. and Liang, B. (2022). An Action Recognition Technology for Badminton
Players Using Deep Learning. Mobile Information Systems, 2022:1–10.

[72] Liu, P. and Wang, J.-H. (2022). MonoTrack: Shuttle Trajectory Reconstruction
From Monocular Badminton Video. In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), page 10.

[73] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B.
(2021). Swin transformer: Hierarchical vision transformer using shifted win-
dows. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV).

[74] Liu, Z., Zhang, H., Chen, Z., Wang, Z., and Ouyang, W. (2020). Disentan-
gling and Unifying Graph Convolutions for Skeleton-Based Action Recognition.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 140–149, Seattle, WA, USA. IEEE.

[75] Loh, S. B., Roy, D., and Fernando, B. (2022). Long-term action forecasting us-
ing multi-headed attention-based variational recurrent neural networks. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 2418–2426.

[76] Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. In
International Conference on Learning Representations.

[77] Loshchilov, I. and Hutter, F. (2017). SGDR: Stochastic Gradient Descent with
Warm Restarts. In ICLR.

[78] Malawski, F. and Kwolek, B. (2019). Improving multimodal action representa-
tion with joint motion history context. Journal of Visual Communication and
Image Representation, 61:198–208.

[79] Mazzia, V., Angarano, S., Salvetti, F., Angelini, F., and Chiaberge, M. (2022).
Action transformer: A self-attention model for short-time pose-based human
action recognition. Pattern Recognition, 124:108487.

[80] McGillem, C. and Cooper, G. (1984). Continuous and Discrete Signal and Sys-
tem Analysis. HRW series in electrical and computer engineering. Holt, Rine-
hart, and Winston.

[81] Newell, A., Huang, Z., and Deng, J. (2017). Associative embedding: End-to-
end learning for joint detection and grouping. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc.

180

[82] Newell, A., Yang, K., and Deng, J. (2016). Stacked hourglass networks for hu-
man pose estimation. In Leibe, B., Matas, J., Sebe, N., and Welling, M., editors,
Computer Vision – ECCV 2016, pages 483–499, Cham. Springer International
Publishing.

[83] Ng, Y. and Fernando, B. (2020). Forecasting future action sequences with atten-
tion: A new approach to weakly supervised action forecasting. IEEE transac-
tions on image processing : a publication of the IEEE Signal Processing Society,
PP.

[84] Papandreou, G., Zhu, T., Chen, L., Gidaris, S., Tompson, J., and Murphy, K.
(2018). Personlab: Person pose estimation and instance segmentation with a
bottom-up, part-based, geometric embedding model. CoRR, abs/1803.08225.

[85] Petrovich, M., Black, M., and Varol, G. (2021). Action-conditioned 3d human
motion synthesis with transformer vae. In ICCV, pages 10965–10975.

[86] Plizzari, C., Cannici, M., and Matteucci, M. (2021). Skeleton-based action
recognition via spatial and temporal transformer networks. Computer Vision
and Image Understanding, 208-209:103219.

[87] Post, S. L., McLachlan, J., Lonas, T., Dancs, J., Knobloch, D., Darrow, C.,
Sinn, E., Davis, S., Neilly, D., Funk, A., Golz, J., Phelps, A., and Goers, B.
(2009). Aerodynamics of a Badminton Shuttlecock. In Volume 7: Engineer-
ing Education and Professional Development, pages 145–150, Lake Buena Vista,
Florida, USA. ASMEDC.

[88] Rahmad, N. A. and As’ari, M. A. (2020). The new convolutional neural network
(cnn) local feature extractor for automated badminton action recognition on
vision based data. Journal of Physics Conference Series, 1529.

[89] Rahmad, N. A., As’ari, M. A., Ibrahim, M. F., Sufri, N. A. J., and Rangasamy,
K. (2020). Vision based automated badminton action recognition using the
new local convolutional neural network extractor. In Hassan, M. H. A.,
Che Muhamed, A. M., Mohd Ali, N. F., Lian, D. K. C., Yee, K. L., Safii, N. S.,
Yusof, S. M., and Fauzi, N. F. M., editors, Enhancing Health and Sports Perfor-
mance by Design, pages 290–298, Singapore. Springer Singapore.

[90] Rahmad, N. A. and As’ari, M. A. (2020). The new convolutional neural network
(cnn) local feature extractor for automated badminton action recognition on
vision based data. Journal of Physics: Conference Series, 1529(2):022021.

[91] Reddy, D., Dwivedi, D., Yemula, P., and Pal, M. (2023). Data-driven approach
to form energy-resilient microgrids with identification of vulnerable nodes in

181

active electrical distribution network. International Journal of Data Science and
Analytics, pages 1–12.

[92] Ren, J., Orwell, J., Jones, G. A., and Xu, M. (2009). Tracking the soccer ball
using multiple fixed cameras. Computer Vision and Image Understanding,
113(5):633–642. Computer Vision Based Analysis in Sport Environments.

[93] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: towards real-
time object detection with region proposal networks. In Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume 1,
NIPS’15, page 91–99, Cambridge, MA, USA. MIT Press.

[94] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional net-
works for biomedical image segmentation. In Navab, N., Hornegger, J., Wells,
W. M., and Frangi, A. F., editors, Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, pages 234–241, Cham. Springer Interna-
tional Publishing.

[95] Sainan, K., Mohamad, M., Mohamed, Z., Saari, S., Mat, M. F., and Khusaini,
N. (2018). Athletes tracking using homography method: a preliminary study.
International Journal of Engineering and Technology(UAE), 7:6–10.

[96] Shen, L., Liu, Q., Li, L., and Yue, H. (2016). 3D reconstruction of ball trajec-
tory from a single camera in the ball game. In Chung, P., Soltoggio, A., Daw-
son, C. W., Meng, Q., and Pain, M., editors, Proceedings of the 10th Interna-
tional Symposium on Computer Science in Sports (ISCSS), volume 392, pages
33–39. Springer International Publishing, Cham. Series Title: Advances in Intel-
ligent Systems and Computing.

[97] Skublewska-Paszkowska, M., Powroźnik, P., and Łukasik, E. (2020). Learning
three dimensional tennis shots using graph convolutional networks. Sensors,
20:6094.

[98] Soroush Mehraban, Vida Adeli, B. T. (2024). Motionagformer: Enhancing 3d
human pose estimation with a transformer-gcnformer network. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision.

[99] Stergiou, A. and Damen, D. (2023). The wisdom of crowds: Temporal progres-
sive attention for early action prediction. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 14709–14719.

[100] Sun, K., Xiao, B., Liu, D., and Wang, J. (2019a). Deep high-resolution rep-
resentation learning for human pose estimation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5693–5703.

182

[101] Sun, K., Xiao, B., Liu, D., and Wang, J. (2019b). Deep High-Resolution Repre-
sentation Learning for Human Pose Estimation. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5686–5696, Long
Beach, CA, USA. IEEE.

[102] Sun, N.-E., Lin, Y.-C., Chuang, S.-P., Hsu, T.-H., Yu, D.-R., Chung, H.-Y., and
İk, T.-U. (2020). Tracknetv2: Efficient shuttlecock tracking network. In 2020
International Conference on Pervasive Artificial Intelligence (ICPAI), pages 86–
91.

[103] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’14, page 3104–3112,
Cambridge, MA, USA. MIT Press.

[104] Tang J., W. J. . H. J. (2023). Predicting human poses via recurrent attention
network. Visual Intelligence, 1.

[105] Tarashima, S., Haq, M. A., Wang, Y., and Tagawa, N. (2023). Widely applica-
ble strong baseline for sports ball detection and tracking. In BMVC.

[106] Tian, L., Wang, P., Liang, G., and Shen, C. (2021). An adversarial human
pose estimation network injected with graph structure. Pattern Recognition,
115:107863.

[107] Van Zandycke, G. and De Vleeschouwer, C. (2019). Real-time cnn-based seg-
mentation architecture for ball detection in a single view setup. In Proceedings
Proceedings of the 2nd International Workshop on Multimedia Content Analysis
in Sports. ACM.

[108] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017a). Attention is all you need. CoRR,
abs/1706.03762.

[109] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017b). Attention is all you need. In Proceedings
of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 6000–6010, Red Hook, NY, USA. Curran Associates Inc.

[110] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y.
(2018). Graph attention networks. In International Conference on Learning
Representations.

183

[111] Wang, F., Sun, L., Yang, B., and Yang, S. (2006). Fast Arc Detection Algo-
rithm for Play Field Registration in Soccer Video Mining. In 2006 IEEE Inter-
national Conference on Systems, Man and Cybernetics, volume 6, pages 4932–
4936. IEEE. ISSN: 1062-922X.

[112] Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., and Van Gool, L.
(2016). Temporal Segment Networks: Towards Good Practices for Deep Action
Recognition. In European conference on computer vision, pages 20–36. Springer.

[113] Wang, P. and Li, S. (2018). Structural-attentioned lstm for action recognition
based on skeleton. In Other Conferences.

[114] Wang, W., Du, W., and Peng, W. (2023a). Shuttleset22: Benchmarking stroke
forecasting with stroke-level badminton dataset. CoRR, abs/2306.15664.

[115] Wang, W., Huang, Y., Ik, T., and Peng, W. (2023b). Shuttleset: A human-
annotated stroke-level singles dataset for badminton tactical analysis. In KDD,
pages 5126–5136. ACM.

[116] Wang, W., Shuai, H., Chang, K., and Peng, W. (2022a). Shuttlenet: Position-
aware fusion of rally progress and player styles for stroke forecasting in bad-
minton. In AAAI, pages 4219–4227. AAAI Press.

[117] Wang, W., Yao, L., Chen, L., Lin, B., Cai, D., He, X., and Liu, W. (2022b).
Crossformer: A versatile vision transformer hinging on cross-scale attention. In
International Conference on Learning Representations, ICLR.

[118] Wang, X., Hu, J.-F., Lai, J.-H., Zhang, J., and Zheng, W.-S. (2019). Progressive
teacher-student learning for early action prediction. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 3551–3560.

[119] Watanabe, T., Haseyama, M., and Kitajima, H. (2004). A soccer field tracking
method with wire frame model from TV images. In 2004 International Confer-
ence on Image Processing, 2004. ICIP ’04., volume 3, pages 1633–1636 Vol. 3.
IEEE. ISSN: 1522-4880.

[120] West, D. (2001). Introduction to Graph Theory. Featured Titles for Graph The-
ory. Prentice Hall.

[121] Xiao, B., Wu, H., and Wei, Y. (2018). Simple baselines for human pose estima-
tion and tracking. In European Conference on Computer Vision (ECCV).

[122] Xiao, Q., Zaidi, Z., and Gombolay, M. (2024). Multi-Camera Asynchronous Ball
Localization and Trajectory Prediction with Factor Graphs and Human Poses.
arXiv:2401.17185 [cs].

184

[123] Xu, Y., Zhang, J., Zhang, Q., and Tao, D. (2022). ViTPose: Simple vision
transformer baselines for human pose estimation. In Advances in Neural In-
formation Processing Systems.

[124] Xu, Y., Zhang, Q., Zhang, J., and Tao, D. (2021). Vitae: Vision transformer
advanced by exploring intrinsic inductive bias. CoRR, abs/2106.03348.

[125] Yan, F. (2005). Tennis ball tracking for automatic annotation of broadcast ten-
nis video. Proceedings of the British Machine Vision Conference.

[126] Yan, H., Liu, Y., Wei, Y., Li, G., and Lin, L. (2023). Skeletonmae: Graph-based
masked autoencoder for skeleton sequence pre-training. In Proceedings of the
IEEE/CVF International Conference on Computer Vision.

[127] Yan, S., Xiong, Y., and Lin, D. (2018a). Spatial temporal graph convolutional
networks for skeleton-based action recognition. AAAI, 32.

[128] Yan, S., Xiong, Y., and Lin, D. (2018b). Spatial temporal graph convolutional
networks for skeleton-based action recognition. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI Symposium
on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18.
AAAI Press.

[129] Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng, J., and Yan, S.
(2022). Metaformer is actually what you need for vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10819–10829.

[130] Zhu, K., Wong, A., and McPhee, J. (2022). Fencenet: Fine-grained footwork
recognition in fencing. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 3588–3597.

[131] Zhu, W., Ma, X., Liu, Z., Liu, L., Wu, W., and Wang, Y. (2023). Motionbert: A
unified perspective on learning human motion representations. In Proceedings of
the IEEE/CVF International Conference on Computer Vision.

185

Paper 1: TemPose: A new
approach skeleton-based action
recognition

186

TemPose: a new skeleton-based transformer model designed for fine-grained
motion recognition in badminton

Magnus Ibh Stella Grasshof Dan Witzner
Machine learning group, IT University of Copenhagen

{ibhq, stgr, witzner}@itu.dk

Pascal Madeleine
Aalborg Univeristy
pm@hst.aau.dk

Abstract

This paper presents TemPose, a novel skeleton-based
transformer model designed for fine-grained motion recog-
nition to improve understanding of the detailed player ac-
tions in badminton. The model utilizes multiple tempo-
ral and interaction layers to capture variable-length multi-
person human actions while minimizing reliance on non-
human visual context. TemPose is evaluated on two fine-
grained badminton datasets, where it significantly outper-
forms other baseline models by incorporating additional
input streams, such as the shuttlecock position, into the
temporal transformer layers of the model. Additionally,
TemPose demonstrates great versatility by achieving com-
petitive results compared to other state-of-the-art skeleton-
based models on the large-scale action recognition bench-
mark NTU RGB+D. Experiments are conducted to explore
how different model parameter configurations affect Tem-
Pose’s performance. Additionally, a qualitative analysis of
the temporal attention maps suggests that the model learns
to prioritize frames of specific poses relevant to different
actions while formulating an intuition of each individual’s
importance in the sequences. Overall, TemPose is an intu-
itive and versatile architecture that has the potential to be
further developed and incorporated into other methods for
managing human motion in sports with state-of-the-art re-
sults.

1. Introduction

Badminton is a fast-paced racket sport that requires a
high level of skill, athleticism, and tactical awareness. As
the sport’s popularity grows, the need for objective and
data-driven methods for evaluating player performance has
become increasingly important. One area of particular in-
terest uses automatic analysis, specifically human action
recognition (HAR), to provide insights into a player’s per-
formance [13] and inform decision-making in the sport.
Fine-grained action recognition deals with action classes

closely related in both type (e.g. badminton strokes) and
motion (i.e., strokes may look similar) and is appropriate
for highly technical sports disciplines that require high pre-
cision and accuracy in movement execution. The required
attention to detail in badminton results in small and sub-
tle differences in how players execute specific movements,
which are difficult to capture using RGB-based methods
[42]. Skeleton motion as a primary feature in fine-grained
action recognition has been effective in various sports disci-
plines [8, 17], including badminton [19, 21]. Skeleton-data
provides a detailed representation of the body movement
through spatiotemporal sequences of joint and bone posi-
tions, which enables extracting features crucial for recog-
nizing specific actions and movements, even those that may
be subtle or difficult to detect with traditional imaging tech-
niques. While existing methods for skeleton-based action
recognition have achieved good results on controlled action
benchmark datasets [23, 39], many tend to lack robustness
and scalability for real-world applications. In an approach
to address this issue, recent research has explored the use
of transformer models, which have shown excellent capa-
bilities in natural language processing (NLP) [7] and image
segmentation [9, 14], to model sequential data for video ac-
tion recognition [1, 18, 22].
This paper presents TemPose, a new skeleton-based trans-
former model designed for fine-grained motion recognition
in badminton. The model offers several significant contri-
butions, including a novel factorized transformer model that
combines temporal and interaction layers, multi-person in-
teraction modeling, and improved recognition rates using
fewer parameters. The proposed action recognition model,
TemPose, is outlined in Figure 1. The model takes processed
skeleton data as input and passes it through a sequence of
transformer layers in the TemPose encoder. This process
creates tokens of the temporal data and captures the tem-
poral body dynamics and sequential interactions between
an arbitrary number of people involved in the action. The
MLP head at the top predicts the action based on the in-
formation embedded in a class token. The primary and
badminton-specific version of the model includes the fu-

Figure 1. Illustration of our proposed action recognition framework, TemPose. The framework uses human skeleton data, consisting of
joint and bone information, and incorporates additional features such as player court position and shuttlecock position from a badminton
action (e.g., smash). The TemPose encoder, composed of multiple transformer layers, processes the input to embed relevant features into
a class token. Finally, an MLP head utilizes these features to predict the action class. The composition of the MLP block is shown in the
upper right corner.

sion of skeleton-data with player court positions (CP) and
shuttlecock position (SP). We exhaustively test two differ-
ent versions of TemPose, where the additional modalities
are integrated at different stages of the TemPose encoder.
In one version (TemPose-NF), the CP and SP sequences
are tokenized and appended to the embedded skeleton-data
before the interaction transformer layers. Figure 2 depicts
TemPose-NF. The other version (TemPose-TF) prioritizes
an early fusion of the skeleton, SP, and CP modalities.
An overview of related work is provided in Section 2, fol-
lowed by a description of pose and shuttle estimation, pre-
processing, and the model architecture in Section 3. The
experimental results on fine-grained badminton datasets
are presented in Section 4, along with testing on a stan-
dard benchmark action recognition datasets NTU RGB+D
[20, 32]. The paper concludes with a qualitative analysis
of the information stored in the different transformer layers
and future works in 5.

2. Related Work

Action recognition in sports Most work on action recog-
nition in badminton uses convolutional neural network
(CNN) architectures for feature extraction on RGB images
[29–31]. Decision-making algorithms like Support Vector

Machines then use the extracted features to make predic-
tions. Other approaches involve using handcrafted features
such as Histogram of Oriented Gradients, along with tem-
poral convolutional networks (TCN) to process the action’s
spatial and temporal aspects [5, 13]. Instead of using im-
age data, skeleton data has been successfully used for the
analysis and recognition tasks of other sports, such as Tai
Chi [8, 10, 36] and fencing [26, 42]. But despite its poten-
tial, skeleton poses have yet to be thoroughly tested for bad-
minton tasks. In one recent example [21], skeleton data is
used in a gated recurrent unit (GRU) model to perform bi-
nary hit detection. However, like other recurrent models,
GRUs can struggle with training issues. This paper pro-
poses an architecture more suited for utilizing skeleton data
for badminton recognition tasks.

Human-action recognition using skeleton data. Graph
convolutional networks (GCN) are a popular method for
skeleton-based action recognition [35, 40]. GCNs uses
nodes to represent every human joint at every time. Con-
necting nodes, both spatially and temporally, to the other
nodes with edges allows GCNs to capture both spatial and
temporal aspects of human motion. Spatio-temporal GCNs
have demonstrated promising results for skeleton-based ac-

tion recognition [23, 39, 40], but they also possess some
limitations. One limitation is their limited ability to model
long-term dependencies in complex actions, as they typi-
cally use a fixed-length temporal window. Moreover, they
are sensitive to missing data [41] and require a carefully
designed graph structure based on the recognized actions’
characteristics, which can be challenging. CNNs are also
commonly used for analyzing skeleton data. One approach
is to stack heatmaps along the temporal dimension into a 3D
input and use 3D-CNNs to extract information [3,11]. Other
studies, such as [17, 42], generate a temporal sequence of
joint coordinates and use TCNs to encode the information.

Transformers for human action recognition. The emer-
gence of ViT [9] has led to many applications of vision
transformer backbones [2, 22, 37, 38]. Including vision
transformers [1, 12, 18, 22] used for HAR. These works are
typically trained on Kinetics-400 [16] to mitigate the issue
involved with over-fitting. But only a few works have con-
sidered transformers on other modalities than RGB data, in
our case, skeleton data. Utilizing transformer based mod-
els on skeleton data has, however, been attempted in other
recent work. [28] combines self-attention with a GCN and
TCN to model spatial and temporal attention. Similarly,
[27] performs temporal encoding of the skeleton poses with
a sequence of temporal transformer layers.
Unlike previous work, we present a factorized transformer
encoder. Embedding individual skeleton data into temporal
and interaction tokens allows the method to encode infor-
mation about the motion of multiple people across the entire
sequence length.

3. Model
This section first outlines the extraction process for the

skeleton, CP, and SP data. We introduce the temporal trans-
former layer module for a single individual and subsequent
action prediction. Subsequently, the model is extended to a
factorized temporal and interaction encoder, which embeds
information about the interaction between individuals in the
class token. Last, we describe two methods of incorporating
CP and SP data into the model.

3.1. Extraction of the skeleton, player position, and
shuttlecock data

A visual representation of the skeleton-data retrieval is
shown in Figure 3. In a video sequence with T frames,
the poses of a person are given by the sequence P =
[P1, . . . , PT]

T ∈ RT×2J . A pose Pt ∈ RJ×2 in frame t

is represented by J keypoints (x
(t)
i , y

(t)
i), where x

(t)
i and

y
(t)
i are 2D joint coordinates for the joint i. The bones
Bt ∈ RB×2 in frame t are represented by the keypoint dif-
ferences (x(t)

i −x
(t)
j , y

(t)
i − y

(t)
j), where i and j are specific

Figure 2. Illustration of TemPose encoder shows the factorized
transformer structure. First, the temporal token for each person is
encoded by the temporal transformer layer. Second, The interac-
tion between actors is modeled based on the temporal context of
each person.

joint pairs that make up the human bones. The final skeleton
data sequence, S, of an individual, is defined to be

S = [[P1, B1], . . . , [PT , BT]]
T ∈ RT×2(J+B) (1)

The pose extraction pipeline consists of two stages using
tools from previous studies, including [4, 6] to detect hu-
mans and perform pose estimation. We employ HRnet [33],
a pre-trained framework, to estimate the 2D poses. How-
ever, irrelevant individuals, such as spectators in the crowd,
can limit the quality of the skeleton data. To address this
issue in badminton, we calculate a homography using the
court’s known dimensions and map the feet of the detected
individuals to the ground plane. By doing so, we only con-
sider skeletons within the court and can identify each se-
quence’s top and bottom player. In cases where a whole
skeleton is missing, we replace it with the pose from the
previous frame. Finally, we normalize the poses by center-
ing them and scaling them to have a bounding box diago-
nal of 1. Additionally, we sample the players’ 2D ground
plane feet position (i.e., CP) for each time frame as an ad-
ditional input feature. The sequence PC is represented as
∈ RT×2. The shuttlecock’s position holds valuable infor-
mation for categorizing the different strokes in badminton.
To extract the shuttlecock’s position, we use a pre-trained
model from [34] to obtain its image coordinates in each
frame of the video, represented as (u, v, c), where u and
v are the image coordinates of the shuttlecock, and c is the
confidence of the prediction. We only consider predictions
with a confidence score above 0.75; we pad failed predic-
tions with zeros.

Figure 3. The figure illustrates the input data utilized by our pro-
posed action recognition framework, TemPose. The framework
takes in centered and normalized skeleton data of the badminton
players, along with their court position and the scaled position of
the shuttlecock, all of which are extracted from RGB video in-
put. Specifically, HRNet [33] estimates the poses of the badminton
players, while TrackNet [34] estimates the position of the shuttle-
cock.

3.2. Skeleton-based temporal self-attention for ac-
tion prediction

As a first step, we consider a single-person sequence
without the interaction layers from Figure 2. The skeleton
data is mapped through a linear projection to a sequence of
temporal tokens [x1, . . . , xT]

T ∈ RT×DL , where each to-
ken xt ∈ RDL is the vector representation of the skeleton at
that particular time frame. A learnable temporal embedding
ET ∈ RT+1×DL is added to the tokens to capture the under-
lying temporal structure better. The sum of the embedding
and projection yields x, the input of the transformer layers.
x is formally defined as

x = [xcls,Linear(S)]T + ET (2)

= [xcls, x1, . . . , xT]
T + ET ,∈ RT×DL (3)

where xcls ∈ RDL is a learned class token, DL is the di-
mension of the embedded feature space, and Linear is a
learned linear projection. The representation of xcls at the
final transformer layer is used by the MLP head to make
predictions. The tokens defined in (3) are then passed
through transformer layers, where L is the transformer
depth. To distinguish between the tokens at different layers,
we define them as x(l) after having passed through layer
l. Each layer is composed of a multi-head self-attention

(MHSA), layer normalization (LN), and a multi-layer per-
ceptron (MLP), which consists of two linear projections
only separated by a GELU activation [15] and dropout, see
Figure 1. The design of a single transformer layer is il-
lustrated in Figure 4 on the left. The transformer block is
described by Equation 4 and Equation 5

x̃(l+1) = x(l) + MHSA(LN(x(l))), (4)

x(l+1) = x̃(l+1) + MLP(LN(x̃(l+1))), (5)

where x̃(l+1) is the in-between embedded obtained after the
self-attention module. The following equation describes a
single head of self-attention

Attention(Q,K, V) = softmax
(
QKT

√
DK

)
V, (6)

where Q = WQx
(l) ∈ RT×DA , K = WKx(l) ∈

R(T+1)×DA , and V = WV x
(l) ∈ R(T+1)×DA are learned

linear projections of the input sequence that respectively
represent the current token, the other tokens, and their asso-
ciated values, used to calculate attention scores and output.
After scaling and softmax activation of the input variables,
(6) serves as an attention map that provides temporal con-
text to the value-array V , where DA is the attention head
latent dimension. The output of the MHSA yields Nheads

value vectors V weighted by the temporal attention maps.
As illustrated in Figure 4, these weighted value vectors are
concatenated and mapped to the updated representation of
the temporal tokens x̃(l+1) with another learned linear pro-
jection. Note that the number of transformer layers L is an
adjustable hyperparameter.
Finally, the class token xL

cls is fed to an MLP block to pre-
dict the action category of the samples

xact = MLP(xcls), (7)

where xact ∈ RDcls is the model prediction, and Dcls the
number of different action categories.

3.3. Factorized temporal and interaction structure

Actions in video sequences often contain multiple peo-
ple (e.g., two people in badminton singles matches) making
different subactions and movements in parallel and often
reacting to the other people involved in the action. Hence,
in the TemPose encoder, we want to account for multiple
people and their actions. TemPose utilizes a factorized en-
coder structure of transformer layers, inspired by ViViT [1],
to model the interaction between people. Figure 2 depicts
the TemPose encoder. The model consists of 1.) a tem-
poral transformer layer that captures the temporal interac-
tion between poses extracted from the same person, identi-
cal to the temporal structure outlined in section 3.2. How-
ever, the temporal encoding is now performed in parallel

Figure 4. Illustration of transformer layers to the left. The struc-
ture of the transformer layers is identical for the temporal and in-
teraction transformer layers. The right block shows the composi-
tion of a single-head self-attention module. The Mask leaves out
the (zero) padded temporal and interaction tokens in the attention
map, which allows the model to handle action sequences of vary-
ing lengths proficiently.

for up to N people involved in the action sequence, see
Figure 2. As a result, the class token notation x

(l)
cls is up-

dated to τ
(lT)
cls,n. τ

(lT)
cls,n is the temporal class token for per-

son n ∈ {1, . . . , N}, at temporal layer lT 2.) After being
processed by all LT temporal layers, the N temporal class
tokens are concatenated to [τ

(LT)
cls,1 , . . . , τ

(LT)
cls,N], prepended

with a interaction class token ηcls, and assigned an inter-
action embedding EI identical to the step of Equation 3.
Summing up the input for the interaction encoder becomes

z = [ηcls, τcls,1, . . . , τcls,N]
T
+ EI ,∈ RT×DL . (8)

Subsequently, the input tokens, z, are passed through LN

transformer layers to capture interactions between the em-
bedded temporal class tokens of people participating in the
action. An MLP head uses the final representation of the in-
teraction classification token η

(LN)
cls ∈ RDL , see Equation 7,

to predict the action class.

3.4. Player and shuttlecock position infusion

This section discusses two configurations for integrating
badminton-specific CP and SP data into the encoder.

Temporal fusion: In the first fusion configuration, the SP
and CP input data passes through separate TCN blocks con-
sisting of two 1D-convolutional layers separated only by a
GELU activation and dropout. The two layers have dila-
tion 1 and 3, respectively, with a kernel size of 5 and stride
1. Through the TCN block, the channels (i.e., dimension-
ality) of SP and CP data are increased to the embedded di-
mension of the transformer layers DL. The two new input
streams are then appended to the transformer input equiva-
lent to adding additional people (see Figure 2). The remain-

ing architecture is identical to factorized encoder described
above.

Interaction fusion In a different approach, the CP and SP
data are first incorporated into the TemPose encoder after the
temporal transformer layers. Here the SP and CP data are
flattened along the temporal and coordinate dimensions and
then separately passed through an MLP block. The result-
ing representations are appended to z in Equation 8, which
is then processed identically to the original TemPose archi-
tecture but with two additional interaction tokens. In the
experiments section, TemPose without fusion is referred to
as TemPose-V. In contrast, TemPose-TF and TemPose-NF
refer to temporal fusion and interaction fusion, respectively.

Temporal & multi-person padding A property of trans-
former architectures is the ability to handle sequences of
different lengths. We implement this for TemPose by al-
ways creating a set number of temporal tokens T , corre-
sponding to the maximal clip length for a video. Shorter
videos are padded with zeros and assigned pad tokens,
so they are not considered when calculating self-attention.
Specifically, the MASK step in the MHSA reduces attention
scores on the padded tokens to zero, see Figure 4. TemPose
extends this process by choosing an upper limit N of peo-
ple to model interactions from. Clips with fewer people are
padded with zeros and assigned pad tokens, so they are not
considered in the interaction attention.

4. Experiments
This section presents the results of our experiments to

assess the performance of the factorized transformer lay-
ers compared to other state-of-the-art skeleton-based hu-
man activity recognition models. Specifically, we evaluated
TemPose on two fine-grained badminton datasets [13] and
demonstrated the versatility of the architecture by including
experiments on the large-scale human motion dataset NTU
RGB+D [20, 32].

Badminton Olympics (Bad OL). A fine-grained bad-
minton dataset from 10 videos containing 15300 samples
from 13 classes of badminton strokes with the follow-
ing classes: top/bottom player forehand, backhand, smash,
lob, react strokes, and a none class. The train/test split
is match/video splitting, where all clips from one video
(match) are kept as the test set.

Dataset on Badminton Stroke Placement (Bad PL).
The dataset is confidential but contains 5500 samples of
backcourt badminton strokes categorized into either attack
or transport strokes. Additionally, the dataset includes in-
formation on the approximate location of the shuttlecock

Table 1. Hyperparameters for the TemPose training procedure.
The right part of the table includes regularization and data aug-
mentation choices.

Training
Batch size 64
Optimizer AdamW
Warm-up 25%
Learning rate 1e-04
LR scheduler cosine decay

Regularization
Label smoothing 0.1
Flipping 30%
Random shifting 30%
Dropout 0.3
Weight decay 0.01

placement for each stroke grouped into three different ar-
eas, such as left backcourt or middle midcourt, resulting
in 12 different classes based on stroke type and placement.
The train/test splitting is done cross-matches.

NTURGB+D. Is a large-scale human action dataset col-
lected in a controlled setting. The dataset contains two ver-
sions, NTU-60 and NTU-120. NTU-60 has 57000 videos
categorized into 60 different actions. NTU-120 has 114000
videos belonging to 120 different categories. Test and train-
ing data can be split in three different ways: cross-setup
(XSet), cross-view (XView), and cross-subject (X-sub).

4.1. Implementation details

Table 1 list all settings and hyperparameters used for the
training procedure. The choice is made based on a ran-
domized search across the datasets. The AdamW optimiza-
tion algorithm [24] is used for all training runs along with
cosine-annealing [25]. Each training run is initialized with
a sequence of warm-up epochs, slowly increasing the learn-
ing rate linearly from 0 to prevent overfitting. Unless spec-
ified otherwise, joint and bone data, J and B, respectively,
are used together as skeleton data input.

4.2. Component studies

We analyze the individual components and different
model configurations of TemPose. Unless stated otherwise,
the performance is reported as classification accuracy on the
Bad OL dataset. The default configuration uses the depth
LT = LN = 2, Nheads = 6, embedded dimensions of
DL = 100 and DA = 128, and lastly, an MLP scale factor
of 4 between the input and hidden layers in MLP blocks.

Model configurations. To validate the multi-modal fu-
sion approaches of the CP and SP data, we examine the
performance of TemPose-V, TemPose-TF, and TemPose-NF
for many different model settings shown in Table 2. AcT
[27], a purely temporal skeleton-based model, is shown
as the baseline model. Among the TemPose versions,
TemPose-TF with DL = 100 and DA = 128 has the high-
est accuracy of 90.7% while only having 1.7 million param-
eters. The results suggest that temporal fusion of SP and CP

Table 2. Accuracy and model size for different settings of the 3
TemPose versions. The number of attention heads Nheads = 6
and depth LT = LN = 2 are shared for all model configurations.

Model configuration Params Acc
Baseline (AcT [27]) 2.1M 83.7%
TemPose-V

with (DL = 75, DA = 100) 0.9M 85.6%
with (DL = 200, DA = 200) 5.2M 83.6%

TemPose-TF
with (DL = 50, DA = 75) 0.5M 88.6%
with (DL = 100, DA = 128) 1.7M 90.7%
with (DL = 200, DA = 256) 6.7M 88.0%

TemPose-NF
with (DL = 50, DA = 75) 2.5M 88.1%
with (DL = 100, DA = 128) 3.8M 89.3%
with (DL = 200, DA = 256) 9.0M 86.2%

is the best approach, as it achieves the highest accuracy us-
ing the fewest parameters.

Exploring joint-bone skeleton data. We investigated the
impact of incorporating bone data into the joint data of the
skeleton on the Bad OL and NTU RGB+D datasets for Tem-
Pose without CP and SP input. The results are presented in
Table 3 and Table 6. Our findings are consistent with pre-
vious studies [11, 23]. The performance of TemPose sig-
nificantly improves by utilizing both bone and joint data as
input.

Importance of transformer depth. The effect of varying
transformer depth is a crucial aspect of transformer models.
Table 4 shows the results of a depth study on the TemPose-
TF model. The model settings are kept constant through-
out the study, except for the number of transformer layers,
and report the model’s performance for different combina-
tions of LT and LN . The results show that increasing the
transformer depth beyond a certain point leads to a drop in
performance. The best accuracy is achieved for the combi-
nation of LT = 2 and LN = 2, with a top-1 accuracy of
90.7%. Increasing the depth further to LT = 3 and LN = 3
leads to a significant drop in accuracy to 88.3%. The per-
formance continues to degrade as the depth is further in-
creased. The continued drop could suggest that the perfor-
mance continually worsens due to overfitting as the depth
is increased. Thus, the study exemplifies the importance
of finding the right balance between model complexity and
data size. The overfitting can possibly be attributed to issues
such as vanishing gradients or the relatively limited number
of training samples in the Bad OL dataset.

Table 3. Joint + Bone architecture study

Models Acc
Baseline (AcT [27])

with (J) 81.8%
with (J+B) 83.7%

TemPose-V
with (J) 81.4%
with (J+B) 85.6%

Table 4. Transformer depth study of the TemPose-TF. The remain-
ing model settings are constant for the study, where DL = 100,
DA = 128, and Nheads = 6. The performance of TemPose drops
when the transformer depth increases.

Model Acc
TemPose-TF

with (LT = 1, LN = 1) 89.7%
with (LT = 1, LN = 2) 89.9%
with (LT = 2, LN = 1) 90.0%
with (LT = 2, LN = 2) 90.7%
with (LT = 3, LN = 3) 88.3%
with (LT = 4, LN = 4) 86.6%
with (LT = 6, LN = 2) 85.5%
with (LT = 2, LN = 6) 86.1%
with (LT = 6, LN = 6) 85.4%
with (LT = 8, LN = 8) 85.2%

Table 5. Top-1 accuracy results for TemPose with temporal (TF)
and interaction (NF) fusion, to state-of-the-art (HAR) models on
Badminton placement (Bad PL) and Badminton Olympics (Bad
OL).

Model Bad PL Bad OL Params
Bidirectional TCN [42] 80.4% 86.1% 4.1M
TCN Hog [13] 66.6% 77.0% 1.1M
ST-GCN [40] 72.3% 82.0% 3.4M
AcT-M [27] 77.9% 83.7% 2.1M
MS-G3D [23] 78.0% 83.2% 3.2M
TemPose-TF 83.9% 90.7% 2.2M
TemPose-NF 84.3% 89.3% 3.8M

4.3. Evaluation

Fine-grained sports action recognition - badminton.
Table 5 shows the Top-1 accuracy results for TemPose-TF
and TemPose-NF on two different Badminton datasets - Bad
PL and Bad OL. The table also includes results for other
state-of-the-art models on the same datasets. Overall, the
results show that TemPose outperforms all other models on
both datasets, with TemPose-TF achieving the highest ac-
curacy on Bad OL and TemPose-NF achieving the highest
accuracy on Bad PL. As observed in the configuration study,

both fusion approaches achieve strong results, and based on
our studies, no method is superior by a significant margin.
However, we conclude that TemPose can accurately be used
to classify the different types of movements in badminton.

Large-scale human action recognition. We showcase
the versatility of TemPose, by testing TemPose on other
more generic large-scale HAR benchmarks and comparing
TemPose-V to other top-performing skeleton-based actions
recognition models. Table 6 shows the results of TemPose-V
on the NTU datasets. Despite being slightly worse than MS-
G3D [23], and PoseConv3D [11] overall, TemPose achieves
competitive results to other state-of-the-art models on all
splittings of NTU RGB+D.

4.4. Qualitative analysis of temporal and interaction
attention

We examine the attention maps of the transformer layers.
To inspect what information is captured by the encoder. The
temporal attention maps of two forehand strokes shown in
Figure 6 reveal that similar patterns emerge between actions
of the same class. The similar attention maps suggest that
the model has learned to focus on specific temporal aspects
of the actions to predict the entire sequence.
The attention maps are used to determine a temporal and
interaction attention score for all actions. We define the at-
tention score as the self-attention of the xcls-token in the
last transformer layer, aggregated and normalized across all
attention heads. The temporal attention score is averaged
over all individuals but weighted according to their inter-
action attention score. For a badminton smash, the atten-
tion score is depicted in Figure 5. TemPose identifies the
frames around contact with the shuttlecock as the most sig-
nificant section. The red and purple text represent the target
and prediction class of the action, respectively. The model
accurately predicts the action as a smash from the bottom
player. Additionally, more attention is given to the smash-
ing individual. The logical distribution of attention suggests
that the model has developed the ability to gauge the rele-
vance of each individual for the action based on their skele-
ton movement.

5. Future prospects

TemPose demonstrates top results on badminton action
recognition tasks. However, in the experiments, the larger
configurations of TemPose show clear signs of overfitting.
The result indicates that the performance of TemPose may
be further improved if additional steps to combat overfitting
are taken. One prospect involves generating synthetic data
to increase the amount of training data.

Table 6. Top-1 accuracy on the NTU RGB+D for state-of-art skeleton-based action recognition models.

NTU RGB+D 120 NTU RGB+D 120 NTU RGB+D 60 NTU RGB+D 60
(XSet) (XSub) (XSub) (XView)

ST-GCN [39] 73.2% 70.7% 81.5% 88.3%
ST-TR-agcn [28] 87.1% 85.1% 90.3% 96.3%
PoseConv3D [11] 89.6% 86.9% 93.7% 96.6%
MS-G3D [23] 88.4% 86.9% 91.5% 96.2%

TemPose-V (B) 85.1% 84.1% 91.0% 93.1%
TemPose-V (B+J) 88.5% 87.0% 92.7% 95.2%

Figure 5. Prediction and attention score produced by TemPose-V for a skeleton sequence from Badminton Olympics. (t,p) refers to t as the
target and p as the prediction. The interaction attention score is shown at the left, with the color corresponding to the person in the action
sequence. The weighted temporal attention score is shown atop each frame in the sequence. For visual clarity, the frames are grouped by
three, showing only the middle one, and the listed attention score is the average between them.

Figure 6. Temporal attention maps for a forehand by the bottom
player (from Bad OL). The distribution of attention shows that
TemPose prioritizes similar information when the actions are of
the same class. Additionally, the attention maps also show the
effect of the padding mask. The padding tokens are given no at-
tention.

6. Conclusion
TemPose is a new skeleton-based action recognition

model that uses temporal transformer layers to capture
human motion dynamics and factorized interaction trans-
former layers to model the interaction between humans.
The model outperforms existing methods in recognizing
fine-grained badminton actions by fusing shuttlecock data,
player court positions, and skeleton movements. It also
achieves state-of-the-art performance on a large-scale ac-
tion recognition dataset. Further studies will reveal how
well the general TemPose architecture applies to other ac-
tion recognition tasks.

Acknowledgements. We acknowledge the financial sup-
port from the Novo Nordisk Fonden as a part of Team-
SPORTek, which enabled us to conduct this research. We
would also like to thank Badminton Danmark and Team
Danmark for their contributions to this study, including data
collection and expert insights into badminton.

References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen

Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video vi-
sion transformer. In 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 6816–6826, 2021.
1, 3, 4

[2] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Pro-
ceedings of Machine Learning Research, pages 813–824.
PMLR, 2021. 3

[3] João Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4724–4733, 2017. 3

[4] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 3

[5] Wei-Ta Chu and Samuel Situmeang. Badminton video anal-
ysis based on spatiotemporal and stroke features. In Other
Conferences, pages 448–451, 06 2017. 2

[6] MMPose Contributors. Openmmlab pose estimation tool-
box and benchmark. https://github.com/open-
mmlab/mmpose, 2020. 3

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–
4186. Association for Computational Linguistics, 2019. 1

[8] Lingxiao Dong, Dongmei Li, Shaobin Li, Shanzhen Lan,
and Pengcheng Wang. Tai chi action recognition based on
structural lstm with attention module. In Other Conferences,
2019. 1, 2

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. 1, 3

[10] Yong Du, Wei Wang, and Liang Wang. Hierarchical recur-
rent neural network for skeleton based action recognition.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1110–1118, 2015. 2

[11] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and
Bo Dai. Revisiting skeleton-based action recognition. In
2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2959–2968, 2022. 3, 6, 7,
8

[12] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichten-
hofer. Multiscale vision transformers. In Proceedings of

the IEEE/CVF International Conference on Computer Vi-
sion, pages 6824–6835, 2021. 3

[13] Anurag Ghosh, Suriya Singh, and C. V. Jawahar. Towards
structured analysis of broadcast badminton videos. In 2018
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 296–304, 2018. 1, 2, 5, 7

[14] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross B. Girshick. Masked autoencoders are scal-
able vision learners. CoRR, abs/2111.06377, 2021. 1

[15] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 4

[16] Will Kay, João Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,
and Andrew Zisserman. The kinetics human action video
dataset. CoRR, abs/1705.06950, 2017. 3

[17] Kaustubh Milind Kulkarni and Sucheth Shenoy. Table tennis
stroke recognition using two-dimensional human pose esti-
mation. In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 4571–
4579, 2021. 1, 3

[18] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Man-
galam, Bo Xiong, Jitendra Malik, and Christoph Feichten-
hofer. Mvitv2: Improved multiscale vision transformers for
classification and detection. In CVPR, 2022. 1, 3

[19] Jiatong Liu and Bo Liang. An Action Recognition Technol-
ogy for Badminton Players Using Deep Learning. Mobile
Information Systems, 2022:1–10, May 2022. 1

[20] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang,
Ling-Yu Duan, and Alex C. Kot. Ntu rgb+d 120: A large-
scale benchmark for 3d human activity understanding. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
42(10):2684–2701, 2020. 2, 5

[21] Paul Liu and Jui-Hsien Wang. MonoTrack: Shuttle Trajec-
tory Reconstruction From Monocular Badminton Video. In
2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), page 10, 2022. 1,
2

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 1, 3

[23] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang,
and Wanli Ouyang. Disentangling and Unifying Graph Con-
volutions for Skeleton-Based Action Recognition. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 140–149, Seattle, WA, USA,
June 2020. IEEE. 1, 3, 6, 7, 8

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2017. 6

[25] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradi-
ent Descent with Warm Restarts. In ICLR, 2017. 6

[26] Filip Malawski and Bogdan Kwolek. Improving multimodal
action representation with joint motion history context. Jour-
nal of Visual Communication and Image Representation,
61:198–208, 2019. 2

[27] Vittorio Mazzia, Simone Angarano, Francesco Salvetti, Fed-
erico Angelini, and Marcello Chiaberge. Action transformer:
A self-attention model for short-time pose-based human ac-
tion recognition. Pattern Recognition, 124:108487, 2022. 3,
6, 7

[28] Chiara Plizzari, Marco Cannici, and Matteo Matteucci.
Skeleton-based action recognition via spatial and temporal
transformer networks. Computer Vision and Image Under-
standing, 208-209:103219, 2021. 3, 8

[29] Nur Azmina Rahmad and Muhammad Amir As’ari. The new
convolutional neural network (cnn) local feature extractor
for automated badminton action recognition on vision based
data. Journal of Physics Conference Series, 1529, 2020. 2

[30] Nur Azmina Rahmad, Muhammad Amir As’ari, Mo-
hamad Fauzi Ibrahim, Nur Anis Jasmin Sufri, and Keerthana
Rangasamy. Vision based automated badminton action
recognition using the new local convolutional neural net-
work extractor. In Mohd Hasnun Arif Hassan, Ahmad Munir
Che Muhamed, Nur Fahriza Mohd Ali, Denise Koh Choon
Lian, Kok Lian Yee, Nik Shanita Safii, Sarina Md Yusof, and
Nor Farah Mohamad Fauzi, editors, Enhancing Health and
Sports Performance by Design, pages 290–298, Singapore,
2020. Springer Singapore. 2

[31] N A Rahmad and M A As’ari. The new convolutional neu-
ral network (cnn) local feature extractor for automated bad-
minton action recognition on vision based data. Journal of
Physics: Conference Series, 1529(2):022021, apr 2020. 2

[32] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.
Ntu rgb+d: A large scale dataset for 3d human activity anal-
ysis. In 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1010–1019, 2016. 2, 5

[33] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
High-Resolution Representation Learning for Human Pose
Estimation. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5686–5696,
Long Beach, CA, USA, June 2019. IEEE. 3, 4

[34] Nien-En Sun, Yu-Ching Lin, Shao-Ping Chuang, Tzu-Han
Hsu, Dung-Ru Yu, Ho-Yi Chung, and Tsı̀-Uı́ İk. Track-
netv2: Efficient shuttlecock tracking network. In 2020 In-
ternational Conference on Pervasive Artificial Intelligence
(ICPAI), pages 86–91, 2020. 3, 4

[35] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal Segment
Networks: Towards Good Practices for Deep Action Recog-
nition. In European conference on computer vision, pages
20–36. Springer, 2016. 2

[36] Pengcheng Wang and Shaobin Li. Structural-attentioned
lstm for action recognition based on skeleton. In Other Con-
ferences, 2018. 2

[37] Wenxiao Wang, Lu Yao, Long Chen, Binbin Lin, Deng Cai,
Xiaofei He, and Wei Liu. Crossformer: A versatile vision
transformer hinging on cross-scale attention. In Interna-
tional Conference on Learning Representations, ICLR, 2022.
3

[38] Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vi-
tae: Vision transformer advanced by exploring intrinsic in-
ductive bias. CoRR, abs/2106.03348, 2021. 3

[39] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial In-
telligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.
1, 3, 8

[40] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. AAAI, 32, 2018. 2, 3, 7

[41] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu.
Robust graph convolutional networks against adversarial at-
tacks. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, page 1399–1407, New York, NY, USA, 2019. As-
sociation for Computing Machinery. 3

[42] Kevin Zhu, Alexander Wong, and John McPhee. Fencenet:
Fine-grained footwork recognition in fencing. In 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 3588–3597, 2022.
1, 2, 3, 7

Paper 2: A stroke of Genius:
Predicting the next move in
badminton

197

A stroke of genius: Predicting the next move in badminton

Magnus Ibh Stella Graßhof Dan Witzner Hansen
Machine Learning Group, IT University of Copenhagen

{ibhq, stgr, witzner}@itu.dk

Abstract

This paper presents, RallyTemPose, a transformer
encoder-decoder model for predicting future badminton
strokes based on previous rally actions. The model uses
court position, skeleton poses, and player-specific embed-
dings to learn stroke and player-specific latent representa-
tions in a spatiotemporal encoder module. The represen-
tations are then used to condition the subsequent strokes
in a decoder module through rally-aware fusion blocks,
which provide additional relevant strategic and technical
considerations to make more informed predictions. Ral-
lyTemPose shows improved forecasting accuracy compared
to traditional sequential methods on two real-world bad-
minton datasets. The performance boost can also be at-
tributed to the inclusion of improved stroke embeddings ex-
tracted from the latent representation of a pre-trained large-
language model subjected to detailed text descriptions of
stroke descriptions. In the discussion, the latent representa-
tions learned by the encoder module show useful properties
regarding player analysis and comparisons. The code can
be found at: This https url.

1. Introduction
In racket sports, players exchange strokes in a rally until one
player fails to successfully return a shot, giving the point
to the opponent, see Fig. 1. Predictions about strokes of
players, drawing on their history of previous strokes, benefit
athletes’ training and match preparation and can contribute
to an improved viewing experience during live broadcasts
[5]. Badminton, characterized by swift shot exchanges and
strategic shuttle placement, presents a challenge for deep-
learning computer vision-based sports analytics. The prob-
abilistic nature of stroke forecasting in racket sports such as
badminton [1] complicates predictive analytics due to the
inherent unpredictability of player decisions. At any time,
players face multiple viable actions. This unpredictability
originates from the dynamic interplay of factors such as
the physical state, psychological condition, and tactical ap-
proach of the player, which influence the selection of poten-

Figure 1. Datastructure overview shows that each stroke/action
in a rally, i.e., stroke sequence, is provided the skeleton motion
sequence of the stroke for additional context.

tial strokes and strategies. This work aims to design a model
capable of incorporating some of the uncertainty-inducing
factors into the prediction process.
One approach to reducing the uncertainty associated with

subsequent stroke predictions involves incorporating var-
ious otherwise uncertain contextual information into the
model. These factors include player skeleton data se-
quences, player identification (ID), and turn-based rally
awareness. Player skeleton data sequences contain the
movement and positions of a player’s joints over time and
have shown increasingly promising results for general ac-
tion recognition [14, 22, 25, 33] and sports applications
[8, 18, 19, 34]. The sequences contain the motion of player
strokes. This data can reveal patterns in a player’s technique
and movement that give information about future strokes,
allowing models to account for individual players’ physi-
cal capabilities and limitations. Incorporating player ID as
information allows the predictive models to consider his-
torical performance data and personal playing styles. This
individual-specific approach recognizes that each player has
unique characteristics (strengths, weaknesses, and strate-
gic preferences) influencing their selection of shots in the
game. Theoretically, by identifying these characteristics,
the model can better predict a player’s likely actions in var-
ious game situations. Finally, turn-based rally awareness
introduces an extra contextual layer to the prediction [31]
by specifying the actor and reactor behind each stroke. In-
cluding turn-based nuances allows the model to isolate the

individual player’s motion and obtain a clear representation
of each stroke. The additional context provided by skeleton
data sequences, player ID, and turn-based rally awareness
attempts to construct a method that moves beyond the ba-
sic statistical probability of the rally sequences and instead
embraces a more holistic understanding of the game. This
approach aims to predict the next stroke and simultaneously
capture the underlying (player) process behind stroke selec-
tion in racket sports.

This paper builds upon concepts of our previous work
[17] and presents a transformer-based model for action fore-
casting in badminton.1 The primary contributions of this
research include:

1. A skeleton-based spatiotemporal encoder that uses trans-
former and pooling blocks to learn representations for
enhancing next stroke predictions in badminton.

2. An adaptive cross-attention decoder that incorporates
contextual stroke descriptors from high-dimensional em-
beddings of a pre-trained language model (LM).

3. Examples of how the latent variables can be used for
match and playstyle analysis.

The following sections will detail the methodology behind
this approach, the architecture of the transformer-based
model, and the findings from various experimental evalu-
ations.

2. Related Work

2.1. Action forecasting

Prior works have attempted to develop a wide range of neu-
ral network models to forecast future action sequences from
observed action labels or extracted video features. The pa-
per [11] introduced a method using a recurrent neural net-
work (RNN) - hidden Markov model to classify actions
from video frames, followed by a convolutional neural net-
work (CNN) or RNN that predicted the following actions in
the sequence. In [20], they employed a variational multi-
headed GRU to predict future actions and their duration.
They showed that their approach worked for both one-hot
action labels and extracted video features. Similarly to our
approach, [12] suggested jointly using both frame and an-
notation features to improve the prediction capacity of their
model. [23] employed sequence-to-sequence models using
a gated recurrent unit (GRU) encoder-decoder architecture
to predict future actions from RGB frames alone. To our
knowledge, skeleton data is not commonly used as a modal-
ity for in-action sequence forecasting. Instead, action labels
are used to condition observed skeleton sequences to gener-
ate future skeleton sequences. [13, 24] employs variational
autoencoders for this task.

1Our code is available on github https://github.com/
MagnusPetersenIbh/RallyTemPose.

2.2. Data analytical sports applications

Action recognition tasks fill up the majority of sports-
focused research in the field of computer vision. Here, con-
volutional neural networks (CNN) have been used for fea-
ture extraction on RGB images [26]. Classification algo-
rithms such as Support Vector Machines then use the ex-
tracted features to make predictions. Transformer models
have also gained traction for spot application tasks. In [3], a
Vision Transformer (ViT) [9] is used as the backbone to do
group activity recognition (GAR) in Volleyball and basket-
ball.
Skeleton data, as opposed to image data, has proven effec-
tive for the analysis and recognition of activities in various
sports, including Tai Chi [8, 10, 30] and fencing [21, 34].
Skeleton-based Temporal convolutional networks (TCN)
have seen use for action recognition in table tennis [18],
where TCNs performed better than LSTM models. In bad-
minton, [19] used skeleton data and shuttle trajectory data in
a GRU model to perform binary hit detection. They further
improved the detection rate by using badminton-specific
rules. Specifically for stroke prediction [31] employed
a transformer-based player and position-aware model that
used prior stroke types and shuttle placement to predict fu-
ture position and type of strokes. Instead of the shuttle
placement, our work uses the players’ skeleton and ground
motion to provide a dynamic understanding of each stroke
as the basis for predicting the subsequent strokes in the se-
quence.

3. Task formulation

In action forecasting for racket sports such as badminton,
the strokes are the central actions. A stroke is the mo-
tion of a player preparing to hit the shuttle until shortly
after contact between the racket and the shuttle. The ex-
change of strokes between players, called a rally, contin-
ues until one player fails to return the opposing player’s
stroke. The scientific objective is to predict the next stroke
within a rally based on previously executed strokes while
also considering the actual motion of players by incorpo-
rating 2D skeleton pose data. A pose K(i)

j within a stroke
si (ith stroke in the sequence) captures the spatial config-
uration of the player’s body at a given time frame j, rep-
resented by a set of keypoints that denote the 2D image
positions of the body joints. Additionally, the sequence
G = g(i)1 , ..,g(i)j , ..g(i)T , representing the 2D positions of the
players’ feet on the ground plane for each frame, is sampled
and structured as g(i)j ∈ RT×2, as an additional data source.
A rally S is denoted S= [s1, . . . ,sN], where si is the ith stroke
within the rally. Each stroke is described by a sequence of
poses K(i)

1 , . . . ,K(i)
T , with T representing the duration of a

stroke sequence and N the number of strokes in a rally.

The goal is to predict the subsequent stroke si+1 in the
rally sequence S and show that leveraging both the historical
sequence of strokes and motion provided by the 2D skeleton
poses improves the prediction rate.

4. Model

This section describes the concepts of the autoregressive
stroke prediction model, RallyTemPose. The main contri-
bution of the model is that the encoder module takes the
skeleton data and player ground condition as additional data
and computes an embedded representation that conditions
the rally sequence to predict the next stroke in the rally,

p(si+1|s1:i,K1:i,G1:i, I) = Dec(si:1,Enc(K1:i,G1:i, Id)).
(1)

The overview of RallyTempose can be seen in Fig. 2.

4.1. Encoder

The encoder consists of a linear projection layer that em-
beds the raw data frames of player positions and skeleton
poses into tokens. A learnable joint encoding (JE) is added
to the tokenized data to provide information about the joint
arrangement of the skeleton data. The Spatial Transform
(ST) then applies a pose-wise transformer mechanism fo-
cusing on spatial relationships between keypoints in the
player’s movements. The ST is followed by a Grouped
Pooling Block (GPB), which aggregates information, re-
duces dimensionality, and focuses on the relevant features
of the players’ movements. The Temporal Transformer
(TT) focuses on the temporal dynamics, processing the pose
movements over time. An important detail is that for the ST
and TT blocks, both the inter-player (cross-attention) and
intra-player (self-attention) attention is computed; see Fig. 3
for a visual depiction. The temporal transformer is followed
by another GPB that pools over the embedded temporal rep-
resentation. The final step produces (see Fig. 2) the three
latent variables: a stroke representation zs, a player 1 repre-
sentation z1, and a player 2 representation z2. zs merges the
processed representations of both players for each stroke,
providing complete context for each stroke. The player rep-
resentations, on the other hand, are limited to information
about one specific player.
Transformer Block:
In the transformer block, see Fig. 2, the layer normalized
input is first subjected to the multi-headed self-attention
(MHSA) mechanism that computes attention scores after
being masked with either casual or padding mask (hides
padded or future token from getting attention).

Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V, (2)

Q, K, and V represent Queries, Keys, and Values, all
being learned linear projections of the embedded repre-
sentation vectors. The transformer block employs multi-
head attention by splitting Q, K, and V into multiple
heads h for parallel processing: MultiHead(Q,K,V) =
Concat(head1, ...,headh)W O. Following this, a fully con-
nected network (FC) applies nonlinear transformations to
each position independently:

FC(x) = GELU(Norm(x)W1 +b1)W2, (3)

where both the MHSA and FC block have residual connec-
tions, GELU activations, first proposed in [16], and Norm
refers to a layer normalization.
Group Pooling Block:
The GPB, shown in Fig. 2, based on [14], but here used
in connection with transformer blocks instead of fully con-
nected layers aggregates global and local information in
embedded data through global and local max pooling.
The pooling module operates on an embedded tensor X ∈
RG×N×D, split into select groups. N, G, and D denote the
number of groups, group size, and the feature dimension,
respectively. First, a global max pooling operation over the
features in all groups with

Md = Gpool(X)d = max
n,g

Xn,g,d ,M ∈ X (4)

thus captures the most significant activations across all
groups and instances for each feature. Simultaneously, lo-
cal max pooling (Lpool) is executed by pooling over the
group in X to create N features vector with the aggregated
D features, yielding

Qn,d = Lpool(X)n,d = max
g

Xn,g,d . (5)

The locally pooled features are then concatenated with the
globally pooled features (expanded to match local dimen-
sions), yielding a tensor Y ∈ RN×2D.

Yn,d = Concat[Lpool(X)n,d ,Gpool(X)d]. (6)

Lastly, an FC layer maps it back to the feature dimension D.

4.2. Decoder

In the decoder, an embedding layer maps the one-hot en-
coded stroke sequences into stroke tokens. Subsequently,
the turn-based nature of badminton is exploited by adding
the specific player representations (z1 or z2) of the player
performing the actual stroke. Through a self-attention
module, the player-embedded stroke sequence is initially
encoded. Subsequently, the decoder block (DB) uses
cross-attention mechanisms to condition each stroke on the
skeleton-based stroke representations zs from the encoder.
The final component, an MLP Head, takes the output from

Figure 2. Overview of our approach in, with corresponding components. The abbreviations refer to the following: JE: learned joint
encoding added to each pose keypoint, TE: learned temporal encoding added to the frame level tokens in a stroke, ST: spatial transformer,
TT: temporal transformer, GPB: group pooling block, FC: fully connected, TCN: temporal convolutional network smoothing over the
player ground positions, DB: decoder block.

Figure 3. Illustration of the different types of attention present in
the encoder module.

the DB to predict the probability of the next stroke in the
sequence.
Decoder Block:
The Decoder Block (DB) combines self-attention, dual
cross-attention, and an adaptive fusion mechanism. The
block employs layer norms to ensure stability during the
forward pass. The target embedded stroke sequence is first
subjected to MHSA, after which encoder-to-decoder cross-
attention and decoder-to-encoder reverse cross-attention are
applied, facilitating stronger incorporation of the encoder
representations zs of the stroke motion. This is further en-
sured through an adaptive fusion layer that linearly com-
bines the outputs of the dual cross-attention, which a stan-

dard Transformer Block subsequently processes for final re-
finement.

4.3. Enhanced Stroke Embeddings

Another aspect of our model is its pre-trained Language
Model (LM) utilization. Specifically, BERT [7], for em-
bedding various stroke types. Each stroke type is anno-
tated with a description of its characteristics and typical use
cases. From these descriptions, a high-dimensional stroke
embedding is processed and extracted from the latent layer
of a pre-trained BERT model. The LM representation pro-
vides more detailed embeddings than those derived from a
learned embedding on a comparatively smaller dataset than
the one on which the LM model was trained.

4.4. Training

The makeup of a transformer allows for N−1 training sam-
ples to be created from a N stroke rally S. In each training
sample, the last stroke functions as the prediction target of
the model, while all prior strokes in the rally serve as the
observed sequence. This strategy allows for variable-length
training sequences, allowing the model to observe the con-
nection between all possible strokes in a rally during train-
ing. Sequence diversity helps the model avoid overfitting.
The network is trained using two loss functions. First, we
minimize the cross-entropy loss between the target and pre-

dicted strokes:

Lmain(si+1, p̂i+1) =−
C

∑
j=1

s(j)
i+1 log(p̂(j)

i+1), (7)

where C is the number of stroke classes, si+1 is the one-
hot encoded target stroke, and p̂i+1 is the predicted stroke
type probability vector. Second, an auxiliary objective is
defined on the output of the encoder’s latent stroke variable,
zs. The cross-entropy of the linear projection, âi, of the la-
tent stroke variable zs(i) and the corresponding stroke type si
is minimized as

âi =Wauxzs(i) +baux, (8)

Laux(si, âi) =−
C

∑
j=1

s(j)
i log(â(j)

i). (9)

Here, both objectives are described for a single stroke de-
noted by the subscript i, but in practice, the loss is the av-
erage of all strokes in a sequence. The total loss is the
weighted sum of the two losses

L = γLaux +Lmain, (10)

where γ is a hyperparameter, γ = 0.3 during experiments.

5. Experiments
5.1. Datasets

ShuttleSet The ShuttleSet [32] dataset contains 42 pro-
fessional matches from 2018 to 2021, featuring 26 players
across men’s and women’s singles categories. It is com-
posed of more than 3000 rallies and 34000 strokes, with an
average rally length of 10 strokes. Domain experts anno-
tated the strokes in the dataset into 10 distinct shot types:
net shot, clear, push/rush, smash, defensive shot, drive, lob,
dropshot, serve, and unknown/error. The number of strokes
for each type can be seen in Tab. 1. For model training and
testing, the dataset is divided such that 80% of the rallies
from each match are used for training, ensuring compre-
hensive player history, and the remaining 20% for testing.

BadmintonDB The BadmintonDB [2] dataset consists of
9 annotated video data professional men’s singles matches.
The dataset includes 811 rallies and 9,671 strokes, all fea-
turing the players Kento Momota and Anthony Sinisuka
Ginting. The dataset provides annotation of the strokes into
10 distinct types, that follow the recommended coaches’
guide of the Badminton World Federation (BWF). The shot
types are almost identical to the shuttleset data, see Tab. 1
for the stroke distribution. The same two players play in
all matches, hence the 2 complete matches are reserved for
testing and the remaining 7 for training.

5.2. Skeleton pose extraction

The pose extraction workflow involves two key stages:
adopting techniques from [4, 6] for human detection and
pose estimation and utilizing the HRNet framework [27]
for precise 2D pose estimation. The presence of non-
participants, like spectators, can adversely affect the skele-
ton data’s quality by including poses of irrelevant charac-
ters. To tackle this, a homography based on the badminton
court dimensions is computed to map detected individuals’
feet to the ground plane, ensuring the focus is solely on
players. This method also distinguishes between the top and
bottom players in each sequence. Missing skeleton data is
addressed by linear interpolation between the preceding and
future frames. Pose normalization involves centering and
scaling to standardize the bounding box diagonal to one.

5.3. Evaluation metrics

In badminton, more than one stroke is often a viable choice,
which should be reflected in the evaluation metrics. The
performance of the models is judged based on the accuracy
(acc) of their prediction, the top-2 accuracy (acc2), and the
top-3 accuracy (acc3).

5.4. Baselines

No other existing work uses stroke skeleton data to enhance
future stroke prediction capabilities. Therefore, our model
performance is compared to other sequence and action pre-
diction baselines not explicitly designed for badminton. All
model baselines consist of current state-of-the-art concepts
for sequence prediction, and thus, while not intentionally
designed for badminton stroke prediction, comparing to the
baselines allows for a good estimate of the prediction capa-
bilities of our specific model. The following baselines are
used for comparison:

• Seq2Seq [28]
• Transformer [29]
• Actionformer [22] + Transformer decoder

5.5. Implementation details

The dimension of embedded representation (d) per head is
set to 16, the number of heads (h) in the MHSA is set to 4,
and the forward expansion in the inner dimension of feed-
forward layers is set to 4 following[15]. A rally’s max se-
quence length (s) is set to 35, and T varies for different
rallies. Similarly, the max temporal length of each stroke
motion (T) is set to 30. Dropout and Attention dropout are
utilized in each MHSA block with a drop rate of 0.3. The
models are trained with a batch size of 1 using AdamW with
a learning rate set to 10−4. Zero padding is performed for
individual stroke motion sequences. Padding the rallies was
also tested but did not improve performance.

Table 1. Distribution of the data classes for the two datasets.

Net-Shot Defensive-Shot Smash Lob Clear Drive Dropshot Push/Rush Serve Error
ShutSet 6716 3836 3749 4614 2440 1091 2929 3021 2060 1095
BadminDB 1756 1281 1154 1954 596 188 108 715 108 131

Figure 4. Comparisons of class accuracy for the different stroke
types in the ShuttleSet dataset.

5.6. Main Experiments

In the comparative analysis of predictive models on the
ShuttleSet and BadminDB datasets, our model outperforms
the other baseline models in standard and top-3 accuracy.
On the ShuttleSet dataset, it achieves an accuracy of 54.3%,
a top-2 accuracy of 77.3%, and a top-3 accuracy of 92.5%,
indicating its ability to rank the correct outcome within the
top three predictions in over 90% of the cases. In the Bad-
minDB dataset, our model achieves an accuracy of 62.8%
and a top-3 accuracy of 93.1%. The BadminDB is much
smaller than ShuttleSet, which resulted in our model often
overfitting. As a result, the much simpler sequential models
perform better on BadminDB comparatively, but RallyTem-
pose still slightly outperforms them in the end.
The results show the model’s prediction prowess and reflect
its ability to select the most logical outcomes. For a given
situation, multiple stroke candidates can be perfectly viable
simultaneously. The results in both accuracy metrics, espe-
cially in the top-3 accuracy, suggest that our model’s way of
incorporating skeleton-motion and player-specific informa-
tion improves the prediction logic compared to the baselines
in the context of badminton datasets.

Logical misclassifications: In Fig. 4, the specific accu-
racy and misclassification ratio for all stroke types is plot-
ted. Strokes like the smash are accurately predicted, while
strokes like the clear and drives are only correctly predicted

12% and 14% of the time, respectively. However, by exami-
nation of the confusion matrix in Fig. 5, most classifications
can be attributed to logical reasoning, and all misclassifica-
tions belong to sensible groups (Net-shots, push-rush, and
lobs), (drives and defensive shots) and, (smash, clears and
drops). For example, a clear is predominantly hit from the
backcourt on shuttle trajectories and racket swings similar
to a smash and, to a lesser degree, a drop. This is con-
sistent with the faulty prediction of clears being smashes
and drops, and hence the predictions follow an underlying
logic of the game. Similarly, a drive can easily be con-
fused with a defensive reaction shot. Our model can still
be improved further. We hypothesize that a deeper strate-
gic understanding of each situation can increase accuracy
even more. However, the results indicate that our model,
through purely next-stroke action prediction, has developed
a rudimentary game understanding.

6. Discussion
6.1. Ablation Study

The impact of our skeleton-based stroke condition on the
prediction capability is examined through an ablation study.
The relative contribution of 1.) skeleton data, 2.) ground
position of the players, and 3.) specific player embedding
is determined through six different model variants. In 3 the
respective prediction accuracies are shown after removing
specific model inputs and their corresponding model com-
ponents. The results show that the most critical factor is the
inclusion of the player ground position, as leaving out this
data along with the TCN block leads to a 2.6% drop in per-
formance. The encoder version made up solely of a TCN
block achieves a 51.6% accuracy. The player-specific in-
formation does not significantly boost the prediction accu-
racy, however, as shown in the next section, learning player-
specific representations allows for introspective player anal-
ysis that can be extrapolated from the model. Since includ-
ing the players’ ground positions results in a significant per-
formance boost. A potentially even greater performance in-
crease could be obtained by including 3D skeleton data as
well.

6.2. Match Analysis Prospects

The model’s design allows for player comparison by ana-
lyzing the latent variables of the model. Fig. 6 and Fig. 7
show t-SNE plots of the latent variables. In the visualiza-
tion zs are colored based on the target stroke they represent,

Table 2. Accuracy (Acc), Top-2 Accuracy (Acc-2), and Top-3 Accuracy (Acc-3) of our models and other baselines on the ShuttleSet and
BadminDB datasets.

ShuttleSet BadminDB

Model Acc (%) Acc-2 (%) Acc-3 (%) Acc (%) Acc-2 (%) Acc-3 (%)

Seq2Seq (LSTM) 47.9 72.4 83.5 57.3 82.3 86.0
Transformer 49.8 73.9 87.2 61.5 85.4 92.5
POT + Trans Dec 52.1 74.1 91.2 58.4 82.0 91.7

RallyTemPose 54.3 77.3 92.5 62.8 83.5 93.1

Figure 5. To the left is the confusion matrix for the shuttles data, and to the right is the confusion matrix grouped according to logical
classes.

Table 3. Ablation Study of RallyTemPose model.

Keypoint Ground Player Rep Accuracy (%)
48.3

✓ 49.2
✓ 46.9

✓ 51.6
✓ ✓ 50.1

✓ ✓ 52.4
✓ ✓ 51.7
✓ ✓ ✓ 54.3

whereas z1 and z2 are colored according to the players they
represent. Clear groupings are observed for the different
zs stroke variables and partial groupings of the player vari-
ables. This indicates that zs and, to a lesser degree, z1 and z2
stores relevant information about strokes and playing styles
respectively. While the specific player embedding does not
significantly improve the model’s prediction accuracy, it al-
lows for model intrinsic playstyle comparisons.

Player Similarity We can project the playstyle similar-
ity of different players by looking at the cosine similarity
of the player-specific latent variable for the other players

in the dataset. The cosine similarity is calculated by ran-
dom sampling of N = 1000, strokes, for each of the pair
combinations of players and calculating the average cosine
similarity between the latent player variables as

Player Simi, j =
N

∑
n=1

zn
i · zn

j

∥zn
i ∥∥zn

j ∥
. (11)

Tab. 4 shows the cosine similarity between the latent vari-
ables of players for 5 different players. Observe that there
is a notable difference in similarity between the players.
On average, the male (first 3 players) and female (last 2
players) have a lower similarity, whereas the same gender
similarity scores are higher. However, the player similarity
score is also quite low between the 3 males. This, how-
ever, is quite sensible since Male 3, known for a unique,
endurance-based, hard-to-read playstyle, Male 2, with a
very fast-paced style, and Male 1, with a physical and pow-
erful playstyle, are very different players, and the similarity
score reflects that. Future work could include categorizing
distinct playstyles and attempting to interpret them as de-
fensive, offensive, power, placement, etc.

Play-style analysis In Fig. 8, a bar plot of the average ac-
curacy for each player in the ShuttleSet dataset is shown.
There is a notable gap of more than 20% average accuracy

Figure 6. t-SNE plot over the latent stroke zs representation, col-
ored according to the observed stroke types.

Figure 7. t-SNE plot over the latent player representation (z1 and
z2), colored according to the target player Id. Note the lack of
very distinct groupings of the player variables, which could be ex-
plained by the difference/similarity in how players perform certain
strokes.

Table 4. Cosine similarity between latent player variables of dif-
ferent classes. (M: male, F: female)

Player sim M1 M2 M3 F1 F2

M 1 0.61
M 2 0.43 0.58
M 3 0.37 0.41 0.67
F 1 0.21 0.19 0.31 0.71
F 2 0.23 0.51 0.49 0.57 0.65

between the players, which strokes are predicted the best
compared to the player predicted the worst. The prediction
accuracy of specific players could be used to indicate how
well players can mask their strokes. However, the approach

Figure 8. The average accuracy of next stroke predictions for all
the players in the dataset.

assumes the model can flawlessly predict straightforward
strokes, which is not yet guaranteed. Still, through continu-
ous improvement of the model, this could be a helpful asset
for player analysis.

6.3. Future prospects

Looking ahead, we aim to enhance the model’s capabilities
by incorporating additional variables, such as match out-
comes (win/loss), to facilitate more sophisticated tactical
analysis. Additionally, expanding the model to predict the
skeleton sequence of the predicted strokes would be benefi-
cial not only for sports analysis purposes but also for creat-
ing synthetic data in a field where quality annotated datasets
are sparse.

7. Conclusion

This research introduced a model specifically designed
for stroke prediction in badminton, utilizing an encoder-
decoder architecture. The model integrates skeleton data
and player-specific information using a spatiotemporal
transformer encoder. Our experiments, conducted on two
different real-world badminton datasets, show an increase
in performance for our approach compared to other fore-
casting baselines. Furthermore, the extracted latent repre-
sentations show potential use for player analysis and match
preparation.

Acknowledgements. We are grateful for the financial
support provided by the Novo Nordisk Foundation, which
facilitated our research as part of the TeamSPORTek initia-
tive. Additionally, our thanks extend to Badminton Dan-
mark and Team Danmark for their valuable contributions,
including data collection and providing expert knowledge
on badminton.

References
[1] Yazan Abu Farha and Juergen Gall. Uncertainty-aware antic-

ipation of activities. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision Workshops, pages
0–0, 2019. 1

[2] Kar-Weng Ban, John See, Junaidi Abdullah, and Yuen Peng
Loh. Badmintondb: A badminton dataset for player-specific
match analysis and prediction. In Proceedings of the 5th In-
ternational ACM Workshop on Multimedia Content Analysis
in Sports, page 47–54, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. 5

[3] Naga VS Raviteja Chappa, Pha Nguyen, Alexander H. Nel-
son, Han-Seok Seo, Xin Li, Page Daniel Dobbs, and Khoa
Luu. Spartan: Self-supervised spatiotemporal transformers
approach to group activity recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pages 5158–5168, 2023. 2

[4] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 5

[5] Wei-Ta Chu and Samuel Situmeang. Badminton video anal-
ysis based on spatiotemporal and stroke features. In Other
Conferences, pages 448–451, 2017. 1

[6] MMPose Contributors. Openmmlab pose estimation tool-
box and benchmark. https://github.com/open-
mmlab/mmpose, 2020. 5

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguis-
tics, 2019. 4

[8] Lingxiao Dong, Dongmei Li, Shaobin Li, Shanzhen Lan,
and Pengcheng Wang. Tai chi action recognition based on
structural lstm with attention module. In Other Conferences,
2019. 1, 2

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. 2

[10] Yong Du, Wei Wang, and Liang Wang. Hierarchical recur-
rent neural network for skeleton based action recognition.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1110–1118, 2015. 2

[11] Yazan Abu Farha, Alexander Richard, and Juergen Gall.
When will you do what? - anticipating temporal occurrences
of activities. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5343–5352, 2018. 2

[12] Harshala Gammulle, Simon Denman, Sridha Sridharan, and
Clinton Fookes. Forecasting future action sequences with
neural memory networks. In British Machine Vision Confer-
ence, 2019. 2

[13] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao
Sun, Annan Deng, Minglun Gong, and Li Cheng. Ac-
tion2motion: Conditioned generation of 3d human motions.
In Proceedings of the 28th ACM International Conference on
Multimedia, pages 2021–2029, 2020. 2

[14] Ryo Hachiuma, Fumiaki Sato, and Taiki Sekii. Unified
keypoint-based action recognition framework via structured
keypoint pooling. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 22962–22971, 2023. 1, 3

[15] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross B. Girshick. Masked autoencoders are scal-
able vision learners. CoRR, abs/2111.06377, 2021. 5

[16] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 3

[17] Magnus Ibh, Stella Graßhof, Dan Witzner, and Pascal
Madeleine. TemPose: a new skeleton-based transformer
model designed for fine-grained motion recognition in bad-
minton. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 5199–
5208, 2023. ISSN: 2160-7516. 2

[18] Kaustubh Milind Kulkarni and Sucheth Shenoy. Table tennis
stroke recognition using two-dimensional human pose esti-
mation. In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 4571–
4579, 2021. 1, 2

[19] Paul Liu and Jui-Hsien Wang. MonoTrack: Shuttle Trajec-
tory Reconstruction From Monocular Badminton Video. In
2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), page 10, 2022. 1,
2

[20] Siyuan Brandon Loh, Debaditya Roy, and Basura Fer-
nando. Long-term action forecasting using multi-headed
attention-based variational recurrent neural networks. In
2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 2418–2426,
2022. 2

[21] Filip Malawski and Bogdan Kwolek. Improving multimodal
action representation with joint motion history context. Jour-
nal of Visual Communication and Image Representation, 61:
198–208, 2019. 2

[22] Vittorio Mazzia, Simone Angarano, Francesco Salvetti, Fed-
erico Angelini, and Marcello Chiaberge. Action transformer:
A self-attention model for short-time pose-based human ac-
tion recognition. Pattern Recognition, 124:108487, 2022. 1,
5

[23] Yan Ng and Basura Fernando. Forecasting future action se-
quences with attention: A new approach to weakly super-
vised action forecasting. IEEE transactions on image pro-

cessing : a publication of the IEEE Signal Processing Soci-
ety, PP, 2020. 2

[24] Mathis Petrovich, Michael Black, and Gul Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. In ICCV, pages 10965–10975, 2021. 2

[25] Chiara Plizzari, Marco Cannici, and Matteo Matteucci.
Skeleton-based action recognition via spatial and temporal
transformer networks. Computer Vision and Image Under-
standing, 208-209:103219, 2021. 1

[26] Nur Azmina Rahmad and Muhammad Amir As’ari. The new
convolutional neural network (cnn) local feature extractor
for automated badminton action recognition on vision based
data. Journal of Physics Conference Series, 1529, 2020. 2

[27] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
High-Resolution Representation Learning for Human Pose
Estimation. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5686–5696,
Long Beach, CA, USA, 2019. IEEE. 5

[28] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence
to sequence learning with neural networks. In Proceedings
of the 27th International Conference on Neural Informa-
tion Processing Systems - Volume 2, page 3104–3112, Cam-
bridge, MA, USA, 2014. MIT Press. 5

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, page 6000–6010, Red Hook, NY, USA,
2017. Curran Associates Inc. 5

[30] Pengcheng Wang and Shaobin Li. Structural-attentioned
lstm for action recognition based on skeleton. In Other Con-
ferences, 2018. 2

[31] Wei-Yao Wang, Hong-Han Shuai, Kai-Shiang Chang, and
Wen-Chih Peng. Shuttlenet: Position-aware fusion of rally
progress and player styles for stroke forecasting in bad-
minton. In AAAI, pages 4219–4227. AAAI Press, 2022. 1,
2

[32] Wei-Yao Wang, Yung-Chang Huang, Tsi-Ui Ik, and Wen-
Chih Peng. Shuttleset: A human-annotated stroke-level sin-
gles dataset for badminton tactical analysis. In KDD, pages
5126–5136. ACM, 2023. 5

[33] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. AAAI, 32, 2018. 1

[34] Kevin Zhu, Alexander Wong, and John McPhee. Fencenet:
Fine-grained footwork recognition in fencing. In 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 3588–3597, 2022.
1, 2

Paper 3: SynthNet: 3D
trajectory reconstruction from
synthetic training data

208

SynthNet: Leveraging Synthetic Data for 3D Trajectory
Estimation from Monocular Video

Morten Holck Ertner
IT-University of Copenhagen

Copenhagen, Denmark
mert@itu.dk

Sofus Schou Konglevoll
IT-University of Copenhagen

Copenhagen, Denmark
sosk@itu.dk

Magnus Ibh
IT-University of Copenhagen

Copenhagen, Denmark
ibhq@itu.dk

Stella Graßhof
IT-University of Copenhagen

Copenhagen, Denmark
stgr@itu.dk

ABSTRACT
Reconstructing 3D trajectories from video is often cumbersome and
expensive, relying on complex or multi-camera setups. This paper
proposes SynthNet, an end-to-end pipeline for monocular recon-
struction of 3D tennis ball trajectories. The pipeline consists of two
parts: Hit and bounce detection and 3D trajectory reconstruction.
The hit and bounce detection is performed by a GRU-based model,
which segments the videos into individual shots. Next, a fully con-
nected neural network reconstructs the 3D trajectory through a
novel physics-based training approach relying on purely synthetic
training data. Instability in the training loop caused by relying on
Euler-time integration and camera projections is circumvented by
our synthetic approach, which directly calculates loss from esti-
mated initial conditions, improving stability and performance.
In experiments, SynthNet is compared to an existing reconstruction
baseline on a number of conventional and customized metrics de-
fined to validate our synthetic approach. SynthNet outperforms the
baseline based on our own proposed metrics and in a qualitative
inspection of the reconstructed 3D trajectories.

CCS CONCEPTS
• Computing methodologies → Activity recognition and under-
standing; Tracking; Reconstruction; Neural networks; • Applied
computing → Physics.

KEYWORDS
3D Reconstruction, Machine Learning in Sports, Computer Vision,
Ball Tracking, Neural Network, Synthetic Data, Differential Equa-
tions
ACM Reference Format:
Morten Holck Ertner, Sofus Schou Konglevoll, Magnus Ibh, and Stella
Graßhof. 2024. SynthNet: Leveraging Synthetic Data for 3D Trajectory
Estimation from Monocular Video. In Proceedings of the 7th ACM Interna-
tional Workshop on Multimedia Content Analysis in Sports (MMSports ’24),
October 28-November 1, 2024, Melbourne, VIC, AustraliaProceedings of the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MMSports ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1198-5/24/10
https://doi.org/10.1145/3689061.3689073

Figure 1: 3D trajectories constructed from monocular video
using our end-to-end system SynthNet.

32nd ACM International Conference on Multimedia (MM’24), October 28-
November 1, 2024, Melbourne, Australia. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3689061.3689073

1 INTRODUCTION
In high-level tennis, accurate 3D information on the ball holds great
value, both in assisting umpires in calling the game and gathering
player and shot information for analytical purposes. Currently, the
most popular technology is the Hawk-Eye system1, which uses
multiple cameras and triangulation to capture the ball’s 3D position
with an error margin of 3.6 millimeters. Such a system is expen-
sive and thus only available for the highest level of tennis players.
However, most tennis players are amateurs and often lack access
to such a system. Enabling the tracking of the ball’s 3D position
using a single, everyday camera, such as a phone, would allow the
average tennis player to access game statistics previously reserved
for professionals.

Estimating 3D ball positions from monocular video has been
achieved in other sports like volleyball [2], basketball [1], and bad-
minton [12], but, to our knowledge, has never been achieved in
tennis. Thus, the motivation for this paper is to estimate 3D trajec-
tories from monocular video in tennis.
Direct 2D-to-3D lifting of ball coordinates presents a significant

1https://www.hawkeyeinnovations.com

MMSports ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Morten Holck Ertner, Sofus Schou Konglevoll, Magnus Ibh, and Stella Graßhof

Figure 2: Complete End-to-End Pipeline. For training, synthetic data is generated by sampling initial conditions (IC). This
data is used to create 3D trajectories and image trajectories along with sampled camera parameters. The feed-forward neural
network (FNN) predicts initial conditions based on image trajectories and court corners, and trains using Root Mean Squared
Error (RMSE) between true and predicted IC as the loss function. For inference, features are extracted from video data and fed
into the hit and bounce detection model HBNet. Predictions from HBNet segment the videos into individual shots, which are
then used alongside court corners as input to the trained FNN. The FNN predicts a new set of initial conditions, enabling the
creation of 3D trajectories that are reprojected onto image coordinates to calculate reprojection error.

challenge since (2𝐷, 3𝐷)—pairs of ball coordinates are publicly un-
available. Instead, we segment the game into individual shots and
use the physical laws of motion to set up differential equations for
the trajectories, after which Euler’s method is used to estimate the
3D position of the ball, which can be projected to the 2D image
coordinates using the camera parameters. Usually, a training loop
involving iterative time integration and subsequent 3D-2D cam-
era projection is too unstable to converge. Instead, we propose a
feed-forward neural network that predicts the initial conditions
(IC) given the image (2D) trajectories as input, which provides a
significantly smoother training routine. This is realized by, prior
to training the model, random sampling of initial conditions and
subsequent trajectory simulation using Euler’s method. Then, only
keeping trajectories, passing the net, and landing within the court
allows for acquisitions of 3D shot trajectories. Lastly, the image
coordinates are retrieved by projection to the image plane using
randomly chosen camera parameters found from known positions
of the tennis court. A model could also be trained on the synthetic
(2D,3D) pairs. However, compressing input image trajectories al-
lows for better generalization of real-world trajectories.
To segment the game into shots, we identify the start and end of

each shot by detecting hits and bounces. We use the TrackNet Ten-
nis dataset [7], consisting of videos from 10 professional tennis
matches with annotated hits and bounces. From the videos, we
extract three features: player poses, ball coordinates, and court cor-
ner coordinates, to use as input for our hit and bounce detection
model, which we call HBNet. We evaluate HBNet on the ground
truth labels from the TrackNet dataset and use the predictions to
segment the videos into individual shots.

In the trajectory experiments, we evaluate the model on the
reprojection error between the true and predicted (estimated with
[19]) image trajectories. Additionally, realizing the limitation of
using reprojection error as the sole metric, we propose tailored
metrics to validate the real-world generalization of our synthetically
trained model. The complete SynthNet pipeline can be seen in
Figure 2.

2 RELATEDWORKS
A lot of prior works in the field of computer vision and machine
learning in sports have focused on individual components such as
court detection [3, 21, 22], ball tracking [7, 11, 20] and pose estima-
tion [8–10]. Previous research used those features to perform action
recognition in sports. Huang et al. [5, 6] use the ball trajectories

SynthNet: Leveraging Synthetic Data for 3D Trajectory Estimation from Monocular Video MMSports ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

with audio information to detect hits made in a tennis game. Simi-
larly, Shublewska-Paszkowska et al. [18] use 3D tennis movement
as input to a graph neural network to predict two actions: forehand
and backhand strokes, while Cai and Tang [24] identifies 12 types
of tennis shots using a Long-Short Term Memory model.

When doing 3D tracking of sports balls, the most used and most
reliable way is to use a multi-camera setup [4, 15, 23, 25], where the
scene is captured from multiple angles and triangulation is used to
estimate the balls 3D location. While this can give accurate results,
it is less cost-efficient than using a single camera as you need access
to multiple cameras and the possibility and permission to set them
up. Some research in 3D ball tracking from monocular video has
been done in several sports such as volleyball [2], table tennis [17],
basketball [1] and badminton [12], all using a similar approach.
They extract features from video and use optimization techniques
to find the best set of initial conditions for a reconstructed 3D trajec-
tory. This method has several flaws. First of all, using optimization
techniques means that each shot is optimized one at a time, re-
sulting in long inference times. Secondly, the reprojection error
between the reconstructed 3D trajectory and the image trajectory
is used as part of the loss function, which is undesirable as this
can lead to unrealistic trajectories. Instead, we propose to use a
neural network to predict the initial condition, train this network
on synthetic data, and use their ground truth initial condition for
loss during training.

3 RECONSTRUCTING 3D TRAJECTORIES
3.1 Problem statement
In this paper, we develop an end-to-end pipeline to reconstruct
3D tennis ball trajectories from monocular video. The process in-
volves extracting the ball, court, and player poses to predict hits and
bounces during a match. These predictions segment the video into
shots, defined from a hit to a subsequent bounce. We deploy a neu-
ral network trained exclusively on synthetic data to estimate initial
conditions for ballistic 3D trajectories using 2D image trajectories
from these segmented shots. Subsequently, we evaluate the model
using reprojection error and additional proposed metrics. Training
will be done solely using a synthetic dataset where ground truth
initial conditions are known, and evaluation will be conducted on
segmented shots using the defined metrics. To generate trajecto-
ries from initial conditions, we employ Euler’s method for solving
differential equations.

3.2 Hit Bounce Detection
To detect the hits and bounces in a match, we use a similar archi-
tecture to Liu et. Al [12]. We extract court coordinates with an
algorithm proposed by Kosolapov Sergey [16], detect poses with
RTMO [13], and track the ball with WASB [19]. The poses are fil-
tered by searching for a pose inside each player’s court. If there
is no pose in the court, it finds the pose closest to the back line.
Court, player poses, and the ball is then used as features for a model
that predicts hits, bounces, and nonhits. To get the temporal as-
pect of the movement before and after a shot, we create a Gated
Recurrent Unit (GRU) based architecture, called Hit-Bounce Net
(HBNet). HBNet consists of an embedding layer with 32 neurons, 6

gated recurrent layers with 32 units, and 0.2 dropout. Followed by
a fully connected layer and a softmax which generates confidence
scores. The model takes a snippet of 21 frames at a time and predicts
whether a hit or bounce occurs in the last 9 frames of a snippet.
HBNet achieves an accuracy of 86% and a macro F1-score of 0.84.
The shots segmented with the predictions from HBNet are called
HBNet + WASB.

3.3 Synthetic Learning Procedure
Using the segmented shots from HBNet we can reconstruct 3D
trajectories for each shot. We define a shot to be a hit followed by
a bounce or another hit. Estimating each shot individually means
we can model the trajectory as a projectile under drag:

𝑑2x(𝑡)
𝑑𝑡2

= g − 𝐷

𝑚
|v(𝑡) |v(𝑡), (1)

where m is the mass of the ball, x and v are the 3D position and
velocity vectors, g is the gravitational constant, and 𝐷 the drag
coefficient. As this equation has no analytical solution, we use
forward Euler’s time integration to retrieve a discretized version of
the shuttle position with𝑁 time steps. At each step, the acceleration
is assumed constant for a small enough time step Δ𝑡 = 𝑡𝑛+1 −
𝑡𝑛 , where 𝑛 ∈ 𝑁 is the current step. Thus, for each small Δ𝑡 , we
calculate acceleration an+1, velocity vn+1, and position xn+1, based
on the acceleration, velocity, and position of the current time 𝑛 step
as follows:

a𝑛+1 = g − 𝐷

𝑚
|v𝑛 |v𝑛 (2)

v𝑛+1 = v𝑛 + a𝑛Δ𝑡 (3)
x𝑛+1 = x𝑛 + v𝑛Δ𝑡 . (4)

To create a 3D trajectory initial conditions v0 = (v𝑥0, v𝑦0, v𝑥0)𝑇
and x0 = (𝑥0, 𝑦0, 𝑧0)𝑇 is required. A visualisation of this process
can be seen in Figure 3. We center the world coordinates in the
middle of the tennis court. The y-axis is oriented along the length
of the court, away from the camera. The x-axis is oriented across
the width of the court, and the z-axis is oriented vertically, perpen-
dicular to the ground.

To predict a set of initial conditions we use a feedforward neural
network (FNN) consisting of four hidden layers. The model architec-
ture can be seen in Figure 4. The goal of the model is to predict a set
of the six initial conditions that create the best-fitting 3D trajectory.
We only train the model on synthetic data, where the ground truth
initial conditions are known, and we calculate the loss as:

𝐿 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝐼𝐶𝑖 − ˜𝐼𝐶𝑖)2, (5)

where 𝐼𝐶 is the ground truth initial conditions and ˜𝐼𝐶 the predicted
initial conditions.

For inference, the FNN uses the extracted 2D ball coordinates and
court corners (extracted from the videos) to make predictions of
initial conditions. We estimate a 3D trajectory based on the initial
conditions and reproject it to image coordinates using a perspec-
tive transformation. We find the camera parameters for each video
with camera calibrations assuming known world coordinates and

MMSports ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Morten Holck Ertner, Sofus Schou Konglevoll, Magnus Ibh, and Stella Graßhof

Figure 3: Visual presentation of creating 3D trajectory given
a set of initial conditions. The loop runs in N iterations, and
with each time step a position and velocity is created.

Figure 4: Model Architecture. The module has an input size
of 108, 4 NN blocks, and an output size of 6.

corresponding image coordinates. The corresponding coordinates
are comprised of the court corners and manually annotated net-
pole coordinates. Based on this, we calculate the reprojection error
(RE) between the real image trajectory (𝐼𝑇) and predicted image
trajectory (˜𝐼𝑇) using root mean squared error (RMSE):

𝑅𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝐼𝑇𝑖 − ˜𝐼𝑇𝑖)2, (6)

3.4 Proposed Evaluation Metrics
We introduce three alternative evaluation metrics based on the
3D landing position of the ball: Landing Error (LE), Tile Accuracy
(T.acc) and Tile F1-score (T.F1). To find the 3D landing position of
the image trajectories, we use a homography to find the position of

Figure 5: Explanation of Landing error and tile accuracy/F1-
score. The predicted landing position, given label 2 is depicted
as red dot. The blue dot is the true landing position, given
label 4, found using homography on the image trajectory.
The landing error is the distance between the two landing
positions and tile accuracy/F1-score is calculated based on
their given label.

the ball when a bounce occurs. The Landing error is the distance
between the real and predicted landing position

𝐿𝐸 =

√︃
(𝑥𝑙 − 𝑥𝑙)2 + (𝑦𝑙 − 𝑦𝑙)2, (7)

where (𝑥𝑙 , 𝑦𝑙) is the true landing position and 𝑥𝑙 , 𝑦𝑙 the predicted
position.
To define the tile accuracy and tile F1-score we divide the court into
12 tiles, six on each side of the net, and assign the position a label
corresponding to the tile they land in as seen in Figure 5. Using
these labels we can calculate accuracy and F1-score.

Lastly, on synthetically created data where we have the true 𝐼𝐶
and therefore the true 3D trajectory, we can use the reconstruction
error (RecE) as an evaluation metric. The reconstruction error is
the mean Euclidean distance between the predicted and the true
3D trajectory

𝑅𝑒𝑐𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

√︃
(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − 𝑦𝑖)2 + (𝑧𝑖 − 𝑧𝑖)2 . (8)

4 EXPERIMENTS
4.1 Dataset and Implementation Details
We use the TrackNet tennis dataset [7], which contains 96 rallies
spread across 10 different games of both men and women. All videos
are statically filmed from an overhead broadcast view behind one
of the backlines, with a resolution and frame rate of 1280x720 and

SynthNet: Leveraging Synthetic Data for 3D Trajectory Estimation from Monocular Video MMSports ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

30 fps. The videos have annotated hits, bounces, and ball image
coordinates for each frame, along with a visibility score for the
ball. Additionally, we annotated some hits and bounces that were
missing in the original annotations.
We create additional synthetic data to support the real data, by
sampling random combinations of initial conditions, and use these
conditions to create 3D trajectories. The sampling is done within
boundaries such that the trajectory starts within the sidelines and
not too far behind the backlines, and such that the velocity is below
the highest recorded velocities in tennis.

To use the trajectories as input for our model, we reproject them
down onto image coordinates using camera parameters sampled
from the real data. The court corners corresponding to the camera
parameters are used as input. We create 10000 shots, 5000 from
each side of the court, all of varying lengths and ending when
they hit the ground. The synthetic data allows us to measure both
reconstruction and reprojection errors. The real and synthetic data
are both divided into train and test, with two games reserved for
testing and eight for training. With the synthetic data, we divide
based on which game the sampled camera parameters are taken
from. The image trajectories are padded, using −1, to have a length
of 50 frames to create inputs of equal length, and trajectory and
court coordinates are scaled down by the image dimensions. The
model is implemented in Pytorch using a dropout of 0.2 and solely
trained on the synthetic data for 25 epochs with early stopping.

4.2 Model Evaluation
To evaluate our model, we define three different sets of trajectories:

(1) the ground truth annotations and image ball trajectories
from the TrackNet dataset,

(2) the predictions and image ball trajectories from our pipeline,
where we utilize WASB to find the ball and our HBNet model
to detect the shots (HBNet+WASB), and

(3) the synthetically created trajectories.
Table 1 shows the results of SynthNet on the ground truth, HB-

Net+WASB, and synthetic test data. The ground truth and HB-
Net+WASB are only trajectories from the test set, games 1 and 8,
and the synthetic trajectories only have trajectories with camera
parameters from these two games as well. The results show that
SynthNet consistently performs best over all metrics on the syn-
thetic trajectories. This is expected, as these trajectories can be
perfectly estimated using our 3D projection method. Using the syn-
thetic data yields a reprojection error of 16.1 pixels, which is more
than twice as for the HBNet + WASB and ground truth trajectories.
Likewise, we see that the model has half the reconstruction error
on the synthetic data compared to both HBNet+WASB and ground
truth trajectories.
SynthNet performs equally well on the ground truth trajectories
and the HBNet+WASB trajectories in terms of reprojection error,
with 41 pixels versus 41.31 pixels, while the landing error differs
significantly by a meter. Interestingly, the model has a much higher
accuracy, 8%, and F1-score, 0.9, on HBNet+WASB trajectories than
on the ground truth trajectories. Additionally, we see a relatively
large difference between the mean and median of RE and LE on
ground truth and HBNet+WASB trajectories indicating that there
are outliers with high RE and LE. The differences between mean

and median values on the synthetic data are smaller, showing fewer
outliers. Lastly, we can evaluate our model using recreation error
on the synthetic data, where we get a mean error of 1.39 meters.

4.3 Effect of Knowing Camera Parameters
To examine the effect of the model having encountered the camera
parameters doing training, we test the model on HBNet+WASB tra-
jectories from all the games, i.e. both the test and train sets. Table 2
shows the results. The model is trained using camera parameters
from all other games than game 1 and 8, but we don’t see that it
achieves the worst results on these. On game 1 it is among the best
results in all the metrics, while on game 8 it is among the worst
results.

Game 4 yields the worst performance based on our proposed
metrics. It is noteworthy that game 4 was recorded from a much
lower angle than the rest of the games. Based on those observa-
tions we conclude that it does not matter as much if the model has
encountered the exact camera parameters or angle before if they
are not significantly different from previously encountered ones.

4.4 Evaluating 3D Trajectories
Visually inspection of our 3D trajectories (HBNet+WASB) reveals
a couple of general tendencies. Firstly, the model seems to have
difficulties determining the proper 3D start position of the shot,
when the trajectory starts from the side of the court furthest away
from the camera. Table 3 shows the absolute error, in meters of the
initial position and meters pr. second of the initial velocity, on the
synthetic trajectories.

The model is good at determining the correct 𝑥-coordinate but
has difficulties with especially the𝑦-coordinate of the start position,
where it is, on average, 1.6 meters away from the true 𝑦-coordinate.
We observe the same tendencies on the initial velocity, where it
mostly struggles with velocity in the 𝑦-direction (along the field).
The model is generally better at estimating the initial position than
the initial velocity.

Figure 6 shows the image coordinates of the ball found using
WASB (red) and the predicted 3D trajectory and its reprojection
(green). It shows a reprojection that is somewhat close to the real im-
age trajectory, starting around the same pixels, and landing slightly
away from the true position. However, the real 3D shot starts from
around the backline, while the predicted shot starts closer to the
net. This problem arises, as the perspective makes it more difficult
to distinguish and determine distances when it is further away from
the camera. Furthermore, when finding the camera parameters, the
only reference points that are not on the ground plane are the poles
in the middle of the court. This lack of elevated 3D reference points
from the rest of the court could make it more difficult to project
elevated 3D points onto the image accurately.
Secondly, SynthNet has difficulties with outlier shots such as high-
velocity shots, shots from weird angles, shots that have a lot of
spin, shots that last only a couple of frames, etc. Figure 7 shows a
serve from game 5, with a high velocity, that flies at a strange angle.
If we only see the trajectory, it could look like it is flying across
instead of along the court, starting close to the net and ending near
it as well. As it is a serve, the ball starts high up into the air, which
again can be difficult to determine from image coordinates due to

MMSports ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Morten Holck Ertner, Sofus Schou Konglevoll, Magnus Ibh, and Stella Graßhof

Table 1: Model performance on the three different test sets of trajectories. 𝑅𝐸 denotes the mean RE, 𝑅𝐸 the median RE, 𝐿𝐸 the
mean LE, and 𝐿𝐸 the median LE.

Image World

Image Trajectories 𝑅𝐸 𝑅𝐸 T.acc T.F1 𝐿𝐸 𝐿𝐸 RecE

Ground Truth 41.01 px 29.12 px 46.08% 0.307 2.73 m 2.17 m -
HBNet + WASB 41.31 px 31.82 px 53.85% 0.398 3.78 m 2.4 m -
Synthetic 16.1 px 14.65 px 75.1% 0.751 1.35 m 1.11 m 1.39 m

Table 2: Results of SynthNet on HBNet+Trajectories trajecto-
ries for each game.

Image World
RE T.acc T.F1 LE

game1 35.29 px 64.15% 0.488 3.19 m
game2 35.27 px 56.45% 0.402 2.25 m
game3 54.78 px 54.54% 0.294 3.59 m
game4 36.72 px 28.07% 0.187 7.07 m
game5 38.26 px 45.45% 0.202 3.30 m
game6 43.43 px 66.67% 0.388 3.40 m
game7 47.76 px 54.00% 0.3540 2.91 m
game8 47.56 px 43.14% 0.320 4.40 m
game9 34.17 px 59.52% 0.396 2.61 m
game10 39.56 px 61.54% 0.5523 3.02 m

average 41.28 px 53.35% 0.358 3.58 m

Table 3: Average absolute differences and standard deviations
on initial conditions on synthetic test data.

IC Direction Absolute Error

Position (𝑥0)
𝑥 0.25 ± 0.23 m
𝑦 1.63 ± 1.25 m
𝑧 0.40 ± 0.29 m

Velocity (𝑣0)
𝑥 0.64 ± 0.53 m/s
𝑦 3.11 ± 2.67 m/s
𝑧 0.58 ± 0.41 m/s

Figure 6: WASB image trajectory and reprojected predicted
3D shot. Left: WASB image trajectory (Red) and reprojected
predicted 3D shot(green). Middle: Predicted 3D shot seen
from the side. Right: Predicted 3D shot seen from above.

the perspective. As a result, the predicted trajectory starts too close

Figure 7: WASB image trajectory and reprojected predicted
3D shot. Left: WASB image trajectory (Red) and reprojected
predicted 3D shot(Green). Middle: Predicted 3D shot seen
from the side. Right: Predicted 3D shot seen from above.

to the net, does not have the correct trajectory, and does not land
close to the actual position. In such cases, the model appears to find
the least worst trajectory, which is a short trajectory in the middle
of the court. This is a general tendency with outlier shots.
Thirdly, SynthNet also tends to create initial conditions such that
the trajectories end before they hit the ground. This is of course a
problem, as we calculate our proposed metrics under the assump-
tion that the trajectory ends on the ground.
Furthermore, we observe a tendency to create trajectories that are
directed more toward the vertical middle line of the court than the
actual shot is. This observation is supported by the F1-scores of
each of the 12 defined tiles. Figure 8 show SynthNet achieves the
best results on the tiles along the vertical middle line. Additionally,
we see that there is a slightly better score at the side of the court
furthest away from the camera, which might be due to the camera
angle, where the ball’s position on the court closer to the camera is
more difficult to estimate. Interestingly, on tile 7, the model achieves
an F1-score of 0.

4.5 Ablation Study
We conducted an ablation study to explore the effect of using the
court corners as input along with the image trajectory. The results
presented in Table 4 show a clear performance increase in all met-
rics when using the court corners. We observe that knowing the
court size (in image coordinates) yields more accurate trajectories.
The court corners are static in the world coordinates. Thus, the
changing image position of the corners provides the model with
information about camera position and perspective. Additionally,
we hypothesize this is because, with the court corners, the model
knows the court’s limits and, therefore, finds it easier to make shots
within these boundaries. We note that the video material is from
professional tennis players. These players rarely shoot the ball far

SynthNet: Leveraging Synthetic Data for 3D Trajectory Estimation from Monocular Video MMSports ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 4: Ablation study of input features on all HBNet+WASB
trajectories.

Image World
Input RE T.acc T.F1 LE

Image Trajectory 48.25 px 41.35% 0.289 4.13 m
Image Trajectory
+ court corners 41.31 px 53.85% 0.398 3.78 m

Figure 8: Tile F1-scores of each of the 12 defined tiles on
HBNet+WASB trajectories.

outside the court, and the synthetically created trajectories always
land within the court. Therefore, it might be valuable for the model
to have additional information on where the trajectory should be
within the court.

4.6 SynthNet vs. Baseline
We compare our method of estimating initial conditions with a
simplified version of the previously used approach. The problem
is formulated as an optimization task minimizing only the repro-
jection error, which we solve by Powell’s method [14]. Small ex-
periments using additional loss terms like start/landing loss were
made but yielded no definitive results, thus we chose to use this
simplified version. Table 5 shows the results for the optimizer and
SynthNet on HBNet+WASB trajectories. On one hand, we see the
optimizer generally yields a much lower reprojection error. This
is expected based on the design which employs the reprojection
error as its loss function and SynthNet does not. On the other hand,
SynthNet generally results in better tile accuracy, tile F1-score, and
landing error, indicating that it performs better than the previous
optimizer. Manual inspection of the predicted trajectories supports
the conclusion that SynthNet generally outperforms the simplified
Baseline method. Additional practical benefits of SynthNet over the

reference method are that our proposed approach is more suitable
for real-life scenarios because it does not need the camera param-
eters of the trajectory which the optimizer relies on. This implies
that SynthNet does not require estimates of the camera parameters
for the video. It instead extracts the aforementioned features. Ad-
ditionally, since SynthNet is already trained, running inference is
much faster than with the optimizer as it needs to search for the
optimal set of initial conditions for every shot individually.

4.7 Limitations
While the unique approach of SynthNet demonstrates encouraging
results for monocular 3D reconstruction in tennis, several limita-
tions and challenges persist.

Considering that some players can shoot the ball with a velocity
of up to 70 m/s, the ball can travel 2.3 meters in one frame. This
implies that the provided frame rate of 30 frames per second (FPS)
introduces limitations. When the ball moves faster than the FPS can
capture, the bounces and hits are likely not exactly in the annotated
frames but somewhere between two frames. In this scenario, the
landing error is misleading because

we assume that the ball hits the ground in the annotated bounce.
Therefore, the error could be decreased with a higher frame rate.

Another limitation is the metrics to evaluate the models. The
only metric that can reliably describe the performance of the 3D-
constructed trajectory is the reconstruction error, which we do
not have for the real data. Since the reprojection error does not
capture important aspects, we introduced new metrics to gauge the
performance of our method more accurately. However, these addi-
tional metrics only examine the trajectory ending, not its starting
position.

Lastly, we observed the situation where the ball bounces on
the net poses challenges. This situation is annotated as a non-hit
but appears very similar to a bounce. Furthermore, 3D trajectory
reconstruction fails hard in these cases because 3D trajectory re-
construction does not consider these cases when modeling with
Euler’s method from initial conditions. This has a fatal effect on
performance and yields unusually high reprojection errors which
we choose to filter out in the worst cases.

While bouncing on the net is an uncommon occurrence in real-
world scenarios, a model tailored to this domain should be able to
handle those edge-cases.

4.8 Future Works
In this study, we choose to estimate hit-to-bounce trajectories. A
possible addition is a method that models the bounce-to-hit trajec-
tories. Another future avenue entails fine-tuning the synthetically
trained model on real data. Additionally, adding more data with
varying camera angles would likely make it more robust to different
camera angles and out-of-distribution shots. Alternatively, creating
synthetic camera parameters could have prevented the issues with
the initial conditions in the 𝑦-direction. Lastly, experimenting with
incorporating spin in the reconstructed 3D trajectories by adding
3D additional initial conditions to the model output yielded no con-
clusive positive results. However, this will be a priority in future
approaches, as spin is an essential factor in tennis.

MMSports ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Morten Holck Ertner, Sofus Schou Konglevoll, Magnus Ibh, and Stella Graßhof

Table 5: Optimizer and SynthNet performance on HBNET + WASB trajectories

Image World
Model 𝑅𝐸 𝑅𝐸 T.acc T.F1 𝐿𝐸 𝐿𝐸

Optimizer 12.20 px 6.55 px 40.71% 0.371 5.11 m 3.09 m
SynthNet 41.31 px 31.82 px 53.85% 0.398 3.78 m 2.4 m

5 CONCLUSION
We proposed an end-to-end pipeline that reconstructs 3D tennis
ball trajectories from monocular video.

The first part of the pipeline is a GRU-based model, which uses
image trajectory, player positions, and court corners to detect hits
and bounces in tennis matches. Using these predictions to define
shots and their trajectories, we test a neural network to predict
initial conditions for a 3D reconstruction of the shots’ image trajec-
tory. The method achieves good results in both reprojection error,
in our own proposed metrics, and when visually inspecting the
created trajectories. However, it has difficulties determining the
exact start positions, especially for the player furthest from the
camera, as well as struggles with outlier shots.

We compare our results to a simplified established approach
from previous research and conclude that our methods achieve
better results. Although our method achieves a worse reprojection
error, it performs better on landing error, tile accuracy & tile f1-
score, and 3D reconstruction error. Furthermore, SynthNet is more
efficient and generalizes well, since it does not rely on camera
parameters. Thus, we believe our approach is more reliable for the
reconstruction of 3D trajectories.

REFERENCES
[1] Vanyi Chao, Ankhzaya Jamsrandorj, YinMayOo, Kyung-RyoulMun, and Jinwook

Kim. 2023. 3D Ball Trajectory Reconstruction of a Ballistic Shot from aMonocular
Basketball Video. In IECON 2023- 49th Annual Conference of the IEEE Industrial
Electronics Society. IEEE, 1–6. https://doi.org/10.1109/IECON51785.2023.10312079
ISSN: 2577-1647.

[2] Hua-Tsung Chen, Wen-Jiin Tsai, Suh-Yin Lee, and Jen-Yu Yu. 2012. Ball tracking
and 3D trajectory approximation with applications to tactics analysis from single-
camera volleyball sequences. Multimedia Tools and Applications 60, 3 (Oct. 2012),
641–667. https://doi.org/10.1007/s11042-011-0833-y

[3] Dirk Farin, Susanne Krabbe, Peter H. N. De With, and Wolfgang Effelsberg.
2003. Robust camera calibration for sport videos using court models. In Storage
and Retrieval Methods and Applications for Multimedia 2004, Minerva M. Yeung,
Rainer W. Lienhart, and Chung-Sheng Li (Eds.), Vol. 5307. SPIE, San Jose, CA,
80–91. https://doi.org/10.1117/12.526813

[4] Megan Fazio, KS Fisher, and Tori Fujinami. 2018. Tennis ball tracking: 3-D trajec-
tory estimation using smartphone videos. Department of Electrical Engineering,
Stanford University (2018).

[5] Q Huang, S Cox, F Yan, TE deCampos, D Windridge, J Kittler, and W Christmas.
20110831 - 20110903. Improved Detection of Ball Hit Events in a Tennis Game
Using Multimodal Information, In International Conference on Auditory-Visual
Speech Processing. 11th International Conference on Auditory-Visual Speech
Processing (AVSP) (20110831 - 20110903).

[6] Qiang Huang, Stephen Cox, Xiangzeng Zhou, and Lei Xie. 2012. Detection of ball
hits in a tennis game using audio and visual information. In Proceedings of The
2012 Asia Pacific Signal and Information Processing Association Annual Summit
and Conference. IEEE, 1–10.

[7] Yu-Chuan Huang, I.-No Liao, Ching-Hsuan Chen, Tsì-Uí İk, and Wen-Chih Peng.
2019. TrackNet: A Deep Learning Network for Tracking High-speed and Tiny
Objects in Sports Applications. http://arxiv.org/abs/1907.03698 arXiv:1907.03698
[cs, stat].

[8] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. 2023. Ultralytics YOLO. Retrieved
may 1, 2024 from https://github.com/ultralytics/ultralytics

[9] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. 2023. Ultralytics YOLO. Retrieved
may 1, 2024 from https://github.com/ultralytics/ultralytics

[10] S.X. Ju, M.J. Black, and Y. Yacoob. 1996. Cardboard people: a parameterized model
of articulated image motion. In Proceedings of the Second International Conference
on Automatic Face and Gesture Recognition. IEEE Comput. Soc. Press, Killington,
VT, USA, 38–44. https://doi.org/10.1109/AFGR.1996.557241

[11] Jacek Komorowski, Grzegorz Kurzejamski, and Grzegorz Sarwas. 2019. DeepBall:
Deep Neural-Network Ball Detector. In Proceedings of the 14th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications. SCITEPRESS - Science and Technology Publications. https:
//doi.org/10.5220/0007348902970304

[12] Paul Liu and Jui-HsienWang. 2022. MonoTrack: Shuttle trajectory reconstruction
from monocular badminton video. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). 3512–3521. https://doi.org/
10.1109/CVPRW56347.2022.00395

[13] Peng Lu, Tao Jiang, Yining Li, Xiangtai Li, Kai Chen, and Wenming Yang. 2024.
RTMO: Towards High-Performance One-Stage Real-Time Multi-Person Pose
Estimation. http://arxiv.org/abs/2312.07526 arXiv:2312.07526 [cs].

[14] M. J. D. Powell. 1964. An efficient method for finding the minimum of a function
of several variables without calculating derivatives. Comput. J. 7, 2 (Jan. 1964),
155–162. https://doi.org/10.1093/comjnl/7.2.155

[15] Jinchang Ren, James Orwell, Graeme A. Jones, and Ming Xu. 2009. Tracking the
soccer ball using multiple fixed cameras. Computer Vision and Image Understand-
ing 113, 5 (2009), 633–642. https://doi.org/10.1016/j.cviu.2008.01.007 Computer
Vision Based Analysis in Sport Environments.

[16] Kosolapov Sergey. 2023. TennisCourtDetector. https://github.com/yastrebksv/
TennisCourtDetector Accessed: March 2024.

[17] Lejun Shen, Qing Liu, Lin Li, and Haipeng Yue. 2016. 3D reconstruction of ball
trajectory from a single camera in the ball game. In Proceedings of the 10th
International Symposium on Computer Science in Sports (ISCSS), Paul Chung,
Andrea Soltoggio, Christian W. Dawson, Qinggang Meng, and Matthew Pain
(Eds.). Vol. 392. Springer International Publishing, Cham, 33–39. https://doi.org/
10.1007/978-3-319-24560-7_5 Series Title: Advances in Intelligent Systems and
Computing.

[18] Maria Skublewska-Paszkowska, Paweł Powroźnik, and Edyta Łukasik. 2020.
Learning Three Dimensional Tennis Shots Using Graph Convolutional Networks.
Sensors 20 (10 2020), 6094. https://doi.org/10.3390/s20216094

[19] Shuhei Tarashima, Muhammad Abdul Haq, Yushan Wang, and Norio Tagawa.
2023. Widely Applicable Strong Baseline for Sports Ball Detection and Tracking.
http://arxiv.org/abs/2311.05237 BMVC2023.

[20] Gabriel Van Zandycke and Christophe De Vleeschouwer. 2019. Real-time CNN-
based Segmentation Architecture for Ball Detection in a Single View Setup. In
Proceedings Proceedings of the 2nd International Workshop on Multimedia Content
Analysis in Sports. ACM. https://doi.org/10.1145/3347318.3355517

[21] Fei Wang, Lifeng Sun, Bo Yang, and Shiqiang Yang. 2006. Fast Arc Detection
Algorithm for Play Field Registration in Soccer Video Mining. In 2006 IEEE
International Conference on Systems, Man and Cybernetics, Vol. 6. IEEE, 4932–4936.
https://doi.org/10.1109/ICSMC.2006.385087 ISSN: 1062-922X.

[22] T. Watanabe, M. Haseyama, and H. Kitajima. 2004. A soccer field tracking method
with wire frame model from TV images. In 2004 International Conference on Image
Processing, 2004. ICIP ’04., Vol. 3. IEEE, 1633–1636 Vol. 3. https://doi.org/10.1109/
ICIP.2004.1421382 ISSN: 1522-4880.

[23] Qingyu Xiao, Zulfiqar Zaidi, and Matthew Gombolay. 2024. Multi-Camera Asyn-
chronous Ball Localization and Trajectory Prediction with Factor Graphs and
Human Poses. http://arxiv.org/abs/2401.17185 arXiv:2401.17185 [cs].

[24] Jia xin Cai and Xin Tang. 2018. RGB Video Based Tennis Action Recognition
Using a Deep Historical Long Short-Term Memory. arXiv: Computer Vision and
Pattern Recognition (2018). https://api.semanticscholar.org/CorpusID:52824593

[25] Fei Yan. 2005. Tennis ball tracking for automatic annotation of broadcast
tennis video. Proceedings of the British Machine Vision Conference (2005).
https://www.semanticscholar.org/paper/Tennis-ball-tracking-for-automatic-
annotation-of-Yan/d135b747e99e6a06f5ecac5462b53c1b7bd259e2?p2df

	Abstract
	Resume
	Abbrivations
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Thesis overview
	Badminton

	Neural components
	Graph Convolutional Networks
	Temporal Convolutional Networks
	Transformer
	Chapter Conclusion

	Human Pose Estimation
	Introduction
	Methods of Human Pose Estimation
	Quality of Pose Estimation on Badminton videos
	Chapter Conclusion

	Data pipeline & Datasets
	Homogenous Coordinates and Perspective Transfomation
	Data Features
	Datasets
	Chapter Conclusion

	Skeleton-based Stroke Recognition
	Raw Video Frames vs. Skeleton Features for Stroke Recognition in Badminton
	Related Work
	TemPose: A Multimodal Factorized Transformer for Fine-Grained Stroke Recognition in Badminton
	Experiments
	Skeleton-based Pretraining Methods
	Chapter Conclusion

	Stroke Forecasting
	Related Work
	Forecating task formulation
	RallyTemPose
	Experiments
	Discussion
	Chapter Conclusion

	3D Reconstruction of Shuttlecock Trajectories
	Camera models
	3D shuttle-trajectory estimation with Physics-based modeling
	Shuttle Experiments
	Discussion
	Chapter Conclusion

	Conclusion
	Main Takeaways
	Limitations & Short-comings
	Future Prospects
	Key Insights for Collaboration
	Overall Message

	References
	Appendix Paper 1: TemPose: A new approach skeleton-based action recognition
	Appendix Paper 2: A stroke of Genius: Predicting the next move in badminton
	Appendix Paper 3: SynthNet: 3D trajectory reconstruction from synthetic training data

