
Terra:
Enabling Edge-Based Stream Processing
for Resource-Constrained Environments

Kasper Hjort Berthelsen

Advisor: Philippe Bonnet
Submitted: December 2024

ii

Abstract

The world is becoming more and more data driven and with the
rise of the Internet of Things, more and more data is being generated
and transferred every day. The traditional way of data processing by
collecting data by default in cloud data centres is becoming unviable
due to increased network congestion and demands for privacy-aware
processing and real-time responses. The concept of fog and edge
computing was introduced to solve these challenges, but these often
still require transfer of data from sensor nodes to processing nodes,
and the option of processing data on the sensor device itself is still
absent.

This work introduces Terra, which enables query processing
on resource-constrained sensor nodes at the very edge of modern
sensor network databases. Integrated into a state-of-the-art network
database, this approach significantly minimises network traffic, lead-
ing to a big reduction in energy consumption. Through a series of
real-world experiments on physical devices, we evaluate Terra’s
performance and experimentally derive an energy cost model that
verifies Terra’s capabilities. In particular, we show a significant
reduction in network transfer and therefore energy cost when pushing
aggregate computation onto sensor devices.

Resumé

Verden bliver mere og mere datadrevet, og med Internet of Things
popularitet bliver mere og mere data genereret og overført hver dag.
Den traditionelle måde at behandle data på ved at indsamle data
som standard i cloud-datacentre er ved at blive ulevedygtig på grund
af øget netværksbelastning og krav om privatlivsbevidst og realtid
databehandling. Koncepterne fog og edge computing blev introduceret
for at løse disse udfordringer, men disse kræver ofte stadig overførsel
af data fra sensorenheder til databehandlingsenheder, og muligheden
for at behandle data på selve sensorenheden er stadig fraværende.

Denne afhandling introducerer Terra, som muliggør processe-
ring af forespørgsler på ressourcebegrænsede sensorenheder på den
yderste edge af moderne sensornetværksdatabaser. Integreret i en
state-of-the-art netværksdatabase minimerer denne tilgang markant
netværkstrafikken, hvilket fører til en stor reduktion i energiforbruget.
Gennem en række fysiske eksperimenter på sensorenheder evaluerer vi

iii

Terras ydeevne og udleder eksperimentelt en energiomkostningsmo-
del, der verificerer Terras evner. Især viser vi en betydelig reduktion
i netværksoverførsel og dermed energiomkostninger, når vi skubber
aggregatberegning ud på sensorenheder.

iv

Acknowledgements
On paper a Ph.D is independent research carried out solely by me, the
singular author. In reality, a great number of people contributed to the
completion of this thesis.

First, I want to thank my supervisor Philippe Bonnet for your advice,
support, and guidance. And I want to thank my two bachelor students
Laurits and Markus for dedicating their time and project to helping me.

I want to thank my colleagues and friends Morten, Ties, Dovile and
Adrian for your friendship and support, both at work and away. This
thanks is extended to all my colleagues in the DASYA group.

I want to thank everyone at DIMA at TU Berlin for hosting me on my
stay abroad and allowing me to work with NebulaStream. I especially want
to thank Viktor Rosenfeld there for our regular talks and for continuing to
follow my journey even after my time at DIMA, providing valuable guidance
and enriching conversations up to the end.

I owe a thanks to the IT University of Copenhagen for allowing me
to pursue non-academic passion projects like co-found and run CS Coffee
Talks and the PhD Club. Through CS Coffee Talks I got to meet
both students and professors in a casual setting which helped to keep me
grounded and connected to student life.

At the PhD Club I want to thank Laura, Jaike and everybody else for
being equally frustrated with the lack of an organisation for and by Ph.D.
students to actually start one together. Your friendship and the meaningful
conversations we have had helped me grow as a person. I cannot believe
the progress we have made together, going from nothing to an organisation
with oomph and influence, both at a local and national scale. Here we owe
a huge thanks to the PhD School and ITU as a whole for their continued
support, encouragement, and for taking us seriously.

I also want to give a big thanks to my girlfriend, Kai, whom I met
through the PhD Club and who has been and continues to be incredibly
supportive throughout the ups and downs of this journey. I would truly not
be where I am today without you. Thank you.

I want to thank my friends from my masters:, Jon, Mads, Frederik,
Mathias, and Anders for your support. Outside of academia I want to
thank my roommate Frederik for your insightful discussions and help with
maths. I also want to thank Mads, Marie, Helene, Marc, and Skjøtt.

Til sidst vil jeg gerne sige tak til min mor og far, mine søskende og
min mormor og farmor. Selvom I ikke aner hvad det er jeg laver så har I

v

altid støttet mig når det var svært.
Og til min morfar og farfar som jeg begge mistede sidste år: tak for

alt.
All of the people mentioned above and many more are the reason why I

am where I am today. In all the moments where I was prepared to throw in
the towel, you have picked it up and returned it to me with love, support,
and encouragement.

Thank you!

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Approach . 2
1.4 Contributions . 3

2 Background 5
2.1 Sensor Network Databases (SNDB) 5

2.1.1 Data Model . 6
2.1.2 Query Language Features 7
2.1.3 Architecture . 7
2.1.4 Sensor Network Databases & their Network Topology . 9
2.1.5 A Modern Sensor Network Database 17

2.2 Networking . 17
2.2.1 Network Architecture 18
2.2.2 LoRaWAN . 19

2.3 Evaluating SNDB Performance on a Testbed 22
2.4 Summary . 24

3 Related Work 25
3.1 Power Consumption and Sensor Network Databases 25
3.2 Code Offloading in Distributed Database Systems 27

3.2.1 Query shipping / Function shipping 28
3.2.2 Data Shipping . 28
3.2.3 Hybrid Shipping . 28

3.3 Summary . 30

4 Terra - Design & Implementation 31

viii Contents

4.1 Requirements . 31
4.1.1 Functional Requirements 32
4.1.2 Non-functional Requirements 33

4.2 Integration with NebulaStream 34
4.3 Analysis . 36

4.3.1 Communication . 37
4.3.2 Query Execution . 38
4.3.3 ML Inference . 42
4.3.4 Integration . 42

4.4 Design . 43
4.4.1 Terra . 44
4.4.2 Integration into NebulaStream 51

4.5 Implementation . 53
4.5.1 Protocol Buffers . 53
4.5.2 NebulaStream Integration 54
4.5.3 MicroPython Proof of Concept 57
4.5.4 C Port . 57

4.6 Future work . 67
4.7 Summary . 69

5 Cost Model 71
5.1 Introduction . 71
5.2 Energy Cost Model . 71

5.2.1 Constants . 73
5.2.2 Query Length . 73
5.2.3 Response Rate . 74
5.2.4 Tensorflow Lite . 74
5.2.5 Final Model . 75
5.2.6 Assumptions and Trade-offs 76

5.3 Experimental Framework . 77
5.3.1 Testbed . 78
5.3.2 System . 78
5.3.3 Metrics . 86
5.3.4 Workload . 88
5.3.5 Experiment . 92

5.4 Experimental Results . 97
5.4.1 Data Processing . 97
5.4.2 Experiments . 101
5.4.3 Model Results . 110

Contents ix

5.4.4 Model Discussion . 112
5.4.5 Model Evaluation . 113

5.5 Future Work . 115
5.6 Summary . 115

6 Lessons Learnt with IoT-LAB 117
6.1 Networking and IoT-LAB . 117
6.2 Devices . 119
6.3 Power Monitoring . 119
6.4 Summary . 120

7 Conclusion 123

Bibliography 125

List of Figures

2.1 Overview of network topology . 8
2.2 Query with SAMPLE PERIOD . 11
2.3 Query with LIFETIME . 11
2.4 The LoRaWAN network stack . 19

4.1 Suggested rewrite of query plan 44
4.2 Decision flowchart of Terra’s execution 45
4.3 General window state machine 50
4.4 Suggested integration into NebulaStream 52
4.5 Protocol buffer schema used for Terra 55
4.6 Tensorflow Lite network used as an example in Terra 63

5.1 System under test . 79
5.2 System under test with the test infrastructure shown 94
5.3 SQLite Schema used for experiment data storage 96
5.4 Raw power consumption measurements 97
5.5 First synchronisation signal detected in fig. 5.4 99
5.6 Power measurements of a single node with activities marked 100
5.7 10 bin histogram of consumption in of startup activities 102
5.8 10 bin histogram of consumption in of steady state activities . . . 103
5.9 Fitting model eq. (5.1) to data 104
5.10 Fitting model eq. (5.2) to data 105
5.11 Fitting model eq. (5.3) to data 106
5.12 Fitting model eq. (5.4) to data 107
5.13 Fitting model eq. (5.5) to data 107
5.14 Fitting model eq. (5.7) to data 108
5.15 Histograms of non-zero energy consumption for the send activity . 109
5.16 Energy use of individual TFLite execution activities 109
5.17 Energy use of individual TFLite execution activities per device . . . 110

List of Figures xi

5.18 ftotal over 25 epochs with varying QL and RR 111
5.19 Comparison between fbaseline_total and ftotal’s with various RR’s . . 113
5.20 comparison of ftotal(22, 1, 0) with RR = 1 experiment 114
5.21 comparison of ftotal(22, 0.125, 0) with RR = 0.125 experiment . . 114

List of Tables

4.1 Expression instructions and their operations 46
4.2 Summary of configuration options relevant for Terra 68
4.3 Summary of design choices in Terra 70

5.1 Activities & their dependencies 72
5.2 LoRaWAN configuration parameters 82
5.3 Protocol Buffers configuration options 83
5.4 Configuration & state management configuration options 83
5.5 Sensing configuration options . 83
5.6 Networking configuration options 84
5.7 Terra main logic configuration options 85
5.8 RIOT specific build options . 85
5.9 IoT-LAB Power monitoring configuration options 86
5.10 Avg. consumption and stddev in Joule for independent activities . . 101
5.11 Average duration of the exec query activity per Query Length . . . 108
5.12 Mean energy consumption for TFLite activity per Node ID 110
5.13 Values for Different QL, RR, and TF Configurations 111

6.1 Summary of key issues . 121

Chapter 1

Introduction

1.1 Context
The world is increasingly becoming more data-driven, and much of the data
collection is driven by Internet of Things (IoT) devices. This has caused an
explosion in generated data, leading to a larger and larger volume of data
used for data analysis. The systems used for data management and analysis
traditionally rely heavily on cloud resources and infrastructure, but this is
becoming less viable due to network congestion, privacy concerns, and a
need for real-time processing [1].

To alleviate these challenges, new computing paradigms were developed
to push computation closer to the data producers thereby reducing latency,
bandwidth, and energy consumption.

However, current solutions do not completely offload computation to
data-producing devices but often use network resources such as modems,
switches, and routers. As such, data must still be transferred from the
data-producing devices to the processing devices.

This is problematic as these data producers are often quite resource-
constrained with limited memory, processing, network, and energy resources
to keep their acquisition and operating costs down.

This becomes especially clear if these devices are battery powered, as
there exists a direct relationship between the data collected, transferred,
and the lifetime of the device.

Although constraints in energy resources encourage early processing
and reduction in data, there exists no single system today that utilise all
compute resources from sensor device to cloud. The constraints of the sensor
device differ significantly from the traditional environments in which data

2 Chapter 1. Introduction

processing takes place and as such demands a different approach compared
to traditional code offloading [2].

Care needs to be taken to make sure code offloading can be done under
very limited memory and processing, and under the varied and unique
network technologies that are used on these data-producing devices.

We take this different approach in Terra, our solution to code offloading
at the very edge. Integrated with a state-of-the-art sensor network database
that utilise compute resources outside the sensor device, Terra allows
code offloading to be done on typical IoT platforms. As such Terra is the
missing piece of the puzzle that enables data management systems to offload
code to sensor devices.

In this thesis, we introduce Terra, discover potential energy savings
for IoT devices, and investigate the effect of code offloading on the energy
consumption of typical IoT devices.

1.2 Problem
We define the following hypothesis:

Code offloading to sensor devices in modern sensor network
databases leads to a significant reduction in energy consumption.

To verify this hypothesis, we need to answer the following questions:

R1 What is a modern sensor network database?

R2 How do we support code offloading to sensor devices in such a database?

R3 How does code offloading lead to a significant reduction in energy
consumption?

1.3 Approach
Our approach is that of experimental computer science [3]. We will address
the hypothesis by implementing an actual system to facilitate code offloading
to sensor devices within a modern sensor network database and subsequently
evaluating its performance.

The rest of the thesis will be structured as follows.

1.4. Contributions 3

To answer research question R1 we will in chapter 2 look at sensor
databases in literature, their commonalities, and define what constitutes a
modern one.

For research question R2 we will in chapter 3 touch on the work related
to code offloading in distributed databases, and in chapter 4 we describe,
design and implement code offloading for a particular modern sensor network
database, NebulaStream.

To answer research question R3, we will in chapter 5 investigate our code
offloading mechanism in terms of energy and construct an energy cost model
that describes the specific effect of code offloading on energy consumption.
Finally, in chapter 6 we dwell on lessons learnt while developing and running
experiments on a public testbed.

1.4 Contributions
In this thesis, we:

1. Define what entails a modern sensor network database.

2. Design, implement and evaluate a system that facilitates code offload-
ing on sensor devices.

3. Integrate this system with a state-of-the-art modern network sensor
database, NebulaStream.

4. Evaluate and discuss how enabling query processing directly on sensor
devices substantially reduces the energy consumption associated with
executing queries.

Chapter 2

Background

This chapter contains the background knowledge required to read this thesis.
We first describe what a sensor network database is by describing its

defining characteristics. We then give an overview of prominent works within
the field.

Then we briefly dwell on the network technologies underlying sensor
network databases with a particular focus on LoRaWAN.

We end by describing evaluation techniques for sensor network databases.

2.1 Sensor Network Databases (SNDB)
A sensor network is simply a coordinated collection of sensors that collect,
possibly process, and transmit sensor readings to monitor and analyse
physical phenomena. Since it was first described by Bonnet, Gehrke, and
Seshadri [4], it has been common to model a sensor network using the
terminology of traditional relational databases. A Sensor Network can be
modelled as virtual tables that contain all readings the sensor generates.
This view has several benefits, such as unbounded tables and location
transparency. Sensors produce unbounded streams of data, and application
developers do not want to care about the topology of the network, but
only about the data it contains[5]. However, with this relational database
model, it might be tempting to assume sensor network databases contain the
same guarantees that traditional relational database systems are known for.
However, this is not the case[5, 6]. In traditional systems, the information
stored is usually static, finite, and well defined. All queries are one-shot that
take all data into account to produce an answer. Queries are not expected
to be long-running, and this affects the query execution where locking and

6 Chapter 2. Background

unlocking are used. Furthermore, queries are optimised according to a
fixed-cost model and statistical information.

These techniques do not work on sensor databases, where each sensor
continuously generates potentially infinite data. Data are not stored, but
generated on the fly by the containing sensors. This data is inherently
dynamic in nature and change according to its environment. Furthermore,
sensors are usually low-energy, low-power, resource-constrained devices, and
the sensor network database needs to take this into account when running
queries to prolong the life of the individual sensors and ensure the stability of
the sensor network. Especially in the case where these Sensor Networks are
wireless (WSN) since wireless transmission consumes a significant amount
of power.

So, in general, sensor network databases require a fundamentally different
way to query, store, and process data compared to traditional database
systems.

There exist many implementations of WSNs in production and in the
literature, and while implementation details and techniques vary wildly
between them, they generally have many common basic features, as described
by Belfkih, Duvallet, and Sadeg [7]. In the below we will describe these
common traits, by first expanding on the Data Model and the query language
features they require. Then we will through the lens of network topology go
through some of the bigger Sensor Network Database systems in literature.
The list is by no means exhaustive, but covers the main paradigms used
within the field.

A quick note on terminology. To keep it simple, we use sensor network
databases interchangeably with wireless sensor networks, as we mainly focus
on the database part.

2.1.1 Data Model
There are mainly two types of data in a Sensor Network Database[4, 5, 6]:

Sensor Meta-Data: Static information about the sensor that provides sen-
sor reads. That could be processing-, storage-, transmission-capacity.
Location if it is static. Network Address, etc. This also includes
information and type (schema) about the physical phenomena being
sensed/read by the sensor.

Sensor Reads: Dynamic data measured by the sensor. These are always
related to physical phenomena in the sensor environment, and conform

2.1. Sensor Network Databases (SNDB) 7

to the schema described by the Sensor Meta-Data. This could be e.g.
temperature, humidity. Often time is attached to each measurement,
making the virtual table representing Sensor Reads and time-series
table.

The key here is that the Sensor Meta-Data is stored by the network, while
the Sensor Reads are generated by the network and, depending on the
implementation, could be ephemeral and not stored at all.

2.1.2 Query Language Features
Sensor Database Networks generally use an SQL-like language to query its
network, but due to the differences defined above, the language is typically
extended. Belfkih, Duvallet, and Sadeg [7] defines the following 3 general
extensions:

Event-based Queries: Triggers a query on events based on sensor reads.

Lifetime based Queries: Defines there running-time and execution cycle.

Approximate Queries: Defines fault tolerances for queries. Since sensor
reads often have some error attached, or adjust their power consump-
tion based on fault tolerance, some sensor network databases natively
support using this property in their query language

In addition to these extensions, the semantics and execution of SQL operators
have been adapted to work on sensor network databases. The FROM clause
refers to virtual tables, and if the WHERE clause refers to properties that
are Sensor Meta-Data the filtering is usually done much earlier in the
execution plan, and so on.

2.1.3 Architecture
According to Belfkih, Duvallet, and Sadeg [7] sensor network databases
generally consist of two major components:

Base Station: A centralised node in the Sensor Network that serves to
command and coordinate the Sensor Network.

Sensor Node: The individual node to which each sensor is attached.

The overall sensor network can then be said to contain the following compo-
nents:

8 Chapter 2. Background

Multi-hop 0-hop 1-hop 2-hop

Node

Node

Node

Base Station

Node

Node

Node

Node

Base Station

NodeNode Node

Node Node

NodeNode

Node

Base Station

Node

Node Node

NodeNode

Node

Base Station

Figure 2.1: Overview of network topology. represent a nodes ability to sense,
while represents its ability to process queries. The amount of hops is the amount
of data goes through before it hits a base station.

Base Station Query Processor: Receives the SQL-like query from the
end user, parses it, and based on it generates an optimised query
execution plan, allowing the query to be processed by the Sensor
Network.

Base Station Network Catalogue: The overview of all participating sen-
sors and the data they provide; The Sensor Meta-Data.

Query Routing Protocol: The protocol that dictates the strategy in
which the query is propagated throughout the network.

Query Execution Plan: The combination of routing, placement, and tim-
ing techniques ensuring the query is properly executed with minimal
cost and consistent and correct results.

Sensor Node Query Processor: The engine that executes the query re-
ceived by each individual sensor node.

Sensor network databases all arrange themselves in a network topology,
which affects how queries and results are propagated. Below we go through
the previous and current Sensor Database Networks in the literature, in
categories of their network topology. This is done since the network topology
heavily affects how and if code-offloading is supported.

2.1. Sensor Network Databases (SNDB) 9

2.1.4 Sensor Network Databases & their Network Topology
Here we go through current and previous sensor database networks in terms
of how many hops through layers a sensor read can go through, where query-
defined computation can be done to it. We also try to present the different
databases in chronological order, where possible. That is why we start with
multi-hop databases and then go through zero to two hops. An illustration
of the network topology can be seen in fig. 2.1. We indicate if a node has
query processing capabilities with and if it is a node that performs sensor
reads directly with . The hop indicates how many nodes with sensor
reads have to travel through before hitting the base station. It should be
noted that fig. 2.1 serves as a generalised representation. Specific sensor
network databases may have unique restrictions, such as possessing only a
single parent node, which would be different from the structure of the figure.

Multihop

The three main sensor network databases that use a multihop architecture
for their sensor nodes are COUGAR [8, 4], TinyDB [9], and MaD-WiSe [10].
This is mainly ad-hoc sensor networks, where sensor nodes connect to each
other dynamically in an acyclic graph.

COUGAR[11] was a system developed at Cornell University from the
late 1990s to the early 2000s. It pioneered the idea of viewing sensor
network databases as databases [7]. At first, it used a 0-hop architecture,
where devices were connected directly to a base station and supported
pre-programmed on sensor node function calls [11], but later the system was
expanded to use an ad-hoc multihop topology with in-network processing for
aggregates [8]. Here in-network processing is done by assigning a cluster-local
leader node that collects sensor reads from all nonleader nodes and applies
any aggregation computation on them. The non-leader nodes additionally
collect their own sensor reads, but also combine them with reads from
nearby nodes before sending their partial aggregates onwards to the leader.
Hardware-wise, COUGAR runs on Sensoria WINSNG 2.0 nodes or, in a
scaled-down version, on Berkeley Motes.

TinyOS is an open source, event-driven operating system designed for
wireless sensor networks from the early 2000s [12]. It is an embedded
operating system and therefore more akin to a framework in which you
develop your application, and the final compiled binary can then run straight

10 Chapter 2. Background

on supported hardware. We mention TinyOS by itself since it has made some
interesting design choices to accommodate the limitations of microcontrollers,
and it underpins two different sensor network databases which we describe
below. TinyOS is developed in nesC[13], a variant of C with extensions
that support event-driven execution in a component-oriented application
design. Furthermore, nesC prohibits the use of C language features that
would hinder accurate application analysis, such as function pointers and
dynamic memory allocation. This allows the nesC compiler to statically
detect data races and effectively eliminate dead code.

TinyOS heavily exploits this component-driven design to produce a very
modularised OS where only the code needed is included in the final binary.
Furthermore, the implementation of static analysis and the language-level
restrictions facilitate significant optimisations, which diminish the number
of executed code. This, in turn, maximises the amount of time the hardware
can go into a low-power state.

However, these language restrictions also make it difficult to encode
dynamic behaviour and change behaviour after deployment. This is some-
thing that is much needed in a Sensor Network. TinyOS tries to solve this
with the Maté Virtual Machine[14, 12], which is a small efficient bytecode
interpreter that can be included. It is a simple stack-based language that
works on capsules of 24 instructions each. This is designed to allow for easy
propagation of applications throughout a TinyOS sensor network. Multiple
capsules can be chained together, and the language allows access to the
network stack, persistent storage, and sensing. Due to Maté’s design, it
also provides a safe environment to execute custom software. Maté capsules
cannot write to random memory locations or affect interrupts. This is a very
useful property for embedded systems that rarely have kernel boundaries or
other safeguards known from more traditional operating systems. TinyOS
together with Maté can then provide a sensor network that is lean and
efficient while at the same time providing run-time flexibility. But it is not
a Sensor Network Database.

TinyDB[9] on top of TinyOS is the missing piece of the puzzle. From 2005,
it applies and extends the COUGAR model of in-network processing with
acquisitional query processing. That is, TinyDB now takes the acquisition
of data into account, since in Sensor Database Networks this can be a costly
procedure. In TinyDB it is possible to attach lifetime clauses to the queries
as seen in figs. 2.2 and 2.3. In fig. 2.2, we see the SQL extension that dictates
that the query should run for 30 seconds and sample the sensor every 2

2.1. Sensor Network Databases (SNDB) 11

1 SELECT nodeid, temperature
2 FROM sensors
3 WHERE temperature > 30
4 SAMPLE PERIOD 2s over 30s

Figure 2.2: Query with SAMPLE
PERIOD

1 SELECT nodeid, temperature
2 FROM sensors
3 WHERE temperature > 30
4 LIFETIME 30 days

Figure 2.3: Query with LIFETIME

seconds. This query will then generate 15 tuples. In fig. 2.3 we get more
intelligent. We simply tell TinyDB that we want the query to run for 1
month, and TinyDB will then calculate a suitable sample rate given the
energy level of the network.

To do this, TinyDB looks at the cost of sampling, transmitting, and
receiving from the applicable sensors and nodes and tries to estimate the
maximum sample rate. Thus, this information must be available to the
TinyDB query planner and must either be provided by the user at compile
time or estimated. TinyDB offers support for event-based triggers to initiate
and terminate queries. Considering that many microcontrollers come with
external interrupts capable of waking them from a sleep state, using these
triggers to activate a node for query processing allows much power to be
saved. TinyDB also takes power cost into account when query planning and
tries to delay sampling of expensive sensors compared to cheaper sensors
when evaluating predicates. However, this does mean that different sensors
are not sampled simultaneously, and TinyDB therefore includes the NO
INTERLEAVE clause in its SQL language, to sidestep this optimisation if the
samples are required to be done close together. In addition to the above,
TinyDB also uses what they call Semantic Routing Trees. That is, they
propagate information about the nodes themselves and the sensors they
expose to their parents. This allows parents to exclude whole subtrees
from queries if they are not applicable, further optimising energy cost and
improving network congestion.

TinyDB, like COUGAR, also supports in-network processing for aggre-
gate queries, providing the same benefits.

However, it has some weaknesses, such as relative errors in aggregate
functions and loss of messages [7].

MaD-WiSe[10, 15] (Management of Data in Wireless Sensor net-
work) is another Sensor Network Database built on top of TinyOS. It

12 Chapter 2. Background

provides many of the same benefits, but the focus here is to allow the network
to not only do same-type aggregation, but also allow the sensor nodes in
the network to combine and process different types of data streams from
different nodes.

TinyOS, and by extension TinyDB and MaD-WiSe, is at most supported
on 14 different hardware platforms; however, it only supports a handful of
sensors, and it hasn’t seen much development in the last decade.

0-Hop

Here we look at systems optimised for dealing with streaming data that is
fed directly to it, as opposed to the above, where data have to go through
an arbitrary number of intermediate nodes.

Streaming Data Management Systems are systems similar to DBMSes
but for real-time streaming data. Aurora[16] is one of the first such systems
from the mid-2000s developed at Brandeis University, Brown University,
and M.I.T., which works on data streams instead of static data. Data is
processed as it is coming in from data sources, according to predefined and
dynamically changing rules defined in a arrows and boxes framework, where
it exists to applications on a tuple-by-tuple basis. Since data is now flowing
in from data sources, there will be times of high load during which Aurora
will not be able to process all incoming data in a timely manner. Therefore,
Aurora incorporates Quality of Service levels for all its dataflows that allow
it to gracefully reduce processing or drop tuples in times of high congestion.
As Aurora is stream-oriented it naturally modifies its query algebra to work
on streaming instead of static data, although Aurora does allow some of its
data to be temporarily stored to allow for ad-hoc queries to run on. In terms
of optimisation, Aurora will at any point in time have multiple data flows
running simultaneously, and so the challenge is how to optimally remove
unneeded data as early as possible, and ways to combine boxes or reorder
to reduce, possible duplicate, work.

The ideas from Aurora have since then been expanded and worked upon
in a wide variety of newer systems like Apache Kafka Streams[17], Storm[18],
Flink[19], Spark Streaming[20] and many more. All of these systems are
designed for the cloud in the sense that they support horizontal scaling for
real-time processing of streaming data, with stateful and stateless processing.
Their main differences are in the concrete way they process data, be it tuple
or record at-a-time or in microbatches. These platforms have seen much use
both in general and with streaming IoT data, which we will look at next.

2.1. Sensor Network Databases (SNDB) 13

CloudIoT is the name given to the direct integration between Internet
of Things networks and the Cloud, as described by Botta et al. [21]. A
paradigm that has become increasingly more popular in the last decade.
In general, the key issue, as highlighted above, is limited resources for
storage, processing, and communication, and the cloud as a paradigm is
all about ease of scalability. For the cloud-native IoT systems, the cloud is
offered as the solution to the problems of constrained hardware. Devices
today can be capable enough to communicate directly to the cloud through
various networks, spanning from personal area networks such as Bluetooth,
through local to wide area networks like 5G and even long-range low-power
networks like LoRaWAN, SigFox, or Wi-Fi HaLow. This means for end-users
that they can easily integrate their sensors into their already existing cloud
infrastructure and easily scale up or down depending on their needs. However,
this centralisation of computing has the obvious flaw of bottlenecking at the
cloud perimeter. All raw data must enter the cloud before processing. Due
to this limitation, fog-centred computing gained prevalence, which we will
discuss next.

1-Hop

In continuation of the cloud paradigm above, we now shift our attention to
fog computing as described in Hazra et al. [22]. A term coined by Cisco to
describe how heterogeneous devices could connect and collaborate to process
and store data on their way to the cloud. The core idea being that data,
even in the cloudIoT paradigm above, crosses many devices that contain
processing power and storage capacity, like routers and switches, on its way
to the final data centre. Often, multiple sensor nodes communicate with the
same gateways. So, there are many opportunities for offloading processing
and data storage. However, due to the limited capabilities of these fog
devices, their use is limited to only data that are relevant according to the
quality of service or data redundancy requirements.

Going further down from the cloud and fog computing paradigms, we
have mist computing which represents computing directly on the sensor and
actuator devices. A review of the literature on mist computing can be found
in López Escobar, Díaz Redondo, and Gil-Castiñeira [1]. In general, mist
computing describes the usage of compute resources placed at the sensor
and actuator layer of an IoT-architecture. That is, using the compute that
exists on the sensor devices themselves. While this does not conform to
our illustration of the network topology in fig. 2.1, it fits our definition of

14 Chapter 2. Background

a one-hop network with query processing on the sensing node instead of a
middleware node.

It is valuable to use these resources for computation to reduce the load
on the network as a whole, the latency of results, and to accommodate
privacy concerns regarding the data collected. In particular in healthcare
mist computing is often used to protect the privacy of the user of a device,
and to ensure low latency on any action needed based on a response from a
measurement.

Mist computing is an emerging field of research, and many architectures
and a few specific implementations of it are proposed in literature[23, 24,
25].

We will below go through a few examples of fog and mist computing
platforms.

Connected Streaming Analytics platform (CSA) [26] from Cisco is a
fog platform. Here, fog infrastructure is being used by the stream processing
engine being containerised and pushed onto fog devices. Concretely, Cisco
created a low footprint containerised version of their stream processing
engine that can run on Cisco hardware, such as routers and switches. This
means that stream processing capabilities can now scale with the size of
the network, given it is supported. However, it also requires the fog devices
to support containers without compromising the integrity of their main
function.

This stream processing engine supports a variety of streaming windows
and joins on data streams using these fog nodes. One of their key ideas is
the handling of joins in streaming context, since with an unbounded stream
of data, the information needed to be retained in memory for a join is also
unbounded. So Cisco presents two types of joins, called best-effort join
and coordinated join that are designed to limit the scope of the join based
on rows or time. The best-effort join simply allows the user to specify, in
CSA’s SQL variant, the amount of data from each joined table that should
be considered when joining. In the coordinated join, these are based on
timestamps, so instead of a join with e.g. the last 1000 rows, it is with data
from the last minute. The consequence of this being that data has to be
dynamically buffered on the fog node.

Antelope is a database system designed for constrained devices [27]. This
differs from the above sensor network database by including query processing
directly on the sensing device and not in the fog layer. Antelope would be

2.1. Sensor Network Databases (SNDB) 15

an example of an enabling technology for mist computing as it facilitates
query processing directly on a sensor device. It in itself does not constitute
a sensor database network, but for evaluation purposes they developed one
called NetDB in which a client can query one or more server nodes running
Antelope. We mention Antelope since it provides some key contributions,
and we include it here since it represents one query processing layer between
data sensing and a possible base station. Antelope provides a DBMS
for constrained devices, which could be useful in larger and more feature-
complete sensor database networks. Constrained devices often have unique
constraints, such as limited in-place writes, memory, and energy. Antelope
also includes a virtual machine for execution of stack-based propositional
logic called LogicVM that quickly and efficiently allows Antelope to select
passing tuples. In addition, it includes energy-efficient indexing techniques.
Experimentally, they show that the use of Antelope significantly reduces
energy costs due to cutting network transfer of raw data.

NebulaStream is an IoT and data management platform in development
at the Technische Universität Berlin and DFKI and is described in Zeuch
et al. [2]. It tries to address shortcomings of existing cloud or fog-centred
stream processing engines. These engines often have trouble dealing with
geo-spatially distributed and heterogeneous data producers, which are typical
for IoT scenarios. And it does this by embracing a holistic approach from
data creation to final storage by integrating cloud, fog, and sensor networks
into a unified platform. That means that the system is at all times aware of
all nodes and the resources it contains within its network and can use these
for query planning, load balancing, fault tolerance, and data partitioning.
These nodes connect to each other in an ad hoc tree, where each of the nodes
presents its own connections, data streams, capabilities, and limitations.
However, NebulaStream operates with three layers: Sensor, fog, and cloud
layer. The sensor layer only handles data collection, fog does in-network
processing, and cloud does final or fallback processing if it was not able to be
done in the fog layer. When queries are submitted through the NebulaStream
Coordinator, the query is then optimised on a current snapshot of the network
to produce an execution plan with the goal of performing as much data
reduction as possible, to prevent unnecessary data transfer that would lead
to congestion and to fully exploit the compute capabilities throughout the
data travel from sensor to cloud. However, due to the heterogeneity of
the nodes in NebulaStream, each node does not have the same compute
capabilities as the others, complicating the production of an execution plan.

16 Chapter 2. Background

NebulaStream in its current state does not support the most resource-
constrained but also widely used data producers: microcontrollers [28]. That
is, it does not make use of the mist computing paradigm. NebulaStream
requires local query compilation using either GCC[29] or clang[30] and run-
ning these on microcontrollers is infeasible. NebulaStream is also only built
for Linux or MacOS, and its dependence on these is a notable constraint.
Although Linux is among the most adaptable and widely supported oper-
ating systems, this restriction prevents NebulaStream from operating on
cheap low-power devices commonly used at the very edge for data gathering.
It is also not feasible to port NebulaStream to these devices that often don’t
even feature a memory management unit or have a very different thread
model, if they even support threads. NebulaStream simply cannot run on
devices with speeds in the hundreds of megahertz and RAM in kilobytes. For
these devices to be included in the NebulaStream platform, a stripped-down
version of the NebulaStream Node must be developed.

2-Hop

Here, we look at technologies where data can be processed in both the sensor
and the middle layer before they reach a base station.

To our knowledge, no sensor network database currently utilise a 2-hop
architecture.

Fluid Computing is the collection of all the paradigms described above:
cloud, fog, and mist [31]. It is a very new term and is not fully embraced in
literature. Generally, it is the unification of cloud, fog and mist resources
into a single architecture that can then fully utilise all available compute,
network and storage resources. This would constitute a 2-hop network, since
data can be processed at all layers.

Terra + NebulaStream is our suggestion for a 2-hop network. To
contextualise the solution offered in this thesis, we mention it here briefly.
We augment NebulaStream with a stripped-down client that supports a
limited subset of its query operators, allowing it to filter data as early as
possible, thereby reducing energy cost. This will enable NebulaStream to
make use of mist computing resources and fully embrace the fluid computing
paradigm.

We will go through Terra later in chapter 4.

2.2. Networking 17

2.1.5 A Modern Sensor Network Database
A sensor network database is not limited to utilise only the resources of the
nodes that sense the data. With the introduction of cloud computing, there
is an ever-increasing amount of resources available to perform processing on.
However, the distances between the data generators and processors are also
ever increasing. Fog computing was introduced to counteract the negative
effects of this increased distance by including available resources already
existing in the network layer. We have moved from ad-hoc sensor networks
where data flowed through an arbitrary number of nodes until it hit the
base station to sensor networks where the base station is placed in the cloud,
and data has to flow from very local networks of data collectors, through
gateways to the cloud. Today, sensor network databases must account for
and exploit this topology. This includes handling the heterogeneous nature
of resources from edge to cloud by supporting data processing and filtering
on the very edge until the cloud.

Modern sensor network databases must:

• exploit the compute resources at the sensor device/edge layer to allow
simple data reduction and filtering at the earliest stage possible.

• exploit the compute resources at the fog layer to allow data aggregation
and joins across different streams of data.

• exploit the compute resources and scalability at the cloud layer.

In other words, modern sensor network databases must follow the fluid
computing architecture. This has a multitude of benefits including reducing
network congestion, energy usage and latency and increasing data privacy.

To the authors’ knowledge, there currently exist no sensor database
system fully exploiting all layers of this topology, and therefore matching
this definition. The work presented in this thesis introduces this extreme
edge layer to NebulaStream, which makes it conform.

2.2 Networking
A large part of sensor network databases is the network. After all, the key
idea relies on communication between sensor nodes, and while much sensor
network database research is spent developing protocols to facilitate the
transfer of computation and data, not much is spent discussing the various

18 Chapter 2. Background

underlying network technologies that enable this communication. However,
the opportunities and constraints presented by the underlying technologies
have a large impact on the capabilities of the sensor network.

2.2.1 Network Architecture
Many different network technologies exists today, both wired and wireless,
which have different trade-offs. Especially for IoT the wireless technologies
are interesting as these devices are often mobile and battery driven, which
puts demands on the efficiency of the communication. Consequently, low
power consumption is often a key factor considered when selecting a network
technology. Other properties that need to be taken into account are the
distances expected between sender and receiver, if the communication is one-
way or both-way, the network topology needed, and so on. A comprehensive
comparison of different network technologies is done in Orfanos et al. [32]
and Mroue et al. [33].

In this thesis, we focus on Low Power Wide Area Network (LPWAN)
technologies to cover smart city use cases, and we note that power efficiency
and range are prioritised. In Mekki et al. [34], a comparison is made between
the leading LPWAN technologies: LoRaWAN, SigFox and NB-IoT and we
refer to this paper for details. In general, all three follow the star topology in
which end devices connect directly to base stations that function as gateways
between LPWAN devices and IP-based networks. As LPWAN networks,
they generally provide ranges in tens of kilometres. Payload sizes vary, with
SigFox having the smallest with 12 bytes, LoRaWAN with around 240 bytes,
and NB-IoT with 1600 bytes.

SigFox and LoRaWAN operate on licence-free radio bands while NB-IoT
is based on the LTE protocol and therefore requires a license to operate. A
major advantage of LoRaWAN is that it allows private networks, allowing
individuals to roll out their own LoRaWAN base stations and networks.

A study of the energy efficiency of the three network technologies is done
in Singh et al. [35] and they conclude that LoRaWAN is generally more
energy efficient than SigFox and NB-IoT.

In chapter 4 LoRaWAN is chosen as the network stack used for this
project due to its energy efficiency, payload size and support and therefore
we will now spend some time going through LoRaWANs inner workings.

We will therefore now briefly present LoRaWAN as a technology [36].

2.2. Networking 19

Core Network

End Device 1

Gateway 1

LoRa

End Device 2

LoRa

End Device 3

LoRa

Gateway 2

LoRa

Network Server

IP IP

Application Server

Data

Join Server

Join

User/Application

MQTT/HTTP/Other

Figure 2.4: The LoRaWAN network stack

2.2.2 LoRaWAN
It is a star-of-stars topology consisting of:

End Devices: Devices usually collecting data to be transmitted over LoRa

Gateways: Devices that bridge LoRa and IP-based communication. For-
wards the LoRa packets to the Core Network

Core Network: consisting of:

Network Server: Central server that manages the network, dedu-
plicates messages, and forwards it to the application server

Application Server: Manages the connections between applications
and the LoRaWAN network. Decrypts data and forwards it to
the end user applications

Join Server: Handles the authentication and encryption key man-
agement when devices join the network

A diagram of the topology can be seen in fig. 2.4.

20 Chapter 2. Background

The use of LoRa as communication technology is what enables the long
range of LoRaWAN but requires the gateways to translate the physical LoRa
layer to IP-based communication. To ensure the privacy of the data being
communicated, the communication is mostly end-to-end encrypted, with
data being decrypted at the application server in the core network, when
transmitted to the end user. Note that this does mean that no processing
can be done on data after it leaves the end device and before it leaves the
core network, typically hosted in the cloud. Some research is looking at
opportunities for how to enable processing on gateways, but this is not
supported by the standard [37].

Usually, the application server has an array of integrations with which
the end user can transfer data from and to their devices on the LoRaWAN
network. In fig. 2.4 it is done via MQTT or HTTP, but there could be many
other formats.

As mentioned above, LoRaWAN is designed to have low power con-
sumption. Although transmitting and listening to LoRa messages require
relatively low power, it is still quite costly, and as such the protocol is
designed to minimise the time the radio is on. This is illustrated by the 3
device classes the LoRaWAN network operates with:

Class A: Communication is always initiated by the end device. The end
device can only receive downlink messages in two receive windows (RX1
and RX2) after an uplink message. This means that any downlink
communication by the core network is queued until it receives an
uplink message, and then it is precisely pushed to match one of the
two windows.

Class B: Like Class A, but there are fixed downlink windows where mes-
sages can also be sent to the end device. It requires gateways to send
out a beacon signal for the device to synchronise with.

class C: like class A, except that it always listens.

All LoRaWAN compatible devices are required to support class A, where
B and C are optional.

LoRaWAN also allows its devices to modify its bandwidth, coding rate,
and spreading factor to optimise data transfer given its environment.

Bandwidth: The width of the radio signal typically 125 kHz, 250 kHz and
500 kHz.

2.2. Networking 21

Coding Rate: Forward Error Correction. In other words, with a coding
rate of 4/5, for every 4 bits of data there will be a 5th bit for reduncancy.
The coding rates supported are 4/5 - 4/8.

Spreading Factor: LoRa is based on chirp spread spectrum, which in
a nutshell means that each bit is encoded as a ”chirp” of changing
frequency. The spreading factor dictates how slow or fast these chirps
are. The slower the chirp, the longer the range. The supported values
are SF7-SF12. Lower is faster [38, spreading factors].

All of these settings are combined into an array of presets called Data
Rates (DR), which are set and vary for each region LoRa operates in, to
accommodate for different radio regulation. Data rates usually range from
DR0 to DR6, but it varies by region. for the EU868 region the data rates
mean that the speed ranges from 250 bit/s at DR0 to 11 kbit/s at DR6 [39].

The regional parameters also define the maximum payload size per
packet, and this also varies depending on the data rate and other factors,
but in general the maximum payload a single packet can carry is 51 B for
DR0-2, 115 B for DR3 and 222 B for all higher [39, sec. 2.1.6].

Since energy usage is heavily dependent on the chosen data rate, Lo-
RaWAN has an inbuilt mechanism to automatically decide on the most
efficient data rate for a given device in a given environment. This is called
adaptive data rate (ADR) and is done in collaboration between device and
network. It will try to use the fastest data rate possible while ensuring
messages are still received by both device and network. We refer to LoRa
Alliance [40] and the specification of the concrete LoRaWAN provider for
details. In the case of the Things Network, these can be found at The Things
Network [38, Adaptive Data Rate].

When a device wants to connect to the LoRaWAN network, it has several
ways to do so:

Activation By Personalization (ABP): Pre-sharing the network keys
and the device address ensures that the device does not have to go
through a key-exchange process and can start talking to the network
right away. However, this means that the device is tied to that specific
network and maintains the same security session since the keys are
never replaced. The information needed is:

NwkSKey: Network security key, used to encrypt network commu-
nication.

22 Chapter 2. Background

AppSKey: Application security key, used to encrypt information to
the application.

DevAddr: The address of the device.

Over The Air Activation (OTAA): Here the device goes through a join
process where network security keys are negotiated between devices
and an address is dynamically assigned. This is generally more secure,
as security keys can be revoked and renegotiated, and the device is
not tied to a specific network but can change provider if needed. The
information needed are:

Application Extended Unique Identifier (AppEUI): Id identi-
fying the entity processing the join request.

Device Extended Unique Identifier (DevEUI): Id representing
the device.

Application Key (AppKey): Secret key used to encrypt commu-
nication.

In summary, LoRaWAN is an interesting enabling technology for IoT
deployment in the context of sensor network databases, since its use would
allow these networks to span wider geographical distances with overall lower
power consumption. However, the design of LoRaWAN places heavy and
asymmetrical constraints on the amount of uplink or downlink of transmitted
data and the latency of messages.

2.3 Evaluating SNDB Performance on a Testbed
The work presented in this thesis will be evaluated at the end of the thesis.
Therefore, we briefly dwell here on testing strategies and using public IoT
testbeds.

When evaluating systems, there are 3 broad ways to do so [41]:

Analytical Modelling: Where you represent your system using precise
mathematical formulas to represent and analyse its performance.

Simulation: Using a model to replicate the system’s behaviour and predict
its performance.

Measurement: Taking measures from an actual system under various
conditions.

2.3. Evaluating SNDB Performance on a Testbed 23

All of these ways have their own pros and cons. Analytical modelling
is quick and cheap, but requires in-depth knowledge of the system and its
environment to properly model and simplify it. Simulation is dependent
on less simplification and is better for modelling unexpected or edge-case
behaviour, but does require supporting simulation software. It still requires
a lot of domain knowledge to properly set up a simulation and its parameters.
Finally, we have measurements which are the most accurate since it does not
model but is an actual system to test on. However, this can be expensive to
set up and configure.

Fortunately, for common testing scenarios, there can be a public testbed.
That is, someone already did the hard work of setting up a real-world
environment with ready devices and configurations. FIT IoT-LAB is such a
testbed for IoT software [42]. A collaboration between several French univer-
sities, it exposes hundreds of IoT devices to bare metal programming over
either a web interface or a command-line tool. The IoT devices themselves
are attached to a control node that controls the device, reprograms on user
request, and monitors its serial, or network activity, or power consumption.
It even offers remote GDB debugging capabilities. The control node is
controlled by a small Linux gateway.

IoT-LAB offers several different hardware platforms with a wide variety
of microcontrollers, sensors, and network connectivity [43, Boards/Overview].
Ranging from Bluetooth Low-energy, IEEE 802.15.4 or LoRa to mention a
few. Although LoRa can be used by itself, if it is used in the LoRaWAN
network stack, it does require a nearby gateway to be present. IoT-LAB
does at their Saclay site have a gateway situated near its LoRa capable
devices, however, experience show that it has frequent downtimes lasting
several weeks.

IoT-LAB offers in-depth power consumption monitoring. As described
in FIT IoT-LAB [43, tools/consumption monitoring], it does this using the
INA226[44] Current and Power Monitor. This is a current shunt and power
monitor that measures current, voltage, and can be used to calculate power.
Depending on the quality of the signal needed, the INA226 can be configured
with different amounts of samples, which are averaged, or conversion times.
In general, averaging multiple samples or increasing the conversion time will
result in more stable and accurate readings. However, it will also increase
the time it takes to sample the reading. The conversion time dictates how
often samples are taken and the averaging mode dictates how many samples
are averaged to produce a power measurement. The final sampling rate of
INA226 is then the following:

24 Chapter 2. Background

Power Measure = Conversion Time · Averaging Mode · 2 (2.1)

IoT-LAB offers conversion times from 140 µs to 8244 µs and averaging
from 1 to 1024 samples, which means the lowest and most inaccurate
measurement rate is 280 µs.

In summary, the IoT-LAB testbed is a unique European large-scale
open experimental IoT testbed allowing researchers to do everything from
low-level software or protocol testing to more advanced high-level wireless
services or sensor network testing.

2.4 Summary
In this chapter, we provide an overview of sensor network databases. We do
this by first defining common characteristics such as the data model, query
language, and architectural features. Sensor network databases are often
modelled using the same terminology as traditional databases with slight
modifications. Sensors are seen as producers of unbounded data streams,
and the network as a whole is modelled as virtual tables.

We then go through the history of sensor network databases in terms of
their network topology, where we start back in the late 1990s with multihop
ad-hoc networks and end up today with 1 and 2-hop networks.

Through this historical overview, we find common characteristics and de-
fine what we mean by a modern sensor network database. A sensor database
that can use all resources from the sensor-device itself to intermediate
resources all the way to the cloud.

Then we dwell on the network technologies needed to underpin the
different protocols of which sensor network databases are made. We focus on
LPWAN networks and do a deep dive into LoRaWAN, an LPWAN protocol
that is heavily optimised for long-range and low-power communication.

Finally, we introduce testing strategies for evaluating the performance
of sensor network databases. In particular, we focus on the measurement
strategy using public testbeds, where physical experiments are run and data
is collected to evaluate the performance of the system.

In the next chapter, we will go through related work. This idea of
offloading code is not unique to sensor network databases, but is also
researched within the field of distributed databases which we will take a
look at next. Here we also briefly discuss power consumption with relation
to sensor network databases.

Chapter 3

Related Work

Here we look at some related work to sensor network databases and their
power consumption. We also take a look at code offloading in the related
field of distributed databases.

We start in section 3.1 by looking at power consumption in sensor
network databases. We begin by examining how different operating systems
for sensor devices approach power consumption optimisation.

We then move on to discuss sensor network databases and their power
reduction techniques. These systems are designed to manage large amounts
of data generated by sensors in real-time and often rely on acquisitional query
processing and metadata about energy cost and sampling time to optimise
power consumption. This is relevant to help answer research questions R2
and R3 as power consumption is a key metric to optimise for in sensor
network databases and central to the problem this thesis addresses.

Next in section 3.2, we dive into the world of code offloading in dis-
tributed database systems. We examine the trade-offs between the different
methods of operator execution: query shipping, function shipping, and
hybrid shipping. We do this since the challenges of query placements are
similar to the ones in sensor network databases, and since there is a lack of
literature on query placement in modern sensor network databases, we look
elsewhere in adjacent fields.

3.1 Power Consumption and Sensor Network Databases
Low power consumption is a key goal of sensor devices. This is because
these are often wireless, battery powered, or rely on environmental energy
harvesting, which cannot ensure a stable enough supply of energy.

26 Chapter 3. Related Work

This means that low power consumption has to be considered at all
levels of a sensor network. Let us first look at the operating systems.

In TinyOS they optimise for power consumption by having the core loop
be event-driven and all modules being split-phase with callbacks. This is
done to ensure that no spin-locking takes place and to reduce the amount of
concurrent tasks running, reducing overhead. This ensures that the CPU can
go into a low-power mode as often as possible. They also provide interfaces
for developers to enable their own code to support deeper CPU sleep modes
when RAM or other peripherals are disabled [12].

This approach works well for TinyOS, which, at the time, outperformed
other more real-time OSs in energy efficiency [45].

However, in another RTOS, Contiki [46], a module is provided to estimate
the power consumption of the device in operation [47]. This is based on
a simple linear model that looks at the time spent in the low-power and
running mode of the processor and the transmit and receive mode of the
radio. For this to work, the module requires calibration where the current
draw of each component is measured. The system then uses timers to
record the time spent in these different modes. This incurs a small ≈ 0.7%
processing overhead, but allows the OS and applications to customise their
behaviour based on the current and past power consumption of the device.

However, this model has limitations, and the estimated energy consump-
tion is not the same as measured. That is why research on instrumenting
WSNs with current sensing hardware is being conducted. In Jiang et al. [48]
a hardware power metre designed for easy integration into existing sensor
devices is presented. It is designed for ease of use of board developers and
with a low power usage in mind.

In later work, by Hartung, Kulau, and Wolf [49] they instrumented
the sensor nodes of an outdoor IoT testbed with their own designed oscil-
loscopes to accurately measure their energy consumption in response to
a changing environment. They also allow sensor nodes themselves to tag
power measurement data by pulling pins on the oscilloscope high or low.
Interestingly, since data can be collected with such speeds as to very quickly
saturate the network, they keep data from the oscilloscope on their device
and only transfer an index of the data to a central server - implementing a
rudimentary sensor network in itself.

In the architectural and software design of Sensor databases, energy-
awareness is also a focus. In TinyDB they include several features to
optimise and estimate power consumption [9]. Of note is acquisitional query
processing, where sensors are only read if they are part of a query, and the

3.2. Code Offloading in Distributed Database Systems 27

frequency of sampling can be varied in response to external requirements.
TinyDB also relies on metadata about the energy cost and time required to
sample data as part of its query optimisation.

As sensor network databases start to utilise resources in the fog- and cloud
environments, focus shifts from not only optimising reads and communication
at the sensor device layer, but also at the middle layers. In Frontier [50], a 1-
hop edge processing platform, they strive for power efficiency by maximising
throughput of their network of raspberry Pi’s. This they do by duplicating
operators across multiple nodes to have multiple paths for data to flow
through and be processed on, making it both resilient to network failures
and reducing network congestion.

That is, as more layers are taken into account in sensor database networks,
several techniques need to be used to optimise and conserve energy [2].

3.2 Code Offloading in Distributed Database Systems
Related to sensor network databases are actual database management sys-
tems. Especially traditional distributed databases, since they also have
to deal with large cost of data access since the data needs to be queried
over a network. Many of the components are similar since sensor network
databases usually share large parts of their domain-specific language with
normal database systems, and since this language is declarative, the need
for a query optimiser exists, to translate the parsed query into actionable
code running on the underlying data. Here we briefly discuss such a system
using Kossmann [51].

Traditional databases execute queries using the iterator pattern, where
each operator conforms to the same iterator interface so that they can
easily be chained. The optimisation engines’ job is then to translate the
parsed query into the most efficient series of operators. This can be done by
query rewriting where optimisations that do not care about the data are
done. Examples of this are simplifications of expressions and elimination of
redundant predicates. Later, optimisations are performed with respect to
data placement. To do this, a cost model is used that estimates the total cost
of CPU and I/O, which could include seek, transfer, and latency on local
data, and network I/O in the case of distributed data. Here, distance and
bandwidth are taken into account together with serialisation when judging
the per-byte cost. Additionally, the workload of each distributed machine
must also be considered as more congested machines are slower than idle
machines. This might also mean that distributing work across multiple

28 Chapter 3. Related Work

machines might give faster response times due to parallelism, even though it
entails more overall work as communication now needs to be done on top of
computation. This is a core problem of distributed databases and of sensor
network databases.

How do you optimally exploit the resources of the distributed database
system while taking into account the communication overhead? It all
depends on where and how queries are executed on data and that can be
broadly categorised as query/function, data, and hybrid shipping. We will
go through these next.

3.2.1 Query shipping / Function shipping
Here we simply ship the query we want to execute to the machine that holds
our data and let it run and report back results. This is very simple for simple
setups, but in a distributed setting some middleware is needed to join data
if it is stored on different machines. Here, there can also be some discussion
on where to optimise the query, as data-independent optimisations could be
carried out by the submitter of the query before submission.

3.2.2 Data Shipping
This is the opposite of query shipping, where data is shipped to the machine
with the query. Often these data are heavily cached on the client to allow for
speedy queries on data from previously executed queries. The advantages
here are that transferring data from a database server to a client is often
much cheaper computationally than executing a query directly on the server.
This is especially the case if a technique such as Remote Direct Memory
Access (RDMA) is used, as discussed in Liu et al. [52] which we will touch
upon in the next section.

3.2.3 Hybrid Shipping
Both approaches above have their advantages and disadvantages, and no
single technique is usually optimal. Query shipping is preferable when the
data processed is large or the server running them is powerful. But if servers
are busy computing and have I/O left, data shipping scales better. Hybrid
shipping tries to achieve the best of both worlds by dynamically deciding
on the placement of operator execution depending on the condition of the
database system and the specific query. This is done by the optimiser, which

3.2. Code Offloading in Distributed Database Systems 29

tries to place operators in a way that minimises latency or load. This does
complicate the optimiser as it now has to take more factors into account
when optimising a query. For the optimiser to do this, it also needs some
overview of the condition of the database system. This can be done through
statistical guesswork or by querying the servers in the system. Kossmann
[51] discusses multiple general optimisation techniques, but worthy of a brief
highlight is the two-step optimisation technique. This first step optimises a
query by deciding the join order and methods, and is done up front, while
the second step decides the placement of operators, and is done just before
execution. This is to accommodate changing database system conditions to
spread the load of queries and to allow, for example, to decide at that point
whether to utilise function or data shipping. Then, this decision must take
into account the current placement of the data, e.g. if it is cached on the
client or not.

More recently RDMA allows data shipping to be a more attractive
technique, since it allows remote servers to completely sidestep the CPU on
the machine hosting the data, reducing the overhead substantially. Liu et al.
[52] presents an analysis of when data shipping generally is preferred when
RDMA is used together with data sampling. Unsurprisingly, data shipping
proves to be better when servers are busy or if the result set of a query is
large, while function shipping wins out if large amounts of data need to be
read. Liu et al. [52] describes the cost of function and data shipping as in
the following equation. They use the terminology of a single coordinator
connected to multiple workers and as such considers data shipping when the
coordinator reads data from workers and executes the query.

COST(DS) = CRead + CSample + CCExec (3.1)

COST(FS) = CSample + CWExec + CWrite + CCAgg (3.2)
Where eq. (3.1) is the cost of data shipping, consisting of the cost reading

data from the workers, sampling the data, and performing the query on the
coordinator. Equation (3.2) is then the cost of the shipping of the function,
where we sample data, execute the query on the workers, write the result to
the coordinator, and aggregate that result on the coordinator. From this
we can also see that function shipping is more expensive when the cost of
executing on workers becomes expensive as is the case with heavy load, so
CWExec is large, and when the resultset, and CWrite, is large. On the other
hand, function shipping becomes cheaper with more workers, which reduces
the cost of CWExec.

30 Chapter 3. Related Work

3.3 Summary
In this chapter, we touch upon the power consumption considerations for
sensor networks and go through the different considerations and techniques
used by different networks to conserve energy. We discuss how RTOSes
optimise for low-power operation. We also discuss how different sensor
networks use different techniques to reduce the overall power consumption of
the network by including sampling time and cost as part of their cost model
or by optimising throughput. This is relevant since power consumption is
at the core of the problem we address in this thesis, in particular research
questions R2 and R3. However, the literature here concentrates on either
the power consumption of the OS or the sensor and does not look at the
relationship between OS, sensor, and transmission cost in relation to the
code offloaded. There is a lack of work in the state-of-the-art that examines
this relationship and this thesis aims to address that.

Because of this, we then look towards the work done in distributed query
processing as it encounters some of the same challenges as we encounter
in sensor database networks, namely, with operator placement and how to
model the energy cost of executing queries. Indeed, in these distributed
database systems the condition of the network and the cost of execution and
network transfer on spatially distributed machines is something that needs
to be modelled in a cost model to guide operator placement. There are
three strategies for operator placement: data shipping, function shipping,
and hybrid shipping which is a combination of the two. The cost models for
data and function shipping are represented as sums of the constituent data
transfer and processing costs.

Since our work concerns itself with execution on sensor devices, we
will use function shipping and follow the same procedure for a cost model
in chapter 5. However, that is not to say that NebulaStream, which we
integrate with, uses function shipping. Rather, they use the hybrid shipping
approach where a cost model is needed to decide which shipping approach
is best for each case. This again highlights the need of an energy cost model
to describe the cost of function shipping in a sensor network context.

We will introduce our solution,Terra, and the integration with Nebu-
laStream in the next chapter (4). Here we discuss our system for enabling
code offloading in a modern sensor network database using NebulaStream.
To do this, we define requirements for Terra, analyse them to come up
with a design which we then prototype and implement. In the following
chapter (5) we produce an energy cost model to model and evaluate the
power consumption of Terra.

Chapter 4

Terra - Design & Implementation

Here we introduce Terra, our system augmenting a modern sensor database
with code offloading to sensor nodes. That is, Terra will be the software
running on the microcontroller that also polls data from the physical sensor
hardware. We will use Terra to answer research question R2 and later
research question R3. The modern sensor network database we will augment
with Terra is NebulaStream, introduced in section 2.1.4. This is also why
we require Terra be able to run machine learning models, since that is a
requirement from the NebulaStream team.

We present Terra by first describing the functional and non-functional
requirements of such a system in section 4.1. We then discuss aspects of its
integration into NebulaStream in section 4.2, followed by an analysis given
the constraints discussed in the previous sections in section 4.3. Then we
present the design of Terra in section 4.4 and show its implementation in
section 4.5.

4.1 Requirements
Here we describe the functional and non-functional requirements that drive
the design of Terra. These describe the high-level form and function of
the system. We begin with an overview of the functional requirements, then
explore the major ones in detail. We then do the same for the non-functional
requirements.

32 Chapter 4. Terra - Design & Implementation

4.1.1 Functional Requirements
Here we define the functional requirements of Terra. They dictate the
behaviour and functions of Terra.

Terra must:

F1 Data Ingestion: be able to ingest data from multiple, possibly
different sensors

F2 Data Pre-processing: be able to run a pre-defined machine learning
model on ingested data

F3 Query Ingestion: be able to receive queries over the network
dictating how data is processed

F4 Data Processing: process data as it is ingested as dictated by
requirement F3

F5 Data Export: be able to report the results of processing a specific
query

Data Ingestion

Here, we expand on requirement F1. Since Terra aims to support many
different sensors, it should also support many different data types.

With regard to Data Ingestion Terra must:

F1.1 Scalar Ingestion: be able to ingest scalar numerical values
from sensors. For example, temperature or humidity readings.

F1.2 Composite Ingestion: be able to ingest composite numerical
values from sensors. For example, GPS.

Data Processing

A key part of Terra is to enable on-device data processing. As such, here
we expand the F4 Data Processing requirement. These requirements are
inspired by the capabilities of traditional SQL-like queries.

With regard to F4 Terra must:

F4.1 Data Transformation: be able to do one to one arithmetic
transformations on data

F4.2 Data Filtering: be able to conditionally prevent data from
being transferred or further processed

4.1. Requirements 33

F4.3 Data Aggregation: be able to aggregate data using window
functions like SUM, COUNT, AVG among others, in tumbling or
sliding windows

F4.4 Data Combination: be able to combine data from multiple
sources in all of the above computations

4.1.2 Non-functional Requirements
In this section, we specify the non-functional requirements for Terra. These
define the conditions under which Terra will operate. The aim is for Terra
to be highly adaptable across various applications and hardware platforms,
avoiding unnecessary dependencies that could restrict its compatibility.

NF1 Hardware Compatibility: The system must be able to run on a
wide variety of microcontrollers and boards.

NF2 Hardware Optimisability: The system must be adaptable to each
hardware platform to fully utilise its capabilities.

NF3 Hardware Adaptability: The system must be adaptable to make
it run on new hardware platforms.

NF4 Sensor Compatibility: The system must be able to support
multiple different sensor types and technologies.

NF5 Hardware Availability: The system should require as few hardware
peripherals as possible to ensure broad compatibility.

NF6 Power Efficiency: The system should be optimised for low power
consumption to enable it to run on battery-backed devices for extended
periods of time.

NF7 Network Security: The system must ensure third-parties cannot
access data during transfer.

NF8 Network Coverage: The systems network must support distances
of at least hundreds of meters in line of sight, to support NebulaStream
use-cases like smart cities.

34 Chapter 4. Terra - Design & Implementation

4.2 Integration with NebulaStream
Terra is going to utilise NebulaStream as the overall stream processing
engine and as such will receive the queries it needs to execute directly from
NebulaStream. NebulaStream, as an existing data management platform,
already contains an optimising query planner that, given the current net-
work topology and conditions, optimises and pushes queries down to nodes.
Integrating Terra into NebulaStream requires hooking into these systems.
Section 2.1.4 introduces NebulaStream, but to explain how a system like
Terra would integrate, we need to go more in-depth. Recall that NebulaS-
tream is a system of a coordinator and one or more workers. The coordinator
manages and orchestrates the network. It contains a source catalogue that
contains all the physical data sources that NebulaStream supports [28, Neb-
ulaStream/General Concepts]. In addition to these, all physical sources
are mapped to one logical source. Physical sources represent individual
data producers, while logical sources represent the collection. ”Streetlamps”
could be a logical source, while ”streetlamp-1” would be a physical one,
contained in the logical ”streetlamps”. Each physical source is associated
with a specific data source, which is a concrete provider of data for that
physical source. Currently, NebulaStream supports providers from external
streams such as Kafka, MQTT, or OPC, or physical files like binaries or
CSV. Terra would need to be represented here in NebulaStream, when
configured.

Terra also needs to hook into the query planner of NebulaStream to
receive and affect the query plans NebulaStream produces. To explain how,
we need to understand how NebulaStream internally works, and to do this
we follow a query from its submission to results:

1. Initially, a query from a user is submitted to NebulaStream through
the Coordinator.

2. Combined with the known logical sources in its catalogue, the query
is converted into a logical query plan, which is sent to the Optimiser.

3. The Optimiser takes the logical query plan and the current condi-
tions of the network, the topology plan, from the Topology Manager
and creates an execution plan. This plan defines when and where
the operators are executed, but also includes type-inference, filter
pushdown steps, and other optimisations [28, Development/Query
Submission]. NebulaStream supports different placement policies for

4.2. Integration with NebulaStream 35

its operators. At the time of implementation, they have a top-down
and bottom-up placement strategy that, respectively, priorities opera-
tor placement closest to root or closest to edge. This plan is then sent
to the Deployment Manager.

4. The Deployment Manager translates the execution plan into individual
node execution plans and deploys them to the relevant nodes.

5. On each relevant node, the execution plan is received and might be
subject to more hardware-local optimisations.

6. Results are then continuously reported back through the network to
the user. Additionally, a Monitoring component keeps track of the
nodes performance and network congestion to re-deploy the query if
the state changes.

Somewhere in this flow, Terra should integrate. But before we go to
the next section to discuss when and where the integration to be, we still
need to look at the internal representation of operators and expressions,
since this is relevant for Terra’s possible representation.

No papers have been published on this aspect of NebulaStream, so we
will base this on the source code [53]1.

NebulaStream is written in C++ and uses an object-oriented design to
represent its operators and expressions. Operators are represented as classes,
and these classes can contain expressions that are an abstract syntax tree
of expression objects or more precise derivations thereof. In addition to
expressions, which can be predicates or arithmetic, operators also have an
input or output schema associated with it to indicate where input data or
results are stored. The above is also reflected for the serialised representation
of operators and expressions.

So when NebulaStream performs query placement or query optimisation,
it is all about manipulating these trees of operators and their contained
expressions, and only transfering parts of those to specific workers.

Now that we know the requirements of Terra and a little about the
workings and design of NebulaStream we are ready to analyse these and
look at possible design opportunities of Terra.

1The source code is request access only, but will be published at a later date

36 Chapter 4. Terra - Design & Implementation

4.3 Analysis
Here we discuss different avenues of opportunities we have for designing and
implementing Terra in light of the requirements given and NebulaStreams
inner workings. In section 2.1.4 we briefly mention some of the shortcomings
of NebulaStream that prevent it from running on microcontrollers. The
reason these shortcomings exist is because of how the NebulaStream hardware
and network optimise its queries. For hardware, it performs an on-the-
fly compilation of generated code utilising GCC or clang to optimise the
execution plan for the specific worker platform. For network, there is no
distinction between a branch and a leaf node, so workers must handle
both cases and be able to accept incoming connections from multiple other
workers. This naturally presents some demands on the underlying hardware
that most microcontrollers cannot fulfil. Even if the NebulaStream Worker
code could be ported to a microcontroller platform, it would not have the
prerequisites to run on it.

The other side of the coin is that the environment or setup in which
NebulaStream assumes its workers are run does not apply so well to mi-
crocontrollers. NebulaStream workers assume at least equipment on the
level of Raspberry Pi’s, with TCP/IP connections. Microcontrollers can
find themselves deployed in remote areas with not enough electric power to
power a Raspberry Pi or in an environment that cannot facilitate a TCP/IP
connection.

That is why a new stripped-down worker has to be developed, and this
is what Terra is.

This means we have to cut some of the features of the worker to feasibly
run on microcontrollers. The two big ones are no local query compilation
and assume that Terra is always the leaf node of the network. That is why
these features are not included in the functional requirements in section 4.1.
To maximise power savings, Terra should go into the lowest possible power
state of the underlying hardware as often as possible. This should cover
requirement NF6.

Requirements NF1 to NF4 all concern Terra’s support for hardware,
sensors which is very OS dependent. We will not implement Terra on bare
metal, but utilise an operating system, in the microcontroller sense, to build
on top of. The choice of this OS will be discussed in section 4.5.

Besides the above, there are overall four challenges to address:

Communication: How do we represent and transfer queries and results?

4.3. Analysis 37

Query execution: How do we represent and execute queries?

ML inference: How do we represent and infer neural models?

Integration: How do we represent Terra in NebulaStream?

We will now discuss these in this order.

4.3.1 Communication
Terra needs to communicate with NebulaStream to receive queries and
transfer results. The functional and non-functional requirements for com-
munication are requirements F3 and F5 and requirements NF7 and NF8
and to a degree requirements NF3 and NF6.

To address these, there are two major decisions to make. Through which
technology should communication occur and in what binary format? These
are interconnected, as the constraints in one affect the other. To answer
these questions, we first look at the communication options available and
used for microcontrollers. NebulaStream uses TCP/IP which requires a
somewhat stable connection. This is not directly compatible with several
of the often used network technologies used for IoT devices. In section 2.2,
we briefly discuss IoT networking and its unique requirements. Our focus
quickly converged on LoRaWAN, as it fulfils the requirements we have for
Terra. It is an LPWAN technology that is focused heavily on low power
and is based on an open standard. It fits well with NebulaStreams use case
as a system for smart cities [2]. But so do alternatives such as SigFox and
NB-IoT as described in section 2.2. However, as described there, LoRaWAN
is generally more energy efficient than the alternatives and due to its open
standard and sufficient payload size we chose this as our used network stack.
LoRaWAN is also supported on the testbed we will later run our experiments
on, see section 5.3.1. However, requirements may change, and to support
other hardware platforms or network options, Terra will be designed with
low coupling to allow easy adaptability to other network stacks.

Using LoRaWAN would also illustrate the challenges of including the
very edge as a resource for code-offloading, and to make sure Terra makes
available use cases that are outside the feature set of NebulaStream currently
but within the scope, we focus on low-power, high-range solutions.

Since it is designed for IoT and sensor devices, it assumes that there
is going to be much more uplink data compared to downlink, and it by
default does very little to ensure message delivery. A key constraint is that

38 Chapter 4. Terra - Design & Implementation

downlink by default can only happen just after an uplink, and that has
to be taken into account in the Terra design. The effect of this is that
Terra, if it has no queries to execute, would have to send messages to check
if there are queued downlinks available. The choice of LoRaWAN covers
requirements NF6 to NF8. Ensuring the network component of Terra
has low cohesion will cover requirement NF3.

We now turn to the question of binary format. This is closely tied to
query execution, which we will look at next, but for now we focus on the
serialisation and on-the-wire format.

Due to LoRaWAN’s limited packet sizes and slow bitrates, the binary
format has to be compact to save power. Furthermore, it has to be serialisable
by both NebulaStream and Terra. NebulaStream already uses Protocol
Buffers [54], a compact binary format maintained by Google. Although
there exist other text-based or small binary formats, protocol buffers are
space-efficient, fast, and generally suitable for constrained devices [55, 56, 57].
Other formats, like Apache Thrift or flatBuffers, might be marginally more
efficient or suited, but for compatibility with the existing NebulaStream, we
judge Protocol Buffers to be good enough.

Protocol buffers are schema-based, so a schema needs to be defined that
represents both queries and results or any other needed communication
between Terra and NebulaStream. The representation in protocol buffers
might serve as Terra’s internal query representation, based on how the
Terra query execution engine is built, which could eliminate the need for
a potentially costly conversion. We will discuss this in the next section on
query execution, but in that case, we address requirements F3 and F5.

The single-packet constraint does put a hard limit on the size of queries
and results we can transfer. Transferring data over multiple packets is a
possibility, but since there is no in-built support for packet reassembly, and
it is not the main objective of this thesis, we leave this as future work.

In conclusion Terra should take the unique constraints of LoRaWAN
into it’s network design to ensure timely downlink of queries, but also not
be too coupled to LoRaWAN as to make replacing or adding support for
new network stacks in future difficult.

4.3.2 Query Execution
Now we divert our attention to the core of Terra. Handling of the partial
queries it is going to receive from NebulaStream. This handling will at a
high level be much like current workers that:

4.3. Analysis 39

1. Receive queries and deserialises them

2. Possibly perform local optimizations per query or across queries

3. Execute them

4. Serializes and returns results

Before we take a look at the binary format and the execution engine of
queries, we briefly discuss what kind of computation needs to be done.
Requirement F4 and its subrequirements describe the kinds of computation
that Terra needs to do. It also indicates that the processing is triggered
by new data. We quickly note here that this means no data will be collected
and processed if no query is running in Terra. This is by design and follows
acquisitional query processing. We also note that while NebulaStream strives
to implement adaptive sampling rates [2], it is not implemented yet, so while
dynamically adjusting sampling rates in Terra would be nice, it is not a
requirement.

The subrequirements of F4 specify further that Terra must be able to
do data combination, projection, transformation, filtering, and aggregation.
This will require the execution of both arithmetic and Boolean expressions.
It will also require the ability to save intermediate results across executions
to support aggregation.

Requirement F1 governs the types of data we need to process. Both
scalar and composites, both integers and floating point numbers. Terra
should be able to represent the above in a space-efficient and easy-to-execute
format.

Let us first look at the binary format of the queries. In the previous
section, we judged protocol buffers to be a suitable format for network
transfer. However, that applies to all transfers. The format of the queries
themselves has not yet been decided. There are three primary ways to
represent computation on the wire:

1. Cross compiled machine code

2. Intermediate representation executed by a Virtual Machine

3. Parametrized functions

We will now briefly discuss these in that order.
An avenue would be to cross-compile the generated query execution code

on the NebulaStream Coordinator and send the resulting binary blob to

40 Chapter 4. Terra - Design & Implementation

Terra, which then would load it into memory, cast the address to a function
pointer, and execute it. This would produce highly optimised machine code
that would be very energy efficient to execute. For this to work, there would
have to be a lot of coordination between the cross-compiled code and Terra
with regards to size and location of inputs and outputs, but this could be
given as input to the function. Additionally, if Terra provides specialised
or locally optimised functions for use by the cross-compiled binary, then the
address of these functions has to be passed to the compiled binary, either
as parameters or by patching the binary after receiving it. As long as this
is well defined at both Terra and NebulaStream, this approach is viable.
However, there are several problems with this approach.

• It requires the complete toolchains of all devices used that Terra
can support to be installed and managed on the worker.

• It requires NebulaStream to be aware of which hardware platform
a specific node is using, and the constraints that node might have
regarding its RAM usage, stack size, and so on and to take this into
account when generating the node execution plan

• It requires Terra to blindly trust the code that is provided by
NebulaStream. Embedded devices often do not have any protections,
so any code dynamically provided to Terra would have full access
to all resources and could do anything from accidentally crashing
the system to actively destroying it. Since Terra is designed to be
deployed in potentially remote locations this would be very bad

• Binary sizes can vary wildly, but would likely be larger than interme-
diate representation or parametrized functions. The binary size could
possibly be compressed to save space, but that would then require a
possibly expensive decompression step

As an alternative to the cross-compiled machine code, use an interme-
diate representation executed in a Virtual Machine. Like Maté, we briefly
presented in chapter 2. Maté is closely tied to TinyOS, and is not useable
in our case. There are other virtual machines and code representations built
for microcontrollers we could use like MicroPython [58], WebAssembly [59,
60], JavaScript [61] and even eBPF [62]. This would produce safer and
smaller code, but still with the same or similar expressibility as machine
code. However, these VM’s while optimised for microcontrollers are still

4.3. Analysis 41

quite heavy in binary size, and so is their respective code that needs to be
transferred.

Using parametrised functions instead, we can significantly minimise the
required instructions, thereby optimising code size.

With these we would predefine in Terra the operations available,
and running an operation would simply be transferring an index and the
parameters needed for that operation over the wire. Since NebulaStream
has a limited number of operators, each with a limited set of parameters,
this would be a very space efficient representation. However, representing
expressions this way is cumbersome and less efficient since parsing and
executing require traversing a tree structure.

Terra could utilise a combination of the 2 above techniques. Use
parametrised functions for supported NebulaStream operators and an inter-
mediate language, preferably stack-based for ease of implementation and
efficiency, for the expressions needed.

This would be the best of both worlds: Space efficiency of parametrised
functions, with ease of implementation of stack-based arithmetic and logical
expressions. It is also similar to what is done in Antelope with the LogicVM
virtual machine [27] as presented in section 2.1.4.

The last piece of the puzzle is the mapping of sensor data. Recall
that NebulaStream requires logical schemas assigned to data producers.
This means that NebulaStream up front need to now know what data a
Terra node offers. Terra also needs to know on which data NebulaStream
wants to operate. This means that there must be a mapping of sensors to
inputs that are identical in both Terra and NebulaStream. As mentioned in
section 4.2, a Terra node would be part of a logical source in NebulaStream.
A logical source has one or more fields, each represented by a name and a
data type. Terra would need to map each sensor to one of these fields.
The naive approach would be to simply reuse the id of NebulaStream and
transfer it as part of the query. However, this is a variable-size string which
would be wasteful to transfer. It would be better to map each string to a
single integer to save space and make sure that the same mapping exists
in Terra. It could possibly exist implicitly as the initialisation order of
sensors in Terra, since this is fixed at compile-time.

Since data is produced by sensors, one could also use a sensor environ-
ment model, a description language, to classify sensors and actuators in
Terra [63]. This would avoid the need to preload a common configuration
that assigns sensors and logical schema fields to each other, since Terra
would know that it needs e.g. temperature data and would then read its

42 Chapter 4. Terra - Design & Implementation

temperature sensor. However, this will not work in the presence of duplicate
sensors and would require NebulaStream to use the same model to describe
its fields.

4.3.3 ML Inference
Supporting inference of machine learning models is luckily relatively simple,
so fulfilling requirement F2 is not an issue. This can be done using Tensorflow
Lite [64], to convert a traditional Tensorflow model into a model compatible
with microcontrollers. This model can then be included into a C/C++
program and inference can be run through it using a provided library.

4.3.4 Integration
Finally, we discuss the nature of the integration of Terra into NebulaStream.
In section 4.2 we went through the inner workings of NebulaStream to uncover
NebulaStream specifics that we need to design around and to see where
possible integrations could be. Here there are several options depending on
how Terra-aware we want NebulaStream to be. Currently, NebulaStream
operates with workers and a coordinator. Terra is a stripped-down worker.
This concept does not exist in NebulaStream, so for a deep integration there
would have to be a significant architectural change.

However, another opportunity presents itself, with the choice of Lo-
RaWAN in section 4.3.1. Essentially, since LoRaWAN is a self-contained
network from end devices to the core network, there is only going to be a
single integration point between LoRaWAN and NebulaStream, which is
the application server. Terra could then be represented as a single data
source in NebulaStream, covering all devices within the LoRaWAN network
that shares a logical schema. Since most major LoRaWAN providers and
NebulaStream support MQTT integration, this would be rather straightfor-
ward. But Terra is not only a data source, but also a worker, and as such
NebulaStream needs to modify queries and operator placement based on its
capabilities. So, there needs to be an integration into the query placement
and rewriting engine of NebulaStream, but without all the dependencies
that being a traditional Worker entails. This could be done by representing
the incoming data from Terra as a data source and then, conditional on
the source being present in the query, hooking into the query optimisation
process early to capture and separately pull out any operations that can
run on Terra, before handing the modified query back to the conventional

4.4. Design 43

NebulaStream optimisation process. Figure 4.1 shows an example of such a
rewrite rule, with ”LP Source” being the LoRaWAN data source. Essentially,
go from source to sink in the query plan and move operations to Terra
until no longer possible. The data arriving at the source would then already
have had these operations done to it, and from NebulaStream side these
operations would not exist and would not be part of any later processing.
This procedure would also contain the area of NebulaStream needing to be
aware of Terra substantially, which would ease integration.

However, it also has some downsides.

• Implementation-wise, it might require hooking into, and modifying
parts of NebulaStream that were not designed to be modified. We will
discuss this in the following sections.

• It is dependent on computations needed to run on data from Terra
is placed directly after the source, and not joined with other data right
away.

• Depending on how early into the optimisation process we hook, we
might also miss some optimisations, or optimisations could be made
that would allow more computations to be performed on Terra.
However, since a key restriction on Terra is that it only operates on
its own data and does not receive data from outside or other nodes,
this would be limited to optimisations such as filter pushdowns based
on constants.

• The LoRaWAN data source would be placed on a single normal
NebulaStream Worker, which could be a bottleneck and a redundancy
problem. One could scale out horizontally and have multiple workers
connected to the same MQTT broker, but that would introduce
duplicate data if no partitioning is done.

4.4 Design
Here we describe the overall design of Terra at a high level, and we reserve
the next section to talk about the implementation details. This section
is a description of the concrete choices made based on the discussion in
the previous section. We start by describing the design of Terra; the
application that will run on the sensor device. After that we look at the
integration in NebulaStream.

44 Chapter 4. Terra - Design & Implementation

LP
Source

Map Filter Join Sink

LP
Source

Map Filter Join Sink

End Device

Figure 4.1: Suggested rewrite of query plan

4.4.1 Terra
Terra is going to continuously fetch and process data, and depending on
the outcome of the processing, return results and check if new queries exist.
To give an overview of Terra we present the program flow in fig. 4.2. In
the following sections, we will go through the different responsibilities of
Terra one section at a time.

Sensor Readings, Number Handling, & Tensorflow Lite

Terra is going to support readings from one or more sensors. Each of
these sensors can produce one or more outputs. For example, a temperature
reading is usually a scalar value, while a GPS position is usually latitude,
longitude with a possible altitude. In Terra we store these readings in
what we call the ”environment”; an array in which we can store numbers
that can then later be read from and written to by operators, which are
explained in the next section.

The environment’s role is as working memory of operators, and in many
ways function as such. However, we track the origin of numbers in the
environment, be it from sensors or queries. This is done to make sure
that the data exports contain only the results after processing, as per
requirement F5.

Terra stores numbers in a type-agnostic fashion, such that the environ-
ment can contain both integers and floating-point numbers of different sizes.
This is done both to simplify implementation, but also to reduce the size of
numbers for network transfer. However, type information is saved so that
any arithmetic is optimised.

So when sensors are read, it populates the environments with the read-
ings sequentially starting from address 0 up to a maximum size that is
preconfigured at compile-time.

4.4. Design 45

Initialisation

Main execution

Shutdown

OS Initialisation

Load Terra configuration & state

Saved Query?

Deserialise query

Initialise sensors

Initialise network

Query present?

yes

no

Collect data from sensors

TFlite present?

Execute TFlite model

Execute query

Send results/heartbeat & possibly receive new query

Save configuration & state

yes

no

yes

no

Sleep

Figure 4.2: Decision flowchart of Terra’s execution

46 Chapter 4. Terra - Design & Implementation

Instruction Operation
CONST Constant number
VAR Variable
AND a ∧ b
OR a ∨ b
NOT ¬a
LT a < b
GT a > b
EQ a = b
ADD a + b
SUB a − b
MUL a × b
DIV a/b

Instruction Operation
MOD a mod b
LOG log(a)
POW ab

SQRT
√

a
EXP ea

CEIL dae
FLOOR bac
ROUND round(a)
ABS |a|
LTEQ a ≤ b
GTEQ a ≥ b

Table 4.1: Expression instructions and their operations

After the sensor reads, if there is a Tensorflow Lite (TFLite) model,
execute it on the values in the environment, and any results are appended to
the existing values. The TFLite model exists as a sort of pseudo-sensor. It
produces sensor values; however, it is dependent on input from other sensors,
which is unique. All other sensors can be read in parallel if supported by
the communication protocol.

Network Format & Query Representation

Terra implements a simple stack language to support arithmetic and logical
operators. To use the same language and execution for both, we use the rules
of C to describe Boolean values. The integer 0 is false, all other values are
true. An expression is then a list of instructions and numbers executed on a
stack. The result of an execution is the top-most value on the stack after all
instructions have been executed. Almost all instructions read their operands
from the stack, with the exception of CONST and VAR which respectively push
a constant number to the stack, or push the number stored at a specific
index from the environment to the stack.

The full list of supported instructions is shown in table 4.1.
It follows reverse polish notation when working on the stack, which is

read from left to right. That is, if the stack contains numbers a, b in that
order, the instruction SUB will then pop those two numbers, execute a − b,
and push the result onto the stack.

4.4. Design 47

As an example, if we have a temperature sensor that measures in Fahren-
heit and we want to convert it to Celsius, we use the formula ((F − 32) · 5)/9.
If the sensor read is stored in environment position 0 then the list of instruc-
tions would be:
VAR, 0, CONST, 32, SUB, CONST, 5, MUL, CONST, 9, DIV

These expressions can then be included in operations that are chained
together to form queries. The stack in which expressions operate is cleared
after each expression; however, the environment persists during the whole
query. Terra is going to support the following operators, who all mimic
their NebulaStream counterparts:

Map Operation: A tuple to tuple conversion and consists of:

• An expression
• In which environment variable the result should be stored

Filter Operation: Consisting of:

• A boolean expression, the result of which indicates whether
computation should be cancelled or not

Window Operation: Consisting of multiple fields that indicate:

• Aggregation information:
– Type: MIN, MAX, SUM, AVG, COUNT
– Which environment variable to aggregate on
– In which environment variable to save the result

• In which environment variable to save the first observed value
• In which environment variable to save the last observed value
• If the inclusion of values into the window is:

Tumbling: Defined by a non-overlapping size
Sliding: Defined by a potentially overlapping size and slide

length
Threshold: Defined by a predicate on measured data and mini-

mum size
These sizes can be based on both the measurement time and the
count. For example, we could define a tumbling window of size 5
measurements or of size 2 minutes. For the threshold, it is based

48 Chapter 4. Terra - Design & Implementation

on a predicate on data values, so an example would be F ≤ 20
where F would be a sensor reading. Then aggregation would only
be executed on values passing the criteria, and the window would
close at the first non-passing data, if the window size is above
the minimum defined.

Finally, we need to address the format of the results sent from Terra
to NebulaStream. These are simply a list of numbers. Here we need to
make sure the indices of these processed numbers match up with what
NebulaStream expects. Since query processing in Terra is defined by
NebulaStream, this comes for free. As fig. 4.1 illustrates, Terra simply
executes a moved operation, so the placement of the result of that operation
is identical to what the NebulaStream Worker would have done had Terra
simply sent raw data. As such we do not need to track when and where
processed data is stored as Terra’s behaviour mimics NebulaStream’s.

Configuration & State Management

To support requirements NF1 to NF4, requirement F4.3, and require-
ment F2 Terra needs to be configurable in its resource usage, and it needs
to save state across executions. We are first going to look at the configuration
options we expose with Terra. These are options you define when you
build Terra, and are going to be fixed and nonmodifiable throughout the
devices lifetime.

Execution Epoch in seconds: How often is Terra going to execute.

Stack Memory size: How large of a stack is used for expressions.

LoRaWAN configuration: As described in section 2.2 LoRaWAN re-
quires a bunch of parameters be set so the network can connect and
identify the individual devices. In Terra we only support Class A
devices using OTAA, and thus Terra requires the Region, App
EUI, Dev EUI and App Key.

Default Query: We give the option to provide a query at build time to
save on the initial transfer cost.

Forced listen: As described in section 2.2, for Class A devices LoRaWAN
dictates an uplink before a downlink. Initially, there might be no
running query in Terra, or the query running might have very

4.4. Design 49

selective selectivity. To ensure that new queries can be received in
those situations, we provide Terra with the option to send heartbeats
to facilitate the acquisition of new queries. This configuration option
dictates that a heartbeat is sent after n executions, where n is the
configuration option.

Sensors: Which sensors are enabled in Terra and their configuration.
Note here that order matters, as this dictates the order in which the
data would be read into the environment.

Max window operators: Since window operators by definition require
state to be saved across executions, we define the maximum amount
of concurrent operators that we support.

In addition to the build-time configuration, we need to store some state
across Terra executions. This involves reading and writing from persistent
storage to allow Terra to sleep between executions, as these low power
states often do not preserve RAM.

This state, besides the configuration above, will be:

LoRaWAN State: The negotiated keys, and additional state required by
LoRaWAN.

Epoch counter: A simple counter, incrementing for each epoch executed.

Running Query: The current running query of Terra. We save this in
serialized form to save on RAM.

Window State: The state of each window operator. We will expand on
the window operator in the following section, but the state saved is:

Aggregation value: The partial aggregate.
Start value: The first value seen in the window.
End value: The last value seen.
Count: Count of values seen.
State: The current state of the window.

50 Chapter 4. Terra - Design & Implementation

Ready

Running
Reset/Initialise

Inclusion criteria passes

Finished

Inclusion criteria fails

Save data

Figure 4.3: General window state machine

Query Execution Engine

Here we go through the query execution engine of Terra. That is, the way
we execute expressions and operators. Expressions are executed according to
the rules described by the query representation, and are simply executed one
instruction at a time. Expressions themselves do not write or modify any
state. That is handled by the operators they are a part of. For the actual
calculations, recall that numbers are handled in a type-agnostic fashion,
but with type information preserved, so when performing mathematical
operations, it is done according to the rules of the underlying language.

A query is a series of operations that operate on the same environment.
In the following, we go through each operation.

The Map Operation is done according to its description above. It has its
expression executed, and the result of the computation, the top of the stack,
is stored in the environment index dictated by the map operation. Note
that this means that a map operation will always only output a scalar value.
Multiple results can be emulated by chaining multiple map operations.

The Filter Operation is much like the map operation except that the
expression is a predicate and its result is not stored, but checked for truth.
If the result is true, nothing happens and the next operation in line will be
executed. If the result is false, the execution is halted and the whole query
is marked cancelled, meaning that a result will never be transmitted.

4.4. Design 51

The Window Operation is slightly more complicated than the others.
All window types are implemented as simple state machines and follow the
diagram shown in fig. 4.3. All state changes are triggered by an execution,
and therefore new data. The states execute as follows:

Ready: Here we initialise state and fields, and immediately go to the
”Running” state.

Running: Here we check if the inclusion criteria is met, and if so we execute
an aggregation, and save it. If the inclusion criteria is not met, we
transition to the ”Finished” state.

Finished: Here we save the final aggregate, start and end values in the
environment for submission and transition to the ”Ready” state.

For the three types of windows we support, we simply modify the
inclusion criteria. Note that with the sliding window type, we can have
multiple windows that overlap each other. To support that, we simply store
an array of windows and run them serially on the same data. All aggregation
functions we support, support using a scalar state value and a count to store
its partial aggregations.

4.4.2 Integration into NebulaStream
Here we discuss the design of the NebulaStream integration. This integration
consists of two parts, as hinted at in the analysis. One part covers the
handling of the connection to the Core Network and what it entails. And
another part covers the capturing and rewriting of queries. These parts and
their interaction can be seen in fig. 4.4.

LoRaWAN Proxy Source

This will be the connection handling part on the NebulaStream side. A
NebulaStream data source must primarily be able to receive data which will
then be processed by NebulaStream. To do this, our data source must in
its configuration get the information needed to connect to the core network.
Additionally, it needs to map the incoming data from the sensors to a
correspondingly configured logical source, so the configuration must also
include this mapping. We discussed this mapping and alternatives at the
end of section 4.3.2, and the mapping we do is the one we describe there. It
is simply a list of logical source field names, where their position corresponds

52 Chapter 4. Terra - Design & Implementation

NES worker

LoRaWANProxySource

DecoratedNodeEngine

NodeEngine

Query
serializa�on and

rewrite

EDQuery

Query

Reduced
Query

EDQuery

Results RecieveData

connect

Figure 4.4: Suggested integration into NebulaStream

to the sensor to which they map. As an example, say, we have a sensor
device that records temperature and humidity, defined in that order. We
also have a logical schema that names first value ”humidity” and second
value ”temperature”. We would then in our data source configuration define
the sensors: temperature, humidity to indicate that the value given at
index 0 corresponds to the logical schema ”temperature” field and the one
at index 1 to the ”humidity” field.

Since the data source already provides a connection to the core network,
we reuse this for transferring queries. The only additional information that
we need for that is the names of the devices so that we can send queries to
them. So, we include a list of devices in the configuration.

Decorated Node Engine

To capture and modify the incoming queries in the NebulaStream Worker
that contains the above-described data source, we decorate the node engine
in that worker. This node engine will capture any incoming queries and, if
they use the LoRaWAN Proxy Source as a source of data, they will try to
serialise the query from start to finish. As soon as a operation or expression
is hit that cannot be serialised, the serialisation stops, and the successfully

4.5. Implementation 53

serialised part of the query is sent to the LoRaWAN Proxy Source to be sent
through the network to Terra, while the rest of the query is passed down
to the actual node engine, and is subject to the full NebulaStream pipeline.
This works, since we can only serialise operators that are supported on
Terra, so any unsupported operation will fail serialisation.

When the query is later executed on the Worker, it will fetch the data
from the LoRaWAN Proxy Source that has already been processed by the
offloaded part and forward those data to the rest of the query on the worker,
making the whole process transparent to the rest of NebulaStream.

4.5 Implementation
To implement the above-described design, we start by defining our commu-
nication format and modifying NebulaStream, which we discuss in the next
sections. Then we construct a proof-of-concept in MicroPython. Through a
bachelor thesis by Laurits Bonde Henriksen and Markus K. R. Johansen[65],
this proof-of-concept was rewritten into C, which we used to further develop
Terra into its current form.

The code for the prototype and final version of Terra is accessible here:

MicroPython Prototype: https://github.com/FlapKap/
nebulastream-ed-runtime

Terra: https://github.com/FlapKap/Terra

The NebulaStream integration is implemented as a branch in their reposi-
tory and can be accessed here when the code is published: https://github.
com/nebulastream/nebulastream/tree/3159_add_lorawan_support.

4.5.1 Protocol Buffers
The serialisation format is key for the communication and handling of queries
and results. The whole description can be viewed in the repository2, but
here we give an overview. The complete representation can also be seen
graphically in fig. 4.53. We define each operation as a separate message that
covers the fields defined in the design. Notable is the Data message that

2https://github.com/FlapKap/Terra/blob/master/app/terra/terraprotocol.
proto

3Generated with modifications by protodot (https://github.com/seamia/
protodot)

https://github.com/FlapKap/nebulastream-ed-runtime
https://github.com/FlapKap/nebulastream-ed-runtime
https://github.com/FlapKap/Terra
https://github.com/nebulastream/nebulastream/tree/3159_add_lorawan_support
https://github.com/nebulastream/nebulastream/tree/3159_add_lorawan_support
https://github.com/FlapKap/Terra/blob/master/app/terra/terraprotocol.proto
https://github.com/FlapKap/Terra/blob/master/app/terra/terraprotocol.proto
https://github.com/seamia/protodot
https://github.com/seamia/protodot

54 Chapter 4. Terra - Design & Implementation

covers instructions and numbers. It uses oneof functionality of protocol
buffers to contain a specific type of number, be it an integer, an unsigned
integer, float, or an instruction. Expressions are then just a list of Data
instances.

4.5.2 NebulaStream Integration
The above described design is implemented in NebulaStream by defining and
including C++ classes and YAML configurations for the LoRaWAN Proxy
Source and the Decorated Node Engine. The implementation of these follows
from the design description. Concretely, we make the following additions to
NebulaStream:

LoRaWANProxySource: The data source in NebulaStream that handles in-
coming data from Terra and pushes queries to Terra. This is done
by setting up an MQTT connection to the chosen core network and
exposing methods to send and receive messages. The received messages
are unpacked and transferred to the rest of NebulaStream as any other
source. Initially, we implement support for The Things Network[38]
and ChirpStack[66]. The Things Network is a publicly accessible global
LoRaWAN network, and ChirpStack is a self-hostable LoRaWAN net-
work stack for private deployments. To support different LoRaWAN
providers in the future, we implement LoRaWANProxySource with an
abstract NetworkServer class that can then be implemented to fit to
specific providers, so to abstract away the network details from the
rest of the LoRaWAN Proxy Source. Configurations for these follow
the NebulaStream configuration standard in YAML, and an example
can be seen in listing 1. This contains the information needed for the
LoRaWANProxySource to connect to the LoRaWAN network, and to
map the incoming data from Terra to the logical source.

EndDeviceProtocol.proto: The protocol buffers description the commu-
nication between Terra and NebulaStream. See section 4.5.1 for
details.

EndDeviceSerialisationUtil: De/serialisation logic for NebulaStream.
Here we implement the function serializeQueryPlanToEndDevice
that, if the query plan starts with a LoRaWANProxySource, traverses
the query plan from start to finish, serialising all supported opera-
tions while removing them from the query plan in place. When an

4.5. Implementation 55

Tu
m
b
lin
g
W
in
d
o
w
O
p
er
at
io
n

1
si
ze
_m
s

ui
nt
32

E
xp
re
ss
io
n

[..
.]
1
in
st
ru
ct
io
ns
D
at
a

D
at
a

da
ta 1
in
st
ru
ct
io
n
E
xp
re
ss
io
nI
ns
tr
uc
tio
ns

2
_u
in
t8

ui
nt
32

3
_u
in
t1
6

ui
nt
32

4
_u
in
t3
2

ui
nt
32

6
_i
nt
8

si
nt
32

7
_i
nt
16

si
nt
32

8
_i
nt
32

si
nt
32

10
_f
lo
at

flo
at

11
_d
ou
bl
e

do
ub
le

M
ap
O
p
er
at
io
n

1
fu
nc
tio
n
E
xp
re
ss
io
n

2
at
tr
ib
ut
e

ui
nt
32

A
g
g
re
g
at
io
n

1
ag
gr
eg
at
io
nT
yp
e
W
in
do
w
A
gg
re
ga
tio
nT
yp
e

2
on
A
ttr
ib
ut
e

ui
nt
32

3
as
A
ttr
ib
ut
e

ui
nt
32

en
um

W
in
d
o
w
A
g
g
re
g
at
io
n
Ty
p
e

M
IN

0

M
A
X

1

S
U
M

2

A
V
G

3

C
O
U
N
T

4

O
p
er
at
io
n

op
er
at
io
n

1
m
ap

M
ap
O
p
er
at
io
n

2
fil
te
r

F
ilt
er
O
p
er
at
io
n

3
w
in
do
w
W
in
d
o
w
O
p
er
at
io
n

F
ilt
er
O
p
er
at
io
n

1
pr
ed
ic
at
e
E
xp
re
ss
io
n

W
in
d
o
w
O
p
er
at
io
n

1
ag
gr
eg
at
io
n

A
g
g
re
g
at
io
n

2
st
ar
tA
ttr
ib
ut
e

ui
nt
32

3
en
dA
ttr
ib
ut
e

ui
nt
32

W
in
do
w
O
pe
ra
tio
n

4
tu
m
bl
in
g

Tu
m
b
lin
g
W
in
d
o
w
O
p
er
at
io
n

5
sl
id
in
g

S
lid
in
g
W
in
d
o
w
O
p
er
at
io
n

6
th
re
sh
ol
d

T
h
re
sh
o
ld
W
in
d
o
w
O
p
er
at
io
n

Q
u
er
y

[..
.]
1
op
er
at
io
ns
O
p
er
at
io
n

en
um

E
xp
re
ss
io
n
In
st
ru
ct
io
n
s

C
O
N
S
T

0

V
A
R

1

A
N
D

2

O
R

3

N
O
T

4

LT
5

G
T

6

E
Q

7

A
D
D

8

S
U
B

9

M
U
L

10

D
IV

11

M
O
D

12

LO
G

13

P
O
W

14

S
Q
R
T

15

E
X
P

16

C
E
IL

17

F
LO
O
R

18

R
O
U
N
D

19

A
B
S

20

LT
E
Q

21

G
T
E
Q

22

O
u
tp
u
t

[..
.]
1
re
sp
on
se
s
D
at
a

S
lid
in
g
W
in
d
o
w
O
p
er
at
io
n

1
si
ze
_m
s

ui
nt
32

2
sl
id
e_
m
s

ui
nt
32

M
es
sa
g
e

[..
.]
1
qu
er
ie
s
Q
u
er
y

T
h
re
sh
o
ld
W
in
d
o
w
O
p
er
at
io
n

1
pr
ed
ic
at
e

E
xp
re
ss
io
n

2
m
in
im
um
_s
iz
e

ui
nt
32

Figure 4.5: Protocol buffer schema used for Terra

56 Chapter 4. Terra - Design & Implementation

unsupported operation occurs, we simply stop and return the serialised
query for Terra.

DecoratedLoRaWANNodeEngine: Our decorated engine. This wraps the
original node engine, but is created with a reference to the LoRaWAN-
ProxySource. When a query is registered it is serialised through
EndDeviceSerialisationUtil and the serialised query for Terra is
passed to the LoRaWANProxySource, while the now reduced query
for NebulaStream is passed to the real NodeEngine.

In addition, we also add LoRaWANProxySourceType and
LoRaWANProxySourceDescriptor which are typed representations of
the configuration shown in listing 1.

To support the above, we need to add references, methods, and types to
describe the LoRaWANProxySource in the following places:

• SerializableOperator.proto

• PhysicalSourceType.{c|h}

• ConfigurationNames.{c|h}

• SourceCreator.{c|h}

• PhysicalSourceFactory.{c|h}

• ConvertLogicalToPhysicalSource.{c|h}

• LowerToExecutableQueryPlanPhase.{c|h}

To allow for decoration of NodeEngine we need some of its methods to
be virtual.

NodeEngineBuilder is were we decorate the node engine if a
LoRaWANProxySource is part of the worker configuration.

In addition to the above, we also add unit tests.
And with these changes NebulaStream is ready to support Terra.
We note that since development of NebulaStream and Terra is hap-

pening side by side, the latest release of NebulaStream does not support the
latest version of Terra. We develop Terra against the common protocol
buffer format.

4.5. Implementation 57

1 physicalSources:
2 - logicalSourceName: logical_source_name
3 physicalSourceName: physical_source_name
4 type: LORAWAN_SOURCE
5 configuration:
6 networkStack: TheThingsStack
7 ## set url to MQTT endpoint of networkstack
8 url: eu1.cloud.thethings.network:1883
9 userName: <username>@ttn

10 password: <password>
11 appId: <app-id>
12 ## Files needed for secure mqtt connection
13 CAPath: /Users/user/cert/
14 certPath: /Users/user/cert/cert.pem
15 keyPath: /Users/user/cert/key.pem
16 ## configure known devices
17 deviceEUIs:
18 - eui-70b3d57ed005e88a
19 ## configure which fields the sensors from \terra{} corresponds to in the schema
20 sensorFields:
21 - temperature
22 - acceleration

Listing 1: Configuration of a LoRaWAN physical source in a NebulaStream
worker

4.5.3 MicroPython Proof of Concept
As a proof of concept, the first Terra version was developed in MicroPy-
thon[58] on a Pycom FiPy board. It follows the design specified in section 4.4,
and serves to verify its feasibility. However, since MicroPython runs on a
limited number of platforms and is a managed language, it is hard to port
and control the exact low-level behaviour. For that reason, the MicroPython
project was ported to C and expanded upon.

4.5.4 C Port
Here we present Terra’s implementation. At first, we need an OS for
Terra to be implemented in. That is why we start with a discussion on
the choice of operating system before we continue with the implementation
details.

But before that, we dwell on a couple of global design choices. As we
want to release Terra under an open source licence, the libraries and
frameworks we include should be compatible. Terra itself should only use

58 Chapter 4. Terra - Design & Implementation

static allocations. This is both to ensure broad compatibility and also to
ensure easy verifiability and reasoning of resource usage. As suggested in
section 4.3.1 it would make sense to reuse the protocol buffer representation
as much as possible to prevent unneeded conversion between types, and
higher memory requirements.

OS Choice

Requirements NF1 to NF4 and NF6 require operating system support.
These are essential for Terra, so choosing an appropriate OS requires
careful selection. There are several works comparing operating systems
for IoT devices and their intricacies[67, 68]. In this thesis, we will not go
through all the operating systems currently available but focus solely on the
most prominent ones: TinyOS, RIOT, Zephyr and FreeRTOS.

TinyOS[12] TinyOS was previously discussed in chapter 2, where we noted
its use of its own variant of C and its restricted hardware compatibility. This
event-driven, nonpreemptive, monolithic operating system lacks LoRaWAN
support. Consequently, despite its presence in the Sensor Network Database
arena, we find TinyOS to be unsuitable for our needs.

FreeRTOS[69] An operating system mainly developed by Amazon but
still released under an open MIT licence. FreeRTOS is more of a scheduler
than an operating system[70]. It contains no hardware abstraction layer
making portable programming cumbersome [67]. This makes it difficult
to live up to requirement NF1. However, there are plenty of resources on
porting FreeRTOS to other platforms as that is unavoidable due to the lack
of the abstraction layer. Additionally FreeRTOS does cater towards low
power use-cases by allowing the developer to disable the normal clock tick
that are otherwise used to regularly check for, and schedule, higher priority
task. By disabling this tick or running in tick-less mode, FreeRTOS can
go into deep sleep for longer periods of time to conserve energy. However,
the lack of a hardware abstraction layer makes this OS a nonstarter, as
portability is a key design constraint of Terra.

Zephyr[71] While Zephyr is not included in the above-referenced survey
papers, we include it here, as it is the largest IoT operation system by
number of collaborators and commits. It is a highly customisable monolithic
and modular OS with its own development tools. It is backed by the Linux

4.5. Implementation 59

Foundation and has several prominent supporters, including Google, Intel,
Meta, and others. It enjoys wide hardware support with over 750 supported
boards and over 220 supported sensors.

RIOT[70] RIOT, much like Zephyr, is a highly customisable and modular
monolithic kernel. Unlike zephyr its build system is built around a recursive
tree of Makefiles making it easy to add and modify. Its a popular choice
for prototyping and academia because of its open and customisable nature.
RIOT supports around 280 boards[72] and hundreds of sensors, and due
to its modular system, it is quite easy to add support for new boards and
sensors.

Conclusion The choice of OS falls between Zephyr and RIOT. Both
operating systems are similar in nature, while one study of performance gives
the performance advantage to RIOT versus Zephyr OS [73], the choice of
OS is much more dependent on familiarity and developer satisfaction, which
boils down to personal preference. Given the author’s limited experience
with both options, RIOT was selected because its build system utilises
makefiles. Although these can be quirky, the author is more accustomed to
them compared to Zephyr’s internal build framework. Additionally, RIOT
was the operating system used in the bachelor project responsible for the C
port mentioned above, eliminating the need to port the application code.
Since RIOT and Zephyr are quite similar, it should not be difficult to port
the Terra application between the two.

Protocol Buffers

For Protocol Buffer support, we use the nanopb library [74]. It is a C
implementation of the protocol buffer specification, optimised for resource-
constrained hardware. In addition to the library being optimised in general
for code size instead of performance, it also includes specialised configuration
options to guide the generation of protocol buffer C code. In particular,
the opportunity to define maximum counts of repeated fields, which causes
them to be statically allocated. We do this in a separate .options file, and
the options, including their defaults, can be seen in listing 24.

This requires that all structs fit within the RAM of the device, but allows
for a per-device optimisation.

4Listing shows an extract. Full file can be seen at https://github.com/FlapKap/
Terra/blob/master/app/terra/terraprotocol.options

https://github.com/FlapKap/Terra/blob/master/app/terra/terraprotocol.options
https://github.com/FlapKap/Terra/blob/master/app/terra/terraprotocol.options

60 Chapter 4. Terra - Design & Implementation

1 TerraProtocol.Output.responses max_count:16
2 TerraProtocol.Expression.instructions max_count:50
3 TerraProtocol.Query.operations max_count:2
4 TerraProtocol.Message.queries max_count:1

Listing 2: Options for protocol buffer C code generation through nanopb

1 typedef struct _WindowData {
2 Number aggregation_value;
3 Number start_value;
4 Number end_value;
5 uint32_t count;
6 windowState state;
7 } WindowData;
8
9 typedef struct _TerraConfiguration {

10 uint32_t loop_counter;
11 uint8_t raw_message_size;
12 uint8_t raw_message_buffer[LORAWAN_APP_DATA_MAX_SIZE];
13 WindowData window_data[MAX_WINDOW_OPERATORS];
14 } TerraConfiguration;
15
16 bool configuration_save(TerraConfiguration* config, semtech_loramac_t* loramac_config,

bool save_query);↪→
17 bool configuration_load(TerraConfiguration* config, semtech_loramac_t* loramac_config);

Listing 3: Extract of configuration.h showing relevant structs and func-
tions

The structs generated by nanopb are what we use for the internal query
representation. Since everything is statically allocated, this means that no
additional decoding is needed after the initial deserialisation of the serial
format. It also means the structs generated by nanopb accommodate the
largest possible messages, which will take up more memory than needed
most of the time.

Configuration & State Management

Here, we describe how configuration and state management is imple-
mented in Terra. We need this since Terra is designed to maximise
power efficiency, and between executions it will go into the lowest possible
power state, which is highly likely to clear RAM or other ephemeral storage.
We first describe the configuration and storage handling in Terra and then
address the choice of persistent storage media.

4.5. Implementation 61

In Terra we define a struct containing all Terra relevant configuration,
seen in listing 3. It contains a loop counter, the serialised query, if any, and
any window state.

The WindowData struct contains the information required by the design
described in section 4.4. We save the query in its serialised format since
this is much smaller. With the large deserialised format, loading and saving
could become quite costly depending on the storage medium.

Saving and loading of the configuration is achieved through two functions
whose signature can be seen in listing 3. Terra supports multiple different
storage mediums which are exposed through RIOT. The appropriate stor-
age medium is selected through preprocessor macros and this defines the
appropriate functions. Terra supports:

• battery backed RAM for the ESP 32 family of processors.

• EEPROM.

• EEPROM through the EEPREG5 module if used. This is simply a
module to manage multiple configurations stored in EEPROM.

• Internal flash if the device supports the RIOT flashpage interface6.

We will not go through the implementation here, but we simply point to
the configuration.c7 file for details.

In addition to the state required by Terra, RIOT itself needs to store
the network state in deep sleeps. This is done in the semtech-loramac
RIOT module, which we will discuss in the network section below, but this
is why a reference to this struct is included in the function calls.

As a small optimisation we only save the query if marked, to ensure that
it is only written to persistent storage once, and then when it changes. This
is both to save energy, but also to preserve flash devices since they have
limited number of writes over their life-time.

We note that some small contributions to the RIOT codebase were made
by the author on the path to implementing the above, mainly concerning
bugs in the RIOT codebase or adding EEPREG support for the semtech-
loramac module8.

5RIOT [75, modules/system/eeprom registration]
6RIOT [75, modules/drivers/Storage Device Drivers/MTD wrapper for Flashpage

devices]
7https://github.com/FlapKap/Terra/blob/master/app/terra/configuration.

c
8This pull request is awaiting approval but is utilised by Terra on supported boards

https://github.com/FlapKap/Terra/blob/master/app/terra/configuration.c
https://github.com/FlapKap/Terra/blob/master/app/terra/configuration.c

62 Chapter 4. Terra - Design & Implementation

1 SENSOR_NAMES ?= hts221 hts221
2 SENSOR_TYPES ?= SAUL_SENSE_TEMP SAUL_SENSE_HUM

Listing 4: Example of sensor configuration in the Terra makefile

Sensing

For the configuring of sensors, we use the RIOT SAUL system [70].
With a little makefile magic9, we can then configure the sensors in our
makefile by specifying their name and type, as done in listing 4, and RIOT
will automatically initialise and configure them. Terra will then use
these sensors, in that order, to get data readings and copy them into the
environment.

Tensorflow Lite Model

As written in section 4.4, the TFLite model will exist as a pseudosensor
dependent on the sensor values being available, but executed before queries.
We update and use the Tensorflow Lite for Microcontrollers library[76] in
RIOT to load and execute models. Since this library uses C++, we need to
include this as a feature and then include the tflite-micro package. To
separate the TFLite model from the rest of Terra, this is implemented as
a module we import. This module contains a C/C++ header declaring an
initialisation and execution function for the model, while the corresponding
.cpp file contains the implementation that defines the TFLite operators
used and, when running, copies the environment into the model, and the
results out of the model into the environment. In the module Makefile we
utilise the RIOT utils_blob module to import the TFLite binary as a C
char array in a C header.

In Terra, the inclusion of a TFLite model is defined by whether or
not this module is included in the Terra Makefile, via e.g. USEMODULE +=

tflite_model. If it is, then the module is built together with Terra and
code is included that executes the model after sensors are read but before
the query is executed. We provide an example model and code for the
tflite_model module. The model used in this example is provided by the
EU ELEGANT project10 and is a simple fully connected neural network

9Converting the Makefile definitions into the sensor handling logic and the makefile
driver definitions. We refer to the makefile for the full implementation https://github.
com/FlapKap/Terra/blob/master/app/terra/Makefile

10https://www.elegant-h2020.eu/

https://github.com/FlapKap/Terra/blob/master/app/terra/Makefile
https://github.com/FlapKap/Terra/blob/master/app/terra/Makefile
https://www.elegant-h2020.eu/

4.5. Implementation 63

dense input

Fully Connected
weights: <76×38>

bias: <76>
ReLU

1×38

Fully Connected
weights: <1×76>

bias: <1>1×76 Logistic1×1 dense output1×1

Figure 4.6: Tensorflow Lite network used as an example in Terra

designed to detect water leaks. The purpose is not important here, as the
goal is just to illustrate how to implement a TFLite model in Terra. An
illustration of the network of the model can be seen in fig. 4.6

Networking

RIOT offers several options for managing networking. In particular, it offers
the Generic Network Stack (GNRC) [77] as a common clean API to multiple
network back-ends. Enabling or disabling support for different network
stacks is done by the simple inclusion of modules in the Makefile and its
use would make it very easy to de-couple the network implementation from
the rest of Terra. However, the GNRC LoRaWAN module is still in
development and does not support LoRa regions outside EU, or adaptive
data rates.

That is why we chose to go with the alternative: the semtech-loramac
module11 in RIOT, which is an adaptation of the reference implementation.
This does support the features mentioned and has built-in support for saving
network configuration and state to EEPROM if available. However, it does
not offer the same decoupling of network interface and implementation. To
decouple Terra from semtech-loramac, we implement a network layer in
between. It simply contains functions to initialise, receive, and send messages,
and send heartbeats. We then separately declare and define the LoRaWAN
specific logic in its own header and implementation files. Changing the
network implementation is then simply a question of implementing the same
network header, to a new network stack - Possibly even GNRC.

However, the current solution has some drawbacks. In the main loop
of Terra we use heartbeats to make sure that a receive window opens
to receive messages. We do this when no query is currently running, and
dependent on the value set in the FORCED_LISTEN_EVERY_N_LOOP option.

11RIOT [75, modules/packages/Semtech LoRaMAC implementation]

64 Chapter 4. Terra - Design & Implementation

This option is there to keep Terra responsive to new queries when running
long windows or very selective filters. This is LoRaWAN specific behaviour,
which should be decoupled. The semtech-loramac module handles saving
to persistent storage - but only if EEPROM is available. So for other storage
backends, we have to implement this ourselves. The semtech-loramac
module is also quite outdated in RIOT, which means that even though latest
LoRaWAN standard is 1.1[78] and 1.0.4[36], we can only support 1.0.2[40]
in Terra.

Ideally, GNRC would have been in a state where LoRaWAN would be
well supported, so this system could be used to choose network stack without
modification of Terra code. However, heartbeats would still have to be
part of Terra logic, and GNRC does not handle persisting configuration
and network state, leaving this for Terra to manage.

Some information need to be provided to Terra to support networking:

LORAMAC_DATA_RATE: Which baseline data rate to use.

CONFIG_LORAMAC_DEFAULT_ADR: If this flag is present Adaptive Data Rate
is enabled.

LORA_REGION: Which region we operate in.

APPEUI: The Application Extended Unique Identifier.

DEVEUI: The Device Extended Unique Identifier.

APPKEY: The Application key.

In addition to these, we will in chapter 5 modify the following options
compared to their defaults in semtech-loramac. Mainly to support a specific
LoRaWAN provider and to improve reception. We mention them here for
completion.

LORAMAC_DEFAULT_RX1_DELAY: The default delay after sending until the
first receive window.

LORAMAC_DEFAULT_RX2_DR: The default data rate for the second receive
window.

LORAMAC_DEFAULT_SYSTEM_MAX_RX_ERROR: To increase the receive window
widths to account for timing errors.

We refer to section 2.2 for more details on all of these parameters.

4.5. Implementation 65

Numbers

To ease implementation, we define a Number struct that contains all types of
numbers that Terra supports, in a union. We support unsigned and signed
integers, floats, and doubles. We have made a choice to support these types
of numbers, since this provides a nice compromise between the expressibility
of numbers and the combinatorial explosion of handling operations between
more types.

This allows us to propagate numbers throughout Terra without wor-
rying about type. Alternatively, we could have represented numbers in
their natural type, which would lead to a lot of different environments and
tracking, or we could cast each number to the largest type, which would
rule out some compiler optimisations.

We implement functions for comparison, truth checking, and arithmetic
operations on numbers. These are mainly used for windows and other areas
where computation is not done through an expression.

Expressions

An expression in Terra consists of a stack, a programme counter, and a
list of instructions which are of the type Data. The Data type contains
either an expression instruction or a number. The stack is simply a stack
of the Number struct. To execute an instruction, Terra simply reads the
list from start to finish, and for each expression the instruction executes the
relevant function. All of this follows the description in section 4.4.

An implementation detail of note is that since Numbers in Terra
are slightly different from the numbers in the protocol buffer format, we
have to copy between these two formats when dealing with CONST and
VAR instructions. These expect the next instruction to be a number that
indicates either just a scalar value to be pushed to the stack or the index of
the environment they read from.

All instructions are implemented through small functions and a central
switch statement, so implementing new instructions only requires adding it
to the protocol buffer format and implementing a function and adding it to
the switch statement.

The Environment

The environment is the global array in which sensor reads and operator
results are stored. Since a result from Terra comes from queries, we tag

66 Chapter 4. Terra - Design & Implementation

any value pushed to the environment with its source; either sensor or query,
and any results transmitted contain only values of query source. We do
this since we want operators to be able to operate both directly on sensor
values and also on earlier operator values. Otherwise, Terra could not
filter based on a map operation value. On the other hand, we do not want
Terra to submit raw sensor values if they are not specifically requested by
an operation. So we need operators to be able to access both sensor and
query values while only submitting query values as a result.

Execution of Operators

Operators are executed sequentially, with the stack cleared in between them,
and the environment cleared after each query. Map operators execute as
described in the design. So does filter operators. If the value left on the
stack after a filter operation is false, the whole execution of the query is
halted and no result is transmitted.

For window operators, only timing-based tumbling windows are currently
supported. This is implemented as described in the design. Notable is the
handling of time. We measure the timing in the window based on number
of executions times the length of the window. Since we know with which
interval Terra executions run and how many times a window has executed,
by its count property, we can derive the running time.

We do it this way to simplify time management, to be centralised around
the epoch time. Currently Terra uses a real-time clock for that, but one
could easily imagine that hardware is not available and Terra has to resolve
to other means of time keeping.

Terra Main Logic

The Terra main function essentially follows fig. 4.2 and orchestrates all
different parts of Terra. It times the execution of all these parts to calculate
the appropriate sleep duration to maintain an epoch time as defined by the
EXECUTION_EPOCH_S macro. This macro defines how often a Terra epoch
is run. It also prepares the device for sleep and ensures it wakes up properly
by disabling peripherals and defining wake-up alarms.

We also allow the user to pre-load a query onto Terra at build
time. This is defined as a C formatted serialized protocol buffer char
array through the option DEFAULT_QUERY_AS_PB_CHAR_ARRAY. We also
allow the user to provide this in a base 64 format through the op-

4.6. Future work 67

tion DEFAULT_QUERY_AS_PB_BASE64 which will then on build set the
DEFAULT_QUERY_AS_PB_CHAR_ARRAY to the corresponding value.

We also allow for changing the size of the expression stack through the
RUNTIME_STACK_MEMORY option.

RIOT specific Build Options

In addition to the configuration options listed in the previous sections,
WE also want to mention the below RIOT configuration options, since

they are either relevant for Terra or we modify them in later sections.

DEVELHELP: 1
Enables a wide variety of development helpers, like more informative
error and debug messages. Also enables asserts[75, see modules/utili-
ties].

MAIN_STACKSIZE: 5120
The main stack size of RIOT OS in bytes. Normally this is specif-
ically defined for different CPU architectures, but we fix it here to
accommodate Terra.

Overview

Finally as a summary of this section we provide a table of all configuration
options discussed in table 4.2. This table is divided into sections according
to the sections in which the configuration options were introduced. This
also roughly corresponds to how and where the configuration options should
be defined. For the Protocol Buffers options, they should all be defined
in the accompanying terraprotocol.options file. The rest are Makefile
options and as such should be defined in the application Makefile, but can
also be overwritten through make command-line variables.

4.6 Future work
Terra in its current state fulfils almost all the requirements listed in
section 4.1, with the exception of sliding windows in requirement F4.3.
Properly implementing that is an obvious future goal.

In addition to that, there are some possible optimisations. The first one
is to implement acquisitional sensing where sensor reads are based on the
current running query such that only if a sensor value is used that sensor is

68 Chapter 4. Terra - Design & Implementation

Configuration Option Description Default Options

Protocol Buffers - terraprotocol.options
All options prefixed with TerraProtocol.

Output.responses
max_count:

Max # of scalar responses 16 Any positive integer

Expression.instructions
max_count:

Max # of query instructions 50 Any positive integer

Query.operations
max_count:

Max # of query operations 2 Any positive integer

Message.queries max_count: Max # of concurrent queries 1 Any positive integer

Configuration & State Management

LORAWAN_APP_DATA_MAX_SIZE Max size of LoRaWAN packet
(bytes). Limits the size of a
query

242 Any positive integer

MAX_WINDOW_OPERATORS # of concurrent windows 5 Any positive integer

Sensing

SENSOR_NAMES SAUL sensor names to load not set any SAUL sensor
name in RIOT

SENSOR_TYPES SAUL sensor types to load not set any SAUL sensor
type in RIOT

TFLite model

tflite_model If module is present, TFLite
model will be included

n/a n/a

Networking

LORAMAC_DATA_RATE Baseline data rate not set DR0-DR6
CONFIG_LORAMAC_DEFAULT_ADR If flag present, enable ADR not

present
not present/present

LORA_REGION LoRaWAN Region not set See [39] for entries
APPEUI Application Extended Unique

Identifier
not set n/a

DEVEUI Device Extended Unique Identi-
fier

not set n/a

APPKEY Application Key not set n/a
LORAMAC_DEFAULT_RX1_DELAY Delay to first RX window in ms 1000 Any positive integer
LORAMAC_DEFAULT_RX2_DR Data rate for second RX window region

dependent
LORAMAC_DR_0-3

LORAMAC_DEFAULT_SYSTEM
_MAX_RX_ERROR

Measure of how much timing er-
ror to account for

50 Any positive integer

FORCED_LISTEN_EVERY_N_LOOP Send a heartbeat every N epoch 1000 Any positive integer

Terra main logic

DEFAULT_QUERY_AS_PB_CHAR
_ARRAY

A protocol buffer serialized de-
fault query formatted as a C
char array

not set any valid PB query

DEFAULT_QUERY_AS_PB_BASE64 A protocol buffer serialized de-
fault query formatted in base 64

not set any valid PB query

RUNTIME_STACK_MEMORY Size of the expression stack 10 Any positive integer
EXECUTION_EPOCH_S Terra execution epoch in sec-

onds
120 Any positive integer

RIOT specific build options

DEVELHELP Development helpers: 1 to en-
able, 0 to disable.

1 1 or 0

MAIN_STACKSIZE RIOT OS stack size 5120 Any positive integer

Table 4.2: Summary of configuration options relevant for Terra

4.7. Summary 69

read. The next step from that would be to fully embrace acquisitional query
processing, where the optimiser chooses not only which sensor is sensed but
also when and how often. This requires the support of NebulaStream, which
already includes adaptive sampling rates and acquisitional query processing
as part of its vision [2].

Improving network support and handling is also a big future goal. At
the moment, Terra is somewhat coupled with LoRaWAN, which should
be reduced. For this there are multiple avenues available. Work could
be done to utilise the GNRC networking system of RIOT to increase the
network agnosticism of Terra and enable the built-in support for a variety
of physical layer/link layer technologies such as IEEE 802.15.4 or Ethernet
[77]. This would require a development of the GNRC LoRaWAN support.
However, support for network stacks not supported by GNRC, such as
Bluetooth LE, would still require custom handling.

Network resiliency is also an area of research that can be investigated.
Work is already being done to improve the network resiliency of NebulaS-
tream [79], and some of the techniques used could be ported to Terra.

4.7 Summary
In this chapter, we introduce Terra, our system that augments NebulaS-
tream with code offloading to sensor nodes. We exploit the already existing
infrastructure of NebulaStream to parse and interpret a query, and then
hook into this infrastructure to selectively push down partial queries to
Terra. We analyse and discuss different avenues of opportunities we have
for designing and implementing Terra given the requirements given. We
also discuss the nature of the integration of Terra into NebulaStream. In
table 4.3, we provide a summary of the design choices made in Terra and
their alternatives. The chosen option is shown in bold.

In the next chapter, we define a cost model for Terra, which we use
to guide our evaluation. Next we will define the experimental framework
which we follow to obtain our results, which we then discuss.

70 Chapter 4. Terra - Design & Implementation

Aspect Design Choice

Network Technology
LoRaWAN
SigFox
NB-IoT

Serial Format
Protocol Buffers
Flat Buffers
Apache Thrift

Query Execution

Cross compiled machine code

Intermediate representation executed by a Virtual
Machine

Parametrized functions

Parametrized functions with intermediate
representation of expressions

Integration Deep integration - Introduce pseudo-worker to
NebulaStream

Shallow integration - Represent as Data Source
and hook into Node Engine

Table 4.3: Summary of design choices in Terra

Chapter 5

Cost Model

5.1 Introduction
To answer our hypothesis and research question R3 we need to evaluate
the energy cost of code offloading. More specifically, we need to compare
the energy cost of offloading the code to the sensor device versus the energy
savings of not transferring raw sensor reads. We do this by developing and
deriving an energy cost model through a series of experiments where we
evaluate the energy consumption of the various activities that Terra goes
through as part of its execution. That model will allow us to compare the
different energy costs of queries under varying conditions and shed light
on how code offloading affects the energy consumption of sensor devices.
Such a cost model could also enable NebulaStream to intelligently decide
whether or not a query push down is worth it, since it describes Terra’s
energy consumption when a query is provided, and when one is not provided.
This will enable NebulaStream to optimise query placement given a query’s
characteristics and life-time.

In the rest of this chapter, we will go through the formulation of this
cost model, the experimental framework that derives it, and the results from
those experiments. We will then show the performance of the model.

5.2 Energy Cost Model
Here we describe the energy cost model we later experimentally derive. We
want the energy model to show the energy consumption of Terra given a
query, its response rate, and whether or not it runs a TFLite model.

72 Chapter 5. Cost Model

Query Length Response Rate TFLite
Activity Startup Steady Startup Steady Startup Steady

0. RiotInit
1. LoadConfig •
2. Deserialize n/a •
3. SensorInit n/a n/a n/a
4. NetInit
5. SensorCollect n/a n/a n/a
6. ExecTFLite n/a n/a n/a •
7. ExecQuery n/a • n/a n/a
8. SendReceive • •
9. SaveConfig •

Table 5.1: Activities and their expected dependency on Query Length, Response Rate
or TFLite in either the Start-up or Steady State phase. · indicates a dependency.
”n/a” indicates the activity is not executed in the given phase.

Terra supports the execution of a series of activities that take place
at some given frequency. These activities consume some amount of power.
Some activities are dependent on user-dependent factors, while others are
influenced by environmental factors. There are also activities that are
not dependent on any external factors at all. Terra’s behaviour is also
dependent on the presence of a query. If there is no query present, most
activities are not executed and some activities have different power usages.

We describe this difference by defining whether or not an activity takes
place during a startup epoch or a steady-state epoch, with the startup
epoch being the first execution of Terra, as this generally is the execution
where no query is present and one will be fetched from the network.

Then, for each activity, we describe its dependency and define a model
based on this. Specifically, we look at what is done during each activity
and judge if energy consumed would correlate with Query Length (QL) or
the presence of a TFLite model (TF). If it does, we model that specific
activity/parameter relationship as a linear model. If not, it is simply an
experimentally derived constant and we define it as such. We do this for
both the start-up epoch and steady-state epochs.

Response Rate (RR) is a special case, as that is neither a linear relation
nor a constant. Its costs vary from epoch to epoch. We will discuss this in
detail in section 5.2.3.

5.2. Energy Cost Model 73

Each activity and their parameter dependencies can be seen in table 5.1.
As an example, we see that the ”8. SendReceive” activity has marked
dependency with query length in the startup phase and response rate in
the steady-state phase. This activity covers network communication, and as
such it makes sense that the consumption of it is affected by the length of
the query it receives and how often it needs to transfer results.

Table 5.1 gives us a series of constants and models, which we present
below. The models are named with the subscript fphase,activity where phase
is 0 for the start-up phase and 1 for the steady-state phase. Activity
corresponds to the activity number given in table 5.1. Constants follow the
same naming scheme. Cells labelled ”n/a” indicate that the activity is not
carried out during the specified phase.

We start by defining the constants in section 5.2.1. Then we define the
linear models correlated with query length in section 5.2.2. After this we
define the model for response rate in section 5.2.3, and then the model for
TFlite in section 5.2.4.

Finally in section 5.2.5, we gather all the individual models described in
the following in a model that then describes the energy consumption of a
given epoch under a given QL, RR, and TF. To aid in comparison, we also
define a baseline model without the cost of code offloading.

5.2.1 Constants
As can be seen in table 5.1 there are many activities that do not depend on
any of the workload parameters. These are modelled as constants and are
derived from taking the average of the measured values. The constants are
C0,0, C1,0, C0,1, C1,3, C0,4, C1,4, C1,5, C1,9. Note that there are no C0,2, C0,3,
C0,5, C0,6, C0,7 as a query is never deserialised and executed in the start-up
phase.

5.2.2 Query Length
Query Length is the parameter that affects most activities in Terra, from
loading the query from memory to executing it and saving it. The query
length is its serialised size in bytes, as this directly affects storing, loading,
and deserialising. It also serves as an indirect measure of its complexity.
It goes from a minimum query size of around 16 B up to the maximum
supported by Terra, which ranges from 50 B to 222 B dependent on data
rate.

74 Chapter 5. Cost Model

The length of the query will have an impact on the startup cost of the
sendReceive activity, as this is where the query is received. It will also
affect the save activity, and the steady state cost of loading, deserialising
and executing:

f0,8(QL) = α0,8 + β0,8QL (5.1)
f0,9(QL) = α0,9 + β0,9QL (5.2)
f1,1(QL) = α1,1 + β1,1QL (5.3)
f1,2(QL) = α1,2 + β1,2QL (5.4)
f1,7(QL) = α1,7 + β1,7QL (5.5)

5.2.3 Response Rate
An epoch will only use energy to transmit a response if it generates a
response. This behaviour does not fit a linear relationship between response
rate and energy usage, as the energy usage comes in spikes. Instead, we
amortise the cost of the transmission over the epochs. A response will have
some cost C1,8 when sent, but that will only occur after m epochs. We thus
define our response rate as the reciprocal of m:

RR =
1
m

(5.6)

This allows us to multiply the fixed transmission cost C1,8 with RR to
produce the amortised cost of an epoch for a given response rate:

f1,8(RR) = C1,8RR (5.7)
This means that, if a response is only sent for every 4th epoch, the

response rate would be 1/4 and the cost of transmission would for each epoch
be f1,8(1/4) = 1/4C1,8.

5.2.4 Tensorflow Lite
Terra includes the option to run a TFLite model on the sensor input
before query execution as a sort of pseudo-sensor. This entails a significant
increase in compute time. However, since TFLite models are included on
build-time and not provided during run-time like a query, the consumption
of the model is constant for any given deployment of Terra. That is why
we model it here as as simple binary dependency.

f1,6(TF) = C1,6TF (5.8)

5.2. Energy Cost Model 75

Where TF = 1 if there is a TFLite model present and TF = 0 if there is
none.

5.2.5 Final Model
Now we produce the final model. First, we gather all constants into two
variables, C0, C1 to simplify.

C0 = C0,0 + C0,1 + C0,4 (5.9)
C1 = C1,0 + C1,3 + C1,4 + C1,5 + C1,9 (5.10)

Then we produce two functions: one for the startup epochs f0 and one
for the steady-state epochs f1.

f0(QL) = C0 + f0,8(QL) + f0,9(QL)
f1(QL, RR, TF) = C1 + f1,1(QL) + f1,2(QL) + f1,6(TF)

+ f1,7(QL) + f1,8(RR)

(5.11)

We can then describe the energy consumption of an epoch using the
piecewise function f :

f (QL, RR, TF, n) =

{
f0(QL) if n = 0
f1(QL, RR, TF) if n > 0

(5.12)

Where n is epoch number.
To get the total energy consumption of some query over n epochs, we

sum over f from 0 to n.

ftotal(QL, RR, TF) =
n

∑
i=0

f (QL, RR, TF, i) (5.13)

Baseline

We also produce a baseline model that represents Terra’s energy cost when
no query is provided, and it just transfers the sensor measurements directly.
This model is almost identical to ftotal, except that it does not contain f0,8
in f0. There is no transfer of query done in the startup phase. Specifically:

f0baseline(QL) = C0 + f0,9(QL) (5.14)

76 Chapter 5. Cost Model

fbaseline(QL, RR, TF, n) =

{
f0baseline(QL) if n = 0
f1(QL, RR, TF) if n > 0

(5.15)

fbaseline_total(QL, RR, TF) =
n

∑
i=0

fbaseline(QL, RR, TF, i) (5.16)

5.2.6 Assumptions and Trade-offs
Here we briefly discuss the assumptions and trade-offs made with this energy
model. We note that the variables of the model are all based on the energy
consumption of Terra. However, these are naturally dependent on the
device Terra runs on, and as such the model is only applicable in absolute
terms on the hardware chosen. That is, as a tool for NebulaStream to
estimate the absolute power consumption, the model will only work on
the chosen hardware. This includes not only the choice of board, but also
sensor and peripherals. Ultimately, that is a challenge for all energy cost
optimisation. In TinyDB they solved this by hardcoding the consumption
of its activities for each sensor node [9]. However, the model we develop is
not tied to any specific hardware features or peculiarities in its design and
makes very few implicit assumptions about the system it is modelling. In
general, we assume that the consumption of power within activities follows
just the relations we set up. For example, there is no modelling of power
states and utilisation of peripherals. Instead, all of this is contained within
the variables.

We also assume that sensors do not vary the amount of data they produce
over time. Data volume is constant, which means that the consumption
per epoch is constant. An optimisation in Terra could be to only sense
data that are used in queries but that is not currently done in Terra,
see implementation details in section 4.5. Then energy consumption would
depend on the amount of sensors used in the given query. Additionally, the
expression language reads at most one sensor value per instruction. This
means that a query working with many sensor values would also be very
long which would be captured in the QL parameter. The consequence of
this is that the volume of data is not a factor in the model, as it is either
constant or covered by the QL parameter.

We also do not model sleep at all, but only the consumption during
Terra execution. The reasons for this are two-fold:

5.3. Experimental Framework 77

• Although power consumption during sleep can be assumed to be
constant, sleep duration is influenced by both epoch and execution
times, creating a complex interaction with other model variables.
Consequently, epoch time would need to be an integral part of the
model, adding to its complexity.

• Terra cannot affect the power consumption of sleep at all, as that is
purely dictated by the lowest available power state on the microcon-
troller as exposed through RIOT.

The outcome of this is that the model is very general, and just need to have
its variables derived for other hardware to be applicable. It does come with
the trade-off that the model is not that granular and might not reflect the
true energy cost of the chosen microcontrollers.

5.3 Experimental Framework
In this section we describe the setup of the experiments to determine the
values of the variables in the model described in the previous section. Our
framework follows the procedure described in Jain [41, ch. 2]. We do that
by describing:

1. The goal of the experiments and the system under test, including its
parameters.

2. The metrics we will use.

3. The workload we will execute on the chosen test bed.

4. The experiments we will execute.

For accuracy, these experiments are run on real-world devices in a set-up
not dissimilar to how Terra would be used. The code defining and running
experiments is publicly available1.

Setting up large-scale experiments with power consumption measure-
ments at the required sampling rate is not easy. Luckily, as described in
section 2.3, there is a test bed for embedded device testing in Europe which
allows us to conduct our experiments on multiple devices.

We use IoT-LAB and describe it briefly in the next section 5.3.1. After
that we go through the many parameters of the system that we keep constant

1https://github.com/FlapKap/Terra-experiments

https://github.com/FlapKap/Terra-experiments

78 Chapter 5. Cost Model

in section 5.3.2, followed by the metrics that we vary in section 5.3.3. Then
we cover the workload we execute in section 5.3.4 and finally the actual
experiments in section 5.3.5.

5.3.1 Testbed
Testing the energy consumption of embedded devices can be challenging
as it requires specific equipment and infrastructure attached to the system
under test. Fortunately, The Future Internet Facility in France provides
the IoT-LAB described in section 2.3 that supports a wide variety of nodes
and network technologies. Through their stack, we can set up experiments
with tens of nodes connected through LoRaWAN where it is possible to
schedule, run and collect data from firmware build for their supported
hardware. IoT-LAB connects the board under test (called ”Open node” in
their terminology) to a gateway board (not to be confused with a LoRaWAN
gateway) that manages the programming of the board while a control node
monitors radio, traffic, and power consumption [43, getting-started/design].

5.3.2 System
The purpose of the experiments is to model the energy consumption of
Terra according to the cost model defined in section 5.2. Queries are sent
to Terra from a client computer through the LoRaWAN network, and
as such we include the network to be part of the system. The influence
of external elements on the system will be reduced. An illustration of the
system can be seen in fig. 5.1. Note that we do not include NebulaStream
to be part of the system. While Terra is integrating with NebulaStream,
it is not part of the system under test, and the user in this case refers to
the communication done using the protocol described in section 4.5.1.

Next, we review the system parameters. These are all the variables
that could affect the performance of the system under test, but notably not
variables we vary. That includes almost all the options listed in table 4.2, but
not options concerning TFLite and default queries. The system parameters
also include the hardware chosen for all parts of the system. We cover the
system parameters in the following order:

1. Terra hardware Parameters.

2. Network Stack Parameters.

3. Implementation parameters as shown in table 4.2.

5.3. Experimental Framework 79

LoRaWAN Network

End Device

Network Server

Join Server Application Server

MQTT Server

Gateway User

Terra

Sensor

Figure 5.1: System under test

We follow this structure since the network stack and the hardware
parameters are limited by the testbed, and the implementation parameters
are limited by the chosen hardware.

Terra Hardware

Here we go through the hardware chosen for the experiments. Since we
chose to use IoT-LAB to perform power measurement tests, we are limited
by the hardware available on their testbed. They provide four boards with
LoRa connectivity, where only three of them support uploading your own
firmware. We list them below together with the number of boards available,
and any attached sensors:

Microchip SAMR34 Xplained Pro IoT-LAB provides two boards at
their Grenoble site. There are no sensors attached, so any sensor reads
would have to be provided by built-in sensors.

Nucleo-WL55JC IoT-LAB provides five boards at the Grenoble site.
These are equipped with the ST X-NUCLEO-IKS01A2 sensor shield
that contains four sensors:

80 Chapter 5. Cost Model

HTS221 a temperature and humidity sensor.
LPS22HB an atmospheric pressure sensor.
LSM6DSL an accelerometer and gyroscope sensor.
LSM303AGR an accelerometer and magnetometer sensor.

ST B-L072Z-LRWAN1 IoT-LAB provides twenty boards at their Saclay
site and five boards at their Lille site. Most of these nodes, all the
Saclay nodes, and two of the Lille nodes, are also provided with the
ST X-NUCLEO-IKS01A2 mentioned above. The three other Lille nodes
are attached to a ST X-NUCLEO-IKS01A3 sensor shield which contains
the following sensors:

HTS221 a temperature and humidity sensor.
STTS751 a temperature sensor.
LPS22HH an atmospheric pressure sensor.
LSM6DSO a 3-axis accelerometer and 3-axis gyroscope sensor.
LIS2MDL a 3-axis magnetometer sensor.
LIS2DW12 a 3-axis accelerometer sensor.

To support easy activity tracking and consistent power measurements, we
choose the same board for all devices during an experiment, and so to enable
experiments with more than five devices we choose the ST B-L072Z-LRWAN1.
Riot contains drivers for HTS221, LPS22HB and LSM303AGR, so we choose
boards that have the ST X-NUCLEO-IKS01A2 sensor shield attached. For
simplicity and ease of integration into Terra, we only use HTS221 which
has two outputs: humidity and temperature.

Network Stack Parameters

Above we limited ourselves to the Saclay and Lille sites of IoT-LAB. At the
Saclay site, IoT-LAB runs a LoRaWAN gateway connected to The Things
Network. Based on information from TTNMapper[80] this gateway uses the
”The Things Gateway” Gateway hardware. Telecom Paris runs a nearby
gateway labelled gw-tetech-test, with unspecified hardware. We note that
there are many options for gateway hardware, ranging from off-the-shelf
gateways to network interface hardware, called concentrators, that can be
connected to compatible computers. During development, we worked with
a RAK2287 concentrator connected to a Raspberry Pi 4 as a gateway or an

5.3. Experimental Framework 81

IMST iC880A gateway concentrator connected to a Raspberry Pi 3 running
ChirpStack. However, we cannot use our own hardware on the testbed and,
as such, are limited to what they provide. This is why Saclay will be our
site for experiments, as there are no public The Things Network gateways
at the Lille site. This also means that we are limited to using The Things
Network as our LoRaWAN network provider and their software stack.

Moving our attention to the software parameters, all network parameters
defined in the networking section in section 4.5.4 need to be defined both on
the network stack side and also in Terra itself. In the network stack, we
need to create an application, and then within this application, we create an
entry for each device used. So, here we register all the devices we want to
use during the experiments. Since in Terra we use Over-the-air Activation
(OTAA) we need to provide the following information for each registered
device:

• Frequency Plan

• LoRaWAN Version

• Regional Parameters Version

• AppEUI

• DevEUI

• AppKey

• End device ID

The last being a simple identifier used to address each device within The
Things Network.

Some of these settings are fixed for all devices, while others are per
device. For our testing scenario, the priority is stable and repeatable results.
As written in section 2.2, LoRaWAN contains features to optimise the choice
of data rate depending on environmental conditions. In our experiments,
we disable or modify these features to ensure that we always use the same
data rate. Concretely we:

• Disable Adaptive Data Rate (ADR).

• Fix data rate to DR0. With disabled ADR network rules, we must use
DR2 at the minimum[81]. Due to problems on the testbed, however,
this data rate prevents our devices from joining, which is why we run
with a lower default. In addition, the lowest data rate will have the
longest transmission times resulting in the highest energy cost.

• Fix the data rate of the second receive window to DR0 as recommended
by the LoRaWAN specification[39, p. 11]. However, The Things

82 Chapter 5. Cost Model

Network Community network recommends using DR3 for the second
receive window[38, Additional Information/Frequency Plans]. We
comply with the LoRaWAN specification to ensure the same data rate
is used for both receive windows as this makes power consumption of
a downlink consistent no matter which window it hits.

We also note that, while the recommended delay to the first receive
window is 1 second[39, p. 12], The Things Network by default uses a five
second wait before the start of the first receive window[82]. We comply with
this as this accommodates for any latency within the network servers, even
though this will increase the cost of transmission.

In summary, the options and our chosen values for all our devices in the
network stack can be seen in table 5.2.

Setting Value
Frequency Plan Europe 863-870 MHz (SF12 for RX2)
LoRaWAN Version LoRaWAN Specification 1.0.2
Regional Parameters Version RP001 Regional Parameters 1.0.2
AppEUI 00000000000000001

DevEUI Per device:
70b3d57ed005ea59 to 70b3d57ed005ea69.

AppKey Per app/device, we use a single key for all.
End device ID Per device: eui-70b3d57ed005ea59 to

eui-70b3d57ed005ea69
Adaptive Data Rate Disabled
Data rate DR0
RX2 data rate DR0
RX1 delay 5 seconds
1 This is a typical default for development or user-configured EUIs but it

slightly reduces encryption entropy, so in production, random AppEUIs
are preferred.

Table 5.2: LoRaWAN configuration parameters

Protocol Buffers

For the protocol buffer sizes, we use the defaults shown in table 4.2. We do
this since they fit within the RAM of the chosen hardware, and they are
large enough to accommodate the queries we want to run on Terra. The
options and their chosen values can be seen in table 5.3.

5.3. Experimental Framework 83

Configuration Option Value
TerraProtocol.Output.responses max_count: 16
TerraProtocol.Expression.instructions max_count: 50
TerraProtocol.Query.operations max_count: 2
TerraProtocol.Message.queries max_count: 1

Table 5.3: Protocol Buffers configuration options

Configuration & State Management

Here we also use the default values shown in table 4.2. We note that the
maximum LoRaWAN data size here is the default in RIOT, but that the
actual highest packet size depends on region and data rate. This is set high
enough to contain the packet sizes in the regions supported by Terra.

The number of window operators supported is also just the default, as
this covers the queries we need to run.

The settings chosen can be seen in table 5.4.

Configuration Option Value
LORAWAN_APP_DATA_MAX_SIZE 242
MAX_WINDOW_OPERATORS 5

Table 5.4: Configuration & state management configuration options

Sensing

For sensing, we simply define the name and type of the chosen sensors. As
written in the hardware section above, we utilise the HTS221 sensor that
reads two phenonema: Temperature and humidity. We therefore include
the same sensor twice in SENSOR_NAMES but with two different types. The
chosen parameters can be seen in table 5.5.

Configuration Option Value
SENSOR_NAMES hts221 hts221
SENSOR_TYPES SAUL_SENSE_TEMP SAUL_SENSE_HUM

Table 5.5: Sensing configuration options

84 Chapter 5. Cost Model

Networking

On the Terra side of networking the values have to match what
they are on the network side as described in section 5.3.2. Ad-
ditionally, throughout our testing, we regularly experienced dropped
packets. This was, at least partially, fixed when we increased the
maximum timing error allowed in semtech-loramac, by increasing
LORAMAC_DEFAULT_SYSTEM_MAX_RX_ERROR from 50 to 150. We also keep
the default value of 1000 on FORCED_LISTEN_EVERY_N_LOOP to ensure no
heartbeats are sent during the execution of an experiment. This is to ensure
that any transmission from Terra is triggered by queries. In summary, the
chosen parameters can be seen in table 5.6.

Configuration Option Value
LORAMAC_DATA_RATE DR0
CONFIG_LORAMAC_DEFAULT_ADR not present
LORA_REGION EU868
APPEUI 00 00 00 00 00 00 00 00
DEVEUI 70b3d57ed005ea59-69
APPKEY a fixed secret key
LORAMAC_DEFAULT_RX1_DELAY 5000
LORAMAC_DEFAULT_RX2_DR DR0
LORAMAC_DEFAULT_SYSTEM_MAX_RX_ERROR 150
FORCED_LISTEN_EVERY_N_LOOP 1000

Table 5.6: Networking configuration options

Terra Main Logic

Here we list the parameters concerning the runtime of Terra. These concern
the execution epoch and the stack memory of the expression execution
runtime. We set the execution epoch to 120 seconds, which means that
Terra will wake up and execute every 2 minutes, giving us 30 executions
an hour. We set the runtime stack memory to 10, meaning that up to 10
numbers can be stored on the stack. This covers our use case. In summary,
the chosen settings can be seen in table 5.7.

5.3. Experimental Framework 85

Configuration Option Value
RUNTIME_STACK_MEMORY 10
EXECUTION_EPOCH_S 120

Table 5.7: Terra main logic configuration options

RIOT specific build options

RIOTs parameters are mostly on choice of features included in the build
and whether or not the development modes are enabled. Note also that,
depending on the hardware chosen, RIOT also enables different drivers or
other modules to run and interact with that hardware. There is a tight
coupling between the hardware chosen and the performance of RIOT.

We enable development helpers when running Terra to enable stack
overflow protection, more informative log messages and enabling asserts
[75, see modules/utilities]. We also modify the default stack size of RIOT
to accommodate Terra. An overview of the parameters can be seen in
table 5.8.

Configuration Option Value
DEVELHELP 1
MAIN_STACKSIZE 5120

Table 5.8: RIOT specific build options

Besides these parameters the Makefile also includes Riot modules rele-
vant for the OS features Terra uses, and the driver modules needed for
interacting with sensors. We also note that while we use the GCC compiler
we do not apply any GCC optimisations. We do this for multiple reasons;
primarily, this is not supposed to be a test of the effectiveness on a spe-
cific compiler’s optimisations but of Terra itself. And depending on the
hardware used, it might be better to optimise for size rather than speed.
Running without optimisations gives a more correct view of the performance
of Terra and facilitates easier comparison between compilations and, there-
fore, reproducibility of results. We also use the default log level of Riot OS,
LOG_INFO. This affects Riot to a lesser degree, but since Terra also utilises
the logging framework, it does output additional information needed for the
experiments and debugging.

86 Chapter 5. Cost Model

5.3.3 Metrics
We will assume Terra only receives valid queries and failure states will
therefore not be studied. The default behaviour of failure states in Terra
is to ignore it and continue, so the energy consumption of a failure state
should not increase power consumption. During normal execution of Terra
it goes through several activities, as seen in fig. 4.2. The metrics measured
will be:

• Power consumption in Watts and their associated timestamps.

• Timing data from Terra on how long each activity took which is
outputted over serial.

We will not measure timing data for sleep. We will primarily use the two
metrics to convert into Joule for energy consumption analysis.

Power Consumption

As described in section 2.3 the data is collected on the IoT-LAB testbed
using the INA226[44] Current and Power Monitor. The configuration used
for the experiments can be seen in table 5.9.

Configuration Option Value
Conversion Time/Period 140 µs
Averaging Mode 4

Table 5.9: IoT-LAB Power monitoring configuration options

This, according to eq. (2.1) in section 2.3 leaves the experiments with
a final sampling rate of 1120 µs. This value was chosen as a nice trade-
off between noise reduction and frequency. The sampling rate needs to
accommodate LoRaWAN packet transmissions, which can be in the order
of seconds, and execution of queries on embedded devices, which is in
milliseconds. In addition, this also provides measurements around the same
resolution as the internal timings measured in Terra, which we will discuss
next.

5.3. Experimental Framework 87

123 conf_load_time_ms = ztimer_stopwatch_reset(&stopwatch);
124
125 // DESERIALIZE MESSAGE
126 LOG_INFO("Deserialize message if any...\n");
127 if (config.raw_message_size > 0)
128 {
129 LOG_INFO("Message there! Deserializing...\n");
130 bool res = serialization_deserialize_message(config.raw_message_buffer,

config.raw_message_size, &msg);↪→
131 print_terraprotocol_message(&msg);
132 if (!res)
133 {
134 LOG_ERROR("Failed to deserialize\n");
135 }
136 }
137
138 deserialize_msg_ms = ztimer_stopwatch_reset(&stopwatch);

Listing 5: Timing code and deserialisation call from main.c in Terra

1 TIMINGS> Loop: 1, Sync: 805 ms, Load: 126 ms, deserialize: 26 ms, sensor init: 13 ms, net
init: 53 ms, Collect: 14 ms, Exec tflite: 0 ms, Exec query: 2 ms, Send: 4039 ms, save
config: 1463 ms, Sleep: 113 s

↪→
↪→

Listing 6: Example of timing measurement output

Measuring Timings

To measure the duration of the different activities in Terra, we modify
Terra by incorporating timing measurement code. For this, we use the
stopwatch capabilities of the ztimer module [75, modules/system/ztimer
high level abstraction layer]. To minimise the impact of the timing code, a
single stopwatch is used and reused for all tracking. All values are saved
during an epoch and only at the end of an epoch is the values outputted as
serial over UART. To ensure the impact of timing the code is consistent across
all experiments, and to ease parsing of the timing output, all activities are
timed no matter if they are used for a particular execution or not. That is,
in the start up phase there is no deserialisation, but this is still timed to
ensure the impact of timing is similar. This can be seen in listing 5. At the
end of each epoch all timing information is output through serial together.
An example of this can be seen in listing 6.

As we are measuring power consumption at the same time and timings
on embedded devices are often provided by dedicated hardware, we take care

88 Chapter 5. Cost Model

to only use timing peripherals that Terra would use in normal operation.
Choosing ones with higher resolution will provide better timings, but will also
skew the power measurements. As Terra already requires a ms precision
clock to calculate the required sleep time, we utilise the same for timings.
This does give us ± 1 ms inaccuracy, but we judge that it is a worthwhile
trade-off for more accurate power measurements. It also depends on the
accuracy of the underlying time-keeping hardware.

Although the timings for activities within each epoch, as shown in
listing 6, are accurate within the epoch, we do not know when the epoch
starts and as such cannot use it to timestamp our power measurements.
This is made more difficult by the IoT-LAB infrastructure, as there are no
guarantees of when power measurements start in relation to when Terra
starts.

To correlate the power measurements with the timing measurements, we
incorporate a signal into our power measurements that we know triggers
on every epoch start. Similar to Rice and Hay [83], we flash all available
LEDs on the board twice with known timings, and then we can look for
similar rises and falls in the power measurements to synchronise the two
series of measurements. This simple approach turned out to be adequate for
our experiments, since the LED’s provide a big enough power draw to stand
out from the noise of the signal. We incorporate a known idle time at the
start and end of each synchronisation signal to make sure the power draw
stabilises before continuing. Again, the flashing of these LEDs depends on
the time-keeping accuracy of the ztimer library.

5.3.4 Workload
Here we look at the workload parameters. These parameters are the ones we
vary during our experiments (factors in Jain [41]). The workload parameters
are:

Query Terra is built to execute queries provided by an end user. Normally,
these are delivered to Terra via a network, as described in section 4.5,
but we also utilise the option to preload them in Terra, which we
discuss below.

TFLite Model included Terra can include a TFLite model that exe-
cutes after sensor data collection, but before query execution. By
default, we include a representative TFLite model provided by ELE-
GANT, as described in section 4.5.4

5.3. Experimental Framework 89

Queries

Terra’s behaviour, and therefore its energy consumption, is highly de-
pendent on the queries it is provided. Both in terms of their content and
their size. Terra can receive queries consisting of one of three types of
operations:

Map An operation that contains an expression to be evaluated and an
attribute to save the result to. The saved result will always be sent
back, unless a later filter cancels it.

Filter Mostly used together with a map, a filter can cancel execution of a
query if its provided expression evaluates to false. As such a Map-Filter
combo can be used to set up a query that e.g. only send responses if
a value is above some threshold.

Window An operation that often requires multiple executions before pro-
viding an answer. This operation contains an aggregate instruction
that it runs once every execution and then reports the result after a
specific amount of time.

Each Terra query will be run repeatedly indefinitely until a new query
is provided. Terra will after each execution either send a result back to the
user over the network or not if, e.g. the query was cancelled by a filter, is
an in-progress window or it contains an illegal expression. When producing
the queries, we assume that each instruction in the expression has the same
effect on the metrics and that they are independent of each other. In other
words, the content of the expressions does not matter, only the length in
bytes in relation to network activities and the number of instructions with
relation to the execution activity. Given this, we produce two sets of queries
to execute in our experiments:

1. A set varying the length of the queries in bytes.

2. A set varying the response rate of the query.

These will be described in more detail below.

1. Query Length
When varying the query length, we have to be aware of the limitations of
LoRaWAN network transfer and, under the experimental parameters, we
set in section 5.3.2. To test outside these limitations, we can utilise the

90 Chapter 5. Cost Model

option of pre-baking the query, using the configuration options described in
section 4.5.4 and sidestepping the network transmission completely. However,
this will not allow us to test the effect of query length on network-related
activities.

We therefore choose a two-legged approach. For the network-related
activities we keep within our practical network limitation, but for the query
length-dependent activities that are not dependent on actual network transfer
of the query, we pre-bake larger queries until we near the hard-coded size
limit of LoRaWAN to get a more accurate result. Note that in real-world
usage this is the limit that counts, since the max packet size will depend
on the data rate, which in turn depends on environmental factors such as
distance to gateway, noise, and any material blocking line of sight. We note
that since we fix our data rate to the lowest available, we are limited to
≈ 10 instructions in our experiments, while in the real world 5 times as
many are often possible.

Consumption-wise, transferring at higher data rates is always cheaper as
each increase in data rate roughly halves the time on air. Our results will
therefore be a conservative measure of the energy cost of network transfer.

The network related queries consist of a single map operation of increasing
expression size, until we near the maximum payload size of 50 B.

The pre-baked queries follow the same exponential increase in size until
we come near the 242 B limit. Including pre-baked queries slightly changes
Terras behaviour, as normally queries are not executed during it’s startup
phase, since there is no query provided over the network yet. With the
inclusion of pre-baked queries, Terra can and will execute them. For the
purpose of the model, we assume that queries are always delivered over
the network and will disregard the startup cost of query execution and its
related activities.

The expression of the map is a combination of arbitrary instructions
defined in such a way that we do not exceed the maximum stack size defined
in section 5.3.2. Using both constant values and sensor values.

The queries we run in our experiments are shown below. These are
produced only to conform to the specified size, and their computation is as
such meaningless. The queries are as follows:

16 Byte: A map operation with

Expression: VAR, 0

Result stored in Environment index: 0

5.3. Experimental Framework 91

32 Byte: A map operation with

Expression: VAR, 0, CONST, 8, MUL, FLOOR

Result stored in Environment index: 0

46 Byte: This is close to the maximum LoRaWAN packet size for DR0,
which is 50 B. The query is a map operation with:

Expression: VAR, 0, CONST, 256, MUL, CONST, 256, DIV,
FLOOR

Result stored in Environment index: 0

64 Byte: A map operation with:

Expression: VAR, 0, CONST, 8, MUL, FLOOR, VAR, 1, DIV,
ABS, CONST, 8, MUL, FLOOR

Result stored in Environment index: 0

128 Byte: A map operation with:

Expression: VAR, 0, CONST, 8, MUL, VAR, 1, DIV, CONST, 8,
MUL, VAR, 0, CONST, 8, MUL, VAR, 1, DIV, CONST, 8,
MUL, VAR, 0, CONST 8, MUL, MUL, MUL, FLOOR

Result stored in Environment index: 0

214 Byte: This is around the maximum allowed packet size. This query is
a map operation with:

Expression: VAR, 0, CONST, 8, MUL, CONST, 512, MUL, VAR,
0, CONST, 8, MUL, VAR, 1, MUL, CONST, 8, MUL, VAR,
0, CONST, 8, MUL, VAR, 1, MUL, CONST 8, MUL, VAR,
0, CONST, 512, MUL, VAR, 1, CONST, 8, MUL, VAR, 0,
CONST, 8, MUL, MUL, MUL, MUL, MUL

Result stored in Environment index: 0

2. Response Rate
For testing the response rate, we have the option of either producing queries
with a map followed by a filter, or utilising windows. Since filters conditions
on values in the environment or stack and those values are either provided
by sensors or hard coded in the filter itself, it is impossible to reliably use
these to fix the response rate to, for example, only transfer results on every

92 Chapter 5. Cost Model

3rd execution. Windows, on the other hand, are designed for this, and with
careful selection of the window size in relation to epoch time we can produce
queries that consistently produce result at the rate we want; every 1st, 2nd,
4th and 8th epoch.

Since the epoch duration is 2 minutes (see section 5.3.2) the queries are
going to consist of a single window operation with sizes of 2 min, 4 min,
8 min and 16 min. The query details can be seen below:

Aggregation: COUNT

On environment index: 0

Save in environment index: 1

Save start value in environment index: 2

Save end value in environment index: 3

Window type: Tumbling with window sizes of 2 min, 4 min, 8 min and
16 min

TensorFlow Lite

In addition to this, Terra also supports TFLite models, as described in
section 4.5.4. These run after sensor values have been collected but before
queries are executed, and from a query’s point of view, they exist as a sort
of pseudosensor whose value depends on the sensor values. Since a TFLite
model can be constructed in almost infinitely many ways, it is outside the
scope of this thesis to perform a detailed analysis of its effect on power
consumption. Instead, we chose a representative TFLite model, the one
provided by Terra by default, and model it as a binary cost. The goal is
to increase the computation time in Terra in order to gauge its overall
effect on energy consumption. Of course, this is highly dependent on the
model being run.

5.3.5 Experiment
The metrics collected in the experiments will be externally measured power
consumption and internally tracked timing data for the end devices. No met-
rics will be measured for any other parts of the system. All experiments will
be carried out on 11 devices. All experiments will run for 60 minutes, which

5.3. Experimental Framework 93

with an epoch time of 120 seconds will give at most 30 epochs/executions.
We will do 1 experiment per workload.

For each experiment, the power consumption for the end device will be
monitored at a sufficient sampling rate to discern the power consumption of
individual activities.

So in summary, the following series of experiments will be conducted:

Query Length: 6 experiments: 3 with map queries of length 16 B, 32 B,
46 B and 3 with pre-baked queries of 64 B, 128 B and 214 B.

Response Rate: 4 experiments with window queries of size 2 min, 4 min,
8 min and 16 min.

TFLite: 1 experiment with TFLite enabled and a map query that transfers
the TFlite output.

Experiment Assumptions and Trade-offs

Here we briefly discuss the assumptions and trade-offs made in designing
the experiments. There are 2 main points: First, we assume that identical
devices have identical power consumption. Second, in our experiment
design, we implicitly assume that there are no interactions between workload
parameters. We address these concerns in this order.

At first, the assumption that identical software running on identical
hardware should reveal identical, or at least very similar, power consumption
is not unreasonable. After all, they are all covered by the same datasheet.

Regarding workloads, there are multiple ways to design our experiments.
We utilise One-Factor-at-a-Time, but other options exist, such as full fac-
torial or fractional factorial experiments [41, ch. 16]. This is done out of
simplicity, since it is easier to execute and reason about, and it isolates the
workload/factor being changed. However, it runs the risk of not uncovering
the interaction between the workload parameters. If, say, power consumption
during one activity increased exponentially if both response rate and query
length varied. However, as can be seen in table 5.1, the model is designed
in such a way that no workloads affect the same activity at the same time.
SendReceive is both affected by QL and RR, but not in the same phase. So
we can conclude that there is no interaction between workload parameters,
and the main drawback of One-Factor-at-a-Time experiments is not an issue
in our case. However, another approach with fractional factor experiments
could have given similar results with fewer experiments.

94 Chapter 5. Cost Model

Test Script

LoRaWAN Network

GatewayNetwork
Server

MQTT
Server

Application
Server

Join
Server

IoT-LAB Node

Control
Node

End Device

TerraSensor

IoT-LAB Node

Control
Node

End Device

TerraSensor

IoT-LAB Node

Control
Node

End Device

TerraSensor

Figure 5.2: System under test with the test infrastructure shown

Experiment Execution

We now take a look into the work done to execute the actual experiments.
As can be seen in fig. 5.2, running an experiment involves many moving

parts. What is not shown in fig. 5.2 is the fact that, since every device
needs its own set of network keys, it also needs to be individually compiled.
Also, since Terra makes use of persistent storage, it is required to clear
storage before experiments can start, in case previous users of the nodes left
data that can be parsed mistakenly by Terra, or Terra was the firmware
executed previously. For consistency and reproducibility, all experiments
are defined by an experiment .json file, and keys and passwords are stored
in a corresponding secrets.json file. This experiment file contains the
following.

• Information needed to build Terra for each device.

• Information needed to provision devices at IoT-LAB.

• Information needed to push the built firmware to the devices on
IoT-LAB.

5.3. Experimental Framework 95

• Duration of experiment.

• Terra Epoch duration.

• Login information for the ssh server on the testbed - excluding the
password.

• Login information for the MQTT server on the Network Stack - ex-
cluding the password.

• The query (PAYLOAD) to be sent to the devices.

An example of such a file can be seen in the repository2.
The test script goes through the following high-level steps in sequence

when running an experiment:

1. Parse the provided experiment configuration file and secrets.json
file.

2. Build persistent storage reset firmware for each device.

3. Build Terra for each device.

4. Registering an experiment on IoT-LAB and start script that collect
all serial output in one file on the IoT-LAB ssh front end.

5. Fetching assigned nodes from IoT-LAB.

6. Initialise the SQLite database used for storing experiment data.

7. Upload and execute firmware to clear persistent storage on IoT-LAB
nodes concurrently.

8. Clear down link queries on the Network stack through MQTT.

9. Start parallel job of listening to MQTT to record events to SQLite
database and push payload when nodes join the network.

10. Wait for experiment to finish.

11. Download serial output file, and all power consumption data.

12. Parse and add serial output traces to SQLite database.

2https://github.com/FlapKap/Terra-experiments/blob/main/experiment_
10_32byte_map.json

https://github.com/FlapKap/Terra-experiments/blob/main/experiment_10_32byte_map.json
https://github.com/FlapKap/Terra-experiments/blob/main/experiment_10_32byte_map.json

96 Chapter 5. Cost Model

Content_Message

frame_counter: integer
frame_port: integer
frame_payload: varchar

content_message_id: integer

Downlink_Event_Error_Message

error_namespace: varchar
error_id: varchar
error_message: varchar
error_code: integer

downlink_event_error_message_id: integer

Downlink_Event_Message

confirmed: boolean
event_type: varchar
priority: varchar
correlation_ids: varchar

downlink_event_message_id: integer

Gateway

gateway_id: varchar

Join_Message

app_received_at: datetime

join_message_id: integer

Message

related_node: varchar
network_received_at: datetime

message_id: integer

Node

node_appeui: varchar
node_appkey: varchar
board_id: varchar
radio_chipset: varchar
node_site: varchar
profile: varchar
riot_board: varchar
failed: boolean

node_deveui: varchar

Power_Consumption

node_id: varchar
timestamp: datetime
current: real
voltage: real
power: real

power_consumption_id: integer

Radio

timestamp: datetime
node_id: varchar
channel: integer
rssi: integer

radio_id: integer

Site

name: varchar

Trace

node_id: varchar
timestamp: datetime
message: varchar

trace_id: integer

Uplink_Message

through_gateway: varchar
gateway_received_at: datetime
app_received_at: datetime
rssi: integer
snr: real
bandwidth: integer
frequency: integer
consumed_airtime_s: real
spreading_factor: varchar
coding_rate: varchar

uplink_message_id: integer

Figure 5.3: SQLite Schema used for experiment data storage

13. Parse and add power consumption data to SQLite database.

The complete test script can be seen in the repository3.
SQLite[84] is used as the default data storage format for the experiments.

The complete data definition language file of the experiment database can
be found in the repository4. Figure 5.3 describes the layout of the database.

3https://github.com/FlapKap/Terra-experiments/blob/main/experiment_
runner/__main__.py

4https://github.com/FlapKap/Terra-experiments/blob/main/experiment_
runner/resources/experiment.db.sql

https://github.com/FlapKap/Terra-experiments/blob/main/experiment_runner/__main__.py
https://github.com/FlapKap/Terra-experiments/blob/main/experiment_runner/__main__.py
https://github.com/FlapKap/Terra-experiments/blob/main/experiment_runner/resources/experiment.db.sql
https://github.com/FlapKap/Terra-experiments/blob/main/experiment_runner/resources/experiment.db.sql

5.4. Experimental Results 97

The tables of note are Trace and Power_Consumption since these contain
the information needed to discern how much energy is used in each activity.

All the code to execute the experiments can be found in the repository5.

5.4 Experimental Results
Based on the experiment framework described in the previous chapter we,
in this chapter, execute the experiments and interpret the results, to finally
develop the energy model. First, we go through the processing of the data
to get it to a state where we can do linear regressions to derive the α’s and
β’s in the models. After this, we go through each of the results and then
finally produce the model.

5.4.1 Data Processing

12
:05

:53

12
:10

:53

12
:15

:53

12
:20

:53

12
:25

:53

12
:30

:53

12
:35

:53

12
:40

:53

12
:45

:53

12
:50

:53

12
:55

:53

13
:00

:53

13
:05

:53

Timestamp

0.0

0.1

0.2

0.3

0.4

0.5

Po
we

r (
W

at
t)

Power consumption per node_id in experiment id 404631
70B3D57ED005EA65

Figure 5.4: Raw power consumption measurements

To get to the point where the models described in section 5.2 can be
produced, the data collected during the experiments need to be pre-processed.
The collected data is a series of power measurements and timings. These
have to get converted into energy consumption per activity per epoch. This
is done in a Jupyter Notebook named experiment_analysis.ipynb6, using
Pandas[85], DuckDB[86], matplotlib[87] and NumPy[88]. At a high level the
Power_Consumption data is:

5https://github.com/FlapKap/Terra-experiments
6https://github.com/FlapKap/Terra-experiments/blob/main/experiment/

experiment_analysis.ipynb

https://github.com/FlapKap/Terra-experiments
https://github.com/FlapKap/Terra-experiments/blob/main/experiment/experiment_analysis.ipynb
https://github.com/FlapKap/Terra-experiments/blob/main/experiment/experiment_analysis.ipynb

98 Chapter 5. Cost Model

1. Filtered to only make use of nodes that received and run queries.

2. Edge detected to find epoch starts.

3. Joined with timings from Trace to assign each row in
Power_Consumption an activity.

We expand on this process below. The data is stored in the database
format described by fig. 5.3. We look through the Trace table to find nodes
that received and are executing a query:

1 SELECT node_id, count(*) FROM expdb.Trace WHERE Trace.message like 'Execute Queries%'
GROUP BY Trace.node_id↪→

Then only Power_Consumption data containing these node_id’s are
selected. An illustration of the data at this point can be seen in fig. 5.4.
Note for this experiment only a single node got an executed a query. After
this edge detection is done to find the synchronisation signals described in
section 5.3.3. This detection is very rudimentary. First, we define the length
of the different stages of the synchronisation signal. Then we calculate
the differences in power consumption between subsequent measurements.
Using that, we can find sudden rises or falls in power consumption that
corresponds to the change in power consumption demanded by the toggle
of LEDs. The value of this change is found through experiments. This
produces a large amount of false positives, but by knowing the length of the
different phases of the synchronisation signal we can filter out any edge that
do not conform. The first two synchronisation signals detected in fig. 5.4
can be seen in fig. 5.5. Here we are zoomed in enough to see the individual
detected edges and the whole synchronisation signal period.

Each epoch starts with two synchronisation signals, so the next thing we
do is to find synchronisation signals that are very close together, < 10 ms,
but not overlapping, and filter out any that aren’t. Then we mark the start
of epochs (loops in code) on every two subsequent synchronisation signals.

The synchronisation signal detection code can be seen in its totality in
the repository 7.

With synchronisation signals found, we can combine the data with the
timings provided by Terra through the serial output. These are stored as
a single row per line of serial out in the Trace table.

7https://github.com/FlapKap/Terra-experiments/blob/main/experiment/
experiment_analysis.ipynb

https://github.com/FlapKap/Terra-experiments/blob/main/experiment/experiment_analysis.ipynb
https://github.com/FlapKap/Terra-experiments/blob/main/experiment/experiment_analysis.ipynb

5.4. Experimental Results 99

12
:12

:05

12
:12

:10
0.0

0.1

0.2

0.3

0.4

0.5
70B3D57ED005EA65

Timestamp

Po
we

r (
W

at
t)

Power consumption over time with sync signal detection

70B3D57ED005EA65
sync signal start
sync signal end
sync signal

Figure 5.5: First synchronisation signal detected in fig. 5.4

We extract the concrete timings from the SQL Table using DuckDB
regexp_extract function. This gives us a table with the columns:

• node_id

• loop_signal_end

• loop_num

• timestamp

• sync_time_ms

• load_time_ms

• deserialize_time_ms

• sensor_init_time_ms

• net_init_time_ms

• collect_time_ms

• exec_tflite_time_ms

• exec_query_time_ms

• send_time_ms

• save_config_time_ms

• sleep_time_s

We now augment our epochs with these timings. This is done by
adding e.g. a sync_end time thats equivalent to the known start_time +
sync_time_ms. load_start is then sync_end + load_time_ms and so on.

Then we utilise these timings to categorise each measurement in
Power_Consumption with its corresponding activity, per node id. Note
that the Riot Initialisation activity is a special case. Figure 5.6 shows
a section of power measurements for a single device with activity periods
marked. Note the unmarked area between sleep_time and sync_time.

100 Chapter 5. Cost Model

12
:21

:45

12
:21

:46

12
:21

:47

12
:21

:48

12
:21

:49

12
:21

:50

Timestamp

0.0

0.1

0.2

0.3

0.4

0.5

Po
we

r (
W

at
t)

Power Consumption for 70B3D57ED005EA65 with activities
sync_time
load_time
deserialize_time
sensor_init
net_init
collect_time
exec_tflite_time
exec_query_time
send_time
save_config
sleep_time

Figure 5.6: Power measurements of a single node with activities marked

Since the OS is not initialised, we cannot use the OS itself to measure
its initialization duration. We therefore mark the still uncategorised mea-
surements between the sleep activity ending of the previous epoch and the
synchronisation signal beginning of the next as Riot Initialisation. We
cannot do this for the startup epoch since there is no previous sleep, and
the power measurements start at the start of the experiment before the
firmware is even uploaded. We then assign epoch numbers to each epoch.
For the startup epoch it starts from the beginning of the synchronisation
signal. For the rest, it starts from riot initialisation. At this point the table
of power consumption data contains the columns of timestamp, node id,
power, current, voltage, activity and epoch number and this data is saved
as a parquet file, ready for the next step of the analysis: the fitting of the
models.

Since the models are working in units of energy, joule, we need to convert
our measurements of power, Watts, into joules. Power is defined as energy
over time, so to get energy from power we multiply it by the period of time
the power is exerted. We assume that the power between measurements
is constant. So we can calculate the energy for some period from n to
n + 1, En,n+1, by finding the length of the time between measurements and
multiplying it by the measured power at n Pn.

En,n+1 = Pn · (tn+1 − tn) (5.17)

In terms of units, Joule is defined as Watts times seconds, so our units work
out as long as the time difference is represented in seconds.

5.4. Experimental Results 101

Activity Phase Mean Standard Deviation

0. RiotInit steady state 0.035 30 0.000 49

1. Load startup 0.036 13 0.000 17

2. Deserialize startup 0.000 71 0.000 24

3. SensorInit startup NaN NaN
steady state 0.003 79 0.000 16

4. NetInit startup 2.753 97 0.111 02
steady state 0.015 27 0.000 24

5. SensorCollect startup 0.002 45 0.000 16
steady state 0.003 78 0.000 26

6. ExecTFlite startup NaN NaN

7. ExecQuery startup NaN NaN

9. SaveConfig steady state 0.434 84 0.004 60

Table 5.10: Average consumption in Joule and their standard deviation for the
activities that are not dependent on QL, RR or TF

5.4.2 Experiments
In this section, we go through each set of experiments, derive the values for
the model, and discuss the expected and actual results.

Unless otherwise noted, the data points are joules spent for an epoch on
one device. All α, β and r2 have been rounded to 4 decimal places.

Constants

First, we look at the constants. These are the activities that are not
dependent on QL, RR or TF. These are simply calculated averages of
joules per epoch for all devices of all network-bound experiments. Since
experiments with pre-baked values represent a slightly different workflow
and we in our model presume that there are no pre-baked queries (see
section 5.3.4) we do not use them here. Additionally, we want to verify that
the activities marked ”n/a” in table 5.1 (Activities 2, 3, 5, 6 and 7 in the
startup phase) are not applicable and that the averages we calculate are
valid, i.e. they follow a normal distribution. The averages can be seen in
table 5.10.

102 Chapter 5. Cost Model

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

joule

0

10

20

30
co

un
t

1. Load startup

0 1 2 3
joule

co
un

t

4. NetInit startup

Startup activities

Figure 5.7: 10 bin histogram of consumption in of startup activities

Here we see that activities 3, 6, and 7 have no energy consumption in the
startup phase. The average consumption is NaN, since there is no recorded
activity duration for these. However, SensorCollect and Deserialize has
an average cost that is not expected in the startup phase. This consumption
is due to unrelated logs done by Terra within that activity. This takes
enough time to affect our measurements, but is not inherent in the activity
itself.

Also note that, due to the way that RiotInit is measured, we cannot
measure the cost of this activity in the startup phase. We reasonably assume
that the cost is independent of the phase and conclude that C0,0 = C1,0.

We now check that the distribution of the constants is normal. First, we
look at the startup phases in fig. 5.7. We see that netInit activity follows
a normal distribution, while the load startup activity does not. However,
the values are relatively close, so an average is still a reasonable estimate of
load startup consumption.

Looking at the steady-state histograms in fig. 5.8 we notice that RiotInit
and SaveConfig follow normal distributions, while SensorCollect and
NetInit seem more bimodal, and SensorInit is more spread out. We
also notice that in general their energy consumption is very low. Since
SensorInit and SensorCollect are dependent on sensor hardware, com-
munication overhead and timings may affect the consistency of measurements.
However, since their standard deviation is still quite low, as seen in table 5.10,
we judge it valid to use the mean in the model.

Based on this, we get the constants:

5.4. Experimental Results 103

0.0
0

0.0
2

joule

0

200

400

600

co
un

t

0. RiotInit

0.0
00

0.0
02

0.0
04

joule
co

un
t

3. SensorInit

0.0
0

0.0
1

joule

co
un

t

4. NetInit

0.0
00

0
0.0

02
5

0.0
05

0

joule

0

200

400

600

co
un

t

5. SensorCollect

0.0 0.2 0.4
joule

co
un

t

9. SaveConfig

Steady state activities

Figure 5.8: 10 bin histogram of consumption in of steady state activities

C0,0 = C1,0 = 0.03530
C0,1 = 0.03613
C0,4 = 2.75397
C1,3 = 0.00379
C1,4 = 0.01527
C1,5 = 0.00378
C1,9 = 0.43484

Query length

Now to look at the query length experiment data. As written in section 5.3.4,
we use a two-legged approach for all models that are not network-bound. For
the network-bound models we only utilise the 3 experiments where queries
are transferred over the network.

Startup Phase
Here we go through the fitting of eqs. (5.1) and (5.2).

104 Chapter 5. Cost Model

0 10 20 30 40 50
query length in bytes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

jo
ul

es
Energy usage for the send activity for the startup epochs

16
32
46
fitted line

Figure 5.9: Fitting model eq. (5.1) to data

Startup Send-Receive Activity
This is a network-bound model, so we only utilise the 16 B, 32 B and 46 B

experiments. Looking at fig. 5.9 and eq. (5.18), we see that there is a
correlation between the length of the query and the energy consumption of
the sending activity. This is expected as the larger the packet, the longer
airtime is needed to transfer it. We also see that there is a high base cost
of 2.9 J per send activity. LoRaWAN dictates a send before a receive, and
due to the increased delay in the first receive window (see section 5.3.2) the
radio is on for a significant amount of time for every transmission, which
will explain the high base cost.

The fitted values are:
α0,8 ≈ 2.9052
β0,8 ≈ 0.0091

r2 ≈ 0.6496

(5.18)

Startup Save Configuration Activity
This is not a network-bound model, so we look at both the normal and

pre-baked experiments. The data and linear model can be seen in fig. 5.10.
Here we see a strong linear relationship between Joule and Query Length.
The longer the query, the more energy is needed to save that query to
persistent storage. This is what we expect, for the board used for the
experiments, as here is the persistent storage technology EEPROM as
described in section 5.3.2. Note that other boards might use different

5.4. Experimental Results 105

0 50 100 150 200
query length in bytes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

jo
ul

es

Energy usage for the save_config activity for the startup epochs

16
32
46
64
128
214
fitted line

Figure 5.10: Fitting model eq. (5.2) to data

storage technologies such as battery-backed RAM, in which any correlation
between length and energy will be much diminished due to faster save times.
The fitted values are:

α0,9 ≈ 0.4570
β0,9 ≈ 0.0018

r2 ≈ 0.9887

(5.19)

Steady-State Phase
Here we go through the fitting of eqs. (5.3) to (5.5).

Steady-State Load Configuration Activity
This is not a network-bound model, so we look at both the normal and

prebaked experiments. The data and linear model can be seen in fig. 5.11.
Here, we see no strong correlation between load times and query length.
The load activity covers moving state from persistent storage to RAM. This
includes the saved query, but additionally the network state, the window
state, and others. The lack of correlation is somewhat surprising, since the
query constitutes a significant chunk of the state to load. Answering the
question of why this correlation is lacking would require a deeper investigation
of the behaviour of the load configuration code and its interaction with the
EEPROM. One theory is that loading continuous chunks of memory from
EEPROM is fast, so the majority of the overhead is not the actual data
transfer but the overhead of initialising the interaction with EEPROM. In

106 Chapter 5. Cost Model

0 50 100 150 200
query length in bytes

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

jo
ul

es
Energy usage for the load activity for the steady state epochs

16
32
46
64
128
214
fitted line

Figure 5.11: Fitting model eq. (5.3) to data

any case, based on the analysis above, we can conclude that the amount of
energy used in the steady-state load activity is constant. We conclude it to
be the average of all measured values which is 0.0363 J.

The fitted values for the linear model are:

α1,1 ≈ 0.0361

β1,1 ≈ 3.4337 × 10−6

r2 ≈ 0.0762

(5.20)

But given our analysis, we replace f1,1(QL) defined in eq. (5.3) with a
constant C1,1 = 0.0363 J

Steady-State Deserialise Activity
This is not a network-bound model, so we look at both the normal and

prebaked experiments. The data and the fitted line can be seen in fig. 5.12.
Here we see a very nice linear relationship between the amount of joules
spent deserialising the query and the length of the query. This is what we
expect. The fitted values are:

α1,2 ≈ 0.0052
β1,2 ≈ 0.000 166

r2 ≈ 0.9974

(5.21)

5.4. Experimental Results 107

0 50 100 150 200
query length in bytes

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

jo
ul

es
Energy usage for the deserialize activity for the steady state epochs

16
32
46
64
128
214
fitted line

Figure 5.12: Fitting model eq. (5.4) to data

0 50 100 150 200
query length in bytes

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

jo
ul

es

Energy usage for the exec_query activity for the steady state epochs

16
32
46
64
128
214
fitted line

Figure 5.13: Fitting model eq. (5.5) to data

Steady-State Exec Query
The data and fitted line can be seen in fig. 5.13. First thing to notice is

the discontinuous nature of the data in fig. 5.13. It almost seems trimodal.
However, this is due to the execution of queries being so fast that we are close
to the measurement frequency employed in the experiments. This becomes
especially clear if we look at the average duration of this activity for each
query length in table 5.11. Since joule = Watt · seconds and our duration
is within one or two ms this will naturally produce distinct data points
based on whether we have 1,2 or 3 measurements covering the exec_query
activity.

The fitted values are:

α1,7 ≈ 0.000 549

β1,7 ≈ 1.1006 × 10−6

r2 ≈ 0.1889

(5.22)

108 Chapter 5. Cost Model

Query Length 16 32 46 64 128 214

Avg. duration (ms) 1.909 2.051 2.204 2.118 2.286 2.74

Table 5.11: Average duration of the exec query activity per Query Length

0.0 0.2 0.4 0.6 0.8 1.0
Response rate. 1 is response every epoch. 0.5 is every 2 epochs and so on

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

jo
ul

es

Energy usage for the send activity for the steady state epochs

1
0.5
0.25
0.125

Figure 5.14: Fitting model eq. (5.7) to data

We choose to use linear model as an approximation despite its low
coefficient of determination.

Response Rate

Here we go through the fitting of eq. (5.7). A plot of the data can be seen
in fig. 5.14. It is clear from the figure that the cost of sending, when it
happens, is constant and independent of the response rate. This also makes
sense since the value transferred is scalar, and thus also it’s size independent
from the number of epochs. There could be edge cases with SUMs producing
a larger and larger number that requires an increasing amount of energy to
transfer, but those are not representative of general use.

Looking closer at the data, in fig. 5.15, we see the source of the bimodal
nature of the nonzero data in fig. 5.14. For each experiment, a single node
seems to have a lower energy consumption than the others.

To get a more conservative average we exclude not only the non-zero
energy consumption, but also the single device with lower consumption. Our
average then becomes:

C1,8 = 1.5069 J (5.23)

Which then leaves us with the simple model:

f1,8(RR) = 1.5069RR (5.24)

5.4. Experimental Results 109

1.40 1.45 1.50
0

2

4

6

8

Response rate: 1

1.40 1.45 1.50

Response rate: 0.5

1.40 1.45 1.50
0

2

4

6

8

Response rate: 0.25

1.40 1.45 1.50

Response rate: 0.125
id: 70B3D57ED005EA59
id: 70B3D57ED005EA60
id: 70B3D57ED005EA61
id: 70B3D57ED005EA62
id: 70B3D57ED005EA63
id: 70B3D57ED005EA64
id: 70B3D57ED005EA65
id: 70B3D57ED005EA66
id: 70B3D57ED005EA67
id: 70B3D57ED005EA68
id: 70B3D57ED005EA69

non-zero energy spent on send activity across all nodes per experiment

joules

co
un

t

Figure 5.15: 4 histograms of non-zero energy consumption for the send activity
coloured per device. Note the X-axis does not start at 0

0 2 4 6 8
MilliJoules

0

5

10

15

20

25

30

35

40

Co
un

t

MilliJoules consumed by the exec_tflite activity

Figure 5.16: Energy consumption of individual TFLite execution activities

TensorFlow Lite Model Presence

Here we go through the fitting of eq. (5.8). We model the inclusion of a
tflite model by setting TF = 1 and the exclusion of one by TF = 0. When
TF = 0 no TFLite code is included in the Terra firmware at all, and as
such it’s energy consumption is zero. The energy consumption data of the
TFLite execution activity does not seem to follow a normal distribution. If
we look at the energy consumption per device we see that the individual
device data is normally distributed, but there is a device-specific centre. We
see that in fig. 5.17 and also by looking at the raw data in table 5.12.

110 Chapter 5. Cost Model

0 2 4 6 8
MilliJoules

0

2

4

6

8

10

Co
un

t

MilliJoules consumed by the exec_tflite activity

70B3D57ED005EA59
70B3D57ED005EA60
70B3D57ED005EA63
70B3D57ED005EA64
70B3D57ED005EA65
70B3D57ED005EA67
70B3D57ED005EA69

Figure 5.17: Energy consumption of individual TFLite execution activities per device

Node ID Mean Standard Deviation

70B3D57ED005EA59 0.009654 0.000118
70B3D57ED005EA60 0.009294 0.000099
70B3D57ED005EA63 0.009064 0.000040
70B3D57ED005EA64 0.009358 0.000060
70B3D57ED005EA65 0.009434 0.000059
70B3D57ED005EA67 0.008377 0.000070
70B3D57ED005EA69 0.009073 0.000064

Table 5.12: Mean energy consumption for TFLite activity per Node ID

We conclude that while there is a per device specificity, the energy
consumption is overall quite low, and close to each other. As such an
average of all 184 measured TFLite execution activities gives us:

C1,6 = 0.009194 (5.25)

5.4.3 Model Results
To gauge the performance of the model (in eq. (5.12) defined in section 5.2.5),
we evaluate it given a variety of different parameters in table 5.13. Here, the
startup and steady-state cost can be seen given with varied QL, RR and
TF.

Using eq. (5.13) ftotal, we can also look at the model over multiple epochs.
In fig. 5.18 we have visualised ftotal over 25 epochs, and it shows what we
expect. QL affects the starting cost, while RR affects the running cost.

We will now discuss these results.

5.4. Experimental Results 111

Parameters Values in J
QL RR TF Startup Phase Steady-State Phase

16 1 0 6.362 2.032
64 6.886 2.040

128 7.584 2.051
256 8.980 2.072

16 1 0 6.362 2.032
0.75 6.362 1.659
0.5 6.362 1.285
0.25 6.362 0.911

16 1 0 6.362 2.032
1 6.362 2.042

Table 5.13: Values for Different QL, RR, and TF Configurations. Values have been
rounded to 3 decimals for readability

0 10 20
0

10

20

30

40

50

60

Constant RR: 1

QL: 16

QL: 64

QL: 128

QL: 256

0 10 20

Constant QL: 16

RR: 1

RR: 0.75

RR: 0.5

RR: 0.25

Epoch

Jo
ul

e

ftotal modelled over 25 epochs

Figure 5.18: ftotal modelled over 25 epochs with varying QL (left) or RR (right)

112 Chapter 5. Cost Model

5.4.4 Model Discussion
We start by looking at the values in table 5.13.

For query length, we see a sharp increase in consumption for the startup
phase and a very slight increase in the steady-state phase. This is what we
expect, as the startup phase concerns itself with the actual network transfer
and the steady-state phase with storing and execution, which are much less
energy-costly.

For response rate, the startup phases are, as expected, equivalent, but
the steady-state phase varies wildly, with the 0.25 response rate consuming
less than half of the power of a response rate of 1. We see that halving
the response rate leads to a ≈ 37% decrease in the energy consumed per
steady-state epoch.

For the TFLite model, we see no change in startup phase, while the
steady-state phase sees a slight increase. This is also expected, but will, of
course, differ with other models.

Compared to Baseline

Here we compare ftotal with fbaseline_total. The goal is to show the overhead
cost of Terra, compared to the baseline that does not do query transfer
at all. In fig. 5.19 we see this comparison. It is a relative comparison with
fbaseline_total as a baseline of 1 and variations of ftotal with different values
of RR compared to it.

From fig. 5.19, it is evident that although the overhead incurred by
receiving a query is substantial, nearly doubling the cost per epoch, the
expense is recovered within fewer than 10 epochs, even with a relatively
high response rate, resulting in net savings thereafter. We also see that
with a response rate of 1 there are no savings at all. This makes sense as it
consumes the same amount of energy per epoch as the baseline. So, if there
is no aggregation, Terra does not provide any energy savings compared
to a baseline and only incurs an additional cost. However, even with a
relatively high RR we quickly recoup the overhead of Terra, and see only
savings thereafter.

This answers research question R3, as when we see a decrease in the
response rate, we see a comparable decrease in energy consumed per steady-
state epoch due to the lack of network transmission. Although code offloading
close to doubles the energy consumption of the startup epoch, as long as that
code is allowed to execute for more than just 10 epochs in the pessimistic
case, we see net savings of energy.

5.4. Experimental Results 113

0 5 10 15 20 25

Epoch

0

1

2

3

ra
ti

o
of

cu
m

u
la

ti
ve

su
m

of
b

as
el

in
e

ftotal as a ratio of fbaseline total for
different response rates and a fixed query length of 16

fbaseline total

ftotal(16, 1, 0)

ftotal(16, 0.75, 0)

ftotal(16, 0.5, 0)

ftotal(16, 0.25, 0)

Figure 5.19: Comparison between fbaseline_total(16, 1, 0) and ftotal(16, 1, 0),
ftotal(16, 0.75, 0), ftotal(16, 0.5, 0) and ftotal(16, 0.25, 0) relative to
fbaseline_total(16, 1, 0).

5.4.5 Model Evaluation
Ideally we would now verify the model experimentally by executing sim-
ilar experiments at a different site, or locally, and comparing the models
performance to it. IoT-LAB does offer a different site with a few identical
devices, in the French city of Lille, but as TTNMapper[80] shows there is no
LoRaWAN gateway in the area, at least at the time of writing, so any com-
parison would have to be without network. Alternatively, the experiments
could be carried out at the IT University of Copenhagen, which does have
a couple of the same devices and attached sensor boards. However, they
do not have the measurement hardware and test-setup of IoT-LAB again,
making experimentation impossible.

So, in a lack of better methods, we here present two figures that com-
pare the model performance to two RR experiments in figs. 5.20 and 5.21.
These experiments were chosen because they reflect the most interesting
behaviour of the model: The amortisation of the network transfer. The
figures show both the cumulative energy cost and the individual devices in
the experiment. For both experiments, we see the inherent variation in the
energy consumption of individual devices and how the model follows the
energy consumption. The difference between the model and the individual
devices adds up over time, making the model more and more inaccurate for

114 Chapter 5. Cost Model

0 5 10 15 20 25 30 35

Epoch

10

20

30

40

50

60

70

Jo
u

le
s

Cumulative Energy usage for a fixed query length of 22 and response rate of 1

model

70B3D57ED005EA59

70B3D57ED005EA60

70B3D57ED005EA61

70B3D57ED005EA62

70B3D57ED005EA63

70B3D57ED005EA65

70B3D57ED005EA66

70B3D57ED005EA67

70B3D57ED005EA68

70B3D57ED005EA69

Figure 5.20: comparison of ftotal(22, 1, 0) with RR = 1 experiment

0 5 10 15 20 25 30 35

Epoch

5

10

15

20

25

Jo
u

le
s

Cumulative Energy usage for a fixed query length of 22 and response rate of 0.125

model

70B3D57ED005EA59

70B3D57ED005EA60

70B3D57ED005EA61

70B3D57ED005EA62

70B3D57ED005EA63

70B3D57ED005EA64

70B3D57ED005EA65

70B3D57ED005EA66

70B3D57ED005EA67

70B3D57ED005EA68

70B3D57ED005EA69

Figure 5.21: comparison of ftotal(22, 0.125, 0) with RR = 0.125 experiment

predictions for more epochs. However, even within the experiment this error
is not more than 5 Joule, which is about the size of the startup epoch.

In summary: The model produced seems to follow the consumption
of Terra accurately; however, device-specific variations make it hard to
predict consumption over longer periods of time.

5.5. Future Work 115

5.5 Future Work
The above work answers research question R3 and therefore fulfils its purpose.
However, we were not able to satisfactorily verify the model outside the
IoT-LAB testbed which would be an immediate next step. An option here
would be to verify the model locally using an oscilloscope. With a higher
sample rate it is possible to more accurately measure the consumption of
execution, which would improve our model.

One of the motivations for developing this cost model was also to enable
NebulaStream to predict the energy cost of running a given query. This is
useful as part of a query optimiser to be able to decide on effective placement
of operators throughout the network given some optimisation strategy. For
example, in TinyDB they optimise for power consumption [9].

A big future work is therefore improving this energy model and the
use of it by integrating it as part of an operator placement strategy in
NebulaStream. This would require integrating the measured energy usage
as part of NebulaStream. Since these are device-specific, the calibration
process should be streamlined to reduce the work required to derive a model
for a specific device.

5.6 Summary
In this chapter, we introduce the cost model with which we evaluate Terra
as a series of constant and linear models with respect to the length of the
query received, the rate of response transmitted, and whether or not a
TFLite model was present and executed. The model splits epochs into a
series of activities performed in either a startup or steady-state phase.

Through a series of experiments, each variable in the model is experi-
mentally derived and then the model is analysed.

Our findings show that query length has an impact on several activities
on both startup and steady-state energy consumption. This mostly concerns
transmission in the startup phase and loading and storing the serialised
query in the steady-state phase. The execution of the query was generally so
fast that it is hard to conclude a correlation. This also means that the energy
consumption of the execution was very low compared to other activities.

The response rate saw a significant decrease in amortised energy con-
sumption when the response rate decreased.

116 Chapter 5. Cost Model

The presence of a TFLite model slightly increased power consumption
in the steady-state phase, but drawing wider conclusions from this is hard
to do without testing other models.

Generally, the model answers research question R3. Code offloading does
lead to a significant decrease in energy consumption if the offloaded query
provides a decrease in response rate. If not, the added cost of transferring
the query will never be recouped, and code offloading is only an added
expense.

Throughout this whole testing process we used the IoT-LAB testbed,
and before we end with a conclusion, we will go through some of the lessons
learnt using a public testbed extensively. This is what we do in the next
chapter.

Chapter 6

Lessons Learnt with IoT-LAB

To obtain the results of this thesis, a lot of work went into the use of the
FIT IoT-LAB testbed. The existence of which made this thesis possible.
It would not have been possible to perform the experiments needed and
obtain these results without the hardware provided by IoT-LAB and the
software stack to manage it. IoT-LAB provided boards with the appropriate
hardware and network technology. In addition, they provide key monitoring
hardware and infrastructure to facilitate the data collection that is the
foundation of this thesis. They provide an easy-to-use web interface, with
accompanying command-line tools to easily configure, provision, and start
experiments. This was heavily used to write scripts and configurations
that utilised those command-line tools to fully automate the experiment
flow from configuration and compilation of Terra, through provisioning and
uploading of firmware, to monitoring and fetching results.

With all that praise, there was also a series of annoyances or things to
be aware of when using IoT-LAB. That is why we include this chapter to
dwell on the experiences made and lessons learnt during this project, to
serve as a guide for others.

We categorise our experience into three sections and cover them individ-
ually below. In section 6.1, we discuss considerations in testbed networking.
In section 6.2, we explore hardware and boards, and in section 6.3, we focus
on power monitoring.

6.1 Networking and IoT-LAB
On the front page of IoT-LAB1 they write:

1https://www.iot-lab.info/

https://www.iot-lab.info/

118 Chapter 6. Lessons Learnt with IoT-LAB

IoT-LAB provides a facility suitable for testing networking with
small wireless sensor devices and heterogeneous communicating
objects.

Thus, their fundamental purpose is network research in an IoT context.
This purpose they fulfil by providing access to boards with support for
various network technologies. Access in numbers that individual users rarely
have. However, when using a remote testbed, a user loses physical access to
the hardware and the space in which they exist. The user cannot, outside
of the tools of the testbed, see the physical layout of the hardware and the
distances, or obstacles, between them. And the user also cannot change
position or hardware.

IoT-LAB offered at one point access to mobile nodes that allowed you
to control and change the position of some specific hardware, but this is not
available today [42, 43].

The consequence of this is that network connectivity issues are difficult
to deal with. As a user, you cannot visually see or move obstructions in
the environment. You can gauge obstacles and layout of nodes in a room in
the IoT-LAB documentation through descriptions or possibly floor plans,
and you can query each node for their position in a 3D coordinate system
and then determine their relative positions, but this method is cumbersome
and lacks the intuition of physical presence in the room. Moreover, it does
not alter the fundamental issue: nodes cannot be repositioned to handle
possible dead zones; you must use another node.

All of this adds difficulty when you are dealing with network protocols
that could be already unreliable.

These problems also apply to LoRaWAN gateways. Since the experiments
done use LoRaWAN they need a gateway to be present and active near
the nodes. IoT-LAB is kind enough to provide such a gateway for some of
their sites with LoRa-capable hardware, but it is not part of their testbed
infrastructure. This means that you cannot access it, be it to view logs or
reboot. You also do not know the positions of it, with the same problems
described as above. During experiments, we frequently encounter nodes
that neither receives nor transmits messages, and not having access to the
gateway logs makes it difficult to gauge if the problem exists between node
and gateway, or between gateway and core network.

Lack of access to reboot the gateway also hinders experiments as the
gateway seems to be quite unstable and often goes down or becomes un-
responsive. This is addressed often within a week by contacting IoT-LAB

6.2. Devices 119

through their mailing list and waiting for personnel to bring the gateway
back up, but in periods of vacation or for other reasons we have experienced
downtimes of months where no experimentation was possible.

For the reasons mentioned above, we recommend having at least a couple
of identical devices and a small gateway locally at hand to develop and test
your experiment setup and then use the testbed, when available, to do larger
experiments.

6.2 Devices
Programmatic and remote access to upload firmware and communicate
over serial with devices is generally a breeze on IoT-LAB, and it is quite
impressive how simple and accessible they have done a process that is often
fraught with annoying toolchains and hardware support. However, this also
comes with a cost. When problems do arise, there is no access to the raw
error logs and it is difficult to debug or restart. We saw cases of devices
that would repeatedly fail to flash, but there was no indication as to why
they failed.

Often devices can also fail silently in the sense that it seems like firmware
got uploaded and the device is running it, but it is not as revealed by a lack
of expected serial output. IoT-LAB does have a device status that could
indicate whether or not devices are failing or otherwise unavailable, but this
is not always properly set, which can cause you to be repeatedly assigned
devices that silently fail.

Speaking of availability of devices, IoT-LAB as a resource provided by
universities is often used by those universities for teaching or research, and
this, of course, has priority. However, there is no central place where these
planned reservations are announced, and instead they are communicated
through the same general mailing list that users use to ask questions or
report problems. While a minor issue, this does make these windows harder
to track as they easily disappear in one’s inbox.

6.3 Power Monitoring
The IoT-LAB monitoring infrastructure is what allows us to collect these
detailed power measurements that are the basis of the experiments we run.
However, the instrumentation library and file format used by IoT-LAB is
unmaintained, which is problematic. The website of the library does not exist

120 Chapter 6. Lessons Learnt with IoT-LAB

any more2 so web archives had to be used to find proper documentation, and
even then it is mostly on the instrumentation library itself and not on the
file format. Fortunately, it is mostly formatted as a CSV with modifications,
so reverse engineering the format is easy. IoT-LAB does provide some
facilities for reading and visualising the data files, and these are written in
Python3 and can also be easily reverse-engineered[43, tools/Consumption
Monitoring]. However, there is no central description of the data format
used by IoT-LAB.

Depending on your monitoring configuration, these data files could
quickly take up a lot of space on the remote machine that IoT-LAB uses to
control the testbed. There is no warning, which caused an unlucky episode
in which part of the testbed was down due to a full hard drive. Luckily, this
was quickly resolved, but did cause issues afterwards with symbolic links
due to the way it was cleared. So, we recommend moving the data from the
testbed to local storage right after the experiments.

6.4 Summary
We aim to highlight the exceptional asset that IoT-LAB represents for
research. Its extensive range of features, diverse configuration possibilities,
and the simplicity associated with its free access are unparalleled in the
academic world. However, as frequent users of this testbed, we wish to
discuss certain challenges that arise and the precautions that should be
taken before and during its use. One important insight is that dealing with
networking and embedded hardware can be challenging due to elusive bugs
or connectivity issues; having direct access to the hardware is crucial in
these situations. Consequently, we recommend acquiring some of the boards
and hardware intended for use at IoT-LAB to conduct small-scale local
experiments to resolve any issues. Once you are prepared, you can scale
up on the testbed. This approach guarantees a more seamless and effective
experience.

We provide a summary of the above points in table 6.1.
In the next chapter, we will conclude the thesis.

2https://oml.mytestbed.net/ is down, but versions can be found using https:
//web.archive.org/

3Source code can be found here: https://github.com/iot-lab/oml-plot-tools

https://oml.mytestbed.net/
https://web.archive.org/
https://web.archive.org/
https://github.com/iot-lab/oml-plot-tools

6.4. Summary 121

Category Description
Networking No control over, or access to, physical environment leads

to hard to debug network issues
No control over gateway leads to increased downtime
No access to gateway prevents efficient debugging

Devices Devices can fail silently, and just not be flashable without
any errors
Devices can give false or hard to read error messages

Monitoring Monitoring is performed using an unmaintained library
that is quite difficult to find documentation for

General Site-wide communication is done via mailing lists also in
use by users
There is no limit or warnings on data storage, which can
lead to platform failure and users inadvertently crippling
their own access

Table 6.1: Summary of key issues

Chapter 7

Conclusion

In the beginning of this thesis, we defined the following hypothesis and
research questions:

Code offloading to sensor devices in modern sensor network
databases leads to a significant reduction in energy consumption.

R1 What is a modern sensor network database?

R2 How do we support code offloading in such a database?

R3 How does code offloading lead to a significant reduction in energy
consumption?

In chapter 2 we answer R1 by defining a modern sensor database as a
database that takes advantage of computing resources at the edge, fog, and
compute layers to reduce network congestion, energy usage, and increase
data privacy.

In chapter 4 we introduce Terra to answer R2. Our system enables
another sensor network database, in this case NebulaStream, to offload
computation on to sensor devices, thereby making it modern. We do this
to exploit the ability of NebulaStream to use fog and cloud resources and
to parse and optimise queries. What NebulaStream lacks is the ability
to push computation to the very edge. We adapt NebulaStream to send
applicable partial queries to Terra in a transparent manner, by capturing
queries early in the NebulaStream pipeline and eagerly extracting operators
to offload to Terra. Upon receiving these operators, Terra then executes
them and transmits the results back. In particular, when aggregation or

124 Chapter 7. Conclusion

filtering queries are executed and no results are present, nothing is reported,
leading to substantial energy savings.

We verify this claim experimentally in chapter 5, where we also answer
R3. We do this by defining an energy cost model that describes the energy
consumption of the activities Terra undertakes for each epoch. The energy
cost model is a series of constant and linear models that describe the energy
cost of each activity. We then define and execute 11 experiments on the IoT-
LAB testbed with unique queries. We record detailed power consumption
measurements for each experiment at a sampling rate high enough to extract
the energy consumption for each activity. With these measurements in the
energy cost model, we conclude that while energy consumption is correlated
with query length and the presence of a TFLite model, the biggest impact
is the response rate. Receiving a query almost doubles the cost of a Terra
epoch, while halving the response rate reduces the consumption by ≈ 37%.
These savings come purely from the energy that is conserved by avoiding
unnecessary network transmissions. The consequence of this is that even
with a high response rate, the added overhead of code offloading is recouped
within approximately 10 epochs.

Here we also note that the use of LoRaWAN and The Things Network
as a provider does increase consumption of network transfer compared to
other LoRaWAN networks due to its higher receive window delays. This
affects both code offloading and result transmission. As such, we can answer
R3 and the hypothesis:

If code offloading leads to a decrease in response rate by containing
aggregating or filtering operators, it can lead to a significant reduction in
energy consumption by avoiding unnecessary network transfers.

Bibliography

[1] Juan José López Escobar, Rebeca P. Díaz Redondo, and Felipe Gil-
Castiñeira. “In-depth analysis and open challenges of Mist Computing”.
In: Journal of Cloud Computing 11.1 (Nov. 19, 2022), p. 81. issn:
2192-113X. doi: 10.1186/s13677-022-00354-x. url: https://doi.
org/10.1186/s13677-022-00354-x (visited on 11/27/2024) (cit. on
pp. 1, 13).

[2] Steffen Zeuch et al. “The NebulaStream Platform: Data and Appli-
cation Management for the Internet of Things”. In: CIDR 2020. Jan.
2020, p. 11 (cit. on pp. 2, 15, 27, 37, 39, 69).

[3] Peter J. Denning. “ACM president’s letter: performance analysis:
experimental computer science as its best”. In: Commun. ACM 24.11
(Nov. 1, 1981), pp. 725–727. issn: 0001-0782. doi: 10.1145/358790.
358791. url: https://dl.acm.org/doi/10.1145/358790.358791
(visited on 11/27/2024) (cit. on p. 2).

[4] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. “Towards
Sensor Database Systems”. In: Mobile Data Management. Ed. by Kian-
Lee Tan, Michael J. Franklin, and John Chi-Shing Lui. Red. by Gerhard
Goos, Juris Hartmanis, and Jan Van Leeuwen. Vol. 1987. Series Title:
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 3–14. doi: 10.1007/3-540-44498-X_1. url:
http://link.springer.com/10.1007/3-540-44498-X_1 (visited
on 10/10/2024) (cit. on pp. 5, 6, 9).

[5] R. Govindan et al. “The Sensor Network as a Database”.
In: 2002. url: https : / / www . semanticscholar . org /
paper / The - Sensor - Network - as - a - Database - Govindan -
Hellerstein / 6bd5a40da1a5bdb83d085e9e4c9bf14aa5336130 (vis-
ited on 10/11/2024) (cit. on pp. 5, 6).

https://doi.org/10.1186/s13677-022-00354-x
https://doi.org/10.1186/s13677-022-00354-x
https://doi.org/10.1186/s13677-022-00354-x
https://doi.org/10.1145/358790.358791
https://doi.org/10.1145/358790.358791
https://dl.acm.org/doi/10.1145/358790.358791
https://doi.org/10.1007/3-540-44498-X_1
http://link.springer.com/10.1007/3-540-44498-X_1
https://www.semanticscholar.org/paper/The-Sensor-Network-as-a-Database-Govindan-Hellerstein/6bd5a40da1a5bdb83d085e9e4c9bf14aa5336130
https://www.semanticscholar.org/paper/The-Sensor-Network-as-a-Database-Govindan-Hellerstein/6bd5a40da1a5bdb83d085e9e4c9bf14aa5336130
https://www.semanticscholar.org/paper/The-Sensor-Network-as-a-Database-Govindan-Hellerstein/6bd5a40da1a5bdb83d085e9e4c9bf14aa5336130

126 Bibliography

[6] Jinbao Li, Zhipeng Cai, and Jianzhong Li. “Data Management in
Sensor Networks”. In: Wireless Sensor Networks and Applications. Ed.
by Yingshu Li, My T. Thai, and Weili Wu. Series Title: Signals and
Communication Technology. Boston, MA: Springer US, 2008, pp. 287–
330. isbn: 978-0-387-49592-7. doi: 10.1007/978-0-387-49592-7_12.
url: http://link.springer.com/10.1007/978-0-387-49592-
7_12 (visited on 10/10/2024) (cit. on pp. 5, 6).

[7] Abderrahmen Belfkih, Claude Duvallet, and Bruno Sadeg. “A survey
on wireless sensor network databases”. In: Wireless Networks 25.8
(Nov. 2019), pp. 4921–4946. issn: 1022-0038, 1572-8196. doi: 10.
1007/s11276-019-02070-y. url: http://link.springer.com/10.
1007/s11276-019-02070-y (visited on 10/10/2024) (cit. on pp. 6, 7,
9, 11).

[8] Yong Yao and Johannes Gehrke. “The cougar approach to in-network
query processing in sensor networks”. In: SIGMOD Rec. 31.3 (Sept. 1,
2002), pp. 9–18. issn: 0163-5808. doi: 10.1145/601858.601861. url:
https://doi.org/10.1145/601858.601861 (visited on 10/12/2024)
(cit. on p. 9).

[9] Samuel R. Madden et al. “TinyDB: an acquisitional query process-
ing system for sensor networks”. In: ACM Transactions on Database
Systems 30.1 (Mar. 2005), pp. 122–173. issn: 0362-5915, 1557-4644.
doi: 10.1145/1061318.1061322. url: https://dl.acm.org/doi/
10.1145/1061318.1061322 (visited on 05/01/2023) (cit. on pp. 9, 10,
26, 76, 115).

[10] Giuseppe Amato, Stefano Chessa, and Claudio Vairo. “MaD‐WiSe: a
distributed stream management system for wireless sensor networks”.
In: Software: Practice and Experience 40.5 (Apr. 25, 2010), pp. 431–
451. issn: 0038-0644, 1097-024X. doi: 10.1002/spe.965. url: https:
//onlinelibrary.wiley.com/doi/10.1002/spe.965 (visited on
10/15/2024) (cit. on pp. 9, 11).

[11] Philippe Bonnet et al. Query Processing in a Device Database System.
Cornell University, Oct. 1999. url: https://hdl.handle.net/1813/
7429 (visited on 10/12/2024) (cit. on p. 9).

https://doi.org/10.1007/978-0-387-49592-7_12
http://link.springer.com/10.1007/978-0-387-49592-7_12
http://link.springer.com/10.1007/978-0-387-49592-7_12
https://doi.org/10.1007/s11276-019-02070-y
https://doi.org/10.1007/s11276-019-02070-y
http://link.springer.com/10.1007/s11276-019-02070-y
http://link.springer.com/10.1007/s11276-019-02070-y
https://doi.org/10.1145/601858.601861
https://doi.org/10.1145/601858.601861
https://doi.org/10.1145/1061318.1061322
https://dl.acm.org/doi/10.1145/1061318.1061322
https://dl.acm.org/doi/10.1145/1061318.1061322
https://doi.org/10.1002/spe.965
https://onlinelibrary.wiley.com/doi/10.1002/spe.965
https://onlinelibrary.wiley.com/doi/10.1002/spe.965
https://hdl.handle.net/1813/7429
https://hdl.handle.net/1813/7429

Bibliography 127

[12] P. Levis et al. “TinyOS: An Operating System for Sensor Networks”.
In: Ambient Intelligence. Ed. by Werner Weber, Jan M. Rabaey, and
Emile Aarts. Berlin, Heidelberg: Springer, 2005, pp. 115–148. isbn:
978-3-540-27139-0. doi: 10.1007/3-540-27139-2_7. url: https:
//doi.org/10.1007/3-540-27139-2_7 (visited on 10/12/2024)
(cit. on pp. 9, 10, 26, 58).

[13] David Gay et al. “The nesC language: A holistic approach to networked
embedded systems”. In: SIGPLAN Not. 38.5 (May 9, 2003), pp. 1–
11. issn: 0362-1340. doi: 10.1145/780822.781133. url: https:
//doi.org/10.1145/780822.781133 (visited on 10/14/2024) (cit. on
p. 10).

[14] Philip Levis and David Culler. “Maté: A tiny virtual machine for
sensor networks”. In: ACM Sigplan Notices 37.10 (2002). Publisher:
ACM New York, NY, USA, pp. 85–95 (cit. on p. 10).

[15] G. Amato, P. Baronti, and S. Chessa. “MaD-WiSe: Programming and
Accessing Data in a Wireless Sensor Networks”. In: EUROCON 2005
- The International Conference on ”Computer as a Tool”. EUROCON
2005 - The International Conference on ”Computer as a Tool”. Belgrade,
Serbia and Montenegro: IEEE, 2005, pp. 1846–1849. isbn: 978-1-
4244-0049-2. doi: 10.1109/EURCON.2005.1630339. url: http://
ieeexplore.ieee.org/document/1630339/ (visited on 10/15/2024)
(cit. on p. 11).

[16] Daniel J. Abadi et al. “Aurora: a new model and architecture for
data stream management”. In: The VLDB Journal The International
Journal on Very Large Data Bases 12.2 (Aug. 1, 2003), pp. 120–139.
issn: 1066-8888, 0949-877X. doi: 10.1007/s00778-003-0095-z. url:
http://link.springer.com/10.1007/s00778-003-0095-z (visited
on 10/09/2024) (cit. on p. 12).

[17] Matthias J. Sax et al. “Streams and Tables: Two Sides of the Same
Coin”. In: Proceedings of the International Workshop on Real-Time
Business Intelligence and Analytics. BIRTE ’18. New York, NY,
USA: Association for Computing Machinery, Aug. 27, 2018, pp. 1–
10. isbn: 978-1-4503-6607-6. doi: 10.1145/3242153.3242155. url:
https://dl.acm.org/doi/10.1145/3242153.3242155 (visited on
10/17/2024) (cit. on p. 12).

[18] Apache Storm. url: https : / / storm . apache . org/ (visited on
10/17/2024) (cit. on p. 12).

https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1145/780822.781133
https://doi.org/10.1145/780822.781133
https://doi.org/10.1145/780822.781133
https://doi.org/10.1109/EURCON.2005.1630339
http://ieeexplore.ieee.org/document/1630339/
http://ieeexplore.ieee.org/document/1630339/
https://doi.org/10.1007/s00778-003-0095-z
http://link.springer.com/10.1007/s00778-003-0095-z
https://doi.org/10.1145/3242153.3242155
https://dl.acm.org/doi/10.1145/3242153.3242155
https://storm.apache.org/

128 Bibliography

[19] Paris Carbone et al. “Apache Flink™: Stream and Batch Processing
in a Single Engine”. In: () (cit. on p. 12).

[20] Michael Armbrust et al. “Structured Streaming: A Declarative API
for Real-Time Applications in Apache Spark”. In: Proceedings of the
2018 International Conference on Management of Data. SIGMOD
’18. New York, NY, USA: Association for Computing Machinery,
May 27, 2018, pp. 601–613. isbn: 978-1-4503-4703-7. doi: 10.1145/
3183713 . 3190664. url: https : / / doi . org / 10 . 1145 / 3183713 .
3190664 (visited on 10/17/2024) (cit. on p. 12).

[21] Alessio Botta et al. “Integration of Cloud computing and Internet of
Things: A survey”. In: Future Generation Computer Systems 56 (Mar.
2016), pp. 684–700. issn: 0167739X. doi: 10.1016/j.future.2015.
09.021. url: https://linkinghub.elsevier.com/retrieve/pii/
S0167739X15003015 (visited on 10/15/2024) (cit. on p. 13).

[22] Abhishek Hazra et al. “Fog computing for next-generation Internet
of Things: Fundamental, state-of-the-art and research challenges”. In:
Computer Science Review 48 (May 1, 2023), p. 100549. issn: 1574-
0137. doi: 10.1016/j.cosrev.2023.100549. url: https://www.
sciencedirect.com/science/article/pii/S1574013723000163
(visited on 10/17/2024) (cit. on p. 13).

[23] Evangelos K. Markakis et al. “EXEGESIS: Extreme Edge Resource
Harvesting for a Virtualized Fog Environment”. In: IEEE Communica-
tions Magazine 55.7 (July 2017). Conference Name: IEEE Communi-
cations Magazine, pp. 173–179. issn: 1558-1896. doi: 10.1109/MCOM.
2017.1600730. url: https://ieeexplore.ieee.org/document/
7981547 (visited on 11/27/2024) (cit. on p. 14).

[24] Ivan Zyrianoff et al. “Architecting and Deploying IoT Smart Appli-
cations: A Performance–Oriented Approach”. In: Sensors 20.1 (Jan.
2020). Number: 1 Publisher: Multidisciplinary Digital Publishing Insti-
tute, p. 84. issn: 1424-8220. doi: 10.3390/s20010084. url: https:
//www.mdpi.com/1424-8220/20/1/84 (visited on 11/27/2024) (cit.
on p. 14).

[25] Yugo Nakamura et al. “Design and Implementation of Middleware
for IoT Devices toward Real-Time Flow Processing”. In: 2016 IEEE
36th International Conference on Distributed Computing Systems
Workshops (ICDCSW). 2016 IEEE 36th International Conference on
Distributed Computing Systems Workshops (ICDCSW). ISSN: 2332-
5666. June 2016, pp. 162–167. doi: 10.1109/ICDCSW.2016.37. url:

https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1016/j.future.2015.09.021
https://linkinghub.elsevier.com/retrieve/pii/S0167739X15003015
https://linkinghub.elsevier.com/retrieve/pii/S0167739X15003015
https://doi.org/10.1016/j.cosrev.2023.100549
https://www.sciencedirect.com/science/article/pii/S1574013723000163
https://www.sciencedirect.com/science/article/pii/S1574013723000163
https://doi.org/10.1109/MCOM.2017.1600730
https://doi.org/10.1109/MCOM.2017.1600730
https://ieeexplore.ieee.org/document/7981547
https://ieeexplore.ieee.org/document/7981547
https://doi.org/10.3390/s20010084
https://www.mdpi.com/1424-8220/20/1/84
https://www.mdpi.com/1424-8220/20/1/84
https://doi.org/10.1109/ICDCSW.2016.37

Bibliography 129

https://ieeexplore.ieee.org/document/7756225 (visited on
11/27/2024) (cit. on p. 14).

[26] Zhitao Shen et al. “CSA: Streaming Engine for Internet of Things”.
In: () (cit. on p. 14).

[27] Nicolas Tsiftes and Adam Dunkels. “A database in every sensor”. In:
Proceedings of the 9th ACM Conference on Embedded Networked Sensor
Systems. SenSys ’11: The 9th ACM Conference on Embedded Net-
work Sensor Systems. Seattle Washington: ACM, Nov. 2011, pp. 316–
332. isbn: 978-1-4503-0718-5. doi: 10.1145/2070942.2070974. url:
https://dl.acm.org/doi/10.1145/2070942.2070974 (visited on
10/09/2024) (cit. on pp. 14, 41).

[28] NebulaStream. Nebula Stream. Nov. 12, 2020. url: https://docs.
nebula.stream/docs/nebulastream/generaloverview/ (visited on
10/18/2024) (cit. on pp. 16, 34).

[29] Free Software Foundation. GCC, the GNU Compiler Collection - GNU
Project. GCC, the GNU Compiler Collection. url: https://gcc.gnu.
org/ (visited on 10/08/2024) (cit. on p. 16).

[30] LLVM Developer Group. Clang C Language Family Frontend for
LLVM. Clang: a C language family frontend for LLVM. url: https:
//clang.llvm.org/ (visited on 10/08/2024) (cit. on p. 16).

[31] Bishal Ranjan Swain et al. “Rise of Fluid Computing A Collective
Effort Of Mist, Fog and Cloud”. In: International Journal of Com-
puter Sciences and Engineering 7.4 (Apr. 30, 2019), pp. 62–69. issn:
23472693. doi: 10.26438/ijcse/v7i4.6269. url: http://www.
ijcseonline.org/full_paper_view.php?paper_id=3996 (visited
on 12/13/2024) (cit. on p. 16).

[32] Vasilios A. Orfanos et al. “A Comprehensive Review of IoT Networking
Technologies for Smart Home Automation Applications”. In: Journal of
Sensor and Actuator Networks 12.2 (Apr. 2023). Number: 2 Publisher:
Multidisciplinary Digital Publishing Institute, p. 30. issn: 2224-2708.
doi: 10.3390/jsan12020030. url: https://www.mdpi.com/2224-
2708/12/2/30 (visited on 10/21/2024) (cit. on p. 18).

[33] M. Mroue et al. “LPWAN Technologies in Smart Cities: A Compara-
tive Analysis of LoRa, Sigfox, and LTE-M”. In: Information System
Design: Communication Networks and IoT. Ed. by Vikrant Bhateja
et al. Singapore: Springer Nature, 2024, pp. 219–231. isbn: 978-981-
9748-95-2. doi: 10.1007/978-981-97-4895-2_18 (cit. on p. 18).

https://ieeexplore.ieee.org/document/7756225
https://doi.org/10.1145/2070942.2070974
https://dl.acm.org/doi/10.1145/2070942.2070974
https://docs.nebula.stream/docs/nebulastream/generaloverview/
https://docs.nebula.stream/docs/nebulastream/generaloverview/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://clang.llvm.org/
https://clang.llvm.org/
https://doi.org/10.26438/ijcse/v7i4.6269
http://www.ijcseonline.org/full_paper_view.php?paper_id=3996
http://www.ijcseonline.org/full_paper_view.php?paper_id=3996
https://doi.org/10.3390/jsan12020030
https://www.mdpi.com/2224-2708/12/2/30
https://www.mdpi.com/2224-2708/12/2/30
https://doi.org/10.1007/978-981-97-4895-2_18

130 Bibliography

[34] Kais Mekki et al. “Overview of Cellular LPWAN Technologies for IoT
Deployment: Sigfox, LoRaWAN, and NB-IoT”. In: 2018 IEEE Inter-
national Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). 2018 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom
Workshops). Mar. 2018, pp. 197–202. doi: 10.1109/PERCOMW.2018.
8480255. url: https://ieeexplore.ieee.org/document/8480255
(visited on 11/30/2024) (cit. on p. 18).

[35] Ritesh Kumar Singh et al. “Energy Consumption Analysis of LPWAN
Technologies and Lifetime Estimation for IoT Application”. In: Sensors
20.17 (Jan. 2020). Number: 17 Publisher: Multidisciplinary Digital Pub-
lishing Institute, p. 4794. issn: 1424-8220. doi: 10.3390/s20174794.
url: https://www.mdpi.com/1424-8220/20/17/4794 (visited on
11/30/2024) (cit. on p. 18).

[36] LoRa Alliance. LoRaWAN® L2 1.0.4 specification. manual. 2020. url:
https://resources.lora-alliance.org/document/ts001-1-0-4-
lorawan-l2-1-0-4-specification (cit. on pp. 18, 64).

[37] Stefano Milani et al. Edge2lora: Enabling Edge Computing on Long-
Range Wide-Area Internet of Things. 2024. doi: 10 . 2139 / ssrn .
4821982. url: https://www.ssrn.com/abstract=4821982 (visited
on 06/25/2024) (cit. on p. 20).

[38] The Things Network. The Things Network LoRaWAN® Documentation.
The Things Network. url: https://www.thethingsnetwork.org/
docs/lorawan/ (visited on 10/01/2024) (cit. on pp. 21, 54, 82).

[39] LoRa Alliance. LoRaWAN regional parameters v1.0.2. manual. Feb.
2017. url: https://lora-alliance.org/resource_hub/lorawan-
regional-parameters-v1-0-2rb/ (cit. on pp. 21, 68, 81, 82).

[40] LoRa Alliance. LoRaWAN® specification v1.0.2. manual. 2016. url:
https : / / resources . lora - alliance . org / document / lorawan -
specification-v1-0-2 (cit. on pp. 21, 64).

[41] Raj Jain. The art of computer systems performance analysis: tech-
niques for experimental design, measurement, simulation, and modeling.
Nachdr. Wiley professional computing. New York: Wiley, 1991. 685 pp.
isbn: 978-0-471-50336-1 (cit. on pp. 22, 77, 88, 93).

https://doi.org/10.1109/PERCOMW.2018.8480255
https://doi.org/10.1109/PERCOMW.2018.8480255
https://ieeexplore.ieee.org/document/8480255
https://doi.org/10.3390/s20174794
https://www.mdpi.com/1424-8220/20/17/4794
https://resources.lora-alliance.org/document/ts001-1-0-4-lorawan-l2-1-0-4-specification
https://resources.lora-alliance.org/document/ts001-1-0-4-lorawan-l2-1-0-4-specification
https://doi.org/10.2139/ssrn.4821982
https://doi.org/10.2139/ssrn.4821982
https://www.ssrn.com/abstract=4821982
https://www.thethingsnetwork.org/docs/lorawan/
https://www.thethingsnetwork.org/docs/lorawan/
https://lora-alliance.org/resource_hub/lorawan-regional-parameters-v1-0-2rb/
https://lora-alliance.org/resource_hub/lorawan-regional-parameters-v1-0-2rb/
https://resources.lora-alliance.org/document/lorawan-specification-v1-0-2
https://resources.lora-alliance.org/document/lorawan-specification-v1-0-2

Bibliography 131

[42] Cédric Adjih et al. “FIT IoT-LAB: A Large Scale Open Experimental
IoT Testbed”. In: IEEE World Forum on Internet of Things (IEEE
WF-IoT). Dec. 14, 2015. url: https://inria.hal.science/hal-
01213938 (visited on 09/27/2024) (cit. on pp. 23, 118).

[43] FIT IoT-LAB. IoT-LAB documentation. FIT IoT-LAB. url: https:
//iot-lab.github.io/docs/getting-started/introduction/
(visited on 10/01/2024) (cit. on pp. 23, 78, 118, 120).

[44] Texas Instruments. INA226 36V, 16-bit, ultra-precise I2C output
current, voltage, and power monitor with alert. 2024. url: https:
//www.ti.com/lit/ds/symlink/ina226.pdf (cit. on pp. 23, 86).

[45] Rafael Lajara, José Pelegrí-Sebastiá, and Juan J. Perez Solano. “Power
Consumption Analysis of Operating Systems for Wireless Sensor Net-
works”. In: Sensors 10.6 (June 2010). Number: 6 Publisher: Molecular
Diversity Preservation International, pp. 5809–5826. issn: 1424-8220.
doi: 10.3390/s100605809. url: https://www.mdpi.com/1424-
8220/10/6/5809 (visited on 11/28/2024) (cit. on p. 26).

[46] A. Dunkels, B. Gronvall, and T. Voigt. “Contiki - a lightweight and
flexible operating system for tiny networked sensors”. In: 29th Annual
IEEE International Conference on Local Computer Networks. 29th
Annual IEEE International Conference on Local Computer Networks.
ISSN: 0742-1303. Nov. 2004, pp. 455–462. doi: 10.1109/LCN.2004.
38. url: https : / / ieeexplore . ieee . org / document / 1367266 /
?arnumber=1367266 (visited on 11/28/2024) (cit. on p. 26).

[47] Adam Dunkels et al. “Software-based on-line energy estimation for sen-
sor nodes”. In: Proceedings of the 4th workshop on Embedded networked
sensors. EmNets ’07. New York, NY, USA: Association for Computing
Machinery, June 25, 2007, pp. 28–32. isbn: 978-1-59593-694-3. doi:
10.1145/1278972.1278979. url: https://dl.acm.org/doi/10.
1145/1278972.1278979 (visited on 11/28/2024) (cit. on p. 26).

[48] Xiaofan Jiang et al. “Micro Power Meter for Energy Monitoring of
Wireless Sensor Networks at Scale”. In: 2007 6th International Sym-
posium on Information Processing in Sensor Networks. 2007 6th
International Symposium on Information Processing in Sensor Net-
works. Apr. 2007, pp. 186–195. doi: 10.1109/IPSN.2007.4379678.
url: https://ieeexplore.ieee.org/document/4379678 (visited
on 11/28/2024) (cit. on p. 26).

https://inria.hal.science/hal-01213938
https://inria.hal.science/hal-01213938
https://iot-lab.github.io/docs/getting-started/introduction/
https://iot-lab.github.io/docs/getting-started/introduction/
https://www.ti.com/lit/ds/symlink/ina226.pdf
https://www.ti.com/lit/ds/symlink/ina226.pdf
https://doi.org/10.3390/s100605809
https://www.mdpi.com/1424-8220/10/6/5809
https://www.mdpi.com/1424-8220/10/6/5809
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1109/LCN.2004.38
https://ieeexplore.ieee.org/document/1367266/?arnumber=1367266
https://ieeexplore.ieee.org/document/1367266/?arnumber=1367266
https://doi.org/10.1145/1278972.1278979
https://dl.acm.org/doi/10.1145/1278972.1278979
https://dl.acm.org/doi/10.1145/1278972.1278979
https://doi.org/10.1109/IPSN.2007.4379678
https://ieeexplore.ieee.org/document/4379678

132 Bibliography

[49] Robert Hartung, Ulf Kulau, and Lars Wolf. “Distributed Energy
Measurement in WSNs for Outdoor Applications”. In: 2016 13th
Annual IEEE International Conference on Sensing, Communication,
and Networking (SECON). 2016 13th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON).
June 2016, pp. 1–9. doi: 10.1109/SAHCN.2016.7732983. url: https:
//ieeexplore.ieee.org/document/7732983 (visited on 11/28/2024)
(cit. on p. 26).

[50] Dan O’Keeffe, Theodoros Salonidis, and Peter Pietzuch. “Frontier:
resilient edge processing for the internet of things”. In: Proceedings
of the VLDB Endowment 11.10 (June 2018), pp. 1178–1191. issn:
2150-8097. doi: 10.14778/3231751.3231767. url: https://dl.
acm.org/doi/10.14778/3231751.3231767 (visited on 10/17/2024)
(cit. on p. 27).

[51] Donald Kossmann. “The state of the art in distributed query process-
ing”. In: ACM Comput. Surv. 32.4 (Dec. 1, 2000), pp. 422–469. issn:
0360-0300. doi: 10.1145/371578.371598. url: https://dl.acm.
org/doi/10.1145/371578.371598 (visited on 10/15/2024) (cit. on
pp. 27, 29).

[52] Feilong Liu et al. To Ship or Not to (Function) Ship (Extended version).
arXiv:1807.11149. version: 1 type: article. arXiv, July 29, 2018. doi:
10.48550/arXiv.1807.11149. arXiv: 1807.11149[cs]. url: http:
//arxiv.org/abs/1807.11149 (visited on 10/15/2024) (cit. on
pp. 28, 29).

[53] nebulastream/nebulastream: NebulaStream - Data Management for
the Internet of Things. In collab. with BIFOLD, DIMA, and DFKI
IAM. Note: Not made public yet, but will be publicized at a later date.
url: https://github.com/nebulastream/nebulastream (visited
on 10/23/2024) (cit. on p. 35).

[54] Google. Protocol Buffers. Protocol Buffers Documentation. url: https:
//protobuf.dev/ (visited on 10/22/2024) (cit. on p. 38).

[55] Juan Cruz Viotti and Mital Kinderkhedia. A Benchmark of JSON-
compatible Binary Serialization Specifications. Jan. 9, 2022. doi: 10.
48550/arXiv.2201.03051. arXiv: 2201.03051. url: http://arxiv.
org/abs/2201.03051 (visited on 10/22/2024) (cit. on p. 38).

https://doi.org/10.1109/SAHCN.2016.7732983
https://ieeexplore.ieee.org/document/7732983
https://ieeexplore.ieee.org/document/7732983
https://doi.org/10.14778/3231751.3231767
https://dl.acm.org/doi/10.14778/3231751.3231767
https://dl.acm.org/doi/10.14778/3231751.3231767
https://doi.org/10.1145/371578.371598
https://dl.acm.org/doi/10.1145/371578.371598
https://dl.acm.org/doi/10.1145/371578.371598
https://doi.org/10.48550/arXiv.1807.11149
https://arxiv.org/abs/1807.11149 [cs]
http://arxiv.org/abs/1807.11149
http://arxiv.org/abs/1807.11149
https://github.com/nebulastream/nebulastream
https://protobuf.dev/
https://protobuf.dev/
https://doi.org/10.48550/arXiv.2201.03051
https://doi.org/10.48550/arXiv.2201.03051
https://arxiv.org/abs/2201.03051
http://arxiv.org/abs/2201.03051
http://arxiv.org/abs/2201.03051

Bibliography 133

[56] AMRIT KUMAR BISWAL and OBADA AL MALLAH. “Analytical
assessment of binary data serialization techniques in IoT context
(evaluating protocol buffers, flat buffers, message pack, and BSON for
sensor nodes)”. In: (Dec. 17, 2019). Accepted: 2020-01-07T08:40:39Z
Publisher: Italy. url: https://www.politesi.polimi.it/handle/
10589/150617 (visited on 10/22/2024) (cit. on p. 38).

[57] Amandeep Kaur et al. “A Literature Review on Device-to-Device
Data Exchange Formats for IoT Applications”. In: JOURNAL OF
INTELLIGENT SYSTEMS AND COMPUTING 1.1 (Dec. 31, 2020).
Number: 1, pp. 1–10. issn: 2976-8098. doi: https://n2t.net/ark:
/47543/JISCOM2020.v1i1.a4. url: https://scienceandtech.co.
uk / journals / index . php / jiscom / article / view / 4 (visited on
10/22/2024) (cit. on p. 38).

[58] micropython/micropython. original-date: 2013-12-20T11:47:07Z.
Nov. 1, 2024. url: https://github.com/micropython/micropython
(visited on 11/01/2024) (cit. on pp. 40, 57).

[59] bytecodealliance/wasm-micro-runtime. original-date: 2019-05-
02T21:32:09Z. Nov. 29, 2024. url: https : / / github . com /
bytecodealliance/wasm-micro-runtime (visited on 11/30/2024)
(cit. on p. 40).

[60] Volodymyr Shymanskyy. wasm3/wasm3. original-date: 2019-10-
01T17:06:03Z. Nov. 30, 2024. url: https://github.com/wasm3/
wasm3 (visited on 11/30/2024) (cit. on p. 40).

[61] Emmanuel Baccelli et al. “Scripting Over-The-Air: Towards Containers
on Low-end Devices in the Internet of Things”. In: 2018 IEEE Inter-
national Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). 2018 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom
Workshops). Mar. 2018, pp. 504–507. doi: 10.1109/PERCOMW.2018.
8480277. url: https://ieeexplore.ieee.org/document/8480277/
?arnumber=8480277 (visited on 11/30/2024) (cit. on p. 40).

[62] Koen Zandberg et al. “Femto-containers: lightweight virtualization
and fault isolation for small software functions on low-power IoT mi-
crocontrollers”. In: Proceedings of the 23rd ACM/IFIP International
Middleware Conference. Middleware ’22: 23rd International Middle-
ware Conference. Quebec QC Canada: ACM, Nov. 7, 2022, pp. 161–
173. isbn: 978-1-4503-9340-9. doi: 10.1145/3528535.3565242. url:

https://www.politesi.polimi.it/handle/10589/150617
https://www.politesi.polimi.it/handle/10589/150617
https://doi.org/https://n2t.net/ark:/47543/JISCOM2020.v1i1.a4
https://doi.org/https://n2t.net/ark:/47543/JISCOM2020.v1i1.a4
https://scienceandtech.co.uk/journals/index.php/jiscom/article/view/4
https://scienceandtech.co.uk/journals/index.php/jiscom/article/view/4
https://github.com/micropython/micropython
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/wasm3/wasm3
https://github.com/wasm3/wasm3
https://doi.org/10.1109/PERCOMW.2018.8480277
https://doi.org/10.1109/PERCOMW.2018.8480277
https://ieeexplore.ieee.org/document/8480277/?arnumber=8480277
https://ieeexplore.ieee.org/document/8480277/?arnumber=8480277
https://doi.org/10.1145/3528535.3565242

134 Bibliography

https://dl.acm.org/doi/10.1145/3528535.3565242 (visited on
11/30/2024) (cit. on p. 40).

[63] Ana Cristina Franco da Silva and Pascal Hirmer. “Models for Internet
of Things Environments—A Survey”. In: Information 11.10 (Oct. 2020).
Number: 10 Publisher: Multidisciplinary Digital Publishing Institute,
p. 487. issn: 2078-2489. doi: 10.3390/info11100487. url: https:
//www.mdpi.com/2078-2489/11/10/487 (visited on 10/24/2024)
(cit. on p. 41).

[64] Google. LiteRT for Microcontrollers | Google AI Edge. Google AI
for Developers. url: https : / / ai . google . dev / edge / litert /
microcontrollers/overview (visited on 10/25/2024) (cit. on p. 42).

[65] Laurits Bonde Henriksen and Markus Kildebæk Raun Johansen. “Ex-
ploring the Space of Energy Constrained Devices Using NebulaS-
tream”. Bachelors Thesis. IT University of Copenhagen: IT University
of Copenhagen, May 2023. 40 pp. (cit. on p. 53).

[66] ChirpStack. ChirpStack open-source LoRaWAN Network Server. Chirp-
Stack, open-source LoRaWAN Network Server. url: https://www.
chirpstack.io/ (visited on 11/12/2024) (cit. on p. 54).

[67] Mahmoud H. Qutqut et al. “Comprehensive survey of the
IoT open-source OSs”. In: IET Wireless Sensor Systems 8.6
(2018). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-
wss.2018.5033, pp. 323–339. issn: 2043-6394. doi: 10.1049/iet-
wss.2018.5033. url: https://onlinelibrary.wiley.com/doi/
abs/10.1049/iet-wss.2018.5033 (visited on 11/01/2024) (cit. on
p. 58).

[68] Farhana Javed et al. “Internet of Things (IoT) Operating Systems
Support, Networking Technologies, Applications, and Challenges: A
Comparative Review”. In: IEEE Communications Surveys & Tutorials
20.3 (2018). Conference Name: IEEE Communications Surveys &
Tutorials, pp. 2062–2100. issn: 1553-877X. doi: 10.1109/COMST.
2018.2817685. url: https://ieeexplore.ieee.org/abstract/
document/8320780 (visited on 11/01/2024) (cit. on p. 58).

[69] FreeRTOS. FreeRTOS. url: https://freertos.org (visited on
11/05/2024) (cit. on p. 58).

https://dl.acm.org/doi/10.1145/3528535.3565242
https://doi.org/10.3390/info11100487
https://www.mdpi.com/2078-2489/11/10/487
https://www.mdpi.com/2078-2489/11/10/487
https://ai.google.dev/edge/litert/microcontrollers/overview
https://ai.google.dev/edge/litert/microcontrollers/overview
https://www.chirpstack.io/
https://www.chirpstack.io/
https://doi.org/10.1049/iet-wss.2018.5033
https://doi.org/10.1049/iet-wss.2018.5033
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-wss.2018.5033
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-wss.2018.5033
https://doi.org/10.1109/COMST.2018.2817685
https://doi.org/10.1109/COMST.2018.2817685
https://ieeexplore.ieee.org/abstract/document/8320780
https://ieeexplore.ieee.org/abstract/document/8320780
https://freertos.org

Bibliography 135

[70] Emmanuel Baccelli et al. “RIOT: An Open Source Operating System
for Low-End Embedded Devices in the IoT”. In: IEEE Internet of
Things Journal 5.6 (Dec. 2018), pp. 4428–4440. issn: 2327-4662, 2372-
2541. doi: 10.1109/JIOT.2018.2815038. url: https://ieeexplore.
ieee.org/document/8315125/ (visited on 05/04/2023) (cit. on pp. 58,
59, 62).

[71] Zephyr Project. Zephyr Project Overview. Oct. 17, 2024. url: https://
www.zephyrproject.org/wp-content/uploads/2024/10/Zephyr-
Overview-20241017.pdf (visited on 11/04/2024) (cit. on p. 58).

[72] RIOT. RIOT - Boards. url: https://www.riot-os.org/boards.
html (visited on 11/05/2024) (cit. on p. 59).

[73] Rafael Raymundo Belleza and Edison de Freitas Pignaton. “Perfor-
mance study of real-time operating systems for internet of things
devices”. In: IET Software 12.3 (2018). _eprint: https://onlineli-
brary.wiley.com/doi/pdf/10.1049/iet-sen.2017.0048, pp. 176–182. issn:
1751-8814. doi: 10 . 1049 / iet - sen . 2017 . 0048. url: https : / /
onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2017.0048
(visited on 11/05/2024) (cit. on p. 59).

[74] Petteri Aimonen. nanopb. original-date: 2015-04-29T17:21:37Z. Nov. 5,
2024. url: https : / / github . com / nanopb / nanopb (visited on
11/05/2024) (cit. on p. 59).

[75] RIOT. RIOT Documentation. url: https://doc.riot-os.org/
(visited on 02/13/2024) (cit. on pp. 61, 63, 67, 85, 87).

[76] TensorFlow Lite for Microcontrollers. In collab. with Google LLC,
Yuan Tang, and Arm Ltd. Version 2024.05.21. original-date: 2021-04-
08T21:40:50Z. Nov. 6, 2024. url: https://github.com/tensorflow/
tflite-micro (visited on 11/06/2024) (cit. on p. 62).

[77] Martine Lenders et al. Connecting the World of Embedded Mobiles:
The RIOT Approach to Ubiquitous Networking for the Internet of
Things. Jan. 9, 2018. arXiv: 1801.02833[cs]. url: http://arxiv.
org/abs/1801.02833 (visited on 11/01/2024) (cit. on pp. 63, 69).

[78] LoRa Alliance. LoRaWAN® specification v1.1. manual. 2017. url:
https : / / resources . lora - alliance . org / document / lorawan -
specification-v1-1 (cit. on p. 64).

[79] Eleni Tzirita Zacharatou, Volker Markl, and Elena Paz. Towards
Resilient Data Management for the Internet of Moving Things. Jan. 1,
2021 (cit. on p. 69).

https://doi.org/10.1109/JIOT.2018.2815038
https://ieeexplore.ieee.org/document/8315125/
https://ieeexplore.ieee.org/document/8315125/
https://www.zephyrproject.org/wp-content/uploads/2024/10/Zephyr-Overview-20241017.pdf
https://www.zephyrproject.org/wp-content/uploads/2024/10/Zephyr-Overview-20241017.pdf
https://www.zephyrproject.org/wp-content/uploads/2024/10/Zephyr-Overview-20241017.pdf
https://www.riot-os.org/boards.html
https://www.riot-os.org/boards.html
https://doi.org/10.1049/iet-sen.2017.0048
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2017.0048
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2017.0048
https://github.com/nanopb/nanopb
https://doc.riot-os.org/
https://github.com/tensorflow/tflite-micro
https://github.com/tensorflow/tflite-micro
https://arxiv.org/abs/1801.02833 [cs]
http://arxiv.org/abs/1801.02833
http://arxiv.org/abs/1801.02833
https://resources.lora-alliance.org/document/lorawan-specification-v1-1
https://resources.lora-alliance.org/document/lorawan-specification-v1-1

136 Bibliography

[80] TTN mapper. url: https://ttnmapper.org (cit. on pp. 80, 113).
[81] LoRa Alliance. LoRa alliance member NetID policy and terms. man-

ual. July 2024. url: https://lora-alliance.org/wp-content/
uploads/2024/08/LoRa-Alliance-Member-NetID-Policy-and-
Terms-July-2024.pdf (cit. on p. 81).

[82] The Things Industries. Major Changes In The Things Stack. url:
https : / / www . thethingsindustries . com / docs / the - things -
stack/migrating/migrating-from-v2/major-changes/ (visited
on 10/01/2024) (cit. on p. 82).

[83] Andrew Rice and Simon Hay. “Decomposing power measurements
for mobile devices”. In: 2010 IEEE International Conference on Per-
vasive Computing and Communications (PerCom). 2010 IEEE In-
ternational Conference on Pervasive Computing and Communica-
tions (PerCom). Mannheim, Germany: IEEE, Mar. 2010, pp. 70–78.
isbn: 978-1-4244-5329-0. doi: 10.1109/PERCOM.2010.5466991. url:
http://ieeexplore.ieee.org/document/5466991/ (visited on
08/01/2023) (cit. on p. 88).

[84] Richard D Hipp. SQLite. tex.version: 3.31.1. 2024. url: https://www.
sqlite.org/index.html (cit. on p. 96).

[85] The pandas development team. pandas-dev/pandas: Pandas. Sept. 20,
2024. doi: 10.5281/zenodo.13819579. url: https://zenodo.org/
records/13819579 (visited on 09/30/2024) (cit. on p. 97).

[86] Mark Raasveldt and Hannes Muehleisen. DuckDB. url: https://
github.com/duckdb/duckdb (cit. on p. 97).

[87] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing
in Science & Engineering 9.3 (2007). Publisher: IEEE COMPUTER
SOC, pp. 90–95. doi: 10.1109/MCSE.2007.55 (cit. on p. 97).

[88] Charles R. Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (Sept. 2020). Publisher: Springer Science and Business Media
LLC, pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https:
//doi.org/10.1038/s41586-020-2649-2 (cit. on p. 97).

https://ttnmapper.org
https://lora-alliance.org/wp-content/uploads/2024/08/LoRa-Alliance-Member-NetID-Policy-and-Terms-July-2024.pdf
https://lora-alliance.org/wp-content/uploads/2024/08/LoRa-Alliance-Member-NetID-Policy-and-Terms-July-2024.pdf
https://lora-alliance.org/wp-content/uploads/2024/08/LoRa-Alliance-Member-NetID-Policy-and-Terms-July-2024.pdf
https://www.thethingsindustries.com/docs/the-things-stack/migrating/migrating-from-v2/major-changes/
https://www.thethingsindustries.com/docs/the-things-stack/migrating/migrating-from-v2/major-changes/
https://doi.org/10.1109/PERCOM.2010.5466991
http://ieeexplore.ieee.org/document/5466991/
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://doi.org/10.5281/zenodo.13819579
https://zenodo.org/records/13819579
https://zenodo.org/records/13819579
https://github.com/duckdb/duckdb
https://github.com/duckdb/duckdb
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

	Introduction
	Context
	Problem
	Approach
	Contributions

	Background
	Sensor Network Databases (SNDB)
	Data Model
	Query Language Features
	Architecture
	Sensor Network Databases & their Network Topology
	A Modern Sensor Network Database

	Networking
	Network Architecture
	LoRaWAN

	Evaluating SNDB Performance on a Testbed
	Summary

	Related Work
	Power Consumption and Sensor Network Databases
	Code Offloading in Distributed Database Systems
	Query shipping / Function shipping
	Data Shipping
	Hybrid Shipping

	Summary

	Terra - Design & Implementation
	Requirements
	Functional Requirements
	Non-functional Requirements

	Integration with NebulaStream
	Analysis
	Communication
	Query Execution
	ML Inference
	Integration

	Design
	Terra
	Integration into NebulaStream

	Implementation
	Protocol Buffers
	NebulaStream Integration
	MicroPython Proof of Concept
	C Port

	Future work
	Summary

	Cost Model
	Introduction
	Energy Cost Model
	Constants
	Query Length
	Response Rate
	Tensorflow Lite
	Final Model
	Assumptions and Trade-offs

	Experimental Framework
	Testbed
	System
	Metrics
	Workload
	Experiment

	Experimental Results
	Data Processing
	Experiments
	Model Results
	Model Discussion
	Model Evaluation

	Future Work
	Summary

	Lessons Learnt with IoT-LAB
	Networking and IoT-LAB
	Devices
	Power Monitoring
	Summary

	Conclusion
	Bibliography

