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Abstract

Data science has experienced large-scale and rapid development over the last
decade. The main drivers of this development are the availability of a large amount
of data, periodically growing computation power, and improving learning and data
analysis algorithms. The extensive adoption of deep learning in this field demands
computational support for the training phase of the models. For this purpose, en-
terprises share GPU clusters among different production teams to increase GPU
utilization. However, there is sub-optimal utilization of such clusters. This is due
to (1) the lack of fine-grained sharing mechanisms of GPUs, (2) scheduling tasks as
black boxes, which considers no knowledge about resource requirements of the task.

In this thesis, we start by determining the right set of monitoring tools and met-
rics that is relevant when reasoning about the hardware utilization of deep learning
training. Then, we study collocating deep learning training tasks with the available
capabilities of NVIDIA GPUs (GPU streams, MPS, and MIG) to investigate its impact
on GPU utilization. While our results emphasize the benefits of collocation, it also
demonstrates the challenge of fitting within the available GPU memory as the tasks
of different deep learning models collocate. Therefore, as a next step, we propose
a machine learning-based mechanism to estimate the GPU memory consumption of
deep learning model architectures during training. The estimations are helpful for
cluster schedulers and resource managers to map training tasks to processors more
efficiently. In the final step, we build a flexible resource manager that provides auto-
mated workload collocation allowing different collocation and scheduling options to
the end-users. Furthermore, we perform a vast range of experiments and provide the
community with our findings and insights.

The findings of this thesis have significant implications for resource-efficient deep
learning. As deep learning models continue to grow in size and complexity, efficient
GPU utilization becomes a critical challenge. By enabling better workload collocation
and accurate GPU memory estimation, this research contributes to reducing wasted
computational resources, improving throughput, and making deep learning training
more sustainable. These insights are particularly valuable for cloud service providers,
research institutions, and enterprises that rely on shared GPU clusters, ensuring
that deep learning training workloads run more efficiently, cost-effectively, and with
minimal resource wastage.
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Resumé

Data science har oplevet en omfattende og hurtig udvikling i løbet af det sidste årti.
De primære drivkræfter bag denne udvikling er tilgængeligheden af store mængder
data, den kontinuerlige vækst i computerkraft samt forbedringer i lærings- og dataanal-
ysealgoritmer. Den udbredte anvendelse af deep learning inden for dette felt skaber et
øget behov for ressourcer, især i træningsfasen af modeller. For at imødekomme dette
behov deler virksomheder GPU-klynger mellem forskellige produktionsteams for at
maksimere GPU-udnyttelsen. Dog er udnyttelsen af disse klynger ofte suboptimal,
primært på grund af (1) manglen på finmaskede delingsmekanismer for GPU’er og (2)
planlægning af træningsopgaver som sorte bokse uden kendskab til deres specifikke
ressourcekrav.

I denne afhandling identificerer vi først det rette sæt af overvågningsværktø-
jer og relevante metrikker til at analysere hardwareudnyttelsen i deep learning-
træning. Derefter undersøger vi, hvordan deep learning-træningsopgaver kan samek-
sistere ved at udnytte de eksisterende funktioner i NVIDIA GPU’er, såsom GPU-
streams, Multi-Process Service (MPS) og Multi-Instance GPU (MIG), for at vur-
dere deres effekt på GPU-udnyttelsen. Vores resultater understreger fordelene ved
kollokation, men fremhæver også udfordringerne ved at tilpasse sig den tilgæn-
gelige GPU-hukommelse, når flere deep learning-modeller trænes samtidigt. Der-
for foreslår vi i næste trin en maskinlæringsbaseret metode til at estimere GPU-
hukommelsesforbruget af deep learning-modeller under træning. Disse estimater
hjælper klyngeplanlæggere og ressourceforvaltere med at tildele træningsopgaver
mere effektivt til GPU’er.

Som det sidste trin udvikler vi en fleksibel ressourceforvalter, der muliggør au-
tomatiseret arbejdsbelastningskollokation og giver brugerne forskellige kollokations-
og planlægningsmuligheder. Derudover udfører vi en bred vifte af eksperimenter og
deler vores resultater og indsigter med forskningssamfundet.

Resultaterne af denne afhandling har væsentlige implikationer for ressourceeffek-
tiv deep learning. Efterhånden som deep learning-modeller bliver større og mere
komplekse, bliver effektiv GPU-udnyttelse en kritisk udfordring. Ved at mulig-
gøre bedre arbejdsbelastningskollokation og præcise GPU-hukommelsesestimater
bidrager denne forskning til at reducere spild af beregningsressourcer, forbedre
systemets gennemløb og gøre deep learning-træning mere bæredygtig. Disse ind-
sigter er særligt værdifulde for cloud-tjenesteudbydere, forskningsinstitutioner og
virksomheder, der er afhængige af delte GPU-klynger, da de sikrer, at deep learning-
træningsopgaver kører mere effektivt, omkostningseffektivt og med minimalt ressource-
forbrug.
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Chapter 1

Introduction

Machine Learning (ML) has become widespread since it could offer better
solutions to problems that were hard to address with traditional programming.

It puts forward solutions to problems in health, finance, entertainment, science, and
engineering fields. For instance, in the medical field, ML models aid doctors in
diagnosing their patients. Deep Learning (DL), as a subbranch of ML, has gotten
special attention since the 2012 ImageNet competition [1]. In that contest, the DL
model, AlexNet [2], defeated other solutions with a dramatically large difference in
accuracy for the image classification task. Nowadays, DL models can be found in
the core of various services offered by technology giants like Google and Microsoft
to medium- and small-sized companies, like Speechify. Language translation, text-
to-voice, and image-based search services are examples encompassing DL models at
their core [3, 4, 5, 6]. For instance, Speechify’s service is a text-to-voice task backed
by DL models.

DL models’ computing and memory requirements are higher than traditional ML
solutions. Furthermore, the size of their models and the datasets they are trained on
has increased drastically to boost the models’ accuracy over time [7]. The training
process is a highly parallel computation. This means these tasks have many sub-
tasks that can be executed independently [8]. The case is comparable to a grape farm
composed of many lanes (sub-tasks) and work can be done on each lane independently
meaning that each worker can work on one lane at a time (thread). Central Processing
Units (CPUs) are like strong workers who work fast. On the other hand, Graphics
Processing Units (GPUs) are comparable to teams of weaker workers. Consider the
scenario of the aforementioned grape farm and the goal is to harvest. Assume that the
farm consists of 10 long lanes that need to be harvested. Note that on each lane only
one worker can work at a time. A strong worker (comparable to a CPU) can finish
harvesting each lane in 1 day, while a weak worker (comparable to a computing core
in GPU) finishes a lane in 3 days. If we hire a strong worker (CPU), who can finish the
harvest in 10 days, it will cost us as much as the 10 weaker workers. Hiring a team of
10 weaker workers (GPU) can finish the work in 3 days, since each worker can work
on each lane of the farm. When it comes to deep learning training tasks, they have
a parallelism comparable to the number of farm lanes that should be harvested. Due
to this need of extreme parallelism, GPUs are their primary commodity accelerator
processors.
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Table 1.1: First and Latest NVIDIA GPUs’ Specifications

GPU
Clock
(MHz)

#SMs Memory
(GB)

Memory
Bandwidth
(GB/s)

FP32
(GFLOPS)

Thermal
Design
Power
(TDP)
(Watt)

G80
(2007) [10] 600 16 1.536 76.8 345.6 171

H200 SXM
(2024) [11] 1830 > 132 141 4700 67000 700

From 2007 with the emergence of the first programmable GPU, till the end of
2024, GPUs’ computing power increased intensely. Table 1.1 shows some of the
specification changes of the first and one of the latest NVIDIA data center GPU.
It shows around 190x computing power increase in terms of 32-bit floating-point
calculations and around 62x improvements in the memory bandwidth. On the other
hand, it should be mentioned that also the tasks’ computing and memory requirements
have increased over time. New applications e.g., more GPU power demanding video
games, rendering applications, and deep learning training tasks emerged. Figure 1.1
shows how much computing capability is in demand for pushing AI forward [9].

1.1 GPU Underutilization Challenge
A study analyzing GPU utilization for deep learning jobs in Microsoft cloud

over a two month period shows that GPUs remain dramatically underutilized [12],
∼52% utilization on average. Underutilization of computing resources has multiple
negative implications: (1) wasted cost on obtaining the computing resources, (2)
wasting energy while they burn electricity but do not do actual computing.

One key reason why GPUs remain underutilized is that not all development and
data science teams train super-heavy cutting-edge models on gigantic datasets. They
train different-sized models and do transfer learning, or their dataset’s size limits
their model’s complexity and size. For example, CNN-based AlexNet has 60 million
parameters; on the other hand, the transformer-based Wu Dao 2.0 model [13] has
1.75 trillion parameters. The former one’s execution leaves an H200 GPU intensely
underutilized, while the latter would fill an H200 GPU. GPU utilization is tightly
related to what degree of inherent parallelism an application has. Let’s go back to our
previous grape farm example, underutilization is comparable to hiring more workers
while not having enough work to do or the unsuitability of the work to be shared with
more than a specific number of workers.

Another reason for GPU underutilization is GPUs have traditionally lacked ad-
vanced virtual memory and fine-grained resource-sharing mechanisms, leading to
underutilization issues. Instead of comprehensive virtual memory systems, GPUs
employ simplified resource-sharing methods such as NVIDIA’s CUDA Streams and
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Figure 1.1: Training Computation Demand (3.4-month doubling) and
Moore’s Law Trend (2-year doubling) [9]

Multi-Process Service (MPS). CUDA Streams allow for task serialization, where op-
erations are executed in a sequential manner within each stream. MPS enables spatial
resource sharing by allowing multiple processes to share the GPU simultaneously,
reducing context-switching overhead. However, MPS does not support memory swap-
ping or paging features, which can result in out-of-memory errors when the combined
memory demands of concurrent tasks exceed the GPU’s physical memory capacity
[14]. This limitation is akin to a team of workers who refuse to take on another
job until they have fully completed their current task. In a real-world scenario, such
rigid task allocation would be considered a management inefficiency. To illustrate
how this contributes to resource underutilization, imagine two neighboring farmers,
each with 10 lanes of grape to harvest. They request a company to send a team of
workers to assist them. The company sends a team of 30 workers. However, due to
an inefficient work policy, the team harvests only one farm at a time, meaning that
only 10 workers are actively harvesting while the remaining 20 remain idle and do not
work on the other farm. Once the first farm is fully harvested, the team moves to the
next farm, again leaving two-thirds of the workforce idle at any given time. Similarly,
GPUs, constrained by coarse-grained scheduling and memory limitations, often fail
to distribute workloads efficiently, leading to significant resource underutilization.

Finally, on the side of software, adopting HPC/ big data-fit schedulers/ resource
managers exacerbates the issue of GPU underutilization. These systems assign GPUs
to tasks exclusively and look at the tasks as black boxes [15]. To understand it,
consider our grape farm example again, farmers go to a manager who connects them
to team workers. This manager assigns one team worker to a farmer ignoring the
amount of lanes in that farm and only the team can be hired by a farmer at a time till
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the harvest is over. It is problematic as some farms having 10 lanes may end up with
a workers team of 200 people and also the farmer is not allowed to share the workers
with other farmer(s).

In this thesis, we address the GPU underutilization issue with resource-aware
collocation of deep learning training tasks on GPUs at the scheduler and resource
manager level and show how much it improves GPU utilization and energy efficiency.
Remember the grape farm example, we aim to make the intermediate manager con-
necting farmers to worker teams to be more resource-intelligent and able to share
a team of workers among multiple farms if it is possible. However, making this
practical has its challenges. First, we need to know how much computing and mem-
ory resources are requried for the deep learning training tasks. It is important if we
send two tasks to a GPU and their memory requirements together are higher than
what the GPU provides, later coming task will crash because of the out-of-memory
error. Another issue can be on-chip resource interference if both of the tasks have a
very similar behavior (like both are compute-bound or memory-bound), which causes
both tasks to experience longer execution time. At the same time, we need to know
the currently available resources for GPUs by monitoring them with representative
monitoring metrics. To make it comparable to our farm example, we need to know
the number of lanes (representative metric to match with the size of the team we
decide to dispatch to do the job), and not only whether the team is actively working
in the farm. Furthermore, the number of idle workers of the dispatched team should
be monitored.

1.2 Right Tools and Metrics
A fundamental challenge in addressing GPU underutilization is effectively under-

standing and measuring GPU utilization. Without the right profiling and monitoring
toolset and well-defined metrics, inefficiencies in computation become difficult to
diagnose, leading to confusion in resource management decisions. Accurate and
representative metrics are essential for identifying bottlenecks, as simplistic GPU
utilization metrics often fail to reflect how GPU computing resources are actually
used [16]. This limitation arises from the common definition of GPU utilization,
which considers a GPU as "utilized" whenever at least one thread is executing on it
within a given time slot, regardless of overall efficiency.

Additionally, different profiling and monitoring tools have their own advantages,
limitations, and computational overheads, making it crucial to evaluate their effec-
tiveness in specific scenarios. Choosing the right combination of metrics and tools
is therefore a prerequisite for conducting informed analyses and implementing mean-
ingful optimization efforts across various abstraction layers. In Chapter 3, we provide
a detailed evaluation of available profiling and monitoring tools and metrics, iden-
tifying the most representative ones for online, real-time decision-making, a critical
requirement for schedulers and resource managers.

Understanding GPU utilization requires more than a simplistic utilization metric;
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selecting the right profiling and monitoring tools with representative metrics is essen-
tial for accurate diagnosis, efficient resource management, and informed optimization
strategies across different abstraction layers.

1.3 Understanding Collocation
Task collocation is a fundamental technique for improving GPU utilization by

enabling multiple training tasks to run concurrently on the same GPU [17]. One of
the key steps in enhancing GPU resource efficiency is understanding how workload
collocation affects both performance and energy consumption. While collocation has
the potential to increase GPU load and utilization, it also introduces challenges such
as resource interference and memory contention, which can lead to unpredictable
slowdowns and out-of-memory (OOM) crashes. Without a systematic approach to
benchmarking and analyzing collocation, its benefits and trade-offs remain unclear,
limiting its practical applicability in the design of efficient schedulers and resource
managers.

To address this, Chapter 4 presents a detailed analysis of collocating deep learning
training tasks on GPUs. This study evaluates how various collocation strategies
impact GPU performance metrics, considering factors such as model architecture,
batch size, and memory bandwidth demands. Our results demonstrate that while
collocation can significantly enhance GPU utilization, its effectiveness depends on
workload characteristics and system-level configurations. Additionally, this work
explores the available NVIDIA mechanisms for collocation, providing insights into
their benefits and limitations.

Selecting an optimal collocation strategy is therefore essential for developing effi-
cient scheduling and resource management solutions. A well-informed, collocation-
aware resource manager can balance workload execution, minimize resource con-
tention, and maximize overall GPU throughput. By systematically benchmarking
and analyzing the impact of collocation in deep learning training, this thesis lays the
foundation for more intelligent resource management and allocation strategies that
leverage GPU resources more effectively.

Collocation can enhance GPU utilization, but its benefits depend on a deep un-
derstanding of resource interference, memory contention, and workload interactions.
Benchmarking and analyzing collocation is therefore crucial for designing efficient
schedulers and resource managers that maximize GPU efficiency while minimizing
performance degradation.

1.4 Estimating GPU Memory Requirement of Train-
ing Tasks

Understanding and predicting GPU memory requirements for deep learning train-
ing tasks is crucial for avoiding out-of-memory (OOM) crashes, particularly in collo-
cated workloads. Deep learning models, including MLPs, CNNs, and Transformers,
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exhibit diverse memory usage patterns based on factors such as architecture, batch
size, and parameter count. Without an accurate estimation of GPU memory con-
sumption, schedulers and resource managers lack the necessary insights to make
informed decisions when mapping tasks to shared GPU resources. This lack of
foresight often leads to inefficient resource allocation, unexpected OOM errors, and
overall suboptimal utilization of GPU clusters.

To address this, in Chapter 5, we present GPUMemNet, a framework for building
a dataset and training predictive models to learn the patterns governing GPU memory
usage in deep learning workloads. This study collects extensive profiling data from
MLP, CNN, and Transformer architectures, capturing key features that influence
memory consumption during training. By leveraging this dataset, we train machine
learning models to predict memory requirements based on network characteristics,
hyperparameters, and training configurations. The resulting models provide valuable
insights that can guide scheduling and resource management policies, enabling safer
and more efficient collocation of workloads. Also, we make the dataset we built and
trained our models on publicly available.

Integrating GPUMemNet into scheduling frameworks has the potential to reduce
OOM crashes by allowing schedulers to anticipate memory demands before assign-
ing tasks to GPUs. A memory-aware scheduler can dynamically allocate resources,
prevent memory overcommitment, and ensure stable execution across shared envi-
ronments. By systematically analyzing and modeling GPU memory usage, this thesis
contributes to the development of more intelligent and robust resource management
strategies for deep learning workloads.

Predicting GPU memory usage is essential for preventing OOM crashes in collo-
cated workloads. By building GPUMemNet to model memory consumption patterns,
this work provides critical insights for schedulers and resource managers, enabling
smarter task allocation and more efficient GPU utilization.

1.5 Collocation-Aware Resource Manager
Maximizing GPU utilization and energy efficiency in deep learning training re-

quires a comprehensive approach that integrates accurate profiling, collocation anal-
ysis, and memory estimation into resource management decisions. Throughout this
thesis, we have identified the right set of profiling tools and metrics, studied the im-
pact of collocation on GPU performance, and developed GPUMemNet, a predictive
model for estimating GPU memory requirements. Building upon these foundations,
Chapter 6 presents the design, implementation, and evaluation of a collocation-aware
resource manager that leverages these insights to enable efficient and intelligent re-
source management.

The proposed resource manager incorporates collocation as a fundamental schedul-
ing strategy, ensuring that deep learning workloads are assigned to GPUs in a way
that maximizes resource utilization while minimizing performance degradation and
avoiding OOM crashes. To achieve this, we design and evaluate a set of collocation
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policies that balance compute efficiency, memory constraints, and energy consump-
tion. These policies make use of profiling data, memory usage predictions, and
workload characteristics to dynamically determine which tasks can be collocated
safely and efficiently.

Moreover, despite careful profiling and predictive modeling, OOM crashes may
still occur due to unpredictable factors such as GPU memory fragmentation or slight
mispredictions in memory estimation. To address this, we develop a simple yet
effective recovery mechanism that detects and handles OOM failures, allowing the
scheduler to send them again for execution. This mechanism ensure the reliability of
the system.

The results demonstrate that strategic collocation decisions can significantly im-
prove GPU utilization while reducing energy waste, offering a promising direction
for large-scale deep learning infrastructure. By integrating insights from monitoring
the hardware resources, and memory estimation from tasks, this resource manager
provides a practical framework for optimizing deep learning training workloads in
shared environments.

Collocation-aware scheduling is key to improving GPU utilization and energy
efficiency in deep learning training. By combining profiling, memory estimation,
intelligent policy design, and an OOM recovery mechanism, this work presents a
practical resource manager that enables efficient workload collocation, reduces un-
derutilization, and ensures system stability.

1.6 Thesis Statement and Contributions
This thesis contributes to tackling GPU underutilization challenge and improving

performance and energy-efficiency of shared GPU clusters for deep learning training.

Thesis Statement

"To improve GPU utilization and energy efficiency for deep learning training, one
must build resource managers capable of intelligent workload collocation on GPUs.

Such resource managers will require a memory estimation tool for deep learning
workloads to ensure effective collocation of deep learning tasks."

The contributions of this thesis are summarized as follows:

• Comprehensive Analysis of GPU Profiling and Monitoring Tools

– We conduct an in-depth evaluation of existing GPU profiling and monitor-
ing tools, identifying key metrics that accurately reflect GPU utilization
during deep learning training.

– Our analysis provides insights into the strengths and limitations of var-
ious tools, guiding the selection of appropriate methods for real-time
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decision-making in resource management or identifying the bottlenecks
for optimizations in different levels.

• Systematic Study on Deep Learning Training Task Collocation

– We investigate the impact of collocating multiple deep learning training
tasks on a single GPU, analyzing how different collocation strategies affect
performance, memory usage, and energy consumption.

– Our findings highlight the conditions under which collocation is benefi-
cial and outline potential pitfalls, informing the design of more effective
resource management policies.

• Development of GPUMemNet for Memory Usage Prediction

– We review the available predictive methods for GPU memory requirement
of deep learning tasks and show their inefficiency and inaccuracy.

– We introduce GPUMemNet, a dataset with a set of predictive models
designed to estimate the GPU memory requirements of various deep
learning workloads.

– By leveraging a comprehensive dataset of neural network training tasks,
GPUMemNet enables resource managers to make informed decisions,
reducing the risk of out-of-memory errors during task execution.

– We pave the way for building GPU utilization estimators and encourage
the community to develop them by releasing all our artifacts.

• Design and Implementation of a Collocation-Aware Resource Manager

– Building upon our profiling, collocation analysis, and memory prediction,
we develop a resource manager that intelligently schedules deep learning
tasks on shared GPU clusters at the server scale.

– We introduce a recovery mechanism in case of training errors and incor-
porate it to the resource manager as well.

– The proposed final system dynamically allocates resources based on real-
time monitoring and predictive insights, enhancing GPU utilization and
energy efficiency while maintaining system stability.

The aforementioned contributions resulted in the following publications, open-
source software, and dataset:

• Publications

– Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, and Pınar Tözün.
"Profiling and monitoring deep learning training tasks." Proceedings
of the 3rd Workshop on Machine Learning and Systems. 2023.
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– Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, and Pınar Tözün.
"An Analysis of Collocation on GPUs for Deep Learning Training." Pro-
ceedings of the 4th Workshop on Machine Learning and Systems. 2024.

– (To be submitted) Chapters 5 and 6 as "Collocation-aware Resource
Management with GPU Memory Usage Estimations"

• Open-source Tools and Datasets

– GPUMemNet Artifacts
https://github.com/ehsanyousefzadehasl/GPUMemNet
This repository includes the dataset and all scripts developed throughout
the entire process, encompassing data gathering, cleaning, analysis, and
training notebooks.

– Resource-Aware Data Science Resource Manager (RAD-RM)
https://github.com/ehsanyousefzadehasl/RAD-RM
This repository includes the source code for the resource manager, encom-
passing all models, the Philly trace analyzer, and the workload mapper
utilized in evaluating the proposed policies and mechanisms in this thesis.

Beyond the scope of this thesis, I have also contributed to the following publications
and open-source software:

• Publications

– Ties Robroek, Aaron Duane, Ehsan Yousefzadeh-Asl-Miandoab, and
Pınar Tözün. "Data Management and Visualization for Benchmarking
Deep Learning Training Systems." DEEM 2023

– (Under Review) Shiva Parsarad, Ehsan Yousefzadeh-Asl-Miandoab,
Florina M.Ciorba, Pınar Tözün, and Isabel Wagner. "DP-Morph: Im-
proving the Privacy–Utility–Performance Trade-off for Differentially
Private OCT Segmentation"

• Open source tools

– radT: Resource Aware Data science Tracker
(https://github.com/Resource-Aware-Data-systems-RAD/radt
Data tracking and management tool introduced at DEEM.

1.7 Roadmap
The remainder of this thesis is organized as follows:

• Chapter 2 provides the necessary background and related work on tackling
GPU underutilization challenge. This chapter, after building the foundation
for understanding the concepts of the research, discusses proposed techniques

https://github.com/ehsanyousefzadehasl/GPUMemNet
https://github.com/ehsanyousefzadehasl/RAD-RM
(https://github.com/Resource-Aware-Data-systems-RAD/radt
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and methods for resource management in the community, their limitations, and
open research questions that motivate the contributions of this thesis.

• Chapter 3 presents a detailed study on profiling and monitoring tools and
GPU utilization metrics. This chapter explores the right set of metrics and
tools required to have a fine-grained understanding of GPU utilization. It
evaluates the strengths and limitations of different profiling tools and establishes
a methodology for collecting meaningful performance data, which serves as a
foundation for later chapters.

• Chapter 4 investigates collocating deep learning training tasks on NVIDIA
GPUs. It analyzes three different collocation strategies, evaluating their impact
on GPU utilization, memory efficiency, and performance stability. The find-
ings from this study provide essential insights into designing better resource
management policies.

• Chapter 5 introduces GPUMemNet, a framework for building a dataset and
training predictive models to estimate GPU memory requirements for deep
learning workloads. This chapter details the data collection process, key fea-
tures extracted, and model training methodologies used to predict GPU mem-
ory consumption. The goal of this work is to provide schedulers with accurate
memory estimations to prevent out-of-memory (OOM) crashes when collocat-
ing tasks.

• Chapter 6 presents the design, implementation, and evaluation of a collocation-
aware resource manager. This scheduler incorporates the insights gained from
profiling and monitoring tools and metrics analysis, collocation analysis, and
memory estimation to intelligently allocate tasks to GPUs. It also introduces a
simple recovery mechanism to handle unexpected OOM crashes due to factors
like memory fragmentation or mispredictions. Furthermore, this chapter ex-
plores various collocation policies, evaluating their effectiveness in increasing
GPU utilization and energy efficiency.

• Finally, Chapter 7 summarizes the key contributions of this thesis, reflects on
its broader implications for GPU resource management in deep learning, and
outlines potential directions for future research.
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Chapter 2

Background and Motivation

Deep learning has revolutionized various fields by enabling data-driven solutions to
complex problems, but its success comes with significant computational and resource
management challenges. This chapter provides an overview of deep learning and
widely used machine learning frameworks that support model development and train-
ing. We then discuss the role of GPUs in accelerating deep learning workloads and
explore different GPU sharing mechanisms, including multi-process service (MPS)
and multi-instance GPU (MIG). Furthermore, we examine existing schedulers and re-
source management systems, such as SLURM, and their limitations in handling deep
learning workloads. Finally, we highlight open challenges in resource management
and scheduling for deep learning, setting the stage for our proposed approach in later
chapters.

2.1 Deep Learning Training
Unlike classical machine learning algorithms, which often require manual feature

engineering, deep learning models learn hierarchical representations directly from
raw data. This ability to automatically extract meaningful patterns has enabled break-
throughs in areas such as image classification, speech recognition, natural language
processing, and autonomous driving. By leveraging large-scale data and neural net-
works with many layers, deep learning provides superior accuracy and adaptability,
even in scenarios where crafting explicit rules or heuristics is impractical.

However, the success of deep learning depends heavily on the availability of
large and diverse datasets, which are often challenging to construct. High-quality
datasets for deep learning require extensive data collection, accurate labeling, and
preprocessing to ensure consistency. Manual annotation, a common approach for
tasks like image segmentation or object detection, is labor-intensive and prone to
human error [18]. In some domains, such as healthcare or autonomous systems, data
privacy, security, and accessibility further complicate dataset creation. Moreover, the
need for domain-specific datasets that are both representative and unbiased is critical
for ensuring that deep learning models generalize well to real-world scenarios [19].

Training deep learning models is computationally intensive, often requiring spe-
cialized hardware like GPUs to handle the massive matrix operations involved in
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forward and backward propagation [20]. The increasing complexity of modern ar-
chitectures, such as transformers [4] and generative adversarial networks (GANs)
[21], demands ever-higher computational resources and memory capacity. Large-
scale models may involve billions of parameters, necessitating distributed computing
across multiple GPUs or even entire clusters. Memory limitations on GPUs can
restrict batch sizes, slowing down training and requiring optimization techniques to
fit models into available resources.

Additionally, the energy consumption of deep learning training is a growing con-
cern [22]. Training state-of-the-art models can take days or weeks, consuming
significant electricity and contributing to the carbon footprint of AI research. Tech-
niques such as mixed-precision training, model pruning, and transfer learning are
being actively developed to mitigate these issues by reducing resource requirements
without compromising performance. Despite these challenges, the potential of deep
learning to revolutionize industries continues to drive innovation in both algorithms
and infrastructure.

2.1.1 Deep Learning Training Process and CPU vs. GPU Execu-
tion

The training process of deep learning models consists of multiple stages, each
involving different computational tasks. These tasks are executed either on the CPU
or GPU, depending on their computational characteristics.

Data Preprocessing (CPU-Intensive)

Before training begins, raw data undergoes several preprocessing steps, such as
resizing, normalization, data augmentation (for images), and tokenization (for text).
These operations typically run on the CPU because:

• They involve irregular memory access patterns and file I/O.

• They are not highly parallelizable and often require interaction with storage
devices.

• Many deep learning frameworks, such as PyTorch and TensorFlow, utilize
CPU-based multi-threading for efficient data pipeline management.

To reduce preprocessing overhead, frameworks implement data loaders with prefetch-
ing and parallel processing, ensuring a steady supply of batches to the GPU.

Model Initialization and Forward Pass (GPU-Intensive)

Once data is prepared, the neural network processes input data in the forward pass,
where:

• Data propagates through layers (e.g., convolutional, recurrent, or transformer
blocks).
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• Matrix multiplications, convolutions, and activation functions are applied.

Since these computations involve massive tensor operations, GPUs are used due to
their high parallelism and optimized linear algebra libraries such as cuDNN and
cuBLAS.

Loss Computation and Backpropagation (GPU-Intensive)

During training, the model’s predictions are compared with ground-truth labels
using a loss function (e.g., cross-entropy, mean squared error). Then, backpropagation
computes gradients for each model parameter using the chain rule:

• Gradient computation involves large-scale matrix differentiation.

• GPUs accelerate these calculations through parallel execution.

Backpropagation is the most computationally expensive phase, requiring high mem-
ory bandwidth and efficient gradient computations.

Weight Updates and Optimization (GPU/CPU Hybrid)

Once gradients are computed, model parameters are updated using an optimizer
(e.g., stochastic gradient descent, Adam). This process can be executed on:

• The GPU, if all model parameters fit within GPU memory.

• The CPU, in distributed settings where updates are aggregated across multiple
GPUs.

Optimized implementations such as mixed-precision training reduce memory usage
while maintaining numerical stability.

Checkpointing and Logging (CPU-Intensive)

Periodically, model parameters and training metrics (e.g., loss, accuracy) are saved
to disk. This is typically performed on the CPU because:

• File I/O operations are not GPU-accelerated.

• Logging frameworks such as TensorBoard and Weights & Biases manage train-
ing metadata asynchronously to avoid bottlenecks.

Inference and Post-Processing (CPU/GPU Hybrid)

Once trained, models can be deployed for inference, with execution depending on
the use case:

• GPU-based inference is preferred for real-time applications (e.g., autonomous
driving, robotics).
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• CPU-based inference is common in production settings where energy effi-
ciency is crucial.

Post-processing steps such as non-maximum suppression (for object detection) or
token decoding (for NLP tasks) are often CPU-bound due to their sequential nature.

2.1.2 Challenges and Optimization Strategies
Despite the advantages of GPU acceleration, training large-scale deep learning

models presents challenges:

• Memory Constraints: High-dimensional tensors require significant memory.
Techniques like mixed-precision training and gradient checkpointing help mit-
igate GPU memory bottlenecks.

• Batch Size Trade-offs: Large batch sizes improve GPU utilization but require
more memory, necessitating careful tuning.

• Energy Consumption: Training models at scale is energy-intensive. Effi-
cient architectures, model pruning, and hardware-aware training strategies are
actively researched to improve sustainability.

Deep learning continues to evolve, with innovations in hardware and algorithmic
efficiency driving advancements across industries. Understanding the interplay be-
tween CPUs and GPUs in training workflows is essential for optimizing performance
and scalability.

2.2 Machine Learning Frameworks
Machine learning frameworks are essential tools that simplify the development,

training, and deployment of machine learning models. These frameworks abstract
the complexities of mathematical operations and low-level programming, enabling
researchers and developers to focus on designing and refining models. By providing
features such as automatic differentiation [23], pre-built components, GPU accelera-
tion, and support for distributed training, frameworks significantly accelerate the pace
of innovation in machine learning. Among the most popular frameworks are PyTorch
[24], TensorFlow [25], Just After eXecution (JAX) [26], and MXNet [27], each of
which has distinct advantages tailored to specific research and production needs.

PyTorch

PyTorch [28], developed by Facebook AI Research, is one of the most widely used
frameworks in machine learning. It is particularly favored in academia for its dynamic
and flexible nature, which makes it ideal for research and experimentation. A key
feature of PyTorch is its support for dynamic computation graphs, also known as eager
execution, which allows operations to be executed immediately without pre-defining
the entire computational structure. This feature makes debugging and prototyp-
ing highly intuitive. PyTorch includes an extensive ecosystem of libraries, such as
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TorchVision for computer vision tasks, TorchText for natural language processing,
and TorchAudio for audio-related applications. It also supports GPU acceleration
through CUDA and enables distributed training for large-scale models. These fea-
tures make PyTorch a versatile choice for a wide range of machine learning tasks,
from natural language processing to generative modeling.

TensorFlow and Keras

TensorFlow [25], developed by Google, is a comprehensive machine learning
framework designed to cater to both research and production environments. Initially,
TensorFlow used static computation graphs, but with the release of TensorFlow 2.x,
it adopted eager execution, improving usability for researchers. TensorFlow offers
a robust set of tools for production, including TensorFlow Serving for deploying
models in production environments and TensorFlow Lite for optimizing models for
mobile and embedded devices. Additionally, its high-level Keras API simplifies the
process of building and training models, making it accessible for users of all expertise
levels. TensorFlow excels in handling large-scale applications, with strong support
for distributed training and deployment pipelines. Its versatility and production-
ready features make it a preferred choice for industrial applications and large-scale
deployments.

Keras [29] is a high-level, user-friendly interface for building and training machine
learning models. Originally developed as an independent library, Keras is now tightly
integrated with TensorFlow as its official high-level API. Keras acts as a wrapper
over complex, low-level libraries like TensorFlow, Theano [30], and CNTK [31],
abstracting the complexities of neural network programming and offering a simplified,
modular approach to model development. This abstraction makes Keras particularly
appealing for beginners and practitioners seeking to rapidly prototype deep learning
models. Its core design principles—simplicity, modularity, and extensibility—allow
users to build complex models using an intuitive interface with minimal code. Keras
provides pre-built layers, optimizers, loss functions, and metrics, enabling users to
focus on high-level design without delving into implementation details.

2.3 GPU Computing
GPUs are general-purpose parallel accelerators that have proven their efficiency

in a variety of parallel tasks, including graphics processing and, more recently, deep
learning training. Initially, GPUs were introduced as co-processors for accelerating
graphical applications like video games. At that time, programming GPUs required
the use of shader programming languages such as OpenGL and Microsoft DirectX,
which demanded deep expertise in computer graphics, GPU processor architecture,
data mapping to graphical constructs, and interpreting results from graphical data
[32].

In 2007, NVIDIA introduced CUDA, a parallel computing platform and applica-
tion programming interface (API), which revolutionized GPU programming. CUDA
made it significantly easier to program GPU devices for non-graphical applications,
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Figure 2.1: Three GPU sharing options; A, B, and C represent the
applications sharing a GPU

earning them the name General-Purpose GPUs (GPGPUs) [33]. This marked a
shift, enabling researchers and developers to leverage GPUs for a broad range of
compute-intensive applications.

One of the most transformative applications of GPUs has been in the fields of
machine learning and deep learning. These domains rely heavily on large-scale matrix
operations, which GPUs, with their thousands of parallel cores, are exceptionally
well-suited to handle. Unlike traditional CPUs, which are optimized for sequential
processing, GPUs excel at performing many calculations simultaneously, making
them ideal for training deep neural networks [34]. The ability to process large
datasets and perform complex computations efficiently has made GPUs indispensable
in machine learning workflows. This accelerated the development of groundbreaking
technologies like image recognition, natural language processing, and generative
models, propelling machine learning and deep learning to the forefront of artificial
intelligence research and applications.

Modern GPUs have grown exponentially in their computation and memory capa-
bilities and they suffer from underutilization. It means that the GPU consumes energy
and wears out but is not fully used. Over-provisioning, which means running more
than one application on a GPU, is one of the mainstream methods to tackle the chal-
lenge. However, unlike CPUs, GPU architecture lacks sophisticated resource-sharing
methods like virtual memory and fine-grain sharing.

There are three approaches to executing several applications on the currently
available Nvidia GPUs: submitting more than one application with various streams
[35], with multi-process service (MPS) [14], and splitting GPU into smaller isolated
GPUs with MIG [36]. Figure 2.1 shows the difference between these options from
interference level, which is delved into in the following text.

GPU Streams

CUDA 7 introduced the option of running multiple processes simultaneously
using their own CUDA stream on the same GPU. A CUDA stream is a sequence of
operations that execute on the GPU (i.e., kernels and data transfers) in the order in
which the host code issues them. While operations within a stream are guaranteed to



2.3. GPU Computing 17

execute in the prescribed order, operations in different streams can run concurrently.
This concurrency (interleaving of the streams) greatly helps with overlapping the data
transfers between the host CPU and GPU [35]. From now on, we call this type of
workload collocation the naive method in this document. In naive collocation, the
opportunity for sharing the hardware is limited. This is because the streams have
to share the GPU compute resources in a time-based manner rather than having
resources explicitly dedicated for each stream.

GPU MPS

NVIDIA introduced the Hyper-Q technology with Kepler architecture in 2012.
Hyper-Q enabled several CPU threads to launch kernels on a single GPU resulting in
increased GPU utilization and decreased CPU idle times. Hyper-Q also eliminates
false dependencies across different applications to increase GPU utilization. Before
Hyper-Q, different threads could submit tasks on different streams (CUDA 7+). The
work distributor used to take work from the front of the pipeline and assign work
on the available SMs after checking all dependencies are satisfied. With Hyper-Q,
a grid management unit (GMU) was introduced. GMU creates multiple hardware
work queues to reduce or eliminate false dependencies [37]. The multi-process ser-
vice (MPS) utilizes Hyper-Q capabilities. Similar to streams, MPS processes share
GPU memory and bandwidth. However, unlike streams, the GPU’s streaming mul-
tiprocessors (SMs) are split across the different processes. This split is done by the
MPS daemon automatically based on the provisioning of the GPU compute resources
needed for each process. However, CUDA programmers can have control over how
resources are split as well. While this provisioning introduces some process man-
agement overhead, splitting resources this way offers reduced interference across the
different processes. One limitation of MPS is that the processes have to be launched
by a single user for security reasons. Therefore, MPS cannot collate applications
launched by different user accounts [38, 14].

GPU MIG

Multi-Instance GPU (MIG) is the most recent collocation technology introduced
with NVIDIA’s Ampere GPUs. It introduces hardware support for splitting a GPU
into smaller GPU instances of varying sizes. These GPU instances may run different
processes allowing them to run in parallel on the same GPU. On the hardware side,
MIG-capable GPUs are divided up into multiple slices. These can be combined
into GPU instances, providing a partitioning of the GPU. The memory of the A100
GPU is split into 8 memory slices, and the compute side is split into 7 compute
slices, plus one reduced slice for the partition management overhead. A limitation
of enabling MIG is that it does not allow for GPU-to-GPU communication in the
multi-GPU training cases. On the other hand, each partition is strictly separated
regarding hardware resources, preventing interference across partitions. Figure 2.2
shows the possibilities of splitting an A100 GPU [36, 39].
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Figure 2.2: A100 GPU MIG partitioning possibilities [36, 39]

2.4 Schedulers and Resource Management Systems
Schedulers and resource managers play a vital role in computational systems by

managing and allocating resources to tasks efficiently. They are essential for ensuring
optimal system performance, particularly in environments where resources such as
CPUs, GPUs, memory, and storage are shared among multiple users or applications.
These systems aim to maximize resource utilization, minimize job completion time
(JCT), and balance workloads to prevent bottlenecks or underutilization. Together,
schedulers and resource managers enable computational systems to meet the demands
of diverse workloads reliably and effectively [40].

Schedulers are primarily responsible for determining the execution order of tasks
based on factors such as priority, resource requirements, and predefined system poli-
cies. This ensures minimal delays and prevents resource conflicts while maintaining
fairness among users. Resource managers, on the other hand, handle the assignment
of specific resources to tasks, considering their unique computational, memory, and
latency needs. By coordinating their efforts, schedulers and resource managers ad-
dress key challenges such as resource contention, dynamic workloads, and varying
task priorities.

One of the significant challenges in managing resources is resource contention,
where multiple tasks compete for the same limited resources. This requires intelligent
allocation strategies to avoid performance degradation. Furthermore, tasks often
have diverse and complex resource requirements, making it difficult to design a
one-size-fits-all allocation approach. The dynamic nature of workloads in multi-
tenant environments, such as cloud computing, adds another layer of complexity, as
schedulers must adapt to fluctuating demands in real time. Dependencies among
tasks also complicate scheduling, as some jobs rely on the completion of others,
requiring careful coordination to prevent delays or deadlocks. Balancing fairness
across users while adhering to priority policies poses another challenge, particularly
in competitive resource environments. Finally, as the scale of tasks and resources
grows, schedulers and resource managers must remain efficient and scalable to avoid
becoming a bottleneck themselves.

The decision-making process in schedulers and resource managers involves sev-
eral key steps, though it faces significant challenges. One of the major difficulties is
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accurately estimating the runtime and resource requirements of tasks, both of which
are critical for effective scheduling. Most schedulers rely on users to specify task
properties, such as expected runtime and resource demands (e.g., memory and com-
pute power). However, users often lack precise knowledge of these parameters or
provide inaccurate estimates, which can lead to inefficiencies in resource allocation
and scheduling decisions. Systems like SLURM (Simple Linux Utility for Resource
Management) [41, 42] address this issue to some extent by requiring users to specify
these details during job submission and allowing administrators to design partitions
or queues tailored to specific job types. For example, partitions may be created
to group tasks based on their expected runtimes (short, medium, or long) or their
resource needs, enabling more predictable and efficient scheduling behavior. . How-
ever, SLURM places a significant burden on both users and administrators, as users
must manually specify resource requirements upfront, and administrators must care-
fully design and maintain partitions to match workload characteristics. This static
approach can lead to inefficiencies, particularly in dynamic workloads where resource
demands fluctuate. To address this limitation, a more adaptive and intelligent resource
management system is needed—one that can dynamically allocate resources based
on real-time usage patterns rather than relying solely on predefined configurations.
In Chapter 6, we envision our resource manager evolving toward integration with
systems like SLURM, enhancing its capabilities with automated decision-making to
reduce the manual effort required from users and administrators while improving
overall efficiency.

Several widely-used systems exemplify the principles of schedulers and resource
managers. Kubernetes [43], for example, is a container orchestration platform that
automates the deployment, scaling, and management of containerized applications.
It incorporates powerful scheduling features to allocate resources effectively across
a cluster. Apache Mesos [44] provides a distributed systems kernel that abstracts
resources like CPU, memory, and storage, enabling dynamic resource allocation for
frameworks such as Hadoop [45] and Spark [46]. In high-performance computing
environments, Slurm is a highly scalable resource manager that schedules and man-
ages jobs across supercomputers. YARN (Yet Another Resource Negotiator) [45]
serves as a resource management layer within the Hadoop ecosystem, dynamically
allocating resources to applications based on their requirements. Similarly, Apache
Hadoop MapReduce includes a scheduler that divides tasks into smaller subtasks and
distributes them across systems for parallel processing.

2.4.1 High-Performance Computing (HPC) setup vs. Cloud
HPC and cloud computing are two distinct paradigms for delivering computational

resources, each tailored to different types of tasks, requirements, and user expecta-
tions. HPC systems are designed for large-scale, compute-intensive tasks that require
significant parallel processing power, such as scientific simulations, weather model-
ing, and genome sequencing. These tasks often run for extended durations, sometimes
spanning days or weeks, and are highly sensitive to performance and resource avail-
ability. HPC environments prioritize low-latency, high-throughput performance, with
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dedicated resources and tightly controlled Quality of Service (QoS) to minimize de-
lays and optimize execution times [47]. On the other hand, cloud computing is more
versatile, offering elastic and on-demand resources for a wide variety of applications,
including web services, data analytics, and software development. Cloud tasks are
often shorter in duration, designed for scalability and flexibility rather than sustained
performance. Unlike HPC, which relies on dedicated infrastructure, cloud systems
use shared resources, which can lead to variability in response times and QoS [48].

In terms of user experience, HPC systems are optimized for tasks where pre-
dictability and maximum performance are critical, but they typically require detailed
planning, including predefined task durations and resource specifications. In contrast,
cloud computing excels in providing ease of access, rapid provisioning, and pay-as-
you-go pricing, making it more suitable for workloads that are dynamic and less
performance-critical. While HPC is favored in scenarios where delay or downtime
could compromise results (e.g., simulations or large-scale computations), the cloud
is ideal for tasks where scalability and accessibility are more important than absolute
performance consistency.

When considering deep learning workflows, training generally belongs to the HPC
domain due to its high computational demands, long runtimes, and sensitivity to
resource performance. Training deep learning models involves processing massive
datasets through multiple epochs, requiring efficient GPU utilization, low-latency
interconnects, and substantial memory resources—all of which are hallmarks of HPC
environments. Conversely, inference aligns more closely with cloud computing, as it
typically involves deploying trained models for real-time or near-real-time predictions.
Inference tasks are lighter in terms of computational load, require lower latency for
end-user interactions, and benefit from the scalability and global accessibility of cloud
platforms. This division highlights how the unique characteristics of HPC and cloud
computing make them complementary rather than interchangeable, serving distinct
stages in the lifecycle of deep learning applications.

2.4.2 Scheduling and Mapping
Scheduling and mapping are two fundamental processes in resource management

systems, each serving distinct but interconnected roles. Scheduling focuses on de-
termining the order and timing of task execution, often based on policies such as
priority, fairness, or first-come-first-served. It decides "when" a task will run, ensur-
ing that tasks are executed in an orderly manner while adhering to system objectives,
such as minimizing delays or maximizing throughput. Mapping, on the other hand,
deals with assigning specific resources to tasks, deciding "where" a task will execute.
This involves selecting the appropriate hardware resources—such as GPUs, CPUs,
or memory—based on the task’s requirements and the current system state. While
scheduling ensures that tasks are queued and executed efficiently over time, mapping
ensures that the allocated resources are suitable for the task’s needs.

In this work, our primary focus is on the mapping side of resource management
systems, with an emphasis on efficient collocation. Efficient collocation involves
assigning multiple training tasks to the same GPU, in a manner that maximizes
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resource utilization while minimizing performance degradation and out-of-memory
(OOM) errors. This distinction between scheduling and mapping is critical, as
effective mapping strategies enable resource managers to make better decisions about
how to allocate computational power, particularly in multi-tenant and deep learning
workloads. Our work seeks to push the boundaries of what can be achieved through
thoughtful and efficient task mapping in modern computing environments.

2.5 Schedulers and Resource Managers for Deep Learn-
ing

The challenge of GPU scheduling/ resource management inefficiencies in deep
learning (DL) workloads has led to numerous research contributions. Below, we
categorize and summarize the key works addressing GPU resource management.

2.5.1 Empirical and Survey-based Studies on GPU Scheduling
and Resource Management

Empirical analyses highlight inefficiencies in GPU scheduling at large scales.

• MLaaS [49] analyzes workload traces from Alibaba’s production MLaaS clus-
ter with over 6,000 GPUs, identifying inefficiencies such as low GPU utilization,
long queuing delays, and scheduling challenges for high-end GPU tasks. The
study proposes GPU sharing and a reserving-and-packing strategy to improve
resource allocation but highlights open issues like load imbalance and CPU
bottlenecks, calling for further research. While the study proposes strategies
like GPU sharing and a reserving-and-packing scheduling policy to enhance re-
source allocation, it does not deeply analyze application-specific requirements
to build predictive models for estimating resource needs. Additionally, the
study does not monitor GPU memory and utilization to identify opportunities
for task collocation.

• Analysis of Multi-Tenant GPU Clusters [12] analyze approximately 100,000
jobs over two months in Microsoft’s GPU cluster. They find that gang schedul-
ing and strict locality constraints contribute to resource contention and queuing
delays. The study suggests that relaxing certain locality constraints and im-
proving gang scheduling flexibility could mitigate these issues.

• Characterization and Prediction of Deep Learning Workloads in Large-
Scale GPU Datacenters [50] analyzed large-scale SenseTime job traces [51],
revealing key insights for cluster system design. Notably, 50% of GPU jobs
complete within 10 minutes, multi-GPU jobs dominate utilization, and a small
fraction of users consume most resources. The study introduced a predictive
framework leveraging historical data for resource management. As case studies,
they proposed Quasi-Shortest-Service-First scheduling, reducing average job
completion time, and a Cluster Energy Saving service, improving utilization
by up to 13%. However, their approach focuses only on a high-level system
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perspective, does not model task-specific resource needs, and does not address
collocation. In contrast, our work tightly integrates model-aware predictions
with GPU monitoring and intelligent packing to enhance utilization and energy
efficiency.

• Deep Learning Workload Scheduling in GPU Datacenters: A Survey [52]
provides a comprehensive review of scheduling techniques for DL training
and inference workloads. The survey categorizes existing schedulers based on
objectives and resource consumption features, offering a taxonomy of current
approaches.

• Deep Learning Workload Scheduling in GPU Datacenters: Taxonomy,
Challenges and Vision [53] surveys existing research efforts for both training
and inference workloads, presenting how existing schedulers facilitate the re-
spective workloads from the scheduling objectives and resource consumption
features.

2.5.2 Adaptive and Predictive Scheduling Techniques
Methods that use adaptive and predictive scheduling to improve GPU utilization.

• Gandiva [54] exploits the cyclic GPU memory usage of DL jobs for suspend-
resume scheduling. It enables time-sharing and optimizes communication-
intensive task placement. However, it relies on preemptive scheduling, which
may not suit all workloads.

• Salus [55] introduces iteration-level scheduling, allowing fast suspend-resume
mechanisms without kernel overhead. It enables fine-grained GPU sharing
among multiple deep learning (DL) applications by implementing two key
primitives: fast job switching and memory sharing. This approach improves
GPU utilization and reduces job completion times.

• Pollux [56] dynamically reallocates resources using a goodput metric, optimiz-
ing per-job and cluster-wide efficiency. It introduces a co-adaptive scheduling
approach that simultaneously adjusts resource allocation and training parame-
ters, such as batch size and learning rate, to maximize goodput—a combination
of system throughput and statistical efficiency.

• Tiresias [57] minimizes deep learning job completion times using Gittins index
and Least-Attained Service (LAS)-based scheduling. It introduces a Two-
Dimensional Attained Service-Based Scheduler (2DAS) that assigns priorities
to jobs based on their attained service, calculated from the number of GPUs used
and the elapsed running time. When job duration information is unavailable,
Tiresias applies the LAS algorithm, inversely prioritizing jobs with less attained
service. If job duration distribution is known, it utilizes the Gittins index to
prioritize jobs likely to complete sooner. This approach effectively reduces
average job completion times in GPU clusters.
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• E-LAS [58] reduces deep learning training time by utilizing real-time epoch
progress rate estimations. It improves upon existing schedulers by prioritizing
jobs based on their current epoch progress, allowing for more informed schedul-
ing decisions without prior knowledge of job characteristics. This approach
enhances scheduling efficiency and reduces average job completion time.

The aforementioned work primarily focus on optimizing resource allocation through
techniques like preemptive scheduling, fairness enforcement, fine-grained sharing,
and dynamic resource reallocation. However, they often do not deeply analyze
application-specific resource requirements or monitor GPU utilization metrics to
build predictive models for estimating GPU memory needs. In contrast, our approach
emphasizes developing such predictive models and closely monitoring GPU utiliza-
tion to identify opportunities for task colocation, aiming to avoid out-of-memory
errors and ensure system responsiveness across diverse workloads.

2.5.3 GPU Affinity-Aware and Isolation Strategies
Ensuring safe and efficient resource allocation through affinity-aware scheduling.

• HiveD [59] introduces hierarchical GPU affinity-aware scheduling to maintain
fairness and prevent resource contention. It utilizes a multi-level cell structure
to capture different levels of GPU affinity within a cluster, allowing for the
creation of Virtual Private Clusters (VPCs) for each tenant. This design ensures
that deep learning jobs are scheduled with the required GPU affinities, reducing
queuing delays.

• Vapor [60] employs preemptive scheduling and adaptive batch redistribution
to maximize GPU efficiency. It introduces two novel scheduling policies:
preemptive GPU sharing and adaptive batch scheduling. Preemptive GPU
sharing allows for the interruption and resumption of tasks to better utilize
GPU resources, while adaptive batch scheduling dynamically adjusts the batch
sizes of deep learning tasks to optimize both computation and communication
efficiency.

• Horus [61] introduces interference-aware scheduling by proactively predicting
GPU utilization of deep learning (DL) jobs based on their computation graph
features. This approach allows for optimal job placement, minimizing perfor-
mance degradation due to resource contention. Horus employs a coarse-grained
GPU utilization metric, which does not capture fine-grained resource demands
accurately. Additionally, the model it adopts for GPU memory estimation tends
to over-predict usage, potentially leading to underutilization of resources.

• Scheduling Deep Learning Jobs in Multi-Tenant GPU Clusters via Wise
Resource Sharing [62] proposes a heuristic-based GPU sharing model that
allows multiple DL jobs to share the same set of GPUs without altering their
training settings. The authors introduce the SJF-BSBF (Shortest Job First with
Best Sharing Benefit First) scheduling algorithm, which intelligently selects
job pairs for GPU resource sharing and determines runtime settings, such
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as sub-batch size and scheduling time points. This approach aims to optimize
overall performance while ensuring DL convergence accuracy through gradient
accumulation.

However, these approaches often do not deeply analyze application-specific re-
source requirements or develop predictive models for GPU memory usage. Addition-
ally, they may lack mechanisms for monitoring real-time GPU utilization to identify
opportunities for task collocation, which are essential for avoiding out-of-memory
errors and ensuring system responsiveness across diverse workloads. At the same
time, their optimization scheduling techniques are orthogonal to our work and for
further improvement, they can be part of the holistic system.

2.5.4 Fair and Cost-Efficiency in Scheduling
Approaches ensuring fairness and cost-efficient GPU resource allocation.

• Themis [63] enforces fairness using a two-level bidding system, dynamically
allocating GPUs while balancing efficiency and fairness. It introduces the con-
cept of finish-time fairness, ensuring that machine learning workloads complete
in a manner proportional to their fair share of resources.

• AlloX [64] models scheduling as a min-cost bipartite matching problem, ensur-
ing dynamic fair allocation. It addresses the challenge of allocating interchange-
able resources, such as CPUs and GPUs, in hybrid clusters by transforming the
scheduling problem into a min-cost bipartite matching framework. This ap-
proach allows AlloX to provide dynamic fair allocation over time, optimizing
performance while maintaining fairness among users.

• Cynthia [65] predicts training time using a lightweight analytical performance
model, optimizing cloud-based GPU provisioning. It addresses the unpre-
dictable performance of distributed deep neural network (DDNN) training in
cloud environments by considering factors such as resource bottlenecks, het-
erogeneity, and the imbalance between computation and communication. By
leveraging resource consumption data from workers and parameter servers,
Cynthia accurately predicts training performance and provisions cost-efficient
cloud instances to meet specific training time and loss objectives.

As the techniques proposed in this section have a focus on fairness and cost-
efficiency through scheduling techniques, they are orthogonal to this thesis and com-
plement each other if combined.

2.5.5 Hyperparameter Tuning and Job Scheduling Coordination
Methods integrating hyperparameter tuning with scheduling mechanisms.

• Fluid [66] optimizes hyperparameter tuning by coordinating evaluation trials
with cluster resources through a water-filling scheduling approach. This method
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enhances resource utilization at both intra- and inter-GPU levels, accelerating
tuning processes.

• Gavel [67] generalizes scheduling policies to account for hardware heterogene-
ity. It systematically transforms existing scheduling policies into heterogeneity-
aware versions using an abstraction called effective throughput. This approach
allows Gavel to optimize various objectives, such as fairness and makespan, in
heterogeneous clusters.

2.5.6 Optimization-Based Scheduling Approaches
These methods transform scheduling into optimization problems for efficiency.

• AITurbo [68] distinguishes between predictable and unpredictable jobs while
unifying CPU-GPU allocation. It introduces a novel resource scheduler that
treats predictable and unpredictable jobs separately, allocating heterogeneous
CPU-GPU resources in a unified manner. Predictable jobs exhibit consis-
tent performance metrics across different runs, while unpredictable jobs show
significant variability due to factors like dynamic data loading or varying com-
putational patterns. To predict the performance of predictable jobs, AITurbo
employs performance models that estimate training times and resource utiliza-
tion under various CPU-GPU allocations. By predicting model performance
under various resource allocations, AITurbo optimizes scheduling decisions to
enhance overall system efficiency.

• Optimus [69] minimizes training time by dynamically adjusting resources
based on online models. It introduces a customized job scheduler for deep
learning clusters, which utilizes online resource-performance models to predict
training speed as a function of allocated resources. By adjusting the number
and placement of workers and parameter servers during runtime, Optimus
maximizes resource efficiency and training speed.

• Prophet [70] optimizes gradient transfer scheduling to enhance GPU and net-
work utilization. It introduces a predictable communication strategy that orga-
nizes gradient transfers in an optimal sequence, aiming to maximize resource
utilization during distributed deep neural network (DDNN) training. By lever-
aging the observed stepwise pattern of gradient transfer start times, Prophet
predicts the appropriate number of gradients to group into blocks and sched-
ules their transfer to maintain high GPU and network utilization. This approach
reduces GPU idle time and accelerates the training process.

2.5.7 Reinforcement Learning-Based Scheduling
Schedulers employing reinforcement learning to optimize GPU job scheduling.

• DL2 [71] applies reinforcement learning to dynamically adjust GPU resource
allocation over time. It introduces a deep learning-driven scheduler for deep



26 Chapter 2. Background and Motivation

learning clusters, aiming to expedite global training jobs by dynamically re-
sizing resources allocated to jobs. DL2 employs a combination of supervised
learning and reinforcement learning to optimize resource allocation decisions,
thereby improving overall cluster efficiency.

• Harmony [72] employs deep reinforcement learning to optimize job placement
in distributed machine learning clusters, aiming to minimize interference and
enhance performance. By implicitly encoding workload interference within a
neural network, Harmony maps cluster and job states to placement decisions,
reducing performance unpredictability caused by resource contention among
co-located jobs.

2.5.8 Industry-Deployed Scheduling Solutions
Solutions used in production environments for large-scale DL training.

• AntMan [73] is Alibaba’s deep learning framework that co-executes jobs on
GPUs and dynamically scales resources. It introduces dynamic scaling mech-
anisms within deep learning frameworks, allowing for fine-grained coordina-
tion between jobs and preventing interference. However, integrating AntMan
necessitates modifications to existing deep learning frameworks and cluster
schedulers, potentially increasing system complexity and maintenance efforts.
Additionally, co-executing multiple jobs on shared GPUs can lead to per-
formance interference between tasks, affecting individual training efficiency.
While AntMan has been successfully deployed in large-scale production envi-
ronments, scaling the system to accommodate an even larger number of jobs
and GPUs may present challenges in maintaining performance and efficiency.

• FfDL [74] is IBM’s deep learning platform that balances dependability with
scalability, elasticity, flexibility, and efficiency in cloud-based DL training. It
supports multiple DL frameworks, such as TensorFlow, Caffe, and PyTorch,
and offers features like multi-tenant resource sharing, dynamic job scheduling,
and fault tolerance. FfDL enables users to train models at scale while efficiently
managing underlying resources.

2.5.9 Advanced Techniques for DL Model Execution Optimiza-
tion

Methods for optimizing DL model execution for scheduling improvements.

• SAD [75] optimizes CPU allocation for GPU-based deep learning jobs using
adaptive inference. It introduces a performance predictor that accurately sug-
gests training speeds for different CPU counts across various GPUs, enabling
efficient CPU resource allocation. Preliminary results indicate that SAD can
effectively balance CPU and GPU workloads, enhancing overall system perfor-
mance. It is orthogonal to the work of this thesis and can be complementing as
it brings the CPU awareness into the consideration.
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• OOO Backprop [76] improves GPU utilization by reordering gradient compu-
tations to minimize stalls. By exploiting the dependencies of gradient compu-
tations, OOO Backprop enables reordering their executions to make the most
of the GPU resources. This approach enhances GPU utilization in single-GPU,
data-parallel, and pipeline-parallel training by prioritizing critical operations
and reducing idle times.

To conclude, work related to scheduling is orthogonal to this thesis, as the primary
focus here is on efficient collocation, supported by accurate GPU memory estimation
for deep learning tasks, while monitoring GPUs using a representative GPU utilization
metric.

2.6 Open Challenges
GPUs lack support for a fine-grained hardware resource-sharing method among

different tasks [55, 77, 78, 79]. Software GPU sharing techniques cannot be candidate
solutions due to their large overheads [80, 81]. Thus, the GPU under-utilization
problem accompanies DL training tasks [12, 82]. When it comes to streams, MPS,
and MIG, identifying the correct combination of them for a given deep learning task
is still an open challenge.

Collocating, also known as overprovisioning, unrelated tasks, especially on dis-
tributed training tasks, can further lower the utilization of GPUs. This can be due to
network overhead (in cases when there are several clusters) and interference.

MIG puts forward a coarse-grained sharing of GPUs. However, some tasks cannot
saturate their assigned GPU instance. Mixing tasks can be an efficiency-rewarding
idea [83]. Using the MPS mechanism over MIG, with interference consideration of
collocating jobs, can result in substantial utilization improvements.

Distributed training (due to large data sets) often requires the use of multiple
GPUs [84] and ML frameworks require training tasks on each GPU to be scheduled
at the same time, i.e., gang scheduling [85]. This increases the risk of resource
fragmentation, and low utilization in shared clusters of GPUs [12]. In distributed
training, frameworks like TensorFlow train models with Synchronous Stochastic
Gradient Descent (S-SGD). They process a batch of data partitioned across GPUs
simultaneously and average the resulting gradients to obtain an updated global model.
The common way to increase the utilization of GPUs is to increase the batch size,
although it may result in lower statistical efficiency. The common solution is tuning
hyper-parameters like learning rate, which is complex and model-specific [86].

Furthermore, DL training jobs are based on a trial-and-error mechanism, such as
hyper-parameter search, which can be manual or automated. Users usually try several
configurations and use early feedback to decide whether to prioritize or kill a subset
of them [54, 87].

Using traditional schedulers, such as Apache Yarn [45] and Kubernetes [43],
which are fit for big-data processing, leads to head-of-line-blocking. This is due to
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the fixed and exclusive scheduling policies (non-preemptive scheduling of arriving
jobs) adopted by the aforementioned schedulers. The exclusive assignment of GPUs
to jobs on their startup and waiting until their completion while queuing other jobs
(ending in a long queuing experience) is the obvious downside of these schedulers
for the DL training. Additionally, they consider jobs as black boxes [88, 89] and do
not consider jobs’ behavior or characteristics. This negligence can end in resource
interference and more under-utilization [54, 57, 87, 63, 90]. On the other hand, the
overhead of profiling-based methods are not affordable and reliable as the behavior
of a task can change over its execution.
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Chapter 3

Profiling and Monitoring Deep
Learning Training Tasks

Deep learning training tasks (DLTTs) require significant hardware resources,
making their optimization crucial for sustainable development and continuity

[91, 12]. Achieving this optimization necessitates a deep understanding of work-
load behavior and resource requirements, particularly regarding computing power
and memory usage. Strategies may include refining models and training processes,
reducing operations, minimizing memory usage, or implementing improvements at
the resource-manager or scheduler level, such as orchestration and resource overpro-
visioning. To facilitate these optimizations, it is essential to profile the workloads
and efficiently monitor the infrastructure they utilize. We identified, studied, and
experimented with various profiling and monitoring tools, benchmarking their ben-
efits, drawbacks, and costs to determine the appropriate contexts for their use. Our
key insight is that monitoring tools are well-suited for real-time decision-making,
while profiling tools offer developers a deeper understanding of code execution at the
hardware level, albeit with higher costs in terms of time, computation, and storage.
Additionally, we evaluated commonly used metrics to assess their effectiveness and
emphasized the importance of selecting representative metrics for monitoring com-
puting devices. Monitoring tools should be leveraged for online decision-making,
while profiling tools are best reserved for deeper or system-wide optimizations. It’s
also important to carefully manage the volume of data collected through these pro-
cesses. The primary objective of our study was to identify tools that provide timely
and actionable information. Our findings reveal that tools like top, nvidia-smi, and
dcgmi impose minimal overheads in terms of time, GPU, and CPU usage, mak-
ing them ideal for real-time decision-making systems. In contrast, the substantial
overheads associated with Nsight Systems and Nsight Compute render them imprac-
tical for such scenarios. Moreover, the metrics provided by the latter one focus on
kernel-level performance, which may not align with application-level needs.

3.1 Introduction
Deep learning training requires high computing and memory resources and is

a highly parallel process. This has naturally lead to accelerating the training pro-
cesses with hardware architectures such as GPUs that can exploit these traits. On
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the other hand, matching the computing and memory requirements of deep learn-
ing training to the capabilities of modern GPUs is not straightforward for all deep
learning applications and GPU types. This mismatch results in slowdowns and re-
source underutilization [92, 82, 93, 86]. To find solutions to these challenges, it is
essential to characterize the interaction between deep learning systems and their un-
derlying hardware. This is obtainable by profiling systems and monitoring hardware
utilization.

Profiling provides the developers with insights in how the application behaves in
terms of computing and memory patterns and requirements. Afterwards, the data and
trace plots can assist in finding and addressing the bottlenecks. Monitoring tools, in
contrast, reveal how specific hardware resources react to the execution of applications.
One can find out whether the current configuration of the model training saturates the
hardware resources. The workload can be scaled up or more applications may be run
simultaneously to optimize for both high utilization and training performance.

Using profiling and monitoring tools effectively is an art and can be time-consuming
for beginners. Furthermore, in the field of deep learning, one has to understand the
tools for not only CPUs but also accelerators like GPUs. While there are many works
utilizing tools for CPUs (e.g., top, perf, Intel VTune) for workload characterization
[94, 95, 96, 97, 98, 99, 100, 101], tools for accelerators are less mature and rapidly
evolving, and relatively unexplored. To address this challenge, this paper reviews the
most relevant profiling and monitoring tools for deep learning workloads. We inves-
tigate the strengths and limitations of the profiling tools offered by NVIDIA, Nsight
Systems and Compute, in addition to the monitoring tools nvidia-smi and dcgm.
We do this by (1) surveying the functionality offered by these tools, (2) studying the
metrics reported and showing the shortcomings of widely used high-level utilization
metrics, and (3) measuring profiling and monitoring tools’ overheads while running
both light and heavy deep learning training scenarios.

Our investigation demonstrates the following:

• The negligible overhead of the monitoring tools make them ideal candidates to be
integrated into task schedulers and resource managers for online decision-making.

• On the other hand, the GPU utilization and GRACT metrics offered bynvidia-smi
and dcgm, respectively, are too high-level and unrepresentative for actual GPU
utilization. More concrete metrics such as SMACT and SMOCC from dcgmmay
help to overcome this issue.

• The profiling tools are effective for targeted code optimizations, but their over-
heads make them unsuitable for online decision making. The profiling mode of
Nsight Compute in particular heavily disrupts a training run.

• Each profiling tool has their time to shine. Profiling tools integrated into deep
learning frameworks and Nsight Systems offer a way to detect bottlenecks with
application-specific and system-wide views, respectively. However, to further
optimize individual kernels, a tool like Nsight Compute offer deeper insights at
the micro-architectural level of a GPU. Thus, one can create a pipeline of profiling
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stages using a mix of tools.

3.2 Tools
This section surveys the most relevant profiling and monitoring tools for deep

learning training on NVIDIA GPUs.

3.2.1 Profiling Tools
There is a range of tools available to profile deep learning workloads. Tools in-

tegrated with the deep learning frameworks, such as the TensorFlow and PyTorch
profilers [102, 103], are immediately available to those using their respective frame-
works. Alternatively, NVIDIA provides the profiling tools Nsight Systems and Nsight
Compute. This section goes over the PyTorch profiler, as a representative framework
tool, and the NVIDIA profiling tools.

The PyTorch Profiler [103] is a trace-based profiling tool that can automatically
collect a range of performance metrics during both deep learning training and infer-
ence. As it is integrated into the deep learning framework itself, running the profiler
is just a matter of adding a few lines of Python code. It requires less setup than other
monitoring or profiling tools due to being specific to PyTorch and deep learning.
Being integrated into the code, the profiler allows for extensive control of which
iterations are profiled. This prevents the profiling data from growing out of hand. It
is in fact recommended that the users profile one or more iterations in an epoch rather
than whole epochs, since the behavior of the iterations over each batch tends to be
repetitive. In 3.3, we highlight this while discussing the overheads of the PyTorch
profiler.

NVIDIA Nsight Systems [104], nsys, is a trace-based profiler similar to the
PyTorch profiler. It constructs a timeline of CPU and GPU events. This notably
includes different compute and memory access streams on the GPU, yielding valuable
information such as data movement bottlenecks and most frequently used kernels.
nsys is framework-independent and can effectively profile a variety of software.
Furthermore, it offers a system-wide view, including more insights to interactions
with the operating system and network compared to the more application-focused
view given by the framework profilers. nsys, thus, does not annotate the deep
learning traces out of the box. NVTX, NVIDIA Tools Extension [105], provides an
API to enable annotating the training code itself. Multiple deep learning libraries,
including PyTorch [28], support NVTX annotations in their code.

nsys runs as a separate process while profiling an application. Applications can
be profiled both online/interactive and offline. The profiling is done either via a GUI
or a command line with the level of detail specified by the user. For example, a user
can launch nsys to track the GPU memory usage by kernels, enable the collection
of backtraces, and collect metrics from network interface cards.
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Bottlenecks can be detected by viewing the timeline of computing and memory
operations. For example, a timeline detailing that 90% of the time is spent on
compute indicates that the workload is compute-intensive and that compute-side
optimizations might improve the application. Conversely, when there are a lot of data
access stalls, the workload is memory-intensive and improved data orchestration may
greatly improve runtime.

It should be noted thatnsys does not work when multi-instance GPU (MIG) mode
[36, 39], which divides a GPU into smaller instances, is enabled on any GPU on the
server. While this is a current functional limitation as MIG technology is relatively
new and has been maturing, it may be fixed over time. In addition, carelessly
specifying more and more profiling options to get more details can result in longer
post-processing times after the profiling is over and bigger trace files that are harder
to render in the tool’s GUI.

NVIDIA Nsight Compute [106], ncu, allows for in-depth GPU analysis. It
disrupts the regular run of a program and reruns the kernels of a program multiple
times to trace the micro-architectural behavior.

Similar to nsys, ncu has a GUI-based and command line interface, where the
users can specify the amount information to trace. As the nature of the profiling is
disruptive, it is often run as an online interactive profiler and debugger, though offline
mode is also supported. Compared to the PyTorch Profiler and nsys, the main
strength of ncu is the degree of detail and granularity it provides when profiling. It
illustrates the data movement behavior across the different levels of the GPU memory
hierarchy and helps to identify data stalls in kernels. It also maps the metrics to
the individual lines of code that contribute to them by connecting assembly (SASS)
code with parallel thread execution instruction set architecture (PTX or NVPTX), an
architecture independent intermediate representation for CUDA, and with high-level
code (e.g., CUDA, C/C++, Fortran, OpenACC, Python). Additionally, it can export
CUDA execution graphs and allow the profiling of individual nodes in these graphs.

While ncu is good to investigate things at a microscopic level, it does impact
application behavior. Its profiling depends on the principle of rerunning kernels
multiple times either one kernel at a time (kernel mode) or via iterating over the
application multiple times (application mode) as specified by the user. In each
iteration, additional data for the target kernel(s) is collected. Application replay
requires the program execution to be deterministic.

While ncu provides extremely detailed information at the kernel level, it is often
difficult to map the information to the application level. Furthermore, as a result
of the repetitive kernel runs, the profiling overhead on the application is very high.
Therefore, ncu should mainly be used to optimize individual kernels, not application-
level scheduling behavior. Since it supplies the users with GPU architecture and
micro-architecture-related information, it is extremely useful for computer architects
and low-level library developers.
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3.2.2 Monitoring Tools
There are a variety of monitoring tools for servers to observe their utilization

behavior such as how many CPU cores are in use, how many GPU streaming mul-
tiprocessors are active, what the CPU/GPU memory consumption is, etc. Such
observations can aide cluster administration, hardware resource management, and
workload scheduling decisions, even in real-time thanks to the low-overhead of the
monitoring tools (as quantified in 3.3.2). On the other hand, in contrast to the profiling
tools, these tools cannot be used for coming up with optimization ideas for a specific
application’s internals or kernels. In this section, we cover the two monitoring tools
offered by NVIDIA: nvidia-smi and dcgm.

NVIDIA System Management Interface [107], nvidia-
smi, provides monitoring and management capabilities for NVIDIA GPUs. Users
can interact with it via command line to (1) configure a GPU’s performance parameters
like changing the frequency, setting power cap, etc., (2) set the preferred multi-instance
GPU (MIG) partitions, and (3) track a range of performance metrics such as GPU
utilization, size of GPU memory usage, performance state and temperature of a GPU,
etc. One can view the metrics tracked via standard output or write them to a CSV
or XML file. These metrics can be tracked system-wide, for a GPU, and for an
application.

Underneath, nvidia-smi uses the NVIDIA Management Library (NVML)
[108], which provides an API for monitoring and managing various states of NVIDIA
GPUs. NVML provides direct access to the queries and commands that enables the
monitoring done by nvidia-smi. If users want to customize the monitoring,
they can write a custom program using NVML instead of using what is exposed by
nvidia-smi.

Whilenvidia-smi helps with basic system monitoring, it is still limited in terms
of the metrics it provides. For example, it doesn’t track the interactions between the
CPU and the GPU. Furthermore, on a MIG-enabled GPU, it tracks metrics from the
whole GPU and not from individual MIG instances.

NVIDIA Data Center GPU Manager [109], dcgm, provides more detailed
information about hardware utilization on CPU-GPU co-processors compared to
nvidia-smi. dcgm can ease the management and configuration of GPUs in
a cluster by providing features such as GPU grouping. Furthermore, it can track
not just high-level GPU utilization, but also occupation and activity of streaming
multiprocessors and utilization of tensor cores. It can give more detailed insights
on energy consumption of the GPU and the data movement across CPU and GPU
and different GPUs by reporting how much the PCIe / NVLink bandwidth is used.
Finally, it can also monitor the utilization of the individual MIG instances. On the
other hand, since both ncu and dcgm use the same hardware counters underneath,
they cannot be used simultaneously.



34 Chapter 3. Profiling and Monitoring Deep Learning Training Tasks

Table 3.1: Specifications of an A100 GPU - 40GB

Property Value
GPU Architecture NVIDIA Ampere
Compute Capability 8.0
#SMs 108
FP32 per SM 64
Tensor Cores per SM 4

Share Memory and L1 cache
192KB combined, Shared
Memory is configurable
up to 164KB

Max 32-bit Registers per SM 64KB
L2 cache 40MB

Memory 40 GB of high-speed
HBM2 memory

Max Threads per Warp 32
Max Thread Blocks per SM 32
Max Warps per SM 64
Max Thread Block Size 1024
Max Registers per Thread 255

3.3 Experiments
After the qualitative overview of the tools of interest in 3.2, this section quan-

titatively analyzes them. We aim at answering the following questions with our
experiments:

• What is the granularity of information reported by the different GPU utilization
metrics?

• How intrusive are these tools on the execution of a deep learning training process?

• How much hardware resources do these tools need?

• How does the relative impact of these tools change based on the size and com-
plexity of the deep learning training?
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Figure 3.1: Different GPU utilization metrics as the load on the GPU
varies.
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3.3.1 Setup
All the experiments are run on a DGX Station A100, which is composed of an

AMD EPYC 7742 CPU with 512GB of main memory and four A100 GPUs with
40GB of memory each. 6.1 details the specifications of the A100 GPU.

The system runs DGX OS, a variant of Ubuntu 20.04.4 LTS, and the installed
CUDA version is 11.6.1.

Except for 3.3.2, the experiments are based on two types of training runs: (1) a light
use-case with a simple CNN-model [110] trained on the MNIST [111] dataset, (2) a
more heavy use-case in both computation and memory consumption with ResNet50
[112, 113] trained on the ImageNet dataset [1]. All models use the PyTorch frame-
work, version 1.13.1, and are trained for 5 epochs. For the experiments in 3.3.2,
where the different GPU utilization metrics are investigated, we create our custom
micro-benchmark, which is described in the corresponding section.

We scoped down the experiments to a single light and heavy training scenario
rather than experimenting with a wider variety of model training. When it comes
to identifying the overhead caused by the tools, there can be two types of overhead:
(1) fixed one such as fixed startup or shutdown overhead and fixed background
resource usage, and (2) the one that vary based on the program complexity such as
increased resource consumption due to more data being collected. The former would
be more pronounced for the light training scenario, whereas it would be amortized
or insignificant for the heavy scenario. The latter would be more significant for the
heavy scenario. We argue that the overall conclusions for the respective behavior for
these two types of overhead do not change across different light and heavy scenarios.
This aligns with our experience using different training use cases with these profiling
and monitoring tools.

For the profilers, we run our experiments offline with the default settings. The
PyTorch Profiler, pytorch, records both CUDA and CPU activity by default, while
all of the extra options, such as flop estimation, are disabled. Running this with the
5-epochs of ResNet50 leads to prohibitive tracing information. Therefore, we only
report pytorch results for the light training scenario. The traces collected by nsys,
version 2022.1.3, are for CPU, CUDA, NVTX, OSRT, and OpenGL calls, as well
as high-level resource utilization, but without CUDA backtracing. Finally, as ncu,
version 2022.2.1, is by design a disruptive profiler (3.2.1), we decided that it is not
insightful to report its overheads.

The raw experimental data can be found in our repository.1

3.3.2 Results
Among the questions listed above, 3.3.2 answers the first one, and 3.3.2 answers

the remaining three.
1https://github.com/Resource-Aware-Data-systems-RAD/PMDLT

https://github.com/Resource-Aware-Data-systems-RAD/PMDLT
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(a) Training processes while running light train-
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(b) Tool processes while running light training.
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(c) Training processes while running heavy train-
ing.
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(d) Tool processes while running heavy training.

Figure 3.2: CPU Utilization.

GPU utilization

The popular metrics of interest while monitoring GPUs tend to be compute utiliza-
tion, memory consumption, data movement, and energy consumption. Especially the
GPU utilization can potentially be confusing due to the different ways for measuring
this activity.

The GPU monitoring tools nvidia-smi and dcgm both have a GPU utilization
metric, which is roughly defined as the % of time one or more kernels were executing
on the GPU over the past sampling period. In addition, dcgm has multiple metrics to
track the utilization of streaming multiprocessors (SMs). Most notable ones among
these metrics are GRACT, SMACT, and SMOCC, which we investigate in this section.

GRACT, graphics engine activity, is the fraction of time during which any portion
of the graphics (e.g., ray tracing units) or compute engines were active. While GRACT
tends to closely follow GPU utilization in values, in practice it is measured differently
(sampling, hardware counters, etc.). Therefore, its over time values aren’t exactly the
same as what GPU utilization reports. SMACT, SM activity, refers to the fraction of
active time on an SM, averaged over all SMs. Finally, SMOCC, SM occupancy, is the
degree of parallelism within an SM (calculated by the unit of a warp, which typically
occupies 32 threads in a thread block) relative to the maximum degree of parallelism
supported by the SM.

For our investigation, we devise a micro-benchmark in which we vary the number
of thread blocks and threads within a thread block in a kernel.2 Each thread fetches
a data item and calculates its square. 3.1 shows the results. As the figure highlights,
even when there is only one thread within a single thread block, GRACT can show a
utilization of 90%. This is extremely misleading when one is interested in whether the
SMs are in use. In contrast, SMACT and SMOCC reveal substantially more information
on SM utilization.

2https://github.com/Resource-Aware-Data-systems-RAD/PMDLT/blob/main/benchmark/square.cu

https://github.com/Resource-Aware-Data-systems-RAD/PMDLT/blob/main/benchmark/square.cu
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Table 3.2: Average epoch time w/o profiling and monitoring, and size
of the information collected by the tools.

Tools simple CNN ResNet50
Time Space Time Space

no tool 9.61sec NA 37.06min NA
top 9.66sec ∼20KB 37.11min ∼2MB
nvidia-smi 9.61sec ∼20KB 37.04min ∼2MB
dcgm 9.68sec ∼85KB 37.19min ∼8MB
nsys 9.88sec ∼40MB 39.13min ∼5GB
pytorch 13.65sec ∼1.4GB NA
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(a) Training processes while running light train-
ing.

0 10 20 30 40 50 60
Time (Sec)

0
100
200
300
400
500
600

M
em

or
y 

Us
ag

e 
(M

B) top
nvidia-smi
dcgm
nsys

(b) Tool processes while running light training.
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(c) Training processes while running heavy train-
ing.
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(d) Tool processes while running heavy training.

Figure 3.3: CPU memory usage.

The GPU used in our experiments (6.1) have support for up to 3456 thread blocks in
total, where each thread block has support for up to 1024 threads in total. We see that
SMACT and SMOCC reach higher values as we get closer to the limits of parallelism
offered by the GPU, reflecting the actual load on the SMs. Due to possible overheads
in orchestrating the threads, though, neither SMACT and SMOCC reach 100%.

In conclusion, one must be careful about the GPU utilization metrics to monitor
depending on the goal of monitoring. For example, for a task scheduler that aims
to decide which tasks to collocate on a GPU, plainly looking at GPU utilization or
GRACT will miss the opportunities for utilizing the GPU better.

Tool Overheads

To quantify the overheads of the tools described in 3.2, we measure the epoch
execution time, the size of the information produced by each tool, and utilization of
CPU and GPU resources with and without using a particular tool. Since top [114]
is used to collect CPU utilization information, we also include it in the results.

Execution time. To reason about the runtime impact of each tool, 3.2 reports the
average epoch time. The execution time for each epoch is taken from PyTorch. As
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3.2 shows, while the monitoring tools have negligible impact on execution time, the
profiling tools lead to a noticeable overhead. 3.2 reveals that there is bigger runtime
overhead for the profiling tools after the training is over, which is for post-processing
the gathered information, omitted from 3.2. The overhead of the pytorch profiler
is larger, since it collects more data by default compared to nsys.

Overall, while the monitoring tools can be integrated into online decision making,
the profiling tools should be used for deliberate targeted investigations and optimiza-
tions.

Size of data files. 3.2 also reports the size of the information collected by each
tool. For the monitoring tools, we manage how this information is stored, we simply
write the information to an output file. As expected, the information collected by
these tools have negligible overhead, and since dcgm offers more metrics to collect,
it accumulates more data. The size of the information is larger for the profiling
tools, since they collect more information. pytorch logs the actions that are part of the
framework in great detail by default. In particular, the detailed stack traces of PyTorch
functions and libraries contribute greatly to the scale of information. Additionally,
the files are saved in the Chrome JSON format, which is not optimized for space
at all. In comparison, nsys defaults to logging more generic system parameters
as it is an application-independent solution. In addition, the files are saved in a
compressed binary format. However, increasing the information collection in nsys
would naturally increase the complexity and size of the trace files as well.

We highlight that while building a platform for systematically benchmarking the
interaction between the deep learning applications and hardware, keeping all the
monitoring and profiling information from various experiments may become a scal-
ability challenge that has to be addressed.

CPU utilization. 3.2 shows the CPU utilization for both the training process itself
while running a variety of profiling and monitoring tools and the processes created
by the tools. We use top to report CPU utilization for each tool. Therefore, the line
marked as top represents the baseline, and the rest of the tools run in parallel with
top.

In 3.2a, we see that the monitoring tools have no visible impact on the CPU
usage of the training process, since they don’t increase the CPU utilization beyond
the baseline. That is why the lines for top, nvidia-smi, dcgm, and pytorch
overlap completely till around 50 seconds. The 50 seconds mark the training time
for 5 epochs (3.2), where both the training and monitoring stops. On the other
hand, nsys increases the CPU utilization slightly, ∼18%, while pytorch keeps it
similar to the baseline training. However, pytorch has its post-processing phase
performed by the main training process as well, which is why 3.2a depicts a lengthy
1-core utilization after the 5-epoch training is over for pytorch. As we can see
in 3.2b, nsys launches a separate process for this purpose, which goes through the
phases of (1) initialization (initial jump to ∼ 80%), (2) waiting for the training to
be over (low utilization), (3) post-processing (brief ∼ 100% utilization). The post-
processing time is shorter for nsys compared to pytorch. This is likely due to the
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larger trace gathering performed by pytorch with its default settings compared to
nsys. (see 3.2). Finally, the monitoring tools also spawn their own helper processes
with negligible CPU utilization as we see in 3.2b.

3.2c and 3.2d show that in a heavier training scenario the impact of all tools on
CPU utilization is insignificant, while the impact on the total execution time and
post-processing is still visible with nsys finishing later.

Overall, when it comes to the profiling tools, one has to be mindful about the
hardware resource consumption and the execution time of the post-processing phase
of the profilers.

CPU memory usage. 3.3 shows the CPU memory usage for both the training
process itself while running a variety of profiling and monitoring tools and the
processes created by the tools. We use top once again to report the CPU memory
consumption for each tool. Thus, the top-line represents the baseline similar to 3.2.

In 3.3a, we see that while the monitoring tools have no visible impact on the
CPU memory usage of the training process, the profiling tools have an impact. Both
nsys and pytorch increase the CPU memory usage (∼55%), and pytorch’s
post-processing increases the total memory consumption further. In 3.3b, the nsys
helper process has the same three-stage behavior as found in 3.2b. Finally, for the
heavy training scenario, 3.3c reveals that the impact on resource usage is negligible
for all of the tools during the training epochs. However, the impact of post-processing
of the profiling tools is still considerable.

Overall, 3.3 exhibits similar trends to 3.2.

GPU resources. 3.4 shows the impact of the tools on the GPU resource usage.
None of these tools create a separate helper process on the GPU. Therefore, the results
are only for the training process. We retrieve these metrics from dcgm, which makes
the bars for dcgm our baseline. As the GPU compute utilization metrics we report
SMACT and SMOCC based on the results of 3.3.2. For the GPU memory utilization
we use DRAMA, showing the frequency of memory accesses.

In general, when it comes to the impact on the GPU resource usage, all of the tools
have negligible impact.

3.4 Related Work
While we study the main monitoring tools of NVIDIA GPUs, AMD offers similar

tools such as ROCm-smi [115]. In addition, there are tools built on top of existing
NVIDIA libraries. For example, nvtop [116] is a wrapper around NVML that
provides visualization for NVML metrics, and Moneo [117] is a monitoring system
that specifically targets AI applications.

Orthogonal to Nsight Systems and Nsight Compute, there has also been efforts
to build profiling tools using the NVIDIA CUDA Profiling Tools Interface (CUPTI
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Figure 3.4: GPU utilization.

API [118]) [119, 120, 121, 122, 117, 123]. Furthermore, there are tools that have
a stronger focus on profiling the data movement, such as [123], which is also built
on top of CUPTI in addition to OSU INAM [124]. Finally, nvprof was also a tool
for profiling on NVIDIA GPUs, but it has been deprecated by the release of Nsight
Systems and Nsight Compute.

In this paper, we scoped our study to the most relevant tools provided by NVIDIA,
while using the PyTorch profiler as a point of comparison, but a similar investigation
can be done for the aforementioned tools using our methodology.

3.5 Conclusion
Deep learning models have become essential in many application domains but are

expensive to train. It is thus important to understand the behavior of the training
software and the underlying hardware. In this paper, we have analyzed the impact
of monitoring and profiling tools on deep learning training. We have found that
monitoring tools have negligible overhead and can be used for online decision making.
In contrast, profiling tools offer more detailed information but incur time, space,
and hardware resource consumption overheads. Additionally, one should be careful
with their choice of metrics to monitor, as some paint a clearer picture than others,
especially in the case of GPU utilization.

Profiling and monitoring tools have a fast and an ever-evolving nature. For instance,
in the recent past,dcgm didn’t report metrics for the4g.20GBMIG instance, but now
it does. Similarly, the NVML library, which underlies nvidia-smi, recently added
finer-grained dcgm metrics like SMACT and SMOCC. However, these additions are
supported only on the newer NVIDIA GPUs such as the ones based on the Hopper
architecture; one generation later than the Ampere architecture used in this study.
This addition means that one can simply collect metrics using nvidia-smi if the
point of interest is overall GPU utilization on the latest and emerging NVIDIA GPUs,
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removing the dependency on multiple tools. Therefore, one should pay attention to
using the up-to-date version of the tools on a given processor to determine the most
effective subset of tools for a particular study.
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Chapter 4

An Analysis of Collocation on GPUs
for Deep Learning Training

Deep learning training is an expensive process that extensively uses GPUs. How-
ever, not all model training saturates modern powerful GPUs. To create guidelines
for such cases, this paper examines the performance of the different collocation meth-
ods available on NVIDIA GPUs: naïvely submitting multiple processes on the same
GPU using multiple streams, utilizing Multi-Process Service (MPS), and enabling
the Multi-Instance GPU (MIG). Our results demonstrate that collocating multiple
model training runs yields significant benefits, leading to up to three times training
throughput despite increased epoch time. On the other hand, the aggregate memory
footprint and compute needs of the models trained in parallel must fit the available
memory and compute resources of the GPU. MIG can be beneficial thanks to its
interference-free partitioning but can suffer from sub-optimal GPU utilization with
dynamic or mixed workloads. In general, we recommend MPS as the best-performing
and most flexible form of collocation for a single user submitting training jobs.

4.1 Introduction
Today’s GPUs are significantly more powerful than those of a decade ago. Modern

GPUs, together with larger datasets, facilitate the exponential growth of deep learning
models. Many data scientists, however, do not require large models in practice. For
example, a problem may not have a large enough dataset to warrant a large model1, or
the ideal batch size for training the model may not be large enough to utilize all of the
GPU resources [82, 86, 93, 92]. This poses an hardware under-utilization issue [125,
92] when training neural networks as the training process usually takes exclusive
access to a GPU. This problem gets exacerbated with each new GPU generation
offering more hardware resources.

Workload collocation is a method for increasing hardware utilization by running
multiple applications at the same time over the same hardware resources. That way,
the device and its resources are shared among the collocated applications. While
workload collocation is heavily studied for CPUs [99, 126, 127], its opportunities

1Data scientists in our lab routinely use less than half of the requested GPU resources during their
model parameter exploration.
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and challenges have been largely unexplored for modern GPUs. In addition, unlike
CPUs, GPUs lack sophisticated resource-sharing methods such as virtual memory
and fine-grained sharing.

Today, there are several methods for workload collocation on a GPU. Firstly,
multiple processes can be assigned to the same GPU simultaneously without any
explicit process management. Alternatively, the collocation can be more precisely
managed, for example via NVIDIA’s Multi-Process Service (MPS). Finally, the latest
generations of NVIDIA GPUs can be partitioned into fully isolated GPU instances at
the hardware level via Multi-Instance GPU (MIG).

This paper analyzes different ways of collocating deep learning model training on
NVIDIA GPUs. Specifically, we investigate the strengths and limitations of the new
MIG technology in contrast to the older methods. We characterize the performance
of the above-mentioned collocation methods on an A100 GPU. We diversify our
workload by considering three datasets (ImageNet, ImageNet64x64, Cifar10) repre-
senting different sizes (large, medium, small). Furthermore, we acknowledge that
the current deep learning landscape employs a wide variety of model architectures.
We investigate two popular convolutional models (ResNet, EfficientNetv2) and one
transformer model (CaiT). Additionally, we collocate a recommender model with a
vision model to demonstrate the merits of workloads containing models that stress
different parts of the hardware. Our results highlight that:

• When model training is unable to utilize the full GPU on its own, i.e., when running
on our small- and medium-sized training cases or cases that stress different parts
of the GPU, training multiple models in collocated fashion presents considerable
benefits. On the other hand, for large model training, collocation provides either
limited improvements to throughput as the GPU becomes over-saturated or cause
model training to crash when the available GPU memory is not big enough to
hold the combined memory footprint of the collocated models.

• On all the combinations we evaluated, MPS performs better than naïve and MIG
collocation, allowing single-user workloads to get the most out of the hardware
with minimal setup required.

• MIG offers strict separation of the GPU’s memory and compute resources across
the collocated workloads, eliminating interference. It also allows multi-user
collocation, unlike MPS, and can achieve higher energy efficiency when the
partitions are set well. On the other hand, MIG requires creating hardware
partitions a priori. For the cases of well-defined workloads, one can create the
ideal MIG partitions and leverage MIG-based collocation. However, for more
dynamic workloads where the workload mix changes over time, MIG would
require re-partitioning to perform well, whereas other collocation methods still
provide benefits.
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Table 4.1: Models & Datasets

Model Dataset #Parameters Size
ResNet26 Cifar10 17M small
ResNet50 ImageNet64 24M medium
ResNet152 ImageNet 59M large
EfficientNet_v2_s ImageNet64 22M medium
CaiT_xxs24_224 ImageNet 12M large
DLRM Criteo Terabyte 24B very large

4.2 Background
This section first provides background on different methods of collocation. Then,

we survey related work on workload collocation for deep learning.

4.2.1 Collocation on GPUs
A CUDA stream [128] is a sequence of operations that execute on the GPU (i.e.,

kernels and data transfers) in the order they are issued. While operations within
a stream are guaranteed to execute in the prescribed order, operations in different
streams can run concurrently. This concurrency helps with overlapping the stall time
due to the data transfers between the host CPU and GPU in one stream with work
from another stream. We call this type of workload collocation the naïve method
since it offers a limited way for sharing GPU resources. This is because the streams
have to share the GPU compute resources in a time-based manner rather than having
resources explicitly dedicated for each stream.

The multi-process service (MPS) [38] enables the host CPU to launch multiple
processes on a single GPU. Similar to naïve collocation, these processes share the GPU
memory and memory bandwidth. However, unlike naïve collocation, the streaming
multiprocessors (SMs) of the GPU are split across the different processes. Assignment
of the SMs is done by the MPS daemon automatically, unless explicitly stated by the
user, based on the provisioning of the GPU resources needed for each process. This
reduces interference across the different processes compared to the naïve approach.
One limitation of MPS is that it cannot collocate applications launched by different
user accounts for security reasons.

Multi-instance GPU (MIG) [129] is the most recent collocation technology in-
troduced with NVIDIA’s Ampere GPUs. It provides hardware support for splitting a
GPU into smaller GPU instances. Each instance can run a different process allowing
these processes to run in parallel on the same GPU.

An A100 GPU with 40GB memory supports several available partitioning profiles
(see 2.2). The smallest possible GPU instance is one with just one memory slice
and one compute slice, 1g.5gb, with 14 streaming multiprocessors (SMs) and 5GB
of memory. Consecutively, a 2g.10gb profile consists of two compute slices (28
SMs) and two memory slices (10 GB of memory). The other available profiles are
3g.20gb, 4g.20gb, and 7g.40gb. The last profile consists of almost all of the
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GPU resources. However, using the GPU without MIG mode is not analogous to
running this large profile as the compute capability of the GPU is hampered slightly
due to MIG management overhead; i.e. the reduced compute slice as mentioned
above (10 SMs). Each partition is strictly separated in terms of hardware resources
preventing any form of interference across partitions.

Many different partitions are possible as long as the maximum resource capacity is
not exceeded. The partitioning rules are set by the GPU itself, and the allowed set of
instances and configurations varies across different types of NVIDIA GPUs (A100,
A30, H100, H200). Finally, a GPU instance may also be split into multiple compute
instances from the compute side with unified memory. This can be useful when
compute and memory requirements do not follow the same pattern. For example, one
could run a memory intensive model and a compute intensive model with isolated
compute instances on a single GPU instance.

4.2.2 Related work
Collocation on GPUs have been studied in two dimensions: software and hardware

approaches. Software approaches either focus on developing better primitives for col-
location on GPUs or provisioning the resources of GPUs for running multiple appli-
cations [130, 131, 61]. In contrast, hardware approaches propose micro-architectural
changes to GPUs to enable finer-grained and more precise multi-application execution
within a GPU considering performance, utilization, and quality of service trade-offs
[132, 133, 134, 135, 136, 137].

MIG is a relatively new technology and there have not been many works that
thoroughly explore its possibilities. HFTA [93] is a mechanism to fuse multiple
model training runs for hyper-parameter tuning into one training run. The authors
show the effectiveness of HFTA compared to using MPS or MIG to run multiple
training runs in parallel. MISO [138] runs MPS on a 7g.40gb MIG instance
to predict the best MIG configuration for different jobs. Finally, Li et al. [139]
characterize performance of only MIG using deep learning models focusing on time
and energy metrics.

In general, our work is orthogonal to these works since we investigate the strengths
and limitations of MIG in contrast to the older collocation techniques such as MPS
and naïve collocation and use workloads of different sizes.
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Figure 4.1: Small: ResNet26 + Cifar10 (batch size = 128).
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Figure 4.2: Medium: EfficientNet_s + ImageNet64 (batch size =
128).

4.3 Impact of Collocation

4.3.1 Setup & Methodology
System. Our experiments run on a DGX Station A100, composed of an AMD

EPYC 7742 CPU (64 cores, 512GB RAM) and four A100 40GB GPUs (108 SMs).
Each of the A100 GPUs have 40GB of VRAM and support up to 7 MIG instances
with at least 5 GB of memory per instance (see 4.2.1).

Experiments. The experiments are devised with varying dataset sizes [140, 141,
1, 142] and models [143, 144, 145, 146] to assess the performance of collocating
deep learning training under different loads (4.1). We orchestrate the execution of the
workloads via a benchmarking framework [147]. The vision models are sourced from
the TIMM library [113], the recommender model from Facebook Research [146], and
we are using the latest version of PyTorch as of the start of our experiments (2.0) [24].

4.3.2 Uniform Collocation
Figures 4.1-4.3 illustrate the results of our uniform collocation experiments. Each

figure illustrates a particular model and dataset combination (as subset of the listed
combinations in 4.1).2 Bars that are grouped together form one collocated workload
with models trained in parallel. The different degrees of collocation are separated by
dotted vertical lines. The four non-collocated cases, which do not run any models in
parallel, are the first four bars and form our baselines.

Time per Epoch

Our main performance metric when comparing the effectiveness of different col-
location methods is Time per epoch. We time the second epoch of training, skipping
the first one as warm-up.

Looking at the first four bars of Figures 4.1a-4.3a, reveals that there is a little varia-
tion between the first three non-collocated workloads: naïve, mps, and 7g.40gb.
This indicates that MPS and MIG have negligible overhead. On the other hand, we
see the impact of having fewer resources available on the 4g.20gb MIG instance as
the workloads get larger in Figures 4.2a-4.3a.

2A larger set of results can be found in our longer report [17].
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Figure 4.3: Large: CaiT + ImageNet (batch size = 128).

Going over to the collocated runs, comparing across the different collocation
mechanisms on Figures 4.1a-4.3a reveals that MIG-based collocation performs better
as the degree of parallelism increases (especially to 7). MPS reveals itself as a clear
winner, offering the best performance across the board. In contrast, naïve collocation
is the least effective. We attribute the superior performance of MPS to its more flexible
resource management allowing more effective collocation (as 4.3.4 also shows) and
the lower compute resources that are available to MIG (4.2.1).

As expected, collocation impacts the time it takes to train the individual models due
to interference across the collocated runs. Additionally, as the degree of collocation
increases, so does the total time to train the models. On the other hand, multiple
models finish training simultaneously, increasing training throughput. For example,
except for the large workloads, 2-way collocation delivers two models in roughly the
same time as no-collocation delivers one model. 3-way collocation with MPS and
MIG leads to a 50-110% increase in time per epoch compared to non-collocated case
while delivering three model training runs instead of one. 7-way collocation with
MPS and MIG only increases the runtime 2X-2.5X for our smallest workload (4.1)
while delivering 7 models in parallel. These results clearly show that collocation is
valuable when a single training run is not large enough for the available GPU compute
and memory resources; e.g., the small and medium cases.

However, the picture shifts considerably with the large workloads (4.3). We no
longer see improvements for all of the collocated runs. MPS remains strong and is
the only form of collocation that remains beneficial in terms of throughput. Under
naïve collocation, one epoch of training takes roughly as long as training the models
in sequence without collocation. MIG fairs a little better under 2-way collocation, but
is not advantageous. Additionally, 3-way and 7-way collocation becomes impossible
due to memory constraints.

GPU utilization

We use SM Activity to track GPU utilization, [16], which is reported by the dcgm
tool [148]. For the small case and 7-way collocation, the benefits of collocation
become very visible. With ResNet’s embarrassingly parallel nature and the larger
batch size allowing even more parallelism, high utilization of the GPU compute
resources is achieved without overloading the GPU (4.1b). The medium case reflects
the same pattern, though starts hitting compute resource boundaries under 7-way
collocation, as seen in 4.2b. As a result, collocation provides considerable benefits
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Figure 4.4: Traffic from CPU to GPU during the second epoch of
ResNet26 + Cifar10 (batch size 32) training.

0

5

10

15

20

n
aï

ve

M
P

S

4
g.

2
0

gb

7
g.

4
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

En
e

rg
y 

(K
J)

Collocation option, # of collocated models (top to bottom)

Figure 4.5: GPU energy consumption to complete the 2nd epoch of
ResNet26 + Cifar10 (batch size 32) training.

for the small and medium cases with MIG and especially with MPS. For the large
case (4.3b), there is little variety in the GPU utilization across different cases.

GPU memory footprint

Finally, Figures 4.1c-4.3c report the aggregate memory footprint on the GPU for
different collocation methods for each workload. We use nvidia-smi to collect
the memory consumption for the whole GPU after a full epoch of training to signify
how much memory is needed for the model to train. The figures demonstrate that
the increase in memory footprint with collocation is proportional to the degree of
collocation. This is an expected result as the models are not sharing data across
collocated runs in these experiments.

Notably, MIG collocation shows slightly smaller memory footprints than the two
other options, which prompted us to delve deeper into PyTorch’s memory alloca-
tion. We discovered that PyTorch adjusts the memory footprint depending on the
total available memory, which is less in the case of non-7g.40gb MIG instances
compared to whole GPU memory available under MPS and naïve. Switching the
memory allocator backend from PyTorch’s native implementation to CUDA’s built-in
asynchronous allocator removes the differences in the memory footprint of different
collocation methods. However, we do not recommend this switch as it slows down
the training process.
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Figure 4.6: GPU power usage during the second epoch of ResNet26
+ Cifar10 (batch size 32) training.

Interconnect Traffic

4.4 reports the amount of bytes received over time by the GPU measured by
dcgm’s pcie_rx_bytes. We compare naïve and MPS collocation during the
second epoch of small ResNet training with batch size 32. We pick this small
case as it benefits greatly from collocation and can highlight the differences across
the collocation scenarios more effectively. MIG is omitted here due to dcgm not
providing the readings for this metric under MIG as a result of the GPU being split
into multiple instances.

For lower degrees of collocation, naïve collocation leads to a linear increase in
data transferred over PCIe from CPU to GPU with respect to degree of collocation.
On the other hand, for the 7-way case, there is less work being done per unit of time
for each training run leading to sub-linear PCIe traffic. This is likely caused by the
throughput benefits of collocation taking a huge hit under naïve collocation, as shown
in 4.3.2. In contrast, MPS exhibits a super-linear increase in PCIe utilization when
collocating models. In addition to the data transfers for the collocated runs, MPS
increases the kernel launch processes since it is able to eliminate false dependencies
and share the GPU resources more effectively across the collocated kernels (4.2.1).

Energy Consumption

Finally, we look at the power usage and GPU energy consumption using dcgm’s
power_usage (watts) and total_energy_consumption (joules), respec-
tively, for the small ResNet training. Figure 4.6 shows that collocation scenarios that
are highly effective may run on higher power but finish much quicker. This is due to
higher GPU utilization under MPS and MIG. MIG exhibits significantly lower wattage
under 7-way collocation than MPS while training slightly slower. The benefits of this
can be seen in Figure 4.5, which reports the total GPU energy consumption of the
second epoch of the model training. While requiring higher power usage per unit
of time, MPS spends less energy compared to naïve collocation thanks to finishing
training faster. While not as fast as MPS, MIG in general exhibits the lowest GPU
energy footprint.

4.3.3 Additional Uniform Collocation Results
As part of our investigation of the collocation mechanisms, we have also exper-

imented with varying the batch size and tested out additional model and dataset
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combinations. We are sharing the results from those experiments in this subsec-
tion for completeness in Figures 4.7-4.11, even though they do not change the key
conclusions of this chapter.
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Figure 4.7: Small: ResNet26 + Cifar10 (batch size = 32).

4.3.4 Mixed Workloads
So far, we focused on homogeneous collocation scenarios. Such cases can be

extremely useful in practice when a data scientist is performing hyper-parameter
tuning to come up with the ideal set of parameters for a model repeatedly running the
same model with a different set of parameters. On the other hand, there is also value in
investigating non-homogeneous collocation scenarios to observe what happens when
individual training runs stress the GPU unequally.

We select combinations of small, medium, and large ResNet models with corre-
sponding dataset sizes to collocate heterogeneously (as listed in Table 4.1). For the
MIG workloads, these run on 1g.5gb, 2g.10gb and 4g.20gb, respectively. We
opted to keep a static MIG configuration in this experiment since in a real-world sce-
nario, e.g., in a data center, the MIG partitions would already be set and reallocating
resources after each training run could be impractical.

Figure 4.12 details the total execution time for training the collocated models
using the different collocation methods in comparison to training them back to back,
serial, without collocation. We see that the benefits of collocation vary heavily
across workloads. For larger workloads such as "S+M+M" and "S+S+M+M", naïve
and MPS collocation provide sizeable benefits by training the small model without
impacting the medium one. In general, the flexibility of both naïve collocation and
MPS is a great advantage here over MIG.
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Figure 4.8: Small: EfficientNet_s + Cifar10 (batch size = 128).
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Figure 4.9: Medium: ResNet50 + ImageNet64 (batch size = 32).
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Figure 4.10: Medium: ResNet50 + ImageNet64 (batch size = 128).
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Figure 4.11: Large: ResNet152 + ImageNet (batch size = 32).

4.13 dives deeper into the "S+M+M+M" workload to observe how the GPU utiliza-
tion and memory footprint changes over time during collocated runs with naïve, MPS,
and MIG collocation. We pick this mix as it is the one that utilizes MIG instances
the best. The GPU utilization under MIG gets lowered after the small model finishes,
since MIG is unable to fill-up the corresponding instance with more work. On the
other hand, naïve and MPS are able to keep similar GPU utilization throughout. In
contrast, the memory footprint follows a similar trend for all collocation strategies. It
is higher in the beginning as all four models are training. The values then drop off
quickly once the small model finishes.

Furthermore, to investigate the impact of collocating mixed workloads that stress
different hardware resources, we show the results of collocating a recommender model
with a large vision model training in Table 4.2. We configure two 3g MIG compute
instances to share memory as the recommender model does not fit into the memory
of smaller GPU instances.

Adding a memory-heavy model such as the recommender greatly promotes collo-
cation. While the training time for individual runs increase slightly, the total time to
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Figure 4.12: Time for training mixed vision workloads with & without
(serial) collocation for two epochs.
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Figure 4.13: GPU utilization and memory footprint over time for
S+M+M+M from 4.12.

finish the whole workload gets reduced by 5-10%. Furthermore, one can collocate
more compute-intensive models such as ResNet152 together with the Recommender
model after the first ResNet training completes. As before, memory consumption
roughly corresponds to the sum of both models. However, GPU utilization does not
increase. Under MIG, unfortunately, only part of the computing power of the GPU
can be assigned to ResNet, even though the recommender requires little.

4.3.5 Summary & Collocation Guidelines
Based on the results we covered, we now provide some guidelines for deep learning

training collocation.

• Workload collocation is highly beneficial when the aggregate compute and mem-
ory needs of the collocated deep learning training runs fit the GPU (SMACT <=
80%).

• Collocation gives diminishing returns when the GPU utilization of an individual
run is already close to 100%.

• The aggregate memory footprint of the collocated runs can effectively be estimated
by the sum of the memory footprints of the individual runs and cannot exceed the
available memory on the GPU.

• MPS achieves better performance across the board thanks to its flexible distri-
bution of hardware resources among the collocated runs. On the other hand, it
requires higher interconnect bandwidth.
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Table 4.2: Mixed collocation of memory-intensive recommender and
compute-intensive vision models. Recommender time is for one train-
ing block plus validation. ResNet time is for one epoch. The reported

decrease in total time (%) is relative to the sequential run.

Collocation Time (h) GPU Util. Memory (GB)Recom. ResNet Total
Recom. (no-colloc) 5.36 - 6.41 5% 29.14

ResNet152 (no-colloc) - 1.05 82% 8.47
Naïve 6.09 1.11 6.09 (-5%) 81% 37.75
MPS 5.57 1.10 5.57 (-13%) 81% 37.62

MIG (shared) 5.60 1.40 5.60 (-13%) 39% 37.86

• MIG can support collocation effectively when a strict separation is required among
the runs thanks to its rigid partitioning even though this partitioning leads to sub-
optimal performance compared to MPS. Furthermore, MIG exhibits higher energy
efficiency on GPUs when the instances are configured well for the workload.

4.4 Conclusion
In this paper, we provide a performance characterization on a modern GPU device

that has support for multiple means of GPU collocation: naïve, MPS, and MIG.
Our results demonstrate that GPU collocation is highly beneficial for small- and
medium-sized workloads that cannot fully saturate the whole GPU. Although per-
model training is overall slower, parallel execution of workloads can utilize GPU
resources more effectively, increasing training throughput. MIG notably requires a
rigid setup while providing full isolation across its instances.

If the workload across the instances is imbalanced, runs that finish early will leave
some instances idle, unless there is other work that could be allocated over those
instances. Naïve collocation and MPS, on the other hand, can utilize the resources
released by the finished work, increasing the training performance of models that
require more time to train. In general, MPS provides the best collocation performance,
if not the most energy efficient.

In this work, we limited our focus to training on a single GPU since NVIDIA does
not allow multi-GPU training with MIG. we limited our focus to training on a single
GPU since NVIDIA does not allow multi-GPU training with MIG. In a data center,
many workloads can be collocated not only on the same GPU but also on the same
server. Therefore, studying the impact of collocation while running other workloads
on other GPUs on the same device would be interesting future work. Furthermore,
considering the results with the recommender model, further investigations of the
shared memory instances of MIG would be worthwhile.
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Chapter 5

GPUMemNet: GPU Memory
Estimator for Neural Network
Training

As deep learning continues to revolutionize various fields, its reliance on high-
performance hardware has become increasingly evident. As the backbone of modern
deep learning, GPUs provide the computational power necessary to train complex
models. However, despite their capabilities, GPUs are often underutilized due to
inefficiencies in workload management. Accurately estimating GPU memory usage
is crucial not only for optimizing hardware efficiency by increasing batch size but
also for facilitating effective task collocation in high-performance computing environ-
ments, where resource managers can automatically allocate workloads to maximize
utilization.

This chapter introduces GPUMemNet, a novel machine learning-based approach
for estimating GPU memory requirements. In addition to presenting the methodology
underlying GPUMemNet, this chapter provides access to the dataset used for training
the estimator, along with all relevant artifacts of this study. Furthermore, it offers key
insights into the GPU memory demands of deep learning training tasks, contribut-
ing to a deeper understanding of resource allocation strategies in high-performance
computing settings.

5.1 Introduction
Despite GPUs’ growing computational capabilities, they remain underutilized

in many real-world applications. One primary reason for this underutilization is
that deep learning workloads often fail to saturate GPU capacity, combined with
the lack of efficient, fine-grained GPU sharing mechanisms comparable to CPU
virtual memory. Traditional approaches to scheduling deep learning workloads tend
to treat these tasks as "black boxes," assigning entire GPUs without considering
the possibility of collocating multiple tasks for improved efficiency. This leads to
significant inefficiencies and underutilization when single tasks do not saturate the
assigned GPU.
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One promising approach to address GPU underutilization is the automatic collo-
cation of multiple training tasks on a single GPU. However, collocation is not without
its challenges. The most significant issues are (1) avoiding out-of-memory (OOM)
errors that occur when multiple tasks exceed available GPU memory, and (2) manag-
ing interference between tasks, which can degrade performance. In this chapter, we
tackle the former issue focusing on deep learning training workloads. Efficient and re-
liable estimation of GPU memory requirements is crucial to overcoming these issues,
enabling resource managers to allocate GPU memory effectively while minimizing
OOM crashes.

Currently available GPU memory estimation approaches [61, 149, 150] have
significant limitations. They drastically over- or under-estimate the memory require-
ments of deep learning training due to not accounting for GPU memory optimization
techniques like memory sharing or reuse at runtime. Making decisions based on over-
estimated values wastes collocation potential. Conversely, under-estimations might
lead to crashes due to OOM errors when we collocate. Recovering from such crashes
imposes overhead that penalize what we might gain from collocation. Overall, these
inaccuracies make it challenging for resource managers to effectively allocate GPU
resources and prevent over-provisioning or crashes.

To address the issue of memory over-/under-estimation in deep learning training,
we develop GPUMemNet, a framework composed of dataset building scripts, built
dataset cleaning scripts, and models aimed at accurately estimating GPU memory
requirements for deep learning models during training, allowing for safe and effective
task collocation. Furthermore, to aid with GPUMemnet, we build a comprehensive
dataset of training tasks across diverse network architectures, including MLPs, CNNs,
and Transformers, all implemented in PyTorch.

This chapter’s contributions can be summarized as follows:

• We demonstrate that the state-of-the-art and open-source memory estimation ap-
proaches for deep learning training over- or under-estimate (Our experimental
observations indicate that both Horus and FakeTensor can significantly misesti-
mate GPU memory requirements, with discrepancies of approximately 350GB
and 470GB, respectively, compared to the actual model needs.) the GPU memory
needs of the training process emphasizing the need for a more sophisticated by
still lightweight memory estimator for deep learning training.

• We show why the memory estimation challenge for deep learning training should
be modeled as a classification tasks instead of a regression and provide guide-
lines for how to collect data for different neural network architectures in order to
train accurate memory estimators for deep learning training. We call the over-
all blueprint for how to collect data and train models for GPU memory usage
estimations, GPUMemNet.

• Following GPUMemNet, we build a set of classification models based on multi-
layer perceptrons (MLP) and Transformers, trained on datasets collected from
real deep learning training runs. GPUMemNet maps different training tasks into
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memory usage buckets. Based on our evaluation, GPUMemNet can predict the
memory needs of the convolutional neural networks (CNNs) and Transformers
with 88% and 83% accuracy, respectively, with memory buckets of 8GB incre-
ments (0GB-8GB, 8GB-16GB ...), while achieving 97% accuracy, with memory
buckets of 1GB increments, for MLPs.

The rest of this chapter is structured as follows. We first delve into the necessary
background and motivation in Section 5.2. Section 5.3 provides an overview of
related work. In Section 5.4, we describe the dataset construction and analysis. The
evaluation of our approach in Section 5.5. Finally, we conclude in Section 5.6.

All artifacts associated with this chapter are available atthe chapter’s GitHub page.

5.2 Background & Motivation
The growing complexity of deep learning models has put an increasing demand on

computational resources, particularly GPU memory. Modern architectures, including
convolutional neural networks (CNNs) and transformers, often require significant
memory to store model parameters, intermediate activations, and gradients during
training. This makes GPU memory a critical bottleneck in scaling deep learning
tasks, especially when working with larger datasets, higher-resolution inputs, or more
complex models.

One of the central challenges lies in balancing the trade-offs between memory
usage, computational efficiency, and model performance. To address this, researchers
and practitioners have explored various techniques to optimize GPU memory usage.
Efficient GPU memory utilization is a cornerstone of optimizing deep learning tasks,
driven by a variety of innovative techniques. The following subsections highlight
some of these techniques and why they make it harder to estimate the exact GPU
memory usage for deep learning training.

5.2.1 Memory Optimizations Enabled by Default by the Deep
Learning Frameworks

Activation reuse stands out as a crucial method. When activations are no longer
required during the backward pass, frameworks like PyTorch [28, 151] and Ten-
sorFlow [25] dynamically repurpose their memory for other operations, significantly
lowering the memory footprint . However, this approach depends on efficient memory
management strategies that vary based on model configurations and layer structures,
introducing a level of unpredictability to memory usage.

GPU memory management in popular deep learning frameworks also relies heav-
ily on dynamic memory allocation, where tensors, buffers, gradients, and optimizer
states are allocated and deallocated during runtime. This dynamic process creates
fragmentation—isolated free memory regions that are unusable—complicating mem-
ory usage predictions and leading to potential under-utilization or unexpected memory
shortages [152, 25, 28].

https://github.com/Resource-Aware-Data-systems-RAD/GPUMemNet
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5.2.2 Memory Optimization Techniques that Must be Enabled by
the Users

Layer fusion minimizes intermediate tensor allocations by combining consecutive
operations, such as convolution, activation, and batch normalization, into a single
kernel.

Gradient checkpointing [153], also known as activation checkpointing, offers
a memory-saving solution by selectively storing intermediate activations during the
forward pass and recomputing them during backpropagation. This technique is partic-
ularly beneficial for large models, as it conserves memory at the expense of increased
computational cost. The trade-off between memory savings and computational over-
head further complicates the accurate estimation of GPU memory requirements,
especially as checkpointed layers and configurations vary across implementations
[154].

In addition, mixed precision [155] training has revolutionized memory optimiza-
tion by representing model parameters and activations in float16 instead of float32.
This approach significantly reduces memory usage while leveraging NVIDIA Tensor
Cores for accelerated operations. However, precision constraints in certain layers
necessitate the retention of float32 values to avoid numerical instabilities. These se-
lective adjustments introduce inconsistencies in memory usage and pose challenges
for precise memory estimation.

The choice of the optimizer for the gradient descent also plays a crucial role
in memory consumption. For example, optimizers like Adam [156] and RMSProp
[157], which store additional states per parameter, require significantly more memory
than solely using stochastic gradient descent (SGD). The specific configurations and
parameters chosen directly impact memory usage, further influencing the accuracy
of memory predictions.

Beyond the model itself, asynchronous data loading and preprocessing can
indirectly affect GPU memory usage. Techniques such as data prefetching and aug-
mentation occupy additional memory, leaving less available for model storage. For
models with high data throughput, this overhead can become substantial, necessitating
careful balancing of resources [158].

Lastly, large models often rely on model parallelism and memory offloading [159]
to manage their size. By distributing layers across multiple GPUs or offloading
memory to CPUs, these approaches reduce GPU memory bottlenecks but introduce
communication overhead. Techniques such as pipeline parallelism, where the model
is split into stages across GPUs, add further complexity by requiring memory storage
for activations during inter-GPU communication [160, 161, 162, 163].
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5.2.3 Impact of Hardware on Memory Allocations
Hardware variability introduces another layer of complexity in memory usage

estimations. GPU architecture significantly influences memory allocation and man-
agement. For instance, variations between NVIDIA’s Volta [164] and Ampere [165]
architectures result in differences in memory handling and optimization capabili-
ties, making consistent memory estimation across hardware platforms particularly
challenging [166].

5.3 Memory Estimators for Deep Learning
Various approaches have been proposed to estimate memory requirements for deep

learning training before the training process starts, including analytical formulas,
symbolic computation tools, and integrated libraries within popular deep learning
frameworks. However, these methods often fail to capture the nuances of modern
GPU memory usage, which is influenced by dynamic optimizations such as the
ones listed in Section 5.2, In this section, we review notable techniques for GPU
memory estimation: the formula proposed by Yeung et al. [61] for the deep learning
task scheduler Horus, the PyTorch’s FakeTensor library [149], and the DeepSpeed
estimators [150]. Through experimental analysis, we highlight the strengths and
shortcomings of these methods, providing insights into their suitability for practical
use cases for GPU memory estimation.

Furthermore, Taeho Kim et al. [167] introduce LLMem, an analytical method
designed to estimate GPU memory consumption during the fine-tuning of large
language models (LLMs) across multiple GPUs. LLMem aims to identify the optimal
distributed fine-tuning method to prevent GPU out-of-memory (OOM) issues. By
analyzing the structure of transformer-based decoder models and the memory usage
patterns of various fine-tuning methods, LLMem can predict peak GPU memory
usage with minimal error rates. However, LLMem is designed specifically for large
language models (LLMs) and fine-tuning scenarios, making it less applicable to other
architectures like CNNs or MLPs. While it provides accurate memory estimates,
it may not fully account for all variations in model architectures and fine-tuning
techniques, limiting its adaptability. Additionally, its performance in dynamic or
unforeseen training environments remains untested, which could impact its reliability
in real-world applications. While our work is distinct, it can be integrated into the
proposed framework and utilized for estimating the specific scenarios where LLMem
is effective.

Also, DNNMem [168] employs an analytical approach to estimate GPU mem-
ory consumption in deep learning models. However, it has several limitations, in-
cluding the absence of publicly available source code restricting accessibility and
community-driven improvements, a focus on single-GPU environments, lack of sup-
port for advanced fine-tuning techniques, overlooking optimizer state memory, limited
applicability to transformer-based models, framework dependency, and high estima-
tion errors. Analytical methods often face challenges in scalability, as extending
them necessitates incorporating additional conditions and variables, leading to more
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complex formulas and an increased risk of human error. In contrast, machine learn-
ing approaches can effectively address these limitations by expanding the dataset
to include new scenarios, thereby enhancing the model’s adaptability and accuracy
without the need for manually adjusting intricate formulas.

DNNPerf [169] introduces a machine learning-based tool designed to predict
the runtime performance of deep learning models, focusing on metrics such as GPU
memory consumption and training time. DNNPerf represents a model as a directed
acyclic computation graph and utilizes a Graph Neural Network (GNN) to incorporate
a rich set of performance-related features based on the computational semantics of
both nodes and edges. The authors propose an Attention-based Node-Edge Encoder
to effectively capture these features. As models increase in complexity, the compu-
tational demands of DNNPerf’s Graph Neural Network may affect scalability. While
DNNPerf shows promise, it has certain limitations. The tool is tailored to specific
deep learning frameworks, which may limit its applicability across different platforms
or custom implementations. However, it can get extended by adding new data points,
which is the benefit of machine-learning mechanisms. Its predictive accuracy may
diminish when applied to novel or highly specialized neural network architectures that
deviate significantly from the models it was trained on. As deep learning models grow
in complexity, the computation required for DNNPerf’s GNN-based predictions may
become resource-intensive, potentially affecting its scalability and efficiency. The ef-
fectiveness of the Attention-based Node-Edge Encoder is contingent on the selected
features; omission of relevant features or inclusion of redundant ones could affect
prediction accuracy.

DeepSpeed -is a deep learning optimization library from Microsoft that makes
distributed training and inference easy, efficient, and effective. - offers a GPU mem-
ory estimator that provides insights into memory usage requirements for various
configurations, particularly when using ZeRO (Zero Redundancy Optimizer) stages
[150]. Users have reported discrepancies between the estimator’s predictions and
actual memory usage during training. For instance, in certain scenarios, the estima-
tor predicted a per-GPU memory requirement of approximately 17GB, while actual
usage reached around 30GB, leading to unexpected out-of-memory (OOM) errors
[170]. Furthermore, Complex vision layers, like those with large convolutional ker-
nels, introduce additional memory demands that estimators like DeepSpeed cannot
fully capture.

5.3.1 Horus Memory Estimator
Yeung et al. [61] proposes a formula to estimate the expected GPU memory usage

of deep learning tasks based on model characteristics and parameters to determine
scheduling decisions in the Horus scheduler they also build. This formula provides an
estimate for the expected memory usage based on core components in both the forward
and backward passes, along with an initialization overhead. More specifically, the
expected GPU memory usage Memj for a given deep learning job j is calculated
through the following:

Memj = M f + Mb + d = (B × A + P) + (B × G) + d
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Figure 5.1: Comparison of actual GPU memory usage versus Horus-
estimated memory requirements for MLP models with varying layer
counts and neuron numbers. The discrepancies highlight the limita-
tions of Horus’s analytical approach in accurately predicting memory

consumption for diverse MLPs.

where

• B is the batch size,

• A is the number of activations,

• G is the number of gradients,

• P is the number of parameters,

• d represents an initialization overhead, and

• M f and Mb denote the memory requirements for the forward and backward
passes, respectively.

Through an experiment, we observe that this formula does not provide accurate
predictions for the GPU memory requirements of training even for simple MLP
models. The results of our experiment are shown in Figure 5.1. In this experiment,
we build a range of MLPs with increasing network depth and width. We train each
of them and monitor their GPU memory usage at runtime using nvidia_smi.
Then, in Figure 5.1, we report the maximum reported value by nvidia_smi during
training. Also, for each model, we extract its parameters, activations, and batch size to
calculate its GPU memory requirement based on the Horus’ formula presented above.
The results show that this estimation approach can often lead to extremely inaccurate
predictions, up to 350GB difference, due to dynamic memory optimizations, such
as activation reuse or gradient checkpointing. As a result, this formula is unsuitable
for dynamic resource allocation and scheduling decisions for GPUs, especially if one
also targets effective collocation of tasks on GPUs.
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5.3.2 Memory Estimations with FakeTensor
The primary purpose of the FakeTensor library [149] in PyTorch is to enable

symbolic shape propagation and analysis within computational graphs, allowing de-
velopers to evaluate model structure, tensor transformations, and layer compatibility
without actually allocating memory or performing real computations. FakeTensor
achieves this by creating "fake" tensors that maintain essential metadata (like shape
and data type) but lack actual data storage, making it valuable for tasks like model
compilation, debugging, and compatibility checking across dynamic shapes.

While GPU memory estimation is not FakeTensor’s primary function, it can ap-
proximate memory requirements based on tensor dimensions and data types, making
it helpful for high-level assessments of potential memory usage across network ar-
chitectures or batch sizes. In "fake mode," FakeTensor simulates tensor allocations,
providing a rough estimate of memory demands during forward and backward passes
without real allocations. However, these estimates do not incorporate PyTorch’s GPU
memory optimizations—such as gradient checkpointing, mixed precision, or dynamic
memory reuse—which reduce actual memory usage during training.

To investigate the effectiveness of FakeTensor in predicting GPU memory usage,
we perform an experiment to compare the actual memory usage of a variety of deep
learning models during training on an A100 GPU vs what the FakeTensor estimates
for them. The results, which are plotted in Figure 5.2, show that, while estimates
are generally within an acceptable range, FakeTensor can sometimes significantly
overestimate or underestimate memory usage, given its lack of optimization aware-
ness. These discrepancies, plotted in Figure 5.3, impact resource managers that
rely on these estimates, leading to potential underutilization or OOM errors if actual
memory requirements deviate from FakeTensor’s theoretical predictions.

5.4 GPUMemNet: GPU Memory Estimations using
Deep Learning for Deep Learning

In dynamic resource management, particularly within GPU environments, it is
imperative to employ models that are both accurate and computationally efficient.
Traditional analytical methods, such as those utilized in Horus [61], systematically
calculate GPU memory consumption but often lack precision. Conversely, machine
learning-based approaches, like Microsoft’s graph neural network estimator[169],
can offer enhanced accuracy but may introduce significant computational overhead
and are not always open-source (e.g., the datasets and/or the estimators), limiting
their adaptability. To address these challenges, we propose constructing a systematic
and extensible dataset that facilitates continuous and collective improvement. This
strategy ensures precise GPU memory estimation while maintaining the efficiency
necessary for real-time decision-making in schedulers or resource managers.

In this section, we introduce GPUMemNet, a deep learning-based approach for es-
timating GPU memory usage for deep learning training tasks. We begin by identifying
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Figure 5.2: Actual GPU memory requirement, measured by
nvidia_smi, and FakeTensor estimation for a range of deep learn-

ing models from TIMM library [113] during training.

key neural network characteristics that significantly impact GPU memory consump-
tion. Following this, we investigate the estimator model as a regression task, detailing
its challenges. We then describe the construction of the training dataset, ensuring
it encompasses a diverse range of network configurations. Additionally, we explore
framing the estimator model as a classification task to assess its effectiveness. To
validate our approach, we present a proof of concept using Multi-Layer Perceptrons
(MLPs), Convolutional Neural Networks (CNNs), and Transformer models.

5.4.1 Neural Network Characteristics that Impact GPU Memory
Usage

Number of Layers (Depth): The depth of the network significantly impacts
memory usage. For networks with the same batch size and number of parameters,
deeper networks (those with more layers) tend to consume less GPU memory than
shallower, wider networks.

Activations: In neural networks, activations represent the outputs generated at
each layer, which are essential for determining GPU memory usage during training.
For MLPs, activations correspond directly to the number of neurons across all layers.
Thus, in an MLP with uniform architecture, the total number of activations is simply
the sum of neurons in each layer. In convolutional neural networks (CNNs), however,
activations refer to the intermediate feature maps produced by convolutional layers,
which are way higher than what exist in MLPs.
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Figure 5.4: Staircase growth pattern for memory usage, fully con-
nected networks on ImageNet dataset and with batch_size=32.

Number of Parameters: The weights and biases in the model, which get updated
throughout the training process, contribute to memory usage significantly.

Batch Size: Batch size defines the number of training data samples stored on the
GPU during each forward and backward pass, which gets multiplied with the number
of activations contributing to the GPU memory usage.

Dataset Size and Input Dimensions: Input image dimensions determine the
first layer activations and the number of parameters in addition to impacting the
training duration. For CNNs, input image size has significant effect on GPU memory
requirement as activation in whole network rely on the input image dimension.

To highlight the impact of different network characteristics on GPU memory usage,
we initially focus on the fully-connected networks (MLPs) for easier explainability.
We construct an initial dataset by running various MLPs on ImageNet [140] using
the Keras wrapper for the TensorFlow framework and an A100 GPU. We vary several
architectural parameters, including the number of layers, the number of neurons
per layer, and batch size. We trained the models on only three different datasets:
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MNIST[111], Cifar10[140], and ImageNet [1], and we kept the architecture of all of
them to uniform. We record various hardware-related metrics using nvidia-smi
and dcgmi to capture detailed GPU utilization data during model training. While
we explain later why this dataset is unsuitable for creating a memory estimator, it
still helps us with identifying the memory impact of different network characteristics.
Our observations are summarized as follows:

Staircase Growth Pattern: As shown in Figure 5.4, GPU memory usage displays a
staircase-like growth pattern, which is attributable to the granularity of GPU memory
allocation [171]. GPU memory allocation is done at different granularity levels.
Due to the discrete units of GPU memory allocation, different networks may exhibit
similar GPU memory usage, even with variations in architecture.

Effect of Network Depth: Figure 5.4 also illustrates that the relationship be-
tween network depth and GPU memory usage is complex and depends on specific
architectural and optimization factors. Deeper networks can sometimes consume less
GPU memory than shallower networks with the same total number of parameters and
activations (scaled by batch size) due to advanced memory optimization techniques
mentioned in Section 5.2. For instance, memory reuse strategies such as gradient
checkpointing can reduce the memory footprint of intermediate activations by re-
computing them during the backward pass rather than storing them throughout the
forward pass. This allows deeper networks to take advantage of efficient memory
usage across layers. In contrast, shallower networks often require all their parame-
ters and activations to be stored simultaneously during training, as there are fewer
opportunities for such reuse. However, without these optimizations, deeper networks
typically demand more memory because of the greater number of activations that
must be retained. Therefore, while deeper networks can have a memory advantage
in specific scenarios, this effect is contingent on the application of memory-saving
techniques and does not universally apply to all cases.

Batch Size Impact: Figure 5.5 shows that, as expected, larger batch sizes require
more GPU memory during training because more activations and intermediate values
must be stored to compute gradients and perform parameter updates. In the forward
pass, activations are generated for each layer and retained in memory to facilitate
gradient computation during the backward pass. With larger batches, the number
of activations increases proportionally, as the network processes more data samples
simultaneously. Additionally, the backward pass requires storing intermediate values
and gradients for each sample in the batch, further increasing memory demands. The
gradients for model parameters are computed as the aggregate of contributions from all
batch samples, necessitating memory allocation for these intermediate computations.
This memory scaling is typically linear with respect to the batch size, meaning that
doubling the batch size approximately doubles the memory requirement, assuming
the network and input size remain constant.

5.4.2 Estimator Model as a Regression Task
Any resource manager or scheduler that would integrate a model that can estimate

the GPU memory usage of deep learning tasks dynamically at runtime, needs to be
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Figure 5.5: Batch size effect on different fully connected layers.

lightweight for fast decision making. Therefore, we start by modeling the memory
estimation challenge as a regression task aimed at predicting continuous values for
the GPU memory usage. There are a variety of lightweight models for regression
tasks that does not require a neural-network architecture.

By using the MLP dataset described in Section 5.4.1, we first analyze a variety of
regression models using thelazypredict [172] Python library. This library allows
a systematic way of comparing different models for their accuracy for the task at hand.
The input given to the models are #layers, batch_size, #parameters, and
#activations. The output is the estimated GPU memory usage.

This initial investigation results in the following order for the most accurate models
for our task: ExtraTreeRegressor [173], LGBMRegressor [174], RandomForestRe-
gressor [175], and XGBRegressor [176]. For example, ExtraTreeRegressor manages
to predict the memory usage for the MLP dataset with a +\− ∼ 1.2GB error margin.

On the other hand, if we perform an analysis of which input features con-
tribute most to the GPU memory usage according to the model, we get the follow-
ing result for the ExtraTreeRegressor: #layers=0.0152, batch_size=0.0144,
#parameters=0.699, and #activations=0.271. The associated contribution
values are from 0 to 1 and the higher the value the higher the contribution. Based on
these results, the model thinks that features such as #layers and batch_size
has very little impact on the GPU memory usage. This, we know to be false, based on
Figures 5.4 and 5.5. The inconsistencies in feature importance rankings observed in
the ExtraTreeRegressor model can be attributed to three key factors. Feature correla-
tion among predictors can distort their relative importance, particularly when highly
correlated variables like parameter count and layer count compete for significance
[177]. The model’s reliance on impurity-based importance metrics presents inherent
limitations, especially with high-cardinality or differently scaled features [175]. Ad-
ditionally, imbalanced feature distributions may lead to underestimation of rare but
influential predictors. These considerations are essential for proper interpretation of
the model’s feature importance assessments [178].

We observe similar anomalies in the way all the top performing regression models
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Table 5.1: First attempt at modeling as classification with GPU Mem-
ory Ranges of 1000MB using the initial MLP dataset for training.

Metric Accuracy Precision Recall F1-Score
Value 0.8182 0.8205 0.8182 0.8116

learn about the GPU memory usage of MLPs. This indicates that the models mem-
orize the behavior, overfitting instead of learning. Similarly, using an MLP-based
model for this regression task to enable more complex learning does not work. The
model does not learn and its Mean Absolute Error (MAE) does not improve over 400
epochs of training. This is likely because of the staircase pattern of memory allocation
that we observe in Figure 5.4, which makes the function relating the features to the
target variable to be non one-to-one function. The growth in memory use in these
models does not fit into a contiguous pattern to be effectively predicted by regression.

Therefore, in our second attempt, in Section 5.4.4, we will approach our task as a
classification problem instead of regression. First, to motivate this, we reformulate the
challenge as a classification task with 1GB memory range classes. This gives us the
high accuracy the results shown in Table 5.1. The reason why the classification task
could be more fitting is shown through t-Distributed Stochastic Neighbor Embedding
(t-SNE) [179] and Principal Component Analysis (PCA) [180] methods. PCA is a
technique that reduces the dimensionality of data by transforming it into a new set
of variables, called principal components, which are uncorrelated and ordered by the
amount of variance they capture from the original data. This method is particularly
useful for simplifying complex datasets while retaining their essential patterns. On
the other hand, t-Distributed Stochastic Neighbor Embedding (t-SNE) is a method
designed for visualizing high-dimensional data by modeling each high-dimensional
object by a two- or three-dimensional point in such a way that similar objects are
modeled by nearby points and dissimilar objects are modeled by distant points with
high probability. This approach is especially effective for revealing clusters and
intricate structures within the data that may not be apparent through linear methods
like PCA. Based on t-SNE and PCA, Figure 5.6 illustrate the distribution of different
classes within our dataset. Figure 5.6a highlights the memory range patterns are
detectable by the human eye, which explains why a classification task works better
for estimating memory. On the other hand, Figure 5.7b shows that the dataset itself
does not cover the relevant space, which we delve into next.

5.4.3 Training Dataset for the Estimator Model
Before delving into the modeling GPU memory usage through classification, we

would also like to touch on the approach for preparing a dataset for this task. The initial
dataset built using MLPs, as described in Section 5.4.1, is helpful to reason about the
key network features that contribute to the memory consumption and identification of
the problem type (i.e., regression vs classification). However, it lacks the following
key characteristics, which are crucial if one wants to establish a more realistic dataset:

Representativeness of the key input features: The initial MLP dataset represents
models with 100s of layers, which helps in analyzing the staircase behavior shown in
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Figure 5.6: Analyzing the initial MLP dataset with PCA and t-SNE
methods.

Figure 5.4 and why regression-based modeling is unsuitable. However, in realistic
scenarios, MLPs are not expected to go beyond 10 layers due to the problem of
vanishing gradients. Thus, such data points in the training set for the memory
estimator model may lead to misleading learning. One has to focus on realistic ranges
for each input feature for the memory estimator while building the training set.

Addition of Key Layers: In real-world models, in addition to the main layers such
as fully-connected layers in our initial dataset, there are many other crucial layers
such as normalization and dropout layers. The training set must include samples /
data points with such layers as well.

Uniform Feature Distribution: To effectively represent each input feature, one
has to prepare the dataset where each feature has a uniform distribution. With non-
uniform distributions, certain memory values in the range would be missing, hence
leading to more errors or over-fitting in model training.

Non-Uniform Layers: MLPs don’t always have exactly the same fully-connected
layers throughout the model. Some layers may be wider than the others in practice.
Same goes for other model architectures. Therefore, in the training dataset, one has
to pay attention to having data from models with non-uniform layers across the model

Input and Output Diversity: It may be intuitive to train on a single or a few
popular datasets, while building the training set. However, to effectively represent a
range of input and output characteristics, one should synthetically adjust input and
output size to encompass a wider range of potential training scenarios.
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5.4.4 Estimator Model as a Classification Task
Based on the lessons-learned from Sections 5.4.2 and 5.4.3, we now model the GPU

memory usage estimation problem as a classification task for deep learning models
based on the MLP, CNN, and Transformer architectures. These three architectures
already cover a wide range of use cases for popular deep learning applications. For the
other network architectures, the overall methodology of collecting the training data
for memory estimators would be the same even though the key network parameters
for different network architectures change based on the network and real-world usage
patterns.

For creating the training datasets, we train the MLP, CNN, and Transformers
models with a variety of parameters and setups using PyTorch framework [28], and
collect the GPU memory usage data using nvidia_smi in addition to capturing
the model architecture summaries using the torchsummary package.

For the memory estimator itself, we train MLP and Transformer architectures
using the dataset for each network architecture. The analysis of the sub-dataset
with trained model evaluations can be found in their corresponding notebook in the
chapter’s repository. To enhance the classification performance, we employed an
ensemble of 13 multilayer perceptrons (MLPs) with varying depths ranging from 1
to 7 and 1 to 6, incorporating different numbers of neurons. This strategy leverages
the diversity among the models to improve generalization and reduce variance, as
different architectures capture distinct aspects of the data. Ensemble methods are
well-documented to outperform individual models by aggregating their strengths
while mitigating their weaknesses [181]. The architectures of the memory estimator
models are illustrated in Figure 5.7.

Ensemble methods achieve superior performance at the cost of increased resource
demand, as they require concurrent execution of multiple models [182]. The com-
putational burden grows proportionally with the ensemble size, resulting in extended
training periods and increased prediction times [183]. Furthermore, the require-
ment to store parameters for each component model leads to correspondingly higher
memory consumption.

MLPs

MLPs (Multilayer Perceptrons) are often built with several common principles to
optimize performance, efficiency, and generalization. Many MLPs follow a pyra-
mid structure, where the number of neurons decreases progressively from the input
layer to the output layer to reduce computational complexity and avoid overfitting.
Sometimes, architectures may be symmetric, such as in autoencoders [184], where
the size of each layer reduces to a bottleneck and then expands again. Initial layers
are often wider to capture lower-level features, while deeper layers capture higher-
level abstractions. In some cases, practitioners use uniform-width layers to keep the
architecture simple and efficient.

For creating our training set for MLPs, we varied model configurations, simulating
a range of real-world MLPs commonly used in the deep learning problems. The
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dataset includes results from training MLP-based network architectures with varying
input and output sizes and diverse network types, such as uniform, pyramid, and
tapered structures. We also considered layer depth, number of neurons per layer,
and regularization techniques like dropout [185] and batch normalization [186] to
mitigate overfitting. Residual connections, while effective in deeper architectures,
were excluded from our MLP dataset as they are uncommon for MLPs compared to
CNNs or Transformers.

Table 5.2 summarizes the ranges of the parameters of the MLP sub-dataset while
collecting the data points, while we delve into these decisions next.

Input Size: Input sizes range from small (e.g., 4 features for simple tabular data) to
large (e.g., 4096 for flattened image-like data). This ensures the study accommodates
a variety of real-world MLP applications, from basic feature-based classification to
high-dimensional data tasks.

Number of Layers in Modern MLPs:

• Shallow MLPs (1–3 hidden layers): Suitable for simpler datasets or problems
like tabular data, where additional depth offers diminishing returns.

• Moderate MLPs (4–10 hidden layers): Useful for more intricate datasets
where additional layers capture complex relationships, such as in image or
structured data.

• Deep MLPs (10–100+ hidden layers): Excluded from the dataset as these
are often better and more accurately handled by specialized architectures like
CNNs or Transformers.

Output Size: The chosen range reflects the common design of progressively
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Table 5.2: Parameter ranges for the MLP dataset.

Parameter Range Reasoning
Input Size 4 to 4096 This range captures typical

input sizes in MLPs.
Output Size 1 to 1024 Aligns with standard design

principles for classification
and regression tasks

Batch Size Between 4 and 1024 Smaller batch sizes sup-
port memory-constrained
environments, while larger
batch sizes optimize GPU
utilization and throughput.

FC Layers
(BN, Dropout
Layers)

- 2 to 12 FC layers
- 0 to 11 BN and Dropout
layers

Captures the spectrum from
shallow to moderately deep
networks.

Activation Function ReLU, ELU, Tanh, etc. Includes various activation
functions used in CNNs.

Architecture Shape pyramid, uniform,
bottleneck, gradual Represents diverse struc-

tural patterns.
All Parameters 27 to 159856482 The numbers belong to the

gathered dataset.
All Activations 10 to 148066 The numbers belong to the

gathered dataset.
GPU Memory Need 1443 to 4925 MiB The numbers belong to the

gathered dataset.

reducing layer sizes to ensure effective information compression and better represen-
tation learning. By capping the output size at one-fourth of the input size, the study
aligns with established MLP practices in classification and regression tasks.

Batch Size: Batch size is a critical parameter that affects both training perfor-
mance and GPU memory utilization. Small batch sizes are suitable for constrained
environments, while larger batch sizes maximize GPU throughput, supporting diverse
use cases and hardware configurations.

Depth: The range of 1 to 10 layers spans from simple to moderately deep MLPs.
While deeper networks can model more complex relationships, they introduce chal-
lenges such as vanishing gradients, which are addressed by specialized techniques
like residual connections or normalization layers.

Architecture Shape:

• Pyramid: Mimics the natural structure of many neural networks, where layers
progressively shrink.
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Figure 5.8: Analyzing the MLP dataset with PCA and t-SNE similar
to the analysis in Figure 5.6.

Dataset Estimator Model Accuracy Precision Recall F1 Score

MLP MLP
(1GiB memory ranges) 0.9542 0.9251 0.9542 0.9386

MLP
(2GiB memory ranges) 0.9706 0.9621 0.9706 0.9662

Transformer
(1GiB memory range) 0.9673 0.9599 0.9673 0.9634

Transformer
(2GiB memory range) 0.9804 0.9707 0.9804 0.9755

Table 5.3: Accuracy results for the GPU memory usage estimators
using MLP and Transformer-based models trained on the MLP dataset.

• Uniform: Represents a balanced approach with consistent neurons across
layers.

• Bottleneck: Enables the learning of compact intermediate representations by
drastically reducing neurons in some layers.

• Gradual: Offers a smooth reduction in neurons, bridging the extremes of
pyramid and uniform structures.

The MLP dataset results in 3000 data points for the memory estimator model to be
trained. To collect the dataset, the MLPs are trained on a dummy dataset for a minute.
Similar to the initial MLP dataset from Section 5.4.4, we analyzed the dataset using
t-SNE and PCA. Figure 5.8 illustrates that the selected features reveal clear patterns,
making class distinctions more apparent.

Using the dataset, we train MLP and Transformers models to estimate the GPU
memory usage. We partitioned our dataset into 70% for training, 20% for validation,
and 10% for testing to ensure robust model evaluation. We perform two types
of classification modeling for the MLP dataset, where memory usage ranges are
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incremented by 1GiB and 2GiBs. For the MLP-based estimator, the following dataset
features are used as input: number of linear layers, number of batch normalization
layers, number of dropout layers, batch size, number of parameters, number of
activations, and activation encoding cos/sin. For the Transformer-based estimator,
the following dataset features are used as input: series of tuples consisting of (layer
type, number of activations, number of parameters) in addition to the total number of
linear layers, number of parameters, number of activations, batch size, and number of
activations * batch size. The results for accuracy are presented in Table 5.3. Overall,
both models perform well in estimating the memory usage on the collected MLP
dataset, while Transformers-based models perform slightly better.

Table 5.4: Parameter ranges for the CNN dataset.

Parameter Range Reasoning
Input Channels 1 to 3 Covers grayscale or RGB.
Output Classes 2 to 22,000 Covers simple to complex

scenarios.
Filters 16 to 512 with sizes of 3x3,

5x5, 7x7
Covers common simple to
complex scenarios.

Conv2d Layers 1 to 29 Covers a range from shal-
low to deep CNNs.

Activation Function ReLU, ELU, Tanh, etc. Includes various activation
functions used in CNNs.

Total Activations 24,514 to 5,317,481,490 Represents the number of
activations across different
layers.

Total Parameters 704 to 329,307,377 Captures model size vari-
ations from lightweight to
large CNNs.

Batch Size 2 to 62 Ensures flexibility for
memory constraints and
GPU efficiency.

Conv2d Layers 1 to 29 Varies based on depth
and complexity of convo-
lutional networks.

BatchNorm2d Layers None to 29 Accounts for architectures
with and without batch nor-
malization.

Dropout Layers None to 29 Allows varying levels of
regularization.

Linear Layers 1 to 1 Ensures all CNNs have at
least one fully connected
layer.

Architecture Shape bottleneck, uniform, etc. Includes a diverse set of
CNN structural patterns.

GPU Memory Need 1,703 to 40,000 MiB The numbers belong to the
gathered dataset.



5.4. GPUMemNet: GPU Memory Estimations using Deep Learning for Deep
Learning 73

CNNs

After successfully building the dataset for MLPs to validate the use of deep learning
models for learning GPU memory usage patterns, we extended our approach to
gather data points for Convolutional Neural Networks (CNNs). Similar to MLPs,
we consider several key features that define the real-world CNN model architectures
and their impact on the GPU memory requirements. Table 5.4 summarizes the key
decisions made for the feature ranges, while we delve into these decisions next.

Input Channels: The number of input channels is randomly set to either 1
(grayscale) or 3 (RGB). These settings reflect common image types. However, this
can be extended to include more channels, such as multi-spectral images, which are
frequently used in remote sensing and medical imaging applications.

Number of Output Classes: The number of output classes was randomly chosen
between 2 and 22,000. This large range was selected to make the network applicable
to both simple tasks like binary classification and complex large-scale multi-class
problems, such as those in the ImageNet dataset [1] and the Open Image Dataset
[187].

Base Number of Filters: The number of filters in the first convolutional layer
was chosen randomly between 16 and 512. Filters determine the capacity of a CNN
to extract features from an input image. A larger number of filters typically enables
the model to learn more complex patterns at the cost of increased memory and
computational requirements.

Filter Size: The filter size was selected randomly from 3x3, 5x5, or 7x7. Filter
size defines the receptive field of a neuron, which directly affects how much of the
spatial context is captured by the network. Smaller filters (e.g., 3x3) are commonly
used in modern architectures such as VGGNet [188] due to their efficiency and ability
to stack deeply, while larger filters (e.g., 7x7) are sometimes used in the early layers
for wider receptive fields [112].

Depth: The depth of the network, defined by the number of convolutional layers,
was randomly selected between 1 and 29 layers in the code. This range captures a
wide variety of network types, from shallow networks to very deep ones. Deeper
architectures can learn more abstract features but may suffer from vanishing gradients
and increased memory demands, which are typically mitigated by using techniques
like batch normalization and skip connections [186, 112].

Network architecture shapes: The shape of a CNN architecture play a critical
role in determining the GPU memory requirement of the model. Seven distinct shapes
are considered when gathering the CNN data points based on the real-world use cases.

• Pyramid: The pyramid architecture progressively increases the number of
filters as the network deepens, following a design philosophy exemplified by
VGG [188]. This approach allows deeper layers to capture increasingly com-
plex features, making it suitable for tasks such as image classification, where
progressively refined feature extraction is required.
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• Uniform: In the uniform architecture, the number of filters remains constant
across all layers, reducing computational and memory overhead while main-
taining simplicity. This architecture is effective in domains where feature
complexity remains uniform across layers, such as medical imaging or object
detection tasks.

• Bottleneck: Inspired by ResNet [112], the bottleneck architecture compresses
information by reducing the number of filters in intermediate layers before
expanding them again. This design optimizes memory usage and computational
cost while preserving representational power, making it ideal for large-scale
datasets and real-time applications like ImageNet classification.

• Gradual: Gradual architectures employ a linear increase in the number of
filters with depth, striking a balance between underfitting and overfitting. This
smooth progression is well-suited for tasks requiring nuanced feature extraction,
such as facial recognition or fine-grained image classification.

• Hourglass: The hourglass design reduces filters towards the middle layers and
increases them again in the later layers, mimicking a symmetrical processing
flow. This architecture is particularly effective for structured prediction tasks
like human pose estimation or semantic segmentation, where features are first
compressed and then expanded for fine-grained detail extraction [189].

• Residual: Residual architectures incorporate skip connections to facilitate gra-
dient flow during backpropagation, mitigating the vanishing gradient problem
[112]. This enables the training of very deep networks (50+ layers) while ensur-
ing stable performance. Residual connections are commonly used in large-scale
image classification and segmentation tasks. Noting that when calculating the
number of activations for networks with these kind of connections, we should
be careful as the number of active activations on GPU memory increases in
networks with these connections.

• Dense: Inspired by DenseNet [190], dense architectures connect each layer
to every other layer in a feed-forward manner, promoting feature reuse and
efficient gradient flow. This design reduces the number of parameters and
enhances representational power, making it particularly useful for applications
requiring precise localization, such as medical imaging and object detection.

To collect the CNN dataset, the CNN models are implemented with these parameter
ranges and trained on a dummy dataset for a minute. The Adam optimizer was
employed to ensure consistent optimization across experiments. Figure 5.9 shows
how the data patterns are for the CNN dataset, which illustrates the harder to learn
patterns for the CNNs compared to MLPs (i.e., Figure 5.8), which is also reflected in
the memory estimation results presented next.

Using this dataset, we train MLP and Transformers models to estimate the GPU
memory usage for CNNs. We partitioned our dataset into 70% for training, 10% for
validation, and 20% for testing to ensure robust model evaluation (however in the
analysis phase with notebooks, we partitioned our dataset into 70% for training, 20%
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Figure 5.9: Analyzing the CNN dataset with PCA and t-SNE similar
to the analysis in Figure 5.6.

Dataset Estimator Model Accuracy Precision Recall F1 Score

CNN MLP
(8GB range) 0.8825 0.8816 0.8825 0.8803

Transformer
(8GB range) 0.8449 0.8443 0.8431 0.8431

Table 5.5: Accuracy results for the GPU memory usage estimators
using MLP and Transformer-based models trained on the CNN dataset.

for validation, and 10% for testing). We set the memory usage ranges to 8GiBs as
CNNs in general has higher memory requirements than MLPs, hence the larger ranges.
For the MLP-based estimator, the following dataset features are used as input: depth
of the network, number of convolutional layers, number of batch normalization layers,
number of dropout layers, batch size, number of parameters, number of activations,
activation encoding cos/sin, and activations * batch size. For the Transformer-based
estimator, the following dataset features are used as input: series of tuples consisting
of (layer type, number of activations, number of parameters) in addition to all the
input features used for the MLP-based model. The results for accuracy are presented
in Table 5.5. Overall, while not as accurate as the MLP case, due to the more complex
network architecture CNNs have, both models perform well in estimating the memory
usage on the collected CNN dataset, while the MLP model perform slightly better.

Transformers

Following the collection of the MLP and CNN datasets, we employ the same
systematic approach to collect data for transformer models as well, specifically tailored
for real-world natural language processing (NLP) tasks. Table 5.6 summarizes the
characteristics of the collected Transformers dataset based on the key decisions made
while collecting the data points. We delve into these key decisions next based on the
key components of Transformers network architectures.

Number of Classes: The output layer is configured to predict between 2 and 1000
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Table 5.6: Parameter ranges for the collected Transformers dataset.

Parameter Range Reasoning
Linear Layers 9 to 157 Covers a range from shallow

to deep Transformers.
LayerNorm Count 4 to 78 Covers a range from shallow

to deep Transformers.
Dropout Layers 6 to 117 Covers a range from shallow

to deep Transformers.
Total Parameters 7,292,531 to 3,105,662,679 Captures model size vari-

ations from small to very
large-scale Transformers.

Total Activations 19,184 to 3,194,470 Represents the number of
activations across different
layers.

Batch Size 1 to 128 Ensures flexibility for mem-
ory constraints and GPU ef-
ficiency.

GPU Memory Need 1,683 to 40,369 MiB Reflects real-world GPU
memory consumption for
training.

classes, covering both binary and multi-class classification tasks to assess the model’s
adaptability across various datasets.

Embedding Size: We varied the embedding size from 128 to 2048, reflecting
standard practices in transformer architectures. Smaller embeddings suit simpler
tasks, while larger embeddings capture complex data patterns.

Number of different Layers: The linear, normalization, and dropout layers range
from 9, 4, and 6 to 157, 78, and 117 respectively, balancing model depth with
computational efficiency. This range allows for effective training across tasks of
varying complexity without excessive model depth.

Attention Heads: The number of attention heads varies from 2 to 16, enabling
the model to capture diverse relationships within data, thereby enhancing learning
performance metric e.g, accuracy.

Feed-Forward Hidden Size: Set between 2 and 4 times the embedding size, this
range ensures adequate capacity in the feed-forward layers to process representations
from the attention layers effectively.

Dropout Rate: We applied dropout rates from 0.1 to 0.5 to prevent overfitting, in
line with best practices that enhance model generalization.

Sequence Length: Fixed at 128, 256, 512, and 1024 tokens, these lengths strike
a balance between computational efficiency and the ability to capture long-range
dependencies.
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Figure 5.10: Analyzing the Transformer dataset with PCA and t-SNE
similar to the analysis in Figure 5.6.

Vocabulary Size: Ranging from 50,000 to 1,000,000, this configuration accom-
modates a wide variety of NLP datasets while managing memory usage.

Figure 5.10 shows how the data patterns are for the Transformers dataset, which
illustrates the classes of memory usage (Figure 5.10a) but even harder to learn patterns
(Figure 5.10b) compared to CNNs and MLPs (i.e., Figures 5.9 and 5.8), which is also
reflected in the memory estimation results presented next.

Same as the two sub-datasets, we collect the Transformers dataset by training
automatically built models on a dummy dataset for a minute. Using this dataset,
we train MLP and Transformers models to estimate the GPU memory usage for
Transformers. We partitioned our dataset into 70% for training, 10% for validation,
and 20% for testing to ensure robust model evaluation (however in the analysis phase
with notebooks, we partitioned our dataset into 70% for training, 20% for validation,
and 10% for testing). We set the memory usage ranges to 8GiBs. For the MLP-based
estimator, the following dataset features are used as input: depth of the network,
number of linear layers, number of batch normalization layers, number of dropout
layers, batch size, number of parameters, number of activations, and activations *
batch size. For the Transformer-based estimator, the following dataset features are
used as input: series of tuples consisting of (layer type, number of activations, number
of parameters) in addition to all the input features used for the MLP-based model. The
results for accuracy are presented in Table 5.7. Overall, similar to CNNs, the results
are not as accurate as the MLP case, due to the more complex network architecture
Transformers have, but both models perform well in estimating the memory usage on
the collected Transformers dataset.

5.5 Evaluation
GPUMemNet models for estimating GPU memory requirements for deep learning

training tasks has been trained and tested on the representative but synthetic MLP,
CNN, and Transformers network architectures in Section 5.4. Here, we evaluate
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Dataset Estimator Accuracy Precision Recall F1 Score

Transformers
MLP
(8GiB range) 0.8552 0.8524 0.8552 0.8494

Transformer
(8GiB range) 0.8650 0.8650 0.8650 0.8596

Table 5.7: Accuracy results for the GPU memory usage estimators
using MLP and Transformer-based models trained on the Transformer

dataset.
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Figure 5.11: GPU Memory Estimation for Real-World Unseen CNN
Models with Horus, FakeTensor, and GPUMemNet.

the effectiveness of GPUMemNet models on deep learning models used in the real
world, while comparing its results to the Horus (Section 5.3.1) and FakeTensors
(Section 5.3.2) GPU memory estimators. More specifically, we test these memory
estimators on a variety of real CNN and Trasnformers models with varying batch
sizes. In the case of GPUMemNet, the memory estimator with the higher accuracy
is used for the corresponding model architectures; i.e., the MLP model is used from
Table 5.5 for estimating the GPU memory requirements of the CNN-based model
architectures (checkpointed from its notebook, and added to the test pipeline, which
can be found in the chapter’s repository). Furthermore, for the transformer-based
models, we use MLP from Table 5.7 with 85% accuracy.

5.5.1 Experimental Setup
The experiments are conducted on an NVIDIA DGX Station A100, equipped with

a 64-core AMD EPYC 7742 processor, 512 GB of CPU memory, and four NVIDIA
A100 GPUs, each featuring 40 GB of high-bandwidth memory (HBM2). The system
operates on DGX OS, a customized version of Ubuntu 20.04.4 LTS, with CUDA
version 12.2 installed.

For gathering the real GPU memory use, labeled as Actual GPU memory in figures,
of the deep learning models under test, we train each of them on a synthetic dataset
for one minute to make sure that the resource consumption behavior of the models
get stable. For sensitivity analysis, we train each model with varying batch sizes as
well.
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Figure 5.13: GPU Memory Estimation for Real-World Unseen Trans-
formers Models with Horus, FakeTensor, and GPUMemNet.

5.5.2 Results
Figures 5.11 and 5.12 and Figure 5.13 present the results for the CNN and Trans-

formers models, respectively. Overall, they demonstrate the higher reliability of the
machine learning-based GPU memory estimation using GPUMemNet methodology
compared to the other state-of-the-art and available GPU memory estimators from
the literature.

For the FakeTensor library, predicting GPU memory usage for transformer-based
models is a compatibility issue. The library does not provide numerical estimates for
these models, and therefore is excluded from Figure 5.13. For CNNs, FakeTensor
tends to underestimate GPU memory usage, with the largest underestimation occur-
ring for vgg16 with a batch size of 128, where the predicted value falls short by
approximately 14.6GB.

Horus’ memory estimation formula provides generally acceptable results; however,
in certain cases, such as gpt2_large, it significantly overestimates GPU memory usage,
with a discrepancy of approximately 100GB compared to the actual value.

In contrast, GPUMemNet demonstrates superior estimation performance relative to
the aforementioned estimators. It only underestimates memory usage in two cases: for
vgg16 with a batch size of 128, where the difference is 0.5GB, and for inception with
a batch size of 128, where the difference is approximately 3.1GB lower than the actual
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value. Compared to Horus and FakeTensors, these underestimations are significantly
low. On the other hand, while still exhibiting a lower mis-estimation compared to the
other two methods, GPUMemNet overestimates gpt2_large by approximately 20GB.

Transformer architectures pose a more significant challenge on memory estimators.
This underlines that we need to expand the Transformers datasets for more robust
predictions in the future. Specifically, gpt2_large is a transformer model composed
primarily of self-attention and fully connected layers, and it utilizes Conv1D layers
with a kernel size of 1 as a functional equivalent of linear layers in the feed-forward
network. Since the dataset was built considering only standard Linear layers
without accounting for such architectural variations, this discrepancy contributes to
the observed estimation inaccuracies.

5.6 Conclusion
In this chapter, we introduced GPUMemNet, a machine learning-based framework

for estimating GPU memory usage during deep learning model training. Given the
increasing demand for GPU resources in deep learning, efficient GPU utilization
is critical for improving performance and avoiding costly out-of-memory (OOM)
errors. Traditional estimation approaches—such as analytical formulas and tools
like FakeTensor—struggle to accurately capture the complexities of modern GPU
memory allocation, leading to frequent underestimation or overestimation. Our
approach addresses these limitations by leveraging deep learning models trained on
a diverse dataset of neural networks.

We systematically construct a dataset covering a wide range of architectures, in-
cluding MLPs, CNNs, and Transformers, with varying configurations such as depth,
batch size, activation functions, normalization layers, and architectural shape patterns
(e.g., residual, dense, bottleneck). Through careful data collection and feature engi-
neering, we transformed the GPU memory estimation problem into a classification
task, allowing for more robust predictions across different network types.

Our evaluation demonstrate that GPUMemNet achieves high accuracy in predicting
GPU memory requirements across various deep learning architectures. The best
performance was observed in MLPs, where predictions were within 1GiB accuracy at
97%, while CNNs and Transformers achieved 88% and 86% accuracy within 8GiB,
respectively. These results highlight the feasibility of using deep learning to model
GPU memory behavior, capturing the nuanced impact of activations, parameters, and
architectural choices on memory consumption.

To validate the effectiveness of GPUMemNet in real-world scenarios, we tested
it on unseen models from different domains, including standard vision models like
ResNet, MobileNet, EfficientNet, Inception, and transformer-based architectures like
BERT, XLNet, and GPT-2. Compared to FakeTensor and formula-based estimations
(e.g., the Horus formula), GPUMemNet provides more reliable memory predictions.
In addition to the GPUMemNet’s methodology, we release all the artifacts associated
with it, to create a continuous and open framework for robustly estimating GPU
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memory requirements of deep learning models in the future. Furthermore, we en-
courage the community to contribute by extending the dataset to cover more model
architectures, and scenarios that the released dataset in this work lacks.

Our results highlight GPUMemNet’s potential in reducing OOM errors and inef-
ficient GPU usage when used in resource allocation tools and schedulers for deep
learning. By integrating GPUMemNet into a scheduler in the next chapter, Chap-
ter 6, we aim to enhance workload collocation, allowing multiple training tasks to
share GPU resources effectively while avoiding OOM failures. Our findings provide
a foundation for developing memory-aware scheduling policies, which can optimize
performance-energy trade-offs and improve GPU utilization in high-performance
computing environments.
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Chapter 6

RAD-RM: Resource Manager
Collocating Training Tasks on GPUs

The rapid growth of deep learning has driven an unprecedented demand for efficient
resource management in computational clusters. With the increasing complexity of
models and the volume of tasks executed simultaneously, managing GPU resources
effectively has become a critical challenge. GPUs, as the backbone of deep learning
workloads, are often underutilized [92, 191] due to many reasons, one of which is
inefficient scheduling and resource allocation strategies. While recent proposals for
resource managers targeting deep learning [55, 56, 57, 61, 63, 73, 192], address
some of these inefficiencies, many fail to explore task collocation on GPUs as a
foundational principle for enhancing resource utilization. The few proposals ([193,
194]) that explore collocation ignore the potential out-of-memory crashes.

Chapter 4 highlights that collocation can enhance GPU utilization. However, it
is crucial to recognize that GPUs lack virtual memory, meaning workloads exceed-
ing available GPU memory will crash. Collocating multiple workloads, therefore,
increases the chances of such crashes due to higher load on the GPU resources. Fur-
thermore, overloading of GPU’s compute resources can lead to performance degra-
dation despite achieving higher GPU utilization. To address the former challenge, we
introduced GPUMemNet for estimating the memory requirements of deep learning
training tasks in Chapter 5 and also reviewed the available methods. To address the
latter challenge, one needs to integrate GPU collocation effectively into a resource
manager.

In this chapter, we propose a server-level resource manager, RAD-RM, incorpo-
rating collocation as a first class citizen through incorporating GPU memory need es-
timation methods such as GPUMemNet and recovery method against out-of-memory
crashes. RAD-RM is build as a framework independent of any machine learning
framework. It gets submitted requests as input and determines on which GPUs in the
server to schedule them. While RAD-RM targets deep learning training workloads,
since it is a software-layer independent of any deep learning codebase, it can be used
for other workloads, which use GPUs as well, putting aside the deep-learning-specific
GPU memory estimators and solely relying on the recovery method we propose. To
the best of our knowledge, RAD-RM is the first resource manager that explicitly
handles out-of-memory crashes for task collocation on GPUs.
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6.1 Introduction
Despite their critical role in the field of AI, GPUs are often significantly under-

utilized in real-world scenarios. A well-known study by Microsoft [92] analyzed a
two-month-long trace, handling 96,260 jobs submitted by thousands of users, and ob-
served an average GPU utilization of around 52%. A recent work, also from Microsoft
[191], examined 400 deep learning jobs, each with an average GPU utilization of 50%
or less, identifying 706 low-GPU-utilization issues. Neither study reveals information
about the hardware setup, such as the number of GPUs. However, both highlight a
persistent issue, demonstrating that GPU utilization in machine learning workloads
is frequently far below its potential. This underutilization represents more than just
a missed opportunity for performance optimization—it has broader implications for
energy efficiency, cost-effectiveness, and environmental sustainability.

When GPUs operate below their potential, the energy consumed to keep them
powered is not fully translated into computational productivity. This inefficiency
inflates operational costs and contributes to the already substantial carbon footprint of
data centers. Moreover, the physical resources invested in designing, manufacturing,
and deploying GPUs are only partially leveraged. From raw materials to advanced
engineering processes, significant investments are made to create these devices, and
underutilization effectively wastes these efforts. In an era where green computing is
a growing priority, improving GPU utilization is not merely a technical challenge but
a responsibility toward sustainable computing practices.

A closer look at the root causes of GPU underutilization reveals several systemic
challenges. First, GPUs lack virtual memory, unlike CPUs. This fundamental differ-
ence means that when a workload exceeds the available GPU memory, it triggers an
out-of-memory (OOM) crash rather than utilizing overflow mechanisms like paging.
This limitation significantly constrains resource sharing, as memory usage must be
carefully managed to prevent crashes. Furthermore, when using GPU streams for co-
running the tasks cause performance degradation due to the serialization and resource
interference of the shared resources.

Observed in cases where the GPU is saturated, adding another task can lead to
significant serialization and interference effects on performance. In such scenarios,
exclusive execution tends to yield better results compared to collocation. NVIDIA’s
Multi-Instance GPU (MIG) enables rigid partitioning, ensuring an interference-free
environment where each workload runs independently without resource contention.
Additionally, NVIDIA’s Multi-Process Service (MPS) offers an efficient solution for
sharing GPU resources among multiple processes, as demonstrated in Chapter 4.

Another major factor is the layered structure of the whole ecosystem architecture.
Machine learning frameworks, schedulers/resource managers, operating systems, and
hardware operate in isolation, each focusing on its specific abstraction layer. For
example, machine learning frameworks like PyTorch or TensorFlow are designed to
abstract lower layers’ complexities and provide high-level API for development and
test. Meanwhile, resource managers focus on high-level orchestration, often treating
GPUs and tasks as black boxes, with minimal visibility into their specific monitoring
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Figure 6.1: Distribution of requested GPU resources from studying
Venus [50] (a production Deep Learning Training (DLT) cluster in
SenseTime). About 52.5% of jobs use single GPU, 22.6% require 8
GPUs, and 10.3% need more than 8 GPUs. Jobs have high cancella-
tion/failure ratio in all the cases[196]. While single-GPU jobs account
for the largest proportion of all the jobs, they only consume 4.7% of
total GPU service time. The major GPU service time is consumed by

DLT jobs with no less than 8 GPUs (85.7%).

metrics that are collected from their hardware counters. This siloed approach creates
inefficiencies, as critical information about workloads and resources is not effectively
shared across layers [195].

The problem is compounded by the diversity of workloads that GPUs are tasked
to handle. While much attention in research and industry is given to large-scale
distributed training of massive models, the reality is that many workloads involve
small to medium-sized models that run on single GPUs or server-scale setups as
Figure 6.1 shows it [196]. These workloads represent a significant portion of real-
world use cases, including training models for edge devices, fine-tuning pre-trained
models, and experimenting with new architectures.

Current resource management systems often overlook these scenarios, leaving
considerable room for optimization. Addressing these challenges requires balancing
competing priorities. For example, tightly coupling solutions across abstraction layers
can improve resource utilization in the short term but comes at the cost of flexibility
and long-term scalability. When machine learning frameworks, schedulers, and
hardware systems are deeply integrated, the resulting system risks becoming rigid and
specialized, limiting its ability to adapt to new hardware or workloads. Additionally,
some proposed solutions involve halting GPU kernels during execution to make
collocation or scheduling decisions. While these approaches may optimize specific
metrics, they introduce significant overheads, disrupt performance, and complicate
system architecture. These trade-offs highlight the need for solutions that respect the
independence of abstraction layers while enabling meaningful collaboration between
them, and not blocking them from futuristic evolvement and innovation.

Recognizing these challenges, we propose server-level resource manager, RAD-
RM, which focuses on improving GPU utilization by enabling efficient task collo-
cation while maintaining the independence of abstraction layers and being reliable
against OOM crashes. Key design principles include:
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Avoiding the tightly coupled design. By steering clear of halting or modifying
kernel execution, we prevent performance overheads and maintain the integrity of
training workflows. This design principle leaves the system architecture layered and
open to innovation. The resource manager operates independently of the framework
while leveraging metadata, ensuring that each layer can evolve without imposing
constraints on the others. This design philosophy not only enhances efficiency but
also fosters scalability, adaptability, and creativity in future system development.

Leveraging metadata for decision-making. Instead of tightly integrating lay-
ers, our resource manager utilizes pre-computed metadata provided by the machine
learning framework, enabling informed decisions without direct dependencies. For
example, the parameters of the models are used as the input features for the GPU
memory estimators such as GPUMemNet incorporated in RAD-RM.

Evaluation and Support for a Range of Workloads, Collocation Methods,
and Policies. Our approach addresses a variety of workloads, encompassing small,
medium, and large models—such as MobileNet V3 on CIFAR-100, ResNet-50 on
ImageNet, and GPT-2 XL on the WikiText-2-raw-v1 dataset. These models are
executed on single and dual-GPU setups, with scalability to the number of available
GPUs on a server. We support various collocation methods, including streams, Multi-
Process Service (MPS), and Multi-Instance GPU (MIG), acknowledging that MIG
requires more administrative involvement. Additionally, our approach accommodates
different collocation policies, such as exclusive (no collocation), round-robin, most
available GPU memory, and least utilized GPU.

Preventing GPU overload. To aid with the scheduling decisions expected GPU
memory use estimators such as GPUMemNet (Chapter 5) is used. This helps in min-
imizing the number of OOM crashes by providing reliable memory predictions. For
managing compute interference, we compounde the GPU utilization (i.e., SMACT).

Recovery. Out-of-memory (OOM) crashes occur when a task’s GPU memory
demands exceed available capacity, either due to individual task requirements or
memory fragmentation. Such crashes pose challenges for resource management sys-
tems that aim to collocate tasks efficiently. To address this, we propose a simple
recovery method: upon detecting an OOM crash, the resource manager moves the af-
fected task to a high-priority recovery queue. The system then assigns exclusive GPU
access to these tasks, ensuring reliable execution before resuming normal operations.

We list our contributions in this chapter as follows:(1) A server-scale resource
manager with collocation support of MIG, MPS, streams with multiple collocation
policies (2) Integrating GPUMemNet and introducing recovery method for dealing
with OOM crashes. Furthermore, a static GPU utilization thresholding for deal-
ing with resource interference (3) Evaluating the proposed system using two traces
inspired by real-world datasets [197, 196, 12]. Our evaluations show 30.13% and
13.13% improvement for total time execution and energy consumption respectively
when collocation is applied. Our findings show that incorporating collocation into
resource management strategies can significantly enhance GPU utilization.
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Figure 6.2: Overview of RAD-RM.

The remainder of this chapter is structured as follows. Section 6.2 introduces the
RAD Resource Manager. In Section 6.3, we describe the setup and methodology.
The results of our evaluation are discussed in Section 6.4. Finally, we conclude in
Section 6.5.

6.2 RAD Resource Manager (RAD-RM)
In this section, first we explain the proposed resource management system architec-

ture in subsection 6.2.1, then we delve into collocation policies in subsection 6.2.2.
Next, we explain the recovery method for having a reliable collocation decisions
in subsection 6.2.3. Finally, in Chapter 6.2.4 we explain how different collocation
options are integrated into the system.

6.2.1 System Architecture
The architecture of RAD-RM is shown in Figure 6.2. The order of operations as

follows:

1. User submit their tasks to the system with the help of the submit interface, the
users should prepare a script, a .rad file, similar to what SLURM [42, 41] users
do. The example of .rad file is shown in Listing 6.1. The submit script, gets
the tasks and queues them in the tasks’ queue as shown with number.

2. Tasks queue is a data structures keeping the received tasks from users.
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3. Model summary parser parses the provided model summary file by the user
and provides the estimator with the features (e.g., number of activations, num-
ber of parameters, number of different types of layers) for the GPU Memory
Prediction.

4. The chosen GPU memory estimator (Horus method, FakeTensors, GPUMem-
Net, etc.) gets its input from the parser and makes an estimation for the expected
GPU memory requirement of the model to be trained.

5. The monitor component monitors the relevant metrics of the hardware system
including GPU memory usage with nvidia-smi monitoring interface and GPU
utilization (SMACT), PCIe traffic, etc. using the dcgmi tool (Chapter 3) at
configurable time intervals (e.g., every 1 seconds for 90-second time window)
to provide the resource manager with the current load on all the available GPUs
in the server.

6. The resource allocator (mapper) decides which GPU should be the host of a
specific task that is scheduled to get resources. The current version adopts a
First-In First-Out (FIFO) policy only for selecting tasks out of the tasks queue.

7. Finally, the system goes over the log files of the dispatched tasks and checks for
out-of-memory keyword (i.e., OOM), since despite the high-accuracy memory
estimators, this can still happen. If this is found in the logs, then the cor-
responding task is added to the recovery queue, which it has higher priority
compared to tasks’ queue. The tasks in recovery queue is mapped onto a GPU
with no other tasks on to avoid further OOM scenarios for them. Afterward,
other tasks can be collocated with this one, if the GPU has resources available.

Listing 6.1: .rad File Example
1 # assumption is that model.txt file is in the same directory
2 conda activate tf # specifying the conda environment
3 python resnet.py --b 128 # command to execute
4 model: resnet.txt # model summary file name
5 batch_size: 128 # batch size
6 policy: exclusive/ collocation

6.2.2 Collocation Policies
To be able to make effective collocation decisions, RAD-RM must monitor the

target compute and memory resources with and the jobs waiting in the tasks queue.
Decisions without the knowledge on the current hardware availability will result in
suboptimal collocation on GPUs, and therefore performance degradation and energy
waste.

The monitor component (Figure 6.2-5) monitors the GPUs with representative
metrics, like the ones highlighted in Chapters 3 and 4. The metrics we focus on are
SMACT for GPU compute utilization and the GPU memory use for now. However,
one can easily add additional metrics such as PCIe traffic and energy consumption if
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Figure 6.3: Exclusive policy, assigning each GPU to a single task,
e.g., task T1 mapped to GPU1 at time d0, and waiting till a GPU gets

free to dispatch another task for execution.

it is relevant for the performance optimization goals of the users. These metrics are
monitored over a range of time (90-second time window with 1-second intervals).

The parser (Figure 6.2-3) extracts the model parameters that are relevant for the
memory estimators (Figure 6.2-4) for each job waiting in the tasks queue (Figure 6.2-
2) in FIFO order.

RAD-RM has several collocation policies implemented to provide the end-users
with a range of options and to allow comparison across the different options. Each
of these policies can be deployed with the memory estimator or without it.

Exclusive: This policy exclusively allocates the requested number of idle GPUs to
the selected task. Therefore, it also represents the most conventional baseline in task
scheduling, since it employs no collocation, only idle GPUs are considered. This is
how the resource managers traditionally map GPUs to tasks. This policy is one of
the main reasons why GPUs are suffering from underutilization for machine learning
tasks since both the tasks and GPUs are considered as a black boxes. Figure 6.3 show
how tasks T1 to T4 after being selected in the FIFO manner from the tasks queue in
d0 to d4 moments get GPU1 to GPU4. Then, when T5 is selected by the scheduler,
it needs to wait till a GPU gets idle. As the figure show, any of the GPUs getting idle
sooner, will be host of T5 task.

Round-Robin (RR): Round-robin is a widely used resource allocation policy
that ensures equitable distribution of resources among multiple entities by assigning
them in a fixed, cyclic order. The primary advantage of the round-robin policy is
its simplicity and fairness, as it prevents resource starvation by ensuring that each
entity receives an equal share of resources in a predictable order. While making
collocation decisions, RAD-RM uses round-robin as an option to determine which
GPU to collocate the next task to. Going back to Figure 6.3, with this policy, T5 will
be assigned to GPU1.

Most Available GPU Memory (MAGM): Among the target GPUs for collocating
the next task in the queue, this policy first determines the GPUs with more than 5GB
free memory and 20% compute resources (SMACT <= 80%) available. Then, it



6.2. RAD Resource Manager (RAD-RM) 89

T1T2T3T4

GPU1GPU2GPU3GPU4

waiting tasks queue

d0d1
d2Collocation

Figure 6.4: Filling the active GPUs first, or most utilized GPU, ap-
proach.

chooses the GPU with the highest free memory among them. Choosing the GPU
with most memory available helps to minimize the probability of OOM crashes.
The reason behind selecting 5GB is to aligned with the smallest memory splitting
granularity that MIG instances allow (Chapter 4). The reason for 80% threshold is
based on our experimentation with different values for this threshold. The reason
to have the threshold in the first place is to avoid negative interference effects of
overloading the GPU resources.

Least Utilized GPU (LUG): This policy is very similar to MAGM, but the GPU
with the lowest SMACT value is picked instead to minimize resource interference.
More specifically, among the target GPUs, this policy first determines the GPUs
with more than 5GB free memory and 20% compute resources (SMACT <= 80%)
available. Then, it chooses the GPU with the highest free compute resources among
them.

Most Utilized GPU (MUG): This policy aims to consolidate as many tasks as
possible onto a GPU, leaving idle GPUs unassigned as long as there are available
compute and memory resources on the active GPU. Figure 6.4 shows an example of
this approach. Consider when tasks T1 and T2 are executing on GPU1 and GPU2,
then at d2 time point, T3 is selected for getting GPU, with the this approach, GPU1
and GPU2 are still in the list of to-check GPUs to be assigned to T3. The advantage of
this approach is that when there are few tasks in the system, fewer GPUs are activated,
allowing energy management policies to be applied to idle resources. This policy
closely resembles solving a bin-packing problem. However, the effectiveness of this
decision depends on the trade-off between the cost of the energy-scaling mechanism
and the duration for which the GPUs will remain idle. For the energy-saving measures
to be beneficial, the savings must outweigh the associated costs. Overall, in our earlier
experiments, we found this policy to poorly perform, therefore, it is omitted from the
evaluation (Section 6.4). Furthermore, even though the idle GPUs go into lower
power modes, hence consuming less energy, they still consume energy due to being
on. Therefore, it is better to utilize them rather than keeping them idle.
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6.2.3 Recovery Method
Out of memory (OOM) crashes happens when a task needs more GPU memory

than what the GPU assigned to it has. When sharing a GPU if a task is training on
the GPU, and the second task joins and cannot get the amount of the GPU memory
it needs, this second task will crash, while the first task keeps running. Therefore,
Chapter 5 introduced GPUMemNet as a way to estimate the GPU memory needs of
deep learning tasks to minimize the chances of such OOM-related crashes. RAD-
RM integrates GPUMemNet and other alternative memory estimators such as the one
used by Horus [61] and FakeTensors [149].

On the other hand, even if one has the perfect memory estimator and uses this
knowledge in collocation decisions, OOM can still happen due to fragmentation in
GPU memory allocations. For example, let’s assume a scenario when the free GPU
memory is fragmented in two chunks like 5GB and 4GB and a new task needs 8GB.
The GPU monitors will report 9GB free GPU memory, which is what the GPU has
free in total, but in two chunks. Therefore, the resource manager will map the task
to that GPU, assuming it has enough free memory, but OOM crash will happen
regardless for that training task.

For addressing this issue, we propose a lightweight recovery method. RAD-RM
iteratively checks the error files of the tasks mapped for execution, and upon detecting
OOM crashes, adds those tasks to another queue (Figure 6.2-7). This recovery queue
has a higher priority compared to the main tasks queue to ensure timely rescheduling
of the crashed tasks. The tasks in the recovery queue is scheduled using the exclusive
policy.

6.2.4 Integration of Collocation Methods: Streams, MPS, and
MIG

RAD-RM supports the three collocation methods offered by the NVIDIA GPUs:
Streams, MPS, and MIG (Chapter 4).

Enabling MPS as part of the system on specified GPUs can happen when the RAD-
RM launches. When the MPS is not enabled, upon collocation, NVIDIA streams will
be default way of sharing the GPU.

For splitting MIG-capable GPUs, the RAD-RM does not split or unite the MIG
instances automatically. It only detects them and dispatches tasks to them exclusively.
However, enabling MIG even on a single A100 GPU in a server complicates the
monitoring component of RAD-RM. More specifically, such a situation prevents us
from monitoring non-MIG-enabled GPUs using dcgm tool as dcgm no longer shows
readings for them. This poses a problem for the RAD-RM monitoring component,
which relies on this tool for reading the fine-grained GPU utilization through the
SMACT metric, which is then used in collocation decisions. Currently, this issue
prevents us from testing scenarios, where the different GPUs in a server utilizes
different collocation options (e.g., one using MIG, one MPS, and one streams) with
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Software Information
CUDA Version 12.2
PyTorch Version 2.4.1
GPU Architecture and Information
GPU Architecture NVIDIA Ampere
Compute Capability 8.0
Streaming multiprocessors (SMs) 108
FP32 per SM 64
Tensor Cores per SM 4
Shared Memory and L1 Cache 192KB combined configurable up to 164KB
Max 32-bit Registers per SM 64KB
L2 Cache 40MB
GPU Memory 40 GB of high-speed HBM2 memory
Collocation Capabilities MPS and MIG
Thread and Warp Management
Max Threads per Warp 32
Max Thread Blocks per SM 32
Max Warps per SM 64
Max Thread Block Size 1024
Max Registers per Thread 255
Host System
CPU AMD EPYC 7742
CPU Memory 512GB

Table 6.1: Software specifications of the test system (top) and hard-
ware characteristics of NVIDIA A100 GPUs with 40GB (bottom).

RAD-RM. On the other hand, this issue is a side-effect of the immaturity of MIG-
related tooling due to MIG being the newest collocation technology. We expect that
this tooling will get better over time as the technology matures, and this limitation
can easily be prevented.

6.3 Setup & Methodology
In this section, we outline the experimental setup used to evaluate the different

collocation policies in RAD-RM organized into four parts: the hardware and software
stack, the traces and models used for experimentation, and the oracles as the baselines,
and the key performance metrics.

6.3.1 Hardware and Software Stack
All experiments were conducted on an NVIDIA DGX Station A100, a high-

performance computing workstation designed specifically for AI tasks. The DGX
Station A100 is equipped with four NVIDIA A100 GPUs, each with 40GB of high-
bandwidth HBM2 memory, enabling it to handle demanding computational workloads
with ease. The NVIDIA A100 GPUs are based on the Ampere architecture, featuring
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advancements such as third-generation Tensor Cores and Multi-Instance GPU (MIG)
technology. These innovations allow for accelerated training and inference, as well as
the ability to partition each GPU into multiple smaller instances for running diverse
workloads simultaneously.

As for the software framework, we use PyTorch v2.4.1 for all experiments and
CUDA v 12.2.

Table 6.1 provides a comprehensive overview of the software and hardware spec-
ifications of the evaluation system.

Table 6.2: Models, their setup during training, and their GPU memory
need in MB. The model runs shown above the line are the heavier ones

compared to the ones shown below the line.

Model Domain Dataset Batch Size #GPUs Epoch
Time(m)

#Training
Epochs

GPU
Memory (MB)

xlnet_base transformer Wiki 8 2 8.949518 8 9718
BERT_base transformer Wiki 32 1 14.868351 1 20774
xlnet_large transformer Wiki 4 2 25.313793 3 14546
mobilenet_v2 CNN ImageNet 128 1 34.910391 1 12578
resnet50 CNN ImageNet 128 1 35.007046 1 15120
efficientnet_b0 CNN ImageNet 128 1 35.211261 1 13832
efficientnet_b0 CNN ImageNet 64 1 35.412238 1 7844
mobilenet_v2 CNN ImageNet 64 1 35.428402 1 7224
resnet50 CNN ImageNet 64 1 35.502900 1 8536
mobilenet_v2 CNN ImageNet 32 1 36.088235 1 4544
efficientnet_b0 CNN ImageNet 32 1 36.210931 1 4958
resnet50 CNN ImageNet 32 1 36.315977 1 5262
vgg16 CNN ImageNet 128 1 42.418796 1 24408
vgg16 CNN ImageNet 64 1 44.381296 1 13642
Xception CNN ImageNet 128 1 44.440120 1 22978
inception CNN ImageNet 128 1 44.853645 1 19018
BERT_large transformer Wiki 8 1 44.932988 1 13568
Xception CNN ImageNet 64 1 45.779347 1 11520
inception CNN ImageNet 64 1 46.290656 1 10560
Xception CNN ImageNet 32 1 46.863864 1 7202
vgg16 CNN ImageNet 32 1 48.448318 1 8222
inception CNN ImageNet 32 1 50.103753 1 6346
gpt2_large transformer Wiki 8 2 64.962650 1 27902
efficientnet_b0 CNN cifar100 32 1 0.766600 20, 50 1858
efficientnet_b0 CNN cifar100 64 1 0.480000 20, 50 1912
efficientnet_b0 CNN cifar100 128 1 0.273400 20, 50 2054
resnet18 CNN cifar100 32 1 0.328400 20, 50 1960
resnet18 CNN cifar100 64 1 0.220000 20, 50 1966
resnet18 CNN cifar100 128 1 0.163400 20, 50 2006
resnet34 CNN cifar100 32 1 0.486817 20, 50 2152
resnet34 CNN cifar100 64 1 0.302731 20, 50 2168
resnet34 CNN cifar100 128 1 0.200908 20, 50 2190
S mobilenetv3 CNN cifar100 32 1 0.536289 20, 50 1784
S mobilenetv3 CNN cifar100 64 1 0.322098 20, 50 1790
S mobilenetv3 CNN cifar100 128 1 0.217667 20, 50 1824

6.3.2 Trace & Models
To mimic real-world deep learning training job/task traces, we use the trace shared

by the authors of [92], the Microsoft Philly Trace. We create two traces for our
experiments, one with 60 tasks and one with 90 tasks, where the submission times of
the tasks match the submission times of a subset of the tasks from the Microsoft trace
from a time window. Since the Microsoft trace is from a cluster of machines, while
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our experiments run on a single server, we use a trimmed version of the whole trace
from the chosen time window. Otherwise, the total number of requests submitted to
the single server would be unrealistically high.

Since the trace does not disclose the model types, we pick the model types and
configurations ourselves based on the real-world task sizes and time distribution
from [196]. Table 6.2 lists the models and each different configuration we run them
with to mimic a diverse range of options in terms of GPU utilization, GPU memory
requirements, and execution times. The 60-task trace is only composed of medium
and large models (83% medium and 17% large models) from the list in Table 6.2 to
serve as a stress-test for collocation, whereas 90-task trace is mostly lighter models
(65% light, 27% medium, 8% large models) that would benefit more easily from
collocation. However, for the execution time of the tasks, we followed the real-world
tasks length analyzed in [196].

6.3.3 Oracle Baselines
To establish baselines for the overall performance of the collocation mechanisms,

we deploy the same traces while providing the resource manager with the exact GPU
memory requirements of the models. We refer to this scenario as the oracle case, as
the resource manager is equipped with complete knowledge to prevent OOM crashes.
However, even with accurate GPU memory requirements, the task-to-GPU mapping
process requires a policy that leverages the available knowledge about the tasks and
the hardware state. We considered the following policies for these oracle runs. All
the oracle policies operates on the two common principles: (1) there should be at
least 2GB extra for the available GPU memory in addition to the memory need of
the deep learning task to be scheduled to prevent OOM crashes due to GPU memory
fragmentation, and (2) the target GPU’s SMACT value should be less than 80% to
prevent negative interference and GPU compute overload.

Oracle First Fit (OFF): This policy first identifies the GPUs that match the
required memory and SMACT conditions for the deep learning task to be scheduled.
Then, picks the first GPU in the list to map the task onto that GPU.

Oracle Best Fit (OBF): This policy first identifies the GPUs that match the
required memory and SMACT conditions for the deep learning task to be scheduled.
Then, picks the GPU with the least available memory in that list to first pack as much
as possible to one GPU before moving onto others. Thus, it aligns with the Most
Utilized GPU (MUG) policy described in Section 6.2.2.

Oracle Worst Fit (OWF): This policy first identifies the GPUs that match the
required memory and SMACT conditions for the deep learning task to be scheduled.
Then, picks the GPU with the most available memory in that list to spread out the
load. Thus, it aligns with the Most Available GPU Memory (MAGM) policy described
in Section 6.2.2.

Oracle Least Utilized GPU (OLUG): This policy first identifies the GPUs that
match the required memory and SMACT conditions for the deep learning task to be
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scheduled. Then, picks the GPU with the most available compute resources, lowest
SMACT value, to prevent overload and interference. Thus, it aligns with the Least
Utilized GPU (LUG) policy described in Section 6.2.2.

6.3.4 Evaluation Metrics
Trace Total Time

This metric represents the elapsed time from the moment the first task is received
and queued until all tasks have been completed and retired from the server.

Average Waiting Time

This metric represents the average time a task spends waiting in the queue before
it begins execution on the server. It is calculated as the total waiting time of all tasks
divided by the number of tasks in the trace.

Average Execution Time

This metric represents the average time a task spends in execution on the server.
It is calculated as the total execution time of all tasks divided by the number of tasks
in the trace.

Average Job Completion Time (JCT)

This metric refers to the average time taken for a job to be fully completed, from
the moment it is submitted to the system until its execution finishes. It is calculated
by dividing the total completion time of all jobs by the number of jobs in the trace.

GPU Memory Usage

This metric represents the amount of GPU memory allocated during task execution,
measured by nvidia_smi.

GPU Utilization (SMACT)

This metric quantifies the activity level of a GPU’s Streaming Multiprocessors
(SMs), measured by dcgmi. SMACT represents the fraction of time during which
at least one warp (a group of threads) is active on an SM, averaged across all SMs.
A higher SMACT value indicates more intensive utilization of the GPU’s compu-
tational resources, while lower values may suggest underutilization or idle periods.
Monitoring SMACT is essential for assessing the efficiency of GPU workloads and
identifying potential performance bottlenecks.

GPU Power (W)

This metric measures the power consumption of a GPU in watts (W) during its
operation, measured by dcgmi.
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Figure 6.5: Oracle Total Trace Time Comparison for 90-task Trace
(conditions are SMACT remain under 80% and 2GB safety margin for

GPU memory).

GPU Energy Consumption (MJ)

we assess GPU energy consumption in megajoules (MJ) by utilizing the DCGM
tool. DCGM provides a metric, which reports the total energy consumed by the GPU
since boot, measured in millijoules (mJ). By capturing this metric at the start and end
of our measurement period, we calculate the total energy consumption during that
interval.

Number of Out-of-Memory Crashes

We quantify the frequency of out-of-memory (OOM) crashes, which occur when
a GPU exhausts its available memory, leading to the task’s termination. To measure
this, we monitor the dispatched tasks’ error logs on each decision making iteration.
By analyzing these logs, we can determine the number of OOM crashes that have
occurred during our testing period.

6.4 Results
In this section, we evaluate RAD-RM under a variety of scenarios and policies.

First Section 6.4.1 evaluates the proposed collocation policies in oracles cases (as-
suming we know the exact GPU memory need - Section 6.3.3) Then, Section 6.4.2
evaluates the policies proposed in Section 6.2.2 without using any knowledge of
or estimators for the GPU memory requirements of the tasks, followed by Section
6.4.3 that evaluates the same policies while using the memory estimators. All of
the aforementioned analyses are for the 90-task trace that has a higher percentage
of deep learning training jobs that would benefit from collocation. To observe the
impact of heavier jobs on collocation, Section 6.4.4 repeats the experiments from
Section 6.4.3 with the 60-task trace. Finally, Section 6.4.5 shows GPU utilization
and power consumption over time in exclusive mode compared to the best performing
collocation scenario to show the gains, and Section 6.4.6 delves into the saved GPU
energy consumption by adopting collocation.
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Figure 6.6: Oracle Average Waiting Time, Average Execution Time,
Average JCT (conditions are SMACT remain under 80% and 2GB

safety margin for GPU memory).

6.4.1 Oracle cases
Figure 6.5 show the comparison of total end-to-end execution time of the 90-task

trace. The results show worst-fit (OWF), picking the GPUs with most GPU memory
available, with MPS-based collocation outperforms the rest of the solutions. On the
other hand, collocation with NVIDIA streams provides only marginal benefits over
exclusive execution. This results align with the conclusions of Chapter 4 when it
comes to the effectiveness of these two collocation methods. For the rest of this
section, we will therefore present the results for MPS-based collocation, unless stated
otherwise.

Figure 6.6 shows how GPU resource interference causes slowdowns in cases when
the workloads are tightly packed only based on their GPU memory requirement
to be able to serve as many as possible training tasks. This is illustrated by the
higher average execution time exhibited by the best-fit (OBF) policy. In contrast, we
observe 30.13% improvement when MPS-based collocation is coupled with, worst-fit
(OWF), aligning with Most Available GPU Memory (MAGM) policy. Furthermore, it
is noteworthy to mention that while collocation on streams does not benefit in terms
of the total time execution of the whole trace, it improves average waiting time that
contributes to the average JCT.

Policy #OOM Crashes
RR (no condition) 8
MAGM (no condition) 5
MAGM (SMACT ≤ 80%) 4
MAGM (SMACT ≤ 80% and GMem ≥ 2GB) 2
MAGM (SMACT ≤ 80% and GMem ≥ 5GB) 2
LGU (SMACT ≤ 80% and GMem ≥ 5GB) 2
MAGM (SMACT ≤ 75% and GMem ≥ 5GB) 1
MAGM (SMACT ≤ 85% and GMem ≥ 5GB) 2

Table 6.3: Total number of out-of-memory (OOM) errors when the
collocation policies rely only on the basic recovery method described

in Section 6.2.3.
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Figure 6.7: Total trace time comparison for 90-task Trace with differ-
ent collocation policies when GPU memory requirements are neither

known nor predicted. All collocation runs use MPS.

6.4.2 Relying Only on the Recovery Method for OOM
These series of experiments assume that we do not know anything about the GPU

memory need of different tasks. As a result, we collocate till an OOM(s) crash
happens and the recovery mechanism (from Section 6.2.3) takes care of the situation.
As Table 6.3 shows one can add collocation conditions to avoid OOM crashes by
filtering out GPUs with low available GPU memory. For example, Most Available
GPU Memory (MAGM) policy with SMACT remaining less than 75% and GPU
memory more than 5GB, limits the number of OOM crashes to only one crash.

While these conditions may take away the potential benefits from collocation,
applying them are necessary for better performance. When we do not apply such
conditions, due to the increased waiting time when OOM happens, we observe that
Round-robin (RR) and MAGM without any condition offer the worst performance for
trace end-to-end execution time in Figure 6.7. The figure shows that Least Utilized
GPU (LUG) policy with SMACT remaining under 80% and having at least 5GB GPU
memory offers the best performance with 28% improvement in end-to-end execution
time.

On the other hand, looking at the different ways of limiting SMACT with MAGM,
while limiting SMACT to be less than 75 eliminates one more OOM compared to
limiting SMACT to be less than 80 or 85, it takes collocation potential away as
Figure 6.8 shows in the increase in job waiting time.

Nevertheless, these results highlight the importance and benefits of deploying
a lightweight recovery method against OOMs to ensure robust execution of deep
learning tasks.
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Figure 6.8: Average Waiting Time, Average Execution Time, Aver-
age JCT with with different collocation policies when GPU memory
requirements are neither known nor predicted, and the basic recovery

method is used against OOM. All collocation runs use MPS.

Policy #OOM Crashes
MAGM (GMem ≥ Horus) 1
MAGM (GMem ≥ faketensor) 0
MAGM (GMem ≥ GPUMemNet) 1
MAGM (SMACT ≤ 80 and GMem ≥ Horus) 0
MAGM (SMACT ≤ 80 and GMem ≥ faketensor) 0
MAGM (SMACT ≤ 80 and GMem ≥ GPUMemNet) 0

Table 6.4: Total number of out-of-memory (OOM) errors when we
integrate the GPU memory estimators (Chapter 5) into RAD-RM while
applying the Most Available GPU Memory (MAGM) collocation pol-
icy. The memory estimators manage to minimize, mostly eliminate,

the OOM errors.

6.4.3 GPU Memory Estimators into Action
Next, we evaluate the impact of the GPU memory estimators for deep learning

training tasks. We only evaluate the Most Available GPU Memory (MAGM) colloca-
tion policy here because of its overall good performance in earlier results.

Table 6.4 demonstrates that applying collocation with GPU memory estimation
(almost) eliminates the OOM crashes.

Figures 6.9 and 6.10 show that MAGM with GPUMemNet estimator offers the
best performance with around 25% improvement compared to exclusive execution.
Overall, the results highlights the benefits of memory predictors, even though the
clear winner in terms of performance may change based on the workload traces.
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Figure 6.9: Total trace time comparison for 90-task trace with Most
Available GPU Memory (MAGM) collocation policy using different

GPU memory estimators. All collocation runs use MPS.
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Figure 6.10: Average Waiting Time, Average Execution Time, Aver-
age JCT with GPU memory estimators integrated in RAD-RM using
Most Available GPU Memory (MAGM) collocation policy and MPS.
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Experiment #OOM Crashes
Exclusive (exclusive) 0
Round Robin on streams + Recovery 9
Round Robin on MPS + Recovery 6
MAGM (2GB, 80%) + Recovery 4
LGU (2GB, 80%) + Recovery 4
MAGM + Horus (80%) 2
MAGM + FakeTensor (80%) 3
MAGM + GPUMemNet (80%) 1

Table 6.5: Total number of out-of-memory (OOM) errors for the
heavier 60-task trace for different collocation policies when the mem-

ory estimators are integrated within RAD-RM.
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Figure 6.11: Total trace time for 60-task trace with different colloca-
tion policies and GPU memory estimators.

6.4.4 Trace of 60-tasks
The trace with the 60-tasks (Section 6.3.2) is overall heavier than the 90-task trace,

since it involves a higher percentage of the heavier model training tasks listed in
Table 6.2. Table 6.5 shows how effective GPUMemNet can be in avoiding OOM
crashes for this trace. Furthermore, Figures 6.11 and 6.12 show the benefits of
collocation even for this heavier workload trace.

6.4.5 GPU Metrics Over Time
In this section, we look into the impact of collocation on GPUs memory usage,

utilization, power over time in comparison to the exclusive scheduling of tasks.
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Figure 6.12: Average Waiting Time, Average Execution Time, Aver-
age JCT for 60-task trace with different collocation policies and GPU

memory estimators.

GPU Memory Usage

Figure 6.13 shows how GPU memory gets allocated as we run the 60-task trace
managed with exclusive and most available GPU memory (MAGM) with GPUMem-
Net estimator and MPS enabled. It shows how our proposed collocation mechanism,
improves performance by shortening the end-to-end execution time of the trace and
increases all GPUs memory usage, and utilization, over the execution of those tasks
by collocating.

GPU Utilization

Figure 6.14 shows the GPUs’ utilization over time when 60-task trace is run based
on either exclusive and our collocation policy of MAGM + GPUMemNet estimator
while MPS enabled. It shows how the collocation policy improves performance
by shortening the end-to-end execution time of the trace and increases all GPUs
utilization, hence tackling the under-utilization problem, over the execution of the
tasks.

GPU Power

Figure 6.15 shows the power consumption of the different GPUs over time when
60-task trace is run based on either exclusive and our collocation policy of MAGM +
GPUMemNet estimator while MPS enabled. The figure follows the same trends with
GPU utilization. Section 6.4.6 shows how much GPU energy consumption gets saved
because of the overall shorter execution time despite the higher power consumption
per unit of time.
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Figure 6.13: GPU memory allocation over time on all four GPUs on
the NVIDIA DGX Station with Exclusive and MAGM policies on the
60-task trace. MAGM uses MPS-based collocation and GPUMemNet

memory prediction.
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Figure 6.14: GPU utilization, SMACT, over time on all four GPUs on
the NVIDIA DGX Station with Exclusive and MAGM policies on the
60-task trace. MAGM uses MPS-based collocation and GPUMemNet

memory prediction.
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Figure 6.15: GPU power over time over time on all four GPUs on
the NVIDIA DGX Station with Exclusive and MAGM policies on the
60-task trace. MAGM uses MPS-based collocation and GPUMemNet

memory prediction.

6.4.6 GPU Energy Consumption
Table 6.6 reports the accumulated energy consumption of all 4 GPUs for executing

the whole of 60-task trace under different policies. We report energy consumption in
megajoules (MJ), where 1 MJ = 106 joules. Training in exclusive mode consumes
33.2 MJ, whereas MAGM + GPUMemNet on MPS reduces this to 28.8 MJ, achiev-
ing a reduction of 4.4 MJ (13.25% improvement). These findings demonstrate how
GPU memory estimation and efficient collocation-aware resource management can
reduce energy costs in large-scale deep learning training.

Policy Energy Consumption (MJ)
Exclusive 33.197904654
Round Robin on Streams 34.745196574
Round Robin on MPS 29.601240054
MAGM on MPS 28.781487533
MAGM + Horus on MPS 29.041723267
MAGM + FakeTensor on MPS 30.306237499
MAGM + GPUMemNet on MPS 28.502464491

Table 6.6: Energy Consumption under different policies.
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6.5 Conclusion
In this chapter, we designed, implemented, and evaluated an efficient collocation-

aware resource manager. We observed that GPU memory estimators are helpful for
avoiding the out-of-memory (OOM) crashes and improving GPU utilization. Our
evaluation demonstrated that collocating tasks effectively can enhance overall system
efficiency while maintaining system reliability.

Key takeaways include:

• Collocation with proper policies significantly improves GPU utilization. Our
results show up to a 30.13% improvement in overall job completion time (JCT)
when using the most available GPU memory (MAGM) policy with NVIDIA
MPS.

• GPU memory estimation is crucial for reliable collocation. Without estimation,
OOM crashes are frequent and require a recovery mechanism. Incorporating
estimators like GPUMemNet reduced crashes and further optimized resource
allocation.

• On the other hand, a recovery mechanism is a must even when GPU mem-
ory estimation is adopted with the collocation policies due to the imperfect
estimators and the fragmentation in GPU memory management.

• Furthermore, resource interference must be managed carefully. Policies that
prioritize minimizing GPU utilization interference (e.g., least utilized GPU
(LUG) with SMACT threshold) provide a balance between performance and
stability.

• MPS enhances collocation performance. MPS significantly improves collo-
cation efficiency compared to using CUDA streams alone, reducing execution
overhead and increasing parallel task execution.

• Collocation leads to energy savings. Our experiments showed that enabling
collocation-aware scheduling reduced total energy consumption by 13.25%,
demonstrating the potential for more sustainable AI workloads.
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Chapter 7

Future Directions and Conclusion

Over the past decade, data science has experienced unprecedented expansion,
largely fueled by three key factors: the ever-growing volume of available datasets,
continuous improvements in computational power, and ongoing advancements in
learning and analysis algorithms. Deep learning has played a crucial role in this evo-
lution, significantly increasing the demand for computational support during model
training. To meet this rising demand, enterprises typically operate shared GPU clus-
ters across multiple production teams. However, despite the abundance of resources,
such clusters often suffer from underutilized GPUs.

In this concluding chapter, we discuss our visions, and offer insights into future
directions, including scaling our design to cluster-level architectures, and finally we
conclude with a short summary of this thesis.

7.1 GPU Utilization Estimation
In this work, we demonstrated that estimating GPU memory requirements for

deep learning training tasks, combined with a collocation-aware resource manager,
significantly enhances performance and energy efficiency. We further posit that com-
plementing GPU memory estimation with GPU utilization estimation (e.g., SMACT)
can minimize interference by enabling more informed decisions based on both mem-
ory and utilization metrics.

Nevertheless, a key challenge lies in the fact that SMACT is a relative measure.
For example, a SMACT value of 80% on an NVIDIA A100 may represent only 60%
utilization on an H200, complicating direct comparisons. Developing a machine
learning model to estimate GPU utilization across diverse GPU models also poses
significant hurdles, primarily due to the need for comprehensive datasets spanning
various architectures. A practical approach might involve building a dataset for one
GPU architecture and then extrapolating to other GPU architectures based on resource
count differences.

Moving forward, we believe that adopting a more representative metric—one that
accounts for architectural differences among GPUs—can lead to better standardized
measures of hardware unit utilization. Such a metric would offer greater accuracy in
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workload distribution and more effective resource allocation across different hardware
platforms.

7.2 Looser Recovery Methods
To prevent collocation decisions from introducing additional uncertainty, we pro-

posed a simple yet effective recovery method for tasks that crash or fail to run under
their assigned resources. Rather than waiting for a GPU to become fully idle be-
fore reassigning the crashed task, a more efficient approach iteratively might seek a
GPU offering, for instance, at least 5GB more available memory than the previous
allocation or the estimated requirement (when an estimator is used).

This method can operate in a loop, gradually increasing the memory threshold to
find a suitable GPU. If no GPU meets the updated threshold, the process continues
until an idle GPU is finally discovered. By dynamically reallocating resources in this
manner, we envision the system recovering more efficiently and reducing potential
disruptions to other ongoing tasks.

7.3 Fairness and Checkpointing
Ensuring fairness in shared computing systems is inherently challenging, partic-

ularly when users must specify their requested runtime. Although this practice can
improve scheduling efficiency, users often overestimate or underestimate their actual
needs—especially in the early stages of development or during production. In systems
where users do not specify runtime or operate without strict time limits, additional
problems arise:

• Resource Monopolization: Long-running tasks may monopolize GPU re-
sources, causing starvation for shorter jobs.

• Inefficient Scheduling: Inaccurate runtime estimates reduce scheduling ef-
ficiency, causing waste and necessitating job resubmission. For example, a
machine learning practitioner training a model for two days might fail to reach
a desired accuracy if the allocated time expires without checkpointing, effec-
tively wasting the GPUs’ resources.

To tackle these challenges, we envision a scheduling approach that integrates
configurable fixed time slots with a robust checkpointing mechanism, ensuring ease
of use, performance, and energy efficiency. Our two central design choices include:

1. Checkpointing as Standard Practice: Encouraging developers to adopt check-
pointing consistently to preserve task progress and enable seamless resumption.

2. Communication Between Frameworks and the Resource Manager: Al-
lowing the resource manager to coordinate checkpoint signals with machine
learning frameworks at critical points.
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Figure 7.1: Vision of the extended version of server-scale resource
manager to cluster-level

For instance, a 12-hour time slot could be configured for scheduled tasks. If a task
finishes earlier, the monitoring system detects this and quickly reallocates the freed
resources to another job. If a task is approaching the end of its time slot (e.g., 10
minutes remaining), the resource manager signals the task to begin checkpointing.
Once the time slot concludes, the next job starts immediately, thereby ensuring
fairness.

7.4 Extending the Design to Cluster-Scale
Building on our server-scale approach, we propose extending the design to a

cluster-scale environment in a hierarchical manner. At each server node, local queues
can manage incoming tasks by using both GPU memory and utilization estimations
to make informed collocation decisions using a policy such as Most available GPU
Memory. Additionally, a higher-level queue can handle distributed training work-
loads across multiple nodes, ensuring that large-scale, multi-GPU jobs are optimally
integrated with single-node tasks. This hierarchical structure promotes scalability
and balances the needs of diverse workloads more effectively.
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7.5 Thesis Summary
In this thesis, we established an experimental environment and selected monitoring

tools and metrics to evaluate different collocation configurations on NVIDIA GPUs.
We investigated native capabilities—GPU streams, Multi-Process Service (MPS),
and Multi-Instance GPU (MIG)—for running multiple deep learning training tasks
concurrently. Subsequently, we introduced a machine learning–driven methodology
to estimate GPU memory consumption for deep learning training models. These
estimations allow the server resource manager to allocate tasks more effectively,
improving overall performance and reducing energy consumption while mitigating
the overhead of collocation.

In the future, through combining the proposals of this thesis with a more representa-
tive utilization metric, looser recovery strategies, fair scheduling with checkpointing,
and plans for hierarchical cluster-scale deployment, we envision a more efficient,
reliable, and user-friendly deep learning infrastructure for every user.
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