
Department of Computer Science
Data-intensive Systems and Applications

THESIS

From Cats to CTs: Cross-Domain Transfer in
Medical Image Classification

Author:
Dovile Juodelyte

Supervisor:
Veronika Cheplygina

Submitted on
December 31, 2024



Imprint

Project: Thesis
Title: From Cats to CTs: Cross-Domain Transfer in Medical Image

Classification
Author: Dovile Juodelyte
Abstract Translation: Kasper Hjort Berthelsen
Date: December 31, 2024
Copyright: IT University of Copenhagen

Supervisor:
Veronika Cheplygina
IT University of Copenhagen
Email: vech@itu.dk

mailto:vech@itu.dk


iii



iv



v

Acknowledgements

I want to thank everyone who was by my side during these three years filled with
learning, new discoveries, growth, and occasional frustrations. A special thanks
goes to Bojan, who became my voice of reason during those tough moments.

I owe a great deal to my supervisor, Veronika. Thank you for not only giving me
the opportunity to follow this path but also for encouraging me to explore my ideas
rather than pushing me to chase state-of-the-art results. I am also grateful to Philippe,
my B.Sc. supervisor, for encouraging me to pursue this path in the first place.

I’ve been incredibly lucky to be part of the DASYA group–our lunch chats always
brightened my day. A special thanks to Amelia, who was always there to complain
with me about the Danish weather, Yucheng for all the Chinese sweets, and Théo for
being so French about the canteen food. To Ties and Kasper, thank you for all our
bouldering sessions. Ties, thanks for always pushing me to try harder, and Kasper,
for keeping me updated on the latest country news. And of course, Eshan, thank you
for helping me in my fight with Nvidia drivers, and Morten, thanks for all our tea
breaks.

I am grateful to Joaquin and the whole AutoML Lab for hosting me during my re-
search stay in Eindhoven. I’m glad I visited at just the right time to join the group
retreat–a great academic and culinary experience.

Lastly, I want to thank my parents for their unwavering support, even when my
decisions caused them so much worry.



vi



vii

Abstract

Transfer learning has become an increasingly popular approach in medical imag-
ing, as it offers a solution to the challenge of training models with limited dataset
sizes. The ability to leverage knowledge from pre-trained models has proven to be
beneficial in various medical imaging applications, such as disease diagnosis, classi-
fication of pathological conditions, and early detection of abnormalities in imaging
modalities like X-rays, MRIs, and CT scans.

Pre-training on ImageNet, a dataset originally designed for natural image classifica-
tion, has become the standard in the field. However, unlike natural images, which
typically feature distinct global objects, medical images often rely on subtle local
texture variations to indicate pathology. These stark differences between natural
and medical images have spurred exploration into alternative pre-training strate-
gies, such as using existing medical datasets, modifying them, or developing new
datasets specifically designed for medical imaging. However, how to effectively
choose between various alternatives and what impact the choice of source dataset
has on the model’s final representations remain unclear.

This thesis examines the mechanics of transfer learning in medical image classifica-
tion and explores the broader impact of the source dataset, extending beyond trans-
fer performance. The aim is to provide insights and tools to guide the selection
of appropriate source datasets for medical image classification. First, we compare
learned intermediate representations of the models pre-trained on natural and med-
ical source datasets. Our results indicate that, while models achieve comparable
performance, they converge to distinct representations, which further diverge after
fine-tuning. Next, we investigate the impact of these different representations on
model generalization by fine-tuning models on targets curated to include systemati-
cally controlled confounders. The results show substantial differences in robustness
to shortcut learning between models pre-trained on natural images and those pre-
trained on medical images, despite similar classification performance. Finally, we
benchmark existing transferability metrics for source dataset selection and show that
current metrics–designed and validated on natural image datasets–perform poorly
in the context of medical image classification. This highlights the need for trans-
ferability metrics specifically tailored to medical imaging tasks. To address this, we
propose a novel transferability metric that integrates feature quality with gradient
information, overcoming the self-source bias inherent in previous methods that rely
solely on feature quality. Our results show that this approach outperforms existing
metrics in source dataset selection for medical image classification.
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Resumé

Transfer læring er blevet en mere og mere populær tilgang til medicinsk billedbehan-
dling siden det løser udfordringen ved at træne modeller med begrænset størrelse
på datasættene. Evnen til at udnytte viden fra tidligere trænede modeller har vist sig
fordelagtig til forskellige områder hvor medicinske billeder bruges, såsom diagnos-
tik, klassificering af patologiske tilstande og tidlig opdagelse af abnormiteter. Dette
ved forskellige billedmodaliteter som røntgen, MRI- og CT-skanninger.

Fortræning ved brug af ImageNet, et datasæt originalt skabt til klassificering af fo-
tografier almindeligt indenfor feltet. Men i modsætning til fotografier, som typisk
har globale objekter der skiller sig ud, er medicinske billeder ofte afhængige af sub-
tile lokale teksturvariationer for at indikere patologi. Disse forskelle mellem fo-
tografier og medicinske billeder har affødt forskning i brug af alternative datasæt
til fortræning såsom brug af eksisterende medicinske billedsæt med modifikationer,
eller ved at udvikle nye datasæt udelukkende til brug ved medicinsk billedbehan-
dling. Dog er der endnu ikke en klar løsning på hvordan der effektivt vælges mellem
de forskellige alternative kildedatasæt, og hvilken effekt dette valg vil have på mod-
ellens endelige repræsentation.

Denne afhandling undersøger transfer lærings virkemåde indenfor medicinsk
billedklassificering, og udforsker den bredere indvirkning af kildedatasættet på
modellens ydeevne. Målet er at kunne give indsigt og værktøjer der kan styre valget
af et passende kildedatasæt til brug ved medicinske billeder. Først sammenligner
vi de lærte interne repræsentationer i modeller der er trænet på henholdsvis
fotografier og medicinske billeder. Vores resultater indikerer at mens modellerne
opnår sammenlignelig ydeevne så konvergere de til forskellige repræsentationer
som yderligere divergerer efter finjustering. Dernæst undersøger vi virkningen af
disse forskellige repræsentationer på modelgeneralisering ved at finjustere modeller
på mål udvalgt til at inkludere systematisk kontrollerede confoundere. Resultaterne
viser væsentlige forskelle i robusthed over for shortcut læring mellem modeller,
der er fortrænet på fotografier og dem, der er fortrænet på medicinske billeder, på
trods af lignende klassificeringsydelse. Endelig benchmarker vi eksisterende mål
for modellers evne til at overfører viden til udvælgelse af kildedatasæt og viser, at
aktuelle mål - designet og valideret på fotografidatasæt - yder dårligt i en medicinsk
billedklassificeringskontekst. Dette fremhæver behovet for skræddersyede mål
for transfer læring modellers ydeevne indenfor medicinsk billedklassificering.
Dette adresserer vi ved at foreslå et nyt mål som inkorporerer feature kvalitet
med gradientinformation der derved undgår den egenkildebias der er iboende i
tidligere mål som udelukkende gør brug af feature kvalitet. Vores resultater viser at
vores tilgang overgår eksisterende målteknikker til udvalg af datasæt til medicinsk
billedklassificering.
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Chapter 1

Introduction

“Five years ago, we feared AI might take our jobs. Now, with overwhelming
workloads and radiologists shortage, we’re asking; When will AI take our jobs?"

- Charles E. Kahn, Jr., M.D., M.S., professor and vice chair of the Department of
Radiology at the Hospital of the University of Pennsylvania, at RSNA 2024,

Radiology AI Fireside Chat: presented by RSNA

With aging populations worldwide, healthcare systems face an increasing workload
that will inevitably require greater reliance on technology to meet growing demands.
Human image interpretation, while invaluable, is inherently limited by subjectiv-
ity, significant variability among interpreters, and the impact of fatigue during pro-
longed or repetitive tasks. Machine learning offers a promising solution by automat-
ing and standardizing processes, reducing the time and effort required for tedious
or error-prone tasks, improving diagnostic accuracy, and optimizing overall clinical
workflows.

Deep learning has demonstrated remarkable potential in medical imaging, achiev-
ing, and in some cases surpassing, clinician-level accuracy in tasks such as detecting
breast cancer in mammograms and ultrasound [1, 2, 3], identifying melanoma in
dermoscopic images [4], predicting the risk of lung cancer in CT scans [5, 6, 7], diag-
nosing diabetes directly from retinal images [8], and detecting knee injuries in MRI
scans [9], among others. However, the transition of deep learning algorithms from
research to routine clinical use has been slow [10]. A major algorithmic challenge
is their limited ability to generalize reliably to real-world settings. Models trained
and tested on specific datasets in controlled experiments often fail to maintain their
performance when applied to data from different populations or imaging protocols
in clinical contexts [11]. This variability undermines the reliability and scalability
of ML systems in healthcare. To fully harness the potential of this technology and
integrate it effectively into healthcare systems, it is crucial to develop a deep under-
standing of the underlying algorithms.

Deep learning models consistently achieve their best performance when trained on
abundant data to support large model architectures [12, 13, 14]. However, medi-
cal imaging is often constrained by a persistent "small data" problem, with datasets
typically containing only hundreds to thousands of subjects [15], compared to the
millions of images available in general computer vision datasets, such as ImageNet
[16] with over 14 million annotated images. This scarcity stems from the unique
challenges of collecting high-quality annotated medical image data making it both
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time-consuming and expensive.

First of all, medical imaging data must be carefully de-identified to protect pa-
tient privacy. In addition to textual identifiers in metadata, protected health
information may be embedded directly within images, such as ultrasound exam-
inations or scanned radiographs. Removing this information requires advanced
de-identification techniques, including optical character recognition (OCR) and
manual review to address handwritten annotations that automated systems may
miss [17]. Retrieving data from clinical repositories is a non-trivial process, often
hindered by inconsistent data standards for clinical imaging data within or across
healthcare institutions [18]. This lack of uniformity can significantly prolong the
time required to gather relevant datasets for research. Labeling medical imaging
data adds another layer of complexity. Highly qualified experts are required for this
task, making it both expensive and resource-intensive. Moreover, many medical
findings cannot be definitively labeled based solely on imaging data. Establishing
ground truth often requires follow-up studies, pathological diagnoses, or clinical
outcomes [17]. The nature of medical conditions presents additional challenges due
to their long-tail distribution. While a small number of pathologies are common
and relatively easy to collect data for, a large number of rarer conditions remain
underrepresented, as gathering sufficient data for these conditions is particularly
difficult.

1.1 Transfer learning in medical imaging

Given the persistent challenges of collecting large-scale labeled datasets, transfer
learning has emerged as a cornerstone in medical image classification. By lever-
aging the general knowledge encoded in models pre-trained on large datasets and
fine-tuning them on smaller, task-specific medical datasets, transfer learning makes
it feasible to use data-hungry deep learning models in resource-constrained scenar-
ios. Medical imaging datasets are unlikely to scale to the size of general computer
vision datasets due to the inherent limitations in data availability. Thus, transfer
learning is likely to remain essential for developing effective deep learning solutions
in medical imaging. However, despite its pivotal role, the underlying mechanisms
of transfer learning in this domain remain poorly understood [19]. Addressing this
gap in understanding is critical to advancing medical image analysis and improving
model performance in real-world clinical settings.

A common practice in medical image classification is to pre-train models on Ima-
geNet [16], a dataset originally designed for natural image classification. ImageNet
gained popularity due to several factors: it is widely used in computer vision, it has
consistently shown good results (albeit initially surprising for medical applications),
and is readily available with pre-trained model weights.

However, fundamental differences between natural and medical images, as il-
lustrated in Figure 1.1, raise questions about the suitability of ImageNet as a
pre-training source for medical imaging tasks. Natural images typically feature
distinct global objects, such as animals or vehicles. Medical images, on the other
hand, often require the identification of subtle local texture variations to detect
pathologies. Therefore, ImageNet pre-training may not always be optimal for
medical image classification, especially when working with small datasets [19],
where transfer learning provides the most benefit.



4 Chapter 1. Introduction

(A) Natural images (B) Medical images

FIGURE 1.1: Examples of natural images from ImageNet and medi-
cal images from a breast ultrasound dataset [20]. In natural images,
note the significant variation within the same class (columns) and
across different classes (rows). In contrast, this variation is consid-

erably lower in medical images.

The benefits of ImageNet pre-training have been scrutinized in general computer
vision tasks. While ImageNet pre-training accelerates early-stage convergence dur-
ing training, it does not seem to necessarily improve final task performance. He et
al. [21] showed that models trained from random initialization take more iterations
to converge but often achieve performance comparable to fine-tuned models. What
is more, on fine-grained classification tasks, such as identifying subtle differences
within specific categories, pre-training on ImageNet provides minimal benefit, sug-
gesting that ImageNet features do not transfer effectively to these specialized tasks
[22]. These findings highlight that the features learned on ImageNet are less univer-
sally applicable than previously assumed.

Studies suggest that pre-training on smaller, domain-specific datasets that are more
closely related to the target task can outperform pre-training on larger but less rele-
vant datasets such as ImageNet [23, 24, 25]. Despite its widespread use in medical
imaging, the inner workings of cross-domain transfer from natural images to medi-
cal images remain poorly understood.

1.2 Source dataset selection

While ImageNet pre-training remains a common approach for medical image classi-
fication, alternative strategies, such as using existing medical datasets [26, 27], their
alterations [28, 29], and developing new, domain-specific medical image datasets
explicitly designed for pre-training, such as RadImageNet [30], are gaining traction.
However, exhaustively fine-tuning multiple source models to assess their suitability
to a specific target task is computationally expensive and often infeasible.

To address this challenge, transferability estimation offers a promising solution.
Transferability estimation predicts how well pre-trained models will perform
on new tasks without requiring extensive fine-tuning. This approach allows
for efficiently identifying high-performing pre-trained models, even uncovering
unexpected candidates that human practitioners might otherwise overlook [31]. As
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the number and complexity of pre-trained models continue to grow, transferability
estimation becomes increasingly valuable, enabling more effective reuse of existing
source data and models.

The medical imaging community often adapts methods developed for computer vi-
sion tasks for use in medical applications. However, as demonstrated by Chaves
et al. [32], current transferability metrics–designed and validated on natural image
datasets–perform poorly when applied to medical image classification tasks. This
highlights the need for transferability metrics specifically tailored to medical imag-
ing, providing practitioners with tools to identify optimal source datasets for their
medical target tasks.

1.3 Thesis contributions

This thesis aims to deepen our understanding of cross-domain transfer from natural
images to medical images, including how this cross-domain transfer impacts model
representations and generalization, and identifying alternative source datasets for
pretraining, with the goal of facilitating better-informed transfer learning practices
and increasing the reliability and safety of machine learning applications in clinical
settings. The contributions of this thesis are as follows:

• We investigate the effect of cross-domain transfer on intermediate representa-
tions learned by the model fine-tuned on medical targets by comparing models
pre-trained on natural and medical image source datasets.

– Our results indicate that the models may converge to distinct interme-
diate representations, and these representations appear to become even
more dissimilar after fine-tuning.

– Our findings demonstrate that model similarity before and after fine-
tuning is not correlated with the improvement in performance across all
layers. This suggests that the benefits of transfer learning in medical
imaging may not arise from feature reuse.

– We show that transfer performance of a dataset is sensitive to the choice
of model architecture and hyperparameters.

• Focusing on difference in learned intermediate representations we investigate
how the domain of the source dataset affects model generalization.

– We conceptualize confounding factors in medical images by introducing
the Medical Imaging Contextualized Confounder Taxonomy (MICCAT)
and generate synthetic or sample real-world confounders from MICCAT
to systematically assess model robustness.

– We show substantial differences between models pre-trained on natural
and medical datasets in robustness to shortcut learning despite compara-
ble predictive performance.

– Furthermore, our findings highlight the limitations of evaluating model
performance solely on i.i.d. datasets, as it fails to distinguish between true
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improvements in generalization and reliance on shortcut learning. Thus,
we advocate for a more nuanced evaluation of transfer learning.

• Expanding on shortcut learning we apply spectral analysis to transfer learning
to analyze a model’s susceptibility to frequency shortcuts after fine-tuning.

– We observe distinct differences between models pre-trained on natural
and medical images that are related to the model’s learning priority.

– We show through experiments that resistance to common detrimental
frequency shortcuts could be altered via source data editing leading to
greatly improved robustness against shortcut learning.

• We develop a dataset transferability metric specifically tailored to medical
imaging tasks to facilitate selection of good candidates for pre-training for
medical targets.

– We demonstrate that publicly available medical datasets, or a combina-
tion of them, can outperform ImageNet pre-training for medical image
classification tasks.

– We benchmark transferability metrics on medical imaging tasks, estab-
lishing two new benchmarks–source dataset transferability in medical
image classification and cross-domain transferability. Our results show
that current state-of-the-art model selection methods fail to outperform
simple baselines in these new settings.

– We propose a novel transferability metric that combines feature quality
with gradients, addressing the self-source bias of previous methods based
solely on feature quality.

– We provide ground-truth transfer performance for a publicly available
and easy-to-use benchmark dataset, to encourage further research in
transferability estimation for medical image classification.

Furthermore, these contributions have resulted in the following publications:

• Dovile Juodelyte, Amelia Jiménez-Sánchez, and Veronika Cheplygina. "Re-
visiting Hidden Representations in Transfer Learning for Medical Imaging."
Transactions on Machine Learning Research. 2023.

• Dovile Juodelyte, Yucheng Lu, Amelia Jiménez-Sánchez, Sabrina Bottazzi,
Enzo Ferrante, and Veronika Cheplygina. "Source Matters: Source Dataset
Impact on Model Robustness in Medical Imaging." International Workshop on
Applications of Medical AI (MICCAI-AMAI). 2024 (in press).

• Yucheng Lu, Dovile Juodelyte, Jonathan D. Victor, and Veronika Cheplygina.
"Exploring connections of spectral analysis and transfer learning in medical
imaging." In Medical Imaging 2025: Image Processing. SPIE, 2025 (in press).

• (Under Review) Dovile Juodelyte, Enzo Ferrante, Yucheng Lu, Prabhant Singh,
Joaquin Vanschoren, and Veronika Cheplygina. "On dataset transferability in
medical image classification."
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Additionally, contributions were made to the following publications:

• Dovile Juodelyte, Veronika Cheplygina, Therese Graversen, and Philippe Bon-
net. "Predicting bearings degradation stages for predictive maintenance in the
pharmaceutical industry" Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 2022.

• Amelia Jiménez-Sánchez, Dovile Juodelyte, Bethany Chamberlain, and
Veronika Cheplygina. "Detecting shortcuts in medical images-a case study in
chest x-rays." In 2023 IEEE 20th International Symposium on Biomedical Imaging
(ISBI), IEEE, 2023.

• Théo Sourget, Ahmet Akkoç, Stinna Winther, Christine Lyngbye Galsgaard,
Amelia Jiménez-Sánchez, Dovile Juodelyte, Caroline Petitjean, and Veronika
Cheplygina. "[Citation needed] Data usage and citation practices in medical
imaging conferences." In Medical Imaging with Deep Learning (MIDL). 2024.

• Amelia Jiménez-Sánchez, Natalia-Rozalia Avlona, Dovile Juodelyte, Théo
Sourget, Caroline Vang-Larsen, Anna Rogers, Hubert Dariusz Zając, and
Veronika Cheplygina. "Copycats: the many lives of a publicly available
medical imaging dataset." In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track. 2024.

1.4 Thesis outline

The rest of this thesis is organized as follows:

• Chapter 2 contains background on medical image computing and a brief in-
troduction to convolutional neural networks (CNNs) with the basics of the
architecture and its training. It also covers the basics of transfer learning and
briefly introduces shortcut learning.

• Chapter 3 introduces issues related to cross-domain transfer and reveals dif-
ference in representations between models pre-trained on natural and medi-
cal images. It then follows to explore model similarity before and after fine-
tuning challenging the common notion that benefits of transfer learning come
from feature reuse.

• Chapter 4 focuses on the effects of the aforementioned differences in repre-
sentations on model generalization. It introduces a taxonomy of confounders
in medical imaging and systematically investigates robustness of models pre-
trained on natural and medical images to shortcut learning.

• Chapter 5 expands on shortcut learning in cross-domain transfer. In this chap-
ter, spectral analysis is used to study model sensitivity to frequency shortcuts,
and a method for source dataset editing is introduced to improve model ro-
bustness to frequency shortcuts.

• Chapter 6, explores dataset transferability estimation in medical image clas-
sification and using insights from Chapter 3 introduces transferability metric
tailored specifically for medical imaging targets.



8 Chapter 1. Introduction

• Chapter 7 briefly revisits the previous chapters and discusses future directions
that that might be worth exploring in the future, and concludes the thesis.
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Chapter 2

Background

This chapter provides the essential background needed to understand the content of
this thesis, covering the following topics:

• medical imaging (Section 2.1),

• convolutional neural networks (Section 2.2),

• transfer learning (Section 2.3), and

• shortcut learning in deep neural networks (Section 2.4).

2.1 Medical image computing

2.1.1 Computer-aided medical image analysis

The history of computer-aided medical image analysis reflects the intersection of
advances in imaging technology, computer science, and medical practice. It spans
decades, beginning with rudimentary computational techniques and evolving into
today’s sophisticated systems powered by deep learning. This summary is inspired
by various overviews of computer-aided diagnosis in medical imaging, such as [33,
34, 35].

The origins of computer-aided medical image analysis can be traced back to the
1960s and 1970s, when researchers began exploring how computers could assist in
automating diagnostic processes in radiology. Early systems relied on a series of
low-level operations, such as filtering to detect edges and lines, thresholding to seg-
ment regions of interest based on pixel intensity, and fitting simple geometric shapes
such as circles, ellipses, and lines to images to represent anatomical structures or ab-
normalities. These extracted features formed the foundation of rule-based systems,
which used explicitly defined if-then-else rules to guide the analysis and interpreta-
tion of medical images.

By the 1980s, advances in imaging technologies and computational power allowed
for more sophisticated analysis techniques. The emergence of feature extraction
methods marked a shift from simple pattern detection to quantitative analysis. Re-
searchers began using texture descriptors, intensity-based metrics, and shape-based
features to characterize regions of interest within medical images. For instance, tex-
ture analysis helped distinguish between normal and pathological tissues by quanti-
fying heterogeneity, while shape descriptors captured geometric details of tumors or
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anatomical structures. These hand-crafted features formed the basis for the applica-
tion of statistical learning methods in medical image analysis. Techniques like linear
regression, discriminant analysis, and k-nearest neighbors enabled researchers to
classify medical images based on these extracted features.

The 1990s witnessed the emergence of computer-aided diagnosis (CAD) systems.
These tools aimed to support radiologists by automating the detection and inter-
pretation of abnormalities in medical images. Early CAD systems were developed
to detect lesions in chest radiographs [36] and microcalcifications in mammograms
[37]. These systems gained traction in clinical practice as second-opinion tools, aid-
ing radiologists in improving diagnostic accuracy and reducing reading time. This
era also saw the integration of advanced statistical models, such as support vector
machines (SVMs) and random forests, which further enhanced the ability of these
systems to analyze complex imaging data.

The 2010s brought about a revolution in computer-aided medical image analysis
with the advent of deep learning. The success of convolutional neural networks
(CNNs) in general computer vision tasks, such as the ImageNet challenge [16],
spurred their application to medical imaging. CNNs introduced the concept of
end-to-end learning, where models could learn directly from raw image data
without relying on hand-crafted features. This shift represented a paradigm change.
Traditional pipelines that depended on manual feature engineering were replaced
with models capable of automatically learning hierarchical features, capturing both
low-level details and high-level abstractions. Deep learning also found applications
across various medical domains, from radiology and pathology to ophthalmology
and dermatology. For instance, deep neural networks were developed to detect
diabetic retinopathy in retinal images, classify skin lesions, and segment tumors in
brain MRIs. Despite these advancements, the adoption of deep learning in clinical
practice has posed challenges, particularly around data scarcity, interpretability,
and regulatory compliance.

Today, there is more focus on integrating AI-driven tools into clinical workflows.
Emerging techniques such as federated learning aim to address data-sharing con-
cerns by enabling collaborative model training without compromising patient pri-
vacy. Efforts to improve the interpretability of AI models have given rise to ex-
plainable AI, ensuring that these tools can be trusted and understood by clinicians.
Inspired by advances in computer vision there is still a lot of focus on scaling to
larger datasets. For instance, RadImageNet [30], a dataset comprising 1.2 million
CT, MR, and ultrasound images, was introduced to provide a domain-specific alter-
native to ImageNet for pre-training in medical imaging tasks. In addition to dataset
scaling, there is increasing attention on multimodal foundational models designed
to address a variety of medical tasks. Examples include Med-PaLM [38] and Med-
Gemini [39], which integrate imaging data with textual inputs and outputs. These
models aim to enable clinicians to interact through natural language prompts, poten-
tially facilitating tasks such as report generation, clinical summaries, and diagnostic
assistance. While foundational models hold promise, realizing their full potential in
clinical practice remains an ongoing challenge.

2.1.2 Medical imaging tasks

The term medical imaging encompasses a wide range of tasks, each serving distinct
purposes in healthcare and research. These tasks include image segmentation, image
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registration, object detection, reconstruction, image synthesis, and classification.

• Image segmentation involves dividing an image into meaningful regions, such
as delineating tissues, organs, or pathological areas [40]. This is crucial for ap-
plications like tumor detection, organ boundary delineation, and quantifying
disease progression.

• Image registration aligns two or more images into a common coordinate sys-
tem, enabling comparison of images taken at different times, from different
perspectives, or using different modalities (e.g., CT and MRI) [41].

• Object detection identifies specific objects of interest within an image, such as
tumors, lesions, or medical devices [42].

• Reconstruction is used in imaging modalities like CT and MRI to convert raw
data (e.g., projections or k-space data) into human-interpretable images [43].

• Image synthesis generates images in one modality from another (e.g., synthe-
sizing MRI from CT), facilitating multimodal analysis without the need for
additional scans.

In this thesis, we focus on image classification, which assigns a label to an image.
In medical imaging, this task often involves identifying whether an image contains
evidence of a disease or categorizing tissue types.

2.2 Convolutional neural networks

Convolutional neural networks (CNNs) [44] are a class of deep learning models
specifically designed to process data with grid-like structures, such as images. Un-
like traditional neural networks, which treat input data as a flat structure, CNNs
take advantage of the spatial relationships between data points to learn meaningful
patterns. This ability makes them highly effective for analyzing image data, where
spatial relationships are key.

CNNs rely on the concept of convolutions–a mathematical operation that extracts
local patterns from data. It works by sliding a small matrix (called a filter or ker-
nel) over the input image and computing the dot product between the filter and the
corresponding region of the input. This process outputs a new representation of the
data, known as a feature map, which highlights specific patterns or features, such as
edges, textures, or shapes. Edge detection is one of the simplest and most illustrative
uses of convolution. Filters can be designed to detect specific types of edges, such as
vertical or horizontal transitions in pixel intensities. Applying such filter to an im-
age involves sliding it across the image and performing the convolution operation,
which consists of: element-wise multiplication of the filter with the corresponding
region of the image and summing the results to produce a single value for the fea-
ture map. This process is repeated across the entire image, producing a feature map
that highlights vertical edges.

When convolutional layers are stacked in a neural network, they progressively ex-
tract increasingly complex features from the input data. Each layer builds upon the
features detected by the previous layer, forming a hierarchy:
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• First layers detects simple, low-level features such as edges and corners. Fil-
ters in this layer typically learn to recognize gradients or transitions in pixel
intensities.

• Middle layers combine the edges detected by the first layer to identify textures
and patterns, such as stripes, spots, or repeated motifs. For instance, an edge
pair might form a line, or multiple lines might combine into a grid pattern.

• As the network goes deeper, the layers capture higher-level abstractions by
combining the patterns from earlier layers. These abstractions can represent
parts of objects (e.g., eyes, wheels) or even entire objects (e.g., faces, cars).

Training a CNN involves adjusting the weights in the convolutional filters to min-
imize the error between its predictions and the true outputs. Each convolutional
filter starts with randomly initialized weights, and through training, these weights
are iteratively optimized to detect specific patterns.

Training process begins with data preparation, where the input images are prepro-
cessed to ensure consistency. Common preprocessing steps include resizing images
to a fixed size, normalizing pixel values, and augmenting data through transforma-
tions like rotation, flipping, and cropping to artificially increase the dataset’s diver-
sity and robustness.

Once the data is prepared, training proceeds in several key stages: forward propaga-
tion, loss computation and backpropagation. During forward propagation, the input
data passes through the network’s layers, where convolutions and non-linear acti-
vations are applied to extract features. The output of the final layer represents the
network’s predictions, which are compared to the ground truth using a loss func-
tion. For classification tasks, a common loss function is cross-entropy loss, which
measures the difference between predicted and actual class probabilities.

Next, backpropagation [45] is used to compute gradients of the loss function with
respect to each parameter in the network. This process relies on the chain rule of cal-
culus to trace the flow of error signals back through the network. Using these gradi-
ents, the parameters are updated iteratively using optimization algorithms such as
stochastic gradient descent (SGD) or more advanced methods like Adam. These up-
dates aim to reduce the loss and improve the network’s predictions over successive
iterations.

Regularization techniques are often employed to prevent overfitting, a problem
where the model learns to memorize the training data instead of generalizing
to unseen data. Popular regularization methods include dropout [46], which
randomly deactivates neurons during training, and weight decay, which penalizes
large weights to encourage simpler models. Another common strategy is early
stopping, where training is halted as soon as the validation performance ceases to
improve.

While CNNs are powerful, they come with challenges. Training a CNN is compu-
tationally intensive, requiring specialized hardware like GPUs to handle the large
number of parameters and operations [47]. Hyperparameter tuning is a critical as-
pect of training CNNs. Parameters such as filter size, number of layers, learning rate,
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and weight decay significantly affect performance, and finding the optimal combi-
nation often requires experimentation. The availability of high-quality, annotated
datasets is essential for training CNNs as they learn by extracting patterns and fea-
tures from data, and the quality and quantity of this data directly impact their ability
to generalize. Without sufficient data, CNNs risk overfitting [47], where the network
performs well on the training set but poorly on new, unseen data. Another challenge
is interpretability. CNNs are often considered “black boxes” [47], making it difficult
to understand how specific features contribute to predictions.

2.3 Transfer learning

In medical imaging, CNNs have shown great promise in solving complex problems,
such as detecting breast cancer in mammograms and ultrasound [1, 2, 3], identifying
melanoma in dermoscopic images [4], predicting the risk of lung cancer in CT scans
[5, 6, 7], diagnosing diabetes directly from retinal images [8], and detecting knee in-
juries in MRI scans [9] However, training these models from scratch demands vast
amounts of labeled data [47], which is often impractical in medical imaging due to
the limited availability of large labeled datasets and the high cost of expert annota-
tions. This scarcity makes it difficult to train deep learning models without the risk of
overfitting. Transfer learning provides an effective solution by utilizing pre-trained
models that have already learned general features from large, sometimes unrelated
datasets. These pre-trained models can then be adapted to specific medical tasks,
requiring only relatively small amounts of labeled medical data for fine-tuning.

FIGURE 2.1: Illustration of transfer learning in medical image clas-
sification. A neural network pre-trained on a source dataset can be
used as a feature extractor or fine-tuned with a new classification

layer trained to predict classes in the target dataset.

The key idea behind transfer learning in medical imaging is that a deep learning
model trained on a general task–such as image classification on datasets like Im-
ageNet [16], which contains natural images of everyday objects like animals and
furniture–can be repurposed for a more specific task within the medical domain.
In many cases, the low-level features, such as edges and textures [48], learned by
a neural network on a large, general-purpose dataset are applicable across a wide
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range of imaging tasks, including those in the medical field. These features are criti-
cal for various medical imaging tasks, whether identifying anatomical structures or
detecting abnormal growths like tumors.

When applying transfer learning to medical imaging, a pre-trained model can be
used as a feature extractor or fine-tuned to better suit the specific medical task, as
shown in fig. 2.1. In the feature extraction approach, the pre-trained model is used
to extract features from the input data, and these features are then used as input to
another machine learning model (such as a classifier like a support vector machine
or logistic regression). The pre-trained model’s layers are frozen (i.e., their weights
are not updated), and only the classifier part of the model is trained on the new
task. This approach is especially beneficial when the new task is closely related to
the original task and the available dataset is small, as freezing the pre-trained layers
helps mitigate the risk of overfitting.

Fine-tuning, on the other hand, involves unfreezing some or all of the layers in the
pre-trained model and allowing their weights to be updated using the new dataset.
Typically, the earlier layers of the model, which capture low-level features like edges
and textures, are left frozen, while the later layers, which focus on task-specific fea-
tures, are fine-tuned.

2.4 Shortcut learning

While CNNs excel at recognizing patterns, detecting objects, and classifying images,
a growing body of research has revealed that these models can exploit "shortcuts"
in the data rather than genuinely learning the underlying relationships. This phe-
nomenon, known as shortcut learning [49], refers to the model learning superficial
features that correlate with the target label but do not necessarily reflect the true
underlying structure of the problem, as illustrated in Figure 2.2.

FIGURE 2.2: Illustration of shortcut learning in deep neural networks.
In the training set, negative images are predominantly associated
with male patients, while positive images are associated with female
patients. The model inadvertently learns to predict the patient’s gen-
der instead of the true condition. During testing, this bias leads the
model to classify images of female patients as positive, based on the

learned association.
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In the context of computer vision, shortcut learning often occurs when the model
identifies spurious correlations between certain features in the training data and the
labels. These correlations might not be generalizable to unseen data [49], leading to
poor performance when the model is deployed in real-world scenarios. Although
shortcut learning can improve performance during training, it limits the model’s
ability to generalize, which is particularly problematic in high-stakes domains like
medical imaging [50].

A model might learn to rely on background elements or artifacts in the dataset rather
than the objects of interest themselves. For example, a model trained to recognize
animals in images might learn to rely on the color of the background (e.g., green for
grass or blue for sky) as a cue for classification, rather than recognizing the animal
itself. In some cases, models might exploit non-robust features like image lighting
or camera angle that correlate with the label during training but are not relevant
for the true classification. When faced with images that have different lighting or
angles during testing, the model’s performance deteriorates. When datasets con-
tain imbalances or biases in how labels are assigned, models might latch onto those
imbalances.

In medical imaging, shortcut learning can occur when a model learns to associate
specific imaging parameters (e.g., the machine type or settings) with diagnoses [51].
For instance, a model might recognize that a particular scanner or resolution is com-
monly used for detecting a specific disease, leading the model to rely on this feature
rather than learning the relevant biological features of the disease itself.

In medical imaging datasets, labels are typically assigned by radiologists or patholo-
gists. If there is an inconsistency in the labeling process, such as a bias toward certain
demographic groups or a tendency to underrepresent certain conditions, the model
might learn to associate demographic features (such as ethnicity or age) with the di-
agnosis [52], rather than learning the actual medical condition being detected. This
can result in a model that is unable to generalize across different patient populations
or imaging systems.
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Chapter 3

Cross-domain transfer

Adapted from: D. Juodelyte, A. Jiménez-Sánchez, V. Cheplygina, "Revisiting hidden representations in
transfer learning for medical imaging", Transactions on Machine Learning Research (2023)

3.1 Introduction

Transfer learning has become an increasingly popular approach in medical imaging,
as it offers a solution to the challenge of training models with limited dataset sizes.
The ability to leverage knowledge from pre-trained models has proven to be ben-
eficial in various medical imaging applications [19, 53, 54]. Despite its widespread
use, the precise effects of transfer learning on medical image classification are still
heavily understudied.

While pre-training on ImageNet has become a common practice in medical image
classification, there have been growing concerns within the medical imaging com-
munity regarding its suitability for medical imaging tasks. Medical images differ
from natural images in several ways, including local texture variations as an indi-
cation of pathology rather than a clear global subject present in natural images [19].
Additionally, medical datasets are smaller in size, have fewer classes, have higher
resolution compared to ImageNet, and go beyond 2D. These differences between
natural and medical image datasets have led to the argument that ImageNet may
not be the optimal solution for pre-training in medical imaging due to the well-
known performance degradation effect caused by domain shift [55]. This has led to
increased efforts to explore alternative solutions for pre-training, such as using exist-
ing medical datasets [26], their alterations [28, 29], and creating new medical image
datasets specifically designed for pre-training, such as RadImageNet [30].

Recent studies have challenged the conventional wisdom that the source dataset
used for pre-training must be closely related to the target task in order to achieve
good performance. Evidence has emerged suggesting that the source dataset may
not have a significant impact on the performance of the target task and we can pre-
train on any real large-scale diverse data [56, 57]. Further, more evidence suggests
that ImageNet leads to the best transfer performance in terms of accuracy, as Ima-
geNet not only boosts the performance [58] but also is a better source than medical
image datasets [59]. This is likely due to the focus on texture in ImageNet models
[60], which has been hypothesized to be an important cue for medical image classi-
fication.
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While RadImageNet has demonstrated ImageNet-level accuracy [30] on radiology
image classification, it remains uncertain whether it leads to improved representa-
tions when applied to medical target datasets. Furthermore, it is essential to un-
derstand the broader implications of source datasets beyond their effect on target
task performance, in order to enable practitioners to make more informed decisions
when selecting a source dataset.

In light of the ongoing debate on the choice of source dataset for medical pre-
training, we set out to investigate this with a series of systematic experiments on
the difference of representations learned from natural (ImageNet) and medical
(RadImageNet) source datasets on a range of (seven) medical targets. Our main
contributions are:

• We extend the work presented in [30] by doing a replication study of four of
their seven experiments (derived from three small medical targets: breast,
thyroid, and knee datasets) and adding four additional medical imaging tar-
get datasets.

Contrary to the findings in [30], we observe that in most cases, models pre-
trained on ImageNet tend to perform better than those trained on RadIma-
geNet. However, it is important to note that this discrepancy does not nec-
essarily indicate the superiority of one source dataset over the other. Rather,
it emphasizes the sensitivity of transfer performance to the choice of model
architecture and hyperparameters.

• We investigate the learned intermediate representations of the models pre-
trained on ImageNet and RadImageNet using Canonical Correlation Analysis
(CCA) [61, 19]. Our results indicate that the networks may converge to dis-
tinct intermediate representations, and these representations appear to become
even more dissimilar after fine-tuning. Surprisingly, despite the dissimilarity
in representations, the predictions of these networks are similar. This suggests
that when using transfer learning, it is important to evaluate other desirable
model qualities for medical imaging applications beyond performance, such
as robustness to distribution shift or adversarial attacks.

• Our findings demonstrate that model similarity before and after fine-tuning
is not correlated with the improvement in performance across all layers. This
suggests that the benefits of transfer learning may not arise from the reuse of
features in the early layers of a convolutional neural network.

• We make our code and experiments publically available on Github1.

3.2 Related work

3.2.1 Pre-training on different data

Transfer performance degradation due to distribution shift is a known problem. This
issue is particularly relevant in scenarios where the availability of large-scale in-
domain supervised data for pre-training is limited. In light of this, a line of research

1https://github.com/DovileDo/revisiting-transfer

https://github.com/DovileDo/revisiting-transfer
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has emerged that challenges the common practice of pre-training on ImageNet and
instead explores pre-training on different in-domain source datasets:

Training on target data. [26] have shown the potential of using denoising autoen-
coders for pre-training on target data in a self-supervised manner. Although this
approach has yielded promising results, the experiments were conducted using nat-
ural image target datasets. Even the smallest target dataset consisted of 8,000 images,
making it unclear how well this approach would translate to the domain of medical
imaging where the availability of large-scale target data is often limited.

Synthetic data has been shown to be a viable alternative to real-world data for pre-
training, particularly in domains where labeled data is scarce. [28] have explored
pre-training on gray-scale automatically generated fractals with labels and showed
that this approach can generate unlimited amounts of synthetic labeled images, al-
though it does not surpass the performance of pre-training on ImageNet in all cases.

Self-supervised learning is a strategy employed to learn data representations. [62]
proposed to mask random patches of the input image and reconstruct the missing
pixels. MAE reconstruct missing local patches but lacks the global understanding
of the image. To overcome this shortcoming, Supervised MAE (SupMAE) [63] were
introduced. SupMAE include an additional supervised classification branch to learn
global features from golden labels. Recently, MAE has been leveraged for medical
image classification and segmentation [64].

Data augmentation is often used to increase dataset size. [29] showed that it can
be used to scale a single image for self-supervised pre-training. However, this ap-
proach still falls short of using real diverse data. Even with millions of unlabeled
images, it cannot fully bridge the gap between fully-supervised and self-supervised
pre-training for deeper layers of a CNN.

Although aforementioned work in general computer vision has demonstrated the
potential of synthetic and augmented data, the importance of large-scale labeled
source datasets remains strong, particularly ImageNet in medical imaging [59, 65]
despite its out-of-domain nature for medical targets. Recently, [30] have demon-
strated that RadImageNet, a large-scale dataset of radiology images similar in size
to ImageNet, outperforms ImageNet on radiology target datasets. To further these
findings, we investigate the potential of pre-training on the RadImageNet on a range
of modalities that were not included in [30] experiments, such as X-rays, dermo-
scopic images, and histopathological scans.

3.2.2 Effects of transfer learning

Transfer learning is a useful method for studying representations and generaliza-
tion in deep neural networks. [48] defined the generality of features learned by
a convolutional layer based on their transferability between tasks. They analyzed
representations learned in ImageNet models and found that the early layers form
general features resembling Gabor filters and color blobs, while deeper layers be-
come more task-specific. More recently, [19] studied feature reuse in medical imag-
ing using transfer learning and found that this reuse is limited to the lowest two
convolutional layers. Besides feature reuse, they demonstrated that the scaling of
pre-trained weights can result in significant improvement in convergence speed.
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Instead of investigating the transferability of weights at different layers, [57] investi-
gated the distributions of convolution filters learned by computer vision models and
found that they only exhibit minor variations across various tasks, image domains,
and datasets. They noted that models based on the same architecture tend to learn
similar distributions when compared to each other, but differ significantly when
compared to other architectures. The authors also discovered that medical imaging
models do not learn fundamentally different filter distributions compared to mod-
els for other image domains. Based on these findings, they concluded that medical
imaging models can be pre-trained with diverse image data from any domain.

Our work extends previous studies on the effects of pre-training by characterizing
the representations learned from ImageNet and RadImageNet and investigating the
implications of the source dataset on the learned representations. Our results pro-
vide additional evidence that the source domain may not be of high importance for
pre-training medical imaging models, as we observe that even though ImageNet
and RadImageNet pre-trained models converge to distinct hidden representations,
their predictions are still similar.

3.3 Method

'cat'
'dog'

'phone'

Pre-trained ImageNet

'abnormal entire organ'
'chronic infarct'

'kidney ultrasound'

Pre-trained RadImageNet

Fine-tuning Fine-tuning

'pneumonia'
'normal'

Prediction similarity (Section 3.2)

Layer-wise CCA (Section 3.1)

Stimuli

FIGURE 3.1: Overview of the experimental setup. Publicly available
pre-trained ImageNet and RadImageNet weights are fine-tuned on
medical targets. Model similarity is evaluated by comparing network
activations over sampled stimuli images from target datasets using
both CCA (described in Section 3.3.1) and prediction similarity (Sec-

tion 3.3.2).

We outline our overall method in Figure 3.1. We fine-tune publicly available pre-
trained ImageNet and RadImageNet weights on medical target datasets and quan-
tify the model similarity by comparing the network activations over a sample of im-
ages from the target datasets using two similarity measures, Canonical Correlation
Analysis (CCA, Section 3.3.1) and prediction similarity (Section 3.3.2).
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3.3.1 Canonical correlation analysis

CCA [66] which is a statistical method used to analyze the relationship between two
sets of variables.

Let X be a dataset x1, x2, ..., xn of n data points, all consisting of p variables, and
Y – a dataset of n data points y1, y2, ..., yn and q variables. CCA seeks to find the
transformation matrices A and B that linearly combine the initial variables p and q
in the datasets X and Y into min(p, q) canonical variables Xai and Ybi such that the
correlation between these canonical variables is maximized:

ai, bi = argmax
ai ,bi

corr(Xai, Ybi)

subject to ∀j<i Xai ⊥ Xaj

∀j<i Ybi ⊥ Ybj

The restrictions ensure that the canonical variables are orthogonal. This can be
solved by defining substitutions Ā = Σ1/2

X A and B̄ = Σ1/2
Y B obtaining:

Ā, B̄ = argmax
Ā,B̄

tr(Ā⊤Σ−1/2
X ΣXYΣ−1/2

Y B̄)

subject to Ā⊤Ā = I

B̄⊤B̄ = I

Because of the orthogonality constraints, the solution is found by decomposing
Σ−1/2

X ΣXYΣ−1/2
Y into left and right singular vectors using singular value decomposi-

tion.

Layer-wise model similarity. [61] proposed the use of CCA for comparing rep-
resentations learned by neural networks. CCA’s invariance to linear combinations
makes it suitable for comparing the representations learned by different models as
the layer weights in neural networks are combined before being passed on [67].

[19] used CCA to examine representations in medical imaging models. In order
to maintain consistency with [19] results, we adopt the same approach of applying
CCA to CNNs and use an open source CCA implementation by [61] available on
GitHub2.

In our case, X and Y are same-level layer activation vectors over n stimuli images
sampled from a target dataset, in two models with different initializations. We ex-
tract these intermediate representations and use them as input to CCA to project
the representations onto a common space, where the correlation between the projec-
tions is maximized. This common space can be thought of as a shared representation
that captures the common patterns of activity across the compared networks. Then,

2https://github.com/google/svcca

https://github.com/google/svcca
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layer-wise similarity at layer L is the average of the correlations between the canon-
ical variables:

ρL =
p

∑
i=1

corr(Xai, Ybi) (3.1)

Intermediate representations extracted from CNNs are of shape (n, hL, wL, pL),
where hL, wL are the layer spatial dimensions and pL is the number of channels
in the layer. These representations are reshaped into X and Y matrices of shape
(n × hL × wL, pL). As CCA is sensitive to the shape of the input matrices and the
shapes vary across the layers within a network, we sample n and pL, such that
n × hL × wL ≈ 20, 000 and pL = 64, and then calculate layer similarity ρL. This
is repeated five times and the final layer similarity is obtained by averaging layer
similarities ρL.

3.3.2 Prediction similarity

We calculate prediction similarity as described in [68]. A model mistake is defined
as q f (x, y) = 1 f (x) ̸=y, where x is an image from the test set, y is its label and f is a
network fine-tuned on the target training set. Then the prediction similarity of two
networks f ImageNet and fRadImageNet, fine-tuned on the same target dataset, is:

P(q f ImageNet(x, y) = q fRadImageNet(x, y)) (3.2)

Therefore, the prediction similarity is the probability that two networks will make
the same errors. To gauge the prediction similarities between ImageNet and RadIm-
ageNet models, we compare them to the prediction similarity of two classifiers with
the same accuracy as ImageNet and RadImageNet models but otherwise random
predictions. If the mistakes made by two models with accuracy a1 and a2 are inde-
pendent, the similarity of their predictions is equal to a1a2 + (1 − a1)(1 − a2).

3.4 Experimental setup

3.4.1 Datasets

Source. We use publicly available pre-trained ImageNet [16] and RadImageNet
[30] weights as source tasks in our experiments.

Target. We investigate transferability to several medical target datasets. In par-
ticular, to five radiology RadImageNet in-domain datasets, and two out-of-domain
datasets in the fields of dermatology and microscopy. A representative image from
each dataset can be seen in Figure 3.2.

1) Chest. Chest X-rays [69] dataset contains chest X-ray images from pediatric pa-
tients aged one - five years old, labeled by expert physicians with binary labels of
‘normal’ or ‘pneumonia’. The dataset has 5,856 images, with 1,583 labeled as ‘nor-
mal’ and 4,273 labeled as ’pneumonia’. The image size varies, with dimensions rang-
ing from 72 × 72 to 2, 916 × 2, 583 pixels.
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(a) (b) (c) (d) (e) (f) (g)

FIGURE 3.2: Example images of (a) chest, (b) breast, (c) thyroid, (d)
mammograms, (e) knee, (f) pcam-small, and (g) ISIC datasets.

2) Breast. Breast ultrasound [20] dataset is collected for the detection of breast can-
cer. The images have a range of sizes, from 190 × 335 to 1, 048 × 578 pixels. The
dataset is divided into three classes: normal, benign, and malignant images. How-
ever, following [30], we use a binary classification of ‘benign’ and ‘malignant’ for
our analysis.

3) Thyroid. The Digital Database of Thyroid Ultrasound Images (DDTI) [70] con-
tains 480 images of size 569 × 360 pixels, extracted from thyroid ultrasound videos.
The images have been annotated by radiologists into five categories. Following
[30]’s study, these categories were transformed into binary labels: ‘normal’ for cate-
gories (1) normal thyroid, (2) benign and (3) no suspicious ultrasound (US) feature,
and ‘malignant’ for categories (4a) one suspicious US feature, (4b) two suspicious US
features, (4c) three or four suspicious US features and (5) five suspicious features.

4) Mammograms. Curated Breast Imaging Subset of Digital Database for Screening
Mammography (CBIS-DDSM) [71, 72, 73] is a dataset that targets breast cancer de-
tection. It contains scanned film mammograms with pathologically confirmed la-
bels: ‘benign’ (2,111 images) or ‘malignant’ (1,457 images) with image sizes ranging
from 1, 846 × 4, 006 to 5, 431 × 6, 871 pixels.

5) Knee. MRNet [74] is a collection of 3D knee MRI scans. The labels for the dataset
were obtained through manual extraction from clinical reports. Following [30]’s
study, we use extracted 2D sagittal views (1 to 3 samples per scan) amounting to
a total of 4,235 ‘normal’, 569 ‘ACL’ (anterior cruciate ligament), and 418 ‘meniscal
tear’ images, all of size 256 × 256 pixels.

6) PCam-small. PatchCamelyon [75] is a metastatic tissue classification dataset con-
sisting of 237,680 colored patches extracted from histopathological scans of lymph
node sections. The images are labeled as ‘positive’ or ‘negative’ based on the pres-
ence of metastatic tissue. To simulate a realistic target dataset size, a random subset
of 10,000 images was created, with 5,026 positive and 4,974 negative samples.

7) ISIC. ISIC 2018 Challenge - Task 3: Lesion Diagnosis [76, 77] - a dermoscopic
lesion image dataset released for the task of skin lesion classification. The dataset
comprises images of 600 × 450 pixels, which are split into seven disease categories.
The dataset is unbalanced, with the class ‘melanocytic nevus’ having the most sam-
ples at 6,705, and the class ‘dermatofibroma’ having the least number of samples at
115.

Due to memory constraints, we reduced the original image sizes for most of the
target datasets using interpolation without image cropping. Table 3.1 provides de-
tails of the image sizes and number of images used for fine-tuning on each target
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TABLE 3.1: Target datasets with number of images, number of classes,
image size and batch size used to fine-tune the pre-trained ImageNet

and RadImageNet weights.

Dataset Size Classes Image size Batch size

Chest 5,856 2 112 × 112 128
Breast 780 2 256 × 256 16
Thyroid 480 2 256 × 256 16
Mammograms 3,568 2 224 × 224 32
Knee 5,222 3 112 × 112 128
PCam-small 10,000 2 96 × 96 128
ISIC 10,015 7 112 × 112 128

dataset. As we used publicly available pre-trained weights images were prepro-
cessed to align with the pre-trained weights. As per the approach in [30], we normal-
ized the images with respect to the ImageNet dataset. To increase the diversity and
variability of the training data images were augmented during fine-tuning with the
following parameters: rotation range of 10 degrees, width shift range of 0.1, height
shift range of 0.1, shear range of 0.1, zoom range of 0.1, fill mode set to ”nearest”,
and horizontal flip set to false if the target is chest, otherwise set to true.

3.4.2 Fine-tuning

We select ResNet50 [78] as the standard model architecture for our experiments.
This architecture is widely adopted in the field of medical imaging and has been
demonstrated to be a strong performer in various image classification tasks. We
fine-tuned pre-trained networks using an average pooling layer and a dropout layer
with a probability of 0.5. The hyperparameters were not tuned on any of the target
datasets. Since we are targeting several tasks, we decided to fix the initial learning
rate to a small value (1e-5) for all experiments, and used the Adam optimizer to
adapt to each dataset. The models were trained for a maximum of 200 epochs, with
early stopping after 30 epochs of no decrease in validation loss, saving the models
that achieved the lowest validation loss. This was done to prevent overfitting and
ensure that the models generalize well to unseen data.

In addition to full fine-tuning, we used a freezing strategy where we froze all the pre-
trained weights to train the classification layer first and then fine-tuned the whole
network with the same hyperparameters as above.

Models were implemented using Keras [79] library and fine-tuned on 3 NVIDIA
GeForce RTX 2070 GPU cards.

3.4.3 Evaluation

We fine-tune the pre-trained networks on each target dataset using five-fold cross-
validation approach. The datasets was split into training (80%), validation (5%), and
test (15%) sets. To ensure patient-independent validation where patient information
is available (chest, thyroid, mammograms, knee), the target data is split such that
the same patient is only present in either the training, validation or test split. We
evaluate fine-tuned network performance on test set using AUC (area under the
receiver operating characteristic curve). Model similarity is evaluated using CCA
and prediction similarity as described in Section 6.3.
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TABLE 3.2: Mean AUC ± std (both ×100) after fine-tuning on target
datasets. Underlined is the highest mean AUC per dataset.

ImageNet RadImageNet Random init

Target dataset No Freeze Freeze No Freeze Freeze No Freeze

Thyroid 64.9 ± 7.2 67.8 ± 6.2 62.7 ± 9.1 63.7 ± 5.1 64.3 ± 7.8
Breast 94.3 ± 1.7 95.1 ± 3.6 91.0 ± 5.2 89.4 ± 3.8 85.2 ± 1.4
Chest 98.7 ± 0.5 99.0 ± 0.3 98.7 ± 0.3 98.2 ± 0.3 97.9 ± 0.6
Mammograms 75.4 ± 3.1 77.3 ± 1.0 74.3 ± 2.0 70.4 ± 5.0 68.3 ± 4.4
Knee 96.5 ± 0.7 97.1 ± 1.3 97.3 ± 0.7 95.4 ± 0.7 93.2 ± 1.6
ISIC 97.4 ± 0.3 97.6 ± 0.3 96.2 ± 0.4 95.8 ± 0.3 95.8 ± 0.3
Pcam-small 92.9 ± 1.5 94.4 ± 0.6 87.5 ± 1.5 89.7 ± 0.8 83.2 ± 1.1

3.5 Results

We carried out a series of experiments to evaluate the effect of pre-training on Ima-
geNet and RadImageNet on model accuracy and learned representations after fine-
tuning on medical targets. In the following section, we present the results of our
experiments and provide a thorough analysis of the findings. The results offer new
insights into the effects of transfer learning and provide a foundation for future re-
search in this field.

3.5.1 ImageNet tends to outperform RadImageNet

We show the AUC performances in Table 3.2. Overall, ImageNet fine-tuned after
freezing the classification layer leads to the highest AUCs in six out of the seven
datasets. Only knee reaches the highest performance with pre-traind RadImageNet
weights, though we note that both ImageNet and RadImageNet performances were
comparable for this dataset, as well as for the chest dataset.

Compared to [30], we obtained similar AUC values for the knee and breast datasets.
However, we observed a significantly lower AUC for the thyroid dataset. We note
that [30] used a subset of 349 images from the thyroid dataset, compared to 480
images available. Furthermore, they treated the classification of ACL and meniscal
tear as separate tasks for the knee dataset.

We decided to include all images in the thyroid dataset for our experiments.
Nonetheless, we were able to replicate the results reported by [30] and achieved
improved performance with our chosen hyperparameters for ResNet50. Specifically,
we trained the models for 200 epochs with a learning rate of 1e-5, whereas [30]
trained their model for 30 epochs with a learning rate of 1e-4 (Table 3.3). This
highlights the sensitivity of transfer performance to the choice of model architecture
and hyperparameters.

3.5.2 Layer-wise representations become more different after fine-tuning

In this experimental setting, we compare the similarity between ImageNet and
RadImageNet against several baselines. Our baselines include the similarity of two
randomly initialized networks and the similarity of fine-tuned models to randomly
initialized networks.
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TABLE 3.3: Mean AUC ± std (both ×100) after fine-tuning on two
different versions of the Thyroid dataset: subset used in [30], and
full. For the results in the first row, we trained a ResNet50 with the
parameters in [30], specifically learning rate 1e-4 and 30 epochs. The
results in the second row correspond to a ResNet50 trained with our
hyperparameters specified in Section 3.4.2. In the third row, we show

the results averaged over all models reported in the paper by [30].

Thyroid subset Thyroid full

Experiment ImageNet RadImageNet ImageNet RadImageNet

ResNet50 ([30]) 81.7 ± 5.5 85.4 ± 4.7 62.8 ± 6.9 64.3 ± 7.7
ResNet50 (Our parameters) 87.6 ± 4.1 85.9 ± 3.6 64.9 ± 7.2 62.7 ± 9.1
Average over all models ([30]) 76 ± 14 85 ± 9

In Figure 3.3 we show layer-wise ImageNet and RadImageNet CCA similarity to
themselves after fine-tuning, ImageNetFT and RadImageNetFT, respectively (Figure
3.3a), as well as layer-wise ImageNet and RadImageNet CCA similarity before and
after fine-tuning (Figure 3.3b). ImageNet weights change less during fine-tuning, see
Figure 3.3a (orange line). The two networks converge to distinct solutions after fine-
tuning (both with freezing, red line on the right, and no freezing, green line), even
more distinct than before fine-tuning, and their similarity is significantly lower when
compared to the similarity of two random initialization. The similarity between fine-
tuned networks becomes comparable to the similarity between fine-tuned networks
and randomly initialized networks, particularly in the higher layers. Here we only
provide results on knee, however we observed similar patterns for the other target
datasets (Appendix 3.7).
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FIGURE 3.3: Layer-wise CCA similarity (Equation 3.1) of (a) a net-
work to itself before and after fine-tuning on knee and (b) Ima-
geNet to RadImageNet. ImageNet-ImageNetFT similarity (orange
line) is higher (ImageNet weights change less during fine-tuning)
than RadImageNet-RadImageNetFT similarity (blue line). ImageNet
and RadImageNet are highly dissimilar after fine-tuning on the same
dataset both “No Freeze” (green line), and “Freeze” (red line), even
more dissimilar than before fine-tuning (purple line). Similarity of
two randomly initialized networks (brown line) and ImageNet (pink
line) as well as RadImageNet (gray line) similarity to randomly ini-
tialized networks are provided as baselines. Error bars present mean

± std over five-fold cross-validation.
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For experiments where pre-trained weights were initially frozen and fine-tuned af-
ter training the classification layer, we observed essentially similar trends of weight
similarity as shown in Figure 3.3, but with higher variability between the folds of
the cross-validation.

The results of the layer-wise CCA similarity analysis reveal that ImageNet and
RadImageNet converge to distinct solutions after fine-tuning on the same target
dataset, to the extent that they become even more dissimilar than before fine-tuning.
This outcome contradicts our expectation that the representations of the two
networks would become more similar after training on the same target dataset. This
discrepancy may be due to memorization of the target dataset by one or both of the
networks, as suggested by the findings of [67]. They found that networks trained to
classify randomized labels, hence memorizing the data, tend to converge to more
distinct solutions compared to networks that generalize to unseen data.

(A) ImageNet (B) RadImageNet (C) Synthetic Gabor filters

FIGURE 3.4: First 36 conv1 filters of ResNet50 pre-trained on Ima-
geNet and RadImageNet. Observe that the filters in ImageNet have a

more pronounced resemblance to (c) Gabor filters.

The stability of the representations in early layers during fine-tuning is often at-
tributed to their capture of general features, such as edge detectors [19, 48], which
are necessary regardless of the target domain and task. [80] argued that representa-
tion similarity and generality of a layer are related, suggesting that “if a certain rep-
resentation leads to good performance across a variety of tasks, then well-trained
networks learning any of those tasks will discover similar representations”. Con-
trary to this hypothesis, our findings indicate that the early layers of both ImageNet
and RadImageNet exhibit similarity comparable to two randomly initialized layers.
We would expect that after fine-tuning on the same task, the layers of ImageNet and
RadImageNet would display greater similarity to each other than to randomly ini-
tialized layers. Further research into general features could shed light to the learning
process in early layers.

When we examine the first convolutional layer filters pre-trained on ImageNet and
RadImageNet (Figure 3.4), we observe that the filters in ImageNet more closely re-
semble Gabor filters, while those in RadImageNet are more fuzzy. This is expected,
as natural images often contain regular structures, such as 90 degree angles and
edges, that are typically less prominent in some of radiology images, resulting in
less distinct edges in the filters learned from radiology images. Interestingly, these
different first layer features in both ImageNet and RadImageNet, without chang-
ing significantly during fine-tuning (Figure 3.3), lead to comparable performance in
most cases (Table 3.2).
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3.5.3 Networks make similar mistakes after fine-tuning

In order to further understand the similarity between ImageNet and RadImageNet
pre-trained networks, we compared their predictions before and after fine-tuning on
medical targets, as shown in Figure 3.5. Despite the networks converging to different
hidden representations after fine-tuning, as evidenced in Figure 3.3, their predictions
were found to be more similar than expected for independent predictions. The pre-
dictions before fine-tuning are less similar than after fine-tuning. We found similar
behavior for both “Freeze” and “No Freeze” networks. Dataset characteristics may
affect the similarity of predictions, as datasets with more than two classes (such as
knee and ISIC) exhibit higher similarity in predictions before fine-tuning than in-
dependent predictions. The high variance in prediction similarity observed in the
thyroid dataset before fine-tuning could potentially be attributed to the limited size
of the dataset. It is plausible that the fine-tuning of both ImageNet and RadIma-
geNet on the same target dataset contributes to the observed prediction similarity.
However, it also suggests the possibility that the networks are learning similar mis-
leading cues in the data, resulting in similar misclassifications.
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FIGURE 3.5: Prediction similarity (Equation 3.2) between ImageNetFT

and RadImageNetFT (blue box plot), compared to prediction simi-
larity of ImageNet and RadImageNet (orange box plot) and of two
networks that would make independent mistakes (green box plot).
ImageNetFT and RadImageNetFT predictions are more correlated
than expected for independent predictions on average across all tar-
get datasets, with notable variation observed for predictions before

fine-tuning on thyroid dataset.

3.5.4 Higher weight similarity associated with less AUC improvement

Our findings suggest that the benefits of transfer learning in deep neural networks
may not solely stem from feature reuse, defined as layer-wise representational sim-
ilarity before and after fine-tuning in the early layers [19]. Figure 3.6 shows that the
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FIGURE 3.6: AUC pre-training gains over random initialization for
seven target datasets vs CCA similarity before and after fine-tuning
on those targets, for (a) ImageNet and (b) RadImageNet. Higher CCA
similarity after fine-tuning is not associated with higher AUC gains,
observed across all layers. Note that the scaling on the x-axes are
different in each plot for visibility, and for RadImageNet the CCA

similarity is lower overall.

improvement in AUC resulting from pre-training does not correlate with the layer-
wise CCA similarity between the pre-trained and fine-tuned networks. Thus, mod-
els that relied on reusing pre-trained features without adapting the representations
during fine-tuning did not get higher gains in performance compared to models that
underwent representation adaptation. This trend persisted across all layers for both
models trained with freezing and no freezing.

Our findings align with recent results in the Natural Language Processing field
which demonstrate that the benefits of pre-training are not related to knowledge
transfer [81]. Additionally, our results complement the findings of [19] who showed
that there are feature-independent benefits of using pre-trained weights, such as bet-
ter scaling compared to random initialization. These results highlight the complex
nature of transfer learning and the need for further investigation into the underlying
mechanisms that drive its performance benefits.

3.6 Discussion

3.6.1 Results

In our experiments, we found that ImageNet initialization generally outperformed
RadImageNet on the medical target datasets, in contrast to the earlier results re-
ported in [30]. However, this highlights the sensitivity of source dataset transfer
performance to the model architecture and hyperparameters, rather than the in-
herent superiority of one source dataset over the other. We investigated the effect
of hyperparameters such as learning rate, early stopping and training epochs, and
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found differences in model performance. While our study did not comprehensively
analyze this sensitivity, interested readers can refer to related studies, such as [19],
[65], and [82] which offer valuable insights into the impact of model architecture and
hyperparameters on transfer performance.

Contrary to our intuition about transfer learning, our analysis with CCA found that
the models converged to distinct intermediate representations and that these rep-
resentations are even more dissimilar after fine-tuning on the same target dataset.
Despite distinct intermediate representations, model predictions on an instance level
show a significant degree of similarity. This extends [68] findings which showed that
ImageNet models are similar in their predictions even with different architectures.

3.6.2 Limitations and future work

We investigated transfer learning for two large source datasets and seven medical
target datasets, and ResNet50, an architecture that is widely used for medical image
analysis. Extending our experiments to further datasets and architectures, as well as
other similarity measures, such as centered kernel alignment [83], would be valuable
to further test the generalizability of our findings.

With regard to source datasets, we used ImageNet and RadImageNet because
RadImageNet’s comparable size to ImageNet allowed for a unique opportunity
to compare natural and medical source datasets. However, the two datasets have
several differences beyond their domains. For instance, RadImageNet has differ-
ences in color, number of classes, and diversity in data due to its limited number of
patients. To further explore the impact of these differences in greater detail, future
research could consider including Ecoset [84], a natural image dataset with 565
basic-level categories selected to better reflect the human perceptual and cognitive
experience.

Another limitation of our study is the use of a single classification metric (AUC) for
evaluating performance. AUC is a commonly used metric for classification tasks
in medical imaging, and useful to compare to related work. However, there might
be nuances across applications where it could be important to consider alternative
metrics, such as calibration [85].

3.6.3 Recommendations

In our experiments, we only used 2D images, but these tasks are not fully represen-
tative of the medical imaging field as a whole. Researchers have hypothesized that
for 3D target tasks such as CT or MRI, 3D pre-training might be a better alternative
to 2D pre-training [86, 59], and studies have shown that incorporating information
from the third dimension might be beneficial for performance [87, 88]. However,
RadImageNet only has 2D images, even though some of the original images are 3D.
For 3D target tasks, consider comparing both 2D pre-training (e.g. via a 2.5D ap-
proach) and 3D pre-training. Pre-trained weights for 3D models are less common,
but previous research has successfully used pre-training on for example YouTube
videos [89].

Regarding fine-tuning with RadImageNet, we recommend using higher learning
rates when fine-tuning compared to ImageNet. Furthermore, we suggest allocating
more epochs in order to achieve optimal model performance.



32 Chapter 3. Cross-domain transfer

Our results suggest that the implications of using ImageNet in medical image clas-
sification go beyond performance alone. In particular, there might be an issue with
the memorization of spurious patterns in the data. This can potentially have conse-
quences with respect to algorithmic bias and fairness. For example, see [90] where
ImageNet pre-trained networks memorize patient race. Memorization also makes
a network more vulnerable to adversarial attacks [91]. In the event that for a target
application, ImageNet and RadImageNet weights are expected to lead to similar per-
formances, it might be an advantage to select the weights which are less associated
with these negative properties.

3.7 Conclusion

Transfer learning is a key strategy to leverage knowledge from the models pre-
trained on large-scale datasets to deal with the challenge of small medical datasets.
In this study, we investigated the transferability of two different domain sources
(natural: ImageNet and medical: RadImageNet) to seven target medical image
classification tasks with limited dataset size. Our results show that pre-training
ResNet50 on ImageNet outperformed RadImageNet in most cases. Furthermore, we
delved deeper into the learned representations after fine-tuning by using CCA and
comparing the similarity of predictions. Although the models appear to converge
to distinct representations, we found they made similar predictions. Lastly, we
observed that higher model similarity before and after fine-tuning did not result in
higher performance gains.
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Appendix

3.7.1 Layer-wise CCA similarity
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FIGURE 3.7: Layer-wise CCA similarity of networks fine-tuned on
thyroid.
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FIGURE 3.9: Layer-wise CCA similarity of networks fine-tuned on
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FIGURE 3.10: Layer-wise CCA similarity of networks fine-tuned on
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FIGURE 3.11: Layer-wise CCA similarity of networks fine-tuned on
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Chapter 4

Shortcut transfer

Adapted from: D. Juodelyte, Y. Lu, A. Jiménez-Sánchez, S. Bottazzi, E. Ferrante, V. Cheplygina, "Source
Matters: Source Dataset Impact on Model Robustness in Medical Imaging", International Workshop on
Applications of Medical AI, 2024, In press

4.1 Introduction

Machine learning models hold immense promise for revolutionizing healthcare.
However, their deployment in real-world clinical settings is hindered by various
challenges, with one of the most critical being their hidden reliance on spurious
features [92]. Recent research has highlighted the detrimental effects of this reliance,
including bias against demographic subgroups [52], limited generalization across
hospitals [11], and the risk of clinical errors that may harm patients [93].

Despite transfer learning becoming a cornerstone in medical imaging, its impact on
model generalization remains largely unexplored. Pre-training on ImageNet has
become a standard practice due to its success in 2D image classification. While some
studies have explored alternative medical source datasets for pre-training [25, 30, 94,
95], ImageNet continues to serve as a strong baseline.

Recent literature suggests that the size of the source dataset may matter more
than its domain or composition [96, 57]. However, [97] demonstrated performance
improvements through source dataset pruning. In this context, we argue that cross-
domain transfer can be problematic, especially when source dataset selection is
solely based on classification performance, as it may inadvertently lead to shortcut
learning rather than genuine improvements in generalization. Shortcut learning can
be considered antithetical to generalization and robustness as it is not a failure to
generalize per se, but rather a failure to generalize in the intended direction [49].

In this paper, we investigate how the domain of the source dataset affects model
generalization. First, we conceptualize confounding factors in medical images by
introducing the Medical Imaging Contextualized Confounder Taxonomy (MICCAT)
and generate synthetic or sample real-world confounders from MICCAT, commonly
found in chest X-rays and CT scans, to systematically assess model robustness. Sec-
ond, we compare models pre-trained on natural (ImageNet) and medical (RadIm-
ageNet) datasets across X-ray and CT tasks and show substantial differences in ro-
bustness to shortcut learning despite comparable predictive performance. While
transfer learning has been observed to enhance model robustness [98], our results
suggest that it may not hold true when transferring across domains, cautioning
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FIGURE 4.1: MICCAT: Medical Imaging Contextualized Confounder
Taxonomy. Instances of confounders investigated in this paper are

highlighted in bold.

against using ImageNet pre-trained models in medical contexts due to their sus-
ceptibility to shortcut learning. Furthermore, our findings highlight the limitations
of conventional performance metrics based on i.i.d. datasets, which fail to discern
between genuine improvements in generalization and shortcut learning. Thus, we
advocate for a more nuanced evaluation of transfer learning effectiveness to ensure
the reliability and safety of machine learning applications in clinical settings.

4.2 Method

4.2.1 MICCAT: towards a standardized taxonomy for medical imaging
confounders

To the best of our knowledge, there is no standardized taxonomy for classifying po-
tential confounders in medical images. Thus, to better structure our robustness anal-
ysis, we propose a new taxonomy: Medical Imaging Contextualized Confounder
Taxonomy (MICCAT).

Previous work has shown that standard demographic attributes such as sex, age, or
ethnicity may act as confounders, leading to shortcut learning and potentially dis-
advantaging historically underserved subgroups [52]. However, solely focusing on
standard protected demographic attributes may overlook other specific factors re-
lated to clusters of patients for which the systems tend to fail [99]. In MICCAT, we
identify these as ‘contextualized confounders’, as they are often domain or context-
specific, associated with particular image modalities, organs, hospitalization condi-
tions, or diseases.

First, MICCAT differentiates between patient level and environment level confounders.
At the patient level, we make a distinction between standard demographic attributes
(e.g., sex, age, race) and contextualized anatomical confounders, which arise from in-
herent anatomical properties of the organs and human body or disease variations in
images. This distinction is crucial as standard demographic attributes often serve as
proxies for underlying causes of learned shortcuts. For instance, ethnicity may proxy
skin color in dermatoscopic images. Identifying the true shortcut cause allows for
more targeted interventions to mitigate biases. We define the concept of environment
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level confounders, which stem from contextualized external or imaging confounders.
The former include physical or virtual elements in images due to external factors like
hospitalization devices or image tags, while the latter include characteristics related
to the imaging modality itself, such as noise, motion blur, or differences in intensities
due to equipment or acquisition parameters. Fig. 4.1 illustrates this taxonomy with
examples for each category.

Confounders studied in this paper. We explore the MICCAT by investigating four
examples of confounders, highlighted by a black outline in Fig. 4.1:

• An external confounder (a tag) placed in the upper left corner of the image, rep-
resenting confounding features introduced by various imaging devices across
or within hospitals (Fig. 4.2a).

• Two typical imaging confounders: denoising (Fig. 4.2c), widely used by vari-
ous vendors to reduce noise for enhanced readability [100], and Poisson noise
(Fig. 4.2d), originating from quantum statistics of photons, which cannot be
mitigated through hardware engineering, unlike noise introduced by circuit-
related artifacts [101].

• A patient-level confounder where we use patient gender, which is easily accessi-
ble in metadata, as a proxy for a broader spectrum of anatomical confounders.
We use the same term for this variable as in the original dataset.

4.2.2 Experimental Design

We investigate the impact of source dataset domain on model generalization by com-
paring ImageNet [16] and RadImageNet [30] models, which are fine-tuned using
binary prediction tasks for findings in open-access chest X-ray (NIH CXR14 [102])
and CT (LIDC-IDRI [103]) datasets curated to include systematically controlled con-
founders. NIH CXR14 is used to represent cross-domain transfer for both Ima-
geNet and RadImageNet, as X-ray is not included in RadImageNet, while LIDC-
IDRI serves as an in-domain example for RadImageNet and a cross-domain example
for ImageNet.

Confounder generation. Patient gender is sampled to correlate ‘Female’ with the
label.

A tag is placed further away from the edges (starting at 200 × 200px in the original
image of 1024× 1024px), to ensure it remains intact during training despite augmen-
tations applied (Fig. 4.2a).

The simplest method for Denoising is applying low-pass filtering which entails con-
verting the input image from the spatial to the frequency domain using Discrete
Fourier Transform (DFT), followed by element-wise multiplication with the low-
pass filter HLPF(u, v) to generate the filtered image:

HLPF(u, v) =
{

1, D(u, v) ≤ D0
0, otherwise

(4.1)

where D(u, v) represents the distance from the origin in the frequency domain, and
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(A) (B) (C) (D)

FIGURE 4.2: Synthetic artifacts: (a) A tag with a red arrow for ref-
erence, (b) a zoomed-in view of the original image, (c) Denoising by
low-pass filter with cutoff frequency (see Eq. 4.1) of D0 = 200px, and
(d) Poisson noise with N0 = 2× 106 (see Eq. 4.2). The parameters used
here are to emphasize subtle local variations such as the smoothing
effect of the low-pass filter and the graininess introduced by the Pois-
son noise. For our experiments, we use D0 = 500px and N0 = 2× 107

which are imperceptible.

D0 is the specified cutoff frequency. In our experiments, we set D0 = 500px. Subse-
quently, the high-frequency suppressed image is reconstructed in the spatial domain
via the Inverse Discrete Fourier Transform (IDFT), resulting in a smoothing effect
(see Fig. 4.2c).

Poisson noise originating from quantum statistics of photons is formulated as a Pois-
son random process: (

pr + Np
)
= P (pr) (4.2)

where Np represents Poisson noise, which notably affects image quality under low-
dose conditions (e.g., low-dose CT and X-ray screenings), while the linear recording
pr = exp (−pa) N0 is obtained via the reversed conversion from attenuation pa given
the prior information of the source intensity N0, where pa is the pixel values of pro-
jections, obtained from the image space as described in [104]. To simulate low-dose
screening, we add Poisson noise to the image (Fig. 4.2d) by adjusting the N0 param-
eter to control noise levels. We aim for minimal noise, setting N0 = 2 × 107 after
visually examining the noise to ensure it remains imperceptible.

Evaluation. To investigate shortcut learning systematically, we construct develop-
ment datasets for fine-tuning, focusing on a binary classification task. We introduce
previously mentioned confounders (e.g., ‘Female’) into the positive class with a con-
trolled probability part ∈ {0, 0.1, 0.2, 0.5, 0.8, 1} to deliberately influence the learning
process, replicating scenarios where real-world data may contain confounders. To
assess the presence of shortcut learning, we evaluate the fine-tuned models with in-
dependently and identically distributed (i.i.d.) as well as out-of-distribution (o.o.d.)
test sets. In the o.o.d. set, we introduce the same artifact used during fine-tuning to
the negative class with part = 1, such that the models are tested on instances where
artifacts appear in the opposite class compared to what they encountered during
training. We evaluate the fine-tuned models using the AUC (area under the receiver
operating characteristic curve).
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TABLE 4.1: Target datasets used for fine-tuning. T: tag, D: denoising,
N: noise.

# images in % split % class split Image Batch
Task Confounder test/dev(train+val) train/val pos/neg size size
Lung mass (NIH CXR14 [102]) T, D, N 83/248 90/10 30/70 512 × 512 32
Lung mass (LIDC-IDRI [103]) T, D, N 1710/500 80/20 50/50 362 × 362 32
Atelectasis (NIH CXR14 [102]) Gender 400/400 85/15 50/50 256 × 256 64

Medical targets. We create separate binary classification tasks for lung mass detec-
tion using subsets of images sourced from two datasets: the chest X-ray NIH CXR14
[102] subset annotated by clinicians [105], and the chest CT dataset LIDC-IDRI [103]
annotated by four radiologists. From the latter, we sample paired positive and neg-
ative 2D slices from the original 3D scans using nodule ROI annotations, represent-
ing any kind of lesions and their nearby slices without remarkable findings. We
include synthetic artifacts (a tag, denoising, and Poisson noise) in both tasks. For the
case where patient gender serves as the confounding feature, we sample posterior
to anterior (PA) images from NIH CXR14 to construct a binary classification task for
atelectasis. We deliberately limit the size of our development datasets, encompass-
ing both balanced and unbalanced class distributions to cover a spectrum of clinical
scenarios. Data splits for training, validation, and testing preserve class distribution
and are stratified by patient. Further details are available in Table 4.1.

Fine-tuning details. We use ResNet50 [78], InceptionV3 [106], InceptionResNetV2
[107], and DenseNet121 [108] as the backbones with average pooling and a dropout
layer (0.5 probability). The models are trained using cross-entropy loss with Adam
optimizer (learning rate: 1 × 10−5) for a maximum of 200 epochs with early stop-
ping after 30 epochs of no improvement in validation loss (AUC for the balanced
tasks). This configuration, established during early tuning, proved flexible enough
to accommodate different initializations and target datasets. During training, we ap-
ply image augmentations including random rotation (up to 10 degrees), width and
height shifts, shear, and zoom, all set to 0.1, with a fill mode set to ‘nearest’. Mod-
els were implemented using Keras [79] library and fine-tuned on an NVIDIA Tesla
A100 GPU card.

4.3 Results and Discussion

RadImageNet is robust to shortcut learning. Fig. 4.3 shows that ImageNet and
RadImageNet achieve comparable AUC on i.i.d. test set, however, when subjected
to o.o.d. test set, notable differences emerge. Specifically, ImageNet’s o.o.d. per-
formance on X-rays, confounded by tag, denoising, and patient gender, drops more
compared to RadImageNet, indicating ImageNet’s higher reliance on spurious cor-
relations. This could be because certain features, for instance, a tag (letters), may
serve as a discriminative feature in ImageNet, e.g., for the computer keyboard class.
However, RadImageNet is invariant to such features as they are not consistently as-
sociated with specific labels across different classes, and this invariance transfers to
the target task. We observed similar trends in the CT dataset, with the o.o.d. AUC
decreasing from 0.84 to 0.02 for ImageNet, and to 0.22 for RadImageNet (for tag); and
from 0.7 to 0.01 for ImageNet, and from 0.83 only to 0.6 for RadImageNet (for denois-
ing). It is worth noting that RadImageNet models tend to train longer, averaging 141
epochs across all experiments, compared to 72 epochs for ImageNet models.
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FIGURE 4.3: Mean AUC across five-fold cross-validation with 95% CI
for lung mass (left and middle) and atelectasis (right) prediction in
chest X-rays. Increasing correlation between artifact (tag, denoising,
gender) and the label leads to lower o.o.d. AUC (on o.o.d. test set as
described in Sec. 4.2.2) (top row), while i.i.d. AUC increases (bot-
tom row). RadImageNet pretraining shows less degradation in o.o.d.
AUC compared to ImageNet pretraining, suggesting that ImageNet
may over-rely on spurious correlations in the target dataset. The grey
dotted line is the SOTA result for lung mass and atelectasis in NIH

CXR14 reported by [109].

Although tag and denoising are designed to replicate real-world artifacts, they lack
the diversity found in real-world scenarios. Patient gender presents a more realis-
tic confounder. Here, the performance gap between ImageNet and RadImageNet
is smaller (by 0.12 on average for part ≥ 0.1) yet remains statistically significant
(permutation test, 0.008 < p-value < 0.032, for part ≥ 0.1). This suggests that
RadImageNet’s resilience to shortcuts extends to more realistic confounder varia-
tions, further emphasizing its robustness in medical image classification. Here we
only provide results for ResNet50, however, we observed similar results for Incep-
tionV3, InceptionRes-NetV2, and DenseNet121.

Random initialization appears robust to shortcut learning, with consistent o.o.d. per-
formance as part increases. However, this is mainly due to the unbalanced class dis-
tribution in the lung mass prediction task within the NIH CXR14 dataset, where ran-
domly initialized models tend to predict the overrepresented negative class (recall =
0). Conversely, in the case of a balanced class distribution in the CT target dataset,
the o.o.d. performance of randomly initialized models deteriorates to a similar de-
gree as that of ImageNet-initialized models.

Shortcuts come in all shapes and sizes. ImageNet and RadImageNet both heavily
rely on Poisson noise in X-rays (Fig. 4.4, upper left) but RadImageNet shows greater
robustness to noise in CT scans compared to ImageNet (Fig. 4.4, lower left). It is
important to note that Poisson noise manifests differently in X-rays and CT scans. In
X-rays, Poisson noise introduces graininess characterized by random and pixel-wise
independent variations, while in CT scans, it appears as streak artifacts structurally
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FIGURE 4.4: O.o.d. AUC (mean and 95% CI across five-folds) for
lung mass prediction in chest X-rays and CTs. In X-rays (top), both
ImageNet and RadImageNet show similar reliance on Poisson noise.
However, RadImageNet is more robust in CT scans (bottom). When
the confounder is high vs low noise, both ImageNet and RadIma-
geNet are less sensitive (right), compared to noise vs no noise (left).

correlated to projections and thus is not pixel-wise independent in the image do-
main.

To understand the impact of this difference, we directly introduce Poisson noise
N0 = 2 × 107 in the image domain for CT scans, mimicking the pixel-wise inde-
pendence seen in X-rays. However, since CT scans inherently contain noise, this
introduces a confounding feature of high versus low levels of noise, as opposed to
the original confounder of noise versus no noise.

To simulate a corresponding scenario in X-rays, we generate two levels of Poisson
noise: N0 = 2 × 107 for the positives and N0 = 1 × 107 for the negatives (reversed
for the o.o.d. test set). Both models show a smaller drop in o.o.d. AUC across
modalities, indicating a reduced reliance on the noise shortcut (Fig. 4.4, right). This
suggests that discerning between high and low noise levels is a more challenging
task than simply detecting the presence of noise.

RadImageNet maintains its robustness in CT scans, while in X-rays, RadImageNet
relies on noise to a similar extent as ImageNet. This may be explained by the absence
of X-ray images in RadImageNet, leading to a lack of robust X-ray representations
that would resist pixel-wise independent noise – a phenomenon less common in CT,
MR, and ultrasound, modalities included in RadImageNet. This highlights that even
transferring from a medical source of a different modality may lead to overfitting on
confounders.

While our findings generalize over the four tested CNNs, we did not investigate
other architectures, such as transformers, due to CNNs competitive performance
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[110]. Although we expect that our observations might hold true for transformers,
given their tendency to reuse features to an even greater extent than CNNs [111], we
defer experimental verification to future research.

In our exploration of the MICCAT, we found that RadImageNet models are gener-
ally more robust to shortcuts. However, there is some variability within the category
of imaging confounders, and the importance of the source domain in anatomical con-
founders seems to be lower. Expanding the scope to include other confounders would
offer a more comprehensive understanding of the taxonomy landscape and provide
insights into the nuances within each category, facilitating better-informed source
dataset selection and evaluation strategies. MICCAT paves the way for a more sys-
tematic approach to addressing shortcut learning in medical imaging in general by
providing a framework for thorough confounder curation and enabling a compre-
hensive analysis.

4.4 Conclusion

Our study sheds light on the critical role of the source dataset domain in generaliza-
tion in medical imaging tasks. By systematically investigating confounders typically
found in X-rays and CT scans, we uncovered substantial differences in robustness to
shortcuts between models pre-trained on natural and medical image datasets. Our
findings caution against the blind application of transfer learning across domains.
We advocate for a more nuanced evaluation to improve the reliability and safety of
machine learning applications in clinical settings.

Prospect of application. Transfer learning plays a fundamental role in machine
learning applications for medical imaging. Our study emphasizes the often underes-
timated importance of selecting pre-trained models, urging a necessary reevaluation
and deeper investigation into their use in clinical practice.
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Chapter 5

Frequency shortcuts

Adapted from: Y. Lu, D. Juodelyte, J. D. Victor, V. Cheplygina, "Exploring connections of spectral analysis
and transfer learning in medical imaging", SPIE Medical Imaging 2025: Image Processing, In press

5.1 Introduction

Deep learning has achieved many advances in medical image classification, even
showing performances on par with medical experts. However, convolutional neural
networks (CNNs) may be prone to shortcut learning [49], such as surgical mark-
ers [112]. As a consequence, instead of capturing the semantic contents, the model
makes predictions based on the shortcuts, which, in the worst case, leads to unreli-
able results if their association with semantics differs between the training dataset
and the images used in real-world applications.

Most studies investigate shortcut learning in the context of training from scratch.
However, little is understood about the importance of shortcuts in transfer learning,
which is crucial in the medical domain for two reasons. First, transfer learning is
often involved in medical image analysis due to the limited amount of labeled data
[113, 25, 19]. Second, next to obvious shortcuts like pen markings, CT and MR scans,
in particular, can have subtle shortcuts in the spectrum domain that may not be no-
ticed by the human eye. This prompts us to explore the sensitivity of transfer learn-
ing to spectral shortcuts in medical image classification tasks and how to mitigate
the negative impacts it brings about. To this end, we use spectral analysis to inves-
tigate the role of power spectrum density (PSD) in pre-training and fine-tuning and
observe distinct differences in their learning priorities, which are related to shortcut
learning. Based on these observations we show through experiments that resistance
to common detrimental frequency shortcuts could be altered via source data edit-
ing.

5.1.1 Datasets and models

As sources we use ImageNet [16] and RadImageNet [30]. ImageNet has 1.2M train-
ing and 50K validation images in 1K classes, while RadImageNet has 1M training
and 112K validation images in 165 classes. We pre-train a ResNet50 [78] (imple-
mentation details in Supplementary) as it is a common choice for medical images.
As targets we select two small medical datasets: LoDoPaB-CT [104] – a subset of
LIDC-IDRI [114], and KneeMRI [115]. We chose these datasets as both of their
imaging pipelines involve frequency-domain reconstruction. To simplify the anal-
ysis of frequency shortcuts, we binarize the tasks to benign (malignancy score <
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3) vs malignant for LoDoPaB-CT, and healthy vs injured ligament for KneeMRI.
This results in the following train/validation/test partitions: 375/125/1033 sam-
ples (198/66/548 studies) for LoDoPaB-CT, and 375/125/871 samples (375/125/582
studies) for KneeMRI.

5.1.2 Frequency shortcuts

We introduce shortcuts by altering the images in two frequency-related ways: noise
and denoising – here denoted as “artifacts”. The noise level in CT images varies
because of automatic exposure control and the choice of reconstruction filters. De-
noising is commonly applied after reconstruction as a spatial filtering operation, but
the extent of denoising can vary from image to image. Thus, both result in alterations
of the frequency content of the image and could lead to frequency shortcuts.

We select projection-domain Photon noise in CT [104] and non-local means (NLM)
denoising in MRI [116] because they have distinct spectral statistics. To create a
spurious correlation between the artifacts and the labels, we add the artifacts to all
negative samples in the test set and a certain amount (e.g. 50%) of positive samples
in the training set. This design ensures that if the model detects the shortcut, its
out-of-distribution (o.o.d.) performance will decrease, while the independent-and-
identically-distributed (i.i.d.) performance will improve.

5.1.3 Power spectrum density

To characterize the statistics of datasets and model weights in the frequency domain,
we convert the standard 2D spatial power spectrum into a 1D PSD by integrating the
spectrum values over all angles. The resulting quantity provides a comprehensive
measure of power distribution across frequencies and is especially useful when an
artifact or a feature lies in a specific frequency band. The PSD is computed as follows:

PSD (ωk) =
∫ 2π

0
∥F (X) (ωk cos ϕ, ωk sin ϕ)∥ dϕ, (5.1)

where ωk represents radial frequency, k ∈
{

0, 1, · · · , 1
2 M − 1

}
, M is the input size

(assuming square shape). ϕ is the angle, and F is the Fourier transform. An example
of PSD is presented in Fig. 5.1.
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FIGURE 5.1: Example of a PSD. From left to right: original image,
its spectrum with a selected frequency ω128, and the PSD with the

highlighted frequency ω128.

It is worth noting that PSD is versatile. When the input X is image data, the PSD
shows the overall spectral distribution. To analyze a trained model, one can compute
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FIGURE 5.2: Baseline results (mean and standard deviation of AUC
across 5-folds) as a function of degradation (amount of artifacts in the
training set), performance on o.o.d. (top) and i.i.d. (bottom) test sets.

the gradient map back-propagated from the prediction loss to the input image as X
to analyze the model’s spectral learning priority [117].

5.2 Experimental results

5.2.1 ImageNet is prone to shortcut learning

We pre-trained the model on the original ImageNet and RadImageNet and fine-
tuned it on the target datasets as the baseline. The 5-fold cross-validation results
are shown in Fig. 5.2. RadImageNet has higher robustness against frequency short-
cuts, whereas ImageNet exhibits poor generalization ability when tested on o.o.d.
images. In comparison, random initialization (i.e. training from scratch, dubbed
“random”) shows dramatic fluctuation in performance across folds, indicating its in-
stability on small datasets. However, both ImageNet and RadImageNet pre-trained
models have competitive performance on i.i.d. data, which reveals that the source
dataset plays an important role in shortcut learning.

5.2.2 Learning priority is stable during transfer

We computed the PSDs of models (i.e. learning priorities) pre-trained on ImageNet
and RadImageNet. The results are plotted in Fig. 5.3 (top row). We notice that Im-
ageNet pre-trained model has higher gradients in the mid-to-high frequency bands,
indicating that it focuses on extracting features from these bands [117]; while RadIm-
ageNet pre-trained model responds more actively to low-frequency features. Similar
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FIGURE 5.3: Normalized learning priorities of pre-trained and fine-
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to the highest value (x-axis shared between rows). Top: normalized
PSDs from Eq. 1. The arrows show how the pre-trained model PSDs
change before and after source data editing. Middle: PSD as a heat
map, after different degrees of degradation (amount of artifacts in the
training set) for the original datasets. Bottom: Same as above but for

the edited datasets.

trends are observed in the learning priorities after fine-tuning, as shown in Fig. 5.3
(second row). Although the peaks eventually shift to higher frequencies, the overall
PSDs still resemble their pre-trained counterparts. This is unsurprising, considering
that kernels in early layers show minimal change during fine-tuning [19], thereby
inheriting the predominant spectral response from pre-training.

5.2.3 PSD is related to shortcut learning

We computed the average PSDs of artificially generated artifacts by extracting the
residual between the original and modified images, plotted in Fig.5.3 (green solid
lines). We observe that the spectral distribution of the artifacts mainly falls in the
mid-to-high frequencies. Interestingly, the learning priority of ImageNet pre-trained
model shows a higher level of overlap with the PSD of the artifact, while the results
in Fig. 5.2 indicate that ImageNet is prone to shortcut learning. As gradients reflect
how much the loss is affected by changes in the input, higher density indicates that
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kernels are more sensitive to corresponding frequency perturbations [118]. There-
fore, it is reasonable to believe that the learning priority of a pre-trained model and
its robustness to frequency shortcuts are related: kernels pre-trained on ImageNet
have stronger response to mid-to-high frequencies and thus can quickly detect short-
cuts with similar spectral distributions.

5.2.4 Source data affects robustness

Previous experiments show that the frequency response of the early layers remains
largely unchanged in transfer learning, thus it is possible to enhance or reduce short-
cut learning by modifying the model’s learning priority via source data editing.
Specifically, we altered the model’s response to mid-to-high frequencies during pre-
training. We encouraged RadImageNet model to focus more on learning high fre-
quencies by normalizing the spectrum of images in RadImageNet. Additionally,
whitening was applied to ensure that the normalized images maintain the same
mean and standard deviation as the originals:

In = F−1
( F (I)
∥F (I)∥

)
, Iw = (In − µn)

σo

σn
+ µo, (5.2)

where I, In, and Iw represent the original, normalized, and whitened images, respec-
tively. µo, µn and σo, σn are the mean and standard deviation of the original image
and the normalized image, respectively. F−1 denotes the inverse Fourier transform.

On the contrary, we constrained ImageNet model to exclusively learn low-frequency
patterns by eliminating high-frequency details from the ImageNet images. Due to
the missing fine details between sub-classes, we merged similar classes based on
hierarchy, reducing the number of classes to three: living thing, artifact, and miscella-
neous, to guarantee convergence. The performance of models pre-trained on modi-
fied datasets is illustrated in Fig. 5.4, with their learning priorities in Fig. 5.3 (third
row).
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As expected, the model pre-trained on whitened RadImageNet no longer shows low
learning priority in high frequencies and picks up the shortcut during fine-tuning.
In contrast, the model pre-trained on filtered ImageNet has limited capability to
learn high-frequency features, resulting in a learning priority similar to that of the
model pre-trained on original RadImageNet and thereby achieving comparable or
even improved robustness.

5.3 Conclusions and Future Work

In this paper, we discovered that a model’s response to frequency shortcuts in trans-
fer learning is influenced by the similarity between the spectral distribution of the
shortcut and the learning priority of the pre-trained model. By modifying source
data, we showed that it is possible to alter the fine-tuned model robustness against
frequency shortcuts. Although frequency analysis is a promising technique for un-
derstanding model robustness in transfer learning, several questions remain. First,
it is unclear how the statistics of the untouched source data may affect the model’s
learning priority during pre-training. Second, although we showed that fine-tuned
model robustness can be altered, a fine-grained method to manipulate the model’s
PSD is preferred. Lastly, it would also be interesting to investigate other types of
non-frequency confounders, such as patient gender, medical equipment, or mark-
ers, from the perspective of the frequency domain.
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Chapter 6

Transferability estimation

Adapted from: D. Juodelyte, E. Ferrante, Y. Lu, P. Singh, J. Vanschoren, V. Cheplygina, "On dataset
transferability in medical image classification", (Under review)

6.1 Introduction

Transfer learning has become a cornerstone in medical imaging, offering a solution
to the challenge of training deep learning models on limited datasets. By leveraging
knowledge from pre-trained models, transfer learning has proven effective in a va-
riety of medical imaging applications [25]. A common approach in medical image
classification is to pre-train models on ImageNet [16], a dataset originally designed
for natural image classification. However, unlike natural images, which typically
contain distinct global objects, medical images often rely on subtle local texture vari-
ations to indicate pathology. Therefore, ImageNet may not always be the optimal
source for medical image classification tasks, particularly when working with small
datasets [19], where transfer learning is most beneficial.

Prior studies have found that source and target domains should be similar for ef-
fective transfer learning [24]. They have shown that pre-training on smaller, closely
related source datasets often yields better results on target tasks than using larger
but less related source datasets [24, 23], and that optimal transfer performance is
achieved when the source dataset includes images that align with the domain of
the target dataset [24]. Furthermore, models pre-trained on ImageNet have demon-
strated limitations when applied to medical imaging tasks. They are prone to short-
cut learning, where the model relies on spurious correlations rather than learning
meaningful representations for medical data [119, 120], and to memorization [90].
There is no reliable method to identify alternative datasets that might be better
suited for transfer for medical image classification. Exhaustively fine-tuning mul-
tiple source models to determine suitability is computationally prohibitive. Trans-
ferability estimation in computer vision offers a solution by predicting how well pre-
trained models will perform on new tasks or datasets without requiring extensive
fine-tuning (Figure 6.1). This approach can efficiently uncover unexpected model
candidates that human practitioners might otherwise overlook [31]. As the num-
ber and complexity of pre-trained models grow, transferability estimation becomes
increasingly valuable, enabling more effective reuse of source data and models.

The medical imaging community frequently repurposes models developed for gen-
eral computer vision tasks for use in medical applications. However, as demon-
strated by Chaves el al. [32] and further supported by experiments in this paper,
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FIGURE 6.1: Illustration of the transferability estimation problem:
Given a model zoo, the goal is to predict which model will achieve

higher performance after fine-tuning on a specific target task.

current transferability metrics–designed and validated on natural image datasets–
perform poorly when applied to medical image classification. This highlights the
need to develop transferability metrics specifically tailored to medical imaging tasks.

Existing transferability methods primarily estimate the suitability of pre-trained fea-
tures for a target task. However, feature quality alone is insufficient as it leads to
self-source bias: if transferability were based solely on feature quality, a model pre-
trained on the target dataset itself would provide the best features for that task. Yet,
pre-trained models often outperform models trained exclusively on the target task,
therefore it is likely that they also outperform models pre-trained directly on the
target dataset. This is particularly relevant when models are pretrained on datasets
much larger (and more varied) than those available for the target task.

We posit that transferability depends not only on the quality and generality of the
pre-trained features but also on their flexibility, i.e., how easily new local patterns
can be learned on the target task. We therefore propose a new transferability metric
that balances both aspects by incorporating the gradients of the first layers observed
in the source model when exposed to the target dataset. The contributions of this
paper are as follows:

• We demonstrate that publicly available medical datasets, or combinations of
them, can outperform ImageNet pre-training for medical image classification
tasks.

• We establish two new testing scenarios to properly evaluate existing trans-
ferability metrics on medical imaging tasks: one for source dataset transfer
in medical image classification and another for cross-domain transfer. We
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demonstrate that current state-of-the-art model selection methods fail to out-
perform simple baselines in these settings.

• We propose a novel transferability metric that combines feature quality with
gradients, addressing the self-source bias of previous methods based solely
on feature quality. We demonstrate that this method outperforms existing ap-
proaches.

• We provide ground-truth transfer performance benchmarking results for
MedMNIST [121, 122], a publicly available and easy-to-use benchmark
dataset. This includes the transfer performance of 15 source datasets and 9
CNN architectures across 11 medical target tasks. We hope this will encourage
further research in transferability estimation for medical image classification.
To benchmark transfer performance, we trained over 20,000 models, a com-
putationally intensive task that may otherwise discourage researchers with
limited resources from exploring ideas in this field.

6.2 Related work

There are three main topics relevant to our work on transferability estation: dataset
similarity, transferability metrics, and transferability specifically in medical imaging.

6.2.1 Dataset similarity

Transferability estimation is closely related to dataset similarity, which can be mea-
sured using three main approaches: task similarity, embedding-based techniques,
and distribution-based similarity estimation.

Task similarity. Transfer performance can serve as a proxy for task similarity, help-
ing to reveal relationships between visual tasks. Zamir et al. [123] mapped the struc-
ture of the space of visual tasks by computing transfer performance between pairs
of tasks, creating an asymmetric similarity measure between source and target tasks
that connects different tasks into a directed hypergraph, which is then pruned to pro-
duce a taxonomic map, or Taskonomy, of visual tasks. However, adding a new task
to the Taskonomy is computationally expensive and it requires computing transfer
performance on all previous tasks.

Embedding-based techniques. An alternative approach estimates dataset simi-
larity directly to predict transfer performance, bypassing the need for fine-tuning,
Embedding-based techniques establish a shared embedding space, where similarity
is measured by the distance between task embeddings. Achille et al. [124] employ
a probe network trained on ImageNet [16] to vectorize tasks based on the Fisher in-
formation matrix of the network activations over a given dataset. Similarly, Peng
et al. [125] propose a domain embedding method that incorporates adversarially
trained, domain-specific features. They compute the Gram matrix of activations
from a pre-trained network over domain inputs, then concatenate its diagonal en-
tries with domain-specific features extracted using a feature disentangler trained
adversarially to separate domain-specific from class-specific features. These meth-
ods offer promising results but rely heavily on pre-trained probe models and still
require model training on each dataset to some extent.
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Dataset distributions. Dataset similarity can also be measured by directly com-
paring dataset distributions. For example the Optimal Transport Dataset Distance
(OTDD) [126] accounts for both sample and label distances by modeling labels as
distributions over feature vectors and incorporating the Wasserstein distance be-
tween these distributions into the total transportation cost of the dataset samples.
However, this approach require access to the source training set and overlook the
impact of a model’s architecture, parameters, and training algorithms on transfer-
ability.

6.2.2 Transferability metrics

Transferability estimation methods can be broadly categorized into two main ap-
proaches: evaluating the quality of static features extracted by the source model
when applied directly to the target dataset [127, 128, 129, 130], and modeling the
changes that occur in the model during the fine-tuning process [131, 132, 133, 134].

Static features. The static features approach assumes that if the source model or
its extracted features perform well on the target task, the knowledge encoded by the
source model is valuable for the target task and is likely to transfer well.

Nguyen et al. [127] proposed Log Expected Empirical Prediction (LEEP), which esti-
mates the joint distribution between the source model’s output labels and the target
dataset labels. An empirical predictor is constructed from this distribution to cap-
ture the likelihood of target labels given the source predictions, and the LEEP score is
derived as the log expectation of this predictor. However, LEEP inherently depends
on the specific label space of the source model, limiting its applicability to models
with classification heads. Gaussian LEEP (NLEEP) [128] extends LEEP to support
unsupervised and self-supervised pre-trained models that lack a classification head.
By replacing the output layer with a Gaussian Mixture Model fitted to the target
dataset in the source model’s penultimate embedding space, NLEEP enables the
computation of a LEEP score without relying on explicit source label probabilities.

Gaussian Bhattacharyya Coefficient (GBC) [129] introduces a different approach by
measuring the pairwise class overlaps in distribution density with a Bhattacharyya
coefficient, offering a versatile transferability metric applicable to image classifica-
tion and semantic segmentation. Pairwise Annotation Representation Comparison
(PARC) [130] evaluates transferability through Spearman correlation between the
pairwise distance among target images in the feature space of the source model and
the pairwise distance between the target labels. While these methods effectively
measure feature quality, they may overlook the dynamic changes in representations
that occur during fine-tuning, which can have a significant impact on transfer per-
formance.

Modeling changes that occur during fine-tuning. The second general approach
accounts for changes that occur during fine-tuning, aiming to approximate this pro-
cess and capture its effects on transfer performance.

The Logarithm of Maximum Evidence (LogME) [131] adds a Bayesian linear model
to the target features extracted by the source model and optimizes the parameters to
estimate the likelihood of target labels given these features. Self-challenging Fisher
Discriminant Analysis (SFDA) [132] simulates the fine-tuning process by mapping
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tuning.

features into a Fisher space to enhance between-class separability, while the self-
challenging mechanism regularizes the model to focus on and improve differentia-
tion of hard examples.

NCTI [133] builds on the concept of neural collapse [135], a phenomenon observed
in the final stage of training, where features collapse to their class means and align
in a structured geometric configuration. NCTI measures how far the source model
is from this state on the target set by combining within-class variability, the simplex-
encoded label interpolation geometry, and nearest-center classifier accuracy. Po-
tential Energy Decline (PED) [134] is a physics-inspired approach that introduces
a novel energy-based perspective, treating the fine-tuning process as a physical sys-
tem minimizing potential energy. By modeling feature dynamics during adapta-
tion, PED offers a feature remapping framework that can be integrated with existing
methods for enhanced performance.

Our approach. Our work falls into the second category as it models fine-tuning
dynamics to evaluate transferability. However, we extend this approach by integrat-
ing gradient information to assess the adaptability of the source model’s features to
the target task. Existing methods tend to predict the target dataset as its own optimal
source, a result that is not always realistic. We propose a transferability metric that
avoids this self-source bias of prior methods.

6.2.3 Transferability in medical imaging.

Transferability metrics have primarily been developed and tested on natural im-
age datasets, with limited exploration in the medical imaging domain. Chaves et
al. [32] demonstrated that metrics designed for natural image datasets often fail
to generalize to medical image classification tasks. Yang et al. [136] proposed a
method for medical image segmentation that combines class consistency and fea-
ture variety (CC-FV). The method measures intra-class consistency by calculating
the distance between the distributions of features extracted from foreground voxels
of the same class in each sample. Feature diversity is assessed by evaluating the uni-
formity of feature distribution across the entire global feature map, which reflects
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the effectiveness of the extracted features. Molina-Moreno et al. [137] introduce a
style-aware contrastive similarity estimator, trained to minimize a combined objec-
tive function that combines image reconstruction, style features, and dataset mem-
bership. Dataset similarity is then evaluated in the resulting latent space, which
has been shown to correlate with transfer performance on target datasets, however,
adding new source datasets requires retraining the estimator. Similar to the com-
puter vision Taskonomy [123], Du et al. [138] build a DataMap of medical imaging
datasets. Transferability is measured by the cosine similarity of task-relevant convo-
lutional kernels from the last few convolutional layers of models trained on differ-
ent datasets. However, while the DataMap captures symmetrical similarity between
datasets, transferability is inherently asymmetrical–for instance, a larger and more
diverse dataset is often a good source for a smaller dataset but not vice versa [25,
24]. We propose a transferability metric that is asymmetrical and does not require
training.

6.3 Method

6.3.1 Problem definition

Given a set of models pre-trained on M source datasets {ϕ1, ϕ2, ..., ϕM}, and a target
dataset T = {(xi, yi)}n

i=1 with N labeled data points, the goal is to identify pre-
trained models that are likely to perform well on the given target dataset, and to
identify them without requiring computationally expensive fine-tuning. The ground-
truth transfer performance of a pre-trained model ϕm (m ∈ {1, 2, . . . , M}) when fine-
tuned until convergence on T is measured using an evaluation metric P(ϕm, T ),
such as Area Under the Receiver Operating Characteristic Curve (AUC). Fine-tuning
all m models on T to compute P(ϕ, T ) for each ϕ involves hyperparameter optimiza-
tion and is computationally expensive, making it infeasible for large-scale source
dataset selection. The objective is to design a scoring function S(ϕ, T ) for each pre-
trained model ϕm such that the scores S(ϕm, T ) correlate strongly with the true trans-
fer performance P(ϕm, T ). Specifically, the ranking of models by S(ϕ, T ) should
approximate the ranking by P(ϕ, T ):

∀m ∈ {1, . . . , M}, rank({S(ϕm, T )}) ≈ rank({P(ϕm, T )}). (6.1)

Following prior work, we will measure this using weighted Kendall’s τw [139], as
it assigns greater importance to the correct ranking of top-performing models. A
higher value of Kendall’s τw indicates a stronger correlation between S(ϕ, T ) and
P(ϕ, T ).

6.3.2 Gradient-based transferability estimation

In contrast to previously proposed transferability metrics in computer vision that
primarily focus on the suitability of pre-trained features for the target task, our
method takes a more comprehensive approach, illustrated in Figure 6.2. Since med-
ical targets appear to benefit less from feature reuse [19, 95], we measure and in-
corporate the gradients of the first convolutional layers, computed from a single
backward-pass on T , to estimate their adaptation capabilities. We combine this with
the feature representations of the target dataset T obtained from a single forward-
pass through the pre-trained source model ϕ.
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Forward-pass. We use the penultimate layer of model ϕm to extract D-dimensional
feature representation x̂ = θm(x) ∈ RD for each image xi ∈ T and use it as input
to Neighborhood Component Analysis (NCA) [140] to approximate the dynamics of
fine-tuning process.

NCA is a supervised, non-parametric method used for dimensionality reduction and
metric learning that directly learns a linear transformation to a lower-dimensional
feature space where instances of the same class are clustered together, and instances
of different classes are well-separated. The key idea in NCA is to maximize the prob-
ability that a randomly chosen point has the same label as its nearest neighbor in the
transformed space. This is done by learning a linear transformation that maximizes
the expected k-nearest neighbors (k-NN) leave-one-out classification accuracy on
the training set. NCA reduces intra-class distances while increasing inter-class dis-
tances, effectively simulating the behavior of fine-tuning, which updates features to
achieve better class separability [132] (Figure 6.3(b)). Once the projection matrix A is
obtained, we compute updated feature representations {x̃i = Ax̂i}n

i=1. These trans-
formed representations exhibit significantly improved class separability (as shown
in Figure 6.3(c)) compared to the original features before fine-tuning (Figure 6.3(a)).

Shao et al. [132] use Fisher discriminant analysis (FDA) to approximate fine-tuning.
FDA finds a linear subspace that maximizes class separability such that a linear clas-
sifier can be learned. However, FDA relies on the within-class scatter matrix, which
requires the number of data points n to far exceed the feature dimension D (n ≫ D).
If D > n, as is common in deep networks where D is large (e.g., D = 512 for ResNet
models), the sample covariance matrix becomes rank-deficient and cannot serve as
a reliable estimator of the true covariance matrix [141]. Transfer learning scenarios
often operate in low-data regimes where n < D, making FDA unsuitable. Shao et
al. [132] use regularized FDA, which enhances robustness against outliers and nu-
merical instability in scenarios with limited data points. However, as illustrated in
Figure 6.3(d), this approach results in all points from a class collapsing onto a single
point in binary classification with n = 200, indicating overfitting. In contrast, NCA
avoids matrix inversion and does not enforce a linear decision boundary. Instead,
it learns a robust transformation through a regularized linear projection [140], pro-
viding a more reliable approximation of fine-tuning dynamics, as shown in Figure
6.3(c).

Using the updated feature representations x̃i we apply a 5-NN classifier to estimate
the likelihood of target labels p(y|x̃). The label prediction probability score SLP is
then defined as:

SLP(ϕm, T ) =
n

∑
i=1

p(yi|x̃i, θm) (6.2)

Backward-pass. The second component of our transferability relies on source
model gradients. As we do not have a classification layer, we compute the triplet
loss using the feature representations x̂ obtained from the penultimate layer. Triplet
loss is widely used in deep metric learning tasks to learn a representation where
similar samples are closer together in feature space, and dissimilar samples are
farther apart. It operates on triplets of data points, where each triplet consists of:
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FIGURE 6.3: t-SNE projections of feature representations x̂, for binary
Pneumonia classification: (a) before fine-tuning the source model, (b)
after fine-tuning, (c) after NCA projection, and (d) after LDA pro-
jection. The NCA projection (c) more closely approximates the fine-
tuning dynamics, which update the features to achieve better class

separability (b), compared to the LDA projection (d).

• Anchor (xa): a sample from a specific class.

• Positive (xp): another sample from the same class as the anchor.

• Negative (xn): a sample from a different class.

We use the triplet margin loss [142], implemented by [143], with the goal of mini-
mizing the distance between the anchor and the positive sample while ensuring that
the distance between the anchor and the positive sample is at least α smaller than
the distance between the anchor and the negative sample. The triplet margin loss is
defined as:

L(x̂a, x̂p, x̂n) = max{∥x̂a − x̂p∥2 − ∥x̂a − x̂n∥2 + α, 0} (6.3)

We perform a single backward pass of the triplet loss through the source model ϕ
and compute the gradients w.r.t. the weights of the first two convolutional layers.
Since gradients from models trained on different source datasets are not directly
comparable, we calculate the ratio of the gradient magnitudes of the second convo-
lutional layer to the first convolutional layer. The first convolutional layer typically
captures general features like edges and undergoes minimal updates (hence a good
candidate for normalizing the size of the gradients), while deeper layers adapt more
to the specific task. We hypothesize that this gradient ratio captures the model’s task
adaptability, i.e., its capacity to learn new local patterns. The feature update score
SFU is defined as:

SFU(ϕ, T ) =
∥∇θconv2L(θconv2; x̂a, x̂p, x̂n)∥2

∥∇θconv1L(θconv1; x̂a, x̂p, x̂n)∥2
(6.4)

Both the label prediction probability score SLP(ϕm, T ) and the feature update score
SFU(ϕm, T ) are normalized for consistency across tasks and datasets:

SFU(ϕm, T ) =
SFU(ϕm, T )− min(SFU(ϕ, T ))

max(SFU(ϕ, T ))− min(SFU(ϕ, T ))
(6.5)
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TABLE 6.1: Target datasets used in our experiments from the MedM-
NIST collection. Organ{A,C,S}MNIST are based on 3D computed to-
mography (CT) images, where A, C, and S represent Axial, Coronal,

and Sagittal planes, respectively.

Dataset Modality # classes batch size

PathMNIST [144] Colon pathology 9 {128, 256}
DermaMNIST [77, 76] Dermatoscope 7 {128, 256}
OCTMNIST [69] Retinal OCT 4 {64, 128}
PneumoniaMNIST [69] Chest x-ray 2 {32, 64}
RetinaMNIST [145] Fundus ultrasound 5 {64, 128}
BreastMNIST [146] Breast ultrasound 2 {32, 64}
BloodMNIST [147] Blood cell microscope 8 {128, 256}
TissueMNIST [148] Kidney cortex microscope 8 {128, 256}
OrganAMNIST [149, 150] Abdominal CT 11 {128, 256}
OrganCMNIST [149, 150] Abdominal CT 11 {128, 256}
OrganSMNIST [149, 150] Abdominal CT 11 {128, 256}

The final transferability score is obtained as the sum of the normalized label predic-
tion probability score and the normalized feature update score:

S(ϕm, T ) = SLP(ϕm, T )× SFU(ϕm, T ) (6.6)

This combined score effectively captures both the separability of the target features
and the adaptability of the source model to new local patterns in the target task,
providing a comprehensive transferability metric.

Finally, when selecting a source model ϕm for a given target task T , we compute
S(ϕm, T ) for all pre-trained models and select the one with the highest score:

ϕ∗ = arg max
ϕm

S(ϕm, T ). (6.7)

6.4 Experimental setup

In this section, we describe our experimental setup, choice of datasets, models and
hyperparameters.

6.4.1 Datasets

We evaluate our transferability metric using 11 out of the 12 datasets in the MedM-
NIST collection [121, 122] as target datasets T . We exclude the Chest dataset (origi-
nally from [151]) as a target because it is a multi-label dataset with 14 classes, which
is a less common scenario for transfer learning since smaller target datasets typically
benefit more from pre-training.
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To simulate realistic transfer learning scenarios, we downsample each target dataset
to include 100 images per class for training and 25 images per class for valida-
tion, both preserving class distributions. The ground-truth transfer performance
P(ϕm, T ) is evaluated using the full test sets. Table 6.1 provides a detailed overview
of the target datasets, including their modality, the number of classes, and the batch
sizes used during fine-tuning.

For source datasets, we use all 12 datasets in the MedMNIST collection, employ-
ing ResNet18 [78] models trained on these datasets, as provided by MedMNIST.
Additionally, we implement a leave-target-out pre-training strategy for MedMNIST
datasets, wherein the target dataset is excluded from the pre-training set. For exam-
ple, if Path is the target, all other datasets in MedMNIST are used for pre-training
except Path.

Beyond MedMNIST, we include two additional source datasets for pre-training: Im-
ageNet [16], a large-scale natural image dataset widely used for pre-training, and
RadImageNet [30], a specialized medical imaging dataset comprising CT, MRI, and
ultrasound images.

6.4.2 Benchmarking transfer performance

To benchmark ground-truth transfer performance P(ϕm, T ), we perform full fine-
tuning of the source models, with no weights frozen. Hyperparameter optimiza-
tion is conducted using a grid search over key hyperparameters [152], including
the learning rate: ({1.0, 1e − 01, 1e − 02, 1e − 03, 1e − 04, 1e − 05}), weight decay
({1e − 03, 1e − 04, 1e − 05, 1e − 06, 0.0}), momentum ({0.9, 0.0}), and batch size for
each target dataset as specified in Table 6.1. Hyperparameters and fine-tuning re-
sults are logged using radT [153].

Transfer performance is measured using AUC. Training is carried out using the
Stochastic Gradient Descent (SGD) optimizer for up to 400 epochs. To prevent over-
fitting, early stopping is applied if the validation AUC does not improve for 50
consecutive epochs. The model with the lowest validation loss is selected as the
best-performing model, and its ground-truth transfer performance is evaluated by
computing the AUC on the test set.

Input images are resized to 224 × 224 pixels and augmented using a series of trans-
formations. These include random horizontal flips with a probability of 0.5, random
resized cropping, random rotation between 0◦ and 5◦, random sharpness adjust-
ment, random autocontrast, and random equalization. Images are normalized to the
ImageNet mean and standard deviation when transferring from ImageNet-trained
models. For models trained on other source datasets, images are normalized to have
a mean of 0.5 and a standard deviation of 0.5.

6.5 Results

In this section we analyze the experimental results, highlighting important findings
of our study.
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6.5.1 Transfer performance

Dataset size does not predict transfer performance. In Figure 6.4, source datasets
are sorted by size, from smallest to largest, to analyze the impact of dataset size
on transfer performance. The results reveal no clear trend that would indicate that
larger datasets inherently lead to better transfer performance. For example, the
Breast dataset, containing only 546 training images, outperforms the much larger
OrganS dataset, which has 13,932 training images, in 7 out of 9 target datasets (ex-
cluding Breast and OrganS as targets). Breast outperforms OrganS in Blood, Derma,
OCT, Pneumonia, Path, and Tissue by a large margin. Even in cases where the target
is related, such as OrganC and OrganA, which are different 2D planes of the same
3D dataset as OrganS, Breast performs comparably to OrganS, with AUC scores of
0.984 versus 0.981 for OrganC and 0.986 versus 0.987 for OrganA, respectively. This
indicates that dataset size alone is not a reliable predictor of transferability perfor-
mance.

Similarity is not enough. Similarity between source and target datasets does not
necessarily result in optimal transfer performance. For instance, while both the
Chest and Pneumonia datasets consist of chest X-rays, with Chest including a pneu-
monia class, the Chest does not achieve the best performance on the Pneumonia
target. Instead, RadImageNet, ImageNet, and leave-target-out MedMNIST pre-
training outperform it, achieving AUC scores of 98.24, 98.35, and 98.45, respectively.
Notably, the leave-target-out MedMNIST dataset, which incorporates a variety of
modalities (including chest X-rays), achieves the best performance. This suggests
that, in addition to task-specific features, the diversity of data plays an important
role in improving transfer learning performance by incorporating relevant yet
distinct knowledge from the source dataset.

Source dataset diversity is important. Leave-target-out MedMNIST outperforms
RadImageNet in 7 out of 11 target datasets (Blood, Breast, Derma, OrganC, Pneumo-
nia, Retina, and Tissue) despite being less than half its size. This may be attributed
to the broader range of imaging modalities included in leave-target-out MedMNIST,
compared to RadImageNet, which is limited to CT, MR, and ultrasound images with
relatively low variation both within and between classes. Although leave-target-out
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MedMNIST has fewer classes (between 57 and 66, depending on the target) com-
pared to RadImageNet (165 classes), the greater diversity in its training data appears
to improve transfer learning performance.

Medical sources outperform ImageNet in some cases. While ImageNet pre-
training remains a strong baseline, medical-specific source datasets outperform it in
4 out of 11 target tasks (Pneumonia, OrganC, OrganS, and OCT). For instance, in
the OCT target, RadImageNet outperforms ImageNet by a large margin (AUC score
of 96.93 versus 92.58). These results show that although ImageNet often performs
well due to its large scale, diversity, and general features, exploring medical-specific
source datasets can lead to improved performance for medical target tasks.

6.5.2 Transferability estimation

Transferability methods are typically tested in scenarios where models are pre-
trained and fine-tuned on natural images. In contrast, we assess transferability
metrics in two distinct scenarios: (1) we use multiple source datasets with a fixed
architecture fine-tuned on medical targets to evaluate source dataset transferability
estimation in medical imaging classification, and (2) we use multiple architectures
pre-trained on ImageNet and fine-tuned on medical targets to evaluate model
transferability estimation in a cross-domain transfer context. We benchmark our
proposed transferability estimation method against existing methods, including
LogME [131], SFDA [132], PARC [130], NCTI [133], LEEP [127], and NLEEP [128].

Dataset transferability. We begin by fine-tuning ResNet18 [78], pre-trained on 14
source datasets, on 11 medical target datasets. The results of this experiment are pre-
sented in Figure 6.5. Our proposed method, along with LEEP and NLEEP, are the
only methods to consistently show a positive rank correlation with the ground-truth
transfer performance P(ϕm, T ) across all target datasets. In contrast, other methods
exhibit negative correlations for at least one target. SFDA, in particular, struggles
with binary classification tasks. On the Breast and Pneumonia targets, SFDA assigns
a uniform transferability score of 1.0 to all source datasets, reflecting overfitting in
the low-data regime, as discussed in Section 6.3.2. Even for the multiclass OCT tar-
get, SFDA lacks nuance, predicting a transferability score of 1.0 for nearly all source
datasets, with only a minor adjustment to 0.99 for the Blood dataset. This lack of
granularity severely limits SFDA’s utility in identifying suitable candidates for fine-
tuning.

Table 6.2 further highlights the strong performance of our proposed method, which
achieves the highest rank correlation τw with the ground truth on eight target
datasets and ranks second-best on one additional target. Notably, there is no
single method that consistently performs well when our method does not, nor is
there a clear runner-up that reliably ranks second. However, NLEEP emerges as
the overall second-best method. Our method outperforms NLEEP by 0.40, 0.25,
0.24, 0.21, 0.20, and 0.12 rank correlation τw on Pneumonia, OrganA, Derma, OCT,
Tissue, and OrganS, respectively. Despite these strengths, our method shows a
substantial performance gap on the OCT, OrganC, and OrganS targets compared to
the best-performing transferability metric for those datasets.

To evaluate whether the differences between the transferability methods are statis-
tically significant, we use the Friedman test, as recommended by [154]. Friedman
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FIGURE 6.5: Ground-truth transfer performance P(ϕm, T ) (test AUC)
on the x-axis versus transferability score S(ϕm, T ) on the y-axis. The
predicted transferability scores are shown for LogME, LEEP, SFDA,
PARC, NCTI, NLEEP, and our method (columns) across 11 medical
target datasets (rows). The black line represents the regression line,

with the 95% confidence interval shaded in grey.

test is a non-parametric statistical test designed for comparing ranks across multiple
datasets. The average ranks of the methods are shown in the last row of Table 6.2.
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TABLE 6.2: Comparison of transferability metrics for dataset trans-
ferability prediction, evaluated using Weighted Kendall’s τ between
the predicted transferability scores and ground-truth transfer perfor-
mance. Higher values indicate better performance, with the corre-
sponding method rankings shown in parentheses (lower ranks are
better). The best results are in bold, and the second-best results are
underlined. The last row shows the average ranks. Statistical signif-
icance is determined by the Friedman test, with methods in bold in-
dicating either the best performance or no significant difference from

the best.

Target LogME PARC SFDA NCTI LEEP NLEEP Ours

Blood 0.11 (6) 0.30 (4) 0.30 (5) 0.07 (7) 0.48 (3) 0.75 (2) 0.78 (1)
Breast 0.22 (3) 0.20 (5) - (7) -0.15 (6) 0.26 (2) 0.21 (4) 0.44 (1)
Derma 0.52 (2) 0.34 (4) -0.27 (7) 0.19 (6) 0.23 (5) 0.44 (3) 0.70 (1)
OCT 0.26 (5) 0.34 (3) 0.19 (7) 0.27 (4) 0.52 (1) 0.23 (6) 0.45 (2)
OrganA 0.26 (4) 0.27 (3) -0.00 (6) -0.26 (7) 0.18 (5) 0.32 (2) 0.57 (1)
OrganC 0.47 (2) 0.50 (1) 0.43 (5) 0.46 (4) 0.40 (6) 0.47 (3) 0.11 (7)
OrganS 0.12 (6) 0.17 (5) 0.66 (1) 0.31 (2) 0.24 (3) 0.10 (7) 0.22 (4)
Path 0.51 (5) 0.54 (4) 0.38 (7) 0.40 (6) 0.56 (3) 0.57 (2) 0.62 (1)
Pneumonia 0.31 (3) 0.12 (5) - (7) -0.37 (6) 0.22 (4) 0.31 (2) 0.61 (1)
Retina 0.33 (6) 0.50 (3) 0.27 (7) 0.47 (4) 0.34 (5) 0.55 (2) 0.60 (1)
Tissue 0.58 (3) -0.01 (7) 0.46 (5) 0.62 (2) 0.42 (6) 0.58 (4) 0.65 (1)

Avg. rank 4.00 4.00 5.82 4.91 3.91 3.45 1.91

For SFDA, we assign the lowest rank for missing τw values on binary classification
tasks, as its uniform prediction of a transferability score of 1.0 for all sources fails to
provide useful guidance for selecting candidates for fine-tuning.

The Friedman test rejects the null hypothesis–that observed rank differences are
due to chance–with a p-value = 0.002. Using a significance level of α = 0.05, the
critical difference (CD) for 11 datasets and seven methods is calculated as 2.792.
Based on this CD, although our method achieves the highest average rank, the ranks
of NLEEP, LEEP, LogME, and PARC fall within the critical difference threshold
of 2.792, indicating that their performance differences are not statistically signifi-
cant. As the critical difference increases with the number of methods compared,
and decreases with the number of the datasets, we expect that with experiments on
additional datasets, the superior performance of our method would be more pro-
nounced.

Interestingly, in this source selection experiment, simpler empirical conditional
probability-based methods, such as LEEP and NLEEP–among the earliest proposed
transferability metrics–outperform more recent, sophisticated methods like NCTI
and SFDA that explicitly model the feature space.

Ablation study. Our proposed metric is composed of two terms: one evaluates the
suitability of the features for the target task, and the other estimates the feature up-
date during fine-tuning. To assess the contribution of each component, we conduct
an ablation study, with the results presented in Figure 6.6. The analysis reveals that
the feature update term often enhances the overall transferability estimation, par-
ticularly in targets such as Blood, Breast, Derma, OrganA, Path, Pneumonia, and
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FIGURE 6.6: Contribution of the feature quality SLP(ϕm, T ) and fea-
ture update SFU(ϕm, T ) terms to the overall transferability score.

Tissue. This underscores the value of incorporating gradient-based information into
transferability metrics. However, for targets where our method underperforms, the
feature update term has a negative impact, suggesting the need for refining how
feature updates are estimated.

Additionally, the feature quality term alone outperforms LogME, SFDA, and NCTI
in seven targets. This result highlights the effectiveness of modeling feature space
using NCA in our approach, which appears to capture transfer dynamics more ef-
fectively than Reg-FDA, LDA, PCA, or the linear models used in those methods.

Model transferability in cross-domain transfer. We further assess the transfer-
ability estimation metrics on ranking pre-trained CNN models. For this evaluation,
we select nine widely-used architectures: ResNet18 [78], DenseNet121 [108],
EfficientNetV2-S [155], MobileNetV3-Small [156], GoogleNet [157], MnasNet-1.0
[158], VGG11 [159], ConvNeXt-Tiny [160], and ShuffleNetV2-0.5x [161]. All these
models are pre-trained on ImageNet and available in PyTorch [162]. The results of
this experiment are presented in Table 6.3.

In this scenario, none of the evaluated transferability metrics demonstrate a positive
rank correlation across all target datasets. In fact, PARC, NCTI, LEEP, NLEEP, and
our proposed method predominantly have negative rank correlations. To address
this, we transform the predictions of these methods to 1− S(ϕm, T ). For our method
specifically, we normalize the feature quality and feature update terms before com-
bining them, as follows:

SFU(ϕm, T ) =
SFU(ϕm, T )− max(SFU(ϕ, T ))

min(SFU(ϕ, T ))− max(SFU(ϕ, T ))
(6.8)
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TABLE 6.3: Comparison of transferability metrics for model trans-
ferability prediction, evaluated using Weighted Kendall’s τ between
the predicted transferability scores and ground-truth transfer perfor-
mance. Higher values indicate better performance, with the corre-
sponding method rankings shown in parentheses (lower ranks are
better). The best results are in bold, and the second-best results are
underlined. The last row shows the average ranks. Statistical sig-
nificance, determined by the Friedman test, indicates no significant

difference between the methods.

Target LogME 1-PARC SFDA 1-NCTI 1-LEEP 1-NLEEP 1-Ours

Blood -0.20 (7) -0.01 (6) 0.28 (4) 0.32 (3) 0.48 (1) 0.35 (2) -0.00 (5)
Breast -0.23 (7) -0.18 (6) 0.40 (2) 0.69 (1) 0.22 (3) 0.17 (5) 0.22 (4)
Derma -0.15 (7) 0.46 (1) 0.23 (4) -0.01 (6) 0.45 (2) 0.38 (3) 0.19 (5)
OCT 0.26 (5) 0.51 (2) 0.16 (6) 0.38 (4) 0.44 (3) 0.66 (1) 0.11 (7)
OrganA 0.36 (5) 0.60 (2) 0.33 (6) -0.00 (7) 0.53 (3) 0.52 (4) 0.70 (1)
OrganC 0.29 (1) 0.09 (5) 0.12 (3) 0.01 (7) 0.10 (4) 0.04 (6) 0.19 (2)
OrganS 0.39 (2) 0.21 (4) 0.04 (5) -0.14 (7) 0.35 (3) -0.06 (6) 0.42 (1)
Path -0.50 (5) -0.75 (7) 0.09 (2) -0.39 (4) 0.14 (1) -0.51 (6) -0.30 (3)
Pneumonia -0.08 (7) 0.28 (3) 0.16 (5) 0.29 (2) 0.25 (4) 0.12 (6) 0.32 (1)
Retina 0.29 (3) -0.18 (7) 0.40 (2) 0.09 (4) -0.09 (5) -0.12 (6) 0.70 (1)
Tissue -0.03 (5) 0.21 (2) -0.15 (7) -0.15 (6) 0.19 (3) -0.01 (4) 0.32 (1)

Avg. rank 4.91 4.09 3.91 4.64 2.91 4.73 2.82

TABLE 6.4: Ground-truth transfer performance (test set AUC ×100)
of source datasets across various medical targets.

Source Blood Breast Derma OCT OrganA OrganC OrganS Path Pneumonia Retina Tissue

ImageNet 99.85 88.51 89.46 92.58 99.04 98.09 95.58 98.97 98.35 86.41 84.49
RadImageNet 99.56 83.50 87.35 96.93 98.84 98.12 95.38 98.55 98.24 78.39 82.94
MedMNIST 99.72 85.28 88.34 95.19 98.45 98.34 95.05 98.28 98.45 80.04 84.06
Blood 76.42 85.14 89.63 98.59 98.06 95.10 96.66 87.48 69.15 79.53
Breast 99.29 86.25 88.38 98.62 98.35 95.46 96.50 93.23 70.44 80.10
Chest 99.38 86.49 87.57 94.22 98.35 98.23 95.65 96.98 93.25 78.61 80.93
Derma 99.18 85.55 87.25 98.58 98.20 95.27 97.66 85.42 71.12 80.96
OCT 98.90 83.21 87.92 98.32 98.00 94.40 97.97 93.89 69.93 80.42
OrganA 99.47 79.89 85.71 95.91 98.76 95.72 97.48 93.25 66.21 80.57
OrganC 99.37 84.54 84.96 93.28 98.18 96.18 95.64 88.49 70.35 79.99
OrganS 98.95 80.47 84.40 86.91 98.67 98.09 94.32 88.73 71.45 76.52
Path 99.57 86.70 86.78 91.79 98.11 97.32 95.11 93.07 72.85 79.98
Pneumonia 99.23 79.80 85.22 89.42 98.28 97.80 95.12 94.98 69.27 77.76
Retina 99.19 80.58 86.03 87.60 98.51 98.06 95.71 97.06 89.90 79.02
Tissue 99.44 83.46 88.07 93.20 98.80 98.28 96.21 98.75 92.94 78.05
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TABLE 6.5: Ground-truth transfer performance (test set AUC ×100)
of CNN architectures pre-trained on ImageNet across various medi-

cal targets.

Source Blood Breast Derma OCT OrganA OrganC OrganS Path Pneumonia Retina Tissue

DenseNet 99.90 90.14 87.70 98.18 99.05 98.64 95.51 99.02 98.73 87.81 84.34
EfficientNet 99.92 88.60 91.15 99.03 99.29 98.56 95.60 98.74 97.94 87.22 84.21
GoogleNet 99.77 88.18 88.78 96.44 99.15 98.39 95.64 99.37 98.94 83.42 84.21
MnasNet 99.53 85.86 77.09 93.79 95.88 94.13 90.06 98.78 89.21 80.85 78.31
MobileNet 99.82 88.72 89.44 94.64 98.86 98.74 94.39 99.30 97.90 84.21 83.69
VGG 99.69 86.34 90.30 98.03 99.30 98.93 96.44 98.88 98.43 87.73 85.09
ConvNeXt 99.91 91.58 92.93 98.86 99.27 98.87 96.38 99.47 97.97 87.55 85.30
ShuffleNet 99.74 84.82 89.15 97.17 98.94 98.65 96.02 99.37 98.05 80.52 83.65
ResNet 99.85 88.51 89.46 92.58 99.04 98.09 95.58 98.97 98.35 86.41 84.49

This adjustment results in a positive rank correlation between the predicted trans-
ferability scores and the ground-truth transfer performance for the majority of tar-
gets. However, this contradicts intuition. For methods like PARC, NCTI, LEEP, and
NLEEP, the transformation implies that greater deviation between the predictions
based on pre-trained features and the true labels corresponds to better transfer-
ability. Similarly, for our metric, the transformation suggests that smaller feature
updates and greater prediction deviations correlate with improved transfer perfor-
mance. These findings highlight a potential gap in our understanding of cross-
domain transfer dynamics. The results suggest that knowledge transfer in cross-
domain settings, especially for medical targets, may operate differently compared
to in-domain transfer, emphasizing the need for rethinking how transferability is
modeled in such contexts.

Our method outperforms other models on five target datasets. For targets where our
method’s transferability score predictions are negatively correlated with the ground-
truth transfer performance, the difference in performance between the best- and
worst-performing source models is minimal, with AUC differences of only 0.004 for
Blood and 0.007 for Path. Although our method achieves the highest average rank,
the Friedman test fails to reject the null hypothesis, indicating that the observed rank
differences may be due to chance.

We encourage the research community to leverage the ground-truth transfer per-
formance results provided in Tables 6.4 and 6.5, along with the resources available
in our GitHub repository1, to further explore this relatively underexplored topic.
Transferability estimation not only holds significant practical potential but also of-
fers opportunities to deepen our understanding of transfer learning in general. Our
code is publicly available and has been designed to be extendable, facilitating the
evaluation and integration of additional transferability metrics.

6.6 Conclusions

This study proposed a novel transferability estimation measure for transfer learning
in medical image classification, balancing both the suitability of the learned features
for the target task and the model’s adaptability, i.e., its capacity to learn new local
patterns linked to subtle local texture variations.

1https://github.com/DovileDo/transferability-in-medical-imaging

https://github.com/DovileDo/transferability-in-medical-imaging
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We introduce a novel NCA-based transferability metric, the first to combine feature
quality with gradient information from the first convolutional layers from a single
backward-pass. We also propose two new testing scenarios for transferability esti-
mation in medical imaging: one focused on source dataset transferability in medical
image classification and the other on cross-domain transferability. The results show
that our metric outperforms state-of-the-art methods which focus solely on feature
suitability for the target task, such as SFDA and NCTI, in both scenarios. This high-
lights the importance of incorporating gradient information into transferability esti-
mation.

We show that, while ImageNet remains a strong baseline, medical-specific source
datasets outperform ImageNet in several medical target tasks. This underscores the
value of selecting alternative source datasets for medical image classification tasks,
which may offer benefits over relying on ImageNet as the default source dataset for
pre-training.

Our experiments, spanning a diverse range of medical image classification tasks,
reveal three key insights: (1) dataset size alone does not reliably predict transfer per-
formance, (2) similarity between source and target datasets is not always sufficient
for optimal transfer, and (3) the diversity of the source dataset plays a pivotal role in
transfer performance.

Our results also suggest that a source model’s feature suitability and adaptability
may have a negative correlation with transfer performance in cross-domain transfer
in some cases, particularly when transferring from natural to medical images. This
highlights a gap in our understanding of cross-domain transfer dynamics. Indeed,
knowledge transfer in cross-domain settings fundamentally differs from in-domain
transfer, and may require more elaborate source model selection and fine-tuning
techniques. To support further research in this underexplored field, we also pro-
vide detailed transfer performance data for 15 source datasets, 9 model architectures,
and 11 target datasets, including hyperparameter optimization, encompassing over
20,000 trained models.

This work paves the way for future advancements in transferability estimation
methods, offering a promising foundation for improving medical image classifica-
tion and empowering more accurate, reliable healthcare solutions.
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Chapter 7

Future directions and conclusion

We investigated the impact of cross-domain transfer, specifically from natural to
medical images, on model generalization. Our findings demonstrate that models
pre-trained on natural and medical datasets converge to distinct intermediate rep-
resentations, which in turn influence their robustness to shortcut learning. Building
on these insights and recent advancements, we identify three key areas for future
research: (1) improving domain-specific pre-training strategies for medical imaging,
(2) deepening our understanding of shortcut learning through systematic mapping
of confounder types and developing tailored mitigation practices, and (3) advancing
research on transfer learning and transferability estimation in the context of founda-
tional models.

7.1 Pre-training

Collecting labeled datasets for large-scale pre-training in medical imaging is pro-
hibitively expensive, which has long limited progress in the field. RadImageNet
represented a significant step forward by creating a medical imaging dataset that
matched the scale of ImageNet in terms of the number of images. This achievement
not only improved transfer performance on certain medical tasks but also reduced
reliance on shortcut learning, as demonstrated in Chapter 4 and Chapter 5. Impor-
tantly, RadImageNet enabled researchers to better study and understand the effects
of cross-domain transfer by eliminating the difference in dataset size.

However, in Chapter 6, we demonstrated that a combination of publicly available
datasets, covering a wider range of modalities but comprising only half the size of
RadImageNet, can outperform RadImageNet on multiple target tasks. Notably, this
combined dataset even outperformed RadImageNet on breast ultrasound–a modal-
ity included in RadImageNet but not in the combined source dataset. RadIma-
geNet’s relatively limited diversity, containing only three imaging modalities and
14 anatomical regions, highlights the importance of dataset diversity in achieving
robust transfer learning. This shows that, when developing pre-training datasets for
medical imaging, prioritizing diversity across imaging modalities and anatomical
structures is critical for improving generalizability and performance.

RadImageNet was designed to closely mimic ImageNet by creating a labeled dataset
of 2D images extracted from 3D scans. While such supervised pretraining is valu-
able, self-supervised pre-training approaches may prove to be more effective. Other
strategies for pre-training medical imaging models could include leveraging data
from multiple modalities paired to train self-supervised models, as demonstrated
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in geospatial representation learning [163]. The 3D nature of medical imaging of-
fers opportunities to pair different planes within a scan. For instance, the coronal
plane could be used as input, and the model could be trained to predict both the
axial and sagittal planes along with the label. Additionally, follow-up scans of the
same patient could be paired, and the model trained to predict both the future scan
and disease progression, enabling the model to learn richer and more generalizable
representations.

7.2 Shortcut learning

When considering shortcut learning in deep learning models, the focus is often on
confounders present in the target training data. However, as we showed in Chap-
ter 4, shortcuts can also transfer from the source dataset used during pre-training.
These shortcuts manifest in various forms, ranging from localized features, such as
hospital-specific information tags embedded in medical images, to more globalized
artifacts like imaging confounders introduced by different scanner settings or imag-
ing protocols within or across hospitals. The mechanisms driving shortcut learning
appear to vary depending on the nature of the confounder. For instance, a model
might learn to rely on features that are discriminative in the source dataset, such as
hospital-specific tags, which may no longer be relevant in the target dataset. Simi-
larly, as discussed in Chapter 5, models may exploit frequency information learned
from the source dataset, which does not represent a true pathology-related feature
and serves merely as a shortcut.

It is now widely recognized that deep learning models are prone to shortcut learn-
ing, yet reliable strategies for shortcut detection and mitigation remain scarce. In
Chapter 4, we introduced MICCAT, a taxonomy for confounders in medical imag-
ing, categorizing them into four groups: demographic attributes, anatomical con-
founders, imaging confounders, and external confounders. Among these, demo-
graphic confounders are relatively straightforward to identify, as demographic in-
formation is often explicitly available in metadata. Furthermore, demographic fea-
tures can hold clinical relevance, making it unnecessary and sometimes even unde-
sirable to completely exclude them from model representations. The field of fairness
in machine learning offers a well-established foundation for addressing bias intro-
duced by demographic confounders, with metrics such as demographic parity and
equal opportunity, and a range of mitigation strategies applied at different stages of
the machine learning pipeline, such as dataset balancing, adversarial training, and
post-processing of model predictions [164].

By contrast, other types of confounders have not been studied as systematically. For
instance, localized confounders, such as hospital tags or chest tubes, and global-
ized imaging confounders, such as variations in scanner settings, present distinct
challenges. Understanding and addressing these confounders requires a deeper ex-
ploration of their specific properties and effects on model performance. Future re-
search should prioritize systematic investigation into different types of confounders,
by incorporating both localized and globalized confounders researchers can better
evaluate how various detection and mitigation methods perform across confounder
types. For example, localized confounders might be addressed through genera-
tive approaches, such as Diffusion models [165], which could modify or remove
problematic features within individual images. On the other hand, globalized con-
founders may require broader dataset-level editing as discussed in Chapter 5.
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Currently, much of the research focuses on developing methods for confounder de-
tection and mitigation. However, shifting the focus to the types of confounders and
systematically mapping them could provide a more structured understanding of
which methods are best suited to address specific challenges. The proposed con-
founder taxonomy could serve as an initial step toward building this knowledge,
facilitating a more targeted and effective approach to mitigating shortcuts in medi-
cal image classification.

In this thesis, we focused on image classification; however, transfer learning is also
commonly applied to other medical imaging tasks, such as segmentation and object
detection [166]. Research has shown that segmentation models can also be suscepti-
ble to shortcut learning [167]. Therefore, it would be interesting to explore whether
the conclusions drawn here also apply to tasks like segmentation.

7.3 Foundational models

The emergence of foundational models has sparked excitement about their poten-
tial applications in medical imaging. These generalist models designed to address
a variety of tasks are typically trained on extensive and diverse datasets, often us-
ing self-supervised learning [168]. Once trained, they can be applied to downstream
tasks through prompting. In particular, vision-language models, pre-trained on vast
collections of image-text pairs [38, 39], have garnered attention in radiology as nearly
all radiological imaging is paired with detailed, high-quality reports written in natu-
ral language, making it feasible to gather the data necessary for foundational model
training. Such advancements have even led to speculation that the traditional pre-
training and fine-tuning approach may be on the verge of obsolescence.

Despite this optimism, several inherent challenges in medical imaging data remain
difficult to overcome which might limit the applicability of foundational models. As
discussed in Section 1.1, medical imaging datasets are fundamentally constrained
by their limited size. Even if we manage to collect a large medical imaging dataset,
which can get in to millions of images, it would still be relatively small compared
to the vast datasets used to train models like ChatGPT, which rely on hundreds of
billions of data samples. The prospect of developing foundational models trained
on billions of medical images is highly unlikely.

Moreover, dataset diversity–a frequently used but somewhat abstract concept [169]–
is equally crucial. Dataset diversity can refer to multiple characteristics like patient
demographics, visual content of images, distribution of pathologies, and the task
specifics. First, the visual content of images in medical imaging datasets differs sig-
nificantly from those in computer vision datasets. While computer vision datasets
typically feature a wide range of objects and backgrounds with high variability,
medical imaging is inherently more uniform, limited to a small number of organs,
imaging modalities, and pathologies. This makes achieving robust generalization
significantly more challenging. Second, medical imaging also exhibits a long-tail
distribution, where a small number of pathologies are frequent and thus easier to
model, while many rare conditions remain underrepresented. This limitation was
acknowledged in the case of MedSAM [170]. This distribution creates unique chal-
lenges for foundational models, which may struggle to generalize effectively across
rare pathologies.
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Furthermore, highly specialized tasks, such as segmenting small vessels, require a
level of precision that overly generalized models are unlikely to achieve. This lim-
itation was also noted in MedSAM. Transfer learning will be especially important
for addressing tasks from less-represented modalities, pathologies or intricate struc-
tures like vessels.

Given these constraints, foundational models may prove most effective for tasks
with abundant data and more common pathologies, such as large-scale screening
applications. However, for rare pathologies or highly specific tasks, the need for
specialist models will likely persist. These specialist models can be tailored to ad-
dress the nuances of rare conditions and overcome the inherent limitations of gener-
alized foundational models. To fully harness the potential of deep learning, contin-
ued research into transfer learning remains essential. By better understanding how
knowledge from large-scale pre-training can be effectively transferred to specialized
tasks, the medical imaging community can maintain a balance between leveraging
foundational models for broad applications and developing targeted solutions for
rare or complex conditions.

7.4 Summary

This thesis investigates the impact of cross-domain transfer, specifically transfer
from natural to medical images, on deep learning models used in medical image
classification. Leveraging transfer learning, particularly pre-training on ImageNet,
is a common practice in medical imaging, yet understanding its effects on model
representations and generalization when fine-tuned for medical tasks remains an
important area of research. This work aims to address this gap, offering insights
into the nature of transfer learning and proposing new tools to improve the reliabil-
ity and safety of machine learning applications in clinical settings.

We first explore the effect of cross-domain transfer on intermediate model represen-
tations, comparing models pre-trained on both natural and medical datasets. The
findings reveal that fine-tuning on medical tasks result indistinct intermediate repre-
sentations, with limited correlation between model similarity, before and after fine-
tuning, and transfer performance.

Then, we focus on how the domain of the source dataset influences model general-
ization and robustness to shortcut learning. The introduction of the Medical Imag-
ing Contextualized Confounder Taxonomy (MICCAT) provides a systematic way to
assess model robustness to confounding factors, such as information tags, patient
gender, and variations in medical imaging protocols. The study reveals that mod-
els pre-trained on natural image datasets are more vulnerable to shortcut learning,
despite showing similar performance to those pre-trained on medical datasets. This
emphasizes the need for more nuanced testing to evaluate generalization and miti-
gate shortcut learning.

Expanding on this, we apply spectral analysis to transfer learning to study model
frequency bias before and after fine-tuning. The analysis demonstrates that models
pre-trained on natural and medical images prioritize different frequencies, and that
resistance to frequency shortcuts can be improved by editing the source dataset.

Finally, we introduce a new dataset transferability metric tailored specifically to
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medical imaging tasks. This transferability metric combines feature quality with
gradient information, overcoming the limitations of previous methods based solely
on feature quality. Benchmarks established through this work reveal that publicly
available medical datasets can outperform ImageNet in medical image classifica-
tion tasks. The proposed metric is aimed to facilitate the selection of suitable source
datasets for pre-training, which is essential for improving transfer learning in med-
ical contexts. By providing ground-truth transfer performance for a publicly avail-
able benchmark dataset, we encourage further research and development of trans-
ferability estimation tools for medical image classification.

We hope that these findings and resources contribute to better-informed transfer
learning practices and source dataset selection for medical image classification ap-
plications.
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