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Abstract

In the modern age of computing, distributed systems are ubiquitous. Be-
sides the positive aspects of distributed systems, such as their scalability,
they remain hard to implement due to the intricacies of parallel execution.
A type discipline known as session types offers an appealing theoretical foun-
dation for verifying the correctness of distributed systems. Session types
are increasingly used in practice, seen by its integration into many main-
stream programming languages and the emergence of standalone session
type based tools, making it increasingly important to verify its theoretical
foundations. Guarantees offered by session types rely on formal proofs, and
errors in these proofs have been uncovered in multiple heavily cited session
type papers, and this has motivated the use of proof assistants to verify re-
sults within the field. Mechanised results exist for the restricted formalism
called binary session types, supporting the verification of two communi-
cating roles. Mechanised results for the more expressive multiparty session
types, allowing an arbitrary number of roles, is however far more limited. In
particular, the claims of the original paper by Honda et al, who introduced
multiparty session types more than a decade ago, remain unverified.

This thesis addresses this problem by providing a faithful mechanisa-
tion of results from Honda et al.. The contributions are twofold. Our first
contribution is a novel definition of the critical procedure of multiparty ses-
sion types known as projection, extending on prior results by proving our
definition not only sound, as others have for other formulations, but also
complete, doing so against a coinductive specification of projection. Our
second contribution is that we identify a counterexample to the subject
reduction theorem of Honda et al., and we define a new type system that
addresses this counterexample, and mechanise a subject reduction theo-
rem for this type system. Designed with decidability in mind, we provide
decision procedures for several of the properties the type system relies on.
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Resumé

Brugen af distribuerede systemer rækker vidt og bredt. P̊a trods af de pos-
itive aspekter af distribuerede systemer, s̊a som deres evne til at skalere,
forbliver de svære at implementere grundet udfordringerne bag parallel pro-
grameksekvering. En type disciplin, kendt som session types, tilbyder et
tiltrækkende teoretisk fundament til at sikre korrektheden af distribuerede
systemer. Session types er i stigende grad blevet brugt i praksis, hvilket gør
det vigtigt at sikre korrektheden af det teoretiske fundament session types
er baseret p̊a. Garantier som man opn̊ar ved brug af session types afhænger
af formelle beviser, og fejl i disse beviser er fundet i flere velciterede artik-
ler om session types, og dette har motiveret brugen af bevis assistenter
til at producere beviser der mekanisk kan blive checket for korrekthed af
en computer. Mekaniserede resultater eksisterer for den begrænsede for-
malise, binary session types, som understøtter kommunikation blandt to
deltagere. Mekaniserede resultater for den mere udtryksfulde multiparty
session types, som tillader arbitrært mange deltagere, er til gengæld mere
begrænset. Værd at bemærke er at resultaterne fra den originale artikel af
Honda et al., som introducerede multiparty session types for mere end et
årti siden, til den dag i dag ikke er blevet verificeret.

Denne afhandling takler dette problem ved at mekanisere resultater fra
Honda et al., og i den sammenhæng præsenterer vi to overordnede viden-
skabelige bidrag. Vi præsenterer en ny definition af en central operation
i multiparty session types, som kaldes projection, hvor vi forbedrer eksis-
terende resultater ved at bevise vores definition b̊ade sund, som andre har
gjort, og komplet. Vores andet bidrag er identificeringen af et modeksempel
til Subject Reduction teoremet af Honda et al., og et nyt type system der
takler dette modeksempel, som vi producerer et maskine-checket bevis for
opfylder Subject Reduction. Designet med decidability i mente, definerer
vi algoritmer til at afgøre flere egenskaber som type systemet afhænger af.
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Chapter 1

Introduction

The modern age of computing is distributed. The Internet has made it
possible to coordinate many machines, yielding a joint capability for com-
putation far beyond what is possible by any of its individual components.
Such a collection of independent machines that coordinate the execution of
a joint task by message passing, is called a distributed system. Examples
of distributed systems are cloud computing services like Amazon Web Ser-
vices [1] and Google Cloud Platform [3], that provide server clusters with
a computational power far exceeding any single processor on the market.
Similarly, distributed databases such as MongoDB [5] achieve an enormous
storage capacity by locating data across multiple devices. These distributed
systems harness the power of multiple independently executing machines.
With the performance of a distributed system growing by each additional
machine added, distributed systems scale. Distributed systems also offer
robustness, since critical functionality may be replicated by several com-
ponents, preventing a system wide failure in case a single component fails.
Distributed systems have many upsides, but they are hard to get correct.
Reasons include network reliability (messages could be dropped) and se-
curity concerns (components may act maliciously). A central challenge is
however the inherent nondeterminism of distributed systems that arises
when independent machines execute in parallel. This affects the order of
the messages exchanged, complicating debugging when bugs occur only in
some, and not all executions [41]. The challenges of debugging concurrency
bugs have been studied in the setting of large software applications [52] (e.g
MySQL [7] and Mozilla Web Browser [6]). Here it was found that the initial
attempts at fixing many of these concurrency-related bugs were incorrect,
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12 CHAPTER 1. INTRODUCTION

thus remaining hard to solve even after being identified. An example of a
concurrency bug is a deadlock where program execution is unintentionally
blocked and unable to progress. Another concurrency bug is a race, where
multiple concurrent executions compete for access to a shared resource. The
consequences of such bugs can be costly. It was estimated by the insurance
marketplace Lloyd’s that the failure of a large cloud service provider could
mean the loss of millions of dollars [4].

In recognition of these challenges, several modern programming lan-
guages offer various features that aim at minimising such bugs. The Go
programming language has goroutines which are threads that can commu-
nicate by message passing, rather than shared memory which can be more
error prone [73]. The Rust programming language has a type system which
tracks ownership of data, which ensures safe memory access in concurrent
programs. A type system defines a set of rules for how programs may be de-
fined and is an efficient approach to ruling out a large class of bugs. Beyond
Rust, type systems in general offer an efficient and scalable way to perform
static analysis of programs [64]. By constraining the programs one may
execute to those that ”do not go wrong” [56], many bugs can be prevented.
The properties of a well-typed program depends on the type discipline in
question. The most commonly used type discipline in many programming
languages is simple types [20], ensuring that one does not write nonsensical
expressions like "foo" + 5. Linear types [75] ensure not only the absence
of the nonsensical expression above, but also track how resource sensitive
values are used. More precisely, a linear type system ensures that linear
resources are used exactly once. The ownership tracking performed in the
Rust type system is an example of a linear type system. Even more rigor-
ous properties about well-typed programs can be ensured with behavioral
types [9]. They act as a specification for a program, describing the sequence
of operations that will be performed.

Session Types. The topic of this thesis is a particular behavioral type
discipline which has seen much success in both theory and practice known
as session types [38, 80, 39, 40], which we investigate to support the future
development of safe distributed systems. At the heart of session types is
the modular and compositional idea of a session, which should be thought
of as an execution instance of a protocol. An example is the SSH protocol
where keys are exchanged to establish a secure connection between a client
and a server. The server may be participating in more than one session,
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alternating between serving multiple clients and thus alternating between
communicating on many sessions. A protocol is specified with session types,
and these types define a sequence of, possibly repeating, communication ac-
tions that protocol participants must perform. Properties offered by session
types include that communication behaves as specified by session types (ses-
sion fidelity), the system is never stuck (progress) and received messages
are of the expected type so that nonsensical calculations do not occur mid-
execution (type safety).

The Problem. There exists many external tools based on session types
[79, 81, 46, 48, 49] and programming languages with session type features
such as C [60], Erlang [28], Python [58] and many more [8]. These tools
and programming language features aid the development of safe distributed
systems by relying on guarantees offered by session types. These guarantees
in turn rely on formal proofs, and some of these proofs have been found
to be incorrect [80, 67]. The original and more restrictive formulation of
binary session types [38] (supporting only two components in a session),
has limitations in their semantics that have been known of for a while,
providing the necessary time to address these limitations on paper [80] and
verify their correctness [19] with tools like proof assistants that allow a high
degree of trust by producing machine-checked proofs. The more recent and
expressive variant known as multiparty session types (supporting two or
more components in a session) shares similar soundness issues that have
been discovered more recently [67]. Efforts have been made to produce
machine-checked proofs about multiparty session types in novel settings [18,
44], but machine-checked proofs of the original results by Honda et al. [39,
40], who introduced multiparty session types more than a decade ago, and
laid the foundation for all later multiparty session types results, remains an
open problem.

Aim and Methodology. The soundness issues of multiparty session types
casts doubts on the foundations of the formalism, and demonstrates the
importance of accompanying formal results on paper with machine-checked
proofs. The aim of this PhD project is:

To increase reliability and trust in tools and programming languages that
rely on multiparty session types for the development of safe distributed

systems.

The reason why we cast doubts on the correctness of the results in Honda
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et al. is because their results rely on proofs by hand, and experience has
shown us that this approach is fragile. To avoid having our results sub-
jugated to these same doubts in the future, we take the methodology of
using the Coq proof assistant [54] to produce machine-checked proofs of all
our results. Proof assistants are software tools that aid the user in writing
correct proofs, interactively showing the user where in the proof they are,
and mechanically verifying the correctness of each reasoning step. Com-
monly used proof assistants include Coq [54], Isabelle/HOL [61], Lean [55]
and HOL Light [36]. Some of the most impressive and large-scale devel-
opments in proof assistants in mathematics include proofs of the Kepler
Conjecture [35] and Odd Order Theorem [33]. Comparative results in com-
puter science include the verified C compiler CompCert [50] and verified
seL4 microkernel [45].

Through the use of the Coq proof assistant, we attempt to answer the
research question:

Is it possible to produce a machine-checked formalisation of multiparty
session types that is faithful to the original formulation?



Chapter 2

Session Types

Session types were originally introduced by Takeuchi et al. [69] and later
adapted by Honda et al. [38] to a model of distributed systems known as the
π-calculus [57], extending this calculus with the notion of session. A session
is an execution instance of a protocol and allows a simple specification of
the communication pattern in terms of a session type. We illustrate sessions
by an example. Below two processes are about to initiate a session on the
shared name a:

a(x0).

Q︷ ︸︸ ︷
x0!⟨5⟩;x0?(y0);0 | a(x1).

R︷ ︸︸ ︷
x1?(y1);x1!⟨y1 + 5⟩;0

The example consists of two sub-processes, a(x).Q and a(x).R, separated by
the vertical line (|) which denotes parallel composition, expressing that they
execute in parallel. TheR process is attempting the initiation of a session on
a as the requesting party, denoted by a(x1), and the Q process is attempting
the initiation as the accepting party, denoted by a(x0). Here, (x0) and (x1)
act as binders used by the processes to implement their communication in
the session. The communication that Q will perform in this session is to
initially send the integer 5 on its session channel, followed by receiving a
value on this channel. The sending operation is denoted by x0!⟨5⟩, and the
receiving operation is denoted by x0?(y0), where (y0) acts as a binder for
the received value. The communication performed by R in the session is
to receive a value on its channel, denoted by x1?(y1) where the received
values is bound to y1. The y1 value is then incremented by 5 and sent
on the channel, denoted by x1!⟨y1 + 5⟩. After these communications both
processes are done, which is denoted by 0.

15



16 CHAPTER 2. SESSION TYPES

2.1 Binary Session Types

A session is initiated on a shared name, and the communication that takes
place in a session is specified by the session types associated with this name.
In binary session types, a session consists of two parties, and a shared
name is therefore associated with two session types. Before we look at the
session types associated to the shared name a in our example, we inspect
the behavior of Q and R and consider why it is safe. Q sends and receives
and integer, while R receives and then sends an integer. R additionally
performs the addition y1 + 5. This seems safe in the sense that the session
will not deadlock, nor will the addition y1 + 5 result in a type error, since
we know y1 will be substituted for an integer. A type system for binary
session types makes this intuition formal, associating the shared name a
with the following session types for the requesting (right) and accepting
(left) parties:

!⟨int⟩; ?⟨int⟩ ?⟨int⟩; !⟨int⟩
The types describe the communication of Q (left) and R (right), specifying
by (!⟨int⟩) the sending of an integer and by (?⟨int⟩) the reception of an
integer, separating these actions by semicolon (; ) to indicate their order.

Duality and Typing. The session types of R and Q are complimentary
in the sense that when one sends the other receives and vice versa. This
property is known as duality, which makes precise our intuition for why
the interactions between Q and R are safe. In Honda et al. [38] duality is
defined as an operation. For a session type T , its dual is computed as T .
Duality holds between two session types T and T ′ when T = T ′. Duality
of the sessions types for Q and R is witnessed by satisfying this equality:

!⟨int⟩; ?⟨int⟩ = ?⟨int⟩; !⟨int⟩
Duality is used in the type system of binary session types. The typing
judgment is Γ ⊢ P ▷∆ where Γ is an unrestricted environment and ∆ is a
linear environment. Shared names are typed by Γ using duality in a way
than can be seen in the typing rules for session request and accept:

Γ ⊢ a ▷ ⟨T, T ⟩ Γ ⊢ P ▷∆, x : T

Γ ⊢ a(x).P ▷∆
[Req]

Γ ⊢ a ▷ ⟨T, T ⟩ Γ ⊢ P ▷∆, x : T

Γ ⊢ a(x).P ▷∆
[Acc]

Both rules carry the premise Γ ⊢ a ▷ ⟨T, T ⟩, associating to a the two dual
session types T and T . In [Req] the requesting party has its linear envi-
ronment extended with session channel x of type T , while x is extended
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with T in [Acc]. Session channels are typed by ∆ in a way that also uses
duality, and to see how we observe the shape of Q and R after they have
initiated a session:

(νk)(

Q[k+/x]︷ ︸︸ ︷
k+!⟨5⟩; k+?(x);0 |

R[k−/x]︷ ︸︸ ︷
k−?(x); k−!⟨x⟩;0)

The initiation has created a session restriction, denoted by (νk), which
binds to channel endpoints k+ and k−, used by Q and R respectively. Du-
ality can be seen in the the typing rule for session restriction:

Γ ⊢ P ▷∆, k+ : T, k− : T

Γ ⊢ (νk)P ▷∆

The linear environment in the premise is extended with dual session types
for the session channels k+ and k−. These session channels must be used
linearly, which means that a session channel should be used by exactly one
party. This is enforced by the typing rule for parallel composition:

Γ ⊢ P ▷∆ Γ ⊢ Q ▷∆′

Γ ⊢ P | Q ▷∆,∆′

Here, the ∆ part of the linear environment is used to type P and the ∆′

part is used to type Q, and because these environments are disjoint it is
ensured that a session channel never is used by multiple parties at the same
time.

Subject Reduction. We say ∆ is balanced whenever the joint occurrence
of k+ : T ∈ ∆ and k− : T ′ ∈ ∆ implies duality of the session types (e.g.
T = T ′). Balancedness thus extends duality to an entire environment, and
this is used to state subject reduction. This property states that a well-
typed process remains well-typed after performing some communications,
and we denote the execution of zero or more communications as P −→∗ P ′.
The formal statement that is proved by Yoshida and Vasconcelos [80] can
be seen below:

If Γ ⊢ P ▷∆ with balanced ∆ and P −→∗ P ′, then there exists ∆′ such
that Γ ⊢ P ′ ▷∆′ and balanced ∆′

They use this property to prove type safety which states that well typed
programs do not reduce to errors (e.g expecting int but receiving string).
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2.2 Multiparty Asynchronous Session

Types

Multiparty session types were introduced by Honda et al. [39, 40]. They
generalise binary sessions to multiparty sessions that may consist of arbi-
trarily many roles, a significant contribution that earned the authors the
Most Influential Paper POPL 2018 award [53].

The Two-Buyer-Protocol. We introduce multiparty session types with
the classical example by Honda et al. known as the two buyer protocol.
The protocol involves two buyers, B1 and B2, along with a seller S. The
buyers want to purchase an expensive item together from S, and coordinate
among themselves if they can split the price of the item. More precisely
the scenario is: B1 requests the price of an item, and S responds with a
price to both buyers; B1 then notifies B2 of how much they will contribute
and B2 sends a label to S accepting or declining the offer. If the offer is
accepted, B2 sends an address to S for shipping. If the offer is declined,
communication halts. This protocol is seen below:

B1 −→ S : ⟨string⟩.
S −→ B1 : ⟨int⟩.
S −→ B2 : ⟨int⟩.
B1 −→ B2 : ⟨int⟩.

B2 −→ S :
{

Ok : B2 −→ S : ⟨string⟩. S −→ B2 : ⟨date⟩.end
Quit : end

}

The object above is a global type which is a declarative top-level protocol
that specifies a multiparty session in terms of interactions. One type of
interaction is the communication of a message, such as B1 −→ S : ⟨string⟩
which denotes that a string is sent by B1 and received by S. The other kind

of interaction is a branching, such as B2 −→ S :
{

Ok : ...
Quit : ...

}
which specifies

that B2 will send either label Ok or Quit to S. Specifying a multiparty
session in terms of these interactions allows a more precise description of
communication than is possible with binary session types. Consider how
the behavior of B1 may be described with binary session types. This role
interacts with B2 and S, and therefore needs to be part of two different
sessions. The communication that B1 performs in the session with B2 (left)
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and the session with S (right) can be described by the types below:

!⟨int⟩; end !⟨string⟩; ?⟨int⟩; end

There are multiple ways B1 may alternate between its participation in the
two sessions. The type system allows any interleaving of the actions in the
two session types above. The global type on the other hand specifies a
specific interleaving of the actions that B1 should perform in its interaction
with B2 and S. Consequently, global types enforce that the first action of
B1 is !⟨string⟩, while binary session types also allow !⟨int⟩ as the first action.
Global types. Global types are µ-types which allows specifications of
message interactions and branching interactions to be tail-recursive. The
full syntax of global types can be seen below.

Definition 1 (Global type syntax)

G ::= p −→ q : k⟨U⟩.G | p −→ q : k{lj : Gj}j∈J | µt.G | t | end

Here, p −→ q : k⟨U⟩.G specifies the interaction of a message type U which p
sends and q receives, after which the session continues as G. The branching
interaction, p −→ q : k{lj : Gj}j∈J , specifies that p will send a label j ∈ J to
q, after which the session continues as Gj. The terminated session is spec-
ified by end. Finally, the tail-recursive protocol µt.G expresses repeating
behavior by occurrences of t in G. In the semantics of global types µt.G
is unfolded to G[µt.G]. The presence of the µ-binder gives rise to stan-
dard notions of wellformedness for µ-types. They are wellformed if they
are contractive and closed. A contractive global type always separates the
binder µt and the variable t by at least one interaction p → q. For example
the global type µt.t is not contractive. A µ-type is closed if it has no free
variables.

Linearity. The syntax of global types above uses explicit channels1. An
explicit channel is the k in p → q : k and it specifies the queue that will
be used for asynchronous communication. In Honda et al., a multiparty
session contains a collection of shared queues, that any role may send to
and receive from with explicit channels. Because queues are shared, it is
possible write global types that introduce races between roles. An example
is:

p −→ q : k⟨int⟩. r −→ s : k⟨int⟩.end
1For simplicity the explicit channels in the two-buyer protocol are hidden.
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Here, the message of p may accidentally be intercepted by s. These racy
global types are avoided by checking that a global type has a property called
linearity2. This intuitively asserts that any two interactions in a global type
with the same explicit channel k, (e.g. p → q : k and r → s : k), where
one interaction occurs after the other, a causal dependency can be inferred
that guarantees that p → q : k will complete before r → s : k. Most later
work use implicit, rather than explicit channels. Multiparty sessions with
asynchronous communication based on implicit channels does not share
queues between roles. Instead, each of the n roles in a multiparty session
have n− 1 queues used to receive messages from the remaining n− 1 roles.
This is a simpler setting because global types are not racy by construction,
but it is also a more restrictive setting explicit channels can model implicit
channels while the contrary is not true. Syntactically, global types with
implicit channels are written as seen in the two buyer protocol above.

Local types. Multiparty session types uses global types to specify multi-
party sessions declaratively from a top-level view, in a way that mentions
all roles at once. On the level of the individual rule, multiparty session
types use local types to specify the sequences of actions performed by one
role that participates in the session. The syntax of local types can be seen
below

Definition 2 (Local Types)

T ::= !k⟨U⟩.T | ?k⟨U⟩.T | k ⊕ {li : T}i∈I | k & {li : Ti}i∈I | µt.T | t | end

Local types replace the message and branching interactions of global types
with local sending and receiving actions on explicit channels. Here, !k⟨U⟩.T
specifies the sending of a value of type U on channel k, while ?k⟨U⟩.T spec-
ifies the reception of a value. Local types differ from binary session types
because of the explicit channel. Had we used implicit channels, the explicit
channel would be replaced by a role, highlighting that local types are more
expressive than binary session types because they specify where a message
is sent. Sending a label j ∈ J is denoted by k⊕{li : T}i∈I , and awaiting the
reception of a label in J is denoted by k & {li : Ti}i∈I . Like global types,
local types are µ-types with the same notions of contractiveness, closedness
and unfolding.

2The exact definition can be found in Honda et al. [40] Section 3.5
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Projection. Projection is an operation on global types, denoted by G ⇂p,
that is a partial function that attempts to capture the specification of p in
G as a local type. Projection is undefined when the global type specifies
behavior for p that is impossible to implement. The definition of projection
by Honda et al. can be seen below

Definition 3 (Projection) The projection of G onto p, written G⇂p [18]
is defined such that:

(p1 −→ p2 : k⟨U⟩.G)⇂p=





!k⟨U⟩.(G ⇂p) if p = p1 and p1 ̸= p2

?k⟨U⟩.(G ⇂p) if p = p2 and p1 ̸= p2

G ⇂p if p ̸∈ {p1, p2}

(p1 −→ p2 : k{lj : Gj}j∈J)⇂p=





k ⊕ {lj : (Gj ⇂p)}j∈J if p = p1 and p1 ̸= p2

k & {lj : (Gj ⇂p)}j∈J if p = p2 and p1 ̸= p2

(G1 ⇂p) if p ̸∈ {p1, p2} and
∀i, j ∈ J. Gi ⇂p= Gj ⇂p

⊥ otherwise

(µt.G)⇂p=

{
µt.(G ⇂p) if G ⇂p ̸= end

endµ otherwise
t⇂p= t endµ ⇂p= endµ.

Intuitively, the projection on p removes the parts of the specification that
are about other roles than p, and captures everything specified about p as a
local type. Consider the projection of a message interaction p −→ q : k⟨U⟩.G.
If the projected role is the sender, then we produce !k⟨U⟩.T ; and we produce
?k⟨U⟩.T if the projected role is the receiver. If it is neither, then p1 −→ p2 :
k⟨U⟩ is simply deleted and projection continues on G. The projection of
the branching interaction is mostly similar. If the projected role is the
sender, we produce k⊕ {li : T}i∈I ; if it is the sender then k & {li : Ti}i∈I is
produced. In the case that the projected role is neither, then it is checked
that the projection on all branches are equal. This check is called the
branching condition, and it checks whether it is possible to implement the
projected role. A choice made by p1 is communicated only to p2, thus,
the specification for our projected role should not depend on this choice.
This is ensured by the branching condition. There are two cases for the
projection of µt.G. If the projection of G is not equal to end, projection
returns µt.(G ⇂p), and otherwise end is returned. The idea is that the side
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condition checks if the role occurs in G. If the role does not occur, then it
makes sense to return end. The condition is however not sufficient because
(G⇂p) might be a variable t. Consider the example:

µt.p −→ q : ⟨int⟩.t⇂r= µt.t

The projected role does not occur in the global type, and unfortunately
projection produces the local type µt.t which is not contractive. This is
incorrect, and the correct result should be end because the role does not
occur in the global type. We go into greater details about incorrectness of
recursion conditions in Chapter 4.

A corrected definition of projection is presented by Castro-Perez et
al.[18] who replace the faulty side condition with a condition that relies
on the operation gVar(t, G) defined as the following:

gVar(t, G) =





gVar(t, G1) if G = µt′.G1

t ̸= t′ if G = t′

true otherwise

Projection of the µ-binder is then defined the following way:

(µt.G)⇂p=
{

µt.(G ⇂p) if gVar(t, G ⇂p)
end otherwise

Semantics. The central property of projection stated in Honda et al. is
their Lemma 5.11, showing a correspondence between the semantics of
global types, and local types obtained through projection of global types.
They prove this property using the definition of projection seen in Defi-
nition 3 above. Their semantics are given as labeled transition systems

(LTS), denoted respectively by G
ℓ−→ G′ for global types and T

ζ−→ T ′ for
local types. Note that the labels for global type reductions ℓ are different
than for local type reductions ζ. This is because the former represents an
interaction between two roles (e.g p −→ q : k⟨U⟩) and the latter represents
an action by a single role (e.g. k!⟨U⟩). A map from roles to local types
is denoted by ∆, which we will also call a local type environment, and its

LTS ∆
ℓ−→ ∆′ is defined by the single rule seen below, where U ranges over

values U and labels l:

T1
!k⟨U⟩−−−→ T ′

1 T2
?k⟨U⟩−−−→ T ′

2

∆, p : T1, q : T2
p→q:k⟨U⟩−−−−−→ ∆, p : T ′

1, q : T ′
2

[LEnv]
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The rule states that the local type environment ∆ can reduce if it con-
tains two local types that can perform complimentary send and receive
actions. Endpoint Projection Theorem shows the following equivalence be-

tween G
l−→ G′ and ∆

l−→ ∆′:

If G is coherent then G
l−→ G′ iff [[G]]

l−→ [[G′]]

Here, coherence of a global type means it is both linear and projectable,
and the map denoted by [[G]] is defined as the following:

{p : G⇂p | p ∈ G}

That is [[G]] denotes a map from the roles of G to their projections. The
theorem states that if a global type can reduce by label ℓ, then so can [[G]].
Conversely, if the set [[G]] can reduce by ℓ, then so can G. To gain an
intuition for the semantics we include some of the rules for global and local

types. Consider these rules of the judgment G
ℓ−→ G′:

p −→ q : k⟨U⟩.G p→q:k⟨U⟩−−−−−−→ G
[GR1]

G[µt.G/t]
ℓ−→ G′

µt.G
ℓ−→ G′

[GR5]

Rule [GR1] states that a global type may reduce by its initial interaction
and rule [GR5] unfolds the µ-binder when it occurs at top-level. Consider

next the following rules for the semantics of local types T
ζ−→ T ′:

!k⟨U⟩.T !k⟨U⟩−−−→ T
[LR1]

?k⟨U⟩.T ?k⟨U⟩−−−→ T
[LR2]

T [µt.T/t]
ζ−→ T ′

µt.T
ζ−→ T ′

[LR7]

Like the semantics of global types, it states that a local type may reduce
by its initial action, reducing with a send by rule [LR1] and a receive by
rule [LR2]. Similarly, rule [LR7] unfolds the µ-binder. Only synchronous
communication rules have been shown, but the semantics of global and local
types are asynchronous and therefore, allowing for example a message of
type U ′ in !k⟨U⟩.!k′⟨U ′⟩.end to be received before U .

Remark 1 We have stated the semantics of local types and local type envi-
ronments in alignment with the definition we use in Chapter 9. This differs
from the definition of Honda et al. which is based on permutations of the
communication actions in local types. Their permutation rules, denoted by
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the judgment T ≈ T ′, expressing that T may be permuted to T ′, are missing
some cases. As an example, they are missing the case where a receive action
may be permuted in front of a sending action on a distinct channel:

!k⟨U⟩; ?k′⟨U ′⟩;T ≈?k′⟨U ′⟩; !k⟨U⟩;T (k ̸= k′)

This makes their Lemma 5.11 incorrect, but this seems to be simply ad-
dressed by adding the missing cases. In Chapter 4 we report on our result

of proving a correspondence between G
ℓ−→ G′ and ∆

ℓ−→ ∆′ as they have been
defined in this chapter.

Coinductive Projection. One can be confident in the soundness of the
definition of Castro-Perez et al. because they prove it sound with respect to
a specification of projection given by Ghilezan et al. [31] in the Coq proof
assistant. This specification is defined on coinductive global and local types,
which do not have µ-binders, and this gives a declarative definition of what
projection of recursion should satisfy. Coinductive projection is denoted by
Gν ⇃νp T ν , where Gν and T ν are coinductively generated by the grammars
below:

Gν ::= p
ν−→ q : k⟨U⟩.Gν | p ν−→ q : k{lj : Gν

j }j∈J | endν

T ν ::= !νk⟨U⟩.T ν | ?νk⟨U⟩.T ν | k ⊕ν {li : T ν
i }i∈I | k &ν {li : T ν

i }i∈I | endν

The constructs of coinductive global and local types closely match the corre-
sponding inductive definitions, except for the omission of the µ-binder and
variable constructs. This is because coinductive definitions may be circular,
allowing the inductive global type µt.p −→ q : k⟨U⟩.t to be represented as:

Gν
1 = p

ν−→ q : k⟨U⟩.Gν
1 (2.1)

Castro-Perez et al. [18] makes this notion precise, by defining a coinductive
relation between inductive and coinductive types G R Gν which expresses
that the repeated unfolding of inductive global type G corresponds to the
coinductive type Gν . As an example, consider the following rule of coin-
ductive projection:

Gν ⇃νp T ν

p
ν−→ p2 : k⟨U⟩.Gν ⇃νp !νk⟨U⟩.T ν

[M1⇃ν ]
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When the projected role p matches the sender in the message interaction
p −→ p2 : k⟨U⟩ of the global type, then it must be related to a local type
with a !νk⟨U⟩ prefix. The continuations Gν and T ν must also be related by
coinductive projection. The premise is separated from the conclusion by a
double line, which indicates that a derivation may be circular. This allows
us to relate Gν

1 from (2.1) with T ν
1 =!νk⟨U⟩.T ν

1 in the following way:

p
ν−→ q : k⟨U⟩.Gν

1 ⇃νp !νk⟨U⟩.T ν
1

Gν
1 ⇃νp T ν

1 (2.2)

For all full overview of coinductive projection, we refer to our papers in
Chapters 7 and 8.

Subject Reduction. Multiparty session types replace the duality of
binary session types with coherence. The shape of the typing judgment
stays the same Γ ⊢ P ▷∆, but we call a wellformed ∆ for coherent, rather
than balanced, and this means that the local types in ∆ are projections of
global types that satisfy the linearity predicate. More precisely, we say that
a set of local types {pi : Tpi| i ∈ I} is coherent if there exists a global type G
whose roles are {pi | i ∈ I} and it holds for each role pi that Tpi = G⇂pi . This
is generalised to an arbitrary ∆ that possibly contains session channels from
multiple sessions by requiring that the environment obtained by keeping
only entries with the session channels of session s, denoted by ∆(s), is
coherent. We use coherence in the typing rule for restriction:

Γ ⊢ P ▷∆, {spi : Tpi | i ∈ I} coherent({pi : Tpi | i ∈ I})
Γ ⊢ (νs)P ▷∆

This rule is very similar to the restriction rule for binary session types, dif-
fering in two ways by using located session channels sp instead of polarised
channels k+, and by replacing duality with coherence. Coherence is also
used to state subject reduction. For multiparty session types this theorem
states that that typing is preserved after reduction, and that the commu-
nication of processes is reflected by the LTS of local type environments. A
simplified version of the Honda et al. theorem statement is:

If Γ ⊢ P ▷∆ with ∆ coherent and P −→ P ′ then there exists ∆′ s.t.
Γ ⊢ P ′ ▷∆′ and ∆ = ∆′ or there exists an ℓ such that ∆

ℓ−→ ∆′

This is a central property of multiparty session types. It is the foundation
for proving three guarantees that are presented in Honda et al.:
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1. Communication safety, which means that well typed processes ”do
not go wrong”. This property ensures that the messages and labels
received, will be of the correct type.

2. Session fidelity, meaning that a multiparty session will respect the
protocol assigned to it. That is, the reductions that a process takes
can be mapped back to the global type that specifies its session which
will make corresponding reductions in terms of its LTS.

3. Progress (well typed processes do not get stuck). This ensures that a
process does not deadlock. Honda et al. prove this property for pro-
cesses communicating over a single session. Later work has developed
techniques for generalising this to processes with multiple interleaved
sessions [14].

Remark 2 Our definition of the ∆ environment differs from Honda et al..
In their work an entry in ∆ is a vector of session channels s̃ which is
assigned to a set of located local types. A located local type is a local type
annotated by a role, denoted by T@p. An entry in the original definition by
Honda et al. therefore has the shape:

s̃ : {Tpi@pi | i ∈ I}

To the best of our knowledge all later work has moved away from this prac-
tice, in favor of entries of consisting of a single located session channel
which is assigned to a local type:

sp : T

We also follow this newer practice, which can be seen in the typing rule
for restriction above. This is very similar to polarised channels of binary
session type, with roles replacing polarities {+, i}.

Failures of Subject Reduction. Scalas and Yoshida [67] present a prob-
lem that occurs in many multiparty session type papers; in particular af-
fecting their subject reduction proofs. The problem is rather technical, and
it is caused by the interplay between a coherence definition for the ∆ envi-
ronment [77], and and an extension to projection called full merging [17],
two concepts that have been used in many later papers [67].



Chapter 3

Multiparty Session Types in
Coq

Session types is part of the larger field called formal methods, where the
behavior of programs are specified and proved correct by the formal means
of mathematics and logic. Such results often rely on the error prone process
of writing lengthy complicated proofs by hand, making mistakes likely and
decreasing trust in the results. It has become more common to accompany
research papers with mechanised proofs in an interactive proof assistant,
verifying the claims of the results in these papers. These interactive proof
assistants are tools that help the user to write proofs. The tool keeps track
of what needs to be proven, what may be assumed and often supports
some form of automation. A mechanised proof that verifies a formal result
is an implementation of this proof in a proof assistant, and because the
proof script has been checked by the proof assistant, one has the highest
guarantees of the correctness.

The Coq Proof Assistant. Results in computer science and mathemat-
ics and are verified in many proof assistants, and these proof assistants
are based on different theoretical foundations and offer different degrees of
automation. In this project we choose the Coq proof assistant, and this
choice is mostly due to prior experience with the tool. Coq is based on
the Calculus of Inductive Constructions [13] which is a dependently typed
lambda calculus with inductive and coinductive definitions. The functional
programming language used for writing programs in Coq is called gallina
and is a subset of the OCaml functional language [51], supporting a subset
of OCaml’s features.

27
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A faithful representation Coq. The methodology taken in this thesis is
to use the Coq proof assistant to verify results of Honda et al.. The aim is
to give a faithful representation of their definitions in Coq, changing them
only if necessary, particularly convenient or in an attempt to align with
more recent developments in multiparty session types. As an example of
alignment, see Remark 2 about the use of located session channels. A list
of changes that we made to their type system can be found in Chapter 4.2,
in the paragraph ”A New Type System”. Based on the presentation of
multiparty session types we gave in Chapter 2, we now show global types
have been represented in Coq.

3.1 Global types in Coq

We begin by showing how the two-buyer protocol may be represented in
Coq1:

Definition two_buyer : gType :=

GMSg (B1,S,k_1s) (VSort String).

GMSg (S,B1,k_s1) (VSort Int).

GMsg (S,B2,k_s2) (VSort Int).

GMsg (B1,B2,k_12) (VSort Int).

GBranch (B2,S,k_2s) [(0, GMsg (B2,S,k_2s) (VSort String).

GMsg (S,B2,k_s2) (VSort Date).

GEnd);

(1, GEnd)].

Here, we represent the message interaction p −→ q : k⟨U⟩.G with the
GMsg a u g, where a is an action whose type is a ternary tuple of two
roles and an explicit channel ptcp * ptcp * ch, u is a value which may
either be a sort, as in VSort String or a local type The branching inter-
action p −→ q : k{lj : Gj}j∈J is represented as GBranch a gs, where a is an
action and gs is a list of global types paired with a natural number labeling
each branch. We represent end with GEnd. Note that we have included five
distinct explicit channels for ordering of roles in an interaction to mimic the
implicit channels used to write the protocol in Chapter 2.

1The actual implementation keeps the expression language minimal by only support-
ing boolean expressions. The extension to other simple types is trivial and orthogonal
to our goals.
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Global type syntax and Autosubst2. The full syntax of global types
is inductively defined by the type gType seen below:

Inductive gType : Set :=

| GMsg : action -> value -> gType -> gType

| GBranch : action -> list (nat * gType) -> gType

| GEnd : gType

| GRec : gType -> gType

| GVar : nat -> gType.

The construct GRec G represents µt.G, making this constructor a binder
for de Bruijn indices GVar n, which indicate by their natural number n the
distance to their binder. This syntax definition has been generated by the
Autosubst2 library [68], which it generated from a signature file an excerpt
is shown of below:

GMsg : action -> value -> gType -> gType

GBranch : action -> "list" ("prod" (nat,gType)) -> gType

GEnd : gType

GRec : (gType -> gType) -> gType

The first three lines are responsible for generating the constructors for
message interaction, branching interaction and end. We indicate that
GRec g is a binder with a higher-order abstract syntax notation, seen in
GRec : (gType -> gType) -> gType, which Autosubst2 translates to a
de Bruijn representation. The constructor GVar : nat -> gType is thus
constructed without being mentioned in the signature file. As an example
of how these de Bruijn Indices work, consider the variables t and t′ which
bind respectively to the outer and inner binder in the global type below:

G0 = µt.µt′.p −→ q : k
{

Left : t
Right : t′

}
(3.1)

We represent these variables as GVar 1 and GVar 0 in G_0 seen below, where
labels Left and Right are represented with 0 and 1 respectively:

Definition G_0 :=

GRec (GRec (GBranch (p,q,k) [(0, GVar 1); (1, GVar 0)]))}

Unfolding in Coq. The µ-binder in µt.G is used to define tail-recursive
protocols by unfolding them when they occur at top level to G[µt.G/t], as
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we saw in rule [GR5] of the LTS for global types. Performing this operation
on the outer binder of G0 in (3.1) looks like this:

G1 = µt′.p −→ q : k
{

Left : t
Right : t′

}
[G0/t] (3.2)

= µt′.p −→ q : k
{

Left : G0

Right : t′

}
(3.3)

The corresponding operation on G_0 requires a substitution function on
global types. The substitution function seen below was automatically gen-
erated by Autosubst2 from the signature file, and has the following type:

Fixpoint subst_gType (f : nat -> gType) (g : gType) : gType :=

...

We omit its definition because it is verbose. The function takes as argu-
ments a substitution function f: nat -> gType that maps all indices to
global types, and a global type G : gType on which the substitution is per-
formed. This substitution touches all the free variables of the global type
and is called a parallel substitution, in contrast to the single-point sub-
stitution G[µt.G/t] we performed above. Autosubst2 implements parallel
substitution and provides a lot of tactical support for simplifying composed
parallel substitution expressions. Using the substitution function generated
by Autosubst2, we perform the unfolding that was done in Equation (3.2)
the following way:

Definition G_1 :=

subst_gType

(scons G_0 GVar)

(GRec (GBranch (p,q,k) [(0, GVar 1); (1, GVar 0)]))

Here (scons x f) : nat -> gType is a substitution that replaces GVar 0

with x, and decrements all other variables. Autosubst2 defines scons the
following way2:

Definition scons (G : gType) (f : nat -> gType) :=

fun n => match n with

2The actual definition used by Autosubst2 is more general and makes use of typing
features of Coq we do not explain.
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| 0 => x

| S n' => f n'

end.

One can state and prove the equality in Equation (3.3) like this:

Lemma G_eq :

G_1 = (GRec (GBranch (p,q,k) [(0, G_0); (1, GVar 0)]))

Proof. rewrite /G_1 //=. Qed.

Here Proof and Qed mark respectively the beginning and end of a proof
script. The tactic /G_1 //= unfolds the definition of G_1, simplifies the
substitution expression and finishes the proof by reflexivity.

Remark 3 Mechanising inductive µ-types is non-trivial. In Chapter 2.2
we saw that the structurally recursive definition of projection by Honda et
al. can produce non-contractive types. The challenge of inductive µ-types is
due to the interplay between definitions that unfold the µ-binder, and those
that structurally recurse under it. This challenge is addressed in many
mechanisations of binary and multiparty session types by avoiding the in-
ductive µ-binder in favor of other choices of representation. Examples in-
clude:

• Castro-Perez et al. [19] who mechanised a subject reduction result for
inductive binary session types without recursion.

• Jacobs et al. [44] who mechanised multiparty session types in a novel
setting, representing global and local types coinductively and avoiding
the need for a µ-binder because coinductive definitions can be circular.

• Castro-Perez et al. [18] who rely partially on coinductive types for the
formal guarantees of a multiparty session type based tool they develop.

• Hinrichsen et al. [37] who mechanised binary session types using a
program logic, and represented recursive session types via the general
fixpoint operator of the program logic.

Staying faithful to the original formulation by Honda et al. we represent
global and local types inductively with the µ-binder. Equality is also unde-
cidable for coinductive types [12], which makes inductive types superior in
our setting where the desire is to support the future development of tools.





Chapter 4

Results

This PhD project makes the following contributions to the field of session
types

• Projection We identify multiple either incorrect or severely restric-
tive definitions of projection; we develop a new projection procedure,
proven sound and complete in Coq with respect to the coinductive
specification by Ghilezan et al. [31]. This affords inductive types the
expressivity of coinductive types in a mechanised computable pro-
jection, for which we also mechanise a proof of Endpoint Projection
Theorem.

• Subject Reduction We present a counterexample to the Subject
Reduction result of Honda et al.. A new type system that makes use
of our new projection definition is presented, along with a mechanised
proof of subject reduction for this type system.

We now give a detailed explanation of these contributions.

4.1 Projection

Incorrect and Restrictive Projections. Glabbeek et al. [74] identified
that the recursion condition in Bejleri and Yoshida [11] results in an incor-
rect projection, returning end when a recursion variable should have been
returned. We extend on their contribution by identifying three additional
problematic recursion conditions. One of these conditions similarly returns
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end when a variable should have been returned and is thus incorrect. The
two other conditions, when considered informally, appear correct but they
severely restrict the set of projectable global types. Collectively these incor-
rect and restrictive conditions span four well-cited papers, and to provide
a comparison we list them along with four other papers that use three dis-
tinct recursion conditions that are neither incorrect nor severely restrictive.
The conditions are summarised in a table, sorted by year of publication.
For each publication, or pair of publications, the recursion condition that
has been used is shown, indicating the problem that occurs, if at all, and a
global type that causes it. We use the three global types below:

(1) : p −→ s : k⟨U⟩.µt.q −→ r : k′⟨U ′⟩.t (2) : µt.p −→ r : k⟨U⟩.µt′.t (4.1)

(3) : p −→ s : k⟨U⟩.µt.q −→ r : k⟨U⟩.µt′.t (4.2)

The table can be seen below:

Paper Condition on µt.G⇂p Problem

Honda et al. [39] G⇂p ̸= end Restrictive (1)

Bettini et al. [14] None Restrictive (1)

Yoshida et al. [77]
None

(µt.t identified with end)
-

Bejleri and Yoshida [11] p ∈ G Incorrect (2)

Demangeon and Yoshida [25] G⇂p ̸= t Restrictive (3)

Coppo et al. [22]

Scalas and Yoshida [67] ∀t, G⇂p ̸= t Incorrect (2)

Castro-Perez [18] gVar(t, G) -

Glabbeek et al. [74] p ∈ G ∨ ¬closed(µt.G) -
Yoshida and Hou [78]

Starting with the Honda et al. condition, we recall that Chapter 2 showed
that one from this condition could produce µt.t. In particular, the global
type (1) in (4.1) projects on p to !k⟨U⟩.µt.t. Because Honda et al. explicitly
state that they assume µ-types to always be closed and contractive, an ar-
gument can be made that because the produced local type is an exotic term,
then the projection of p on (1) should be undefined. This would also mean
that (1) is not projectable, since p is a role in the global type. Moreover it
would mean that any global type p −→ s : k⟨U⟩.G with a recursive definition
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in G that does not involve p would be undefined. This rules out many re-
cursive global types. Bettini et al. suffer the same problem since they have
no condition from which it is straightforward to produce µt.t.

Yoshida et al. does not have this issue, in spite of having no condition,
and this is because they explicitly make the additional assumption that µt.t
is equated with end.

Bejleri and Yoshida use the condition p ∈ G which checks for the pres-
ence of the role in G. The incorrectness of using this as the condition for
projecting recursion was spotted by Glabbeek et al. [74]. A variation on
their example is the global type (2) in (4.1). The incorrectness is then seen
by comparing the specification for p in the global and local type:

µt.p −→ r : k⟨U⟩.µt′.t⇂p= µt.!k⟨U⟩.end

The global type specifies the repeated sending on channel k, which the local
type has replaced the recursion variable t with end, incorrectly specifying
the communication to take place only once.

Demangeon and Yoshida along with Coppo et al. use a condition that
with global type (3) in (4.2) projected on p produces !k⟨U⟩.µt.µt′.t, suffer-
ing similar restrictiveness to Honda et al..

Scalas and Yoshida use a more general condition that checks whether
the projection of the body is any variable, not just a specific variable bound
to the binder being projected. This results in the same incorrect behavior
as in Bejleri and Yoshida, the global type (2) specifies recursive behavior
for p which projection translates to finite behavior.

We covered in Chapter 2 the correctness of the condition used in Castro-
Perez et al.. A more expressive and correct condition was presented by
Glabbeek et al. who are able to project the following global type on p:

p −→ s : k0⟨U⟩.µt.q −→ r : k1
{ l1 : q −→ r : k2⟨U ′⟩.t

l2 : end

}
⇂p=!k0⟨U⟩.end (4.3)

The condition they use is the only one known in the literature that can
correctly project such a global type, where the projection on the branches
are distinct (e.g t and end), yet due to checking for the presence of the role
p ∈ G the procedure may return end before the failing branching check is
performed. While Bejleri and Yoshida achieve the same, their omission of
the disjunct ¬closed(µt.G) invites (2) in (4.1) as a counterexample.
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A Sound and Complete Projection. We present a projection procedure
that unlike prior work is not only proved sound with respect to the coinduc-
tive specification Gν ⇃νp T ν presented in Chapter 2, but also complete. We
denote our projection function by projp(G) and its definition can be seen
below:

projp(G) =

{
transp(G) if projectablep(G)

undefined otherwise
(4.4)

Here transp(G) is the total function that is derived by removing the
branching check from the Castro-Perez et al. projection. We use a test
projectablep(G) to check whether the global type is projectable on p. The
soundness and completeness properties for our projection function are the
following:

Theorem 1 (Soundness of Projection) If projp(G) is defined then
there exists coinductive types Gν and T ν such that G R Gν, projp(G) R T ν

and Gν ⇃p T ν.

Theorem 2 (Completeness of Projection) If Gν ⇃cop T ν and G R Gν

then projp(G) is defined and projp(G) R T ν.

Both theorems use the unravelling relations G R Gν and T R T ν to re-
late the output and the definedness of the partial function projp(G) and
coinductive relation Gν ⇃νp T ν . We explain the unravelling relations in
detail in Chapter 8. For our present purposes it is sufficient to rely on the
intuitive description given in Chapter 2, namely that unravelling asserts
that the coinductive type corresponds to the inductive type unfolded to the
limit. Informally, soundness states that when projp(G) is defined, then the
unravelling of G and projp(G) are related by coinductive projection. This
property follows by construction because it is exactly what projectablep(G)
checks. Completeness on the other hand states that if Gν ⇃νp T ν , then
projp(G) is defined for G if it unravels to Gν , and projp(G) unravels to T ν .
To illustrate what it means for our projection to be complete, consider the
global type below which is projectable by both Castro-Perez et al. and us:

µt. p −→ q : k⟨String⟩. r −→ s : k′ {Left : t, Right : t} (4.5)

This global type specifies that the first interaction that will take place is
p → q : k, afterwards r → s : k′ will occur, and then the protocol repeats.
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This can also be expressed with two binders the following way:

µt. p −→ q : k⟨String⟩. µt′. r −→ s : k′
{

Left : t
Right : p −→ q : k⟨String⟩.t′

}
(4.6)

Because the two branches in (4.5) are the same, the Castro-Perez et
al. projection is defined for this global type. This is not the case for the
global type in (4.6) where the Left branch projects to t and the Right

branch projects to !k⟨String⟩.t′. For this reason, the projection will be
undefined for all projections that rely on the branches projecting to the
same thing. This includes the Castro-Perez et al. projection and all other
projections on inductive types in the literature. On the other hand, our
projection relies on the projectablep(G) which intuitively decides if the un-
ravelling of G and transp(G) into the coinductive types we denote as Gν and
T ν are related by coinductive projection Gν ⇃νp T ν .

Endpoint Projection Theorem. The Endpoint Projection Theorem re-
lates the LTS of global and local types. If a global type can reduce, then
the environment of local types that is derived from the global type through
projection can reduce as well. Likewise, if the environment of local types
derived through projection of a global type can reduce, then the global type
in question can as well. Both directions of the theorem assumes that this
initial global type is coherent, which means it is linear and projectable.
Crucial for proving the theorem, is the fact that projectability must be

preserved by global type reductions. That is, whenever G
l−→ G′ and G is

projectable, then also G′ must be projectable. Recall that a global type is
projectable if its projection is defined on all roles. One of the rules for the
LTS of global types is the one seen below:

∀i ∈ I. Gi
ℓ−→ G′

i q ̸∈ ℓ

p −→ q : k{li : Gi}i∈I ℓ−→ p −→ q : k{li : G′
i}i∈I

[GR4]

Honda et al. prove preservation of projectability by induction on G
l−→ G′

(proposition 4.4) but the case for [GR4] is incorrect. They incorrectly state
that the proof is immediate by induction hypothesis. This is not the case,
and the reason for this illustrates the challenge in proving this property.

In showing preservation of projectability we may assume it to hold for
p −→ q : k{li : Gi}i∈I , meaning the projection onto all roles is defined, which
means the branching condition is satisfied for all roles that are not p nor q:

∀c /∈ {p, q},∀i, j ∈ I, Gi ⇂c= Gj ⇂c
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The induction hypothesis tells us that each G′
i,∀i ∈ I are projectable and

from this we must show that also p −→ q : k{li : G′
i}i∈I is projectable, which

reduces to showing the following branching condition is satisfied:

∀c /∈ {p, q},∀i, j ∈ I, G′
i ⇂c= G′

j ⇂c

This property must somehow be derived from the assertions about the initial
global type. A natural way to proceed would be to fix c, and in the case
where J = {1, 2} we would have to show the following:

(∀d /∈ {p, q}, G0 ⇂d= G1 ⇂d) =⇒ G′
0 ⇂c= G′

1 ⇂c (4.7)

One would expect the only relevant part of the premise above is the
projection on c /∈ {p, q}, and thus that it would suffice to show the stronger
property seen below:

G0 ⇂c= G1 ⇂c =⇒ G′
0 ⇂c= G′

1 ⇂c (4.8)

While the weaker statement in (4.7) holds, the stronger statement in (4.8)
does not. A counterexample is a reduction by label a −→ d : k⟨int⟩ on the
global types below:

G0 = a −→ d : k⟨int⟩.µt.a −→ c : k′⟨int⟩.a −→ d : k′⟨int⟩.t (4.9)

G1 = µt.a −→ c : k⟨int⟩.a −→ d : k′⟨int⟩.t (4.10)

Both G0 and G1 have the same projection on c

µt.?k⟨int⟩.t

After reduction, the global types become

G′
0 = µt.a −→ c : k′⟨int⟩.a −→ d : k⟨int⟩.t (4.11)

G′
1 = a −→ c : k′⟨int⟩.µt.a −→ c : k′⟨int⟩.a −→ d : k⟨int⟩.t (4.12)

Now the projection on c is not the same

G′
0 ⇂c= µt.?k⟨int⟩.t G′

1 ⇂c=?k⟨int⟩.µt.?k⟨int⟩.t

They do however correspond to the same protocol, one of them is just
unfolded (e.g unf(G′

0 ⇂p) = G′
1 ⇂c). The syntactic equality assertion does

not recognise types up to unfolding, and this demonstrates why we cannot
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reduce preservation of projectability to the strengthened statement in (4.8).
The reason for this is that the universal quantification in the premise of the
weaker statement in (4.7) includes an equality assertion on the projection
of d, from which we infer that the two global types have unfolded the same
number of times

This highlights the counterintuitive idea that the simple syntactic
branching condition can, due to its restrictiveness, make proofs more dif-
ficult. In this case, we had to use an additional role (d) to ensure both
branches had unfolded the same number of times.

We would completely avoid this problem if the branching condition used
a coinductive equality up to unfolding. It is a strong benefit that our sound
and complete projection satisfies exactly this property. To be precise, our
branching condition is the side condition projectablep(G) in (4.4) which
satisfies that if the following holds

projectablec

(
p −→ q : k

{
Left : G0

Right : G1

})

Then it also holds that

projc(G0) ≈ projc(G1)

This makes the technique which previously failed for the syntactic asser-
tion applicable with our more flexible branching check by satisfying the
implication:

projc(G0) ≈ projc(G1) =⇒ projc(G
′
0) ≈ projp(G

′
1) (4.13)

This allows us to reason about the projection of c alone, avoiding the coun-
terexample because while it is not the case that projc(G

′
0) = projc(G

′
1), it is

the case that projc(G
′
0) ≈ projc(G

′
1).

4.2 Subject Reduction

A Counterexample. We have identified a counterexample to the Subject
Reduction result of Honda et al.. Recall the shape of the subject reduction
theorem we gave in Chapter 2:

If Γ ⊢ P ▷∆ with ∆ coherent and P −→ P ′ then there exists ∆′ s.t.
Γ ⊢ P ′ ▷∆′ and either ∆ = ∆′ or there exists an ℓ such that ∆

ℓ−→ ∆′
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The counterexample shows an initial process P0 that performs two sending
actions, thereby becoming P in the theorem above, and then performing a
final receiving action and becoming P ′. The typing environment ∆ is used
to type both P0 and P . There does however not exist a ∆′ that can type

P ′ where either ∆ = ∆′, or there exists a label ℓ such that ∆
ℓ−→ ∆′ is

derivable. The counterexample is presented in detail in Chapter 9 and we
now summarise it, starting with the process P0 seen below:



p︷ ︸︸ ︷
sp[1] ◁ l2; s

p[2]!⟨true⟩;0 |
q︷ ︸︸ ︷

sq[1] ▷ {l1 : sq[2]!⟨false⟩;0, l2 : 0} |
r︷ ︸︸ ︷

sr[2]?();0

| s[1] ::∅ | s[2] ::∅




(4.14)

The P0 process seen in (4.14) is a multiparty session that consists of two
queues addressed at s[1] and s[2] and three roles: p is about to send label
l2 to s[1], and then true to s[2]; q is awaiting a label from s[1]; r is awaiting
a value from s[2]. We can type this session with an environment of three
local types:

p : 1⊕
{

l1 : end
l2 : !2⟨bool⟩; end

}
, q : 1&

{
l1 : !2⟨bool⟩; end
l2 : end

}
, r :?2⟨bool⟩; end

(4.15)

We will refer to the environment in (4.15) as ∆. In this environment, the
type for p specifies that it will send either label l1 or l2, and continue accord-
ing to the branch associated with the chosen label. In the implementation
of p we see that it will send l2. The remaining communication of p follows
the specification of the l2 branch by sending a bool. The explicit channels 1
and 2 in the type refer to the two queues at s[1] and s[2] in 4.14. The type
for q corresponds exactly to the shape of the q process and the same holds
for r.

After p has sent l2 and true the process becomes P seen below:



p︷︸︸︷
0 |

q︷ ︸︸ ︷
sq[1] ▷ {l1 : sq[2]!⟨false⟩;0, l2 : 0} |

r︷ ︸︸ ︷
sr[2]?();0

| s[1] :: l2
p · ∅ | s[2] :: truep · ∅


 (4.16)

The P process seen in (4.16) shows p completed as 0; s[1] contains l2
p with

the role annotation indicating that p sent this message; s[2] contains truep;
q forms a redex with s[1] and r forms a redex with s[2]. While the process
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has changed, its typing (e.g. ∆) stays the same. This is because ∆ tracks
interactions, and neither of the messages sent by p have been received yet.
This means that both of the processes in (4.14) and (4.16) are typed by ∆.
We now consider what happens after r reads from sr[2] and omitting P ′:




p︷︸︸︷
0 |

q︷ ︸︸ ︷
sq[1] ▷ {l1 : sq[2]!⟨false⟩;0, l2 : 0} |

r︷︸︸︷
0

| s[1] :: l2
p · ∅ | s[2] ::∅


 (4.17)

The P ′ process in (4.17) shows the state of the session after the completion
the interaction consisting of p sending to r a bool over the s[2]. This corre-
sponds to the label p −→ r : 2⟨bool⟩. Since this interaction has taken place
in the session, we would expect the ∆ environment that types the session to
be able to reduce by this label, but that is not the case. That is, there exists

no ∆′ such that ∆
p−→r:2⟨bool⟩−−−−−−−→ ∆′ is derivable. To see why, we must consider

the Honda et al. environment semantics which are based on permutations
of the communication actions in local types. As an example, if we wanted
to perform a communication on explicit channel 2 involving a local type
!1⟨bool⟩.!2⟨bool⟩.end, we can permute its actions to !2⟨bool⟩.!1⟨bool⟩.end.
In our case, the issue is that our interaction ∆

p−→r:2⟨bool⟩−−−−−−−→ ∆′ involves p
as a sender of bool, and we would like to permute its type to the following
type:

!2⟨bool⟩; 1⊕
{

l1 : end
l2 : end

}

This would allow ∆ to reduce by p −→ r : 2⟨bool⟩ to the following environ-
ment that types P ′:

p : 1 ⊕
{

l1 : end
l2 : end

}
, q : 1&

{
l1 : !2⟨bool⟩; end
l2 : end

}
, r : end (4.18)

It is however not possible to make the necessary permutation for p, and that
is because the permutation rule for external choice follows the same idea as
the [GR4]-rule of global types. Intuitively, reordering a communication in-
side a branch to become the prefix of the local type, requires this reordering
to take place in all branches. As an example, the necessary permutation
would have been possible if ∆ assigned p to the following type:

1⊕
{

l1 : !2⟨bool⟩; end
l2 : !2⟨bool⟩; end

}
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We have established that ∆ is stuck in spite of being used to type a process
that completed the interaction p −→ r : 2⟨bool⟩. Moreover, the process P ′

that completed the interaction is typable by the environment seen in (4.18).
The problem is therefore caused by the restrictiveness of the environment

semantics ∆
ℓ−→ ∆′, and because of Endpoint Projection Theorem, this

issue is also present in the global type semantics G
ℓ−→ G′. To see how

this problem manifests in global types, consider if we wrap P in a session
restriction. We can type (νss)P with the restriction rule we saw in Chapter
2.2. We use the following coherent global type:

G = p −→ q : 1
{ l1 : q −→ r : 2⟨bool⟩.end

l2 : p −→ r : 2⟨bool⟩.end
}

(4.19)

We have the identity below that makes ∆ coherent:

∆ = {sp : G⇂p, sq : G⇂q, sr : G⇂r}

A typing derivation with the restriction rule would then look like this:

...
Γ ⊢ P ▷∆ coherent(∆)

Γ ⊢ (νss)P ▷ ∅

The problem of ∆ not being able to reduce has now manifested itself on
the global type since neither G can reduce by p −→ r : 2⟨bool⟩ because the
relevant rule [GR4] is not applicable. The global type that corresponds to
∆′ is

G′ = p −→ q : 1
{ l1 : q −→ r : 2⟨bool⟩.end

l2 : end

}
(4.20)

The global type semantics does however not relate G and G′ and this high-
lights a limitation of the global type semantics of Honda et al. which is
discussed in Chapter 6.

Subject Reduction for a new Type System. We present a new type
system, addressing the counterexample by imposing a new constraint on
global types called unstuck that rules out the global type in (4.19). In-
tuitively it checks that if a single branch of a global type can perform a
reduction, denoted by G ↓1 ℓ, then a reduction by the global type LTS

must be possible, denoted by the existence of a G′ such that, G
ℓ−→ G′ is

derivable.
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We say a global type is unstuck if it satisfies the predicate unstuck(G)
coinductively defined as:

∀ℓ. G ↓1 ℓ =⇒ ∃G′.G
ℓ−→ G′ ∧ unstuck(G′)

unstuck(G)

We include unstuckness in the definition of coherence for global types, thus
restricting the global types that may be used to introduce local type envi-
ronments in the typing rule for restriction.

We now present the precise statement of Subject Reduction that has
been mechanised.

Theorem 3 (Subject congruence and reduction)

1. If P ≡ Q and Γ ⊢D P ▷C Q; ∆ then Γ ⊢D Q ▷C Q; ∆

2. If Γ ⊢D P ▷C Q; ∆ and coherent(∆;Q) as ∆0 and P →D P ′ then
there exists ∆1,∆

′,Q′ s.t coherent(∆′;Q′) as ∆1 and Γ ⊢D P ′▷CQ′; ∆′

and ∆0 = ∆1 or there exists ℓ s.t. ∆0
ℓ−→ ∆1

3. If Γ ⊢D P ▷∅ ∅; ∅ and P →D P ′ then Γ ⊢D P ′ ▷∅ ∅; ∅

The theorem states in three parts that: (1) A process remains well-typed
by congruence rules; (2) A well-typed process remains well typed after re-
duction, possibly by a new environment whose coherence is given by a ∆1

which can be reached by reduction from the ∆0 that makes the initial envi-
ronment coherent; (3) A process typed by the empty environment remains
typable by the empty environment after reduction.

The mechanisation of this theorem required several changes to be made
from the original formulation by Honda et al.. We list the changes to the
theory that we made, either of (N)ecessity (e.g unstuck), (C)onvenience, or
to (A)lign with more recent developments in multiparty session types.

• (N) Honda et al. use typing contexts and subtyping to type queues.
We replace this with the notion of decomposition denoted by
decompp⃗ T = (T0, Q), which uses a path p⃗ that splits up T into the
sending actions that have already been executed Q used for typing
queues, and the remaining actions yet to be performed T0. In this
setting we call Q for a queue type, and T0 for a residual local type.
The use of decomposition instead of subtyping was necessary in the
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mechanisation because of the non-structural subsumption rule that
implements subtyping. Typing systems with a subsumption rule re-
quire requires intensional reasoning about the shape of typing deriva-
tions. While such intensional reasoning is possible, it is a significant
overhead which we avoided by relying instead on decomposition

• (C) We replace the single linear environment ∆ with two environ-
ments ∆;Q. This conveniently maintains the executed part of a local
type in Q, and the remaining part in ∆, in the sense of the decompo-
sition operation explained in the last point. This is in contrast to the
approach by Honda et al. to use typing contexts T in the typing rule
for parallel composition, splitting the local types in the environment
T into a context T and remaining local type T ′, such that the applica-
tion T [T ′] is a subtype of T . As a consequence of us now having two
environments ∆;Q We also extend the definition of coherence of a lo-
cal type environment to ∆;Q by requiring that ∆;Q be the point-wise
decomposition of some coherent ∆0. More precisely, each local type
T in ∆0 is decomposed according to some path p⃗, storing the queue
type in Q and the residual local type in ∆. We then say that ∆;Q
is coherent as ∆0 to mean that ∆0 is coherent and its decomposition
yields ∆;Q.

• (N) We replace the Honda et al. projection with our sound and com-
plete projection. The necessity of this change is seen in the challenges
of proving preservation of projectability in the presence of the restric-
tive branching check that we highlight above in Chapter (4.1).

• (N) Unlike Honda et al. we do not take the equi-recursive view. More
precisely we do not make the assumption that T may freely be sub-
stituted for its unfolding unf(T ) whenever necessary. Instead, local
types are explicitly unfolded when necessary to do so. For example,
the typing rule of 0 includes the premise unf(T ) = end.

• (N) Related to the previous point, we explicitly use a coinductive
equality in exactly three rules of the type system which are the rules
of typing delegation [T-Deleg], process call [T-Var] and queues
containing session channels [T-Qsess]. This is sufficient to prove
that the type system is invariant to replacing the local types in ∆
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with coinductively equal local types. (≈). This is necessary to prove
the session restriction case of subject reduction.

• (A) We replace the use a vector of session channels (e.g. s̃), with the
standard convention of located session channels (e.g. sp) seen in most
multiparty session type papers. Like Coppo et al. [22] and the tech-
nical report of Scalas and Yoshida [67], we annotate the messages in
queues with their sender. Unlike Coppo et al. and Scalas and Yoshida
we allow for more than one queue, staying in line with the presentation
by Honda et al.

• (A) We remove the parallel construct G0 || G1 of global types because
it has been dropped in most later multiparty session type papers.

• (C) Our Coq mechanisation represents linear environments as asso-
ciation lists of key value pairs where the keys are unique. We use
the same representation in our paper formalisation to stay as close
as possible to the mechanisation. This would usually require a non-
structural exchange rule for repositioning entries in the environment.
We avoid the need for this by splitting environments, in the rule for
parallel composition, as partitions according to boolean predicates
about the keys.

• (C) We define the reduction semantics of local types differently than
Honda et al.. Rather than using permutations, as was illustrated in
the presentation of the counterexample, we use an inductive defini-
tion in the style of the global type LTS. This simplifies the proof of
Endpoint Projection Theorem because there is a clear correspondence
between the LTS of global and local types.

• (C) The standard way to write recursive processes in session types is
with process definitions def D in P , where D is a list if definitions
that may be invoked in P . The process definition construct makes
the binding discipline of processes much harder to represent. To avoid
this overhead we replaced this construct with a parameterised process
reduction judgment P →D P ′, where D is a list of definitions that
may be used to define recursive behavior.

The remaining two paragraphs summarise decidability aspects of the lin-
earity assumption for global types, and the coinductive equality relation
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used in three of the rules of the type system. The intention is that the
assumptions the type system depends on for subject reduction, along with
the definitions that occur in the typing rules, should all be decidable. We
believe this to be the case for all definitions except for unstuckness. We
discuss why and how this may be addressed in Chapter 6.

Linearity. Nearly all later work on multiparty session types has departed
from explicit channels due to the complexity of linearity. We represent the
Honda et al. definition of linearity in a faithful way in terms of interaction
orderings and prove this equivalent to a coinductive definition that relies
on observations that are characterised by simple inductive predicates. The
coinductive definition consists of this single rule:

linearHead(G) ∀G′ ∈ next(G). linear(G′)

linear(G)

The first premise linearHead(G) checks that the first interaction will occur
before any other interactions sharing the same explicit channel. The second
premise checks that the property is preserved by all continuations of the
global type, unfolding µt.G when necessary.

Coinductive Equality. A standard coinductive presentation of subtyping
for equi-recursive types can be found in Pierce [64]. Yoshida and Vascon-
celos [80] adapted this definition to binary session types, using it as the
basis for what it means to take the equi-recursive view: Allowing at any
point the replacement of T with T ′, so long that T ≈ T ′. While mechanised
decidability results exists for a coinductive declarative subtyping of equi-
recursive simple types by Danielsson and Altenkirch in Agda [23] (based on
Brandt and Henglein [15]), to the best of my knowledge, no such mecha-
nised result exists for the coinductive equality of local types. We provide
one and it is surprisingly short, taking up approximately 200 loc. A caveat
is that Yoshida and Vasconcelos [80] also treat higher-order session types
coinductively, as in !k⟨T ⟩.T0 ≈!k⟨T ′⟩.T1 implies T0 ≈ T1 and T ≈ T ′. We
are more restrictive here, imposing that equality on the higher-order types
T = T ′.

4.3 Overview of Papers

The results presented in this chapter, and part of this PhD Project, are
comprised of the following three papers.
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1. A published conference paper titled: ”A Sound and Complete Pro-
jection for Global Types” [72], published in the 14th International
Conference on Interactive Theorem Proving.

This paper identifies a shortcoming regarding the projection of the µ-
binder which is shared by all computable definitions of projection in
the literature. We show that many sensible global types are ruled out
as a consequence of defining projection by structural recursion. We
give an overview of structurally recursive definitions of projections.
Chapter 4.1 is an extended version of this presentation. In the paper,
we address the limitation by presenting a sound and complete projec-
tion projp(G). Based on the work of Castro-Perez et al., we specify
the projection with the coinductive projection by Ghilezan et al., and
relate it to the computable projection on inductive global types with
the unravelling relation introduced by Castro-Perez et al..

The code is available at the following link.

2. A journal version of [72] with the same title, submitted to a special
issue of the Journal of Automated Reasoning (JAR) for extended
papers of ITP 2023. The paper is now in the second phase (reviews
have been received).

This journal version of [72] elaborates and revises the presentation of
our projection function projp(G). The presentation of inductive and
coinductive types is extended. The definition of projp(G) is simplified.
More details about the proofs are presented, here including proof of
termination of the decision procedure projectablepG, soundness proof
and completeness proof.

The code is available at the following link.

3. A conference paper, submitted to ESOP 2025, titled: ”Multiparty
Asynchronous Session Types: A Mechanised proof of Subject Reduc-
tion”.

The paper presents a counterexample to the Subject Reduction Result
of Honda et al.. We identify that the combination of using explicit
channels along with the restrictive LTS semantics for global and local
types types that Honda et al. introduced, breaks subject reduction.
We address this with a new type system, faithful in its definition to
the original system by Honda et al.. Changes made to the type system

https://github.com/Tirore96/projection
https://github.com/Tirore96/projection/tree/JAR
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are detailed in Chapter 4.2. One change is replacing the projection
function of Honda et al. with the projection function we introduce in
Tirore et al. [72]. We mechanise a proof of subject reduction in Coq
for this type system.

The code is available at the following link.

https://github.com/Tirore96/subject_reduction


Chapter 5

Related Work

Multiparty session types is a vast field, and an overview of it can be found
in Coppo et al. [22]. Most results in this field have however not been mech-
anised. mechanised. In this chapter we cover related work that satisfies the
inclusion criterion of being mechanised results about session types. We do
this by giving a detailed account of the two mechanised results of multi-
party session types by Castro-Perez et al. [18] and Jacobs et al. [44]. We
then touch lightly on mechanised results of binary session types.

5.1 Zooid

Most closely related to this PhD project is the work of Castro-Perez
et al. [18]. They present Zooid, a domain-specific-language for writing
correct-by-construction communicating processes. More precisely they de-
fine smart-constructors which allow one, in one go, to define an endpoint
process along with a proof that it is well-typed, which verifies that the end-
point implements a local type. This coupling of a process, and a proof of
well-typedness for this processes, is collectively called a Zooid term, which
one writes in their domain-specific-language, called Zooid. Endpoint pro-
cesses written in Zooid are Coq terms, and the code extraction features
of Coq can be used to extract Ocaml code from these endpoint definitions
that can then be executed. Their processes language is intended to define a
single endpoint, and thus contains no parallel composition construct. We,
on the other hand, include parallel composition in our process language
along with delegation and session reception. They achieve parallelism by
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extracting the individual endpoints and executing the resulting OCaml code
in parallel, which corresponds to the execution of a single session. Our pro-
cess language, on the other hand, allows the execution of multiple ongoing
sessions.

Their main result is a proof that the trace of well-typed processes con-
form to the trace of the local types they are typed against, and the global
types the local types have been derived from by projection. This trace
equivalence relies on a Projection theorem they prove for a semantics of
global and local types by Deniélou and Yoshida [26]. This semantics is
more flexible than ours, due to reducing not only local types by the local
labels ζ defined in Chapters 7 and 8, but also global types. That is, their

transition relation on global types is a judgment of shape G
ζ−→ G′ which

tracks actions, and not interactions.
They prove their trace result using coinductive global and local types,

and they introduce a technique for reasoning about inductive global and
local types in terms of these coinductive types. They do this by defining a
coinductive relation they call unravelling. The definition of unravelling that
we use is based on theirs, which we tighten to disallow non-contractive types
as explained in Tirore et al. [72]. Using the idea of unravelling, they prove
a computable definition of projection sound with respect to coinductive
projection. We extend on their soundness result by giving a computable
definition of projection which is not only sound, but also complete with
respect to coinductive projection.

5.2 Multiparty GV

The work of Jacobs et al. [44] mechanise in Coq a deadlock freedom property
for a linearly typed functional language with inter-thread communication
specified by multiparty session types. Their result extends the binary ses-
sion typed language GV [29, 76]. They initiate multiparty sessions with a
n-ary fork operation, which spawns n new threads that together with the
main thread forms a session of n+1 threads that interact by asynchronous
communication. They mechanised their result in Coq using Iris [47].

The semantics of their language is given in terms of a small-step thread
pool semantics, relating configurations of shape (e⃗, h), where e⃗ is a vector
of expressions corresponding to threads and h is a shared heap containing
queues.
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In their type system, they take inspiration from Scalas and Yoshida [67]
in the typing rule for the fork operation. Rather than using global types
to specify the behavior of a session, as we do, they define a coinductive
predicate on the typing environment, called consistency. This idea was
introduced by Scalas and Yoshida [67] as a more general, as well as conve-
nient, definition of well-formedness of typing environments. They relate this
coinductive well-formedness condition to global types by proving that well-
formedness defined in terms of the projections of global types is subsumed
by consistency. These global and local types that We followed the approach
of Honda et al. defining it in terms global type projections. Subject reduc-
tion requires this property to be re-established after an environment has
reduced, and this preservation property was challenging to prove with our
coherence definition. It required the construction of a global type deriva-
tion, based on the state of a process and the contents of a queue, and it
further required reasoning about coinductive equality of local types, since
the global type semantics can perform unfoldings. For future mechanised
proofs of subject reduction, we therefore recommend the use of the consis-
tency predicate as the well-formedness condition for typing environments.

The overall methodology of Jacobs et al. is based on Jacobs et al. [42],
Rouvoet et al. [65] and separation logic [62, 63]. Like is standard in session
types, they define two type systems. They introduce one for programs that
have not yet performed any computation steps (static programs), and an-
other type system for programs that are mid execution (runtime programs),
and prove that the latter type systems subsumes the former. Their type
system for static programs is defined in the standard way as an inductive
judgment Γ ⊢ e : τ . Their type system for runtime programs is defined by
structural recursion on the typed expression, generating a separation logic
predicate P (Σ). Here Σ is an environment containing local types, used in
the typing of an expression. A separation logic predicate is defined using
the connectives of separation logic, and this includes separating conjunc-
tion P ∗Q, which means that the predicate P holds for a set of resources,
disjoint from the set of resources that satisfy Q. Using this connective, they
conveniently ensure that session channels are used linearly.
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5.3 Mechanisations of Binary Session Types

Jacobs et al. [43] study the topology of overlapping sessions and intro-
duce a library for the connectivity graph. They use the library to prove
deadlock freedom for a binary session-typed functional language. Like the
work for Jacobs et al. [44], their technique is based on separation logic.
Thiemann [71] gave the first mechanised result of a functional language
with binary session types, mechanising in Agda the language MicroSession
which is a simplified subset of the language by Gay and Vasconcelos [29].
Rouvoet et al. [65] adapted the approach of Thiemann via separation logic,
and proved type safety for a language inspired by GV. Also using separation
logic, Hinrichsen et al. [37] mechanised results for a session typed language
using semantic typing with binary session types with polymorphism and
subtyping. Tassaroti et al. [70] use Iris in Coq to prove compiler correct-
ness of a binary session-typed language. Sano et al [66] develop a technique
to localise the reasoning about linear channel as a predicate lin(x, P ), as-
serting that channel x is used linearly in P . Using this technique, they
can ensure linear channel use with a structural (rather than linear) typing
environment. In comparison, our type system is linear and splits the envi-
ronment. They demonstrate in the Beluga proof assistant their technique on
a subset of Classical Processes (CP) by Wadler [76]. Castro-Perez et al. [19]
mechanise subject reduction for a variant of binary session types [80], using
process replication !P rather than recursive process definitions. They sup-
port delegation, but not recursive session types. They use a locally nameless
representation for binders. They define a library for resource aware environ-
ments, which they use for their proofs. Coccone and Padovani [21] embed
dependent binary session types into the linear π-calculus and mechanise in
Agda a subject reduction proof for their process language. Gay and Thie-
mann [30] investigate various definitions of duality for binary session types
and mechanise some of their results in Agda. Ekici and Yoshida [27] study
asynchronous session subtyping, proving in Coq the completeness of of a
coinductive subtyping relation with respect to a streamlined version of the
inductive negation of refinement by Ghilezan et al. [32]. Goto et al. [34]
mechanise in Coq subject reduction and safety properties for a polymor-
phic session typing system for the π-calculus. They do not prove deadlock
freedom. Inspired by the POPLmark challenge [10], a new benchmark has
recently been proposed by Carbone et al. [16], of which I am co-author,
targeting the mechanisation of concurrent systems in proof assistants.



Chapter 6

Discussion

6.1 Counterexample

We saw in Chapter 4.2 that the subject reduction result of Honda et al. did
in fact not hold, and this was because of a counterexample that relied on
explicit channels. We address this counterexample by introducing the coin-
ductive predicate unstuck(G). This solution can be improved upon. Firstly,
an inconvenience of unstuckness is that it is not clear how to decide this
property. Unlike our decision procedures for linearity, coinductive equality
and projectability, the termination of a decision procedure for unstuckness
cannot be given in terms of enumerations. This is because the premise of

unstuckness asserts that G′ in G
l−→ G′ is unstuck, and G′ need not be in

the enumeration of G. Secondly, the motivation of using explicit channels
in global types is to allow more expressive specifications than implicit chan-
nels allow. The global types prohibited by unstuckness are sensible, yet not
allowed, and this foes against the purpose of increasing expressivity using
explicit channels.

We disallow these sensible global types because the global type seman-
tics is restrictive. A more liberal semantics of global and local types, such as
the one by Deniélou and Yoshida [26], and used by Castro-Perez et al. [18],
reduces global types by the action ζ, rather than by an interaction ℓ. With
this semantics, the environment in the counterexample would not be stuck.
In future work, the counterexample may be addressed by adopting this
semantics, or similar, thus eliminating the need for unstuckness.
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6.2 Subtyping

The decomposition of a local type to its residual local type and queue types
makes it possible to omit a subtyping rule for our type system. Our omis-
sion of a subtyping rule comes at the expense of reduced expressiveness:
we cannot type a process offering more external choices than mentioned
in its local type. This could pose a problem for an extension of this type
system with merging projection, which relies on subtyping. Its omission
however shows that subject reduction can be proved without the presence
of a subtyping rule. Its omission is also very convenient when working in
a proof assistant. This is because a subtyping rule is sub-structural, and
thus always a case that must be considered in a proof by inversion. On
paper, it is common practice to prove lemmas about the intensional shape
of type derivations. An example from Honda et al. [40] is their Lemma
5.16, which shows that consecutive applications of the subtyping rule, due
to transitivity of subtyping, can be truncated into a single application. The
conclusion of this lemma could be represented in Coq by a predicate that
inspects the shape of a typing derivation, ensuring that the produced proof
contains no consecutive use of the subtyping rule. The intensional treat-
ment of such proofs is nontrivial, and requires proofs about the shape of
proofs. The standard induction tactic in Coq is insufficient for this pur-
pose, therefore requiring one to use the dependent induction tactic, which
is more complicated to use. It is not clear how such intensional reasoning
about typing derivations should be mechanised effectively. Hinrichsen et
al. [37] mechanised subtyping for binary session types. They represent a
subtyping relation using separation logic, and the absence of an inductive
typing judgment means they do not run into the issues described above
about intensional proofs.

6.3 Projection

The definition of our projection function was found by trial-and-error, us-
ing the properties of soundness and completeness to guide the definition.
Essentially aiming at mimicking the definition of coinductive projection, in
a decidable way. A consequence of this process is that the resulting defi-
nition is significantly different from, as well as more complicated, than the
standard projections in the literature. This is solely due to the decision pro-
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cedure projectablep(G) defined by well-founded recursion. The fact that our
definition deviates from standard projection is not necessarily a detriment,
but its complexity and ease of use, is. The complexity of the definition
poses problems for mechanised and non-mechanised use of the definition,
the former being forced to reason about mixed use of coinduction and in-
duction to prove properties about projection, and the latter working in an
unfamiliar setting without the safety rails of a proof assistant, which invites
mistakes. Compared to the original presentation in Tirore et al. [72] (found
in Chapter 7), the definition has been simplified in the journal version of
that paper, found in Chapter 8. Even still, there is room for improvement.

A promising direction of future work is to simplify our definition of
projection in a way that relies solely on the familiar definition of projection
by structural recursion, and coinductive equality of local types. Consider
a set-based definition of projection, denoted by G ⇂⇂p, where the equality
check on projected branches has been removed, similar to translation, but
unlike returning the projection of the first branch, as translation does, we
return a set consisting of the projection on all branches:

(p1 −→ p2 : k{lj : Gj}j∈J) ⇂⇂p=





... if p = p1 and p1 ̸= p2

... if p = p2 and p1 ̸= p2⋃
i∈I Gi ⇂⇂p if p ̸∈ {p1, p2}

Each local type, in the set produced by G ⇂⇂p, corresponds to a specific
sequence of branch choices through the global type, and we conjecture that
testing whether they are all coinductively equal, corresponds to our pro-
jectability predicate projectablep(G). The projection that produces a single
local type, would then be defined as:

G⇂p=
{

T0 if G ⇂⇂p= {T0, .., Tn} and ∀i ∈ {1, . . . , n}. T0 ≈ Ti

undefined otherwise
(6.1)

This definition has the benefit of being defined in terms of G ⇂⇂p and T ≈ T ′,
which use familiar definitions that may be more convenient to use in both
mechanised and non-mechanised settings.

6.4 Merging

The projection function we introduce in Chapter 4.1 has been defined such
that it corresponds to coinductive projection without merging. We opted
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for this simpler setting because this was in itself a nontrivial problem, and
because the projection of Honda et al. did not use merging either. Most
multiparty session type papers do however use merging in their definition
of projection, and since the merging operation makes projection more ex-
pressive, it is a natural line of future work to incorporate this operation
into our projection.

Merging, denoted by T0 ⊔ T1, is a partial operation which unions the
branches of external choices, and recursively merges the continuations when
labels coincide, as seen in the example below:

k&

{
Left : T0

Mid : T1

}
⊔ k&

{
Mid : T2

Right : T3

}
= k&





Left : T0

Mid : T1 ⊔ T2

Right : T3





If one attempts to merge local types that differ beyond the labels in their
external choices, the operation is undefined.

One way we could incorporate merging is to replace the coinductive
equality check in Equation (6.1) with the merge operation, yielding the
following definition of projection:

G⇂p=
{ ⊔n

i=1 Ti if G ⇂⇂p= {T0, .., Tn} and
⊔n

i=1 Ti is defined
undefined otherwise

(6.2)

Note that merging has replaced our coinductive equality check, and not a
syntactic equality check, it is therefore fair to expect the merge operation
to satisfy properties such as being invariant to unfolding. This raises an
interesting question about how the merge operation handles the µ-binder
and recursion variable t. We

Ghilezan et al., who introduce coinductive projection, define a merge
operation on coinductive local types, which we will call coinductive merge.
Given the properties we have proved for our projection function, it is nat-
ural to ask what the soundness and completeness properties are between
coinductive merge and merging on inductive types, which we will call induc-
tive merge. Answering this question in full is future work. We have however
identified that the standard way inductive merge is defined is unsound.

The standard approach to merge binders and variables (See Remark
3.14 [31]), is done the following way:

µt.T0 ⊔ µt.T1 = µt.(T0 ⊔ T1) t ⊔ t = t
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Using this definition, we can compute the merge of T0 and T1 below:

T0 = µt.k&

{
Left : t
Mid : t

}
(6.3)

T1 = µt.k&

{
Mid : t
Right : t

}
(6.4)

T0 ⊔ T1 = µt.k&





Left : t
Mid : t
Right : t



 (6.5)

To see why the local type in Equation (6.5) is an incorrect merging of the
local types in (6.3) and (6.4), consider the branches of (6.5), which are Left,
Mid and Right. Branch Mid correctly consists of t that points back to an
external choice with labels Left, from (6.3), Right, from (6.4), and Mid.
The incorrect Left branch does however also consist of t. The label Left
only occurs in (6.3), therefore once the Left branch is chosen, one should
return to a state where it is not possible to choose the Right branch. We
conjecture that a soundness and completeness property can be shown for a
formulation of the inductive merge operation that merges (6.3) and (6.4) in
the following way:

T0 ⊔ T1 = µt.k&





Left : T0

Mid : t
Right : T1





6.5 Binders and Environments

In our mechanisation, binders in types and processes are represented with
de Bruijn indices [24]. We generate the inductive definitions using Auto-
subst 2 [68]. On a subjective note, using this approach to represent and
reason first about µ-types, and later processes, gave a continuity to the use
of parallel substitutions that made parallel substitutions more intuitive to
reason about over time.

Environment representation is affected by variable representation, and
because de Bruijn indices are natural numbers, one may be tempted to
represent the environment that types theses variables as an inductive list,
using the variable as an index into the list. This however requires cumber-
some reasoning about padding if environment entries are not contiguous.
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Instead, we opt for representing typing environments as association lists.
This approach complements the use of parallel substitutions. The natural
substitution lemma for a typing simply maps the parallel substitution func-
tion across the domain of the environment. By implementing a library for
association lists based on the list comprehension functions map and filter,
the proofs of commuting properties about environment operations reduce
to commuting properties about comprehensions, for which the Coq library
already has many theorems. To represent their environment, Jacobs et
al. use in their mechanisation of multiparty GV the gmap library of the
stdpp Coq library [2], which has the benefits of being both efficient and a
syntactic equality that coincides with extensional equality. It would have
been inconvenient for us to use gmap in this project because the association
list representation is routinely exposed in order to prove properties about
inserting entries and incrementing de Bruijn indices.

6.6 Libraries and Reusability

The Coq mechanisation of the results presented in this thesis have been
developed over the span of three years. An effort of this magnitude is
realistic for a PhD project focused on mechanisation. The large amount of
boilerplate code required, and the many pitfalls one must avoid in writing
this boilerplate, makes the barrier of entry high, and halts the progress
of mechanised results in multiparty session types. The Concurrent Calculi
Formalisation Benchmark [16] is a step in the right direction, which will
help the community converge towards effective solutions to the frequently
occurring challenges that are linear resource handling, coinduction, and
scope extrusion of binders.

In the future, it would be interesting to extend on our subject reduction
result by proving the formal guarantees that Honda et al. show: session fi-
delity, in-session deadlock freedom and type safety. It is however a challenge
that the mechanisation is not easily reusable, and it would be interesting
future work to factor parts of this mechanisation into generic reusable li-
braries, with the aim of reducing boilerplate code. Here we consider specif-
ically our definitions and proofs regarding µ-binders and environments.

Papers of multiparty session types may use different formulations of
global and local types, but by definition, if they are µ-types they will include
µt and t. In our mechanisation, we have shown many properties about the
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unfolding of µ-types, which makes them nearly as convenient to work with
as coinductive types. It would be interesting to establish these properties
for a library that is parametric on the formulation of global and local types.

Ensuring linear use of typing environments was also a challenge in the
mechanisation, requiring reasoning about disjoint domains and proofs com-
mutativity properties about environment operations such as insertion and
removal. We represent environments as association lists and our implemen-
tation is parametric on the keys and values. Many of the commutativity
properties are however stated for our specific instantiation of keys as de
Bruijn indices. It would be interesting to develop a library that is compat-
ible with de Bruijn indices and provides means of automation for reason-
ing about disjointness and commutativity of environment operations. This
could possibly be part of a tool-chain based on Autosubst 2. It should in
this context be mentioned that Castro-Perez et al. [19] introduce a library
for reasoning about linear environments. We did not use this library be-
cause of our need to routinely expose our environment representation, the
association list, to map over the keys, which was necessary to type a term
on which a parallel substitution was applied.

6.7 Tools

The broader goal of this PhD project is to support the development of
safe distributed systems by using the Coq proof assistant to verify formal
results that underpin programming language features and external tools
based on multiparty session types. One of these external tools is the Scribble
language [79], in which one can write global protocols and project them to
local protocols. An example of how the results of this PhD may support
such tool development in the future, is an idea by Nobuko Yoshida, who
suggested the future integration of our projection function into this tool.

The Scribble language has close ties to multiparty session types. A
correspondence has been proved for a subset of the language called Feath-
erweight Scribble [59], between global and local protocols in Featherweight
Scribble, and global and local types in multiparty session types. It would
be interesting to relate the definitions in Featherweight Scribble with our
mechanisation of multiparty session types, and mechanise such a correspon-
dence theorem in Coq, possibly allowing parts of the tool implementation
to be replaced with verified code extracted from Coq.
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Abstract
Multiparty session types is a typing discipline used to write specifications, known as global types,
for branching and recursive message-passing systems. A necessary operation on global types is
projection to abstractions of local behaviour, called local types. Typically, this is a computable
partial function that given a global type and a role erases all details irrelevant to this role.

Computable projection functions in the literature are either unsound or too restrictive when
dealing with recursion and branching. Recent work has taken a more general approach to projection
defining it as a coinductive, but not computable, relation. Our work defines a new computable
projection function that is sound and complete with respect to its coinductive counterpart and,
hence, equally expressive. All results have been mechanised in the Coq proof assistant.
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1 Introduction

Session types are types for abstracting the behaviour of communicating processes. First
proposed by Honda et al. [15] for binary protocols, they specify the sequence of possible
actions processes need to follow when sending and receiving messages over a channel. Session
types provide a clear language for describing protocols that are guaranteed to not deadlock
or contain communication errors, e.g., never receive an integer when expecting a boolean. A
decade after their conception, Honda et al. [16] proposed a generalisation, called multiparty
session types, that specifies how an arbitrary but fixed number of processes should interact
with each other. Multiparty session types are based on the concept of global types which
provide a global description of the multiparty protocol being abstracted. Recently, multiparty
session types have gained interest from several communities, resulting in their integration
into several mainstream programming languages [2].

Multiparty session types follow a precise approach to designing and implementing com-
municating processes: from global types that specify the protocols, we can automatically
generate local types, the local specifications of the behaviour of each role in the protocol; then,
each local type specification is (type) checked against the local code being written by the
programmer. The automatic generation of local types from global types, called projection, is
key for relating global types to implementations. Given a role, projection is an operation
that erases the parts of the global type irrelevant for the role. When projection is defined the
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output is a local type specifying the behaviour of this role. As an example, let us consider a
global type where Carl can ask Dave to either go Left or Right over some channel k:

Carl −→ Dave : k

{
Left : Carl −→ Dave : k′⟨Int⟩.Alice −→ Bob : k′′⟨Int⟩.end
Right : Carl −→ Dave : k′⟨String⟩.Alice −→ Bob : k′′⟨Int⟩.end

}

Above, if Carl chooses Left, he will also send an integer (Int) over some other channel k′;
otherwise, he will send a string (String). No matter what branch Carl chooses, all roles
must collectively follow the description of that branch.

Nested in both branches, there is a communication over k′′ of an integer Int between
Alice and Bob. The projections of Carl and Alice are:

Carl : k ⊕
{

Left : !k′⟨Int⟩.end
Right : !k′⟨String⟩.end

}
Alice : !k′′⟨Int⟩. end

Above, Carl makes a choice (denoted by ⊕), and then outputs on channel k′ either something
of type Int or something of type String. Alice is instead sending over channel k′′. An
important observation is that, since neither Alice nor Bob are informed of the choice made
by Carl, their behaviour should be independent from Carl’s choice. In fact, a restriction
that projection usually imposes is that all those roles not participating to a branching
communication behave the same on all branches.

In order to be able to express repetitive behaviour, global types (and local types) are
usually equipped with recursion, expressed as µ-types [22]. For example, consider

µt. Alice −→ Bob : k⟨String⟩. µt′. Carl −→ Dave : k′
{

Left : t
Right : Alice −→ Bob : k⟨String⟩.t′

}
(1)

The example above poses some questions on how projection should work. For Alice, should it
be undefined since we cannot syntactically see her behaviour on the first branch? Or, can the
projection first unfold on t and then generate a local type? We observe that the following
global type is equivalent to (1) but does not violate our constraint on branches:

µt. Alice −→ Bob : k⟨String⟩. Carl −→ Dave : k′ {Left : t, Right : t} (2)

Since both recursive global types (1) and (2) seem to specify the same behaviour, we would
assume that Alice is projected to µt. !k⟨String⟩. t, i.e., she repeatedly sends something of
type String. The bad news is that the projection algorithms available in the literature do
not allow global types like (1) to be projected while the equivalent type (2) can be projected.

The most common way of defining projection is as a structurally recursive partial function
on global types, which we call standard projection. Recent work [13] defines projection as a
coinductive relation on coinductive types, which intuitively are a complete (possibly infinite)
unfolding of recursive protocols. Both approaches come with trade-offs. Standard projection is
a computable procedure, which is necessary for multiparty session types to support decidable
type checking, but it has limits as pointed out above. The coinductive approach is more
general but, to the best of our knowledge, there are no equivalent computable algorithms
available in the literature. The discrepancy between standard and coinductive projection
was initially pointed out by Ghilezan et al. [13]. They correctly show that the canonical way
partial projection treats the binders of µ-types causes standard projection to be undefined
for some µ-types that have a coinductive projection, such as global type (1). In this paper,
we define a procedure on µ-types that implements the projection on coinductive types.



D. Tirore, J. Bengtson, and M. Carbone 28:3

Contributions and Structure. The main contribution of this paper is the definition of a
computable projection function that is sound and complete with respect to a coinductive
projection relation. All our proofs have been mechanised in the Coq [21] proof assistant1.

We structure the paper as follows. Section 2 walks through existing variants of standard
projection and their pitfalls. Section 3 introduces global and local coinductive types as well
as a coinductive projection relation from the former to the latter. Section 4 introduces a
projection function from global to local µ-types, proves that it is sound and complete with
respect to its coinductive counterpart, and Section 5 proves that it is decidable. Section 6
describes key insights from our Coq mechanisation, Section 7 covers related and future work,
and Section 8 concludes.

2 Global Types, Local Types, and Standard Projection

The purpose of this section is two-fold: introducing the syntax of global and local types and
a walk through computable definitions of projection found in the literature.

Syntax. Let P be a set of roles (ranged over by p, q, r, s, t), L a totally ordered set of labels
(ranged over by l), and X a set of recursion variables ranged over by t.

▶ Definition 1 (Inductive Types [17]). Global types Gµ and local types T µ are µ-types generated
inductively by the following grammars, where U represents primitive types:

Gµ ::= p1
µ−→ p2 : k⟨U⟩.Gµ | p1

µ−→ p2 : k{lj : Gµ
j }j∈J | µt.Gµ | t | endµ

T µ ::= !µk⟨U⟩.T µ | ?µk⟨U⟩.T µ | k ⊕µ {lj : T µ
j }j∈J | k &µ {lj : T µ

j }j∈J | µt.T µ | t | endµ

The type p1
µ−→ p2 : k⟨U⟩.Gµ denotes a communication between roles p1 and p2 via channel k of

a message of type U , which then proceeds as Gµ. Similarly, the type p1
µ−→ p2 : k{lj : Gµ

j }j∈J

denotes a communication between two roles where, given the set of indices J , role p1 selects a
branch with label li, and then proceeds as Gµ

i . Types µt.Gµ and t model recursive protocols.
Finally, endµ denotes the successful termination of a protocol. A message type U is just a
basic value type: extensions of this are irrelevant for the focus of this paper.

For local types, the type !µk⟨U⟩.T µ outputs a message of type U over channel k, while
its dual, ?µk⟨U⟩.T µ receives a message of type U over k. Types k ⊕µ {lj : T µ

j }j∈J and
k &µ {lj : T µ

j }j∈J implement branching where the former is the type of a process that
internally selects a branch li and communicates it over channel k, while the latter is the type
of a process that offers choices l1, . . . , ln (for J = {1, . . . , n} with n ≥ 1) over channel k. We
overload the type endµ and use it also for local types.

We deal with recursive variables in a standard way and write capture-avoiding substitution
as Gµ

1 [Gµ
2 /t]. Moreover, types can be contractive: a µ-type Gµ (or T µ) is contractive if, for

any of its subexpressions with shape µt0.µt1...µtn.t, the body t is not t0 [22]. We allow
non-contractive µ-types and will in the next section show how to enforce contractiveness by
requiring that a µ-type is related to a coinductive type.

Overview of projections. For each role, we use projection to relate global and local types.
We start our overview with the projection proposed by Castro-Perez et al. [7] which can
be found in Figure 1. The projection p1

µ−→ p2 : k⟨U⟩. Gµ ⇂µ
p produces either a sending or a

1 https://github.com/Tirore96/projection
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(p1
µ−→ p2 : k⟨U⟩.Gµ)⇂µ

p =





!µk⟨U⟩.(Gµ ⇂µ
p ) if p = p1 and p1 ̸= p2

?µk⟨U⟩.(Gµ ⇂µ
p ) if p = p2 and p1 ̸= p2

Gµ ⇂µ
p if p ̸∈ {p1, p2}

(p1
µ−→ p2 : k{lj : Gµ

j }j∈J )⇂µ
p =





k ⊕µ {lj : (Gµ
j ⇂

µ
p )}j∈J if p = p1 and p1 ̸= p2

k &µ {lj : (Gµ
j ⇂

µ
p )}j∈J if p = p2 and p1 ̸= p2

(Gµ
1 ⇂

µ
p ) if p ̸∈ {p1, p2} and

∀i, j ∈ J. Gµ
i ⇂

µ
p = Gµ

j ⇂
µ
p

⊥ otherwise

(µt.Gµ)⇂µ
p =

{
µt.(Gµ ⇂µ

p ) if guardedVar(t, Gµ ⇂µ
p )

endµ otherwise
t⇂µ

p = t endµ ⇂µ
p = endµ.

guardedVar(t, Gµ) =





guardedVar(t, Gµ
1 ) if Gµ = µt′.Gµ

1

t ̸= t′ if Gµ = t′

true otherwise

Figure 1 The standard projection of G onto p, written G⇂µ
p [7].

receiving action if the role p is equal to p1 or p2 respectively, otherwise the action is deleted.
The projection of branching p1

µ−→ p2 : k{lj : Gµ
j }j∈J ⇂µ

p works similarly but, when role p is
not involved, all branches must project to exactly the same type. This requirement is known
as plain merge. Full merge, used for example by Ghilezan et al. [13], is a more permissive
operation which merges local types with distinct external choices. We discuss an extension of
our work to full merge in Section 7. For recursion µt.Gµ, Gµ is projected only if the result is
a contractive local type (checked by the guardedVar predicate). Finally, variable t and the
type endµ project directly to their local counterparts.

The use of guardedVar formally fixes a problem with the original projection [17] that
could generate non-contractive types, which is unsound (informally fixed by forbidding
non-contractive types). Alternatively, Demangeon and Yoshida [11] fix this issue by replacing
the side condition with Gµ ⇂µ

p ̸= t. However, all these projections invite the counterexample:

p µ−→ q : k⟨U⟩. µt. r µ−→ s : k′{l1 : endµ, l2 : t} ⇂µ
p (3)

which is undefined because the branch condition fails. Since p is not a role in the branch,
the desired result of this projection should be !µk⟨U⟩. endµ. Bejleri and Yoshida [5] solve
this with a recursion condition testing participation in the body

(µt.Gµ)⇂µ
p =

{
µt.(Gµ ⇂µ

p ) if p ∈ Gµ

endµ
(4)

This function always generates contractive types, but the projection of

µt. p µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′⟨U ′⟩. t⇂µ
p (5)

incorrectly results in the local type µt.!µk⟨U⟩.endµ rather than the desired µt.!µk⟨U⟩. t.
Glabbeek et al. [27] fix it by adding a variable constraint to the recursion condition:

(µt.Gµ)⇂µ
p =

{
µt.(Gµ ⇂µ

p )
endµ if p ̸∈ Gµ and µt.Gµ is closed

(6)
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This way, the projection in (5) correctly results in the type µt.!µk⟨U⟩.t. To the best of our
knowledge, this is the most general and sound version of projection, but it still does not
capture certain global types whose infinite unfolding is intuitively projectable. One such
example is equivalent to (1), modulo renaming, from the introduction:

µt. p µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p µ−→ q : k⟨U⟩. t′}⇂µ
p (7)

Here, the branching condition fails because t is syntactically not the same type as !µk⟨U⟩.t′.
But how can we recognise that t and !µk⟨U⟩.t′ are equivalent in this case? Our main insight
is that standard projection can be performed in two steps: first, a boolean predicate tests
projectability by unfolding µ-operators; and, when the check is passed, a translation function
generates the local type by instead structurally recursing under the µ-operators. Checking
projectability by unfolding µ-operators makes termination non-trivial and we explore this in
Section 5. This approach lets us recognise (7) as projectable.

3 Projection on Coinductive Types

In this section, we define what an ideal projection is. The inductive definition of global
types uses µ-types in order to represent infinite behaviour which, as shown by our examples,
can create issues with projection. A possible solution to this issue is to get rid of µ-types
and work with fully unfolded types (infinite trees). Originally, Honda et al. [17] suggested
this approach informally. Later, Ghilezan et al. [13] turned this intuition into a version of
global types which, instead of using an inductive definition, uses coinductive types. This
had the drawback of projection not being computable. The goal of this section is to define
coinductive types, a way to relate them to inductive types, and then a definition of projection
without µ-types. Although we do not compute projections of coinductive types, we use them
as a specification of how a correct projection should behave.

Syntax. We start by giving the coinductive definition of both global and local types.

▶ Definition 2 (Coinductive Types). The syntax of coinductive global and local types, denoted
as Gν and T ν respectively, is coinductively defined as:

Gν ::= p1
ν−→ p2 : k⟨U⟩.Gν | p1

ν−→ p2 : k{lj : Gν
j }j∈J | endν

T ν ::= !νk⟨U⟩.T ν | ?νk⟨U⟩.T ν | k ⊕ν {lj : T ν
j }j∈J | k &ν {lj : T ν

j }j∈J | endν

Coinductive types can be infinite but regular coinductive types can be finitely represented.
A regular coinductive type has a finite set of distinct subterms [20] meaning that it must be
circularly defined and have repeating structure if it is infinitely large. This makes it possible
to store a regular coinductive type in, e.g., computer memory, or represent it as a µ-type.

In order to reason effectively about µ-types and their coinductive counterparts we need a
means to relate the two. We follow the style of Castro-Perez et al. [7], using an unravelling
relation R, formally defined as:
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▶ Definition 3 (Unravelling). Unravelling, for both global and local types, and denoted by
Gµ R Gν and T µ R T ν respectively, is defined by the following rules:

endµ R endν

Gµ[µt.Gµ/t] R Gν

µt.Gµ R Gν

Gµ R Gν

p1
µ−→ p2 : k⟨U⟩.Gµ R p1

ν−→ p2 : k⟨U⟩.Gν

∀j ∈ J. Gµ
j R Gν

j

p1
µ−→ p2 : k{lj : Gµ

j }j∈J R p1
ν−→ p2 : k{lj : Gν

j }j∈J

∀j ∈ J. T µ
j R T ν

j

k ⊕µ {lj : T µ
j }j∈J R k ⊕ν {lj : T ν

j }j∈J

T µ R T ν

!µk⟨U⟩.T µ R !νk⟨U⟩.T ν

T µ R T ν

?µk⟨U⟩.T µ R ?νk⟨U⟩.T ν

∀j ∈ J. (T µ
j R T ν

j )

k &µ {lj : T µ
j }j∈J R k &ν {lj : T ν

j }j∈J

The unravelling relation is defined using both inductive and coinductive inference rules, where
we use single lines for inductive rules and double lines for coinductive ones. A coinductive
derivation may be circular and discharged by referring to a previous identical part of the
inference tree whereas inductive leaves are discharged using an inductive base-case rule in
the standard manner, which in our case are the rules relating endµ and endν . The reason for
this split is that if the µ-operator could be unravelled using a coinductive rule [unfoldν ] then
we could relate any non-contractive µ-type to any coinductive type Gν .

Incorrect rule:
G[µt.G] R Gν

µt.G R Gν [unfoldν ] Unwanted derivation:
µt.t R Gν

µt.t R Gν [unfoldν ] (8)

Castro-Perez et al. have a rule like [unfoldν ] and they solve this problem by requiring that
all µ-types are contractive. We make this side condition redundant by making [unfoldν ]
inductive and we have found that this simplifies our proofs. This is because the usual two
conditions on µ-types, namely closedness and contractiveness, are captured by unravelling.

▶ Proposition 4. Gµ is closed and contractive iff there exists Gν such that Gµ R Gν

Proof. The direction (⇐=) is harder than the other. We prove it by contradiction, assuming
both an inductive definition of non-contractiveness and Gµ R Gν . ◀

The mixing of inductive and coinductive inference rules is non-standard and in Section 6
we show concretely how to formally define such inference systems. For now, we show an
example of how to relate an inductive and coinductive global type by R .

▶ Example 5. Consider the unravelling of

µt. r µ−→ s : k{l1 : t, l2 : endµ}

One branch is a recursion variable and the other is end indicating we will need both inductive
and coinductive rules to close the derivation. We show this inductive global type unravels to

Gν := r ν−→ s : k{l1 : Gν , l2 : endν}

This is shown by the derivation below

µt. r µ−→ s : k{l1 : t, l2 : endµ} R Gν endµ R endν

r µ−→ s : k{l1 : µt. r µ−→ s : k{l1 : t, l2 : endµ}, l2 : endµ} R Gν

µt. r µ−→ s : k{l1 : t, l2 : endµ} R Gν (9)

where the arrow marks the cycle that solves the coinductive part of the proof. Visually, the
arrow must pass a double line for the proof to be valid.
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p ∈ {p1, p2} ∨ guardedν
p(Gν)

guardedν
p(p1

ν−→ p2 : k⟨U⟩.Gν)

p ∈ {p1, p2} ∨ ∀j. guardedν
p(Gν

j )

guardedν
p(p1

ν−→ p2 : k{lj : Gν
j }j∈J)

guardedµ
p (G[µt.G/t])

guardedµ
p (µt.G)

p ∈ {p1, p2} ∨ partOfν
p(Gν)

partOfν
p(p1

ν−→ p2 : k⟨U⟩.Gν)

p ∈ {p1, p2} ∨ ∃j ∈ J. partOfν
p(Gν

j )

partOfν
p(p1

ν−→ p2 : k{lj : Gν
j }j∈J)

partOfµ
p (G[µt.G/t])

partOfµ
p (µt.G)

Figure 2 Definitions of predicates guardedν , guardedµ, partOfν , and partOfµ. The guardedµ and
partOfµ predicates additionally have identical rules to their guardedν and partOfν counterparts,
except for being defined for Gµ and not Gν – these rules have been elided.

Gν ⇃ν
p T ν

p ν−→ p2 : k⟨U⟩.Gν ⇃ν
p

!νk⟨U⟩.T ν

[M1⇃ν ]
p ̸= p1 Gν ⇃ν

p T ν

p1
ν−→ p : k⟨u⟩.Gν ⇃ν

p
?νk⟨U⟩.T ν

[M2⇃ν ] ¬partOfν
p (Gν)

Gν ⇃ν
p endν [End⇃ν ]

p /∈ {p1, p2} guardedν
p (Gν) Gν ⇃ν

p T ν

p1
ν−→ p2 : k⟨U⟩.Gν ⇃ν

p T ν
[M⇃ν ]

∀j. Gν
j ⇃ν

p T ν
j

p ν−→ p2 : k{lj : Gν
j }j∈J ⇃ν

p
k ⊕ν {lj : T ν

j }j∈J

[B1⇃ν ]

J ̸= {} p /∈ {p1, p2} ∀j. Gν
j ⇃ν

p T ν ∧
guardedν

p (Gν
j )

p1
ν−→ p2 : k{lj : Gν

j }j∈J ⇃ν
p T ν

[B⇃ν ]
p ̸= p1 ∀j, Gν

j ⇃ν
p T ν

j

p1
ν−→ p : k{lj : Gν

j }j∈J ⇃ν
p

k &ν {lj : T ν
j }j∈J

[B2⇃ν ]

Figure 3 The projection on coinductive types, denoted Gν ⇃ν
p T ν , is defined by coinductive rules.

In order to define projection from coinductive global types to coinductive local types, we
require the two auxiliary predicates guardedν

p(Gν) and partOfν
p(Gν). The former asserts that

p appears in all branches of Gν at finite depth, and the latter asserts that p occurs somewhere
in Gν at finite depth. To reason about finite depth these predicates are inductively defined.
We also define similar predicates guardedµ

p (Gµ) and partOfµ
p (Gµ) for inductive global types

Gµ. All four predicates are defined in Fig. 2.
The rules for projection are presented in Figure 3. Rules [M1⇃ν ], [M2⇃ν ], [B1⇃ν ], and

[B2⇃ν ] handle the cases where a projected role p takes part in communication or branching.
Note that our projection allows sender and receiver in a communication to be equal. This
case is a special case of rule [M1⇃ν ]. The rules [M⇃ν ], [B⇃ν ], and [End⇃ν ] handle the cases
where p does not take part. In these cases, in order for projection to continue, p must occur
in all possible future branches, otherwise the projection maps to end. These rules are similar
to those given by Castro-Perez et al. [7] as well as Jacobs et al. [19].

Guardedness, enforced by the predicate guardedν
p in the [M⇃ν ] and [B⇃ν ] rules, is necessary

in order to avoid unwanted derivations similar to that for unravelling in (8).

▶ Example 6. We can now use unravelling and coinductive projection to relate the global type
µt. p µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p µ−→ q : k⟨U⟩. t′} seen in (7) with µt.!µk⟨U⟩.t.
They respectively unravel to

Gν := p ν−→ q : k⟨U⟩.r ν−→ s : k′{l1 : Gν , l2 : Gν}
Eν :=!νk⟨U⟩. Eν
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We can now derive Gν ⇃ν
p Eν by [M1⇃ν ], [B⇃ν ] followed by [M1⇃ν ] and mark a cycle to the

conclusion Gν ⇃ν
p Eν . This precisely justifies why we wish to project the inductive global

type in (7) over role p to the local type µt.!µk⟨U⟩.t.

4 Projection on Inductive Types: Soundness and Completeness

The coinductive projection predicate ⇃ν represents the specification of an ideal projection
from coinductive global types to coinductive local types. In this section, we present a
projection function proj on µ-types that is sound and complete with respect to the ⇃ν

projection predicate. We extend on previous work by Castro-Perez et al. [7] whose projection
function is shown to be sound but not complete.

▶ Definition 7 (proj). The function proj : P → Gµ ⇀ T µ, written projp(Gµ), is the projection
of the global µ-type Gµ with respect to the role p and is defined as:

projp(Gµ) =
{

transp(Gµ) if projectablep(Gµ)
undefined otherwise

Our projection function features two auxiliary entities, namely the translation function trans
and the predicate projectable which precisely separate the generation of the local type and
the check for projectability respectively.

▶ Definition 8 (trans). The function trans : P → Gµ → T µ is identical to the function ⇂µ

(see Figure 1) except for the branching case, defined as:

transp(p1
µ−→ p2 : k{lj : Gµ

j }j∈J ) =





k ⊕µ {lj : transp(Gµ
j )}j∈J if p = p1 and p1 ̸= p2

k &µ {lj : transp(Gµ
j )}j∈J if p = p2 and p1 ̸= p2

transp(Gµ
1 ) if p ̸∈ {p1, p2}

The only difference from Definition 2 is that the removal of the branching condition has made
trans total. These conditions are checked by the projectable predicate and the challenging
part of implementing proj is proving decidability of this predicate.

▶ Definition 9 (projectable). The predicate projectablep(Gµ) states that the global µ-type Gµ

is projectable with respect to the role p and is defined as:

projectablep(Gµ) = ∃Gν T ν . Gµ R Gν ∧ transp(Gµ) R T ν ∧ Gν ⇃ν
p T ν

The predicate states that the µ-types Gµ and transp(Gµ) are related by unravelling to some
coinductive types Gν and T ν respectively, and that T ν is the coinductive projection of Gν

with respect to p. This predicate is decidable and we detail why in Section 5.

Soundness. Proving that proj is sound with respect to ⇃ν is relatively straightforward.

▶ Theorem 10. If projp(Gµ) is defined then there exist coinductive types Gν and T ν such
that Gµ R Gν , projp(Gµ) R T ν and Gν ⇃p T ν .

Proof. Follows directly from the definition of proj and projectable by setting Gν and T ν to
their corresponding types obtained from projectable. ◀

Gν T ν

Gµ T µ

⇃ν

proj
R R



D. Tirore, J. Bengtson, and M. Carbone 28:9

Completeness. For completeness, we require an auxiliary operation unfold(·) on global and
local µ-types that unfolds all binders until an interaction prefix or end are exposed.

unfold(Gµ) = unfold_once|Gµ|(Gµ) unfold_once(Gµ) =
{

Gµ
1 [µt.Gµ

1 /t], if Gµ = µt.Gµ
1

Gµ otherwise

Above, |Gµ| is the µ-height of Gµ, i.e., the number of initial consecutive binders found
in Gµ. Here, fn denotes repeated function composition. For example, |µt.end| = 1 and
|p µ−→ p′ : k⟨U⟩.µt. end| = 0. We overload unfolding with unfold(T µ) and |T µ|, for having the
corresponding meaning on local types.

Gν T ν

Gµ T µ

⇃ν

proj
R R

In order to show completeness of proj with respect to ⇃ν , we need to show that if Gν ⇃ν
p T ν

and Gµ R Gν then projp(Gµ) is defined and projp(Gµ) R T ν . We prove this by showing
that transp(Gµ) unravels to tocoind(transp(Gµ)); then, we show transp(Gµ) = projp(Gµ) and
tocoind(transp(Gµ)) = T ν . The function tocoind is defined as

▶ Definition 11 (tocoind). The corecursive function tocoind : T µ → T ν is defined as

tocoind(T µ) =





!νk⟨U⟩.tocoind(T µ) if unfold(T µ) =!µk⟨U⟩.T µ

?νk⟨U⟩.tocoind(T µ) if unfold(T µ) =?µk⟨U⟩.T µ

k ⊕ν {lj : tocoind(T µ
j )}j∈J if unfold(T µ) = k ⊕µ {lj : T µ

j }j∈J

k &ν {lj : tocoind(T µ
j )}j∈J if unfold(T µ) = k &µ {lj : T µ

j }j∈J

endν otherwise

Note that, T µ R tocoind(T µ) does not always hold, as R is only defined for closed and
contractive T µ. However, for closed global types, trans does unravel to a coinductive type.

▶ Lemma 12 (Unraveling of trans). If Gµ is closed then transp(Gµ) R tocoind(transp(Gµ)).

Proof. Since Gµ is closed, we know that transp(Gµ) is closed. Moreover, the image of
transp is always contractive. For any closed and contractive local type T µ, we know that
T µ R tocoind(T µ), by coinduction on R . In particular this holds for transp(Gµ). ◀

▶ Lemma 13 (trans as projection). If Gµ R Gν and Gν ⇃ν
p T ν then tocoind(transp(Gµ)) = T ν .

Proof. By coinduction using the candidate relation {(tocoind(transp(Gµ)), T ν) | Gν ⇃ν
p

T ν ∧ Gµ R Gν}. From Gν ⇃ν
p T ν , derive guardedν

p(Gν) ∨ T ν = endν . The first case is proven
by induction on guardedν

p(Gν); for the second we know from Gν ⇃ν
p endν and Gµ R Gν that

¬partOfν
p(Gµ) and hence tocoind(transp(Gµ)) = endν . ◀

From these Lemmas, completeness follows immediately.

▶ Theorem 14. If Gν ⇃co
p T ν and Gµ R Gν then projp(Gµ) is defined and projp(Gµ) R T ν .

Proof. From Gµ R Gν , we know using Proposition 4 that Gµ is closed. Applying
Lemma 12, we have that transp(Gµ) R tocoind(transp(Gµ)). Finally, from Lemma 13,
we have that transp(Gµ) R T ν . It thus holds that projectablep(Gµ), so projp(Gµ) is defined
and transp(Gµ) = projp(Gµ) letting us conclude projp(Gµ) R T ν . ◀
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unfold(Gµ) ⇃⇃µ
p unfold(T µ)

Gµ ⇃µ
p T µ [Unf⇃µ]

p /∈ {p1, p2} guardedµ
p (Gµ) Gµ ⇃µ

p T µ

p1
µ−→ p2 : k⟨U⟩.Gµ ⇃⇃µ

p T µ
[M⇃µ]

Gµ ⇃µ
p T µ

p µ−→ p1 : k⟨U⟩.Gµ ⇃⇃µ
p !µk⟨U⟩.T µ

[M1⇃µ]
∀j. Gµ

j ⇃µ
p T µ

j

p µ−→ p1 : k{lj : Gµ
j }j∈J ⇃⇃µ

p k ⊕µ {lj : T µ
j }j∈J

[B1⇃µ]

p ̸= p1 Gµ ⇃µ
p T µ

p1
µ−→ p : k⟨U⟩.Gµ ⇃⇃µ

p ?µk⟨U⟩.T µ
[M2⇃µ]

p ̸= p1 ∀j. Gµ
j ⇃µ

p T µ
j

p1
µ−→ p : k{lj : Gµ

j }j∈J ⇃⇃µ
p k &µ {lj : T µ

j }j∈J

[B2⇃µ]

¬partOfµ
p (Gµ) Unravels(Gµ)

Gµ ⇃⇃µ
p endc

[End⇃µ]
J ̸= {} p /∈ {p1, p2} ∀j. Gµ

j ⇃µ
p T µ ∧ guardedµ

p (Gµ
j )

p1
µ−→ p2 : k{lj : Gµ

j }j∈J ⇃⇃µ
p T µ

[B⇃µ]

Figure 4 Intermediate projection on inductive types, written as Gµ ⇃µ
p T µ.

5 Deciding Projectability

In this section, we show that projectable is decidable. We do this in two steps: first, we define
the intermediate projection Gµ ⇃µ

p T µ and show that it is sound and complete with respect
to our coinductive projection; second, given a pair (Gµ, T µ), we construct a graph and show
that deciding Gµ ⇃µ

p T µ can be reduced to checking properties of that graph.

An Intermediate Projection. The rules defining Gµ ⇃µ
p T µ, presented in Figure 4, are

similar to those for coinductive projection, but also enforce the unfolding operation unfold
on both µ-types. Initially, the only applicable rule is [Unf⇃µ], which unfolds µ-types. Then,
the rules inspired by coinductive projection are used. In order to enforce unfolding every
time we apply any other rule, we use the auxiliary relation ⇃⇃µ

p .
We now show that there is a correspondence between intermediate projection ⇃µ

p and
coinductive projection ⇃ν

p . In order to do so, we need to define how to construct a coinductive
type from an inductive one. We have shown how to do this for inductive local types with
tocoind(T µ) and we overload this tocoind function to similarly work with inductive global
types Gµ. We use the abbreviations Unravels(Gµ) and Unravels(T µ) for Gµ R tocoind(Gµ)
and T µ R tocoind(T µ) respectively.

▶ Lemma 15 (Unraveling of Projection).
Gµ ⇃µ

p T µ iff Unravels(Gµ) and Unravels(T µ) and tocoind(Gµ) ⇃ν
p tocoind(T µ).

Proof. ( =⇒ ) Derive both Unravels(Gµ) and Unravels(T µ) by coinduction on R and
inversion on Gµ ⇃µ

p T µ. Prove tocoind(Gµ) ⇃ν
p tocoind(T µ) by coinduction on ⇃ν

p and derive
from Gµ ⇃µ

p T µ that guardedµ
p (Gµ) ∨ unfold(T µ) = endµ and proceed as in Lemma 13.

( ⇐= ) Proof by coinduction on ⇃µ
p and derive from tocoind(Gµ) ⇃ν

p tocoind(T µ) that
guardedν

p(tocoind(Gµ)) ∨ tocoind(T µ) = endν , case analysis on the disjunction as in Lemma
13, inverting Unravels(Gµ) and Unravels(T µ) to derive the shape of Gµ ⇃µ

p T µ. ◀

▶ Corollary 16. projectablep(Gµ) iff Gµ ⇃µ
p transp(Gµ).

Proof. For ( =⇒ ) we first show for any Gµ and Gν , if Gµ R Gν then Gν = tocoind(Gµ)
(and similarly for local types). Then both directions follow from Lemma 15. ◀

Deciding Gµ ⇃µ
p T µ is similar to deciding recursive type equivalence. Treatment of

recursive types as graphs for equivalence testing is a well known approach [26] and solves the
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problem by testing properties of reachable nodes in a directed graph. In this section, we do
the same for deciding Gµ ⇃µ

p T µ. First, we show how to transform global and local types into
graphs. Then, we obtain a graph of the pair (Gµ, T µ) by joining the graphs of Gµ and T µ.
Deciding Gµ ⇃µ

p T µ corresponds to testing a property on all reachable nodes of that graph.

Graphs. We first give the formal definition of graph, following that of Eikelder [26].

▶ Definition 17 (Graph). A directed graph is a triple (Q, d, δ) where:
Q is a finite set of nodes
d: Q → N is a function returning the number of outgoing edges from a node
δ : (Q × N) ⇀ Q is the partial successor function such that δ(q, i) is the ith successor of
q, for 0 < i ≤ d(q) nodes, and is undefined for all other i.

Given a graph (Q, d, δ), we define the procedure satP which computes if all reachable
nodes from an initial node q satisfy a given property P .

▶ Definition 18 (satP ). The function satP : 2Q → Q → {0, 1}, parameterised by a boolean
predicate P : Q → {0, 1}, is defined as:

satP (V, q) =
{

1 if q ∈ V

P (q) ∧ ∧
i<d(q) satP

(
{q} ∪ V, δ(q, i)

)
otherwise

Given a set of visited nodes V , a current state q, and the predicate P , the function returns 1
if the node has already been visited; otherwise, it will recursively check the successors.

Global and Local Types as Graphs. We now give a procedure for constructing a graph
from a global type. The graph construction for local types is similar and therefore omitted.

▶ Definition 19 (Global type graph). The graph of a global type Gµ is (enumg(Gµ), dg, δg)
where enumg, dg and δg are defined as:

enumg(p1
µ−→ p2 : k⟨U⟩.Gµ) = {p1

µ−→ p2 : k⟨U⟩.Gµ} ∪ enumg(Gµ) enumg(end) = {end}
enumg(p1

µ−→ p2 : k{lj : Gµ
j }j∈J ) = {p1

µ−→ p2 : k{lj : Gµ
j }j∈J } ∪

⋃
j∈J

enumg(Gµ
j )

enumg(t) = {t} enumg(µt.Gµ) = {µt.Gµ} ∪ {Gµ
1 [µt.Gµ/ t] | Gµ

1 ∈ enumg(Gµ)}

dg(Gµ) =





1 if unfold(Gµ) = p1
µ−→ p2 : k⟨u⟩.Gµ

|J | if unfold(Gµ) = p1
µ−→ p2 : k{lj : Gµ

j }j∈J

0 otherwise

δg(Gµ, i) =





Gµ
1 if unfold(Gµ) = p1

µ−→ p2 : k⟨u⟩.Gµ
1 ∧ i = 1

Gµ
i if unfold(Gµ) = p1

µ−→ p2 : k{lj : Gµ
j }j∈J ∧ 0 < i ≤ |J |

undefined otherwise

The enumeration function enumg collects all subterms of a global type. In the case of µt.Gµ,
it enumerates all subterms of the body Gµ that can contain free occurrences of t, and
substitute them all for µt.Gµ. These subterms are all nodes of the global type graph Gµ.

▶ Example 20. We show the global type graph of our main example from (7).

µt.Gµ µt′.(Gµ
1 [µt.Gµ/t]) p −→ q : k⟨U⟩.µt′.(Gµ

1 [µt.Gµ/t])1
1

2
1
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where Gµ := p −→ q : k⟨U⟩. µt′.Gµ
1 and Gµ

1 := r −→ s : k′{l1 : t, l2 : p −→ q : k⟨U⟩. t′}.
Given a global type Gµ, we wish to use satP ({}, Gµ) to assert whether P holds for all

nodes reachable by δg. To ensure termination of this procedure, we show that the set of
reachable nodes is finite, a consequence of Q being closed under δg.
▶ Lemma 21. If Gµ

1 ∈ enumg(Gµ) and 0 ≤ i < dg(Gµ
1 ), then δg(Gµ

1 , i) ∈ enumg(Gµ).
Proof. Let δaux be δg without the use of unfold in the first two case distinctions, i.e.,
δg = δaux ◦ unfold. Showing enumg(Gµ) is closed under δ reduces to showing enumg(Gµ) is
closed under δaux and unfold. By definition, enumg(Gµ) is closed under δaux. For enumg(Gµ)
to be closed under unfold, it suffices to show that it is closed under unfold_once, which follows
by induction on the µ-height. ◀

We are now ready to show how to use our graph construction for proving a property of a
global type using satP . We do that by proving that Unravels(Gµ) is decidable. In this case,
we instantiate P in satP with a predicate that disallows global types to unfold to a top level
µ-operator or a recursion variable.
▶ Definition 22 (UnravelPred). The predicate UnravelPred : Gµ → {0, 1} is defined as:

UnravelPred(Gµ) =
{

0 if unfold(Gµ) = µt.Gµ
1 ∨ unfold(Gµ) = t

1 otherwise

▶ Lemma 23. Unravels(Gµ) iff satUnravelPred({}, Gµ) = 1
The instantiation satUnravelPred tests that Gµ and all successors of Gµ unfold to a message
communication, a branching or endµ. The procedure will for example fail for µt.t. More
details on this procedure are given in Section 6.

We conclude this part by defining the partial functions LG, LT and PLp. Given an
inductive global type, function LG returns its unfolded prefix, i.e., information about its first
occurring interaction.
▶ Definition 24 (LG). The function LG ∈ G ⇀ (P × P × C × ({⊥} ∪ U)) is defined as:

LG(Gµ) =





(p1, p2, k, U) if unfold(Gµ) = p1 −→ p2 : k⟨U⟩.Gµ
1

(p1, p2, k, ⊥) if unfold(Gµ) = p1
µ−→ p2 : k{lj : Gµ

j }j∈J

undefined otherwise

Similar to how LG returns the unfolded prefix in a global type, we define the corresponding
operation on local types as LT . We use the set {!, ?} to indicate whether the communication
is a send (!) or a receive (?).
▶ Definition 25 (LT ). The function LT : T ⇀ ({!, ?} × C × ({⊥} ∪ U)) is defined as:

LT (T µ) =





(!, k, U) if unfold(T µ) =!µk⟨U⟩.T µ
1

(?, k, U) if unfold(T µ) =?µk⟨U⟩.T µ
1

(!, k, ⊥) if unfold(T µ) = k ⊕µ {lj : T µ
j }j∈J

(?, k, ⊥) if unfold(T µ) = k &µ {lj : T µ
j }j∈J

undefined otherwise

Finally, we can define a projection function on prefixes, i.e., a function that given a role
and an unfolded prefix of a global type, returns an unfolded prefix of a local type.
▶ Definition 26. The function PLp ∈ (P × P × C × ({⊥} ∪ U)) ⇀ ({!, ?} × C × ({⊥} ∪ U))
is defined as:

PLp(p1, p2, k, U) =





(!, k, U), if p1 = p
(?, k, U), if p2 = p and p ̸= p1
undefined otherwise
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Combining global and local type graphs. The next step towards deciding membership in
⇃µ

p is to combine the graphs of Gµ and T µ into a single graph with respect to a role p.

▶ Definition 27 (Joint Global and Local Type Graph). The graph of (Gµ, T µ) with respect to
p is the graph (enum(Gµ, T µ), d, δp), where enum, d and δp defined as:

enum(Gµ, T µ) = enum(Gµ) × enum(T µ) d(Gµ, T µ) = min(dg(Gµ), dl(T µ))

δp((Gµ, T µ), i) =





(δg(Gµ, i), δl(T µ, i)) if p ∈ LG(Gµ) ∧ 0 < i ≤ d(Gµ, T µ)
(δg(Gµ, i), T µ) if p /∈ LG(Gµ) ∧ 0 < i ≤ dg(Gµ)
undefined otherwise

The set of nodes is the Cartesian product of the nodes in the global type graph and the local
type graph. The successor function δp takes a step with respect to a role p and the case
distinction depends on this role. If p is in LG(Gµ), the ith successor of the graph is the ith

successor of the global and local type graph respectively. If p is not in the unfolded prefix,
the global type moves to its successor while the local type stays fixed.

▶ Example 28. We show the joint graph of p µ−→ q : k⟨U⟩.r µ−→ s : k′⟨U ′⟩.endµ and
!µk⟨U ′⟩.endµ with respect to role c marking the edges black when the local type stays
fixed.

p µ−→ q : k⟨U⟩.
r µ−→ s : k′⟨U ′⟩.endµ

!µk′⟨U ′⟩.endµ

r µ−→ s : k′⟨U ′⟩.endµ

!µk′⟨U ′⟩.endµ

endµ

endµ1 1

Deciding membership in ⇃µ
p . We define the predicate ProjPredp to decide membership

in ⇃µ
p . Intuitively, this predicate partitions the rules of ⇃µ

p into three sets such that the
projected role p
1. is in the unfolded prefix ([M1⇃µ], [M2⇃µ], [B1⇃µ], [B2⇃µ])
2. is not in the unfolded prefix, but the role is guarded in the global type ([B⇃µ],[M⇃µ])
3. is not part of the global type ([End⇃µ]).
We call rules in the first set prefix rules and rules in the second set guarded rules. The
only rule that is not yet mentioned is unfolding, [Unf⇃µ], which is implicitly applied by the
definition of δ.

▶ Definition 29 (ProjPredp). The boolean predicate ProjPredp ∈ Gµ × T µ → {0, 1} is defined
as:

ProjPredp(Gµ, T µ) =





(1) P Lp(LG(Gµ)) = LT (T µ) ∧
dg(Gµ) = dl(T µ) if P Lp(LG(Gµ)) is defined

(2) 0 < dg(Gµ) if partOfµ
p (Gµ) and guardedµ

p (Gµ)
(3) satUnravelPred({}, Gµ) ∧

¬partOfµ
p (Gµ) ∧

unfold(T µ) = end otherwise

We explain the three cases of the predicate.
1. Attempt to apply a prefix rule: This requires p to be in the unfolded prefix of the global

type. This is checked by requiring that PLp is defined. We then apply PLp to the
unfolded prefix, and assert it equal to the unfolded prefix of the local type. All prefix
rules require the global and local type to have equally many outgoing edges, which we
check by dg(Gµ) = dl(T µ).
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2. Attempt to apply a guarded rule: We rely on decidability of partOfµ and guardedµ which
is straightforward so we do not detail how2. All guarded-rules require the set of outgoing
edges of the global type to be greater than zero, which we assert. Concretely this test
corresponds to the first premise of rule [B⇃µ], asserting its label set is non-empty.

3. Attempt to apply [End⇃µ].

▶ Theorem 30. Gµ ⇃µ
p T µ iff satProjPredp({}, (Gµ, T µ)) = 1

Proof. For (=⇒), we show the property for any visited list v, that is, Gµ ⇃µ
p T µ implies

satProjPredp(v, (Gµ, T µ)) = 1. Proceed by functional induction on satProjPredp(v, (Gµ, T µ)). For
(⇐=), for any v, it suffices to show satProjPredp(v, (Gµ, T µ)) = 1 implies (Gµ, T µ) ∈ v ∨ Gµ ⇃µ

p
T µ. Proceed by functional induction on satProjPredp(v, (Gµ, T µ)). In the second case where v

is non-empty, pick the right disjunct Gµ ⇃µ
p T µ and proceed by coinduction. ◀

▶ Corollary 31. projectablep(Gµ) is decidable.

Proof. Follows from Theorem 30 and Corollary 16. ◀

6 Mechanisation

All of our results are mechanised in Coq [6] using SSReflect [14] for writing proofs, the
Paco library [18] for defining coinductive predicates, the Equations package [24] for defining
functions by well-founded recursion (such as satP ), and Autosubst2 [25] to generate syntax
of inductive global and local types with binders represented by De Bruijn indices [10].

The mechanisation uses coinductive extensional equivalence relations to equate coinductive
terms. For presentation purposes, e.g. in the conclusion of Lemma 12, we use propositional
equality to equate coinductive types. These two types of equality are consistent [1].

In this section, we cover how to create predicates and relations that are defined using both
inductive and coinductive inference rules, like our unravelling relation from Definition 3. We
discuss how to create an inversion principle that allows us to do case analysis on predicates
of the form Unravels(Gµ) which, as discussed in Section 5, is defined as Gµ R tocoind(Gµ).
Finally, we show how we prove decidability of Unravels using satP .

Mixed inductive and coinductive definitions. The unravelling relation presented in Defini-
tion 3 uses a combination of inductive and coinductive rules, which is non-standard. We do
this because it greatly simplifies our proofs and disallows unwanted derivations like the one
presented in Section 3 (8) by construction. We mix inductive and coinductive rules by taking
the greatest fixed point of a generating function defined as a least fixed point, a technique
that Zakowski et al. [29] also have used to define weak bisimilarity of streams.

Definition grel := gType -> gcType -> Prop
Inductive UnravelF (R : grel) : grel := (* Generating function UnravelF *)
| UnrF1 g gc a u : R g gc -> UnravelF R (GMsg a u g) (GCMsg a u gc)
(* The branching rule is elided *)
| UnrF_unf1 g gc : UnravelF R (unf1 (GRec g)) gc -> UnravelF R (GRec g) gc
| UnrF_end : UnravelF R GEnd GCEnd.

Definition Unravelling : grel := paco2 UnravelF bot2 (* gfp UnravelF *)

2 We need to assert both partOfµ
p (Gµ) and guardedµ

p (Gµ) for completeness as we from Gν ⇃ν
p endν and

Gµ R Gν then can conclude the third case of ProjPredp.
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We represent p1
µ−→ p2 : k⟨U⟩.Gµ and p1

ν−→ p2 : k⟨U⟩.Gν as GMsg a u g of type gType and
GCMsg a u gc of type gcType respectively, where a contains roles p1, p2 and channel k, u is
U , g is Gµ, and gc is Gν . The terms GEnd and GCEnd represent endµ and endν respectively
and the function unf1 is the unfold_once function from Section 4.

UnravelF is an inductively defined relation relating global inductive types to global
coinductive types. It is parameterised by a relation R of the same type where (g, gc) ∈
UnravelF R if, after unfolding a finite number of binders from g resulting in type g’, either
g′ = GEnd and gc = GCEnd, or g′ = GMsg a u g′′, gc = GCMsg a u gc′′, and (g′′, gc′′) ∈ R, or
similarly for the elided branch case.

Intuitively, UnravelF is a generating function defined as a least fixed point and by taking
the greatest fixed point of this function we obtain a hybrid inductive/coinductive relation
where any occurrence of R in a premise of UnfoldF require us to take coinductive steps in
our proofs and any recursive occurrence of UnfoldF requires us to take inductive steps. This
allows us to do proofs like (9) where proofs are finished by circling back to previous equivalent
nodes in the tree in the coinductive cases or by reaching a base case in the inductive cases.
Moreover this approach forbids us from unfolding binders indefinitely since UnrF_unf1 is
inductive and not coinductive.

We use paco2 from the Paco library to define Unravelling as the greatest fixed point of
UnravelF. Paco stands for parameterised coinduction and paco2 F R defines the greatest fixed
point of F parameterised by a binary relation R, which is equivalent to gfp(λX. F(X ∪ R)).
When R is the empty set this coincides with the standard greatest fixed point.

Custom inversion principles. Many proofs on inductive global types work up to unfolding.
Unravelling, for instance, unravels a finite number of µ-binders at every step and our
intermediate projection function ⇃µ

p and sat procedure both work in a similar way. To
abstract away from finite unfoldings we use the following InvPred predicate.

Variant InvPredF (P : gType -> Prop) : gType -> Prop :=
| HTM g a u : P g -> InvPredF P (GMsg a u g)
| HTB gs d : Forall P es -> InvPredF P (GBranch d gs)
| HTE : InvPredF P GEnd
Definition unf g := (iter (mu_height g) unf1 g).
Variant UnfoldF (P : gType -> Prop) : gType -> Prop :=
| UnfF1 g : P (unf g) -> UnfoldF g.

Definition InvPred : (gType -> Prop) := paco1 (UnfoldF \o InvPredF) bot.
(*function composition*)

We define two generating functions InvPredF and UnfoldF and generate InvPred as the greatest
fixed point of their composition. The function unf corresponds to unfold from Section 4.
InvPredF contains cases for all constructors of inductive global types except for µt and t.
UnfoldF unfolds the top-level µ-binders from a global type. The key insight is that InvPred(Gµ)
is equivalent to asserting closedness and contractiveness of Gµ.

The inversion principle of InvPred is convenient for proving predicates P that are closed
under unfolding of inductive global types, i.e. ∀G. P µt.G ⇐⇒ P G[µt.G], as any unfolding
applied by inverting UnfoldF can similarly be applied in the goal. In particular the predicate
Unravels(Gµ) is closed under unfolding and provable by inversion of UnfoldF.

Well-foundedness of satP . Lemma 23 proves decidability of Unravels. This proof is mech-
anised by proving decidability of InvPred(Gµ), which as we show above implies Unravels(Gµ).
The invP predicate corresponds to Definition 22.
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Definition invP g :=
match unf g with | GRec _ | GVar _ => false | _ => true end.

Definition invpred g := sat nil invP g.
Theorem InvPred_dec : forall g, InvPred g <-> invpred g = true

We use the Equations package to define satP by well-founded recursion on the decreasing
measure gmeasure g V which is defined as the number of unique nodes in the graph created
from g minus the cardinality of the visited set V. The successor function δg is implemented
by nextg : gType -> seq gType.

1 Definition gmeasure (g : gType) (V : seq gType) :=
2 size (rep_rem V (undup (enumg g))).
3 Lemma closed_enum : forall g0 g1 g2, g1 \in nextg (unf g) ->
4 g2 \in enumg g1 -> g2 \in enumg g.
5 Equations sat (V : seq gType) (P : gType -> bool)
6 (g : gType) : bool by wf (gmeasure g V) :=
7 sat V P g with (dec (g \in V)) => {
8 sat _ _ _ in_left := true;
9 sat V P g in_right := (P g) &&

10 (foldInMap (nextg (unf g))
11 (fun g' _ => sat (g::V) P g')) }.

Defining sat generates one obligation that must be proved to show termination. If we write
gmeasure g V as M(g, V ), then we must show it is decreasing for arguments to the recursive
call, i.e. that M(g′, {g} ∪ V ) < M(g, V )

Using a variant of the familiar map on inductive lists called foldInMap our obligation is
enriched with the assumption that g′ = δ(g, i) for some 0 < i ≤ dg(g). The boolean wrapper
dec further enriches the obligation with the case of the if-statement, g /∈ V .

What must be proven in this obligation is slightly different from the termination argument
in Section 5 which relied on the finiteness of a graph’s nodes. The obligation instead relies
on a lemma closed_enum (l. 3). The lemma states that the enumerations of a global types
continuations, will all be part of the initial global types enumeration. The proof of this
lemma is short, less than 100 lines.

The full termination proof for sat is short (about 250 lines) and the approach is general.
The mechanisation also proves termination of the decision procedure for membership in ⇃ind.
This task only requires adapting the algorithm to pairs of terms. This termination proof is
also short. The conciseness is due to the space of continuations being computed by structural
recursion by enum. This makes it straightforward to prove substitution properties about it
by induction on syntax.

7 Related Work and Discussion

Related Work. Ghilezan et al. [13] are the first to introduce coinductive projection on
coinductive global and local types. They use it to show soundness and completeness of
synchronous multiparty session subtyping. A key difference is that whereas we represent the
infinite unfolding of a µ-type as a coinductive type, they represent it as a partial function.
Projection on µ-types is then defined indirectly in terms of the coinductive projection of
their corresponding partial functions. Because of this indirect definition, their projection is
not computable. Our intermediate projection ⇃µ is similar to their projection on µ-types.
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However, ours is defined with inference rules stated directly on the µ-types which is why we
can decide membership and thus compute projection. Castro-Perez et al. [7] use coinductive
projection to express their meta theory about multiparty session types. Their main result is
trace equivalence between processes, coinductive local types and coinductive global types,
which they mechanise in Coq. Like us, they show soundness of their projection on µ-types.
Their projection is however not complete, which is what inspired us to investigate approaches
to sound and complete projection. A consequence of their projection on µ-types not being
complete, is that there are many inductive global types that have the trace equivalence
property, but must be excluded since their projection is undefined. Jacob et al. [19] show
deadlock and leak freedom of multiparty GV, an extension of the functional language
GV [12, 28]. They use coinductive projection to define when local types are compatible and
do not define a projection on µ-types. Other work has formalised the notion of projection in
Coq. Cruz-Filipe et al. [9, 8] formalise syntax and semantics of tail-recursive choreographies
and a projection that includes full merge. However, this work does not approach coinductive
syntax and therefore does not show any soundness and completeness results.

Our graph algorithm from Section 5 implements a procedure proposed by Eikelder [26].
This work provides several algorithms for deciding recursive type equivalence that, like ours,
use predicates on reachable nodes of a graph. Also, our proof of termination is quite similar
to theirs. However, they define the set of reachable states as set comprehension, whereas we
constructively produce a list of nodes. Similarly, showing their set comprehension is finite,
boils down to substitution lemmas. Unlike ours, their work has not been mechanised in a
proof assistant/theorem prover. The idea of defining the space of continuations for global
and local type as an explicit enumeration is inspired by Asperti [3] who mechanise a concise
proof of regular expression equivalence in the Matita theorem prover [4]. They do this by
a new construction called pointed regular expressions. Essentially, this adds marks to a
regular expression, such that one can encode state transitions by moving marks. This makes
computing reachable configurations as trivial as computing all markings.

We define unravelling using a mix of inductive and coinductive rules. In Section 6, we
make this precise by defining unravelling as the greatest fixed point of a generating function
itself defined as a least fixed point. Zakowski et al. [29] use the same technique to define a
weak bisimilarity on streams.

The primary focus of this work is on global types. Scalas and Yoshida [23] propose a more
general approach that shows that properties such as deadlock freedom can be derived directly
on local types without the need for global types and the corresponding projection. However,
their approach misses the main advantage provided by global types which is providing a
specification (blueprint) of the used protocols.

Discussion and Future work. This work is part of the MECHANIST project that aims at
mechanising the full theory of multiparty asynchronous session types [17]. Our next step is to
mechanise a proof of semantic equivalence between global types and their projections to local
types through projp. Semantic equivalence is a property similar to trace equivalence which
Castro-Perez et al. [7] mechanised. However, there are some key differences in our objectives.
Their main result is Zooid, a tool that extracts certified message-passing programs, which
is why their process syntax differs significantly from the original syntax by Honda et al
(e.g., no parallel composition). Instead, we aim at mechanising the exact process calculus
presented by Honda et al.. As the meta theory in Castro-Perez et al. [7] is independent of
their projection function, it would also be interesting future work to adapt projp to their
setting. Finally, projp implements the restrictive plain merge but related work also uses full
merge [13, 8]. It would be interesting to define a binder-agnostic projection using full merge.

ITP 2023



28:18 A Sound and Complete Projection for Global Types

8 Conclusions

Projection is a function that maps global types to local types. The projections found in
the literature impose syntactic restrictions that make them incomplete with respect to
coinductive projection. This work shows the existence of a decidable projection that is
sound and complete. Our procedure works in two phases: first a decision procedure tests
a soundness property and, if successful, a second procedure translates the global type to a
local type. The latter is very similar to the existing projections in the literature. The novelty
of our work is in the decision procedure. All results have been mechanised in Coq.
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Abstract

Multiparty session types is a typing discipline used to write specifications, known
as global types, for branching and recursive message-passing systems. A necessary
operation on global types is projection to abstractions of local behaviour, called
local types. Typically, this is a computable partial function that given a global
type and a role erases all details irrelevant to this role.
Computable projection functions in the literature are either unsound or too
restrictive when dealing with recursion and branching. Recent work has taken a
more general approach to projection defining it as a coinductive, but not com-
putable, relation. Our work defines a new computable projection function that
is sound and complete with respect to its coinductive counterpart and, hence,
equally expressive. All results have been mechanised in the Coq proof assistant.

Keywords: Session types, Mechanisation, Projection, Coq

1 Introduction

Session types are types for abstracting the behaviour of communicating processes.
First proposed by Honda et al. [1] for binary protocols, they specify the sequence of
possible actions processes need to follow when sending and receiving messages over
a channel. Session types provide a clear language for describing protocols that are
guaranteed to not deadlock or contain communication errors, e.g., never receive an
integer when expecting a boolean. A decade after their conception, Honda et al. [2]
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proposed a generalisation, called multiparty session types, that specifies how an arbi-
trary but fixed number of processes should interact with each other. Multiparty session
types are based on the concept of global types which provide a global description
of the multiparty protocol being abstracted. Recently, multiparty session types have
gained interest from several communities, resulting in their integration into several
mainstream programming languages [3].

Multiparty session types follow a precise approach to designing and implementing
communicating processes: from global types that specify the protocols, we can auto-
matically generate local types, the local specifications of the behaviour of each role
in the protocol; then, each local type specification is (type) checked against the local
code being written by the programmer. The algorithmic generation of local types from
global types, called projection, is key for relating global types to implementations. Pro-
jection is a partial function which, when defined, outputs a local type that captures
the specification of the projected role given by the global type. As an example, let us
consider a global type where a role r asks another role s to either go Left or Right,
over some channel k:

r −→ s : k

{
Left : r −→ s : k′⟨Int⟩.p −→ q : k′′⟨Int⟩.end
Right : r −→ s : k′⟨String⟩.p −→ q : k′′⟨Int⟩.end

}
(1)

Above, if r chooses Left, it will also send an integer (Int) over some other channel k′;
otherwise, it will send a string (String). No matter what branch r chooses, all roles
must collectively follow the description of that branch.

Nested in both branches, there is a communication over k′′ of an integer Int

between p and q. The projections of r and p are:

r : k ⊕
{

Left : !k′⟨Int⟩.end
Right : !k′⟨String⟩.end

}
p : !k′′⟨Int⟩. end

Above, r makes a choice (denoted by ⊕), and depending on this choice, outputs either
a message of type Int or String over channel k, while p sends an Int over channel
k′′. An important observation is that, since neither p nor q are informed of the choice
made by r, their behaviour should be independent from the choice of r. In fact, a
restriction that projection usually imposes is that all roles that do not participate in
a branching interaction behave the same on all branches. Global types that satisfy
this condition are called projectable global types. The global type in Equation (1) is
projectable because the projection of p on the Left branch produces the same local
type as the projection on the Right branch. The same holds for q.

In order to express repetitive behaviour, global types (and local types) are usually
equipped with recursion, expressed as µ-types [4]. Consider for example the global
type below, which similarly to the global type in Equation (1) has an initial branching
interaction between r and s:

r −→ s : k

{
Left : µt.p −→ q : k′′⟨Int⟩.t
Right : µt.p −→ q : k′′⟨Int⟩.t

}
(2)
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In both branches of the global type above, a µ-binder is used to specify repetition of
the interaction p −→ q : k′′⟨Int⟩. In this case, projectability of this global type is easy
to check because both branches are exactly the same.

The recursive behavior of µ-types is due to their intrinsic operation, known as
unfolding. Consider the global type obtained by unfolding the binder in the Left

branch, and leaving the Right branch unchanged:

r −→ s : k

{
Left : p −→ q : k′′⟨Int⟩. µt.p −→ q : k′′⟨Int⟩.t
Right : µt.p −→ q : k′′⟨Int⟩.t

}
(3)

To the best of our knowledge, no computable definition of projection can determine
the projectability of the global type in Equation (3). Recognising that this global
type is projectable for p requires comparing the projections of the branches in a more
permissive way than strict equality, relating the two local types:

!k′′⟨Int⟩. µt.!k′′⟨Int⟩. t µt.!k′′⟨Int⟩. t (4)

The standard way to relate these local types is by a coinductive equality, which uses
the unfolding operation [5], and there exists multiple ways of of defining decision
procedures for this relation [4, 6]. Using this more permissive way of relating the pro-
jections of branches, makes the global type in Equation (3) projectable. It is however
insufficient to recognise the projectability of the following global type:

µt. p −→ q : k⟨String⟩. µt′. r −→ s : k′
{

Left : t
Right : p −→ q : k⟨String⟩.t′

}
(5)

Intuitively, the behaviour of p is the same on both branches. That is, p always sends a
message of type String to q over channel k, which we can represent by the local type
µt. !k⟨String⟩. t. That is, the same specification can be given using a single binder
in the following way:

µt. p −→ q : k⟨String⟩. r −→ s : k′ {Left : t, Right : t} (6)

While the projection of (6) onto p is defined for most, if not all, projections in the
literature, the projection of p onto (5) is undefined for all projection algorithms in
the literature. The projection of (5) remains undefined. This makes the algorithmic
projection functions in the literature incomplete, since there are some global types
that should be projectable, but are not. This is even the case if coinductive equality,
rather than syntactic equality, is used to relate the projection of branches, since the
projected branches in (5) are not related by coinductive equality:

t ̸≈ !µk⟨String⟩.t′ (7)

The projected branches are however equivalent, when we consider the context they
appear in. In the projection of (5) on p, the following local type context has been
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generated so far, when we reach the branches:

µt.!µk⟨String⟩.µt′.[·]

Here [·] denotes a hole that will be instantiated by the projection of a branch. Applying
this context to the local types in (7) yields local types that are related by coinductive
equality:

µt.!µk⟨String⟩.µt′.t ≈ µt.!µk⟨String⟩.µt′.!µk⟨String⟩.t′ (8)

We are thus faced with a discrepancy: the global types in Equations (5) and (6)
are semantically equivalent, yet the projection onto p is defined only for the latter.
This makes projection incomplete and is a consequence of how projection is usually
implemented. This discrepancy cannot be rectified by integrating decision procedures
for coinductive equality into existing definitions of projection. To address this issue,
projection must be defined in a way that combines coinductive equality with contextual
information, as was done in (8).

The most common way of defining projection is as a structurally recursive, partial
function on global types, which we call standard projection. More recently, Ghilezan
et al. [7] define projection in a declarative manner as a coinductive relation on coin-
ductive global and local types. Unlike most definitions in the literature, theirs is not
an algorithmic procedure that can be executed. They use this relation to prove prop-
erties about a relation on local types called synchronous subtyping (cf. Definition 3.15
[7]). Our focus is the projection operation, which can be used in both synchronous and
asynchronous settings, and our work thus covers both synchronous and asynchronous
multiparty session types. Following the approach of Ghilezan et al., we define a coin-
ductive global type that represents both the inductive global types in Equations (5)
and (6), and this coinductive global type can project onto p. Projection on coinduc-
tive types, called coinductive projection, is defined as a relation, making the definition
declarative, and not algorithmic. Defining projection as an actual algorithm that can
be executed is important for multiparty session types, as it makes decidable type
checking possible (cf. Proposition 4.6 [8]). Using an example similar to (3), Ghilezan
et al. are the first to point out the expressiveness of coinductive projection in compar-
ison to the standard projection. They show that the way standard projection treats
binders, causes the procedure to be undefined for some global types, whose alterna-
tive representation as coinductive global types do have a coinductive projection. An
example of this is our running example in Equation (5).

Contributions and Structure. In this paper, we define an algorithmic version of the
declarative definition of projection by Ghilezan et al. That is, we define a computable
projection on inductive global types that can handle global types such as that in
Equation (5), making it more general than existing computable projection definitions
in the literature. As an algorithmic version of coinductive projection, our procedure is
not only more general, but also complete with respect to the coinductive projection.
All our proofs have been mechanised1 in the Coq proof assistant [9].

1The code can be found at: https://github.com/Tirore96/projection
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This is an extended version of Tirore et al. [10], which includes the following
additions:

• We extend our presentation of inductive types. This includes definitions which
were previsouly elided and Lemma 12 which states a list of properties about
unfolding µ-types. We also extend our presentation of coinductive types and the
unravelling relation that relates inductive and coinductive types.

• We have simplified the presentation of our projection procedure, seen in Definition
5. Section 4.1 now contains a more detailed account of the termination proof for
the decision procedure which projection relies on.

• We give a more detailed account of the soundness and completeness proofs, and
we simplify their presentation by containing aspects of soundness in Section 5
and completeness in Section 6.

We structure the paper as follows. Section 2 defines inductive global and local types,
and provides an overview of existing variants of standard projection along with their
pitfalls. Section 3 introduces coinductive global types, coinductive local types, and
the coinductive projection that relates them. Section 4 presents our new projection
function on inductive global types and proves termination for this procedure. Section 5
proves soundness of the procedure, and Section 6 proves completeness. Section 7 details
key insights from our Coq mechanisation. Finally, Section 8 covers related and future
work, and Section 9 concludes.

Throughout the paper, we use the symbol to link definitions, lemmas, theorems,
and other elements to the corresponding code in our repository.

2 Inductive Types and Standard Projection

We recapitulate the standard inductive syntax of global and local types and introduce
useful predicates on these types. To properly position our work we cover existing
inductive definitions of projection found in the literature.

2.1 Syntax

Let P be a set of roles, ranged over by p, q, r, s, t, L a set of labels, ranged over by l,
and X a set of recursion variables ranged over by t.

Definition 1 (Inductive Global and Local Types [8]). Global types Gµ and
local types Tµ are µ-types generated inductively by the following grammars, where U
represents primitive types:

Gµ ::= p1
µ−→ p2 : k⟨U⟩.Gµ | p1

µ−→ p2 : k{lj : Gµ
j }j∈J | µt.Gµ | t | endµ

Tµ ::= !µk⟨U⟩.Tµ | ?µk⟨U⟩.Tµ | k ⊕µ {lj : Tµ
j }j∈J | k &µ {lj : Tµ

j }j∈J |
µt.Tµ | t | endµ

The type p1
µ−→ p2 : k⟨U⟩.Gµ denotes a communication between roles p1 and p2

via channel k of a message of type U , which then proceeds as Gµ. Similarly, the type

p1
µ−→ p2 : k{lj : Gµ

j }j∈J denotes a communication between two roles where, given the
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set of indices J , role p1 selects a branch with label li, and then proceeds as Gµ
i .

Types µt.Gµ and t model recursive protocols. Finally, endµ denotes the successful
termination of a protocol. A message type U is an unspecified value type such as int
or bool: their formal treatment, necessary for the typing system [2], is not relevant
for the focus of this paper.

The local type !µk⟨U⟩.Tµ outputs a message of type U over channel k, while its
dual, ?µk⟨U⟩.Tµ, receives a message of type U over k. Types k ⊕µ {lj : Tµ

j }j∈J and
k &µ {lj : Tµ

j }j∈J implement branching where the former is the type of a process that
internally selects a branch li and communicates it over channel k, while the latter is
the type of a process that offers choices l1, . . . , ln (for J = {1, . . . , n} with n ≥ 1) over
channel k. We overload endµ and µt. using it also for local types. We deal with recursive
variables in a standard way and write capture-avoiding substitution as Gµ

1 [Gµ
2/t].

2.2 Predicates on Global and Local Types

It is standard practice to work only with closed and contractive µ-types [2, 4]. Closed-
ness prohibits free recursion variables in types and the type p −→ q : k⟨U⟩.t, for
instance, is not closed. A µ-type Gµ (or Tµ) is contractive if, for any of its subterms
with shape µt0.µt1...µtn.t, the body t is not t0 [4]. In particular, the type µt.t is not
contractive.

Closedness and contractiveness, collectively called well-formedness of µ-types, are
structural properties because they are defined by structural recursion on the type
syntax. The formal definition for closedness (closed) and contractiveness (contr) are
presented in Figures 1a and 1b respectively. It is common practice to assume that µ-
types are always well-formed and we deviate from this practice by not making this
assumption. We do this both to stay closer to the formalisation, explicitly stating in
all lemmas and theorems what is assumed, and because Section 3 introduces a novel
way of capturing well-formedness coinductively.

A type is closed if it has no free recursion variables. The predicates closed(Gµ) and
closed(Tµ), defined in Figure 1a, are true if Gµ, and Tµ respectively, contain no free
recursion variables.

The definition of contractiveness depends on auxiliary predicates guardedVar(t, Gµ)
and guardedVar(t, Tµ), defined in Figure 1b, which check that Gµ, and Tµ respectively,
are not a sequence of µ-binders followed by t. As an example, guardedVar(t, µt0.µt1.t)
returns False. Note that we do not use the Barendregt convention [11] in the definition
of contractiveness2.

One key feature of contractive µ-types is that unfolding top level µ-operators a
finite number of times, by replacing µt.Gµ with Gµ[µt.Gµ/t], will result in a type that
has a communicating action at the top. More precisely, the finite number of unfoldings
required is the number of top-level µ-operators of a contractive type, which we call the

µ-height and denote by | · |. For example, |µt.end| = 1 and |p µ−→ p′ : k⟨U⟩.µt. end| = 0.

2This is a consequence of the Coq mechanisation representing binders with de Bruijn indices, while the
paper presentation using a named representation. To present the mechanisation faithfully, the Barendregt
convention is not used in the definition of contractiveness. However, we use it in the proof of Lemma 13,
since it captures how we deal with de Bruijn indices in the mechanisation.
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FV(Gµ) ≜





FV(Gµ
1 ) if Gµ = p1

µ−→ p2 : k⟨U⟩.Gµ
1⋃

1..j
FV(Gµ

j ) if Gµ = p1
µ−→ p2 : k{lj : Gµ

j }j∈J

FV(Gµ
1 ) \ {t} if Gµ = µt.Gµ

1

{t} if Gµ = t

{} if Tµ = endµ

FV(Tµ) ≜





FV(Tµ
1 ) if Tµ ∈ { !µk⟨U⟩.Tµ

1 , ?µk⟨U⟩.Tµ
1 }⋃

1..j
FV(Tµ

j ) if Tµ ∈ { k ⊕µ {lj : Tµ
j }j∈J , k &µ {lj : Tµ

j }j∈J }

FV(Tµ
1 ) \ {t} if Tµ = µt.Tµ

1

{t} if Tµ = t

{} if Tµ = endµ

closed(Tµ) ≜ FV(Tµ) = {} closed(Gµ) ≜ FV(Gµ) = {}

(a) Free recursion variables (FV) and closedness (closed) for global types and local types .

guardedVar(t, Gµ) ≜





guardedVar(t, Gµ
1 ) ∧ t ̸= t′ if Gµ = µt′.Gµ

1

t ̸= t′ if Gµ = t′

True otherwise

guardedVar(t, Tµ) ≜





guardedVar(t, Tµ
1 ) ∧ t ̸= t′ if Tµ = µt′.Tµ

1

t ̸= t′ if Tµ = t′

True otherwise

contr(Gµ) ≜





guardedVar(t, Gµ
1 ) ∧ contr(Gµ

1 ) if Gµ = µt.Gµ
1

contr(Gµ
1 ) if Gµ = p1

µ−→ p2 : k⟨U⟩.Gµ
1

∀j ∈ J. contr(Gµ
j ) if Gµ = p1

µ−→ p2 : k{lj : Gµ
j }j∈J

True otherwise

contr(Tµ) ≜





guardedVar(t, Tµ
1 ) ∧ contr(Tµ

1 ) if Tµ = µt.Tµ
1

contr(Tµ
1 ) if Tµ ∈ { !µk⟨U⟩.Tµ

1 , ?µk⟨U⟩.Tµ
1 }

∀j ∈ J. contr(Tµ
j ) if Tµ ∈ { k ⊕µ {lj : Tµ

j }j∈J ,

k &µ {lj : Tµ
j }j∈J }

True otherwise

(b) Guarded variables (guardedVar) and contractivess (contr) for global types and local
types .

Fig. 1: Closedness and contractiveness

We create an auxiliary function unfold1(·) which unfolds a single binder by turn-
ing µt.Gµ into Gµ[µt.Gµ/t] and define the complete unfolding operation for global
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|Gµ| ≜
{
1 + |Gµ

1 | if Gµ = µt.Gµ
1

0 otherwise

unfold1(G
µ) ≜

{
Gµ

1 [µt.G
µ
1/t] if Gµ = µt.Gµ

1

Gµ otherwise

unfold(Gµ) ≜ unfold
|Gµ|
1 (Gµ)

Fig. 2: Calculating µ-height and unfolding global µ-types . Similar definitions for
local µ-types exist , but have been elided.

unfold(Gµ) = p1
µ−→ p2 : k⟨U⟩.Gµ

1 p ∈ {p1, p2} ∨ guardedµp (G
µ
1 )

guardedµp (G
µ)

unfold(Gµ) = p1
µ−→ p2 : k{lj : Gµ

j }j∈J p ∈ {p1, p2} ∨ ∀j. guardedµp (Gµ
j )

guardedµp (G
µ)

unfold(Gµ) = p1
µ−→ p2 : k⟨U⟩.Gµ

1 p ∈ {p1, p2} ∨ partOfµp (G
µ
1 )

partOfµp (G
µ)

unfold(Gµ) = p1
µ−→ p2 : k{lj : Gµ

j }j∈J p ∈ {p1, p2} ∨ ∃j ∈ J. partOfµp (G
ν
j )

partOfµp (G
µ)

Fig. 3: The predicates guardedµp (Gµ) and partOfµp (Gµ) denote that p occurs in
all branches of Gµ (resp. some branch of Gµ)

and local types, unfold(Gµ) and unfold(Tµ) respectively, as repeating the application
unfold1(Gµ) and unfold1(Tµ) their µ-height times. The definitions of µ-height, unfold1
and unfold are presented in Figure 2, where we write iterated function composition as
fn.

The unfold(·) operator allows us to create predicates that work up to finite unfold-
ings of the µ-operator which is necessary to guarantee termination. We will go into
this in more detail in Section 5 where we cover decidability properties.

We use unfolding to define the two predicates guardedµp (Gµ) (not to be con-
fused with guardedVar(t, G) used for defining contractiveness) and partOfµp (Gµ) where
guardedµp (Gµ) means that a role p exists in all branches of Gµ and partOfµp (Gµ) means
that p exists in at least one branch of Gµ. The definitions of both predicates is
presented in Figure 3.
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(p1
µ−→ p2 : k⟨U⟩.Gµ)⇂µp ≜





!µk⟨U⟩.(Gµ ⇂µp ) if p = p1 and p1 ̸= p2

?µk⟨U⟩.(Gµ ⇂µp ) if p = p2 and p1 ̸= p2

Gµ ⇂µp if p ̸∈ {p1, p2}

(p1
µ−→ p2 : k{lj : Gµ

j }j∈J )⇂µp ≜





k ⊕µ {lj : (Gµ
j ⇂

µ
p )}j∈J if p = p1 and p1 ̸= p2

k &µ {lj : (Gµ
j ⇂

µ
p )}j∈J if p = p2 and p1 ̸= p2

Gµ
1 ⇂

µ
p if p ̸∈ {p1, p2} and

∀i, j ∈ J. Gµ
i ⇂

µ
p= Gµ

j ⇂
µ
p

undefined otherwise

(µt.Gµ)⇂µp ≜
{
µt.(Gµ ⇂µp ) if guardedVar(t, Gµ ⇂µp )
endµ otherwise

t⇂µp ≜ t endµ ⇂µp ≜ endµ

Fig. 4: The standard projection of G onto p

2.3 Standard Projections

For each role, we use projection to relate global and local types. We start our overview
with the standard projection proposed by Castro-Perez et al. [12], which is inductively

defined by the rules given in Figure 4. The projection (p1
µ−→ p2 : k⟨U⟩. Gµ)⇂µp produces

either a sending or a receiving action if the role p is equal to p1 or p2 respectively, oth-

erwise the action is deleted. The projection of branching (p1
µ−→ p2 : k{lj : Gµ

j }j∈J)⇂µp
works similarly but, when role p is not involved, all branches must project to exactly
the same type. This requirement is known as plain merge. Full merge, used for exam-
ple by Ghilezan et al. [7], is a more permissive operation which merges local types
with distinct external choices. We discuss an extension of our work to full merge in
Section 8. For recursion µt.Gµ, Gµ is projected only if the result is a contractive local
type (checked by the guardedVar predicate). Finally, variable t and the type endµ

project directly to their local counterparts.

The use of guardedVar formally fixes a problem with the original projection [8] that
could generate non-contractive types, which is unsound.

Alternatively, Demangeon and Yoshida [13] fix this issue by replacing the side
condition with Gµ ⇂µp ̸= t. However, both these projections invite the counterexample:

p
µ−→ q : k⟨U⟩. µt. r µ−→ s : k′{l1 : endµ, l2 : t} ⇂µp (9)

which is undefined because the branch condition fails, as not all branches project to
the same local type. Since p is not a role in the branch, the desired result of this
projection should be !µk⟨U⟩. endµ. Bejleri and Yoshida [14] solve this with a recursion
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condition testing participation in the body:

(µt.Gµ)⇂µp ≜
{

µt.(Gµ ⇂µp ) if p ∈ Gµ

endµ otherwise
(10)

This function always generates contractive types, but the projection of

µt. p
µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′⟨U ′⟩. t⇂µp (11)

incorrectly results in the local type µt.!µk⟨U⟩.endµ rather than the desired
µt.!µk⟨U⟩. t. Glabbeek et al. [15] fix it by adding a variable constraint to the recursion
condition:

(µt.Gµ)⇂µp ≜
{

µt.(Gµ ⇂µp )

endµ if p ̸∈ Gµ and µt.Gµ is closed
(12)

This way, the projection in (11) correctly results in the type µt.!µk⟨U⟩.t. To the best
of our knowledge, this is the most general and sound version of projection, but it still
does not capture certain global types that intuitively should be projectable. One such
example is (5), from the introduction:

µt. p
µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p

µ−→ q : k⟨U⟩. t′}⇂µp

Here, the branching condition fails because t is syntactically not the same type as
!µk⟨U⟩.t′. But how can we recognise that the two branches specify the same behavior
for p even though their projections t and !µk⟨U⟩.t′ are not the same? Our main insight
is that standard projection can be performed in two steps: first, a translation function
generates a candidate local type by structurally recursing under the µ-operators; then
a boolean predicate tests projectability of the global type against this candidate by
unfolding µ-operators. The procedure returns the candidate if the check is passed and
is undefined otherwise. Checking projectability by unfolding µ-operators makes ter-
mination non-trivial and we explore this in Section 5. This approach lets us recognise
(5) as projectable, and its projection on p is the following local type:

µt.!µk⟨U⟩.µt′.t (13)

The local type above is derived by using the Castro-Perez et al. projection without
checking whether branches project to the same local type. In the sequel, we explain
why (13) is a correct projection of (5).

3 Coinductive Types and Coinductive Projection

We have seen that inductive µ-types can be used to write specifications that use
repetitions. One such specification is the global type from Equation (5), which cannot
be handled by standard projections due to µ-binders. In their seminal work, Ghilezan
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p ∈ {p1, p2} ∨ guardedνp (G
ν)

guardedνp (p1
ν−→ p2 : k⟨U⟩.Gν)

p ∈ {p1, p2} ∨ ∀j. guardedνp (Gν
j )

guardedνp (p1
ν−→ p2 : k{lj : Gν

j }j∈J )

p ∈ {p1, p2} ∨ partOfνp (G
ν)

partOfνp (p1
ν−→ p2 : k⟨U⟩.Gν)

p ∈ {p1, p2} ∨ ∃j ∈ J. partOfνp (G
ν
j )

partOfνp (p1
ν−→ p2 : k{lj : Gν

j }j∈J )

Fig. 5: Definitions of predicates guardedν and partOfν .

et al. [7] propose to define projection on type trees [4]. Type trees is an approach
that transforms a µ-type into a partial function from paths to nodes in the tree that
correspond to constructors of the inductive type. Crucially, in the traversal of the
path, the µ-binder is unfolded when it occurs at top-level. Therefore type trees offer
a representation of µ-types that hides the µ-binder. This is important in our setting
about projection, because it is the µ-binder that makes projection nontrivial. Inspired
by their work, this section introduces a coinductive projection. We however follow the
presentation by Castro-Perez et al. who use coinductive types, rather than type trees.

3.1 Syntax

The coinductive syntax of global and local types is defined as follows:

Definition 2 (Coinductive Types). The syntax of coinductive global types denoted by
Gν and coinductive local types denoted by T ν , is coinductively defined as:

Gν ::= p1
ν−→ p2 : k⟨U⟩.Gν | p1 ν−→ p2 : k{lj : Gν

j }j∈J | endν

T ν ::= !νk⟨U⟩.T ν | ?νk⟨U⟩.T ν | k ⊕ν {lj : T ν
j }j∈J | k &ν {lj : T ν

j }j∈J | endν

Coinductive types are objects that can be infinitely large. However, the fragment of
types we are interested in is regular since these types have only a finite set of distinct
subterms [16]. As a consequence, infinite objects must be circular. For example, the

coinductive global type Gν
reg = p

ν−→ q : k⟨U⟩.Gν
reg is regular and has two distinct

subterms. The µ-types we have defined can only represent regular coinductive types
so naturally we are only interested in those. It is however not necessary to impose any
such restriction on Gν or T ν because this property will be enforced by an unravelling
relation, which relates µ-types with their corresponding coinductive types.

3.2 Predicates on Coinductive Global Types

We define the predicates guardedνp(Gν) and partOfνp(Gν). Unlike their inductive coun-
terparts from Section 2, they are not unfolding predicates, as coinductive types have no
µ-binders to unfold. Due to the structural similarity of inductive and coinductive types,
the definitions are however very similar. The predicates guardedνp(Gν) and partOfνp(Gν)
are formally defined in Figure 5. Intuitively, partOfνp(Gν) checks the occurence of a
role in any branch, while guardedνp(Gν) checks the occurence of a role in all branches.
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Gν ⇃νp T ν

p
ν−→ p2 : k⟨U⟩.Gν ⇃νp !νk⟨U⟩.T ν

[M1⇃ν ]
Gν ⇃νp T ν

p1
ν−→ p : k⟨u⟩.Gν ⇃νp ?νk⟨U⟩.T ν

[M2⇃ν ]

p /∈ {p1, p2} guardedνp (G
ν) Gν ⇃νp T ν

p1
ν−→ p2 : k⟨U⟩.Gν ⇃νp T ν

[M⇃ν ]
¬partOfνp (G

ν)

Gν ⇃νp endν
[End⇃ν ]

∀j. Gν
j ⇃νp T ν

j

p
ν−→ p2 : k{lj : Gν

j }j∈J ⇃νp k ⊕ν {lj : T ν
j }j∈J

[B1⇃ν ]

∀j. Gν
j ⇃νp T ν

j

p1
ν−→ p : k{lj : Gν

j }j∈J ⇃νp k &ν {lj : T ν
j }j∈J

[B2⇃ν ]

p /∈ {p1, p2} ∀j. Gν
j ⇃νp T ν ∧ guardedνp (G

ν
j )

p1
ν−→ p2 : k{lj : Gν

j }j∈J ⇃νp T ν
[B⇃ν ]

Fig. 6: Coinductive projection on coinductive types .

3.3 Coinductive Projection

Inspired by Ghilezan et al. [7], we give a coinductive definition of projection that
relates coinductive global types to coinductive local types. The coinductive projec-
tion, denoted by Gν ⇃νp T ν , is a coinductive relation on global and local types. The
relation is partial, relating only some global types to a local type. It is defined by
the rules given in Figure 6. Rules [M1⇃ν ], [M2⇃ν ], [B1⇃ν ], and [B2⇃ν ] handle the cases
where a projected role p takes part in communication or branching. Note that our
projection allows sender and receiver in a communication to be equal. Rules [M⇃ν ],
[B⇃ν ], and [End⇃ν ] handle the cases where p does not take part using the negation of
partOfνp(Gν). In these cases, in order for projection to continue, p must occur in all
possible future branches, otherwise the projection returns end. These rules are similar
to those given by Castro-Perez et al. [12] as well as Jacobs et al. [17]. Our projection
uses guardedνp(Gν), in the [M⇃ν ] and [B⇃ν ] rules, to avoid vacuous derivations.

Example 1 (Vacuous Derivation). If the rule [M⇃ν ] did not have guardedνp(Gν) in its

premise, we could incorrectly derive that the projection of r on Gν ≜ p
ν−→ q : k⟨U⟩.Gν

is related to some coinductive local type. This is a vacuous derivation because the shape
of the local type is not inspected during the derivation. As an example, we will use
the coinductive local type !νk⟨U⟩.endν , which we know is an incorrect projection of the
global type Gν on r. If we do not enforce guardedνp(Gν) in the premise of [M⇃ν ], the
following incorrect projection is derivable:

Gν ⇃νr !νk⟨U⟩.endν

Gν ⇃νr !νk⟨U⟩.endν [M⇃ν ]
(14)
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The arrow marks a cycle from the premise back to the conlusion; this is possible
because coinductive definitions may be circular. Since no constraints are imposed on
the local type, this is a vacuous derivation that admits any coinductive local type. The
use of guardedνp(Gν) in rule [M⇃ν ] disallows this derivation because we cannot derive
guardedνr (Gν).

Example 2. Intuitively, the inductive global type in Equation (5)

µt. p
µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p

µ−→ q : k⟨U⟩. t′} corresponds to the
coinductive type

Gν ≜ p
ν−→ q : k⟨U⟩.r ν−→ s : k′{l1 : Gν , l2 : Gν} (15)

Similarly, the inductive local type µt.!µk⟨U⟩.µt′.t from Equation (13), which we claim
is the p projection of the global type in Equation (5), corresponds to the coinductive
type

T ν ≜ !νk⟨U⟩. T ν (16)

We can derive the corresponding coinductive types of inductive global type (5) and
local type (13), and relate them by coinductive projection on p:

Gν ⇃νp T ν Gν ⇃νp T ν

r
ν−→ s : k′{l1 : Gν , l2 : Gν} ⇃νp T ν

[B⇃ν ]

p
ν−→ q : k⟨U⟩.r ν−→ s : k′{l1 : Gν , l2 : Gν} ⇃νp !νk⟨U⟩. T ν

[M1⇃ν ]
(17)

We mark cycles where premises and conclusions match. In this particular case, we
marked two cycles, one for each of the branches in the global type. Note that the
application of [B⇃ν ] is possible because of the following derivation:

p ∈ {p, q}
guardedνp(Gν)

p ∈ {p, q}
guardedνp(Gν)

guardedνp(r
ν−→ s : k′{l1 : Gν , l2 : Gν})

3.4 Relating Inductive and Coinductive types

To reason effectively about µ-types and their coinductive counterparts, we need a
means to relate the two. We follow the style of Castro-Perez et al. [12], defining an
unravelling relation for global types denoted by Gµ R Gν and an unravelling of local
types denoted by Tµ R T ν . These relations are used to relate inductive and coinduc-
tive types. This is because the relations essentially map the inductive type onto the
coinductive type by repeatedly unfolding the inductive type. This limits the number
of distinct subterms that can be represented finitely by a µ-type. Our unravelling rela-
tion is intentionally more restrictive than that of Castro-Perez et al.. We do this to
ensure unravelling subsumes well-formedness of inductive types, which Castro-Perez et
al. enforce separately. Formally, unravelling of global types (resp. local types), denoted
by Gµ R Gν (resp. Tµ R T ν), is defined by the rules reported in Figure 7. Intuitively,
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unfold(Gµ) = endµ

Gµ R endν
[R-G-end]

unfold(Gµ) = p1
µ−→ p2 : k⟨U⟩.Gµ

1 Gµ
1 R Gν

Gµ R p1
ν−→ p2 : k⟨U⟩.Gν

[R-msg]

unfold(Gµ) = p1
µ−→ p2 : k{lj : Gµ

j }j∈J ∀j ∈ J. Gµ
j R Gν

j

Gµ R p1
ν−→ p2 : k{lj : Gν

j }j∈J

[R-branch]

unfold(Tµ) =!µk⟨U⟩.Tµ
1 Tµ

1 R T ν

Tµ R !νk⟨U⟩.T ν [R-!]
unfold(Tµ) =?µk⟨U⟩.Tµ

1 Tµ
1 R T ν

Tµ R ?νk⟨U⟩.T ν [R-?]

unfold(Tµ) = endµ

Tµ R endν
[R-T-end]

unfold(Tµ) = k ⊕µ {lj : Tµ
j }j∈J ∀j ∈ J. Tµ

j R T ν
j

Tµ R k ⊕ν {lj : T ν
j }j∈J

[R-⊕]

unfold(Tµ) = k &µ {lj : Tµ
j }j∈J ∀j ∈ J. Tµ

j R T ν
j

Tµ R k &ν {lj : T ν
j }j∈J

[R-&]

Fig. 7: The Unravelling Relation for global types and local types .

unravelling maps the unfolded inductive global (resp. local) type onto the coinduc-
tive type. As expected, the predicates guardedµp (Gµ), partOfµp (Gµ), guardedνp(Gν) and
partOfνp(Gν) are equivalent notions between inductive and coinductive types.

Lemma 1. Let Gµ be an inductive global type, Gν a coinductive global type, and p a
role. Then,

• If Gµ R Gν then guardedµp (Gµ) if and only if guardedνp(Gν)
• If Gµ R Gν then partOfµp (Gµ) if and only if partOfνp(Gν)

The following example shows that our definition of unravelling is more strict than
the definition used by Castro-Perez et al.
Example 3 (Unravelling µt.t). The unravelling of Castro-Perez et al. is more
permissive than our definition due to them having the following rule:

Gµ[µt.Gµ/t] R Gν

µt.Gµ R Gν

With this rule one can derive that non-contractive µt.t unravels to any coinductive
type Gν :

µt.t R Gν

µt.t R Gν (18)

It is not possible to derive µt.t R Gν with our rules because µt.t unfolds to itself, that
is unfold(µt.t) = µt.t and there is no rule for this case.

Castro-Perez et al. rule out problematic cases like the one in Example 3 by impos-
ing a contractiveness side condition when µ-types are unravelled. Recall that we did
not take the standard approach that assumes µ-types are well-formed. This is not nec-
essary because it is subsumed by unravelling. We show this by defining the corecursive
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procedures tocoind(Gµ) and tocoind(Tµ) that respectively generate coinductive global
types and coinductive local types from their inductive counterpart.

Definition 3 (tocoind). The corecursive functions tocoind : Gµ → Gν and
tocoind : Tµ → T ν are defined as:

tocoind(Gµ) ≜





p1
ν−→ p2 : k⟨U⟩.tocoind(Gµ) if unfold(Gµ) = p1

µ−→ p2 : k⟨U⟩.Gµ

p1
ν−→ p2 : k{lj : tocoind(Gµ

j )}j∈J if unfold(Gµ) = p1
µ−→ p2 : k{lj : Gµ

j }j∈J

endν otherwise

tocoind(Tµ) ≜





!νk⟨U⟩.tocoind(Tµ) if unfold(Tµ) =!µk⟨U⟩.Tµ

?νk⟨U⟩.tocoind(Tµ) if unfold(Tµ) =?µk⟨U⟩.Tµ

k ⊕ν {lj : tocoind(Tµ
j )}j∈J if unfold(Tµ) = k ⊕µ {lj : Tµ

j }j∈J

k &ν {lj : tocoind(Tµ
j )}j∈J if unfold(Tµ) = k &µ {lj : Tµ

j }j∈J

endν otherwise

We can now state that well-formedness of inductive global and local types is equiv-
alent to being able to unravel them to the coinductive type generated by applying
tocoind(·).
Proposition 2. Let Gµ and Tµ be an inductive global type and an inductive local type
respectively. Then,
1. closed(Gµ) ∧ contr(Gµ) if and only if Gµ R tocoind(Gµ)
2. If closed(Tµ) ∧ contr(Tµ) then Tµ R tocoind(Tµ)

Proof. For (1), the only-if case is by coinduction on R. The if case is challenging. The
proof is by contradiction, assuming Gµ R Gν and that Gµ is not contractive. For (2),
the proof is analogous to the only-if case of (1).

Proposition 2 shows that well-formedness can be characterised both structurally in
terms of closedness and contractiveness, and also coinductively in terms of unravelling.
For the proof of completeness we need the if-direction. We prove the other direction
to demonstrate that the two characterisations are equivalent, and because closedness
and contractiveness is an efficient way to derive the premise Gµ R tocoind(Gµ) of rule
[End⇃µ] in our decision procedure (see next section, Definition 6). The proof of the
if-direction is quite involved and because we do not need it, we do not mechanise this
direction for local types.

Example 4. Consider the unravelling of the inductive global type from Equation (5)
to the coinductive global type from Equation (15). We informally related these types in
Example (2) and now do it formally with unravelling. First, we recall their definitions:

Gµ ≜ µt. p
µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p

µ−→ q : k⟨U⟩. t′}
Gν ≜ p

ν−→ q : k⟨U⟩.r ν−→ s : k′{l1 : Gν , l2 : Gν}

Additionally, for the sake of presentation, we introduce the following shorthand:

Gµ
1 ≜ µt′. r

µ−→ s : k′{l1 : Gµ, l2 : p
µ−→ q : k⟨U⟩. t′}
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We can then derive Gµ R Gν as follows:

Gµ R Gν

Gµ
1 R r

ν−→ s : k′{l1 : Gν , l2 : Gν}
p

µ−→ q : k⟨U⟩.Gµ
1 R Gν

Gµ
1 R r

ν−→ s : k′{l1 : Gν , l2 : Gν}
Gµ R Gν (19)

Example 5. Consider the unravelling of the inductive local type in Equation (13)
to the coinductive local type in Equation (16). We informally related these types in
Example 2 and now do this formally with unravelling. We recall their definitions:

Tµ ≜ µt.!µk⟨U⟩.µt′.t T ν ≜ !νk⟨U⟩. T ν

We now derive Tµ R T ν as follows:

µt′.Tµ R T ν

µt′.Tµ R T ν

Tµ R T ν (20)

Examples 2, 4 and 5 precisely justify why we wish to project the inductive global
type in Equation (5) over role p to the local type in Equation (13). The justification
is that we can derive that their unravellings are related by coinductive projection.

4 Projection on Inductive Types

We now present a new computable projection on inductive global types, denoted by
projp(Gµ). Our main idea is to keep the syntactic translation performed by standard
projection but remove the syntactic side condition that requires all branches to be
equal. Standard projection without the syntactic side condition becomes then a total
function, an operation we call translation, which is defined by the following definition:

Definition 4 (trans). The function trans : P → Gµ → Tµ is identical to the
function ⇂µ (see Figure 4) except for the branching case, defined as:

transp(p1
µ−→ p2 : k{lj : Gµ

j }j∈J) =





k ⊕µ {lj : transp(Gµ
j )}j∈J if p = p1

k &µ {lj : transp(Gµ
j )}j∈J if p = p2

transp(Gµ
1 ) otherwise

We observe that the total function transp(Gµ) is a complete but unsound projection
function. Totality makes this an unsound projection function.
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Example 6. The total function transp(Gµ) is an unsound projection function.
Consider the following global type:

Gµ
bad ≜ p

µ−→ q : k
{
Left : p

µ−→ r : k′⟨Int⟩.endµ
Right : p

µ−→ r : k′⟨String⟩.endµ
}

(21)

This global type is not projectable, and this is because the type of the message that will
be received by r depends on the branching which r is not involved in. Translating this
global type onto r produces the following local type:

!µk′⟨Int⟩.endµ

This local type was produced by translating the Left branch of the global type.

We avoid (21) by applying transp only when the side condition projectableBp(Gµ)
is satisfied. This is seen in our projection function projp(Gµ) defined below.

Definition 5 (proj). The function proj : P → Gµ ⇀ Tµ, written projp(Gµ), is the
projection of the global µ-type Gµ with respect to the role p and is defined as:

projp(Gµ) =

{
transp(Gµ) if projectablep(Gµ)

undefined otherwise

We define a decision procedure which relies on a transition function nextp(Gµ)
which is defined below.

Definition 6 (projectable). The functions next : P ×Gµ × Tµ ⇀ {Gµ × Tµ},
nextunf : P ×Gµ × Tµ ⇀ {Gµ × Tµ}, dec : P × {Gµ × Tµ} → Gµ × Tµ → {True,False}
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and projectable : P ×Gµ → {True,False} are such that:

nextp(G,T ) =





{(G1, T1)} if Gµ = p −→ p2 : k⟨U⟩.Gµ
1 ∧

Tµ =!µk⟨U⟩.Tµ
1

{(G1, T1)} if Gµ = p1 −→ p : k⟨U⟩.Gµ
1 ∧

Tµ =?µk⟨U⟩.Tµ
1

{(G1, T )} if Gµ = p1 −→ p2 : k⟨U⟩.Gµ
1 ∧ p /∈ {p1, p2} ∧ guardedµp (G

µ)

{Gj , Tj}j∈J if Gµ = p
µ−→ p2 : k{lj : Gµ

j }j∈J ∧
Tµ = k ⊕µ {lj : Tµ

j }j∈J

{Gj , Tj}j∈J if Gµ = p1
µ−→ p : k{lj : Gµ

j }j∈J ∧
Tµ = k &µ {lj : Tµ

j }j∈J

{(Gj , T )}j∈J if Gµ = p1
µ−→ p2 : k{lj : Gµ

j }j∈J ∧ p /∈ {p1, p2}∧
guardedµp (Gj), j ∈ J

{} if closed(Gµ) ∧ contr(Gµ) ∧ Tµ = endµ

undefined otherwise

nextunfp(G
µ, Tµ) ≜ nextp(unfold(G

µ), unfold(Tµ))

decp(V,G
µ, Tµ) ≜





True if (Gµ, Tµ) ∈ V

∀i ∈ I.
dec(p, V ∪ {(Gµ, Tµ), Gµ

i , T
µ
i )

if nextunfp(G
µ, Tµ) = {(Gµ

i , T
µ
i )}i∈I

False otherwise

projectablep(G
µ) ≜ decp({}, Gµ, transp(G

µ))

Intuitively nextp(Gµ, Tµ) corresponds to a rule application of the coinductive
projection Gν ⇃νp T ν . The crucial difference between inductive and coinductive
types is that the former must be unfolded. For this reason we wrap nextp(Gµ, Tµ)
in nextunfp(Gµ, Tµ) which applies unfolding before attempting a rule application.
This transition function is then repeatedly applied by our decision procedure
decp(V,Gµ, Tµ), terminating either if the transition function is undefined, or if the
current pair has already been seen, a property that is checked by accumulating the
visited set V : {Gµ × Tµ}.

We now show an example of how this procedure determines projectability.

Example 7. Let us consider the following µ-types:

Gµ = µt. p
µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p

µ−→ q : k⟨U⟩. t′}
Gµ

1 = µt′. r
µ−→ s : k′{l1 : Gµ, l2 : p

µ−→ q : k⟨U⟩. t′}
Tµ = µt.!µk⟨U⟩.µt′.t

The following graphs plots the execution of projectablep(Gµ), where we have marked
the initial state in blue. Edges represent steps by nextunfp. Those edges indicated with
curved arrows return to pairs previously seen.

Gµ

Tµ

Gµ
1

µt′.Tµ
p

µ−→ q : k⟨U⟩.Gµ
1

Tµp −→ q : k⟨U⟩

r −→ s : k′⟨l1⟩

r −→ s : k′⟨l2⟩

p −→ q : k⟨U⟩
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4.1 Termination

We now prove the termination of projectablep(Gµ). In order to do so, we first introduce
enumerations on global and local types:

Definition 7 (Enumeration). The functions enumg : Gµ → {Gµ} and
enuml : Tµ → {Tµ} are such that:

enumg(p1
µ−→ p2 : k⟨U⟩.Gµ) = {p1

µ−→ p2 : k⟨U⟩.Gµ} ∪ enumg(G
µ) enumg(end

µ) = {endµ}
enumg(p1

µ−→ p2 : k{lj : Gµ
j }j∈J ) = {p1

µ−→ p2 : k{lj : Gµ
j }j∈J} ∪ ⋃

j∈J enumg(G
µ
j )

enumg(t) = {t} enumg(µt.G
µ) = {µt.Gµ} ∪ {Gµ

1 [µt.G
µ/ t] | Gµ

1 ∈ enumg(G
µ)}

enuml(!
µk⟨U⟩.Tµ) = {!µk⟨U⟩.Tµ} ∪ enuml(T

µ) enuml(end
µ) = {endµ}

enuml(?
µk⟨U⟩.Tµ) = {?µk⟨U⟩.Tµ} ∪ enuml(T

µ)
enuml(k ⊕µ {lj : Tµ

j }j∈J ) = {k ⊕µ {lj : Tµ
j }j∈J} ∪ ⋃

j∈J enumg(T
µ
j )

enuml(k &µ {lj : Tµ
j }j∈J ) = {k &µ {lj : Tµ

j }j∈J} ∪ ⋃
j∈J enumg(T

µ
j )

enuml(t) = {t} enuml(µt.T
µ) = {µt.Tµ} ∪ {Tµ

1 [µt.Tµ/ t] | Tµ
1 ∈ enuml(T

µ)}

enum(Gµ, Tµ) = enumg(G
µ)× enuml(T

µ)

The enumeration functions enumg (respectively enuml) collect all subterms of a global
type (respectively local type). In the case of µt.Gµ, each function enumerates all
subterms of the body Gµ (respectively Tµ), which might contain free occurrences of
t, and substitute them all for µt.Gµ (respectively µt.Tµ).

Example 8 (Enumeration of running example). We apply enumg to the following
global type:

Gµ = µt. p
µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p

µ−→ q : k⟨U⟩. t′

And using the following shorthand:

Gµ
1 = µt′. r

µ−→ s : k′{l1 : Gµ, l2 : p
µ−→ q : k⟨U⟩. t′

The resulting set from enumg(Gµ) is

{
Gµ , p

µ−→ q : k⟨U⟩. Gµ
1 , Gµ

1 , r
µ−→ s : k′{l1 : Gµ, l2 : p

µ−→ q : k⟨U⟩. Gµ
1}

}
(22)

Enumerations are then used to define a termination measure M for dec.

Definition 8 (Termination measure). The measure M : {Gµ×Tµ} → Gµ → Tµ →
N is such that: M(V,Gµ, Tµ) = |enum(Gµ, Tµ) \ V |

For this to be a valid termination measure, it must decrease for the recursive call.
A recursive call is performed exactly when the initial pair is not in the visited set
and the next function is defined. The measure computed on the returned pairs will
be smaller because the visited set (subtracted with) increases, and the enumeration
set (subtracted from) does not increase. Formally we say that enumeration is closed
under the next function.
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Lemma 3 (Enumeration closure). If (Gµ
1 , T

µ
1 ) ∈ nextp(unfold(Gµ), unfold(Tµ)) then

enum(Gµ
1 , T

µ
1 ) ⊆ enum(Gµ, Tµ)

Proof. We first observe that a similar property where we do not unfold Gµ and Tµ is
immediate:

(Gµ
1 , T

µ
1 ) ∈ nextp(Gµ, Tµ) =⇒ enum(Gµ

1 , T
µ
1 ) ⊆ enum(Gµ, Tµ)

This is because enum computes all subterms and the next function returns the direct
subterms. Thus, applying the enumeration function to a subterm yields no new sub-
terms. Convinced that the next function does not introduce new pairs, it suffices to
show that unfolding does not introduce new pairs. Formally,

enum(unfold(Gµ), unfold(Tµ)) ⊆ enum(Gµ, Tµ)

Recall that unfold(·) is defined as a repeated application of unfold1(·) and that enu-
meration of a pair is just the Cartesian product, it thus suffices to show a similar
property for unfold1(·) that will be equivalent for global types and local types. Stated
for global types, the property is

enumg(unfold(Gµ)) ⊆ enum(Gµ)

The interesting case is Gµ = µt.Gµ
1 , which we show now. One must show that

enumg(Gµ
1 [µt.Gµ

1/t]) ⊆ enumg(µt.Gµ
1 )

To proceed we requires a substitution lemma about enumerations. Using the short-
hand

(
enumg(Gµ

1 )
)
[Gµ/t] for {Gµ

2 [Gµ/t] | Gµ
2 ∈ enumg(Gµ

1 )} we state the following
substitution property of enumerations:

enumg(Gµ
1 [Gµ/t]) ⊆

(
enumg(Gµ

1 )
)
[Gµ/t] ∪ enumg(Gµ)

From this property, it suffices to show that

(
enumg(Gµ

1 )
)
[µt.Gµ

1/t] ∪ enumg(µt.Gµ
1 ) ⊆ enumg(µt.Gµ

1 )

which holds by definition. We finish this proof by proving the substitution property
just used, which we recall is

enumg(Gµ
1 [Gµ/t]) ⊆

(
enumg(Gµ

1 )
)
[Gµ/t] ∪ enumg(Gµ)

The interesting proof case is recursion and we show it now.
Case: Gµ

1 = µt′.Gµ
3

By the Bergendragt convention, we may assume t′ /∈ FV(Gµ) and t ̸= t′.
By induction hypothesis we have

enumg(Gµ
3 [Gµ/t]) ⊆

(
enumg(Gµ

3 )
)
[Gµ/t] ∪ enumg(Gµ)
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We must show

enumg(µt′.(Gµ
3 [Gµ/t])) ⊆

(
enumg(µt′.Gµ

3 )
)
[Gµ/t] ∪ enumg(Gµ)

Which unfolds to

(
enumg(Gµ

3 [Gµ/t])
)
[µt′.(Gµ

3 [Gµ/t])/t′] ⊆
(
enumg(Gµ

3 )
)
[µt′.Gµ

3/t
′][Gµ/t]∪enumg(Gµ)

We use the induction hypothesis so that it suffices to show that

((
enumg(Gµ

3 )
)
[Gµ/t]

)
[µt′.(Gµ

3 [Gµ/t])/t′] ∪ enumg(Gµ)[µt′.(Gµ
3 [Gµ/t])/t′] ⊆ (23)

(
enumg(Gµ

3 )
)
[µt′.Gµ

3/t
′][Gµ/t] ∪ enumg(Gµ) (24)

This holds because we can show two identities. The first identity is due to com-
mutativity of successive substitutions (possible due to (t′ /∈ FV(Gµ) and t ̸=
t′)

((
enumg(Gµ

3 )
)
[Gµ/t]

)
[µt′.(Gµ

3 [Gµ/t])/t′] =
(
enumg(Gµ

3 )
)
[µt′.Gµ

3/t
′][Gµ/t] (25)

The second identity is due to (t′ /∈ FV(Gµ)

enumg(Gµ)[µt′.(Gµ
3 [Gµ/t])/t′] = enumg(Gµ) (26)

Lemma 3 provides a termination argument for our decision procedure. This is because
we have defined a measure that decreases in each recursive call. We can finally conclude
that our decision procedure always terminates.

Lemma 4 (Termination of dec). Assuming (Gµ, Tµ) /∈ V , and (Gµ
1 , T

µ
1 ) ∈

nextp(Gµ, Tµ), then M(V ∪ {(Gµ, Tµ)}, Gµ
1 , T

µ
1 ) < M(V,Gµ, Tµ).

Proof. The measure M is based on the cardinality of sets, if we can show the following
strict inclusion we are done

enum(Gµ
1 , T

µ
1 ) \ {(Gµ, Tµ)} ∪ V ⊂ enum(Gµ, Tµ) \ V

By Lemma (3) we have enum(Gµ
1 , T

µ
1 ) ⊆ enum(Gµ, Tµ) so it suffices to show

enum(Gµ, Tµ) \ {(Gµ, Tµ)} ∪ V ⊂ enum(Gµ, Tµ) \ V

Which follows as a consequence of the fact that an enumeration always contains the
initial pair, that is, (Gµ, Tµ) ∈ enum(Gµ, Tµ).
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5 Soundness

We now prove the soundness theorem for the projection we introduced in the previous
section. The theorem relates the global types for which the projection is defined, and
the local types it produces, to the coinductive projection. The soundness theorem
states that if projp(Gµ) is defined then the following must be derivable:

∃Gν T ν . Gµ R Gν ∧ projp(Gµ) R T ν ∧Gν ⇃νp T ν (27)

It is the case that projp(Gµ) is defined exactly when projectablep(Gµ) holds. Thus,
soundness reduces to the following statement:

if projectablep(Gµ) then ∃Gν T ν . Gµ R Gν ∧ transp(Gµ) R T ν ∧Gν ⇃νp T ν (28)

This statement above says that when projectablep(Gµ) holds, there exists coinductive
types that Gµ and projp(Gµ) unravel to which are Gν and T ν respectively. which are
related by coinductive projection Gν ⇃νp T ν . To prove this theorem, we will in this
section show the following two equivalences:

projectablep(Gµ) if and only if Gµ ⇃µp transp(Gµ) (29)

Gµ ⇃µp Tµ if and only if ∃Gν T ν . Gµ R Gν ∧ Tµ R T ν ∧Gν ⇃νp T ν (30)

Equation (29) states that the decision procedure projectablep(Gµ) is specified by inter-
mediate projection. Equation (30) states that intermediate projection and coinductive
projection are equivalent. Connecting these two equivalences gives us the statement
in Equation (28) and proves soundness.

The rest of this section introduces intermediate projection, proves Equations (29)
and (30), and ends with the soundness theorem.

5.1 Intermediate Projection

The intermediate projection, denoted by Gµ ⇃µp Tµ, is formally defined by the rules
presented in Figure 8. The rules restate those of the coinductive projection defined in
Figure 6 on inductive types Gµ and Tµ with the necessary applications of unfold(·) to
hide µ-binders. For example, [M1⇃µ] restates rule [M1⇃ν ] on inductive types as

unfold(Gµ) = p
µ−→ p1 : k⟨U⟩.Gµ

1 unfold(Tµ) =!µk⟨U⟩.Tµ
1 Gµ

1 ⇃µp Tµ
1

Gµ ⇃µp Tµ [M1⇃µ]

The restatement of [End⇃ν ] requires special care. Recall that the original rule is defined
as

¬partOfνp(Gν)

Gν ⇃νp endν
[End⇃ν ]
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unfold(Gµ) = p
µ−→ p1 : k⟨U⟩.Gµ

1 unfold(Tµ) =!µk⟨U⟩.Tµ
1 Gµ

1 ⇃µp Tµ
1

G ⇃µp T
[M1⇃µ]

unfold(Gµ) = p1
µ−→ p : k⟨U⟩.Gµ

1 unfold(Tµ) =?µk⟨U⟩.Tµ
1 Gµ

1 ⇃µp Tµ
1

G ⇃µp T
[M2⇃µ]

unfold(Gµ) = p1
µ−→ p2 : k⟨U⟩.Gµ

1 p /∈ {p1, p2} guardedµp (G
µ) Gµ

1 ⇃µp Tµ

Gµ ⇃µp Tµ [M⇃µ]

∀j. Gµ
j ⇃µp Tµ

j

unfold(Gµ) = p
µ−→ p1 : k{lj : Gµ

j }j∈J unfold(Tµ) = k ⊕µ {lj : Tµ
j }j∈J

Gµ ⇃µp Tµ [B1⇃µ]

∀j. Gµ
j ⇃µp Tµ

j

unfold(Gµ) = p1
µ−→ p : k{lj : Gµ

j }j∈J unfold(Tµ) = k &µ {lj : Tµ
j }j∈J

Gµ ⇃µp Tµ [B2⇃µ]

unfold(Gµ) = p1
µ−→ p2 : k{lj : Gµ

j }j∈J p /∈ {p1, p2} ∀j. Gµ
j ⇃µp Tµ ∧ guardedµp (G

µ
j )

Gµ ⇃µp Tµ [B⇃µ]

¬partOfµp (G
µ) Gµ R tocoind(Gµ)

Gµ ⇃µp endµ
[End⇃µ]

Fig. 8: Intermediate projection on inductive types, written as Gµ ⇃µp Tµ .

If we naively restate this on inductive global types as

¬partOfµp (Gµ)

Gµ ⇃µp endµ
[End⇃µ]

then we are allowing non-contractive and open µ-types in derivations. That is, both
µt.t ⇃µp endµ and t ⇃µp endµ are derivable by [End⇃µ], but no coinductive type
corresponds to µt.t or t. This suggests that [End⇃µ] requires a side condition. For it
to behave as [End⇃ν ], we could impose that Gµ is closed and contractive. This ensures
that Gµ is well-formed and thus that there exists a corresponding Gν . This is however
not desirable. To see why, consider the purpose of restating Gν ⇃νp T ν as Gµ ⇃µp Tµ.
We wish to have the property that if Gµ R Gν and Tµ R T ν then

Gµ ⇃µp Tµ if and only if Gν ⇃νp T ν
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When showing the (if) direction for [End⇃ν ], we must derive closed(Gµ) and contr(Gµ)
from Gµ R Gν by Proposition 2, which we recall shows the equivalence of well-
formedness of Gµ and the existence of an unravelling. But since unravelling is an
equivalent characterisation of well-formedness, we can use that as our side condition,
eliminating the need for Proposition 2. Hence,

¬partOfµp (Gµ) ∃Gν .Gµ R Gν

Gµ ⇃µp endµ
[End⇃µ]

Intermediate projection is decidable by the decision procedure decp.

Theorem 5. Let Gµ and Tµ be inductive types and p a role. Then,
decp({}, Gµ, Tµ) = True if and only if Gµ ⇃µp Tµ.

Proof. For the (only if) case, we show that for any V , it suffices to show
decp(V,Gµ, Tµ) = True implies (Gµ, Tµ) ∈ V ∨ Gµ ⇃µp Tµ. Proceed by functional
induction on decp(V,Gµ, Tµ). In the second case where V is non-empty, pick the right
disjunct Gµ ⇃µp Tµ and proceed by coinduction. For the (if) direction, we show the
property for any visited list V , that is, Gµ ⇃µp Tµ implies decp(V,Gµ, Tµ) = True.
Proceed by functional induction on decp(V,Gµ, Tµ).

Corollary 6. Let Gµ be an inductive type and p a role. Then, projectablep(Gµ) if
and only if Gµ ⇃µp transp(Gµ).

Proof. Follows directly from Theorem 5.

Example 9. Recall Examples 2, 4, and 5 which collectively use as an argument for
why the running example should be projectable. Using the intermediate projection, a
similar derivation can be done directly on the inductive types, making the unravelling
to coinductive types unnecessary:

Gµ = µt. p
µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p

µ−→ q : k⟨U⟩. t′}
Tµ = µt.!µk⟨U⟩.t

We derive

Gµ ⇃µp Tµ (31)

After [M1⇃µ] we must show that

µt′. r
µ−→ s : k′{l1 : Gµ, l2 : p

µ−→ q : k⟨U⟩. Gµ
1} ⇃µp Tµ (32)

We will by Gµ
1 refer to the global type in Equation (32). After [B⇃µ], two premises

must be shown

Gµ ⇃µp Tµ p
µ−→ q : k⟨U⟩. Gµ

1 ⇃µp Tµ (33)
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The first premise is discharged by marking a cycle to Equation (31). For the second
premise we apply [M1⇃µ] and are left with showing

Gµ
1 ⇃µp Tµ (34)

We mark a cycle to Equation (32). The full proof tree is

Gµ ⇃µp Tµ Gµ ⇃µp Tµ

r
µ−→ s : k′{l1 : Gµ, l2 : Gµ} ⇃µp Tµ

[B⇃µ]

p
µ−→ q : k⟨U⟩.r µ−→ s : k′{l1 : Gµ, l2 : Gµ} ⇃µp !µk⟨U⟩. T ν

[M1⇃µ]
(35)

The example above shows that some derivations of coinductive projections on coin-
ductive types can equivalently be derived with intermediate projection on inductive
types. We now prove the following equivalence between intermediate and coinductive
projection.

Lemma 7. Let Gµ and Tµ be inductive types, Gν and T ν coinductive types, and p
a role. Then, if Gµ R Gν and Tµ R T ν then Gµ ⇃µp Tµ if and only if Gν ⇃νp T ν .

Proof. (only-if ) Prove Gν ⇃νp T ν by coinduction on ⇃νp and derive from Gµ ⇃µp Tµ

that guardedµp (Gµ) ∨ unfold(Tµ) = endµ and proceed as in Lemma 15.
(if ) Proof by coinduction on ⇃µp and derive from Gν ⇃νp T ν that guardedνp(Gν)∨T ν =
endν , and do case analysis on the disjunction as in Lemma 15, inverting Gµ R Gν and
T ν R Tµ to derive the shape of Gµ ⇃µp Tµ.

The lemma above is a weaker equivalence than Equation (30), and this is because it
assumes the existence of the coinductive types Gν and T ν while Equation (30) asserts
it. To prove the stronger equivalence we must show that Gµ ⇃µp Tµis only derivable
for inductive global and local types that can unravel to coinductive types.

Lemma 8. Let Gµ and Tµ be inductive types and p a role. Then, if Gµ ⇃µp Tµ

then Gµ R tocoind(Gµ) and Tµ R tocoind(Tµ).

With Lemma 7 and 8 we can now derive the stronger equivalence between
intermediate projection and coinductive projection.

Theorem 9. Let Gµ and Tµ be inductive types, Gν and T ν coinductive types, and
p a role. Then, Gµ ⇃µp Tµ if and only if ∃Gν T ν . Gµ R Gν ∧ Tµ R T ν ∧ Gν ⇃νp T ν

Theorem 10 (Soundness). Let Gµ be an inductive type and p a role. Then, if
projp(Gµ) is defined then there exists coinductive types Gν and T ν such that Gµ R Gν ,
projp(Gµ) R T ν and Gν ⇃νp T ν

6 Completeness

We now prove the completeness theorem for the projection function in Section 4. This
theorem states the coinductive condition under which the projection function must be
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defined and specifies the property the resulting local type must satisfy More precisely,
the theorem states that if Gν ⇃νp T ν and Gµ R Gν hold, then

projp(Gµ) is defined and projp(Gµ) R T ν (36)

Following this statement, the completeness of the projection function requires the
satisfaction of two properties. Firstly, when Gν ⇃νp T ν holds, the projection must be
defined for any inductive type that unravels to Gν . For example, consider our running
example in Equation (5) which, as shown in Example 4, unravels to a coinductive global
type. Completeness dictates that the projection must be defined for (5). Secondly,
when Gν ⇃νp T ν holds, projp(Gµ) must unravel to T ν .

To prove completeness, we will first show the weaker property that if Gν ⇃νp T ν

and Gµ R Gν hold, then

transp(Gµ) R T ν (37)

To then show completeness, as stated in (36), it remains to show that projp(Gµ) is
defined. This follows from Theorem 9 with Gν ⇃νp T ν , from which Gµ ⇃µp transp(Gµ)
can be derived, and then by Corollary 6 we have projectablep(Gµ).

The rest of this section proves properties about transp(Gµ) from which we will
derive (37) and then (36).

6.1 Properties about Translation and Unfolding

The translation function satisfies the following properties about closedness and
contractiveness.

Lemma 11. Let Gµ be an inductive global type and p a role. Then,
1. If closed(Gµ) then closed(transp(Gµ))
2. contr(transp(Gµ))

The lemma states that closedness is preserved by translation and that translation
only produces contractive local types. With this lemma and Proposition 2 we can from
Gµ R Gν derive the following property:

transp(Gµ) R tocoind(transp(Gµ)) (38)

In order to prove Equation (37), and therefore completeness, it suffices to show from
Gν ⇃νp T ν that the following equality holds:

tocoind(transp(Gµ)) = T ν (39)

Unravelling is defined in terms of unfolding and, in order to prove (39), we need to

prove some properties about substitution and unfolding.
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Lemma 12. The following properties hold for global µ-types. Similar properties hold
for local µ-types but have been elided.

(1) unfold(µt.Gµ) = unfold(Gµ[µt.Gµ/t])
(2) unfold(unfold(Gµ)) = unfold(Gµ)
(3) unfold(Gµ[Gµ

1/t]) = unfold(Gµ)[Gµ
1/t] if |Gµ

1 | = 0
(4) unfold(Gµ) = t if guardedVar(t, Gµ) = False

The four properties above regard the unfolding of µ-types. Property (1) says that
the number of unfoldings performed by unfold is sufficient and that more unfoldings
yields the same result. As a result, property (2) states that unfolding is idempotent.
The third case, property (3), says that substitution commutes with unfolding when
the replacing type has no top-level µ-binders. Finally, property (4) states that if t is
not guarded in a µ-type, then it will be exposed by unfolding.

We now prove properties about how translation interacts with substitution and
unfolding from which we derive Lemma 15 and show (39).

Lemma 13 (Distributivity of translation over substitution). Let Gµ and
Gµ

1 be inductive global types and p a role. Then, transp
(
Gµ[Gµ

1/t]
)

=
transp(Gµ)[transp(Gµ

1 )/t].

Proof. The proof proceeds by induction on Gµ. The most interesting case is when
Gµ = µt′.Gµ

2 , where we must show that

transp(µt′.Gµ
2 [Gµ

1/t]) = transp(µt′.Gµ
2 )[transp(Gµ

1 )/t]

In this case, the induction hypothesis is

transp
(
Gµ

2 [Gµ
1/t]

)
= transp(Gµ

2 )[transp(Gµ
1 )/t] (40)

At this point, the proof proceeds by cases. We only address the case in which the
following holds:

guardedVar(t′, transp(Gµ
2 )) = True (41)

transp(µt′.Gµ
2 [Gµ

1/t]) = µt′.
(
transp(Gµ

2 [Gµ
1/t])

)

= µt′.
(
transp(Gµ

2 )[transp(Gµ
1 )/t]

)
By (40)

= transp(µt′.Gµ
2 )[transp(Gµ

1 )/t] By (41)

The last identity requires the following fact which we have not yet derived

guardedVar(t′, transp(Gµ
2 [Gµ

1/t])) = True

which due to the induction hypothesis reduces to

guardedVar(t′, transp(Gµ
2 )[transp(Gµ

1 )/t]) = True
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In order to prove this, we derive and use the following property:

If t′ /∈ FV(Tµ
1 ) and guardedVar(t′, Tµ) = True then guardedVar(t′, Tµ[Tµ

1 /t
′]) = True

After which, we must show that

t′ /∈ FV(transp(Gµ
1 )) guardedVar(t′, transp(Gµ

2 )) = True

The first premise holds because of the Barendregt convention, which ensures that t′

is fresh for Gµ
1 . The second fact holds by assumption.

From distributivity of translation over substitution we may think that the identity

unfold(transp(Gµ)) = transp(unfold(Gµ))

holds. Unfortunately, this is not the case since unfolding of a global type stops at

the first appearance of a constructor that is not a µ-binder, e.g., p1
µ−→ p2 : k⟨U⟩.Gµ.

Translation might erase such constructs, triggering further unfolding in Gµ.

Example 10 (Unfolding and translation). The following global type is a counterex-
ample that disproves unfold(transp(Gµ)) = transp(unfold(Gµ))

p
µ−→ q : k⟨U⟩.µt.r µ−→ s : k′⟨U⟩.t

Unfolding after translation yields

unfold(transr(p
µ−→ q : k⟨U⟩.µt.r µ−→ s : k′⟨U⟩.t)) =!µk′⟨U⟩.µt.!µk′⟨U⟩.t

Translating after unfolding yields

transr(unfold(p
µ−→ q : k⟨U⟩.µt.r µ−→ s : k′⟨U⟩.t)) = µt.!µk′⟨U⟩.t (42)

The produced local types are not the same

!µk′⟨U⟩.µt.!µk′⟨U⟩.t ̸= µt.!µk′⟨U⟩.t

The problem in Example 10 is that we need to apply a final unfolding to the local
type in Equation (42). This informs us that if we unfold after applying translation, it is
equivalent to unfolding both before and after translation, which leads to the following:

Lemma 14 (Unfolding translations). Let Gµ be an inductive global type and p a
role. Then, unfold(transp(Gµ)) = unfold(transp(unfold(Gµ))).

Proof. The unfold(Gµ) function is defined as unfold
|Gµ|
1 (Gµ). To prove the theorem, it

suffices to show the more general property for some natural number n.

unfold(transp(Gµ)) = unfold(transp(unfoldn1 (Gµ)))
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We prove this by induction on n, where the case of n = 0 is immediate because
unfold01(Gµ) = Gµ. For the case of n = n′ + 1, we have the following induction
hypothesis:

unfold(transp(Gµ)) = unfold(transp(unfoldn
′

1 (Gµ)))

And, we must show

unfold(transp(Gµ)) = unfold(transp(unfoldn
′

1 (unfold1(Gµ))))

Because of the induction hypothesis, the proof reduces to showing

unfold(transp(Gµ)) = unfold(transp(unfold1(Gµ)))

The proof is by induction on Gµ, the interesting case being Gµ = µt.Gµ
1 , where we

must show that

unfold(transp(µt.Gµ
1 )) = unfold(transp(unfold1(µt.Gµ

1 )))

We proceed by cases.
Case: guardedVar(t, Gµ

1 ) = True.

unfold(transp(µt.Gµ
1 )) = unfold(µt.

(
transp(Gµ

1 )
)
)

= unfold(transp(Gµ
1 )[transp(µt.Gµ

1 )/t]) Lemma 12(1)

= unfold(transp(Gµ
1 [µt.Gµ

1/t])) Lemma 13

= unfold(transp(unfold1(Gµ)))

Case: guardedVar(t, Gµ
1 ) = False.

unfold(transp(µt.Gµ)) = unfold(endµ)

= endµ

= t[endµ/t]

= unfold(transp(Gµ
1 ))[endµ/t] Lemma 12(4)

= unfold(transp(Gµ
1 )[endµ/t]) Lemma 12(3)

= unfold(transp(Gµ
1 )[transp(µt.Gµ

1 )/t])

= unfold(transp(Gµ
1 [µt.Gµ

1/t])) Lemma 13

= unfold(transp(unfold1(Gµ)))

Lemma 15 (Translation as projection). Let Gµ be an inductive type, Gν and
T ν coinductive types, and p a role. Then, if Gµ R Gν and Gν ⇃νp T ν then
tocoind(transp(Gµ)) = T ν .
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Proof. By coinduction using the candidate relation {(tocoind(transp(Gµ)), T ν) | Gν ⇃νp
T ν ∧ Gµ R Gν}. From Gν ⇃νp T ν , derive guardedνp(Gν) ∨ T ν = endν and proceed by
cases. We sketch the two cases.
Case: T ν = endν .
Derive tocoind(transp(Gµ)) = endν from the facts

Gν ⇃νp endν Gµ R Gν ¬partOfνp(Gµ)

Case: guardedνp(Gν).
Proceed by induction on guardedνp(Gν). From the distinctive shape of Gν in each of
the cases, we invert Gµ R Gν and learn the shape of unfold(Gµ). For example if

Gν = p1
ν−→ p2 : k⟨U⟩.Gν

1 , we derive the following two facts:

unfold(Gµ) = p1
µ−→ p2 : k⟨U⟩.Gµ

1 Gµ
1 R Gν

1

Due to idempotence of unfold(·), it is the case that tocoind(·) has the following
property:

tocoind(Tµ) = tocoind(unfold(Tµ))

Using this property, we proceed as

tocoind(transp(Gµ)) = tocoind(unfold(transp(Gµ))) (43)

= tocoind(unfold(transp(unfold(Gµ)))) Lemma 14 (44)

= tocoind(transp(p1
µ−→ p2 : k⟨U⟩.Gµ) (45)

We proceed by inversion on p1
ν−→ p2 : k⟨U⟩.Gν ⇃νp T ν . This allows one to further

simplify Equation (45). For example, if the last rule application was [M1⇃ν ], then we
know p = p1 and T ν =!νk⟨U⟩.T ν

1 and can derive

tocoind(transp(p1
µ−→ p2 : k⟨U⟩.Gµ

1 ) =!νk⟨U⟩.
(
tocoind(transp(Gµ

1 ))
)

(46)

In which case, it suffices to show

tocoind(transp(Gµ
1 )) = T ν

1

This follows by coinduction hypothesis.

Theorem 16 (Completeness). Let Gµ be an inductive type, Gν and T ν coinductive
types, and p a role. Then, if Gν ⇃νp T ν and Gµ R Gν then projp(Gµ) is defined and
projp(Gµ) R T ν .

Proof. From Gµ R Gν we know, by Proposition 2, that Gµ is closed. This along with
Lemma 11 shows that transp(Gµ) is closed and contractive. From Proposition 2, we
thus have

transp(Gµ) R tocoind(transp(Gµ))
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From Lemma 15 we have that tocoind(transp(Gµ)) = T ν and thus

transp(Gµ) R T ν

From Theorem 9 with Gµ R Gν , transp(Gµ) R T ν and Gν ⇃νp T ν we have

Gµ ⇃µp transp(Gµ)

From Corollary 6 we have projectablep(Gµ) and thus transp(Gµ) = projp(Gµ) which
lets us conclude

projp(Gµ) R T ν

7 Mechanisation

All of our results are mechanised in Coq [18] using SSReflect [19] for writing proofs,
the Paco library [20] for defining coinductive predicates, the Equations package [21] for
defining functions by well-founded recursion (such as decp(V,Gµ, Tµ)), and Autosubst2
[22] to generate syntax of inductive global and local types with binders represented
by de Bruijn indices [23].

The mechanisation uses coinductive extensional equivalence relations to equate
coinductive terms. For presentation purposes, we use propositional equality to equate
coinductive types. These two types of equality are consistent [24].

In this section, we cover how to create predicates and relations that are defined
using both inductive and coinductive inference rules, like our unravelling relation from
Figure 7. We discuss how to create an inversion principle that allows us to do case
analysis on the property of Gµ that Gµ R tocoind(Gµ). Finally, we show how we prove
decidability of this property.

7.1 Custom inversion principles

Many proofs on inductive global types work up to unfolding. Unravelling, for instance,
unravels a finite number of µ-binders at every step and our intermediate projection
function ⇃µp and sat procedure both work in a similar way. To abstract away from
finite unfoldings we use the following gInvPred predicate .
Variant gInvPredF (P : gType -> Prop) : gType -> Prop :=

| HTM g a u : P g -> gInvPredF P (GMsg a u g)

| HTB gs d : Forall P es -> gInvPredF P (GBranch d gs)

| HTE : gInvPredF P GEnd

Definition unf g := (iter (mu_height g) unf1 g).

Variant UnfoldF (P : gType -> Prop) : gType -> Prop :=

| UnfF1 g : P (unf g) -> UnfoldF g.

Definition gInvPred : (gType -> Prop) := paco1 (UnfoldF \o gInvPredF) bot.

(*function composition*)

We define two generating functions InvPredF and UnfoldF and generate InvPred as
the greatest fixed point of their composition. The function unf corresponds to unfold
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from Section 2. InvPredF contains cases for all constructors of inductive global types
except for µt and t. UnfoldF unfolds the top-level µ-binders from a global type. The
key insight is that InvPred(Gµ) is equivalent to asserting closedness and contractiveness
of Gµ.

The inversion principle of InvPred is convenient for proving predicates P that
are closed under unfolding of inductive global types, i.e. ∀G. P µt.G if and only if
P G[µt.G], as any unfolding applied by inverting UnfoldF can similarly be applied in
the goal.

7.2 Well-founded recursion

Proposition 2 shows that well formedness of Gµ types can be characterised in terms
of unravelling by asserting that Gµ R tocoind(Gµ) is derivable. Due to the equiva-
lence this propositino states, Gµ R tocoind(Gµ) is trivially decidable by checking that
closed(Gµ) and contr(Gµ) holds.

An alternative way of deciding Gµ R tocoind(Gµ) which is strikingly similar to
how our decision procedure projectablep(Gµ) is defined, is gUnravelsb which is
defined by well-founded recursion. We study this procedure as it provides a simpler
setting for presenting our approach to defining well-founded recursion on µ-types with
enumerations in Coq.

For convenience we define unravelling in two equivatent ways as gUnravel and
gUnravel2 , and the latter definition corresponds to our definition in Figure 7. We
represent Gµ R tocoind(Gµ) in Coq as \gUnravel2 G (gtocoind g) and due to the
theorem below it suffices to decide gInvPred which we introduced in Section 7.1.

Lemma gInvPred_iff : forall g, gInvPred g <-> gUnravel2 g (gtocoind g).

We decide gInvPred by defining a predicate invP that checks a global type is neither
a binder nor a variable. This predicate is repeatedly applied by sat on continuations
of the initial global type until a global type previously seen appears.

Definition invP g :=

match unf g with | GRec _ | GVar _ => false | _ => true end.

Definition invpred g := sat nil invP g.

Theorem gInvPred_dec : forall g, InvPred g <-> invpred g = true

We use the Equations package to define sat by well-founded recursion on the
decreasing measure gmeasure g V which is defined as the number of distinct global
types in the enumeration of g after removing the global types in V.

1 Definition gmeasure (g : gType) (V : seq gType) :=

2 size (rep_rem V (undup (enumg g))).

3 Lemma closed_enum : forall g0 g1 g2, g1 \in nextg (full_unf g) ->

4 g2 \in enumg g1 -> g2 \in enumg g.

5 Equations sat (V : seq gType) (P : gType -> bool)

6 (g : gType) : bool by wf (gmeasure g V) :=

7 sat V P g with (dec (g \in V)) => {

8 sat _ _ _ in_left := true;

9 sat V P g in_right := (P g) &&
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10 (foldInMap (nextg (full_unf g))

11 (fun g' _ => sat (g::V) P g')) }.

Defining sat generates one obligation that must be proved to show termination. If we
write gmeasure g V as M(g, V ), then we must show it is decreasing for arguments to
the recursive call, i.e. that M(g′, {g} ∪ V ) < M(g, V )

Using a variant of the familiar map on inductive lists called foldInMap our
obligation is enriched with the assumption that g' \in nextg (full_unf g). The
boolean wrapper dec further enriches the obligation with the case of the if-statement,
g \notin V.

Termination is then ensured due to closed_enum (l. 3) . The lemma states that
the enumerations of a global types continuations, will all be part of the initial global
types enumeration. The proof of this lemma is short, less than 100 lines.

The full termination proof for sat is short (about 250 lines) and the approach
is general. The mechanisation also proves termination of the decision procedure for
projectablep(Gµ). This task only requires adapting the algorithm to pairs of terms.
This termination proof is also short. The conciseness is due to the space of contin-
uations being computed by structural recursion by enumg and enuml. This makes it
straightforward to prove substitution properties about it by induction on syntax.

8 Related Work and Discussion

Related Work. Ghilezan et al. [7] are the first to introduce coinductive projection on
coinductive global and local types. They use it to show soundness and completeness
of synchronous multiparty session subtyping. A key difference is that whereas we rep-
resent the infinite unfolding of a µ-type as a coinductive type, they represent it as a
partial function. Projection on µ-types is then defined indirectly in terms of the coin-
ductive projection of their corresponding partial functions. Because of this indirect
definition, their projection is not computable. Our intermediate projection ⇃µ is simi-
lar to their projection on µ-types. However, ours is defined with inference rules stated
directly on the µ-types which is why we can decide membership and thus compute
projection. Castro-Perez et al. [12] use coinductive projection to express their meta
theory about multiparty session types. Their main result is trace equivalence between
processes, coinductive local types and coinductive global types, which they mechanise
in Coq. Like us, they show soundness of their projection on µ-types. Their projection
is however not complete, which is what inspired us to investigate approaches to sound
and complete projection. A consequence of their projection on µ-types not being com-
plete, is that there are many inductive global types that have the trace equivalence
property, but must be excluded since their projection is undefined. Jacob et al. [17]
show deadlock and leak freedom of multiparty GV, an extension of the functional lan-
guage GV [25, 26]. They use coinductive projection to define when local types are
compatible and do not define a projection on µ-types. Other work has formalised the
notion of projection in Coq. Cruz-Filipe et al. [27, 28] formalise syntax and semantics
of tail-recursive choreographies and a projection that includes full merge. However,
this work does not approach coinductive syntax and therefore does not show any
soundness and completeness results.
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Our algorithm from Section 5 implements a procedure proposed by Eikelder [6].
This work provides several algorithms for deciding recursive type equivalence. Also,
our proof of termination is quite similar to theirs. However, they define the set of
reachable states as set comprehension, whereas we constructively produce a list. Sim-
ilarly, showing their set comprehension is finite, boils down to substitution lemmas.
Unlike ours, their work has not been mechanised in a proof assistant/theorem prover.
The idea of defining the space of continuations for global and local type as an explicit
enumeration is inspired by Asperti [29] who mechanised a concise proof of regular
expression equivalence in the Matita theorem prover [30]. They do this by a new con-
struction called pointed regular expressions. Essentially, this adds marks to a regular
expression, such that one can encode state transitions by moving marks. This makes
computing reachable configurations as trivial as computing all markings.

The primary focus of this work is on global types. Scalas and Yoshida [31] propose
a more general approach that shows that properties such as deadlock freedom can be
derived directly on local types without the need for global types and the corresponding
projection. However, their approach misses the main advantage provided by global
types which is providing a specification (blueprint) of the used protocols.

Discussion and Future work. This work is part of the MECHANIST project that
aims at mechanising the full theory of multiparty asynchronous session types [8].
Our next step is to mechanise a proof of semantic equivalence between global types
and their projections to local types through projp. Semantic equivalence is a property
similar to trace equivalence which Castro-Perez et al. [12] mechanised. However, there
are some key differences in our objectives. Their main result is Zooid, a tool that
extracts certified message-passing programs, which is why their process syntax differs
significantly from the original syntax by Honda et al (e.g., no parallel composition).
Instead, we aim at mechanising the exact process calculus presented by Honda et
al.. As the meta theory in Castro-Perez et al. [12] is independent of their projection
function, it would also be interesting future work to adapt projp to their setting. Finally,
projp implements the restrictive plain merge but related work also uses full merge
[7, 28]. It would be interesting to define a binder-agnostic projection using full merge.

9 Conclusions

Projection is a function that maps global types to local types. The projections found
in the literature impose syntactic restrictions that make them incomplete with respect
to coinductive projection. This work shows the existence of a decidable projection that
is sound and complete. Our procedure works in two phases: first a decision procedure
tests a soundness property and, if successful, a second procedure translates the global
type to a local type. The latter is very similar to the existing projections in the
literature. The novelty of our work is in the decision procedure. All results have been
mechanised in Coq.
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Multiparty Asynchronous Session Types: A
Mechanised Proof of Subject Reduction

Abstract. Session types is a typing discipline for statically ensuring
that the communication behaviour of the components in a concurrent
system conforms to a specification given as a session type. Session types
were initially introduced in a binary setting, specifying communication
patterns between two components. With the advent of multiparty ses-
sion types (MPST), the typing discipline was extended to arbitrarily
many components. In MPST, communication patterns are given in terms
of global types, an Alice-Bob notation that gives a global view of how
components interact. A central theorem of MPST is subject reduction:
a well-typed system remains well-typed after reduction. The literature
contains formulations of MPST with proofs of subject reduction that
have later been shown to be incorrect. In this paper, we show that the
subject reduction proof of the original formulation of MPST by Honda
et al. contains some flaws. Additionally, we provide a restriction to the
theory and show that, for this fragment, subject reduction does indeed
hold. All of our proofs are mechanised using the Coq proof assistant.

Keywords: Multiparty Session Types · Mechanisation · Coq.

1 Introduction

Session types provide a type-based framework for specifying how participants
in a concurrent communication-based system exchange messages. These com-
munication patterns, specified in a protocol language, are used for verifying the
concurrent programs that implement them. The framework guarantees proper-
ties such as type safety (well-typed programs never go wrong), session fidelity
(processes behave according to protocol descriptions), and in-session deadlock-
freedom (protocols never get stuck). Originally, Honda et al. [26, 27] proposed
binary session types where types (protocol specifications) describe only how pairs
of processes exchange messages. Inspired by choreographic languages [8], Honda
et al. later extended this concept to multiparty session types [28, 29], which gen-
eralise the framework to handle protocols with arbitrarily many participants and
asynchronous communication. This seminal work has driven significant progress
in both the theory of communication-based systems [15, 9, 35, 6, 45] and their
implementation in mainstream programming languages [1, 34, 16, 2].

Except from some cases [44, 19, 25, 10], the correctness results of the theory of
multiparty session types rely on paper proofs, which necessitate the omission of
numerous details. Known pitfalls, such as incorrect results caused by issues with
binders [17, 49], or unsound projection functions [46], often arise from overlooking
technical details that are nearly impossible to catch in lengthy paper proofs.
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A common way to make sure that all of these details are found, and to ensure
that all proofs are correct, is to use interactive proof assistants like Isabelle [40],
Coq [37], or Lean [38], to have all proofs machine-checked by a computer. Proof
assistants have proven immensely successful and have been used to guarantee the
correctness of a wide variety of foundational results in both mathematics [21–24]
and computer science [32, 5]. Nevertheless, attractive as these mechanisations
are, they are also very difficult to implement. The original multiparty session
types paper [28], recipient of the Most Influential Paper POPL 2008 award [36],
should by all means be a prime candidate for mechanisation but has, largely
because of the difficulty of the proofs, mostly been left untouched.

In this paper, we mechanise the subject reduction theorem for the theory of
multiparty asynchronous session types, as stated in the journal version of the
original paper [29]. Subject reduction states that well-typed programs remain
well-typed throughout their execution, as defined by their operational semantics.
Subject reduction is one of the core theorems in the meta-theory, supporting
key results such as type safety, session fidelity, and in-session deadlock-freedom.
Although the proofs of the original paper are quite detailed, they are also lengthy
and intricate. During our mechanisation efforts, however, we discovered that
subject reduction, as presented in the original work, does not hold. In this paper,
we provide a counterexample to the original theorem, and we present a new type
system for which subject reduction does in fact hold. Our subject reduction proof
is fully machine-checked using the Coq proof assistant.

Multiparty Session Types. Multiparty session types use global types, a pro-
tocol specification language for describing the interaction patterns among mul-
tiple communicating participants. Interactions feature a sender and a receiver,
generally called roles. For example, the following global type specifies the com-
munication patterns between roles p, q, and r:

G = p −→ q : 1
{ l1 : q −→ r : 2⟨bool⟩.end
l2 : p −→ r : 2⟨bool⟩.end

}
(1)

This global type describes a protocol where role p internally decides and informs
role q over channel 1, whether to continue in branch l1 or l2. A channel in the
protocol represents a private FIFO queue, shared between the three roles for
communication. If p picks branch l1, role q, after receiving this label, must send
a boolean to r over channel 2. Conversely, if q picks branch l2, p must then send a
boolean to r over the same channel 2. In both branches, the protocol terminates
after p or q communicate with r. A key observation is that global types describe
asynchronous protocols, meaning communications happen asynchronously. In
this example, role q must first receive label l1 from p before sending a boolean
on channel 2. However, if p chooses branch l2, it can immediately send a boolean
without waiting for q to read from channel 1. Global types are equipped with a
reduction semantics that captures this asynchronous behaviour.

While global types provide a holistic view of a protocol, the behaviour of its
individual roles can be described as local types. Local types provide a local view
of the protocol for each of its roles and can be obtained from global types by an
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operation known as projection. For example, the global type from Equation (1)
can be expressed as the following collection of local types:

p : 1⊕
{ l1 : end
l2 : !2⟨bool⟩.end

}
q : 1&

{ l1 : !2⟨bool⟩.end
l2 : end

}
r :?2⟨bool⟩.end (2)

The local type for p says that label l1 or label l2 must be communicated over
channel 1 and if label l2 is chosen then a boolean must be sent over channel 2.
Dually, role q must be ready to receive label l1 or l2 on channel 1, and if label
l1 is selected, a boolean must be sent over channel 2. Finally, role r is ready to
receive a boolean from channel 2. Similar to global types, collections of local
types such as the one seen in Equation (2), are equipped with a semantics that
captures the various communications that can be performed.

Protocols described as global types are executed as sessions. A session is an
instance of a protocol with private channels where each role is implemented as
an executable process, written in the multiparty session calculus, a model of
computation for concurrent system based on the π-calculus [39]. The core idea
of multiparty session types is that global types can be projected into local types,
which are then used by a type system to verify that a given implementation
conforms to the specification provided by the global types. For example, multi-
party session types ensure that the following parallel composition of processes
can participate in a session that implements the global type from Equation (1):

a[p]2(s).

P︷ ︸︸ ︷
s[1]◁ l2; s[2]!⟨true⟩;0 |

a[q](s). s[1]▷ {l1 : s[2]!⟨false⟩; 0, l2 : 0}︸ ︷︷ ︸
Q

| a[r](s). s[2]?(x);0︸ ︷︷ ︸
R

(3)

The term above reads as follows: three processes are about to initiate a 3-party
protocol on a, where a is a shared name denoting the name of the protocol in the
calculus. The first process, prefixed with a[p]2(s), is requesting the initiation of
a session featuring two queues (instantiating the channels specified in the global
type), acting as p while the second and third process are performing a session
accept, joining the session as roles q and r. Process P denotes a process that,
playing role p, first puts a label l2 in the queue at channel 1 and then puts the
message true in queue at channel 2. Process Q awaits for a label on queue at
channel 1 that determines its continuation. Finally, process R, playing role r,
receives a value on the queue at channel 2. Initially, we synchronise over the
prefixes a[p]2(s), a[q](s), and a[r](s), yielding the term

(νss)




P [sp/s]︷ ︸︸ ︷
sp[1]◁ l2; s

p[2]!⟨true⟩;0 |
Q[sq/s]︷ ︸︸ ︷

sq[1]▷ {l1 : sq[2]!⟨false⟩;0, l2 : 0} |

sr[2]?(x);0︸ ︷︷ ︸
R[sr/s]

| s[1] ::∅ | s[2] ::∅




(4)

The operation generates the new session identifier s (the syntax (νss) is a restric-
tion binder), which we use to replace the binder s with located session identifiers
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sp, sq and sr for roles p, q, and r respectively. The two communication queues,
represented by s[1] and s[2], where messages can be enqueued and dequeued, are
shared between all participants and are initially empty. Having role p, imple-
mented by process P [sp/s], execute its outputs results in the following term:

(νss)
(
0 | Q[sq/s] | R[sr/s] | s[1] :: l2

p · ∅ | s[2] :: truep · ∅
)

(5)

where the label l2p and the value truep, both annotated with the sending role p,
have been enqueued on s[1] and s[2] respectively.
A Counter-Example to Subject Reduction. Subject reduction states that
any term typed by a collection of local types (referred to as the typing environ-
ment), derived from a global type through projection, will remain typable after
the process reduces. Since local types are equipped with a reduction semantics,
the subject reduction theorem also states that the term obtained after reduction
can be typed either by the same typing environment or by a modified environ-
ment, reflecting a reduction of local types. The original statement of subject
reduction by Honda et al. can be informally stated as follows:

If P is well typed in a typing environment ∆, and P reduces to P ′ then
either P ′ is well-typed in the original typing environment ∆, or in an-
other environment ∆′ such that ∆ can reduce to ∆′

The reduction on the environment ∆ is crucial because it establishes a connection
between the reductions performed by the processes and the protocol specifica-
tion defined by the local types (which are derived from global types). Proving
other results, such as session fidelity (processes behave according to protocol de-
scriptions), heavily relies on the relationship between the reductions of processes
and types. Unfortunately, the original theory by Honda et al. does not satisfy
subject reduction. The key issue lies in the fact that some well-typed processes
can reduce to well-typed terms in a way where their typing environments are not
the same nor does the initial environment reduce to the latter . We demonstrate
this with our running example.

Even though the process in Equation (3) has been reduced to the one in (4)
and then to (5), this new process is still typable by the same local types in Equa-
tion (2), derived by means of projection from the global type in Equation (1).
This is because the semantics of environments tracks interactions, which matches
an output action on a channel with an input action on the same channel. So far
only outputs have been performed, and the environment is thus unchanged.
However, allowing our process to reduce one more step into

(νss)
(
0 | Q[sq/s] | 0 | s[1] :: l2

p · ∅ | s[2] ::∅
)

(6)

reveals a problem. Here, the process sr[2]?(x);0, acting as role r, has consumed
the boolean truep from the s[2] channel while l2

q is still in the queue. In other
words, the branching interaction between p and q described by the global type
in Equation (1) has only been partially performed, since q has not yet received
l2, but the communication of a boolean from p to r in the l2 branch has been
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completely performed. Below (left) we show a global type that describes the
remaining behaviour of the session, and we show (right) the environment derived
from it.

p −→ q : 1
{ l1 : end
l2 : end

}
p : 1 ⊕

{ l1 : end
l2 : end

}
, q : 1&

{ l1 : end
l2 : end

}
, r : end (7)

This environment types the process in Equation (6). The problem is that the
two environments in Equations (2) and (7) are neither the same, nor can they
be related by the semantics of local types, therefore breaking subject reduction.

A reasonable question to ask at this point is why, given how influential the
work by Honda et al. is, has this not been noticed before? The answer is most
likely twofold. Firstly, the proofs are very complex and have never been mecha-
nised. Secondly, the original formulation of multiparty session types differs from
most later work. In particular, they use explicit channels where all roles in a ses-
sion share queues, as opposed to implicit channels, introduced by Bettini et al.
[4], where each ordered pair of roles has a dedicated queue. Our counterexample
hinges on the use of explicit channels since it would not have been possible to
derive it with implicit channels.
Contributions and Structure. The following is a detailed description of the
contributions of this paper:

– We identify a counterexample to subject reduction, highlighting a flaw in the
original meta-theory of multiparty asynchronous session types (Section 1)

– We prove a projection theorem (establishing the correspondence between the
semantics of global and local types) for a novel definition of projection [46]
(Section 3)

– We prove the decidability of linearity for global types, a well-formedness
condition on global types first introduced in the original multiparty session
types paper [28, 29] (Section 3)

– We present a complete revision of the meta-theory of asynchronous multi-
party session types that includes a new type system for the asynchronous
multiparty session calculus, based on a more general projection function [46],
for which we prove subject reduction (Sections 4 and 5)

– All proofs have been machine-checked in the Coq proof assistant (see sup-
plementary material), marking this as the first mechanisation of subject
reduction for asynchronous multiparty session types.

2 Multiparty Asynchronous Session Processes

Our process language is an extension of the π-calculus with the notion of session
which forms the foundation for inter-process communication.
Syntax. Let P be a finite subset of the natural numbers which denotes a set of
roles (ranged over by p, q, r, s, t), let L be a set of labels (ranged over by l) and
let I, J denote index sets of form {1, . . . , n} for any natural number n. Moreover,
let indices in an index set be ranged over by indices i, j. We identify two distinct
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a shared name x value variable a shared name non-terminal

sp located session s located session variable s located session non-terminal

s session identifier k channel

Fig. 1. Naming of Key Elements

sets of atoms, shared names, ranged over by a, b, c, and session identifiers, ranged
over by s, t, r. Note that both shared names and session identifiers are in sans-serif
font. Multiparty asynchronous session processes are defined as follows:

a ::= x | a (shared names)
v ::= a | true | false (values)
h ::= lp | vp | (sq)p (message)

s ::= s | sp (session channels)
e ::= x | v | e and e′ (expressions)
D ::= {Xi(xs̃) = Pi}i∈I (declarations)

P ::= a [n]k(s).P (session request)
| a[p](s).P (session acceptance)
| s[k]!⟨e⟩;P (value sending)
| s[k]?(x);P (value reception)
| s[k]!⟨⟨t⟩⟩;P (session delegation)
| s[k]?((s));P (session reception)
| s[k]◁ l;P (label selection)
| s[k]▷ {li : Pi}i∈I (label branching)

| if e then P else Q (conditional branch)
| P | Q (parallel composition)
| 0 (inaction)
| (νaa)P (name hiding)
| (νss)P (session hiding)
| X⟨e, s̃⟩ (process call)
| s[k] :: h̃ (message queue)

A shared name non-terminal a, b, c, . . . can be either a value variable, denoted by
x, y, z, . . ., or a shared name. Located session non-terminals, denoted by s, t, r, . . .,
can be either a located session variable, denoted by s, t, r, . . ., or a located session,
denoted by sp, tp, rp. Figure 1 gives an overview of the various names.

A multi-cast session request a [n]k(s).P requests to start a session on a, with
roles {0, ..., n} and the requester acting as n. When a session eventually is ini-
tiated on a concrete shared name a, a fresh session identifier s is created. The
requester acts as n by referencing variable channel s in P which, during the ex-
ecution, is substituted for a located session sn. The natural number k declares
how many channels (queues) will be created when the session is initiated and
each queue is addressed as s[i] for i ∈ {1, ..., k}. The term a[p](s).P denotes the
dual process that accepts a request on a, playing role p.

The construct s[k]!⟨e⟩;P denotes the sending of expression e (after its eval-
uation to a value) to the queue of session s addressed at s[k]. The construct
s[k]?(x);P reads from s[k], with variable x binding the received value in the
continuation P . The construct s[k]!⟨⟨t⟩⟩;P denotes sending a session channel, an
operation called delegation. The construct s[k]?((s));P denotes receiving a ses-
sion channel, an operation called session reception. In session reception, we bind
a located session variable s in the continuation P , similarly to the request and
accept constructs. Branching communications are captured by s[k] ◁ l;P and
s[k] ▷ {li : Pi}i∈I . The former selects a branch by communicating label l, while
the latter reacts to a branch that another process has chosen (external choice).
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The terms (νaa)P and (νss)P respectively bind shared names and session
identifiers in P . Free shared names and free session identifiers, denoted by fn(Q)
and fs(S) respectively, are defined in a standard way. The process call X⟨e, s̃⟩
allows recursive definitions by calling procedures stored in the declarations D.
Process definitions have shape X(xs̃) = P , with parameters x and s̃ instantiated
respectively as a value and a list of distinct located sessions. Definitions may
contain process variables and this allows recursion. The terminated process is 0.

A queue addressed at s[k] with messages h̃ is denoted by s[k] :: h̃, and a
message h is either a label, a value, or a session name. A message contains an
annotation of the role that has sent the message, e.g., s[k] :: truep · h̃ contains a
message from p. Syntactically, variables cannot be messages in a queue. This is
sensible because the process semantics introduced next enforces that all variables
are substituted for concrete terms before being put on a queue.

We define two types of substitution: one on value variables and one on located
session variables. Both are denoted by the standard syntax P [a/x] and P [sp/t].
Reduction Semantics. We now give a reduction semantics for processes. First,
we must define the structural congruence relation.

Definition 1 (Structural Congruence). Structural congruence, denoted by
P ≡ Q, is the smallest equivalence relation that satisfies

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νaa)0 ≡ 0 ((νaa)P ) | Q ≡ (νaa)(P | Q) when a /∈ fn(Q)

(νss)0 ≡ 0 ((νss)P ) | Q ≡ (νss)(P | Q) when s /∈ fs(Q)

The first line makes processes a commutative monoid over parallel composition
with 0 as the unit element. The next lines give the structural rules for name
restriction, allowing the binder to be dropped when its scope is a terminated
process, and allowing the scope to be extruded when this is capture-free.

The reduction semantics for processes, denoted by P →D P ′, is defined
by the rules given in Figure 2. Rule [Link] initiates a session between {0, ..., n}
roles. The request is made by n and the remaining processes accept on the same
shared name a, declaring with [i] which role of the session they will perform as.
The requester indicates by k how many queues will be initiated for the session.
This information does not need to be shared with the other roles because the
type system will ensure queue addresses s[k] are used correctly. The parallel
composition of the accepting processes is defined using

∏
to denote parallel

composition of a set of processes. We assume that the natural number n is
greater than 0, i.e., there are at least two processes engaging in a session.

Rule [Send] puts a value at the end of a queue, annotating the value with the
role p of the located session sp it was sent on, and [Recv] reads from the front
of the queue. Rules [Deleg] and [SRec] are the corresponding rules for delega-
tion and session reception while [Label] and [Branch] are the corresponding
rules for labels. Rules [IfT] and [IfF] are standard semantics for if-statements.
Rule [Def] replaces process variable X with its declaration in D, substituting
x for the evaluation of e and substituting s̃ for a list of located sessions. Rules
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[Link]
(n−1∏

i=0

a[i](s).Pi

)
| a [n]k(s).Pn →D (νss)

(n−1∏

i=0

Pi[s
i/s] |

k∏

j=1

s [j] ::ϵ
)

[Send] sp[k]!⟨e⟩;P | s[k] :: h̃ →D P | s[k] :: h̃ · vp e ↓ v

[Recv] sp[k]?(x);P | s[k] ::vq · h̃ →D P [v/x] | s[k] :: h̃
[Deleg] sp[k]!⟨⟨tq⟩⟩;P | s[k] :: h̃ →D P | s[k] :: h̃ · (tq)p

[SRec] sp[k]?((s));P | s[k] :: (tr)q · h̃ →D P [tr/s] | s[k] :: h̃
[Label] sp[k]◁ l;P | s[k] :: h̃ →D P | s[k] :: h̃ · lp

[Branch] sp[k]▷ {li : Pi}i∈I | s[k] :: ljq · h̃ →D Pj | s[k] :: h̃ j ∈ I

[IfT] if e then P else Q →D P e ↓ true

[IfF] if e then P else Q →D Q e ↓ false

[Def] X⟨e, s̃p⟩ →D P [v/x][s̃p/s̃] e ↓ v, X(xs̃) = P ∈ D

[Resνs ] P →D P ′ ⇒ (νss)P →D (νss)P ′

[Resνa ] P →D P ′ ⇒ (νaa)P →D (νaa)P ′

[Par] P →D P ′ ⇒ P | Q → P ′ | Q
[Str] P ≡ P ′ and P ′ →D Q′ and Q′ ≡ Q ⇒ P →D Q

Fig. 2. Process semantics

[Resνs ], [Resνa ] and [Par] allow reductions to occur under restriction binders
and parallel composition. Rule [Str] handles structural congruence.

Remark 1 (Differences with the original work). We annotate session identifiers
s with a role p, yielding a located session sp. Such annotations have become
a common practice in session types papers. It was introduced as polarities for
binary session types [18, 49], which address unintended limitations of process se-
mantics. As in previous work [4, 13], we annotate messages with the sending role
to indicate the sender of the message. This allows to compare the specification
of p against the messages it has put on queues and its remaining actions.

3 Global Types, Local Types, and Projection

Syntax. The syntax of global and local types is given as follows:

G ::= p −→ q : k⟨U⟩.G | p −→ q : k{lj : Gj}j∈J | µt.G | t | end
T ::= !k⟨U⟩.T | ?k⟨U⟩.T | k ⊕ {li : T}i∈I | k & {li : Ti}i∈I | µt.T | t | end
U ::= bool | int | G | T ∆̂ ::= ∅ | ∆̂, p : T

The global type p −→ q : k⟨U⟩.G specifies a session with an interaction where
p sends a message of type U to q via channel k, and G specifies the remain-
ing session. The type p −→ q : k{lj : Gj}j∈J specifies a branching interaction
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where p sends a label li to q via k, and Gi specifies the remaining session.
The constructs µt.G and t are used to write tail-recursive specifications such as
µt.p −→ q : k⟨U⟩.t. Finally, end specifies the terminated session. A message type
U is either a boolean, an integer1, a global type or a local type. Global types are
used as message types when communicating shared names and local types are
used when communicating session channels.

The local type !k⟨U⟩.T (resp. ?k⟨U⟩.T ) specifies a role that sends (resp.
receives) a message of type U over channel k, with T representing the remaining
actions. The type k ⊕ {li : T}i∈I (resp. k & {li : Ti}i∈I) specifies sending (resp.
receiving) a label li, with Ti being the subsequent actions. As for global types,
µt.T and t allow tail-recursive specifications. Lastly, end is a terminated role.

We deal with recursive variables in a standard way and write capture-avoiding
substitution as G1[G2/t] (resp. T1[T2/t]). We assume that types are closed
and contractive. Global and local types are contractive if, for any of its sub-
expressions with shape µt0.µt1...µtn.t, the body t is not t0 [43].

A local type environment ∆̂ is a map from roles to local types. For every p in
the domain of ∆̂ (denoted by dom(∆̂)), there is a unique entry p : T for some T .

Projection. Projection is a partial function which, given a global type and a
role, attempts to generate a local type that captures the specification of this
role in the global type. When the global type specifies behavior that the role
cannot implement, projection is undefined. Our mechanisation uses a variant
projection function projp(G) by Tirore et al. [46], which is defined in Figure 3.
The projection function projp(G) is defined in terms of two auxiliary definitions:
a translation function, denoted by transp(G), and a projectability predicate,
denoted by projectablep(G). The translation function is a total function which
produces a local type representing the local behavior of the translated role. The
projectability predicate checks that the global type specifies behavior that is
possible to implement by the projected role.

Translation is defined such that transp(p1 −→ p2 : k⟨U⟩. G) produces the
output !k⟨U⟩ (resp. input ?k⟨U⟩) when the translated role is p1 (resp. p2),
and translates the remaining global type as transp(G). If the translated
role does not occur in the interaction, translation simply ignores the in-
teraction proceeds as transp(G). The translation of a branching global type
transp(p1 −→ p2 : k{lj : Gj}j∈J) is similar when p occurs in the interaction. When
p does not occur, translation chooses the first branch j1 and proceeds as
transp(G1). The auxiliary predicate gVar(t, G) is used in the translation of µt.G,
and checks if µt can safely be added to transp(G), without producing non-
contractive local types. In particular, this predicate ensures that trans never
produces non-contractive types like µt.t. Finally, transp(t) (resp. transp(end))
returns t (resp. end).

1 Our mechanization excludes the integer message type, as the expressiveness of the
expression language is orthogonal to our focus. We include the integer type here
solely to simplify examples with distinct message types.
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gVar(t, G)
def
=





gVar(t, G1) ∧ t ̸= t′ if G = µt′.G1

t ̸= t′ if G = t′

True otherwise

transp(p1 −→ p2 : k⟨U⟩.G)
def
=





!k⟨U⟩.(transp(G)) if p = p1 and p1 ̸= p2

?k⟨U⟩.(transp(G)) if p = p2 and p1 ̸= p2

transp(G) if p ̸∈ {p1, p2}

transp(p1 −→ p2 : k{lj : Gj}j∈J)
def
=





k ⊕ {lj : transp(Gj)}j∈J if p = p1 and p1 ̸= p2

k & {lj : transp(Gj)}j∈J if p = p2 and p1 ̸= p2

transp(G1) otherwise

transp(µt.G)
def
=

{
µt.(transp(G)) if gVar(t, G)

end otherwise

transp(t)
def
= t transp(end)

def
= end

projp(G)
def
=

{
transp(G) if projectablep(G)

undefined otherwise

proj_roles(G, {p1, · · · , pn}) def
=





p1 : projp1(G), · · · ,
pn : projpn(G)

if ∀i ∈ {1, · · · , n}.
projpi(G) is defined

undefined otherwise

full_proj(G)
def
= proj_roles(G, roles(G))

Fig. 3. Projection

On its own, the translation function is too permissive. E.g., the global type

p −→ q : 1
{ l1 : r −→ s : 2⟨bool⟩.end
l2 : r −→ s : 2⟨int⟩.end

}

specifies that p sends l1 or l2 to q and depending on this choice, r has to send
a boolean or an integer to s. The problem is that r cannot know which choice
was made, and its specification is thus not possible to implement. Projection
on r should therefore be undefined for this global type. As a total function,
translation naively ignores this and translates the l1 branch, producing the local
type !2⟨bool⟩.end. If p chooses l2, r will incorrectly behave as if l1 was chosen.

The problem in the example above is solved by letting projection, which we
denote projp(G), be defined only when a projectability predicate projectablep(G)
holds, in which case, the returned local type is computed as transp(G). This
predicate depends on a coinductive specification of projection that will not be
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p −→ q : k⟨U⟩.G p→q:k⟨U⟩−−−−−−→ G
[GR1]

j ∈ I

p −→ q : k{li : Gi}i∈I

p→q:k⟨lj⟩−−−−−−→ Gj

[GR2]

G1
ℓ−→ G2 q ̸∈ ℓ

p −→ q : k⟨U⟩.G1
ℓ−→ p −→ q : k⟨U⟩.G2

[GR3]

∀i ∈ I. Gi
ℓ−→ G′

i q ̸∈ ℓ

p −→ q : k{li : Gi}i∈I
ℓ−→ p −→ q : k{li : G′

i}i∈I

[GR4]
G[µt.G/t]

ℓ−→ G′

µt.G
ℓ−→ G′

[GR5]

Fig. 4. Semantics of Global Types

introduced in this paper. For the definition of the projectable predicate and the
coinductive specification we refer the reader to Tirore et al. [46].

The bottom of Figure 3 defines the function full_proj which projects a global
type over all its roles, and generates a local type environment ∆̂.

Remark 2 (Differences with the original work.). Projection is notoriously com-
plex to define correctly. Our mechanisation uses the projection by Tirore et
al.[46], which, unlike that of Honda et al., handles µ-binders correctly and has
been proven sound and complete with respect to the coinductive projection spec-
ification by Ghilezan et al.[20].

Semantics of Global Types, Local Types, and Environments. We define
the semantics of global types as a labeled transition system, denoted by G

ℓ−→ G′.
We call the label ℓ for an interaction, formally defined as:

U ::= U | l ℓ ::= p → q : k⟨U⟩

The syntactic category U is either a message type U or a label l, and an inter-
action p −→ q : k⟨U⟩ is either the exchange of a message type or a label.

The semantics of global types is defined by the rules given in Figure 4. Rules
[GR1] and [GR2] allow a global type to reduce by its first interaction. Rules
[GR3] and [GR4] allow a global type to reduce by an interaction ℓ that occurs
nested in one of its continuations, which makes the semantics asynchronous by
allowing p to occur in ℓ. On the process level, this corresponds to p putting a
message on the queue to be read by q, followed by p completing interaction ℓ
with a different role before q receives the message. The completed interaction ℓ
may not involve q because inputs are blocking. Rule [GR5] unfolds a µ-binder.

The semantics of local types is a two-level labeled transition system: the first
level gives semantics to local types T , denoted by T

ζ−→ T ′, and the second level
gives semantics to local type environments ∆̂, denoted by ∆̂

ℓ−→ ∆̂′. We call the
label ζ for an action, formally defined as:

ζ ::= !k⟨U⟩ | ?k⟨U⟩
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!k⟨U⟩.T !k⟨U⟩−−−→ T
[LR1]

?k⟨U⟩.T ?k⟨U⟩−−−−→ T
[LR2]

j ∈ I

k ⊕ {li : T}i∈I

!k⟨lj⟩−−−→ Tj

[LR3]
j ∈ I

k & {li : Ti}i∈I

?k⟨lj⟩−−−−→ Tj

[LR4]

T
ζ−→ T ′ ch(ζ) ̸= k

!k⟨U⟩.T ζ−→ !k⟨U⟩.T ′
[LR5]

∀i ∈ I. Ti
ζ−→ T ′

i ch(ζ) ̸= k

k ⊕ {li : T}i∈I
ζ−→ k ⊕ {li : T ′

i}i∈I

[LR6]

T [µt.T/t]
ζ−→ T ′

µt.T
ζ−→ T ′

[LR7]
T1

!k⟨U⟩−−−→ T ′
1 T2

?k⟨U⟩−−−→ T ′
2

∆̂, p : T1, q : T2
p→q:k⟨U⟩−−−−−−→ ∆̂, p : T ′

1, q : T ′
2

[LEnv]

Fig. 5. Semantics of Local Types and Local Type Environments

An action is the sending or receiving of a message type or a label. We write ch(ζ)
(resp. ch(ℓ)) to extract the channel of a local label ζ (resp. global label ℓ).

Formally, we define the semantics of local types and typing environments
by the rules given in Figure 5. Rules [LR1], [LR2], [LR3] and [LR4] allow a
local type to reduce by its first action. Similar to the global type rules [GR3]
and [GR4], rules [LR5] and [LR6] allow a local type to reduce by an action
ζ that occurs nested in one of its continuations. These rules make the local
type semantics asynchronous. A condition for reducing by a nested action ζ,
is that ζ uses a different channel than the first action, i.e., ch(ζ) ̸= k. The
intuition is that the first action, which is an output, already has occurred and
it has resulted in a value being put on channel k; but before this value has
been received by another participant, another interaction has in the meantime
completed on another channel k′. Interactions between local types is captured
by the semantics of local type environments ∆̂

ℓ−→ ∆̂′, given by the single rule
[LEnv]. An environment may reduce by p −→ q : k⟨U⟩ when it maps p and q to
local types that can reduce by !k⟨U⟩ and ?k⟨U⟩.
Remark 3 (Differences with the original work). We define the semantics of lo-
cal types differently from Honda et al. Unlike their semantics, ours includes the
asynchronous rules [LR5] and [LR6]. Instead, Honda et al. achieve asynchrony
by defining a relation that relates local types with permuted outputs; for exam-
ple, !k⟨U⟩.!k′⟨U ′⟩.T is related to !k′⟨U ′⟩.!k⟨U⟩.T . Similar to our asynchronous
rules, this permutation is only allowed if k ̸= k′. However, this is a more restric-
tive semantics, as it misses cases where an output is preceded by a nested input
on a different channel, thereby permitting the input to be placed in front of the
output. For instance, with the types !k⟨U⟩; ?k′⟨U ′⟩;T and ?k′⟨U ′⟩; !k⟨U⟩;T , for
k ̸= k′, our rule [LR5] with ζ =?k′⟨U⟩ allows the output to be preceded by the
input. This ability to precede an output with an input is essential for proving an
equivalence between the semantics of global types and local type environments,
a property known as the Projection Theorem. Consequently, their restrictive se-
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mantics means that their projection theorem (Lemma 5.11 [29]) does not hold.
At the end of this section, we present a projection theorem for our semantics.

Linearity. The Honda et al. formulation of multiparty session types began an
entire line of research, but to the best of our knowledge, all future work has
adopted the implicit channels introduced by Bettini et al. [4]. Although they are
more expressive, explicit channels are more complicated, allowing global types
to contain races. For example, the global type:

p −→ q : k⟨int⟩. r −→ q : k⟨bool⟩.end (8)

is problematic because the two interactions p −→ q : k⟨int⟩ and r −→ q : k⟨bool⟩
share the same explicit channel k which introduces a race between p and r. If r
wins the race, a type error occurs when q receives bool while expecting int.

Linearity is a property that rules out global types with ordered interactions
that introduce races. Two interactions are ordered if they occur along the same
trace, formally defined as:

Definition 2 (Trace). A trace ρ of a global type G is a (possibly empty) se-
quence of interactions such that

trace ρ G

trace (p −→ q : k⟨U⟩ · ρ) (p −→ q : k⟨U⟩.G)

trace ρ (G[µt.G t])

trace ρ (µt.G)

trace ρ Gi

trace (p −→ q : k⟨li⟩ · ρ) (p −→ q : k{li : Gi}i∈I) trace ϵ G

Intuitively, a trace records the interactions of a finite walk through the global
type, starting from the first interaction and unfolding µ-binders when they occur.
We say p → q : k and r → s : k are ordered G if we for some ρ and ρ′ can derive:

trace (ρ · p −→ q : k⟨U⟩ · ρ′ · r −→ s : k⟨U′⟩) G (9)

We omit U and U′ from the interactions as they provide no causal information.
Linearity asserts that ordered interactions that share the same channel have
ordered inputs and outputs, a property which is asserted by deriving input and
output dependencies, formally defined as:

Definition 3 (Input and Output Dependencies). The interaction depen-
dencies IO, II,OO, IOOO ⊆ ℓ× ℓ and judgments input dep ρ and output dep ρ are
defined as:

p → q : k IO s → r : k′
def
= q = s p → q : k II r → s : k′

def
= q = s

p → q : k OO s → r : k′
def
= p = s ∧ k = k′ ℓ1 IOOO ℓ2

def
= ℓ1 IO ℓ2 ∨ ℓ1 OO ℓ2
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[I-Base]
ℓ1 II ℓ2

input dep ℓ1 · ℓ2

[I-Skip]
input dep ℓ1 · ρ · ℓ3

input dep ℓ1 · ℓ2 · ρ · ℓ3

[I-Tail]
input dep ℓ2 · ρ · ℓ3 ℓ1 IO ℓ2

input dep ℓ1 · ℓ2 · ρ · ℓ3

[O-Base]
ℓ1 IOOO ℓ2

output dep ℓ1 · ℓ2

[O-Skip]
output dep ℓ1 · ρ · ℓ3

output dep ℓ1 · ℓ2 · ρ · ℓ3

[O-Tail]
output dep ℓ2 · ρ · ℓ3 ℓ1 IOOO ℓ2

output dep ℓ1 · ℓ2 · ρ · ℓ3
Input and output dependencies are composed of interaction dependencies. Inter-
action dependencies relate interactions by asserting different ways the same role
can occur in both interactions, such as IO (input-output) meaning the input role
of the first interaction is also the output role of the second interaction. Likewise
we have OO (output-output) and II (input-input) dependencies and we chain
interaction dependencies together as input and output dependencies. An input
dependency is a sequence of IO dependencies that ends in II while an output
dependency is a sequence of IOOO dependencies. We use these chains to show
causal orderings between the roles in the first and last interactions of the chain.

We start by considering for each rule of input dependency, why they assert
and preserve the ordering of inputs. The shortest input dependency is built
by [I-Base]. The two inputs are by the same role and therefore ordered. Rule
[I-Skip] captures that chains need not use all interactions of the trace. Finally
rule [I-Tail] extends an existing input dependency between ℓ2 and ℓ3 by adding
ℓ1 in front of ℓ2 when it satisfies ℓ1 IO ℓ2. We can assume that the inputs of ℓ2
and ℓ3 are ordered and this is also the case between ℓ1 and ℓ3 if it is the case for
ℓ1 and ℓ2. If the channels of ℓ1 and ℓ2 are different then the inputs are ordered
because the input of ℓ2 cannot intercept the output of ℓ1. If the channels are the
same, then there must exist input and output dependencies between ℓ1 and ℓ2,
ensuring in particular that their inputs are ordered. More generally, input and
output dependencies show that a specific pair of ordered interactions, with the
same channel, have ordered inputs and outputs, by relying on this property to
hold for all other ordered interactions with the same channel.

Next, we consider why the rules of output dependency preserve ordering of
outputs. We start by the shortest output dependency built by [O-Base], relating
the interactions by either OO or IO. The former ensures the ordering by having
the same role in both outputs. IO preserves output dependency by blocking
the output of the second interaction. Rule [O-Skip] is the corresponding skip.
Finally, rule [O-Tail] allows output dependencies to be extended either by OO
or IO, extending the ordering of the outputs between ℓ2 and ℓ3 by adding ℓ1 in
front, as long as the outputs of ℓ1 and ℓ2 are ordered as well. The argument for
why output ordering is preserved is similar to that of rule [O-Base].

Linearity asserts dependencies between any ordered interactions with the
same channel. Unlike Honda et al., we define linearity in terms of the weaker
property, linearHead(G), which simplifies the decision procedure. This formula-
tion only asserts the existence of dependencies when the first of the two interac-
tions is also the first interaction in the trace:

trace (p −→ q : k⟨U⟩ · ρ · r −→ s : k⟨U ′⟩) G (10)
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|G| def
=

{
1 + |G1| if G = µt.G1

0 otherwise
unfold_once(G)

def
=

{
T1[µt.G1/t] if G = µt.G1

T otherwise

unf(G)
def
= unfold_once(|G|)G

Fig. 6. Calculating µ-height and unfolding global types. Corresponding operations exist
on local types.

We define linearity of a global type, linear(G), in terms of linearHead(G) in Fig-
ure 7. Intuitively, linearHead(G) checks if the first interaction is free of races and
next(G) proceeds to the continuation of the global type. Due to global types hav-
ing only finitely many distinct subterms, a consequence of µ-types being regular
[43], only finitely many applications of the coinductive rule of linear is necessary
before a previously encountered global type inevitably reappears, at which point
the proof can circularly be closed.

The definition of the function next(G) uses the unfold operation unf(G) which
we define in Figure 6. The definition uses µ-height, denoted by |G|, which is the
number of top-level µ-binders occurring before another construct appears. For
example, |µt.end| = 1 and |p −→ q : k⟨U⟩.G| = 0. We create an auxiliary function
unfold_once(·) which unfolds a single binder by turning µt.G into G[µt.G/t]
and define the unfolding operation for global types, denoted by unf(G), as the
repeated application of unfold_once(G) µ-height times. This operation can sim-
ilarly be defined on local types, denoted by unf(T ), and we elide its definition.

linearHead(G)
def
= ∀ℓ1 ρ ℓ2. trace (ℓ1 · ρ · ℓ2) G → ch(ℓ1) = ch(ℓ2) →

input dep ℓ1 · ρ · ℓ2 ∧ output dep ℓ1 · ρ · ℓ2

next(G)
def
=





{G1} if unf(G) = p1 −→ p2 : k⟨U⟩.G1

{Gi | i ∈ I} if unf(G) = p1 −→ p2 : k{li : Gi}i∈I

∅ otherwise

linearHead(G) ∀G′ ∈ next(G). linear((G′))

linear(G)

Fig. 7. Linearity of global types

Theorem 1 (Decidability of Linearity). linear(G) is decidable.

Decidability of linearity can be reduced to a reachability problem on a graph
induced by a global type with next(·) as adjacency list.
Projection Theorem. We have seen that interactions in a protocol can be
described by G

ℓ−→ G′ and ∆̂
ℓ−→ ∆̂′. Naturally, we want to establish a corre-
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spondence between these two semantics with respect to the projection operation.
Intuitively, if ∆̂ and ∆̂′ are derived from G and G′, respectively, then G

ℓ−→ G′

holds if and only if ∆̂ ℓ−→ ∆̂′. However, this result is too strong due to recursion,
which may unfold some terms during reduction, making projection slightly dif-
ferent. The issue lies in syntactic equality on local types being too restrictive to
prove the projection theorem. Local types, however, can be more loosely related
by a coinductive equality on their continuously unfolded terms:

Definition 4 (Coinductive equality). Coinductive equality is a relation on
local types defined by the following rules:

unf(T ) = end unf(T )′ = end

T ≈ T ′ [Eq-End]

unf(T ) =!k⟨U⟩.T ′′ unf(T ′) =!k⟨U⟩.T ′′′ T ′′ ≈ T ′′′

T ≈ T ′ [Eq-!]

unf(T ) =?k⟨U⟩.T ′′ unf(T ′) =?k⟨U⟩.T ′′′ T ′′ ≈ T ′′′

T ≈ T ′ [Eq-?]

unf(T ) = k ⊕ {lj : Tj}j∈J unf(T ′) = k ⊕ {lj : T ′
j}j∈J ∀j ∈ J. Tj ≈ T ′

j

T ≈ T ′ [Eq-⊕]

unf(T ) = k & {lj : Tj}j∈J unf(T ′) = k & {lj : T ′
j}j∈J ∀j ∈ J. Tj ≈ T ′

j

T ≈ T ′ [Eq-&]

This relation checks the shape of the unfolded local types, and checks whether
the same actions are specified, before proceeding to the continuations. Because of
unfolding, it might require a circular proof to derive the equality. With an abuse
of notation, ∆̂1 ≈ ∆̂2 is the point-wise extension of ≈ to local type environments.
Coinductive equality on continuously unfolded µ-types is decidable [43], and
this has been mechanised [14]. Our mechanisation also includes a proof of the
decidability of the relation ≈, which, to the best of our knowledge, is the first
mechanisation for session types. Using this relation, we can state the following:

Theorem 2 (Projection theorem). Let G be a global type such that linear(G)
holds and full_proj(G) is defined, then

1. If G l−→ G′ then ∆̂ exists such that
full_proj(G)

l−→ ∆̂ and proj_roles(G′, roles(G)) ≈ ∆̂

2. If full_proj(G)
l−→ ∆̂ then G′ exists such that G

l−→ G′ and
proj_roles(G′, roles(G)) ≈ ∆̂.

Remark 4 (Differences with the original work). The projection theorem of Honda
et al. does not take into account that roles(G′) may be a strict subset of roles(G).
The set of roles in a global type can decrease after reduction if the reduced
interaction involves a role that only occurs in that interaction. This results in
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an invalid environment reduction because the domain shrinks, exemplifying an
innocent error that is hard to catch on paper.

4 Queue Types, Environment Decomposition, and
Coherence

Queue types. Honda et al. handle the typing of queues using type contexts T,
which are local types with a hole [·]. They decompose a local type T into a context
T and another local type T ′, such that the applied context T[T ′] is related
to T by a subtyping relation (see Definition 5.1 [29]). The type checking of a
process against an environment ∆̂, may involve multiple of these decompositions.
Mechanising this approach is non-trivial, and for convenience, we take a different
approach: we type processes with an environment that contains local types that
are decomposed a priori. We refer to this as a decomposed environment, denoted
by ∆̂; Q̂. We formally define queue environments Q̂, and the queue types Q it
contains, as:

Definition 5 (Queue type and Queue Environment). Queue types, de-
noted by Q, and queue environments, denoted by Q̂, are defined as:

Q ::= ∅ | (k,U) · Q Q̂ ::= ∅ | Q̂, p : Q

A queue environment Q̂ is a map from roles to queue types, and a queue type
is a sequence of pairs. In each pair, the left component is always a channel, and
the right component is either a message type U or a label l. A pair (k,U) in
the queue type models the presence of a message U in the queue at channel k,
and the order of these pairs indicate the order in which these messages were
sent. Queue types are given with respect to roles in the environment Q̂, and this
environment describes the content of all queues in the session. Queue types are
derived from local types using the following notion of path:

Definition 6 (Path). A path, denoted by σ, is a (possibly empty) sequence of
elements from the set L ∪ {⊥}.
A path is similar to a trace, it represents a walk through the µ-type. Unlike
traces, we use paths to decompose local types.

Definition 7 (Decomposition of Local Types). The decomposition of local
types, denoted by decomp : σ → T → T ×Q, is defined as:

decompσ T
def
=





(T ′, (k, U) · Q) unf T =!k⟨U⟩.T1 ∧ σ = ⊥ · σ′ ∧ decompσ T1 = (T ′, Q)

(T ′, (k, lj) · Q) unf T = k ⊕ {li : T}i∈I ∧ σ = j · σ′ ∧
decompσ Tj = (T ′, Q) ∧ j ∈ I

(unf T, ∅) σ = ∅
undefined otherwise

With respect to a path, decomposition splits a local type into a pair consisting
of a residual local type and a queue type. We overload notation, denoting the
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point-wise extension of decomposition onto environments as decompf ∆̂, which
splits the environment ∆̂, with respect to a path function f : P → σ, into a
residual environment ∆̂′ and a queue environment Q̂.

Definition 8 (Decomposition of Environments). Let the path function f be
such that ∀i ∈ {1, . . . , n}. decompf(pi) Ti = (T ′

i , Qi) . Environment decomposition,
denoted by decomp : (P → σ) → ∆̂ → ∆̂× Q̂, is defined as:

decompf (p1 : T1, ..., pn : Tn)
def
= p1 : T ′

1, ..., pn : T ′
n; p1 : Q1, ..., pn : Qn

Example 1. The path function tracks, within a session, the messages that are
in transit. Recall that the initial state of our running example from Section 1,
Equation (4), has two empty queues. Because the queues are empty, the decom-
position of the local types that type the three roles, should all produce the empty
queue type ∅. This is achieved with the path function: f(p) = ∅. After p has put
a message on each of the two queues in Equation (5), the local type of p must
be decomposed in a way that reflects the two outputs have been performed, and
that the remaining roles have performed no outputs. We achieve this with the
path function: f(p′) = if p′ = p then l1 · ⊥ else ∅. The decomposition of G ⇂p
with respect to f(p), where G is the global type in our running example, yields
the residual local type end and queue type (1, l2) · (2, bool).

Coherence. Honda et al. use a well-formedness condition on global types called
coherence, which they define as a global type being linear and projectable, i.e.,
its projection is defined for all roles. However, coherence alone does not rule out
our counterexample. For this reason, we introduce an additional property to our
definition of coherence, called unstuckness and denoted by unstuck (G).

The idea behind unstuckness is the following. The global type which spec-
ifies the counterexample is stuck because the only relevant rule, [GR4], is not
applicable due to its restrictive premise, which requires universal quantification
∀i ∈ I. Gi

ℓ−→ G′
i. If this premise was relaxed to existential quantification

∃i ∈ I. Gi
ℓ−→ G′

i, then the global type would not be stuck. It is however not
an option to relax the rule because it would break the Projection theorem. In-
stead, we define unstuck (G), which captures global types where the universally
quantified premise implies the existentially quantified premise. The global type
in the counterexample does not satisfy this property and is thus ruled out.

In order to define the unstuck predicate, we use the notion of barb, denoted
by G ↓1 ℓ, formally defined by the rules in Figure 8. Intuitively, G ↓1 ℓ holds
whenever it is possible to derive that G can reduce by ℓ, in the relaxed setting
where the existentially quantified premise is used in [GR4]. This lets us quantify
over the labels for which reduction derivations must exist. This property must
also be preserved by reduction, so we additionally assert that the reduced global
type G′ satisfies the property as well. For recursive global types, a derivation
will not be finite, and the predicate is therefore coinductively defined:



Title Suppressed Due to Excessive Length 19

p −→ q : k⟨U⟩.G ↓1 p → q : k⟨U⟩
[GB-1]

j ∈ I

p −→ q : k{li : Gi}i∈I ↓1 p → q : k⟨lj⟩
[GB-2]

q /∈ ℓ G ↓1 ℓ

p −→ q : k⟨U⟩.G ↓1 ℓ
[GB-3]

q /∈ ℓ j ∈ I Gj ↓1 ℓ

p −→ q : k{li : Gi}i∈I ↓1 ℓ
[GB-4]

G[µt.G/t] ↓1 ℓ

µt.G ↓1 ℓ
[GB-5]

Fig. 8. Barb Relation for Global Types

Definition 9 (Unstuck). We say a global type is unstuck if it satisfies the
predicate unstuck (G), coinductively defined as:

∀ℓ. G ↓1 ℓ =⇒ ∃G′.G
ℓ−→ G′ ∧ unstuck (G′)

unstuck (G)

We can finally introduce our stricter notion of coherence:

Definition 10 (Coherence). The coherence of global, local types and de-
composed environments, denoted respectively by coherent(G), coherent(L) and
coherent(∆̂; Q̂), is defined as:

– coherent(G) holds iff G is projectable, linear and unstuck.
– coherent(∆̂) holds iff there exists a coherent G whose full projection is ∆̂.
– coherent(∆̂; Q̂) holds iff there exists a coherent ∆̂′ and a function f such that

decompf ∆̂′ = ∆̂; Q̂.

5 Typing System and Subject Reduction

This section introduces the type system for processes, connecting the concepts
we have covered so far. This is expressed through the following typing judgement:

Γ ⊢D P ▷C Q; ∆

The intuitive meaning of the judgement is that process P is well-typed with
values typed by the unrestricted environment Γ , including shared names which Γ
maps to global types. Ongoing sessions are typed by the two linear environments
∆ and Q. Process variables are typed by D, and the linear environment C ensures
that each queue address is unique. An entry s[k] in C is like a token uniquely
assigned to a queue. We use C to prevent processes where queue addresses are
not unique, e.g., s[k] ::∅ | s[k] ::∅. Formally, we define these environments as

(Unrestricted) Γ ::= ∅ | Γ, a : G | Γ, x : U D ::= ∅ | D, X : (U,T )

(Linear) C ::= ∅ | C, s[k] ∆ ::= ∅ | ∆, s : T Q ::= ∅ | Q, sp : Q

The environment Q associates a queue type with each located session, recording
what actions have been performed, while ∆ associates a local type with each ses-
sion channel, indicating what actions remain. C ensures that all queue addresses



20 Author et al.

are disjoint. Note that the environments Q and ∆ may specify multiple sessions,
while Q̂ and ∆̂ specifies a single session.

Definition 11 (Session Filtering and Lifting). The filtering of an envi-
ronment by session identifier s, denoted respectively by ∆(s) and Q(s), yields
environments ∆̂ and Q̂ respectively, containing the local types and queue types of
that session. This operation is always defined and returns the empty environment
when the session is not present.
We define a lifting operation, denoted respectively by [∆̂]s and [Q̂]s , which yields
environments ∆ and Q, corresponding to the initial environments where roles p
have been replaced with located sessions sp.

Using session filtering, we can extend the definition of coherence to ∆;Q.

Definition 12 (Coherence of ∆;Q). The coherence of the environment ∆;Q,
denoted by coherent(∆;Q), holds iff for any session identifier s, ∆(s);Q(s) is
coherent.
When we, in stating the coherence of ∆;Q, want to refer to the underlying coher-
ent environment ∆′, whose decomposition yields ∆;Q, we write coherent(∆;Q)
as ∆′.

The environments ∆, Q and C are linear, and this means different things for
each. For ∆ and C, linearity carries the standard meaning: each entry in the
environment must be used exactly once. In other words, entries cannot be du-
plicated, such that a local type in ∆ is used to type two different processes.
Linearity of Q, is based on the partitioning of a queue type, which we explain
next:

Example 2 (Partioning a queue). Consider two queues with messages from the
same role p

s[k] :: truep | s[k′] :: truep

The queue type of p is
(k, bool) · (k′, bool)

We partition the queue type into two queue types, one for each queue.

(k, bool) (k′, bool)

In the following definition, let filter f Q denote the queue type obtained by
filtering out all those entries in the channels of Q that do not satisfy the predicate
f : k → {True,False}. Partitioning is then defined as:

Definition 13 (Partitioning). Partitioning of a queue type by a predicate
f : k → bool, denoted by partition : (k → {True,False}) → Q → Q×Q, is defined
as:

partitionf (Q) = (filter f Q, filter (λk. ¬f(k)) Q)

We write (Q0, Q1) ↪→ Q when there exists a predicate f such that partitionf (Q) =
(Q0, Q1) and we point-wise extend this to environments, abusing notation by
writing (Q0,Q1) ↪→ Q.
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Γ (x) = S

Γ ⊢ x : S
Γ ⊢ b : bool

Γ ⊢ e : bool Γ ⊢ e′ : bool

Γ ⊢ e and e′ : bool

Fig. 9. Typing rules for expressions

Γ ⊢ a : G
roles(G) = {0, . . . , n}
channels(G) = {1, . . . , k} Γ ⊢D P ▷∅ ∆, s : unf(G⇂n); Q

Γ ⊢D a [n]k(s).P ▷∅ ∆; Q
[T-MCast]

Γ ⊢ a : G p ∈ roles(G) Γ ⊢D P ▷∅ ∆, s : unf(G⇂p); Q
Γ ⊢D a[p](s).P ▷∅ ∆; Q

[T-MAcc]

Γ ⊢ e : U Γ ⊢D P ▷∅ ∆, s : unf(T ); Q
Γ ⊢D s[k]!⟨e⟩;P ▷∅ ∆, s :!k⟨U⟩.T ; Q

[T-Send]
Γ, x : U ⊢D P ▷∅ ∆, s : unf(T ); Q

Γ ⊢D s[k]?(x);P ▷∅ ∆, s :?k⟨U⟩.T ; Q
[T-Rcv]

T1 ≈ T2 s ̸= s′ Γ ⊢D P ▷∅ ∆, s :unf(T ); Q
Γ ⊢D s[k]!⟨⟨s′⟩⟩;P ▷∅ ∆, s :!k⟨T1⟩.T, s′ : T2; Q

[T-Deleg]
Γ ⊢D P ▷∅ ∆, s : unf(T ), t : unf(T ′); Q

Γ ⊢D s[k]?((t));P ▷∅ ∆, s :?k⟨T ′⟩.T ; Q [T-SRec]

i ∈ I Γ ⊢D P ▷∅ ∆, s : unf(Ti); Q

Γ ⊢D s[k]◁ li;P ▷∅ ∆, s : k ⊕ {lj : Tj}j∈I ; Q
[T-Sel]

∀i ∈ I Γ ⊢D Pi ▷∅ ∆, s : unf(Ti); Q

Γ ⊢D s[k]▷ {lj : Pj}j∈I ▷∅ ∆, s : k & {lj : Tj}j∈I ; Q
[T-Branch]

Γ ⊢D P ▷∅ ∆; Q Γ ⊢D Q ▷∅ ∆; Q Γ ⊢ e : bool

Γ ⊢D if e then P else Q ▷∅ ∆; Q
[T-If]

ends(∆0) Γ ⊢ e : U X : (U, T̃ ) ∈ D ∆1 ≈ s̃ : T̃

Γ ⊢D X⟨e, s̃⟩ ▷C ∆0,∆1; Q
[T-Var]

ends(∆)

Γ ⊢D 0 ▷∅ ∆; Q
[T-Inact]

Fig. 10. Typing rules: All rules implicitly include the premise ends(Q)

Terminated process 0 and the empty queue s[k] :: ∅ are typed using the
following definitions for terminated environments:

Definition 14 (Terminated Environments). A local type environment is
terminated, denoted by ends(∆) iff ∀(p : T ) ∈ ∆. unf(T ) = end. A queue en-
vironment is terminated, denoted by ends(Q) iff ∀(sp : Q) ∈ Q. Q = ϵ

Typing Rules. The rules defining our type system can be found in Figures 9,
10, and 11. Figure 9 contains the typing rules for expressions. The typing rules
for processes are split into two parts: the first part is presented in Figure 10,
where all rules include the premise ends(Q), which is omitted in the figure to
conserve space. The remaining rules are in Figure 11, where the premises of all
rules are explicitly stated. [T-MCast] and [T-MAcc] type session request and
accept, respectively. Roles are totally ordered, and the largest role of G is n
which is assigned to the requesting process. The unfolding of its projection is
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Γ ⊢D P ▷C0 ∆0; Q0 Γ ⊢D Q ▷C1 ∆1; Q1 (Q0,Q1) ↪→ Q

Γ ⊢D P | Q ▷C0,C1 ∆0,∆1; Q
[T-Conc]

ends(Q) ends(∆)

Γ ⊢D s[k] ::∅ ▷s[k] ∆; Q
[T-QNil]

coherent(G) Γ, a : G ⊢D P ▷C ∆; Q

Γ ⊢D (νaa)P ▷∅ ∆; Q
[T-NRes]

coherent(∆̂; Q̂) Γ ⊢D P ▷(C,{s[ki]}i∈I ) ∆, [∆̂]s ; Q, [Q̂]s

Γ ⊢D (νss)P ▷C ∆; Q
[T-CRes]

Γ ⊢ v : U Γ ⊢D s[k] :: h̃ ▷C ∆; Q, sp : Q

Γ ⊢D s[k] ::vp · h̃ ▷C ∆; Q, sp : (k, U) ·Q
[T-QVal]

Γ ⊢D s[k] :: h̃ ▷C ∆; Q, sp : Q

Γ ⊢D s[k] :: lp · h̃ ▷C ∆; Q, sp : (k, l) ·Q
[T-QSel]

T0 ≈ T1 Γ ⊢D s[k] :: h̃ ▷C ∆; Q, sp : Q

Γ ⊢D s[k] :: (tq)p · h̃ ▷C ∆, tq : T0; Q, sp : (k, T1) ·Q
[T-QSess]

Fig. 11. Typing rules: There are no implicit premises for these rules

inserted into ∆. [T-Send] and [T-Rcv] are the rules for sending and receiving.
The session channel s is mapped to a local type in ∆ and checked to correspond
with the action of the process. In the typing of the subterm P , the s entry in ∆
is updated to the unfolded continuation unf T . [T-Deleg] and [T-SRec] type
session delegation and reception. Similarly to the rules for send and receive, they
perform the delegation of session channel s′, which requires the type T2 for s′ in
the environment to be coinductively equal to the carried type T1 in the type of s.
Here, coinductive equality is necessary to ensure the type system is closed under
≈. The rules [T-Sel] and [T-Branch] are similar to [T-Send] and [T-Rcv].
[T-IF] is the rule for if statements, which has no effect on the type environments.
[T-Inact] and [T-QNil] are the rules for inaction and the empty queue, using
the predicates ends(∆) and ends(Q) to check that the respective environments
are terminated. [T-Conc] types parallel composition and implements the split of
the environments as discussed above. [T-NRes] and [T-CRes] are the rules for
name and channel restriction. [T-NRes] introduces a coherent global type into
Γ . [T-CRes] adds the decomposed environment ∆̂; Q̂ into ∆;Q and extends C by
a disjoint set of unique tokens {s[ki]}i∈I . The tokens in C are used to ensure the
uniqueness of queue addresses such that if sk ∈ dom C, then exactly one queue of
shape s[k] :: h̃ exists in the typed process. [T-QVal], [T-QSess], and [T-QSel]
are type queues. A message is annotated by the role p that sent the message,
which is used to identify the queue type in Q associated with the located session
sp, checking that k and U in the queue type correspond to the channel of the
queue and the message it contains. [T-Var] is the rule for procedure call, calling
procedure X with an expression and a list of distinct session channels. Here, we
write s̃ : T̃ to mean then environment with entries (s̃i : T̃i) for i ∈ {1, .., |s̃|},
where |s̃| = |T̃ |.
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Our semantics uses a fixed set of definitions D in →D . We now show how
to type these definitions.

Definition 15 (Typing of declarations). Declarations D are typed by the
environment D whenever dom D = dom D and

∀X(xs̃) = P ∈ D. X : (U, T̃ ) ∈ D implies x : U ⊢D P ▷∅ s̃ : T̃ ; ∅

Example 3 (Typing process definitions). Let D contain the single declaration
X(xs) = s[k]!⟨x⟩;X⟨x, s⟩, which is typed by the environment X : bool× unf(T ),
where T = µt.!k⟨bool⟩.t. We name this environment D and to assert that D is
typed by D, we must show:

x : bool ⊢D s[k]!⟨x⟩;X⟨x, s⟩ ▷∅ s : unf(T ); ∅

Which is derivable by [T-Send] and and [T-Var].

The example above highlights an important aspect of the type system. All
local types in ∆ are unfolded. Note for example that we put the unfolded local
type in D. This is necessary because all rules assume local types are unfolded,
and we preserve this property by only introducing unfolded local types into ∆.
Properties of the type system. We now state some properties of the type
system, starting with the substitution lemma, which is required by the Subject
Reduction Theorem to derive typings for value substituted processes P [v/x] and
located session substituted processes P [sp/t].

Lemma 1 (Substitution).

1. If Γ, x : U ⊢D P ▷C ∆; Q and Γ ⊢ v : U then Γ ⊢D P [v/x] ▷C ∆; Q.
2. If Γ ⊢D P ▷C ∆, s : T ; Q then Γ ⊢D P [sp/s] ▷C ∆, sp : T ; Q.

The lemma states that processes remain well-typed after variables are substi-
tuted for values and located session variables are substituted for located session
identifiers. This lemma is necessary to prove the cases of subject reduction deal-
ing with value and session reception.

We are now ready to state subject congruence and reduction:

Theorem 3 (Subject congruence and reduction).

1. If P ≡ Q and Γ ⊢D P ▷C ∆; Q then Γ ⊢D Q ▷C ∆; Q
2. If Γ ⊢D P ▷C ∆; Q and coherent(∆;Q) as ∆0 and P →D P ′ then there

exists ∆1, ∆
′,Q′ s.t coherent(∆′;Q′) as ∆1 and Γ ⊢D P ′▷C∆′; Q′ and either

∆0 = ∆1 or there exists ℓ s.t. ∆0
ℓ−→ ∆1

3. If Γ ⊢D P ▷∅ ∅; ∅ and P →D P ′ then Γ ⊢D P ′ ▷∅ ∅; ∅
The theorem contains three statements: (1) typing is preserved by congruence;
(2) typing is preserved by process reductions, relating environments either by
equality or reduction; and, (3) typing is preserved by closed processes with no
queues, which is a special case of (2). The proof of (1) is by structural induction
on the congruence relation, while the proof of (2), the core subject reduction
result, is by induction on process reductions.
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Remark 5 (Differences with the original work). The type system enforces linear
resource use by defining smaller resources as splits of larger ones, contrasting with
Honda et al., who define larger resources as compositions of smaller ones. Our
focus on splitting rather than composing is evident in several aspects of the type
system. Firstly, the environment ∆;Q provides an intuitive temporal split: queue
types in Q indicate completed actions, while residual local types in ∆ indicate
remaining actions. Keeping these concepts distinct simplifies the definition of
environment splitting, as ∆ and Q split orthogonally. Secondly, queue types and
residual local types are obtained by decomposition. Our definition allows us to
avoid using the subtyping relation, unlike Honda et al.. This is significant because
introducing subtyping through a non-structural subsumption rule complicates
reasoning about type derivations, particularly in proof assistants.

6 Related Work and Discussion

Mechanisation of multiparty session types. Castro-Perez et al. [10] mechanise in
Coq a trace equivalence between processes, coinductive local types and coinduc-
tive global types. Their processes are single-session without delegation, there-
fore there is no multi-cast session request nor session acceptance and a process
is always typed by a single global type. Their process language is a domain
specific language embedded in Coq. This allows a user to write a correct-by-
construction process in Coq for each role of a session, and use Coq’s extraction
feature to extract executable OCaml code. The generated code has a transport
API that allows interaction with external code. Although their setting is more
applied than ours, they also propose an elegant approach to representing session
types as coinductive types that are coinductively related to unfolded µ-types.
Castro-Perez et al. prove their definition of projection sound with respect to
a coinductive specification of projection by Ghilezan et a. [20]. For this same
specification, Tirore et al. [46] propose a projection for which both soundness
and completeness holds. This is the projection that we adopted in this paper.

Jacobs et al. [31] mechanise multiparty GV in Coq using the Iris framework
[33]. Multiparty GV is an extension of the linear lambda calculus with multiparty
asynchronous session types. Their language features an n-ary fork that combines
session initiation and process spawning, ensuring an acyclic topology. This is
unlike our setting where already existing processes initiate sessions on shared
names. Their methodology is significantly different from ours, and is based on
separation logic [41, 42] and connectivity graphs [30].
Mechanisation of binary session types. Using the Iris framework, Hinrichsen et
al. [25] introduce semantic typing for a variant of binary session types using
logical relations. Gay et al. [19] compare duality definitions in an Agda mech-
anisation of binary session types. Duality is the binary notion of compatibility
used for binary session types, that is a special case of the multiparty notion
of coherence. Gay et al. demonstrate that some definitions are unsound when
type variables can appear in messages. Like them, our work does not take the
equi-recursive view and we explicitly state when syntactic equality of µ-types is
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used and thus when to trigger unfoldings and when we use coinductive equality
modulus unfolding. Castro-Perez et al. [11] mechanise in Coq a subject reduction
theorem for the binary session type meta-theory given by Yoshida and Vascon-
celos [49]. They use the Locally Nameless representation for variables by Char-
guéraud [12]. Like us, Castro-Perez et al. distinguish between variable and value
session channels. Unlike our setting, their session types do neither include recur-
sion nor process call and definitions. Instead of process call they use replication
!P . Recently, Sano et al. [44] mechanised a version of binary session types that
are in a Curry-Howard correspondence with linear logic [47]. They use linearity
predicates, which enable the separate checking of linearity properties in the type
system, allowing the typing judgement to focus solely on non-linear contexts.
Session types on paper. There is a vast literature on multiparty session types that
builds on the original paper. An introduction was given by Yoshida and Gheri [48]
and a comprehensive overview was given by Scalas and Yoshida [45] where they
argue the inconvenience of using global types to define compatibility. It should
be noted that to the best of our knowledge, all later works use implicit channels.
The counter example therefore does not invalidate these results. However, we
argue that explicit channels are important in a setting where there is a limited
number of resources available that must be shared in a session, e.g., AMQP [3].
Future work and discussion. Subject reduction is used to prove session fi-
delity and type safety, the former expressing that communication within a ses-
sion will progress as specified by the global type, and the latter expressing that
well typed programs do not go wrong in the standard sense. Future work in-
cludes proving these properties. Another important result of the original paper
is progress, which states that a well-typed single-session process never deadlocks.
It would be interesting to investigate the implications of the counterexample on
progress as well as proving progress for our meta-theory.

The counterexample highlighted the restrictiveness of the global type seman-
tics. Later work on multiparty session types [45, 10] introduces a more flexible
global type semantics that, in the context of implicit channels, is unrelated to
the counterexample. This work suggests semantic definitions that could allow
the unstuck predicate to be removed from the meta-theory.

The mechanisation revealed some inconveniences in the meta-theory. For ex-
ample, the representation of a finished session channel is ambiguous; it can be
represented either as not being contained in the environment or as being con-
tained but mapped to end. We conjecture that it would simplify proofs to resolve
this ambiguity by choosing only the non-presence representation in conjunction
with a closure operation on sessions, as done by Caires et al. [7] and Wadler [47].

Another inconvenience is the use of global types as the basis for multiparty
compatibility. Scalas and Yoshida [45] pointed out that more general notions of
compatibility exist beyond global types. This broader perspective may not only
provide a more encompassing definition of compatibility but also simplify proofs
by eliminating the need for two specification languages in the meta-theory.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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