
Department of Computer Science
Data-intensive Systems and Applications

THESIS

Resourceful Learning:
Training More Models with Fewer Resources

Author:
Ties Robroek

Supervisor:
Pınar Tözün

Submitted on
August 31, 2024

Imprint

Project: Thesis
Title: Resourceful Learning: Training More Models with Fewer Re-

sources
Author: Ties Robroek
Abstract Translation: Morten Clausen
Date: August 31, 2024
Copyright: IT University of Copenhagen

Supervisor:
Pınar Tözün
IT University of Copenhagen
Email: pito@itu.dk

mailto:pito@itu.dk

iii

iv

v

Acknowledgements

A PhD is not a journey that you walk alone, but together with your colleagues,
friends and family.

I was originally going to be part of a different research project at a different univer-
sity, but when that was cancelled last minute my world and self-esteem collapsed.
I want to thank Nikki for always being there for me and guiding me whenever I
needed it, both before and during the PhD journey.

The world of academia has its bright and dark sides. Having heard stories of bad
student-supervisor relationships from friends and online, I am indefinitely grateful
to Pınar for being an ever-supportive supervisor that I could only have hoped for.
Furthermore, I want to thank my academic brother Ehsan with whom I’ve walked
and explored this path together.

DASYA has been a great research group to be a part of. I am thankful for all the great
(and not-so-great) conversations we have had during lunch and the bad movies
we’ve watched together. To Morten and Kasper I owe special thanks for stimulating
me to pursue not just mental but also physical activity, and Dovile for making me
think about things. Finally, I want to thank my roommates Aaron, Neil, and Robert
for sharing what is probably the least-ventilated room in our building.

During my research exchange in Zürich I discovered what working in a different
research group can be like, with thanks to Ana for hosting me. I want to especially
thank Maximilian for his working ethos, Ben for making me feel at home and want
to again apologise to Foteini for consistently mispronouncing her name during my
first month.

Last but not least, I want to thank my parents for always being there for me, even
though my decision to move to Denmark has not always been the easiest or the most
practical.

vi

vii

Abstract

Data Science is a field that has seen rapid development as of late due to the intro-
duction of more powerful and specialised hardware. Massive algorithms such as
Deep Neural Networks can be feasibly run on current-day accelerators. This hard-
ware is by design efficient for solving embarrassingly parallel tasks, such as matrix
multiplication.

New models are sometimes trained on systems spanning over 10000 nodes with
these accelerators, pushing the state of the art further but incurring massive resource
costs [1, 2, 3]. Firstly, larger hardware setups require significant space, data-centre
cooling and electricity [4, 5]. Secondly, with the state-of-the art utilising more and
more expensive hardware setups, doing groundbreaking research in Machine Learn-
ing is becoming more expensive, and by extension, less attainable. It is vital to keep
research accessible to not just those with private budgets [4].

Previous research has shown that the price of server infrastructure does not linearly
reduce the time to train a Deep Learning model to accuracy. In some cases, models
can be trained to similar accuracy with only a slight increase in training time on
cheaper hardware [6]. It is thus crucial that we do not simply look at maximum
accuracy, but also look at how long it takes us to get there [7, 1].

Paramount to training models in a resource-conscious way is to understand how
Deep Learning training interacts with the hardware. Therefore, we have introduced
the data collection and visualisation framework radT to make this information ac-
cessible. This allows Deep Learning researchers to make more informed choices on
how they use their hardware. Additionally, we have used radT ourselves to run
extensive benchmarking of Deep Learning training on a plethora of configurations.

Furthermore, current-day GPU hardware may be more powerful than what is re-
quired to train a singular model. Rather than letting the unused resources go to
waste, one can train multiple models at the same time on the same GPU (colloca-
tion). With radT we investigated the effectiveness of several methods of GPU col-
location. This showed that GPU collocation can be very effective when models are
small, or when models complement each other’s hardware requirements.

Another way to increase efficiency via collocation is to streamline data loading and
processing pipelines. We introduced a system that takes care of data redundancies
by decoupling data loading from model training. This way, a server runs a single
data loading process that loads data for all models being trained at the same time.
This results in significant CPU savings and can even lead to GPU savings in cases
where parts of the data pre-processing pipeline run on the GPU.

While the aforementioned projects improve the transparency of resource utilisation
and efficiency via collocation, they do not improve the training performance of a

viii

model training in isolation. Our final contribution makes use of our data loading
expertise to design a new data loader that progressively increases the complexity
of the data. By starting with easier data points before progressing to more complex
data points, akin to how a human would learn, we are reducing the flops required for
similar training steps. This leads to sharper accuracy growth and overall improved
training speeds.

With all of these resource-aware techniques, this thesis demonstrates that it is possi-
ble to achieve more in model training by using fewer resources.

ix

x

xi

Resumé

Data Science som videnskabeligt felt har for tiden set hurtigt udvikling grundet in-
troduktionen af mere kraftfuld og specialiseret hardware. Massive algoritmer som
Deep Neural Networks er mulige at eksekvere på nutidens acceleratorer. Denne
hardware er af design effektiv til at løse åbenlyst parallelle opgaver, så som matrix
multiplikation.

Nye modeller er somme tider trænet på systemer der inkluderer over 10000 knude-
punkter med disse acceleratorer, hvilket skubber den seneste teknologi fremad, men
med massivt forhøjede omkostninger [1, 2, 3]. For det første kræver større hardware-
konfigurationer en betydelig mængde plads, nedkøling og strøm [4, 5]. For det an-
det, da de nyeste teknologier anvender dyrere og dyrere hardware-konfigurationer,
medfører det en prisstigning på at lave banebrydende forskning inden for Machine
Learning, hvilket lukker muligheden af for flere mennesker. Det er essentielt at
holde forskning åben for så mange som muligt, og ikke kun dem med mange mi-
dler [4].

Tidligere forskning har vist at prisen på server-infrastruktur ikke lineært reducerer
tiden det tager at træne en Deep Learning model til en givet rigtighedsprocent. I
nogen tilfælde kan modeller trænes til cirka den samme rigtighedsprocent med kun
en lille forøgelse i træningstid på billigere hardware [6]. Det er derfor vigtigt at man
ikke blot ser på den højeste rigtighedsprocent, men også hvor lang tid den tager at
opnå [7, 1].

Kernen til at træne modeller med vægt på ressourceforbrug er at forstå hvordan
Deep Learning interagerer med hardwaren. Derfor har vi introduceret
dataindsamlings- og visualiserings-værktøjet radT, for at gøre denne information
tilgængelig. Dette gør det muligt for forskere i Deep Learning at foretage begrund-
ede valg omkring deres brug af hardware. Desuden har vi selv anvendt radT til
at foretage omfangsrige performance-tests af Deep Learning træning, på et hav a
forskellige konfigurationer.

Hvad mere, så kan morderne GPU-hardware være mere kraftfuldt end hvad der er
nødvendigt til at træne en enkelt model. I stedet for at lade de ubrugte ressourcer gå
til spilde, kan man træne flere modeller samtidigt på den samme GPU (kollokation).
Med radT har vi undersøgt effektiviteten af adskillige metoder til GPU-kollokation.
Dette viste at GPU-kollokation kan være yderst effektiv når modellerne er små, eller
når modellerne er hinandens modsætninger i forhold til deres hardware-krav.

En anden måde at øge effektiviteten gennem kollokation er at strømline data-in-
dlæsning og processeringspipelinen. Vi har introduceret et system der tager sig af
data-overflødighed ved at frakoble data-indlæsning fra modeltræning. På denne
måder kører en server en enkelt data-indlæsningsproces til at indlæse alle dataene

xii

for alle modeller som trænes samtidigt. Dette resulterer i en betydelig reduktion
af CPU-brug, og kan endda føre til reduktion af GPU-brug i tilfælde hvor dele af
præ-processeringen kører på GPUen.

Selvom de fornævnte projekter klarlægger ressourceforbruget og forbedrer forøger
effektiviteten gennem kollokation, forbedrer de ikke træningsperformance a model-
træning i isolation. Vores sidste bidrag gør brug af vores data-indlæsningsekspertise
til at designe en ny data-indlæser der gradvist øger kompleksiteten af dataene. Ved
at starte med simple datapunkter og efterfølgende arbejde mod mere komplicerede
datapunkter, i samme stil som et menneske lærer, reducerer vi mængden af flops
påkrævet til lignende træningstrin. Dette fører til større vækst af rigtighedsprocen-
ten og i sidste ende forbedret træningshastighed.

Med alle disse ressource-opmærksomme teknikker demonstrerer denne afhandling,
at det er muligt at opnå mere inden for modeltræning med færre ressourcer.

xiii

xiv

xv

Contents

Acknowledgements v

Abstract vii

Resumé xi

Contents xv

List of Figures xix

List of Tables xxiii

1 Introduction 2
1.1 Adding Transparency to Deep Learning 4
1.2 Keeping GPUs Busy . 5
1.3 Reducing Data Redundancy . 5
1.4 Accelerating Time-To-Accuracy . 6
1.5 Thesis Statement and Contributions . 7
1.6 Roadmap . 9

2 Background 12
2.1 Domain Variety in Deep Learning . 12
2.2 Deep Learning Training . 13
2.3 Data Pipeline . 14
2.4 GPU Acceleration . 16
2.5 Measuring Deep Learning . 16

3 radT - Resource Aware Data Tracker 20
3.1 Introduction . 20
3.2 Framework . 22
3.3 Back-end . 23

3.3.1 Scheduling . 23
3.3.2 Environments . 23
3.3.3 Collocation . 24
3.3.4 Listeners . 24

3.4 Front-end . 24
3.5 Conclusions . 26

4 GPU Collocation 28
4.1 Introduction . 28
4.2 Background . 30

4.2.1 Collocation on GPUs . 30

xvi

Naïve (or Multi-Stream) . 30
Multi-Process Service (MPS) . 30
Multi-Instance GPU (MIG) . 30

4.2.2 Related work . 32
4.3 Setup & Methodology . 32

4.3.1 System . 33
4.3.2 Metrics . 33
4.3.3 Models & Datasets . 34

Models . 34
Datasets . 35

4.3.4 Experiments . 36
4.4 Results . 38

4.4.1 Time per Epoch . 39
4.4.2 GPU Utilisation . 40
4.4.3 Memory Footprint . 41
4.4.4 Interconnect Traffic . 43
4.4.5 Energy Consumption . 43
4.4.6 Mixed Vision Workloads . 44
4.4.7 Mixed Recommender and Vision Workloads 46

4.5 Guidelines & Challenges . 47
4.5.1 Collocation Guidelines . 47
4.5.2 Challenges . 48

4.6 Conclusion . 48

5 Data Sharing via TensorSocket 52
5.1 Introduction . 52
5.2 Data Loading in Deep Learning . 54
5.3 TENSORSOCKET . 56

5.3.1 Overview . 56
5.3.2 Implementation . 57

Producer . 57
Consumer . 57
Communication . 57
Data sharing . 58
Synchronisation . 59
Usage . 60

5.3.3 Use Case Scenarios . 60
Centralised Always-Available Loading. 60
Native Inter- and Intra-GPU Sharing. 61
Sharing for Mixed Workloads. 62
Sharing Generative Tasks Online. 62

5.4 Results . 62
5.4.1 Experimental Setup . 63
5.4.2 Image Classification . 64
5.4.3 Audio Classification . 66
5.4.4 Image Generation . 67
5.4.5 Model Selection . 68
5.4.6 Comparison to other sharing techniques 68

CoorDL . 68
Joader . 69

5.5 TENSORSOCKET Going Forward . 71

xvii

5.5.1 Target Domains and Workloads 71
5.5.2 Generalisability and Customisation 71
5.5.3 In Conjunction with Related Tooling 72

5.6 Related Work . 73
5.7 Conclusion . 73

6 Progressive Resizing 76
6.1 Introduction . 76
6.2 Background . 77
6.3 Adaptive Progressive Resizing . 79

6.3.1 Layer Definitions . 79
6.3.2 Convolutional Network Image Scaling 80
6.3.3 Hyperparameter Rebalancing . 81
6.3.4 Implementation . 82

Size Buckets . 83
Exhaustive Loading . 83
Mixed Loading . 84

6.4 Results . 84
6.4.1 Setup . 84
6.4.2 Comparison to other techniques 85
6.4.3 Performance under Progressive Resizing 86

6.5 Discussion & Future . 87
6.6 Conclusion . 88

7 Future Directions and Conclusion 90
7.1 Experiment Tracking . 90
7.2 Sharing in Deep Learning . 91
7.3 Data Selection and Attribution . 91
7.4 Thesis Summary . 92

xviii

xix

List of Figures

1.1 Training compute of notable machine learning models by domain. . . 2
1.2 Training cost in USD of notable machine learning models. 4
1.3 Development of model accuracy of ResNet on ImageNet. 6

2.1 General overview of the data loading pipeline. 14
2.2 Multiple data workers to provide data throughput. 15

3.1 Dataflow architecture of our solution. 21
3.2 Data collection framework architecture. 22
3.3 Experiment .csv file. 23
3.4 Run organisation with workloads and experiments. 25
3.5 Visualisations using Highcharts.js. 26

4.1 Collocation methods on modern NVIDIA GPUs. 29
4.2 Possible MIG partitioning schemes. 31
4.3 Small: ResNet26 + CIFAR-10 (batch size = 32). 36
4.4 Small: ResNet26 + CIFAR-10 (batch size = 128). 36
4.5 Small: EfficientNet_s + CIFAR-10 (batch size = 128). 36
4.6 Medium: ResNet50 + ImageNet64 (batch size = 32). 38
4.7 Medium: ResNet50 + ImageNet64 (batch size = 128). 38
4.8 Medium: EfficientNet_s + ImageNet64 (batch size = 128). 38
4.9 Large: ResNet152 + ImageNet (batch size = 32). 39
4.10 Large: CaiT + ImageNet (batch size = 128). 39
4.11 Data traffic from CPU to GPU under ResNet26. 41
4.12 GPU power usage under ResNet26. 42
4.13 Total time for training mixed vision workloads. 45
4.14 GPU utilisation and memory footprint over time. 46

5.1 Cloud instances by vCPU to GPU ratio. 53
5.2 Collocated DL model training. 54
5.3 Example TENSORSOCKET implementation. 59
5.4 TENSORSOCKET producer supplying consumers. 61
5.5 Sharing example for DALL-E. 62
5.6 Image classification training on the A100 server with 4-way collocation. 65
5.7 Per-model training throughput under collocation. 66
5.8 Samples/s per collocated training on AWS G5 Instances. 66
5.9 Samples/s per collocated online training of DALL-E. 67
5.10 Runtime and aggregate training throughput of mixed workloads. . . . 68
5.11 CPU utilisation and throughput scaling on the A100 system. 69
5.12 Comparison of model training throughput. 70

6.1 Progressive resizing. 78
6.2 Layer block definitions of ResNet. 80

xx

6.3 Data loading pipeline in PyTorch. 83
6.4 Mixed data loading in our method. 84
6.5 Training a ResNet152 model from scratch. 85
6.6 Mixed and exhaustive resizing. 86
6.7 Mixed resizing with an upgrade rate of 25% and 50%. 86
6.8 Training a MobileNetV3 Large model with and without resizing. . . . 87

xxi

xxii

xxiii

List of Tables

4.1 Models & Datasets . 34
4.2 Energy consumption under ResNet26. 43
4.3 Mixed Vision Workloads . 44
4.4 Mixed collocation with Recommender model. 46

5.1 Evaluated models and datasets. 63
5.2 On-prem servers and cloud instances used in evaluation. 64

List of Tables 1

2

Chapter 1

Introduction

Machine learning has developed from a research direction under computer science
to a global phenomenon. This growth, which exploded around the 2012 Imagenet
vision challenge [8] with the introduction of the deep neural network AlexNet [9],
has yet to slow down.

Looking back at the development from 2012 on reveals a line of deep learning ar-
chitectures that have provided increasingly higher performance and widened the
breadth of applications that deep learning has impacted. Analysis on text data saw
success under model architectures such as the RNN and later LSTM, only to be later
completely replaced by the Transformer architecture [10]. Similarly, image classifi-
cation that started with AlexNet saw these CNN’s replaced by visual transformers
and later multi-modal solutions [10].

All these model developments, however, have one thing in common; size is leading
the way. Increasingly impressive applications of machine learning are fueled by
increasingly large models and datasets. Figure 1.1 shows the development of the
model size of major machine learning models featured in academia and industry.
The y-axis to denote this scaling, crucially, is log-scale. The model that started the
current deep learning revolution, AlexNet, is millions of times lighter in required
computing than recent state-of-the-art models produced by industry.

FIGURE 1.1: Training compute of notable machine learning models
by domain. (Figure source [11])

Chapter 1. Introduction 3

This growth in machine learning has many similarities to the exponential hardware
growth seen in the last decades following Moore’s Law [12]. Exponential growth
in these cases is not sustainable and inevitably leads to a slowdown of growth due
to induced limitations. With Moore’s Law the limitation comes from physics; how
many transistors can fit on a chip. For deep learning models, the limit is defined by
how much can be computed. The size of models is thus limited by the availability
of computing.

There are two dimensions in which compute scales. Firstly, the amount of compute
on a single computational node can be scaled up. This is the strategy that fueled
AlexNet’s original breakthrough [9] as they accelerated their network training by
utilising a node fitted with graphics cards (GPUs) as accelerators. As the decade
progressed, the compute capabilities of GPUs has increased significantly, and thus
the compute one single node can offer to train deep networks has followed suit.

Secondly, the amount of nodes, and thus GPUs, can be scaled out. Distributed train-
ing allows multiple nodes to train a single model cooperatively by splitting the task
on one dimension. Following the recent focus on Large Language Models, which
require a lot of compute, companies such as Meta have acquired hundreds of thou-
sands of GPUs [13] to train as large models as possible.

More powerful hardware could lead to more efficient training if the models do not
increase in complexity. Figure 1.1 reveals that instead of reducing the footprint of
model training, models have followed suit. While the expansion of resources, going
from a single CPU to many GPUs, has led to the compute requirements of large
models becoming attainable, that is only part of the story. The manufacturing of all
the hardware for the data centres used to train these models comes at a significant
price.

Additionally, running all the chips is not free, as it induces resource costs in terms of
energy to run the chips and provide cooling for the setup. The result is that the ex-
plosive growth in model compute requirement is mirrored by a similarly explosive
growth in compute cost. This cost, as exemplified in Figure 1.2, has easily exceeded
one million USD for the largest of models.

This leads us to resource-aware machine learning. If we want machine learning to be
sustainable, it is paramount to be aware of the resources that we use to train models
and reduce this consumption wherever possible.

The height of the resource costs for training state-of-the-art deep learning models has
serious consequences. High costs diminish the net value of models as training them
can outweigh the benefits they bring. Furthermore, high costs restrict accessibility
to contributing to state-of-the-art research for those with lower budgets, especially
those in developing countries.

Apart from the monetary costs of all these resources, deep learning has grown so
much that training models has a significant impact in terms of CO2 emissions. While
carbon emissions can be difficult to estimate and compare due to differences in en-
ergy procurement [14], increased energy consumption generally leads to increased
emissions. A small transformer model trained with 6 billion parameters is estimated
to emit about an order of magnitude more CO2 than a US household does in a year
[15]. Note that a workload like that is among the small models listed in Figure 1.1

4 Chapter 1. Introduction

FIGURE 1.2: Training cost in USD of notable machine learning models
[11].

and Figure 1.2. While the climate impact of deep learning training might have been
modest a decade ago, we now face serious climate impact due to AI research.

1.1 Adding Transparency to Deep Learning

In general, the AI scene is heavily focused on accuracy and similar performance
metrics. Simply put, the value of new deep learning models lies in producing results
that outperform the previous state-of-the-art models. As a result, the majority of
deep learning research is focused on improving this performance over anything [14].

Deep learning training is a complicated process and can be optimised in many dif-
ferent directions. Instead of focusing on accuracy, models can compete e.g. by being
trained faster or with less energy. This is why energy usage and similar resource
metrics should be reported on [4, 5]. Turning these into key metrics promotes fur-
ther research in optimising models on these metrics.

The issue then, however, is that the results reporting for model training is severely
lacking. Even simple metrics that can provide real value to researchers such as the
time it took to train a model are rarely reported on in literature. More involved
metrics, including memory requirements, carbon emissions, and energy draw, are
practically non-existent. The absence of reporting on such metrics prevents innova-
tion in reducing the resource consumption of training [4, 5].

Collecting and reporting resource metrics can be a hassle. For example, collecting
energy consumption numbers heavily depends on the hardware being used to run
the experiment. If we want to develop deep learning applications that are more
resource-aware, the field needs to start reporting these metrics. The collection of
resource metrics needs to be attractive in order to make the reporting of resource
metrics to be attractive. While there is a range of tools available to record a whole
range of hardware metrics [16, 17, 18], managing this data collection takes away
valuable time that can be spent on model development.

1.2. Keeping GPUs Busy 5

For resource-aware data science, we need to promote resource-awareness by making collecting
and reporting resource metrics attractive and hassle-free.

1.2 Keeping GPUs Busy

With deep learning model training riding the wave of computational power deliv-
ered by modern-day accelerators such as GPUs and TPUs, these chips have become
the most important piece of hardware for training AI models. Resource-efficient
training does not just involve reducing energy consumption, but also refers to util-
ising the resources we have the best we can.

GPU utilisation in modern-day cloud datacentres, sadly, leaves much to be desired,
with the vast majority of jobs using less than two-thirds of allocated resources [19].
One major contribution of GPU resource loss is the relative inflexibility of GPU re-
source allocation. GPU resources are not shared between multiple jobs and thus
GPUs cannot be partly allocated to training tasks. This becomes wasteful when the
training task cannot be adjusted in size to the resource offering, either due to the
nature of the task or the user’s preferences.

A common method for increasing utilisation on CPU hardware is collocation [20,
21, 22]. Running multiple tasks at the same time allows for using more of the avail-
able resources when the hardware resources exceed what the individual tasks re-
quire. Furthermore, this can cover individual fluctuations in resource requirements
as other work can fill in the gaps. Tasks that stress different parts of the hardware can
especially benefit from collocation as the sum of their utilisation may highly utilise
multiple aspects of the hardware.

GPU hardware is predominantly designed to run certain compute-heavy tasks, so-
called massively parallel tasks, in an efficient manner, but context switching is expen-
sive. To this end, multiple methods have been developed for collocating tasks on
GPUs. These may provide a valuable link in improving the efficiency at which we
train deep learning models.

For resource-aware data science, we need to make sure that acquired hardware is used to its
fullest potential.

1.3 Reducing Data Redundancy

Collocating does not require any assumptions to be made about what is being trained.
This does offer high flexibility, for example when training different models on differ-
ent datasets. What this does not do, however, is improve the efficiency of every task
itself. It does not matter whether the tasks are collocated or not; they act as black
boxes and encompass the same operations.

Some collocation configurations may involve overlap between the training tasks. For
example, the same model may be trained on different datasets, or the same dataset
can be used to train different models. The latter is a common occurrence for ex-
ploration in deep learning training. It is common to evaluate multiple models on
a dataset to find the best-performing configuration. This exploration can involve
the hyperparameter space of the model (hyperparameter search) or the structure of the
model (neural architecture search).

6 Chapter 1. Introduction

Time

0

20

40

60

80
Ac

cu
ra

cy
 (%

)

FIGURE 1.3: Development of model accuracy when training a ResNet
[23] model on the ImageNet2012 dataset [8]. Accuracy rises quickly

at first, after which it slowly fine-tunes to the final accuracy.

When multiple tasks are collocated that partly overlap with each other, we are intro-
ducing redundancy. After all, the models are trained completely separately, albeit
on the same hardware, even though they operate e.g. on the same data. Consider-
ing that hyperparameter search and neural architecture search can be very expen-
sive steps in the training lifecycle, reducing this redundancy can lead to significant
resource gains. By unifying as many data operations as possible, fewer resources
are required to run the training workload, allowing the workload to run on smaller
hardware or more models to be collocated.

For resource-aware data science, we need to make sure that any resources we spend on train-
ing are required and not spent on redundant work.

1.4 Accelerating Time-To-Accuracy

In machine learning literature, the predominant focus is on the final accuracy the
model can attain after training and optimising it. As discussed before, there is lit-
tle attention to metrics regarding resource consumption, such as energy expenditure
or time to train the model. Considering the importance of both the accuracy of the
model and the time or resources it took to train the model, one particularly interest-
ing metric is time-to-accuracy. This involves setting a target accuracy depending on
the task and model (e.g. "90%") and measuring how fast the training process results
in the model reaching that performance.

Considering time-to-accuracy as our target yields a strong incentive to improve the
efficiency of the training steps. After all, considering we report and do not change
the hardware used for training, we either have to improve how well the training
steps are computed on the hardware, or modify the training steps so that fewer are
required to reach the target accuracy.

When training a deep learning model from scratch, the model typically starts out
with randomised weights. The result is that initial training sees large accuracy jumps
as the model is starting to get a rudimentary understanding of the task. A typical
image classification model training curve can be seen in Figure 1.3. As the model
training progresses, the model has to recognise more intricate and difficult patterns.
This leads to a slowdown in training progression, with the final (fine-tuning) stages
requiring a lot of time for the last few percentage points of accuracy.

1.5. Thesis Statement and Contributions 7

The heterogeneity of this training curve exposes the potential for optimisation. Model
training is an iterative process that repeatedly exposes the model to the dataset.
One epoch equates to one full pass over this dataset. The dataset does not change;
the model goes over the same data points during initial learning as it does on fine-
tuning. However, the complexity of what the model needs to extract from the dataset
rises sharply. Hence, instead of considering the dataset as immutable, we can adjust
the difficulty of the challenge to the model’s needs. When the model has just started
training, it can perhaps train on cheaper, smaller, data. This leads to faster time-to-
accuracy and reduced resource consumption. Scalability in deep learning training is
something that requires attention for both the feasibility of scaling training and the
resource impact it has on our planet.

For resource-aware data science, We need to look at the training loop from new perspectives
such as adopting a more dynamic approach with the input data sizes in order to improve the
efficiency of training.

1.5 Thesis Statement and Contributions

This thesis contributes to the effort to reduce the energy and resource impact of ma-
chine learning.

Thesis Statement

Deep learning training is an expensive, iterative process that consumes significant on-prem
and cloud resources. Practitioners use whatever resources it takes to deliver state-of-the-art

models. Transparency is required to reduce the resource consumption of training models
and practitioners should report on resource metrics, turning resource consumption into a

target. Resource (hardware and data) sharing and progressive data loading are two ways to
get more done in deep learning training with fewer resources.

The contributions of this thesis are summarised below:

• We design a system, radT, that automatically handles the collection and pro-
cessing of deep learning metrics, including hardware resource metrics.

– radT is designed to be as hassle-free as possible; attractive for data scien-
tists and easy to use. Reporting resource metrics as well as accuracy will
result in resource consumption becoming a target for innovation.

– Additionally, we include a visualisation front-end that allows for quick
exploration of this data.

– Finally, we add automated support for managing GPU collocation.

• We thoroughly benchmark the current options for GPU collocation on modern-
day machine learning workloads and illustrate when GPU collocation is bene-
ficial for model training.

8 Chapter 1. Introduction

– We evaluate both homogeneous, including multiple of the same model,
and heterogeneous, including different-sized or typed models, and work-
loads.

– We release a set of general guidelines that provide actionable recommen-
dations on when and how to use GPU collocation.

• Expanding on GPU collocation, we isolate the case where models train on the
same dataset and unify their data loading.

– We design a system, TensorSocket, that automatically takes care of this data
sharing with minimal effort from the user.

– We thoroughly benchmark this system and compare it to state-of-the-art
solutions for reducing data redundancy when training multiple models.

– We provide suggestions as to when unified data loading is most benefi-
cial, including but not limited to reducing cloud expenditure by switching
to cheaper CPU hardware as a result of the more efficient data loading.

• We analyse data loading when training models under time-to-accuracy, and in-
troduce progressive data loading.

– We benchmark state-of-the-art manual methods of progressively making
data loading more complex.

– We combine our findings with resource readings resulting in a data load-
ing strategy that scales up data progressively without hurting GPU re-
source utilisation.

– Similar to our other research, we distil our results into a package that
provides an accessible way of progressive data loading.

Furthermore, these contributions have resulted in the following publications and
open-source software:

• Publications:

– Ties Robroek, Aaron Duane, Ehsan Yousefzadeh-Asl-Miandoab, and Pınar Tözün.
Data Management and Visualization for Benchmarking Deep Learning
Training Systems.
DEEM 2023

– Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, and Pınar Tözün.
An Analysis of Collocation on GPUs for Deep Learning Training.
EuroMLSys 2024.

– (Under Review) Ties Robroek, Neil Kim Nielsen, and Pınar Tözün.
TensorSocket: Shared Data Loading for Deep Learning Training.

– And not yet submitted work for progressive data loading, as seen in
Chapter 6.

• Open-source software:

1.6. Roadmap 9

– radT: Resource Aware Data science Tracker
(https://github.com/Resource-Aware-Data-systems-RAD/radt)
Data tracking and management tool introduced at DEEM.

– migedit
(https://github.com/Resource-Aware-Data-systems-RAD/migedit)
Command-line utility for management of NVIDIA Multi-Instance GPU.

– TensorSocket
(https://github.com/Resource-Aware-Data-systems-RAD/tensorsocket)
Share PyTorch tensors over ZMQ sockets, under review.

– Progressive Training (working title)
(-)
Automatically rescale training samples for faster training, not yet submit-
ted.

Additionally, contributions were made to the following publications and open-source
software not covered by this thesis:

• Publications:

– Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, and Pınar Tözün.
Profiling and monitoring deep learning training tasks.
EuroMLSys 2023.

– Maximilian Böther, Victor Gsteiger, Ties Robroek, and Ana Klimovic.
Modyn: A Platform for Model Training on Dynamic Datasets With
Sample-Level Data Selection.

– (Under Review) Maximilian Böther, Ties Robroek, Viktor Gsteiger, Robin Holzinger,
Xianzhe Ma, Pınar Tözün, and Ana Klimovic.
Modyn: Data-Centric Machine Learning Pipeline Orchestration

• Open-source software:

– Modyn
(https://github.com/eth-easl/modyn)
Open-source platform for model training on growing datasets.

1.6 Roadmap

The four contributions of this thesis and necessary background reading are covered
by the chapters as follows:

• Chapter 2 contains background on deep learning training, including the train-
ing loop itself, and especially data loading. It also covers the basics of the
architecture of GPUs and briefly introduces GPU collocation.

• Chapter 3 introduces issues and limitations found with current resource track-
ing for deep learning training. It then follows this up with radT, a tracking
framework that removes the hassle of managing resource tracking for training
models. Furthermore, we introduce and explore the visualisation front-end

https://github.com/Resource-Aware-Data-systems-RAD/radt
https://github.com/Resource-Aware-Data-systems-RAD/migedit
https://github.com/Resource-Aware-Data-systems-RAD/tensorsocket
-
https://github.com/eth-easl/modyn

10 Chapter 1. Introduction

that is bundled with it. Finally, radT stands as a foundational work for the
other chapters of this thesis.

• Chapter 4 focuses on the aforementioned GPU collocation. Three different
methods for collocation are introduced, which are then benchmarked against
each other to find their strengths and weaknesses. The chapter concludes with
actionable recommendations for deep learning researchers who want to accel-
erate their own training with GPU collocation.

• Chapter 5 expands on the GPU collocation results from the previous chapter
by investigating data redundancies when collocating model training. In this
chapter, the system, TensorSocket is introduced for unifying data loading in or-
der to resolve these redundancies.

• Chapter 6, similar to the previous chapter, tackles resource efficiency from the
data side by reducing consumption from the data loading side. It introduces
progressive data loading, reducing the difficulty of the data samples to more
closely align with the requirements of the model at that point in time.

• Chapter 7 briefly revisits the previous chapters and discusses future directions
that are being explored, or that might be worth exploring in the future, and
concludes the thesis.

1.6. Roadmap 11

12

Chapter 2

Background

This chapter contains a brief background required for reading this thesis, including:

• a brief illustration of the variety in application domains of deep learning (Sec-
tion 2.1).

• an introduction on deep learning neural network training (Section 2.2).

• an overview of the data pipeline for network training (Section 2.3).

• an illustration of the design of modern-day GPU accelerators and why they
have become so relevant for training neural networks (Section 2.4).

• a list of metrics available to evaluate deep learning training on (Section 2.5).

2.1 Domain Variety in Deep Learning

Deep learning models have increased in size, but not all tasks have. Models such
as AlexNet [9] and ResNetv2 [24] have been surpassed in accuracy by more modern
models on the Imagenet2012 [25] challenge yet remain popular in some domains.
Similarly, non-Deep Learning methods, such as support vector machines [26] and
random forests [27], remain popular in some domains. This indicates that there is
demand for optimising models, even on a smaller scale. Examples include:

• Computer Vision. Computer vision used to be dominated by convolutional neu-
ral networks, but now includes variety introduced by the Vision Transformer
and mixes of both techniques. Additionally, Computer vision networks are of-
ten used with smaller datasets or other constrained resources for specific tasks.

• Natural Language Processing. Natural language processing, as aforementioned,
has undergone a transformation away from recurrent networks to transform-
ers. Transfer learning is common to optimise a large pre-trained network for a
specific task.

• Medical Imaging. Medical imaging is very similar to computer vision, but in-
troduces sharp requirements for diagnosing diseases with respect to false neg-
atives. Additionally, datasets are often restricted in size and privacy-sensitive.

• Recommendation Systems. Recommendation systems generally use embedding
tables to generate recommendations. They distinguish themselves as being

2.2. Deep Learning Training 13

light on compute but requiring extensive VRAM to store these embedding ta-
bles.

2.2 Deep Learning Training

Deep learning is a subset of machine learning that tries to solve difficult tasks with a
variety of deep models, most commonly deep neural networks. A deep neural net-
work is a neural network that consists of more than two layers, including input and
output. These layers consist of two operations each; a linear and non-linear combina-
tion. This attribute allows for deep neural networks to be universal approximators.
As long as the network is large enough, the network will be able to approximate any
function. This is shared among deep network architectures, such as recurrent neural
networks, convolutional neural networks, and transformers.

Teaching a network to approximate a function is called training. This is an iterative
process called gradient descent where the weights of the model are slowly tuned in
order to study the intended task. The model type, architecture and hyper-parameters
form the inductive bias of the model. This is the set of assumptions used by the model
defined by the machine learning practitioner.

The base weight configuration of a model is sourced randomly. During training, the
data is exposed to the model in full passes called epochs. With modern-day dataset
sizes, it would be excessive to train on the whole epoch before making any changes
to the weights. Instead, the data is sampled in subsets called (mini)batches. The
weights are updated after every batch, and the data samples that are in the batches
are randomised every epoch.

When training on data, we isolate two different steps. A batch is first sent through
the neural network as the forward pass. The data is transformed following the layers
of the network into model output. This is followed by the backward pass, which
moves the gradients back up the model in order to calculate how to update the
model weights. The backward pass is skipped when running inference instead of
training as the model does not need to be updated.

The model is being trained to optimise on a specific loss function. The loss determines
how well the model performed on a data point and is what the gradient is based on
that is used to update the model. While the loss gives insight into how well the
model is performing, prolonged training can cause overfitting which involves the
model learning unwanted features from the data. To combat this, a separate test set
is used to validate the model performance on data it has not seen during training.

While training deep learning models allows for universal approximation, it requires
a properly sized network to do so. Deep learning networks have seen a sharp in-
crease in size over the last ten years. This has allowed models to solve remarkable
challenges, reaching near-human or even superhuman performance [28, 29]. An in-
crease in model size is usually paired with an increase in dataset size. A larger model
has more variables to train and tune. The additional data introduces a larger variety,
preventing the model from overfitting the data, which is when the model learns an
unintended representation.

14 Chapter 2. Background

2.3 Data Pipeline

Modern deep learning training happens on vast quantities of data. Imagenet2012
[8], the dataset on which AlexNet was trained [9], contains over a million training
images in about 150 GB of data. Dataset sizes have grown over the decade, with
the LLama line of LLM models being trained on trillions of data points [30, 31, 32].
This data needs to be made available to the model, which for most training pipelines
means that it needs to be prepared and transported to the accelerator.

Training
Process

GPUCPU

Storage
Data
Loader Collate

Preprocessing

Transform
(Augment)Decode

FIGURE 2.1: General overview of the data loading pipeline.

The dataset is often stored on disk as the full dataset generally cannot fit in RAM
in its entirety. The (online) data loading pipeline, which encompasses the whole
journey the data takes during training, thus goes from disk to accelerator. Figure 2.1
shows an overview of this pipeline, broken down into several steps:

• CPU: Group of operations required to fetch and translate the raw data into
what the model expects.

– Data Loading: Data is retrieved from storage or from cache. Considering
the size of modern datasets and the fact that epochs only visit every data
point once, the vast majority of access goes to storage. On the largest of
models, it is common that data is streamed from storage further away as
the size of the dataset exceeds local storage capacity.

– Decode: The raw data format is decoded into the format required by the
model. Depending on the training pipeline, data is either saved in a raw
format, e.g. .jpg images or natural text files, or in a processed format, e.g.
saved tensors.

– Transform (Augment): While the data is now in a format recognised by the
machine learning framework, it often requires additional transformation
to facilitate correct model training. The transform step includes opera-
tions such as resizing or clipping the data so that it conforms to the ex-
pected input dimensions of the model. Furthermore, augmentations can
be added, which are random transformations that increase the variety in
the dataset.

– Collate: Data is sent to the model in batches, which are groups containing
a predefined amount of data points. During collation, data points are
packed together in one big tensor, reducing the amount of data movement
operations required to move the data.

• GPUs: Finally, the data is sent to the GPU and the model trains on the data.

2.3. Data Pipeline 15

Data Loader

GPU

1

IDLE 1 ...

2 3 4 5 6 7

IDLE 2 IDLE 3 IDLE 4 IDLE 5 IDLE

(A) Single data worker.

Data Loader
Worker #1

Worker #2

Worker #3

Worker #4

GPU

1

2

3

4

IDLE 1 2 3 4 5 6 7 8

5

IDLE

IDLE

7

8

6

IDLE

IDLE

IDLE

IDLE

IDLE

...

9

10

11

13IDLE

IDLE

IDLE

12

(B) Multiple data workers.

FIGURE 2.2: Using multiple data loading workers in order to provide
enough data loading throughput to match compute throughput. Yel-
low blocks denote batches. A batch needs to be loaded before it can
be used by the GPU. The general aim is to minimise GPU idle time.

Keep in mind that the aforementioned data pipeline runs continuously, as batches
are iteratively trained on. This, however, results in downtime for the GPU, resulting
in significant efficiency losses. Once the GPU is done with the current batch, the next
batch needs to be fetched, processed and moved. There are multiple methods used
to combat this downtime:

• Async execution: The GPU being its own chip can process a batch of data
without further management of the CPU. This means that while the GPU is
processing, the CPU can already take steps in preparation for the next batch.

• Data workers: GPUs are designed to be able to process large amounts of data.
If the data loading throughput is lower than how fast the GPU processes the
data, the GPU will inevitably stall, as illustrated in Figure 2.2a. This can be
resolved by having multiple data workers fetching data in parallel. This in-
creases the total data loading throughput, preferably matching or exceeding
the throughput of the GPU (Figure 2.2b).

• GPU pre-fetching: GPU pre-fetching involves pre-loading multiple batches on
the GPU. This hides the last-mile latency induced by the connectivity between
CPU and GPU (i.e., a PCI-e, NVLink, etc. connection). Without GPU pre-
fetching the batch always needs to be moved from memory to GPU just before
training on the batch. This delay can be overcome by storing a small buffer of
batches on the GPU at the cost of some GPU memory.

In addition to online data processing, there is an offline data input pipeline that
encompasses the introduction of new data to the dataset to be trained on. This is
generally characterised as an ETL (extract, transform, load) process. Raw data is re-
trieved from its source, any pre-processing that can be done offline is applied, and
the result is written to the dataset. Some operations, such as transforming the data

16 Chapter 2. Background

to the correct dimensions, could technically be done offline but are often done on-
line regardless. This can depend on multiple factors, e.g. whether the extra storage
required to save the separate dataset is worthwhile because of the data reuse, or
whether the operation is computationally prohibitive to warrant offline processing
instead of the I/O overhead.

2.4 GPU Acceleration

Deep learning training has developed hand-in-hand with accelerators. GPUs, ini-
tially designed for graphical applications, are able to efficiently process heavily par-
allelisable operations. After all, graphical operations operate on image data, which
are essentially large matrices of values. GPU acceleration allows models to be larger
and process more data, resulting in models that can efficiently use the GPU. Note
that the CPU still controls the training process; the GPU is simply used to accelerate
certain steps in the process as orchestrated by the CPU.

Model training involves the aforementioned forward and backward pass. During
the forward pass, the data batch goes through the network layer by layer. In gen-
eral, the output of a layer is computed by taking the results of the previous layer,
multiplying these with the weights, and summing the result. This can efficiently be
done on the GPU using a single matrix multiplication. While access to this compute
leads to powerful deep learning models, networks must be designed around lever-
aging parallel computations such as matrix multiplications in order to benefit from
this.

Not all model architectures can fully optimise GPU horsepower. In Natural Lan-
guage Processing (NLP), recurrent architectures such as Recurrent Neural Networks
(RNN) and Long Short-Term Memory (LSTM) have been dominant for most of the
last decade. These architectures cannot process input data in a massively parallel
way as there are dependencies between the data points due to their recurrent nature.
Nowadays, NLP is dominated by Transformer models, which are able to provide a
much more parallel-friendly compute structure.

Depending on the workload, different parts of the GPU can form a bottleneck. As
a general role, any data movement is very expensive when dealing with GPU ac-
celeration, causing data movement to often be challenging to manage. Ideally, data
movements should be hidden by having the GPU run computation while the move-
ment happens. Bottlenecks in data movement and compute can cripple the overall
throughput of the GPU. Furthermore, large models such as Large Language Models
(LLMs) are often restricted by the available GPU memory due to the sheer size of
their weights. Running out of memory is strictly worse than having a compute or
data movement bottleneck as it will kill the process.

2.5 Measuring Deep Learning

Machine Learning progress is predominantly advertised in the form of performance
metrics such as accuracy, but there is a wide selection of software and hardware met-
rics available to measure training with. A selection of interesting metrics is detailed
below:

• Metrics from the machine learning framework.

2.5. Measuring Deep Learning 17

– Loss: The degree to which the model training predictions do not match
the ground truth. Loss is the target metric of the gradient descent loop
and thus the model is trained to minimise loss.

– Accuracy: How well the model performs on the test set. Accuracy notes
the share of correct predictions. For more difficult challenges, a top-N
accuracy can be used instead in order to ease the task difficulty.

– Iterations/s: Throughput measure. One iteration usually refers to an indi-
vidual sample, though sometimes can refer to a batch of samples. Higher
throughput indicates more efficient processing of the training data.

• Metrics from the host (CPU) side, collected by tooling such as TOP [18] and
iostat [33].

– CPU Utilisation: How active the CPU is. The CPU is mostly used for data
processing tasks during training and is often underutilised.

– CPU Memory Usage: How much CPU’s DRAM is used to train the model.
This memory is primarily used as an intermediary between disk and GPU
memory.

– MB Read/Written per Second: How active the disk is. Data loading is usu-
ally the bulk of disk communication. Excessive disk communication may
bottleneck data throughput and in term idle the GPU.

• Metrics from the accelerator (GPU) side, collected by NVIDIA tooling such as
SMI [17] and DCGM [16].

– GPU Utilisation: How active the GPU is. The GPU is used to accelerate
deep learning by performing parallel operations efficiently. The neural
network weights and neural network computations are done on the GPU.
NVIDIA’s default GPU utilisation metric can be unreliable as it measures
how much of the GPU saw any activity during the last sampling step. A
better indication for GPU utilisation is gathered from more specific met-
rics available in NVIDIA tooling [34], such as SM Activity (SMACT) and
Graphics Engine Activity (GRACT). In general, we want the utilisation of
the GPU to be maximised due to the importance of the GPU.

– GPU Memory Usage: How much VRAM of the GPU is in use. This mem-
ory is used to store e.g. the model weights, gradient results and data
batches. Exceeding the memory available on the GPU will crash the model
training process.

– Memory Utilisation: The share of time that the memory is either being read
or written to. A high memory utilisation indicates heavy pressure on GPU
memory bandwidth. Excessive memory utilisation can be an indicator of
bottlenecks due to the relative expense of memory operations on the GPU.

– PCIe Throughput / NVLink Throughput: Throughput of connections to and
from the GPU. PCIe typically serves as the connection to the rest of the
system, while NVLink-enabled systems can exchange data with other
GPUs directly. Usage of the appropriate connection, e.g. NVLink when

18 Chapter 2. Background

training with multiple GPUs at the same time, is paramount for efficient
training.

– Power Draw: Measures the wattage of the GPU. Power draw reported
by NVIDIA tooling can be inaccurate when using the default readings,
though there are workarounds to get within a 5% variance [35]. Energy
measurements are key in estimating the resource consumption of deep
learning.

2.5. Measuring Deep Learning 19

20

Chapter 3

radT - Resource Aware Data
Tracker

3.1 Introduction

Deep learning has become a staple in data science. Large deep learning models
provide state-of-the-art functionality solving many problems not solvable by con-
ventional algorithms [9, 24, 36]. Models need to be trained before being deployed
in production. This training is an expensive iterative process in which the model
iterates over a dataset multiple times. The growth in deep learning has been paired
with an exponential growth in model and dataset size. More powerful and opti-
mised hardware is required to facilitate the training of such models. This, in addi-
tion to the increase in training times, has inflated the resource requirements of deep
learning training to a level where it can no longer be ignored.

GPUs are the de facto commodity hardware for meeting the resource requirements
of deep learning. Today’s GPUs are significantly more powerful than those of ten
years ago. In order to improve the utilisation of hardware resources it is paramount
that we use GPUs to their maximum potential. This requires tuning the training
process to properly fit the hardware. On the other hand, a problem may not have
a large enough dataset to warrant a large model, or the ideal training setup for a
model might not be able to utilise all of the GPU resources [6, 37, 38]. This poses
an issue when training neural networks as this process usually takes exclusive ac-
cess to a GPU. This may lead to resource wastage as the model may not be large
enough to saturate the GPU. As the scale of the hardware increases, underutilisation
of hardware resources becomes a serious consideration for data scientists training
deep learning models. All these issues underline the need for performing system-
atic experiments that evaluate the impact of certain configurations on deep learning
training and hardware utilisation.

In the machine learning training space, there has been considerable work to pro-
vide insights into the training process. Techniques to improve model selection are
focused on e.g. model accuracy instead of hardware utilisation [39]. Platforms such
as WandB [40] and MLFlow [41] provide extensive tracking and management func-
tionalities, but their hardware monitoring is limited. MLOps tools like Polyaxon [42]
and Kubeflow [43] provide a solution for deploying training tasks on clusters and
may log hardware metrics if the user wants them to, but are not specifically designed
for keeping and exploring detailed benchmarking data with hardware metrics. Um-
laut [44] provides accessible and flexible metric collection, but does not offer GPU

3.1. Introduction 21

FIGURE 3.1: Dataflow architecture of our solution.

metrics. Finally, automated machine learning offers a variety of exploration tools
[45, 46], though again focusing on model accuracy.

In this chapter, our goal is to build and demonstrate a framework that aids data
scientists and machine learning systems researchers when performing systematic
experiments that also takes hardware into account. We have identified six require-
ments and challenges for such a framework. Firstly, in order to provide a rigorous
analysis of model training performance, a large amount of configurations has to be
examined. This requires a large system and is made more challenging by the time
required for training a single workload. Even when using the aggressive limiting
measure of capping training to 5 epochs (training iterations) will not guarantee that
workloads take less than a day to train. Secondly, a combination of software and
hardware metrics, such as training accuracy and power consumption, have to con-
tinuously be collected during this training process. This requires both integration
with the training script and a variety of hardware profiling and monitoring tools.
Thirdly, the data, in the form of time series, quickly grows as training goes on. This
results in gigabytes of numeric data which then needs to be sifted through using
a flexible yet efficient process. Fourthly, multiple different data sources must be
compared with each other, yielding a range of different data visualisation use cases.
Fifthly, most of the data timeline may be inconsequential and repetitive, and inter-
esting parts must be identified and investigated. Lastly, the solution needs to be
as convenient to use as possible. Training a model via the framework should only
impose minimal code intrusion and exploring results should be self-explanatory.

This chapter presents our framework, which allows for benchmarking and visual-
ising deep learning model training in a reproducible manner. Our design takes the
novel approach of repurposing the well-established machine learning lifecycle plat-
form MLFlow [41] for machine learning systems analysis. Our extensions transform
the platform to reach all of our aforementioned requirements in both back- and front-
end while ensuring compatibility with pre-existing workflows and models. We de-
scribe how multiple combinations of models and datasets can be evaluated, in both
isolated and collocated manner. Additionally, we show that there is support for
different machine learning environments, and how existing models can be easily
retrofitted to be supported by our framework. Researchers in our lab have exten-
sively used our framework using a combination of datasets and machine learning
models representative of a variety of deep learning workloads. Lastly, we delve into
the visualisation front-end and illustrate some of the results from our test runs. The
framework is publicly available on GitHub1.

1https://github.com/Resource-Aware-Data-systems-RAD/dl-training-viz

https://github.com/Resource-Aware-Data-systems-RAD/dl-training-viz

22 Chapter 3. radT - Resource Aware Data Tracker

FIGURE 3.2: Data collection framework architecture. Experiments
consist of workloads that can contain one or multiple model runs.

3.2 Framework

Our framework is split into a back-end and a front-end. Our data lifecycle extends
that of MLFlow in order to meet our requirements. We illustrate the data architecture
in Figure 3.1. Model training happens as an MLFlow client. This client sends data
to the MLFlow server whenever there is a metric to report. The data flow between
the client and server contains many events every second due to the large number of
supported hardware metrics. This connection is frequent for all run-level listeners.
Within MLFlow we distinguish the storage of relational data (experiment setup data,
collected hardware monitoring metrics, etc.) and the storage of artifacts (stdout logs,
profiling tool traces, etc.).

For our general data storage, we need a solution that can serve data collection,
MLFlow, and our front-end quickly and reliably; the first and last of which are par-
ticularly susceptible to performance bottlenecks. Data collection happens continu-
ously throughout model training and requires storage to be available at all times.
Data exploration requires sifting through a large amount of data quickly, presenting
considerable throughput and responsiveness requirements for the front-end.

We found that hosting the relational data in a separate PostgreSQL database yields
the best results. While MLFlow defaults to local data file storage, we have found this
to scale poorly with respect to data size and be unreliable. Furthermore, file storage
requires data access to happen through MLFlow, which inhibited the performance
of our front-end. We store artifacts in S3 storage on a different server, again forgoing
the native file storage. We host our React front-end on a separate server that con-
nects to the database via PostgREST, which is an automatic REST API extension to
PostgreSQL databases. We host this REST API on the same server as the database,
though it may be more beneficial to run these on separate servers to improve scal-
ability. Similarly, larger setups may benefit from two copies of the database, where
one is to write metrics to and the other is for the front-end to read from. This would
remove any interference during the training process where metrics are repeatedly
written to the database.

3.3. Back-end 23

FIGURE 3.3: Experiment .csv file. Every row corresponds to a model
training.

3.3 Back-end

Figure 3.2 illustrates the hierarchy presented to the user. Following the structure of
MLFlow, individually trained models are called runs and are organised in experi-
ments. We introduce a new layer in between runs and experiments called workloads.
This is required as we include testing of multiple models at the same time as a re-
quirement to test the impact of workload collocation. A workload consists of one or
more model runs and a collection of workloads form an experiment. We will now
go over the concepts introduced in the back-end pipeline, including the scheduler,
environments, collocation, and listeners.

3.3.1 Scheduling

The execution of training experiments is managed by the workload scheduler. Mod-
els can be trained individually by use of a command line interface or be structured
into experiment files. These are CSV files that can be edited in any text editor as
shown in Figure 3.3. Every row is a single to-be-trained model. Models can be
trained in a collocated fashion by sharing a workload ID. The numbering system of
workloads is up to the user. In our case, we opt to use three digits for workload iden-
tification. All models in a workload are trained concurrently. When model training
terminates, either due to success or failure, the row is tagged as such. Once all the
model training jobs terminate, the next workload is started. This repeats until all
rows have been executed. Rows list all parameters required for training the model
with the framework. In particular, the params field specifies any pass-through pa-
rameters that are sent directly to the model training script.

3.3.2 Environments

MLFlow as a platform allows machine learning researchers to train and store their
models in a controlled fashion. We leverage their environments feature to ensure
that our training is reproducible. Models can be trained in either anaconda environ-
ments or docker containers. We collectively call these the environments supported
by the framework. Whenever a model is added, it is included in one of these en-
vironments. Any deep learning library, such as Tensorflow [47], Tensorflow-Keras
[48], or Pytorch [49], is supported as long as an environment for it is included. This
ensures compatibility and reduces the number of abstractions required to adopt an
existing codebase to the framework. Code intrusion is kept to a minimum for the
actual model training code. Achieving the basic hardware tracking functionalities
only requires two lines of code:

1 from mldgpu import MultiLevelDNNGPUBenchmark
2 ...
3 with MultiLevelDNNGPUBenchmark() as run:
4 ...

24 Chapter 3. radT - Resource Aware Data Tracker

Support for training the model outside of the framework can be kept by encapsulat-
ing these lines in conditional checks.

3.3.3 Collocation

Collocation allows for multiple models to be trained simultaneously, increasing hard-
ware utilisation. Multiple models can be trained on multiple GPUs, but can also
share the same GPU. We support multiple technologies for sharing the same GPU
resource:

• MIG, Multi-Instance GPU, is a hardware mechanism for recent NVIDIA work-
station graphics cards that allows for hardware partitioning of the GPU [50].
This allows for multiple models to train without interference.

• MPS, Multi-Processing Service, is a software mechanism by NVIDIA for man-
aging collocated processes on GPUs [51].

• Naive refers to simply launching multiple processes to use the same GPU with-
out any other measures taken.

3.3.4 Listeners

In addition to the model performance metrics collected by MLFlow we require a
host of hardware metrics to evaluate training performance. We introduce a group
of additional processes called listeners that automatically record this information.
By default, we launch a full set of listeners to capture both host system and GPU
hardware metrics. This preset can be overwritten by setting the listeners parameter
of the run. Additionally, we provide an interface for intuitively adding new listeners.
The following run-level listeners are included by default:

• TOP is a tool for recording CPU hardware metrics [18].

• NVIDIA-SMI is a tool by NVIDIA for recording GPU metrics. NVIDIA-SMI
yields GPU-wide metrics such as GPU utilisation, memory usage, and power
consumption [17].

• DCGMI, or Data Centre GPU Management Interface, is a NVIDIA tool for
recording more advanced GPU metrics. Additionally, DCGMI supports metric
collection under MIG for individual MIG-partitions [16].

We support workload-level listeners in addition to these run-level listeners. These
collect more detailed information but are significantly more likely to impact the per-
formance of the model training. NVIDIA Nsight Systems [52] and Compute [53] in
particular can have a pronounced effect on training performance [34]. Workload-
level listeners are therefore disabled by default but can be enabled easily inside the
framework.

3.4 Front-end

While MLFlow comes with its own set of data exploration tools, they do not ful-
fil many of our research requirements. Firstly, the tools have not been built around

3.4. Front-end 25

comparing runs to each other and often provide extremely limited functionality. Sec-
ondly, they are not designed to handle large amounts of data points which can fre-
quently take over 10 seconds to render a single time series. Lastly, the concept of a
workload is central in our data architecture but does not exist in the MLFlow work-
flow.

FIGURE 3.4: Model runs are organised into workloads and experi-
ments which the user can then explore and visualise.

To address these issues and serve our preferred workflow, we introduce a novel
front-end application layer which consists of two primary components: an interface
for data selection and an interface for data visualisation. Before describing these
components in detail, we will first establish the front-end’s primary use cases which
were identified from dissecting our experimental results:

• Intra-workload, where the models trained within a workload are to be compared
to each other.

• Inter-workload, where workloads have to be compared to each other by taking
the aggregate of their contained runs.

• Mixed, where specific runs of different workloads are to be compared to each
other.

Figure 3.4 depicts the front-end’s data selection interface where data sources can
be browsed in a hierarchical manner. The user first specifies what experiment to
explore, after which the workload and corresponding runs can be navigated and op-
tionally selected via checkboxes. As a shortcut, all runs in a workload can be selected
by clicking the workload’s checkbox. Data from multiple workloads and multiple
experiments can be selected at the same time and the system will automatically de-
cide how to deal with the selected data. At any time, all currently selected runs are
viewable by the user on the rightmost side of the interface. This section also serves
as a shortcut to remove selected runs instead of having to locate their checkboxes
again.

After confirming their data selection, the user is directed to the second primary com-
ponent where the data can be visualised. This interface initially appears blank and
simply provides a dropdown list of the available metrics which can be visualised
with the currently selected runs. Once the user has chosen a metric, the interface

26 Chapter 3. radT - Resource Aware Data Tracker

FIGURE 3.5: Using the Highcharts.js library, generated charts are in-
teractive and responsive, allowing for quick dissection of the data.

will reload with a corresponding graph for that metric (see Figure 3.5). There is no
limit to the amount of graphs which can be generated and the selected runs can be
changed between graphs. This allows for the comparison of different datasets within
the same interface. Visualisations are also fully interactive and support toggling,
zooming, and clipping, as well as exporting to PDF, PNG, or SVG formats. Finally,
an interactive version of any visualisation can be shared via a small file which will
re-fetch the data from the server.

3.5 Conclusions

We have presented our framework for benchmarking and evaluating machine learn-
ing training. We have identified the challenges connected to collecting and process-
ing real-time training data in an efficient and accessible manner. Additionally, we
have tackled the visualisation of this data, allowing for efficient and effective data
exploration. We are able to compare data in experiments and between experiments
with a unified interface. In addition to our own experimental analysis work with
collocated workloads [54], our framework has been actively used in our lab to do
experiments for medical imaging research2. We invite other researchers interested in
both hardware and software metrics to consider it for their own research pipelines.

2https://purrlab.github.io/

https://purrlab.github.io/

3.5. Conclusions 27

28

Chapter 4

GPU Collocation

4.1 Introduction

Today’s GPUs are significantly more powerful than those of a decade ago. Mod-
ern GPUs, together with larger datasets, facilitate the exponential growth of deep
learning models. Many data scientists, however, do not require large models in
practice. For example, a problem may not have a large enough dataset to warrant a
large model or the ideal batch size for training the model may not be large enough
to utilise all of the GPU resources [6, 37, 38, 19]. This poses a hardware under-
utilisation issue when training neural networks as the training process usually takes
exclusive access to a GPU. This problem gets exacerbated with each new GPU gen-
eration offering more hardware resources.

Workload collocation is a method for increasing hardware utilisation by running multi-
ple applications at the same time over the same hardware resources. When a work-
load does not require all of the resources available on a device, a workload with
additional applications can be considered. That way, the device and its resources
are shared among the collocated applications. While workload collocation is heav-
ily studied for CPUs [20, 21, 22], its opportunities and challenges have been largely
unexplored for modern GPUs. In addition, unlike CPUs, GPUs lack sophisticated
resource-sharing methods such as virtual memory and fine-grained sharing.

Today, there are several methods for workload collocation on a GPU. Firstly, multi-
ple processes can be assigned to the same GPU simultaneously without any explicit
process management. Alternatively, the collocation can be more precisely managed,
for example via NVIDIA’s Multi-Process Service (MPS). Finally, the latest generations
of NVIDIA GPUs can be partitioned into fully isolated GPU instances at the hard-
ware level via Multi-Instance GPU (MIG).

This chapter analyses different ways of collocating deep learning model training
on NVIDIA GPUs. Specifically, we investigate the strengths and limitations of the
new MIG technology in contrast to the older methods. We characterise the perfor-
mance of the above-mentioned collocation methods on an A100 GPU. We diversify
our workload by considering three datasets (ImageNet, ImageNet64x64, CIFAR-10)
representing different sizes (large, medium, small). Furthermore, we acknowledge
that the current deep learning landscape employs a wide variety of model archi-
tectures. We investigate two popular convolutional models (ResNet, EfficientNetv2)
and one transformer model (CaiT). Additionally, we collocate a recommender model
with a vision model to demonstrate the merits of workloads containing models that

4.1. Introduction 29

A

C
B

Multi Stream

Shared Memory Bandwidth

A CB

Multi-Process Service (MPS)

Shared Memory Bandwidth

A CB

vGPUvGPUvGPU

Multi-Instance GPU (MIG)

FIGURE 4.1: Collocation methods on modern NVIDIA GPUs. A, B,
and C are different processes launched by the host CPU to run on the
same GPU in a collocated manner using naïve approach (left-hand

side), MPS (middle), and MIG (right-hand side).

stress different parts of the hardware. Our results highlight that:

• When model training is unable to utilise the full GPU on its own, i.e., when run-
ning on our small- and medium-sized training cases, or when running cases that
stress different parts of the GPU, training multiple models in collocated fashion
presents considerable benefits. On the other hand, for large model training, collo-
cation provides either limited improvements to throughput as the GPU becomes
over-saturated or cause model training to crash when the available GPU mem-
ory is not big enough to hold the combined memory footprint of the collocated
models.

• On all the combinations we evaluated, MPS performs better than naïve and MIG
collocation, achieving up to 80% and 40% higher throughput, respectively. It is
also incredibly flexible, allowing single-user workloads to get the most out of the
hardware with minimal setup required.

• MIG offers strict separation of the GPU’s memory and compute resources across
the collocated workloads, eliminating interference. It also allows multi-user col-
location, unlike MPS, and can achieve higher energy efficiency when the parti-
tions are set well. On the other hand, MIG-based collocation is more rigid, since
MIG requires creating hardware partitions a priori. For the cases of well-defined
workloads, one can create the ideal MIG partitions and leverage MIG-based
collocation. However, for more dynamic workloads where the workload mix
changes over time, MIG would require re-partitioning to perform well, whereas
other collocation methods can still provide benefits.

The rest of the chapter is organised as follows. Firstly, Section 4.2 gives background
on GPU collocation techniques and surveys related work. Then, Section 4.3 describes
our experimental methodology and setup, and Section 4.4 presents the results. Sec-
tion 4.5 outlines guidelines for collocation based on our results and touches on some
challenges we encountered during our analysis, and finally, Section 4.6 concludes
the chapter. Our artifacts are publicly available on GitHub1.

1https://github.com/Resource-Aware-Data-systems-RAD/collocation-analysi
s-artifacts

https://github.com/Resource-Aware-Data-systems-RAD/collocation-analysis-artifacts
https://github.com/Resource-Aware-Data-systems-RAD/collocation-analysis-artifacts

30 Chapter 4. GPU Collocation

4.2 Background

This section first provides background on different methods of collocation. Then,
we survey related work on workload collocation for deep learning.

4.2.1 Collocation on GPUs

Figure 4.1 illustrates the three collocation methods we study in this chapter. We
describe each of them briefly here.

Naïve (or Multi-Stream)

With CUDA 7, the option of running multiple processes at the same time using their
own CUDA stream on the same GPU is introduced. A CUDA stream [55] is a se-
quence of operations that execute on the GPU (i.e., kernels and data transfers) in the
order in which they are issued. While operations within a stream are guaranteed to
execute in the prescribed order, operations in different streams can run concurrently.
This concurrency greatly helps with overlapping the stall time due to the data trans-
fers between the host CPU and GPU in one stream with work from another stream.

We call this type of workload collocation the naïve method since it offers a limited
way for sharing GPU resources. This is because the streams have to share the GPU
compute resources in a time-based manner rather than having resources explicitly
dedicated for each stream (Figure 4.1 left-hand side).

Multi-Process Service (MPS)

The multi-process service (MPS) [56] enables the host CPU to launch multiple pro-
cesses on a single GPU. Similar to naïve collocation, these processes share the GPU
memory and memory bandwidth. However, unlike naïve collocation, the streaming
multiprocessors (SMs) of the GPU are split across the different processes. Assign-
ment of the SMs is done by the MPS daemon automatically, unless explicitly stated
by the user, based on the provisioning of the GPU compute resources needed for
each process (Figure 4.1 middle). While this provisioning introduces some process
management overhead, splitting resources this way avoids context switching of ker-
nels from different processes on the same SM. This reduces interference across the
different processes compared to the naïve approach.

One limitation of MPS is that the processes have to be launched by a single user for
security reasons. Therefore, MPS cannot be used to collocate applications launched
by different user accounts.

Multi-Instance GPU (MIG)

Multi-instance GPU (MIG) [50] is the most recent collocation technology introduced
with NVIDIA’s Ampere GPUs. It provides hardware support for splitting a GPU
into smaller GPU instances of varying sizes. These GPU instances may run different
processes each allowing these processes to run in parallel on the same GPU (Fig-
ure 4.1 right-hand side).

MIG-capable A100 GPUs consist of multiple slices. The memory of the GPU is split
into 8 memory slices and the compute side is split into 7 compute slices, plus one

4.2. Background 31

7g.40gb

3g.20gb3g.20gb

2g.10gb2g.10gb 2g.10gb

1g.5gb1g.5gb 1g.5gb1g.5gb1g.5gb1g.5gb 1g.5gb

1 x 7g.40gb

2 x 3g.20gb

3 x 2g.10gb

7 x 1g.5gb

FIGURE 4.2: Possible MIG partitioning schemes on a NVIDIA A100-
40GB GPU. Horizontals can overlap (collocation) but verticals cannot.
For example, having a 3g.20gb instance is not compatible with five
1g.5gb instances but is compatible with two 2g.10gb instances (figure

adapted from [50]).

reduced slice for the partition management overhead. These can be combined into
GPU instances providing a partitioning of the GPU. A limitation of enabling MIG
is that it does not allow for one model to be trained on multiple GPUs or GPU in-
stances. On the other hand, each partition is strictly separated in terms of hardware
resources preventing any form of interference across partitions.

An A100 GPU with 40GB memory supports several available partitioning profiles
(see Figure 4.2). The smallest possible GPU instance is one with just one memory
slice and one compute slice, 1g.5gb, with 14 streaming multiprocessors (SMs) and
5GB of memory. Consecutively, a 2g.10gb profile consists of two compute slices
(28 SMs) and two memory slices (10 GB of memory). The other available profiles are
3g.20gb, 4g.20gb, and 7g.40gb. The last profile consists of almost all of the GPU
resources. However, using the GPU without MIG mode is not analogous to running
this large profile as the compute capability of the GPU is hampered slightly due to
MIG management overhead; i.e. the reduced compute slice as mentioned above (10
SMs). The ideal GPU instance sizes may vary from workload to workload following
the memory and compute needs of the models.

Many different partitions are possible as long as the maximum resource capacity is
not exceeded. For example, splitting the GPU into a 4g.20gb and 1g.5gb instance
is possible but two 4g.20gb instances would exceed the compute resources of the
device. There is, however, a notable exception. While a split of one 4g.20gb, one
2g.10gb, and one 1g.5gb instance is possible, one cannot proceed with a split
of one 4g.20gb and one 3g.20gb instance, despite the values appearing to sum
up to the maximum resources of the device. Such partitioning rules are set by the
GPU itself, and the allowed set of instances and configurations varies across different
types of Ampere GPUs (A100, A30) as well as the NVIDIA GPU architectures that
come after (e.g., H100).

Finally, the amount of memory slices and the amount of compute slices may differ
in a partitioning. Specifically, a GPU instance may be split into multiple compute
instances from the compute side with unified memory. This can be useful when
compute and memory requirements do not follow the same pattern. For example,
one could run a memory-intensive model and a compute-intensive model with iso-
lated compute instances on a single GPU instance.

32 Chapter 4. GPU Collocation

4.2.2 Related work

Weng et al. [57] observe 6000 GPUs on Alibaba clusters and highlight the challenges
of cluster scheduling mechanisms that result in dramatically low GPU utilisation.
Jeon et al. [19] perform a similar experimental analysis focusing on deep learning
training on a Microsoft GPU cluster. These works motivate studying workload col-
location on GPUs as a way to overcome such low utilisation.

Collocation on GPUs has been studied in two dimensions: software-based and
hardware-based approaches.

Software-based approaches either focus on developing better primitives for collo-
cation on GPUs or provisioning the resources of GPUs for running multiple appli-
cations. cuMAS [58] is a host-side CUDA task scheduler, which receives multiple
CUDA calls and reorders them based on data transfer behaviour to increase overall
system utilisation. Ravi et al. [59] propose a framework as a transparent layer for
executing applications within virtual machines to share one or more GPUs. Horus
[60] uses machine learning for predicting GPU utilisation of deep learning training
tasks. Afterwards, it feeds the cluster scheduler and resource manager with the in-
formation to make better decisions for collocating different workloads.

In contrast, hardware approaches propose micro-architectural changes to GPUs to
enable finer-grained and more precise multi-application execution within a GPU
considering performance, utilisation, and quality of service trade-offs [61, 62, 63,
64, 65, 66].

MIG is a relatively new technology and there have not been many works that thor-
oughly explore its possibilities. HFTA [38] is a mechanism to fuse multiple model
training runs for hyper-parameter tuning into one training run. The authors show
the effectiveness of HFTA compared to using MPS or MIG to run multiple training
runs in parallel. MISO [67] runs MPS on a 7g.40gb MIG instance to predict the best
MIG configuration for different jobs.

Finally, similar to our work, Li et al. [68] characterise the performance of MIG using
deep learning models focusing on time and energy metrics. Their methodology is
different than and complementary to ours. It covers a variety of deep learning use
cases but doesn’t consider sizing the models up and down. Furthermore, they don’t
compare against other forms of collocation such as MPS.

In general, our work is complementary to these works since we focus on an experi-
mental methodology to investigate the strengths and limitations of MIG in contrast
to the older collocation techniques such as MPS and naïve collocation and by using
workloads of different sizes.

4.3 Setup & Methodology

This section details our experimental setup and methodology. First, Section 4.3.1
introduces the hardware system used for conducting our experiments. Next, Sec-
tion 4.3.2 defines our metrics, their relevance, and how we measure them. Sec-
tion 4.3.3 describes the models and datasets used in this study. Finally, Section 4.3.4
describes the list of the experiments and how we run them.

4.3. Setup & Methodology 33

4.3.1 System

Our experiments run on a DGX Station A100, composed of an AMD EPYC 7742
CPU and four A100 40GB GPUs. The system is a pre-packaged solution provided
by NVIDIA running DGX OS, a variant of Ubuntu 20.04.4 LTS. The CPU consists of
64 cores, 128 threads, operating at a base clock of 2.25 GHz with a boost clock of
3.4GHz [69]. There is 256MB of L3 cache and 512GB of DRAM available. Each of the
A100 GPUs has 40GB of VRAM and supports up to 7 MIG instances with at least
5 GB of memory per instance (see Section 4.2.1). The A100 GPUs can communicate
using NVLink among them, while there is a 16x PCIe 4.0 (∼32GB/s bandwidth)
connection between each GPU and the CPU.

4.3.2 Metrics

The goal of this chapter is to investigate the performance of different GPU collo-
cation techniques instead of improving the accuracy of models for a particular use
case. Therefore, the set of metrics we focus on is related to how the model training
interacts with and gets impacted by the GPU resources.

Time per epoch is the time it takes to finish a single epoch of training for a particular
model. GPUs are used in deep learning in order to reduce training time by exploiting
the embarrassingly parallel nature of most deep learning computations. Therefore,
time per epoch is the most fundamental metric to look at in our study. We time the
second epoch of training, skipping the first one as a warm-up epoch.

GPU utilisation depicts how much the GPU is being used. We are interested in how
active the whole GPU is depending on the workload executed and the collocation
mechanism used.

We use SMACT (SM Activity) to track GPU utilisation. SMACT is the fraction of
active time on an SM, averaged over all SMs. This provides a good indication of
whether the GPU is in use [34]. This information is reported by the Data Centre
GPU Manager (dcgm) [70]. SMACT can be tracked for the whole GPU when there
are no MIG instances available and per MIG instance when there are.

When reporting utilisation under MIG, we aggregate the SMACT readings across
MIG instances to compare to the readings from the entire GPU under naïve and MPS.
Furthermore, this aggregate SMACT is based on the reduced available computer
resources when MIG is enabled (7g 98 SMs vs the entire GPU with 108 SMs).

Memory footprint is the total memory space (in GB) allocated by all of the collocated
models on the GPU. This metric is especially crucial for reasoning about the failed
collocation attempts. Specifically, we measure the memory requirement after a full
epoch of training to signify how much memory is needed for the model to train. We
use nvidia-smi to collect the memory consumption for the whole GPU.

As naïve collocation and MPS share memory across all the runs within the workload,
the available GPU memory must be able to accommodate the memory footprint for
the collocated runs (Section 4.2.1). If the sum of memory required exceeds the ca-
pacity of the device, the workload will fail due to running out of memory. For MIG
(Section 4.2.1), the memory available per GPU instance needs to be large enough to
accommodate the memory footprint of the models mapped to that instance.

34 Chapter 4. GPU Collocation

CPU-GPU interconnect utilisation details the amount of data transferred from the
CPU to the GPU. This is useful as a measure of the activity between the host system
and the GPU. This activity can differ between varying collocation methods and will
likely increase with increasing degrees of collocation. We measure this utilisation
with dcgm using pcie_rx_bytes readings.

GPU energy consumption is the amount of energy consumed by the GPU while
training. We look at both the GPU power usage over time and the overall GPU
energy consumption of training. Our goal is to observe the power consumption
characteristics across different collocation methods and degrees of collocation in ad-
dition to the energy efficiency of each collocation scenario. A higher GPU utilisation
or shorter time per epoch may not necessarily lead to a higher energy efficiency. We
measure the power usage and energy consumption via dcgm using power_usage
(watts) and total_energy_consumption (joules), respectively.

4.3.3 Models & Datasets
TABLE 4.1: Models & Datasets

Model Dataset #Parameters Size
ResNet26 CIFAR-10 17M small
ResNet50 ImageNet64 24M medium
ResNet152 ImageNet 59M large
EfficientNet_v2_s CIFAR-10 22M small
EfficientNet_v2_s ImageNet64 22M medium
EfficientNet_v2_s ImageNet 22M large
CaiT_xxs24_224 ImageNet 12M large
DLRM Criteo Terabyte 24B very large

Deep learning achieves state-of-the-art models for a variety of use cases, such as
speech recognition, image classification, and sentiment analysis. These fields feature
a plethora of models with different compute and memory requirements. Table 4.1
lists the models and datasets used in our experiments.

Models

We select three model architectures representing a large range of image classifica-
tion models in addition to a recommender model. In terms of the interaction with
the hardware, deep learning applications that leverage GPUs are either compute-
or memory-intensive on the GPU. This includes other models such as for speech
recognition and object detection. The type of interaction with the hardware is the
determining factor for the behaviour of the collocated training runs. By including
a variety of compute-intensive neural network architectures under image classifica-
tion and the memory-intensive recommender model, this chapter aims to cover a
good representative set of training cases.

ResNet is a deep convolutional neural network that has been around since 2016 [23,
24]. In addition to being a popular choice for image classification and segmentation,
ResNets [71, 72] can be scaled up and down in size, which makes them ideal for
benchmarking over varying hardware resources. This helps with creating workloads
of varying sizes for testing the different workload collocation options, especially

4.3. Setup & Methodology 35

the different MIG partitions. We train ResNet26, ResNet50, and ResNet152 models
to create small, medium, and large workloads, respectively. The medium model has
significantly more parameters compared to the small one, and the large model has
about twice the parameters of the medium model. We train these models on datasets
corresponding to their size (see Section 4.3.3 for details).

EfficientNetv2 is a recent convolutional neural network [73] for image classification.
EfficientNetv2’s architecture is focused on delivering high performance while limit-
ing the size of the model. In order to satisfy memory constraints on a single GPU,
we exclusively train the small version of EfficientNetv2. We train the small version
on all three image datasets creating small, medium, and large workloads.

CaiT is a visual transformer model. Unlike many other transformers for image clas-
sification, CaiT achieves high performance without the need for extra data [74]. We
use the smallest version of CaiT (xxs) to satisfy memory constraints on the GPUs
in our system (Section 4.3.1). Since most transformer model architectures for image
classification start at a relatively large size compared to their convolutional coun-
terparts, we only create a large workload with CaiT, training it on the largest image
dataset.

DLRM is a recommendation model. Unlike the previous vision models, this model
is used to provide personalisations and recommendations based on past user be-
haviour [75]. The model is significantly less GPU compute-heavy than vision models
but requires large amounts of CPU and GPU memory. We use the MLPerf configura-
tion of the model as provided by the authors. We train DLRM on the Criteo Terabyte
dataset [76]. Training DLRM for an epoch on this dataset takes significantly longer
than training any of the vision models for an epoch. We therefore look at the rate at
which DLRM goes through the data instead of the time that a full epoch takes (∼ 4.3
days).

Datasets

We accompany the vision models with three datasets of varying sizes, forming small,
medium, and large workloads. We also include a very large dataset for the recom-
mender model.

For our small dataset we have CIFAR-10 [77] (163 MB), containing 60,000 labelled
32 × 32 pixel images divided over 10 classes. The dataset is split into 50,000 training
and 10,000 test images.

Our medium dataset is a downsampled version of the large dataset, ImageNet2012,
called ImageNet64×64 [78] (12 GB). We will refer to this dataset as ImageNet64.

For our large dataset, we use the unmodified ImageNet2012 [8] (138 GB), referred
to as ImageNet. Imagenet2012 is a collection of 1,431,167 labelled images from 1,000
different classes. The dataset is split into 1,281,167 training, 50,000 validation, and
100,000 test images. Unlike CIFAR-10, the dataset is not balanced and the images are
not all uniform in size. Every picture is resized to 224 × 224 using the nearest pixel
interpolation method to conform with the size of images used in the original ResNet
specification [23].

Finally, we use the Criteo 1TB Click Logs dataset [76] for training the DLRM model.

36 Chapter 4. GPU Collocation

The dataset consists of online advertisement click-through logs and contains 24 days
of data. Crucially, we run the model in memory-map mode. This pre-processes
the data without loading all in CPU memory at once, preventing the system from
running out of memory.

0

10

20

30

40

50

60

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

Ep
o

ch
 T

im
e

 (
se

co
n

d
)

Collocation option, # of collocated models (top to bottom)

(A) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(B) GPU utilisation

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
o

n
 (

G
B

)

Collocation option, # of collocated models (top to bottom)

(C) Memory footprint

FIGURE 4.3: Small: ResNet26 + CIFAR-10 (batch size = 32).

0
2
4
6
8

10
12
14
16
18
20

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(s
e

co
n

d
s)

Collocation option, # of collocated models (top to bottom)

(A) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(B) GPU utilisation

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(C) Memory footprint

FIGURE 4.4: Small: ResNet26 + CIFAR-10 (batch size = 128).

0

10

20

30

40

50

60

70

80

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(s
ec

o
n

d
)

Collocation option, # of collocated models (top to bottom)

(A) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(B) GPU utilisation

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(C) Memory footprint

FIGURE 4.5: Small: EfficientNet_s + CIFAR-10 (batch size = 128).

4.3.4 Experiments

We devise experiments with varying dataset sizes and models to assess the perfor-
mance of collocating deep learning training under different loads.

We orchestrate the execution of the workloads via a benchmarking framework [79]
built on the machine learning platform MLflow [80]. This allows running the exper-
iments in a systematic and controlled way. We create workloads containing either a
single or collocated model(s). Workloads are automatically executed in sequence by
the framework and in controlled conda environments. Any setup requirements for
MIG partitioning and the MPS daemon are performed before training. The GPUs are
cleaned after every workload, removing any previous configurations such as MIG
partitions. The framework comes with a set of listeners that automatically take mea-
surements while the models are training. In this case, every model has a DCGMI and
NVIDIA-SMI listener bundled with it to collect the metrics of interest (Section 4.3.2).
We source the vision models from the TIMM library [81], the recommender model

4.3. Setup & Methodology 37

from Facebook Research [75], and are using the latest version of PyTorch as of the
start of our experiments (2.0) [49].

Uniform collocation. We default to a batch size of 128 for most of our experiments.
We additionally train the ResNet models on a batch size of 32 to observe the im-
pact of the batch size. Based on our preliminary experiments with some of the
large, hence longer-running, models and dataset, we observed that the behaviour
of time-per-epoch, GPU utilisation, memory consumption, etc. (Section 4.3.2) does
not drastically change from the second epoch on. As the first epoch of the vision
models tends to be slower than subsequent epochs, we let the vision models warm
up for one epoch and report the measurements from the second epoch, providing
representative information.

We determine several model training collocation options following the available
MIG profiles (Section 4.2.1):

• One model: MIG 7g.40gb or 4g.20gb

• Two models: MIG 3g.20gb

• Three models: MIG 2g.10gb

• Seven models: MIG 1g.5gb

These are based on the maximum amount of instances that can be allocated at the
same time for a given MIG profile. We also create the corresponding collocation ex-
periment for the non-MIG collocation methods (Section 4.2.1). For example, for the
1g.5gb profile, there can be a maximum of 7 MIG instances present on the GPU at
the same time allowing for 7 models to be trained in parallel, each model on a sep-
arate instance. We contrast this setup with training 7 models in parallel using naïve
collocation and MPS. These form our initial set of experiments collocating uniform
training runs.

The 7g.40gb and 4g.20gb profiles do not allow for any parallel instances of the
same size since there is not enough compute or memory left for such an instance.

Finally, the experiments with the full MIG profile, 7g.40gb, and MPS without col-
location have the purpose of exploring the performance impact of enabling the re-
spective technologies for a GPU, in comparison to a case where they are disabled.

Mixed collocation. We also create collocation experiments with mixed sets of ResNet
models and datasets, based on the performance of the models in the prior experi-
ments. In order to satisfy the memory constraints, we train the small and medium
models with batch size 128 and the large models with batch size 32. We limit the
amount of collocated models to four in order to provide a clear scope that should
cover most use-cases. Table 4.3 lists all the mixed ResNet training collocation op-
tions we experiment with in the corresponding section (Section 4.4.6).

Similarly, we collocate the recommender model with a single large ResNet model
with batch size 32. Due to the size of the recommender model, we limit our ex-
periment to 2-way collocation. As the memory requirements of the recommender
exceed that of even the 20GB MIG partitions, we issue a 7g.40gb MIG GPU in-
stance and split this instance into two compute instances (see Section 4.2.1). This

38 Chapter 4. GPU Collocation

yields a 3c.7g.40gb and a 4c.7g.40gb compute instance to train the models on,
where the 40GB memory is shared between the collocated training runs.

0
5

10
15
20
25
30
35
40
45
50

n
aï

ve
m

p
s

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(m
in

u
te

)

Collocation option, # of collocated models (top to bottom)

(A) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(B) GPU utilisation

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(C) Memory footprint

FIGURE 4.6: Medium: ResNet50 + ImageNet64 (batch size = 32).

0

5

10

15

20

25

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(m
in

u
te

s)

Collocation option, # of collocated models (top to bottom)

(A) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(B) GPU utilisation

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(C) Memory footprint

FIGURE 4.7: Medium: ResNet50 + ImageNet64 (batch size = 128).

0
5

10
15
20
25
30
35
40
45
50

n
aï

ve
M

P
S

7
g.

4
0

gb
4

g.
2

0
gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

Ep
o

ch
 T

im
e

(m
in

u
te

)

Collocation option, # of collocated models (top to bottom)

(A) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(B) GPU utilisation

0

5

10

15

20

25

30

35

40
n

aï
ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

n
aï

ve

M
P

S

1
g.

5
gb

1X 2X 3X 7X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(C) Memory footprint

FIGURE 4.8: Medium: EfficientNet_s + ImageNet64 (batch size = 128).

4.4 Results

Figures 4.3-4.10 illustrate the results for our uniform collocation experiments. Each
figure shows the results of a particular model and dataset combination (as listed
in Table 4.1). Bars that are grouped together form one collocated workload with
models trained in parallel. The different degrees of collocation are separated by
dotted vertical lines. The four non-collocated cases, which do not run any models
in parallel, are the first four bars and form our baselines. We omit the figures for
two of the large model and dataset combinations: (1) Resnet152 with batch size 128
and ImageNet and (2) EfficientNet with ImageNet. These two cases were too large
to allow for any collocation; they ran out of memory on the GPU for all collocation
mechanisms even when training just two models in parallel. Sections 4.4.1-4.4.3
present the results each focusing on a metric we collect (Section 4.3.2) for Figures 4.3-
4.10.

After presenting the results for the uniform collocation, Section 4.4.6 describes our
findings on the collocation runs using a mixed set of vision models, and Section 4.4.7

4.4. Results 39

presents the effectiveness of collocation when training a recommender and a vision
model in a collocated fashion.

4.4.1 Time per Epoch

As mentioned in Section 4.3.2, time per epoch is our main performance metric when
comparing the effectiveness of different collocation methods. The rest of the metrics
are used to explain certain trends in the time per epoch results.

Starting with our baselines, we need to verify whether enabling the MPS daemon
or MIG partitions introduces any visible overheads. Looking at the first four bars
of Figures 4.3a-4.10a, reveals that there is a little variation between the first three
non-collocated workloads: naïve, mps, and 7g.40gb. This indicates that there is
negligible overhead of having MPS or enabling MIG over the naïve case. On the
other hand, we see the impact of having fewer resources available on the 4g.20gb
MIG instance as the workloads get larger. In Figures 4.7a-4.10a, the single training
run exhibits a larger time per epoch on the 4g.20gb instance compared to the other
non-collocated runs.

0

0.5

1

1.5

2

2.5

3

3.5

4

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

1X 2X 3X

Ep
o

ch
 T

im
e

(h
o

u
r)

Collocation option, # of collocated models (top to bottom)

(A) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

1X 2X 3X

U
ti

liz
at

o
in

Number of models, collocation option (bottom to top)

mean max

(B) GPU utilisation

0

5

10

15

20

25

30

35

40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

n
aï

ve

M
P

S

2
g.

1
0

gb

1X 2X 3X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(C) Memory footprint

FIGURE 4.9: Large: ResNet152 + ImageNet (batch size = 32).

0

0.5

1

1.5

2

2.5

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

1X 2X

Ep
o

ch
 T

im
e

(h
o

u
r)

Collocation option, # of collocated models (top to bottom)

(A) Epoch time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

1X 2X

U
ti

liz
at

io
n

Number of models, collocation option (bottom to top)

mean

max

(B) GPU utilisation

0
5

10
15
20
25
30
35
40

n
aï

ve

M
P

S

7
g.

4
0

gb

4
g.

2
0

gb

n
aï

ve

M
P

S

3
g.

2
0

gb

1X 2X

M
em

o
ry

 C
o

n
su

m
p

ti
o

o
n

 (
G

B
)

Collocation option, # of collocated models (top to bottom)

(C) Memory footprint

FIGURE 4.10: Large: CaiT + ImageNet (batch size = 128).

Going over to the collocated runs, comparing the different collocation mechanisms
on Figures 4.3a-4.10a reveals that MIG-based collocation performs better as the de-
gree of parallelism increases (especially to 7). MPS reveals itself as a clear winner,
offering the best performance across the board. In contrast, naïve collocation is the
least effective.

For the small ResNet models and 7-way collocation, the benefits of collocation be-
come very visible. With ResNet’s embarrassingly parallel nature and the larger batch
size allowing even more parallelism, they manage a high utilisation of the GPU com-
pute resources without overloading the GPU, as demonstrated by Figure 4.4b. The
medium ResNet models reflect the same pattern, though start hitting compute re-
source boundaries under 7-way collocation, as seen in Figure 4.7b. As a result, col-
location provides considerable benefits for the small and medium cases with MIG

40 Chapter 4. GPU Collocation

and especially with MPS. We attribute the superior performance of MPS to its more
flexible resource management allowing more effective parallel collocated runs (as
Section 4.4.6 and Section 4.4.7 also show) and the lower compute resources that are
available to MIG (Section 4.2.1).

As expected, collocation impacts the time it takes to train the individual models due
to interference across the collocated runs. Aside from 2-way collocation with our
smallest workload (Figure 4.3), training more models in parallel increases the time
to finish training a model. Additionally, as the degree of collocation increases, so
does the total time to train the models. On the other hand, multiple models fin-
ish training simultaneously, increasing training throughput. For example, except
for the large workloads, 2-way collocation delivers two models in roughly the same
time as no-collocation delivers one model. 3-way collocation with MPS and MIG
leads to a 15-35%, 50-160%, and 45-110% increase in time per epoch compared to the
non-collocated case for ResNet with batch size 32 (Figures 4.3a & 4.6a), ResNet with
batch size 128 (Figures 4.4a & 4.7a), and EfficientNet (Figures 4.5a & 4.8a), respec-
tively, while delivering three model training runs instead of one. 7-way collocation
with MPS and MIG only increases the runtime by 40-80% for our smallest workload
(Figure 4.3) while delivering 7 models in parallel. These results clearly show that col-
location is valuable when a single training run is not large enough for the available
GPU compute and memory resources; e.g., the small and medium cases.

However, the picture shifts considerably with the large workloads (Figures 4.9 &
4.10). We no longer see improvements for all of the collocated runs. MPS remains
strong and is the only form of collocation that remains beneficial even at 3-way col-
location. Under naïve collocation, one epoch of training takes roughly as long as
training the models in sequence without collocation. MIG fairs little better under 2-
way collocation, but is not advantageous. Additionally, 7-way collocation becomes
impossible due to memory constraints.

Take-away. Collocation provides a significant increase in throughput, especially for smaller
models. MPS collocation consistently beats the other forms of collocation, with MIG just
slightly behind for workloads with smaller models.

4.4.2 GPU Utilisation

Observing GPU utilisation in Figures 4.3b-4.10b helps us understand when colloca-
tion provides benefits and when it does not. In general, the lower the GPU utilisation
for the non-collocated scenarios, the higher the benefits of collocation.

As explained in Section 4.3.2, the utilisation % reported for MIG is with respect to the
aggregate available compute resources (98 SMs) to MIG. A small amount of compute
resources of the GPU is lost to MIG overhead. Results for naïve and MPS depict the
utilisation of the whole GPU (108 SMs).

Starting with the small workloads (ResNet26 with batch size 32 in Figure 4.3b), we
can see that non-collocated runs do not fully utilise the streaming multiprocessors.
Collocation massively increases the utilisation, allowing for more of the GPU to be
useful when training 2, 3, or 7 models at the same time. Both SM activity and occupa-
tion do not meet the saturation point for this small use case, explaining the excellent
collocation performance as discussed in Section 4.4.1.

4.4. Results 41

When interpreting the throughput benefits of collocation, looking at the GPU utili-
sation of the individual runs help. More specifically. when the GPU utilisation for
the runs with no collocation is less than 50%, the 2-way collocation easily doubles
the throughput under MPS. For 3-way or higher degrees of collocation, the through-
put improvements start being sub-linear as a result of higher GPU utilisation of the
collocated runs, pressure on the GPU internals, and coordination efforts for the col-
located runs.

Most of the patterns seen in the small case are present in the medium ResNet case
(Figure 4.6b) as well. The utilisation is notably higher, with MPS 7-way collocation
(1g.5gb) approaching maximal SM activity, though occupation does not max out.
The results for large ResNets (Figure 4.9b) notably deviate from these two experi-
ments. The non-collocated runs already have notably high utilisation (∼80%) and
the 2-way collocated runs get close to the limit. Going one step further, the 3-way
collocated runs over-saturate the compute side of the GPU leading to diminishing
returns in terms of the throughput achieved under collocation (Section 4.4.1).

As we increase the batch size from 32 to 128 for ResNet, GPU utilisation jumps by up
to 75% and 110% in, respectively, the small (Figure 4.4b) and medium (Figure 4.7b)
cases. The GPU utilisation under collocation with MPS is especially high, reaching
almost 100% SM activity, with MIG reaching similar numbers on 7-way collocation
in the medium case.

As in the case of time per epoch results, the GPU utilisation of EfficientNet (Fig-
ures 4.5b & 4.8b) is similar to the results of ResNet with batch size 32. There is a big
jump in utilisation from non-collocation to collocation. MIG and MPS collocation
feature high utilisation, showing very similar numbers for 7-way collocation, with
MPS having a small utilisation lead on MIG for 2- and 3-way collocation.

Finally, for CaiT (Figure 4.10b), there is little variety in the GPU utilisation across
different cases. Even though the utilisation numbers are very similar, MPS still man-
ages to provide a throughput benefit in this case over training the models in series,
unlike naïve or MIG collocation.

Take-away. MPS provides the highest GPU utilisation regardless of workload, thanks to the
more flexible resource sharing it provides. Also, throughput under MPS fares better despite
heavy GPU utilisation.

0
50

100
150
200
250
300

0 10 20 30 40 50 60

R
ec

ei
ve

d
 (

M
B

)

Time (second)

1X 2X 3X 7X

(A) Naïve

1
4

16
64

256
1024
4096

16384

0 5 10 15 20 25 30

R
ec

ei
ve

d
 (

M
B

)

Time (second)

1x 2x 3x 7x

(B) Multi-Process Service

FIGURE 4.11: Data traffic from CPU to GPU during the second epoch
of ResNet26 + CIFAR-10 (batch size 32) training. Note that the y-axis

is different between the graphs.

4.4.3 Memory Footprint

The GPU memory footprint of the models while training is crucial as it is the main
determinant for whether models can be trained in a collocated fashion. As we have

42 Chapter 4. GPU Collocation

seen in the previous two sections, when there is high utilisation of compute resources
on a GPU, the collocated runs can still make forward progress, even though the
collocation might not be beneficial in terms of throughput. On the other hand, when
there is not enough memory available for the aggregate memory footprint of the
collocated training runs, then these models run out of memory when assigned to the
GPU.

Figures 4.3c-4.10c report the aggregate memory footprint on the GPU for different
collocation methods for each workload. They demonstrate that the increase in mem-
ory footprint with collocation is proportional to the degree of collocation. Notably,
MIG collocation shows slightly smaller memory footprints than the two other op-
tions. In general, 2-way, 3-way, and 7-way collocation results in roughly two, three,
and seven times the memory footprint of no collocation, respectively. This is an
expected result as the models are not sharing data across collocated runs in these
experiments.

The memory footprint for MIG prompted us to delve deeper into PyTorch’s mem-
ory allocation. The reduced memory allocation for MIG shows up in both nvidia-
smi readings and PyTorch’s advanced memory statistics. However, PyTorch’s basic
memory allocation and reservation trackers, which count space allocated for the ten-
sors and reserved by the allocator, respectively, do not show any difference across
the collocation methods. Training the models on a separate GPU with less available
GPU memory displays the same pattern of slightly reduced memory footprint, con-
firming that this is not a symptom unique to MIG, but is rather due to the memory
available to PyTorch. PyTorch adjusts the memory footprint depending on the total
available memory, which is less in the case of non-7g.40gb MIG instances com-
pared to whole GPU memory available under MPS and naïve. Switching the mem-
ory allocator back-end from PyTorch’s native implementation to CUDA’s built-in
asynchronous allocator removes the differences in the memory footprint of different
collocation methods. However, we do not recommend this switch as it slows down
the training process.

Take-away. Memory requirements for uniformly collocated models can be effectively esti-
mated by multiplying the memory required by a single model. PyTorch allocates slightly less
memory under MIG instances that have a fraction of the whole memory than under other
collocation methods.

0
50

100
150
200
250
300

0 5 10 15 20 25 30 35 40 45 50 55 60

Po
w

er
 (

W
)

Time (second)

1X 2X 3X 7X

(A) Naïve

0
50

100
150
200
250
300

0 5 10 15 20 25 30

Po
w

er
 (

W
)

Time (second)

1x 2x 3x 7x

(B) Multi-Process Service

0
50

100
150
200
250
300

0 5 10 15 20 25 30 35

Po
w

er
 (

W
)

Time (second)

1X - 40GB 1X - 20GB 2X 3X 7X

(C) Multi-Instance GPU

FIGURE 4.12: GPU power usage during the second epoch of
ResNet26 + CIFAR-10 (batch size 32) training.

4.4. Results 43

4.4.4 Interconnect Traffic

Figure 4.11 reports the number of bytes received by the GPU under naïve and MPS
collocation over time during the second epoch of small ResNet training with batch
size 32. We pick this case as it benefits greatly from collocation and can highlight the
differences across the collocation scenarios more easily. MIG is omitted here due to
dcgm not providing the readings for this metric under MIG as a result of the GPU
being split into multiple instances.

For lower degrees of collocation, naïve collocation leads to a linear increase in data
transferred over PCIe from CPU to GPU with respect to degree of collocation. On
the other hand, for the 7X case, there is less work being done per unit of time for each
training run leading to sub-linear PCIe traffic. This is likely caused by the through-
put benefits of collocation taking a huge hit under naïve collocation, as shown in
Figure 4.3.

In contrast, MPS exhibits a super-linear increase in PCIe utilisation when collocating
models. In addition to the data transfers for the collocated runs, MPS increases the
kernel launch processes since it is able to eliminate false dependencies and share the
GPU resources more effectively across the collocated kernels (Section 4.2.1).

Overall, across all evaluated scenarios, we did not observe bottlenecks due to PCIe
connectivity. This is crucial for our comparison of the different collocation scenarios,
since scenarios with critical I/O bottlenecks may lead to misleading results for this
type of study.

Take-away. MPS heavily increases communication between the CPU and the GPU to
facilitate faster collocated model training.

TABLE 4.2: Total energy consumption for GPU to complete the sec-
ond epoch of ResNet26 + CIFAR-10 (batch size 32) training.

collocation small case Energy (KJ)

1X

naïve 4.465
MPS 4.417
4g.20gb 4.498
7g.40gb 4.417

2X
naïve 6.367
MPS 6.210
3g.20gb 5.547

3X
naïve 8.477
MPS 7.716
2g.10gb 7.058

7X
naïve 18.984
MPS 15.047
1g.5gb 13.159

4.4.5 Energy Consumption

Finally, we look at the power usage and the energy consumption of the GPU for
small ResNet training, similar to Section 4.4.4. Figure 4.12 show that GPU power
consumption is highly correlated with utilisation since the collocation scenarios that

44 Chapter 4. GPU Collocation

achieve higher utilisation in Figure 4.3b also result in higher GPU power usage. MIG
exhibits significantly lower wattage under 7-way collocation than MPS while train-
ing slightly slower. The benefits of this can be seen in Table 4.2, which reports the
total GPU energy consumption of the second epoch of the model training. While
requiring higher power usage per unit of time, MPS spends less energy compared to
naïve collocation thanks to finishing training faster. While not as fast as MPS, MIG
in general exhibits the lowest GPU energy footprint.

Take-away. GPU wattage is heavily correlated with GPU utilisation. The fastest way for
training models might not be the most energy efficient on GPUs, since MIG exhibits the
lowest energy footprint among all the collocation methods.

TABLE 4.3: Mixed Vision Workloads

Small (S) Medium (M) Large (L)
Model ResNet26 ResNet50 ResNet152
Dataset CIFAR-10 ImageNet64 ImageNet

Batch size 128 128 32
Instance 1g.5gb 2g.10gb 4g.20gb

S+M 1x 1x -
S+S+M 2x 1x -

S+S+M+M 2x 2x -
S+S+S+M 3x 1x -

S+M+M+M 1x 3x -
S+L 1x - 1x
M+L - 1x 1x

4.4.6 Mixed Vision Workloads

The results presented so far focused on homogeneous collocation scenarios. Such
cases can be extremely useful in practice when a data scientist is performing hyper-
parameter tuning to come up with the ideal set of parameters for a model repeat-
edly running the same model with a different set of parameters. On the other hand,
there is also value in investigating non-homogeneous collocation scenarios to ob-
serve what happens when individual training runs stress the GPU unequally.

Based on how models of different sizes behaved in our previous experiments, we
select combinations of small, medium, and large ResNet models with corresponding
dataset sizes to collocate for the heterogeneous runs (as listed in Table 4.3). We opted
to keep a static MIG configuration while testing heterogeneous collocation since in
a real-world scenario, e.g., in a data centre, the MIG partitions would already be set
and re-partitioning after each training run could be impractical.

Figure 4.13 details the total execution time for training the collocated models using
the different collocation methods in comparison to training them back to back, se-
rial, without collocation. We see that the benefits of collocation vary heavily across
workloads. For small workloads such as "S+M" and "S+S+M", naïve and MPS collo-
cation provide sizeable benefits by training the small model without impacting the
medium one. In general, the flexibility of both naïve collocation and MPS is a great
advantage here over MIG.

4.4. Results 45

0

5

10

15

20

25

30

Ex
ec

u
ti

o
n

 T
im

e
(m

in
u

te
) Naïve MPS MIG Serial

0

25

50

75

100

125

150

175

200

225

S + L M + L

Ex
ec

u
ti

o
n

 T
im

e
(m

in
u

te
)

FIGURE 4.13: Total time for training mixed vision workloads with
(naïve, MPS, MIG) & without (serial) collocation for two epochs.

Workload configurations can be found in Table 4.3.

MIG performs significantly worse for these kinds of workloads as the resources
available to the medium model are limited even after the small model finishes. On
the other hand, when increasing the workload by including more medium-sized
models, e.g. "S+M+M+M", this disadvantage of MIG diminishes, allowing it to
slightly surpass naïve collocation. This is in line with conclusions in Section 4.4.1.
Note that there is little difference in the execution time achieved by MIG in each
of the graphs in Figure 4.13. MIG isolates the collocated models, and the resources
available to these medium models are identical under MIG. Thus, with MIG, the to-
tal execution time boils down to the execution time of the slowest model training
regardless of the mix of the collocation.

As Section 4.4.2 discussed, the large model runs utilise more of the GPU on their
own. "S+L" and "M+L" runs corroborate this earlier finding as collocation offers
reduced benefit in these cases. MIG performs significantly worse than the other
options as the resource availability of the large model is locked even after the small
and medium models finish their execution.

Figure 4.14 dives deeper into the "S+M+M+M" workload to observe how the GPU
utilisation and memory footprint changes over time during collocated runs with
naïve, MPS, and MIG collocation. We pick this mix as it is the one that utilises
MIG instances the best. The GPU utilisation under MIG gets lowered after the small
model finishes since MIG is unable to fill up the corresponding instance with more
work. On the other hand, naïve and MPS are able to keep similar GPU utilisation
throughout. In contrast, the memory footprint follows a similar trend for all collo-
cation strategies. It is higher in the beginning as all four models are training. The
values then drop off quickly once the small model finishes training.

Take-away. MPS collocation provides significant benefits when training a mix of models.
MIG collocation is unsuitable when mixing different models as resources can not be reallo-
cated once some of the models finish training.

46 Chapter 4. GPU Collocation

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200
SM

A
C

T

Time (second)

naïve MPS MIG

(A) Streaming Multiprocessor Activity (SMACT)

0

10

20

30

40

0 200 400 600 800 1000 1200M
em

o
ry

 F
o

o
tp

ri
n

t
(G

B
)

Time (second)

naïve MPS MIG

(B) Memory footprint

FIGURE 4.14: GPU utilisation and memory footprint over time for
S+M+M+M from Figure 4.13.

4.4.7 Mixed Recommender and Vision Workloads

Table 4.4 shows the results for collocating a recommender model with a vision model.
As the recommender model takes much longer to train, we measure its training time
by blocks instead. One training block contains 102400 training iterations and a val-
idation pass. The ResNet training time is measured per epoch as in previous ex-
periments. We treat the first training block and epoch as warm-up to ensure correct
measurements. We run the MIG-based collocation on compute instances that share
memory as the recommender model does not fit into the memory of smaller GPU
instances.

Adding a memory-heavy model such as the recommender greatly promotes colloca-
tion. While training time does increase when collocating these models, it only goes
up between 4%-14% and 4%-33% for the recommender and ResNet, respectively.
MPS performs especially well, training both models with just a 4% increase in train-
ing time. Interestingly, the availability of extra memory under a shared memory
MIG configuration benefits the training of ResNet, noting improved performance

TABLE 4.4: Mixed collocation with Recommender model. Recom-
mender time is for one training block (102400 iterations) plus valida-
tion. ResNet time is for one epoch. The reported increase in time (%)

is relative to the two no-collocation runs.

Workload Recom. Time (h) ResNet Time (h) SMACT Memory (GB)
Recommender 5.36 - 5% 29.14

ResNet152 - 1.05 82% 8.47
Naïve 6.09 (+14%) 1.11 (+5%) 81% 37.75
MPS 5.57 (+4%) 1.10 (+4%) 81% 37.62

MIG (shared) 5.60 (+5%) 1.40 (+33%) 39% 37.86

4.5. Guidelines & Challenges 47

over 4g.20gb in Figure 4.9a even though the model is collocated with the recom-
mender.

As before, memory consumption roughly corresponds to the sum of both models.
SM activity, however, does not increase on collocation. This suggests that the slow-
down under collocation is due to another resource contention. Under MIG, only
part of the compute power of the GPU can be assigned to ResNet, even though the
recommender requires little.

Take-away. Collocation of models that stress different parts of the GPU may greatly in-
crease throughput in exchange for a minimal increase in training time.

4.5 Guidelines & Challenges

Based on the results of our experiments in Section 4.4, we now provide some guide-
lines for deep learning training collocation in Section 4.5.1, and highlight the chal-
lenges faced when doing performance analysis in this domain in Section 4.5.2.

4.5.1 Collocation Guidelines

Workload collocation is highly beneficial when the aggregate compute and memory
needs of the collocated deep learning training runs fit the GPU. In Section 4.4, we ob-
serve significant throughput benefits (up to four times) for small compute-intensive
workload setups despite the increase in the epoch time of individual training runs.
Medium-sized compute-intensive workloads also exhibit similar throughput bene-
fits, though less pronounced. Similarly, collocating compute- and memory-intensive
training together leads to a more effective use of the hardware resources without
significantly hindering training time.

Collocation gives diminishing returns when the SM activity of an individual train-
ing run is already close to 100%. For example, even without collocation, the training
of CaiT hits SMACT numbers of 90% and up. This shows that the GPU’s compute
resources are utilised almost completely. Hence, the large workload scenarios, like
CaiT, do not benefit as much from collocation. A user can make an educated guess
for the most effective degree of collocation (no collocation, 2-way, 3-way, etc.) based
on the SMACT values of an individual run.

The aggregate memory footprint of the collocated runs can simply be estimated by
the sum of the memory footprints of the individual runs and cannot exceed the avail-
able memory on the GPU. As a result, for large workload scenarios, we either cannot
collocate any training runs (e.g., ResNet152 with batch size 128) or cannot reach be-
yond 2- or 3-way collocation (e.g., Figures 4.9 & 4.10). A user can determine whether
a set of runs can be collocated effectively a priori based on the known or expected
memory footprints of individual runs.

MPS achieves better performance across the board thanks to its flexible distribution
of hardware resources among the collocated runs. Hence, for setups where just a
single user is submitting training jobs, MPS-based collocation will always be the
better option over naïve and MIG.

MIG is able to support collocation effectively when a strict separation is required
among the runs thanks to its rigid partitioning even though this partitioning leads

48 Chapter 4. GPU Collocation

to sub-optimal performance compared to MPS. When there are multiple users sub-
mitting training jobs or when even a single user requires non-interfering runs due
to e.g. privacy concerns, MIG is the only option for collocation. If the workload
is known a priori, the ideal set of MIG instances can be created accordingly. This
way, MIG-based collocation can still be beneficial over training serially even though
it comes at a slight cost in performance compared to MPS.

MIG exhibits higher energy efficiency on GPUs when the instances are configured
well for the workload. Whenever MIG’s performance is close to MPS in terms of
time-to-train, its energy consumption for end-to-end training is consistently lower
than that of MPS. Thus, if the workload is known and the ideal set of MIG instances
is set, then, MIG is the more energy-efficient choice.

4.5.2 Challenges

Benchmarking in a rapidly evolving field like deep learning, has its challenges,
which we encountered in our study.

Maturity of the toolset for MIG. DCGM is capable of tracking metrics per MIG in-
stance as mentioned in Section 4.3.2. However, earlier in our study, it did not reliably
report the metrics for the 4g.20gb instance. This issue has since been resolved, al-
lowing us to include 4g.20gb in Section 4.4. There are, however, other reporting
anomalies under MIG with DCGM. For example, metrics that track data movement
across PCIe, which connects the CPU and the GPU, do not report anything when
MIG instances are used on A100 GPUs.

PyTorch improvements. Our initial experiments for this study were conducted un-
der CUDA 11.6 and PyTorch 1.13. This configuration was unable to efficiently utilise
MPS. The introduction of PyTorch 2.0 has fixed these issues and has significantly in-
creased the effectiveness of MPS as reported in our results.

4.6 Conclusion

In this chapter, we did a performance characterisation on a modern GPU device that
has support for multiple means of GPU collocation: naïve, MPS, and MIG. Our re-
sults demonstrate that GPU collocation is highly beneficial for small- and medium-
sized workloads that cannot fully saturate the whole GPU. Although per-model
training is overall slower, more work can be done per unit of time by executing work-
loads in parallel, which utilises the GPU resources more effectively and increases the
training throughput. MIG notably requires a rigid setup while providing full isola-
tion across its instances. If the workload across the instances are imbalanced, runs
that finish early will leave some instances idle, unless there is other work that could
be allocated over those instances. Naïve collocation and MPS, on the other hand,
can utilise the resources released by the finished work, increasing the training per-
formance of models that require more time to train. In general, MPS provides the
best collocation performance, if not the most energy efficient.

In this work, we limited our focus to training on a single GPU, since NVIDIA doesn’t
allow multi-GPU training with MIG. In a data centre, many workloads can be col-
located not only on the same GPU but also on the same server. Therefore, studying
the impact of collocation while running other workloads on other GPUs on the same

4.6. Conclusion 49

device would be interesting future work. Furthermore, considering the results with
the recommender model, further investigations of the shared memory instances of
MIG would be worthwhile.

50 Chapter 4. GPU Collocation

4.6. Conclusion 51

52

Chapter 5

Data Sharing via TensorSocket

5.1 Introduction

The process of training a deep learning (DL) model is computationally expensive,
mandating the use of powerful accelerators such as GPUs to match the computa-
tional needs. However, while the core of the training process can naturally be accel-
erated this way for many DL models, some training pipelines feature computation-
ally expensive data pre-processing operations such as augmentation and decoding
[82]. Such operations often cause bottlenecks on the host-, or input-side of the train-
ing pipeline, where the dominating processing unit is still the CPU [83, 84].

Compute offerings of cloud providers are popular for addressing the computational
needs of deep learning training thanks to their on-demand availability. On the other
hand, the range of CPU-to-GPU configurations is rather limited, as shown in Fig-
ure 5.1. Furthermore, an instance with a high vCPU to GPU ratio can cost up to 16
times as much as an instance with minimal vCPU count with the same GPU [85].
This high trade-off for the need for more CPU availability, combined with the wide
range of DL workloads and their differing computational requirements, lead to sev-
eral bottlenecks [86, 87, 88]. Specifically, DL training processes that are bottlenecked
by their input processing render expensive high-performance accelerators under-
utilised [19, 57]. In turn, this wastes both CPU and GPU resources. Underutilisation
of cloud resources is financially wasteful for everyone as compute that has been paid
for is not used effectively. Furthermore, it creates an unsustainable carbon footprint
in order to address the demand for AI [15, 14, 4, 89, 90].

In practice, it is common to train several models to accomplish a task. The feasibility
of DL models heavily depends on finding a model architecture (neural architecture
search) or set of parameters (hyper-parameter tuning) that responds well to the data.
This results in model training scenarios that exhibit shared tasks, especially in their
input pipelines. There has been recent work that has proposed ways to leverage such
shared tasks [87, 91, 92, 93] and effectively demonstrated the premise of sharing. On
the other hand, these works either focus on the cloud scale, paying less attention to
the finer-grained cooperation across training processes on the same server, or put a
heavy burden on the CPU resources, essentially locking the CPU into being a data
feeder for a hardware accelerator instead of facilitating efficient resource utilisation.

In this chapter, we draw inspiration from these prior works on data sharing across
DL training tasks in addition to the work on database systems that leverage the
shared work done across concurrent database requests [94, 95, 96, 97]. Our goal is

5.1. Introduction 53

to increase opportunities for work sharing and collocation across DL training jobs
while minimising the hardware resource requirements for such jobs. Rather than
viewing these jobs as big monolithic isolated tasks that have to get scheduled exclu-
sively on some CPU and GPU resources, we propose TENSORSOCKET, a novel data
loader that is shared across models being trained on the same dataset. TENSOR-
SOCKET turns the competition for data and hardware resources into a cooperation al-
lowing for more effective workload collocation across concurrent training tasks. As
a result, it alleviates resource underutilisation and the aggregate costs of DL model
training.

1 2 4 6 8 16

96
64

48
32

24
16

8
4vC

PU
 C

ou
nt

1 2 5 1
2 2 2 4

2
4 2 4

1
6
9
8

AWS

1 2 4 6 8 16
GPU Count

96
64

48
32

24
16

8
4

2
1
1

1 2
1
1
1

Azure

1 2 4 6 8 16
96

64
48

32
24

16
8

4

2 1
1

2
2 1 2 1

2
3 3 3 1
4 3 3 1
4 3 3 1

GCP

FIGURE 5.1: Cloud instances by vCPU to GPU ratio offered by Ama-
zon Web Services (AWS) [85], Microsoft Azure [98], and Google
Cloud Platform (GCP) [99]. The colour scale denotes the number of

instances offered with the specified vCPU-GPU pairing.

Our contributions are as follows:

• We present the design and implementation of TENSORSOCKET and demonstrate
how easily it can be adopted as an alternative data loader in DL training pipelines
implemented in PyTorch [49] in a plug-and-play manner.

• We highlight and evaluate the benefits of TENSORSOCKET across a variety of
training scenarios (image analysis, audio classification, generative AI) and hard-
ware setups (powerful on-premises hardware, different cloud offerings). Our
evaluation shows that TENSORSOCKET enables scenarios that are infeasible with-
out data sharing, doubles training throughput, and, most importantly, when util-
ising cloud instances, can halve the cloud costs by reducing the CPU needs by up
to four times.

• We compare TENSORSOCKET to the state-of-the-art techniques for shared data
loading, CoorDL [87] and Joader [93], and demonstrate that TENSORSOCKET ei-
ther outperforms or matches their training throughput while requiring less CPU
resources and lower deployment effort.

The rest of this chapter is structured as follows. Firstly, Section 5.2 gives an overview
of the data loading step in DL model training, before Section 5.3 presents TENSOR-
SOCKET and motivates concrete use case scenarios for it. Then, Section 5.4 demon-
strates the multi-dimensional benefits of TENSORSOCKET over a variety of training
pipelines and hardware setups, and Section 5.5 discusses further applicability and
potential limitations of TENSORSOCKET. Finally, Section 5.6 surveys related work,

54 Chapter 5. Data Sharing via TensorSocket

CPU GPU

Training
Process

Training
Process

Training
Process

Preprocessing

Decode Transform
Data
LoaderStorage memcpy

Preprocessing

Decode Transform
Data
Loader memcpy

Preprocessing

Decode Transform
Data
Loader memcpy

(A) Conventional DL input pipeline.

CPU GPU

Consumer

Consumer

Consumer

Producer

Training
Process

Training
Process

Training
Process

Preprocessing

Decode Transform
Data
Loader memcpy

* * * *

* * * *

* * * *

Storage

(B) Shared input pipeline with TENSORSOCKET.

FIGURE 5.2: Collocated DL model training (a) without sharing the
data loader and (b) with sharing the data loader using TENSOR-
SOCKET. The arrows denote the flow of data from storage to training
processes. The shared data loading process (producer) is shown in

yellow, and the training processes (workers) in blue.

and Section 5.7 concludes the chapter.‘

5.2 Data Loading in Deep Learning

Characteristics and bottlenecks. Figure 5.2a shows the different training processes
that deal with reading and transforming data. In general, a DL training process con-
sists of a model configuration, a dataset partitioned for training and validation, and
a training loop. The training process iterates over the full training partition of the
dataset a number of times, specified as epochs. The data loader is tasked with fetching
and readying the data for the model to train on. During each iteration, a batch of
data is prepared from either disk or memory. This preparation includes fetching,
decoding, and transforming the samples. Furthermore, data may be augmented in
order to improve the accuracy of models trained on it and their ability to generalise
to future unseen data [82, 100].

Decoding, transforming, and augmenting data are all steps that handle and modify
data during training and are collectively called data pre-processing operations. The
more extensive the pre-processing, the higher the computational overhead during
training, potentially introducing input-bound bottlenecks. In some real-world train-
ing processes, these operations can amount to half of the energy costs [101].

Furthermore, even though the data used for training is in fast local storage, such as
main memory or SSDs, this data commonly exceeds memory capacity. The result
is that the data has to be repeatedly read from disk, swapping out the data that
has already been trained on. The damage done by this swapping and OS thrashing
depends on how much data can fit in memory as well as the storage back-end. This
introduces I/O as a potential bottleneck on the critical path [87].

Alleviating the bottlenecks. Data loaders can be configured to alleviate problems
that may arise due to inadequate host-side resources that result in the training pro-
cess idling the GPU [86]. For example, pre-fetching overlaps the work done for data
preparation with model training by reading and processing data prior to when it is
required during training. Similarly, scaling up the number of workers contributing
to reading and pre-processing the data can also help hide the input bottlenecks in
training. While increasing the worker count does not speed up the pre-processing
time of individual batches, it does increase the total batch throughput that can be fed
to the model training. On the other hand, a high degree of pre-fetching and parallel

5.2. Data Loading in Deep Learning 55

workers incur higher host-side CPU utilisation and memory consumption, increas-
ing the required resource cost and potentially causing contention for resources at the
host side.

If the CPU is fully utilised while the GPU is not, another option is to offload pre-
processing operations to the GPU. Tools like NVIDIA DALI [102] or techniques like
FusionFlow [103] and FastFlow [104] offer methods for resolving data loading bot-
tlenecks that may arise in such scenarios. However, offloading pre-processing to
the GPU reserves compute resources that could otherwise be used for training the
model itself and should therefore be done with care.

Opportunities for sharing. Developing an effective DL model often requires mul-
tiple models to be trained and evaluated in quick succession over the same or sim-
ilar datasets. Model selection is a common practice where model architectures and
training configurations are empirically compared. Hyper-parameter tuning eval-
uates different hyper-parameter settings, such as learning rate, weight decay, and
optimiser settings. These types of tasks are essential for landing on the best per-
forming model [105, 106, 107, 108], as the range of different model architectures and
hyper-parameters available increase with the introduction of new models.

Our goal is to propose a mechanism to alleviate the data loading bottlenecks in deep
learning training that is complementary to the ones listed above. More specifically,
motivated by the repetitive nature of tasks during the model search and hyper-
parameter tuning for deep learning training, we would like to leverage the shared
data and work required by these tasks. In our solution, TENSORSOCKET, we aim
to dedicate the maximum amount of GPU resources to the training loop itself and
minimise CPU resource requirements for data loading. Furthermore, by extending
existing data loader implementations instead of replacing them, our solution is com-
patible with other optimisations that can be done for data pre-processing.

State-of-the-art sharing techniques. Motivated by these opportunities for sharing,
prior work has also advocated for data sharing in DL [87, 91, 92, 93]. Here, we more
specifically detail the proposals that are closest to TENSORSOCKET, which we also
compare TENSORSOCKET against in Section 5.4.

CoorDL [87] is an extension to NVIDIA DALI that coordinates data pre-processing.
It is designed for the cluster level and can be used to share data directly between
training processes. It can distribute a batch of data to any number of training pro-
cesses in the cluster. Once all training processes are done with the data, CoorDL
continues to the next batch. CoorDL’s focus on the cluster level and design around
DALI, however, surfaces some limitations. Firstly, CoorDL is designed for model
training on separate GPUs and cannot utilise leftover GPU compute power to train
multiple models on a single GPU in a collocated fashion. Secondly, CoorDL per-
forms poorly when the models that train simultaneously are not very similar, as
in this case the models that are faster have to wait for the slower ones. This rigid
design also prevents CoorDL from being deployed as a live service with training
processes arriving at different moments. Thirdly, CoorDL requires the data loading
and pre-processing pipeline to be implemented in DALI, requiring substantial extra
engineering if the pipeline implementation is not already using DALI. Finally, the
existing CoorDL codebase [109], and the DS-Analyzer project around it, is written in
Python 3.6, which has been deprecated since 2021 by PyTorch and reached Python
end-of-life in December that year.

56 Chapter 5. Data Sharing via TensorSocket

Joader [93] is a standalone shared data loading solution that supports sharing over
multiple datasets. A server is configured in which all datasets have been registered.
Training clients, also known as jobs, then communicate with this server using RPC.
Joader reduces CPU utilisation by having one server that does the data loading and
pre-processing for multiple jobs, even if those jobs require datasets that are not iden-
tical but just overlap. In the scenario where models train on the same base dataset,
this allows models to train at different speeds and still share part of their data load-
ing. Joader achieves this flexibility across different datasets through a technique
called dependent sampling. However, this dependent sampling also comes with an
important drawback; it requires intersection calculations to run at every iteration,
which adds a high CPU cost. Furthermore, Joader only has a proof-of-concept im-
plementation [110], which is written in Rust making it very difficult to adapt existing
deep learning training codebases to. Datasets have to be converted to the propri-
etary format that Joader expects and only image data with specific parameterisation
is supported. There is no support for a variety of image pre-processing operations
other than the pipeline that is hardcoded in Rust. Finally, data reaches the training
jobs as NumPy matrices which require tensor conversion and host-to-device trans-
fer, and batching during training is not supported, which are all detrimental to data
loading and training performance.

Next, we delve deeper into TENSORSOCKET.

5.3 TENSORSOCKET

This section presents TENSORSOCKET1, our shared data loader that capitalises on
the redundancy among similar but separate data loaders of collocated training pro-
cesses. We propose a solution to inefficient hardware utilisation and resource wastage
by minimising redundant work and hardware resource consumption while ensuring
that downstream training processes are not impacted. By detaching the data loading
pipeline from each training process, we can merge several of them into a single data
loading pipeline. This single data loader can expose the training data for use in each
collocated training process.

5.3.1 Overview

Figure 5.2b illustrates how our shared data loader works. The figure shows an exam-
ple of three collocated training processes, where, in yellow, the tasks of the producer
are shown, and in blue, the training process with the consumer is shown.

At its core, our system is composed of a producer and a number of consumers. The
producer holds a single data loading process along with some bookkeeping, while the
consumers iterate on data sent by the producer. This producer-consumer workflow
can be swapped in place of DL training framework-specific DataLoader objects,
such as the PyTorch DataLoader.

Given that the producer is the owner of the data loading pipeline as well as respon-
sible for data generation, it would be regressive to copy each batch of data into every
collocated training process. Instead, once the producer has prepared a batch of data,
the workers are all given the location of the data batch to use in their respective

1Code repository for TENSORSOCKET itself https://anonymous.4open.science/r/tensor
socket-CC3E.

https://anonymous.4open.science/r/tensorsocket-CC3E
https://anonymous.4open.science/r/tensorsocket-CC3E

5.3. TENSORSOCKET 57

processes. Every consumer has a queue that holds up to a few of these locations.
This introduces some flexibility to prevent training hiccups (e.g., a training process
falling behind during a batch) from interfering with the other training processes.

5.3.2 Implementation

TENSORSOCKET is a library built around PyTorch as it is the most widely used deep
learning framework available. A crucial limitation common in other data sharing
solutions [87, 93] discussed in Section 5.2 is that the solution itself implements the
complete data loader. This limits the adoption of the implementation as it requires
the user to adapt to the specific codebase, in addition to the library version depen-
dencies, of that solution. We prevent these shortcomings by setting TENSORSOCKET

up as a wrapper around the existing PyTorch data loader instead of a separate data
loader itself, ensuring out-of-the-box compatibility with any PyTorch training script.
While this does mean that the current implementation is PyTorch-specific, imple-
mentations of similar wrappers around the data loader’s frameworks such as Ten-
sorFlow won’t be prohibitive as these frameworks generally follow the same prin-
ciples for their data loading. We leave the more detailed discussion on TENSOR-
SOCKET’s adoptability in other frameworks to Section 5.5.2.

Producer

TENSORSOCKET splits data loading from training. The data loading producer be-
comes a server that can dynamically process and serve incoming consumer clients.
A TENSORSOCKET producer instance is initialised with a data loader object. It is
exposed as an iterator that itself iterates over the nested data loader it is initialised
with. The producer repeatedly requests the contained data loader to fetch the data
from disk. It will pause iterating over the data loader whenever the consumers cur-
rently do not need extra data, notified by communication between the producer and
consumers. This can also be the case when there are no consumers present as in this
case there is no need for any data loading.

Consumer

Abstracting away the data loader into the producer allows the consumer to be
lightweight. As TENSORSOCKET’s producer and consumer directly replace the data
loading batch iterator in the training script, the consumer similarly takes the form
of an iterable object that fetches new data whenever available. If there is no data
available the consumer halts and waits. This design makes for a minimal one-line
swap in training script code (as exemplified in Figure 5.3).

Communication

The communication between the producer and consumers is done using ZeroMQ
sockets. ZeroMQ is a tiny open-source library that allows for sharing atomic mes-
sages with low latency. In TENSORSOCKET’s case, we use ZeroMQ sockets for com-
munication between the producer and consumers using a PUB/SUB pattern [111].
This is a multicast pattern that is flexible and scalable, allowing one producer to
connect to multiple consumers without any performance risks.

58 Chapter 5. Data Sharing via TensorSocket

The data is shared over these sockets by the producer. Once a consumer has fetched
a readied batch of data for use in training, it notifies the producer by sending an ac-
knowledgement message back to it, allowing for the producer to continuously keep
the consumers fed new data. When multiple consumers are training simultaneously,
the producer will wait for an acknowledgement from all consumers before releasing
a piece of data. This ensures that all consumers have iterated on a batch before it is
deleted.

Depending on the dataset and models, consumers may take a long time to go through
their training data batches. In order to be continuously aware of consumers, pro-
ducers send and receive heartbeat messages from their consumers over a different
socket. The producer will time-out consumers that it has not received a heartbeat
from in a while.

Data sharing

Data sharing is at the heart of TENSORSOCKET. If the data sharing implementation is
not efficient, it will become a bottleneck that would outweigh the benefits of sharing.
There are two ways that data sharing can be implemented.

Some solutions share the data bytes directly with the training processes via inter-
process communication [93]. This surfaces some concerns regarding sharing effi-
ciency and data duplication. Increasing the size of the training data directly in-
creases the size of the network messages in such a solution, potentially leading to
slowdowns. Furthermore, while the data loading itself is unified, the resulting data
is then duplicated for every client, spiking memory consumption and data move-
ment costs.

In TENSORSOCKET’s case, we share small packets containing pointers to the data
instead of the data itself. Following our earlier design philosophy, we heavily bor-
row from PyTorch’s existing data management. PyTorch introduces Tensor objects
which are data matrices, similar to NumPy matrices, that contain all data that Py-
Torch runs on. While PyTorch is most commonly known as a Python library, much
of the internals such as Tensors are defined in C++. We can use this to our advantage
by extracting the data pointer and other necessary information. This pointer is then
shared by the producer to the consumers, which in turn use this data to reconstruct
the Python tensor object without any data duplication.

PyTorch as a library is heavily optimised for running with multiple threads as data
workers and on multiple GPUs and machines. The tensor implementation contains
methods for dealing with concurrency and distribution, including tensor rebuilding.
By using this somewhat hidden PyTorch functionality we can share tensors without
requiring an external implementation.

Tensors in PyTorch hold data that can be on the host system (i.e., CPU), but can also
be put on the GPU. Transferring data to the GPU is a costly operation. By inheriting
PyTorch tensor methods, TENSORSOCKET can reconstruct tensors on both the CPU
and GPU. This means that the producer can put the data on the GPU once, after
which all consumers collocated on that GPU can access it. Furthermore, we can rely
on PyTorch’s tensor management for our shared data. Tensors are kept in memory
as long as any of the producers or consumers hold a reference to it.

5.3. TENSORSOCKET 59

1 # train.py (without TensorSocket)
2 data_loader = DataLoader(dataset)
3 for batch_idx, (input, target) in enumerate(dataset):
4 output = model(input)
5 ...

(A) Conventional training script without TENSORSOCKET.

↓
1 # producer.py
2 data_loader = DataLoader(dataset)
3 producer = TensorProducer(data_loader)
4 for _ in range(epochs):
5 for _ in producer: # Loop over the dataset
6 pass
7 producer.join()

(B) TENSORSOCKET producer script.

1 # consumer.py (or train.py)
2 data_loader = SharedLoader()
3 for batch_idx, (input, target) in enumerate(data_loader):
4 output = model(input)
5 ...

(C) TENSORSOCKET consumer script.

FIGURE 5.3: Example TENSORSOCKET implementation requiring
minimal code changes. The top listing depicts a standard DL script.
The data loader is split from the main training process, creating a pro-

ducer process and a consumer process.

Finally, using capabilities of frameworks such as PyTorch gives us access to fast
GPU-to-GPU communication methods like NVLink while sharing the tensors. This
allows TENSORSOCKET to efficiently share data even if the models train on different
GPUs. Data can be loaded on one of the GPUs after which it can be directly shared
to the other GPUs with direct NVLink interconnects.

Synchronisation

Considering that consumers may train different models and training is stochastic,
we should expect that consumers do not process a batch in identical time. This led
us to introduce a batch buffer on the consumer side. Instead of actively requesting
the next batch on iteration, consumers can hold up to N batches (i.e., pointers to the
tensors of batches) in their buffer. This allows for the producer to actively pre-fetch
data, and for the consumers to drift at most N batches apart. Both the buffering and
the pre-fetching hide the latency of various parts of the data loading pipeline. When
designing this queue, we experimentally found that a buffer as small as two batches
is enough to provide maximum training throughput while training similar tasks.
Increasing the buffer size can be beneficial when training processes fluctuate more
widely in their speed. It should be noted that increasing the buffer size does increase
the GPU memory requirement of the system as more batches need to be kept on the
GPU simultaneously.

60 Chapter 5. Data Sharing via TensorSocket

While the buffering scheme described above relaxes the conditions for data shar-
ing among the consumers, TENSORSOCKET by design targets scenarios where the
consumers train on the same dataset at or around the same time. Therefore, the
consumers have to be balanced in terms of their training speed even if they do not
process data in identical time. Whenever a process trains too fast, the consumer iter-
ator will automatically halt as there is no data available. This frees up resources for
other consumers to make up for the difference. In this case, the GPU can be time-
shared among the consumers. Modern GPUs enable this through services such as
NVIDIA multi-streams or Multi-Process Service (MPS) [54]. Especially, MPS allows
efficient time and spatial sharing of the GPU. The GPU sharing and inclusion of the
consumer buffer allow to balance the load of the consumers automatically, resulting
in higher training throughput and GPU utilisation.

Since the TENSORSOCKET producer acts as a server producing data for the con-
sumers, we also need to account for consumers that connect at different times. Once
an epoch has already started, any new consumers lack behind and have to wait for
the next epoch to start training. We introduce a leniency measure called rubberband-
ing to provide a window for consumers to join training. If a consumer joins before
2% of the dataset has been iterated on in an epoch, the producer will halt all other
consumers to let that consumer synchronize and join training. The percentage of
dataset that serves as the cutoff point can be configured. We found that rubberband-
ing is an effective method for allowing users to spawn multiple consumers without
fear of them not joining fast enough.

Usage

TENSORSOCKET is built on top of PyTorch 2 with a high focus on creating as seam-
less a solution as possible. Our implementation enables a drop-in replacement and
otherwise offers the same functionality as a PyTorch data loader.

Figure 5.3 shows an example usage of TENSORSOCKET. The PyTorch data loader is
isolated to a different process and wrapped in a TensorProducer, which is then iter-
ated over similar to a conventional data loader. The training process itself receives
the data automatically by iterating over a SharedLoader, which is an abstraction of a
TensorConsumer specific to this example. The full example can be found in our ac-
companying code repository2. In general, implementing TENSORSOCKET involves
copying the data loading logic of a training script to a separate producer script and
adding a consumer to the training script.

5.3.3 Use Case Scenarios

Here, we go over a few use case scenarios that would benefit from TENSORSOCKET,
and how our implementation of TENSORSOCKET makes these scenarios possible.

Centralised Always-Available Loading.

When exploring a dataset, it is invaluable for users to seamlessly start and stop train-
ing jobs. TENSORSOCKET allows for a high degree of flexibility and stability by ab-
stracting away the data loading from the training job itself. Once TENSORSOCKET

is running on a server, consumers can come and go as they please. The consumers

2https://github.com/Resource-Aware-Data-systems-RAD/data-sharing.

https://github.com/Resource-Aware-Data-systems-RAD/data-sharing

5.3. TENSORSOCKET 61

Storage

Producer

C
on

su
m

er
s

Epoch: 1/2
Batch: 1/N

Consumer 1

Consumer 2

Epoch: 1/2
Batch: 2/N

Epoch: 1/2
Batch: N/N

Epoch
Boundary

Epoch: 2/2
Batch: 1/N

Join

Epoch: 2/2
Batch: N/N

Epoch: 1/2
Batch: 1/N

Consumer 3 Join

Epoch: 1/2
Batch: 2/N

DoneJoin

FIGURE 5.4: Illustration of how TENSORSOCKET allows the producer
to run continuously and supply new consumers with batches.

ping the producer with heartbeats such that the producer knows how many training
processes are active at a given time. Consumers may either join training at any point
in an epoch or wait until a new epoch starts, depending on the configuration. In the
latter case, the producer buffers the first few batches at the start of a new epoch to
provide a short window in which new consumers are accepted. In such a case the
producer will halt the other consumers in order for the new consumer to quickly
iterate over the buffer.

Figure 5.4 shows an example of how new jobs, represented as consumers, are han-
dled by our shared data loading system. In the example, consumer 2 joins in too
late during the first epoch, having to wait until the second epoch starts. Consumer
3 joins in at an epoch boundary and immediately starts consuming data batches.

Native Inter- and Intra-GPU Sharing.

One way of increasing the hardware utilisation for DL training is training multiple
models at the same time, i.e., workload collocation [20, 21]. Workload collocation can
improve training throughput [38, 54, 112, 113] when the hardware resource needs of
the individual training processes are not large enough to utilise all the available CPU
and GPU resources [37, 6] or are bottlenecked by their input pipelines [114]. This
often reduces the aggregate runtime when more than one model has to be trained,
even though the training time per model usually goes up due to not having exclusive
access to the GPU.

TENSORSOCKET allows for sharing data on a single GPU between any number of
consumers, boosting efficiency in collocation scenarios that can benefit. This addi-
tionally reduces redundant memory consumption, as the memory requirement for
training processes is lowered due to not needing a data loader for each separate
training process.

Our implementation also supports collocation across multiple GPUs. Data batches
are seamlessly moved between GPUs when the data is needed on a different de-
vice. Thus, TENSORSOCKET is able to leverage GPU-GPU interconnects with lower
latency and higher bandwidth than CPU-GPU interconnects, as also mentioned in
Section 5.3.2. We evaluate this scenario in Section 5.4.2.

62 Chapter 5. Data Sharing via TensorSocket

CPU GPU

CLIP model

CLIP model

DataLoader

DataLoader

Diffusion
model

Diffusion
model

Text embedding

Storage
Text embedding

Image embedding

Image embedding

(A) Conventional deep learning input pipeline.

CPU GPU

CLIP modelDataLoader

Diffusion
model

Diffusion
model

Text embedding

Image embedding

Text embedding

Image embedding

Storage

(B) Shared input pipeline with TENSORSOCKET.

FIGURE 5.5: Sharing example for generative DALL-E image genera-
tion models.

Sharing for Mixed Workloads.

Mixed workloads that train models at different speeds, for instance when model
complexity differs significantly, can be difficult to optimise from a data loading per-
spective. For instance, prior proposals such as CoorDL [87] are not able to compen-
sate for training speed differences and thus can only be used efficiently when models
are very similar, such as in hyper-parameter tuning tasks. TENSORSOCKET supports
mixed workloads by allocating more hardware resources to heavier training pro-
cesses than lighter processes. We bound the models to be within a certain amount
of batches from each other (as described in Section 5.3.2). The result is that slower
models are sped up and lighter models are slowed down so that all models traverse
the epoch in the same amount of time. We evaluate this scenario in Section 5.4.5.

Sharing Generative Tasks Online.

In some cases, it is beneficial to move more tasks to the producer. For example, the
training of some generative models requires pre-computed data representations in
the form of embeddings for training the diffusion prior. These embeddings are usu-
ally generated before training [115], offline, but can be generated on the fly, online, via
a model inference task on the GPU. Online generation offers flexibility for new data
and circumvents having to use extra disk space to store the embeddings generated a
priori but is more taxing on the hardware resources while training. TENSORSOCKET

can move not only the data loading operations but also the embedding generation
task to its producer as it is essentially part of the data loading pipeline. This minimises
the computational footprint on not just the CPU but also the GPU when sharing. Fig-
ure 5.5 illustrates this scenario for the DALL-E model with and without sharing, and
Section 5.4.4 evaluates it.

5.4 Results

We now quantify the expected benefits of the data and work sharing enabled by
TENSORSOCKET. Our evaluation aims to answer the following questions:

• What is the impact of TENSORSOCKET on training efficiency?

• What are the cost savings TENSORSOCKET can provide?

• How do the benefits of TENSORSOCKET vary across different hardware setups
and machine learning pipelines?

5.4. Results 63

• How does TENSORSOCKET compare to state-of-the-art data sharing solutions for
model training?

To answer these questions we evaluate TENSORSOCKET in a variety of scenarios
inspired by the use cases listed in Section 5.3.3. The rest of this section first describes
our experimental setup for these scenarios in Section 5.4.1. Then, the results for each
scenario are presented in Sections 5.4.2-5.4.5. Finally, we compare TENSORSOCKET

to CoorDL and Joader in Section 5.4.6.

5.4.1 Experimental Setup

Use cases. We seek to demonstrate the value of TENSORSOCKET on a range of work-
loads that benefit from different degrees of shared data loading. We therefore evalu-
ate DL models from the domains of computer vision, audio classification, and image
generation. We investigate a wide range of popular computer vision models from
TIMM [81] and use CLMR as our audio classification workload [116], and the image
generation model is sourced from a well-known and tested PyTorch implementation
of DALL-E 2 [117, 115]. The datasets chosen for our evaluation are ImageNet-1K [8],
LibriSpeech [118], and Conceptual Captions (CC3M) [119], respectively. Table 5.1
lists the evaluated models and the corresponding datasets.

Hardware setup. We evaluate the scenarios on multiple hardware configurations.
Table 5.2 details the cloud instances and on-prem servers used in our evaluations.
The cloud configurations allow for testing the CPU utilisation benefits of TENSOR-
SOCKET by varying the number of vCPUs while keeping the GPU count the same.
The A100 server features multiple GPUs allowing us to evaluate data sharing when
each GPU trains a separate model. Finally, the H100 server’s GPU is large enough to
collocate multiple DALL-E 2 training tasks. As a result, the variety of the hardware
setups allows us to evaluate the impact of TENSORSOCKET on different environ-
ments, use case scenarios, and collocation options.

Modern GPUs support different primitives for workload collocation on a single GPU
[79]. In this work, we utilise NVIDIA Multi-Process Service (MPS) [51], unless stated
otherwise, since it is shown to allow flexible collocation while exhibiting high perfor-
mance [54]. Processes executed under MPS share both GPU memory and streaming
multiprocessors (SMs). The MPS daemon automatically handles the sharing of the
SMs across the collocated processes.

Application Model Dataset

Image
Classification

RegNetX 002

ImageNet
RegNetX 004

ResNet18
MobileNetV3-Small 0.75
MobileNetV3-Large 1.00

Audio Classification CLMR LibriSpeech
Image Generation DALL-E 2 (Diffusion Prior) CC3M

TABLE 5.1: Evaluated models and datasets.

64 Chapter 5. Data Sharing via TensorSocket

Metrics. We train the same models on the same dataset without changing the learn-
ing process and thus without impacting accuracy. Instead, we focus on the training
speed and hardware utilisation as the performance metrics. We quantify the train-
ing speed via samples/s, the number of training samples processed by the training
loop per second. CPU Utilisation is measured via top [18]. Finally, we measure GPU
Utilisation with SM Activity, the fraction of active time on the streaming multipro-
cessors of the GPU, monitored by DCGMI [70]. SM activity is shown to illustrate a
finer-grained view of GPU utilisation compared to other GPU utilisation readings
from the dcgm tool [34].

Training runs. All experiments are run with Python 3 and PyTorch 2, and the latest
versions of the respective model repositories as of writing, using the radT platform
[79]. We ran everything twice to validate the results and stick to the default model
parameter settings as specified by the model repositories. We set the total number
of data loading workers across the collocated workloads to the number of available
CPU cores (or to 48 for the A100 server as explained in Table 5.2). These workers
are split equally among the training processes in the experiments with conventional
data loading (no sharing).

5.4.2 Image Classification

We first evaluate TENSORSOCKET’s impact on the training efficiency over the most
basic collocation scenario, where the same model is trained on a separate GPU avail-
able on the server (e.g., a hyper-parameter tuning scenario). We train a variety of
image classification models, as listed in Table 5.1, on ImageNet. ResNet18, Reg-
Netx 4 and MobileNet L are more demanding models to train, while RegNetX 2 and
MobileNet S are smaller. Among our hardware setups (Table 5.2), the A100 server
is the only one with multiple GPUs available. With 12 CPU-cores per GPU, this
scenario additionally showcases TENSORSOCKET’s benefits when the CPU-to-GPU
ratio is too low to fully utilise the whole system, which is common among lower-
priced cloud offerings (Figure 5.1).

Figure 5.6 reports the per-model training throughput and hardware utilisation. In
the case of no shared data loader, the training script runs separately on each GPU.
When using TENSORSOCKET, we direct the producer to GPU 0 and launch a con-
sumer on each of the four GPUs. The producer and the consumers can communicate
via NVLink, which is available on this server across the GPUs.

Instance (v)CPUs GPU VRAM Cost
H100 Server 24 H100 80 GB -
A100 Server 128 (*48) 4x A100 4x 40 GB -

AWS g5.2xlarge 8 A10G 24 GB $1.212
AWS g5.4xlarge 16 A10G 24 GB $1.624
AWS g5.8xlarge 32 A10G 24 GB $2.448

TABLE 5.2: On-prem servers and cloud instances used in evalua-
tion. Costs are on demand per hour costs for corresponding cloud
instances [120]. The A100 server is limited to a max of 48 cores to
mimic Azure offerings with A100 GPUs (Figure 5.1), which provide a

12:1 vCPU to GPU ratio.

5.4. Results 65

ResNet18
RegNetX 2

RegNetX 4

MobileNet S

MobileNet L

Model

0
500

1000
1500
2000
2500
3000
3500
4000

Sa
m

pl
es

/s

Non-shared Shared

(A) Throughput.

Re
sN

et1
8

Re
gN

etX
 2

Re
gN

etX
 4

Mob
ileN

et
S

Mob
ileN

et
L

Model

0

20

40

60

80

100

%
 C

PU
 U

til
iza

tio
n

(B) CPU Utilisation

Re
sN

et1
8

Re
gN

etX
 2

Re
gN

etX
 4

Mob
ileN

et
S

Mob
ileN

et
L

Model

0

20

40

60

80

100

%
 G

PU
 U

til
iza

tio
n

(C) GPU Utilisation

FIGURE 5.6: Image classification training on the A100 server with 4-
way collocation, where each GPU has one instance of the same model

training, w/o sharing via TENSORSOCKET.

TENSORSOCKET increases the training throughput across all workloads. In Mo-
bileNet S’s case, the throughput almost doubles, whereas for models such as ResNet18
and MobileNet L the increase ranges from 5% to 10%. The degree of improvement
correlates with the computational complexity of the models.

For models such as ResNet18, RegNetX 2, RegNetX 4, and MobileNet S, Figure 5.6
reveals that under traditional data loading the CPU is fully utilised while the GPUs
are not. This implies that the CPU becomes the bottleneck causing underutilisation
of the GPU resources. Sharing via TENSORSOCKET resolves this bottleneck by re-
ducing the stress on the CPUs while achieving a higher GPU utilisation in addition
to the throughput benefits.

On the other hand, for models that are not CPU-bound such as MobileNet L, TEN-
SORSOCKET provides marginal benefits on the throughput and GPU utilisation. How-
ever, it frees up 70% of CPU resources. The savings in CPU resources can allow for
collocating additional workloads on the CPU side in an on-prem setting and cutting
the costs in a cloud setting.

We also provide a sensitivity analysis with respect to varying levels of collocation in
Figure 5.7. For this, we use both MobileNets as they are the models that exhibit the

66 Chapter 5. Data Sharing via TensorSocket

1x 2x 3x 4x
Collocation degree

0

1000

2000

3000

4000

Sa
m

pl
es

/s Small Non-shared
Small Shared
Large Non-shared
Large Shared

FIGURE 5.7: Per-model training throughput of MobileNet Small and
Large with increasing degree of collocation on the A100 server. Each

collocated model is trained on a separate GPU.

8 vCPUs 16 vCPUs 32 vCPUs
Cloud instance size

0

20

40

60

Sa
m

pl
es

/s Shared
Non-shared
Shared (MPS)
Non-shared (MPS)

FIGURE 5.8: Samples/s per collocated training on AWS G5 Instances
for CLMR - 4-way collocation on the same GPU using MPS and multi-
streams across different vCPU counts w/o data sharing via TENSOR-

SOCKET.

most and least benefit from TENSORSOCKET. TENSORSOCKET yields a throughput
increase for both the small and large MobileNet in all configurations. On the other
hand, increasing the number of models trained simultaneously has little effect on
the large model as the CPU is not the limiting factor (Figure 5.6). Conversely, scaling
up collocation for the small MobileNet relies on TENSORSOCKET to maintain high
throughput.

5.4.3 Audio Classification

We train the CLMR audio classification models in a 4-way collocated fashion on
different AWS instances in order to showcase the impact of data and work sharing
on host-side resources. The results are shown in Figure 5.8.

For this setup, in addition to MPS-based sharing, we evaluate running collocated
processes as a separate GPU stream, which provides more restricted sharing, but
may sometimes be the only option in a shared hardware setup such as the cloud. The
blurred parts of the bars, therefore, highlight the additional throughput benefits of
MPS-based sharing over multi-streams. Regardless, TENSORSOCKET is compatible
with any form of GPU sharing primitive.

From Figure 5.8, on the machine with the highest number of vCPUs, the workload
with and without sharing achieve the same throughput. This indicates that the num-
ber of vCPUs necessary to sustain the GPU throughput for this workload is met.

5.4. Results 67

1x 2x 4x
Collocation degree

0

200

400

600

Sa
m

pl
es

/s

0 0 00 0 0

Non-shared
Shared

FIGURE 5.9: Samples/s per collocated online training of DALL-E on
the H100 server with 1-, 2- and 4-way collocation and w/o sharing

via TENSORSOCKET.

Without TENSORSOCKET, however, the smallest instance size of 8 vCPUs performs
drastically worse than the largest with 32 vCPUs. TENSORSOCKET effectively re-
duces the vCPU requirement by 75%. The result is that under TENSORSOCKET all
three sizes of cloud instances achieve high training throughput. Based on the costs
reported in Table 5.2, this leads to cloud cost savings of about 50%.

5.4.4 Image Generation

As mentioned in Section 5.3.3, TENSORSOCKET can be used to share not just tasks
on the CPU but also on the GPU. We analyze such a pipeline using the DALL-E 2
image generation (diffusion) workload. When training DALL-E 2, data passed to
its training process must pass through a CLIP model (Section 5.3.3 and Figure 5.5).
CLIP translates the input data into a representation that can be used by the trained
model. The CLIP model can be seen as a model with frozen weights when training
the diffusion model. This essentially boils down to running inference tasks on the
GPU as part of the data preparation process for DALL-E training.

With TENSORSOCKET, we can move the CLIP model inference to the producer of the
shared data loader. In this scenario, we aim to showcase how TENSORSOCKET can
also reduce redundancy in the computational footprint on GPUs. By only needing
a single CLIP model, we can collocate multiple DALL-E 2 diffusion models without
running multiple instances of CLIP inference. This workload is carried out on the
H100 Server machine, as it is capable of supporting 4-way collocation of diffusion
model training.

Figure 5.9 shows the impact. Since the H100 server has enough CPUs to feed the
one GPU (Table 5.2), this evaluation scenario is not CPU-bound. Nevertheless, we
observe a speedup over non-shared operation under collocation. Under 2- and 4-
way collocation TENSORSOCKET is 10% to 15% faster in aggregate throughput than
without when running online training. The throughput per individual training pro-
cess gets reduced as expected, since in this setup, the GPU is highly utilised even
without collocation due to the demanding model. This shows that TENSORSOCKET

can enable data and work sharing not only on CPUs but also on GPUs.

68 Chapter 5. Data Sharing via TensorSocket

5.4.5 Model Selection

In addition to the evaluations that revolved around specific domains, we show how
our shared data loader supports mixed workloads, which is useful for model selec-
tion. As mentioned in Section 5.3.3, the design of our shared data loader supports
training of a mixed set of models through reallocating GPU resources between train-
ing processes. We evaluate model selection by collocating two different model train-
ing processes on different AWS cloud instances. As the training speed of the models
differs, we report on the aggregate training throughput. Figure 5.10 shows the re-
sults for a mixed workload consisting of a collocated RegNetX 2 and RegNetX 4. The
runs on the left use conventional non-shared data loading whereas those on the right
use TENSORSOCKET. For the g5.8xlarge and g5.4xlarge AWS instances, the CPU
does not constitute a bottleneck, and we therefore do not see substantial throughput
gains by sharing. However, we are able to closely approximate the throughput of
these larger instances with the smaller g5.2xlarge instance when sharing. In con-
trast, the workload throttles heavily on the small instance when not using shared
data loading. For the g5.2xlarge instance, sharing is therefore not only strictly nec-
essary for running this workload efficiently but also able to deliver almost the same
throughput at half the instance cost, as seen in Table 5.2.

0 500 1000
Elapsed time (s)

0

1000

2000

Sa
m

pl
es

/s

(A) Non-shared

0 500 1000
Elapsed time (s)

g5.2xlarge
g5.4xlarge
g5.8xlarge

(B) Shared

FIGURE 5.10: Runtime and aggregate training throughput of mixed
workloads (RegNetX 2 and RegNetX 4) on AWS G5 Instances with

and without data sharing via TENSORSOCKET.

5.4.6 Comparison to other sharing techniques

After having assessed the value of shared data loading via TENSORSOCKET in deep
learning training, we compare TENSORSOCKET to other tools that achieve data load-
ing speedups via sharing. We specifically compare against the state-of-the-art meth-
ods CoorDL [87] and Joader [93].3

CoorDL

Comparing to CoorDL surfaces a couple of challenges due to the age of the library
[109]. CoorDL has been designed as a plugin for NVIDIA DALI and is written for
Python 3.6. This version of Python, however, has been deprecated by PyTorch since

3While we point out the many difficulties in establishing a fair comparison across all the codebases
in the rest of this section, we are grateful for the authors of both CoorDL [87] and Joader [93] for
providing an open-source implementation.

5.4. Results 69

1x 2x 3x 4x
Collocation degree

1.0

1.2

1.4

1.6
x

CP
U

Ut
iliz

at
io

n Baseline
TensorSocket
CoorDL

(A) Normalised CPU utilisation.

1x 2x 3x 4x
Collocation degree

0.0

0.2

0.4

0.6

0.8

1.0

x
M

od
el

 th
ro

ug
hp

ut

(B) Normalised per-model training throughput.

FIGURE 5.11: CPU utilisation and throughput scaling of baseline (no-
sharing), CoorDL, and TENSORSOCKET on the A100 system under
different levels of collocation. The scaling is compared to training a
single model with that technique without collocation. Each collocated
ResNet18 model runs on a separate GPU. TENSORSOCKET is able to
achieve the maximum throughput without the deployment restric-

tions and higher CPU requirement of CoorDL.

2021, which means modern versions of the framework are not compatible with it.
TENSORSOCKET is incompatible with PyTorch 1 as the deep learning framework
made sweeping changes with the introduction of PyTorch 2. This complicates estab-
lishing a fair comparison between CoorDL and TENSORSOCKET. Nevertheless, we
run CoorDL using the evaluation script provided by the authors of the original work
[87] to run it as efficiently as possible. We adjust the parameters for TENSORSOCKET

accordingly. This means that automatic mixed precision is disabled, the batch size
is set to 512, and there are 4 data loading workers. We also choose ResNet18 as the
evaluated model following CoorDL’s evaluation. Finally, while reporting the results,
we normalise the per-model training throughput and hardware utilisation values by
dividing them with the values achieved by single-model training (no-collocation).
This normalisation is to further eliminate the impact of any unfair differences be-
tween the diverging libraries of the corresponding codebases.

Figure 5.11 reports the result of the comparison. These experiments utilise the A100
machine with 4 GPUs. Each instance of the ResNet18 model is being trained on Im-
ageNet and on a separate GPU (as in Section 5.4.2). Figure 5.11a notes the scaling of
CPU utilisation as collocation increases. TENSORSOCKET only marginally increases
CPU load under higher degrees of collocation, while CoorDL requires more CPU re-
sources to keep up. The CPU utilisation of our baseline, not using either CoorDL or
TENSORSOCKET, is close to constant. This can be explained by Figure 5.11b, which
shows the throughput scaling as the degree of collocation increases. Both CoorDL
and TENSORSOCKEThave no issue keeping the per-model training throughput the
same despite higher load. The baseline, however, heavily throttles, losing almost
75% of the performance under 4x load. This throttling can explain the low CPU
utilisation, as the data loading workers can not keep up with the training loops and
thus the models idle. In general, while both TENSORSOCKET and CoorDL can pro-
vide maximum throughput, TENSORSOCKET does so with considerably fewer CPU
resources while also being more flexible and less intrusive in usage.

Joader

Joader has a proof-of-concept implementation in Rust that is compatible with the
latest version of PyTorch [110]. Specifically, the current implementation of Joader

70 Chapter 5. Data Sharing via TensorSocket

1 2 3 4 5 6 7 8
Collocated MobileNet Small models

0

200

400

600

800

1000

1200

1400

Sa
m

pl
es

/s
1128

577

391
295

222 187 159 137

983

733
557

437 414 374 324 287

1141 1116 1099 1113 1104 1112 1075
965

Baseline Joader TensorSocket

FIGURE 5.12: Comparison of model training throughput with vary-
ing degrees of collocation under constrained CPU resources on the
H100 system between baseline (no data sharing), Joader [93], and
TENSORSOCKET. Each collocated model training is MobileNetV3-
Small trained on ImageNet. TENSORSOCKET is able to provide data
to many collocated models with little impact on throughput, even un-

der constrained CPU circumstances.

does not require PyTorch at all; rather, it uses Numpy to store data instead. While
this does improve the compatibility of the implementation, it raises serious perfor-
mance issues that hamper its effectiveness in real-world scenarios. Specifically, 1)
Joader’s image pre-processing and dataset (ImageNet) support is fully hardcoded,
2) images are delivered as NumPy matrices instead of Tensors and 3) Joader does
not have support for mini-batches. Therefore, we take a number of concessions in
order to support a comparison to Joader that is as fair as possible. Firstly, for (1),
we investigate Joader’s pre-processing pipeline and configure our TIMM training
script to use the same transformations that are hardcoded for Joader. Note that it is
not possible to use the exact same transformation code in both, as Joader is written
in Rust and pre-processing pipelines available in online model sources like TIMM
are typically defined in Python. Then, we address (2) and (3) by having the training
script in Joader’s case ask for enough data to fill up the batch after which it can con-
struct the tensor and send it to the GPU. This tensor construction from many NumPy
matrices, however, is very expensive and will cripple the performance. For the sake
of this performance comparison, we are not interested in the loss of the model, we
opt to only construct a tensor out of the first batch of data. Subsequent iterations
then wait for the new data to come in, only to train on the same, first batch again.
This minimises the overhead of batching for Joader.

Figure 5.12 shows the results of comparing Joader this way to TENSORSOCKET on
the H100 system. We maximise the performance of all techniques by using MPS for
sharing the resources of the H100 GPU. As the baseline, we train 1 to 8 collocated
MobileNetV3s without any sharing enabled. Furthermore, we restrict the amount
of data loading workers to 8. This means that, under no sharing, every model only
has 1 worker when training 8 models simultaneously. Collocation amounts that
do not divide 8, such as 5, have the workers divided unevenly in order to sum
to 8. Keep in mind that the training scripts themselves are allowed to use further
CPU resources. As expected, TENSORSOCKET performs well even when running
with high amounts of collocation, dropping no performance up to and including
6-way collocation. Only with 7- and 8-way collocation is there a drop in perfor-
mance. This comes in stark contrast to non-shared training, where throughput goes
down quickly. In fact, the data loading is such a bottleneck for non-shared training
here that the summed throughput of collocation never exceeds that of non-collocated

5.5. TENSORSOCKET Going Forward 71

training. Joader comfortably outperforms non-shared training but is far behind the
efficiency of TENSORSOCKET. This is likely caused by the extra overhead introduced
by Joader’s data sampling algorithm (as described in Section 5.2). While Joader’s al-
gorithm provides flexibility for training with different speeds and datasets, this sac-
rifices efficiency in terms of CPU resource use, which in turn impacts the efficiency
of training itself.

5.5 TENSORSOCKET Going Forward

Having evaluated TENSORSOCKET’s impact on training efficiency, cost savings, and
flexibility, this section highlights the key results while discussing further applicabil-
ity of TENSORSOCKET.

5.5.1 Target Domains and Workloads

TENSORSOCKET alleviates a range of computational and resource-dependent bot-
tlenecks. We believe TENSORSOCKET is valuable for other areas that employ com-
putationally heavy transformations or augmentations, such as with video data. In
general, DL training workloads that are prone to exhibit input-bound pipelines or
a high degree of CPU utilisation can benefit greatly from shared data loading. If
used on workloads in the cloud with similar characteristics as those presented in
our work, TENSORSOCKET may reduce costs up to a substantial 50% reduction as
shown in Section 5.4.

Achieving these benefits does require some conditions to be met. Training jobs have
to be collocated to make use of a shared data loader and are required to train with
similar speed on the same dataset. Loosening up these requirements may allow
shared data loading to become an attractive option for more workloads, though,
that may come at the cost of reduced benefits.

TENSORSOCKET is a solution for training multiple deep learning models on a single
node. This works well as in general the GPUs in a single node are the same model.
In the perhaps less likely case that the node features different models of graphics
cards, it can still be advantageous to run TENSORSOCKET individually per GPU.
Finally, to support shared learning over multiple nodes, combining TENSORSOCKET

with techniques such as CoorDL[87] or tf.data service[86] may provide an efficient
solution.

5.5.2 Generalisability and Customisation

We analysed a complex data loading pipeline that includes generating intermedi-
ate representations of our data through an auxiliary model that is not being trained
in Section 5.4.4. The ability to support unusual steps like these is a testament to
the generalisability of TENSORSOCKET. In addition, we can further dissect the data
loading pipeline for finer-grained sharing. This allows for transformations and aug-
mentations that are specific to each training process while only doing costly work,
such as image decoding, once. For other tools and techniques that use GPUs for
data pre-processing, such as NVIDIA DALI [102] or FusionFlow [103], this means
that TENSORSOCKET can be deployed together with these techniques to support
GPU-offloading of transformation and augmentation operations while keeping re-
dundancy and computational footprint low.

72 Chapter 5. Data Sharing via TensorSocket

As of its current implementation, TENSORSOCKET is implemented around PyTorch
2. PyTorch is the leading deep learning framework as of writing and TENSOR-
SOCKET implementation has no other large dependencies. Furthermore, we leave
as much of the implementation as possible, such as the data structures, over to Py-
Torch to minimise the complexity of our codebase. This makes TENSORSOCKET eas-
ily maintainable for future PyTorch versions and extendable. Other frameworks,
such as TensorFlow, can use TENSORSOCKET right now by using PyTorch as a data
sharing intermediate. If demand presents itself, we are interested in considering
native TENSORSOCKET support for other deep learning frameworks. As TENSOR-
SOCKET’s implementation is compact and the dependencies on PyTorch are isolated,
this would require just a small amount of work. Specifically, the wrapper that al-
lows for tensor deconstruction and reconstruction, TensorPayload, would need re-
implementation to provide native support for the new framework, estimated ∼59
lines of code.

5.5.3 In Conjunction with Related Tooling

Libraries for data pre-processing. Since TENSORSOCKET, by design, serves as a
drop-in replacement for framework-specific data loaders, it can easily be integrated
with other work or tools that are orthogonal to our work. For instance, PRESTO
[84] is a library that seeks to define which data transformations should be carried
out offline and online. It does this in order to reach the highest possible throughput,
among other target variables. These two systems can be integrated, as from the
perspective of PRESTO, the shared data loader of TENSORSOCKET is the same as
any other data loader.

GPU collocation primitives. In our evaluation, we mainly utilise MPS for collocat-
ing workloads on the same GPU. The GPUs used in our evaluations additionally of-
fer Multi-Instance GPU (MIG) [50] for collocation. Different from MPS, MIG-enabled
collocation offers hardware support for splitting up GPU resources across different
processes. Therefore, it is less flexible to adjust the resource split on the fly, but the
processes execute with a higher degree of isolation and less interference. MIG may
be of interest for some collocated workloads using TENSORSOCKET since it is possi-
ble to share memory resources of the GPU while keeping computational resources
dedicated to every collocated training process.

Tools for hyper-parameter tuning and model selection. Ray Tune [121] is a tool
for hyper-parameter tuning that launches training processes with a set of hyper-
parameters and replaces any processes that show too high loss values, Cerebro [108]
is an efficient training system targeting model selection tasks. As illustrated in Fig-
ure 5.4, TENSORSOCKET has the ability to serve training processes that get launched
and killed throughout the hyper-parameter optimisation or model selection process.
Therefore, it is of interest to see how tools like RayTune or Cerebro can benefit from
our shared data loading setup instead of launching a separate data loader for each
training process started.

We leave these aspects as future research directions to explore for TENSORSOCKET

or alternative shared data loading opportunities.

5.6. Related Work 73

5.6 Related Work

Historically, there has been a plethora of work on benchmarking and optimising the
computational efficiency of the core of model training and serving. However, in
recent years, data loading and pre-processing have been gaining more attention, as
with ever-increasing model sizes and training throughput requirements, the cost of
data loading bottlenecks is growing rapidly [101].

Murray et al. [86] and Mohan et al. [87] emphasize the role of the data loading
pipeline and its effect on training efficiency. The former presents the tf.data frame-
work to ease the tuning for the computational efficiency of data pre-processing. The
latter proposes CoorDL, a data loading library, and MinIO, a software cache with the
goal of reducing cache thrashing. These works, among others [92, 91], also advocate
for sharing for DL data loading tasks, but more at the cluster-level rather than the
finer-grained view of TENSORSOCKET.

Joader, proposed by Xu et al. [93], provides an alternative to CoorDL that offers extra
flexibility when sharing data for training tasks, allowing for shared training on mul-
tiple datasets at the same time. It manages this via a novel data sampling solution
that optimizes sharing at the cost of some dataset intersection calculations at every
training iteration. Such calculations can be costly as Section 5.4.6 demonstrated.

As already mentioned in previous sections, there has also been work to offload data
pre-processing tasks onto GPUs [102, 104, 103]. TENSORSOCKET is orthogonal and
compatible with these works since it allows for sharing on both CPUs and GPUs.

Behme et al. [114] explore lossy image compression’s role in mitigating data loading
bottlenecks. They demonstrate that moderately compressed data maintains accu-
racy comparable to benchmarks while saving 30% storage and how this technique
complements the software cache of MinIO [87].

TENSORSOCKET also borrows ideas from works on data and work sharing in
databases such as StagedDB [122], QPipe [94], and SharedDB [95], and works that
analyse the trade-offs of sharing [97, 123]. These works aim at sharing work that is
common across concurrent database queries. In contrast, TENSORSOCKET applies
similar sharing ideas to DL data preparation.

Finally, the latest standardised benchmark from TPC, TPCx-AI [124], specifically
makes data preparation process an essential part of the benchmark. MLCommons
also recently released a benchmark suite focusing on storage [125, 126] unlike its
previous benchmarks. These benchmark standardisation efforts emphasise the in-
creasing importance of the data preparation steps of deep learning and the need for
investing in crucial optimisations for such steps.

5.7 Conclusion

In this chapter, we presented TENSORSOCKET, a novel data loading mechanism that
enables data and work sharing in data pre-processing pipelines of deep learning
training. The key insight behind TENSORSOCKET is that tuning efforts to achieve
the best model architecture and parameters require training several models on the

74 Chapter 5. Data Sharing via TensorSocket

same data. This results in shared tasks across these training processes. We demon-
strated that TENSORSOCKET can double training throughput while substantially re-
ducing the number of CPU cores to achieve that throughput. Furthermore, it is
easy to adopt in existing training pipelines, enables certain training scenarios on
restricted hardware resource setups, and can halve cloud setup costs as a result. Fi-
nally, TENSORSOCKET is compatible with existing techniques that aim at increasing
the computational efficiency of the data pre-processing tasks.

5.7. Conclusion 75

76

Chapter 6

Progressive Resizing

6.1 Introduction

Data is the driving factor behind the current deep learning boom. The quality of
model training heavily depends on it, and the models can only turn out as well as
the data lets them. The demand for deep learning, however, has only led to larger
and larger datasets, accompanied by larger and larger models. While these can cap-
ture great detail, it takes a significant amount of hardware resources, energy, and
expertise to train models on such a scale.

Model training happens in an iterative fashion. The model repeatedly passes over
the dataset (one epoch) in order to get accustomed to the data. The speed at which
a model improves tends to be significantly faster at the start compared to at the end.
This is because the model can make quick progress by learning rough features, but
has to optimise on smaller details in the end.

What if we use this to our advantage? When we teach children a subject, e.g. Maths,
we do not start by introducing them to integrals. Instead, we start with easier con-
cepts first before proceeding to more difficult concepts. We apply this analogy to
deep learning. Why should a model learn on fully detailed images from the start,
instead of breezing through lower detailed samples first? In this chapter, we ad-
vocate for increasing the complexity of training samples during training, progressive
resizing, based on this insight.

While progressive resizing has been around for a couple of years, it has never been
extensively researched. FastAI [127] has been the most vocal supporter of the tech-
nique[128]. They, however, just provide a basic set of guidelines for the technique
and leave a lot of manual work to the end-user. This, in turn, makes the proposals
in this area impractical. Progressive resizing, however, has the potential to reduce
training time in exploratory runs and reduce the resource cost of Deep Learning. We
thus want to explore this technique to the fullest and provide actionable guidelines
and a library to make this technique easy to adopt and attractive to deep learning
practitioners.

In this chapter, we analyse the effects of progressive data loading and introduce our
own automated progressive resizing data loader. Our method circumvents having
to do resizing manually, which is the contemporary approach [128, 73], while still
reaping the benefits. We explore the effects of varying image size on network train-
ing in depth and make the following contributions:

6.2. Background 77

• Provide an accessible drop-in solution for progressive data loading that yields
the benefits of progressive resizing without requiring further customisation.

• Identifying the requirements for hyper-parameters to make progressive resiz-
ing automated with high training throughput and hardware utilisation, result-
ing in up to twice as fast accuracy growth during pre-training.

• Provide two progression methods, exhaustive and mixed, which are viable in
different use cases depending on model and training requirements.

Additionally, we provide extensive empirical testing of our method with multiple
models using both PyTorch[129] and FastAI[127].

The rest of the chapter is structured as follows. We delve into the required back-
ground first in Section 6.2. We then discuss the methodology behind ADASIZE and
the setup in Section 6.3. Our experiments and results are detailed in Section 6.4, after
which we discuss and conclude in Section 6.5 and Section 6.6, respectively.

6.2 Background

The network itself is at the core of deep neural network training. The depth of the
network, the size of the inputs and the size of the layers all play a key role in how
much time it takes to go through the training loop. Crucial for training networks
quickly is reducing the amount of computations required. The time required for
training a model is a result of the amount of floating point operations required. This
computational requirement is directly dependent on the amount of data that has to
be processed.

Learning Rate and Batch Size are key hyper-parameters for effective and efficient
training convergence. Learning Rate dictates how much the gradient computed dur-
ing backpropagation affects the weights. A higher learning rate results in faster
movement through the model space, but can hinder convergence due to overshoot-
ing the optimal learning path. As a result, learning rate decay, reducing learning
rate as training goes on, is fundamental in achieving top accuracies in neural net-
works. Initial weight optimisation can be done roughly and take large steps at a
time, whereas a low learning rate is well suited for final optimisations. Furthermore,
some techniques adapt the learning rate on a layer basis [130, 131, 132], improving
performance even further. Batch size dictates the amount of samples to be processed
per batch. Commodity training hardware, such as GPUs and TPUs, are optimised
for embarrassingly-parallel operations, and thus run most efficiently on large batch
sizes. This in turn leads to a faster training speed as the amount of batches, and
by extension, parameter updates per epoch goes down when increasing the batch
size. Additionally, large batches are key for enabling distributed, multi-GPU neural
network training. In such cases the workload is typically distributed data-parallel,
where the samples in the batches are distributed over all of the GPUs, requiring a
larger total batch size. This has lead to state-of-the-art training times [133, 134, 130,
131, 135, 132]. Large batch sizes, however, come at a cost of training performance as
increasing the batch size can adversely affect attainable accuracy.

Adaptive Batch Size [133, 134] gradually increase the batch size to reap the benefits
of increasing the batch size while preventing any of the pitfalls. This is typically done

78 Chapter 6. Progressive Resizing

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

pre-training fine-tuning

FIGURE 6.1: Progressive resizing involves gradually increasing the
size of input data in order to speed up training. The training ends
with optimisation on the original image size to ensure high final ac-

curacy.

by coupling the batch size increase to learning rate decay [136]. Coupling batch size
and learning rate allows for larger batch sizes than with a static batch size, yielding
impressive acceleration in training speed. However, batch size can only be scaled
up to a certain point, after which further increases would hamper convergence. Bal-
ancing batch size and learning rate can be challenging as earlier suggested rules of
thumb [137] do not necessarily generalise well [130], with more aggressive scaling
being optimal for some architectures but preventing convergence for others. Alter-
natively, introducing adaptive learning rates per layer is more intrusive but allows
for large batch sizes for a large selection of models, including different vision models
and language transformers [130, 131].

Progressive Resizing is a technique where the resolution of the input is gradually
increased. Lower-resolution input contains less information but is quicker to train
on. Resizing allows for the initial training, which should develop the weights of the
network in a productive initial direction, to run on a more efficient dataset, before
fine-tuning on higher resolution data. This approach has been successfully com-
bined with progressive regularisation [73], which increases the degree of regular-
isation as training goes on. Lower-resolution data requires less regularisation for
efficient training, prompting this combination. Similarly, Mix&match [138] signifi-
cantly reduces training time by stochastically providing training steps with reduced
input sizes.

Resizing is usually done with Bilinear or Bicubic rescaling, as these techniques have
been staple in image processing for a long time. These techniques provide humanly
pleasing results, but this may not be the best downsizing for network training. An
alternative is using a convolutional network for downscaling, but this induces ad-
ditional compute requirements as this network should be trained together with the
main network [139].

Given all of these dimensions for configurations, it is not clear what one should use
or what performs best. Thus, methods to automatically tune progressive resizing
and a set of guidelines are required to facilitate wider adoption.

6.3. Adaptive Progressive Resizing 79

6.3 Adaptive Progressive Resizing

We will now start by discussing convolutional neural networks in depth (Section 6.3.1),
after which we explain our resizing strategy (Section 6.3.2 and Section 6.3.3) and our
implementation (Section 6.3.4).

6.3.1 Layer Definitions

Convolutional neural networks derive their name from the convolutional layers
they contain. These layers move a shared-weight kernel over the input resulting
in activations that are heavily influenced by space-locality. The network is then built
up by a repeat application of different layers. In essence, every layer can be defined
as a function Y = F(X), with F as the operation, X as the input, and Y being the out-
put of the layer. A (convolutional) network then becomes a chain of such functions.

Applying a layer to an input tensor does not just change the values, but can also
change the shape of the output. Specifically for convolutions, we can derive the
expected shape of the output tensor via:

SY = (WY, WY, QF) (6.1)

with
WY = ((WX − (WF + 2PF))/SF) (6.2)

where SY is the shape of tensor Y, WY is the width and height of tensor Y, WX is the
width of the input X, and WF, PF, SF and QF are the width, padding, stride and filter
count of the kernel of F respectively. Observe that there is no way to increase the
width and height of the output while keeping the same input. The padding term PF
solely exists to compensate for the size-reducing effects of WF. Convolutional layers
thus always result in equal or reduced width and height.

In terms of trained parameters, the input size does not affect a convolutional net-
work in any way. Instead, the parameter count is purely determined by the size of
the kernel.

Pooling layers act akin to convolutional layers but do not have trained weights.
Instead, they use a simple mathematical function, such as taking the maximum of
the kernel inputs.

Convolutional and pooling layers are commonly used in convolutional networks to
reduce the size of the data for subsequent layers. The most common way of doing so
is by using a stride that is larger than 0. For example, a stride of 1 results in halving
both width and height. Most convolutional networks, such as ResNet [23] and Effi-
cientNet [140, 73], group layers together in blocks ending with such a reduction in
size. Most importantly, for convolutional networks defined in such blocks, we can
simplify the tensor shaping to:

WB = WX/SB (6.3)

80 Chapter 6. Progressive Resizing

where WB is the output width and height of the block and SB is the stride of the last
layer of the block. Figure 6.2 illustrates how blocks make up the ResNet architecture.

The output of a convolutional neural network is typically composed of several lay-
ers. The result of the last block generally has a small spatial size but a high activation
depth and needs to be translated into output predictions. It is common to apply sev-
eral fully connected layers first. Afterwards, the predictions can be made using for
example a softmax layer. The parameter count of a fully connected layer is defined
as follows:

PF = CY(CX + 1) (6.4)

with PF the parameter count of the layer, and CY and CX the value counts of output
and input respectively. The shape of the outputs of these layers is completely static
and thus does not depend on the input size. This means that there is no effect on
shape or parameter count for these layers. One should keep in mind, however, that
for the first fully connected layer the parameter count can vary, as the size of the
input changes.

FIGURE 6.2: Layer block definitions and activation size reductions in
ResNet[23]. (Figure source [141])

6.3.2 Convolutional Network Image Scaling

When adaptively sampling image sizes we are actively changing the data that is
being put into the model. As seen earlier in this section, the size of the activations is
directly influenced by the shape of the input. Our adaptive data sampling will thus
change the shape of the activations as well. Additionally, for fully connected layers,
the size can change the parameter count of the model. This leads to the following
two conditions when changing the shape of the input:

• The input sizes must result in valid activation shapes.

• The input resizing must not introduce new parameters.

Shape: Given a convolutional network composed of N blocks. Assuming padding
and a stride of 1, the shape of the activation of the last block will equal

W f inal = ⌈Wdata/2N⌉ (6.5)

6.3. Adaptive Progressive Resizing 81

We will always be scaling the input data to be of a lower size than the normal max-
imum training size. Wdata is thus being reduced from its expected value. Halving
the input size will thus, following Equation (6.5), equal adding a singular identity
block to the neural network. Crucially, we can keep reducing the data this way, even
when the size reaches 1x1. Due to rounding up the shape can never be smaller than
a singular convolution.

Parameters: Blocks do not express any dependency on their parameter count to in-
put shape. There is, however, a concern to be had with the connection of the last
block to the prediction layers. If the input size exceeds the total reduction by the
blocks, and thus the resulting shape is larger than 1x1, then a change in image size
can lead to a smaller shaped activation tensor. Popular convolutional networks such
as ResNet [23] and EfficientNet [140, 73] have an additional global pooling layer af-
ter the last block to force reduce the output into the 1x1 shape, preventing any issues
resizing could cause with parameter counts, see Figure 6.2.

6.3.3 Hyperparameter Rebalancing

While the amount of trainable parameters does not change and the rescaling is safe
for convolutional networks, we do need to keep extra care for balancing hyper-
parameters to ensure good convergence. The reduction in image size has multiple
effects on neural network training:

• Reduce problem size for GPU kernels

• Regularise against overfitting

GPU utilisation is paramount for optimising training efficiency. If we consider high
GPU utilisation when training the network on high-resolution data, it is expected
that reduced image sizes will leave parts of the GPU idle. We aim to accelerate
training as much as possible to reduce training time and thus overall resource usage.
This requires compensation for the reduction in problem size and keeping the GPU
busy as much as possible. Consider the FLOPS estimate for calculating a forward
pass on a convolutional layer:

FLOPsF = (B · BS) · QF · W2
Y · W2

F (6.6)

with B being the batch size and BS the batch size scalar. The code that computes
convolutional layers on the GPU parallelises in all these dimensions. We can thus
keep roughly the same GPU utilisation by keeping the FLOPs the same. As the
width and height of our input decreases so does the amount of floating point op-
erations. The batch size presents itself as the most flexible way to compensate for
reductions in FLOPs. More specifically, we introduce a batch size scaling factor BS
in Equation (6.6) that compensates for any change in image size. Assuming that the
original configuration for the training task utilises the hardware well, this results in
the utilisation we are looking for.

BS = (WYoriginal/WYdownscaled)
2 (6.7)

Learning rate. Increasing the batch size is commonly used in distributed machine

82 Chapter 6. Progressive Resizing

learning [132] but is known to affect the learning quality of the model. Batch size and
learning rate are often linked together to compensate for this. Specifically, consider
what happens on the gradient descent with a momentum model weight update:

Wt+1 = Wt − Vt (6.8)

Vt+1 = βVt + (η ∗ ηS)∆Wt+1 (6.9)

where Wt and Vt are the weights and momentum, respectively, at step t, β is the
momentum coefficient, and η and ηS are the learning rate and learning rate scalar.
The weights are directly scaled by the learning rate; doubling the learning rate will
double the size of the weights. The frequency of the weight update in Equation (6.8)
depends on the batch size. A larger batch size means that there are fewer batches
required to cover the whole dataset in an epoch. Increasing the batch size will thus
reduce the amount of model updates per epoch. Similar to existing learning rate
scaling schemes [130], we compensate for this similar to Equation (6.6) by scaling
learning rate with a factor ηS:

ηS = BS (6.10)

Warm-up is a common method to reduce overfitting by the model and improve
overall training performance. Instead of straight starting with a high learning rate,
warm-up introduces a couple of epochs that gradually increase the learning rate.
This prevents over-influence by early training samples and improves the perfor-
mance of adaptive optimisers. With progressive data loading, however, we argue
that there is no need for a warm-up period. Downscaled images differ greatly from
their higher-resolution counterparts which resolved any overfitting that might oc-
cur in early training steps. Additionally, for time-to-accuracy-sensitive workloads,
warming up can considerably slow down training speed. Not warming up can thus
save considerable time and computation.

6.3.4 Implementation

We have designed a progressive dataloader that provides an interface for progres-
sive data loading to PyTorch as well as tries to automate the process as much as
possible. Our method extends native PyTorch dataloading classes and is compatible
with any PyTorch training pipeline. Additionally, one can replace a standard ex-
isting data loader with our library in-place, accelerating the training curve without
extra setup required.

Figure 6.3 depicts the data loading pipeline in PyTorch. The dataset interfaces with
the data loader first to provide the length of the dataset, and secondly with the work-
ers to provide the actual images. The sampler builds a permutation of sample IDs
which are grouped in batches when iterated upon. It is these batches that are sent to
the workers to be fetched. The worker count usually spans most of the CPU cores,
which means that many batches are prepared at the same time. This reduces stalling
of the training process due to an increase in data throughput. A batch is sent to the
training process whenever the worker has finished loading and pre-processing it,
after which the worker can work on the next batch.

6.3. Adaptive Progressive Resizing 83

Training
Process

GPU

Batch IDs Preprocessing

Decode Transform

(Batch)
Sampler

CPU Workers

Fetch

Data Loader

Dataset

Storage

FIGURE 6.3: Data loading pipeline in PyTorch. The data loader pro-
vides and loads based on a permutation of samples based on the
length of the dataset. Batches of sample identifiers are sent to data

workers which then fetch and process the data.

Size Buckets

Doing progressive resizing manually, as for example advocated by FastAI[128], usu-
ally causes large jumps in input image size. This is done by manually creating a
new data loader object per image size. Automating this process this way to produce
a gradual training curve requires a large amount of differently-sized images of the
training stages.

The PyTorch data loader is able to load and prepare multiple batches at the same
time due to multiprocessing over the data workers. This allows for increasing the
data loading throughput, providing enough images for training to be run as fast as
possible. When scaling down the image size, however, we are drastically increasing
the batch size to keep the GPU saturated, as discussed in Section 6.3.3. This increase
in batch size means that the data workers have to load significantly more data in the
same timeframe. This can lead to excessive CPU utilisation and even CPU or I/O
throttling.

In order to provide an option to circumvent these issues we run training on a couple
of predetermined image sizes and interpolate with other means, still resulting in
smooth learning curves. Images can be stored on disk in these predetermined sizes
to some storage for a reduction in CPU cycles and memory movement. We call these
image sizes size buckets. With our method we amend this pipeline in two different
ways, providing two options that can be valuable in different situations.

Exhaustive Loading

Exhaustive progression is the least invasive form of automated progressive resizing.
Similar to the manual method, we train on the size buckets sequentially from small-
est to largest. Instead of jumping from one size to another between two epochs, how-
ever, we gradually upgrade images that we deem to be less interesting to the model
to the next bucket. We keep training on the lowest-size bucket that still contains im-
ages. Eventually, all images will have progressed to the largest buckets, which forms
the optimisation phase. Exhaustive loading does not change any parameters other

84 Chapter 6. Progressive Resizing

than what we would require from progressive resizing. It does, however, change the
definition of an epoch, as now training an epoch on the smallest bucket no longer
includes all samples. Exhaustive loading thus causes some images to be visited less
frequently than others.

Training
Process

GPUBatch
Buckets

Preprocessing

Decode Transform

(Batch)
Sampler

CPU Workers

112

140

224

...

Fetch

Progressive Data Loader

Dataset

Storage

FIGURE 6.4: Mixed data loading in our method. The data loader
holds a reference to the current required image size for every image.
This groups the images in buckets, which when full are sent to the

data workers which then fetch and process the data.

Mixed Loading

Mixed progression offers an epoch-safe alternative to exhaustive progression. We
change the data loader to collect samples in buckets instead of sending them straight
to the CPU workers. This results in Figure 6.4. Once a batch bucket has filled up the
IDs are assigned to a worker. Keep in mind that, following eq. (6.7), the number
of items of a bucket varies depending on its image size. Smaller image sizes have
buckets with more samples.

While mixed loading is epoch-safe, it does introduce extra restrictions for the model
that is trained on the data. With mixed loading the batch size and image size is
not constant within an epoch. This is not an issue for most convolutional neural
networks but does pose a restriction for other architectures such as transformers.

6.4 Results

We evaluate our implementation of progressive resizing against conventional train-
ing and manual progressive resizing [128]. Furthermore, we explore the impact of
progressive resizing on performance and hardware. We evaluate both of our resizing
strategies, vary the upgrade rate and explore whether CPU utilisation may become
a bottleneck.

6.4.1 Setup

We evaluate everything on a server with 24 vCPUs and an NVIDIA H100 GPU with
80 GB of VRAM. Models have exclusive access to the server for training. We source
our models and training script from PyTorch Image Models (TIMM) [142], a pop-
ular codebase for image classification models, except for the evaluation of FastAI,

6.4. Results 85

0 2 4 6 8
Time (h)

0

20

40

60
Ac

cu
ra

cy
 (%

)

(A) Accuracy

0 5 10 15
Epoch

2

3

4

6

Lo
ss

(B) Median Loss

0 2 4 6 8
Time (h)

0

25

50

75

G
PU

 U
til

 (%
)

(C) GPU Utilisation

0 2 4 6 8
Time (h)

125

150

175

200

225

Im
ag

e
Si

ze

Ours
Baseline
Warm-up
FastAI Epoch
FastAI Batch

(D) Image Size

FIGURE 6.5: Training a ResNet152 model from scratch.

which we evaluate on their own codebase instead. We use the progressive resizing
strategies that are part of fastxtend [143] for FastAI. We evaluate all models on the
ImageNet2012 dataset [9].

6.4.2 Comparison to other techniques

We first evaluate our progressive resizing solution training a ResNet152 model. We
compare against a baseline training example that does not utilise resizing and FastAI
resizing either during epochs (batch) or in between epochs (epoch). The results of
training ResNet152 models using various techniques for 20 epochs can be found in
Figure 6.5. Figure 6.5a depicts the top-1 validation accuracy of the trained models.
Our method consistently outperforms all other methods due to the sharp accuracy
curve. Compared to the baseline, our method is able to hit 65% accuracy in just
over 40% of the time (2.5h vs 5.9h), whether warm-up is enabled for normal training
or not. Disabling warm-up for baseline training greatly speeds up initial training
steps, but both strategies converge around 4 hours in. FastAI performs similarly
under both advertised scaling schemes but is ultimately unable to keep up with our
method. Interestingly, the accuracy of their initial training is very similar to that of
the baseline, but they greatly benefit from short fine-tuning at the end of training.

Analysing loss allows us to delve deeper into the training behaviour of the methods.
Figure 6.5b reveals the median loss per epoch, with loss scaled logarithmically. As
expected, the baseline with warm-up reduces its loss slower at the start due to the
restrictive learning rate. All other methods curve similarly for the first half of train-
ing. In the latter set of epochs, our method is able to continue steadily improving on
loss while other methods start to slow down. Note the aggressive reduction again

86 Chapter 6. Progressive Resizing

0 5 10
Time (h)

2

4

6

Lo
ss

(A) Loss

0 5 10
Time (h)

200

300

Im
ag

e
Si

ze

(B) Image Size

0 5 10
Time (h)

50

100

G
PU

 M
em

or
y

(%
)

Mixed
Exhaustive

(C) GPU Storage Utilisation

FIGURE 6.6: Training an EfficientNetV2 Medium model with mixed
and exhaustive resizing.

0 5 10 15
Time (h)

0

20

40

60

Ac
cu

ra
cy

 (%
)

(A) Accuracy

0 5 10 15
Time (h)

200

300

Im
ag

e
Si

ze

(B) Image Size

0 5 10 15
Time (h)

0.0

0.2

0.4

0.6

Le
ar

ni
ng

 R
at

e 25%
50%

(C) Learning Rate

FIGURE 6.7: Training an EfficientNetV2 Medium model with mixed
resizing with an upgrade rate of 25% and 50%.

featured by FastAI, which seems to approach overfitting as the loss dips significantly
below ours while having lower validation accuracy.

Figure 6.5c reports the GPU utilisation while running these methods. Notably, our
method is able to use the GPU to a high degree even though images are scaled down.
The GPU utilisation of our method and baseline training without scaling is essen-
tially identical. FastAI does not introduce any compensation for image downscaling
and thus is only able to use part of the GPU. This is most pronounced for the first
three hours, as during this time FastAI is training on half-sized images, as shown in
Figure 6.5d. Our method automatically interpolates a smooth resizing curve based
on the target resolution.

6.4.3 Performance under Progressive Resizing

Resizing strategy: Our method supports two different resizing strategies; mixed
and exhaustive resizing (Section 6.3.4). Figure 6.6 contains the results of training an
EfficientnetV2 Medium model with both strategies for 25 epochs. Both mixed and
exhaustive resizing results in very similar loss curves, as seen in Figure 6.6a. As ex-
haustive resizing changes the sample quantity of epochs, a 25-epoch training period
finishes significantly quicker than when using mixed resizing. Under exhaustive re-
sizing, image size is scaled less smoothly than under mixed resizing (Figure 6.6b),
though this does not seem to hurt training performance. Both techniques utilise load
rebalancing via batch size and thus are able to maintain constant GPU utilisation, as
exemplified by the GPU storage utilisation patterns uncovered in Figure 6.6c.

Upgrade rate: The upgrade rate controls how many of the samples are upgraded
after every epoch. For the experiments that resulted in Figure 6.7, we evaluate up-
grade rates of 25% and 50% over a 25-epoch training window. Our target image size
is 320, taking linear steps of 32. This results in 12 and 24 epochs required for scaling
respectively.

6.5. Discussion & Future 87

0 2 4
Time (h)

0

20

40
C

PU
 U

til
is

at
io

n
(%

)

(A) CPU Utilisation

0 2 4
Time (h)

0

1000

2000

3000

Ite
ra

tio
ns

/s

(B) Throughput

0 2 4
Time (h)

0

10

20

G
PU

 M
em

or
y

(%
)

Baseline
Ours

(C) GPU Storage Utilisation

FIGURE 6.8: Training a MobileNetV3 Large model with and without
resizing.

Both models train to comparable validation accuracy (Figure 6.7a). The model that
trained with slower upgrading consistently outperforms the faster upgrading one
even though the difference is small. The difference in image upgrading speed can
be observed in Figure 6.6b. While the accuracy of both models starts similar, the
slower upgrading model starts edging out the faster one once the faster model has
upgraded the images almost to their full size, roughly 4 hours in. The smaller images
are accompanied by larger learning rates, as shown in Figure 6.7c.

Hardware Utilisation: Finally we evaluate the impact our method has on CPU
utilisation, shown in Figure 6.8, and relate this to throughput and GPU utilisation.
The data workers have to load and scale down full images throughout training. As
expected, CPU utilisation spikes heavily at the start of training when using small
image sizes (Figure 6.8a). Data loading CPU usage depends on the time it takes
to load one image combined with how many images need to be loaded. Figure 6.8b
reveals that, due to our resizing policy, we need significantly more image throughput
at the start of training. GPU memory utilisation remains constant between training
with and without resizing (Figure 6.8c). Our re-balancing makes sure that the GPU is
used well without exceeding GPU memory limits, which is required to keep training
from crashing.

6.5 Discussion & Future

While our vision of a drop-in progressive data loader has taken shape, we have
identified a couple of angles that require further investigation and improvement.

Optimal Hyper-parameterisation: While we have demonstrated our current im-
plementation as a viable proof-of-concept, progressive resizing introduces a vast
amount of new hyper-parameters (resizing strategy, upgrade rate, amount of sam-
ples to upgrade per step, hyper-parameter balancing strategy) to model training.
Our vision for our method is to provide tangible benefits by running with default
hyper-parameter values, with further optimisation possible if the user wants to. In
order to ensure the robustness of our work, a thorough evaluation is required with
a combination of different hyper-parameterisation, datasets and models.

CPU Utilisation: Progressive resizing can provide large initial speed increases by
training aggressively with large throughput, facilitated by large batch sizes. This
large throughput can significantly strain CPU resources (Section 6.4), potentially
causing a CPU bottleneck. When designing our method we have taken into account
this shortcoming. In return, we use a step-wise resizing strategy instead of e.g. an
interpolated linear one as used for EfficientNetV2 [73]. This limits the amount of

88 Chapter 6. Progressive Resizing

size variants required of every image. Using this to our advantage, we plan to in-
clude a dataset pre-processing strategy that saves a copy of the dataset for every image
size step, removing the need of downscaling during training itself and reducing the
amount of data that needs to be read from disk.

Curriculum Learning is an optimisation for machine learning that affects the input
data of the model [144, 145, 146, 147, 148, 149]. Instead of just writing a better model
to learn a specific task, Curriculum learning tries to quantify the usefulness and
descriptiveness of data samples that are going into the model via some heuristic.
This way samples that may not be relevant or productive to focus on for the model
at a specific epoch can be left out in order to improve convergence or generalisability.

Essential to curriculum learning is figuring out how the model might react to the
data. In cases where overfitting is the problem, some or all of the data can be run
through the model to fuel this heuristic. The runtime of this forward pass does
not matter in this case, and only part of the result is used for the backward pass.
When the aim is training speed, however, such methods in general too expensive to
employ, as they add additional time complexity when we seek to make things faster.
This means that one has to resort to significantly less accurate metrics, such as the
results of the last forward or backward pass. In general, even a reduced forward pass
based on sampling can lead to massive slowdowns [145]. The network is trained
on an accelerator that performs best on large workloads, and thus a small sampled
workload still requires significant computing time.

Similarly, data selection algorithms such as Coreset search attempt to find a subset
of the dataset that includes all important concepts to lead to an effective epoch with
minimal duplication [150, 151, 152]. This reduced dataset can then be trained on
more quickly leading to faster convergence, but data selection algorithms, similar to
curriculum learning, are often too expensive to benefit time-to-accuracy [152].

For progressive resizing, techniques from curriculum learning may benefit the way
the images are scaled up. Instead of selecting a random subset of samples to scale
up, one could use a heuristic to select the samples that would most benefit from
scaling up.

6.6 Conclusion

In this chapter, we introduced our vision for progressive resizing. We made pro-
gressive resizing accessible by prioritising flexibility and ease-of-use, resulting in a
drop-in replacement for PyTorch data loaders. We evaluated the performance of
our method in a set of initial experiments, comparing it to the state-of-the-art, and
uncovering the effects resizing has on software and hardware. Furthermore, we
identify the requirements and a path to make progressive resizing more automatic
for end users. In combination with our vision as described in Section 6.5, we hope
that our method will become a valuable tool for researchers to evaluate their models
faster while tuning them.

6.6. Conclusion 89

90

Chapter 7

Future Directions and Conclusion

For the sustainability of machine learning, we need to be resource-aware. Deep
learning training is growing in scale and machine learning models are used more
than ever before. We are facing an ever-increasing breadth of deep learning prac-
titioners in an ever-increasing variety of fields; the scale only leads to more impor-
tance for resource-awareness. While the machine learning systems community en-
joys sharing new systems and architectures with each other, the validity of any sys-
tem lies in the hands of the end users. Making systems that are useful and accessible
to those users is thus critical.

Besides the papers that have been produced for this thesis, we believe in the advan-
tages of open-source software and hope that making all of our software accessible in
such a way leads to further innovation and improvement.

7.1 Experiment Tracking

radT introduces a framework for collecting and visualising training statistics, as in-
troduced in Chapter 3, as well as managing data storage and serving. It includes
support for a selection of resource metrics, most of which revolve around NVIDIA
hardware. The design of the tooling does not need to be limited to these, and any
inclusion is highly appreciated.

As the field matures, more sophisticated metrics become available. While basic met-
rics offered by tools such as SMI provide valuable insight, they tend to only provide
rough indications and may not align with the actual demands of the resource-aware
community. As an example, the Carbontracker tool allows for estimating the carbon
footprint of model training [90]. Instead of just relying on hardware readings, Car-
bontracker takes into account the emissions required for power production based on
location and time of day. Collection and tracking go hand in hand; the validity of any
tool to promote resource-awareness depends on the inclusion of new trackers such
as Carbontracker to provide the most actionable data. In general, any command-line
tool available on Linux should be straightforward to add to radT.

Improving tooling is a critical step for resource-awareness and transparency in the
computational footprint of ML, but does not cover the whole picture. Significant
gains might be possible in looking into how awareness is communicated in the field.

7.2. Sharing in Deep Learning 91

Change requires not just technical solutions, but also awareness, education, and col-
laboration. Resource awareness in IT will require a cross-disciplinary approach go-
ing forward, spearheaded by organisations such as ITU’s Centre for Climate IT 1.

7.2 Sharing in Deep Learning

In the case of GPU utilisation maximisation, a good amount of this thesis has been
spent on advocating for the use of GPU collocation. The reality is that GPU hard-
ware is expensive, both financially and environmentally, and thus any hardware that
is procured should be used to its utmost capacity. GPU collocation (Chapter 4) is just
one of many ways to do so, but it is a way that seems relatively low-effort to imple-
ment. Combining training with inference, similar to Orion [112], and collocating on
hardware from other manufacturers such as AMD provide future opportunities to
make GPU collocation more accessible and effective.

TENSORSOCKET , as introduced in Chapter 5, provides a slightly more intrusive but
more effective way of getting the most out of hardware, building on collocation.
When designing such software, we realised that alternatives such as CoorDL [87]
above all do not make themselves attractive to users due to their inflexible design
and implementation. TENSORSOCKET circumvents this issue by being a minimal
insert in PyTorch. This, however, does limit its use to that specific framework, so
a version for other popular frameworks such as TensorFlow [47] and MLFlow [80]
may prove attractive.

Furthermore, TENSORSOCKET notion of sharing is limited to just the data pipeline
in our current implementation. Considering the amount of moving parts in the full
training pipeline, there may be the opportunity to isolate and unify other redundan-
cies. For example, models that are training at the same time might be able to share
some layers, perhaps frozen, in order to reduce computational complexity. Other de-
velopment directions include the support for distributed multi-node training, with
similarities to e.g. the tf.data service [91].

7.3 Data Selection and Attribution

Firstly, progressive resizing, featured in Chapter 6, provides a general implemen-
tation to accelerate training from the perspective of data loading. With this imple-
mentation, it can be considered a special case of data selection. In data selection,
algorithms are utilised that select optimal training examples to train on. This can
lead to a more effective ordering of training samples or a reduction in the effective
dataset size. There has been extensive research on strategies for selecting datapoints
[153, 154, 150, 152, 155, 151, 156, 157, 158], but many are incompatible with resource-
awareness. Most of such techniques require elaborate algorithms in order to decide
what samples to select, negating any advantages in terms of resource consumption
reduction [152], while not reporting this negative effect on their end-to-end compu-
tational footprint. It remains a challenge to combine effective selection with resource
investments that do not exceed the selection benefits.

1https://ccit.itu.dk/

https://ccit.itu.dk/

92 Chapter 7. Future Directions and Conclusion

Furthermore, the field of data attribution [159, 160, 161] is closely related to data
selection, as it attempts to explain which training samples contribute to what vali-
dation samples. In this vein, attribution can be a valuable key in understanding the
effect of data optimisations on the training process. In the case of data scaling strate-
gies, attribution might help in uncovering the black box of training by providing an
understanding of what scaling strategy is optimal and how small images compare
to large images in terms of attribution.

Finally, in this thesis, deep learning training is considered a process that takes place
before serving the model. In practice, however, datasets keep evolving and tasks
keep changing. This results in models growing out of date and requires the models
to be retrained. Continuous machine learning is closely related to data selection, as it
is key to deciding whether there is enough new data to warrant retraining the model.
Modyn [162, 163] is a continuous learning platform that focuses on data selection
and triggering policies, aiming to minimise the number of resources required to keep
a model up-to-date.

7.4 Thesis Summary

This thesis contributes to resource-aware machine learning by thoroughly investigat-
ing several methods to do more training with fewer resources. Deep Learning has
recently seen a massive boom with the introduction and exploitation of the GPU
and massive amounts of data. While having been a massive contributor to pushing
the state-of-the-art, we cannot endlessly keep scaling to increasingly larger compute
clusters.

We identify the problem that resource consumption is not a target for optimisation
as it is under-reported, and the collection of resource metrics can be a hassle. To com-
bat this issue, this thesis introduces radT in Chapter 3, a tracking and visualisation
framework designed to make tracking hardware metrics hassle-free for deep learn-
ing practitioners. Taking to heart as a rule for building systems, we ensure that radT,
and the other software contributions, requires minimal installation and integrates
seamlessly with popular tooling such as PyTorch and MLFlow.

Using radT, we benchmark available technologies for GPU collocation and provide
guidelines for deep learning practitioners. GPU hardware is expensive, and any re-
sources procured should be used with optimal efficiency. GPU collocation provides
a way of ensuring that GPU systems are not underutilised, especially when training
small models or models that supplement each other’s utilisation pattern.

Expanding on GPU collocation, we identified further inefficiencies by exploring data
redundancies during collocated training. The result is TENSORSOCKET, a library that
orchestrates data pipeline sharing for collocated training processes. We ensure that
TENSORSOCKET is easy to use yet flexible, allowing for even advanced sharing, such
as CLIP models for DALL-E training.

Finally, we continued exploring data loading with progressive data loading, which
directly tackles the time it takes to train a convolutional model. By valuing time-
to-accuracy over just accuracy, we ensure that we get to a high-accuracy model by
using fewer resources. We explore the effects the different hyperparameters have on

7.4. Thesis Summary 93

progressive learning and distil our findings into the development of a progressive
data loading library.

Moving forward, we hope that these findings and resources contribute to enabling
more resource-aware and transparent growth in deep learning.

94

Bibliography

[1] Cody Coleman et al. 2019. Analysis of DAWNBench, a Time-to-Accuracy Machine Learning
Performance Benchmark. ACM SIGOPS Operating Systems Review, 53, 1, (July 25, 2019), 14–25.
DOI: 10.1145/3352020.3352024.

[2] Peter Mattson et al. MLPerf Training Benchmark. (Mar. 2, 2020) http://arxiv.org/abs/1
910.01500 arXiv: 1910.01500 [cs, stat].

[3] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2016. Fathom:
Reference Workloads for Modern Deep Learning Methods. 2016 IEEE International Symposium
on Workload Characterization (IISWC), (Sept. 2016), 1–10. arXiv: 1608.06581. DOI: 10.1109
/IISWC.2016.7581275.

[4] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and Policy Considera-
tions for Deep Learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computational Linguistics, Florence, Italy, 3645–3650.
DOI: 10.18653/v1/P19-1355.

[5] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon Emissions and Large Neural Network Training,
22.

[6] Sebastian Baunsgaard, Sebastian B. Wrede, and Pınar Tozun. Training for Speech Recognition
on Coprocessors. (Mar. 22, 2020) http://arxiv.org/abs/2003.12366 arXiv: 2003.123
66 [cs, eess, stat].

[7] Cody Coleman et al. DAWNBench: An End-to-End Deep Learning Benchmark and Competi-
tion, 10.

[8] Olga Russakovsky et al. 2015. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115, 3, (Dec. 1, 2015), 211–252. DOI: 10.1007/s11263-015-0816
-y.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with
deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1 (NIPS’12). Curran Associates Inc., Red Hook, NY,
USA, (Dec. 3, 2012), 1097–1105.

[10] Papers with Code - The latest in Machine Learning. https://paperswithcode.com/.

[11] Nestor Maslej et al. 2024. Artificial Intelligence Index Report 2024. (May 29, 2024). Pre-published.

[12] Gordon E. Moore. 1998. Cramming More Components Onto Integrated Circuits. Proc. IEEE, 86,
1, 82–85. DOI: 10.1109/JPROC.1998.658762.

[13] 2024. Building Meta’s GenAI Infrastructure. Engineering at Meta. (Mar. 12, 2024). https://e
ngineering.fb.com/2024/03/12/data-center-engineering/building-metas-
genai-infrastructure/.

[14] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2019. Green AI. (Aug. 13, 2019).
arXiv: 1907.10597 [cs, stat] http://arxiv.org/abs/1907.10597. Pre-published.

[15] Jesse Dodge et al. 2022. Measuring the Carbon Intensity of AI in Cloud Instances. In 2022 ACM
Conference on Fairness, Accountability, and Transparency. FAccT ’22: 2022 ACM Conference on
Fairness, Accountability, and Transparency. ACM, Seoul Republic of Korea, (June 21, 2022),
1877–1894. ISBN: 978-1-4503-9352-2. DOI: 10.1145/3531146.3533234.

https://doi.org/10.1145/3352020.3352024
http://arxiv.org/abs/1910.01500
http://arxiv.org/abs/1910.01500
https://arxiv.org/abs/1910.01500
https://arxiv.org/abs/1608.06581
https://doi.org/10.1109/IISWC.2016.7581275
https://doi.org/10.1109/IISWC.2016.7581275
https://doi.org/10.18653/v1/P19-1355
http://arxiv.org/abs/2003.12366
https://arxiv.org/abs/2003.12366
https://arxiv.org/abs/2003.12366
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://paperswithcode.com/
https://doi.org/10.1109/JPROC.1998.658762
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://arxiv.org/abs/1907.10597
http://arxiv.org/abs/1907.10597
https://doi.org/10.1145/3531146.3533234

Bibliography 95

[16] 2015. NVIDIA DCGM. NVIDIA Developer. (Nov. 10, 2015). https://developer.nvidia
.com/dcgm.

[17] 2012. NVIDIA System Management Interface. NVIDIA Developer. (June 28, 2012). https://d
eveloper.nvidia.com/nvidia-system-management-interface.

[18] Top(1) - Linux manual page. https://man7.org/linux/man-pages/man1/top.1.htm
l.

[19] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and
Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Work-
loads. In Proceedings of the 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton,
WA, USA, July 10-12, 2019. Dahlia Malkhi and Dan Tsafrir, editors. USENIX Association, 947–
960. https://www.usenix.org/conference/atc19/presentation/jeon.

[20] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and QoS-Aware Clus-
ter Management, 17.

[21] Konstantinos Nikas, Nikela Papadopoulou, Dimitra Giantsidi, Vasileios Karakostas, Georgios
Goumas, and Nectarios Koziris. 2019. DICER: Diligent Cache Partitioning for Efficient Work-
load Consolidation. In Proceedings of the 48th International Conference on Parallel Processing. ICPP
2019: 48th International Conference on Parallel Processing. ACM, Kyoto Japan, (Aug. 5, 2019),
1–10. ISBN: 978-1-4503-6295-5. DOI: 10.1145/3337821.3337891.

[22] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph, Randy
Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for Fine-Grained Resource Sharing in
the Data Center.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for
Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 770–778. DOI: 10.1109
/CVPR.2016.90.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Mappings in Deep
Residual Networks. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part IV (Lecture Notes in Computer Science).
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors. Vol. 9908. Springer, 630–645.
DOI: 10.1007/978-3-319-46493-0_38.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classification with
deep convolutional neural networks. Communications of the ACM, 60, 6, (May 24, 2017), 84–90.
DOI: 10.1145/3065386.

[26] Nello Cristianini and Elisa Ricci. 2008. Support Vector Machines. In Encyclopedia of Algorithms.
Ming-Yang Kao, editor. Springer US, Boston, MA, 928–932. ISBN: 978-0-387-30162-4. DOI: 10.1
007/978-0-387-30162-4_415.

[27] Leo Breiman. 2001. Random Forests. Machine Learning, 45, 1, (Oct. 1, 2001), 5–32. DOI: 10.102
3/A:1010933404324.

[28] David Silver et al. 2016. Mastering the game of Go with deep neural networks and tree search.
Nature, 529, 7587, (Jan. 2016), 484–489, 7587, (Jan. 2016). DOI: 10.1038/nature16961.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, 1026–1034.

[30] Hugo Touvron et al. 2023. LLaMA: Open and Efficient Foundation Language Models. CoRR,
abs/2302.13971. arXiv: 2302.13971. DOI: 10.48550/ARXIV.2302.13971.

[31] Hugo Touvron et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models. CoRR,
abs/2307.09288. arXiv: 2307.09288. DOI: 10.48550/ARXIV.2307.09288.

[32] Abhimanyu Dubey et al. 2024. The Llama 3 Herd of Models. (July 31, 2024). arXiv: 2407.217
83 [cs] http://arxiv.org/abs/2407.21783. Pre-published.

[33] Iostat(1) - Linux manual page. https://linux.die.net/man/1/iostat.

https://developer.nvidia.com/dcgm
https://developer.nvidia.com/dcgm
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://www.usenix.org/conference/atc19/presentation/jeon
https://doi.org/10.1145/3337821.3337891
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1145/3065386
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://arxiv.org/abs/2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://linux.die.net/man/1/iostat

96 Bibliography

[34] Ehsan Yousefzadeh-Asl-Miandoab, Ties Robroek, and Pinar Tozun. 2023. Profiling and Moni-
toring Deep Learning Training Tasks. In Proceedings of the 3rd Workshop on Machine Learning and
Systems. EuroMLSys ’23: 3rd Workshop on Machine Learning and Systems. ACM, Rome Italy,
(May 8, 2023), 18–25. DOI: 10.1145/3578356.3592589.

[35] Zeyu Yang, Karel Adamek, and Wesley Armour. 2024. Part-time Power Measurements: nvidia-
smi’s Lack of Attention. (Mar. 11, 2024). arXiv: 2312.02741 [cs] http://arxiv.org/abs
/2312.02741. Pre-published.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA. Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547de
e91fbd053c1c4a845aa-Abstract.html.

[37] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo Mai, Paolo Costa, and
Peter Pietzuch. 2019. Crossbow: scaling deep learning with small batch sizes on multi-GPU
servers. Proceedings of the VLDB Endowment, 12, 11, (July 2019), 1399–1412. DOI: 10.14778/33
42263.3342276.

[38] Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li, and Gennady Pekhimenko. Horizontally
Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep
Learning Models. (Mar. 29, 2021) http://arxiv.org/abs/2102.02344 arXiv: 2102.02
344 [cs].

[39] Jun Yuan, Changjian Chen, Weikai Yang, Mengchen Liu, Jiazhi Xia, and Shixia Liu. 2021. A
survey of visual analytics techniques for machine learning. Computational Visual Media, 7, 1,
(Mar. 2021), 3–36. DOI: 10.1007/s41095-020-0191-7.

[40] 2020. Experiment Tracking with Weights and Biases. Weights & Biases. https://wandb.ai
/site.

[41] Matei Zaharia et al. 2018. Accelerating the machine learning lifecycle with MLflow. IEEE Data
Eng. Bull., 41, 4, 39–45.

[42] Mourad Mourafiq. Polyaxon: Cloud native machine learning platform. https://github.c
om/polyaxon/polyaxon.

[43] Kubeflow. Kubeflow. https://www.kubeflow.org/.

[44] [SW], UMLAUT (Universal Machine Learning Analysis UTility) 2023. HPI Data Engineering
Systems. URL: https://github.com/hpides/End-to-end-ML-System-Benchmark.

[45] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann, Philipp Eich-
mann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska. 2019. Democratizing Data
Science through Interactive Curation of ML Pipelines. In Proceedings of the 2019 International
Conference on Management of Data. SIGMOD/PODS ’19: International Conference on Manage-
ment of Data. ACM, Amsterdam Netherlands, (June 25, 2019), 1171–1188. ISBN: 978-1-4503-
5643-5. DOI: 10.1145/3299869.3319863.

[46] Jorge Piazentin Ono, Sonia Castelo, Roque Lopez, Enrico Bertini, Juliana Freire, and Claudio
Silva. 2021. PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines.
IEEE Transactions on Visualization and Computer Graphics, 27, 2, (Feb. 2021), 390–400. DOI: 10.1
109/TVCG.2020.3030361.

[47] Martın Abadi et al. TensorFlow: A system for large-scale machine learning, 21.

[48] Chollet, François and others. 2020. Keras: the Python deep learning API. https://keras.i
o/.

[49] Adam Paszke et al. 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32.

[50] NVIDIA Multi-Instance GPU User Guide. http://docs.nvidia.com/datacenter/tes
la/mig-user-guide/index.html.

https://doi.org/10.1145/3578356.3592589
https://arxiv.org/abs/2312.02741
http://arxiv.org/abs/2312.02741
http://arxiv.org/abs/2312.02741
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.14778/3342263.3342276
https://doi.org/10.14778/3342263.3342276
http://arxiv.org/abs/2102.02344
https://arxiv.org/abs/2102.02344
https://arxiv.org/abs/2102.02344
https://doi.org/10.1007/s41095-020-0191-7
https://wandb.ai/site
https://wandb.ai/site
https://github.com/polyaxon/polyaxon
https://github.com/polyaxon/polyaxon
https://www.kubeflow.org/
https://github.com/hpides/End-to-end-ML-System-Benchmark
https://doi.org/10.1145/3299869.3319863
https://doi.org/10.1109/TVCG.2020.3030361
https://doi.org/10.1109/TVCG.2020.3030361
https://keras.io/
https://keras.io/
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

Bibliography 97

[51] NVIDIA Multi-Process Service User Guide. https://docs.nvidia.com/deploy/mps/i
ndex.html.

[52] 2018. NVIDIA Nsight Systems. NVIDIA Developer. (Mar. 12, 2018). https://developer.n
vidia.com/nsight-systems.

[53] 2019. NVIDIA Nsight Compute. NVIDIA Developer. (Aug. 28, 2019). https://developer
.nvidia.com/nsight-compute.

[54] Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, and Pınar Tözün. 2024. An Analysis of Col-
location on GPUs for Deep Learning Training. In Proceedings of the 4th Workshop on Machine
Learning and Systems. EuroSys ’24: Nineteenth European Conference on Computer Systems.
ACM, Athens Greece, (Apr. 22, 2024), 81–90. DOI: 10.1145/3642970.3655827.

[55] 2015. GPU Pro Tip: CUDA 7 Streams Simplify Concurrency. NVIDIA Technical Blog. (Jan. 23,
2015). https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-si
mplify-concurrency/.

[56] 2024. NVIDIA Multi-Process Service.

[57] Qizhen Weng et al. 2022. MLaaS in the Wild: Workload Analysis and Scheduling in Large-
Scale Heterogeneous GPU Clusters. In 19th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022. Amar Phanishayee and Vyas
Sekar, editors. USENIX Association, 945–960. https://www.usenix.org/conference/n
sdi22/presentation/weng.

[58] Mehmet E. Belviranli, Farzad Khorasani, Laxmi N. Bhuyan, and Rajiv Gupta. 2016. CuMAS:
Data Transfer Aware Multi-Application Scheduling for Shared GPUs. In Proceedings of the 2016
International Conference on Supercomputing. ICS ’16: 2016 International Conference on Supercom-
puting. ACM, Istanbul Turkey, (June 2016), 1–12. ISBN: 978-1-4503-4361-9. DOI: 10.1145/292
5426.2926271.

[59] Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and Srimat Chakradhar. 2011. Supporting
GPU sharing in cloud environments with a transparent runtime consolidation framework. In
Proceedings of the 20th International Symposium on High Performance Distributed Computing. HPDC
’11: The 20th International Symposium on High-Performance Parallel and Distributed Com-
puting. ACM, San Jose California USA, (June 8, 2011), 217–228. ISBN: 978-1-4503-0552-5. DOI:
10.1145/1996130.1996160.

[60] Gingfung Yeung, Damian Borowiec, Renyu Yang, Adrian Friday, Richard Harper, and Peter
Garraghan. 2022. Horus: Interference-Aware and Prediction-Based Scheduling in Deep Learn-
ing Systems. IEEE Transactions on Parallel and Distributed Systems, 33, 1, (Jan. 2022), 88–100. DOI:
10.1109/TPDS.2021.3079202.

[61] Sina Darabi, Negin Mahani, Hazhir Baxishi, Ehsan Yousefzadeh-Asl-Miandoab, Mohammad
Sadrosadati, and Hamid Sarbazi-Azad. 2022. NURA: A Framework for Supporting Non-Uniform
Resource Accesses in GPUs. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 6, 1, (Feb. 24, 2022), 1–27. DOI: 10.1145/3508036.

[62] Hongwen Dai, Zhen Lin, Chao Li, Chen Zhao, Fei Wang, Nanning Zheng, and Huiyang Zhou.
2018. Accelerate GPU Concurrent Kernel Execution by Mitigating Memory Pipeline Stalls. In
2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA). (Feb. 2018),
208–220. DOI: 10.1109/HPCA.2018.00027.

[63] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and Minyi Guo. 2016.
Simultaneous Multikernel GPU: Multi-tasking throughput processors via fine-grained sharing.
In 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA). 2016
IEEE International Symposium on High Performance Computer Architecture (HPCA). (Mar.
2016), 358–369. DOI: 10.1109/HPCA.2016.7446078.

[64] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and Minyi Guo. 2017.
Quality of Service Support for Fine-Grained Sharing on GPUs. In Proceedings of the 44th Annual
International Symposium on Computer Architecture. ISCA ’17: The 44th Annual International Sym-
posium on Computer Architecture. ACM, Toronto ON Canada, (June 24, 2017), 269–281. ISBN:
978-1-4503-4892-8. DOI: 10.1145/3079856.3080203.

https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://doi.org/10.1145/3642970.3655827
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng
https://doi.org/10.1145/2925426.2926271
https://doi.org/10.1145/2925426.2926271
https://doi.org/10.1145/1996130.1996160
https://doi.org/10.1109/TPDS.2021.3079202
https://doi.org/10.1145/3508036
https://doi.org/10.1109/HPCA.2018.00027
https://doi.org/10.1109/HPCA.2016.7446078
https://doi.org/10.1145/3079856.3080203

98 Bibliography

[65] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali Annavaram. 2016. Warped-
Slicer: Efficient Intra-SM Slicing through Dynamic Resource Partitioning for GPU Multipro-
gramming. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). IEEE, Seoul, South Korea, (June 2016), 230–242. ISBN: 978-1-4673-8947-1. DOI: 10.110
9/ISCA.2016.29.

[66] Xia Zhao, Zhiying Wang, and Lieven Eeckhout. 2018. Classification-Driven Search for Effective
SM Partitioning in Multitasking GPUs. In Proceedings of the 2018 International Conference on Su-
percomputing. ICS ’18: 2018 International Conference on Supercomputing. ACM, Beijing China,
(June 12, 2018), 65–75. ISBN: 978-1-4503-5783-8. DOI: 10.1145/3205289.3205311.

[67] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2022. MISO:
exploiting multi-instance GPU capability on multi-tenant GPU clusters. In Proceedings of the
13th Symposium on Cloud Computing. SoCC ’22: ACM Symposium on Cloud Computing. ACM,
San Francisco California, (Nov. 7, 2022), 173–189. ISBN: 978-1-4503-9414-7. DOI: 10.1145/354
2929.3563510.

[68] Baolin Li, Viiay Gadepally, Siddharth Samsi, and Devesh Tiwari. 2022. Characterizing Multi-
Instance GPU for Machine Learning Workloads. In 2022 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). 2022 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). (May 2022), 724–731. DOI: 10.1109
/IPDPSW55747.2022.00124.

[69] AMD EPYC 7742. AMD. https://www.amd.com/en/products/specifications/ser
ver-processor.html.

[70] NVIDIA. 2022. Data Center GPU Manager Documentation. http://docs.nvidia.com/da
tacenter/dcgm/dcgm-user-guide/index.html.

[71] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri
Terzopoulos. 2022. Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44, 7, (July 2022), 3523–3542. DOI: 10.1109/TPAMI.2
021.3059968.

[72] Lars Schmarje, Monty Santarossa, Simon-Martin Schröder, and Reinhard Koch. 2021. A Survey
on Semi-, Self- and Unsupervised Learning for Image Classification. IEEE Access, 9, 82146–
82168. DOI: 10.1109/ACCESS.2021.3084358.

[73] Mingxing Tan and Quoc V. Le. 2021. EfficientNetV2: Smaller Models and Faster Training. In
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event (Proceedings of Machine Learning Research). Marina Meila and Tong Zhang, ed-
itors. Vol. 139. PMLR, 10096–10106. http://proceedings.mlr.press/v139/tan21a.h
tml.

[74] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou.
2021. Going Deeper with Image Transformers. (Apr. 7, 2021). arXiv: 2103.17239 [cs] http
://arxiv.org/abs/2103.17239. Pre-published.

[75] Maxim Naumov et al. Deep learning recommendation model for personalization and recom-
mendation systems. (2019). arXiv: 1906.00091.

[76] Criteo. 2015. Criteo Releases Industry’s Largest-Ever Dataset for Machine Learning to Aca-
demic Community. Criteo. (July 18, 2015). https://www.criteo.com/news/press-rel
eases/2015/07/criteo-releases-industrys-largest-ever-dataset/.

[77] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.

[78] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as
an alternative to the cifar datasets. (2017). arXiv: 1707.08819.

[79] Ties Robroek, Aaron Duane, Ehsan Yousefzadeh-Asl-Miandoab, and Pinar Tozun. 2023. Data
Management and Visualization for Benchmarking Deep Learning Training Systems. In Pro-
ceedings of the Seventh Workshop on Data Management for End-to-End Machine Learning. DEEM
’23: Seventh Workshop on Data Management for End-to-End Machine Learning. ACM, Seattle
WA USA, (June 18, 2023), 1–5. DOI: 10.1145/3595360.3595851.

https://doi.org/10.1109/ISCA.2016.29
https://doi.org/10.1109/ISCA.2016.29
https://doi.org/10.1145/3205289.3205311
https://doi.org/10.1145/3542929.3563510
https://doi.org/10.1145/3542929.3563510
https://doi.org/10.1109/IPDPSW55747.2022.00124
https://doi.org/10.1109/IPDPSW55747.2022.00124
https://www.amd.com/en/products/specifications/server-processor.html
https://www.amd.com/en/products/specifications/server-processor.html
http://docs.nvidia.com/datacenter/dcgm/dcgm-user-guide/index.html
http://docs.nvidia.com/datacenter/dcgm/dcgm-user-guide/index.html
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/ACCESS.2021.3084358
http://proceedings.mlr.press/v139/tan21a.html
http://proceedings.mlr.press/v139/tan21a.html
https://arxiv.org/abs/2103.17239
http://arxiv.org/abs/2103.17239
http://arxiv.org/abs/2103.17239
https://arxiv.org/abs/1906.00091
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://arxiv.org/abs/1707.08819
https://doi.org/10.1145/3595360.3595851

Bibliography 99

[80] MLflow - An open source platform for the machine learning lifecycle. MLflow. https://mlf
low.org/.

[81] [SW] Ross Wightman, PyTorch Image Models. Hugging Face. URL: https://github.com
/huggingface/pytorch-image-models.

[82] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. 2019. Au-
toAugment: Learning Augmentation Strategies From Data. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR). IEEE, Long Beach, CA, USA, (June 2019), 113–123. ISBN:
978-1-72813-293-8. DOI: 10.1109/CVPR.2019.00020.

[83] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramohan A Thekkath, and
Ana Klimovic. Cachew: Machine Learning Input Data Processing as a Service.

[84] Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and Hans-Arno Jacobsen. 2022. Where Is My
Training Bottleneck? Hidden Trade-Offs in Deep Learning Preprocessing Pipelines. In Proceed-
ings of the 2022 International Conference on Management of Data. SIGMOD/PODS ’22: Interna-
tional Conference on Management of Data. ACM, Philadelphia PA USA, (June 10, 2022), 1825–
1839. ISBN: 978-1-4503-9249-5. DOI: 10.1145/3514221.3517848.

[85] Amazon EC2. Amazon Web Services, Inc. https://aws.amazon.com/ec2/.

[86] Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. 2021. Tf.data: A Machine Learning
Data Processing Framework. Proceedings of the VLDB Endowment, 14, 12, (July 2021), 2945–2958.
DOI: 10.14778/3476311.3476374.

[87] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram. 2021. Ana-
lyzing and mitigating data stalls in DNN training. Proceedings of the VLDB Endowment, 14, 5,
(Jan. 2021), 771–784. DOI: 10.14778/3446095.3446100.

[88] Fabio Maschi and Gustavo Alonso. 2023. The Difficult Balance Between Modern Hardware
and Conventional CPUs. In Proceedings of the 19th International Workshop on Data Management on
New Hardware. SIGMOD/PODS ’23: International Conference on Management of Data. ACM,
Seattle WA USA, (June 18, 2023), 53–62. DOI: 10.1145/3592980.3595314.

[89] David Patterson et al. 2022. The Carbon Footprint of Machine Learning Training Will Plateau,
Then Shrink. (Apr. 11, 2022). arXiv: 2204.05149 [cs] http://arxiv.org/abs/2204.05
149. Pre-published.

[90] Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. 2020. Carbontracker:
Tracking and Predicting the Carbon Footprint of Training Deep Learning Models. (July 6, 2020).
arXiv: 2007.03051 [cs, eess, stat] http://arxiv.org/abs/2007.03051. Pre-
published.

[91] Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiří Šimša, and Chandramohan A.
Thekkath. 2023. Tf.data service: A Case for Disaggregating ML Input Data Processing. In Pro-
ceedings of the 2023 ACM Symposium on Cloud Computing. SoCC ’23: ACM Symposium on Cloud
Computing. ACM, Santa Cruz CA USA, (Oct. 30, 2023), 358–375. DOI: 10.1145/3620678.3
624666.

[92] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram Venkataraman. 2019.
The Case for Unifying Data Loading in Machine Learning Clusters. In 11th USENIX Workshop
on Hot Topics in Cloud Computing, HotCloud 2019, Renton, WA, USA, July 8, 2019. Christina De-
limitrou and Dan R. K. Ports, editors. USENIX Association. https://www.usenix.org/co
nference/hotcloud19/presentation/kakaraparthy.

[93] Jingwei Xu, Guochang Wang, Yuan Yao, Zenan Li, Chun Cao, and Hanghang Tong. 2022. A
Deep Learning Dataloader with Shared Data Preparation. Advances in Neural Information Pro-
cessing Systems, 35, 17146–17156. https://proceedings.neurips.cc/paper_files/pa
per/2022/hash/6d538a6e667960b168d3d947eb6207a6-Abstract-Conference.h
tml.

[94] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. 2005. QPipe: a simul-
taneously pipelined relational query engine. In Proceedings of the 2005 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD/PODS05: International Conference on Man-
agement of Data and Symposium on Principles Database and Systems. ACM, Baltimore Mary-
land, (June 14, 2005), 383–394. ISBN: 978-1-59593-060-6. DOI: 10.1145/1066157.1066201.

https://mlflow.org/
https://mlflow.org/
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.1145/3514221.3517848
https://aws.amazon.com/ec2/
https://doi.org/10.14778/3476311.3476374
https://doi.org/10.14778/3446095.3446100
https://doi.org/10.1145/3592980.3595314
https://arxiv.org/abs/2204.05149
http://arxiv.org/abs/2204.05149
http://arxiv.org/abs/2204.05149
https://arxiv.org/abs/2007.03051
http://arxiv.org/abs/2007.03051
https://doi.org/10.1145/3620678.3624666
https://doi.org/10.1145/3620678.3624666
https://www.usenix.org/conference/hotcloud19/presentation/kakaraparthy
https://www.usenix.org/conference/hotcloud19/presentation/kakaraparthy
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6d538a6e667960b168d3d947eb6207a6-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6d538a6e667960b168d3d947eb6207a6-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6d538a6e667960b168d3d947eb6207a6-Abstract-Conference.html
https://doi.org/10.1145/1066157.1066201

100 Bibliography

[95] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. 2012. SharedDB: Killing One
Thousand Queries With One Stone. (Feb. 29, 2012). arXiv: 1203.0056 [cs] http://arx
iv.org/abs/1203.0056. Pre-published.

[96] Pinar Tözün, Islam Atta, Anastasia Ailamaki, and Andreas Moshovos. 2014. ADDICT: ad-
vanced instruction chasing for transactions. Proceedings of the VLDB Endowment, 7, 14, (Oct.
2014), 1893–1904. DOI: 10.14778/2733085.2733095.

[97] Iraklis Psaroudakis, Manos Athanassoulis, and Anastasia Ailamaki. 2013. Sharing data and
work across concurrent analytical queries. Proceedings of the VLDB Endowment, 6, 9, (July 2013),
637–648. DOI: 10.14778/2536360.2536364.

[98] Microsoft Azure Virtual Machines. https://azure.microsoft.com/en-us/products
/virtual-machines.

[99] Google Cloud Platform Compute Engine. https://cloud.google.com/products/comp
ute?hl=en.

[100] Francesco Ventura, Zoi Kaoudi, Jorge Arnulfo Quiané-Ruiz, and Volker Markl. 2021. Expand
your Training Limits! Generating Training Data for ML-based Data Management. In Proceedings
of the 2021 International Conference on Management of Data. SIGMOD/PODS ’21: International
Conference on Management of Data. ACM, Virtual Event China, (June 9, 2021), 1865–1878.
ISBN: 978-1-4503-8343-1. DOI: 10.1145/3448016.3457286.

[101] Mark Zhao et al. 2022. Understanding data storage and ingestion for large-scale deep recom-
mendation model training: industrial product. In Proceedings of the 49th Annual International
Symposium on Computer Architecture. ISCA ’22: The 49th Annual International Symposium on
Computer Architecture. ACM, New York New York, (June 18, 2022), 1042–1057. ISBN: 978-1-
4503-8610-4. DOI: 10.1145/3470496.3533044.

[102] [SW], GitHub: NVIDIA DALI May 19, 2023. NVIDIA Corporation. URL: https://github
.com/NVIDIA/DALI.

[103] Taeyoon Kim, ChanHo Park, Heelim Hong, Minseok Kim, Ze Jin, Changdae Kim, Ji-Yong Shin,
and Myeongjae Jeon. FusionFlow: Accelerating Data Preprocessing for Machine Learning with
CPU-GPU Cooperation.

[104] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun, Goeun Kim, and Woo-Yeon
Lee. 2023. FastFlow: Accelerating Deep Learning Model Training with Smart Offloading of
Input Data Pipeline. Proceedings of the VLDB Endowment, 16, 5, (Jan. 2023), 1086–1099. DOI: 10
.14778/3579075.3579083.

[105] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. 2019. Tunability: Importance of Hy-
perparameters of Machine Learning Algorithms. J. Mach. Learn. Res., 20, 53:1–53:32. http://j
mlr.org/papers/v20/18-444.html.

[106] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz
Hardt, Benjamin Recht, and Ameet Talwalkar. A System for Massively Parallel Hyperparame-
ter Tuning, 17.

[107] Chenxi Liu et al. 2018. Progressive Neural Architecture Search. In Computer Vision – ECCV
2018. Vol. 11205. Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors.
Springer International Publishing, Cham, 19–35. DOI: 10.1007/978-3-030-01246-5_2.

[108] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: a data system for optimized
deep learning model selection. Proceedings of the VLDB Endowment, 13, 12, (Aug. 2020), 2159–
2173. DOI: 10.14778/3407790.3407816.

[109] [SW] Microsoft Research, Coordinated Data Loader: CoorDL 2020. URL: https://github.c
om/msr-fiddle/CoorDL.

[110] [SW], Joader Codebase July 10, 2024. URL: https://github.com/XieJiann/Joader.

[111] 2023. ZeroMQ. (Dec. 11, 2023). https://zeromq.org/.

[112] Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion: Interference-aware, Fine-grained
GPU Sharing for ML Applications. In Proceedings of the Nineteenth European Conference on Com-
puter Systems, EuroSys 2024, Athens, Greece, April 22-25, 2024. ACM, 1075–1092. DOI: 10.1145
/3627703.3629578.

https://arxiv.org/abs/1203.0056
http://arxiv.org/abs/1203.0056
http://arxiv.org/abs/1203.0056
https://doi.org/10.14778/2733085.2733095
https://doi.org/10.14778/2536360.2536364
https://azure.microsoft.com/en-us/products/virtual-machines
https://azure.microsoft.com/en-us/products/virtual-machines
https://cloud.google.com/products/compute?hl=en
https://cloud.google.com/products/compute?hl=en
https://doi.org/10.1145/3448016.3457286
https://doi.org/10.1145/3470496.3533044
https://github.com/NVIDIA/DALI
https://github.com/NVIDIA/DALI
https://doi.org/10.14778/3579075.3579083
https://doi.org/10.14778/3579075.3579083
http://jmlr.org/papers/v20/18-444.html
http://jmlr.org/papers/v20/18-444.html
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.14778/3407790.3407816
https://github.com/msr-fiddle/CoorDL
https://github.com/msr-fiddle/CoorDL
https://github.com/XieJiann/Joader
https://zeromq.org/
https://doi.org/10.1145/3627703.3629578
https://doi.org/10.1145/3627703.3629578

Bibliography 101

[113] Connor Espenshade, Rachel Peng, Eumin Hong, Max Calman, Yue Zhu, Pritish Parida, Eun
Kyung Lee, and Martha A. Kim. 2024. Characterizing Training Performance and Energy for
Foundation Models and Image Classifiers on Multi-Instance GPUs. In Proceedings of the 4th
Workshop on Machine Learning and Systems. EuroSys ’24: Nineteenth European Conference on
Computer Systems. ACM, Athens Greece, (Apr. 22, 2024), 47–55. DOI: 10.1145/3642970.36
55830.

[114] Lennart Behme, Saravanan Thirumuruganathan, Alireza Rezaei Mahdiraji, Jorge-Arnulfo Quiané-
Ruiz, and Volker Markl. 2023. The Art of Losing to Win: Using Lossy Image Compression to
Improve Data Loading in Deep Learning Pipelines. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE). 2023 IEEE 39th International Conference on Data Engineering (ICDE).
(Apr. 2023), 936–949. DOI: 10.1109/ICDE55515.2023.00077.

[115] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchi-
cal Text-Conditional Image Generation with CLIP Latents. (Apr. 12, 2022). arXiv: 2204.06125
[cs] http://arxiv.org/abs/2204.06125. Pre-published.

[116] Janne Spijkervet and John Ashley Burgoyne. 2021. Contrastive Learning of Musical Represen-
tations. In Proceedings of the 22nd International Society for Music Information Retrieval Conference.
ISMIR, (Oct. 2021), 673–681. DOI: 10.5281/zenodo.5624573.

[117] [SW] Phil Wang, DALL-E 2 - Pytorch 2023. URL: https://github.com/lucidrains
/DALLE2-pytorch.

[118] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015. Librispeech:
An ASR corpus based on public domain audio books. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). (Apr. 2015), 5206–5210. DOI: 10.1109/ICASSP.2
015.7178964.

[119] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. 2018. Conceptual Captions:
A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia,
2556–2565. DOI: 10.18653/v1/P18-1238.

[120] AWS EC2 Pricing. Amazon Web Services, Inc. https://aws.amazon.com/ec2/pricing
/on-demand/.

[121] Anyscale. Ray Tune: Hyperparameter Tuning. https://docs.ray.io/en/latest/tune
/index.html.

[122] Stavros Harizopoulos and Anastassia Ailamaki. 2005. StagedDB: Designing Database Servers
for Modern Hardware. IEEE Data Eng. Bull., 28, 2, 11–16.

[123] Ryan Johnson, Nikos Hardavellas, Ippokratis Pandis, Naju Mancheril, Stavros Harizopoulos,
Kivanc Sabirli, Anastassia Ailamaki, and Babak Falsafi. 2007. To Share or Not To Share? In
Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna,
Austria, September 23-27, 2007. Christoph Koch et al., editors. ACM, 351–362. http://www.vl
db.org/conf/2007/papers/research/p351-johnson.pdf.

[124] Christoph Brücke, Philipp Härtling, Rodrigo D Escobar Palacios, Hamesh Patel, and Tilmann
Rabl. 2023. TPCx-AI - An Industry Standard Benchmark for Artificial Intelligence and Machine
Learning Systems. Proceedings of the VLDB Endowment, 16, 12, (Aug. 2023), 3649–3661. DOI: 10
.14778/3611540.3611554.

[125] Oana Balmau. 2022. Characterizing I/O in Machine Learning with MLPerf Storage. ACM SIG-
MOD Record, 51, 3, (Nov. 21, 2022), 47–48. DOI: 10.1145/3572751.3572765.

[126] MLPerf Storage Benchmark Suite Results. MLCommons. https://mlcommons.org/bench
marks/storage/.

[127] Jeremy Howard and Sylvain Gugger. 2020. Fastai: A layered API for deep learning. Information,
11, 2, 108.

https://doi.org/10.1145/3642970.3655830
https://doi.org/10.1145/3642970.3655830
https://doi.org/10.1109/ICDE55515.2023.00077
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
http://arxiv.org/abs/2204.06125
https://doi.org/10.5281/zenodo.5624573
https://github.com/lucidrains/DALLE2-pytorch
https://github.com/lucidrains/DALLE2-pytorch
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.18653/v1/P18-1238
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
http://www.vldb.org/conf/2007/papers/research/p351-johnson.pdf
http://www.vldb.org/conf/2007/papers/research/p351-johnson.pdf
https://doi.org/10.14778/3611540.3611554
https://doi.org/10.14778/3611540.3611554
https://doi.org/10.1145/3572751.3572765
https://mlcommons.org/benchmarks/storage/
https://mlcommons.org/benchmarks/storage/

102 Bibliography

[128] Jeremy Howard. 2018. Fast.ai - Training Imagenet in 3 hours for USD 25; and CIFAR10 for USD
0.26. fast.ai. (Apr. 30, 2018). https://www.fast.ai/posts/2018-04-30-dawnbench-f
astai.html.

[129] Fernando Pérez-García, Rachel Sparks, and Sébastien Ourselin. 2021. TorchIO: a Python library
for efficient loading, preprocessing, augmentation and patch-based sampling of medical im-
ages in deep learning. Computer Methods and Programs in Biomedicine, 208, 106236.

[130] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD Batch Size to 32K for ImageNet Train-
ing. (2017). arXiv: 1708.03888.

[131] Yang You et al. 2020. Large Batch Optimization for Deep Learning: Training BERT in 76 min-
utes. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=Syx4wnEtvH.

[132] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. 2018. Imagenet train-
ing in minutes. In Proceedings of the 47th International Conference on Parallel Processing, 1–10.

[133] Aditya Devarakonda, Maxim Naumov, and Michael Garland. 2017. Adabatch: Adaptive batch
sizes for training deep neural networks. CoRR, abs/1712.02029.

[134] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. 2018. Don’t Decay the
Learning Rate, Increase the Batch Size. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=B1Yy1BxCZ.

[135] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch sgd: Training
resnet-50 on imagenet in 15 minutes. (2017). arXiv: 1711.04325.

[136] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural networks. CoRR,
abs/1404.5997. http://arxiv.org/abs/1404.5997 arXiv: 1404.5997.

[137] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks.
(2018). arXiv: 1804.07612.

[138] Elad Hoffer, Berry Weinstein, Itay Hubara, Tal Ben-Nun, Torsten Hoefler, and Daniel Soudry.
Mix & match: training convnets with mixed image sizes for improved accuracy, speed and scale
resiliency. (2019). arXiv: 1908.08986.

[139] Hossein Talebi and Peyman Milanfar. 2021. Learning to Resize Images for Computer Vision
Tasks. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV). IEEE, Montreal, QC, Canada, (Oct. 2021),
487–496. ISBN: 978-1-66542-812-5. DOI: 10.1109/ICCV48922.2021.00055.

[140] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for convolutional neu-
ral networks. In International Conference on Machine Learning. PMLR, 6105–6114.

[141] Ammar Mahmood, Ana Giraldo Ospina, Mohammed Bennamoun, Senjian An, Ferdous Sohel,
Farid Boussaid, Renae Hovey, Robert B. Fisher, and Gary A. Kendrick. 2020. Automatic hier-
archical classification of kelps using deep residual features. Sensors, 20, 2, 447. https://www
.mdpi.com/1424-8220/20/2/447.

[142] [SW] Ross Wightman, PyTorch Image Models Jan. 24, 2022. URL: https://github.com/rw
ightman/pytorch-image-models.

[143] Fastxtend. https://fastxtend.benjaminwarner.dev/.

[144] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learn-
ing. In Proceedings of the 26th Annual International Conference on Machine Learning, 41–48.

[145] Amelia Jiménez-Sánchez, Diana Mateus, Sonja Kirchhoff, Chlodwig Kirchhoff, Peter Biberthaler,
Nassir Navab, Miguel Ángel González Ballester, and Gemma Piella. 2022. Curriculum learning
for improved femur fracture classification: Scheduling data with prior knowledge and uncer-
tainty. Medical Image Anal., 75, 102273. DOI: 10.1016/J.MEDIA.2021.102273.

https://www.fast.ai/posts/2018-04-30-dawnbench-fastai.html
https://www.fast.ai/posts/2018-04-30-dawnbench-fastai.html
https://arxiv.org/abs/1708.03888
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=B1Yy1BxCZ
https://arxiv.org/abs/1711.04325
http://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1908.08986
https://doi.org/10.1109/ICCV48922.2021.00055
https://www.mdpi.com/1424-8220/20/2/447
https://www.mdpi.com/1424-8220/20/2/447
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://fastxtend.benjaminwarner.dev/
https://doi.org/10.1016/J.MEDIA.2021.102273

Bibliography 103

[146] Yuxing Tang, Xiaosong Wang, Adam P. Harrison, Le Lu, Jing Xiao, and Ronald M. Summers.
2018. Attention-guided curriculum learning for weakly supervised classification and localiza-
tion of thoracic diseases on chest radiographs. In Machine Learning in Medical Imaging: 9th Inter-
national Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September
16, 2018, Proceedings 9. Springer, 249–258.

[147] Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan. 2019. Dynamic Curriculum Learn-
ing for Imbalanced Data Classification. In 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 5016–5025. DOI:
10.1109/ICCV.2019.00512.

[148] Guy Hacohen and Daphna Weinshall. 2019. On The Power of Curriculum Learning in Training
Deep Networks. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA (Proceedings of Machine Learning Research).
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors. Vol. 97. PMLR, 2535–2544. http:
//proceedings.mlr.press/v97/hacohen19a.html.

[149] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. 2020. Teacher-Student Cur-
riculum Learning. IEEE Trans. Neural Networks Learn. Syst., 31, 9, 3732–3740. DOI: 10.1109
/TNNLS.2019.2934906.

[150] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. 2020. Coresets for data-efficient train-
ing of machine learning models. In International Conference on Machine Learning. PMLR, 6950–
6960. https://proceedings.mlr.press/v119/mirzasoleiman20a.html.

[151] Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. 2022. Adaptive second or-
der coresets for data-efficient machine learning. In International Conference on Machine Learning.
PMLR, 17848–17869. https://proceedings.mlr.press/v162/pooladzandi22a.htm
l.

[152] Patrik Okanovic, Roger Waleffe, Vasilis Mageirakos, Konstantinos E. Nikolakakis, Amin Kar-
basi, Dionysis Kalogerias, Nezihe Merve Gürel, and Theodoros Rekatsinas. 2023. Repeated
Random Sampling for Minimizing the Time-to-Accuracy of Learning. (May 28, 2023). arXiv:
2305.18424 [cs] http://arxiv.org/abs/2305.18424. Pre-published.

[153] Angelos Katharopoulos and François Fleuret. 2018. Not all samples are created equal: Deep
learning with importance sampling. In International Conference on Machine Learning. PMLR,
2525–2534. http://proceedings.mlr.press/v80/katharopoulos18a.html.

[154] Sören Mindermann et al. 2022. Prioritized training on points that are learnable, worth learning,
and not yet learnt. In International Conference on Machine Learning. PMLR, 15630–15649. https
://proceedings.mlr.press/v162/mindermann22a.html.

[155] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. 2021. Deep learning on a data
diet: Finding important examples early in training. Advances in neural information processing
systems, 34, 20596–20607. https://proceedings.neurips.cc/paper/2021/hash/ac5
6f8fe9eea3e4a365f29f0f1957c55-Abstract.html.

[156] Germain Kolossov, Andrea Montanari, and Pulkit Tandon. 2023. Towards a statistical theory
of data selection under weak supervision. (Oct. 4, 2023). arXiv: 2309.14563 [cs, stat]
http://arxiv.org/abs/2309.14563. Pre-published.

[157] Logan Engstrom, Axel Feldmann, and Aleksander Madry. 2024. DsDm: Model-Aware Dataset
Selection with Datamodels. (Jan. 23, 2024). arXiv: 2401.12926 [cs, stat] http://arxiv
.org/abs/2401.12926. Pre-published.

[158] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. 2024.
LESS: Selecting Influential Data for Targeted Instruction Tuning. (June 12, 2024). arXiv: 2402
.04333 [cs] http://arxiv.org/abs/2402.04333. Pre-published.

[159] Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry.
2023. TRAK: Attributing Model Behavior at Scale. (Apr. 3, 2023). arXiv: 2303.14186 [cs,
stat] http://arxiv.org/abs/2303.14186. Pre-published.

[160] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via influence func-
tions. In International Conference on Machine Learning. PMLR, 1885–1894. http://proceedin
gs.mlr.press/v70/koh17a?ref=https://githubhelp.com.

https://doi.org/10.1109/ICCV.2019.00512
http://proceedings.mlr.press/v97/hacohen19a.html
http://proceedings.mlr.press/v97/hacohen19a.html
https://doi.org/10.1109/TNNLS.2019.2934906
https://doi.org/10.1109/TNNLS.2019.2934906
https://proceedings.mlr.press/v119/mirzasoleiman20a.html
https://proceedings.mlr.press/v162/pooladzandi22a.html
https://proceedings.mlr.press/v162/pooladzandi22a.html
https://arxiv.org/abs/2305.18424
http://arxiv.org/abs/2305.18424
http://proceedings.mlr.press/v80/katharopoulos18a.html
https://proceedings.mlr.press/v162/mindermann22a.html
https://proceedings.mlr.press/v162/mindermann22a.html
https://proceedings.neurips.cc/paper/2021/hash/ac56f8fe9eea3e4a365f29f0f1957c55-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ac56f8fe9eea3e4a365f29f0f1957c55-Abstract.html
https://arxiv.org/abs/2309.14563
http://arxiv.org/abs/2309.14563
https://arxiv.org/abs/2401.12926
http://arxiv.org/abs/2401.12926
http://arxiv.org/abs/2401.12926
https://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2402.04333
http://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2303.14186
https://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2303.14186
http://proceedings.mlr.press/v70/koh17a?ref=https://githubhelp.com
http://proceedings.mlr.press/v70/koh17a?ref=https://githubhelp.com

104 Bibliography

[161] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry.
2022. Datamodels: Predicting Predictions from Training Data. (Feb. 1, 2022). arXiv: 2202.006
22 [cs, stat] http://arxiv.org/abs/2202.00622. Pre-published.

[162] Maximilian Böther, Foteini Strati, Viktor Gsteiger, and Ana Klimovic. 2023. Towards A Plat-
form and Benchmark Suite for Model Training on Dynamic Datasets. In Proceedings of the 3rd
Workshop on Machine Learning and Systems. EuroMLSys ’23: 3rd Workshop on Machine Learning
and Systems. ACM, Rome Italy, (May 8, 2023), 8–17. https://dl.acm.org/doi/10.1145
/3578356.3592585.

[163] Maximilian Böther, Viktor Gsteiger, Ties Robroek, and Ana Klimovic. 2023. Modyn: A Platform
for Model Training on Dynamic Datasets With Sample-Level Data Selection. (Dec. 11, 2023).
arXiv: 2312.06254 [cs, stat] http://arxiv.org/abs/2312.06254. Pre-published.

https://arxiv.org/abs/2202.00622
https://arxiv.org/abs/2202.00622
http://arxiv.org/abs/2202.00622
https://dl.acm.org/doi/10.1145/3578356.3592585
https://dl.acm.org/doi/10.1145/3578356.3592585
https://arxiv.org/abs/2312.06254
http://arxiv.org/abs/2312.06254

	Acknowledgements
	Abstract
	Resumé
	Contents
	List of Figures
	List of Tables
	Introduction
	Adding Transparency to Deep Learning
	Keeping GPUs Busy
	Reducing Data Redundancy
	Accelerating Time-To-Accuracy
	Thesis Statement and Contributions
	Roadmap

	Background
	Domain Variety in Deep Learning
	Deep Learning Training
	Data Pipeline
	GPU Acceleration
	Measuring Deep Learning

	radT - Resource Aware Data Tracker
	Introduction
	Framework
	Back-end
	Scheduling
	Environments
	Collocation
	Listeners

	Front-end
	Conclusions

	GPU Collocation
	Introduction
	Background
	Collocation on GPUs
	Naïve (or Multi-Stream)
	Multi-Process Service (MPS)
	Multi-Instance GPU (MIG)

	Related work

	Setup & Methodology
	System
	Metrics
	Models & Datasets
	Models
	Datasets

	Experiments

	Results
	Time per Epoch
	GPU Utilisation
	Memory Footprint
	Interconnect Traffic
	Energy Consumption
	Mixed Vision Workloads
	Mixed Recommender and Vision Workloads

	Guidelines & Challenges
	Collocation Guidelines
	Challenges

	Conclusion

	Data Sharing via TensorSocket
	Introduction
	Data Loading in Deep Learning
	TensorSocket
	Overview
	Implementation
	Producer
	Consumer
	Communication
	Data sharing
	Synchronisation
	Usage

	Use Case Scenarios
	Centralised Always-Available Loading.
	Native Inter- and Intra-GPU Sharing.
	Sharing for Mixed Workloads.
	Sharing Generative Tasks Online.

	Results
	Experimental Setup
	Image Classification
	Audio Classification
	Image Generation
	Model Selection
	Comparison to other sharing techniques
	CoorDL
	Joader

	TensorSocketGoing Forward
	Target Domains and Workloads
	Generalisability and Customisation
	In Conjunction with Related Tooling

	Related Work
	Conclusion

	Progressive Resizing
	Introduction
	Background
	Adaptive Progressive Resizing
	Layer Definitions
	Convolutional Network Image Scaling
	Hyperparameter Rebalancing
	Implementation
	Size Buckets
	Exhaustive Loading
	Mixed Loading

	Results
	Setup
	Comparison to other techniques
	Performance under Progressive Resizing

	Discussion & Future
	Conclusion

	Future Directions and Conclusion
	Experiment Tracking
	Sharing in Deep Learning
	Data Selection and Attribution
	Thesis Summary

