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Abstract

Language emerges naturally from human communication, and as
such, linguistic variation across the many possible dimensions of ex-
pression is ubiquitous. Higher variation across specific dimensions
leads to a decrease in mutual intelligibility, or, in the case of Natural
Language Processing (NLP), to decreased model transferability. Lin-
guistics delineates between dimensions such as typology, domain,
register, etc., using qualitative definitions, however, these are difficult
to apply quantitatively and to combine at scale. NLP on the other
hand necessitates a quantization of language, and has thus enabled
machines to learn data-driven, vectorized representations thereof,
which measure language similarity remarkably well, but fall short of
explaining exactly how two data points are related. By leveraging prob-
ing methods to segment the high-dimensional latent spaces of Lan-
guage Models (LMs) into subspaces with linguistically interpretable
similarity characteristics, we aim to bridge the divide between these
two disciplines. Our results for cross-lingual syntax and cross-domain
genre demonstrate that corresponding subspaces can be successfully
recovered, and consequently used to predict which training data and
models transfer well to unseen language varieties and domains. Com-
bining dimensions from across this Variety Space, we further quantify
task similarity in an interpretable way, and investigate how linguistic
information emerges in LMs during their training. As NLP increasingly
relies on general purpose information stored in LMs to solve myriads
of downstream tasks, we argue that quantifying and understanding
language and task variation is critical to ensure model robustness and
trustworthiness. Towards this goal, our quantitative measures of lin-
guistic variation provide a generally applicable framework grounded
in traditional linguistics.
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Resumé

Sprog er en naturlig del af menneskelig kommunikation, og de mange
mulige dimensioner af udtryk, som kan variere på tværs, medfører
sproglig variation. Større variationer i specifikke dimensioner kan føre
til, at sproget er sværere at forstå eller, i forhold til sprogteknologi
(en: Natural Language Processing; NLP), til lavere generaliserbarhed
af modellerne. Lingvistik skelner mellem dimensioner som typologi,
domæne, register osv. ved hjælp af kvalitative definitioner, men disse
er svære at anvende kvantitativt og også svære at kombinere. NLP kvan-
tificerer derimod sproget og har således gjort det muligt for maskiner
at lære datadrevne, vektoriserede repræsentationer af sprog. Disse om-
fatter mange forskellige begreber af sproglig lighed, men forklarer ikke
på en menneskelig forståelig måde, hvordan to datapunkter hænger
sammen. Ved hjælp af probingmetoder til at opdele de højdimen-
sionelle latent spaces i sprogmodeller (en: Language Models; LMs) i
subspaces, der deler lingvistiske karakteristika, sigter vi mod at bygge
bro mellem NLP og lingvistik. Vores resultater på tværs af sproglige
typologier og genrer viser, at vi med success kan gendanne tilsvarende
subspaces, der kan bruges til at forudsige, hvilke træningsdata og mod-
eller, som generaliserer godt til nye sprog og domæner. På samme
måde kan vi kvantificere ligheder mellem NLP-opgaver ved at kom-
binere variationsdimensioner og undersøge hvordan sproglig infor-
mation bliver lært af LM’er under træningen. NLP er i stigende grad
afhængig af generelle sproglige egenskaber gemt i LM’er for at løse
opgaver, der kræver kombinationer af mange forskellige sproglige
færdigheder. Derfor hævder vi, at kvantificering og forståelse af sprog-
og opgavevariation er afgørende for at sikre modellens robusthed og
troværdighed. Vores kvantitative mål for sproglig variation baserer sig
dermed på kvalitative definitioner fra lingvistik. Derfor giver de en
fleksibel ramme til at analysere relevante informationer i LM’er på en
måde, der kan fortolkes af mennesker.
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Part I

INTRODUCTION



1Motivation

Language emerges naturally from human communication, such that
variation is inevitable to the point that—we would argue—everyone
has their own unique language variety. Of course, completely disjunct
languages would not serve their purpose, and thus, their variability
is limited on some dimensions more than others: linguistic typology
(phonology, lexicology, syntax), for instance, is relatively stable within
a language community, i.e., people “speak the same language”. On
the other hand, even within one typology, the domain (e.g., genre), as
well as many other factors, such as pragmatics (e.g., social context),
may change language to such a degree that it becomes difficult to
transfer between settings. These dimensions do not exist in isolation,
but are closely tied to one another. Language thus exists in the high-
dimensional manifold of Variety Space (Plank, 2016).

Understanding which variety dimensions constitute this space
and how to navigate them is crucial, as larger distances correspond
to decreases in mutual intelligibility. In Natural Language Processing
(NLP), this manifests as decreased model transferability, i.e., how well a
model trained on one language variety fits another, without additional
tuning. The rigidity of computational models compared to humans
makes it even more important to understand shifts in Variety Space a
priori, as knowledge regarding the types of variation a model is robust
against is essential for establishing its trustworthiness in downstream
scenarios (Litschko et al., 2023). Acquiring this knowledge necessitates
quantitative measures of linguistic variation, and as such, this work’s
objective is to provide a general framework for comparing textual
language data and models thereof across Variety Space, and to evaluate
this framework on a focused set of variety dimensions.
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Chapter 1 | Motivation

1.1 Navigating Variety Space

Humans intuitively navigate Variety Space on a daily basis. However,
it is notoriously difficult to define (Section 2.1): Linguistics provides
qualitative definitions of individual variety dimensions, which are
helpful for delimiting properties that affect human communication
in different ways. For example, order and inflections are closely tied
to a word’s function in a sentence, and show little variation within a
language. Consolidating these patterns into a set of morphosyntactic
rules then allows us to compare languages qualitatively. Although
such definitions can be used to inform quantitative comparisons of
language varieties across some dimensions (Baayen, 2008), they fail to
scale across the entirety of Variety Space. This issue is exacerbated, the
less formalizable a property becomes (e.g., typology versus pragmat-
ics), and the more data points there are to compare. This makes it near
impossible to accurately describe interactions between two or more
variety dimensions of large-scale data on a continuous spectrum.

Natural Language Processing (NLP) not only necessitates the quan-
tization of language, but has further excelled and thrived upon doing
so at scale. Mirroring the hierarchy of increasing variability, early NLP
focused on more consistent, typological properties, such as syntax
in the form of expert-curated grammars, and later shifted towards
data-driven methods for better coverage of less formalizable phenom-
ena (Manning and Schütze, 2003). Representation Learning has been
fundamental in this paradigm shift. Based on the assumption that the
majority of relevant information is encoded by the probability of data
co-occurring (Harris, 1954; Firth, 1957), statistical Language Models
(LMs) learn quantized representations of language (i.e., vector spaces),
which contain useful information for a myriad of downstream tasks
(Rosenfeld, 2000). Usefulness, in this case, refers to the fact that data,
which are similar with respect to real-world properties (e.g., syntax, se-
mantics, register), have vectorized representations that are embedded
close to each other in the LM’s overall vector space. These embedding
spaces form the foundation of contemporary NLP, and have proven to
encode useful information for all of its sub-fields, without requiring
expert feature engineering (Mikolov et al., 2013).

Downstream, task-specific models, make use of these embeddings
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Chapter 1 | Motivation

by identifying latent information, which is highly correlated with the
task’s input-output pairs. This applies both to classification, where
embedding features are used to identify decision boundaries, as well
as to generation, where the output space is conditioned on the em-
beddings of the preceding input. As LMs are statistical in nature, this
general approach is based on the assumption that data are indepen-
dently and identically distributed, including those that the model will
be applied to in the future. One of the largest ongoing issues in NLP,
and statistical Machine Learning (ML) in general, has therefore been
to ensure that models behave similarly on in-distribution (IND) and
out-of-distribution data (OOD).

While model transferability is an important practical concern, the
phenomenon itself already provides a valuable theoretical tool for
quantifying linguistic variation: i.e., higher variation → lower transfer-
ability. Linking this idea back to Representation Learning, higher rep-
resentational similarity between data implies lower variation, which
should correlate with higher downstream transfer performance. LMs
thus learn their own Variety Space, within which we are able to mea-
sure variation between language data quantitatively. These measures,
however, lack a crucial feature compared to qualitative definitions of
Variety Space: In contrast to comparisons of expert-curated features
and rules, variation as measured by LMs is purely data-driven, and
thus not immediately interpretable.

In order to bridge this divide, we build on model interpretability
methods in the form of probing (Section 3.3). Contrary to the common
use-case of probing, which aims to identify how much information re-
lating to a certain linguistic property is encoded in an LM, we propose
a new perspective, leveraging probes themselves as variety subspaces,
within which representational similarity corresponds to linguistic sim-
ilarity across specific variety dimensions.

In this work, we investigate the theoretical and practical impli-
cations of this hypothesis: In Part I, we build on existing qualitative
definitions of variation (Chapter 2), and propose a general framework
for identifying interpretable subspaces in LM representations (Chap-
ter 3). In practice, we leverage these measures to compare language
varieties, and to predict which model/data combinations have benefi-
cial properties for transferability (Parts II to IV).

4
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1.2 Focus Areas

Due to the high dimensionality of Variety Space, it would be impossible
for a single study to cover each dimension, as well as their interactions,
in detail. We therefore focus on three specific dimensions of variation
with distinctive differences and overlaps, in order to demonstrate our
general framework. In the following, we provide working definitions
of each focus area, before surveying existing definitions in Chapter 2.

Typological Variation (Part II): This dimension includes the vari-
ety sub-dimensions most important to mutual intelligibility, such as
phonology, lexicology and syntax (Background Section 2.1.1; Rijkhoff,
2007). Similarity in this dimension implies cross-lingual transferability.
We examine typology from the perspective of syntax, as it is a relatively
consistent feature within a language variety, thus forming an essential
foundation for more complex, downstream language understanding
(Comrie, 1981; Hawkins, 1983). Additionally, syntax benefits from es-
tablished datasets (Nivre et al., 2020) and standards for formalization
(de Marneffe et al., 2014, 2021).

Domain Variation (Part III): Variation’s effects on downstream per-
formance are frequently evaluated in the context of this dimension.
Despite cross-domain transferability being studied extensively, the
notion of what constitutes a domain has actually not been rigorously
formalized (Background Section 2.1.2 ). Within the practical context
of NLP, we broadly consider it as any non-typological property, which
necessitates significant modeling changes. Out of these properties, we
chose to focus on genre. After typology, it is one of the top-level di-
mensions considered during dataset creation (e.g., Aston and Burnard,
1998; Nivre et al., 2020; Sharoff, 2021; Kuzman et al., 2022), and across
which models trained on the same typological language variety are
expected to transfer reasonably well.

Task Variation (Part IV): Tasks in NLP rely on different mixtures of
linguistic information and skills to map natural language inputs to
a task-specific output space (Schlangen, 2021; Weber et al., 2021).
As such, they are also susceptible to variation along the dimensions
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Chapter 1 | Motivation

described above. With the advent of large LMs prompted with complex
user instructions, NLP models are increasingly expected to transfer
well to a wide variety of open-domain tasks in a zero-shot manner.
To ensure human-model trust in these scenarios, understanding how
well task-relevant variety dimensions are represented in a model, as
well as how an unseen task may relate to other tasks, becomes of
critical importance (Litschko et al., 2023). By taking a broader view,
and characterizing tasks as variations over output space, we place
tasks on a continuous spectrum, which allows for quantifying task
similarity in a linguistically grounded way (Background Section 2.2.2).

1.3 Research Questions

To enable a deeper understanding of Variety Space, we contribute
findings towards research questions centered around our three afore-
mentioned focus areas of typology, domain, and task variation. For
each of them, we first survey human-centric, qualitative definitions
(Chapter 2), before linking these back to quantitative, data-driven
measures (Chapter 3). This dual approach is illustrated in Figure 1.1,
and ensures that the interpretability methods proposed in this work
(Parts II to IV) are grounded linguistically.

Language 
Data

La
ng

ua
ge

 M
od

el

Typology

quantitativequalitative

Domain

Tasks

Syntax

x y

Genre

Variety Space

Figure 1.1: Overview of Research Objectives. We propose a framework
for measuring linguistic variation in an interpretable way by bridging
qualitative and quantitative notions of typology, domains, and tasks.
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1.3.1 Typological Variation

RQ1 How is syntactic information from different typologies repre-
sented in data-driven latent spaces?

We further subdivide this larger question into:

RQ1.1 Which qualitative definitions exist for typological variation?

Interpretability requires human definitions of the property of interest.
In Background Section 2.1.1, we therefore survey existing definitions of
linguistic typology to extract a working definition for our subsequent
studies. Within typology, we focus on syntax and provide an overview
of how this property has been modeled in NLP.

RQ1.2 Does quantitative LM latent space contain sufficient typologi-
cal information to extract fully directed and labeled dependency trees?

In Chapter 4, we build on the typological formalism of syntactic depen-
dency trees, and investigate whether probing methods can robustly
extract these structures from LM latent spaces. In contrast to prior
work, our proposed dependency probe (DEPPROBE) is able to learn
syntactic subspaces within the LM, that contain fully-directed and
labeled dependency trees.

RQ1.3 How well does syntactic probing predict the cross-lingual trans-
ferability of a full parser?

Leveraging the syntactic subspaces extracted by DEPPROBE, we an-
alyze their representational overlaps across languages (Chapter 4).
The amount of overlap allows us to predict the robustness of parsers
trained on one language when applied to another—effectively ranking
which language data are best suited for cross-lingual transfer.

RQ1.4 How well does syntactic probing predict which LM is best suited
for dependency parsing in a specific language?

Chapter 5 follows a related, but orthogonal, setting, in which we in-
vestigate how well the previous probing-to-rank approach predicts
the suitability of LMs as initializations for training language-specific

7



Chapter 1 | Motivation

parsers. In contrast to selecting a language to transfer from, model se-
lection is much less well defined and currently relies on practitioner in-
tuition. We show how measuring syntactic information in pre-trained
LMs using DEPPROBE allows us to rank their suitability in a more
evidence-rooted way.

1.3.2 Domain Variation

RQ2 How does domain information manifest in data-driven latent
spaces across languages?

We further subdivide this larger question into:

RQ2.1 Which qualitative definitions exist for domain variation?

In Background Section 2.1.2, we survey what constitutes a domain
in linguistics and NLP. Compared to typology, this variety dimension
is even less strictly formalized. Nonetheless, we are able to extract a
working definition based on the property of genre, which we apply in
our subsequent studies.

RQ2.2 To what extent can humans qualitatively identify domain from
text alone, and how well does this align with machines?

Chapter 6 focuses on domain variation via the properties of genre
and topic. Our study is the first of its kind to qualitatively investigate
how these domain properties are perceived intuitively by human an-
notators. Both for humans and machines, our analysis provides a
first indication for the necessity of a more continuous spectrum when
measuring domain variation.

RQ2.3 Can cross-lingual genre information be amplified in LM latent
spaces using weak supervision?

Combining the dimensions of domain and typology in Chapters 7
and 8, we survey how genre manifests in the highly cross-lingual con-
text of Universal Dependencies. On the qualitative side, genres are
only labeled at the treebank level, making more granular analyses diffi-
cult, while on the quantitative side, the raw representational similarity

8



Chapter 1 | Motivation

of individual sentences is insufficient to explicitly isolate variation
along the genre dimension. As such, we propose weakly-supervised
learning to amplify latent genre information within the overall LM
embedding space using treebank-level genre metadata. By leverag-
ing a shared, multilingual latent space, our proposed methods are
able to bootstrap how genres are distributed across the dataset via
cross-lingual representational similarity.

RQ2.4 Can amplified genre guide our selection of cross-lingual train-
ing data from a significantly larger, more diverse pool?

In Chapter 8, we leverage the previously amplified cross-lingual genre
information to select training data for an unseen target language with
a known genre. Assuming we do not have access to in-language data,
we gather proxy training data in different languages, while controlling
for genre. This improves the robustness of zero-shot, cross-lingual
transfer performance for dependency parsing.

1.3.3 Task Variation

RQ3 Can data-driven measures of linguistic variation be leveraged
to quantify task similarity in an interpretable way?

We further subdivide this larger question into:

RQ3.1 What constitutes a task in NLP?

While RQs 1 and 2 correspond to input variation, we argue that tasks in
NLP can be characterized as variations over output space (Background
Section 2.2.2). Consequently, a model’s transferability to new tasks is
tied to how well it represents task-relevant dimensions of Variety Space,
with the overlap of relevant variety dimensions further quantifying
task similarity.

RQ3.2 When does task-specific linguistic information emerge during
LM training?

Towards RQs 1 and 2, Parts II and III investigate the presence of infor-
mation related to typology and domain in LM latent spaces. In Chap-
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Chapter 1 | Motivation

ter 9, we analyze how and when this information emerges from self-
supervised LM training objectives by comparing respective information-
theoretic probes from across LM training time. Our study reveals criti-
cal learning phases, as well as previously unseen interactions between
different task-relevant variety dimensions.

RQ3.3 Which linguistic information is shared across tasks, and how
do their subspaces interact across LM training time?

Treating the resulting probes from Chapter 9 as linguistically-motivated
representational subspaces allows us to measure shifts in their over-
laps across LM training. We leverage this formulation as a method
for quantifying task variation on a continuous, yet interpretable, spec-
trum. This helps us identify which linguistic information is shared
across tasks, and during which training phase.

RQ3.4 How can the same task be characterized consistently across
different languages?

While the probed subspaces from the previous approaches are difficult
to compare across models and languages due to their specificity with
respect to the base LM representations, Chapter 10 seeks signatures
of linguistic tasks, which remain more generally consistent. Towards
this purpose, we focus on how task-relevant information is encoded
across a sentence, i.e., the consistency of that information over time.
Intuitively, for instance, syntactic information (e.g., parts-of-speech)
should be correlated more at shorter distances, while the sentiment
of a sentence should be encoded consistently even across longer dis-
tances. We propose Spectral Probing as a method to characterize this
rate of change of task-relevant information across a sequence as fre-
quency profiles in the signal processing sense, and apply it to seven
common NLP tasks across six typologically diverse languages.

1.4 List of Publications

The chapters in this thesis aim to provide answers towards these re-
search questions, and are based on the following works, published
over the course of the Ph.D. project:
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Part II Typological Variation

• Chapter 4: Max Müller-Eberstein, Rob van der Goot, and Bar-
bara Plank. 2022a. Probing for labeled dependency trees. In
Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 7711–
7726, Dublin, Ireland. Association for Computational Linguistics.

• Chapter 5: Max Müller-Eberstein, Rob van der Goot, and Bar-
bara Plank. 2022b. Sort by structure: Language model ranking as
dependency probing. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1296–1307,
Seattle, United States. Association for Computational Linguis-
tics.

Part III Domain Variation
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2Defining Linguistic Variation

Linguistic variation is notoriously difficult to define: While definitions
for some variety dimensions, such as typology, enjoy a broader (yet
not uncontested) consensus in linguistics and NLP, there are essen-
tially infinitely many axes, which are impossible to capture manually
(Biber, 1988). Working definitions of each dimension are nonetheless
essential to establish common ground for interpreting their quantita-
tive manifestations. By viewing this problem through the joint lens of
traditional linguistics and data-driven NLP, this question further offers
opportunities to compare how similar human and machine-driven
notions of variation are. In the following, we therefore first survey
qualitative definitions of our focus areas of typology (Section 2.1.1)
and domain (Section 2.1.2), before exploring NLP-specific notions of
input variation (Section 2.2.1) and task variation over the output space
(Section 2.2.2), as well as their implications for model robustness and
trustworthiness (Section 2.2.3).

2.1 Qualitative Definitions of Variation

A decrease in mutual intelligibility signals a shift in Variety Space.
Linguistics literature aims to qualitatively define this differentiation
between language varieties by categorizing the features which differ,
or are shared, between them. Building on our working definitions from
Section 1.2, we first survey the categories of typology and domain, as
well as how prior work in NLP aims to operationalize these dimensions.

2.1.1 Typology

As variation across the typological dimension has the largest effects
on cross-lingual transferability, it is used to draw lines between lan-
guage families, dialects etc., and is considered relatively well-defined
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in NLP, e.g., via language codes set by the International Organization
for Standardization (ISO).1 Nonetheless, its exact definition is far from
uncontested, as, for instance, many languages do not have standard-
ized ISO codes, or are grouped together despite larger differences
(Gillis-Webber and Tittel, 2020). Such typological differences manifest
across multiple layers, including phonological, lexical, and syntactic
differences, as well as influences via geographic proximity (see Rijkhoff,
2007 for a brief overview).

A seminal resource for NLP practitioners exploring these typologi-
cal properties is the URIEL knowledge base of typological features and
its associated vectorized form, lang2vec (Littell et al., 2017). It consol-
idates manual annotations of syntactic features (Dryer, 1992; Lewis
et al., 2015), phonological features (Moran et al., 2014), broader phy-
logenic properties (Hammarström, 2015), together with geographic
information compiled from across these sources. These qualitative an-
notations are extensive, covering approximately 8,000 ISO 639-3 codes,
however they are neither complete, nor equally information dense
across languages—especially for under-resourced varieties. As such,
lang2vec fills in missing entries by interpolating between the 10 most
similar languages, building on the correlation between typological
features (Daumé III and Campbell, 2007; Takamura et al., 2016).

From across the aforementioned typological dimensions, mor-
phology and syntax have enjoyed the widest use for grouping language
varieties into families (Greenberg, 1966; Comrie, 1981; Hawkins, 1983;
Dryer, 1992). For example, despite differences in phonology, lexicology
and orthography within languages of the same family, morphosyntax
remains relatively consistent (e.g., subject-verb-object versus subject-
object-verb order). Building on this consistency, early NLP focused
on automatically deriving meaning from text by first parsing syntac-
tic structures, based on the assumption that certain syntactic rules
hold within a language. Consequently, these parsers were built on
context-free grammars (Chomsky, 1956), which were manually cu-
rated by linguistic experts. The importance of syntax to establish basic
meaning also applied cross-lingually, with some machine translation
approaches relying on synchronous grammars, which map syntactic

1ISO-639 Language Codes (https://www.iso.org/iso-639-language-code) and its
subsets 1–5, covering up to 8,440 variants (accessed 5th March, 2024).
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Figure 2.1: Universal Dependencies Annotations (tokenization, parts-
of-speech, typed dependency relations) for an example sentence
across languages. Dependency edges are colored according to the
official taxonomy (de Marneffe et al., 2014, 2021).

structures from one language to another (Chiang, 2007). Despite the
relative rigidity of syntactic rules compared to other variety dimen-
sions, these grammars never captured the full scope of even a well-
studied language such as English, and as such, the role of statistics
derived from large amounts of raw data continued increasing over time
(Manning and Schütze, 2003). Indeed, contemporary approaches to
syntactic parsing rely almost purely on the latent information learned
by self-supervised Language Models, and merely train a parsing head
on top of the LM in a final, task-specific fine-tuning step (e.g., Dozat
and Manning, 2017).

Regardless of how syntax is inferred, NLP systems require some
explicit or implicit model of it to perform downstream tasks, and to
generalize to new cases beyond their training data. This applies both
to in-language generalization, as well as cross-lingual transfer. Evalu-
ating syntactic processing across languages is difficult, however, there
have been formalisms proposed to examine this phenomenon, at the
forefront of which stands the Universal Dependencies project (UD;
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Nivre et al., 2020). It is based on a morphosyntactic annotation scheme,
which aims for universality across typologies (de Marneffe et al., 2014,
2021). Figure 2.1 demonstrates the basic annotation scheme for a sen-
tence with an equivalent meaning across English, Danish and Japanese.
For any included sentence, UD is guaranteed to include annotation
layers for tokenization, parts-of-speech, and syntactic dependencies,
plus additional information supplied by the independent contributors.
The dependency relations surface context-sensitive information in
the form of a sentence’s overall dependency tree, where each word-
level unit is connected to exactly one parent node in a directed acyclic
graph terminating at the sentence’s root. Each connection is labeled
by its syntactic function, such that, e.g., the nominal subject of a sen-
tence is connected via a nsubj relation to the root predicate. The
provided example shows how this scheme can be consistently applied
to a typologically varied set of languages, and highlights the syntactic
similarities of English and Danish (i.e., identical trees), versus their dif-
ferences to Japanese (e.g., different word order, lack of a verb), despite
all sentences’ shared semantic content.

In order to ensure broad applicability and low-friction implemen-
tation, the annotation scheme is neither the most granular (e.g., uni-
versal part-of-speech tags by Petrov et al., 2012, instead of language-
specific sets), nor comprehensive (e.g., tokenization lacks consensus
in languages such as Japanese; Omura et al., 2023). However, it has
yielded one of the most diverse cross-lingual annotation efforts to date,
and continues to grow.2 This makes UD an invaluable resource for our
goal of examining typological variation, specifically by analyzing the
dimension of cross-lingual syntactic variation.

2.1.2 Domain

In contrast to typology, domain has been widely studied, but hardly for-
malized. Out-of-domain generalization is studied in all sub-disciplines
of Machine Learning, and in NLP, there are certain non-typological,
linguistic properties, which are commonly subsumed under this term.
Initially referred to as sublanguages (Kittredge, 1982), these proper-

2283 contributions in 161 languages as of version 2.14 in May, 2024.
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ties manifest as shifts across various linguistic dimensions (Grishman
and Kittredge, 1986). Biber (1995) further refines this definition into
registers, which correspond to “any [language] variety associated with
particular situational contexts or purposes”. In practice, they may
refer to style and genre, as well as to a text’s source/type, but as they
are frequently used interchangeably (Lee, 2001), we consolidate them
under the term genre. As a working definition, we build on the fact
that, across genres, the communicative purpose shifts, while, within a
genre, there are certain shared linguistic features, which make it suit-
able for that particular purpose (Karlgren and Cutting, 1994; Kessler
et al., 1997; Lee and Myaeng, 2002; Webber, 2009). Because the same
communicative purpose can be expressed in any language, genre is
orthogonal to typology, making it an ideal variational dimension to
study in combination with the latter. Indeed, genre is often used as the
next level of categorization after language, when creating large-scale
corpora, both monolingually (e.g., Aston and Burnard, 1998; Kuzman
et al., 2022), as well as multilingually (e.g., Nivre et al., 2020; Sharoff,
2021). It further differs decidedly from another variational dimen-
sion relevant to domain-shift, namely content in the form of topic, in
that it defines a text’s communicative purpose while the latter con-
veys semantic content (Petrenz and Webber, 2011; van der Wees et al.,
2015). It also differs from social communicative context (Hovy, 2015;
Flek, 2020; Nguyen et al., 2021) as genre’s defining features inherently
stem from its purpose and not from the characteristics of an external
broadcaster or receipient.

Although our working definition of genre remains broad, it
nonetheless manifests itself in a testable hypothesis, in that abstract
genre differences should be reflected by the suitability of its associ-
ated linguistic features (e.g., more/less complex syntax). Some of
these features of genre have further been shown to remain consistent
independently of typology, via the NLP task of cross-lingual genre clas-
sification (Sharoff, 2007; Petrenz and Webber, 2011, 2012). Specifically,
while surface-level lexical features are indicative of topic, they are tied
too strongly to the language itself to reflect genre in another language.
Meanwhile, syntactic parts-of-speech remain relatively consistent for
genres across languages, but are less indicative of topic. Our examples
in Figure 2.2 highlight these aforementioned properties: The topic of
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Figure 2.2: Examples of Typology/Genre Variation, with a consistent
topic, i.e., the city of Copenhagen. Select concepts are color-matched,
and adjectives are underlined.

“the city of Copenhagen” remains consistent throughout, but takes on
different surface forms depending on the language (e.g., Copenhagen,
København,コペンハーゲン), and co-occurs with different context
depending on the genre (e.g., population numbers versus touristic ex-
periences). Meanwhile, focusing on syntactic information, we observe
an increase in descriptive adjectives in the travel guides compared
to the more neutrally valent encyclopedia entries. This shift occurs
consistently despite the relatively high intuitive similarity of these
genres (i.e., both communicate factual information), as well as the
different cultural contexts across typologies (i.e., travel guides in dif-
ferent languages highlight different aspects of the destination). This
first indication of syntax being a stable cross-lingual feature for genre
will guide our further investigations into quantifying this variational
dimensions across more languages.

2.2 Variation from an NLP Perspective

Analogously to human mutual intelligibility decreasing with increased
variational distance, NLP methods similarly struggle to transfer across
disparate language varieties. While our work leverages this fact as
a measure of variation itself, a broad range of work has tackled the
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Figure 2.3: Language Variation in NLP corresponds to the divergence
of word co-occurrence distributions across dimensions such as typol-
ogy and genre (e.g., with respect to English encyclopedic text).

downstream implications of variation by focusing on increasing model
robustness across distributional shifts in the input data (Section 2.2.1).
Since all NLP tasks fundamentally rely on linguistic information, but
vary with respect to how it is mapped to the output space, we further
argue that measuring variation is essential to understanding cross-
task transferability (Section 2.2.2). With the aforementioned trend
of relying on statistical features of raw data, instead of manual fea-
ture engineering, it is becoming increasingly important to understand
typological, domain and task variability on a continuous spectrum.
In Section 2.2.3, we therefore outline how quantifying these variety
dimensions links back to not only model robustness, but also their
fundamental trustworthiness.

2.2.1 Input Variation as Distributional Divergence

NLP aims to model language regardless of its variety, and has therefore
widely studied generalization beyond the input training distribution—
both in terms of typology and domain. Contemporary LMs acquire
almost all of their latent linguistic knowledge by learning probability
distributions over word co-occurrences in large, unlabeled datasets.
These models are subsequently applied to downstream target data
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based on the hypothesis that there are useful correlations between the
training and target distributions. This approach of transfer learn-
ing has become the prevalent paradigm in the field: Initially, by
pre-training LMs on as much unlabeled data as possible in a self-
supervised manner before fine-tuning them on the target task using
traditional supervised learning (Peters et al., 2018; Howard and Ruder,
2018), and more recently, by relying solely on the LM’s self-supervised
training, and using few-shot, in-context learning for immediate infer-
ence without supervised fine-tuning (Brown et al., 2020).

The transfer learning paradigm is predominant both for high-
resource languages, such as English, where LMs trained on multi-
billion token corpora are later prompted/fine-tuned on a specific task
with fewer annotated data (e.g., Devlin et al., 2019; Brown et al., 2020),
as well as for under-resourced languages, where a multilingual LM
is trained on raw data from as many languages as possible, before
being applied in a zero-shot manner to the target language variety
(e.g., Conneau et al., 2020). In both cases, these LMs rely on statistical
correlations from a diverse pool of training data to generalize to a
broad set of unseen tasks, or even languages.

Due to their heavy reliance on transferable correlations, distribu-
tional divergence is the largest factor for LM performance. Figure 2.3
illustrates this issue, as the most likely continuation of “Copenhagen is
[...]” strongly depends on the language variety being modeled. An LM,
trained on encyclopedic text may therefore exhibit useful correlations
to travel guides for some contexts, but not for all, and may further tend
towards irrelevant or detrimental correlations for larger typological
(e.g., Dutch) or genre shifts (e.g., social media).

The negative effects of distributional shift on model performance
have been widely studied in NLP (Sekine, 1997; Gildea, 2001; Plank,
2011; Nagarajan et al., 2021; Ramesh Kashyap et al., 2021; White and
Cotterell, 2021), in order to improve model robustness across Variety
Space. While our work shares this overarching goal, we also leverage
distributional divergence on its own as a basis for building measures of
linguistic variation. Additionally, prior efforts have primarily targeted
cross-lingual or cross-domain transferability separately. However, we
argue that capturing a more holistic picture across multiple variety
dimensions is crucial to ensure true model robustness. For example, a
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model trained on multilingual Wikipedia data, which is tested on an
unseen language’s Wikipedia would likely benefit from transferable
features, such as the syntactic similarity to some training languages,
as well as genre consistency in the form of cross-lingually consistent
article editing guidelines. Applying the same model to social media
data from a typological isolate however, will likely yield fewer useful
correlations. In the aforementioned example, it is easy to identify
potential reasons for variational shift, however most cases are more
difficult to intuit. Understanding why certain transfers of information
work well, and others do not, thus requires us to operate in the en-
tirety of Variety Space, while also measuring shifts across individually
separated variety dimensions (e.g., typology and genre).

2.2.2 Tasks as Variation over Output Space

While transfer learning has primarily targeted cross-lingual and cross-
domain settings, practitioners have increasingly begun to focus on
transferability at the level of tasks, as well. Based on the idea that
similar tasks require similar knowledge and skills, models have ei-
ther been trained consecutively on similar tasks (Wang et al., 2019a;
Gururangan et al., 2020; Weller et al., 2022), or simultaneously via
multi-task learning (Aribandi et al., 2022; Padmakumar et al., 2022;
van der Goot, 2023). Larger LMs trained on more data have further
foregone task-specific fine-tuning all together, and instead rely on
few-shot, in-context learning—essentially enabling transferability to
an unbounded set of tasks (Brown et al., 2020).

Mirroring language, variation across tasks lacks a precise definition,
and is primarily guided by practitioner intuition (Bassignana et al.,
2022). Some approaches have attempted quantifying task similarity
via the representational similarity of their datasets (Poth et al., 2021),
or by comparing the gradient updates from a general to a task-specific
model (Achille et al., 2019; Vu et al., 2020; Ilharco et al., 2023). At a
more abstract level however, all NLP tasks essentially rely on a mixture
of the same basic linguistic information—from lower-level syntactic to
higher-level semantic features—by mapping them to task-specific out-
puts. As illustrated in Figure 2.4, manual feature engineering makes
this mapping more explicit (e.g., bag-of-words, PoS and sentiment
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Figure 2.4: Task Paradigms in NLP for a sentiment analysis example:
Linguistic information is extracted via manual feature engineering, or
via LM representations. This information is then mapped to the task’s
outputs space in a discriminative or generative manner.

lookup dictionaries), while contemporary methods are purely depen-
dent on latent linguistic information in LMs. In this example, certain
features may indicate sentiment information (e.g., adjectives), while
others help differentiate positive and negative valence (e.g., sentiment
lookup/representational similarity). Regardless of the source, this lin-
guistic information is mapped to the task-specific output space. This
applies both to discriminative approaches, which map directly into
label space, as well as to generative approaches, where the mapping
induces a distributional shift in the output token probabilities.

As tasks fundamentally rely on mapping linguistic information
from different variety dimensions to their output space, they implic-
itly form their own variation manifold, which is closely tied to Varitey
Space—essentially forming subspaces of task-relevant linguistic in-
formation. We hypothesize that by not only measuring the degree of
linguistic variation along individual dimensions, but by making variety
subspaces comparable, it is possible to quantify task similarity in a
linguistically interpretable manner.
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Figure 2.5: Establishing Trust in NLP (adapted from Litschko et al.,
2023). With formalization breaking down across the NLP cycle, from
tasks → datasets → evaluation, quantifying linguistic information can
help identify which required skills are actually employed by models.

2.2.3 Robustness and Trustworthiness

Even without active measures to mitigate distributional divergence,
LMs provide remarkably transferable initializations across languages,
domains and tasks (Peters et al., 2018; Howard and Ruder, 2018; Devlin
et al., 2019; Conneau et al., 2020; Brown et al., 2020). Nonetheless, fine-
tuning or even re-training LMs on target-like data has repeatedly been
shown to be crucial for the best possible downstream performance
(Dai et al., 2020; Gururangan et al., 2020), regardless of the recent
increases in scale (Ling et al., 2023).

Understanding how robustly a model transfers to new settings, as
well as which skills it employs in the process, are key to establishing its
trustworthiness. Indeed, Hays (1979) defines trust as “knowledge of
origin as well as from knowledge of functional capacity”. We concretize
this definition for contemporary, data-driven NLP in Litschko et al.
(2023) to include desiderata for statistical LMs. To establish model
trustworthiness, NLP relies on the overall cycle shown in Figure 2.5,
where tasks are formalized as machine-readable datasets, and models
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are subsequently evaluated using metrics, that themselves are for-
malized versions of qualitative evaluation criteria. This traditional
paradigm can provide knowledge of functional capacity, and even
knowledge of origin, if employed in a targeted manner (e.g., linguistic
benchmarks as in Wang et al., 2019b; Ribeiro et al., 2020; Warstadt et al.,
2020). However, similarly to how contemporary models rely less on
manual feature engineering (as in Figure 2.4), tasks have also started to
become less rigorously formalized. Instead of natural language expres-
sions mapping to a discrete output label space, tasks are now more
often phrased as instructions, for which the LM generates an open re-
sponse (e.g., “write a polite email to my supervisor, asking for time off
tomorrow”). Whether or not the task’s expectation has been fulfilled
(i.e., knowledge of functional capacity) is no longer measurable by dis-
crete benchmarks, but requires a more holistic evaluation. Effectively,
models are now expected to not only behave robustly against input
variation, but also output variation.

In order to establish a model’s trustworthiness in this context, we
argue that quantitative measures of different variety dimensions can
provide knowledge of both origin and functional capacity. Using our
definition of tasks as variations over output space (see Section 2.2.2),
any NLP task can be expressed as a mixture of specific linguistic skills,
i.e., the skills required to solve it. Disentangling the actual skills, which
a model employs to generate a prediction, is confounded by many
factors (Schlangen, 2021). Nonetheless, measuring how much task-
relevant linguistic information is present in the model can provide
an a priori estimate of its functional capacity as well as the origin
thereof. This approach allows us to answer questions regarding a
model’s trustworthiness, e.g.: Does the model encode enough syntac-
tic information, such that it could generate a well-formed sentence
in the target language? Does it differentiate between genres, such
as emails versus academic papers? Does it model different levels of
politeness well enough to address my supervisor?
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Building on our definitions of typological, domain and task variation
from Chapter 2, we next investigate methods for quantifying these
properties while maintaining interpretability. Given that linguistic
variation within the context of contemporary NLP corresponds to dis-
tributional divergence (Section 2.2), we start from the highest level
of abstraction and review model transferability as measured by stan-
dard performance metrics (Section 3.1). Turning to variation across
individual data points, we survey prior methods, which leverage the
representational similarity of LM embeddings (Section 3.2). Finally,
we introduce our own framework for quantifying linguistic variation
by probing for interpretable representational subspaces (Section 3.3).

3.1 Transferability as a Proxy

Even if not explicitly labeled as measures of linguistic variation, NLP
provides multiple implicit candidates: At the most general level, an LM
will have worse performance when evaluated on a language variety
it has not been designed/trained for, due to increased distributional
divergence. This performance-∆ therefore corresponds to a crude, yet
common way to quantify the similarity of two datasets. Compared to
qualitative estimates of variation, it already enables numerical com-
parisons, and can further be applied to a wide range of linguistic di-
mensions, including cross-lingual, cross-domain, and even cross-task
transfer (depending on the model architecture and task formulation).

Classification For classification tasks, performance is typically mea-
sured using standard metrics such as the ratio of correct over incorrect
predictions (i.e., accuracy), or the slightly more balanced F1-score:

F1 = 2TP

(TP+FP)+ (TP+FN)
, 3.1
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which corresponds to the harmonic mean over the ratio of correct
classifications (true positives; TP) with respect to overassignments of
a class (false positives; FP) and missed assignments of a class (false
negatives; FN)—i.e., precision and recall, respectively. For tasks with
more than one class, two different methods for aggregating the F1-
score exist: Micro-F1 counts the total number of TP, FP, FN across all
classes before inserting them into Equation 3.1, while macro-F1 com-
putes each class-wise F1-score before computing the arithmetic mean
over those F1s. Which averaging method to use depends on whether
class or instance-level accuracy is more important. For example, in
a highly imbalanced three-label classification task with class ratios
1/1/98, a majority classifier would yield a micro-F1 of 98%, while its
macro-F1 score would be ∼33%, since it labels two thirds of the classes
incorrectly. In our subsequent experiments, we explicitly label each
type of F1 to ensure the appropriate interpretation of the results.

Dependency Parsing When evaluating a model’s ability to parse syn-
tax, different performance metrics apply. For dependency parsing in
particular, the de-facto standard is given by labeled and unlabeled
attachment scores (LAS/UAS). They are closely related to the F1-score,
as each node in a dependency tree, despite being part of a graph struc-
ture, only has one definitive parent edge + its associated relation, i.e., a
single label. With respect to the total number of edges (corresponding
to the number of lexical units), LAS therefore defines a TP as any node
that is connected to the correct parent via the correct relation, while
for UAS, the correct connection alone is sufficient. Within this formu-
lation, there are multiple additional factors, such as the granularity of
dependency relations, as well as whether to use macro/micro-F1. Fol-
lowing prior work, we make use of the widely-used official evaluation
script of the CoNLL 2017 shared task, which uses top-level relations
and micro-F1 averaging (Zeman et al., 2017). Together with the stan-
dardized annotation formalism of Universal Dependencies, LAS/UAS
allow us to quantify high-level syntactic similarity across a broad range
of language varieties via the proxy of transferability.
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3.2 Representational Similarity

Measuring variation via transfer performance allows for very general
comparisons, as it can be applied even across model architectures.
However, it is relatively imprecise and consolidates all variety dimen-
sions in a single number using post-hoc evaluation. Since contempo-
rary NLP models universally rely on latent, task-related information
from pre-trained embedding spaces, their representations of the input
data can yield an estimate of variation a priori. Concretely, the geo-
metric vector similarity of different data points already encodes some
notion of similarity out-of-the-box. To measure the distance between
two d-dimensional vectors a,b ∈Rd , a commonly employed measure
is cosine similarity:

sim(a,b) = cos(θ) = a ·b

∥a∥∥b∥ =
∑d

i=1 ai bi√∑d
i=1 a2

i

√∑d
i=1 b2

i

. 3.2

Compared to the similarly common Euclidean distance ∥a−b∥, co-
sine similarity is invariant to the magnitude of the vectors, and solely
measures the cumulative angle between the vectors across each di-
mension. While measuring data similarity via their LM representations
does not require task-specific model training and transfer evaluations,
the vectors encode many notions of similarity simultaneously, such
that interpreting the resulting number as well as how it relates to the
downstream robustness of a model is difficult.

This issue extends across all ML disciplines, with efforts in Com-
puter Vision to, for instance, disentangle task and domain-specific
features using dataset metadata (Peng et al., 2020; Jomaa et al., 2021).
So far, these methods have assumed access to domain annotations
with clear distinctions, i.e., photographs versus drawings. However, as
seen in Chapter 2, Variety Space for language is much more difficult
to delineate, resulting in far less comprehensive, and noisier domain
annotations for most NLP datasets (see also Chapter 6).

Typology In addition to the semi-qualitative language vectors from
lang2vec (Littell et al., 2017), parallel work has examined learning
typological representations via regression on word order features (Bay-
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lor et al., 2024), or as a side-effect of auxiliary tasks, such as language
modeling (Tsvetkov et al., 2016; Malaviya et al., 2017; Östling and Tiede-
mann, 2017) and translation (Ha et al., 2016; Johnson et al., 2017). The
resulting language representations have enabled comparisons on a
continuous spectrum, and have further been found to cluster into phy-
logenic hierarchies matching linguistics literature (Östling and Tiede-
mann, 2017). Our work does not aim for the level of coverage obtained
by these approaches, but instead specifically focuses on measuring
the level of syntactic similarity in self-supervised representations, in
absence of discrete language-identifiers.

Domain Given its more ambiguous nature, domain lacks compa-
rable approaches. Practitioners thus rely on higher-level measures
of domain similarity, based on correlated features, such as PoS tags,
or distributional semantics. Ramesh Kashyap et al. (2021) provide
an extensive survey of such metrics and broadly divide them into
information theoretic (e.g. KL-divergence, Wasserstein distance), geo-
metric (e.g. cosine similarity) and higher-order measures (e.g. Proxy-
A-Distance). These measures are applied to distributions over lexical
items, PoS tags and also over continuous word representations from
LMs. Ramponi and Plank (2020) further survey how such measures are
applied in practice: They broadly differentiate between model-centric
approaches, which focus on increasing the robustness of model train-
ing, data-centric approaches, which focus on training-data selection,
as well as hybrids of the two. For these purposes, continuous, vec-
torized representations of the data are especially useful, since they
do not require manual annotation. On the modeling side, these rep-
resentations have been successfully applied to regularizing model
training using data with divergent embeddings (Xu and Lapata, 2019;
Xu et al., 2021). Similarly, they can be used to detect out-of-domain
data during inference to help calibrate a model’s trustworthiness (Tan
et al., 2019; Pokharel and Agrawal, 2023), as well as to predict transfer
performance (Pogrebnyakov and Shaghaghian, 2021). If the target
domain is known, data-driven vector similarity has also been shown
to aid training data selection and improve robustness on the unseen
target-like data (Ruder and Plank, 2017; Aharoni and Goldberg, 2020;
van der Goot et al., 2021a; Müller-Eberstein et al., 2021a).
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Overall, across a wide range of NLP tasks and datasets, manual fea-
tures are still competitive for quantifying variation, but data-driven
representations are becoming more common and increasingly effec-
tive (Ramponi and Plank, 2020; Ramesh Kashyap et al., 2021). The
largest open issue with raw representational similarity is their lack of
interpretability, and hence lack of control over what kind of similarity
is being measured. This issue is especially pronounced for heteroge-
neous datasets, which mix multiple sources of variation (Pogrebnyakov
and Shaghaghian, 2021). Monolingual embedding similarity, for in-
stance, implicitly controls for typology, while selecting for domain-
like features. Multilingual embeddings already make it impossible to
clearly distinguish between typological and domain similarity, as it is
unclear what each vector dimension represents. Any more specific dif-
ferentiations, such as genres, topics, registers, etc., require even more
granular control of the source data, which is typically unavailable, and
may also be confounded across variety dimensions. Nonetheless, LM
latent spaces likely encode information related to these specific di-
mensions, and as such, we require methods to recover them from the
overall embedding space mixture.

3.3 Variety Subspaces via Probing

Data-driven representational similarity provides an information-
dense mechanism for detecting language variability. For the purposes
of interpretability, however, it is too imprecise. We therefore propose
probing as a general methodology for identifying interpretable sub-
spaces in Variety Space, within which we can perform quantitative
comparisons along qualitatively defined linguistic dimensions.

What Is A Probe? Probing itself was initially developed to better un-
derstand whether task-relevant information is encoded in the latent
representations of pre-trained ML models (Alain and Bengio, 2017).
Depending on the task at hand, a wide array of probe formulations
exist, which share the general properties of being architecturally sim-
pler than the host model, and being trained from scratch, while the
underlying host model is kept fixed. In NLP, the input to a probe typi-
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cally consists of token-level embeddings from a pre-trained LM, which
are mapped to target labels for the property of interest (e.g., PoS tags).
What level of simplicity constitutes a probe has been a topic of debate,
with opinions diverging regarding, e.g., the inclusion of non-linearities
in the probe model (Conneau et al., 2018a; Liu et al., 2019a). Regard-
less of the probe’s exact architecture, the relative amount of retrieved
information has been shown to be similar (Qian et al., 2016; Belinkov
et al., 2017), with the larger issue being the differentiation of actual lin-
guistic information versus spurious correlations (Zhang and Bowman,
2018; Hewitt and Liang, 2019; Voita and Titov, 2020).

Probes as Subspaces In contrast to probing LMs for their own sake,
we propose a meta-framework within which the LM and probe jointly
form a tool for measuring linguistic variation in an interpretable way.
Via self-supervised Representation Learning, the LM first constructs
a high-dimensional latent space within which a data-driven notion
of Variety Space is encoded. The overall variation between two sets of
data can be quantified by representational divergence in this space.
To identify variation across specific variety dimensions, we propose
probing the general embedding space for information that is corre-
lated with these dimensions—i.e., typology via syntax and domain via
genre. Note that, in addition to using probes to measure the amount
of relevant linguistic information, we are also interested in using the
probes themselves as subspaces to perform relative comparisons in.
Intuitively, each probe maps information from all dimensions of the
LM latent space into a manifold of lower rank, within which it is easier
to separate different classes of the linguistic property being probed
for. As such, similarity within this subspace allows us to to perform
comparisons of data with respect to specific, interpretable variety
dimensions. Going one step further, we also examine the probes them-
selves as characterizations of task-specific subspaces. This allows us
to quantify task similarity, since the amount of overlap between sub-
spaces corresponds to how similar the types of linguistic information
are, that are required to map task inputs to their respective outputs.

Towards these goals, we focus less on one individual probe for-
malism, task, or variational dimension, and rather examine a broader
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Figure 3.1: Overview of Probes in this work, sorted by task specificity
and cross-probe consistency. All probes take LM latent representations
as their input, but operate on information frequencies (Spectral Probe),
minimum description lengths (MDL Probe), standard classification
(Classifier Probe), or dependency information (DEPPROBE).

range of complementary methods. Figure 3.1 illustrates our categoriza-
tion of these formalisms under the umbrellas of high-specificity probes
(Section 3.3.1), which aim to extract as much task-correlated informa-
tion as possible, as well as high-consistency probes (Section 3.3.2),
which are more focused on keeping the probes themselves compara-
ble across LMs and tasks. The main commonality across our proposed
probing methods is their architectural simplicity with respect to the
LMs they analyze, as well as the ability to compare the resulting probes
and their subspaces with each other.

3.3.1 Probes with High Specificity

For their respective tasks, high-specificity probes aim to extract as
much correlated information from an LM as possible. This implies
that, despite not being designed for performance, these probes would
achieve higher relative accuracy for distinguishing between different
classes of a task, when compared to an alternative formulation.
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Classifier Probe In its simplest form, this type of probe can be for-
mulated as a linear classification over the output space of the task in
question (Alain and Bengio, 2017). Given a labeled sentence s, consist-
ing of the words {w1, . . . , wN } and the corresponding labels {l1, . . . , lN }
(with c possible classes), the probe θ ∈ Rd×c is trained to map the
corresponding d-dimensional LM latent vectors {h1, . . . ,hN } to logits,
which maximize the probability of the correct label, by minimizing the
cross-entropy loss:

LXE =− 1

N

N∑
i=1

log pθ(li |wi )

=− 1

N

N∑
i=1

θT hi .

3.3

In this way, the probe characterizes a linear subspace within which
data with the same class are mapped closer together, and data with
different labels are located further apart. Simultaneously, the sub-
dimension with the highest magnitude corresponds to the inferred
label for a given word, such that we can evaluate performance with re-
spect to ground truth labels using the standard F1-score. While the use
of non-linear classifiers is not uncommon, we opt specifically for a lin-
ear transformation, as it directly translates the LM’s latent dimensions
into the task’s output subspace. This further enables well-defined
comparisons of entire probes in linear space—something that is not
possible using even a small Multi-layer Perceptron (Section 3.3.3).

Dependency Probe While most NLP tasks can be reduced to classi-
fication (i.e., a mapping of latent states to output logits), some types
of linguistic information require alternative formulations. The task of
structured prediction, which includes extracting syntactic dependen-
cies between words in a sentence, falls into this category. In Part II, we
therefore introduce dependency probing (DEPPROBE), which builds
on structural probing (Hewitt and Manning, 2019) to map LM latent
representations directly onto dependency trees. Correspondingly, the
loss function is specific to this task, and includes components reflect-
ing tree structure and relation types, with the full formulation detailed
in Chapter 4. In the context of subspaces, the first loss term aims to
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learn a subspace θB , in which vector distances dB correspond to tree
distances dP , while θR corresponds to a subspace, where words in
similar syntactic relations are grouped together:

LDP = 1

N 2

N∑
i=1

N∑
j=1

∣∣dP (wi , w j )−dB (hi ,h j )
∣∣− 1

N

N∑
i=1

log pθR (li |wi )

= 1

N 2

N∑
i=1

N∑
j=1

∣∣dP (wi , w j )−∥θT
B hi −θT

B h j∥
∣∣− 1

N

N∑
i=1

θT
R hi .

3.4

This formulation allows us to extract fully labeled and directed depen-
dency trees, equivalently to a full parser, allowing us to measure UAS
and LAS. The transfer performance of these probes across languages
can subsequently be used as a proxy measure of linguistic variation (as
motivated in Section 3.1). Furthermore, analogously to linear classifier
probes, the linearity of DEPPROBE enables us to compare how similarly
syntactic information is represented across languages by comparing
their respective θB and θR .

3.3.2 Probes with High Consistency

An issue using data-driven representations is that LMs trained on
different data will learn to encode Variety Space differently. Due to
the highly chaotic nature of training non-linear models, this issue
applies even to models, which have been trained on the same data,
but starting from different random initializations (Sellam et al., 2022;
Müller-Eberstein et al., 2023). As such, measurements of representa-
tional and probe similarity are consistent within the same LM, but not
across them. By leveraging probing methodologies, which prioritize
cross-probe consistency over specificity and accuracy, we therefore
aim to enable comparisons of variety subspaces independently of
specific LM setups.

Information-theoretic Probing As even random representations
can be mapped to labels with high accuracy (e.g., by applying the most
common PoS-tag to a random word embedding consistently), Voita
and Titov (2020) originally proposed information-theoretic probing
as a method to measure representational efficiency directly. Different
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from evaluating classification accuracy via cross-entropy alone, the
approach adds a KL-divergence term which measures how much the
probe itself must deviate from a canonical form in order to achieve
the current level of performance. This total entropy is consolidated in
the minimum description length (MDL), i.e., the minimum number of
bits required to transmit the data plus the probe:

LMDL =−Eθ∼β
[

N∑
i=1

log pθ(li |wi )

]
+KL(β||γ)

=−Eθ∼β
[

N∑
i=1

θT hi

]
+KL(β||γ) .

3.5

While the core cross-entropy term remains equivalent to the standard
classifier probe, the information-theoretic probe θ follows a Bayesian
formulation, and is sampled from a distribution over probes parame-
terized by β. This means that cross-entropy is estimated using the cur-
rent expectation over probes, and represents the accuracy with which
θ ∼β models the data. In addition, the KL-divergence term computes
the amount β needs to deviate from a canonical prior distribution
γ, in order to achieve the current level of cross-entropy. Intuitively,
LM representations which already encode relevant information out-
of-the-box require a less complex mapping to the task’s labels than
uncorrelated, random representations.

In Chapter 9, we apply information-theoretic probing to compar-
ing LM representations across tasks, as well as pre-training time. For
this purpose, we leverage another implicit property of the MDL for-
mulation: First, although MDL can be applied to any probe archi-
tecture, we retain a linear classification approach, in order to have θ
characterize a linear subspace, for which well-defined comparisons
in Euclidean space exist. Second, we build on MDL’s additional KL-
regularization objective, which ensures that all probes aim to follow
the same canonical prior. By further employing a sparsity-inducing
prior for γ (Figueiredo, 2001; Louizos et al., 2017), we encourage lin-
ear probes which aim for high accuracy, while transforming as few
original LM dimensions as possible, using small scaling factors. This
makes the resulting probes more consistent, and more geometrically
comparable—even across different LM checkpoints and tasks.
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Spectral Probing A commonality across the aforementioned prob-
ing approaches is their rigidity with respect to the underlying LM repre-
sentations. Even with regularization such as MDL, it remains difficult
to compare probes across languages or even model initializations, due
to their dependence on the exact numerical values of the underlying
LM embeddings, i.e., where certain information is encoded.

With Spectral Probing (Chapter 10), we focus on a more abstract,
yet highly consistent, signal of linguistic information: namely, time. In-
tuitively, different tasks rely on linguistic information across different
contextual scales, e.g., words, phrases, sentences. Whether for English
or Japanese, the topic is less likely to change within a sentence than the
syntactic functions at the scale of sub-phrases. In terms of contextual-
ized embeddings, these differences across time can be interpreted as
information encoded at different frequencies, i.e., embedding values
which are more correlated at the phrase level for syntax, while values
relating to topic should be correlated consistently across the entire
sentence. Based on the finding that PoS-tagging and topic classifica-
tion can be decomposed into different frequencies for English (Tamkin
et al., 2020), we introduce a continuous spectral probing method for
extracting full spectrograms automatically.

Probing for frequency spectra follows a standard cross-entropy
objective, however, the sequence of contextualized input embeddings
{h1, . . . ,hN } is first decomposed into its composite frequencies using
an invertible transformation f (·). The Spectral Probe corresponds
to a frequency filter γ ∈ RN , which learns to scale each composite
frequency according to its importance to the probed property. The
scaled frequencies are then recomposed into a filtered sequence of
embeddings {h′

1, . . . ,h′
N } by applying the inverse function f −1(·):

LSP =− 1

N

N∑
i=1

log pγ,θ(li |wi )

=− 1

N

N∑
i=1

θT h′
i

=− 1

N

N∑
i=1

θT f −1 (
γ f (hi )

)
.

3.6
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In this formulation, the classifier θ is, once again, model specific.
However, the scale of each frequency in γ is independent of the exact
values in {h1, . . . ,hN }, and only depends on the importance of longer
versus shorter-scale consistencies. The resulting spectrograms form
frequency subspaces, which not only link directly to the linguistically
interpretable dimension of time, but also allow for cross-task compar-
isons, which are highly stable across languages (Chapter 10).

3.3.3 Subspace Comparisons

All of the aforementioned probing methods define subspaces in the
overall LM embedding space, within which similarity corresponds
to an interpretable linguistic property, i.e., geometric subspaces for
linear probes and frequency subspaces for the Spectral Probe. By
comparing probe performance, representations, and subspaces, we
can thus operationalize similarity between data, models and tasks in
an interpretable and computationally efficient manner:

Probe Performance The transferability of a model trained on one
language variety to another provides the most practical measure of
similarity, but does not scale well across many source-target combina-
tions due to its high data and compute requirements. As such, probe
transferability provides a parameter-efficient approximation that does
not require full LM tuning (Chapter 4). Similarly, probes can also be ap-
plied to prototyping which LM may be best suited for a specific target
language by probing for the amount of language-specific information
a priori (Chapter 5). Using high-consistency probes, we can further
rank how likely an LM will perform well on a variety of downstream
tasks (Bassignana et al., 2022). These approaches for predicting model
performance prior to full fine-tuning already provide a more evidence-
based solution compared to the typical method of relying solely on
practitioner intuition regarding which base model to deploy.

Subspace Representations In contrast to performance, which ap-
proximates variation at the level of datasets, linguistic similarity at
the granularity of individual data points is typically measured using
vector similarity in LM latent space. As these comparisons do not
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specify how exactly two data are similar, we propose using probes to
first extract specific linguistic subspaces, within which vector similar-
ity corresponds to interpretable properties. These subspaces can be
extracted using any of the aforementioned probing methods, or by
tuning an LM to amplify a specific dimension of variation (Chapter 8).
Representational similarity within these subspaces can still be mea-
sured using standard geometric measures (e.g., cosine similarity), and
corresponds to similarity with respect to the property being probed
for. Intuitively, subspaces scale up relevant, and scale down irrele-
vant dimensions from the original embedding space. Our approach
of leveraging probes as subspaces thus extends their utility beyond
measuring the presence of specific linguistic information, to enabling
quantitative, yet interpretable, comparisons of individual data points.

Subspace Similarity Compared to performance or embedding com-
parisons, we propose using probes themselves to compare language
varieties and tasks more holistically. This approach once again builds
on the fact that probes characterize a subspace within which infor-
mation correlated with the linguistic property or task in question is
particularly salient. By further employing probes, which have well-
defined comparison metrics (i.e., in linear or frequency space), we
are able to directly compare how much they overlap with respect to
the types of information they use from the original embedding space
(Chapters 4, 9 and 10). Notably, this differs from comparing data points
via their vector similarity, as these individual comparisons cannot be
representative of the language or task in their entirety. In addition,
compared to transfer performance, subspace similarity is much more
efficient and interpretable, as it allows us to disentangle and target
similarity with respect to specific linguistic properties.

For comparisons of linear subspaces, we turn to principal subspace
angles (SSAs; Knyazev and Argentati, 2002), which allow us to measure
the distance between two linear transformations (i.e., linear probes in
our case) θA ∈Rd×p and θB ∈Rd×q . It is based on the magnitude of the
transformation mapping one matrix to another, and intuitively corre-
sponds to the amount of ‘energy’ required for this process. Using the
orthonormal bases Q A = orth(θA) and QB = orth(θB ) of each matrix to
compute the transformation magnitudes M =QT

AQB further ensures
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linear invariance. This is an important characteristic of this measure,
as it ensures robustness against cases in which one subspace simply
corresponds to a re-scaling and/or rotation of the other. The final
angle is obtained by converting M ’s singular values UΣV T = SVD(M)
into values between 0◦ and 90◦ (i.e., similar/dissimilar):

SSA(θA,θB ) = arccos(diag(Σ)) . 3.7

In the following, we employ SSAs to compare representational sub-
spaces across languages (Chapter 4), as well as across LM checkpoints
and tasks (Chapter 9).

For comparisons of frequency subspaces (Chapter 10), we define
a filter overlap metric, that measures the degree to which the same
frequencies are up or down-weighted by each Spectral Probe. Given m
composite frequencies, it is computed via the percentage-normalized
L1-distance between the probes γA ∈Rm and γB ∈Rm :

overlap(γA,γB ) = 1−
∑m

i=1

∣∣γA,i −γB ,i
∣∣

max(γA,γB )
. 3.8

This yields a measure between 0 and 1, which corresponds to the
prioritization of completely different versus completely matching +
equally weighted frequencies, respectively.

Each of the aforementioned approaches for comparing either perfor-
mance, representations, or subspaces allows us to quantify linguistic
variation with different degrees of granularity, and towards different
purposes: For in-practice applicability, estimating downstream perfor-
mance is most appropriate, while for comparisons of individual data
points, representational similarity is indispensable. Finally, our newly
proposed approach of training probes to extract fully comparable vari-
ety subspaces bridges the former granularities to enable holistic and
interpretable comparisons within Variety Space—the applicability of
which we will demonstrate for typological, domain and task variation
in the following chapters.
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4Probing for Labeled Dependency Trees
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Chapter 4 | Probing for Labeled Dependency Trees

Abstract

Probing has become an important tool for analyzing representations
in Natural Language Processing (NLP). For graphical NLP tasks such as
dependency parsing, linear probes are currently limited to extracting
undirected or unlabeled parse trees which do not capture the full task.
This work introduces DEPPROBE, a linear probe which can extract
labeled and directed dependency parse trees from embeddings while
using fewer parameters and compute than prior methods. Leveraging
its full task coverage and lightweight parametrization, we investigate
its predictive power for selecting the best transfer language for training
a full biaffine attention parser. Across 13 languages, our proposed
method identifies the best source treebank 94% of the time, outper-
forming competitive baselines and prior work. Finally, we analyze the
informativeness of task-specific subspaces in contextual embeddings
as well as which benefits a full parser’s non-linear parametrization
provides.
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Figure 4.1: DEPPROBE extracts tree structure using transformation B ,
labels using L and infers directionality using root, based on contextu-
alized embeddings.

4.1 Introduction

Pre-trained, contextualized embeddings have been found to encapsu-
late information relevant to various syntactic and semantic tasks out-
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of-the-box (Tenney et al., 2019a; Hewitt and Manning, 2019). Quantify-
ing this latent information has become the task of probes — models
which take frozen embeddings as input and are parametrized as lightly
as possible (e.g. linear transformations). Recent proposals for edge
probing (Tenney et al., 2019a) and structural probing (Hewitt and
Manning, 2019) have enabled analyses beyond classification tasks,
including graphical tasks such as dependency parsing. They are able
to extract dependency graphs from embeddings, however these are
either undirected (Hewitt and Manning, 2019; Maudslay et al., 2020)
or unlabeled (Kulmizev et al., 2020), thereby capturing only a subset of
the full task.

In this work, we investigate whether this gap can be filled and
ask: Can we construct a lightweight probe which can produce fully
directed and labeled dependency trees? Using these trees, we further
aim to study the less examined problem of transferability estimation
for graphical tasks, extending recent work targeting classification and
regression tasks (Nguyen et al., 2020; You et al., 2021). Specifically: How
well do our probe’s predictions correlate with the transfer performance
of a full parser across a diverse set of languages?

To answer these questions, we contribute DEPPROBE (Figure 4.1),
the first linear probe to extract directed and labeled dependency trees
while using fewer parameters than prior work and three orders of
magnitude fewer trainable parameters than a full parser (Section 4.3).
As this allows us to measure labeled attachment scores (LAS), we in-
vestigate the degree to which our probe is predictive of cross-lingual
transfer performance of a full parser across 13 typologically diverse
languages, finding that our approach chooses the best transfer lan-
guage 94% of the time, outperforming competitive baselines and prior
work (Section 4.4). Finally, we perform an in-depth analysis of which
latent information is most relevant for dependency parsing as well as
which edges and relations benefit most from the expressivity of the
full parser (Section 4.5).1

1Code available at https://personads.me/x/acl-2022-code.
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4.2 Related Work

Given the ubiquitous use of contextualized embeddings (Devlin et al.,
2019; Conneau et al., 2020; Xue et al., 2021), practitioners have turned
to various methods for analyzing their linguistic features (Rogers et al.,
2020). Hewitt and Manning (2019) examine these intrinsic properties
in greater detail for English dependency parsing using a structural
probe, finding that undirected dependency graphs are recoverable
from BERT by learning a linear transformation on its embeddings
(Section 4.3.1).

Extending the structural probe of Hewitt and Manning (2019) to
12 languages, Chi et al. (2020) extract undirected dependency graphs
from mBERT (Devlin et al., 2019), further showing that head-to-child
difference vectors in the learned subspace cluster into relations from
the Universal Dependencies taxonomy (de Marneffe et al., 2014).

Building on both the structural and tree depth probes (Hewitt
and Manning, 2019), Kulmizev et al. (2020) extract directed depen-
dency graphs from mBERT for 13 languages (Section 4.3.2). Further
variations to structural probing include regularization of the linear
transformation (Limisiewicz and Mareček, 2021) as well as alternative
objective functions (Maudslay et al., 2020).

None of the proposed linear probing approaches so far are able
to produce full dependency parse trees (i.e. directed and labeled),
however the closer a probe approximates the full task, the better it
quantifies relevant information (Maudslay et al., 2020). It would for
example be desirable to estimate LAS for parsing a target treebank
with a model trained on a different source without having to train
a resource-intensive parser (e.g. Dozat and Manning, 2017) on each
source candidate. Although performance prediction methods for such
scenarios exist, they typically do not cover graph prediction (Nguyen
et al., 2020; You et al., 2021).

In order to bridge the gap between full parsers and unlabeled
probes, in addition to the gap between full fine-tuning and lightweight
performance prediction, this work proposes a linear probe which can
extract labeled and directed dependency parse trees while using less
compute than prior methods (Section 4.3). We use our probe’s LAS to
evaluate its predictive power for full parser performance and leverage
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its linear nature to investigate how dependencies are represented in
subspaces of contextual embeddings (Section 4.5).

4.3 Probing for Dependencies

In order to construct a directed and labeled dependency parse tree for
a sentence s consisting of the words {w0, . . . , wN }, we require informa-
tion on the presence or absence of edges between words, the direction-
ality of these edges (−−−−→wi , w j ), and the relationships {r0, . . . ,rN } which
they represent. Using the contextualized embeddings {h0, . . . ,hN } with
hi ∈Re , prior probing work has focused on the first step of identifying
edges (Section 4.3.1) and later directionality (Section 4.3.2). In this
work, we propose a probe which completes the final relational step
(Section 4.3.3) and simultaneously provides a more efficient method
for identifying directionality (Section 4.3.4).

4.3.1 Undirected Probing

The structural probe introduced by Hewitt and Manning (2019) recov-
ers the first piece of information (i.e. the undirected graph) remarkably
well. Here, the probe is a linear transformation B ∈ Re×b with b < e
which maps contextual embeddings into a subspace in which the
distance measure

dB (hi ,h j ) =
√

(Bhi −Bh j )T (Bhi −Bh j ) 4.1

between hi and h j is optimized towards the distance between two
words in the dependency graph dP (wi , w j ), i.e. the number of edges
between the words. For each sentence, the loss is defined as the mean
absolute difference across all word pairs:

LB (s) = 1

N 2

N∑
i=0

N∑
j=0

∣∣dP (wi , w j )−dB (hi ,h j )
∣∣ . 4.2

In order to extract an undirected dependency graph, one computes
the distances for a sentence’s word pairs using dB and extracts the
minimum spanning tree (Jarník, 1930; Prim, 1957; MST).
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4.3.2 Directed Probing

Apart from the structural probe B , Hewitt and Manning (2019) also
probe for tree depth. Using another matrix C ∈ Re×c , a subspace is
learned in which the squared L2 norm of a transformed embedding
∥C hi∥2

2 corresponds to a word’s depth in the tree, i.e. the number of
edges from the root.

Kulmizev et al. (2020) combine the structural and tree depth probe
to extract directed graphs. This directed probe (DIRPROBE) constructs
a score matrix M ∈RN×N for which each entry corresponds to a word
pair’s negative structural distance −dB (hi ,h j ). The shallowest node
in the depth subspace C is set as root. Entries in M which corre-
spond to an edge between wi and w j for which the word depths follow
∥C hi∥2

2 > ∥C h j∥2
2 are set to −∞. A word’s depth in subspace C there-

fore corresponds to edge directionality. The directed graph is built
from M using Chu-Liu-Edmonds decoding (Chu and Liu, 1965; Ed-
monds, 1967).

DIRPROBE extracts directed dependency parse trees, however it
would require additional complexity to label each edge with a relation
(e.g. using an additional probe). In the following, we propose a probe
which can extract both directionality and relations while using fewer
parameters and no dynamic programming-based graph-decoding
algorithm.

4.3.3 Relational Probing

The incoming edge of each word wi is governed by a single relation. As
such the task of dependency relation classification with l relations can
be simplified to a labeling task using a linear transformation L ∈Re×l

for which the probability of a word’s relation ri being of class lk is given
by:

p(ri = lk |wi ) = softmax(Lhi )k 4.3

and optimization uses standard cross-entropy loss given the gold
label r ∗

i for each word wi :
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Algorithm 1: DEPPROBE Inference

1 input Distance matrix DB ∈RN×N , p(lk |wi ) of relation label lk

given wi

2 wr ← argmax
wi

p(root|wi )

3 Tw ← {wr },Te ← {}
4 while |Tw | < N do
5 wi , w j ← argmin

wi ,w j

DB (wi ∈Tw , w j )

6 r j ← argmax
lk

p(lk |w j ) with lk ̸= root

7 Tw ←Tw ∪ {w j }
8 Te ←Te ∪ {(−−−−→wi , w j ,r j )}
9 end

10 return Te

LL(s) =− 1

N

N∑
i=0

ln p(r ∗
i |wi ) . 4.4

Should dependency relations be encoded in contextualized em-
beddings, each dimension of the subspace L will correspond to the
prevalence of information relevant to each relation, quantifiable using
relation classification accuracy (RelAcc).

4.3.4 Constructing Dependency Parse Trees

Combining structural probing (Section 4.3.1) and dependency rela-
tion probing (Section 4.3.3), we propose a new probe for extracting
fully directed and labeled dependency trees (DEPPROBE). It combines
undirected graphs and relational information in a computationally
efficient manner, adding labels while requiring less parameters than
prior unlabeled or multi-layer-perceptron-based approaches.

As outlined in Algorithm 1 and illustrated in Figure 4.1, DEPPROBE

uses the distance matrix DB derived from the structural probe B in con-
junction with the relation probabilities of the relational probe L (line
1). The graph is first rooted using the word wr for which p(root|wr )
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is highest (line 2). Iterating over the remaining words until all w j are
covered in Tw , an edge is drawn to each word w j from its head wi

based on the minimum distance in DB . The relation r j for an edge
(−−−−→wi , w j ,r j ) is determined by taking the relation label lk which max-
imizes p(r j = lk |w j ) with lk ̸= root (line 6). The edge is then added
to the set of labeled tree edges Te . With edge directionality being
inferred as simply pointing away from the root, this procedure pro-
duces a dependency graph that is both directed and labeled without
the need for additional complexity, running in O (n2) while dynamic
programming-based decoding such as DIRPROBE have runtimes of up
to O (n3) (Stanojević and Cohen, 2021).

Constructing dependency trees from untuned embeddings re-
quires the matrices B and L, totaling e ·b +e · l trainable parameters.
Optimization can be performed using gradient descent on the sum of
losses LB +LL . With l = 37 relations in UD, this constitutes a substan-
tially reduced training effort compared to prior probing approaches
(with subspace dimensionalities b and c typically set to 128) and mul-
tiple magnitudes fewer fine-tuned parameters than for a full biaffine
attention parser.

4.4 Experiments

4.4.1 Setup

Parsers In our experiments, we use the deep biaffine attention parser
(BAP) by Dozat and Manning (2017) as implemented in van der Goot
et al. (2021b) as an upper bound for MLM-based parsing performance.
As it is closest to our work, we further reimplement DIRPROBE (Kul-
mizev et al., 2020) with b = 128 and c = 128. Note that this approach
produces directed, but unlabeled dependency graphs. Finally, we
compare both methods to our directed and labeled probing approach,
DEPPROBE with b = 128 and l = 37.

All methods use mBERT (Devlin et al., 2019) as their encoder (e =
768). For BAP, training the model includes fine-tuning the encoder’s
parameters, while for both probes they remain fixed and only the linear
transformations are adjusted. This results in 183M tuned parameters
for BAP, 197k for DIRPROBE and 127k for DEPPROBE. Hyperparame-
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ters are set to the values reported by the authors,2 while for DEPPROBE

we perform an initial tuning step in Section 4.4.2.

Target Treebanks As targets, we use the set of 13 treebanks proposed
by Kulmizev et al. (2019), using versions from Universal Dependencies
v2.8 (Zeman et al., 2021). They are diverse with respect to language
family, morphological complexity and script (Appendix 4.7.1). This set
further includes EN-EWT (Silveira et al., 2014) which has been used
in prior probing work for hyperparameter tuning, allowing us to tune
DEPPROBE on the same data.

Metrics We report labeled attachment scores (LAS) wherever possi-
ble (BAP, DEPPROBE) and unlabeled attachment scores (UAS) for all
methods. For DEPPROBE’s hyperparameters, we evaluate undirected,
unlabeled attachment scores (UUAS) as well as relation classification
accuracy (RelAcc). One notable difference to prior work is that we
include punctuation both during training and evaluation — contrary
to prior probing work which excludes all punctuation (Hewitt and
Manning, 2019; Kulmizev et al., 2020; Maudslay et al., 2020) — since
we are interested in the full parsing task.

Training Each method is trained on each target treebank’s training
split and is evaluated on the test split. For cross-lingual transfer, mod-
els trained on one language are evaluated on the test splits of all other
languages without any further tuning. For DEPPROBE tuning (Section
4.4.2) we use the development split of EN-EWT.

BAP uses the training schedule implemented in van der Goot et al.
(2021b) while DIRPROBE and DEPPROBE use AdamW (Loshchilov and
Hutter, 2019) with a learning rate of 10−3 which is reduced by a factor
of 10 each time the loss plateaus (see also Hewitt and Manning, 2019).

Both probing methods are implemented using PyTorch (Paszke
et al., 2019) and use mBERT as implemented in the Transformers
library (Wolf et al., 2020). Each model is trained with three random
initializations of which we report the mean.

2For better comparability, we use the best single layer reported by Kulmizev et al.
(2020) instead of the weighted sum over all layers.
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Figure 4.2: Layer-wise Performance on EWT (Dev) for DEPPROBE

as measured by UUAS for the structural probe B and RelAcc for the
relational probe L.

4.4.2 DEPPROBE Tuning

As prior work has repeatedly found that MLM layers encode differ-
ent linguistic information, the layers which are most relevant for a
probe’s task are typically first identified (Tenney et al., 2019a; Hewitt
and Manning, 2019). Following this paradigm, we train DEPPROBE

on embeddings from each layer of mBERT. Layer 0 is equivalent to
the first, non-contextualized embeddings while layer 12 is the out-
put of the last attention heads. The probe is trained on EN-EWT and
evaluated on its development split using UUAS for the structural trans-
formation B (akin to Hewitt and Manning, 2019) as well as RelAcc for
the relational transformation L.

Figure 4.2 shows that structure is most prevalent around layer 6 at
78 UUAS, corroborating the 6–8 range identified by prior work (Tenney
et al., 2019a; Hewitt and Manning, 2019; Chi et al., 2020). Dependency
relations are easiest to retrieve at around layer 7 with an accuracy of
86%. The standard deviation across initializations is around 0.1 in
both cases. Based on these tuning results, we use layer 6 for structural
probing and layer 7 for relational probing in the following experiments.

50



Chapter 4 | Probing for Labeled Dependency Trees

4.4.3 Parsing Performance

Figure 4.3 lists UAS for all methods and LAS for BAP and DEPPROBE

both on target-language test data (=L) and zero-shot transfer targets
(¬L). Table 4.3e further shows the mean results for each setting.

Unsurprisingly, the full parametrization of BAP performs best, with
in-language scores of 88 LAS and 91 UAS. For zero-shot transfer, these
scores drop to 35 LAS and 52 UAS, with some language pairs seeing
differences of up to 85 points: e.g. JA → JA (93 LAS) versus AR → JA (8
LAS) in Figure 4.3a. This again confirms the importance of selecting
appropriate source data for any given target.

Both probes, with their limited parametrization, fall short of the
full parser’s performance, but still reach up to 73 LAS and 79 UAS.
DIRPROBE has a mean in-language UAS which is 3 points higher than
for DEPPROBE, attributable to the more complex decoder. Due to
DIRPROBE’s output structures being unlabeled, we cannot compare
LAS.

DEPPROBE reaches a competitive 67 UAS despite its much simpler
decoding procedure and appears to be more stable for zero-shot trans-
fer as it outperforms DIRPROBE by around 2 UAS while maintaining a
lower standard deviation. Most importantly, it produces directed and
labeled parses such that we can fully compare it to BAP. Considering
that DEPPROBE has more than three orders of magnitude fewer tunable
parameters, a mean in-language LAS of 60 is considerable and high-
lights the large degree of latent dependency information in untuned,
contextual embeddings. For zero-shot transfer, the performance gap
to BAP narrows to 13 LAS and 14 UAS.

4.4.4 Transfer Prediction

Given that DEPPROBE provides a highly parameter-efficient method for
producing directed, labeled parse trees, we next investigate whether
its performance patterns are indicative of the full parser’s performance
and could aid in selecting an appropriate source treebank for a given
target without having to train the 183 million parameters of BAP.
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Figure 4.3: In-language and Cross-lingual Transfer Performance for
13 target treebanks (train → test) in UAS for BAP (fully tuned parser),
DEPPROBE, DIRPROBE and LAS for BAP, DEPPROBE (DIRPROBE is
unlabeled).
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MODEL
LAS UAS

ρ τw ρ τw

L2V .86 .72 .80 .70

DIRPROBE — — .91 .81
DEPPROBE .97 .88 .94 .85

Table 4.1: Transfer Correlation with BAP. Pearson ρ and weighted
Kendall’s τw for BAP’s LAS and UAS with respect to DIRPROBE’s UAS,
DEPPROBE’s UAS and LAS as well as lang2vec cosine similarity (L2V).

Setup Comparing UAS and LAS of BAP with respective scores of
DEPPROBE and DIRPROBE, we compute the Pearson correlation coeffi-
cient ρ and the weighted Kendall’s τw (Vigna, 2015). The latter can be
interpreted as corresponding to a correlation in [−1,1], and that given
a probe ranking one source treebank over another, the probability
of this higher rank corresponding to higher performance in the full
parser is τw+1

2 . All reported correlations are significant at p < 0.001.
Similarly, differences between correlation coefficients are also signifi-
cant at p < 0.001 as measured using a standard Z-test. In addition to
the probes, we also compare against a method commonly employed
by practitioners by using the cosine similarity of typological features
from the URIEL database as represented in lang2vec (Littell et al., 2017;
L2V) between our 13 targets (details in Appendix 4.7.1).

Results Table 4.1 shows that the L2V baseline correlates with final
parser performance, but that actual dependency parses yield signifi-
cantly higher correlation and predictive power. For UAS, we find that
despite having similar attachment scores, DEPPROBE performance
correlates higher with BAP than that of DIRPROBE, both with respect
to predicting the ability to parse any particular language as well as
ranking the best source to transfer from. Using the labeled parse trees
of DEPPROBE results in almost perfect correlation with BAP’s LAS at
ρ = .97 as well as a τw of .88, highlighting the importance of modeling
the full task and including dependency relation information. Using
Kendall’s τw with respect to LAS, we can estimate that selecting the

53



Chapter 4 | Probing for Labeled Dependency Trees

MODEL
LAS UAS

ρ τw ρ τw

SSA-STRUCT .68 .42 .60 .43
SSA-DEPTH .62 .34 .53 .35
SSA-REL .73 .55 .65 .53

Table 4.2: SSA Correlation with BAP. Pearson ρ and weighted
Kendall’s τw for BAP’s LAS and UAS with respect to subspace angles be-
tween structural (STRUCT), depth (DEPTH) and relation probes (REL).

highest performing source treebank from DEPPROBE to train the full
parser will be the best choice 94% of the time for any treebank pair.

4.5 Analysis

4.5.1 Tree Depth versus Relations

Why does DEPPROBE predict transfer performance more accurately
than DIRPROBE despite its simpler architecture? As each probe con-
sists only of two matrices optimized to extract tree structural, depth
or relational information, we can directly compare the similarity of
all task-relevant parameters across languages against the full BAP’s
cross-lingual performance.

In order to measure the similarity of probe matrices from differ-
ent languages, we use mean subspace angles (Knyazev and Argentati,
2002; SSA), similarly to prior probing work (Chi et al., 2020). Intu-
itively, SSA quantifies the energy required to transform one matrix to
another by converting the singular values of the transformation into
angles between 0◦ and 90◦. SSAs are computed for the structural probe
(SSA-STRUCT) which is equivalent in both methods, DIRPROBE’s depth
probe (SSA-DEPTH) and DEPPROBE’s relational probe (SSA-REL). We
use Pearson ρ and the weighted Kendall’s τw to measure the correla-
tion between cross-lingual probe SSAs and BAP performance. This
allows us to investigate which type of information is most important
for final parsing performance.

From Table 4.2, we can observe that SSAs between probes of dif-

54



Chapter 4 | Probing for Labeled Dependency Trees

appos

dislocatedexpl iobj
nmod

nsubj
nummod obj obl

vocative acl
advcl

cco
mp

csu
bj
xcomp

advmod
amod
disco

urse aux
case clf cop det

mark ccconj

compound
fixed flat list

parataxis
goeswith

orphan

reparandum dep
punct refroot

0

20

40

60

80

100

Re
lA

cc

Nominal Clause Modifier Function Coord Multi Loose Special Other

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
P

De
pP

ro
be

Figure 4.4: Relation Accuracy of BAP and DEPPROBE compared for
all 13 in-language targets, grouped according to the Universal Depen-
dencies taxonomy (de Marneffe et al., 2014).

ferent languages correlate less with transfer performance than UAS or
LAS (Table 4.1), underlining the importance of extracting full parses.
Among the different types of dependency information, we observe
that SSAs between the relational probes used by DEPPROBE correlate
highest with final performance at .73 for LAS and .65 for UAS. Struc-
tural probing correlates significantly both with BAP’s LAS and UAS at
.68 and .60 respectively, but to a lesser degree. Probes for tree depth
have the lowest correlation at .62 for LAS and .53 for UAS. Despite tree
depth being a distinctive syntactic feature for language pairs such as
the agglutinative Turkish and the more function word-based English,
depth is either not as relevant for BAP or may be represented less con-
sistently in embeddings across languages, leading to lower correlation
between SSAs and final performance.

4.5.2 Full Parser versus Probe

In the following analysis we investigate performance differences be-
tween the full BAP and DEPPROBE across all 13 targets in order to iden-
tify finer-grained limitations of the linear approach and also which
kinds of dependencies benefit from full parameter tuning and non-
linear decoding.

Edge Length Figure 4.5 shows offsets between gold and predicted
head positions. The majority of heads are predicted correctly with a
ratio of 92.1% for BAP and 69.7% for DEPPROBE. Both methods are
less accurate in predicting long-distance edges with length 150–250,
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Figure 4.5: Ratio of Offsets between Gold and Predicted Heads for
BAP and DEPPROBE (i.e., 0 is correct) across all 13 targets.

resulting in offsets of ca. 100 (aggregated into < and > in Figure 4.5).
Most likely, this is due to these edges’ overall sparsity in the data (only
6.7% of edges cover a distance of more than 10 tokens) as well as their
higher overall subjective difficulty. Nonetheless, BAP is able to capture
such dependencies more accurately as shown by its lower error rates
for long edges compared to those of DEPPROBE.

In addition to very distant head nodes, BAP also seems to recover
more of the nuanced edges in the [−5,5] interval. This range is par-
ticularly impactful for downstream performance as the edges in our
target treebanks have a median length of 2 (mean length 3.62 with
σ= 5.70). The structural probing loss (Equation 4.2) and the simple
linear parametrization of the probe are able to capture a large number
of these edges as evidenced by overall low error rates, but lack the
necessary expressivity in order to accurately capture all cases.

Relations Looking at RelAcc for each category in the UD taxonomy
(de Marneffe et al., 2014) in Figure 4.4 allows us to identify where higher
parametrization and more complex decoding are required for high
parsing performance. While we again observe that performance on all
relations is higher for BAP than for DEPPROBE, a large subset of the
relations is characterized by comparable or equivalent performance.
These include simple punctuation (punct), but also the majority of
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function word relations such as aux, case, clf, det and mark as well
as coordination (e.g. cc, conj). We attribute the high performance
of DEPPROBE on these relations to the fact that the words used to
express them typically stem from closed classes and consequently
similar embeddings: e.g., determiners “the/a/an” (EN), case markers
“di/da” (IT).

Interestingly, some relations expressed through open class words
are also captured by the linear probe. These include the modifiers
advmod, amod and discourse as well as some nominal relations such
as expl, nmod, nsubj and nummod. As prior work has identified PoS
information in untuned embeddings (Tenney et al., 2019a), the modi-
fiers are likely benefiting from the same embedding features. The fact
that DEPPROBE nonetheless identifies syntax-specific relations such
as nsubj, and to a lesser degree obj and obl, indicates the presence
of context-dependent syntactic information in addition to PoS.

The larger the set of possible words for a relation, the more dif-
ficult it is to capture with the probe. The functional cop (copula)
relation provides an informative example: In English (and related lan-
guages), it is almost exclusively assigned to the verb “be” resulting in
85% RelAcc, while in non-European languages such as Japanese it can
be ascribed to a larger set which often overlaps with other relations
(e.g. aux) resulting in 65% RelAcc. BAP adapts to each language by tun-
ing all parameters while DEPPROBE, using fixed embeddings, reaches
competitive scores on European languages, but performs worse in
non-European settings (details in Appendix 4.7.2).

Besides capturing larger variation in surface forms, BAP also ap-
pears to benefit from higher expressivity when labeling clausal rela-
tions such as ccomp, csubj. These relations are often characterized not
only by surface form variation, but also by PoS variation of head/child
words and overlap with other relation types (e.g. clausal subjects stem
from verbs or adjectives), making them difficult to distinguish in un-
tuned embeddings. Simultaneously, they often span longer edges
compared to determiners or other function words.

Another relation of particular importance is root as it determines
the direction of all edges predicted by DEPPROBE. An analysis of the
14% RelAcc difference to BAP reveals that both methods most fre-
quently confuse root with relations that fit the word’s PoS, e.g. NOUN
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roots with nsubj or nmod. For the majority PoS VERB (70% of all root),
we further observe that DEPPROBE predicts twice as many xcomp and
parataxis confusions compared to BAP, likely attributable to their
root-similar function in subclauses. Since their distinction hinges on
context, the full parser, which also tunes the contextual encoder, is
better equipped to differentiate between them.

The last category in which BAP outperforms DEPPROBE includes
rare, treebank-specific relations such as reparandum (reference from
a corrected word to an erroneous one). Again, the larger number of
tunable parameters in addition to the non-linear decoding procedure
of the full parser enable it to capture more edge cases while DEP-
PROBE’s linear approach can only approximate a local optimum for
any relations which are represented non-linearly.

Efficiency When using a probe for performance prediction, it is
important to consider its computational efficiency over the full parser’s
fine-tuning procedure. In terms of tunable parameters, DEPPROBE has
36% fewer parameters than DIRPROBE and three orders of magnitude
fewer parameters than BAP. In practice, this translates to training
times in the order of minutes instead of hours.

Despite its simple O (n2) decoding procedure compared to dy-
namic programming-based graph-decoding algorithms (O (n3)), DEP-
PROBE is able to extract full dependency trees which correlate highly
with downstream performance while maintaining high efficiency (Sec-
tion 4.4.4).

4.6 Conclusion

With DEPPROBE, we have introduced a novel probing procedure to
extract fully labeled and directed dependency trees from untuned, con-
textualized embeddings. Compared to prior approaches which extract
structures lacking labels, edge directionality or both, our method re-
tains a simple linear parametrization which is in fact more lightweight
and does not require complex decoders (Section 4.3).

To the best of our knowledge, this is the first linear probe which can
be used to estimate LAS from untuned embeddings. Using this prop-
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erty, we evaluated the predictive power of DEPPROBE on cross-lingual
parsing with respect to the transfer performance of a fully fine-tuned
biaffine attention parser. Across the considered 169 language pairs,
DEPPROBE is surprisingly effective: Its LAS correlates significantly
(p < 0.001) and most highly compared with unlabeled probes or com-
petitive language feature baselines, choosing the best source treebank
in 94% of all cases (Section 4.4).

Leveraging the linearity of the probe to analyze structural and
relational subspaces in mBERT embeddings, we find that dependency
relation information is particularly important for parsing performance
and cross-lingual transferability, compared to both tree depth and
structure. DEPPROBE, which models structure and relations, is able
to recover many functional and syntactic relations with competitive
accuracy to the full BAP (Section 4.5).

Finally, the substantially higher efficiency of DEPPROBE with re-
spect to time and compute make it suitable for accurate parsing perfor-
mance prediction. As contemporary performance prediction methods
lack formulations for graphical tasks and handcrafted features such
as lang2vec are not available in all transfer settings (e.g. document
domains, MLM encoder choice), we see linear approaches such as
DEPPROBE as a valuable alternative.

4.7 Appendix

4.7.1 Experimental Setup

Target Treebanks Table 4.3 lists the 13 target treebanks based on the
set by Kulmizev et al. (2019): AR-PADT (Hajič et al., 2009), EN-EWT
(Silveira et al., 2014), EU-BDT (Aranzabe et al., 2015), FI-TDT (Pyysalo
et al., 2015), HE-HTB (McDonald et al., 2013), HI-HDTB (Palmer et al.,
2009), IT-ISDT (Bosco et al., 2014), JA-GSD (Asahara et al., 2018), KO-
GSD (Chun et al., 2018), RU-SynTagRus (Droganova et al., 2018), SV-
Talbanken (McDonald et al., 2013), TR-IMST (Sulubacak et al., 2016),
ZH-GSD (Shen et al., 2016a). In our experiments, we use these tree-
banks as provided in Universal Dependencies version 2.8 (Zeman et al.,
2021). Each method (BAP, DEPPROBE, DIRPROBE) is trained on each
target’s respective training split and evaluated on each test split both in
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TARGET LANG FAMILY SIZE

AR-PADT Arabic Afro-Asiatic 7.6k
EN-EWT English Indo-European 16.6k
EU-BDT Basque Basque 9.0k
FI-TDT Finnish Uralic 15.1k
HE-HTB Hebrew Afro-Asiatic 6.2k
HI-HDTB Hindi Indo-European 16.6k
IT-ISDT Italian Indo-European 14.1k
JA-GSD Japanese Japanese 8.1k
KO-GSD Korean Korean 6.3k
RU-SynTagRus Russian Indo-European 61.9k
SV-Talbanken Swedish Indo-European 6.0k
TR-IMST Turkish Turkic 5.6k
ZH-GSD Chinese Sino-Tibetan 5.0k

Table 4.3: Target Treebanks based on Kulmizev et al. (2019) with
language family (FAMILY) and total number of sentences (SIZE).

the in-language and cross-lingual setting without further fine-tuning.
For the layer-hyperparameter of DEPPROBE, we use the development
split of EN-EWT as in prior probing work (Hewitt and Manning, 2019).

Implementation BAP (Dozat and Manning, 2017) uses the imple-
mentation in the MaChAmp toolkit v0.2 (van der Goot et al., 2021b)
with the default training schedule and hyperparameters. DIRPROBE

(Kulmizev et al., 2020) is reimplemented based on the authors’ algo-
rithm description and uses their reported hyperparameters. Both it
and DEPPROBE (this work) are implemented in PyTorch v1.9.0 (Paszke
et al., 2019) and use mBERT (bert-base-multilingual-cased) from
the Transformers library v4.8.2 (Wolf et al., 2020). Following prior prob-
ing work, each token which is split by mBERT into multiple subwords
is mean-pooled (Hewitt and Manning, 2019). For lang2vec (Littell et al.,
2017), we use its syntax_knn, phonology_knn and inventory_knn
features from v1.1.2. For our analyses (Section 4.5), we use numpy
v1.21.0 (Harris et al., 2020), SciPy v1.7.0 (Virtanen et al., 2020) and
Matplotlib v3.4.3 (Hunter, 2007).
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Figure 4.6: SSA of Probe Transformations in degrees across 13 target
treebanks for the structural (SSA-STRUCT), depth (SSA-DEPTH) and rela-
tional probes (SSA-REL).

Training Details Each model is trained on an NVIDIA A100 GPU
with 40GBs of VRAM and an AMD Epyc 7662 CPU. Mean training time
for BAP is ca. 2 h (± 30 min). DIRPROBE requires around 20 min (±
5 min). DEPPROBE can be trained the fastest in around 15 min (± 5
min) with the embedding forward operation consuming most of the
time. The models use batches of size 64 and both probes have an early
stopping patience of 3 (max. 30 epochs) on each target’s dev data. All
models are initialized thrice using the random seeds 41, 42 and 43.

Reproducibility In order to ensure reproducibility for future work,
we release the code for our methods and reimplementations in addi-
tion to token-level predictions (e.g. for significance testing) at
https://personads.me/x/acl-2022-code.

4.7.2 Additional Results

Subspace Angles (SSA) are used in Section 4.5.1 in order to iden-
tify which types of dependency information are most relevant to final
parsing performance. Figure 4.6 lists all cross-lingual SSAs for the
structural (Figure 4.6a), depth (Figure 4.6b) and relational probes (Fig-
ure 4.6c). SSA values are converted from radians to degrees ∈ [0,90]
for improved readability. Correlation in Table 4.2 is calculated based
on negative SSA (Chi et al., 2020).
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Relation Accuracy (RelAcc) is used in Section 4.5.2 to analyze depen-
dency relations which benefit from the full parametrization of BAP
compared to the linear DEPPROBE. Figures 4.7–4.19 show RelAcc per
language in addition to the aggregated scores in Figure 4.4. As noted
in Section 4.5.2, some relations such as cop differ substantially across
languages with respect to their realization (e.g. surface form variation).
Furthermore, the set of relations represented in each target treebank
may differ, especially for specializied categories.
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Figure 4.7: RelAcc of BAP and DEPPROBE on AR-PADT (Test) grouped
according to UD taxonomy.

appos expl iobj
nmod

nsubj
nummod obj obl

vocative acl
advcl

cco
mp

csu
bj
xcomp

advmod
amod
disco

urse aux
case cop det

mark cc conj

compound
fixed flat list

parataxis
goeswith

reparandum
punct root

0

50

100

Re
lA

cc

Nominal Clause Modifier Function Coord Multi Loose Special Other

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
P

De
pP

ro
be

Figure 4.8: RelAcc of BAP and DEPPROBE on EN-EWT (Test) grouped
according to UD taxonomy.
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Figure 4.9: RelAcc of BAP and DEPPROBE on EU-BDT (Test) grouped
according to UD taxonomy.
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Figure 4.10: RelAcc of BAP and DEPPROBE on FI-TDT (Test) grouped
according to UD taxonomy.
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Figure 4.11: RelAcc of BAP and DEPPROBE on HE-HTB (Test) grouped
according to UD taxonomy.
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Figure 4.12: RelAcc of BAP and DEPPROBE on HI-HDTB (Test)
grouped according to UD taxonomy.
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Figure 4.13: RelAcc of BAP and DEPPROBE on IT-ISDT (Test) grouped
according to UD taxonomy.
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Figure 4.14: RelAcc of BAP and DEPPROBE on JA-GSD (Test) grouped
according to UD taxonomy.
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Figure 4.15: RelAcc of BAP and DEPPROBE on KO-GSD (Test) grouped
according to UD taxonomy.

appos expl iobj
nmod

nsubj
nummod obj obl acl

advcl
cco

mp
csu

bj
xcomp

advmod
amod
disco

urse aux
case cop det

mark cc conj

compound
fixed flat

parataxis
orphan

punct root
0

25

50

75

100

Re
lA

cc

Nominal Clause Modifier Function Coord Multi Loose Sp Other

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
P

De
pP

ro
be

Figure 4.16: RelAcc of BAP and DEPPROBE on RU-SynTagRus (Test)
grouped according to UD taxonomy.
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Figure 4.17: RelAcc of BAP and DEPPROBE on SV-Talbanken (Test)
grouped according to UD taxonomy.
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Figure 4.18: RelAcc of BAP and DEPPROBE on TR-IMST (Test)
grouped according to UD taxonomy.
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Figure 4.19: RelAcc of BAP and DEPPROBE on ZH-GSD (Test) grouped
according to UD taxonomy.
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5Sort by Structure:
LM Ranking as Dependency Probing

The work presented in this chapter is based on: Max Müller-Eberstein,
Rob van der Goot, and Barbara Plank. 2022b. Sort by structure: Lan-
guage model ranking as dependency probing. In Proceedings of the
2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages
1296–1307, Seattle, United States. Association for Computational Lin-
guistics.
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Chapter 5 | Sort by Structure: LM Ranking as Dependency Probing

Abstract

Making an informed choice of pre-trained language model (LM) is crit-
ical for performance, yet environmentally costly, and as such widely
underexplored. The field of Computer Vision has begun to tackle en-
coder ranking, with promising forays into Natural Language Process-
ing, however they lack coverage of linguistic tasks such as structured
prediction. We propose probing to rank LMs, specifically for parsing
dependencies in a given language, by measuring the degree to which
labeled trees are recoverable from an LM’s contextualized embeddings.
Across 46 typologically and architecturally diverse LM-language pairs,
our probing approach predicts the best LM choice 79% of the time
using orders of magnitude less compute than training a full parser.
Within this study, we identify and analyze one recently proposed de-
coupled LM—RemBERT—and find it strikingly contains less inherent
dependency information, but often yields the best parser after full
fine-tuning. Without this outlier our approach identifies the best LM
in 89% of cases.

5.1 Introduction

With the advent of massively pre-trained language models (LMs) in
Natural Language Processing (NLP), it has become crucial for prac-
titioners to choose the best LM encoder for their given task early on,
regardless of the rest of their proposed model architecture. The great-
est variation of LMs lies in the language or domain-specificity of the
unlabelled data used during pre-training (with architectures often
staying identical).

Typically, better expressivity is expected from language/domain-
specific LMs (Gururangan et al., 2020; Dai et al., 2020) while open-
domain settings necessitate high-capacity models with access to as
much pre-training data as possible. This tradeoff is difficult to navigate,
and given that multiple specialized LMs (or none at all) are available,
practitioners often resort to an ad-hoc choice. In absence of immedi-
ate performance indicators, the most accurate choice could be made
by training the full model using each LM candidate, however this is
often infeasible and wasteful Strubell et al. (2019).
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Recently, the field of Computer Vision (CV) has attempted to tackle
this problem by quantifying useful information in pre-trained image
encoders as measured directly on labeled target data without fine-
tuning (Nguyen et al., 2020; You et al., 2021). While first forays for
applying these methods to NLP are promising, some linguistic tasks
differ substantially: Structured prediction, such as parsing syntactic
dependencies, is a fundamental NLP task not covered by prior en-
coder ranking methods due to its graphical output. Simultaneously,
performance prediction in NLP has so far been studied as a function
of dataset and model characteristics (Xia et al., 2020; Ye et al., 2021)
and has yet to examine how to rank large pools of pre-trained LMs.

Given the closely related field of probing, in which lightweight
models quantify task-specific information in pre-trained LMs, we re-
cast its objective in the context of performance prediction and ask:
How predictive is lightweight probing at choosing the best performing
LM for dependency parsing? To answer this question, we contribute:

• An efficient encoder ranking method for structured prediction
using dependency probing (Müller-Eberstein et al., 2022a; DEP-
PROBE) to quantify latent syntax (Section 5.2).

• Experiments across 46 typologically and architecturally diverse
LM + target language combinations (Section 5.3).1

• An in-depth analysis of the surprisingly low inherent depen-
dency information in RemBERT (Chung et al., 2021) compared
to its high fine-tuned performance (Section 5.4).

5.2 Methodology

Probing pre-trained LMs is highly related to encoder ranking in CV
where the ease of recoverability of class-differentiating information
is key (Nguyen et al., 2020; You et al., 2021). This approach is more
immediate than existing NLP performance prediction methods which
rely on featurized representations of source and target data without
actively ranking encoders (Xia et al., 2020; Ye et al., 2021). As most

1Code at https://personads.me/x/naacl-2022-code.
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Figure 5.1: Visualization of DEPPROBE. Relational and structural
subspaces L and B are combined to extract labeled, directed trees
from embeddings.

experiments in NLP are conducted using a limited set of LMs—often a
single model—without strong prior motivations, we see LM ranking as
a critical task on its own.

While probes for LMs come in many forms, they are generally char-
acterized as lightweight, minimal architectures intended to solve a
particular task (Maudslay et al., 2020). While non-linear models such
as small multi-layer perceptrons are often used (Tenney et al., 2019b),
there have been criticisms given that their performance highly de-
pends on the complexity of their architecture (Hewitt and Liang, 2019;
Voita and Titov, 2020). As such, we rely on linear probes alone, which
have the benefit of being extremely lightweight, closely resembling
existing performance prediction methods (You et al., 2021), and allow
for statements about linear subspaces contained in LM latent spaces.

DEPPROBE (Müller-Eberstein et al., 2022a; visualized in Figure 5.1)
is a linear formulation for extracting fully labeled dependency trees
based on the structural probe by Hewitt and Manning (2019). Given
contextualized embeddings of dimensionality d , a linear transforma-
tion B ∈Rb×d with b ≪ d (typically b = 128) maps them into a subspace
in which the Euclidean distance between embeddings corresponds to
the number of edges between the respective words in the gold depen-
dency graph.

In our formulation, we supplement a linear transformation L ∈
Rl×d (with l = number of dependency relations) which maps each
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embedding to a subspace in which the magnitude of each dimension
corresponds to the likelihood of a word and its head being governed
by a certain relation.

By computing the minimum spanning tree in B and then finding
the word with the highest root likelihood in L, we can determine the
directionality of all edges as pointing away from the root. All remaining
edges are labeled according to the most likely non-root class in L,
resulting in a fully directed and labeled dependency tree.

Note that this approach differs substantially from prior approaches
which yield undirected and/or unlabeled trees (Hewitt and Manning,
2019; Kulmizev et al., 2020) or use pre-computed edges and non-linear
classifiers (Tenney et al., 2019b). DEPPROBE efficiently computes the
full target metric (i.e. labeled attachment scores) instead of approx-
imate alternatives (e.g. undirected, unlabeled attachment scores or
tree depth correlation).

5.3 Experiments

Setup We investigate the ability of DEPPROBE to select the best per-
forming LM for dependency parsing across nine linguistically diverse
treebanks from Universal Dependencies (Zeman et al., 2021; UD)
which were previously chosen by Smith et al. (2018b) to reflect di-
verse writing systems and morphological complexity (see Appendix
5.6.1).

For each target language, we employ three multilingual LMs—
mBERT (Devlin et al., 2019), XLM-R (Conneau et al., 2020), RemBERT
(Chung et al., 2021)—as well as 1–3 language-specific LMs retrieved by
popularity from HuggingFace’s Model Hub (Wolf et al., 2020), resulting
in a total of 46 LM-target pair setups (see Appendix 5.6.3).

For each combination, we train a DEPPROBE to compute labeled
attachment scores (LAS), hypothesizing that LMs from which trees
are most accurately recoverable also perform better in a fully tuned
parser. To evaluate the true downstream performance of a fully-tuned
model, we further train a deep biaffine attention parser (BAP; Dozat
and Manning, 2017) on each LM-target combination. Compared to
full fine-tuning, DEPPROBE only optimizes the matrices B and L, re-
sulting in the extraction of labeled trees with as few as 190k instead of
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Figure 5.2: LAS of DEPPROBE in relation to full BAP across nine
language targets (dev) using language-specific and multilingual LM
encoders of different architecture types (exact scores in Appendix
5.6.3).

583M trainable parameters for the largest RemBERT model (details in
Appendix 5.6.2).

We measure the predictive power of probing for fully fine-tuned
model performance using the Pearson correlation coefficient ρ as
well as the weighted Kendall’s τw (Vigna, 2015). The latter metric
corresponds to a correlation coefficient in [−1,1] and simultaneously
defines the probability of choosing the better LM given a pair as τw+1

2 ,
allowing us to quantify the overall quality of a ranking.

Results Comparing the LAS of DEPPROBE’s lightweight predictions
against full BAP fine-tuning in Figure 5.2, we see a clear correlation
as the probe correctly predicts the difficulty of parsing languages rel-
ative to each other and also ranks models within languages closely
according to their final performance. With a τw of .58 between scores
(p < 0.001), this works out to DEPPROBE selecting the better perform-
ing final model given any two models 79% of the time. Additionally,
LAS is slightly more predictive of final performance than unlabeled,
undirected attachment scores (UUAS) with τw = .57 to which prior
probing approaches are restricted (see Appendix 5.6.3).
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Given a modest ρ of .32 (p < 0.05), we surprisingly also observe a
single strong outlier to this pattern, namely the multilingual RemBERT
(Chung et al., 2021) decoupled LM architecture. While DEPPROBE

consistently ranks it low as it cannot extract dependency parse trees as
accurately as from the BERT and RoBERTa-based architectures, Rem-
BERT actually performs best on four out of the nine targets when fully
fine-tuned in BAP. Excluding monolingual LMs, it further outperforms
the other multilingual LMs in seven out of nine cases. As it is a more
recent and distinctive architecture with many differences to the most
commonly-used contemporary LMs, we analyze potential reasons for
this discrepancy in Section 5.4.

Excluding RemBERT as an outlier, we find substantially higher
correlation among all other models: ρ = .78 and τw = .78 (p < 0.001).
This means that among these models, fully fine-tuning the LM for
which DEPPROBE extracts the highest scores, yields the better final
performance 89% of the time.

In practice, learning DEPPROBE’s linear transformations while
keeping the LM frozen is multiple orders of magnitude more efficient
than fully training a complex parser plus the LM’s parameters. As such,
linear probing offers a viable method for selecting the best encoder in
absence of qualitative heuristics or intuitions. This predictive perfor-
mance is furthermore achievable in minutes compared to hours and
at a far lower energy budget (see Appendices 5.6.2 and 5.6.3).

5.4 Probing Decoupled LMs

Considering DEPPROBE’s high predictive performance across LMs
with varying architecture types, languages/domains and pre-training
procedures, we next investigate its limitations: Specifically, which dif-
ferences in RemBERT (Chung et al., 2021) lead to it being measured as
an outlier with seemingly low amounts of latent dependency informa-
tion despite reaching some of the highest scores after full fine-tuning.
The architecture has 32 layers and embeddings with d = 1152, com-
pared to most models’ 12 layers and d = 768. It accommodates these
size and depth increases within a manageable parameter envelope
by using smaller input embeddings with din = 256. While choosing
different d for the input and output embeddings is not possible in
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Figure 5.3: Dependency Information per RemBERT Layer via DEP-
PROBE’s structural, relational and parsing accuracy (UUAS, RelAcc,
LAS) on EN-EWT (dev).
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Figure 5.4: Per-languageα of RemBERT Layers for DEPPROBE across
all layer weights (dark > light).

most prior models due to both embedding matrices being coupled,
RemBERT decouples them, leading to a larger parameter budget and
less overfitting on the masked language modeling pre-training task
(Chung et al., 2021).

Layer-wise Probing Prior probing studies have found dependency
information to be concentrated around the middle layers of an LM
(Hewitt and Manning, 2019; Tenney et al., 2019b; Fayyaz et al., 2021).
Using EN-EWT (Silveira et al., 2014), we evaluate whether this holds
for RemBERT’s new architecture. Figure 5.3 confirms that both de-
pendency structural and relational information are most prominent
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MODEL AR EN FI GRC HE KO RU SV ZH

mBERT
65 74 65 46 69 58 68 65 58

±.08 ±.09 ±.35 ±.14 ±.23 ±.18 ±.31 ±.12 ±.17

XLM-R
60 70 66 53 60 49 57 51 51

±.14 ±.08 ±.18 ±.19 ±.20 ±.08 ±.34 ±.24 ±.53

RemBERT
58 56 52 54 52 46 49 43 39

±.12 ±.22 ±.15 ±.18 ±.05 ±.14 ±.04 ±.08 ±.24

Table 5.1: LAS of BAP Trained on Frozen LMs. A biaffine attention
parsing head is trained on top of frozen mBERT, XLM-R and RemBERT
for each of the nine target languages (± standard deviation).

around layer 17 of 32 as indicated by UUAS and relation classification
accuracy (RelAcc) respectively. Combining the structural and rela-
tional information in DEPPROBE similarly leads to a peak of the LAS at
the same layer while decreasing with further distance from the center.

Across all target languages, we next investigate whether probing a
sum over the embeddings of all layers weighted byα ∈R32 can boost
extraction performance in RemBERT. The heavier weighting of middle
layers byα, visible in Figure 5.4, reaffirms a concentration of depen-
dency information in the center. Contrasting probing work on prior
models (Tenney et al., 2019b; Kulmizev et al., 2020), using all layers
does not increase the retrievable dependencies, with LAS differences
±1 point. This further confirms that there is not a lack of dependency
information in any specific layer, but that there is less within the en-
coder as a whole.

Frozen Parsing Our probing results show that linear subspaces in
RemBERT contain less dependency information than prior LMs. How-
ever, DEPPROBE’s parametrization is kept intentionally simple and
may therefore not be capturing non-linearly represented information
that is useful during later fine-tuning. To evaluate this hypothesis,
we train a full biaffine attention parsing head, but keep the underly-
ing LM encoder frozen. This allows us to quantify the performance
gains which come from inherent dependency information versus later
task-specific fine-tuning.

Table 5.1 confirms our findings from DEPPROBE and shows that
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despite RemBERT outperforming mBERT and XLM-R when fully fine-
tuned, it has substantially lower LAS across almost all languages when
no full model fine-tuning is applied. This leads us to conclude that
there indeed is less inherent dependency information in the newer
model and that most performance gains must be occurring during
task-specific full fine-tuning.

Given that DEPPROBE extracts dependency structures reliably from
LM architectures with different depths and embedding dimensionali-
ties (e.g. RoBERTalarge with 24 layers and d = 1024 versus RuBERTtiny

with 3 layers and d = 312) as well as varying tokenization, optimiza-
tion and pre-training data, the key difference in RemBERT appears to
be embedding decoupling. The probe’s linear formulation is not the
limiting factor as the non-linear, biaffine attention head also produces
less accurate parses when the LM’s weights are frozen. Our analyses
thus suggest that RemBERT’s decoupled architecture contains less de-
pendency information out-of-the-box, but follows prior patterns such
as consolidating dependency information towards its middle layers
and serving as strong initialization for parser training.

Lastly, RemBERT’s larger number of tunable parameters compared
to all other LM candidates may provide it further capacity, especially
after full fine-tuning. As our probing methods are deliberately applied
to the frozen representations of the encoder, it becomes especially
important to consider the degree to which these embeddings may
change after updating large parts of the model. Taking these limi-
tations into account, the high correlations with respect to encoder
ranking nonetheless enable a much more informed selection of LMs
from a larger pool than was previously possible.

5.5 Conclusion

To guide practitioners in their choice of LM encoder for the structured
prediction task of dependency parsing, we leveraged a lightweight, lin-
ear DEPPROBE to quantify the latent syntactic information via the la-
beled attachment score. Evaluating 46 pairs of multilingual/language-
specific LMs and nine typologically diverse target treebanks, we found
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DEPPROBE to not only be efficient in its predictions, with orders of
magnitude fewer trainable parameters, but to also be accurate 79–89%
of the time in predicting which LM will outperform another when
used in a fully tuned parser. This allows for a substantially faster itera-
tion over potential LM candidates, saving hours worth of compute in
practice (Section 5.3).

Our experiments further revealed surprising insights on the newly
proposed RemBERT architecture: While particularly effective for mul-
tilingual dependency parsing when fully fine-tuned, it contains sub-
stantially less latent dependency information relative to prior widely-
used models such as mBERT and XLM-R. Among its architectural
differences, we identified embedding decoupling to be the most likely
contributor, while added model capacity during fine-tuning may also
improve final performance. Our analyses showed that despite con-
taining less dependency information overall, RemBERT follows prior
findings such as structure and syntactic relations being consolidated
towards the middle layers. Given these consistencies, performance
differences between decoupled LMs may be predictable using probes,
but in absence of similar multilingual LMs using decoupled embed-
dings this effect remains to be studied (Section 5.4).

Overall, the high efficiency and predictive power of ranking LM
encoders via linear probing as well as the ease with which they can
be analyzed—even when they encounter their limitations—offers im-
mediate benefits to practitioners who have so far had to rely on their
own intuitions when making a selection. This opens up avenues for
future research by extending these methods to more tasks and LM
architectures in order to enable better informed modeling decisions.

5.6 Appendix

5.6.1 Treebanks

Table 5.2 lists the nine target treebanks based on the set by Smith et al.
(2018b): AR-PADT (Hajič et al., 2009), EN-EWT (Silveira et al., 2014), FI-
TDT (Pyysalo et al., 2015), GRC-PROIEL (Eckhoff et al., 2018), HE-HTB
(McDonald et al., 2013), KO-GSD (Chun et al., 2018), RU-GSD (McDon-
ald et al., 2013), SV-Talbanken (McDonald et al., 2013), ZH-GSD (Shen
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TARGET LANG FAMILY SIZE

AR-PADT Arabic Afro-Asiatic 7.6k
EN-EWT English Indo-European 16.6k
FI-TDT Finnish Uralic 15.1k
GRC-PROIEL Ancient Greek Indo-European 17.1k
HE-HTB Hebrew Afro-Asiatic 6.2k
KO-GSD Korean Korean 6.3k
RU-GSD Russian Indo-European 5k
SV-Talbanken Swedish Indo-European 6.0k
ZH-GSD Chinese Sino-Tibetan 5.0k

Table 5.2: Target Treebanks based on Smith et al. (2018b) with lan-
guage family (FAMILY) and total number of sentences (SIZE).

et al., 2016a). We use these treebanks as provided in Universal Depen-
dencies v2.9 (Zeman et al., 2021). DEPPROBE and BAP are trained on
each target’s respective training split and are evaluated on the develop-
ment split as this work aims to analyze general performance patterns
instead of state-of-the-art performance.

5.6.2 Experiment Setup

DEPPROBE is implemented in PyTorch v1.9.0 (Paszke et al., 2019)
and uses language models from the Transformers library v4.13.0 and
the associated Model Hub (Wolf et al., 2020). Following the structural
probe by Hewitt and Manning (2019), each token which is split by
the LM encoder into multiple subwords is mean-pooled. Similarly,
we follow the original hyperparameter settings and set the structural
subspace dimensionality to b = 128 and use embeddings from the
middle layer of each LM (Hewitt and Manning, 2019; Tenney et al.,
2019b; Fayyaz et al., 2021). The structural loss is computed based on
the absolute difference of the Euclidean distance between transformed
word embeddings and the number of edges separating the words in
the gold tree (see Hewitt and Manning, 2019 for details). The relational
loss is computed using cross entropy between the logits and gold head-
child relation. Optimization uses AdamW (Loshchilov and Hutter,
2019) with a learning rate of 10−3 which is reduced by a factor of
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10 each time the loss plateaus. Early stopping is applied after three
epochs without improvement and a maximum of 30 total epochs. With
the only trainable parameters being the matrices B and L, the model’s
footprint ranges between 51k and 190k parameters.

BAP For the biaffine attention parser (Dozat and Manning, 2017)
we use the implementation in the MaChAmp framework v0.3 (van der
Goot et al., 2021b) with the default training schedule and hyperpa-
rameters. The number of trainable parameters depends on the LM
encoder’s size and ranges between 14M and 583M.

Analyses For our analyses in Sections 5.3 and 5.4 we further make
use of numpy v1.21.0 (Harris et al., 2020), SciPy v1.7.0 (Virtanen et al.,
2020) and Matplotlib v3.4.3 (Hunter, 2007).

Training Details Models are trained on an NVIDIA A100 GPU with
40GBs of VRAM and an AMD Epyc 7662 CPU. BAP requires around 1
h (± 30 min). DEPPROBE can be trained in around 15 min (± 5 min)
with the embedding forward operation being most computationally
expensive. The models use batches of size 32 and are initialized using
the random seeds 692, 710 and 932.

Reproducibility In order to ensure reproducibility and comparabil-
ity with future work, we release our code and token-level predictions
at https://personads.me/x/naacl-2022-code.

5.6.3 Detailed Results

Tables 5.3–5.11 list exact LAS and standard deviations for each ex-
periment in Section 5.3’s Figure 5.2 in addition to the HuggingFace
Model Hub IDs of the LMs used in each of the 46 setups as well as
their number of layers, embedding dimensionality d and total num-
ber of parameters. In addition, Figure 5.5 shows UUAS for all setups,
equivalent to only probing structurally (Hewitt and Manning, 2019)
for unlabeled, undirected dependency trees.
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Figure 5.5: UUAS of DEPPROBE in relation to BAP across nine lan-
guage targets (dev) using language-specific and multilingual LM en-
coders of different architecture types.

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 83.5±0.2 54.8±0.6

xlm-roberta-base Conneau et al. (2020) 12 768 278M 85.2±0.1 57.2±0.1

google/rembert Chung et al. (2021) 32 1152 576M 85.4±0.2 20.7±0.1

aubmindlab/bert-base-arabertv02 Antoun et al. (2020) 12 768 135M 85.8±0.1 59.0±0.1

asafaya/bert-base-arabic Safaya et al. (2020) 12 768 111M 84.9±0.1 57.0±0.2

Table 5.3: LAS on AR-PADT (Dev) using BAP and DEPPROBE with
different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 90.0±0.1 64.5±0.3

xlm-roberta-base Conneau et al. (2020) 12 768 278M 91.7±0.2 64.8±0.1

google/rembert Chung et al. (2021) 32 1152 576M 92.2±0.0 41.6±0.3

bert-base-uncased Devlin et al. (2019) 12 768 109M 91.2±0.1 63.4±0.3

roberta-large Liu et al. (2019b) 24 1024 355M 92.3±0.2 59.9±0.2

Table 5.4: LAS on EN-EWT (Dev) using BAP and DEPPROBE with
different LMs (± standard deviation).
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MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 89.1±0.2 54.5±0.4

xlm-roberta-base Conneau et al. (2020) 12 768 278M 92.4±0.1 62.4±0.2

google/rembert Chung et al. (2021) 32 1152 576M 93.1±0.1 30.8±0.1

TurkuNLP/bert-base-finnish-uncased-v1 Virtanen et al. (2019) 12 768 125M 93.4±0.1 68.9±0.3

TurkuNLP/bert-base-finnish-cased-v1 Virtanen et al. (2019) 12 768 125M 93.4±0.1 67.5±0.4

Table 5.5: LAS on FI-TDT (Dev) using BAP and DEPPROBE with differ-
ent LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 73.1±0.1 41.6±0.5

xlm-roberta-base Conneau et al. (2020) 12 768 278M 85.0±0.2 51.1±0.2

google/rembert Chung et al. (2021) 32 1152 576M 87.7±0.1 15.3±0.1

pranaydeeps/Ancient-Greek-BERT Singh et al. (2021) 12 768 113M 87.3±0.1 60.0±0.0

nlpaueb/bert-base-greek-uncased-v1 Koutsikakis et al. (2020) 12 768 113M 84.6±0.3 53.9±0.1

Table 5.6: LAS on GRC-PROIEL (Dev) using BAP and DEPPROBE with
different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 86.7±0.2 60.2±0.6

xlm-roberta-base Conneau et al. (2020) 12 768 278M 88.8±0.1 59.2±0.3

google/rembert Chung et al. (2021) 32 1152 576M 90.5±0.1 11.6±0.4

onlplab/alephbert-base Seker et al. (2021) 12 768 126M 89.6±0.1 61.4±0.2

Table 5.7: LAS on HE-HTB (Dev) using BAP and DEPPROBE with
different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 83.8±0.2 46.6±0.2

xlm-roberta-base Conneau et al. (2020) 12 768 278M 86.1±0.1 49.4±0.3

google/rembert Chung et al. (2021) 32 1152 576M 86.1±0.2 15.9±0.3

klue/bert-base Park et al. (2021) 12 768 111M 86.8±0.0 51.0±0.1

klue/roberta-large Park et al. (2021) 24 1024 337M 88.1±0.3 48.8±0.5

kykim/bert-kor-base Kim (2020) 12 768 118M 86.8±0.1 46.9±0.4

Table 5.8: LAS on KO-GSD (Dev) using BAP and DEPPROBE with
different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 89.1±0.1 60.7±0.1

xlm-roberta-base Conneau et al. (2020) 12 768 278M 90.0±0.2 59.9±1.1

google/rembert Chung et al. (2021) 32 1152 576M 90.8±0.0 26.0±0.2

cointegrated/rubert-tiny Dale (2021) 3 312 11M 76.7±0.1 41.5±0.6

sberbank-ai/ruRoberta-large Sber Devices (2021) 24 1024 355M 90.3±0.3 63.2±0.4

blinoff/roberta-base-russian-v0 Blinov (2021) 12 768 124M 75.8±0.0 15.6±0.2

Table 5.9: LAS on RU-GSD (Dev) using BAP and DEPPROBE with
different LMs (± standard deviation).

80



Chapter 5 | Sort by Structure: LM Ranking as Dependency Probing

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 87.5±0.1 55.5±0.2

xlm-roberta-base Conneau et al. (2020) 12 768 278M 90.2±0.1 59.1±0.2

google/rembert Chung et al. (2021) 32 1152 576M 91.3±0.3 31.7±0.3

KB/bert-base-swedish-cased Malmsten et al. (2020) 12 768 125M 90.8±0.1 61.7±0.2

Table 5.10: LAS on SV-Talbanken (Dev) using BAP and DEPPROBE

with different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 84.6±0.4 49.1±0.4

xlm-roberta-base Conneau et al. (2020) 12 768 278M 85.5±0.3 30.3±0.1

google/rembert Chung et al. (2021) 32 1152 576M 85.3±0.2 5.2±0.1

bert-base-chinese Devlin et al. (2019) 12 768 102M 85.8±0.1 46.4±0.1

hfl/chinese-bert-wwm-ext Cui et al. (2021) 12 768 102M 86.0±0.3 45.8±0.3

hfl/chinese-roberta-wwm-ext Cui et al. (2021) 12 768 102M 85.9±0.3 47.7±0.4

Table 5.11: LAS on ZH-GSD (Dev) using BAP and DEPPROBE with
different LMs (± standard deviation).

81



Part III

DOMAIN VARIATION



6Can Humans Identify Domains?

The work presented in this chapter is based on the publication:
Maria Barrett, Max Müller-Eberstein, Elisa Bassignana, Amalie Bro-
gaard Pauli, Mike Zhang, and Rob van der Goot. 2024. Can humans
identify domains? In Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language Resources and Evalu-
ation, Torino, Italy. European Language Resources Association.
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Abstract

Textual domain is a crucial property within the Natural Language Pro-
cessing (NLP) community due to its effects on downstream model
performance. The concept itself is, however, loosely defined and, in
practice, refers to any non-typological property, such as genre, topic,
medium or style of a document. We investigate the core notion of
domains via human proficiency in identifying related intrinsic tex-
tual properties, specifically the concepts of genre (communicative
purpose) and topic (subject matter). We publish our annotations in
TGeGUM: A collection of 9.1k sentences from the GUM dataset (Zeldes,
2017) with single sentence and larger context (i.e., prose) annotations
for one of 11 genres (source type), and its topic/subtopic as per the
Dewey Decimal library classification system (Dewey, 1952), consisting
of 10/100 hierarchical topics of increased granularity. Each instance is
annotated by three annotators, for a total of 32.7k annotations, allow-
ing us to examine the level of human disagreement and the relative
difficulty of each annotation task. With a Fleiss’ kappa of at most 0.53
on the sentence level and 0.66 at the prose level, it is evident that de-
spite the ubiquity of domains in NLP, there is little human consensus
on how to define them. By training classifiers to perform the same
task, we find that this uncertainty also extends to NLP models.

6.1 Introduction

The concept of “domain” is ubiquitous in Natural Language Processing
(NLP), as differences between “sublanguages” have strong effects on
model transferability (Kittredge and Grisham, 1986). This issue of do-
main divergence has prompted comprehensive surveys on how to best
adapt language models (LMs) trained on one or more source domains
to more specific targets (Ramponi and Plank, 2020; Ramesh Kashyap
et al., 2021; Saunders, 2022), and remains an open issue, even with LMs
of increasing size (Ling et al., 2023; Singhal et al., 2023; Wu et al., 2023).
Despite its importance, what constitutes a domain remains loosely de-
fined, typically referring to any non-typological property that degrades
model transferability. In practice, textual properties with the largest
domain effects relate to a document’s genre/medium/style (McClosky,
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Figure 6.1: Graphical illustration of our triple-annotation setup with
gold genre labels.

2010; Plank, 2011; Müller-Eberstein et al., 2021b), topic (Lee, 2001;
Karouzos et al., 2021), or mixtures thereof (Aharoni and Goldberg,
2020). More broadly, domains can be viewed as a high-dimensional
space with variation across the aforementioned properties, plus fac-
tors such as author personality, age, or gender (Plank, 2011, 2016).

We attempt to gain a better understanding of the foundational
concept of domain, by taking a step back from modeling this phe-
nomenon, and instead investigating whether humans themselves can
distinguish between different instantiations of domain-related prop-
erties of textual data. In linguistics literature, these properties are
separated into register, style and genre (Biber, 1988; Biber and Conrad,
2009, 2019), of which we choose to focus on genre, as it distinguishes
itself from register and style by remaining consistent across complete
texts. In addition, we examine the orthogonal factor of topic, i.e., the
subject matter of a text, which can be expressed independently of
genre (Kessler et al., 1997; Lee and Myaeng, 2002; Stein and Zu Eissen,
2006; Webber, 2009). We operationalize these two factors analogously
to van der Wees et al. (2015) as genre stemming from different source
types with distinct communicative styles, and topic being the principal
subject matter of a given text.

More formally, our main research question is: To what extent can
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humans detect genres and topics from text alone, and how does this
align with machines? We investigate the human proficiency in detect-
ing these intrinsic properties by turning our attention to the George-
town University Multilayer Corpus (GUM; Zeldes, 2017),1 a large-scale
multi-layer corpus consisting of texts from 11 different source types
(henceforth genre). These act as gold annotations against which we
compare the manual genre labels provided by 12 human annotators
for the entirety of the corpus (Figure 6.1). In addition, the annota-
tors supply a new annotation layer regarding the texts’ subject matter
(henceforth topic). As no gold labels are available for topic, they are
annotated according to Dewey Decimal Classification (DDC; Dewey,
1952), a library classification system that allows new books to be added
to a collection based on the subject matter. The DDC consists of 10
topics, 100 fine-grained topics, and 1,000 even finer-grained topics, of
which we investigate the former two in detail and provide a prelimi-
nary study on the latter.

To understand the importance of context, we have annotators
label genre and topic at both the sentence and prose level (defined
as sequences of five sentences), and compare annotator agreement.
Due to the subjective uncertainty associated with these types of char-
acteristics, we gather three annotations per instance, measure their
agreement, and release them in their unaggregated form as multi-
annotations for future research.

Finally, we investigate the ability of machines to identify the same
characteristics by training multiple ablations of genre and topic clas-
sifiers. Concretely, these experiments examine the difficulty of dis-
cerning each property, whether metadata or human notions of genre
are more easily recoverable, as well as which level of context is most
appropriate for the different ways in which the genre and topic label
distributions can be represented.

Overall, this work is the first to explore the discernability of domain
by both humans and machines. In Section 6.5, we further discuss the
implications of our findings, both with respect to domain-sensitive
downstream applications, as well as for the NLP community’s more
general definition of domain. Our contributions thus include:

1https://gucorpling.org/gum/
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• TGeGUM (Topic-Genre GUM), a multi-layer extension of GUM,
covering 9.1k sentences triple-annotated for a diverse set of 11
genres and 10/100 topics (Section 6.3).2

• An in-depth exploratory data analysis of the human annotations
concerning annotator disagreement, uncertainty, and overall
trends for domain characteristics across different context sizes
(Section 6.4).

• A case study on the capability of NLP models to discern the
human notions of genre and topic, as well as an analysis of
which factors affect classification performance (Section 6.5).

6.2 Related Work

Domains Initially coined as “sublanguages” (Kittredge and
Lehrberger, 1982; Kittredge and Grisham, 1986), domains have long
been a topic of study in traditional linguistics and NLP (Lee, 2002;
Lee and Myaeng, 2002; Stein and Zu Eissen, 2006; Eisenstein et al.,
2014; van der Wees et al., 2015; Plank, 2016). Some of the early work
mentioning domains as textual categories include Sekine (1997); Rat-
naparkhi (1999), which categorize texts into, e.g., “general fiction”,
“romance & love”, and “press:reportage”. However, as also mentioned
by Lee (2002); Lee and Myaeng (2002); Plank (2011); van der Wees
et al. (2015), the concept of domain is under-defined. Plank (2011)
considers domains as a multi-dimensional space, spanning all kinds
of variability between texts, such as genre, topic, style, medium, etc.
In this work, we follow a definition of domains similar to van der Wees
et al. (2015), focusing on two of the largest dimensions of variability:
i.e., genres (the communicative purpose and style) as well as topics
(the subject matter). The former is closely tied to the source of a text,
such as academic papers versus fiction books, while the latter may
include subjects such as sports, politics, and philosophy, which can
occur in multiple genres.

2Data and code can be found at https://bitbucket.org/robvanderg/
humans-and-domains.
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Automatic Domain Detection In NLP, automatic domain detection
is essential for ensuring robust downstream performance, as it de-
grades with increasing levels of domain shift (Ramponi and Plank,
2020). Since this issue occurs independently of the application, do-
main classification has been explored in many contexts. Generally, the
problem is either phrased in terms of a binary task, i.e., whether a tar-
get text matches the domain of the training data or not (e.g., Tan et al.,
2019; Pokharel and Agrawal, 2023), or a multi-label classification task,
in which the exact domain is to be determined (e.g., Müller-Eberstein
et al., 2021a). Here, we use the latter approach as it requires a more
formalized operationalization of domain.

At a broader level, genre is frequently used as a proxy for domain,
as it has lower internal variability than many more specific dimensions,
including topic (Kessler et al., 1997; Webber, 2009). Its automatic detec-
tion has been leveraged for selecting training data for transfer learning
across a broad range of applications, such as classification (Ruder
and Plank, 2017; van der Goot et al., 2021a; Gururangan et al., 2020)
and generative tasks (Aharoni and Goldberg, 2020). Beyond English,
genre has further been shown to provide a cross-lingually consistent
signal for enabling more robust transfer in syntactic parsing (Müller-
Eberstein et al., 2021a).

Topics provide a more granular differentiation between texts, also
with close ties to domain. Automatically detecting topics has more
immediate practical implications, as knowledge of the subject matter
is critical for many downstream information extraction systems (Liu
et al., 2021b; Bassignana and Plank, 2022) and more datasets with topic
annotations are available (Sandhaus, 2008; Maas et al., 2011; Wang
and Manning, 2012; Zhang et al., 2015); however, these works typically
contain source data from only a single corpus.

Going beyond prior work with limited sets of post-hoc topic labels
for single-genre corpora, we build on the general-purpose DDC sys-
tem (Dewey, 1952) for libraries and apply its hierarchical set of 10/100
topics to a corpus containing data from 11 genres. By building on the
existing annotations of the GUM dataset (Zeldes, 2017), we further
enable research not only ascertaining to domain classification for its
own sake, but also with applications to other downstream NLP tasks.
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Multi-annotations Given the subjective nature of domains and their
associated properties of genre and topic, each text in our dataset is
annotated multiple times and retains individual labels without aggre-
gating them. This approach of multi-annotations (Plank, 2022) avoids
obscuring human uncertainty in the annotation process and has ben-
efits both for tasks with high variability, such as ours, as well as tasks
for which a ground truth is typically assumed.

E.g., Plank et al. (2014) map part-of-speech (POS) tags from Gimpel
et al. (2011) to the universal 12-tag set by Petrov et al. (2012), retaining
five crowdsourced POS labels per token.

For Relation Classification (RC), Dumitrache et al. (2018) obtained
annotations for 975 sentences for medical RC, where each sentence is
annotated by at least 15 annotators on average.

For Natural Language Inference (NLI), Nie et al. (2020) released
Chaobowman-etal-2015-large: A dataset with 4,645 examples and 100
annotations per example for some existing data points in the develop-
ment set of bowman-etal-2015-large (Bowman et al., 2015), williams-
etal-2018-broad (Williams et al., 2018), and Abductive NLI (Bhagavat-
ula et al., 2020). For a more in-depth overview of multi-annotation
datasets, we refer to Uma et al. (2021).

6.3 The Dataset

6.3.1 Source Data

The source dataset on top of which we build our domain-related anno-
tations is the GUM corpus which in turn incorporates data from a wide
variety of sources. We use the portion of the GUM corpus released as
part of the Universal Dependencies project (UD; Nivre et al., 2017),
i.e., excluding Reddit. Since a text’s source is closely tied to its com-
municative purpose, we consider GUM’s data source metadata field of
each instance as the gold genre label. For the topic, no equivalent gold
label is discernible from the metadata.

The entire dataset is annotated both at sentence and prose level to
investigate the importance of context for genre and topic annotation.
For this purpose, we follow the gold sentence segmentation provided
by GUM. We opted for these blocks instead of paragraphs, as the latter
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Figure 6.2: Frequency distributions of the labels in gold genre labels,
annotations of genres, annotations of topic-10, and annotations of
topic-100 (log scale) on sentence level. For the human annotations,
the number is divided by three in order to align with the (unique) gold
label. The mapping of topic-10 and topic-100 labels can be found
in Section 6.8.6. The tag “No” in the topic annotations refers to no-
topic.

are not natural dividers for all text types and can have a high variety of
conventions and functions across genres. To avoid the same annotator
observing the same sentence individually as well as in prose, we shuffle
the dataset such that annotations of a sentence with and without
context are distributed across different annotators, while maintaining
coverage of the full dataset.

6.3.2 Annotation Procedure

Since there are no official descriptions of the genres in GUM, our anno-
tation guidelines refer to the descriptions from the homepages of the
websites of the source or the corresponding abstracts from Wikipedia.
For topic annotation, we follow the Dewey Decimal library classifi-
cation system (Dewey, 1952) consisting of 10/100/1,000 hierarchical
topics of increased granularity. We consider the 10 high-level and the
100 mid-level classes for the coarse- and fine-grained topic annota-
tions. We constrain our guidelines such that topic-100 should always
be a sub-type of topic-10. For example, if topic-100 is “520 Astronomy”,
then topic-10 should be “500 Science”. When none of the topic-100
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labels fit the fine-grained topic of the instance, the annotators were al-
lowed to leave the more specific topic blank, i.e., annotating topic-100
with the same label as topic-10. In addition, we include the no-topic
label for when it is not possible to identify a specific topic from the
provided text., such as for very short sentences, like “Ok” or “I agree
with that.”

We completed an initial annotation round of 20 instances with all
annotators and authors of this paper to evaluate the guidelines and
annotation setup. None of this data is included in the final dataset. We
continued with groups of three annotators annotating different sub-
sets of the data. After an introductory meeting, further unclarities were
discussed asynchronously throughout the process. Annotators were
asked to pose their questions in general terms and to not use direct
examples as to not bias the other annotators on specific instances. We
did not conduct inter-annotator studies over the course of annotation
and only had minor guideline revisions during the annotation process
since we are mostly interested in human intuitions of genre and topic,
and there are no gold labels for the topic task.

Annotators could indicate whether they were unsure about the
annotation of a specific instance, and were also asked to provide
notes/comments, if applicable. The annotation rate started at ap-
proximately 80–150 instances per hour. To ensure a similar amount of
effort across annotators, we asked them to aim for approximately 150
instances per hour (also considering that annotation speed increases
over time).

In total, we hired 12 annotators, who were paid 34,21 EUR per hour
(before tax) for a total of 32 hours per person over a period of 4 weeks.
The mean age was 27 (±2), and their highest completed education was
equally split between a bachelor’s and a master’s degree. All rated their
English skills as either C2/proficient or native. Seven annotators were
reported to be female, three male, and two other/non-binary.

6.3.3 Dataset Statistics

Table 6.1 shows the final dataset statistics of TGeGUM. The dataset
includes around 9.1K sentences, and 1.8K prose, each of them anno-
tated by three individual annotators for genre, coarse-grained topic,
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Instances Annotations
Sentence Prose Sentence Prose

Train 6,911 1,358 20,733 4,074
Dev. 1,117 217 3,351 651
Test 1,096 221 3,288 663

Total 9,124 1,796 27,372 5,388

Table 6.1: Dataset Statistics: Note that each instance has three associ-
ated annotations.

and fine-grained topic.
In Figure 6.2, we report the sentence-level distribution of gold

labels and human annotations, reporting the average number of an-
notations per label (total number of annotations divided by three
annotators) to align with the singular gold genre metadata. For topic-
10 and topic-100 we only report the human annotations as no gold
labels exist.

Comparing gold and annotated genre labels, we observe a skew
towards conversation and textbook. We hypothesize that this is due
to the small amount of context an annotator receives. For example,
the sentence “Is that all that’s left?” with the gold genre label fiction
is annotated by all annotators as conversation. Another example is
the sentence “Some of the greatest poetry has been born out of failure
and the depths of adversity in the human experience.” with gold label
interview. All annotators annotated this example as textbook.

For topic, we note that despite skewness, almost all 100 topics are
used. The 300 Social sciences including, e.g., 320 Political science and
370 Education, stand out as being the most prevalent topics. The most
frequent label, however, is no-topic, indicating that it is challenging to
identify a specific topic given only one sentence and that individual
sentences can be associated with different topics, depending on the
surrounding context.

The genre distribution at the prose level ( Section 6.8.4) reveals a
more accurate distribution for conversation-like utterances; however,
the general skew towards textbook remains. Concerning topic, the
main contrast to the sentence-level distributions is the reduction of
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Kappa Maj. Acc.
Genre Topic-10 Topic-100 Genre

Sentences 0.5260 0.5213 0.4239 67.68
Prose 0.6582 0.5238 0.3838 81.11

Table 6.2: Agreement scores across annotators, and accuracy of major-
ity vote among annotators compared to gold genre labels.

the no-topic label, confirming that more context is crucial for this task.

6.4 Exploratory Data Analysis

In addition to the previous aggregated overview, we are interested in
exploring whether domain characteristics are recoverable by humans
in a consistent manner. While we can compare human annotations to
the original gold labels for genre, no equivalent is available for topic.
Therefore, we place more emphasis on inter-annotator agreement,
in the form of Fleiss’ Kappa (Fleiss, 1971), to measure intuitive align-
ment and ease of identification. Table 6.2 and Figure 6.3 shows this
agreement across the different genres, topics and levels of available
context.

6.4.1 Human Genre Detection

Accuracy and Agreement Considering that annotation guidelines
were phrased to avoid any intentional alignment to an existing ground
truth (i.e., annotators were unaware of the existence of gold genre
labels), an accuracy of 67.68% at the sentence level shows that genre
is recoverable to a far higher degree than by random chance or by a
majority baseline. This further increases to 81.11% given more context
at the prose level and is also reflected in the increase from moderate
inter-annotator agreement (0.53) to substantial agreement (0.66).

The additional context appears to help differentiate genres that
have more similarities to each other. This phenomenon is especially
pronounced for spoken-language data, such as conversation, interview
and vlog, which differ with respect to genre-specific conventions such
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Figure 6.4: Frequency of sentence lengths, measured by the number
of characters, per gold genre.

as who the speech is directed towards (i.e., bi-directional, interviewee,
video viewer), or how formal the register is. Both properties are more
easily discernible across multiple turns.

Nonetheless, even given more context, high amounts of confusion
remain between certain genres such as non-fiction texts of the type
academic, biography, and textbook. These are intuitively similar to
each other and may require even more context to distinguish. Gen-
erally, genres appear to lie on a more continuous spectrum that is
difficult to discretize in conceptually similar cases.

Human Uncertainty In case of uncertainty, annotators were encour-
aged to select a “best guess” label and to indicate uncertainty by ticking
a checkbox. In addition to overall uncertainty, we also hypothesize
that sentence length affects accuracy due to the amount of informa-
tion available. To evaluate these two effects for genre detection, we
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measure the Pearson correlation between human accuracy concerning
the gold label, with 1) sentence length, 2) the number of uncertainty
flags (Table 6.3). As expected, longer sentences are annotated correctly
more often. Figure 6.4 further highlights how spoken-language genres
have a strong skew towards shorter sentences, and for which anno-
tators have the lowest agreements. Additionally, sentences marked
as “unsure” align with gold labels less often, showing that annotators
appear to have well-calibrated judgments of their own uncertainty,
even for this relatively difficult task.

6.4.2 Human Topic Detection

Agreement In the absence of gold labels, inter-annotator agreement
allows us to estimate the difficulty of discerning broader vs granular
topics. For the 10 broader topics, Table 6.2 shows a moderate agree-
ment of 0.52 for both the sentence and prose levels. As expected with
an order of magnitude more labels, Topic-100 sees a drop in agreement
to 0.42 and an additional drop to 0.38 at the prose level. While this
may seem counter-intuitive due to topic’s higher specificity compared
to genre, Figure 6.3 sheds some light on this peculiarity: In contrast
to genre, topic has a no-topic label (Section 6.3.2), which, in turn, is
used frequently by all annotators at the sentence level, due to the ab-
sence of any subject matter in many shorter utterances—especially
in speech. Given the additional context, topic becomes more appar-
ent, and agreement spreads toward more topics along the diagonal.
As such, sentence-level agreement mainly hinges on no-topic, while
prose-level annotations agree more with respect to actual topics. This
is less apparent for 10-topic kappa, for which this effect cancels out,
but is more prevalent with 100 topics, where the shift away from no-
topic at the prose level comes with a much wider spread of topics,
thereby reducing overall agreement, despite having a higher level of
true topic annotations.

Overall, topics which were most consistently identified include
social sciences, arts & recreation, technology, science and history &
geography. On the other hand, literature was least consistently anno-
tated and most frequently confused with the aforementioned topics,
potentially due to its broader scope compared to the others.
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Sent Prose

length vs unsure -0.1126∗ -0.0474
length vs correct 0.1267∗ -0.0385
unsure vs correct -0.2948∗ -0.3411

Table 6.3: Correlations across utterance length, correct predictions of
human majority vote, and the number of unsure annotations.
* indicates statistical significance for p < 0.05.

1,000 Topics After completing the full set of genre and topic-10/100
annotations with three annotators per instance, the remaining time of
the annotators was spent on a preliminary study to label the most fine-
grained categories of DDC. With 1,000 labels, this task is substantially
more difficult. We obtained a total of 904 sentences and 172 prose
sequences with three annotations each.3 Measuring inter-annotator
agreement at this level of granularity, we find a Fleiss’ Kappa of 0.32
for sentences and 0.26 for prose. Although substantially lower than
for coarser topic granularities as well as genre, this score still indicates
above-random agreement among annotators. Similarly to the previous
topic results, prose-level context allows humans to detect more actual
topics than no-topic, leading to lower overall agreement but a broader
coverage of actual topics.

In general, despite the importance of topic to downstream appli-
cations (i.e., topic classification as a task in itself), there is no clear
human consensus regarding discrete topic classification. Similarly
to genre, topic appears to be a concept for which human intuition
shares some agreement at a broader level, but is also spread along a
continuum—especially as granularity increases.

6.5 Modeling Domain

Following our examination of human notions of genre and topic, we
investigate automatic methods’ ability to model the same properties.
Ablating across different setups for representing the multiple anno-

3From 3,918 total annotations, we discarded instances with less than three com-
pleted annotations.
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tations per instance (Section 6.5.1), we train models to classify genre
and topic at different levels of granularity (Section 6.5.2) and evalu-
ate their ability to learn the underlying distribution (Section 6.5.3).
While pre-neural work typically performed document-level classifica-
tion (Webber, 2009; Petrenz and Webber, 2011), contemporary trends
have shifted towards the sentence-level (Aharoni and Goldberg, 2020;
Müller-Eberstein et al., 2021b). Leveraging our multi-level annotations,
we investigate genre and topic classification at both the sentence and
prose-level, mirroring our human annotation setup.

6.5.1 Setup

Most work on modeling multiple annotators is based on tasks consist-
ing of only two or three labels, e.g., hate speech detection, or RTE (Uma
et al., 2021). An exception is Kennedy et al. (2020), who use multiple
classification heads to predict a score for a variety of aspects of hate
speech, which are then used to predict a final floating point score for
hate speech detection. Other related work predicts multiple task labels
simultaneously (e.g., Demszky et al., 2020; Kiesel et al., 2023; Piskorski
et al., 2023), however these are typically discrete and do not model
annotator certainty. We propose a variety of methods to model the
distribution of the annotations (overview in Figure 6.5):

Majority Discretizes the labels using a majority vote, and uses a
single classification head to predict it. For the distribution similarity
metric (see below), we assign a score of 1.0 to the chosen label.

PerLabel-Regression Converts the human annotations to scores per
label and then predicts these as a regression task. Each label has its
own decoder head, trained using an MSE loss, and mapped to the [0;1]
range afterwards.

PerLabel-Classification Converts the human annotations into score
bins and predicts them as four possible labels: “0.0”, “0.33”, “0.66”,
“1.0”.
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“What sort of a nose did Cleopatra have?” 
Gold: interview

“Arrange rack in the middle of the oven.” 
Gold: wikihow

 “And this is what Luther writes to Erasmus.” 
Gold: conversation
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Figure 6.5: The target value each model variant is trained to predict:
1) Majority vote. 2) PerLabelRegr(ession) on label distributions. 3)
PerLabel-Class(ification), on score bins per label. 4) PerAnnotator,
three different annotations.

PerAnnotator One decoder head modeling each annotator, that
predicts their annotation as a discrete label. Afterwards, the three
predictions are converted to a distribution.

We evaluate these models using the standard accuracy over each
singular predicted label (i.e., highest score or majority). In addition, we
conduct a finer-grained evaluation that takes the multi-annotations
into account. For this purpose, we propose a similarity metric for
comparing the predicted and annotated label distribution per instance.
Let n be the number of label types, and X and Y are label distributions
that sum to 1, with a score for each label. Then, the distributional
similarity per instance can be computed as:

di str _si m = 1−
∑n

l=0 |Xn −Yn |
2

.

The resulting score between 0 and 1 represents the distributions’
similarity. Note that we compare model predictions to the human
annotations, which are not a gold standard; here, we aim to determine
whether the human ability to discern these concepts is easy to model.

We implement all our model variants in the MaChAmp (van der
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Accuracy Macro-F1 |N |
Sentence 67.68 59.92 1,117
Prose 81.11 74.75 217

Table 6.4: Performance of annotators’ majority vote compared with
the gold genre (development set).

Goot et al., 2021b) toolkit v0.4 using default parameters. MaChAmp is a
toolkit focused on multi-task learning for NLP, and allowed us to imple-
ment all varieties of the tasks described earlier. Each way of phrasing
the task is implemented on top of a single language model for fair
comparison. From an initial evaluation of the bert-large-cased (Devlin
et al., 2019), luke-large-lite (Yamada et al., 2020), deberta-v3-large (He
et al., 2021), xlm-roberta-large (Conneau et al., 2020) LMs on the gold
genre labels, we identify that DeBERTa has the highest accuracy; hence
we use it in the following experiments.

6.5.2 Classification Results

We examine which notion of domain is more learnable and distinguish-
able for a model; genre or topic? Since genre has associated ground
truth labels, we additionally examine whether the human annotators’
perception of genre or the ground truth genre is easier to learn.

We establish a majority vote based on the human annotations;
in case of a tie, the first element in the annotation list is chosen as
the label, both for sentences and prose. This happens in ∼10% of
cases for genre and topic-10 (sentence and prose), and ∼20% cases for
topic-100.

Table 6.4 shows accuracy and macro-F1 scores of the annotators’
majority vote evaluated against the gold genre. As noted previously,
more context (prose level) helps disambiguate the genre.

To evaluate how well a model can align with the human intuition
of genres and topics, we fine-tune an LM on the majority labels of the
annotators. We compare the performance on the gold genre labels
(the only task for which we have gold labels) and compare the accuracy
and macro-F1 scores (Table 6.5). We notice the following:
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Accuracy Macro-F1

Se
n

t. gold_genre 73.20± 0.02 70.74± 0.02

maj_genre 75.88± 0.01 67.04± 0.01

maj_topic-10 75.56± 0.02 60.54± 0.07

maj_topic-100 64.55± 0.00 18.43± 0.02

P
ro

se gold_genre 89.49± 0.02 88.02± 0.03

maj_genre 80.83± 0.01 74.97± 0.03

maj_topic-10 67.74± 0.01 50.35± 0.03

maj_topic-100 52.35± 0.01 16.04± 0.02

Table 6.5: Accuracy and Macro-F1 on test split, for DeBERTa models
fine-tuned and evaluated on gold genre, human majority vote for
genre, and human majority vote for topic-10/100 (standard deviations
across five seeds).

Sentences 1) Unsurprisingly, DeBERTa fine-tuned on the gold genre
labels (gold_genre) is better aligned with the ground truth genre than
the human majority vote, i.e., 73.20 (Table 6.5) versus 67.68 (Table 6.4)
accuracy at the sentence level (note that other LMs performed worse).
2) In contrast, the fine-tuned DeBERTa model has higher accuracy
when trained and tested on the human majority vote (maj_gerne) than
when using gold genre labels (gold_genre), i.e., 75.88 versus 73.20,
although macro-F1 is lower. This indicates that less common genre
labels are easier to learn from gold labels, while more frequent genres
are easier to learn based on human intuitions. 3) Despite topic-10
having fewer classes than genre, the notion of topic appears to be
more difficult for a model to learn (lower F1). 4) The skew of the
fine-grained topics (maj_topic-100) and the difficulty of the long tail
become apparent in the large divergence across the accuracy and
macro-F1 score.

Prose 5) In contrast to the sentence level, our fine-tuned DeBERTa
model generalizes better to the gold genre labels (gold_genre) than the
human majority vote (maj_genre). At this level of context, the majority
vote topic is also harder for a model to learn than the majority vote
genre.
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Figure 6.6: Accuracy and distributional similarity on test split, for
DeBERTa models trained on target labels based on Majority vote (maj),
PerLabel-Regression/Classification (pl-r/c), PerAnnotator labels (pa);
standard deviations across five seeds.

6.5.3 Distributional Results

In Figure 6.6, we report the results of the models trained on all in-
stances (sentences and prose) with DeBERTaV3-large.4 The main
trends show that the model performs better on the genre task. Unsur-
prisingly, for topics, the granularity of the labels impacts performance.

By modeling the annotation distributions (i.e., PerLabel-
Regression/Classification), we can outperform the majority vote
model. However, distributional similarity decreases with increased
label granularity (i.e., from topic-10 to topic-100), showing that it is
difficult for models to calibrate to diverging human judgments. Inter-
estingly, the per-label models achieve comparable or higher scores on
the di str _si m metric, showing that the examined LMs model label
distributions more easily than annotator behavior.

4Training on sentences and prose separately leads to similar trends (Section 6.8.2).
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6.6 Conclusion

To examine the widely used but scarcely defined notion of domain, this
work provides the first investigation of human intuitions of this prop-
erty in the form of TGeGUM: a collection of 9.1k sentences annotated
with 11 genres and 10/100 topics by three annotators per instance,
using an annotation procedure designed to capture human variability
instead of forcing alignment (Section 6.3).

Our exploratory analysis (Section 6.4) shows that despite the sub-
jective nature of this task, as reflected in a Fleiss’ Kappa of 0.53–0.66,
humans can identify certain domain characteristics consistently from
one sentence alone. Nonetheless, genres with a high similarity ben-
efit substantially from added context. This is even more crucial for
identifying topics, where we observe a shift from annotators not being
able to discern any topic at all to being able to reach an above-random
agreement, even when presented with 100 or 1,000 topics.

Finally, our experiments of modeling these domain characteristics
automatically (Section 6.5) show that genre is easier to model than
topic. For the agreements between human annotators, and the perfor-
mance from the automatic model, we see that context is crucial for the
genre classification task, but not for topic classification, where adding
context even leads to decrease in scores if the label space is large.

Overall, this work highlights that despite the importance of “do-
main”, there is little consensus regarding its definition, both in the
NLP community as well as in our human annotations. Taking a closer
look at what intuition predicted, further reveals that genres and top-
ics are difficult to discretize completely, and that a continuous space
of domain variability may be more suited for characterizing these
phenomena.

6.7 Ethics Statement

Our approach to modeling human label variation is intrinsically linked
to the larger issue of human social bias. As highlighted by Plank (2022),
significant social implications are tied to the study of label variation.
In the context of our research, it is essential to acknowledge that varia-
tions in labeling might stem from societal biases and disparities. To
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address this, we recognize the necessity of addressing bias mitigation
techniques as we aim to create more equitable and just models. How-
ever, we also contend that our focus on modeling generic subjects,
such as genre and topic, may carry less severe implications compared
to more subjective tasks like hate speech detection (Akhtar et al., 2021;
Mostafazadeh Davani et al., 2022). The differences in annotations
within our work may primarily relate to two categories: “Missing Infor-
mation” and “Ambiguity” (Sandri et al., 2023).

Another ethical facet we must address is the potential biases
present in the classification system we use. In particular, the Dewey
Decimal Classification System, which is the de-facto standard for li-
braries worldwide, has been found to exhibit prejudice (Gooding-Call,
2021). For example, the classification of information related to religion,
specifically within class 200, demonstrates a clear skew, with a major-
ity of subjects (six out of ten) reserved for Christianity-related topics.
The remaining four slots are designated for other dominant religions,
with an other section meant to encompass all other belief systems.
This reveals an inherent bias toward Christianity, which can affect the
accessibility of non-dominant religions and belief systems. There are
alternatives to knowledge organization systems like the Dewey Deci-
mal Classification, as suggested by Franzen (2022), to promote a more
inclusive and equitable information landscape.

6.8 Appendix

6.8.1 Confusion Matrices Genre

In Figure 6.7a-Figure 6.7c we plot the confusion matrices of our De-
BERTa model trained on the gold genre labels. The conversation genre
shows to be the most difficult label; it is commonly confused with
fiction, interview and vlog; which also overlap in length (Section 6.4).

6.8.2 Sentence and Prose Results

In Figure 6.8a we show the results of our proposed models trained and
evaluated only on the sentence level data. Figure 6.8b has the same
evaluation on the prose level data.
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Figure 6.7: Confusion matrices at different levels, with numbers
summed over all five random seeds.
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(a) Sentence-level Results.
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(b) Prose-level Results.

Figure 6.8: Results for models trained on sentence/prose-level data.

(a) Gold Genres. (b) Genre Annotations. (c) Topic Annotations.

Figure 6.9: PCA plots of sentence embeddings colored according to
different majority-pooled annotation layers.
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6.8.3 Visualization of Embeddings

We encode sentences using Sentence-BERT (Reimers and Gurevych,
2019), apply a PCA-downprojection, and color each sentence accord-
ing to gold genres, our majority-vote genre annotations, as well as
majority-vote topic-10 annotations. The results are shown in Fig-
ures 6.9a–6.9c.

6.8.4 Prose-level Statistics

Label statistics on the prose level are shown in Figure 6.10. While
general trends, such as the majority genres and topics remain the
same as on the sentence level, additional context spreads annotations
more evenly, and allows for disambiguations such as for spoken data
genres. This is also reflected in the higher alignment between gold and
annotated genre labels—both in terms of number, but also in terms
of accuracy (Table 6.2). For topic, we further observe almost an order
of magnitude fewer no-topic annotations, which are consequently
distributed across the spectrum of actual topics.
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Figure 6.10: Distribution of Labels (Prose). Frequency distributions
of the labels in gold genre labels, annotations of genres, annotations of
topic-10, and annotations of topic-100 (log scale). For the annotations,
the number is divided by three to get an average distribution. The
mapping of topic-10 and topic-100 labels can be found in Section 6.8.6.
The tag “No” in the topic annotations means “No topic”.
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6.8.5 Annotator Comments

Annotators were provided with a free-form field to provide optional
comments regarding each annotation. Of the final dataset, 3.9% of an-
notations have an annotator comment attached, with a median length
of 38 characters. They primarily contain explanations of annotations
which were marked with high annotator uncertainty.

6.8.6 Guidelines

The full annotation guidelines can be found at https://personads.
me/x/tgegum-guidelines.

6.8.7 Annotation Tool

We used Google Spreadheets for annotation. The setup is shown in
Figure 6.11.

Figure 6.11: Example of annotation in Google Spreadsheets. NS = Not
Sure
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7How Universal is Genre
in Universal Dependencies?

The work presented in this chapter is based on the publication: Max
Müller-Eberstein, Rob van der Goot, and Barbara Plank. 2021b. How
universal is genre in Universal Dependencies? In Proceedings of the
20th International Workshop on Treebanks and Linguistic Theories
(TLT, SyntaxFest 2021), pages 69–85, Sofia, Bulgaria. Association for
Computational Linguistics.
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Abstract

This work provides the first in-depth analysis of genre in Universal
Dependencies (UD). In contrast to prior work on genre identification
which uses small sets of well-defined labels in mono-/bilingual se-
tups, UD contains 18 genres with varying degrees of specificity spread
across 114 languages. As most treebanks are labeled with multiple gen-
res while lacking annotations about which instances belong to which
genre, we propose four methods for predicting instance-level genre
using weak supervision from treebank metadata. The proposed meth-
ods recover instance-level genre better than competitive baselines as
measured on a subset of UD with labeled instances and adhere better
to the global expected distribution. Our analysis sheds light on prior
work using UD genre metadata for treebank selection, finding that
metadata alone are a noisy signal and must be disentangled within
treebanks before it can be universally applied.

7.1 Introduction

Identifying document genre automatically has long been of interest
to the NLP community due to its immediate applications both in
document grouping (Petrenz and Webber, 2012) as well as task-specific
data selection (Ruder and Plank, 2017; Sato et al., 2017).

Cross-lingual genre identification has however remained a chal-
lenge, mainly due to the lack of stable cross-lingual representa-
tions (Petrenz and Webber, 2012). Recent work has shown that
pre-trained masked language models (MLMs) capture monolingual
genre (Aharoni and Goldberg, 2020). Do such distinctions manifest in
highly multilingual spaces as well? In this work, we investigate whether
this property holds for the genre distribution in the 114 language Uni-
versal Dependencies corpus (UD version 2.8; Zeman et al., 2021) using
the multilingual mBERT MLM (Devlin et al., 2019).

In absence of an exact definition of textual genre (Kessler et al.,
1997; Webber, 2009; Plank, 2016), this work will focus on the informa-
tion specifically denoted by the genres metadata tag in UD. We hope
that an in-depth, cross-lingual analysis of what this label represents
will enable practitioners to better control for the effects of domain
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shift in their experiments. Previous work using these UD metadata for
proxy training data selection have produced mixed results (Stymne,
2020). We investigate possible reasons and identify inconsistencies
in genre annotation. The fact that genre labels are only available at
the level of treebanks makes it difficult to gather a clear picture of the
sentence-level genre distribution — especially with some treebanks
having up to 10 genre labels. We therefore investigate the degree to
which instance-level genre is recoverable using only the treebank-level
metadata as weak supervision.

Our contributions entail the, to our knowledge, first detailed defi-
nition of all UD metadata genre labels (Section 7.3), four weakly super-
vised methods for extracting instance-level genre across 114 languages
(Section 7.4) as well as genre identification experiments which show
that our proposed two-step procedure allows for effective genre re-
covery in multilingual setups where language relatedness typically
outweighs genre similarities (Section 7.5).1

7.2 Related Work

The largest hurdle for cross-lingual genre classification is the lack
of shared representational spaces. Sharoff (2007) use shared POS n-
grams in order to jointly classify the genre of English and Russian
documents. Petrenz and Webber (2012) similarly seek out features
which are stable across languages in order to classify English and
Chinese documents into four shared genres. A recent data-driven
approach finds that monolingual MLM embeddings can be clustered
into five groups closely representing the data sources of the original
corpus (Aharoni and Goldberg, 2020). In this work, we investigate
whether this holds for multilingual settings as well.

Being able to identify textual genre has been crucial for domain-
specific fine-tuning (Dai et al., 2020; Gururangan et al., 2020) including
dependency parsing. For parser training, in-genre data is typically
selected by proxy of the data source (Plank, 2011; Rehbein and Bild-
hauer, 2017; Sato et al., 2017). Data-driven approaches which include
automatically inferred topics based on word and embedding distribu-

1Code available at https://personads.me/x/syntaxfest-2021-code.
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tions (Ruder and Plank, 2017) as well as POS-based approaches (Sø-
gaard, 2011; Rosa, 2015; Vania et al., 2019) have also been found effec-
tive.

Universal Dependencies (Nivre et al., 2020) aims to consolidate
syntactic annotations for a wide variety of languages and genres under
a single scheme. The latest release contains 114 languages — many
with fewer than 100 sentences. In order for languages at all resource
levels to benefit from domain adaptation, it will continue to be impor-
tant to identify cross-lingually stable signals for genre. While language
labels are generally agreed upon, differences in genre are more sub-
tle. Metadata at the treebank level provides some insights into genres
of original data sources, however these are “neither mutually exclu-
sive nor based on homogeneous criteria, but [are] currently the best
documentation that can be obtained” (Nivre et al., 2020).

Stymne (2020) performs an initial study on using these treebank
metadata labels for the selection of spoken and Twitter data. Results
show that training on out-of-language/in-genre data is superior to
out-of-language/out-of-genre data. However the best results are ob-
tained using in-language data regardless of genre-adherence. This
holds across multiple methods of proxy dataset selection (e.g. tree-
bank embeddings; Smith et al., 2018a).

Recently, Müller-Eberstein et al. (2021a) have shown that combin-
ing UD genre metadata and MLM embeddings can improve proxy
training data selection for zero-shot parsing of low-resource languages.
The use of genre in their work is more implicit as it is mainly driven by
the genre of the target data. In contrast, this work takes a holistic view
and explicitly examines the classification of instance-level genre for
all sentences in UD.

As genre appears to be a valuable signal, we set out to investi-
gate how it is defined and distributed within UD. Due to the coarse,
treebank-level nature of current genre annotations, we hypothesize
that a clearer picture can only be obtained by moving to the sentence
level. We therefore transition from prior supervised document genre
prediction to weakly supervised instance genre prediction. Addition-
ally, we expand the linguistic scope from mono- or bilingual corpora
to all 114 languages currently in UD.

More generally, this task can be viewed as predicting genre labels
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for all sentences in all corpora of a collection while only being given
the set of labels said to be contained in each corpus.

7.3 UD-level Genre

We analyze genre as currently used in the genres metadata of 200 tree-
banks from Universal Dependencies version 2.8 (Zeman et al., 2021).
Section 7.3.1 provides an overview of all UD genre types and Section
7.3.2 analyzes how these global labels relate to the subset of treebanks
which do provide treebank-specific, instance genre annotations.

7.3.1 Available Metadata

UD 2.8 (Zeman et al., 2021) contains 18 genres which are denoted in
each treebank’s accompanying metadata. Around 36% of treebanks
contain a single genre while the remaining majority can contain be-
tween 2–10 which are not further labeled at the instance level. There is
no official description of each genre label, however they can be roughly
categorized as follows:

� academic Collections of scientific articles covering multiple dis-
ciplines. Note that this label may subsume others such as medical.

Å bible Passages from the bible, frequently from older languages
(e.g. Old Church Slavonic-PROIEL by Haug and Jøhndal, 2008). Largely
non-overlapping passages are used across treebanks.

z blog Internet documents on various topics which may overlap
with other genres such as news. They are typically more informal
in register. Some treebanks group social media content and reviews
under this category (e.g. Russian-Taiga by Shavrina and Shapovalova,
2017).

# email Formal, written communication. This includes English-
EWT’s (Silveira et al., 2014) subsection based on the Enronsent Cor-
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pus (Styler, 2011) as well as letters attributed to Dante Alighieri as part
of Latin-UDante (Cecchini et al., 2020).

[ fiction Mostly paragraphs from diverse sets of fiction books and
magazines.

ÿ government The least represented genre, mainly denoting texts
from governmental sources. These include political speeches (English-
GUM by Zeldes, 2017) as well as inscriptions from Neo-Assyrian kings
from around 900 BCE (Akkadian-RIAO by Luukko et al., 2020).

# grammar-examples Sentences from teaching or grammatical ref-
erence books which are typically short, but cover a wide range of de-
pendency relations (e.g. Tagalog-TRG by Samson and Cöltekin, 2020).

� learner-essays Small genre occurring in three single-genre tree-
banks. Sentences were written by second-language learners and either
contain original errors (English-ESL by Berzak et al., 2016), manual cor-
rections (dinuovo2019valico by Di Nuovo et al., 2019) or both (Chinese-
CFL by Lee et al., 2017).

u legal Relatively frequent genre based mostly on laws and legal
corpora within the public domain.

5 medical Scientific articles/books in the field of medicine (e.g. car-
diology, diabetes, endocrinology for Romanian-SiMoNERo by Mitro-
fan et al., 2019). It is subsumed by academic for some treebanks (e.g.
Czech-CAC by Hladká et al., 2008).

\news The highest-resource genre by a large margin corresponding
to news-wire texts as well as online newspapers on specific topics (e.g.
IT-news in German-HDT by Borges Völker et al., 2019).
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ò nonfiction Second most frequent genre with a high degree of
variance, subsuming e.g. academic and legal. German-LIT (Salomoni,
2019) contains three philosophical books from the 18th century. Other
non-fiction treebanks can originate from multiple sources (e.g. books
and internet) and time spans.

Y poetry Smaller, yet distinct genre covering mostly older texts and
language variations (e.g. Old French-SRCMF by Stein and Prévost,
2013).

m reviews Medium-resource genre covering informal online reviews
with unnormalized orthography (e.g. English-EWT) as well as formal
reviews (e.g. newspaper film reviews in Czech-CAC).

É social Encompasses social media data such as tweets (e.g. Italian-
TWITTIRÒ by Cignarella et al., 2019) as well as newsgroups (e.g.
English-EWT). Some spoken data is co-labeled with this genre when
it refers to colloquial speech (e.g. South Levantine Arabic-MADAR by
Zahra, 2020).

× spoken Distinct genre which typically consists of spoken language
transcriptions. Sentences contain filler words and may have abrupt
boundaries. Sources range from elicited speech of native speakers
(Komi Zyrian-IKDP by Partanen et al., 2018) to radio program tran-
scriptions (Frisian Dutch-Fame by Braggaar and van der Goot, 2021).

� web Similarly ambiguous genre as non-fiction. It occurs in con-
junction with specific genres such as blog and social and never appears
alone (e.g. Persian-PerDT by Safari et al., 2022).

® wiki Denotes data from Wikipedia for which cross-lingual author-
ing guidelines exist.

Figure 7.1 shows the approximated distribution of these genres in
UD. Maximum/minimum sentence counts are inferred from the size
of single-genre treebanks plus the size of all treebanks in which a
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Figure 7.1: Genre Distribution in UD Version 2.8. Ranges indicate
upper/lower bounds for sentences per genre inferred from UD meta-
data. Center marker reflects the distribution under the assumption
that genres within treebanks are uniformly distributed. Labels above
the bars indicate the number of treebanks which contain each genre.

genre is said to occur. The center line denotes the distribution under
the assumption that genres are uniformly distributed within each
treebank.

It is clear that news and non-fiction constitute more than half of
the entire dataset. Specialized genres such as medical are less repre-
sented. For broader genres such as web, which frequently co-occurs
with others, the exact number of sentences is hard to estimate, but
must lie between 0–20%. Considering these large variances, access
to instance-level genre will likely be crucial for effective proxy data
selection and downstream domain adaptation.

7.3.2 Instance-level Annotations

In addition to the aforementioned 18 treebank-level genre labels, some
treebanks provide instance-level genre annotations in the comment-
metadata before each sentence. We find such annotations in 26 out of
200 treebanks in UD 2.8 amounting to 124k or 8.25% of all sentences.

Out of this set, 20 treebanks belong to the Parallel Universal Depen-
dencies (PUD; Nivre et al., 2017). They are split 500/500 between news
and wiki, as denoted by sentence IDs beginning with n and w respec-
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tively. The parallel nature of PUD makes it interesting for analyzing
cross-lingual genre identification performance. However these two
genres only represent a small fraction of non-fiction texts and further-
more, each PUD-treebank is test-split-only. Note also that Polish-PUD
as an exception has the metadata labels news and non-fiction.

The remaining six treebanks for which we were able to identify
instance-level genre annotations are Belarusian-HSE (Lyashevskaya
et al., 2017), Czech-CAC (Hladká et al., 2008), English-EWT (Silveira
et al., 2014), German-LIT (Salomoni, 2019), Polish-LFG (Patejuk and
Przepiórkowski, 2018a) and Russian-Taiga (Shavrina and Shapovalova,
2017). They cover a wider set of 12 genres. Annotation schema vary
across treebanks and are neither fully compatible amongst each other
nor with the 18 UD labels. Approximate mappings can however be
drawn thanks to source data documentation by the respective authors
(Section 7.4.2).

Further comment-metadata which may guide genre separation
within treebanks includes document, paragraph and source identifiers.
Again, these are unfortunately not available for all sentences (although
coverage of these metadata reaches up to 45%) and their values do not
provide further indications about genre adherence.

7.4 Instance Genre from Treebank Labels

From the previous analysis, it is evident that finer-grained genre labels
are needed before domain adaptation can be successful across all
languages.

Formally, the task of predicting instance-level UD genre can be
defined as assigning a set of labels L = {l0, l1, . . . , lK } (i.e. genres) to all
instances xn of a corpus X (i.e. UD). The corpus consists of S distinct
subsets X = {X0 ∪X1 ∪ . . .∪XS} (i.e. treebanks) each with a subset of
labels Ls ⊆L . As no instance-level labels xn → l are available, models
must learn this mapping based solely on the subset of labels said to be
contained in each data subset Xs →Ls .
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7.4.1 Genre Prediction Methods

As instance-level labels are noisy and sparse, we investigate two
classification-based and two clustering-based approaches for inferring
instance genre labels from the treebank metadata Ls alone. Building
on Müller-Eberstein et al. (2021a), our proposed methods leverage la-
tent genre information in the pre-trained mBERT language model (De-
vlin et al., 2019).

BOOT In order to select proxy training data which matches the
genre of an unseen target, Müller-Eberstein et al. (2021a) propose
a bootstrapping-based approach to genre classification (BOOT). An
mBERT-based classifier (Devlin et al., 2019) is initially trained on sen-
tences from single-genre treebanks, corresponding to standard su-
pervised classification. Above a confidence threshold (i.e. softmax
probability of 0.99), sentences from treebanks containing a known
genre in mixture are bootstrapped as single-genre training data for the
next round. After bootstrapping sentences from all known genres, the
remaining unclassified instances of any treebank containing a single
unknown genre are inferred to be of that last genre. While this method
was previously used for targeted data selection, we investigate the
degree to which it actually recovers instance-level genre.

CLASS With approximate classification (CLASS), we simplify BOOT

to naively learn instance genre labels from weak supervision. It fine-
tunes the same mBERT MLM with a 18-genre classification layer on
the [CLS]-token. For single-genre treebanks it is possible to measure
the exact cross entropy between the predicted probability and the
target (i.e. xn → l with l ∈Ls and |Ls | = 1). For multi-genre treebanks
with |Ls | > 1, this is not possible as the gold label is unknown. For the
CLASS approach, each sentence from a k-genre treebank is therefore
classified k times — once for each class in Ls .

GMM In addition to classification, we also evaluate two common
clustering algorithms. First we investigate whether clusters formed by
untuned MLM sentence embeddings (mean over sentence sub-words)
represent genre to such a degree that Gaussian Mixture Models can
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recover the 18 UD genre groups. For monolingual data from five genres,
such clusters were shown to be recoverable (Aharoni and Goldberg,
2020). We extend this approach to the 114 language setting of UD.

LDA As all methods so far are to some degree dependent on the
pre-trained MLM representations, we also evaluate the recoverability
of genre using Latent Dirichlet Allocation (Blei et al., 2003) with lexi-
cal features. Feature vectors are constructed using the frequency of
character 3–6-grams.

Cluster Labeling Both clustering methods produce 18 groups of
sentences from UD, however these will not carry meaningful labels as
with classification. While labels could be assigned manually post-hoc
by matching representative sentences in each cluster to one of the
18 global UD genres, this process is bound to be subjective and also
depends on the annotator to be fluent in most of the 114 languages.

In order to automate this procedure, we propose GMM+L and
LDA+L which combine clustering and classification. Both methods
start by clustering each treebank Xs into the number of genres speci-
fied by its metadata (note that standard GMM and LDA cluster all of
UD at once, i.e. X ).

Next, the mean embedding of each cluster is computed such that
they can be compared in a single representational space. Note that
this would not be possible using monolingual models as their latent
spaces are not as cross-lingually aligned. Analogous to BOOT, single-
genre treebanks can then be used as a single-label signal such that
the closest cluster from each treebank containing the respective genre
can be extracted. Newly identified clusters are added to the pool of
single-genre clusters. This process need only be repeated for three
rounds before all sentences in UD can be assigned a single label.

Using these four methods, we aim to assign a single genre label
to each sentence in UD. By comparing model ablations, we further
depart from prior work and explicitly quantify the genre information
in MLM embeddings as well as how it manifests within and across
treebanks in UD.
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7.4.2 Supervised Evaluation

For the 26 treebanks with instance genre labels, we are able to mea-
sure standard F1 after applying a mapping from the treebank-specific
labels to the 18 global UD genre labels. The mapping was created
according to the following criteria.

First, we only allowed treebank-specific genre labels to be mapped
to the set of UD genre labels specified in each treebank’s metadata.

Second, if possible treebank labels are mapped to UD labels of
the same name (e.g. fiction→ fiction) or to the closest subsuming
category (e.g. spoken (prepared)→ spoken).

Third, decisions involving subjective uncertainty were based on
the label which covers the majority of data sources. E.g., Czech-CAC
has the metadata label set {legal, medical, news, non-fiction, reviews}
and only three types of instance labels (aw, nw, sw). The sw (scientific-
written) label is attached to many medical articles, but also to articles
on philosophy or music. While academic may be the most fitting label,
it is not in the metadata. As such we chose the broader non-fiction as
the target label.

The full mapping is in Appendix 7.7.1 and we hope future work will
be able to expand upon it.

7.4.3 Unsupervised Evaluation

For the remaining 174 treebanks without sentence-level gold labels it
is difficult to measure the exact quality of the predicted genre distribu-
tions. Nonetheless, treebank annotations provide enough information
for approximate, global comparisons.

Based on label/cluster assignments, it is possible to compute the
standard cluster purity measure (PUR; Schütze et al., 2008). Across
treebanks of the same genre, the majority of sentences should be-
long to the same label/cluster. We measure this using the ratio of
cross-treebank label agreement (AGR). As in prior work (Aharoni and
Goldberg, 2020) it is important to note that the aforementioned met-
rics can be misleading when taken on their own: A perfect score can
for example be achieved by simply assigning all instances to the same
genre.
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To mitigate this issue we turn to the expected overlap of inter-
treebank genre distributions. For multi-genre treebanks, it is known
which genres are present, but not how they are distributed. Since tree-
banks are expected to have a certain amount of overlap, we can how-
ever estimate a global error. A {fiction, spoken, wiki} treebank should
for example have no clusters in common with a {news} treebank, but
should have many sentences in the same clusters as a {fiction, medical,
spoken} one. Assuming that genres are uniformly distributed within
each treebank, the first pair would share 0 mass between distributions
while the second pair would share 2

3 . Intuitively, a good prediction
would produce a global genre distribution that falls precisely between
the metadata range bars of Figure 7.1, close to the center markers.

To quantify the overlap between two treebank genre distributions
p and q over the genres in Ls , we use the discrete Bhattacharyya
coefficient:

BC (p, q) = ∑
l∈Ls

√
p(l )q(l ) 7.1

which has often been applied to distributional comparisons (Choi
and Lee, 2003; Ruder and Plank, 2017). It is computed for all pairs
of treebanks such that the overlap error ∆BC ∈ [0,100] is the mean
absolute difference between the expected distributional overlap of
each treebank pair and the predicted one (i.e. lower is better).

While none of these metrics can individually provide an exact
measure of a prediction method’s fit to the UD-specified distribution,
they complement each other as to allow for global comparisons in
absence of any sentence-level annotations.

7.5 Experiments

7.5.1 Setup

Data From the 1.5 million sentences in UD, we construct global
training, development and testing splits. All original test splits are left
unchanged and gathered into one global test split containing 204k
sentences. Note that test-only treebanks and languages are thereby
never seen during training or tuning. For instance-level, supervised
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evaluation, this means that all PUD treebanks and German-LIT are
excluded, leaving five treebanks for tuning.

Next, all original training and development splits are concatenated
and split 10/90 into a global training and development split with 102k
and 915k sentences respectively. The reason for this small “training”
split is that it is only required for training CLASS and BOOT. Within
it, we again split the data 70/30 (71k and 31k sentences) for classi-
fier training and held-out data for early stopping. All exact splits are
provided in Appendix 7.7.1.

Baselines For our comparisons, we use a maximum frequency base-
line (FREQ) which labels all sentences within a treebank with the meta-
data genre label that is most frequent overall. For example, in any
treebank containing news, all instances are labeled as such.

In order to measure the untuned classification performance of
mBERT, we propose an additional zero-shot classification baseline
(ZERO). Prior research has found that classifying sentences based
solely on their cosine similarity to genre label strings in MLM embed-
ding space can be remarkably effective (Veeranna et al., 2016; Yin et al.,
2019; Davison, 2020). For example, a sentence is labeled as academic
if this is the closest embedded label out of all 18 genre strings.

Training Every method from Section 7.4.1 is run with three initial-
izations. CLASS and BOOT are trained for a maximum of 30 epochs
with an early stopping patience of 3. ZERO, GMM+L and LDA+L (by
extension GMM, LDA) do not require training and can be directly
applied to the target data. Implementation details and development
results are reported in Appendices 7.7.2 and 7.7.3.

7.5.2 Results

Using the 8% subset of annotated instances (Section 7.4.2) in addi-
tion to the unsupervised metrics from Section 7.4.3, we can gather
an estimate of each method’s performance in Table 7.1. UD-level
genre predictions in addition to instance-level confusions are further
visualized in Figures 7.2 and 7.3.
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Figure 7.2: Genre Predictions on UD (Test). Ranges indicate up-
per/lower bounds inferred from UD metadata and the distribution
under treebank-level uniformity at the center marker. Bars show aver-
aged distribution predictions with standard deviations by FREQ, ZERO,
BOOT, CLASS, GMM+L and LDA+L.

METHOD PUR AGR ∆BC F1

FREQ 100±0.0 100±0.0 21±0.0 47±0.0

ZERO 46±0.0 56±0.0 47±0.0 12±0.0

CLASS 83±1.4 63±3.9 34±1.1 32±0.9

BOOT 86±0.4 70±0.7 29±0.3 38±1.2

GMM 90±0.5 45±2.6 31±0.3 —
+LABELS 100±0.0 100±0.0 4±0.2 54±2.1

LDA 77±0.8 34±2.6 31±0.2 —
+LABELS 100±0.0 100±0.0 2±0.1 51±1.5

Table 7.1: Results of Genre Prediction on UD (Test). Purity (PUR ↑),
agreement (AGR ↑), overlap error (∆BC ↓) and micro-F1 over instance-
labeled TBs (F1 ↑) for FREQ, ZERO, CLASS, BOOT and GMM, LDA
with/without cluster label predictions (+LABELS). Standard deviation
denoted ±.
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Baselines The FREQ baseline highlights the issue of using individual
unsupervised metrics for estimating performance. As it assigns all
sentences per treebank to the same genre, it automatically achieves
100% single-genre treebank purity and agreement. Considering that
the instance-level F1 covers 12 genres, a baseline score of 47 is also
competitive. Note that this is mostly due to the data imbalance towards
news. This unlikely distribution predicted by FREQ is also reflected in
Figure 7.2.

ZERO-shot classification is not fine-tuned on UD-specific signals
and as such predicts a genre distribution that does not adhere to
the metadata at all (see Figure 7.2). It severely underpredicts high-
frequency genres such as news and overpredicts less frequent genres
such as email. This reflects in our metrics, with ZERO obtaining the
lowest PUR, AGR and F1 while having the highest ∆BC of 47.

Classification With regard to explicit genre fine-tuning, CLASS in-
creases purity by 38 points compared to ZERO. Agreement across
treebanks also improves, while overlap error decreases. These differ-
ences are also reflected in Figure 7.2 in that the predicted distribution
is more within the range that would be expected given the metadata.

BOOT fits the UD genre distribution more closely, resulting in a
purity that is 4 points higher and agreement that is 11 points higher
than CLASS. F1 also increases by 6 points while overlap error decreases
by 4 points, indicating that these improvements are not merely due to
e.g. assigning all sentences to the same genre. While instance-level F1
is below the FREQ baseline, both methods improve upon the untuned
ZERO by a factor of 3.

The benefits of the less noisy training signal are visible in Figure
7.2: Compared to CLASS, BOOT predicts labels in a way that more
closely resembles the expected distribution even when the label only
occurs in multi-genre treebanks and is ambiguous (e.g. web). While
BOOT agrees upon the same genre-label across languages (e.g. all social
treebanks are labeled as such), CLASS tends to overassign the globally
most frequent labels (e.g. half of social treebanks are labeled wiki) and
has a larger variance in its assignments across initializations.
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Clustering GMM clusters from untuned mBERT embeddings follow
the distribution specified by UD metadata more than the LDA clusters
produced from lexical information. Although sentence representa-
tions are gathered using a naive mean-pooling approach, the resulting
clusters reach 90% PUR compared to 77% for LDA. AGR follows a simi-
lar pattern and ∆BC is equivalent.

Turning to our cluster labelling approaches, both GMM+L and
LDA+L obtain the highest overall F1 scores, outperforming both base-
lines. They achieve 100% PUR and AGR by the same process as the
FREQ-baseline while their overlap error is significantly lower at 4 and 2
points respectively. Figure 7.2 reflects this, as GMM+L and LDA+L are
always closest to the expected genre distribution, regardless of overall
genre frequency. This shows how focusing on treebank-internal dif-
ferences before applying a global labelling procedure combines the
benefits of local clustering with the benefits of bootstrapped classifica-
tion, resulting in an effective overall method.

7.5.3 Analysis

From the F1 scores in Table 7.1 it is clear that predicting instance genre
based on treebank metadata alone — while accounting for its skewed
distribution and inter-treebank shifts of genre definitions — is a diffi-
cult task. In the following we analyze the performance characteristics
of each method.

Overall, trends of the unsupervised metrics follow the supervised
F1, leading us to believe that the methods would behave comparatively
should labels for all instances in UD be available. The confusion
matrices with prediction ratios per gold label in Figure 7.3 reflect our
previous observations.

Baselines The FREQ baseline’s predictions are clearly dominated by
the most frequent news genre, followed by the similarly high frequency
non-fiction and blog (see Figure 7.3d).

ZERO appears to follow a pattern similar to BOOT (e.g. blog and
email), however it also makes more predictions away from the diagonal
(see Figure 7.3a).
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(a) ZERO (b) BOOT

(c) CLASS (d) FREQ

(e) GMM+L (f) LDA+L

Figure 7.3: Confusions of Instance-level Genre. Ratios of predicted la-
bels (columns) per target (row) for ZERO, BOOT, CLASS, FREQ, GMM+L,
LDA+L on test splits of 26 instance-annotated treebanks.
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Classification Both CLASS (Figure 7.3c) and BOOT (Figure 7.3b) as-
sign most instances of a genre to a single prediction label, often
strongly aligning with the target diagonal. CLASS more often assigns
a single label per target instead of spreading out predictions across
multiple labels as in BOOT. Nonetheless, both methods make some
unintuitive errors such as BOOT classifying parts of poetry as wiki. For
these 68 samples from Russian-Taiga, BOOT likely overfits the language
signal from Russian-GSD (McDonald et al., 2013; wiki).

Compared to ZERO which approximates the predictions of an un-
tuned mBERT model, BOOT and CLASS fine-tuning appears to amplify
existing patterns and shifts some predictions to better align with gen-
res as defined in UD (e.g. fiction and legal in BOOT).

Clustering Grouping all 1.5 million sentences of UD into 18 unla-
beled clusters using GMM and LDA results in purity and ∆BC compa-
rable to CLASS and BOOT. However, looking into the cluster contents
of the former reveals that they are oversaturated with large treebanks
such as German-HDT. Cosine similarities of cluster centroids from
the mBERT-based GMM further indicate that proximity corresponds
foremost to language similarity.

Some clusters predominantly contain news, wiki or social. This
corresponds to cases such as the Italian Twitter treebank TWITTIRÒ
in which specific tokens (e.g. “@user”) are distinct enough to over-
ride the language signal. Overall, most UD-level clusters do not
have clear genre distinctions and are influenced more strongly by
language than genre, resulting in high treebank purity while having
low intra-treebank agreement. Attempting to cross-lingually cluster
all sentences in UD directly is therefore not as effective for recovering
instance-level genre as it was in the monolingual setting (Aharoni and
Goldberg, 2020).

Initially constructing clusters within each treebank as in the
GMM+L and LDA+L methods appears to restore the benefits observed
in the monolingual setting. A qualitative analysis of the treebank-level
LDA clusters reveals that wiki clusters often contain lexical indicators
for the genre, such as brackets, while news features often contain n-
grams which may be related to spoken quotes such as “said”, “Ik ”
(first person pronoun).
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Attaching labels to these clusters using the globally shared mBERT
space yields confusion plots for GMM+L and LDA+L which most
closely follow the diagonal (see Figures 7.3e and 7.3f). Overall, their
predictions follow a similar pattern indicating that clustering at the
treebank-level using either mBERT embeddings or lexical features
results in similar sentence groups.

Within the instance-labeled subset, all models share confusions be-
tween news and wiki (mainly from PUD). While wiki is often predicted
as news, both GMM+L and LDA+L substantially improve upon this
“news-bias” with a confusion ratio that is 13%–56% lower compared to
all other methods. The sentence-bounded context from which all mod-
els must make their genre predictions nonetheless limits the amount
of improvement possible. For example, using the aforementioned LDA
features the algorithm would very likely be unable to distinguish be-
tween news and wiki (both non-fiction, edited texts describing facts)
for cases such as, “Weiss was honored with the literature prizes from
the cities of Cologne and Bremen.”

7.6 Discussion and Conclusion

This work provided an in-depth analysis of the 18 genres in Univer-
sal Dependencies (UD) and identified challenges for projecting this
treebank metadata to the instance level. As these genre labels were
not part of the first UD releases, but were added in later versions,
we identified large variations in the way they are interpreted and ap-
plied — resulting in far less universal definitions of genre than for
syntactic dependencies. Most treebanks furthermore contain multiple
genres while not providing finer-grained instance-level annotations
thereof. This also sheds light on prior work which used UD metadata
for training data selection, where treebank-level genre improved in-
language parsing performance (Stymne, 2020) and where moving to
instance-level genre signals lead to additional increases even across
languages (Müller-Eberstein et al., 2021a).

Building on the latent genre information stored in MLM embed-
dings, we investigated four methods for projecting treebank-level la-
bels to the instance level. In contrast to prior monolingual work, imme-
diately clustering multilingual embeddings yielded clusters dominated
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by language similarity instead of genre (Section 7.5.3). Similarly, zero-
shot labelling using the untuned mBERT latent space proved to be
insufficient for producing a genre distribution which adheres to the
UD metadata. The classification-based CLASS and BOOT methods are
able to extract a stronger genre signal from mBERT than ZERO.

Our proposed GMM+L and LDA+L methods which combine local
treebank clusters with the global, cross-lingual representation space
reach the best overall performance, outperforming both baselines as
well as both classification methods at a much lower computational
cost (Section 7.5.2; Appendix 7.7.2). This highlights how the current
genre annotations are far from universal, yet can still guide our local-
to-global instance-level genre predictors in identifying cross-lingually
consistent, data-driven notions of genre.

Future work may be able to improve instance genre prediction by
using a more consistent label set or human annotations. The defini-
tion of genre macro-classes or a broader taxonomy covering existing
annotations could also guide further investigations into cross-lingual
language variation. Nonetheless, we expect the task of predicting sen-
tence genre to remain difficult due to the short context within which
both annotators and models must make their predictions.

Within the complex scenario of highly cross-lingual, instance-level
genre classification, our methods have nonetheless demonstrated that
genre is recoverable across the 114 languages in UD — shedding light
on prior genre-driven work as well as enabling future research to more
deliberately control for additional dimensions of language variation in
their data.

7.7 Appendix

7.7.1 Universal Dependencies Setup

All experiments make use of Universal Dependencies v2.8 (Zeman
et al., 2021). From the total set of 202 treebanks, we use all except
for the following two (due to licensing restrictions): Arabic-NYUAD
and Japanese-BCCWJ. In total 1.51 million sentences are used in our
experiments.
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Data Splits The experiments in Section 7.5 use the 204k global test
split. Initial comparisons were performed on the 915k dev set. The
102k training split was used to fine-tune CLASS and BOOT. For early
stopping, 31k sentences from the latter split were used as a held-out
set. The exact instances are available in the associated code repository
for future reproducibility.

Genre Mapping For 26 treebanks with instance-level genre labels in
the metadata comments before each sentence, we created mappings
from the treebank genre labels to the UD genre label set according to
the guidelines described in Section 7.4.2. The genre metadata typi-
cally either follow the format genre = X or are implied by the docu-
ment source specified in the sentence ID (e.g. sent_id = genre-...).
There are a total of 91 mappings which will be made available with the
codebase upon publication.

7.7.2 Model and Training Details

The following describes architecture and training details for all meth-
ods. When not further defined, default hyperparameters are used.
Implementations and predictions are available in the code repository
at https://personads.me/x/syntaxfest-2021-code.

Infrastructure Neural models are trained on an NVIDIA A100 GPU
with 40 GB of VRAM.

Language Model This work uses mBERT (Devlin et al., 2019) as
implemented in the Transformers library (Wolf et al., 2020) as
bert-base-multilingual-cased. Embeddings are of size demb =
768 and the model has 178 million parameters. To create sentence
embeddings, we use the mean-pooled WordPiece embeddings (Wu
et al., 2016) of the final layer.

Classification CLASS and BOOT build on the standard mBERT ar-
chitecture as follows: mBERT → CLS-token → linear layer (demb ×18)
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→ softmax. The training has an epoch limit of 30 with early stop-
ping after 3 iterations without improvements on the development set.
Backpropagation is performed using AdamW (Loshchilov and Hutter,
2019) with a learning rate of 10−7 on batches of size 16. The fine-tuning
procedure requires GPU hardware which can host mBERT, correspond-
ing to 10 GB of VRAM. Training on the 71k relevant instances takes
approximately 10 hours.

Clustering Both Gaussian Mixture Models (GMM) and Latent Dirich-
let Allocation (Blei et al., 2003; LDA) use scikit-learn v0.23 (Pedregosa
et al., 2011). LDA uses bags of character 3–6-grams which occur in
at least 2 and in at most 30% of sentences. GMMs use the mBERT
sentence embeddings as input. Both methods are CPU-bound and
cluster all treebanks in UD in under 45 minutes.

Random Initializations Each experiment is run thrice using the
seeds 41, 42 and 43.

7.7.3 Additional Results

Table 7.2 shows results on the 915k development split of UD. Per-
formance patterns are similar to those on the test split: the labeled
clustering methods GMM+L and LDA+L perform best out of our pro-
posed methods and outperform the baselines on the majority of met-
rics. With respect to classification, BOOT outperforms both the noisier
CLASS and ZERO. Note that the frequency baseline FREQ performs
especially well on the dev set, since only 5 of 26 instance labeled tree-
banks are included and 4 of these have the majority genre news.
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METHOD PUR AGR ∆BC F1

FREQ 100±0.0 100±0.0 23±0.0 27±0.0

ZERO 43±0.0 66±0.0 50±0.0 5±0.0

CLASS 87±1.2 77±3.9 29±1.9 9±4.5

BOOT 95±0.2 100±0.0 24±0.3 16±1.0

GMM 92±0.1 55±5.5 30±0.7 —
+LABELS 100±0.0 100±0.0 5±0.1 17±1.6

LDA 88±1.0 42±2.2 30±0.2 —
+LABELS 100±0.0 100±0.0 5±0.0 15±0.9

Table 7.2: Results of Genre Prediction on UD (Dev). Purity (PUR ↑),
agreement (AGR ↑), overlap error (∆BC ↓) and micro-F1 over instance-
labeled TBs (F1 ↑) for FREQ, ZERO, CLASS, BOOT and GMM, LDA
with/without labels. Standard deviation denoted ±.
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8Genre as Weak Supervision for
Cross-lingual Dependency Parsing

The work presented in this chapter is based on the publication: Max
Müller-Eberstein, Rob van der Goot, and Barbara Plank. 2021a. Genre
as weak supervision for cross-lingual dependency parsing. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 4786–4802, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.
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Abstract

Recent work has shown that monolingual masked language models
learn to represent data-driven notions of language variation which
can be used for domain-targeted training data selection. Dataset genre
labels are already frequently available, yet remain largely unexplored
in cross-lingual setups. We harness this genre metadata as a weak
supervision signal for targeted data selection in zero-shot dependency
parsing. Specifically, we project treebank-level genre information to
the finer-grained sentence level, with the goal to amplify information
implicitly stored in unsupervised contextualized representations. We
demonstrate that genre is recoverable from multilingual contextual
embeddings and that it provides an effective signal for training data
selection in cross-lingual, zero-shot scenarios. For 12 low-resource
language treebanks, six of which are test-only, our genre-specific meth-
ods significantly outperform competitive baselines as well as recent
embedding-based methods for data selection. Moreover, genre-based
data selection provides new state-of-the-art results for three of these
target languages.

8.1 Introduction

Multilingual masked language models (MLMs) trained on immense
quantities of heterogeneous texts (Devlin et al., 2019; Brown et al.,
2020; Conneau et al., 2020) have recently made applications such as
highly cross-lingual dependency parsing a reality (Kondratyuk and
Straka, 2019). Adjacently, it has also been recognized that they capture
characteristics relevant for training data selection (Aharoni and Gold-
berg, 2020) and can be efficiently fine-tuned for higher task-specific
performance (Gururangan et al., 2020; Dai et al., 2020; Lauscher et al.,
2020; Üstün et al., 2020). These considerations are especially impor-
tant in computationally restricted environments and when data from
the target distribution are unavailable.

Universal Dependencies (Nivre et al., 2020; UD) provides an ex-
tensive testing ground for such scenarios: Its language diversity is
constantly increasing (from 10 in v1.0 to 104 in v2.7) and low-resource
languages are often limited to a single test-set-only treebank. As most
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Universal Dependencies

TargetParser

Genre Selection

Targeted Training Data

. . .

Figure 8.1: Genre-driven Training Data Selection for a zero-shot target
treebank. In absence of annotated in-language data, we propose genre
as a weak supervision signal for targeted instance selection from a
large pool of out-of-language treebanks.

of the 7,000+ languages in the world similarly lack any annotated train-
ing data, effective zero-shot transfer learning is crucial for achieving
wider linguistic coverage.

Criteria for selecting training data within such settings vary, and a
practitioner may determine relevance by proxy of language relatedness
or treebank content. This leads us to the question: If our goal is to
develop a parser for a known domain in an unseen language, can a
signal such as genre guide our selection of cross-lingual training data
from a significantly larger, diverse pool (Figure 8.1)?

Within the heterogeneity of written and spoken (transcribed) data,
genre broadly encompasses variation along the functional role of a
text Kessler et al. (1997). A clear definition is complex if not impossible
and communities refer to genre, domain, style or register in different
ways Kessler et al. (1997); Lee (2001); Webber (2009); Plank (2011). In
this work, we take a pragmatic approach and use genre as defined
by the 18 community-provided categories in UD (Zeman et al., 2021).
These genres are assigned at the treebank level and “are neither mutu-
ally exclusive nor based on homogeneous criteria, but [are] currently
the best documentation that can be obtained” (Nivre et al., 2020).
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Contributions In order to facilitate finer-grained, instance-level data
selection for cross-lingual parsing in absence of in-language training
data, we provide three contributions:

First, we provide an analysis of the genre distribution in UD v2.7
(Zeman et al., 2021) across 104 languages and 177 treebanks (Section
8.3).

Next, we introduce three targeted data selection strategies which
amplify existing genre information in multilingual contextualized em-
beddings in order to enable sentence-level selection based on UD’s
treebank-level genre annotations (Section 8.4).

Finally, we apply the extracted genre information to proxy training
data selection for 12 typologically diverse low-resource treebanks. In
absence of any in-language training data, our approach outperforms
selection using treebank metadata alone as well as purely embedding-
based instance selection and surpasses state-of-the-art results on three
treebanks (Section 8.5).1

8.2 Related Work

Despite advances in zero-shot performance (Devlin et al., 2019; Brown
et al., 2020) and increasingly cross-lingual parsers (Kondratyuk and
Straka, 2019), fine-tuning has remained a crucial step for achieving
state-of-the-art performance. Meechan-Maddon and Nivre (2019)
demonstrate that this holds true for low-resource languages in par-
ticular, with 200 training instances in the target or related languages
producing better results on dependency parsing than a model trained
on all available data. Lauscher et al. (2020) further show that as few
as 10 samples in the target language can double parsing performance.
Üstün et al. (2020) propose UDapters, which integrate language and
task-specific adaptation modules into the parser to improve cross-
lingual, zero-shot performance.

Considering factors complementary to language is equally impor-
tant: MLMs can for instance be improved for specific domains such as
Twitter or medical texts by fine-tuning on the same or related sources
(Dai et al., 2020; Gururangan et al., 2020). For dependency parsing,

1Code at https://personads.me/x/emnlp-2021-code.
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the use of data from matching genres has been explored by Plank
(2011), who find improvements for English and Dutch. This is further
confirmed for German by Rehbein and Bildhauer (2017).

Automatically inferred topics (Ruder and Plank, 2017) as well as
more abstract selection criteria such as overlapping part-of-speech
sequences (Søgaard, 2011; Rosa, 2015) have also proven effective at
selecting syntactically similar training instances. Vania et al. (2019)
further demonstrate that when word embeddings of mutually unin-
telligible languages align with respect to POS, cross-lingual transfer
remains especially effective. With respect to data-driven domain rep-
resentations, Stymne (2020) shows that treebank embeddings can be
used to successfully transfer knowledge from in-domain cross-lingual
source treebanks when used in conjunction with in-language, out-of-
domain data. In this work, we will rely solely on treebank genre labels
as weak supervision and forgo the use of in-language training data as
well as instance-level annotations thereof (e.g. POS tags).

Recently, contextualized embeddings have been shown to con-
tain useful information for training data selection. Aharoni and Gold-
berg (2020) find that clusters formed by embeddings from untuned,
monolingual language models correspond well to the genres of their
five-domain corpus. Training an English-to-German machine trans-
lation model on only the closest embedded sentences to their target
2k-sentence development set outperformed a model trained on the
entire dataset.

Although all aforementioned methods assume some degree of
in-language training data, our methods will not have access to any an-
notated target data and will be trained exclusively on out-of-language
instances. Building on information stored in pre-trained contextual
embeddings, we extend genre-based data selection into the massively
multilingual, 104-language, 18-genre setting of Universal Dependen-
cies (Zeman et al., 2021). While prior work assumed sentence-level
genre labels (Ruder and Plank, 2017; Aharoni and Goldberg, 2020),
our methods will only have access to treebank-level metadata. An
instance’s genre will therefore have to be inferred using weakly super-
vised approaches. To the best of our knowledge, this constitutes the
first application of UD’s instance-level genre distribution to the selec-
tion of training data for zero-shot, cross-lingual dependency parsing.
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Figure 8.2: Genre Distribution in UD. Ranges indicate upper/lower
bounds for sentences per genre inferred from UD metadata. Center
marker reflects the distribution under the assumption that genres
within treebanks are uniformly distributed. Labels above the bars
indicate the number of treebanks which contain each genre.

8.3 Genre in Universal Dependencies

Universal Dependencies (Nivre et al., 2016) offer annotations for a
broad spectrum of languages, with 104 in version 2.7 Zeman et al.
(2021). Of the 1.38 million sentences from the 177 treebanks which we
consider, 64 are test-set only and many in this latter third constitute the
sole treebank of the language they are in. Such data sparsity becomes
even more critical when both the language and the domain are highly
specialized and under-resourced.

As more low-resource languages are added in this manner and as
the vast majority of the world’s languages remain without annotated
data, it becomes important to consider new signals for selecting train-
ing data in zero-shot scenarios. If no data in the target language are
available, we hypothesize that characteristics of most genres are stable
enough across languages to offer a useful guiding criterion for data
selection in cross-lingual dependency parsing.

For 26 of the 177 treebanks, their authors have provided sentence-
level genre labels. However, these annotations cover only 6% of UD
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sentences and are typically incompatible across treebanks (with few ex-
ceptions such as PUD). At the treebank level, UD fortunately provides
18 approximated genre labels: academic, bible, blog, email, fiction,
government, grammar-examples, learner-essays, legal, medical, news,
nonfiction, poetry, reviews, social, spoken, web, wiki.

Genres such as wiki likely have stronger internal consistency due
to cross-lingual creation guidelines. Others such as fiction or web
may have higher variance. While these UD-provided labels are far
from perfectly defined (Nivre et al., 2020), they nonetheless allow us to
operationalize our hypothesis: If genre is globally consistent, it must
have a positive effect on cross-lingual transfer performance.

From Figure 8.2 it is evident that these genres are heavily imbal-
anced. The minimum number of sentences in a genre is inferred from
the sum over the number of instances in treebanks containing only
that genre. The upper bound is the sum of all treebanks containing
the genre among others. As indicated by these distributional bounds,
news articles may constitute up to 70% of the whole UD dataset. Even
assuming uniform genre distributions within each treebank (center
marker), over half of all sentences in UD would fall into either the news
or the non-fiction category.

Genres with highly specific lexical and/or structural features such
as spoken, social or medical are much more underrepresented. Fur-
thermore, they are often only a small part of larger genre mixtures (117
treebanks include multiple genre-labels). These mixtures, with up to
10 genres in one treebank, may contain related genres (e.g. news, non-
fiction, web), but also unrelated ones (e.g. medical, poetry, social, web)
depending on what data was available to authors during annotation.

Out-of-the-box, treebank-level genre labels appear to be highly
noisy (see also Nivre et al., 2020). Additionally, individual treebanks are
labeled with multiple genres while lacking such labels at the sentence
level. We hypothesize that it is therefore necessary to predict instance-
level genre distributions before targeted data selection can be effective.

8.4 Targeted Data Selection

In order to measure the effect of genre on the targeted selection of
training data, we depart from previous treebank-level selection (Sec-
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tion 8.2) and introduce three new types of instance-level selection
strategies in the following section. They are evaluated on the task of
zero-shot dependency parsing in Sections 8.5 and 8.6. All of them
build on contextualized embeddings learned by the mBERT (Devlin
et al., 2019) masked language model (MLM). While MLMs still lack
the full breadth of the languages covered in UD (mBERT covers 56 of
the 104 languages), they have proven robust in zero-shot scenarios
(Devlin et al., 2019; Brown et al., 2020) and have also been found to
contain a certain amount of genre information — at least monolin-
gually (Aharoni and Goldberg, 2020; Section 8.2). We evaluate whether
UD’s definition of genre is also recoverable from these data-driven
representations and whether these categories hold cross-lingually.

8.4.1 Closest Sentence Selection

SENT Akin to the strategy used by Aharoni and Goldberg (2020), this
SENTENCE-based method attempts to find the most relevant train-
ing data by computing the mean embedding of n unannotated target
data samples and retrieving the top-k closest non-target instances
according to their cosine distance in embedding space. Notable differ-
ences from their original method are the use of a much smaller target
data sample (n = 100 versus n = 2000) as well as the use of mBERT
instead of English-only BERT embeddings (Devlin et al., 2019) due to
our cross-lingual setting.

While the monolingual BERT embeddings were found to represent
genre to some degree, such MLM embeddings likely contain many
more dimensions of semantic and syntactic information. The SENT

method alone is therefore not guaranteed to represent data selection
by genre as stronger factors may override these signals. Additionally,
Aharoni and Goldberg (2020)’s setup assumed five clearly-defined
genres with instance-level annotations while UD has 18 genres with
varying degrees of specificity which are only defined in the treebank-
level metadata.
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8.4.2 Genre Selection

META Separately to MLM embedding-based selection, we evaluate
the effectiveness of using the manually assigned genre labels listed
in each treebank’s metadata. As seen in Section 8.3, these labels can
be noisy and have variable interpretations across treebanks. Further-
more, each treebank is assigned up to 10 genres, making instance-level
selection as in the previous method impossible.

BOOT To bridge this gap to sentence-level selection, we introduce
a bootstrapping procedure which iteratively learns an instance-level
classifier for UD genre. Each sentence is encoded through mBERT’s
CLS token before passing to a classification layer. The model is initial-
ized using standard mBERT weights and begins by training on single-
genre treebanks (i.e. standard supervised learning). It then predicts
sentence labels for treebanks containing these initial genres. Above a
prediction threshold of 0.99 ∈ [0,1], these are added as new training
data for the next round of training. When only one unclassified genre
remains in a treebank, all remaining instances are inferred to be of
that last genre. Using this procedure, a single genre label is assigned to
each sentence in UD within three steps.

Compared to closest sentence selection (SENT), both of the former
methods have the added benefit that no target-data is required in
order to make the final training data selection. The training corpus
simply consists of all instances labelled as belonging to a genre (BOOT)
or to a treebank containing the genre in question (META).

8.4.3 Closest Cluster Selection

GMM As shown by Aharoni and Goldberg (2020), monolingual
BERT embeddings can be clustered into distinct domains using com-
mon clustering algorithms such as Gaussian Mixture Models (GMMs).
Using mBERT embeddings, we evaluate whether this holds cross-
lingually by clustering each treebank into the number of genres which
it is said to contain according to the UD-provided metadata. Deviating
from previous work, which only uses these clusters for preliminary
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analyses, we then use them directly for data selection. By computing
a mean embedding for each cluster and choosing the closest one to
the mean target sample embedding (same as SENT), the most similar
data is selected in bulk from each treebank. By only selecting clusters
from treebanks for which the metadata states that the target genre
is contained, this allows us to identify clusters which most likely cor-
respond to the target genre while avoiding the manual labelling of
clusters across 104 languages.

LDA We also evaluate a clustering method based purely on lexical
features (i.e. n-grams) instead of pre-trained contextual embeddings.
While the selection of the most relevant cluster from each treebank is
performed using the same mean embedding distance methodology
as for GMM, we use Latent Dirichlet Allocation (Blei et al., 2003; LDA)
for the initial clustering step. This decouples the genre-segmentation
step from the multitude of non-genre dimensions in the embeddings
themselves, while simultaneously not relying on LDA alone for the
final data selection (as in Plank, 2011; Mukherjee et al., 2017). Further-
more, this setup allows us to extract genres from languages and scripts
unknown to mBERT as well as to compare whether the GMM clusters
correspond to those found via surface-level lexical information alone.

8.5 Experimental Setup

8.5.1 Target Treebanks

We evaluate the effect of genre on training data selection using a set of
12 target treebanks from the low-resource end of UD. For our purposes,
low-resource is defined as treebanks with more than 200 and less
than 2,000 sentences in total and with fewer than 5,000 in-language
sentences in UD.

In order to distinguish the effects of genre specifically, we only
use single-genre target treebanks and leave the investigation of genre-
mixtures to future work. As seen in Table 8.1, the final set of targets
is diverse with respect to genre, language family and their availability
during mBERT pre-training.
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TARGET AUTHORS LANGUAGE FAMILY MB SIZE GENRE

SWL-SSLC Östling et al. (2017) Swedish Sign Language Signed Language × 203 spoken
SA-UFAL Dwivedi and Easha (2017) Sanskrit Indo-European × 230 fiction
KPV-Lattice Partanen et al. (2018) Komi Zyrian Uralic × 435 fiction
TA-TTB Ramasamy and Žabokrtský (2012) Tamil Dravidian ✓ 600 news
GL-TreeGal Garcia (2016) Galician Indo-European ✓ 1,000 news
YUE-HK Wong et al. (2017) Cantonese Sino-Tibetan × 1,004 spoken
CKT-HSE Tyers and Mishchenkova (2020) Chukchi Chukotko-Kamchatkan × 1,004 spoken
FO-OFT Tyers et al. (2018) Faroese Indo-European × 1,208 wiki
TE-MTG Rama and Vajjala (2017) Telugu Dravidian ✓ 1,328 grammar
MYV-JR Rueter and Tyers (2018) Erzya Uralic × 1,690 fiction
QHE-HIENCS Bhat et al. (2018) Hindi-English Code-Switched ∼ 1,800 social
QTD-SAGT Çetinoğlu and Çöltekin (2019) Turkish-German Code-Switched ∼ 1,891 spoken

Table 8.1: Target Treebanks with language family (FAMILY), inclusion
in mBERT pre-training (MB; included (✓), excluded (×), highly-related
languages included (∼)), total number of sentences (SIZE) and UD-
provided GENRE.

Only three of the target languages are included in mBERT pre-
training, with seven not being covered at all and two having strongly re-
lated languages in mBERT’s repertoire: Hindi-English (QHE) → Hindi,
English as well as Turkish-German (QTD) → Turkish, German.

The six included genres cover the high-resource news ( ) and fic-
tion ( ) as well as the medium resource wiki ( ) and the lower resource
spoken ( ), grammar-examples ( ) and social ( ).

8.5.2 Data Selection Setup

In order to train parsers for these largely test-only treebanks, we com-
pare seven proxy training data selection strategies for each target (note
that only the first strategy uses in-language training data).

TARGET Where available, we use the true target training split as a per-
formance upper bound against which to compare our methods. These
are available for the six targets: SWL-SSLC, TA-TTB, GL-TreeGal, TE-
MTG, QHE-HIENCS and QTD-SAGT. For three targets without training
splits, we make use of proxy in-language data: SA-Vedic (Hellwig et al.,
2020) for SA-UFAL, KPV-IKDP (Partanen et al., 2018) for KPV-Lattice
and FO-FarPaHC (Ingason et al., 2020) for FO-OFT. For the targets YUE-
HK, CKT-HSE and MYV-JR no in-language training data are currently
available.
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RAND selects a random sample of nrand sentences from the non-
target-language UD. We do not restrict this selection to treebanks
containing the target genre such that data from a more diverse pool
of languages may be selected. To ensure an equivalent comparison,
we set nrand to the mean of the number of instances selected by BOOT,
LDA and GMM (see Appendix 8.8.3 for values of nrand).

SENT selection (see Section 8.4.1) is based on the mean embedding
of 100 target sentences and retrieves the top-k closest out-of-language
sentences from all of UD independently of genre. Since k needs to
be chosen manually, we set it to the number of instances selected by
GMM, which is equally dependent on mBERT embeddings.

META selects all non-target language treebanks which are denoted
to contain the target genre (i.e. both single-genre treebanks as well as
mixtures). These data pools make up the largest training corpora in
our setup (up to 524k instances for news) and also subsume the other
genre-based selection methods BOOT, LDA and GMM. In this way, it
acts as an upper bound in terms of data quantity as well as a baseline
for whether treebank-level metadata alone can aid data selection.

BOOT selects only the specific instances classified as being in the
target genre for use as training data. The classifier is trained according
to the bootstrapping method outlined in Section 8.4.2. In order to
avoid the memorization of target data, we exclude all data in the target
languages from the classifier training process.

GMM clusters each treebank into the number of genres denoted by
its metadata using mean-pooled mBERT embeddings for each sen-
tence. Training data is then selected according to the closest-cluster
procedure outlined in Section 8.4.3.

LDA works analogously to GMM, but uses LDA to cluster sentences.
It uses bags of character 3–6-grams and no language-specific resources
(e.g. stop word lists) in order to remain as cross-lingually comparable
as possible. Hyperparameters were tuned as outlined in Section 8.5.3.
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All methods relying on unannotated target data for the data se-
lection process use 100 random sentences from the target treebank
(changes across random initializations). In practical terms, this cor-
responds to having access to a small amount of target-like data —
without gold dependency structures — and selecting the best possible
training data for which we do have annotations.

Alternatively, BOOT (as well as META and RAND implicitly) work in
a fully zero-shot manner as we only assume knowledge of the intended
target genre, but do not assume access to the target sentences nor their
annotations.

8.5.3 Training Setup

We use the biaffine attention parser Dozat and Manning (2017) imple-
mentation of MaChAmp v0.2 (van der Goot et al., 2021b) with default
hyperparameters. Each step involving non-deterministic components
is rerun using three random seeds.

For efficiency reasons, the seven largest treebanks were subsam-
pled to 20k instances per split. Performance is measured using the
labeled attachment scores (LAS) averaged across random initializa-
tions. Additionally, we report unlabeled attachment scores (UAS), the
number of selected instances as well as the variance across runs in
Appendix 8.8.3. Significance is evaluated at α < 0.05 using a paired
bootstrapped sign test with 10k resampling and Bonferroni correction
(Bonferroni, 1936) for the multiple comparisons across random initial-
izations. Appendix 8.8.2 lists all additional hyperparameter settings.

It is important to note that besides the upper bound in-language
setup (TARGET), no parser is trained on in-language data. For the tun-
ing of method-specific hyperparameters (LDA features, BOOT thresh-
olds), development sets of the five treebanks containing such splits
were used: SWL-SSLC, TA-TTB, TE-MTG, QHE-HIENCS and QTD-
SAGT (details in Appendix 8.8.2). During parser training, development
data for early stopping is based solely on the out-of-language data
selected by each method and not on the in-language target data itself
(also excluding constituent languages for code switched targets). Re-
sults are reported on each target’s test set without any further tuning.
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SETUP SWL SA KPV TA GL YUE CKT FO TE MYV QHE QTD AVG

TARGET 28.01 15.74 13.36 64.05 80.94 — — 49.55 83.63 — 62.66 55.04 50.28

RAND 3.67 24.81 10.88 50.73 77.65 33.31 15.54 61.88 67.68 20.01 27.01 44.57 36.48
SENT 3.55 23.72 13.71 47.93 77.55 35.78 16.44 62.49 68.05 22.90 26.46 42.74 36.78

META 6.50 24.29 10.22 50.43 76.63 31.19 11.62 61.23 64.91 20.41 9.42 42.58 34.12

BOOT 5.20 21.80 †21.09 49.43 76.66 †49.85 18.40 †66.25 65.56 19.46 14.75 43.80 37.69

GMM 4.85 22.93 †20.91 †51.53 77.75 †49.92 †19.81 †68.25 67.87 20.15 15.09 45.38 38.70
LDA 6.62 23.70 †22.27 49.17 77.01 †49.40 †19.05 †68.29 †68.56 20.54 15.16 44.72 38.71

Table 8.2: Zero-shot Parsing Results. LAS for test splits of target tree-
banks using training data from target/proxy in-language treebanks
(TARGET; where available), random sentence selection (RAND), closest
sentence selection (SENT), treebanks containing target genre (META),
instances classified as target genre (BOOT) and closest cluster selec-
tion (GMM and LDA). Scores marked with † significantly outperform
TARGET, RAND, SENT and META.

8.6 Results

8.6.1 Zero-shot Parsing Results

As expected, Table 8.2 shows that training the parser on target data
(TARGET) results in the best overall performance even though the train-
ing corpora for these setups almost never exceed 1k instances. The
target treebanks for which in-language data are available, consolidate
into a final average of 50.28 LAS. This highlights the overall difficulty
of parsing these low-resource treebanks. As the parser is initialized
using mBERT, the scores on Tamil (TA), Galician (GL) and Telugu (TE),
which are included in its pre-training, are highest overall compared to
non-included languages or code-switched variants.

It is noteworthy that when a same-language proxy treebank was
used for parser training, scores are lower compared to the other meth-
ods. In these three cases, namely Sanskrit (SA), Komi Zyrian (KPV) and
Faroese (FO), none of the proxy treebanks include the target’s genre
which may be a strong contributing factor to this discrepancy.

Turning to our zero-shot setups, META data selection based on
treebank-level annotations alone performs worst overall at 34.12 LAS
despite constituting the largest training corpora in each setup (see
Appendix 8.8.3 for details). Compared to the TARGET upper bounds, it
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shows how training on two orders of magnitudes more data can still
be insufficient if they do not follow the target distribution.

Both RAND and SENT outperform the META baseline at 36.48 and
36.78 LAS respectively. These aggregated scores also highlight that
sentence-based selection alone insufficiently captures cross-lingual
characteristics as to outperform random chance in most cases.

In contrast, combining latent information in the MLM embeddings
with higher-level genre information leads to performance increases
not achievable by either method alone. Both GMM and LDA achieve
the highest scores across the majority of target treebanks and the
highest cross-lingual averages of 38.70 LAS and 38.71 LAS respectively.
These scores reflect their similar performance across targets, however
we do observe that LDA achieves slightly higher scores on languages
which are not included in mBERT pre-training: e.g. Swedish Sign Lan-
guage (SWL), Sanskrit (SA) and Komi Zyrian (KPV). We hypothesize
that this is a result of GMM’s dependence on latent information in
the mBERT embeddings while LDA constructs clusters independently,
based solely on surface-level lexical features (i.e. n-grams).

Finally, amplifying genre information in the mBERT embeddings
using our BOOT method also leads to performance increases compared
to using untuned embeddings or the coarser grained treebank-level
metadata. While it does not entirely reach the performance of the
cluster selection methods, its overall average of 37.69 LAS as well as
generally similar performance patterns to LDA and GMM lead us to
believe that all three methods are picking up on and are amplifying
similar latent genre information. As an added benefit, BOOT is able
to reach this competitive performance without the need for any tar-
get data samples (as opposed to GMM and LDA which use 100 raw
samples for cluster selection).

Using our proposed genre-based selection methods we are there-
fore able to consistently outperform in-language/out-of-genre upper
bounds for these low-resource target treebanks. Comparing our results
to van der Goot et al. (2021b) who train an identical parser architecture
on each UD treebank’s respective training split, proxy treebank (for
test-only) or all of UD, our methods significantly outperform their
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best models on five of twelve target treebanks.2 There are significant
increases for both SA-UFAL (16.5 → 23.7 LAS) and KPV-Lattice (11.7 →
22.3 LAS).3 For the targets YUE-HK (32.7 → 49.9 LAS), CKT-HSE (15.3
→ 19.8 LAS) and FO-OFT (62.7 → 68.3 LAS), these scores furthermore
constitute — to the best of our knowledge — state-of-the-art results
without requiring annotated in-language data.

8.6.2 Analysis of Selected Data

Further analyzing the patterns of data selection allows us to identify
some of the reasons behind the differences in performance (visualiza-
tions can be found in Appendix 8.8.4).

RAND closely follows the overall data distribution in UD, selecting
the most instances from the largest treebanks such as German-HDT
(Borges Völker et al., 2019) and selecting none to almost none from low-
resource treebanks. SENT follows a similar distribution albeit rarely
selecting zero instances from any given language. This behaviour does
not change substantially between targets, indicating less targeted data
selection.

While the larger language diversity of the aforementioned RAND

and SENT does not seem to be enough to outperform genre-selection
in most cases, it can be helpful when in-genre data is not as linguis-
tically diverse. For the targets SA-UFAL and MYV-JR (fiction) both
methods outperform genre-based selection by around 2% LAS.

A clear example of insufficient in-genre data is the QHE-HIENCS
target. It represents a highly-specialized variation of the social genre,
specifically Twitter data. Although the genre-based selection methods
correctly identify and cluster the Italian Twitter data from IT-PoSTWITA
(Sanguinetti et al., 2018) and IT-TWITTIRO (Cignarella et al., 2019),
there is a lack of such in-genre data from other languages,4 leading

2We compare against the highest score across all of their proposed models for
each treebank.

3Dehouck and Denis (2019) achieve higher scores using a parsing architecture
with POS and morphological features.

4More non-official Twitter-based treebanks in UD style exist (Sanguinetti et al.,
2020) which were left out of this study as they are not part of UD and contain
annotation divergences.
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Figure 8.3: UD Genres in Embedding Space of (a) untuned mBERT
and (b) genre-tuned BOOT. Sentences from single-genre treebanks
(up to 1k each) colored by genre, plotted using tSNE (van der Maaten
and Hinton, 2008). Tuning using genre as weak supervision clearly
amplifies genre information.

these parsers to overfit on Italian specifically. This once again high-
lights the difficulty of selecting proxy training data which covers all
desired characteristics — even from a dataset as diverse as UD.

In general, the genre-driven methods make fairly similar selections
given their shared baseline pool of treebanks containing the target
genre in-mixture (see Appendix 8.8.4). Since using all of these data
however results in the worst overall performance (META) while BOOT,
GMM and LDA perform best, the targeted selection of relevant sub-
sets within the larger META pool appears to be key. Frequently, large
treebanks such as Polish-LFG (Patejuk and Przepiórkowski, 2018b)
with 14k instances from fiction, news, nonfiction, social and spoken are
subsampled to a much smaller fraction (around 3k instances in this
example). The fact that these proportions as well as the selected in-
stances themselves are relatively consistent across same-genre targets
corroborates that all our methods are picking up on similar, data-
driven notions of genre.

Figure 8.3 further visualizes the presence of latent genre using t-
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SNE plots of up to 1k randomly sampled sentence embeddings from
each of UD’s single-genre treebanks. In their untuned state (Figure
8.3a), some local genre clusters do manifest. However, these mainly
correspond to specialized treebanks such as the aforementioned Ital-
ian Twitter treebanks (social). Most other genres occur in language-
level mixtures or in a large overall “blob” on the left. By amplifying
genre explicitly using the BOOT procedure, each individual genre is
much more clearly segmented (Figure 8.3b).

In conclusion, the presence of similar performance patterns across
all our proposed genre-driven methods — while having separate ap-
proaches to treebank segmentation (weakly supervised tuning for
BOOT, treebank-internal embedding distances for GMM, n-grams
for LDA) — confirms our hypothesis that instance-level genre can
be identified cross-lingually from contextualized representations and
aids zero-shot parsing.

8.7 Conclusions

In absence of in-language training data, we have explored UD-
specified genre as an alternative signal for data selection. While prior
work had indicated the presence of genre information in monolin-
gual contextualized embeddings (Aharoni and Goldberg, 2020), an
analogous strategy using mBERT embeddings proved insufficient in
the cross-lingual parsing setting (SEN), performing close to the ran-
dom baseline (RAND). Relying on manual, treebank-level genre labels
(META) proved even less performant, producing the lowest scores de-
spite corresponding to a practitioner’s typical first choice of selecting
the largest number of training instances.

In order to enable finer-grained, instance-level data selection, we
proposed three methods for combining latent genre information in the
unsupervised contextualized representations with the treebank meta-
data: weakly supervised BOOT, sentence embedding-based GMM and
n-gram-based LDA. Despite their different approaches to treebank
segmentation, each method significantly outperformed the purely
embedding-based SENT as well as the metadata (META) and random
baselines (RAND). Their similar performance patterns and selected
data distributions further indicate that each method is identifying a
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shared, data-driven notion of genre.
For future work, it will be important to extend our proposed ap-

proaches beyond single-genre targets towards genre-mixtures and
more treebanks overall. As the data selected by these methods is
further limited by the number of treebanks in each respective genre,
combining a larger set of selection signals will be equally crucial.

8.8 Appendix

8.8.1 Universal Dependencies Setup

All experiments make use of Universal Dependencies v2.7 (Zeman
et al., 2021; UD). From the total set of 183 treebanks, we use all except
for the following six (due to licensing restrictions): AR-NYUAD, EN-
ESL, EN-GUMReddit, FR-FTB, JA-BCCWJ, GUN-Dooley. In total 1.38
million sentences are used in our experiments.

Target Treebanks As listed in the main paper, our target treebanks
are Swedish Sign Language-SSLC (Östling et al., 2017), Sanskrit-UFAL
(Dwivedi and Easha, 2017), Komi Zyrian-Lattice (Partanen et al., 2018),
Tamil-TTB (Ramasamy and Žabokrtský, 2012), Galician-TreeGal (Gar-
cia, 2016), Cantonese-HK (Wong et al., 2017), Chukchi-HSE (Tyers
and Mishchenkova, 2020), Faroese-OFT (Tyers et al., 2018), Telugu-
MTG (Rama and Vajjala, 2017), Erzya-JR (Rueter and Tyers, 2018),
Hindi-English-HIENCS (Bhat et al., 2018) and Turkish-German-SAGT
(Çetinoğlu and Çöltekin, 2019).

Development Data For the initial tuning of LDA input features as
well as the bootstrapping threshold, we used the only five treebanks
with development data: SWL-SSLC, TA-TTB, TE-MTG, QHE-HIENCS,
QTD-SAGT.

For the early stopping of parser training, no such in-language val-
idation data is used (to ensure a pure zero-shot setup). Instead, the
data selected by each selection method is split in an 80%/20% fashion
and is used as a proxy, out-of-language development split.

Similarly, the training of the bootstrapping classifier (BOOT) uses
only the non-target-language portion of UD (i.e. excluding all tree-
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banks of the 12 target languages plus constituent languages for code-
switched). For efficiency reasons, this data is further subsampled
to 40k total instances. Both the training and validation (used for
early stopping) of BOOT are therefore similarly conducted without
any target-language data.

Subsets Since data selection is at the core of this research, the exact
instance IDs of each subset are available in the supplementary code.

8.8.2 Model and Training Details

The following describes architecture and training details for all meth-
ods. When not further defined, default hyperparameters are used.
Implementations are available in the supplementary code.

Infrastructure Neural models are trained on an NVIDIA A100 GPU
with 40 GB of VRAM. Since most of our experiments do not require
MLM sentence embeddings to be updated, we compute them once
and store them on disk to save GPU cycles.

Multilingual Language Model The MLM used in this work is mBERT
(Devlin et al., 2019) as implemented in the Transformers library (Wolf
et al., 2020)5. Embeddings are of size demb = 768 and the model itself
has 178 million total parameters. To create sentence embeddings in
the SENT and GMM methods, we use the mean-pooled WordPiece
embeddings (Wu et al., 2016) of the final layer.

Clustering Methods Both Gaussian Mixture Models (GMM) and La-
tent Dirichlet Allocation (Blei et al., 2003; LDA) use implementations
from scikit-learn v0.23 (Pedregosa et al., 2011). LDA uses bags of char-
acter 3–6-grams which occur in at least two and in at most 30% of
sentences. The n-gram sizes were initially tuned on target treebanks
with available development sets (see Appendix 8.8.1). We found char-
acter 1–5-grams to perform approximately 2.5 LAS worse and word
unigrams to perform approximately 2 LAS worse than the final method.

5bert-base-multilingual-cased
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GMMs use the mBERT sentence embeddings directly as input. Both
methods are CPU-bound and complete the clustering of all treebanks
in UD in under 45 minutes.

Bootstrapping (BOOT) builds on the standard mBERT architecture
as follows: mBERT → CLS → linear layer (demb ×18) → softmax. The
training has an epoch limit of 100 with early stopping after 3 iterations
without improvements on the development set. No target-language
data is used during this process. An alternate bootstrapping threshold
of 0.9 was evaluated and found to perform approximately 1 LAS worse
on the development subset (see Appendix 8.8.1) than the final value
of 0.99. Backpropagation is performed using AdamW (Loshchilov and
Hutter, 2019) with a learning rate of 10−7 on batches of size 16. The
fine-tuning procedure requires GPU hardware which can host mBERT,
corresponding to 10 GB of VRAM. Training on the subsampled 40k
instance, non-target-language data takes approximately seven hours.

Dependency Parsers Every parsing experiment in the main paper
uses a biaffine attention parser (Dozat and Manning, 2017) imple-
mented in the MaChAmp v0.2 framework (van der Goot et al., 2021b)
using default hyperparameters. The sentence encoder is initialized
with standard mBERT weights. The training duration is foremost de-
pendent on input data quantity. For the largest corpus (META for
TA-TTB with 524k instances) this corresponds to 55 hours. Our pro-
posed methods create smaller, targeted training corpora (around 80k
instances on average) such that a better performing parser can be
trained in approximately 90 minutes on the same hardware.

Random Initializations Each experiment is run thrice using the
seeds 41, 42 and 43. This relates to the random subsampling of data as
well as to model initialization (both parsers and selection).

8.8.3 Additional Results

In addition to the labeled attachment scores (LAS) reported in the main
paper, we list LAS standard deviation across random initializations in
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SETUP SWL SA KPV TA GL YUE CKT FO TE MYV QHE QTD AVG

TARGET 87 3k 132 400 600 — — 1k 1k — 1k 285 839

RAND 31k 81k 84k 249k 244k 30k 30k 50k 21k 86k 12k 30k 79k
SENT 33k 95k 101k 271k 236k 31k 30k 58k 23k 113k 14k 31k 86k

META 62k 274k 274k 524k 523k 62k 62k 125k 35k 274k 57k 61k 194k

BOOT 29k 59k 59k 256k 254k 28k 28k 35k 21k 58k 7k 29k 72k

GMM 33k 95k 101k 271k 236k 31k 30k 58k 23k 113k 14k 31k 86k
LDA 32k 89k 95k 238k 233k 33k 33k 56k 21k 96k 14k 30k 81k

Table 8.3: Training Corpus Sizes (number of selected instances) for
zero-shot parsing experiments from target/proxy in-language tree-
banks (TARGET; where available), random sentence selection (RAND)
and closest sentence selection (SENT), treebanks containing target
genre (META), instances classified as target genre (BOOT), closest clus-
ter selection (GMM and LDA).

Table 8.5, unlabeled attachment scores (UAS) in Table 8.4 as well as
the number of selected training instances per method in Table 8.3.

Predictions We additionally provide the instance-level predictions
of each method and each random initialization as CoNLL-U files in the
supplementary material in order ensure that future work can evaluate
the statistical significance of performance differences.

8.8.4 Data Selection Analysis

Figure 8.4 displays the distribution of selected instances across all
treebanks of UD per target treebank and method. Proportions are
normalized to [0,1] for each method (i.e. across each column). Due to
the large number of cells, we recommend viewing this figure digitally.
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SETUP SWL SA KPV TA GL YUE CKT FO TE MYV QHE QTD AVG

TARGET 40.66 38.74 26.70 75.83 85.51 — — 58.78 91.26 — 73.62 66.75 61.98

RAND 22.81 47.06 25.97 72.14 84.68 49.70 29.39 71.66 83.73 36.88 40.63 58.97 51.97
SENT 24.47 44.98 31.69 71.28 84.63 51.11 31.95 71.92 83.03 41.73 40.19 58.85 52.99

META 24.94 44.62 25.77 72.26 84.26 47.91 22.66 70.54 82.06 36.67 19.83 57.93 49.12

BOOT 24.83 42.00 39.40 73.38 84.19 60.72 35.42 75.21 84.05 39.03 27.59 57.15 53.58

GMM 25.18 44.19 37.77 74.33 84.55 60.61 37.53 77.00 82.89 38.09 26.65 59.52 54.02
LDA 27.42 44.84 40.33 72.93 84.27 60.06 35.68 77.23 84.70 38.78 27.61 58.46 54.36

Table 8.4: Unlabeled Attachment Scores for zero-shot parsing experi-
ments on test splits of target treebanks using training data from from
target/proxy in-language treebanks (TARGET; where available), ran-
dom sentence selection (RAND) and closest sentence selection (SENT),
treebanks containing target genre (META), instances classified as tar-
get genre (BOOT), closest cluster selection (GMM and LDA).

SETUP SWL SA KPV TA GL YUE CKT FO TE MYV QHE QTD AVG

TARGET 0.71 0.54 0.77 1.16 0.24 — — 1.32 0.97 — 0.26 1.10 0.79

RAND 1.60 0.46 0.16 0.72 0.09 1.33 0.89 1.02 0.64 1.09 0.55 0.55 0.76
SENT 2.13 2.00 0.58 1.76 0.18 0.67 0.27 0.63 0.92 0.37 0.37 0.91 0.90

META 0.90 0.75 0.73 1.24 0.27 0.41 1.19 0.82 0.42 0.44 0.44 0.73 0.73

BOOT 0.54 0.85 0.55 1.07 0.27 0.14 0.51 0.92 0.42 0.28 1.08 0.43 0.59

GMM 1.14 1.02 0.75 1.00 0.18 0.28 0.80 1.30 1.35 1.28 0.63 0.47 0.85
LDA 0.74 2.29 0.23 1.96 0.14 0.65 1.32 0.41 0.44 0.81 1.23 0.25 0.87

Table 8.5: Standard Deviations of LAS for zero-shot parsing experi-
ments on test splits of target treebanks using training data from from
target/proxy in-language treebanks (TARGET; where available), ran-
dom sentence selection (RAND) and closest sentence selection (SENT),
treebanks containing target genre (META), instances classified as tar-
get genre (BOOT), closest cluster selection (GMM and LDA).
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Figure 8.4: Selection Proportions per target treebank and data se-
lection method across all of UD. Zero instances were selected from
shaded regions.
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9Subspace Chronicles

The work presented in this chapter is based on the publication: Max
Müller-Eberstein, Rob van der Goot, Barbara Plank, and Ivan Titov.
2023. Subspace chronicles: How linguistic information emerges, shifts
and interacts during language model training. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023, pages 13190–13208,
Singapore. Association for Computational Linguistics.
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Abstract

Representational spaces learned via language modeling are fundamen-
tal to Natural Language Processing (NLP), however there has been lim-
ited understanding regarding how and when during training various
types of linguistic information emerge and interact. Leveraging a novel
information theoretic probing suite, which enables direct comparisons
of not just task performance, but their representational subspaces, we
analyze nine tasks covering syntax, semantics and reasoning, across
2M pre-training steps and five seeds. We identify critical learning
phases across tasks and time, during which subspaces emerge, share
information, and later disentangle to specialize. Across these phases,
syntactic knowledge is acquired rapidly after 0.5% of full training. Con-
tinued performance improvements primarily stem from the acquisi-
tion of open-domain knowledge, while semantics and reasoning tasks
benefit from later boosts to long-range contextualization and higher
specialization. Measuring cross-task similarity further reveals that
linguistically related tasks share information throughout training, and
do so more during the critical phase of learning than before or after.
Our findings have implications for model interpretability, multi-task
learning, and learning from limited data.

9.1 Introduction

Contemporary advances in NLP are built on the representational
power of latent embedding spaces learned by self-supervised language
models (LMs). At their core, these approaches are built on the distri-
butional hypothesis (Harris, 1954; Firth, 1957), for which the effects of
scale have been implicitly and explicitly studied via the community’s
use of increasingly large models and datasets (Teehan et al., 2022; Wei
et al., 2022). The learning dynamics by which these capabilities emerge
during LM pre-training have, however, remained largely understudied.
Understanding how and when the LM training objective begins to
encode information that is relevant to downstream tasks is crucial, as
this informs the limits of what can be learned using current objectives.

For identifying task-relevant information in LMs, probing has be-
come an important tool (Adi et al., 2017; Conneau et al., 2018a; Giu-
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Figure 9.1: Subspace Chronicles via probes θ across LM training time,
as measured by F1, codelength L, and subspace angles across tasks
and time.

lianelli et al., 2018; Rogers et al., 2020), which has already shown
promise for revealing LM learning dynamics (Saphra and Lopez,
2019; Chiang et al., 2020; Liu et al., 2021a). The predominant ap-
proach of quantifying linguistic information via task performance,
however, misses important interactions at the representational level,
i.e., whether actual linguistic information is present at any given train-
ing timestep (Hewitt and Liang, 2019; Voita and Titov, 2020), and how
these representational subspaces change independently of model per-
formance. Furthermore, performance alone does not indicate how
different tasks and their related linguistic information interact with
each other during training, and how much information they actually
share.

By leveraging information-theoretic probes as characterizations
of task-specific subspaces within an LM’s overall embedding space
(Figure 9.1), we aim to answer these questions, and contribute:

• An information theoretic probing suite for extracting not just
performance, but entire task-specific representational sub-
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spaces within an LM’s embedding space, allowing us to measure
changes to linguistic information over time and across tasks
(Section 9.3).1

• A study of task subspace emergence, shifts and interactions
across nine diverse linguistic tasks, 2M pre-training steps and
five random initializations (Section 9.5).

• An analysis of these learning dynamics, which focuses on prac-
tical implications beyond performance to identify what can be
learned given limited data, and how to effectively leverage this
knowledge (Section 9.6).

9.2 Related Work

Although prior work has not specifically focused on the emergence
of representational spaces, but rather on task performance, there has
been an increased interest in the emergent capabilities of LMs. The
community-wide trend of increasing model and dataset size has shown
that certain skills (e.g., arithmetic) are linked to scale (Wei et al., 2022;
Schaeffer et al., 2023), however Teehan et al. (2022) simultaneously
identify a lack of work investigating skill emergence across the training
time dimension.

To promote research in this direction, some projects have released
intermediate training checkpoints. This notably includes MultiBERTs
(Sellam et al., 2022) which studies cross-initialization variation in BERT
(Devlin et al., 2019), as well as Mistral (Mistral, 2022), Pythia (Biderman
et al., 2023) and BLOOM (Scao et al., 2023) which release checkpoints
across training steps, seeds and/or pre-processing procedures.

In seminal work investigating learning dynamics, Saphra and
Lopez (2019) measure how strongly hidden representations of a BiL-
STM LM correlate with parts-of-speech (POS), semantic tags and topic
information. By probing these characteristics across LM training time,
they identify that POS is acquired earlier than topics. For Transformer
models, Chiang et al. (2020) and Liu et al. (2021a) probe intermediate
checkpoints of ALBERT (Lan et al., 2020) and RoBERTa (Zhuang et al.,

1Code at https://github.com/mainlp/subspace-chronicles.
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2021) respectively. They similarly identify that performance on syntac-
tic tasks increases faster than on world knowledge or reasoning tasks,
and that this pattern holds across pre-training corpora from different
domains. This points towards consistent LM learning dynamics, how-
ever using only performance or correlations, it is difficult to interpret
how the representation of this knowledge changes over time as well as
how it overlaps across tasks.

Similar issues have arisen in single-checkpoint probing where
seemingly task-specific information is identified even in random mod-
els, requiring control tasks (Hewitt and Liang, 2019), and causal in-
terventions, such as masking the information required to solve a task
(Lasri et al., 2022; Hanna et al., 2023). By using the rate of a model’s
compression of linguistic information, Voita and Titov (2020) alter-
natively propose an information theoretic measure to quantify the
consistency with which task-relevant knowledge is encoded.

Another limitation of prior learning dynamics work is the inability
to compare similarities across tasks—i.e., whether information is be-
ing shared. Aligned datasets, where the same input is annotated with
different labels, could be used to measure performance differences
across tasks in a more controlled manner, however they are only avail-
able for a limited set of tasks, and do not provide a direct, quantitative
measure of task similarity.

By combining advances in information-theoretic probing with
measures for subspace geometry, we propose a probing suite aimed
at quantifying task-specific linguistic information, which allows for
subspace comparisons across time as well as across tasks, without the
need for aligned datasets.

9.3 Emergent Subspaces

To compare linguistic subspaces over time, we require snapshots of an
LM across its training process (Section 9.3.1), a well-grounded probing
procedure (Section 9.3.2), and measures for comparing the resulting
subspaces (Section 9.3.3).
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9.3.1 Encoders Across Time

For intermediate LM checkpoints, we make use of the 145 models pub-
lished by Sellam et al. (2022) as part of the MultiBERTs project. They
not only cover 2M training steps—double that of the original BERT
(Devlin et al., 2019)—but also cover five seeds, allowing us to verify
findings across multiple initializations. The earliest available trained
checkpoint is at 20k steps. Since our initial experiments showed that
performance on many tasks had already stabilized at this point, we
additionally train and release our own, more granular checkpoints
for the early training stages between step 0–20k, for which we ensure
alignment with the later, official checkpoints (details in Section 9.4.1).

9.3.2 Probing for Subspaces

Shifting our perspective from using a probe to measure task perfor-
mance to the probe itself representing a task-specific subspace is key
to enabling cross-task comparisons. In essence, a probe character-
izes a subspace within which task-relevant information is particularly
salient. For extracting a c-dimensional subspace (with c being the
number of classes in a linguistic task) from the d-dimensional general
LM embedding space, we propose a modified linear probe θ ∈ Rd×c

which learns to interpolate representations across the l LM layers us-
ing a layer weightingα ∈Rl (Tenney et al., 2019a). By training the probe
to classify the data (x, y) ∈D, the resulting θ thus corresponds to the
linear subspace within the overall LM which maximizes task-relevant
information.

To measure the presence of task-specific information encoded by
an LM, it is common to use the accuracy of a probe predicting a related
linguistic property. However, accuracy fails to capture the amount of
effort required by the probe to map the original embeddings into the
task’s label space and achieve the relevant level of performance. Intu-
itively, representations containing consistent and salient task informa-
tion are easier to group by their class, resulting in high performance
while requiring low probe complexity (and/or less training data). Map-
ping random representations with no class-wise consistency to their
labels on the other hand requires more effort, resulting in higher probe
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complexity and requiring more data.
Information-theoretic probing (Voita and Titov, 2020) quantifies

this intuition by incorporating the notion of probe complexity into the
measure of task-relevant information. This is achieved by recasting
the problem of training a probing classifier as learning to transmit all
(x, y) ∈D in as few bits as possible. In other words, it replaces probe
accuracy with codelength L, which is the combination of the probe’s
quality of fit to the data as measured by pθ(y |x) over D, and the cost
of transmitting the probe θ itself.

The variational formulation of information-theoretic probing,
which we use in our work, measures codelength by the bits-back com-
pression algorithm Honkela and Valpola (2004). It is given by the
evidence lower-bound:

L =−Eθ∼β
[ ∑

x,y∈D

log2 pθ(y |x)

]
+KL(β||γ) ,

9.1

where the cost of transmitting the probe corresponds to the
Kullback-Leibler divergence between the posterior distribution of the
probe parameters θ ∼β and a prior γ. The KL divergence term quanti-
fies both the complexity of the probe with respect to the prior, as well
as regularizes the training process towards a probe which achieves
high performance, while being as close to the prior as possible. Fol-
lowing Voita and Titov (2020), we use a sparsity-inducing prior for γ,
such that the resulting θ is as small of a transformation as possible.

In contrast to measuring task information via performance alone,
codelength L allows us to detect how consistently linguistic informa-
tion is encoded by the LM (i.e., the shorter the better). At the same
time, the linear transformation θ becomes an efficient characteriza-
tion of the task-specific representational subspace. To further ground
the amount of learned information against random representations,
we use the probes of the randomly initialized models at checkpoint 0
as control values.
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9.3.3 Subspace Comparisons

As each probe θ characterizes a task-specific subspace within the over-
all embedding space, comparisons between subspaces correspond
to measuring the amount of information relevant to both tasks. To
ensure that the subspaces extracted by our probing procedure are fully
geometrically comparable, they are deliberately linear. Nonetheless,
multiple factors must be considered to ensure accurate comparisons:
First, matrices of the same dimensionality may have different rank,
should one subspace be easier to encode than another. Similarly, one
matrix may simply be a scaled or rotated version of another. Correlat-
ing representations using, e.g., Singular Vector or Projection Weighted
Canonical Correlation Analysis (Raghu et al., 2017; Morcos et al., 2018)
further assumes the underlying inputs to be the same such that only
the effect of representational changes is measured. When comparing
across datasets with different inputs x and different labels y , this is no
longer given.

To fulfill the above requirements, we make use of Principal Sub-
space Angles (SSAs; Knyazev and Argentati, 2002). The measure is
closely related to Grassmann distance (Hamm and Lee, 2008) which
has been used to, e.g., compare low-rank adaptation matrices (Hu
et al., 2022). It allows us to compare task-specific subspaces θ in
their entirety and independently of individual instances, removing
the requirement of matching x across tasks. The distance between
two subspaces θA ∈ Rd×p and θB ∈ Rd×q intuitively corresponds to
the amount of ‘energy’ required to map one to the other. Using the
orthonormal bases Q A = orth(θA) and QB = orth(θB ) of each subspace
to compute the transformation magnitudes M =QT

AQB furthermore
ensures linear invariance. The final distance is obtained by converting
M ’s singular values UΣV T = SVD(M) into angles between 0◦ and 90◦

(i.e., similar/dissimilar):

SSA(A,B) = arccos(diag(Σ)) . 9.2

We use SSAs to quantify the similarity between subspaces of the
same task across time, as well as to compare subspaces of different
tasks.
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9.4 Experiment Setup

9.4.1 Early Pre-training

Model MultiBERTs (Sellam et al., 2022) cover 2M training steps, how-
ever our initial experiments showed that the earliest model at step 20k
already contains close-to-final amounts of information for many tasks
(see Section 9.5). This was even more pronounced for the early check-
points of the larger LMs mentioned in Section 9.2. As such we train our
own early checkpoints starting from the five MultiBERTs initializations
at step 0. By saving 29 additional checkpoints up to step 20k, we aim
to analyze when critical knowledge begins to be acquired during early
training. To verify that trajectories match those of the official check-
points, we train up to step 40k and compare results. Furthermore,
we measure whether the subspace angles between the original and
additional models are within the bounds expected for models sharing
the same random initialization.

Data BERT (Devlin et al., 2019) is reportedly trained on 2.5B tokens
from English Wikipedia (Wikimedia, 2022) and 800M tokens from the
BookCorpus (Zhu et al., 2015). As the exact data are unavailable, Sellam
et al. (2022) use an alternative corpus by Turc et al. (2019), which aims
to reproduce the original pre-training data. Unfortunately, the latter is
also not publicly available. Therefore, we gather a similar corpus using
fully public versions of both corpora from the HuggingFace Dataset
Hub (Lhoest et al., 2021). We further provide scripts to re-create the
exact data ordering, sentence pairing and subword masking to ensure
that both our LMs and future work can use the same data instances in
exactly the same order. Note however that our new checkpoints will
have observed similar, but slightly different data (Appendix 9.8.1).

Training Given the generated data order, the new LMs are trained
according to Sellam et al. (2022), using the masked language modeling
(MLM) and next sentence prediction (NSP) objectives. One update
step consists of a batch with 256 sentence pairs for NSP which have
been shuffled to be 50% correct/incorrect, and within which 15% of
subword tokens (but 80 at most) are masked or replaced. For the
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optimizer, learning rate schedule and dropout, we match the hyperpa-
rameters of the original work (details in Appendix 9.8.2). Even across
five initializations, the environmental impact of these LM training
runs is low, as we re-use the majority of checkpoints from MultiBERTs
beyond step 20k.

Pre-training Results For LM training, we observe a consistent de-
crease in MLM and NSP loss (see Appendix 9.8.3). As our models and
MultiBERTs are not trained on the exact same data, we find that SSAs
between our models and the originals are around 60◦, which is within
the bounds of the angles we observe within the same training run in
Figure 9.4 of Section 9.5.2. This has no effect on our later analyses
which rely on checkpoints from within a training cohort. Surprisingly,
we further find that although these models start from the same initial-
ization, but are trained on different data, they are actually more similar
to each other than models trained on the same data, but with different
seeds. SSAs for checkpoints from the same timestep and training run,
but across different seeds consistently measure >80◦ (Figure 9.13 in
Appendix 9.8.3), highlighting that initial conditions have a stronger ef-
fect on representation learning than minor differences in the training
data. Finally, our experiments in Section 9.5 show that our reproduced
checkpoints align remarkably well with the official checkpoints, and
we observe a continuation of this trajectory for the overlapping models
between steps 20k and 40k.

9.4.2 Probing Suite

Given the 29 original MultiBERTs in addition to our own 29 early check-
points, both covering five initializations, we analyze a total of 290 mod-
els using the methodology from Section 9.3. In order to cover a broad
range of tasks across the linguistic hierarchy, we extract subspaces
from nine datasets analyzing the following characteristics: parts-of-
speech (POS), named entities (NER) and coreference (COREF) from
OntoNotes 5.0 (Pradhan et al., 2013), syntactic dependencies (DEP)
from the English Web Treebank (Silveira et al., 2014), semantic tags
(SEM) from the Parallel Meaning Bank (Abzianidze et al., 2017), TOPIC

from the 20 Newsgroups corpus (Lang, 1995), sentiment (SENTI) from

166



Chapter 9 | Subspace Chronicles

the binarized Stanford Sentiment Treebank (Socher et al., 2013), extrac-
tive question answering (QA) from the Stanford Question Answering
Dataset (Rajpurkar et al., 2016), and natural language inference (NLI)
from the Stanford Natural Language Inference Dataset (Bowman et al.,
2015). Each task is probed and evaluated at the token-level (Saphra
and Lopez, 2019) to measure the amount of task-relevant information
within each contextualized embedding. In Appendix 9.8.1 we further
provide dataset and pre-processing details.

For each task, we train an information theoretic probe for a max-
imum of 30 epochs using the hyperparameters from Voita and Titov
(2020). This results in 2,610 total probing runs for which we measure
subword-level macro-F1, and that, more importantly, yield task sub-
spaces for which we measure codelength, layer weights, and SSAs
across tasks and time (setup details in Appendix 9.8.2).

9.5 Results

Across the 2,610 probing runs, we analyze subspace emergence (Sec-
tion 9.5.1), shifts (Section 9.5.2), and their interactions across tasks
(Section 9.5.3). In the following figures, results are split between the
official MultiBERTs and our own early pre-training checkpoints, which,
as mentioned in Section 9.4.1, follow an overlapping and consistent
trajectory, and have high representational similarity. Standard devia-
tions are reported across random initializations, where we generally
observe only minor differences in terms of performance.

9.5.1 Subspace Emergence

Starting from macro-F1 performance, Figure 9.2 shows clear learn-
ing phases with a steep increase between 1k and 10k update steps,
followed by shallower growth until the end. Within subsets of tasks,
we observe subtle differences: POS and TOPIC appear to converge
(i.e., >90% of final F1) within the 10k range. SEM follows a similar
pattern, but has higher variance due to its many smaller classes. DEP

and COREF, also gain most in the 1k–10k phase, but continue to slowly
climb until converging later at around 100k steps. NER shares this slow
incline and sees a continued increase even after 100k steps. SENTI
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Figure 9.2: F1 (macro) over LM Training Time on each task’s dev split
(standard deviation across seeds). Dark/light shaded areas indicate
95%/90% of maximum performance. Reproduced checkpoints until
19k, MultiBERTs from 20k to 2M steps.

and NLI also have early growth and see another small boost after 100k
steps which the other tasks do not. Finally, QA also improves after 100k
steps, however results are mostly around the 50% random baseline, as
the linear probe is unable to solve this more complex task accurately.
These results already suggest task groupings with different learning
dynamics, however with F1 alone, it is difficult to understand inter-
actions of the underlying linguistic knowledge. Furthermore, even
the random models at step 0 reach non-trivial scores (e.g., POS and
COREF with >60% F1), as probes likely memorize random, but persis-
tent, non-contextualized embeddings similarly to a majority baseline.
This highlights the challenge of isolating task-specific knowledge using
performance alone.

Turning to codelength in Figure 9.3, we measure the actual amount
of learned information as grounded by the level of compression with
respect to the random intialization. This measure confirms the dynam-
ics from the performance graphs, however subspaces also continue
changing to a larger degree than their performance counterparts sug-
gest. Even after the 10k step critical learning phase POS information
continues to be compressed more efficiently despite F1 convergence.
In addition, codelength provides more nuance for COREF, QA and
NLI, which see little performance gains, but for which subspaces are
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Figure 9.3: Codelength Ratio over LM Training Time as percentage
of bits required to encode model and data with respect to the random
model (standard deviation across seeds). Lower codelength corre-
sponds to higher compression and more task-relevant information.

continuously changing and improving in terms of compression rate.

9.5.2 Representational Shifts

Both performance and codelength indicate distinct learning phases
as well as continual changes to linguistic subspaces. Figure 9.4 plots
these shifts by measuring subspace shifts as a function of SSAs from
one timestep to the next. We observe particularly large updates after
the first 100 steps, followed by smaller changes until the beginning
of the steep learning phase at around 1k steps. During the large im-
provements between 1k and 10k steps, subspaces shift at a steady rate
of around 45◦, followed by a decrease to 5–20◦ at the end of training.
Once again, subspaces are shifting across the entire training process
despite F1 suggesting otherwise. Note that while learning rate schedul-
ing can have effects on the degree of change, SSAs do not strictly
adhere to it, exhibiting larger differences while the learning rate is low
and vice versa. Figure 9.13 in Appendix 9.8.3 additionally shows how
SSAs across checkpoints at the same timestep, but across different
random seeds are consistently greater than 80◦, indicating high dis-
similarity. Compared to models starting from the same initialization,
even if trained on slightly different data (i.e., reproduced and origi-
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Figure 9.4: Step-wise SSAs between Probes indicating the degree of
subspace change per update (standard deviation across seeds). Sub-
spaces between original and reproduced checkpoints at step 20k are
not comparable.

nal), these angles indicate task subspaces’ higher sensitivity to initial
representational conditions than to training data differences.

Another important dimension for subspaces in Transformer-based
LMs is layer depth. We plot layer weighting across time in Figure 9.5
using the center of gravity (COG) measure from Tenney et al. (2019a),
defined as

∑l
i=0αi i . It summarizes the depth at which the probe finds

the most salient amounts of task-relevant information. Appendix 9.8.3
further shows the full layer-wise weights across time in greater de-
tail. These weightings shed further light onto the underlying subspace
shifts which surface in the other measures. Note that while SSAs across
random initializations were large, variability of COG is low. This in-
dicates that the layer depth at which task information is most salient
can be consistent, while the way it is represented within the layers can
vary substantially.

COG at step 0 essentially corresponds to the contextualization level
of a task; memorizing non-contextualized embeddings at layer 0 or
leveraging some random, but consistent mixing in the later layers.
At the start of learning between 100 and 1k steps, all task subspaces
dip into the lower half of the model. Together with the previously ob-
served high initial subspace shift, this indicates that, beginning from
the non-contextual embeddings in layer 0, contextualization becomes
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Figure 9.5: Center of Gravity over Layers measured following Ten-
ney et al. (2019a), across LM training time (standard deviation across
seeds). For detailed weightings of all layers, refer to Appendix 9.8.3.

increasingly useful from the bottom up. Paralleling the steep improve-
ments of the other measures, COG similarly climbs up throughout
the model until the end of the critical learning phase in the 10k range.
Until 500k steps, the layers for different tasks disentangle and stabi-
lize. At this point syntactic and lower-level semantic tasks converge
towards the middle layers. This specialization is especially prominent
for TOPIC moving to the lower layers, while SENTI and NLI (and to a
lesser degree QA), which require more complex intra-sentence inter-
actions, move towards the higher layers. Recall that codelength and
performance for SENTI, NLI and QA also improve around the same
time. These dynamics show that the ‘traditional NLP pipeline’ in LMs
(Tenney et al., 2019a) actually emerges quite late, and that tasks appear
to share layers for a large duration of LM training before specializing
later on. Given that LMs are frequently undertrained (Hoffmann et al.,
2022), these continual shifts to task-specific subspaces highlight that
probing single checkpoints from specific timesteps may miss impor-
tant dynamics regarding how tasks are represented with respect to
each other.
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Figure 9.6: Subspace Angles across Tasks at start, end and at each or-
der of magnitude of LM training time. Large angles (darker) and small
angles (lighter) correspond to low and high similarity respectively.

9.5.3 Cross-task Interactions

The previous measures suggest that tasks could be grouped based
on their shared learning dynamics. Our subspace-based approach
for measuring cross-task SSAs (Figure 9.6) allows us to quantify this
intuition. Comparing how much the subspaces of different tasks over-
lap provides a more holistic picture of task-relatedness than relying
on specific data instances, and further shows how these similarities
change over the duration of training.

Overall, angles between tasks follow linguistic intuitions: the
syntax-related POS and DEP subspaces span highly similar regions
in the general representational space. COREF, at least initially, also
exhibits high similarity to the syntactic tasks, likely exploiting the
same features to resolve, e.g., pronominal matches. The NER subspace
overlaps with POS and SEM, but less with DEP, potentially focusing
on entity-level information, but less on the functional relationships
between them. QA, NLI, and later SENTI, also share parts of their
subspaces, while TOPIC is more distinct, having more overlap with
the token-level NER and SEM tasks. While these patterns are already
present at step 0, they become more pronounced during the early
stages from 10k to 100k steps, and then become weaker towards the
end as the subspaces disentangle and specialize within the model.
Overall, subspaces appear to be related in a linguistically intuitive way,
sharing more information during the critical learning phase, followed
by later specialization.

These learning phases suggest that introducing linguistically moti-
vated inductive biases into the model may be most beneficial during
the early critical learning phase, rather than at the end, after which
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subspaces have specialized. This is an important consideration for
multi-task learning, where the prevalent approach is to train on related
tasks after the underlying LM has already converged. As it is also often
unclear which tasks would be beneficial to jointly train on given a tar-
get task, our subspace-based approach to quantifying task similarity
could provide a more empirically grounded relatedness measure than
linguistic intuition.

9.6 Practical Implications

Based on these learning dynamics, we next analyze their impact on
downstream applications. As the previous results suggest, around 10k–
100k steps already suffice to achieve the highest information gains for
most tasks and reach close to 90% of final codelength and probing
performance. At the same time, performance and subspaces continue
changing throughout training, even if to a lesser degree. In order to
understand what is being learned in these later stages, we analyze finer-
grained probe performance (Section 9.6.1), whether these dynamics
are domain-specific (Section 9.6.2), and what effects they have on full
fine-tuning (Section 9.6.3).

9.6.1 Class-wise Probing

First, we take a closer look at what is being learned during later LM
training via class-wise F1. For POS (Figure 9.7a), most classes follow
the general learning dynamics observed in Section 9.5, with no larger
changes occurring beyond 10k steps. One outlier is the NOUN category,
which continues to increase in performance while the other classes
converge. Similarly for NER (Figure 9.7b), we observe that most classes
stagnate beyond 10k steps, but that events (EVENT), products (PROD),
and especially persons (PERSON) and organizations (ORG), see larger
performance gains later on. What sets these classes apart from, e.g.,
determiners (DET) and pronouns (PRON), as well as times (TIME) and
numbers (NUM), is that they represent open-domain knowledge. Per-
formance on these classes likely improves as the LM observes more
entities and learns to represent them better, while the closed classes
are acquired and stabilize early on.
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Figure 9.7: Class-wise F1 over LM Training Time for POS, NER and
DEP as measured on each task’s dev split (standard deviation across
seeds). For readability, classes are grouped according to Appendix
9.8.1.
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Figure 9.8: OOD F1 (macro) over LM Training Time with dark/light
areas indicating 95%/90% of maximum performance (standard devia-
tion across seeds).

Turning to DEP, we observe similar continued improvements for,
e.g., nominal relations, while functional has already converged. In
addition, these class-wise dynamics further reveal that clausal re-
lationships converge later than other relations, towards 100k steps.
At the same time, modifier relations also see stronger gains starting
at 100k steps. Both coincide with the performance and codelength
improvements of QA, NLI and especially SENTI, as well as with the
layer depth and subspace specializations. We hypothesize that this is
another learning phase during which the existing lower-level syntactic
knowledge is embedded in better long-range contextualization.

9.6.2 Domain Specificity

Next, we investigate whether the previous findings hold across do-
mains, and whether LM training duration has an effect on cross-
domain transferability by gathering out-of-domain (OOD) evaluation
sets for five of the tasks. For POS, NER and COREF, we split OntoNotes
5.0 (Pradhan et al., 2013) into documents from nw (newswire), bn
(broadcast news), mg (magazines) for in-domain training, and bc
(broadcast conversations), tc (telephone conversations), wd (web
data) for OOD evaluation, based on the assumption that these sets
are the most distinct from each other. In addition, we use English
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Figure 9.9: F1 (macro) after Full Fine-tuning of LMs initialized from
checkpoints across LM pre-training time, as measured on each task’s
dev split (standard deviation across seeds too small to plot). Altered
score range for readability.

Tweebank v2 (Liu et al., 2018) for DEP, and TweetEval (Rosenthal et al.,
2017) for SENTI. The learning dynamics in Figure 9.8 show that transfer
scores are generally lower, but that previously observed trends such as
the steep learning phase between 1k and 10k steps, and NER’s steeper
incline compared to POS and DEP continue to hold. SENTI sees an
overall greater F1 increase given more training than in the in-domain
case. From this view, there are however no obvious phases during
which only OOD performance increases. Instead, the OOD tasks seem
to benefit from the same types of information as the in-domain tasks.

9.6.3 Full Fine-tuning

Finally, in terms of downstream applicability, we evaluate the effect of
pre-training duration on fully fine-tuned model performance. Due to
the higher computational cost, we conduct a sweep over a subset of
checkpoints for which the probing experiments indicated distinctive
characteristics: Starting from scratch at 0 steps, at 1k steps before the
critical learning phase begins, at 5k steps around the steepest incline,
at 20k after most growth plateaus, and at the final 2M step checkpoint
(training details in Appendix 9.8.2). The results in Figure 9.9 show
generally higher performance than for probing, as is to be expected.
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Figure 9.10: OOD F1 (macro) after Full Fine-tuning of LMs initialized
from checkpoints across LM pre-training time, as measured on each
task’s dev split (standard deviation across seeds too small to plot).

Interestingly, for the majority of tasks, full fine-tuning follows the
same learning dynamics as probing suggests—exhibiting the greatest
improvements in the 1k–20k range.

While performance for most tasks is within the 90–95% range at
20k steps, starting full fine-tuning from the point of steepest infor-
mation gain at 5k steps does not seem to suffice to reach this target.
Pre-training beyond 10k steps therefore seems crucial in order for
the LM encoder to become beneficial. While it is possible to reach
final performance on POS starting from a random encoder, even the
similarly syntactic DEP sees substantial improvements up to the last
pre-training step, likely connected to the improvement in longer-range
contextualization observed in Section 9.6.1. Similar patterns can be
observed for the other tasks, and especially for QA which only reaches
usable performance beyond 20k steps. In terms of out-of-domain
generalization for full fine-tuning, Figure 9.10 shows that continued
pre-training does increase OOD performance, especially for more
complex tasks. As such, LM pre-training, in combination with full fine-
tuning, appears to be beneficial starting at around 10k steps for most
traditional NLP tasks, followed by slower, but continued increases
thereafter. As 10k updates constitute only 0.5% of full training, or 133M
observed subword tokens, mid-resource languages may still benefit
from language-specific, pre-trained LM encoders, even without access
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to English-level amounts of data. For example, within the multilingual
OSCAR corpus (Ortiz Suárez et al., 2020), at least 60 languages (∼40%)
reach this threshold.

9.7 Conclusion

Our subspace-based approach to analyzing linguistic information
across LM training has yielded deeper insights into their learning dy-
namics: In addition to the critical learning phase from 1k–10k steps,
indicated by probing (Section 9.5.1) and fully fine-tuned performance
(Section 9.6.3), our information theoretic approach identifies how lin-
guistic subspaces continue changing, even if performance suggests
otherwise (Section 9.5.2). For interpretability studies using single-
checkpoint probing, this is crucial, as the information identified from
a model may not be representative of final subspaces, especially if
the model is undertrained (Hoffmann et al., 2022). Leveraging probes
as characterizations of task-specific subspaces further allows us to
quantify cross-task similarity, and surfaces how information is shared
according to a linguistically intuitive hierarchy. This is particularly
prominent during the critical learning phase, followed by later special-
ization, as more open-domain knowledge is acquired and the contextu-
alization ability of the encoder improves. For multi-task learning, these
dynamics imply that information sharing may be most effective early
on, but more difficult after subspaces have specialized (Section 9.5.3).
Finally, our analyses of OOD and full fine-tuning corroborate the pre-
vious learning dynamics (Section 9.6), showing that mid-resource
languages could still benefit from pre-trained LM encoders at a frac-
tion of the full fine-tuning costs, while simultaneously highlighting
which information gains (i.e., open-domain, reasoning) require larger
amounts of data.

Limitations

Despite aiming for a high level of granularity, there are certain insights
for which we lack compute and/or training statistics. Obtaining the
highest resolution would require storing instance-level, second-order
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gradients during LM training, in order to identify how each data point
influences the model (similarly to Achille et al., 2019). Neither our
study, nor other checkpoint releases contain this information, however
we release intermediate optimizer states from our own LM training to
enable future studies at the gradient-level.

Another consideration is the complexity of our probes. To enable
cross-task comparisons, we deliberately restricted our probes to lin-
ear models, as any non-linearities make it difficult to apply subspace
comparison measures. As such they may not be able to capture more
complex information, such as for QA and NLI. By using information
theoretic probing, we are able to observe that task-relevant informa-
tion is still being learned, albeit to a lower degree than for the other
tasks. To nonetheless measure codelength for these more complex
tasks, the same variational framework could be applied to non-linear
models (Voita and Titov, 2020), however the resulting subspaces would
also be non-linear, negatively impacting comparability.

As MultiBERTs forms our underlying LM architecture, more re-
search is needed to verify whether the observed dynamics hold for
larger, autoregressive LMs. While we believe that these larger models
likely follow similar learning dynamics, extracting comparable sub-
spaces will be even more difficult as scale increases. In initial experi-
ments, we investigated checkpoints of the LLMs listed in Section 9.2,
however similarly finding that performance had already converged at
the earliest available checkpoint. Furthermore, checkpoints lacked
information regarding how much data, i.e., subword tokens, had been
observed at each step.

Finally, we would like to highlight that this study is correlatory,
and that practitioners interested in a particular task should verify its
specific learning dynamics by training LMs with targeted interventions
(e.g., Lasri et al., 2022; Chen et al., 2024; Hanna et al., 2023). For this
work, such interventions would have been out of scope, as we aim for
wide task coverage to analyze interactions between them. Nonetheless,
we hope that our findings on these learning dynamics can inform
future task-specific studies of this type.
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Broader Impact

As this study examines the learning dynamics of LM representational
spaces, its findings have wider downstream implications. Here, we
specifically focus on three: First, for model interpretability, we identi-
fied that single-checkpoint probing does not provide the full picture
with respect to how task-specific representations may change over
time (e.g., layer depth in Section 9.5.2). This is critical when probing
for sensitive information in LMs (e.g., bias), as representations may
shift substantially, decreasing the effectiveness of interventions such
as null-space projection (Ravfogel et al., 2020).

Second, we see a potential for multi-task learning to benefit from
a better understanding of cross-task learning dynamics. Often it is
unclear which task combinations boost/degrade each others’ perfor-
mance and what the underlying reasons are. Our findings suggest that
similarities of task subspaces generally follow linguistic intuitions, but
that there are distinct phases during which they share more or less
information. Later specialization appears to be particularly important
for more context-sensitive tasks, but may also make multi-task training
more difficult, as tasks share less information at this stage. A ques-
tion for future work may therefore be whether early-stage multi-task
learning could lead to better downstream performance.

Third, for learning from limited data, this work identifies dis-
tinct phases during which different types of linguistic information
are learned, as well as what their effects on fully fine-tuned and OOD
performance are. We especially hope that the early acquisition of large
amounts of information relevant for many traditional NLP tasks, en-
courages practitioners to revisit training encoders for under-resourced
languages, despite the current trend towards larger models.
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9.8 Appendix

9.8.1 Data Setup

Language Modeling

BookCorpus (Zhu et al., 2015) was originally collected to train a
sentence embedding model for aligning passages in books to scenes
in their movie adaptations. It reportedly contains around 11k books
in 16 genres, both stemming from the public domain as well as more
contemporary works. In total, the corpus contains 74M pre-tokenized
sentences. In our experiments, we use the public version from the
HuggingFace Dataset Hub (Lhoest et al., 2021) which is available as
bookcorpus.

English Wikipedia (Wikimedia, 2022) was used for training both
original BERT (Devlin et al., 2019) as well as MultiBERTs (Sellam
et al., 2022), however neither the version used, nor the pre-processing
steps have been reported. In our experiments, we make use of the
20220301.en split of the wikipedia dataset from the HuggingFace
Dataset Hub (Lhoest et al., 2021). It is available in a format where
Wikipedia-specific markup has been removed, and each instance cor-
responds to the full text of an article. We further split these 6.5M
articles into 144M sentences using spaCy v3.5.2 (Montani et al., 2023)
and its en_core_web pre-processing pipeline.

Pre-training Corpus The final LM pre-training corpus consists of
109M sentence pairs from BookCorpus and Wikipedia, which are shuf-
fled to be consecutive or randomly combined 50% of the time. They
contain a total of 5.7B subword tokens of which 15% (and 80 at most)
are replaced with a special [MASK] or another random token from the
vocabulary. In practice, this results in 801M masked tokens, or 14.07%
of the training data.

Probing

OntoNotes 5.0 (Pradhan et al., 2013) contains documents from six
domains, which we split into an in-domain and out-of-domain set for
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our analysis in Section 9.6.2. Each sentence is annotated with multiple
layers of which we use: parts-of-speech (POS), named entities (NER),
and coreference (COREF). It is split into 115,812 train, 15,680 dev, and
12,217 test instances.

POS follows the Penn Treebank schema (Marcus et al., 1993) with 51
classes. The class-wise analysis in Section 9.6.1 uses a mapping from
this labeling scheme to the Universal Part-of-Speech tagset (Petrov
et al., 2012).

NER covers 18 entity types which are labeled using a BIO schema.
For grouping these entities, we create the following custom mapping:

• EVENT: EVENT;

• LANG: LANGUAGE;

• LOC: GPE, LOC, NORP;

• NUM: CARDINAL, DATE, MONEY, ORDINAL, PERCENT, QUANTITY;

• ORG: ORG, FAC;

• PERSON: PERSON;

• PROD: PRODUCT; WORK_OF_ART, LAW;

• TIME: TIME.

COREF is built by extracting sentences with self-contained corefer-
ences. The coreferring tokens are labeled as I, while all other tokens
are labeled as O.

English Web Treebank (Silveira et al., 2014) contains syntactic de-
pendencies (DEP) from 36 classes. To linearize the task, each token
is labeled with the relation to its head word. For grouping the depen-
dency relations, we use the nine categories from the official Universal
Dependencies taxonomy (de Marneffe et al., 2014). The dataset con-
sists of 12,543 train, 2,001 dev, and 2,077 test instances.
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English Tweebank v2 (Liu et al., 2018) constitutes the OOD setup
for DEP—specifically Twitter data. It adheres to the same Universal
Dependencies relation label set as EWT, and consists of 1,639 (unused)
train, 710 dev, and 1,201 test instances.

Parallel Meaning Bank (Abzianidze et al., 2017) contains three se-
mantic annotation layers, of which we use the Universal Semantic
Tags (SEM; Abzianidze and Bos, 2017). They denote 69 cross-lingual,
lexical semantic categories at the token level. For grouping these tags,
we combine the taxonomies of (Bjerva et al., 2016) and (Abzianidze
et al., 2017) into 14 higher-level categories. The dataset consists of
7,745 train, 1,174 dev, and 1,053 test instances.

20 Newsgroups (Lang, 1995) contains email threads from 20 mailing
lists, grouped by their TOPIC. Our experiments use the bydate-version
which is sorted by date and removes duplicate entries and email head-
ers containing the topic title. As the official data does not contain a
dev split, we subdivide the training data, resulting in 9,051 train, 2,263
dev, and 7,532 test instance.

Stanford Sentiment Treebank (Socher et al., 2013) contains movie
reviews along with their constituency parses and SENTI labels. We
use the binarized SST-2 version with positive/negative labels. The
dataset consists of 67,349 train, 872 dev, and 1,821 test instances.

TweetEval (Rosenthal et al., 2017) consitutes the OOD setup for
SENTI. It contains seven annotation layers on Twitter data. We use
the general sentiment labels and binarize them to match SST-2. The
dataset consists of 45,615 (unused) train, 2,000 dev, and 12,284 test
instances.

Stanford Question Answering Dataset (Rajpurkar et al., 2016) con-
tains user-generated questions for which answer passages can be
found in the corresponding Wikipedia articles, i.e., extractive question
answering (QA). In our experiments, a question forms the first input
sequence to the model, followed by a separator [SEP] token, and the
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relevant Wikipedia passage. Tokens within the answer passage are
labeled as I, while everything else is O. The dataset consists of 87,599
train, and 10,570 dev instances.

Stanford Natural Language Inference Dataset (Bowman et al., 2015)
contains premise-hypothesis pairs for natural language inference
(NLI). Given a sentence pair, separated by [SEP], the task is to
predict whether the relation of the two inputs is an entailment,
contradiction, or neutral. The dataset consists of 550,152 train,
10,000 dev, and 10,000 test instances.

9.8.2 Experimental Setup

Language Modeling

Architecture The LM architecture used in our experiments is
MultiBERTs (Sellam et al., 2022), which follows BERTbase (Devlin
et al., 2019), i.e., 12 layers with d = 768. We use the check-
points published on HuggingFace Hub (Wolf et al., 2020) under
google/multiberts-seed_[0-4]- step_[0-2000k]. For our own
early checkpoints, we start from step_0 of each respective seed and
train on the same data in the same order. From this training run, we
store checkpoints and optimizer states at steps 10, 100–1,000 in in-
crements of 100, 1,000–20,000 in increments of 1,000, and 40,000 for
overlap comparisons, resulting in 29 additional models per initializa-
tion.

Training The LM training procedure for our own early checkpoints
follows Sellam et al. (2022) as closely as possible. We use the AdamW
optimizer (Loshchilov and Hutter, 2019) with a 10−4 learning rate, β1

= 0.9, β2 = 0.999 and a 10−2 weight decay. The learning rate is coupled
to a polynomial schedule with a 104 step warm-up and consequent
decay until the end. Each batch contains 256 sentence pairs with a
maximum length of 512 subword tokens. The model is trained to fill
in masked tokens (MLM) using a language modeling head, as well as
to predict whether one sentence follows another (NSP) based on the
[CLS] token and a separate linear classification head.
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Probing

Architecture Each probe receives embeddings {h0, . . . ,hl } ∈Rd from
all l layers (including the non-contextualized layer 0) as input, and
summarizes them into a learned weighted average using α ∈Rl follow-
ing (Tenney et al., 2019a). This representation h′ =∑l

i=0αi hi is then
multiplied by a linear transformation θ ∈ Rd×c to produce logits for
the c output classes. Following the variational MDL formulation of
Voita and Titov (2020), each parameter w in θ is drawn from a normal
distribution w ∼N (zµ, z2σ2) with learned mean µ and variance σ2,
both scaled by z. There is one z per input dimension d , which is is
also drawn from a normal distribution z ∼ N (µz ,σ2

z) with its own
learned mean µz and variance σ2

z . During training this process is
made differentiable using the reparametrization trick (Kingma et al.,
2015). Each w and z pair is coupled to a joint normal-Jeffreys prior
γ(w, z) ∝ 1

|z|N (w |0, z2), according to Figueiredo (2001) and Louizos
et al. (2017). It induces sparsity in θ by encouraging values of w which
are close to zero and have low variance. While the probe could theo-
retically be made more complex (i.e., non-linear), we specifically use a
linear model in order to enable geometric comparisons between the
resulting subspaces.

Training Both α and θ are jointly optimized by minimizing cross-
entropy between predictions and gold labels. In addition, the KL
divergence between θ’s posterior β and its sparsity inducing prior γ
are minimized according to Equation 9.1 to ensure maximum com-
pression of both the data and the probe itself. Following (Voita and
Titov, 2020), we use the Adam optimizer (Kingma and Ba, 2014) with a
10−3 learning rate, β1 = 0.9, β2 = 0.999 and 0 weight decay. Probes are
trained with a batch size of 64 for a maximum of 30 epochs, and with
early stopping on the development data if losses do not decrease.

Evaluation Following Saphra and Lopez (2019), we probe for task-
specific information at the subword-level, meaning that for token-level
tasks each token label is repeated across all of its constituent subwords,
while for sequence-level tasks, the sequence label is repeated across
all subwords. This corresponds to identifying task-specific informa-
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tion that is consistent across all contextualized embeddings within a
sequence. To evaluate performance, we use macro-F1, as it is easier to
interpret overall class-wise performance in-spite of class imbalances.
E.g., NER and QA have a high number of O labels which are classified
correctly with above 95% F1. With micro-F1, performance would ap-
pear unreasonably high, even if no named entities or answers would
be identified.

Full Fine-tuning

Architecture For the full fine-tuning experiments in Section 9.6.3,
we train all parameters in the LM encoders from steps 0, 1k, 5k, 20k
and 2M. For token-level tasks, we add a linear layer on top of the
final contextualized embedding layer, while for sequence-level tasks,
a linear layer is fed each input sequence’s [CLS] token. These linear
classification heads have the same dimensionality as the linear probes,
but are not sampled variationally.

Training The fully fine-tuned models are trained using cross-entropy
loss. Based on the recommendations in Devlin et al. (2019), we set
the learning rate of the Adam optimizer (Kingma and Ba, 2014) to
3×10−5, and retain the other hyperparameters. Models are trained
for a maximum of 30 epochs, with early stopping on the development
data when the loss stagnates.

Implementation

Implementations use PyTorch v1.13 (Paszke et al., 2019) and NumPy
v1.24 (Harris et al., 2020). Visualizations use matplotlib v3.6 (Hunter,
2007). Models were trained on an NVIDIA A100 GPU with 40GBs
of VRAM and an AMD Epyc 7662 CPU. Probe training takes 10–60
minutes per checkpoint, dependent on the size of the dataset. Data
pre-processing for language modeling (i.e., sentence splitting, tok-
enization, sampling and masking) takes 160 hours for the full dataset.
The LM training process itself takes around 50 hours for 40k steps.
The random seeds used in our experiments follow MultiBERTs (Sellam
et al., 2022) and are: 0, 1, 2, 3, 4. Further, the code for reproducing
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Figure 9.11: Number of Subword Tokens Observed during LM training,
following the trajectory of our re-created dataset, plus the estimated
upper/lower bounds for prior work.

our experiments is available at https://github.com/mainlp/subspace-
chronicles.

9.8.3 Additional Results

Language Modeling

Figure 9.11 plots the number of subword tokens observed by the LM
over the course of training. While this corresponds to the statistics of
our re-created LM training corpus, the fact that the curve lies exactly
between the feasible upper and lower-bounds given batch size and
minimum/maximum subword tokens per sequence, we estimate that
the original models also followed this trajectory.

For our LM training runs from step 0 to 40k, Figure 9.12 shows
how NSP and especially MLM losses start decreasing already after 100
pre-training steps. In general, losses on the actual LM pre-training
tasks appears to decrease earlier by one order of magnitude, before
probing performance and codelength improve.

Across LM training, task subspaces extracted at the same timestep,
but across different seeds, are close to orthogonal to each other, as
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Figure 9.12: MLM and NSP Losses during the pre-training procedure
described in Section 9.4.1, as measured for each batch from step 0 to
40k. Checkpoints, training statistics and optimizer states released on
publication.
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Figure 9.13: SSAs across Random Initializations for task-wise probes
at each timestep (standard deviation across pairwise comparisons).
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seen in Figure 9.13. This contrasts checkpoints starting from the same
initialization (see Section 9.5.2), where the rate of change differs sub-
stantially across training, but generally remains under 60◦, even when
trained on slightly different data (Section 9.4.1).

Layer Weightings

In addition to the center of gravity (COG) measure used in Section
9.5.2, the full layer weightings α for each task and timestep are shown
in Figure 9.14. They provide a more detailed picture for cases in which
multiple layers are weighted similarly, e.g., for the first checkpoints of
DEP (Figure 9.14b, SEM (Figure 9.14c) and NER (Figure 9.14d). Both
the earlier and later layers are weighted strongly, meaning that probes
are making use of non-contextual plus mixed representations at these
early stages. In contrast, SENTI and NLI almost exclusively rely on the
last layer, while COREF and QA are initially spread out across all layer
depths. Later on in training, these weightings also exhibit the special-
ization observed in Section 9.5.2, however weights are more spread
out and do not collapse onto a single layer. This is most prominent
with POS, but also DEP, SEM, NER and COREF, which all make use of
information from across a wider range of depths.
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Figure 9.14: Layer Weightings α over LM Training Time for all
tasks, corresponding to the center of gravity measure in Section 9.5.2.
Darker/lighter fields correspond to more/less weight respectively.
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The work presented in this chapter is based on the publication: Max
Müller-Eberstein, Rob van der Goot, and Barbara Plank. 2022c. Spec-
tral probing. In Proceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7730–7741, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.
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Figure 10.1: Visualization of Spectral Probing. Given a sequence of
embedding values (1), decompose into composite frequency waves
using DCT (2), apply the learned filter (γ), retaining a subset of waves
(3), for which IDCT returns the filtered sequence of values (4).

Abstract

Linguistic information is encoded at varying timescales (subwords,
phrases, etc.) and communicative levels, such as syntax and semantics.
Contextualized embeddings have analogously been found to capture
these phenomena at distinctive layers and frequencies. Leveraging
these findings, we develop a fully learnable frequency filter to identify
spectral profiles for any given task. It enables vastly more granular anal-
yses than prior handcrafted filters, and improves on efficiency. After
demonstrating the informativeness of spectral probing over manual
filters in a monolingual setting, we investigate its multilingual charac-
teristics across seven diverse NLP tasks in six languages. Our analyses
identify distinctive spectral profiles which quantify cross-task simi-
larity in a linguistically intuitive manner, while remaining consistent
across languages—highlighting their potential as robust, lightweight
task descriptors.
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10.1 Introduction

Analyzing the contextualized embedding representations of pre-
trained language models (LMs) using lightweight probes (Hewitt and
Liang, 2019; Voita and Titov, 2020) has identified latent features in the
untuned encoders which are highly relevant to downstream NLP tasks
at various layer depths (Tenney et al., 2019a). Orthogonally, linguis-
tic phenomena are also encoded at different timescales: i.e., rapidly
changing (sub-)word-level information versus slower changing sen-
tence or paragraph-level information. Decomposing contextualized
embeddings into frequencies with different rates of change has yielded
initial insights into the timescales at which these task-specific latent
phenomena occur (Tamkin et al., 2020). These findings currently rely
on handcrafted spectral filters and are limited to English. To enable
more efficient analyses of finer-grained, continuous frequency spectra
in contextualized representations covering more tasks and languages,
this work contributes:

• A fully differentiable spectral probing framework for learn-
ing which frequencies are relevant for specific NLP tasks (Sec-
tion 10.2).1

• A multilingual probing study examining timescale character-
istics of seven diverse NLP tasks across six languages (Sec-
tion 10.3).

• An analysis of the relationships between the spectral profiles
of different tasks and their consistency across languages (Sec-
tion 10.4).

10.2 Probing for Spectral Profiles

Spectral Probing (Figure 10.1) builds on established signal processing
methods (Ahmed et al., 1974) and recent findings on the manual fre-
quency filtering of contextual embeddings (Tamkin et al., 2020). The

1Code at https://github.com/mainlp/spectral-probing.
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method automatically learns spectral profiles which measure the rele-
vance of specific frequencies to a given task by amplifying or reducing
contextual information with different rates of change.

Discrete Cosine Transform (Ahmed et al., 1974; DCT) is an invert-
ible method for decomposing any sequence of real values {x0, . . . , xN−1}
(e.g., all values of an embedding dimension) into a weighted sum over
cosine waves with different frequencies. The number of frequencies
equals the sequence length N , as the lowest frequency wave is a con-
stant (k = 0) and the highest frequency wave completes one cycle every
timestep (k = N −1). The coefficient X (k)

n for a wave at DCT index k at
timestep n is calculated as:

X (k)
n =

N−1∑
n=0

xn cos

[
π

N

(
n + 1

2

)
k

]
. 10.1

Inverting the DCT (IDCT) using all X (k)
n will return the original

sequence. However, weighting coefficients for some k by 0 will return
a filtered version. Zeroing out all k above a threshold will only retain
lower frequencies and make values oscillate with a slow rate of change.
Vice-versa, zeroing out all k below a threshold will only retain higher
frequencies—amplifying short-term changes.

Fixed-band Filters Applying frequency filters to a sequence of con-
textualized embeddings extracts linguistic information at different
timescales. Within this formulation, the values across each embed-
ding dimension are gathered into a real-valued sequence to which
transformations such as the DCT can be applied. In seminal work,
Tamkin et al. (2020) apply manually defined low (k ∈ [0,1]), mid-low
(k ∈ [2,8]), mid (k ∈ [9,33]), mid-high (k ∈ [34,129]) and high frequency
filters (k ∈ [130,511]) to English BERT embeddings (Devlin et al., 2019)
to investigate how accurately a linear probe can extract task-specific
information within certain spectra. Capturing the full picture using
manual, fixed-band filters is however not computationally feasible:
Relevant frequencies might not lie in a contiguous band, and further-
more, frequencies can not only be turned on or off (i.e., weighted 0 or
1), but can actually be weighted continuously in [0,1].
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Learnable Filters To capture the complete picture, we propose spec-
tral probing which learns a continuous weighting of frequencies rel-
evant to a task. In effect, the spectral filter is a vector γ ∈ RM for
which each entry corresponds to the weight assigned to a particu-
lar frequency. Before inverting the DCT, each X (k)

n is multiplied by
the sigmoid-scaled weight γ(k) ∈ [0,1] which will then retain or filter
out frequencies at index k. As M depends on the sequence length N ,
which changes across inputs, the spectral probe dynamically scales
γ to the length at hand using adaptive mean pooling. In practice, we
set M to the maximum input length for our given encoder (e.g., 512
for BERT) and shrink γ appropriately, as a wave cannot cycle more
often than there are values. It would however be equally possible to set
M smaller than N and interpolate the filter up to the length required.
Overall, γ is a lightweight parameter which can be easily incorporated
between the frozen encoder and probing head, and uses the existing
training objective to jointly learn which frequencies to amplify or filter
out.

10.3 Experiments

10.3.1 Monolingual

Setup Initially, we compare spectral probing to previous fixed-band
filters by reproducing the highest and lowest frequency experiments
by Tamkin et al. (2020). These are the tasks of tagging parts-of-speech
(POS) in the Penn Treebank (Marcus et al., 1993; PTB) as well as classi-
fying TOPICS in the 20 Newsgroups corpus (Lang, 1995; 20News).

On the modeling side, we follow Tamkin et al. (2020) and train a
linear probe (Alain and Bengio, 2017) on top of the frozen LM encoder
to classify each manually/automatically filtered contextual embedding
in an input sequence. This corresponds to probing and evaluating for
the amount of task-relevant information in each sub-word across a
sequence (e.g., underlying topic contextualization). The bands for the
five manual filters follow the original definitions (see Section 10.2), and
we compare them to unfiltered (ORIG) as well as automatically filtered
(AUTO) embeddings from our spectral probe (details in Section 10.6.2).

196



Chapter 10 | Spectral Probing

ORIG L ML M MH H AUTO
Frequency Bands

0

20

40

60

80

100

Ac
cu

ra
cy

L M H
Frequencies

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

(a) PTB (POS)

ORIG L ML M MH H AUTO
Frequency Bands

0

20

40

60

80

100

Ac
cu

ra
cy

L M H
Frequencies

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

(b) 20News (TOPIC)

Figure 10.2: Monolingual Results on PTB and 20News. ACC of unfil-
tered (ORIG), low (L), mid-low (ML), mid (M), mid-high (MH), high
(H), and the spectral probe’s automatic filters (AUTO) with frequency
weightings.
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Results Figure 10.2 shows the accuracy (ACC) of the six prior filter-
ing strategies in addition to the learned frequency weightings of the
spectral probe. The unfiltered and manually filtered embeddings cor-
roborate previous findings Tamkin et al. (2020), with high frequencies
performing best on POS, and the lowest frequencies performing best
on TOPIC.

The spectral probe achieves 95.9% ACC for POS, outperforming
ORIG by a 0.1% margin and the best manual filter by 5.2%. The spectral
profile in Figure 10.2a (right) sheds light on why this may be the case:
While it also prioritizes high (sub-)word-level frequencies, the learned
filter additionally includes surprising amounts of mid-high and lower
frequencies, emphasizing the need for both local and global context
to achieve high performance.

For TOPIC, the spectral probe achieves 72.1% ACC, outperforming
both ORIG (41.3%) and the fixed low-band filter (71.2%). The learned
filter (see Figure 10.2b, right) mirrors the fixed-band results: Only the
lowest bands are active, while all higher ones are not. As mid-low fre-
quencies still appear to contain weaker amounts of topic information,
the soft inclusion of this region by the spectral probe could account for
its performance boost. Overall, spectral probing confirms and refines
frequency ranges from prior work while surfacing more detail and
requiring no manual probe engineering, with only a single probing
run instead of five.

10.3.2 Multilingual

Leveraging spectral probing, we extend timescale analyses beyond
English and investigate spectral profiles across more diverse tasks and
languages.

Setup Each experiment covers German (DE), English (EN), Spanish
(ES), French (FR), Japanese (JA) and Chinese (ZH). The tasks are POS-
tagging and dependency relation classification (DEP) from Universal
Dependencies (Zeman et al., 2021); named entity recognition (NER)
from WikiANN (Pan et al., 2017); question answering (QA) from MKQA
(Longpre et al., 2021); sentiment analysis (SENTI) and TOPIC classifica-
tion from Multilingual Amazon Reviews (Keung et al., 2020); natural
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TASK ORIG AUTO

POS 92.4±1.9 92.5±1.8

DEP 78.6±4.3 79.3±4.3

NER 88.0±2.7 88.1±2.6

QA 62.9±1.6 67.1±1.2

SENTI 57.4±0.9 64.3±1.1

TOPIC 27.1±8.1 37.2±8.2

NLI 44.1±4.1 56.3±5.6

Table 10.1: Multilingual Results
(ACC) of unfiltered (ORIG) and au-
tomatically filtered (AUTO) em-
beddings. Means ± standard de-
viations over languages and ran-
dom initializations (details in Sec-
tion 10.6.3).
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Figure 10.3: Spectral Profiles of
all tasks (weight per frequency),
with lower and upper bounds
across languages.

language inference (NLI) from XNLI (Conneau et al., 2018b) and JSNLI
(Yoshikoshi et al., 2020) for JA (details and examples in Section 10.6.1).

For each language-task combination we train a linear probe on
the unfiltered embeddings of multilingual BERT (Devlin et al., 2019;
mBERT) and on the automatically filtered representations from our
spectral probe. The remaining settings are identical to the monolin-
gual setup (details in Section 10.6.2).

Results Table 10.1 shows equivalent or higher ACC for the spectral
filter compared to the unfiltered embeddings for all tasks and lan-
guages. This increase is less pronounced for token-level tasks, but
much larger for tasks where sequence-level information is critical.
Figure 10.3 visualizes how POS, DEP and NER retain large parts of
the original spectrum, while QA, SENTI, TOPIC and NLI appear to
benefit from filtering out higher frequencies. This shows how tasks
exhibit structures at different timescales and that spectral probing is
able to identify these communicative levels consistently not only in
English, but also across languages—an effect which we analyze more
extensively next.

199



Chapter 10 | Spectral Probing

PoS DepNER QA
Se

nti
Top

ic NLI

PoS
Dep
NER
QA

Senti
Topic

NLI

100 89 85 22 12 12 12

89 100 93 30 19 19 19

85 93 100 37 26 25 25

22 30 37 100 89 88 88

12 19 26 89 100 100 99

12 19 25 88 100 100 99

12 19 25 88 99 99 100

(a) Tasks

DE EN ES FR JA ZH

DE
EN
ES
FR
JA

ZH

100 97 98 98 95 96

97 100 98 97 94 96

98 98 100 98 95 96

98 97 98 100 96 96

95 94 95 96 100 96

96 96 96 96 96 100

(b) Languages

Figure 10.4: Filter Overlap across Tasks/Languages as measured in
percentage-normalized L1 distance.

10.4 Spectral Profiling Analysis

Each task’s distinct spectral profile (Figure 10.3) allows us to analyze
their relation to the timescale hierarchy of linguistic structures, and
quantify cross-task similarities within and across languages. For this
we use the percentage-normalized L1 distance (i.e., 0%–100% overlap)
between filters (Figure 10.4).

Cross-task Overlap Overall, we observe a dichotomy between broad-
frequency, token-level tasks and low-frequency, sequence-level tasks
(Figures 10.3 and 10.4a). In addition, there appears to be a hierarchy
which depends on the timescales of the linguistic structures involved.
Notably, compared to prior fixed-band filters, none of the learned
filters fully excludes low frequencies. For instance, high-frequency
information is most important to retrieve POS, but reaching the perfor-
mance of the original embeddings also requires some lower-frequency
information—most likely to disambiguate difficult cases based on
sentence-level context.

DEP appears to benefit the least from both lower and higher-
frequency information. Instead, the strong weight on mid-high fre-
quencies matches the fact that dependency relations span multiple
words and benefit from information at the phrase-level. NER sees
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a further decrease in high-frequency information, coupled with an
uptick in lower frequencies. We hypothesize that phrase and sentence-
level information become more important for disambiguating certain
entity types (e.g., ORG and LOC). Across the token-level tasks this shift
from higher to lower frequencies is also reflected in filter overlap which
decreases from syntactic to semantic token-level tasks, while their
overlap with sentence-level tasks increases (Figure 10.4a).

The sequence-level tasks share low-frequency spectral profiles
which overlap more with each other than do the token-level tasks. In
fact, SENTI and TOPIC overlap almost perfectly (although the latter
involves less mid-range frequencies). This similarity is unlikely to be
the result of the shared underlying dataset as both tasks also overlap
with the unrelated XNLI and JSNLI datasets. At the same time, the
POS and DEP tasks, which also share datasets, have a lower overlap
despite being based on the exact same inputs. Overall, SENTI, TOPIC

and NLI all appear to rely on information which is consistent across
a sequence—explaining why simple methods such as mean-pooled
sentence embeddings can be effective in these scenarios.

QA provides an intermediate case: While it is reliant on low fre-
quencies it also includes more mid-low and a small amount of higher
frequency information. This is reflected in Figure 10.4a, where it shares
more overlap with the token-level tasks than all other sequence-level
tasks. Since probing for the correctness of a question-answer pair is
dependent on finer-grained information than the general sentiment,
topic or semantic coherence of a sequence, this inclusion of higher
frequency information matches linguistic intuitions.

Cross-lingual Consistency Finally, we investigate the similarity of
learned spectral profiles across languages. While Figure 10.3 shows
that there is some variance between the filters of different languages
within a task, Figure 10.4b shows that actual quantitative overlap be-
tween languages is high, ranging from 94%–98%. This holds even
across distinctive pairs such as JA-EN which differ substantially in
factors such as sub-word length and distance between syntactic de-
pendents. This strong consistency highlights the potential for spectral
profiles to provide language-agnostic features for task characterization
and comparison.
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10.5 Conclusion

Linguistic information at different timescales is an, as of yet, underex-
plored dimension in contextualized embeddings. We propose a fully
differentiable spectral probe which automatically learns to weigh fre-
quencies that are relevant to a specific task and improves over prior
fixed-band filters by capturing continuous mixtures over frequencies
(Section 10.2). This enables us to not only outperform the manual
filters while using one probe instead of five, but to also identify that
high-frequency tasks still benefit from low-frequency information
(Section 10.3.1).

Extending spectral probing to seven tasks in six languages, we
trained task-specific filters which outperformed the original, unfil-
tered embeddings. The resulting spectral profiles furthermore shed
light onto how linguistic information at different timescales relates to
different task types (Section 10.3.2). They not only match the linguistic
intuitions underlying each task, but also enable quantitative compar-
isons between them. The analysis of the filters’ overlap surfaced a
clear dichotomy between token and sequence-level tasks, but also
highlighted intersecting frequency ranges which contain information
relevant across task types. Finally, the language-agnostic nature of
these spectral profiles highlights future avenues towards more robust
task descriptors (Section 10.4).

Limitations

Our experiments cover a diverse, but non-exhaustive set of NLP tasks
and languages. While more extensive than prior related work (Ten-
ney et al., 2019a; Tamkin et al., 2020), we elaborate in the following
regarding the motivation of the final setup: As the aim of our study
was to investigate the cross-lingual properties of the underexplored
timescale dimension of contextualized representations, the set of lan-
guages and tasks used in our experiments emphasizes consistency
across languages. This limits us to high-resource languages for which
datasets covering every task are available. However, with cross-lingual
stability confirmed in our experiments, the study of lower-resourced
languages is a clear avenue for future research.
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Despite using a set of well-established datasets, it is important
to keep data quality in mind when interpreting the results—even for
these high-resource languages. In our initial exploratory data analyses,
we identified and confirmed limitations known to the original dataset
authors in that many include silver, or weakly filtered annotations
driven by automatic matching and translation (e.g., WikiANN, XNLI,
JSNLI). As we are less interested in benchmarking performance and
rather focus on the feasibility and analysis of our spectral profiles,
individual data instances of lesser quality should however be of limited
concern. Section 10.6.1 details how each dataset was constructed
originally, and also how it was pre-processed by us, such that results
can be interpreted in the appropriate context.

In terms of modeling, we hope that future work will investigate
spectral probes and their resulting task profiles across more encoder
models with different architectures and pre-training strategies. Finally,
while we have demonstrated spectral profiles to be suitable for charac-
terizing different tasks consistently across languages, future research
could supplement them with other descriptors such as embedding
layer depth in order to identify even more distinctive profiles.

Ethics Statement

Given the theoretical nature and wide applicability of this work—both
in terms of data domains and model architectures—it is difficult to
anticipate broader impacts and future ethical implications. In gen-
eral, benefits and harms in the field of probing originate from the
information being investigated: While we are interested in linguistic
timescale characteristics, probe-like methods have also been applied
to protected attributes of data subjects in order to, for example, de-
bias LMs (Ravfogel et al., 2020). Since this process involves personal
information, any experiments extracting such characteristics should
be sufficiently vetted for ethical acceptability. With spectral profiles
being a relatively broad descriptor however, we do not expect them to
identify frequencies exclusive to personal information or to replace
existing, domain-specific probing methods.
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TOKEN-LEVEL TASKS

PTB
In Tokyo , trading is halted during lunchtime .
IN NNP , NN VBZ VBN IN NN .

UD
Can rabbits and chickens live together ?
AUX NOUN CCONJ NOUN VERB ADV PUNCT
aux nsubj cc conj root advmod punct

WikiANN
The Zeros formed in Chula Vista in 1976 .
B-ORG I-ORG O O B-LOC I-LOC O O O

SEQUENCE-LEVEL TASKS

MKQA
when did love become a part of marriage? | 18th
century

1 (true)

when did love become a part of marriage? | 2016 0 (false)

AMR All socks had large holes after a few months.
apparel
negative

20News
[...] Does anyone know how to size cold gas roll control

sci.space
thruster tanks for sounding rockets? [...]

XNLI I’ve got more than a job. | I don’t have a job or any
hobby.

contradiction

JSNLI
地下鉄を待っている間に本を読む男。| 男は地下にい
る。 entailment
The man reads a book while waiting for the subway.
The man is underground.

Table 10.2: Example Dataset Instances annotated with respective
token/sequence-level labels.

10.6 Appendix

10.6.1 Data Setup

In the following, we provide details about the versions, splits and pre-
processing of each dataset. Additionally, we present example instances
together with their token/sequence-level annotations in Table 10.2 (in
English, where available). In our experiments, each model is tuned on
the training split and only evaluated on the validation split as we are
not interested in obtaining state-of-the-art results, but rather aim to
analyze overall performance patterns across tasks. We use the original
splits where provided and generate our own otherwise.
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Penn Treebank (Marcus et al., 1993) We use Penn Treebank version
2 (PTB) as published in OntoNotes 4.0. Sections 02-21 were used for
training, section 22 for validation, and section 23 for test, totaling
30,060, 1,336 and 1,640 instances respectively. The label space covers
48 part-of-speech tags. Note that Tamkin et al. (2020) use PTB version
3 in their experiments which we were unable to obtain due to licensing
constraints. As such the exact data and splits may differ.

Universal Dependencies (Zeman et al., 2021) From Universal De-
pendencies version 2.9 (UD), we select the following treebanks:
German-GSD Brants et al. (2004), English-EWT Silveira et al. (2014),
Spanish-GSD McDonald et al. (2013), French-GSD Guillaume et al.
(2019), Japanese-GSD Asahara et al. (2018), Chinese-GSD Shen et al.
(2016b) with standard splits, totaling 66,040 training and 6,683 valida-
tion instances. The label set comprises the 17 UPOS classes and the 36
dependency relations which can occur between a word and its head.

WikiANN (Pan et al., 2017) This dataset contains silver NER data
for 282 languages which was extracted from Wikipedia using URL ref-
erences as a proxy for named entities. It contains the entity types
location (LOC), person (PER) and organization (ORG) which are anno-
tated in BIO-format. Our experiments use the existing data splits with
20,000 training and 10,000 validation instances.

MKQA (Longpre et al., 2021) Multilingual Knowledge Questions and
Answer (MKQA) is an open-domain question answering dataset which
covers 10,000 questions and their corresponding answers in an aligned
corpus spanning 26 languages. After removing unanswerable ques-
tions, we use each correct QA pair to generate an additional incorrect
pair for the same question, yielding a total set of 13,516 instances used
in our experiments. To generate an incorrect answer, we sample an al-
ternative answer of the same type (e.g., time, number) which does not
equal the correct answer. Finally, we randomly split the data 80/20 into
training and validation portions for which the instances are aligned
across languages (i.e., the same questions and answers). The final task
is a binary classification task for whether a QA pair is true or false, with
a random baseline of 50%.
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Multilingual Amazon Reviews (Keung et al., 2020) MAR are used
for both sentiment analysis and topic classification. For SENTI, we
convert the 1–5 star rating into {1,2} → negative, {3} → neutral and
{4,5} → positive. For TOPIC, we consider the 30 product categories
as topics. All original splits are kept, resulting in 200,000 training and
5,000 validation instances per language.

20 Newsgroups (Lang, 1995) This dataset contains English emails
from 20 newsgroups and their corresponding topics. We use the
bydate-version which is sorted by date and removes duplicate en-
tries and email headers (which give away the topic). Of the official
training and testing data, we subdivide the former 11,314 instances
into an 80/20 train/validation split. Note that there may differences
to the version used in Tamkin et al. (2020) due to alternative splitting
strategies.

XNLI (Conneau et al., 2018b) The Cross-lingual Natural Language
Inference (XNLI) dataset covers 15 languages translated from and
including English (as it lacks Japanese data, we supplement it with
JSNLI). The task is to identify the relation between a premise and a
hypothesis as: contradiction, entailment or neutral. Our setups
use the original training and validation splits with 392,702 and 2,490
input pairs respectively.

JSNLI (Yoshikoshi et al., 2020) This dataset contains premise-
hypothesis pairs from the Stanford Natural Language Inference cor-
pus (Bowman et al., 2015) which were translated automatically into
Japanese and filtered for correctness. It contains 533,005 training and
3,916 validation instances with the same three classes as XNLI.

10.6.2 Experiment Setup

Models In the monolingual English experiments, we use
bert-base-cased (Devlin et al., 2019; BERT) following Tamkin
et al. (2020). For the multilingual experiments we use
bert-base-multilingual-cased (Devlin et al., 2019; mBERT). For
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both LMs, we use respective checkpoints from the Transformer li-
brary’s model hub (Wolf et al., 2020).

Manual, fixed-band filters as well as the automatically learned fil-
ters are applied to the contextualized embeddings produced by the last
layer of either model. As visualized in Figure 10.1, we decompose the
sequence of values from each embedding dimension (768 in both LMs)
using the DCT (Ahmed et al., 1974; DCT-II), weight the appropriate k
by a fixed amount or by the learned weight in γ, before applying the
IDCT to reconstruct a sequence of real values. These make up each
dimension of the filtered embeddings.

Following Tamkin et al. (2020), the original/filtered embeddings
are passed to a linear probe (Alain and Bengio, 2017) consisting of two
parameters: a transformation W ∈RE×C and a bias b ∈RC , where E is
the embedding dimension and C is the number of classes specific to
each task.

Training As we run probing experiments, neither the 108M-
parameter BERT, nor the 178M-parameter mBERT are fine-tuned. We
only train the linear probe which has 1,538–36,912 parameters depend-
ing on the task, plus the 512 parameters of the learned spectral filter γ.
As in Tamkin et al. (2020), we use the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 10−3 which decays by 0.5 every time the
loss plateaus. Updates are applied in batches of size 32 across a maxi-
mum of 30 epochs, with an early stopping patience of 1. Each setup
is run with the five random seeds: 1932, 2771, 7308, 8119, 9095. On
our hardware consisting of an NVIDIA A100 GPU with 40GBs of VRAM
and an AMD Epyc 7662 CPU, training a probe takes approximately 10
minutes.

Evaluation In order to probe a sequence of contextualized embed-
dings for information at different timescales, it is necessary to apply
each filter at the sub-word level. To measure the effect of different
frequencies, we follow Tamkin et al. (2020) and evaluate all tasks using
accuracy (ACC) on the sub-word level. Note that for token-level tasks
each token label is therefore repeated across all of its sub-words, while
for sequence-level tasks, each sub-word is classified with the label of
its sequence.
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TASK ORIG LOW MID-LOW MID MID-HIGH HIGH AUTO

POS 95.8±0.1 21.9±0.0 21.8±0.1 26.2±0.1 48.6±0.1 90.6±0.0 95.9±0.0

TOPIC 41.3±0.2 71.2±0.4 18.4±0.3 5.6±0.3 5.6±0.3 5.6±0.4 72.1±0.3

Table 10.3: Detailed Monolingual Results (ACC) for unfiltered (ORIG),
low (L), mid-low (ML), mid (M), mid-high (MH), high (H), and auto-
matically learned filters (AUTO), on the tasks of POS-tagging and TOPIC

classification. Reported are the mean over five random initializations
± standard deviations. The same results plus the spectral profiles (fre-
quency weightings) learned by AUTO are plotted in Figure 10.2.

Implementation All models are implemented using PyTorch v1.10
(Paszke et al., 2019) and NumPy v1.22 (Harris et al., 2020). Additionally,
we use a modified version of the torch-dct package (Hu, 2018) to per-
form the DCT and IDCT. Visualizations are generated using matplotlib
v3.5 (Hunter, 2007). Further, the code for reproducing our experiments
is available at https://github.com/mainlp/spectral-probing.

10.6.3 Detailed Results

The following supplements the results presented in Section 10.3 with
more detailed scores. Table 10.3 lists the exact scores for the monolin-
gual English experiments on POS and TOPIC using the ORIG embed-
dings, the fixed-band filters and the learned AUTO filter. Table 10.4 lists
the detailed scores for the ORIG and AUTO-filtered embeddings per lan-
guage, in addition to the cross-lingual mean and standard deviation,
across our seven tasks.

While the scores across random initializations never exceed a stan-
dard deviation of 1.0, it is important to note that scores may have
higher variance across languages. This is to be expected due to differ-
ent data across languages as well as pre-training availability. However
we note that overall performance patterns (i.e., higher AUTO and rela-
tive task performance) are consistent across languages.
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TASK EMB DE EN ES FR JA ZH AVG

POS
ORIG 92.0±0.0 91.6±0.1 93.8±0.0 95.1±0.1 92.5±0.0 89.5±0.1 92.4±1.9

AUTO 92.1±0.1 91.6±0.0 93.9±0.0 95.1±0.0 92.7±0.1 89.8±0.1 92.5±1.8

DEP
ORIG 79.0±0.1 78.4±0.1 81.2±0.1 83.0±0.1 79.6±0.1 70.6±0.2 78.6±4.3

AUTO 79.5±0.2 78.4±0.1 81.8±0.1 83.8±0.1 80.8±0.1 71.3±0.2 79.3±4.3

NER
ORIG 90.3±0.0 85.3±0.1 90.4±0.0 88.1±0.1 84.1±0.1 89.5±0.0 88.0±2.7

AUTO 90.4±0.0 85.5±0.1 90.5±0.0 88.3±0.0 84.4±0.1 89.7±0.0 88.1±2.6

QA
ORIG 63.2±0.2 64.5±0.1 64.1±0.2 63.9±0.3 61.0±0.8 60.7±0.8 62.9±1.6

AUTO 66.8±0.1 68.1±0.5 67.9±0.2 68.1±0.2 65.1±0.1 66.1±0.4 67.1±1.2

SENTI
ORIG 56.0±0.2 57.1±0.2 58.7±0.2 57.1±0.2 57.2±0.2 58.0±0.2 57.4±0.9

AUTO 64.0±0.2 63.5±0.5 65.4±0.2 64.7±0.5 65.4±0.5 62.7±0.3 64.3±1.1

TOPIC
ORIG 22.7±0.1 26.8±0.4 22.9±0.3 24.0±0.3 22.9±0.5 43.3±0.4 27.1±8.1

AUTO 34.3±0.7 39.8±0.4 30.2±0.2 30.7±0.4 35.8±0.5 52.3±0.5 37.2±8.2

NLI
ORIG 41.5±0.2 43.6±0.3 43.2±0.2 42.7±0.2 52.3±0.3 41.7±0.2 44.1±4.1

AUTO 51.3±0.8 56.4±0.7 54.3±0.7 54.5±0.5 67.2±0.4 53.8±1.0 56.3±5.6

Table 10.4: Detailed Multilingual Results (ACC) for unfiltered (ORIG)
and automatically learned filters (AUTO) on the tasks of POS-tagging,
dependency relation classification (DEP), named entity recognition
(NER), question answering (QA), sentiment analysis (SENTI), TOPIC

classification, and natural language inference (NLI). Each task cov-
ers the languages German (DE), English (EN), Spanish (ES), French
(FR), Japanese (JA) and Chinese (ZH). Reported are the mean over five
random initializations ± standard deviations as well as the mean over
languages (AVG) ± the standard deviation across languages. The latter
results are reported in Table 10.1, in addition to the spectral profiles
(frequency weightings) learned by AUTO in Figure 10.3.
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The previous chapters have demonstrated the importance of under-
standing Variety Space at a fundamental level, across the dimensions
of typology, domain and higher-level tasks. Our framework of quantify-
ing linguistic variation based on well-grounded qualitative formalisms
not only contributes towards model interpretability, but also towards
improving LM robustness and trustworthiness. Returning to our re-
search questions from Section 1.3, we now summarize our findings.

11.1 Typological Variation

In Part II, we first turned our attention to typological variation. Focus-
ing on its sub-component of syntax, we linked one of its qualitative
formalisms, in the form of Universal Dependencies, to structural infor-
mation in quantitative LM latent spaces, in order to elucidate:

RQ1 How is syntactic information from different typologies repre-
sented in data-driven latent spaces?

Understanding typological variation qualitatively is essential to en-
suring interpretability that is linguistically grounded. We therefore
first reviewed existing formalisms of syntax, before constructing high-
specificity probing methods for extracting them from data-driven la-
tent spaces.

RQ1.1 Which qualitative definitions exist for typological variation?

Our survey in Background Section 2.1.1 showed that even for this
well-established variety dimension, its formalization lacks a definitive
consensus. Most existing definitions are discrete (e.g., ISO codes), and
do not capture typological features continuously. Measuring typol-
ogy on a spectrum is especially important to characterizing under-
resourced languages and dialects, as these are often not represented in
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discrete taxonomies, yet share features with their closely related, high-
resource neighbors. Focusing on the underlying property of syntactic
information in particular, we identified its importance to downstream
natural language understanding tasks. To analyze the variability of this
property, we built on the Universal Dependencies formalism, which
characterizes syntax via sentence-level dependency structures, that
can be applied across languages. The cross-lingual consistency of this
formalism allowed us to capture more holistically how syntactic infor-
mation for different language varieties is represented in continuous,
data-driven latent spaces, agnostically of discrete language labels.

RQ1.2 Does quantitative LM latent space contain sufficient typologi-
cal information to extract fully directed and labeled dependency trees?

Chapter 4 presented our high-specificity DEPPROBE, tailored to extract
fully directed and labeled syntactic dependency trees. In addition to
being the first to fully capture the UD dependency tree formalism, its
linear nature make it possible to apply quantitative subspace com-
parison methods. As such, DEPPROBE not only recovers fully directed
and labeled dependency trees, but can also quantify how similarly
this information is represented across languages with respect to the
specific properties of tree structure, depth and dependency relations.
The different amounts of information recovered for each of these prop-
erties further reveals what a fully tuned parser actually learns on top
of the host LM: e.g., long-range dependencies, as well as relations,
which are rare and can take on a wide variety of surface forms. Overall,
DEPPROBE allows us to extract syntactic information more effectively
than prior approaches, reaching up to 73 LAS without any full-model
fine-tuning, confirming that syntactic information following the full
UD formalism can be recovered from LM latent space.

RQ1.3 How well does syntactic probing predict the cross-lingual trans-
ferability of a full parser?

In experiments covering 13 typologically diverse languages, we demon-
strated that the subspace overlaps estimated using DEPPROBE are
highly predictive of transferability across language varieties (Chap-
ter 4). For the task of dependency parsing, it is able to identify the best
source language for zero-shot transfer 94% of the time, outperforming
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competitive quantitative and qualitative baselines, as well as prior
work. It is furthermore highly efficient, saving three orders of magni-
tude worth of fine-tuned parameters compared to training a full parser
for each language combination. In terms of interpretability, our sub-
space comparisons additionally reveal that the most predictive type
of syntactic information for downstream performance is relational
information, compared to tree structure, or tree depth.

RQ1.4 How well does syntactic probing predict which LM is best suited
for dependency parsing in a specific language?

The similarities measured in these typological variety subspaces not
only correlate highly with transferability across language data, but also
with the suitability of LMs as an initialization for training a parser for a
given language (Chapter 5). Across 46 typologically and architecturally
diverse LM-language pairs, DEPPROBE predicts the best LM choice 79%
of the time using orders of magnitude less compute than training a full
parser, and allows us to investigate reasons behind the performance
characteristics of alternative LM architectures. This general “probing-
to-rank” approach improves on the prior state-of-the-art for making
these important modeling decisions, namely practitioner intuition.

11.2 Domain Variation

In Part III, we investigated how variation manifests in the dimension
of domain. Qualitatively, we found it to be even less clearly defined
than typology, thus benefiting from being quantified on a continuous
spectrum, leading to the question:

RQ2 How does domain information manifest in data-driven latent
spaces across languages?

Mirroring typology, we first investigated existing qualitative definitions
of domain, as well as human intuitions of the property. Despite its
less concise formalization compared to syntax, we found that domain
information, in the form of genre, can be amplified in quantitative
latent spaces to improve model transferability across languages.
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RQ2.1 Which qualitative definitions exist for domain variation?

While we found domain not to be lacking qualitative definitions in tra-
ditional linguistics literature (Background Section 2.1.2), they typically
describe a wide array of sub-dimensions, which are neither compre-
hensive, nor particularly overlapping (Biber, 1988). Equally in NLP, the
large amount of prior work investigating cross-domain transferabil-
ity either leaves out or remains ambiguous as to what is considered
a domain, focusing on more specific sub-dimensions. Across these
different properties, which combine to form domains, we found genre
and topic to be of particular interest to NLP, as they are mostly orthog-
onal to typology and each other, while having large impacts on model
performance across almost all task types. In practice, genre is typically
linked to the source of a text, while the topic is defined as the subject
matter, which can be expressed independently of genre. To first garner
a better understanding of how these properties may be qualitatively
grounded, we started by investigating:

RQ2.2 To what extent can humans qualitatively identify domain from
text alone, and how well does this align with machines?

In Chapter 6, we examined human intuitions towards the concept of
domain to ground how well we can expect to qualitatively define vari-
ation along this dimension. Focusing on genre and topic at the level of
individual and multiple sentences, our study demonstrated that hu-
mans reach above-random agreement in identifying these properties
in absence of guidelines, which enforce conformity. This indicated that
genre and topic are not just hypothetical, but are encoded with some
degree of consistency in human language understanding. Nonetheless,
agreement was far from perfect, and across finer-grained categories,
we observed that each property may be more realistically measured
as continuous mixtures with some level of inherent human disagree-
ment. As for the machine modeling of these properties, prior work has
mainly focused on detecting genre and topic at the document level
(Sharoff, 2007; Petrenz and Webber, 2011; Sharoff, 2021). We found
that at our more granular level, additional context beyond a single
sentence is crucial to disentangling highly similar genres and topics,
and that human uncertainty closely correlates with model uncertainty.
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Despite higher-than-random agreement across human annotations
and models thereof, discretizing these properties may therefore be
obscuring more intricate interactions in a continuous space. Scaling
up our efforts to understand interactions of domain and typology by
bridging qualitative genre signals with data-driven LM latent spaces,
we next surveyed:

RQ2.3 Can cross-lingual genre information be amplified in LM latent
spaces using weak supervision?

Combining the variety dimensions of typology and domain in a con-
trolled way, we proposed several methods for leveraging the existing
genre metadata in 200 treebanks of Universal Dependencies to extract
genre information from the self-supervised latent spaces of multilin-
gual LMs across 114 languages (Chapters 7 and 8). As the dataset is
primarily designed for annotating typological properties consistently,
these genre annotations are known to contain large amounts of noise
(Nivre et al., 2020), only being available for entire treebanks, and rarely
identifying the genre of individual sentences. Nonetheless, we were
able to use this cross-lingual signal to map UD’s 18 treebank-level
genre labels to the instance level by proposing weakly-supervised
clustering methods for amplifying latent genre information in the
multilingual embeddings. Here, we found a bottom-up approach to
be key—incrementally bootstrapping genre for data points with high
certainty, before moving across languages, and to data with higher de-
grees of genre mixing. The resulting instance-level genre distribution
provided a clearer picture of UD, confirming a previously hypothe-
sized bias towards news-wire and Wikipedia data (Plank, 2016) at a
larger scale, while simultaneously revealing more data points from
under-resourced genres in the long-tail. This leads to the question of
how to best apply these new findings, i.e.:

RQ2.4 Can amplified genre guide our selection of cross-lingual train-
ing data from a significantly larger, more diverse pool?

Examining whether controlling for one variety dimension can im-
prove transferability in another, Chapter 8 applied our previous weakly-
supervised genre amplification methods to the cross-lingual transfer of
syntactic dependency parsers. Our experiments covered 12 extremely
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low-resource data settings, with some of the smallest treebanks in UD.
We then further restricted the transfer setup to include no in-language
data at all, selecting proxy training data based on knowledge of the
target genre alone. Compared to typical baselines of using more data,
which include the target genre in mixture, or using unmodified em-
bedding similarity, our bootstrapping-based methods for latent genre
amplification significantly outperformed all other methods, while
being eight times more data efficient. These experiments highlight
how performance across the typological variety dimension can be
improved by leveraging domain.

11.3 Task Variation

Having established methods for extracting variety subspaces from LM
latent spaces, and having further demonstrated their applicability to
improving robustness on downstream tasks, Part IV took a step back
to better understand the connection between Variety Space and tasks
in NLP, by asking:

RQ3 Can data-driven measures of linguistic variation be leveraged
to quantify task similarity in an interpretable way?

Once again, tackling this question first requires a deeper qualitative
understanding of what a task even is, before moving on to attempts
to quantify them. Building on the fact that NLP tasks rely on different
mixtures of linguistic information to map an input to its output, we
hypothesized that the overlap of relevant variety subspaces—which
we showed to be measurable via their respective probes—corresponds
to task similarity.

RQ3.1 What constitutes a task in NLP?

Although this question may appear trivial, it is worth investigating
for the purposes of grounding our interpretability efforts. It has fur-
thermore gained new importance during the ongoing paradigm shift
from manually-engineered tasks to few-shot learning approaches. In
Background Sections 2.2.2 and 2.2.3, we therefore offered an attempt
at defining tasks as variations over output space, and follow this con-
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clusion through to its implications on model robustness and trustwor-
thiness. This definition further establishes a clear link between how
linguistic variation (i.e., input variation), and our previously examined
data-driven notions of Variety Space impact downstream task perfor-
mance. Towards a fundamental understanding of how this connection
comes to be, we next investigated the natural follow-up question:

RQ3.2 When does task-specific linguistic information emerge during
LM training?

Using probes as interpretable metrics of linguistic variation heavily
relies on the automatically learned representational spaces of LMs. To
establish the trustworthiness of this approach, we examined whether
and when linguistic information arises in LMs over the course of their
training (Chapter 9). By leveraging information-theoretic probing, we
extracted subspaces with a higher consistency than standard linear
probes. Applied across an LM’s training from random initialization to
completion, this approach allowed for comparisons of how linguistic
information emerges and shifts over time. Our experiments showed
that task-relevant information arises consistently during LM training,
and result in representations which match linguistic intuitions (e.g.,
layer depth ↔ complexity). However, contrary to prior works, we also
identified that these patterns of separation across tasks only emerge
at the later stages of training, with most information gains happening
in a critical learning phase early on, highlighting opportunities for
training LMs with fewer training data.

RQ3.3 Which linguistic information is shared across tasks, and how
do their subspaces interact across LM training time?

The use of high-consistency probes not only allowed us to compare
representational subspaces across time, but, for the first time, also
across tasks. By treating tasks as mixtures over different variety dimen-
sions with different ratios, we were able to show that, while there is a
high degree of task specialization in LMs at the end of training, tasks
that require intuitively similar linguistic information, also share more
representational overlap. This observation holds across time, and is
particularly prominent during the early critical learning phase, poten-
tially due to linguistic knowledge sharing being more beneficial while
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the LM is under-trained. In the final step, we verified these cross-task
similarities across more languages:

RQ3.4 How can the same task be characterized consistently across
different languages?

While information-theoretic probing allows us to compare represen-
tational subspaces over time within one model, it is still too specific
to the exact LM weights to allow for comparisons across models or
languages. As such, Chapter 10 presented Spectral Probing, which
leverages the phenomenon of information consistency over time. It al-
lowed us to characterize tasks via their spectral frequency profiles, and
demonstrated how LMs learn representations, which spread relevant
information across their embeddings in a way which matches linguis-
tic intuitions (e.g., short-range parts-of-speech, long-range sentiment).
Importantly, we showed how spectral profiles are consistent enough
to allow for comparisons across tasks and languages, displaying dis-
tinctive characteristics for different task types, but high consistency,
even across typologically distant languages.

218



12Outlook

The inherent variability of natural language necessitates controlling
for at least some variety dimensions to ensure mutual intelligibility—
both for humans and machines. Therefore, we expect the overall
topic of measuring variation to remain relevant for the foreseeable
future. Of course, despite the broad nature of our general framework
for quantifying variation, specific methods will have to be adapted in
tandem with the rapid evolution of modern NLP model architectures.
For future work using probes to quantify variation, we therefore see
two main avenues, mirroring the categorization of high specificity and
high consistency probes from Section 3.3.

High-specificity Probes for Larger LMs From the angle of speci-
ficity, the rise of increasingly large LM architectures requires new prob-
ing methodologies, which go beyond the linear methods explored in
this work. While some linguistic properties, such as spectral time-
dependencies, are probably relatively universal, extracting variety sub-
spaces from these deep and highly non-linear models likely requires
more expressive, architecture-specific probes. Even with smaller ar-
chitectures, we already observe issues probing latent representations
of decoder-only models, as they appear to contain less relevant infor-
mation, but nonetheless perform well on downstream tasks (Wang
et al., 2022). Research on probing intermediate representations of such
generative models is ongoing, and has focused on decoding latent em-
beddings into the output space pre-maturely to probe for certain lin-
guistic behaviors (Nostalgebraist, 2020; Belrose et al., 2023). However,
a consensus on how to reformulate linguistic probing tasks into a gen-
erative format has not yet been reached, and it furthermore remains
unclear how much actual linguistic information versus spurious cor-
relations these iterative inference methods are detecting. Identifying
sub-networks using modular deep learning approaches could allow
for the extraction of more complex linguistic subspaces (Ruder et al.,
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2022), however their non-linearity makes them difficult to compare,
limiting their use as measures for, e.g., cross-task similarity.

Model weights and intermediate latent representations of state-of-
the-art LMs trained by private entities may further be unavailable to
end-users and researchers, making their analysis difficult and limiting
their trustworthiness. While prompts may reveal some linguistic infor-
mation present in these models, they can only be consolidated into
the proxy measure of performance. Furthermore, prompting suffers
from high output variability itself, and is difficult to reproduce for
research purposes (Salinas and Morstatter, 2024). Despite these limi-
tations, establishing model trustworthiness is crucial, and as such, we
see targeted diagnostic benchmarks as an essential method to better
discerning knowledge of a model’s functional capacity (Litschko et al.,
2023), and to understand which linguistic capabilities the model is
actually employing (Schlangen, 2021).

Causal Interventions An issue in the aforementioned approaches
is their reliance on correlations between model representation and
linguistic properties. While methods, such as information-theoretic
probing, are able to better distinguish between random and efficient
representations, interventions in the form of removing this informa-
tion would be necessary to confirm a causal link. Probing work has
begun to use interventions to verify correlatory findings by, e.g., mask-
ing tokens relevant to a linguistic property (Lasri et al., 2022; Hanna
et al., 2023), or preventing attention heads from learning connections
akin to syntactic dependencies (Chen et al., 2024), however there is no
consensus yet as for which methods to use across all types of linguis-
tic properties. Furthermore, interventions often require re-training,
which is prohibitively expensive or impossible for large and/or closed-
source LMs. For subspace-based probing approaches, we nonetheless
see opportunities for leveraging extracted variety spaces as interven-
tions on an LM during inference. In combination with diagnostic
benchmarks, they could help verify whether a linguistic skill necessary
to solving a diagnostic task (e.g., syntactic understanding) is reduced
if the relevant subspace has been nulled out (Ravfogel et al., 2020).
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Cross-model Consistency Beyond, architecture-specific considera-
tions, enabling trustworthiness of LMs across language varieties and
tasks will require a better general understanding of their knowledge of
origin, i.e., a consistent explanation for how they acquire their capabil-
ities (Litschko et al., 2023). This lies at the core of trust in statistical ML
models for language, considering the fact that almost the entirety of
contemporary NLP is based on the distributional hypothesis (Harris,
1954; Firth, 1957). While LM capabilities continue improving across
benchmarks and qualitatively in-practice, it remains unclear how mod-
eling the statistical distribution of large datasets, i.e., the probability of
the next token, leads to representations, which encode highly linguis-
tically relevant information, and contribute to sophisticated model
behaviors. This is highlighted even more by the fact that it is still not
understood how training the same architecture on the same data, but
with different random initializations, leads to wildly different model
behaviors (Sellam et al., 2022; Hu et al., 2023; Chen et al., 2024), or, sim-
ilarly, why slightly augmented prompts can lead to large performance
differences (Leidinger et al., 2023; Salinas and Morstatter, 2024). In
terms of probing, this issue connects to the need for the ability to com-
pare how the same linguistic information is represented across LMs.
The goal of future methods should therefore be to aim for methods
which can extract highly specific linguistic information from complex
model architectures, while remaining consistent and comparable with
each other regardless of their host model.

Expansion to More Variety Dimensions Finally, it is important to
consider variety dimensions complementary to those explored in this
work. Our experiments have demonstrated the viability of probing
for subspaces of formalized properties, such as syntax, as well as less-
formalized ones like genre. With the application domains of LMs
becoming increasingly broad and complex, we anticipate that future
work will require a more human-centric focus on pragmatic infor-
mation, in addition to semantic information grounded in different
cultural contexts. A better understanding of these variety dimensions
will be essential for establishing model trustworthiness in higher-stake,
real-world scenarios. As most additional dimensions of variation will
be even less clearly defined, it is important to establish qualitative
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definitions of each new dimension, which take human uncertainty
and continuity into account, before designing quantitative methods to
probe for these properties in LM latent spaces. This process is crucial
for ensuring interpretability in a well-grounded context, that is aware
of its limitations. In parallel, we see automatically learned represen-
tations as critical for scaling to finer-grained variety dimensions, and
for modeling complex, high-dimensional interactions thereof. With
traditional boundaries between NLP tasks breaking down, the field
requires continuous and interpretable measures to maintain trustwor-
thiness. Towards this purpose, we hope that our proposed framework
of bridging qualitative and data-driven measures will contribute to a
mutually beneficial cycle which bolsters our understanding of varia-
tion in language.
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Hà Mỹ, Na-Rae Han, Muhammad Yudistira Hanifmuti, Sam Hard-
wick, Kim Harris, Dag Haug, Johannes Heinecke, Oliver Hellwig,
Felix Hennig, Barbora Hladká, Jaroslava Hlaváčová, Florinel Hoci-
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