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“Your time is limited, so don’t waste it living someone else’s life. Don’t be trapped
by dogma — which is living with the results of other people’s thinking. Don’t let the
noise of others’ opinions drown out your own inner voice. And most important, have
the courage to follow your heart and intuition. They somehow already know what
you truly want to become. Everything else is secondary.” [28]

Steven Paul Jobs



ii

Abstract
Delilah: Efficient eBPF Offload for Integrated Data Pipelines on

Computational Storage

by Niclas HEDAM

In the two decades since the end of Dennard scaling, improving processing
capabilities without increasing processor frequency has become a key
challenge for computer science researchers. Concurrently, while storage
device throughput has increased exponentially, the throughput between
CPU and memory has only improved linearly. Computational storage,
which moves data operations closer to their physical storage locations, has
gained considerable attraction to address this contrast. This interest has
recently reached a critical milestone with standardisation efforts by the
Storage Networking Industry Association (SNIA) and Non-Volatile Memory
Express (NVMe), proposing eBPF, a vendor-neutral lightweight instruction
set architecture for program offload. Simultaneously, integrated data
analysis (IDA) pipelines have emerged, combining various programming
paradigms, cluster resource management systems, data formats, and
execution strategies into unified data management frameworks, allowing
for more efficient usage of computational storage.

Despite the standardisation efforts in computational storage, the question of
effectively utilising eBPF within the storage layer remains open. Few empir-
ical studies evaluate the performance implications and potential benefits of
integrating eBPF with computational storage. Lastly, many open questions
exist concerning the implementation of a computational storage device run-
ning eBPF, including memory management and cache coherency.

In this thesis, we surveyed the current state of computational storage, iden-
tifying fundamental limitations, such as the historical lack of standardised
interfaces and short-lived, non-stateful memory. To explore these issues,
we designed and implemented Delilah, the first public eBPF-based compu-
tational storage processor. Through this implementation, we investigated
the challenges, opportunities, and performance characteristics of computa-
tional storage. Our findings reveal significant issues related to memory man-
agement and cache coherence that impact performance. Despite these chal-
lenges, when optimised, Delilah demonstrated the potential for improved
performance in specific operations, such as filtering.
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Resumé
Delilah: Efficient eBPF Offload for Integrated Data Pipelines on

Computational Storage

Af Niclas HEDAM

I de to årtier, der er gået siden enden på Dennard-skaleringen, er det blevet en
vigtig opgave for datalogiske forskere at forbedre processorkapaciteten uden
at øge processorfrekvensen. Samtidig er kapaciteten i lagerenhederne steget
eksponentielt, mens kapaciteten af overførslerne mellem CPU og hukom-
melse kun er øget lineært. Computational storage, som flytter dataopera-
tioner tættere på deres fysiske lagerplaceringer, har modtaget betydelig inter-
esse for at løse denne udfordring. Denne interesse har for nylig nået en kri-
tisk milepæl med standardiseringsarbejdet fra Storage Networking Industry
Association (SNIA) og Non-Volatile Memory Express (NVMe), der foreslår
eBPF, en leverandørneutral letvægts-instruktionssæt-arkitektur til program-
offload. Samtidig er der udviklet pipelines til integreret dataanalyse (IDA),
som kombinerer forskellige programmeringsparadigmer, ressourcehåndter-
ingssystemer til clusters, varierende dataformater og eksekveringsstrategier
i samlede datastyringssystemer, hvilket giver mulighed for at udnytte com-
putational storage mere effektivt.

På trods af standardiseringsindsatsen inden for computational storage er
spørgsmålet om effektiv udnyttelse af eBPF i storage-laget stadig
ikke besvaret. Der er kun få empiriske undersøgelser, der evaluerer
konsekvenserne for ydeevnen og de potentielle fordele ved at integrere
eBPF med datalagring. Endelig er der mange uafklarede spørgsmål
vedrørende implementering af en computerlagerenhed, der kører eBPF,
herunder hukommelsesstyring og cache-kohærens.

I denne afhandling undersøgte vi den nuværende situation for
computational storage og identificerede grundlæggende begrænsninger,
som f.eks. den historiske mangel på standardiserede grænseflader og
kortvarig, ikke-tilstandsbestemt hukommelse. For at udforske disse
problemer designede og implementerede vi Delilah, den første offentligt
tilgængelige eBPF-baserede processor til datalagring. Gennem denne
implementering undersøgte vi datalagringens udfordringer, muligheder og
egenskaber. Vores resultater afslører betydelige udfordringer i forbindelse
med hukommelsesstyring og cache-kohærens, som påvirker ydeevnen. På
trods af disse udfordringer demonstrerede Delilah, når den blev optimeret,
potentialet for forbedret ydeevne i specifikke operationer, såsom filtrering.
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Chapter 1

Introduction

1.1 Context

In recent years, the rise of artificial intelligence, machine learning, and large-
scale data analytics has been fueled by the availability of increasingly large
volumes of data. While storage and network capacities have increased expo-
nentially, processing capacity has only seen linear growth [47]. Consequently,
data volumes (measured in TB) are growing much faster than processing ca-
pacity (measured in Gops/sec). One solution of addressing this imbalance
is to attach processing capabilities directly to storage devices, enabling com-
putations directly on stored data, independently of the host processing unit.
This concept is known as computational storage [33].

Computational storage enables a host or remote processing unit to access
SSDs through a computational storage processor (CSP), an embedded pro-
cessor on a PCIe endpoint. This processor can run fixed programs or be pro-
grammable, allowing host applications to offload parts of their internal logic
to the computational storage processor.

The Storage Networking Industry Association (SNIA) has proposed several
mechanisms for code offload onto computational storage [9, 5]:

• Bitstream-based offloading for FPGAs: This involves synthesising
specific or generic hardware accelerators and placing them on the
board. This method is static and requires reprogramming and
rebooting to offload new procedures.

• Operating System-based offloading: The storage controller is bundled
with an operating system, often Embedded Linux. For Xilinx devices,
for example, the OS is generated by the Petalinux SDK. This method is
practically static, as changes require recreating and redeploying the OS.

• Container-based offloading: Computational storage capabilities are
bundled in containers, allowing easy modification or replacement.

• eBPF-based offloading: The computational storage controller can ex-
ecute programs shipped from the host and represented in eBPF byte-
code. This method is the most dynamic, enabling the offloading of
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entire programs, looping routines, and functions with multiple paths
depending on run-time information.

BPF, defined in 1992 as an efficient network packet filtering system, allowed
filtering of incoming network packets with 20 times the efficiency of the state-
of-the-art at the time [21, 5]. In 2014, BPF was redesigned as eBPF, focusing
on modern hardware. eBPF is compiled from a high-level language, often C,
into eBPF bytecode. This bytecode is interpreted by a VM or JIT compiled to
native instructions. eBPF VMs and JIT compilers are defined for various pro-
cessors, including x86_64, ARMv8, and RISC-V. In computational storage,
eBPF can be utilised as a vendor-neutral ISA, allowing application develop-
ers to write programs across different devices. The role of eBPF in storage
devices remains to be fully explored.

Simultaneously, integrated data pipelines are emerging, unifying domains
such as data management (DM), query processing, high-performance com-
puting (HPC), and machine learning (ML) training and scoring. This unifi-
cation paves the way for a new class of computational storage devices where
data persists longer than a single operator. Such devices must have systems
that allow the host to manage device-side memory efficiently. With eBPF be-
ing a general-purpose ISA, it is promising as an offload mechanism for this
new class of devices.

In addition, with recent significant advancements in the OpenSSD project,
we now have the hardware necessary to explore this new class of devices.

1.2 Problem

Several questions need to be addressed with the emergence of eBPF as the
industry standard for code offload on computational storage.

Firstly, how can we efficiently leverage eBPF code offload within a data
pipeline? We must understand how the architecture of an eBPF execution
environment on computational storage may look. Furthermore, what does it
mean to utilise eBPF to offload processing tasks to a computational storage
processor? What are the advantages and limitations of this approach?
Finally, what are the broader implications for overall system design?

To answer these questions, we aim to design and implement a computational
storage processor (CSP) that utilises eBPF as its offload mechanism. Before
doing so, we must understand the current landscape of computational stor-
age and examine previous proposals for computational storage devices. Ad-
ditionally, we investigate the state-of-the-art data pipeline technologies to
understand the use cases of computational storage. Furthermore, we explore
the differences between traditional data pipelines and integrated pipelines.

Our experimental approach includes building a computational storage de-
vice based on the Eid-Hermes project [40] and deploying it to the Daisy
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OpenSSD [13]. This novel device will allow us to evaluate the practical ap-
plication of eBPF as an offload mechanism and understand the challenges of
dynamic code-offload, including memory management and cache coherency.

Thus, the central question we address in this thesis is:

How can we efficiently offload eBPF code from a host integrated data pipeline to
computational storage?

Lastly, while efficiency can be interpreted in many different ways, we define
efficiently as improving the overall performance of a given set of operations.
For example, we consider eBPF code offload efficient if the offload results in
higher throughput or lower execution time.

1.3 Approach

We approach this problem with an experimental mindset, acknowledging
that we have limited information on the consequences, opportunities, and
limitations of utilising eBPF in the context of storage. Specifically, our un-
derstanding of how eBPF and the OpenSSD boards perform when offload-
ing gigabyte-scale operations is minimal. One critical question is whether
the clock frequency of these devices is sufficient to handle such high-volume
workloads efficiently and whether or not eBPF is too generic to represent the
complexity of storage operators.

To explore these uncertainties, we begin by establishing an experimental
setup. This setup includes a host and a monitoring/development machine
connected to a Daisy OpenSSD. The host machine is linked via PCIe, while
the development machine is connected through JTAG. Our initial step in-
volves deploying one of the example block designs provided for the device.
Concurrently, we start developing a simple controller within the processing
system. Initially, this controller will be compatible with Eid-Hermes but will
be extended with additional functionalities as our work progresses.

As the controller and its corresponding driver become sophisticated enough
for experiments, we reach a point where we can conduct meaningful exper-
iments to evaluate the implications of offloading eBPF to this new class of
devices. These experiments will focus on the devices’ performance charac-
teristics, exploring how well they manage gigabyte-scale workloads, whether
the clock frequencies and other hardware specifications are adequate for such
tasks, and whether eBPF can express storage operations efficiently.

By adopting this experimental approach, we aim to gain new knowledge of
eBPF’s potential within storage systems, ultimately laying the groundwork
for developing more efficient and flexible storage solutions.

1.4 Contributions

Our contribution to computational storage is threefold:
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Firstly, we explore the current landscape of computational storage. This
exploration includes examining current efforts to standardise the vendor-
neutral offload and reviewing past and present attempts at building compu-
tational storage devices. We analyse and discuss different architectures and
design choices’ opportunities, challenges, and limitations. Additionally, we
study modern data pipelines to understand which use cases and interfaces
can benefit the most from computational storage. We also closely examine
eBPF as a possible method for offloading tasks to computational storage.

Secondly, based on the findings of our state-of-the-art review, we propose a
new software and hardware architecture. This design is implemented on the
Daisy OpenSSD platform, allowing us to evaluate the design decisions, in-
cluding protocol and memory management. Our implementation uses eBPF
to help host data pipelines offload dynamic operations and manage memory
more efficiently.

Our implementation is available on GitHub across several repositories:

• delilah-csp/delilah : A flexible and lightweight computational stor-
age controller based on eBPF, written in C. The controller is deployed
as a Petalinux application and runs in user-space.

• delilah-csp/delilah-pt : Petalinux configurations and patches for
deploying the Delilah controller on the Daisy OpenSSD board. These
patches and configurations include, for example, memory initialisation
and device-tree specifications

• delilah-csp/delilah-bd : Block-design files for the Daisy OpenSSD,
including all necessary IPs for deploying Delilah. This block design
includes, for example, IPs to connect to the host over PCIe and memory
management IPs.

• delilah-csp/delilah-host : A host-side driver that exposes Delilah’s
functionality via io_uring. The driver utilises XDMA by Xilinx/AMD
and is based on the Eid-Hermes driver and protocol [40].

• delilah-csp/delilah-hw-filter : A high-level synthesis hardware
accelerator for filtering large datasets within Delilah, written in C.

Thirdly, we design and conduct several experiments to learn from our
proposed architecture and its components. These experiments provide
concrete insights into contemporary computational storage design and how
devices should be integrated into modern data pipelines. We provide
practical lessons on improving data processing efficiency, scalability, and
overall system performance with computational storage.

In summary, the thesis lays the foundation for further exploration and design
of computational storage. We both provide the theoretical understanding
and show the practical application of computational storage.

The thesis is partially based on a publication at the ADMS workshop and
three DAPHNE deliverables:
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• N. Hedam, M. T. Clausen, P. Bonnet, S. Lee, and K. F. Larsen. 2023.
Delilah: eBPF-offload on Computational Storage. In Proceedings of the
19th International Workshop on Data Management on New Hardware (Da-
MoN ’23). Association for Computing Machinery, New York, NY, USA,
70–76 [23].

• D6.3 Prototype and Overview of Data Path Optimizations and Place-
ment [42].

• D6.2 Prototype and Overview of Managed Storage Tiers and Near-Data
Processing [6].

• D6.1 Computational Storage Capabilities [5].

Lastly, some of the experimental analyses of Delilah using the Star Schema
Benchmark (SSB) were conducted in collaboration with Alexander Krause
and Johannes Pietrzyk from the Technische Universität Dresden. The work
is currently unpublished.

1.5 Structure of the Manuscript

This manuscript is divided into three essential parts. Part I is dedicated to
state-of-the-art computational storage; Part II is dedicated to our contribu-
tion to computational storage; and Part III is dedicated to evaluating our
contribution. Before the three parts, Chapter 1 introduces the thesis and re-
search domain.

In Part I, we explore the state-of-the-art of computational storage. Chapter 2
describes and discusses eBPF, an emerging instruction set architecture, suit-
able for offloading to computational storage. Chapter 3 explores the land-
scape of program offload to computational storage, including contemporary
standardisation efforts and previous attempts at designing computational
storage devices. Chapter 4 describes the OpenSSD platform and how it can
be used to experiment with and evaluate a computational storage device.
Chapter 5 explores the characteristics of several contemporary systems often
used for designing and implementing data pipelines. Chapter 6 summarises
the findings and the lessons learnt in this part.

In Part II, we present our primary contribution: a computational storage
processor running eBPF and exposing host-manageable memory spanning
several operators. Chapter 7 discusses the requirements for a novel compu-
tational storage processor. The chapter is based on our findings in Part I.
Chapter 8 outlines our contribution’s concrete design, including arguments
and necessary changes to previous work. Chapter 9 describes in depth the
implementation details of our contribution. Chapter 10 summarises the re-
quirements and design, and how they correspond to the concrete implemen-
tation of our computational storage processor.

In Part III, we evaluate our contributions. Chapter 11 provides a set of archi-
tectural experiments. These architectural experiments show the performance
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of the OpenSSD device and how efficient its different components are. Chap-
ter 12 evaluates the Delilah integrated into a host-side application, emulating
the behaviour of the SSB query 3.3. Chapter 13 provides a list of lessons learnt
from building and experimenting with Delilah. Chapter 14 summarises the
experiments and the lessons learnt.

Finally, Chapter 15 concludes the manuscript with a summary of the state-
of-the-art, our contributions, evaluations, and any future work.

We provide a glossary at the end of the thesis to give an overview of domain-
specific terms and abbreviations, including the pages on which they are men-
tioned.
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Part I

State of the Art
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Chapter 2

eBPF

Any environment that can execute remote or offloadable instructions must
have a structure to represent programs. In the context of networking and
kernel probes, BPF and eBPF have been around for decades, serving precisely
this purpose.

The Berkeley Packet Filter (BPF), introduced in 1992, enabled user-space pro-
grams to execute functions within the Linux kernel without using kernel
modules. The original version of BPF was, as the name indicates, targeted at
network packet filtering. It defined a bytecode structure alongside a virtual
machine (VM) embedded in the Linux kernel. In 2014, Alexei Starovoitov
introduced Extended BPF (eBPF) as a modern adaptation of BPF designed
for contemporary processors. Unlike BPF, there is currently no official stan-
dardisation body for eBPF, although eBPF Foundation serves to maintain the
technical direction and vision of eBPF. Consequently, the latest version of the
eBPF bytecode is the one that the Linux kernel can interpret. In-kernel eBPF
JIT compilers are available for various architectures, including x86, ppc64,
s390x, mips64, sparc64, and ARM. Due to the simplicity of eBPF, most eBPF
instructions can be directly mapped onto native instructions of these archi-
tectures.

Both GCC and LLVM offer eBPF backends, enabling them to generate eBPF
code from C programs. In the context of user-space execution, the IOVisor
project introduced a VM called User-space BPF (uBPF), which we will cover
in section 2.2.2. uBPF is an Apache-licensed library built for executing eBPF
programs [57]. It is released under an Apache license on GitHub. Unlike the
Linux kernel implementation, which is under the GPL license, uBPF provides
a user-friendly alternative for executing eBPF programs in user-space.

As such, the critical strength of eBPF is the well-defined and vendor-neutral
nature of the instruction set, combined with several Apache-licensed execu-
tion environments. These characteristics make eBPF particularly attractive,
given its ease of integration and compatibility across different platforms. Ad-
ditionally, the open-source nature of its execution environments invites the
community to contribute to further development.

However, eBPF also has a critical weakness. Since eBPF is a lightweight,
vendor-neutral, general-purpose instruction set architecture, the ability to
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write specialised programs in eBPF is severely limited. This restriction can
result in simple programs being compiled into numerous instructions, thus
limiting performance artificially. Additionally, the data structures that eBPF
supports are limited, as it lacks instructions for floating-point arithmetic and
dynamic memory allocation.

This chapter explores eBPF as a potential instruction set architecture (ISA)
for program offload. We want to understand what eBPF can do while con-
sidering any limitations to the architecture and execution environments.

2.1 Structure

eBPF programs consist of a sequence of 64-bit instructions. These instructions
are organised into an immediate, offset, source, destination, and opcode, go-
ing from most significant to least significant bit [32]. The immediate field
holds any constants given to instructions, while the offset field indicates an
offset, often in the context of a jump. Source and destination indicate which
registers load input or store output values. Lastly, opcode holds the opera-
tion code itself. It should be noted that instructions often use only a subset of
the fields.

msb lsb
+------------------------+----------------+----+----+--------+
|immediate |offset |src |dst |opcode |
+------------------------+----------------+----+----+--------+

Opcode Mnemonic Pseudocode Description
0x07 add dst, imm dst += imm Increase dst by imm
0x67 lsh dst, imm dst ⟨⟨= imm Bitshift dst imm times
0xb7 mov dst, imm dst = imm Set dst to imm (int64)
0x18 lddw dst, imm dst = imm Set dst to imm (word)
0x05 ja +off PC += off Jump imm instructions

ahead
0x6d jsgt dst, src, +off PC += off if dst ⟩ src Jump imm instructions

ahead, if dst ⟩ src
0x85 call imm call imm Call external function

no. imm
0x95 exit return r0 Return imm

TABLE 2.1: A select few eBPF instructions, their mnemonic
meaning, pseudo-code, and a simple description.

As of 2017, eBPF supports 102 different instructions [32]. We show eight
examples of eBPF instructions in table 2.1.
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2.2 Execution Environments

2.2.1 hBPF

hBPF is an experimental project aimed at enabling eBPF program execution
on hardware [49]. Initially released in early 2021, hBPF explores the feasi-
bility and performance of alternative hardware description languages and
cost-effective development boards like the Arty-S7. This approach opposes
traditional proprietary toolchains and expensive multi-core accelerator cards
like the Xilinx Alveo. Its primary goal is to provide insights and support
experimentation rather than competing in high-performance production en-
vironments.

While hBPF remains under active development, it has certain limitations
compared to in-kernel eBPF. Notably, hBPF has yet to be fully optimised and
does not support stack utilisation. Due to this, the R1 register is repurposed
for input arguments instead of serving as a base pointer. Furthermore, hBPF
extends the CPU’s functionality through call handlers using the call opcode.

However, despite the attention and promising functionality, hBPF’s immatu-
rity renders it unsuitable for high-performance or production environments
in its current state.

2.2.2 uBPF

uBPF is a user-space execution environment for eBPF, aiming to provide an
Apache-licensed library for executing eBPF programs. This characteristic
contrasts with the kernel’s implementation, released under the GPL license,
limiting its usage in many projects. By offering a user-space alternative with
an Apache license, uBPF intends to provide greater accessibility for non-GPL
compatible projects seeking to incorporate eBPF functionality.

The uBPF VM is a RISC register machine with eleven 64-bit registers,
including one stack pointer, an implicit program counter, and a fixed-size
stack. It provides access to several registered functions, typically used for
BPF helpers, although it can handle any registered function behind the
scenes. The uBPF VM can accept either a buffer containing eBPF
instructions or an eBPF ELF file. Its loader parses the segment header table
and sections to extract the program and references to registered functions.

The uBPF VM offers a simple interface of three operations: loading a pro-
gram, unloading/resetting the uBPF engine, and executing the loaded pro-
gram with a provided memory buffer.

When an eBPF program executes within the uBPF VM, it must return a value
by storing it in register 0 of the VM. This return value may be a scalar value,
an integer representing a pointer to memory managed by the uBPF VM, or
an identifier for a resource managed outside the uBPF VM.
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2.2.3 rBPF

rBPF, developed by Quintin Monnet, is a Rust-based execution environment
for eBPF, originating as a port of uBPF to Rust [36]. Despite their similarities,
there are several differences between uBPF and rBPF:

1. Constants: Some constants, such as the maximum program length or
stack length, differ between uBPF and rBPF. rBPF aligns with the Linux
kernel’s values, while uBPF maintains its own.

2. Error Handling: When errors occur during eBPF program execution,
uBPF quietly returns the maximum value as an error code, whereas
rBPF returns Rust’s Error type.

3. Registered Functions: The registration of helper functions, callable
from within an eBPF program, is handled differently between the two
environments. In rBPF, any function can be registered, whereas the
call instruction in uBPF has limitations.

4. Performance: Theoretically, Just-in-Time (JIT) compiled programs are
expected to run at similar speeds to uBPF. However, uBPF’s C inter-
preter may outperform rBPF’s interpreter, though this has yet to be
benchmarked.

It is worth noting that rBPF, like hBPF, is under active development, and its
API may undergo changes. Additionally, while most eBPF instructions are
implemented, there are some unsupported instructions. As with hBPF, the
immaturity of rBPF renders it unsuitable for high-performance or production
environments in its current state.

2.3 Alternatives

For the offload to storage or networking, we use eBPF as a mechanism to
structure a sequence of instructions in a vendor-neutral manner. As such,
any vendor-neutral instruction set architecture may be used for offload.

However, studies have previously explored instruction set architectures suit-
able for program offload, focusing on computational storage. Huang and
Paradies explored the characteristics of WebAssembly and compared them
to those of eBPF [25]. WebAssembly was initially developed for secure and
efficient execution in web browsers. However, the authors state that recent
research has shown that WebAssembly still needs work in terms of security
and efficiency.

The study concluded that WebAssembly is superior to eBPF for program
offload to computational storage. However, the study also shows superior
startup and preparation time for eBPF execution and similar execution time
between eBPF and WebAssembly. While the authors acknowledge that eBPF
overperforms WebAssembly, they believe that the restrictions and limitations
make eBPF unsuitable for production.
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2.4 Conclusion

eBPF continues the original BPF (Berkeley Packet Filter), introduced in 1992.
eBPF enables user-space programs to execute within the Linux kernel with-
out requiring kernel modules. eBPF was designed for contemporary proces-
sors by Alexei Starovoitov in 2014, with its direction overseen by the eBPF
Foundation.

eBPF programs consist of 64-bit instructions with immediate , offset ,
source , destination , and opcode fields.

eBPF has emerged as a candidate for a general-purpose instruction set ar-
chitecture in various domains. One of its key strengths is vendor neutrality,
making it a strong candidate for offloading to other domains.

By being vendor-neutral, eBPF allows for the development of storage appli-
cations not tied to specific devices, decreasing costs and increasing interop-
erability.

However, although eBPF is a promising candidate, Huang and Paradies con-
clude that WebAssembly may be superior to eBPF as a general-purpose in-
struction set architecture for offload to storage. However, their study also
found that eBPF typically performs better than WebAssembly. Thus, which
instruction set architecture is best suited for offloading to a particular domain
depends on context.
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Chapter 3

Program offload

The concept of computational storage and offloading to a device or server
is not new. Computational storage has gained significant traction after Den-
nard scaling ended in the mid-2000s. Since then, there have been several
attempts at designing and implementing architectures to increase processing
capabilities and throughput in high-performance systems. In this chapter,
we discuss the strengths and weaknesses of such architectures.

3.1 Data shipping vs Function shipping

In a publication from 1998, Kossmann and Franklin explored the two differ-
ent ways queries are executed in client-server database systems [31]. They
compared two typical methods: data shipping, which is when queries run
on client machines, and function shipping, which is when servers entirely
handle query execution. They also studied a hybrid approach that combines
parts of both methods. They concluded that this hybrid model often per-
forms the best compared to shipping either data or queries only.

Voruganti et al. conducted a survey in 2004, with similar results to Kossmann
and Franklin’s conclusions [58].

In the 25 years after Kossmann and Franklin’s study, we have seen similar
developments in storage. Historically, storage devices were accessed from
the host through simple interfaces, where the host acts as a client to the stor-
age device. With the introduction of NVMe, we saw a trend of moving some
functionality to the device. For example, Open-Channel SSDs enabled the
host to leverage device geometry to improve performance [48]. Another ex-
ample is OX, further described in Section 3.3.4, which enabled the host to
modify the device FTL to match application characteristics.

However, this is where the similarities between Kossmann and Franklin’s
study and storage end. Storage has the notable difference that I/O requests
are part of function shipping and complicate the architecture.

The emergence of computational storage and eBPF introduces new and ex-
citing perspectives. To some extent, it is a modern form of function shipping,
where queries and pipelines are compiled into eBPF code and shipped to an
accelerator or computational storage device. On the other hand, with I/Os
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being part of the shipped function, with asynchronous side effects, the find-
ings of Kossmann and Franklin are likely not relevant for functions offloaded
to storage.

3.2 Network

Since most network packets are fully standardised through the Internet Pro-
tocol version 4 (IPv4) or Internet Protocol version 6 (IPv6), it is straightfor-
ward to design mechanisms for program offload, as exemplified by the of-
fload of BPF and eBPF to SmartNICs. The input of an offloaded program is
always one or more network packets of a known format, and the output is
always a decision on how to handle the packet at hand. Due to the poten-
tially high volume of packets, the number of instructions per packet is also
limited. Furthermore, it is always considered appropriate to do nothing and
forward packets wherever a particular decision is not apparent.

Due to the above, program offload to network challenges are more trivial
than offload to non-heterogeneous components like storage devices. This
view is substantiated by related work. For example, Gibb et al. defined de-
sign principles for packet parsers in 2013, where they showed how reconfig-
urable packet parsers should work [19]. Their abstract parser model reads
packet header data to determine which header fields are present and extract
relevant values to a field buffer. After extraction, a match engine finds the
appropriate parser.

Gibb et al. further argue that the need for programmability stems from
the fact that header formats may change after the deployment of the initial
parser, or if the network operator is utilising custom headers. However, this
proves that network packets are standardised enough for parsers to be repro-
grammed easily. In a network packet, the header fields are always prepended
to the payload, and an understanding of these fields is on a best-effort basis.

3.3 Storage

Contrary to networking, attempts to enable program offload to storage de-
vices are much more complex. In this section, we provide a non-exhaustive
list of computational storage architectures to understand better the design
choices of previously proposed computational storage devices. We are inter-
ested in understanding what class of hardware these devices are built atop
and the motivations behind the choice.

Architectures such as Willow, BlueDBM, INSIDER, REGISTOR, POLARDB,
and NASCENT are FPGA-based, while Biscuit takes an ARM-based
approach. YourSQL, on the other hand, builds on a software-based solution.
OX and Eid-Hermes propose architectures for offloading to specialised
hardware, namely Open-Channel SSDs and eBPF-based accelerators,
respectively. This set of architectures prompts several intriguing questions:
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• What are the key advantages of constructing an FPGA-based computa-
tional storage device, and how does it compare to an ARM-based com-
putational storage device?

• How can offloading be executed efficiently?

• How are memory regions organised and shared with the host?

Each architecture offers unique insights into the landscape of computational
storage, highlighting the diverse approaches and considerations in designing
efficient and practical storage solutions.

3.3.1 Willow

Seshadri et al. introduced Willow in 2014. It is a prototype system based
on FPGA technology and aimed at enabling programmers to extend SSDs
with application-specific functionality while keeping filesystem protections
intact [54, 18].

Willow is deployed to an FPGA. In Willow, the FPGA is interfaced with the
host system via PCIe and offers programmable functionality through SSD
Apps. An SSD App consists of a series of generic Remote Procedure Call
(RPC) handlers, without storage-specific functions, which can be deployed
at individual Storage Processor Units (SPUs).

Challenges associated with Willow include limitations in the complexity
and performance of Apps, particularly when concurrent SPU transfers
are needed, and constraints on the number of Apps that can run
simultaneously. Additionally, the system does not support dynamic
memory allocation or task offloading for execution on the SSD.

3.3.2 Biscuit

In 2016, Gu et al. proposed Biscuit, an NDP framework designed to provide
general-purpose offload through high-level APIs within two libraries. The
two libraries are libslet and libsisc, and they support the development of data-
intensive applications in the form of SSDlets [20, 18]. In Biscuit, an SSDlet is
a C++ program based on Biscuit APIs that can be independently scheduled.
SSDlets operate via a distributed mechanism on both the host and storage
systems, utilising PCIe Gen3 x4 links.

Biscuit uses ARM Cortex-R7 real-time embedded processors located within
the SSD firmware and user runtime and hardware pattern matches to of-
fload and execute tasks performantly. The ARM cores were initially used for
SSD functions to yield performance advantages. However, Gu et al. failed
to demonstrate an increase in performance when running both user applica-
tions and host I/O requests concurrently.

Some of Biscuit’s key advantages are dynamic module loading and memory
allocation. However, despite these software capabilities, Biscuit has several
hardware challenges, including cache coherency issues, limited processing
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and computing power, synchronisation constraints, and insufficient memory
or Memory Management Unit (MMU) capacity.

Lastly, Biscuit is a fixed-function computational storage device, limiting users
to specific applications due to their flow-based programming model.

3.3.3 YourSQL

Jo et al. proposed YourSQL in 2016. Their architecture uses commodity
NVMe SSDs connected to a server via PCIe Gen3 x4. YourSQL supports
device-side filtering, user-programmability, and real-time scanning of tables
via a hardware pattern matcher [27, 18].

However, the YourSQL implementation has challenges and limitations.
MariaDB was modified to integrate its query planner and storage engine
with Biscuit (described in Section 3.3.2). These significant changes can
potentially lead to security issues and performance degradation due to
diverging changes to MariaDB in the future.

YourSQL has a hardware and software layer. Software-based filtering, how-
ever, incurs an overhead and may, therefore, impact overall system perfor-
mance.

3.3.4 OX

OX, proposed by Picoli in 2019, is an architecture for configuring System-on-
Chip (SoC)-based storage controllers atop Open-Channel SSDs [46].

OX differs from other computational storage systems by enabling system
administrators to tailor custom application-specific Flash Translation Layers
(FTLs) to match the characteristics of the database system. This adaptabil-
ity optimises system performance and ensures more efficient utilisation of
resources, catering specifically to the workload characteristics.

However, Picoli et al. stated in 2020 that Open-Channel SSDs cannot be con-
sidered a uniform class of devices due to the complicated device geometry
and characteristics [48]. As such, NVMe moved on to standardise ZNS de-
vices instead, leading to the de facto abandonment of OX.

3.3.5 BlueDBM

Jun et al. introduced BlueDBM in 2015 [29, 18]. It is an architecture that
enables processing in flash-based storage, focusing on data analytics.
BlueDBM, like Willow, is deployed to an FPGA. It implements host and
network controllers, flash memory, and in-storage processors.

BlueDBM has several limitations and challenges concerning its filesystem,
Remote File Sharing (RFS). RFS maintains mapping information, which en-
ables filesystems to retrieve files from their physical locations on the flash.
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However, the inability to use other filesystems than RFS may decrease devel-
opers’ interest and thus limit adoption.

3.3.6 INSIDER

Ruan et al. introduced INSIDER in 2019 [52, 18]. It is based on an FPGA
architecture like Willow. It works as a reconfigurable drive controller and
utilises PCIe Gen3 for interconnection to the host. Because it is based on
FPGA technology, INSIDER supports several different workloads instead of
being limited to one. The architecture of INSIDER is divided into a con-
trol plane, responsible for firmware logic, and a data plane with accelerators.
This division guarantees the security and integrity of user data by preventing
unauthorised program access to the drive.

On the host, INSIDER is based on a virtual file abstraction. On the drive, it
exposes a simple and concise interface to abstract away data movement im-
plementation details between system components and the device-side pro-
cessor. This approach removes the need for programmers to develop and
maintain customised APIs, which could be incompatible with existing sys-
tem interfaces or introduce security issues.

3.3.7 REGISTOR

Pei et al. introduced REGISTOR in 2019 [44, 18]. REGISTOR was designed
to improve regular expression searches within storage devices using a deep
pipeline structure. REGISTOR has two primary components: a hardware
architecture implemented on an FPGA and a software stack.

Experiments and analyses of REGISTOR showed that it achieves high
throughput and reduces the I/O bandwidth requirement by up to 97%.
Additionally, it reduces CPU utilisation by as much as 82% for regex search
in large datasets.

3.3.8 POLARDB

Cao et al. introduced POLARDB in 2020. It is a cloud-native Online Transac-
tion Processing (OLTP) database designed by Alibaba Cloud [7, 18]. It uses
heterogeneous computing within storage nodes to support early predicate
evaluation via table scan pushdown.

Their architecture is based on an FPGA that is host-managed and aims to
optimise hardware costs by utilising PCIe as the storage interface. One sig-
nificant challenge is the need to verify results against a complete table scan,
as not all potential scan conditions are supported.

3.3.9 NASCENT

Salamat et al. utilised a Samsung SmartSSD to introduce NASCENT in 2021.
It is a near-storage accelerator for database sorting tasks, focusing on bitonic
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sort [53, 18]. Their architecture is based on FPGA technology and is designed
to maximise parallelism. By connecting the FPGA directly to the system via
the PCIe bus, they hoped to optimise performance compared to conventional
architectures.

In traditional setups, where a single FPGA is connected via PCIe to storage
devices, there is a limit on simultaneous access to multiple SSDs. However,
NASCENT supports direct connectivity between a SmartSSD and an FPGA.
This configuration enables partition sorting at the SSD level, independent
of other SmartSSDs. This significantly improves system performance, espe-
cially as the number of storage devices increases.

3.3.10 Eid-Hermes

Eid-Hermes, a project led by Eideticom, is designed to show how eBPF-based
accelerators can be used to offload application code from host processors [40,
23]. The Eid-Hermes is divided into four sub-projects: a QEMU Model, an
AWS F1 implementation, a Linux driver, and an eBPF userspace library.

Besides the four projects, Eid-Hermes defines a host-controller transport pro-
tocol. Eid-Hermes provides the interface for loading, unloading, and execut-
ing programs on the device. One of the core principles of Eid-Hermes is the
focus on data and program transport. Specifically, Eid-Hermes utilises pro-
gram slots and data slots as memory buffer abstractions.

During device enumeration, the host system is made aware of the number
and sizes of these slots. In the context of computational storage, Eideticom’s
decision to separate program slots and data slots in the protocol opens mul-
tiple doors. For example, it allows for daisy-chaining of programs, where
multiple programs use the same data slot. It also decouples the timing of
program and data transfer by allowing the host to offload programs before
the data is known. The protocol utilises XDMA, a Xilinx DMA engine elabo-
rated in Section 4.3.1, for transferring programs and data to the device.

Eid-Hermes uses three distinct Base Address Registers (BARs). BAR0 con-
tains the command registers and Eid-Hermes state, including device capa-
bilities. BAR2 holds configurations related to XDMA, while BAR4 stores the
program and data slots of uBPF. Commands are transmitted and executed
by writing to the Eid-Hermes command register on BAR0.

After the driver is installed, it generates a unique device file, /dev/hermesX ,
for each Eid-Hermes device in the system. The interface supports typical
system calls, including open , close , ioctl , write , and read , exposing
DMA capabilities and program execution functionality. ioctl operations
enable program execution with automatic allocation and reuse of program
slots. Data transfer is achieved through write and read system calls, with
automatic allocation and reuse of data slots.

Eid-Hermes has certain limitations. Most importantly, each file descriptor
is constrained to a single program slot and a single data slot, automatically
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Offset Len Name Mode Description
0x00 4 EHVER RO Interface version
0x04 48 EHBLD RO Build version (git describe)
0x34 1 EHENG RO Number of eBPF engines
0x35 1 EHPSLOT RO Number of program slots
0x36 1 EHDSLOT RO Number of data slots
0x38 4 EHPSOFF RO Base address program slots
0x3C 4 EHPSSZE RO Size of a single program slot
0x40 4 EHDSOFF RO Base address of data slots
0x44 4 EHDSSZE RO Size of a single data slot
0x1000 32 EHCMDREQ 0 RW Command request for eng. 0
0x1020 16 EHCMDRES 0 RO Command response for eng. 0
0x10. . . 32 EHCMDREQ N RW Command request for eng. N
0x10. . . 16 EHCMDRES N RO Command response for eng. N
0x2000 8 EHCMDCTRL 0 RW Command control for eng. 0
0x20. . . 8 EHCMDCTRL N RW Command control for eng. N

TABLE 3.1: An overview of the command register of Eid-
Hermes.

Byte Name Mode Description
0 EHCMDEXEC RW Host writes 1 to start engine. Cleared by

device afterwards.
1 EHCMDDONE RO Device writes 1 on completion. Cleared

by device before starting, set back to 1
when done.

2-7 – – Reserved

TABLE 3.2: An overview of the command control register of
Eid-Hermes.

assigned by the driver. Thus, users who need to concurrently execute multi-
ple programs must open /dev/hermesX multiple times. Furthermore, if the
intention is to pass the resulting output from one program to the input of
another program, programs must be consolidated into a single executable to
achieve this.

3.3.11 Discussion

Looking across the computational storage landscape, we observed several
fundamental tendencies. Most notably, FPGA-based architectures are a pop-
ular choice due to their ability to perform fast processing while maintaining
low power consumption. In addition, FPGAs offers configurable and flexible
architectures. This trend, in turn, allows for implementing customisable data
paths focusing on particular metrics or requirements like throughput, power
consumption, or latency. On the other hand, processor-based architectures
are also popular due to their general-purpose flexibility and ability to run
various programs out of the box.
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Additionally, some of the architectures focus on more specific use cases. For
instance, YourSQL only supports SQL-based offloading, while OX focuses on
modifying the Flash Translation Layer (FTL) to match application character-
istics.

In conclusion, the design of a successful computational storage architecture
may integrate elements from each subset. For example, FPGA hardware
could be utilised to define data paths with high throughput, while proces-
sors enable general-purpose program execution. It is now possible to design
these hybrid architectures due to the emergence of Xilinx UltraScale+ MP-
SoCs, as discussed in Section 4.2. Such architectures might incorporate static
and bounded components, such as parsers, filters, or FTL adaptation support
systems, rather than relying solely on one of them as the only component.

3.4 Standardisation of Computational Storage

This section discusses standardisation efforts within computational storage.
In the context of storage, Storage Networking Industry Association (SNIA)
and Non-Volatile Memory Express (NVMe) are the most well-known con-
temporary standardisation parties. Both have recently led efforts to stan-
dardise program offload to computational storage.

3.4.1 Storage Networking Industry Association

In the early 2020s, the Storage Networking Industry Association (SNIA) de-
fined a specification for program offload to computational storage [10, 9].
Their specification is focused on terminology and relationships between dif-
ferent types of resources, rather than implementation details. They define
the term computational storage as "architectures that provide computational
storage functions coupled to storage, offloading host processing or reducing
data movement". To support this definition, they introduce the following
new terminology.

• Computational storage array (CSA): A collection of computational
storage devices, control software, and optional storage devices. A
computational storage array provides computational capabilities to
potentially diverse devices.

• Computational storage drive (CSD): A storage element that provides
computational storage functions and persistent data storage. The main
difference between computational storage arrays and computational
storage drives is the number of underlying persistent storage mediums.

• Computational storage engine (CSE): A component that is able to ex-
ecute one or more computational storage functions. A computational
storage engine is a collection of execution environments and device-
specific functions compatible with these environments.
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FIGURE 3.1: A diagram showing the relationship between the
SNIA computational storage terminology.

• Computational storage engine environment (CSEE): An operating en-
vironment for a computational storage engine. A computational stor-
age engine environment could be a VM, accelerator, or any other unit
with computational capabilities.

• Computational storage function (CSF): Specific operations that may be
configured and executed by a computational storage engine. A compu-
tational storage function is a concrete, device-specific or host-offloaded
procedure compatible with at least one of the execution environments
embedded within the computational storage device.

• Computational storage processor (CSP): A device that provides com-
putational storage functions for an associated storage system without
providing persistent data storage. The main difference between com-
putational storage processors and computational storage drives is the
fact that computational storage processors do not have persistent stor-
age. Instead, they are connected to persistent storage via PCIe, Ether-
net, IB, or similar interfaces.

• Computational storage resource (CSR): A resource available for a host
to provision on a computational storage device, enabling that compu-
tational storage devices to be programmed to perform a computational
storage function. Computational storage resource is a catch-all term for
any subsystem on a device that supports computational storage capa-
bilities.
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• Computational storage device (CSx): A computational storage drive,
computational storage processor, or computational storage array.

• Function data memory (FDM): Device memory used for storing data
that is used by the computational storage functions and is composed of
allocated and unallocated function data memory.

Furthermore, SNIA introduce a set of example mechanisms for program of-
fload to computational storage:

• Bitstream based offloading for FPGAs, where hardware acceleration
modules are synthesised and deployed to the FPGA. This approach de-
ploys static functionality, which cannot be altered without reprogram-
ming and rebooting the device.

• Operating System-based offloading, where the storage controller is de-
ployed alongside an operating system. The operating system can take
any form, from small and custom operating systems to fully-fledged
ones like Linux. The operating system approach to offloading is prac-
tically static, as redeployment entails recompilation and redistribution
of changes to code and configurations.

• Container-based offloading, where the computational storage
controller is deployed via containers and can be redeployed or
reconfigured on the go.

• eBPF based offloading, where the computational storage controller can
execute eBPF bytecode. The programs can be shipped from the host
or remotely via the network. This offloading mechanism is the most
dynamic of the four, due to the ability to offload fully-fledged programs
on the go. These programs can contain loops and even functionality
with multiple distinct paths depending on runtime information.

In an interview with Dave Landsman of Western Digital, among others, he
states that SNIA probably selected eBPF as the preferred offload mechanism
because it is more straightforward to establish a standard ecosystem with
architecture independence [56]. In other words, a host would not need to
know the processor embedded in an NVMe device to offload, because it can
use hardware-agnostic code. Furthermore, Jim Harris of Intel states that since
eBPF already has a track record of efficiently handling network packets, it
makes sense to expand the eBPF ecosystem to other use cases.

Theory of Operation

SNIA describes computational storage as the integration between compute
resources and storage. With this architecture, it is possible to improve the
performance of applications and infrastructure by freeing up capacity on ex-
isting processors, memory, storage, and I/O systems. Furthermore, these
specify that compute resources can be placed directly within or between the
host and storage.
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Memory Management

As briefly mentioned in this section, SNIA introduces the concept of com-
putational storage engines (CSR) and function data memory (FDM). A com-
putational storage resource is where the computational storage function and
the computational storage engine environment may be stored. Function data
memory is the working memory of the computational storage function.

Function data memory is located on the computational storage device but
may be mapped to a host memory address. Function data memory is dy-
namic and managed using the csAllocMem() function and the csFreeMem()
function.

Since a computational storage resource may be anything from function data
memory to vendor-specific resources, it is hard to clearly describe the mem-
ory management of the SNIA standard. This vagueness occurs because it is
not clearly defined how to interact with non-function data memory memory.

Program Management

SNIA distinguishes between an Operating System environment, a Container
Platform environment, a Container environment, and an eBPF environment.
However, these are merely examples and not a proposed standardisation of
environments.

Programs are either device-specific or, depending on the execution environ-
ment, offloaded from the host. The csCSFDownload() function allows of-
floading computational storage functions to appropriate computational stor-
age engine environments.

Limitations

Since the specification of SNIA focuses on terminology and relationships
rather than implementation details, we need answers to fundamental ques-
tions. For example, how do execution environments interact with storage?
eBPF and containers are run in isolation by default, meaning that some mech-
anism to access storage must be introduced. Furthermore, we are left with
questions on how to handle memory management efficiently. How do we
avoid fragmentation in the function data memory regions? How do we guar-
antee cache coherency between host and device and execution environments
like FPGAs and ASICs?

3.4.2 Non-Volatile Memory Express

In 2023, NVMe released the first iteration of the Computational Programs Com-
mand Set Specification [39]. This specification defines two new NVM names-
paces/command sets.
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Theory of Operation

The Computational Programs Command Set defines the mechanism for of-
floading programs from the host to an NVMe subsystem. These programs,
which serve specific and well-defined purposes, can be defined by the device
or downloaded from the host.

The specification allows programs to operate on data stored in one or more
memory namespaces. Input and output data for these programs are man-
aged through the memory namespaces using NVMe commands issued by
the host. The specification introduces new functionality through I/O com-
mands to execute programs and administrative commands to load programs,
manage program activation, and manage memory range sets. Additionally,
it defines data structures and log pages, including Identify Controller data
structures and Identify Namespace data structures.

Memory Management

Memory Management, as seen in the Theory of Operation, is based on
namespaces. More specifically, NVMe proposes having distinct buffers for
programs and data. The programs are stored in one or more compute
namespaces. These namespaces act as a bank, where the host issues
transfers to the particular namespace and gets an identifier in return. This
level of indirection supports offloading various programs with different
sizes since the memory regions can be allocated dynamically.

Data slots function similarly, albeit with notable differences. They are located
in a Subsystem Local Memory (SLM) Namespace that can source data from
zero or more NVM Namespaces.

Since resources can be distributed over many namespaces, NVMe introduces
Reachability as a mechanism to verify access to a resource. Reachability Asso-
ciations is a tuple of two namespaces which can access each other’s resources.

The specification introduces the notion of Memory Range Sets. A Memory
Range Set consists of one or more ranges of SLM, each defined by an NSID,
an offset, and a length. They are created within a single compute namespace,
restricting program access to specified SLM areas.

Memory Range Sets are linked to programs via Execute Program commands
and identified by a unique Memory Range Set ID within each compute
namespace. The host manages these IDs using the Memory Range Set
Management command, which is unique but not necessarily sequential.
Different Memory Range Sets can overlap to allow multiple programs to
share data, but ranges within a single set cannot overlap.

Compute namespaces can contain multiple Memory Range Sets independent
of sets in other namespaces. Each compute namespace supports specific
range granularity for Memory Range Sets. Memory Ranges are identified
by IDs, with 0h referring to the data buffer, and others assigned sequentially
within the set.
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Program Management

Programs have several notable characteristics, including whether they are
offloaded from the host or device-defined and their type, which can, for ex-
ample, be eBPF or vendor-specific. Each program may also have a Program
Unique Identifier (PUID). These characteristics are linked to a Program Index
(PIND) within a specific compute namespace.

The I/O Command Set includes commands for loading, unloading, activat-
ing, deactivating, and executing downloadable programs and commands for
activating, deactivating, and executing device-defined programs. Programs
operate on data in SLM, are activated with the Program Activation Manage-
ment command, and executed with the Execute Program command.

A compute namespace may support downloaded programs of specific types
and may also have device-defined programs. Information about the sup-
ported program characteristics for a namespace can be obtained from the
Identify data structures, the Downloadable Program Types List log page, and
the Program List log page.

Program activation prepares a program for execution on a specific names-
pace by reserving the necessary compute resources. Depending on the pro-
gram type, activation might involve tasks such as JIT compilation of an eBPF
program or flashing an FPGA with an RTL program. Separating the prepara-
tion of the execution environment from the actual program execution helps
ensure more predictable execution latency.

A namespace may host more programs than can be activated simultaneously,
allowing for a higher number of device-defined and downloaded programs.
The host can then choose which programs to activate. Before executing a
program on a compute namespace, it must be activated on that namespace.
The host uses the Program Activation Management command to activate or
deactivate programs.

The I/O Command Set Identify Namespace data structure can be used to
determine the limits on the number of programs that can be activated on a
specific namespace. The Get Log Page command, specifying the Program
List log page, can determine which programs have been activated.

3.5 Conclusion

Computational storage and program offloading have gained significant at-
tention since the end of Dennard scaling in the mid-2000s. The main focus
is to design and implement architectures to improve processing capabilities
and throughput in high-performance systems by utilising hardware compo-
nents other than the primary processor.

Kossmann and Franklin’s article from 1998 on data shipping versus function
shipping shows the benefits of a hybrid model that combines both meth-
ods [31]. This conclusion has been verified by Voruganti et al. in 2004 [58].
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Meanwhile, eBPF offload is a contemporary form of function shipping,
where queries and procedures are compiled into eBPF code and shipped to
accelerators or computational storage devices.

In networking, program offloading benefits from standardised IPv4 and IPv6
protocols. This standardisation trivialises architecture and design, as the in-
put and output formats are well-defined. This characteristic contrasts with
storage devices, which are more complex due to the lack of standardised
I/Os, and since they can vary significantly in their implementation and ca-
pabilities.

In this chapter, we have examined ten previous proposals for computational
storage to understand the diverse design choices and their limitations. These
include FPGA-based solutions like Willow, BlueDBM, INSIDER, REGISTOR,
POLARDB, and NASCENT; ARM-based Biscuit, software-driven YourSQL,
as well as specialised hardware architectures like OX and Eid-Hermes. Each
proposed architecture has given us some understanding of the landscape of
computational storage, with a tendency towards FPGA as the preferred hard-
ware solution.

The Storage Networking Industry Association (SNIA) has proposed mech-
anisms such as bitstream-based offloading for FPGAs, OS-based offloading,
container-based offloading, and eBPF-based offloading. Each of these mech-
anisms has different challenges and opportunities and varying degrees of re-
configurability. The NVMe Computational Programs Command Set Specification,
introduced in 2023, describes how NVMe devices should handle program
offload while introducing new terminology like computational programs, a
form of discrete functional units, and the use of compute namespaces.

After surveying the design landscape of computational storage, we under-
stand the complexities and challenges in performing and standardising pro-
gram offloading to storage. We have learnt that these challenges arise due
to the diverse and incompatible nature of drives and filesystems. Despite
these complexities, we have seen promising standardisation attempts laying
the groundwork for designing and implementing computational storage de-
vices.

More specifically, we note the following challenges:

1. Memory Management: Memory management, including state man-
agement, differs significantly between systems. Some systems imple-
ment a functional approach, where state and data only live for the oper-
ator’s lifetime. Other systems provide limited memory to handle their
respective use cases. We generally see a tendency for memory to be re-
stricted and limited, probably to avoid issues with dynamic allocation
and cache coherency.

2. Specialised interfaces: The surveyed systems use vendor-specific in-
terfaces and programming models. In essence, to offload computations
or instructions to the systems, one must express them in the respective
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structure of the device without the ability to reuse programs on other
architectures.

3. Restricted use-cases: The surveyed systems target particular use-cases,
including database systems, query execution, or file abstractions. The
complex storage domain likely limits systems to target particular inter-
faces over generic, general-purpose interfaces.

4. Hardware trade-offs: While we observe tendencies towards using FP-
GAs as underlying hardware architecture, the survey makes it clear that
there is no silver bullet in terms of hardware. Systems relying on FP-
GAs tend to be faster but more specialised and limited, while CPU-
based systems support a more comprehensive range of use cases at the
cost of performance.
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Chapter 4

OpenSSD Platform

The OpenSSD project emerged in 2011 as an initiative to promote research
and education on the recent SSD technologies [55]. The OpenSSD project
has resulted in multiple platforms, including Jasmine, Cosmos, Cosmos+,
Daisy and Daisy+. These boards enable researchers to develop and experi-
ment with SSD firmware on actual boards. The boards are manufactured and
sold by CRZ Technology with a license from Hanyang University.

The Jasmine OpenSSD was the first board developed within the OpenSSD
project and presented in 2011. It features an Indilinx Barefoot controller with
96 kilobytes of SRAM, an ARM7TDMI-S core running at up to 87.5 MHz, a
SATA 2.0 host-device interface, and 8 NAND flash memory slots.

The Cosmos OpenSSD replaced Jasmine in 2014 and is equipped with HYU
Tiger3 controller, which is implemented using a XC7Z045-FFG900-3 Zynq-
7000 FPGA. The controller has two 1 GHz ARM Cortex-A9 cores and 1 giga-
byte of DDR3 SDRAM. Furthermore, the Cosmos has several PCIe connec-
tors and SO-DIMM NAND flash slots.

The Cosmos+ OpenSSD replaced Cosmos in 2016 and came with a newer gen-
eration of the Tiger controller, the HYU Tiger4. The board is identical to the
Cosmos platform, but the new controller offers NVMe capabilities.

The Daisy OpenSSD replaced Cosmos+ in 2019 and features a Xilinx Zynq
Ultrascale+ MPSoC with four ARM Cortex-A53 cores running at 1.5 GHz, 2
gigabytes of LP DDR4, two 2x100GE and PCIe Gen3 x16 connectors, and a
backplane interface for connecting to two M.2 SSDs [12, 23].

The Daisy+ OpenSSD replaced Daisy in 2021 and features a board similar to
the Daisy, but with an NVMe Host Controller, NAND Flash Controller, and
an FTL [14]. Furthermore, it has an ARM Mali-400 MP2 Graphics Processing
Unit and 4 gigabytes LP DDR4 (DDR4-3200) memory.

This chapter discusses the opportunities and limitations of using the
OpenSSD project as a testbed for computational storage. We will focus on
the Daisy OpenSSD for the remainder of the chapter.
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FIGURE 4.1: The Daisy OpenSSD [15].

4.1 Interface

The Daisy OpenSSD offers multiple methods of connecting to the host.

4.1.1 PCIe

The Peripheral Component Interconnect Express (PCIe) protocol operates on
a transactional architecture, enabling communication through requests and
responses [5]. It works with isolated physical connections arranged as lanes,
with a packet-based data link protocol on top. Each lane has a pair of unidi-
rectional, serial, point-to-point links.

Devices following the PCIe standard may have one or multiple memory-
mapped spaces called Base Address Registers (BARs). These regions on the
device are directly accessible from the host memory.

With PCIe, larger data transfers between the host and device can be facili-
tated independently of the host CPU through DMAs. These transfers occur
at the hardware level via the DMA controller within the PCIe Root Complex.
On the Daisy platform, DMA operations are handled by XDMA, which or-
ganises lanes into write channels (H2C) and read channels (C2H).

Figure 4.3 shows the lifecycle of a DMA request. Initially, a host process ini-
tiates a request to transfer a memory block to the device. Next, the DMA
controller is initialised and given a pointer to a memory buffer, along with
its size. The CPU commands the peripheral device to start the transfer. The
DMA controller interfaces with the device by providing pointers and con-
trol signals via the DMA registers. In the context of XDMA, these registers
are located in BAR2. During the transfer, the DMA controller incrementally
updates its internal registers for each byte until the transfer concludes.

It is worth noting that DMA represents the most efficient method for trans-
ferring more significant amounts of data across PCIe.
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FIGURE 4.2: A diagram showing the physical components of
the Daisy OpenSSD [15].

4.1.2 Ethernet

The Daisy OpenSSD has an RJ45 connector, offering 10/100/1000 ethernet
connectivity to other machines. When running an operating system within
the processing system of the MPSoC, this connection allows for an automati-
cally configured connection, for example, via DHCP. Since this connection is
limited to 1 gigabit per second, it is not suited for data transfers but rather as
a control or debugging connection.

4.1.3 QSFP28

The Daisy OpenSSD comes with two QSFP28 connectors. Since QSFP28 has
an upper bound of 100 gigabytes per second, these two connectors can be
used to expose the storage controller over a network interface. This feature
is especially relevant if the Daisy runs as a standalone device without a host.

4.2 Zynq UltraScale+ MPSoC

The Zynq UltraScale+ platform is a heterogeneous multiprocessing system,
which integrates an ARM processor and an FPGA hardware accelerator [61].
The ARM processor, also known as the Processing System (PS), is capable of
running entire operating systems, enabling the deployment of complex de-
vice controllers. The FPGA component, also known as Programming Logic
(PL), enables the deployment of custom hardware components.

Zynq UltraScale+ MPSoCs come with multiple high-performance PS-to-PL
ports, enabling connectivity between the operating system running on the
PS and peripherals located within the PL. While the most efficient ports offer



Chapter 4. OpenSSD Platform 31

FIGURE 4.3: An overview of the steps of a single DMA transfer.

AXI interfaces, the chip also supports general-purpose ports such as GPIO
and USB.

4.3 Software Development Kit (SDK)

Xilinx, acquired by Advanced Micro Devices (AMD) in 2023, was one of the
major suppliers of programmable logic devices such as FPGAs. As men-
tioned in the previous section, the Daisy OpenSSD has a Zynq UltraScale+
MPSoC, which Xilinx developed. This dependency means that the SSD must
be configured, built, and programmed using the Xilinx Software Develop-
ment Kit (SDK), which we describe in this section.

The Software Development Kit consists of many IPs developed by Xilinx, the
Vivado suite for designing the block design, Vivado HLS for developing IPs
from higher-level languages like C, and the Petalinux SDK for configuring
and deploying operating systems to the Xilinx boards.

It is worth noting that throughout this thesis, we will work with the 2019.1
version of the SDK, since this is the preferred version for deployment to the
Daisy OpenSSD.
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4.3.1 IPs

In FPGA programming, one primary task is to define and describe the hard-
ware configuration. This description can take the form of Block Designs, and
in the Xilinx SDK, it is stored as Hardware Design Files (HDFs) or Xilinx
Support Archives (XSAs). With Vivado, the underlying Block Designs are
expressed as a visual representation of how components within the device
are interconnected, including any intermediary Intellectual Property (IP).

This section explores a subset of the typical IP modules often encountered in
FPGA programming.

AXI

The Advanced eXtensible Interface (AXI) is the primary interface protocol
for connecting Intellectual Property (IP) blocks [2]. AXI enables fundamen-
tally different IP modules to connect via a general-purpose channel instead
of relying on custom protocols or interfaces.

A practical example of AXI in use is a situation where a link is needed from
the operating system residing in the Processing System (PS) with one or more
FPGA peripherals. In this situation, we must utilise the PS-to-PL ports as de-
scribed in Section 4.2. However, the configuration of the PS-to-PL ports on
the Zynq often do not match the configurations of the AXI ports on the pe-
ripherals. To connect PS and the peripherals, or to directly link two or more
peripherals, the easiest option is to add either an AXI Interconnect or an AXI
SmartConnect to the block design. Both connectors have the same purpose of
connecting AXI-compatible IPs together but with distinct differences. While
the Interconnect allows for more fine-grained configuration, SmartConnects
offer a more simplified and automatic approach.

PCIe DMA/Bridge – XDMA

The Xilinx Direct Memory Access (XDMA) IP enables the developer to
configure the FPGA either as a Peripheral Component Interconnect Express
(PCIe) Root Complex or Endpoint.

In bridge mode, XDMA operates as a PCIe Root Complex, connecting to un-
derlying PCIe secondary devices [3]. In DMA mode, it instead exposes the
device as a PCIe device with Direct Memory Access (DMA) capabilities to a
host-machine [17].

On the Daisy OpenSSD, the physical pins connected to the host or underlying
SSDs are wired to the PL part of the MPSoC. Connecting any XDMA IP with
the board’s processing unit in PS is optional. For example, in DMA-mode,
the XDMA IP only connects one or more AXI backends to the PCIe link. The
host can issue I/O operations to any of the apertures in these AXI backends
with this configuration.
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The XDMA IP has many configurable properties, which include the number
of PCIe lanes, link speed, and Base Address Registers (BARs), to mention a
few.

Lastly, XDMA enables the FPGA to trigger interrupts on the host via PCIe,
supporting up to 32 legacy, Message Signaled Interrupts (MSI), and MSI-X
interrupts. However, some of these interrupts are reserved for DMA opera-
tions. To trigger one of the interrupts, one must send a signal to a preassigned
pin in XDMA IP. This signal must persist until the host acknowledges and
services the interrupt, indicated on another pin on the IP.

It is worth noting that the ability for XDMA to operate independently of
the on-board processing unit raises many open questions about memory and
cache management. We discuss these challenges in Section 9.5.

MIG

The Memory Interface Generator (MIG) serves as a simple way to expose a
Dual In-Line Memory Module (DIMM) slot as a memory aperture through
AXI.

The reason that MIGs are necessary for accessing DIMM memory is simple:
Modern DIMM sticks have 288 pins, each requiring precise wiring from the
connecting processing unit or IP to the memory stick. Xilinx addressed this
complexity by developing MIGs, simplifying the process by exposing these
288 pins as a single AXI connection. Without the MIG IP, developers would
have to connect all 288 pins individually and develop a driver to communi-
cate with the memory stick.

Configuring a MIG is done by inputting the attributes of the mounted mem-
ory sticks. This configuration includes, for example, I/O latencies, voltages,
and detailed information regarding columns, banks, and ranks.

GPIO

The AXI General Purpose Input/Output (GPIO) IP module is a mechanism
for managing individual pins in the Programmable Logic (PL) part of the
MPSoC or external components beyond the FPGA. When connected to PS
via the PS-to-PL ports, each pin becomes accessible through a pseudo-file
within the /sys/class/gpio directory.

In Petalinux, every GPIO chip connected to the system is assigned a base,
which is the identifier of the first pin on the GPIO chip. The operating sys-
tem dynamically allocates this base during boot-time and can be deduced
through various cues, such as the static memory address from PL.

Managing a pin from Petalinux is a simple process. First, one must export
the pin, signalling the Linux driver to make the pin accessible to user-space.
Afterwards, the pin’s direction is set, typically to out , unless read-only.
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Once the pin is configured, its state can be changed by writing either 0 or 1
to the value pseudo-file associated with the pin.

Below is an example showcasing the successful configuration of a GPIO pin,
immediately toggled to 1 :

# Go to the GPIO SysFS folder
$ cd /sys/class/gpio

# Signal that pin 504 should be exported to user-space
$ echo 504 > export

# Signal that pin 504 is a read/write pin
$ echo out > gpio504/direction

# Toggle the pin by setting it to 1
$ echo 1 > gpio504/value

4.3.2 Petalinux

Petalinux is a part of the Xilinx Software Development Kit (SDK) developed
for UltraScale+ MPSoCs to enable the configuration and compilation of a
lightweight Linux-based operating system. The SDK takes a Hardware De-
scription File (HDF) or Xilinx Support Archive (XSA) as input, and outputs
configuration and system files, including device tree and drivers, to sup-
port the IPs in the block design. Petalinux allows users to enable a wide
range of drivers and modules, including support for various drive types such
as NVMe and Open-Channel SSDs, alongside software packages like GCC,
GDB, and Python. Furthermore, developers can develop their own packages
and modules, which are cross-compiled to integrate with the MPSoC envi-
ronment.

To enable faster prototyping, the Petalinux SDK offers a set of "Hello World"
programs and modules built for Petalinux with build configurations for lan-
guages like C and C++.

When compiling programs and modules, one challenge is the differences
between the applications and libraries on the development machine, which
may sometimes share a different architecture than the FPGA. To accommo-
date this architecture gap, Petalinux makes use of cross-compilation tools.
Under the hood, Petalinux uses Yocto, an open-source collaborative initia-
tive to develop tools and methodologies to generate and compile Linux dis-
tributions for embedded systems. The main idea of Yocto is to offer tools
and processes that are architecture-agnostic, which guarantees compatibility
across a spectrum of embedded hardware [59].

In practice, cross-platform compilation within Petalinux is hidden from the
software developer. Programs and modules provide a Makefile without any
architecture-specific configurations. This approach also enables developers
to compile and validate code on the development machine without regard to
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FPGA compatibility. When code is compiled through Yocto for deployment
on the FPGA, Yocto appends a series of architectural configurations to the
compiler. These include settings like CROSS_TARGET and the -march option,
which abstracts away the intricacies of cross-compilation from the software
developer.

To simplify working with Yocto, Petalinux offers a set of binaries for the con-
figuration of projects. For example, the petalinux-config binary is used
to access the underlying kernel and hardware configurations, thus enabling
users to activate non-default drivers and modules. The petalinux-create
command is a scaffolding command for creating templates for projects, cus-
tom modules, and applications.

To expand Petalinux with custom applications, modules or drivers, they are
added to the meta-user part of the project specification and registered in
the RootFS configuration file. After registration, the Yocto build mechanism
will search for the BitBake recipes and compile the module or application
following the recipe. For simpler kernel modules, the generated recipe and
build configurations do not need to be changed and work out of the box.

Petalinux and Yocto allow several different recipe types.

1. App recipes: Recipes of the app type will be compiled and installed as a
binary on the target operating system only with access to the use space
APIs.

2. Board Support Package (BSPs) recipes: The BSP recipes are support
recipes for adding code, drivers or configurations essential for operat-
ing the board. For example, the device-tree support package defines
the target board’s device-tree files (DTSs).

3. Core recipes: Core recipes provide information on what is needed to
build a basic working Linux image. If Yocto already has the necessary
information about dependencies and configurations, no core recipes
need to be defined.

4. Kernel recipes: Kernel recipes integrate patches into Linux without di-
rectly altering the code. Due to software or hardware constraints, ver-
sion locking Linux may also be necessary, thus not receiving bug fixes
and security updates.

5. Module recipes: The module recipe is the kernel-space application ver-
sion. These are configured and built to run within the kernel and can
access all kernel-space functionality.

4.3.3 Vivado

Vivado is an application designed and developed to synthesise and analyse
hardware description languages (HDLs). It also includes functionality to de-
crease developers’ cognitive load.
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One of the crucial features of Vivado is the ability to simplify the design
phase of FPGA projects by automating the connection of IPs sharing simi-
lar interfaces. For example, when adding two unconnected AXI-compatible
IPs, Vivado will suggest how to connect these two components and, if neces-
sary, generate any intermediary AXI Interconnect IPs. As such, the primary
task of an FPGA designer using Vivado is to understand in depth which IPs
fits the use-case and define board-specific constraints.

In the context of Vivado, constraints refer to a set of rules connecting the block
design, and thereby the FPGA, to external hardware and peripherals. Since
this depends on the FPGA itself and the peripherals of the target board, au-
tomation is not feasible. However, Vivado may infer constraints where re-
lated constraints are explicitly defined, and the remaining wires or pins only
have one valid solution. Since constraints depend on the target board, boards
are often shipped with guides or specifications describing the port assign-
ments for various hardware components.

When a valid block design and a valid set of constraints have been defined,
Vivado will synthesise the RTL-specified design into a gate-level represen-
tation. After a successful synthesis phase, the resulting gate-level represen-
tation is implemented, that is, made into a board-specific bitstream. Dur-
ing this phase, Vivado can improve metrics like Total Negative Slack (TNS)
and Total Hold Slack (THS). These two metrics indicate whether parts of the
resulting implemented bitstream fail timing constraints, which could cause
components to malfunction. For example, if the negative slack of clock paths
is too high, the components driven by this clock pulse will start running at
lower frequencies than synthesised. Vivado tries to improve the TNS and
THS by moving components around to shorten paths and bring connected
circuits closer together. It should be noted that THS and TNS issues often ap-
pear when block designs reach a size where the space of the FPGA is becom-
ing limited, or when a block design is too complicated, for example, when
many IPs are running on the same clock source.

4.3.4 Vivado HLS

Vivado is an application designed and developed for synthesising C pro-
grams into IPs using High-Level Synthesis. The main selling point of HLS is
the ability to write simple high-level representations of functions and com-
pile them directly to Verilog or VHDL.

With Vivado HLS, the developer can access an editor, where simple func-
tions can be synthesised and packaged into a deployable IP. The editor also
enables running a test bench on the IP before synthesising it, ensuring the
C function has the intended functionality. While synthesising, the compiler
generates Verilog or VHDL code matching the target MPSoC chip. As a pa-
rameter, it also takes the clock frequency that will be provided to the IP in
the block design and the ability to define uncertainty in case the clock pulse
is not fully reliable.
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When writing functions in the Vivado HLS suite, it is possible to define the
origin of parameters and meta-data using C #pragma s. For example, func-
tions taking at least one parameter should define where the parameter comes
from using #pragma HLS INTERFACE .

1 u i n t 3 2 _ t f i l t e r ( f i l t e r _ t * in , f i l t e r _ t * out , u i n t 3 2 _ t num,
2 u i n t 8 _ t op , f i l t e r _ t comp1 , f i l t e r _ t comp2 ) {
3 #pragma HLS INTERFACE m_axi port=in o f f s e t =s lave bundle=gmem
4 #pragma HLS INTERFACE m_axi port=out o f f s e t =s lave bundle=gmem
5 #pragma HLS INTERFACE s _ a x i l i t e port=num bundle= c o n t r o l
6 #pragma HLS INTERFACE s _ a x i l i t e port=op bundle= c o n t r o l
7 #pragma HLS INTERFACE s _ a x i l i t e port=comp1 bundle= c o n t r o l
8 #pragma HLS INTERFACE s _ a x i l i t e port=comp2 bundle= c o n t r o l
9 #pragma HLS INTERFACE s _ a x i l i t e port=return bundle= c o n t r o l

10

11 . .
12

13 }

LISTING 4.1: An example of an HLS function with parameters
and the correpsonding pragmas.

The function takes several arguments in Listing 4.1. For example, it takes
two pointers, filter_t *in and filter_t *out , that point to a physical
address of the filter_t type. In this function, the filter_t type is an alias
of uint32_t . Using #pragma s, it is declared that these pointers are set us-
ing a slave interface, and that the data that the pointers point to should be
accessed via the same AXI port, named gmem . When a pointer is declared
to be set using the slave interface, the HLS compiler will create a set of reg-
isters accessible via an AXI Lite port on the IP called control . Next, the
four parameters num , op , comp1 , and comp2 are declared to be set using the
same AXI Lite slave port as the data pointers. Lastly, the #pragma s defines
that the function’s return value should be written to the same registers as the
parameters.

After successful synthesis and export, the HLS IP can be made available to
the other Vivado applications and inserted into a block design.

4.4 UDMA

UDMA or u-dma-buf allocates contiguous memory blocks within the kernel-
space via the device tree [26]. We call these buffers for user-space DMA since
UDMA makes them accessible from user-space.

First, we reserve one or more regions in the device tree. When UDMA has ini-
tialised and allocated a buffer, any user-space application can access it from
user-space by opening the corresponding device file, e.g., /dev/udmabuf0 ,
and mapping it to user memory space using memory mapping (mmap).

Furthermore, UDMA enables access to managing the CPU cache for the
buffer’s underlying memory regions. UDMA exposes functionality such as
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cache flushing or invalidating all or parts of the DMA buffer while retaining
cache enablement.

Without such cache management functionality, applications would either
have to run in a cacheless mode, where all memory accesses are directed to
memory, or manage the cache manually using the dc assembly instruction.

FIGURE 4.4: An overview of the architecture of the UDMA
driver and how it interacts with the kernel [26].

4.5 Conclusion

The OpenSSD project has developed significantly since its introduction in
2011, with each generation of boards introducing new features for experi-
mental storage research. As of 2024, the project has led to the development
of five boards: Jasmine, Cosmos, Cosmos+, Daisy, and Daisy+. Jasmine, the
first board, laid the foundation by supporting only basic SSD functionality
and releasing the hardware design under an open-source license. Thereby,
Jasmine provided a platform for innovation and research in SSD technology.
The Cosmos board built upon this foundation by integrating more advanced
controller technology and supporting a broader range of storage interfaces.
Cosmos+ further developed these capabilities.

The introduction of the Daisy and Daisy+ significantly changed the OpenSSD
project by transitioning from SATA interfaces to PCIe and NVMe. The Daisy
board, which supports PCIe, Ethernet, and QSFP28 interfaces, enables low-
latency connectivity and high-throughput data transfer. The board has a
Zynq UltraScale+ MPSoC, a multi-processor chip with an ARM processor
and an FPGA component. This combination allows for higher flexibility and
more efficient storage operations.
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The OpenSSD project has played and continues to play a critical role in ex-
perimental storage research. The OpenSSD project is the only project, to our
knowledge, that offers an off-the-shelf hardware solution with high-speed,
low-latency host connectivity, high-capacity DDR4 memory, NVMe M.2 con-
nectors, and both an FPGA and general-purpose processing unit.

The alternative to the OpenSSD project is to rely on hardware that may have
only some of the necessary hardware components and thus cannot be used
for experimental research. Without high-speed, low-latency connectivity to
the host, designing and experimenting with interfacing and drivers would
be impossible. Without the high-capacity DDR4 memory, working with a
significant amount of data and parallel tasks would be impossible. Without
the NVMe connectors, non-volatile data on the device would be impossible.
Without the FPGA and the general-purpose processing unit, program offload
would not be possible.

However, it should be noted that using OpenSSD is not a free lunch. Adopt-
ing OpenSSD for experimental research means that the application or plat-
form also inherits any limitations or challenges associated with the OpenSSD
hardware or the internal Xilinx UltraScale+ MPSoC. Some inherited issues in-
clude cache incoherence, which can complicate data consistency between the
host, storage device, and intermediate accelerators. Neither the OpenSSD
project nor Xilinx mitigates this challenge, meaning it is up to the implemen-
tor to find a solution.

The fact that the UDMA framework is necessary to reliably expose mem-
ory regions to the processing system of the OpenSSD proves that memory
management is a challenge. In essence, building any system on top of the
OpenSSD will result in performance numbers and evaluations specific to the
OpenSSD. This decision limits the generality of the experiments and the re-
sults. It only allows us to draw preliminary conclusions that should be tested
or verified on other systems with different characteristics.

In conclusion, the OpenSSD project offers a suitable hardware platform for
initial development and experimentation. However, the OpenSSD boards
may not be suitable for production environments due to the inherent prob-
lems caused by using non-specialised hardware for specialised operations.
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Chapter 5

Data Pipelines

With the recent emergence of artificial intelligence, machine learning, data
science, and other data-intensive software systems, designing and develop-
ing efficient ways to handle large amounts of data have become necessary.

A data pipeline is a complex chain of interconnected activities, starting with a
data source and ending with a data sink [38]. Data pipelines have become an
essential tool for data-driven organisations and companies due to the ability
to process many formats from distributed data sources with limited human
intervention. A data pipeline streamlines the workflow by removing many
manual activities. The automation and streamlining come from the ability to
chain a series of sub-processes, where the output of one process is the input
of another.

This chapter will describe the context of modern data pipelines and the
frameworks and systems that are often used. Understanding the landscape
of data pipelines is essential to understanding how data is used and
integrated with underlying storage mediums.

First, we examine six popular systems for designing and implementing data
pipelines. Afterwards, we examine a more recent approach, integrated data
analysis pipelines, which unifies data management (DM) and query process-
ing, high-performance computing (HPC), and machine learning (ML) train-
ing and scoring.

Ideally, the unified approach makes it easier to make complex data pipelines,
as one extensible system can handle the whole pipeline rather than several
connected ones. Furthermore, a unified system should yield opportunities
for hardware acceleration and other optimisations.

5.1 DuckDB

DuckDB is an embeddable database system built in 2019 [50]. The main func-
tionality is efficiently executing SQL queries within another process. Its pri-
mary focus is analytical workloads, unlike SQLite, which primarily focuses
on transactional workloads.
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DuckDB’s design and implementation are based on its intended use cases.
For example, DuckDB has a modular architecture with components such as
a parser, a planner, an optimiser, and an execution engine. Furthermore,
DuckDB can guarantee ACID through Multi-Version Concurrency Control
(MVCC) implemented on read-optimised storage data structures.

DuckDB performs better than related systems like SQLite, MonetDBLite,
and HyPer. The performance is dominant when processing large datasets on
embedded hardware with constrained resources. Therefore, DuckDB’s main
selling point is handling large datasets efficiently in embedded or
constrained environments.

5.2 TensorFlow

TensorFlow is a machine learning framework developed by Google Brain in
2016 [1]. It is designed to work with large amounts of data in heterogeneous
environments. It is based on using dataflow graphs to represent data opera-
tions with a shared state. This graph can then be scheduled across potentially
distributed nodes and computational devices like CPUs, GPUs, and TPUs.

Notably, Google uses TensorFlow in its infrastructure and has released it as
an open-source project. These two circumstances have led to its widespread
adoption in machine learning research.

Since the TensorFlow dataflow model simplifies computation and state man-
agement, it opens up new approaches for parallelisation. For example, it sup-
ports large-scale training and inference by utilising computational resources
across multiple distributed systems.

The evaluation of TensorFlow’s performance includes single-machine and
distributed setup benchmarks. The results show competitive performance
compared to related systems. The system’s scalability is evaluated through
experiments on image classification tasks, which showed performance im-
provements with increasing numbers of workers. Coordination mechanisms
have been used to improve tail latency. Techniques like synchronous replica-
tion and backup workers have improved overall performance.

While widely successful, TensorFlow is still work in progress. The authors
are still researching and focusing on automatic optimisation, memory man-
agement, fault tolerance, and dynamic computation structures to meet evolv-
ing user needs and challenges.

5.3 PyTorch

PyTorch is a machine learning framework introduced in 2019 [43]. It focuses
on the middle ground between developer accessibility and performance. It
offers a Python-like programming environment with support for hardware
accelerators like GPUs. Notably, PyTorch has gained significant adoption in
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academic research, with hundreds of submissions citing it at major confer-
ences like ICLR.

The architecture of PyTorch is based on significant scientific computing
trends. These include, for example, the development of domain-specific
languages (DSLs), automatic differentiation, Python systems released under
open-source licenses, and the accessibility of GPUs for parallel computing.

Lastly, PyTorch continuously aims to improve its speed and scalability. Plans
include extending the PyTorch JIT to work efficiently outside the Python in-
terpreter as well as improving support for distributed computation.

5.4 Spark

Spark is a framework introduced in 2012 to efficiently process data directly
in memory on large clusters [60]. It is designed to overcome the limitations
of current architectures like MapReduce. To do so, Spark keeps intermediate
data in memory, drastically reducing the amount of data written to external
storage. Furthermore, Spark’s design is based on the Resilient Distributed
Dataset (RDD), a fault-tolerant data structure that supports caching interme-
diate results directly in memory.

Spark is accessible through a simple API that supports typical high-level
operations. It can integrate with multiple cluster programming models
within a single framework, including MapReduce, SQL, and Pregel. Lastly,
Spark supports interactive data analysis, enabling users to perform
real-time queries directly from the Scala interpreter.

Spark’s benchmarking efforts show that the system can outperform Hadoop
by up to 20 times for iterative applications. It can also handle terabyte-scale
datasets with low-latency queries. Spark is open-source licensed and has
gained traction in the large-scale data analytics community.

5.5 Flink

Apache Flink is a data processing framework introduced in 2015 [8]. It is
designed to focus on efficient stream and batch data processing. Its archi-
tecture is based on a distributed dataflow engine with programs represented
as directed acyclic graphs (DAGs) of stateful operators connected by data
streams. The engine has two main APIs: the DataStream API for processing
unbounded data streams and the DataSet API for handling bounded data
sets.

Flink supports multiple different notions of time. For example, it supports
event, ingestion, and processing time, allowing for precise event correlation
and out-of-order processing. The framework has a windowing system, pro-
ducing early and approximate results while returning delayed and accurate
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results later. This capability is attractive for real-time applications with even-
tual consistency, in particular.

Flink’s ecosystem includes domain-specific libraries and APIs for machine
learning (FlinkML), graph processing (Gelly), and SQL-like operations (Table
API). These libraries generate programs that the core engine can later execute.

Flink is maintained by a broad community focusing heavily on academic
research and practical production use cases. The combination of stream and
batch processing capabilities and a broad community makes Flink a notable
framework for data-driven applications.

5.6 Dask

Dask is a framework for optimising the scientific Python stack, introduced in
2015 [51]. Historically, the scientific Python stack has been limited to single-
threaded execution with data residing in memory. Dask extends these capa-
bilities by introducing efficient, memory-aware task scheduling, allowing ex-
isting tools like NumPy to handle complex and heterogeneous datasets while
effectively utilising multi-core processors. Dask aims to provide parallelism
and memory-aware scheduling without requiring researchers to rewrite their
existing scientific Python code.

Dask uses "Dask graphs", which, like Flink, represent programs as directed
acyclic graphs (DAGs) of tasks with data dependency information. These
graphs are kept in memory during computation and use simple built-in
Python data structures, such as dictionaries , tuples , and callables .

This approach allows Dask to implement parallel collections in Python, such
as dask.array , which functions identically to the NumPy API but is more ef-
ficient for datasets that exceed memory limits. The execution of Dask graphs
is managed by schedulers that determine the order of tasks based on runtime
conditions. Dask supports multiple scheduling strategies, including single-
threaded, multi-threaded, multi-process, and distributed execution. These
strategies enable Dask to be efficient in small and large computing environ-
ments.

Dask also offers other parallel collection types, like dask.bag for efficiently
handling collections of Python objects and dask.dataframe for large-scale
data manipulation similar to Pandas. These collections and their respective
schedulers make Dask a notable framework for data processing.

5.7 DAPHNE

DAPHNE proposes an architecture and implementation of an integrated data
analysis pipeline. An integrated data analysis pipeline combines data man-
agement (DM) and query processing, high-performance computing (HPC),
and machine learning (ML) training and scoring [16].
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FIGURE 5.1: An overview of the architecture of DAPHNE,
which is divided into four architectural tiers [16].

DAPHNE aims to streamline the development and execution of data
pipelines by providing a simple, unified infrastructure instead of users
having to navigate the diverse nature of existing tools and methodologies
used in DM, HPC, and ML.

One of the critical challenges that DAPHNE tries to address is the
integration of different programming paradigms, cluster resource
management systems, data formats, and execution strategies. These
components differ widely across DM, HPC, and ML domains. The system’s
architecture is based on the MLIR framework, which allows integration
with existing applications and runtime libraries while still allowing
extensibility for specialised data types and hardware-specific and
hardware-accelerated optimisations.

DAPHNE’s architecture includes principal components: language abstrac-
tions, a vectorised execution engine, multi-level scheduling, and extensibility
for heterogeneous hardware devices and computational storage. The design
aims to improve productivity and eliminate unnecessary overheads typically
encountered in IDA pipelines. The vectorised execution engine, in particu-
lar, enables efficient use of computational resources by combining pipelines
of frame and matrix operations and supporting local and distributed opera-
tions.

The initial experimentation of DAPHNE shows promising performance im-
provements over existing systems like MonetDB, Pandas, DuckDB, and Ten-
sorFlow. The experiments are based on multiple IDA pipelines, such as
query processing with linear regression, earth observation data scoring, k-
means clustering, and connected components analysis. The results indicate
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that DAPHNE’s integrated execution approach can benefit from hardware
acceleration, computational storage, and vectorised operations.

One essential and notable element of the DAPHNE project and architecture is
the focus on extensibility in the hardware acceleration layer. This design deci-
sion makes DAPHNE a prime candidate for exploring computational storage
on a larger scale and a higher level.

5.8 Conclusion

A data pipeline connects processes from data sources to data sinks, stream-
lining workflows by automating tasks and reducing human intervention. We
have looked at several essential frameworks used today to design and imple-
ment data pipelines.

We have studied seven frameworks for designing data pipelines, and they
have given us a few interesting insights into the current state of the art.
Firstly, the space is diverse, with several different characteristics and ap-
proaches. All systems have the same aim: to handle large amounts of data
more efficiently. Some systems, like PyTorch, TensorFlow, and Dask, rely
heavily on Python as the preferred language, regardless of the performance
of Python1. Other frameworks like DuckDB try to improve large-scale data
operations on heterogeneous and potentially resource-constrained hardware.
Spark and Flink try to improve data throughput by limiting data movement
and implementing efficient streaming. These systems and their respective
characteristics indicate that researchers and data scientists prefer operating
in convenient and known environments, even at the cost of significant per-
formance decreases.

Lastly, DAPHNE aims to unify the diverse tools and methodologies across
data management, high-performance computing, and machine learning.
Combining the diversity of the six previous systems with DAPHNE reveals
integration as an emerging optimisation approach.

We learned from DAPHNE that the trend towards integration opens up the
simplification of resources, including memory. More specifically, with an in-
tegrated pipeline, the memory model is constant throughout the pipeline,
enabling programs to save state and store data in long-lived caches. This re-
source management is not possible today since all systems utilise their mem-
ory model and data structures. For example, PyTorch and Dask rely on the
Python environment, whereas Flink and Spark do not, which makes it non-
trivial to share data management and data structures. The trend towards
integrated pipelines also simplifies working with memory, as the developer
only has to understand and interact with a single memory API.

1An experimental study has shown that Python uses 76 times more energy, executes for
72 times longer, and uses double the memory compared to C [45].



Chapter 5. Data Pipelines 46

In conclusion, it is our understanding that integration with host-side sys-
tems must be made in a way that is easily accessible and has simple integra-
tion. Furthermore, we now understand that unifying data pipeline systems
into one leads to attractive optimisation opportunities. DAPHNE, an emerg-
ing integrated data analysis pipeline, is a prime example of a contemporary
framework that is accessible and extensible enough to expose complex hard-
ware acceleration.
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Chapter 6

Summary

Part I of this thesis discussed the state of the art in computational storage.

We discussed the Berkeley Packet Filter (BPF) from 1992, which enabled user-
space programs to execute functions within the Linux kernel. The initial use
case was network packet filtering. In 2014, Alexei Starovoitov introduced
Extended BPF (eBPF) to modernise BPF for contemporary processors. How-
ever, it should be noted that eBPF lacks an official standardisation body, but
the eBPF Foundation oversees its technical direction. eBPF bytecode is inter-
preted by the Linux kernel, with JIT compilers available for several architec-
tures, including x86 and ARM.

uBPF offers a user-space library to the GPL-licensed kernel implementation
of eBPF, making it more accessible for non-GPL projects. It features an RISC
register machine with eleven 64-bit registers, a stack pointer, an implicit pro-
gram counter, and a fixed-size stack. The uBPF VM can load and execute
eBPF programs from a buffer of bytecode or an ELF file.

The end of Dennard scaling in the mid-2000s has significantly increased the
research interest in computational storage and program offloading. The re-
search focuses on designing architectures to increase processing capacity and
throughput using hardware components other than the primary processor.
Kossmann and Franklin’s 1998 paper on data shipping versus function ship-
ping shows the benefits of a hybrid model. This conclusion was verified by
Voruganti et al. in 2004.

In networking, program offloading benefits from standardised IPv4 and IPv6
protocols, simplifying architecture and design due to well-defined input and
output formats. In contrast, storage devices are more complex due to the lack
of standardised I/Os and their varying implementations and capabilities.

We discussed several previous proposals of computational storage device
implementation to understand the diverse design choices and their
limitations. These include FPGA-based solutions like Willow, BlueDBM,
INSIDER, REGISTOR, POLARDB, and NASCENT; ARM-based Biscuit,
software-driven YourSQL, and specialised hardware architectures like OX
and Eid-Hermes. These proposals tend towards FPGA as the preferred
hardware solution.
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The Storage Networking Industry Association (SNIA) has proposed four
mechanisms for offloading, including bitstream-based offloading for
FPGAs, OS-based offloading, container-based offloading, and eBPF-based
offloading. Each mechanism has different sets of challenges and
opportunities. The NVMe Computational Programs Command Set
Specification, introduced in 2023, describes how NVMe devices should
handle program offload.

Our survey of computational storage design clearly shows the complexities
and challenges of standardising program offload to storage. Most notably,
we see the challenges of working with diverse and incompatible drives and
filesystems. Promising standardisation attempts may pave the way for future
designs and implementations of computational storage devices.

The OpenSSD project has developed significantly since its introduction in
2011, with each generation of boards introducing new features for experi-
mental storage research. As of 2024, the project has produced five boards:
Jasmine, Cosmos, Cosmos+, Daisy, and Daisy+. Jasmine, the first board,
introduced basic SSD functionality, and the hardware design was released
under an open-source license. The Cosmos board continued the work by
integrating more advanced controller technology and supporting a broader
range of storage interfaces. Cosmos+ further developed these capabilities.

The Daisy and Daisy+ boards significantly improved the OpenSSD project
by supporting PCIe and NVMe instead of SATA. The Daisy board supports
PCIe, Ethernet, and QSFP28 interfaces, enabling low-latency connectivity
and high-throughput data transfer. The Daisy has a Zynq UltraScale+ MP-
SoC, an ARM processor and an FPGA component. These boards allow for
more efficient storage operations due to the higher flexibility.

Finally, we examined several contemporary frameworks used to design and
implement data pipelines. Data pipelines aim to simplify workflows by
automating tasks and reducing human intervention. DuckDB is an
embeddable database system for efficient SQL query execution within
another process. TensorFlow, developed by Google Brain, is a machine
learning framework for large-scale operations across heterogeneous
environments. PyTorch offers a balance of usability and performance,
supporting hardware accelerators. Spark is a distributed framework for
in-memory computations, designed to overcome the limitations of
MapReduce. Flink provides high-performance stream and batch data
processing, executing programs as a directed acyclic graph (DAG) of stateful
operators. Dask enables parallel computation within the Scientific Python
stack using dynamic, memory-aware task scheduling. DAPHNE presents
an integrated data pipeline architecture that combines data management,
high-performance computing, and machine learning, leveraging the MLIR
framework for extensibility and hardware-specific optimisations.

We see a trend towards unifying data pipeline frameworks into integrated
pipelines. Integrated pipelines are unified pipelines with a single memory
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management method, a global scheduler for all operators, global data struc-
tures, and the ability to have long-lived caches or global state.

In summary, we make a set of critical observations in the state of the art.

1. eBPF as a vendor-neutral instruction set architecture: With the in-
creasing popularity of eBPF and its several execution environments,
it is positioned as a prime candidate for program offload to other do-
mains, including computational storage. Our view is backed by both
SNIA and NVMe, who propose eBPF as an instruction set architec-
ture for storage. Today, computational storage architectures predom-
inantly expose proprietary interfaces with restricted access to memory.
With eBPF, exposing a vendor-neutral mechanism to offload is possi-
ble. Coupled with an open memory architecture, where memory is not
limited in lifetime or significantly in capacity, computational storage
drives can now execute more complex and long-term operators.

2. Integrated pipelines are emerging: The fact that DAPHNE proposes a
unified and integrated approach to data pipelines gives a new perspec-
tive on computational storage. With an integrated data pipeline, the
pipeline can manage memory on the host and computational storage
from the source of the pipeline to the sink. The pipeline can cache data
between operators or have a long-living state on the computational
storage device in such architecture. This functionality is not possible, or
at the least non-trivial, with today’s systems due to diverse approaches
to memory management.

3. OpenSSD is now mature enough to support a complex computational
storage device: With the introduction of Daisy and Daisy+, the matu-
rity of the OpenSSD project has reached a new milestone. These two
boards are advanced and complex enough to house complex compu-
tational storage processors with enough resources to execute the oper-
ators described in bullet point 1. Theoretically, the Daisy boards can
be equipped with 64 GB of DDR4 memory with a speed of up to 2400
MT/s or 19.2 GB/s. The boards can utilise either PCIe3 x16 at 16 GB/s
or the two QSFP28 connectors with a total bandwidth of 25 GB/s. The
four core processing capacities of 6 GHz provide a powerful executor
for offloading operations to the device.

All three observations have one thing in common: a shift in the approach to
memory management.

eBPF can operate on large memory buffers due to the use of offsets in mem-
ory operations, combined with the ability to be compiled from C. This ap-
proach enables programs to be written in a way where the location of the
data is not known at compile time but instead represented as an offset of
a pointer given at run time. The constant and long-living memory regions
in integrated pipelines allow operators to have performance-improving side
effects, including caching data for later use, at undefined points in time, or
having device-specific states like read and write pointers. With OpenSSD
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and the Daisy boards, we now have off-the-shelf hardware to support this
novel approach to computational storage.

This proposed architecture, based on eBPF and the Daisy OpenSSD board, is
called Delilah.
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Part II

Contributions: Delilah
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Chapter 7

Requirements

Several requirements shape the design and implementation when develop-
ing a novel computational storage device targeted at host-side integrated
data analysis pipelines. This chapter outlines these requirements in detail.

1. Memory Management: As described in Section 3.1, traditional stor-
age architectures typically ship data from the storage device to the host
processor. In the same section, we described how advanced storage
systems differ from the historical notion of function versus data ship-
ping due to the asynchronous I/Os with side effects. As such, our
novel computational storage device must not only implement ship-
ping functions to a processing unit closer to the storage device itself,
but also implement memory management functionality to support the
complex I/Os. Furthermore, a well-designed memory management ar-
chitecture enables us to integrate with host-side integrated data anal-
ysis pipelines. This requirement entails having mechanisms to share
and synchronise memory regions between the host pipelines, the de-
vice processor, and I/O libraries on the device, as well as guaranteeing
cache coherency between these. Memory management should be ex-
posed to and manageable by the host, such that the integrated data
pipeline on the host can store cached data and state it on the device
without memory management becoming a bottleneck.

2. eBPF Support: With the emergence of eBPF (extended Berkeley Packet
Filter) as the preferred Instruction Set Architecture (ISA) for function
shipping across various domains, such as networking, storage, and ker-
nel operations, our computational storage device must fully support
this architecture. Essentially, this enables a host or remote application
to directly ship eBPF code to our computational storage device for exe-
cution. This requirement enables the host-side data pipelines to struc-
ture operations in a vendor-neutral instruction set architecture, thus not
binding the application to Delilah. The use of eBPF further answers
how to structure operations between host and device. eBPF is also well
suited for integrated data pipelines, as operators can either be pre-made
and automatically compiled, or generated within the integrated data
pipeline to match the workload precisely, increasing flexibility.
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3. eBPF Side-stepping: After exploring the landscape of computational
storage, including the standardisations efforts described in Section 3.4,
we understand the difference between device-specific and offloadable
programs. While eBPF offers significant advantages for code
shipping, it also presents certain limitations and challenges. As a
general-purpose ISA, certain functionalities and procedures may not
be suitable for compilation to eBPF. For instance, integration with
underlying storage systems and accelerators like TSL (Template SIMD
Library) or HLS (High-Level Synthesis) may be non-trivial. We
consider it a requirement that our novel computational storage device
has a mechanism to invoke device-specific functionality directly from
offloadable eBPF programs without interacting with the host. The host
may offload some application-specific functionality while
side-stepping to device-specific programs to execute procedures not
expressible in eBPF, or too device-specific for the host to know at
compile time. This requirement also simplifies the use of eBPF for the
host-side data pipelines by creating a mechanism for abstracting away
device-specific functionality that the host does not know. Without
side-stepping, the pipelines must be able to express all instructions,
including device-specific ones, before the device is known, which is
infeasible.

4. Contemporary Hardware Support: Designing a hardware platform for
computational storage typically requires a significant investment of re-
sources. Our approach involves building a computational storage pro-
cessor (CSP) and deploying it onto a readily available, contemporary
hardware platform to avoid such investment. Such a platform should
have the components to support function shipping, such as a Central
Processing Unit (CPU), internal or external storage devices, and con-
nectivity options for remote host interaction via PCIe or QSFP (Quad
Small Form-factor Pluggable). Furthermore, these hardware platforms
should be readily accessible off the shelf, enabling fast prototyping and
deployment of our computational storage processor.

5. Efficient Interfaces: Since a critical purpose of computational storage
is to increase the overall performance of a system, the interface for in-
teracting with the computational storage device must be efficient. It
should implement an asynchronous execution model, allowing the host
or remote application to continue local processing while the execution
runs. Furthermore, it should minimise unnecessary memory copies
and, if possible, avoid the CPU for large data transfers. This require-
ment is essential, as data pipelines depend on efficient processing with
asynchronous submission/completion interfaces. Any synchronous or
inefficient interfaces would slow down the data pipeline, thus render-
ing computational storage impractical and purposeless.

To summarise, the novel computational storage device needs to support
eBPF-based function shipping with support for complex memory
management, with the ability to side-step to another execution environment
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when complex functionality, beyond eBPF capabilities, is needed. It should
be built on a readily accessible, off-the-shelf hardware platform and offer
interaction through an efficient, asynchronous interface.
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Chapter 8

Design

The five requirements specified in the previous chapter were learnt from sur-
veying the computational storage landscape. The requirements guide the de-
sign of a novel computational storage processor. We will outline the design
decisions in this chapter.

Lerner and Bonnet distinguish two types of PCIe architectures [34]. Firstly,
On-Path enables the definition of new storage interfaces by placing the com-
putational storage processor between the host and stored data. On the other
hand, Off-Path architectures place the computational storage processor out-
side of the path to the stored data. Here, data movement is dictated by the
host based on legacy interfaces. Contrary to NVMe, we approach the archi-
tecture as PCIe On-Path, where eBPF ultimately dictates any data movement.

We base the design decisions on a few assumptions about how integrated
data analysis pipelines work. Firstly, we assume integrated data analysis
pipelines can manage memory for the entire pipeline duration, from source
to sink. Secondly, we assume that integrated data analysis pipelines are asyn-
chronous. Lastly, we assume that the integrated data analysis pipelines are
divisible into operators that can be offloaded onto computational storage.

Using the DAPHNE project as a point of departure, we see that all three
claims hold. DAPHNE may allocate, deallocate, and manage memory at
any point in the pipeline’s flow. DAPHNE furthermore exposes task queues
for execution on near-SSD CPUs or FPGAs. Lastly, DAPHNE is based on a
domain-specific language, where any operator or function call has at least
one specific implementation, which is extensible. These operators could be
extended to have parts of the execution on the computational storage device
while enqueued into the task queues.

8.1 Design Decision 1: Memory Management

We implement distinct memory regions for data and programs to ensure
our computational storage device can run programs on its local processing
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unit. This decision involves building the processing system and its surround-
ing infrastructure with compatibility in mind. The device’s memory man-
agement architecture must support accesses from eBPF without any specific
alignment or access pattern constraints.

Because the device has a local processing unit, separate from the host pro-
cessing unit, any communication or command sent to the device involves
some degree of state management between the host and the device. This in-
formation includes the current state of execution, return values, and error
handling. To facilitate state sharing, we implement a mechanism, ideally a
low-latency control register or memory region, for efficient communication
with the host.

On the target hardware, the Daisy OpenSSD, we have two kinds of DDR4
memory: two DIMM slots in PL and low-power DDR4 in PS. Additionally,
we may deploy BRAM in PL as necessary.

We rely on PL DDR4 memory for program and data slots accessed from the
host via Direct Memory Accesses (DMAs). This decision is based on the sig-
nificant capacity difference between PS and PL memory, which would cause
capacity issues if slots were placed in PS. However, using PL memory, which
is farther from the CPU, may increase latency.

We introduce a special kind of data slot, called the shared data slot, an iso-
lated data slot unmappable by the host. This slot is placed alongside other
slots in PL memory and is suitable for holding state, e.g., I/O pointers and
cacheable files, from the underlying storage mediums to avoid read amplifi-
cation.

Control registers are stored in the PS low-power memory, close to the CPU
and accessed through one or more Base Address Registers (BARs). Since con-
trol registers do not require much capacity, we opt for the memory location
closest to the processing unit to minimise latency.

To ensure that the device’s local and host processing units can both map the
memory regions, we make them static in size and location. This way, neither
the host nor the device controller has to identify buffers after enumeration.

Static memory regions, both in capacity and location, simplify integration
into host-side data analysis pipelines by eliminating the need for continu-
ous buffer allocation and deallocation. This continuity allows the pipeline to
operate, assuming data remains available in the buffers until explicitly over-
written.

The target hardware’s varying memory characteristics, such as capacity and
latency, are essential factors. When evaluating the novel computational stor-
age processor, we will conduct experiments to compare the performance of
different components.
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8.2 Design Decision 2: uBPF

Given our requirement for executing eBPF within the controller of our com-
putational storage device, we must find or develop an eBPF-based VM. Due
to the stricter demands of programs targeted at the kernel and network sys-
tems, we cannot base our device on those. However, as outlined in Sections
2.2.1, 2.2.2, and 2.2.3, three significant execution environments exist outside
the kernel and network devices.

Recall the three environments:

1. hBPF: A hardware implementation of an extended Berkley Packet Filter
(eBPF) execution environment on FPGA. hBPF supports extending the
functionality by utilising the call imm instruction. Furthermore, it has
full test coverage for the supported hardware targets. The development
targets are Arty and Zybo devices.

2. uBPF: An execution environment designed and built for eBPF execu-
tion in user-space. uBPF has support for both interpretation and JIT
compilation of eBPF programs on x86-64 and ARM64 architectures.

3. rBPF: Similarly to uBPF, rBPF operates within user-space and has a
cross-platform eBPF interpreter and a JIT compiler for x86-64. Origi-
nally derived from uBPF, it was reworked entirely in Rust.

Considering its ability to run directly within FPGAs, hBPF is considered the
prime candidate as an execution environment for our computational storage
device. However, there are certain limitations to acknowledge. hBPF is built
and designed for Arty and Zybo devices, explicitly stating in its README
that these devices are not meant to compete with multi-core accelerator cards,
like the Xilinx Alveo [49]. Later design considerations will reveal that neither
Arty nor Zybo devices are suited for our computational storage processor.

Given the choice between uBPF and rBPF, uBPF was preferred due to the
authors’ proficiency in the C programming language.

8.3 Design Decision 3: eBPF Sidestepping

Switching between offloadable and device-specific programs is essential for
the flexibility and efficiency of the device. We propose using the call imm
instruction of eBPF to signal to the VM or JIT compiler that execution should
be handed over to a device-specific program. These programs, which we will
call registered functions, are registered with the uBPF VM.

At the time of designing the computational storage device, it was noted
that uBPF lacks out-of-the-box support for the call imm instruction. How-
ever, supporting this instruction merely involves accepting R_BPF_64_32 as
a valid relocation (in contrast to R_BPF_64_ABS64 , which is the default sup-
ported relocation type). This challenge was deemed trivial, so the choice of
uBPF as the execution environment remained unchanged.
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8.4 Design Decision 4: Daisy OpenSSD

As outlined in requirement four, it is considered critical that our contribution
is a computational storage processor (CSP) deployable on readily available
hardware, in contrast to a fully-fledged computational storage drive (CSD).

While the Zybo Z7 device, supported by hBPF, is equipped with a Xilinx
Zynq 7000, it cannot interface with high-performance storage devices or con-
nect to a host or remote application via PCIe or QSFP.

In contrast to Zybo devices, the OpenSSD devices are ideal for experimental
exploration, as they are purpose-built for storage research and experimenta-
tion. At the time of device design, the latest iteration of the OpenSSD project
was the Daisy OpenSSD.

The Daisy OpenSSD has a processing unit, two NVMe slots, and QSFP and
PCIe connectors, which perfectly align with our requirements.

Given our choice of building a computational storage processor on top of the
Daisy OpenSSD, opting for uBPF over hBPF is a natural choice.

8.5 Design Decision 5: Extend Eid-Hermes

Since the emergence of eBPF beyond kernel and network architectures is re-
cent, limited publicly available projects exist for offloading and executing
eBPF code on accelerators, storage or other embedded systems.

Eid-Hermes is an exciting public proposal for offloading eBPF to accelerators.
However, the project has yet to be successfully deployed on non-emulated
and non-virtual architectures.

Unfortunately, as of 2024, the Eid-Hermes project can be deemed End-of-Life
(EOL) due to the absence of updates and bug fixes since 2021. Despite the au-
thor of this thesis having submitted several bug reports alongside proposed
fixes, they have yet to be merged as of June 2024.

Eid-Hermes presents a promising protocol for eBPF offloading to a computa-
tional storage device via PCIe. However, due to the abandonment and lack of
development, Eid-Hermes has several critical areas for improvement. In or-
der to align with requirement five, we will now outline the necessary changes
to the Eid-Hermes protocol.

8.5.1 io_uring

Eid-Hermes assumes that data transfer and program execution should be
run in a synchronous environment. However, since we deploy our computa-
tional storage processor (CSP) to the Daisy OpenSSD, it can do multiple par-
allel transfers and executions. As such, we must modify the Eid-Hermes pro-
tocol to avoid using synchronous system calls such as open , close , ioctl ,
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write , and read . Instead, our version of the Eid-Hermes interface should
use io_uring, an asynchronous I/O API for Linux created by Jens Axboe.

Another critical motivation for abandoning synchronous system calls is to
avoid context-switching to the kernel. Context-switches are costly since they
temporarily store the application’s state, execute some operations in kernel-
space, and restore the application state. Instead, with asynchronous APIs
like io_uring, the execution is kept in user-space, thus removing the context-
switch costs and further increasing performance.

When applications schedule transfers and executions with io_uring, they
must prepare a Submission Queue Entry (SQE) with information about
the request. The applications should use the opcode of the SQE to
IORING_OP_URING_CMD to indicate that they are submitting a command to
the underlying computational storage device. Then, due to the nature of
io_uring, they can specify the operation in further detail by setting the
cmd_op field.

After SQE submission to the computational storage device via io_uring, the
host application can perform other work and either continuously poll for a
Completion Queue Entry (CQE) or wait for completion in a blocking manner.
Due to the architecture of io_uring, the CQEs do not contain information
about what operation has finished. However, the host application can use
the data field of the SQE to identify it. The data field of the SQE will be
passed back via the CQE.

In summary, whereas Eid-Hermes uses a synchronous interface based on sys-
tem calls and requires context-switching to the kernel, our device will expose
a thread-safe, parallel, and asynchronous interface to execute multiple op-
erations concurrently. This asynchronous interface also fits nicely with the
typical integrated data pipeline, where operations are scheduled without ex-
pecting them to be completed immediately. Instead, completions are handled
as they come, allowing the host to work on other tasks while waiting.

8.5.2 Shared Data Slot

Our device should also differ from the Eid-Hermes interfaces in terms of
what the executed programs can access. In Eid-Hermes, a program is given
access only to a data slot that only has a guaranteed lifetime spanning the
duration of execution and can only be accessed by one execution at a time.

However, as described earlier in the memory management design decision,
we introduce a shared data slot. Without the shared data slot, it is impossi-
ble to perform stateful parallel operations, and the system’s performance is
significantly reduced.
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8.6 Summary

The design decisions for the novel computational storage device are well-
aligned with the specified requirements and designed for integration with
host-side integrated data analysis pipelines.

The design has distinct memory regions for data and programs to support
complex I/O operations and asynchronous data processing. Using PL DDR4
memory for program and data slots supports high-capacity memory regions
with the ability to do Direct Memory Accesses (DMAs) from the host. This
design choice makes it easy for host-side pipelines to transfer data back and
forth asynchronously. We place control registers in low-power PS memory
to minimise latency, thus decreasing the time for host-side applications to
trigger executions. The memory architecture is designed to support efficient
integration with host-side integrated data analysis pipelines.

The choice of uBPF as the execution environment for eBPF programs ensures
compatibility by avoiding tight coupling between the controller and the ex-
ecution environment. This decision aligns with the requirement to support
eBPF, enabling host-side data pipelines to structure operations in a vendor-
neutral instruction set architecture without knowing the device capabilities
in advance.

Implementing the ability to switch between offloadable eBPF programs and
device-specific functions circumvents the limitations of eBPF. Using the
call imm instruction to trigger device-specific programs guarantees that
complex and device-specific tasks can be handled without being expressible
in eBPF. This approach simplifies the integration with the host-side data
pipelines, as these pipelines do not need an in-depth knowledge of the
underlying device characteristics. In essence, this design choice simplifies
and abstracts away device-specific functionality.

By selecting the Daisy OpenSSD as the hardware platform, we gain access to
a device with a processing unit, NVMe slots, and QSFP and PCIe connectors.
This decision avoids the significant resource investment required for devel-
oping custom hardware while ensuring the device can be readily deployed
and prototyped using off-the-shelf components.

The extension of Eid-Hermes to use io_uring for asynchronous I/O opera-
tions enables us to use an off-the-shelf protocol while significantly improv-
ing throughput and latency. The design maximises performance by avoiding
synchronous system calls and context-switching, which is necessary when
integrating into data pipelines. A shared data slot allows the device to store
stateful data between executions, thus decreasing read-amplification and en-
abling partitioning of operators. These interface improvements ensure that
the computational storage device can handle multiple concurrent operations
efficiently.
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Chapter 9

Implementation

In this chapter, we describe the design and implementation of Delilah, an
architecture for efficient eBPF-based offload to computational storage, based
on the previous chapters’ requirements and design. We call this architec-
ture Delilah, and it was first introduced in the D6.2 deliverable of the Hori-
zon 2020 DAPHNE project in 2022 [6]. It was subsequently presented at the
workshop Data Management on New Hardware (DaMoN) in Seattle, USA,
in 2023 [23].

Figure 9.1 gives an overview of how the components of the Delilah archi-
tecture are connected. The architecture has three distinct areas. First is the
host-side area, which consists of an application interacting with the Delilah
driver. The Delilah driver interacts with the second area, the PL region of the
device, which is supported by an FPGA and contains hardware components.
This area is also where hardware-accelerated functions live. The PL area is
connected to the PS area, where the Delilah controller resides, and where the
eBPF code is executed.

9.1 Board Configuration

Deploying Delilah to the Processing System of the Xilinx MPSoC requires us
to use Petalinux to configure and deploy an operating system.

9.1.1 Delilah Controller

Delilah’s controller logic and block design are encapsulated in a Petalinux
distribution. We have based this distribution on the Petalinux configurations
of the Daisy_M.2_PCIe_MIG_201901_20210413 block design by CRZ Tech-
nology [11]. The changes to the original configurations are focused on mem-
ory management and quality-of-life changes to developers of Delilah.

First, Delilah is added as a user-space application recipe in the
project-specification part of Petalinux. This recipe provides two underlying
Yocto BitBake definitions, one in Release mode and one in Debug mode. The
only difference between the Release and Debug modes is the automatic
stripping of debug symbols. In essence, the compiled binary in Debug mode
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FIGURE 9.1: Overview of the proposed Delilah architec-
ture [23]. The blocks coloured light green denote components
belonging to Delilah, and blocks in grey denote components

from other vendors.

will interact better with tools like GDB at the cost of less optimisation and
higher binary size.

Both BitBake recipes declare all files required by Delilah, both headers and
implementations, uBPF, TSL, and any static files needed for Delilah to run.
The only static file needed in Delilah is the .profile file, which helps Delilah
launch on the board automatically. Since the board starts multiple terminals
for different interfaces, the script merely checks that the current invocation
is on the JTAG debug session, namely ttyPS0 . This check means that de-
velopers accessing the Daisy OpenSSD via minicom or similar tools will see
Delilah’s output and can restart or interact with the controller.

1 # !/ bin/bash
2
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3 # Get the terminal device name
4 TERMINAL=$ ( t t y )
5

6 # Check i f the terminal i s /dev/ttyPS0
7 i f [ "$TERMINAL" = "/dev/ttyPS0 " ] ; then
8 /usr/bin/ d e l i l a h
9 f i

LISTING 9.1: The contents of .profile

9.1.2 Device-tree

Besides the Delilah controller, Petalinux also compiles and configures various
other aspects of the Daisy OpenSSD needed for deploying Delilah. For ex-
ample, the device tree has been modified explicitly to define memory regions
for allocation by UDMA and to expose the hardware-accelerated filtering en-
gines via user-space IO (UIO).

1 d e l i l a h _ b a r : del i lah@0 {
2 compatible = " shared −dma−pool " ;
3 reusable ;
4 reg = <0x0 0 x10000000 0x0 0 x2000000 >;
5 l a b e l = " d e l i l a h _ b a r " ;
6 } ;

LISTING 9.2: Declaration of the region reserved for the BAR0
register.

1 udma_bar {
2 compatible = "ikwzm , u−dma−buf " ;
3 device −name = " d e l i l a h _ b a r 0 " ;
4 s i z e = <0x0 0 x2000000 >;
5 memory−region = <&del i l ah_bar >;
6 dma−coherent ;
7 sync −mode = <3>;
8 } ;

LISTING 9.3: Declaration of the consumer of the region
reserved for the BAR0 register.

Listing 9.2 and Listing 9.3 show the declaration of reserved memory region
in the device tree. In the first listing, it is declared that the 32 MB from
0x10000000 is reserved and labelled as delilah_bar . It is marked that this
region is reusable, thus mappable by the Linux kernel, and should be added
to the shared DMA pool. This approach is the preferred way of reserving
memory regions on Xilinx boards. The second listing takes the previously
declared memory region and assigns it to a consumer. In this example, it
is declared that the UDMA driver will consume it, and that the region is
DMA-coherent. It is marked as DMA-coherent since the physical location
of the region is in PS memory, where the hardware automatically manages
cache coherency using cache-coherent interconnects. Setting sync-mode to 3
declares that if the O_SYNC flag is not provided on access to the region, the
region must fall back to CPU caching.
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9.1.3 ECC initialisation

The two M393A2K40BB1-CRC DDR4 DRAM memory modules mounted in the
Daisy OpenSSD are Error Correction Codes (ECC) memory. ECC is a mech-
anism to protect against undetected data corruption and is most often used
in applications and systems where such data corruption is intolerable. It is,
for example, expected to use ECC in database, financial and research appli-
cations.

Electrical and magnetic interferences can cause bits inside DRAM memory
modules to flip to the opposite state. A protection against such flips is parity
bits, where one bit per word is used as a checksum. In the case of a bit-flip, it
is possible to reverse and repair the word back to the original value.

Since DRAM memory is volatile, the contents of the DRAM module at boot-
time are undefined. As such, any ECC parity check will fail and cause the
operating system of the Daisy OpenSSD to go into a fatal failure state. To
prevent the kernel from failing, we have, in collaboration with the OpenSSD
manufacturer, implemented an initialisation routine that correctly initialises
ECC. This mechanism is patched into the board/xilinx/zynqmp/zynqmp.c
file of u-boot, and will iterate through and write to the entirety of the ECC-
enabled memory on boot to ensure all words have a correct parity bit.

9.2 Protocol

As previously stated, we design our device around Eid-Hermes. However,
Eid-Hermes has never been successfully deployed to an actual accelerator.
While experimenting, the author discovered several protocol defects that
must be alleviated to guarantee stable operations. We will outline those
changes in this section.

Due to these protocol changes, our device will become incompatible with the
original Eid-Hermes driver.

9.2.1 64-bit support

The original Eid-Hermes driver assumes all memory buffers reside in a 32-
bit addressing space. This assumption must be revised, as many accelerator
boards expose a physical addressing scheme. When relying on a 32-bit proto-
col, we can only access the first 4 GB of the physical addressing scheme. On
some Xilinx FPGAs, the location of more significant memory regions is lim-
ited to specific memory ranges, often outside of the first 4 GB of addresses.
Our device must change the protocol, allowing memory region locations to
be 64-bit if necessary.
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ehcmddone ehcmdexec State
0 0 engine never started.
1 0 engine finished running.
0 1 engine should start and have never run.
1 1 engine should start and have previously run.

TABLE 9.1: The distinct states of Eid-Hermes/Delilah engines.

9.2.2 ehcmddone race-condition

On the original Eid-Hermes driver and protocol, two bits indicate the state
of an execution engine. The ehcmddone bit indicates whether a given exe-
cution engine has finished executing, and ehcmdexec indicates whether the
execution engine should start.

The Eid-Hermes protocol, where ehcmddone is solely writable by the de-
vice, has an unintended side effect. Specifically, in cases where an engine
has previously finished, the Eid-Hermes driver interprets the ehcmddone bit
as indicating that execution has already finished without considering the
ehcmdexec bit.

To address this race condition, we have two potential solutions: either make
the ehcmddone bit dependent on the ehcmdexec bit, or reset the ehcmddone
bit when a new command is submitted to the engine. We opt for the latter
approach in our design, as it offers a more semantically accurate represen-
tation of the device’s internal state. By requiring the device to clear the bit
before execution, there is an observable period during which the device is
in a semantically invalid state, signifying that it is both done and executed
concurrently.

9.2.3 Interrupt masking

Eid-Hermes is designed with an incorrect assumption regarding the con-
figuration of the Xilinx XDMA IP on the device, deviating from the Xilinx
specification. By default, the XDMA IP disregards any interrupts transmit-
ted from the device to the host via PCIe. However, if the host-side driver
can receive and handle interrupts from the device, it must set the mask bits
of the XDMA register space accordingly. It must set the bits to one for the
interrupt IDs to accept and zero for those to ignore. For drivers utilising
libxdma, this process can be automated using xdma_user_isr_enable and
xdma_user_isr_register . In our design, these functions should be invoked
in both the setup and teardown paths to enable delivery of interrupts when
execution has finished.

9.3 Driver

As described in Chapter 8, parts of Delilah are based on Eid-Hermes. The
host-side driver is built on the same structure as Eid-Hermes but with some
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notable differences. Both the drivers of Delilah and Eid-Hermes are Linux
character device drivers.

Since Eid-Hermes is based on the traditional filesystem system calls, the
Eid-Hermes driver implements the read_iter and write_iter , which
enables applications to utilise the read()/ write() functions to write to the
Eid-Hermes device. However, this poses some significant challenges, as
read_iter and write_iter are synchronous and do not take any
parameters that can be used to indicate the destination buffer. The
Eid-Hermes driver also implements the unlocked_ioctl function to handle
incoming commands.

Instead, the Delilah driver is based on io_uring commands and exposes only
the uring_cmd function. Depending on what opcode the application sends
to the driver, the driver either initiates a DMA request or forwards the com-
mand to the device. The driver uses two layers of queues: the outer io_uring
queues, which hold all submitted commands, and the inner work queues,
which abstract away synchronous calls in an asynchronous interface. When
submitting device commands (e.g., execution of eBPF), the io_uring queue
entry is submitted, the control register is updated immediately, and control
is given back to the application. The queue entry is marked as completed
when the corresponding execution engine raises an interrupt, which we will
describe in detail later. Since this operation is asynchronous, there is no in-
ner queueing mechanism. However, when a DMA transfer is enqueued, it
will be either put into the Host-to-Card (H2C) or Card-to-Host (C2H) queue.
The need for these queues stems from the fact that the XDMA transfers are
synchronous, meaning that with the queue, we can return control to the sub-
mitting application while the inner queue worker handles the synchronous
call. When the DMA is complete, we return a completion event from the
worker. We can parallelise these operations as DMAs are executed on one of
the four parallel H2C or C2H channels.

All queues are implemented using Concurrency Managed Workqueue
(cmwq) [24]. The choice of using cmwq comes from the fact that cmwq
handles multi-threading over CPU cores while supporting scalability in the
form of automatic resource management. In this way, we can use
high-priority kernel-controlled queues without worrying about the strict
resource constraints of the kernel or how to schedule workers. Furthermore,
cmwq also enables us to instruct the kernel always to have at least one
worker ready to handle submitted DMAs.

The driver supports the following eight commands.

1. DELILAH_OP_PROG_EXEC signals Delilah to execute an already offloaded
program. The program will be executed in interpreted mode, which we
will discuss later in this thesis.

2. DELILAH_OP_PROG_WRITE signals Delilah to load a program to the de-
vice.



Chapter 9. Implementation 67

3. DELILAH_OP_DATA_READ signals Delilah to initiate a Direct Memory Ac-
cess transfer from the device.

4. DELILAH_OP_DATA_WRITE signals Delilah to initiate a Direct Memory Ac-
cess transfer to the device.

5. DELILAH_OP_PROG_EXEC_JIT signals Delilah to execute an already of-
floaded program. The program will be executed in Just-in-Time (JIT)
mode, which we will discuss later in this thesis. The rationale for a dis-
tinct command for both interpreted execution and JIT execution is to
avoid creating unwanted coupling between these two execution modes.
As Delilah or uBPF develops, significant differences in parameters and
characteristics between these two commands may arise.

6. DELILAH_OP_CLEAR_CACHE signals Delilah to clear any purgeable device
caches. This operation makes experiments more reproducible and in-
dependent of previous operations on the device.

7. DELILAH_OP_INFO signals Delilah to emit device-specific information
like controller version, number of execution engines, and buffer char-
acteristics like physical memory addresses and sizes.

8. DELILAH_OP_CLEAR_STATE signals Delilah to clear the internal state. As
we will see later in this thesis, Delilah exposes a memory buffer to hold
the state between executions and execution engines. Since this state is
not exposed or accessible by the host, the host can signal it to be cleared.

The cmd field of the SQE is populated with a pointer to a struct holding
operation metadata. If the opcode is set to DELILAH_OP_PROG_WRITE ,
DELILAH_OP_DATA_READ , or DELILAH_OP_DATA_WRITE , the cmd field must
point to a delilah_dma struct, which holds information about the local
host-side buffer and the device-side buffer. For DELILAH_OP_PROG_EXEC and
DELILAH_OP_PROG_EXEC_JIT , the host must populate a delilah_exec struct
holding information on which engine to execute in, which program to
execute, and which device-side working memory region to attach to the
engine. Furthermore, the struct contains instructions as to if and how SCI1

should operate. If the opcode is set to DELILAH_OP_CLEAR_CACHE , the cmd
field must point to a delilah_clear_cache struct that describes which
execution engine will be used to clear the cache. If the opcode is set to
DELILAH_OP_CLEAR_STATE , the accompanying struct holds information
about the execution engine and what part of the internal state buffer will be
cleared.

The only exception to the rule that the cmd field must be populated to a
pointer holding metadata for a command is the DELILAH_OP_INFO operation.
The cmd pointer must point to a delilah_device struct that the driver and
device will populate.

Both the Eid-Hermes and Delilah rely on the Xilinx XDMA IP. Both drivers
are based mainly on Xilinx’s own XDMA driver. The device is exposed as

1Selective Cache Invalidation is described in Section 9.5.
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a file in the Xilinx driver, and the write offset corresponds to the device’s
physical address.

Eid-Hermes and Delilah differ by exposing a control register on top of this
functionality, located in BAR0. This control register manages the physical
addresses, such that the provided offset corresponds to an offset within a
predetermined memory buffer.

We configure XDMA to use 8 PCIe lanes, divided into 4 H2C and 4 C2H
lanes.

9.4 Device Controller

The Device Controller of Delilah is located in Petalinux, which, in turn, re-
sides in the Xilinx MPSoCs Processing System domain. It consists of multiple
modules separated into modularised header files and at least one implemen-
tation. This architectural structure enables future versions of Delilah to be
built for other devices and backends. We describe all modules in detail in
this section.

The device controller has only one non-modular file, the controller’s entry
point. This file holds the main() function, which is the first function called
and which sets up the controller. First, it allocates a delilah_t struct, which
holds all global state and metadata. Control is then given to the memory
module to allocate memory, to the Hermes module to prepare the control
register for device enumeration, to the IRQ module to spawn interrupt han-
dlers, to the loader module to spawn execution workers, and to the hard-
ware module to prepare any hardware-accelerated functions. As such, the
controller has a simple architecture, where modules are in charge of their
specialised area and called on demand.

9.4.1 Modules

Command

The command module of Delilah is in charge of defining and implementing
the handlers of all supported commands. Command implementations follow
the same signature, seen below.

1 typedef u i n t 6 4 _ t handler_t ( s t r u c t d e l i l a h _ t h r e a d _ t * thread ,
2 s t r u c t hermes_cmd_req * req ,
3 s t r u c t hermes_cmd_res * res ,
4 s t r u c t d e l i l a h _ t * d e l i l a h ) ;

LISTING 9.4: The signature of Command handlers in Delilah.

The first parameter of a handler contains information about the executing
thread. For example, the handler can access the engine ID and the thread ID,
as well as pointers of the control registers associated with the engine located
in BAR0. Lastly, the thread struct provides access to the global Delilah state
struct.
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Although the command registers and the Delilah global state are accessible
through the thread struct, they are also provided as parameters 2–4 for con-
venience.

1 u i n t 6 4 _ t
2 del i lah_command_clear_state ( s t r u c t d e l i l a h _ t h r e a d _ t * thread ,
3 s t r u c t hermes_cmd_req * req ,
4 s t r u c t hermes_cmd_res * res ,
5 s t r u c t d e l i l a h _ t * d e l i l a h )
6 {
7 u i n t 6 4 _ t s i z e =
8 req −> c l e a r _ s t a t e . s i z e == 0 ? DELILAH_SHARED_SIZE : req −>

c l e a r _ s t a t e . s i z e ;
9 log_debug ( " Clear ing s t a t e %l l d bytes , %l l d o f f s e t " , s ize ,

10 req −> c l e a r _ s t a t e . o f f s e t ) ;
11 memset ( d e l i l a h −>shared + req −> c l e a r _ s t a t e . o f f s e t , 0 , s i z e ) ;
12

13 res −> s t a t u s = HERMES_STATUS_SUCCESS ;
14

15 re turn 0x0 ;
16 }

LISTING 9.5: The simplest implementation of a command
handler in Delilah. The Clear State command is in charge of

setting the internal shared data slot to 0s.

Observe how the handler updates the res->status entry in the control regis-
ter to HERMES_STATUS_SUCCESS to indicate to the host that the command has
been completed successfully. It should also be noted how the union in the
hermes_cmd_req struct is assumed to contain the entries of clear_state .
The host driver is responsible for guaranteeing that the command request
struct is formatted correctly and contains all necessary information.

Config

The configuration module of Delilah contains only macro definitions of the
settings that are not controlled internally in Delilah. These macros include,
for example, physical locations of slots and the number of engines to spawn,
which should correspond to the number of logical cores and semantic version-
ing values to propagate to the host on initialisation.

To summarise, the configuration module is a convenient way to store all ad-
justable settings in one place.

Functions

The functions module is responsible for mapping the eBPF call instruction
(see Table 2.1) from a single integer to executable code. The only product of
the module is a static struct array of the ext_func type. This type con-
tains an internal function index, a function name mapped to the immediate
value in the binary, and a void pointer to a function.
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When a C program is compiled to an eBPF binary, all function calls are con-
verted into an integer and a function table is created in the resulting ELF
binary. When a binary is loaded into Delilah, this function table is read
by uBPF. On uBPF engine initialisation, the Loader module will read the
static struct array from the functions module and allow uBPF to handle
the call correctly.

Hermes

The Hermes module is deprecated and enables Delilah to adhere to the Eid-
Hermes protocol. As discussed in Chapter 8, Delilah is no longer compatible
with Eid-Hermes, nor the original driver. As such, the Hermes module name
is a relic from previous development versions of Delilah.

The Hermes module contains several header files, all used to structure
commands, requests, and responses in a structured way. For example, the
delilah_bar0 struct defines how the control register of BAR0 is structured.
Furthermore, the hermes_cmd_req and hermes_cmd_res struct defines how
requests and responses are organised in the protocol and how parameters
for commands are passed to Delilah.

The Hermes module has a single implementation file, which implements the
delilah_hermes_configure(struct delilah_t* delilah) function. This
function is responsible for initialising the control registers with values from
the Config module.

Hardware

The Hardware module maps certain registered functions from the Functions
module to drivers of hardware-accelerated functions.

For example, the Functions module exposes a set of filtering registered
functions ( delilah_hw_filter_* ). These functions are merely a facade for
the hardware module. Most importantly, the five registered functions are
mapped into a single hardware-accelerated function with different
arguments.

The function within the Hardware module responsible for filtering,
delilah_hw_filter , transforms arguments to match the input format of
the HLS IP. For example, pointers provided by the eBPF program are
always relative to the execution context, i.e., the logical addressing space of
the data slot or the shared data slot. It is necessary to map and transform
these addresses from logical to physical addresses. The Hardware module
hands this responsibility to the Memory module, the only module with a
full view of the memory configurations. At the same time, the Hardware
module is also in charge of notifying the Memory module of any data
hazards, intending to force CPU cache flushes or invalidation.

Another characteristic of the Hardware module is the coupling with
Xilinx-generated drivers. The Vivado HLS platform automatically generates
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C drivers that write to the correct offsets in the HLS registers. The Hardware
module will automatically invoke the Xilinx driver to write any appropriate
registers to set parameters, start execution, and fetch return values.

Interrupt

The Interrupt (IRQ) module exists to expose a mechanism to notify the host
on command completion.

1 r e t u r n _ t d e l i l a h _ i r q _ c o n f i g u r e ( s t r u c t d e l i l a h _ t * d e l i l a h ) ;
2 r e t u r n _ t d e l i l a h _ i r q _ c l o s e ( s t r u c t d e l i l a h _ t * d e l i l a h ) ;
3 r e t u r n _ t d e l i l a h _ i r q _ r a i s e ( u i n t 8 _ t id ) ;

LISTING 9.6: The exposed functions of the IRQ module to be
implemented.

Currently, the Interrupt module is only implemented by gpio.c , which
opens a memory map to 0xB1000000 . This physical address hosts a GPIO
module with four pins, which can signal XDMA to send an interrupt
request to the host. We achieve this by spawning four threads, all held back
by a pthread_mutex_t . When the delilah_irq_raise(uint8_t id)
function is invoked, the corresponding thread is released and will raise the
matching interrupt bit via the GPIO IP for approximately 10 microseconds.

Practically, the GPIO pins are raised via a memory-mapped region. The GPIO
IP managing the pins is mapped to the address space located at 0xB1000000 .
We change the nth bit at that memory location to raise an nth pin. For exam-
ple, to raise the third pin and trigger the third interrupt on the host, Delilah
must write 0b0100 or 4 to 0xB1000000 . Since all interrupts are triggered
using this memory location, mutex locks are employed to ensure the writes
are atomic.

It should be noted that the GPIO implementation of the Interrupt module
deviates from Xilinx documentation. The implementation should keep the
bit raised until the host acknowledges it. However, this acknowledgement
happens too quickly for the GPIO IP to observe. The 10-microsecond waiting
period is enough for the XDMA IP to correctly notice and handle the inter-
rupt.

This module is one of the prime examples of why the strict modularisation
in Delilah exists. The interrupt mechanism would undoubtedly be different
if Delilah is ever deployed to other architectures or systems. For example, if
Delilah were exposed to an ethernet interface, the interrupt module could be
in charge of sending a specifically formatted completion network packet.

Loader
1 r e t u r n _ t d e l i l a h _ l o a d e r _ c o n f i g u r e ( s t r u c t d e l i l a h _ t * d e l i l a h ) ;
2 r e t u r n _ t del i lah_loader_unload ( s t r u c t d e l i l a h _ t * d e l i l a h ) ;
3 r e t u r n _ t d e l i l a h _ l o a d e r _ s t a r t ( s t r u c t d e l i l a h _ t * d e l i l a h ) ;

LISTING 9.7: The exposed functions of the Loader module to
be implemented.
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The Loader module is the essence of Delilah. The Loader module exposes
three functions that must be implemented. The first function, configure, is in-
voked during the initialisation phase of Delilah and is responsible for setting
up an execution environment. In the default implementation of the Loader,
four uBPF VMs are created, and the registered functions from the Functions
module are registered. The registration of each function is where the term
registered function originates.

The uBPF VMs in the Loader module are nearly identical to the IOVisor im-
plementation, with two minor differences. Firstly, we have extended the re-
location check in the ubpf_load_elf to not reject relocation type 10, synony-
mous with R_BPF_64_32 . This minor change enables eBPF programs to call
registered functions, thus allowing eBPF to sidestep and live up to design
decision 3.

Secondly, we extend the ubpf_exec function to use the third and fourth reg-
isters. At execution start, these two registers will hold a pointer to the shared
data slot as well as the size of the slot. This change enables stateful parallel
executions, allowing operators to share information while running.

When the delilah_loader_start function is invoked, Delilah will spawn
four threads, each with CPU affinity on their CPU core. Before controlling the
thread, a struct of the delilah_thread_t is prepared. This thread identifies
the individual threads and is passed to any executed commands registered
in the Command module.

1 void * worker ( void *p ) {
2 s t r u c t d e l i l a h _ t h r e a d _ t * thread = p ;
3 shor t num_cmds = s i z e o f ( commands ) / s i z e o f ( s t r u c t command_t ) ;
4 shor t opcode_ok = 0 ;
5

6 while ( ! thread −>d e l i l a h −> e x i t i n g ) {
7 i f ( thread −> c t r l −>ehcmdexec != HERMES_CMD_START) {
8 usleep ( 1 ) ;
9 continue ;

10 }
11

12 thread −> c t r l −>ehcmddone = HERMES_CMD_NOT_FINISHED;
13

14 log_debug ( "Command rece ived f o r engine %i ( op : %p ) . " ,
15 thread −>engine , thread −>cmd−>req . opcode ) ;
16

17 f o r ( i n t i = 0 ; i < num_cmds ; i ++) {
18 i f ( commands [ i ] . opcode == thread −>cmd−>req . opcode ) {
19 commands [ i ] . handler ( thread , &thread −>cmd−>req ,
20 &thread −>cmd−>res , thread −> d e l i l a h ) ;
21 opcode_ok = 1 ;
22 break ;
23 }
24 }
25

26 // opcode unsupported
27 i f ( ! opcode_ok )
28 thread −>cmd−>r es . s t a t u s = HERMES_STATUS_INVALID_OPCODE ;
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29

30 thread −> c t r l −>ehcmdexec = HERMES_CMD_STOP;
31 thread −> c t r l −>ehcmddone = HERMES_CMD_FINISHED;
32 thread −>cmd−>r es . c id = thread −>cmd−>req . c id ;
33 opcode_ok = 0 ;
34

35 d e l i l a h _ i r q _ r a i s e ( thread −>engine ) ;
36 }
37

38 pthread_ex i t (NULL) ;
39 }

LISTING 9.8: The implementation of the worker thread.

The code of the execution worker can be observed in Listing 9.8. When the
worker starts, it will pull the registered commands from the Command mod-
ules and immediately go into an unbounded loop. This loop will only exit
when the exiting -flag in the Delilah global state is set to true. The loop
checks whether the command start bit is set to 1. If not, the worker sleeps for
a microsecond and returns to the start of the loop.

If the start bit is set, the worker will set the done bit to zero and determine the
appropriate command handler. The worker will loop over all registered com-
mands to find a handler that matches the opcode of the request. If no handler
is found, the response status is set to HERMES_STATUS_INVALID_OPCODE . If a
handler is found, it will be invoked, and control is given to the handler. The
handler, not the Loader, updates the response struct with return values and
codes.

When the handler has finished executing, the Loader updates the control
register to indicate to the host that the engine is no longer running, and that
execution has finished. Lastly, the Interrupt module is called to notify the
host that the command has finished being executed. It should be noted that
the interrupt raise function returns immediately, while the interrupt handling
is running in the background. This design decision enables the Loader to
perform any necessary cleaning work without being blocked by the Interrupt
module.

Memory

The Memory module connects Delilah to the memory regions used for data
and program slot placement. As described in the design chapter, Delilah’s
memory architecture must support efficient access by the device, without
particular access patterns or alignments, in a host-mappable way. The Mem-
ory module is essential since it handles buffer management and exposes
guaranteed physical placement and contiguousness. This guarantee is a non-
trivial challenge, as seen in Section 4.4.

1 r e t u r n _ t del i lah_mem_alloc_bar ( s t r u c t d e l i l a h _ t * d e l i l a h ) ;
2 r e t u r n _ t del i lah_mem_alloc_data ( s t r u c t d e l i l a h _ t * d e l i l a h ) ;
3 r e t u r n _ t deli lah_mem_alloc_shared (
4 s t r u c t d e l i l a h _ t * d e l i l a h ) ;
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5

6 r e t u r n _ t delilah_mem_sync_get ( u i n t 8 _ t type , u i n t 8 _ t id ,
7 u i n t 3 2 _ t s ize ,
8 u i n t 3 2 _ t o f f s e t ) ;
9 r e t u r n _ t delilah_mem_sync_set ( u i n t 8 _ t type , u i n t 8 _ t id ,

10 u i n t 3 2 _ t s ize ,
11 u i n t 3 2 _ t o f f s e t ) ;
12

13 r e t u r n _ t deli lah_mem_unalloc_bar ( ) ;
14 r e t u r n _ t deli lah_mem_unalloc_data ( ) ;
15 r e t u r n _ t deli lah_mem_unalloc_shared (
16 s t r u c t d e l i l a h _ t * d e l i l a h ) ;
17

18 r e t u r n _ t delilah_mem_copy ( u i n t 8 _ t src , u i n t 8 _ t dst ,
19 u i n t 3 2 _ t s ize ,
20 u i n t 3 2 _ t s r c _ o f f s e t ,
21 u i n t 3 2 _ t d s t _ o f f s e t ) ;
22

23 u i n t 6 4 _ t deli lah_mem_virt_to_phys ( u i n t 6 4 _ t v i r t ) ;
24 u i n t 6 4 _ t de l i l ah_mem_vir t_ to_s lo t ( u i n t 6 4 _ t v i r t ) ;
25 u i n t 6 4 _ t de l i lah_mem_vir t_ to_of fz ( u i n t 6 4 _ t v i r t ) ;

LISTING 9.9: The exposed functions of the Memory module to
be implemented.

The Memory module exposes twelve different functions to be implemented.
The first three are responsible for setting up and mapping the memory re-
gions. In the UDMA implementation, this is done by opening up the respec-
tive character devices in /dev and memory mapping them into Delilah. The
three unalloc functions do the inverse of the allocation function by unmap-
ping the regions from Delilah and closing the file descriptors.

If Delilah is not launched with the –-static-shared argument, it will not
open the pre-allocated buffer on the PL memory intended for the shared data
slot. Instead, Delilah will use malloc to allocate the shared memory region
in PS memory. This functionality exists to experiment with and evaluate the
resource consumption of placing memory regions in PS and PL memory.

The delilah_mem_sync_get and delilah_mem_sync_set functions are re-
sponsible for invoking the UDMA cache coherency functionality. This func-
tion is implemented by signalling to a particular file in SysFS. It should be
noted that the memory synchronisation functions do not have to be imple-
mented for cache-coherent memory regions.

The delilah_mem_copy function is a convenience function exposed to the
eBPF programs, enabling them to copy parts of a data slot to another with-
out knowing the underlying addressing scheme. It takes two integers rep-
resenting the source and destination slot, a size to move, and two offsets
representing the location within the two data slots. While data sharing is
more efficient through the shared data slot, the memory copy function is an
alternative.

The functions delilah_mem_virt_to_phys , delilah_mem_virt_to_slot
and delilah_mem_virt_to_offz are all built to enable conversion from
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logical memory-mapped addresses to physical addresses, slots, or offsets.
For example, when calling the registered functions that initiate offloading to
hardware accelerators, the buffer addresses are all logical addresses of the
memory-mapped character device of UDMA. The functions will take the
logical addresses and convert them to physical addresses. We can do this
because the memory module knows both the logical and physical address of
the buffer.

It is a systematic and straightforward process to convert a logical address to
a physical one. To convert from logical to physical, we initially iterate over
all data slots to see if the logical address falls within the range of any data
slot. If it does, we will proceed with the physical address calculation. Firstly,
we take the HERMES_DATA_LOC macro, which holds the location of the first
program slot. We then add the cumulative size of program slots, giving us
the physical address of the first data slot. Subsequently, we add the cumu-
lative size of data slots before the matched slot to this address, giving us the
physical address of the start of the matched slot. The offset is then calculated
by subtracting the logical address provided to the function from the logical
address of the matched data slot. Adding this calculated offset to the already
known physical address of the buffer yields the resulting physical address.
Determining the slot or offset alone is a subset of the process to determine
the physical address.

Utilities

The Utilities module exposes convenience functions and macros. For exam-
ple, the errors.h file defines all error codes of Delilah. The time.h file
exposes functionality to easily measure the time it takes for blocks of code
to execute. The units.h exposes macros to easily define memory sizes, e.g.,
by writing 4 * MiB which expands to 4 * 1024 * 1024 . Lastly, the log.h
and log.c expose a logging library to print information to the console eas-
ily. The library exposes six different log-levels, trace , debug , info , warn ,
error and fatal .

For now, the trace level is left unused. The debug level indicates state
changes, e.g., execution of programs and management of cache coherency.
The info level gives runtime information about Delilah’s internal program
flow. For now, it only indicates when Delilah has successfully started, and
when Delilah has received a signal to terminate child threads and exit. The
warn level indicates errors that stem from the host application and are not
a problem caused by Delilah. An example could be offloading invalid eBPF
programs or triggering hardware acceleration on an undefined execution en-
gine. The error and fatal indicate internal Delilah errors. The error
indicates that Delilah can continue operating, albeit in an undefined way,
and fatal indicates that the error is significant enough to warrant immedi-
ate termination. Often, fatal errors stem from memory management issues,
where Delilah cannot access the underlying memory buffers used for data
and program slots.
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Type Seq. Read Seq. Write Random Read Random Write
PS Memory 3.16 ns 3.12 ns 120.02 ns 434.75 ns
PL Memory 3.53 ns 2.26 ns 574.79 ns 574.70 ns

TABLE 9.2: The memory latency of accessing PS and PL, respec-
tively.

TSL

The TSL, or Template SIMD Library module, is an experimental module for
integrating Delilah with TSL. TSL is a C++ header-only library focusing on
SIMD operations and offering hardware-agnostic use. The provided func-
tionality directly maps to hardware or uses scalar workarounds for com-
patibility. Rather than a static library, it employs a Python-based generator,
enabling customisation for specific hardware configurations. This approach
ensures traceability and reduces code size, simplifying the management of
redundant code inherent in a template library.

While experimentation with combining the strengths of TSL and Delilah is
subject to future work, significant performance improvements have been ob-
served when using ARM Neon to filter workloads in Delilah. This improve-
ment will be discussed further in Section 12.5.

9.5 Selective Cache Invalidation

Using all available caching mechanisms and data access optimisation is cru-
cial due to the nature of data processing, where data reads and writes are
common. Previous work at the University of Illinois, Boston University, and
the University of Waterloo showed a significant memory access latency to
DRAM on Xilinx ZCU102 [4], the same chip as found on the Daisy board.
The article shows that memory latency is around 3 nanoseconds for L1 ac-
cess and 20 nanoseconds for L2 access. Furthermore, they observed that se-
quential memory accesses, even for larger data sets, were comparable to L2
accesses. However, random accesses are in the order of hundreds of nanosec-
onds. While hundreds of nanoseconds may not sound like much, Dean A.
Klein of Microsoft presented numbers at WinHEC in 2007 that showed a typ-
ical normalised latency of memory accesses in the order of tens of nanosec-
onds, not hundreds [30]. As such, the ZCU102 has suboptimal memory ac-
cess latency.

To counter this trend, we experimented with enabling CPU caching on
Delilah. Enabling CPU caching speeds up data processing for sequential
access. Table 9.2 shows the latency of accessing both PS and PL memory
from Delilah with CPU caching enabled. Memory latency is around three
nanoseconds for PS and PL memory when accessing memory in a
sequential pattern. However, when accessing the memory in a random
pattern, thus missing the L1 and L2 cache, the latency increases to over a
hundred nanoseconds, as described in the Bansal paper [4].
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File Size Write Prog Write Meta Exec Prog Read Result
1.00 KB 0.019 ms 0.006 ms 235.539 ms 0.066 ms
10.00 KB 0.032 ms 0.030 ms 235.541 ms 0.092 ms
100.00 KB 0.028 ms 0.020 ms 235.656 ms 0.199 ms
1.00 MB 0.033 ms 0.032 ms 237.082 ms 0.897 ms
10.00 MB 0.049 ms 0.019 ms 244.652 ms 11.295 ms
100.00 MB 0.021 ms 0.010 ms 320.455 ms 80.432 ms

TABLE 9.3: The runtime of offloading a program to Delilah
with SCI disabled that reads a file from the underlying SSD and

transfers it to host memory.

File Size Write Prog Write Meta Exec Prog Read Result
1.00 KB 0.038 ms 0.007 ms 0.243 ms 0.012 ms
10.00 KB 0.007 ms 0.009 ms 0.151 ms 0.024 ms
100.00 KB 0.007 ms 0.005 ms 0.421 ms 0.095 ms
1.00 MB 0.012 ms 0.006 ms 1.832 ms 0.649 ms
10.00 MB 0.015 ms 0.008 ms 10.453 ms 8.162 ms
100.00 MB 0.046 ms 0.016 ms 95.838 ms 73.500 ms

TABLE 9.4: The runtime of offloading a program to Delilah with
SCI enabled that reads a file from the underlying SSD and trans-

fers it to host memory.

Selective Cache Invalidation (SCI) is currently the most efficient way to en-
able CPU caches in Delilah without encountering cache coherency issues.
Suppose the CPU cache is enabled and SCI is not being utilised in Delilah. In
that case, there is a chance of accessing stale data, both on the host and in the
processing unit of the Daisy board, due to the lack of cache coherency proto-
cols across the PCIe link. With SCI, the host application describes what pieces
of the memory must be guaranteed to be up to date for either the internal de-
vice CPU or the host [23]. We apply the term invalidation for host-to-device
invalidation, where the CPU cache will have pieces of memory invalidated,
and we apply the term flushing for device-to-host flushing, where the CPU
cache will flush changes to main memory.

SCI is implemented in practice as four 64-bit unsigned integers sent along-
side the execution command. These integers denote how much of the data
slot will be invalidated and flushed, respectively, and what the invalidation
and flushing offset within the buffers are. Imagine an experiment where we
offload a program that reads a single file from the underlying SSD to Delilah,
after which the host reads it back to host memory. The host could transfer
the file metadata, including path and size, to the data slot’s beginning. The
host application would then set the SCI invalidation size to the size of the
metadata struct and an invalidation offset of zero. The flushing offset would
be the size of the metadata struct, and the flushing size would be the read file
size. These parameters would guarantee that Delilah is not accessing stale
metadata and that the host will not read a stale file.
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To show the importance of SCI, we have recreated the experiment above.
Table 9.3 shows the resulting performance without SCI enabled. Without SCI,
Delilah has to guarantee cache coherency of the whole buffer, thus spending
time invalidating and flushing untouched parts. In Table 9.4, we see the same
experiment, but with SCI configured to invalidate and flush only the bare
minimum for the experiment to return valid data. This experiment is made
with data slots with a size of 1 gigabyte. It should be noted that when we read
less than a megabyte, correctly configured SCI values improve the program
execution time by a factor of 1,000.

Of course, since the speedups of SCI come from Delilah being strategic about
which parts of the buffer to invalidate and flush, the efficiency of SCI scales
inversely with the usage of the buffer. Reading a 100 MB file from SSD to
Delilah’s memory takes 85 ms. Invalidating or flushing the entirety of a 1 GB
file takes approximately 115 ms. Without SCI, the execution can be estimated
to take 115 ms (1 GB invalidation) + 115 ms (1 GB flushing) + 85 ms (100 MB
reading) = 315 ms. These numbers perfectly match the numbers in Table 9.3.
However, with SCI, we can make this 0 ms (< 1 KB invalidation) + 12 ms
(100 MB flushing) + 85 (100 MB reading) = 97 ms, which perfectly matches
the numbers seen in Table 9.4.

Finally, it should be noted that the alternatives to SCI are limited. Placing
data slots in a memory region connected via a Cache Coherent Interconnect
(CCI) gives automatic cache coherence. However, on the Daisy OpenSSD,
only the PS memory, which has limited capacity, is placed behind a Cache
Coherent Interconnect. Another alternative is to avoid entirely making use
of the CPU cache and always access memory directly. This approach, in turn,
simplifies memory management but introduces the costly access latency of
over one hundred nanoseconds. Therefore, these alternatives are infeasible
in practice, and SCI is considered the only solution to managing cache co-
herency.

In conclusion, SCI is a critical feature of Delilah, enabling host applications
to describe the memory access patterns, thus maximising the efficiency of
Delilah’s cache coherence management.

9.6 Block Design

The block design of Delilah is a continuation and optimised version of
the Daisy_M.2_PCIe_MIG_201901_20210413 block design by CRZ
Technology [11]. This example block design is centralised around a Xilinx
UltraScale+ IP, enabling processing in the PS domain. From the UltraScale+
IP, there are connections to two MIGs, two XDMA IPs connecting to NVMe,
one XDMA connecting to the host via PCIe, and multiple support IPs,
including Utility Vector Logics, Processor System Resets, AXI Interconnects,
VIOs (Virtual Input/Output), and AXI GPIOs.

Delilah’s block design is different from the example in several ways. First,
we remove one of the XDMA IPs connecting to the underlying SSDs. We do
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this as Delilah’s experimentation has focused on setups with a single SSD.
The XDMA IPs in the block design are some of the most resource-consuming
IPs, so removing an unused IP frees up significant capacity on the FPGA,
decreasing negative slack on the design. Delilah’s block design has only two
XDMA IPs: one for connecting to the host and one for connecting to the
underlying SSD.

Another significant change is the removal of one of the DDR MIGs. While
both the board and the block design can accommodate two external RAM
modules, Petalinux 2019.1 only supports two memory regions at a time. One
of the memory regions is the internal PS memory used for the operating sys-
tem, while the other is one of the two DDR MIGs. It is possible to map both
MIGs, given that their physical address space is merged into a single contigu-
ous region. However, we removed one of the MIGs due to the risk of issues
with a data slot mapped into two different RAM sticks, since the extra ca-
pacity is not needed for the current experimental setup. As with the XDMA
IP, this also frees up space, which can improve the performance by reducing
negative slack.

In Delilah’s block design, we have added four HLS IPs to filter over a buffer
more efficiently. In Section 9.7, we will describe these IPs in further detail.
It should be noted that the HLS IPs run on a clock domain with a higher
frequency to improve their throughput.

Besides changes to the IP, in the form of changes to the AXI Interconnects,
we have also added an extra GPIO IP to send interrupt signals to the host.
Delilah’s handling of interrupts is documented in Section 9.4.1.

9.6.1 Lessons Learnt

Creating this block design has left us with several lessons learnt, which will
be outlined in this subsection.

• Real Estate is a Key Challenge: Every FPGA has a limited amount of
Flip Flops (FFs) and Look Up Tables (LUTs). However, utilising these
resources does not necessarily scale linearly with the amount of IPs.
This unexpected scaling occurs since IPs must often be placed near each
other. This placement requirement means that even though there might
be a significant amount of FFs and LUTs available on the FPGA, the
block design can fail implementation or have a critical amount of con-
gestion, because of the inability to place related IPs near each other.
This limitation is also why we have removed several IPs from the orig-
inal CRZ block design. We did this to avoid congestion on the board,
which would have caused performance issues and prevented us from
using other IPs like High-Level Synthesis.

• Slowest Clock Frequency Determines Throughput: While
experimenting with the block design, we learnt that the slowest clock
domain always determines the throughput of a given data path or
component. This characteristic can lead to an unexpected
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phenomenon where the same operation performs differently
depending on the source of the operation. For example, accessing a
given block of data in a data slot is faster from the host than the
device’s processing unit. This performance characteristic is the case
because the clock frequencies of the MIG and XDMA IPs are high. In
contrast, the clock frequency of the MPSoC is low, artificially limiting
the throughput of data access to less than what the MIG can handle.

• Version Control with Git: Utilising version control systems such as Git
is critical for managing the complexity of block designs. Block designs
are complex and often require reverting to previous states after unsuc-
cessful experimentation, which is not trivial to perform manually. Git
enables tracking changes and easy rollback to stable versions. How-
ever, version control with FPGAs is challenging due to the extensive
state and numerous files involved. Properly setting up version control
requires careful planning to manage the large number of files generated
by FPGA toolchains and track all relevant states and configurations.

9.7 Hardware-accelerated Filtering

By implementing our computational storage processor on an FPGA architec-
ture, we can experiment with High-Level Synthesis (HLS) and specialised
accelerators. Filtering is chosen as a natural starting point due to its general
applicability.

Our filtering accelerator supports five modes: equality, inequality, less than
or equal, greater than or equal, and between-inclusive.

1 typedef u i n t 3 2 _ t f i l t e r _ t ;
2

3 u i n t 3 2 _ t f i l t e r ( f i l t e r _ t * in , f i l t e r _ t * out , u i n t 3 2 _ t num,
4 u i n t 8 _ t op , f i l t e r _ t comp1 , f i l t e r _ t comp2 ) {
5 #pragma HLS INTERFACE m_axi port=in o f f s e t =s lave bundle=gmem
6 #pragma HLS INTERFACE m_axi port=out o f f s e t =s lave bundle=gmem
7 #pragma HLS INTERFACE s _ a x i l i t e port=num bundle= c o n t r o l
8 #pragma HLS INTERFACE s _ a x i l i t e port=op bundle= c o n t r o l
9 #pragma HLS INTERFACE s _ a x i l i t e port=comp1 bundle= c o n t r o l

10 #pragma HLS INTERFACE s _ a x i l i t e port=comp2 bundle= c o n t r o l
11 #pragma HLS INTERFACE s _ a x i l i t e port=return bundle= c o n t r o l
12

13 . . .
14

15 }

LISTING 9.10: The signature of our hardware accelerated
filtering operator.

Listing 9.10 shows the signature of our hardware-accelerated operator. The
function accepts two pointers (one for input and one for output), an opcode
to select the mode, and two comparison values. The #pragma directives spec-
ify the use of two AXI ports: a high-throughput AXI port for data access and
a low-latency AXI Lite port for reading and writing function parameters. The
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bundle directive instructs the HLS compiler to merge the signals into the two
AXI ports instead of creating seven individual ports for each variable.

1 u i n t 8 _ t k = 0 ; // Vector r e s u l t counter
2 u i n t 3 2 _ t c = 0 , // Overal l r e s u l t counter
3 i , // Vector i t e r a t o r
4 j ; // Value i t e r a t o r
5

6 f i l t e r _ t in_buf [ BUF_SIZE ] ;
7 f i l t e r _ t out_buf [ BUF_SIZE ] ;
8

9 switch ( op ) {
10 case DELILAH_FILTER_EQ :
11 Vector_Loop_EQ :
12 f o r ( i = 0 ; i < num; i ++) {
13 memcpy( in_buf , &in [ i * BUF_SIZE ] , BUF_SIZE * s i z e o f ( f i l t e r _ t )

) ;
14 Value_Loop_EQ :
15 f o r ( j = 0 ; j < BUF_SIZE ; j ++) {
16 #pragma HLS UNROLL f a c t o r = 1
17 #pragma HLS PIPELINE
18 i f ( in_buf [ j ] == comp1 ) {
19 out_buf [ k ] = BUF_SIZE * i + j ;
20 k += 1 ;
21 }
22 }
23 memcpy( out + c , out_buf , k * s i z e o f ( f i l t e r _ t ) ) ;
24 c += k ;
25 k = 0 ;
26 }
27 break ;
28

29 . . .
30 }

LISTING 9.11: The implementation of one of the operations of
our hardware accelerated filtering operator.

Listing 9.11 shows the implementation of the filtering operator in equality
mode. The operator utilises vectorisation, processing sets of 256 elements at
once. This approach minimises individual sequential memory requests for
32-bit elements, instead issuing 1-kilobyte memory reads and writes. The
vector is stored in local BRAM within the accelerator.

During execution, the operator first iterates over the number of vectors. Each
vector iterates over the elements in a pipelined manner, where it begins to
compare the next element before the current one finishes. The vector results
counter increments on finding a match, and the index is written to the output
buffer. The output buffer is then written back to the output pointer for each
vector.

The accelerator is managed and invoked using the Hardware module of
Delilah, described in Section 9.4.1.
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9.7.1 Lessons Learnt

Creating this hardware-accelerated filtering IP has left us with several lessons
learnt, which will be outlined in this subsection.

• Optimisations are not Automatically Inferable: One of the major chal-
lenges we faced when developing the filtering IP was memory latency.
The HLS toolchain provides many ways to optimise data throughput in
loops, such as loop unrolling, pipelining, and array partitioning. How-
ever, these optimisations may be overly costly to implement without
providing tangible benefits. In our case, almost the entirety of the time
was spent waiting for memory accesses, so we saw a major speedup by
manually bundling accesses together via memory copies to buffers. At
the same time, we saw no tangible increase in performance with loop
unrolling. Another challenge is the inference of loop boundaries. For
example, given a loop of up to 1024 iterations counted using a 16-bit
integer, the compiler may infer that the loop must be able to handle up
to 65536 iterations due to the 16-bit counter, even if the loop never has
more than 1024 iterations. In this case, explicitly adding code to exit the
loop at 1024 iterations can be necessary, so that the compiler does not
optimise for irrelevant cases. This explicit addition helps the compiler
understand the loop, even if the code is never triggered.

• Optimisations Require Real-Estate: On processing units, we are used
to loop unrolling as a way to execute several iterations of the loop seri-
ally, i.e., the overhead of comparing loop counters is incurred less fre-
quently, and proportionally more time is spent in the loop body. How-
ever, the characteristics of loop unrolling in the context of FPGAs are
different. Here, loop unrolling means that the unrolled loop iterations
happen concurrently. As such, it can be expected that loop unrolling
to the second degree will halve the number of iterations but double the
amount of real estate needed for the loop. At the same time, stateful
variables accessed in the loop are now prone to race conditions. Due to
this, loop unrolling may not always be beneficial.

• Debugging Tools are Limited: While developing the filtering IP, we
experienced several different issues with the IP not performing as ex-
pected. For example, we encountered a condition where the IP would
iterate over a given array but could never access every other array en-
try. The code passed testing on the development machine, and the
toolchain did not indicate any problems. Ultimately, the code and the IP
itself were demonstrated to be correctly written and configured. How-
ever, an automatically inferred flag in the block design forced all mem-
ory accesses to be 64-bit aligned, while the array contained 32-bit ele-
ments. The toolchain does not detect issues like these, and no debug-
ging tools exist to find them. Developing HLS IPs is a challenging task
requiring attention to detail and creativity in debugging.
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9.8 Conclusion

The implementation of Delilah is based on the requirements and design deci-
sions from previous chapters. The Delilah driver is based on the Eid-Hermes
driver but has several extensions, including the use of io_uring instead of
traditional filesystem calls. Delilah uses the uring_cmd function to manage
DMA requests or forward commands directly to the device. Commands are
processed parallel across two layers of queues, inner and outer. Eight specific
commands are implemented, including program execution, DMA transfers,
cache clearing, and device state management.

The Device Controller resides in Petalinux within the Xilinx MPSoCs Pro-
cessing System. The device controller has several modules.

1. Command Module: Defines and handles supported commands and
updates execution status in control registers.

2. Config Module: Stores adjustable configuration parameters like physi-
cal slot locations and engine count.

3. Functions Module: Maps eBPF call instructions to executable code us-
ing a function table.

4. Hermes Module: Deprecated. The module structures commands, re-
quests, and responses for compatibility with the old Eid-Hermes proto-
col.

5. Hardware Module: Manages hardware-accelerated functions and inte-
grates with High-Level Synthesis drivers for execution.

6. Interrupt Module: Utilises GPIO to signal command completion to the
host.

7. Loader Module: Configures and manages the execution environment,
including setting up uBPF VMs for executing eBPF programs.

8. Memory Module: Manages memory regions for data and program
slots and ensures cache coherency.

9. Utilities Module: Provides convenience functions and macros for error
handling, time measurement, memory size definitions, and logging.

10. TSL Module: Experimental. Integrates Delilah with the Template
SIMD Library (TSL) for SIMD operations, potentially improving
performance for specific workloads.

Insights from previous studies revealed suboptimal memory access latency
on the Xilinx ZCU102 chip. Due to this, Delilah employs CPU caching to
improve data processing speed for sequential accesses. Selective Cache In-
validation (SCI) within the memory module is implemented to enable CPU
caching efficiently without encountering cache coherency issues. Delilah
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only guarantees cache coherence on a subset of memory buffers by allow-
ing the host application to describe memory access patterns with SCI, thus
decreasing time spent on managing memory.

In addition to cache optimisation, Delilah’s block design is an optimised ver-
sion of the Daisy_M.2_PCIe_MIG_201901_20210413 design by CRZ Technol-
ogy. Modifications include removing redundant XDMA IPs and DDR MIGs,
which frees up FPGA capacity and reduces negative slack. The block design
is extended with hardware-accelerated filtering IPs that run on separate clock
domains with higher frequencies. Lastly, a GPIO IP for interrupt signalling
to the host is added.

The Petalinux SDK by Xilinx is used to deploy Delilah. Delilah is added
as a user-space application recipe that can be built with either Release or
Debug mode BitBake definitions. Furthermore, modifications to the device
tree ensure guaranteed memory allocation for UDMA and expose hardware-
accelerated filtering engines via user-space IO (UIO).

In conclusion, the implementation of Delilah fits the requirements and de-
cisions previously described. The implementation, including all underly-
ing modules, efficiently supports the workload of integrated data analysis
pipelines. More specifically, the implementation gives enough control to
the host application to allow for significant flexibility. It allows the host to
schedule program execution without adapting to a custom scheduler within
Delilah. On top of this, the protocol and modules are extensible if further
work shows that particular functionality could improve the integration with
host-side applications or integrated data analysis pipelines.
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Chapter 10

Summary

In the first two chapters of Part II, we have outlined five critical requirements
for a novel computational storage processor based on the findings of Part I.

We outlined how memory management plays a critical role in designing and
implementing a computational storage device integrating with host-side in-
tegrated data pipelines. Integrated data pipelines are efficient because the
memory layout is consistent across many operations and does not require
memory to be adapted to fit the constraints of a single operation. For com-
putational storage to be practical for integrated data pipelines, the memory
layout of the computational storage device must also be consistent. We pro-
posed splitting memory into four categories: control registers, program slots,
data slots, and shared data slots. These regions are static in size and location
to simplify the integration, as the host-side pipelines can expect data never
to move around unexpectedly. However, memory management in compu-
tational storage is still a challenge only partially solved. Having separately
managed memory on the device poses several challenges concerning cache
coherence and fragmentation. Selective Cache Invalidation, described in Sec-
tion 9.5, solves the immediate challenges of cache coherence, but further
work is necessary to ensure efficiency on larger workloads. Fragmentation
is an unsolved problem caused by the static size of the slots. Applications
are restricted to data slots of 1 GB, regardless of whether the application
needs this capacity. Ultimately, we learnt that having static memory regions
is favourable for integration with the host but does induce challenges like
fragmentation, which would not occur with dynamically allocated regions.

We identified executing eBPF as essential to building a novel computational
storage device. eBPF was selected because it is a vendor-neutral, lightweight
ISA. However, relying on eBPF is not without challenges. eBPF has con-
straints on supported operations and lacks instructions to express floating
point arithmetic and file I/Os. As such, the call imm instruction is needed
to invoke device-specific functionality known neither by the host nor the
eBPF program. We call this eBPF sidestepping since the call imm instruction
interrupts execution and hands control over to Delilah, which then conducts
the inexpressible operation. While the solution of sidestepping resolves the
challenges of executing inexpressible functions, further work is still needed
on enumeration and identifying the callable functions. In Eid-Hermes, the
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SNIA standard, and the NVMe standard, no such thing as sidestepping is
defined, and it is unclear whether the call imm instruction is used at all. In
Delilah, the instruction is used, but there is no way for the host to identify
the functionality accessible via the instruction. One must know the target de-
vice and version to determine which functions are invokable and with what
signature.

Delilah is based on the Daisy OpenSSD and Eid-Hermes. While these were
sufficient to support the development of Delilah, several challenges were
identified. Eid-Hermes relied on a synchronous interface and a protocol
with semantically invalid states. These had to be alleviated, as a
synchronous interface is highly impractical for high-performance systems.
The Daisy OpenSSD proved to be complicated and challenging to utilise
efficiently. In Section 11.2, we show in further detail that the Daisy
OpenSSD is impractical for specific access patterns due to very high
memory latencies. Further work is necessary to determine the feasibility of
the Daisy OpenSSD to support computational storage devices like Delilah,
and whether the Daisy+ OpenSSD or boards from alternative vendors
would serve as a more suitable hardware platform.

The fact that Eid-Hermes proved to be insufficient on its own, and that the
standards of SNIA and NVMe have certain limitations, for example, with
regards to cache coherence and the eBPF call imm instruction, indicates
that we are undergoing a paradigm shift in computational storage. Only
a few years ago, the interfaces of computational storage devices were gen-
erally white-box. While the implementations may be proprietary, the inter-
faces were always open, and the underlying operations and side effects were
known. With the emergence of eBPF and true vendor neutrality, questions
arise about the portability of some operations. For example, since functions
are only identified by their signature, vendors may implement functions that
appear to do the same but may have very different underlying instructions
or side effects.

While we consider the design and implementation of Delilah to be success-
ful, it is also evident that it is has limitations. While designing the block
design, we saw that clock frequencies of a single IP can undermine the en-
tire system’s performance, and that real estate on the FPGA can cause un-
wanted congestion or performance issues. After designing and implement-
ing Delilah, we are left with unresolved questions on how to guarantee ef-
ficiency on such a diverse system, spanning across a driver, a controller, a
block design, and an operating system. How can we benchmark Delilah’s
system stack and identify bottlenecks?
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Part III

Evaluation
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Chapter 11

Memory Access Evaluation

To determine the efficiency of Delilah, we must first experiment to determine
if and where any memory bottlenecks exist on the device. Note that we have
already shown the effects of cache coherency on the Delilah architecture in
Section 9.5.

11.1 DMA vs. CMB

In the design of Delilah, outlined in Chapter 8, we determined that the con-
trol registers should be placed in low-latency memory regions and accessed
via Controller Memory Buffers (CMB). We also determined that data, of-
ten more significant in size, should be accessed via Direct Memory Access
(DMA). This design decision follows the design of Eid-Hermes, outlined in
Section 3.3.10.

We have experimented with the latency of data access on the device via Direct
Memory Access and Controller Memory Buffers. For the CMB experiments,
data is read and written to a reserved area in the BAR0 configuration region.
For DMA, we read and write to a data slot on the device.

Table 11.1 shows the latency of writing from 1 byte and up to 10 megabytes
in increments of one order of magnitude. The experiment opens

Buffer Size Read Write
1.00 B 0.001 ms 1.000 MB/s 0.000 ms inf MB/s
10.00 B 0.002 ms 5.000 MB/s 0.000 ms inf MB/s
100.00 B 0.012 ms 8.333 MB/s 0.000 ms inf MB/s
1.00 KB 0.103 ms 9.709 MB/s 0.000 ms inf MB/s
10.00 KB 8.257 ms 1.211 MB/s 2.013 ms 4.968 MB/s
100.00 KB 82.490 ms 1.212 MB/s 20.283 ms 4.930 MB/s
1.00 MB 94.509 ms 10.581 MB/s 49.742 ms 20.104 MB/s
10.00 MB 945.134 ms 10.581 MB/s 498.245 ms 20.070 MB/s

TABLE 11.1: The latency of writing various amounts of data
from the host to data slots via Controller Memory Buffers

(CMB).
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Buffer Size Read Write
1.00 B 0.007 ms 0.143 MB/s 0.030 ms 0.033 MB/s
10.00 B 0.015 ms 0.667 MB/s 0.006 ms 1.667 MB/s
100.00 B 0.016 ms 6.250 MB/s 0.006 ms 16.667 MB/s
1.00 KB 0.007 ms 142.857 MB/s 0.020 ms 50.000 MB/s
10.00 KB 0.011 ms 909.091 MB/s 0.033 ms 303.030 MB/s
100.00 KB 0.064 ms 1562.500 MB/s 0.079 ms 1265.823 MB/s
1.00 MB 0.600 ms 1666.667 MB/s 0.733 ms 1364.256 MB/s
10.00 MB 6.419 ms 1557.875 MB/s 7.489 ms 1335.292 MB/s
100.00 MB 58.557 ms 1707.738 MB/s 74.598 ms 1340.519 MB/s
1.00 GB 614.847 ms 1626.421 MB/s 737.469 ms 1355.989 MB/s

TABLE 11.2: The latency of writing various amounts of data
from the host to data slots via Direct Memory Access (DMA).

Buffer Size Read Write
1.00 B 0.041 ms 0.098 MB/s 0.041 ms 0.098 MB/s
10.00 B 0.020 ms 2.000 MB/s 0.023 ms 1.739 MB/s
100.00 B 0.029 ms 13.793 MB/s 0.023 ms 17.391 MB/s
1.00 KB 0.021 ms 190.476 MB/s 0.033 ms 121.212 MB/s
10.00 KB 0.037 ms 1081.081 MB/s 0.048 ms 833.333 MB/s
100.00 KB 0.218 ms 1834.862 MB/s 0.296 ms 1351.351 MB/s
1.00 MB 1.617 ms 2473.717 MB/s 2.632 ms 1519.757 MB/s
10.00 MB 15.119 ms 2645.678 MB/s 24.106 ms 1659.338 MB/s
100.00 MB 168.119 ms 2379.267 MB/s 254.664 ms 1570.697 MB/s
1.00 GB 1809.847 ms 2210.132 MB/s 2704.805 ms 1478.850 MB/s

TABLE 11.3: The latency of writing various amounts of data
from the host to data slots via Direct Memory Access (DMA)

using all four H2C/C2H channels.
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the BAR0 configuration register used by Delilah to hold command
requests and responses. The region is open by memory-mapping
/sys/bus/pci/devices/0000:01:00.0/resource0 , which is the 0th Delilah
device, and the 0th resource, which is BAR0. The memory map is opened
using O_SYNC .

We can observe from the results that the transfer is almost instantaneous for
small transfers in the order of bytes. For 1 KB and below, the reads take up
to one-tenth of a millisecond, and the writes are too fast to measure. This
pattern could be caused by write-back strategies by the device, where the
write completes when the PCIe bus has received the write, and not when it
is written to the device memory.

For transfers larger than 1 KB, the efficiency decreases. For 10 KB and 100
KB, we see a decrease in throughput in the factor of an order of magnitude.
For 1 MB and 10 MB, the efficiency is similar to < 1 KB for throughput, but
with a linear scaling.

The results differ significantly from those of Direct Memory Access trans-
fers, observed in Table 11.2. We can observe a high minimum latency on all
transfers. Whereas CMB has a lower bound of transfer of 0.001 ms, the lower
bound of DMA is indeterministic and varies between 0.007 ms and 0.016 ms.
However, for transfers above 1 KB, the efficiency spikes at orders of magni-
tude compared to CMB. For example, a transfer of 1 KB takes 0.103 ms via
CMB and 0.007 ms via DMA, with a throughput of 9.709 MB/s and 142.857
MB/s, respectively. For 10 MB, the throughput is 10.581 MB/s and 2645.678
MB/s, respectively.

This performance characteristic shows that CMB is optimal for small trans-
fers, for example, requests and responses of less than 1 KB. However, offload-
ing the transfer to the DMA engine for larger transfers seems optimal.

In Table 11.3, we see the same DMA experiment but transferring four times
as much data via four H2C/C2H channels. In this experiment, we observe
how using multiple channels increases the throughput, but not at a factor of
four. We see an almost 1000 MB/s improvement in throughput for reads,
whereas we only see around an increase of 100-200 MB/s in throughput on
writes. This trend strongly indicates that either the DMA channels are not
isolated and share the same PCIe lanes, or the underlying AXI connection
from XDMA to the DDR4 MIGs is exhausted. However, in conclusion, since
the performance of using multiple DMA channels is never less than using
just one, it is better to use multiple channels where possible.

11.2 Memory Accesses

As outlined in Chapter 4, the Daisy OpenSSD has an internal memory, de-
noted PS memory, and can have up to two external DDR4 DRAM sticks at-
tached. In this experiment, we want to see the different performance char-
acteristics. We have mounted two M393A2K40BB1-CRC memory sticks from
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FIGURE 11.1: Average latency of a single memory access when
running 32 million accesses in a row. The results are shown
in linear scaling. Seq denotes sequential, rand denotes random,

and the values in parenthesis denotes the alignment.

Samsung in the PL DIMM slots. These memory sticks have a frequency of
2400 MHz, a size of 16 GB, and a component composition of (2G x 4) x 18 [35].
According to its user guide, the Daisy OpenSSD comes with one component
of MT53B768M32D4NQ-062 LPDDR [12]. This memory component has a fre-
quency of 1600 MHz, a size of 2 GB, and a component composition of 768M
x 32 [37].

The experiment to benchmark and compare the two memory components is
straightforward. We design a set of registered functions (see Section 9.4.1)
that execute 32 million memory loads and stores. We experiment with reads
and writes, sequential and random accesses, and with and without 16-byte
and 4-kilobyte alignment. Furthermore, we access PS memory, both using
UDMA and via a region allocated via malloc, to try to identify the perfor-
mance characteristics of UDMA. The experiment yields an amortised access
latency, measured in nanoseconds.

The results of the experiments are illustrated in Figures 11.1 and 11.2. The
first notable observation is the massive contrast between sequential and ran-
dom accesses. Sequential accesses perform at near-zero latency, regardless
of alignment. This performance characteristic likely stems from the efficient
operation of predictive cache prefetching mechanisms and the low latency
of approximately three nanoseconds of the L1/L2 caches. Furthermore, we
suspect aligned writes are temporarily cached in L1/L2 caches, followed by
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FIGURE 11.2: Average latency of a single memory access when
running 32 million accesses in a row. The results are shown in
logarithmic scaling. Seq denotes sequential, rand denotes ran-

dom, and the values in parenthesis denotes the alignment.

combined memory writes, potentially leading to increased bus utilisation.

Notably, the choice of an underlying RAM module for sequential reads and
writes appears inconsequential, as the caching efficiency of L1/L2 negates
any significant impact. On the other hand, random accesses show a consid-
erable latency increase, with access times around two orders of magnitude
slower than sequential accesses. This performance bottleneck likely comes
from the inability of predictive prefetching to cache reads ahead of time, thus
always causing a cache miss. Meanwhile, any caching of writes with the in-
tention of write combining now fails.

We observe an outlier in random reads to PS memory, where access latencies
are 3–4 times better than random writes and aligned random accesses. The
cause of this latency discrepancy remains an open question, but it is repro-
ducible between runs with high precision.

Furthermore, experiments exploring the alignment of random accesses show
that alignment has minimal effect on memory access latencies, indicating that
other factors, like choice of memory module and distance from CPU, pre-
dominantly impact access speed in such scenarios.

Access to memory via UDMA does not increase access latency, as one would
expect when adding another layer of abstraction. Instead, it reduces latency
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in most cases. The reason for this is likely different CPU cache implemen-
tations. According to the README of the library, Linux will turn off CPU
caching for memory-mapped buffers on architectures like ARM and ARM64,
where cache aliasing problems can occur [26]. The framework offers an al-
ternative path to enable CPU caches, which may be the difference in access
performance we observe.

We can compare our results to Bansal et al., who have conducted experiments
on the memory subsystem of a Xilinx Ultrascale+ MPSoC ZCU102 [4]. The
ZCU102 MPSoC is the same as the one on the Daisy OpenSSD. However,
it should be noted that they have different memory modules, namely the
Kingston KVR21SE15S8 in PS and Micron MT40A256M16GE-075E in PL, which
only enable us to compare the tendencies and not the specific latencies.

Their experimentation shows an L1 latency of 3 nanoseconds, identical to
ours. Furthermore, they show an L2 latency of 20 nanoseconds. Most impor-
tantly, they show that the latency increases significantly when working sets
become more extensive than what can feasibly be cached in L1 and L2. Their
experimentation shows that randomised reads and writes are in the order of
hundreds of nanoseconds, similar to our experiments.

To conclude, experiments show the importance of locality when offloading
to Delilah. If the offloaded programs exhibit random access patterns, Delilah
will likely be unable to outperform the host or other accelerators. Further-
more, Delilah’s memory management architecture seems optimal for the con-
straints of the Daisy OpenSSD.

Accessing the slower PS memory tends to come with lower latency, even
though the PL DDR4 DRAM sticks have a higher frequency than PS. This
characteristic likely stems from inefficiencies in PS-to-PL ports or AXI con-
nections from the CPU to the MIGs. This hypothesis is probable because
other researchers have seen a similar memory access latency on the Xilinx
UltraScale+ MPSoC.

Since access latency is highly dependent on whether data is accessed sequen-
tially or randomly, the offloaded workload plays a critical role in the through-
put. Sequential workloads, such as filtering and transformations, will be ef-
ficient on Delilah due to their sequential access patterns. Sequential data
processing ensures that data is fetched contiguously, reducing cache misses
and utilising the bandwidth of the memory components. This characteristic
makes Delilah well-suited for applications involving tasks that require read-
ing and writing data in a predictable order.

On the other hand, workloads characterised by random access patterns, such
as sorting, will exhibit significantly lower throughput. In these workloads,
there will be frequent cache misses and an inability to anticipate the follow-
ing memory access, causing prefetching to miss continuously. Sorting algo-
rithms, which often involve frequent random reads and writes, are inhib-
ited by the increased latency associated with random memory accesses. This
latency bottleneck reduces throughput, as the memory components spend
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more time addressing cache misses and retrieving data from slower mem-
ory layers. Thus, while Delilah can achieve high throughput for sequential
access patterns, it will face performance challenges with tasks requiring ran-
dom data access.

11.3 Conclusion

In this chapter, we have conducted two experiments to understand the mem-
ory access characteristics of the Daisy OpenSSD. Exploring Direct Memory
Access (DMA) versus Controller Memory Buffers (CMB) reveal that while
CMB is highly efficient for small transfers, DMA significantly outperforms
CMB for more extensive data transfers, especially when utilising multiple
channels.

Our memory access experiments show the role of access patterns. Sequential
accesses benefit greatly from cache prefetching, resulting in minimal latency,
whereas random accesses suffer from significant latency increases due to fre-
quent cache misses. The observed differences in memory access latencies
between PS and PL memories may be caused by underlying inefficiencies in
the PS-to-PL ports or AXI connections despite the higher frequency of the PL
DDR4 DRAM sticks.

Our findings on the inefficiencies of memory accesses match existing re-
search, such as the work of Bansal et al., particularly regarding the latency
penalties associated with random access patterns. Similar trends were ob-
served in latency increases for random accesses, and the effectiveness of
L1/L2 caches further validated our results.

Our exploration and experimentation show the importance of understand-
ing memory access patterns to optimise the use of Delilah. Delilah may not
provide a significant performance advantage for workloads with random ac-
cesses over the host or other accelerators. However, Delilah’s memory man-
agement architecture is highly efficient for tasks with predictable access pat-
terns.

Now, the question is how problematic these access latencies are in reality. In
the next chapter, we will conduct an experiment using a SSB query to deter-
mine the viability of Delilah with a real-world use case. This experiment will
help us understand the practical implications of memory access latencies,
and Delilah’s performance in addressing complex queries and data process-
ing tasks typical in database operations.
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Chapter 12

Experimental Evaluation

While running micro-benchmarks and experimenting with subcomponents
of the Delilah system can reveal potential bottlenecks, some performance
characteristics only show when components are active simultaneously.

Alongside Alexander Krause and Johannes Pietrzyk from TU Dresden’s
Database Research Group, we have designed and implemented a host-side
application for experimenting with Star Schema Benchmark (SSB) query
3.3 [41]. The 3.3 query, seen in Listing 12.1, is interesting because it combines
several typical database operations. It has conversion, filtering, and
aggregation spread over multiple tables, requiring a join. These
characteristics make it relevant to the requirements because it tests the
ability to express complex queries in eBPF, with memory spanning multiple
programs and operations. On top of this, it triggers both sequential and
random access patterns to memory.

LISTING 12.1: Star Schema Benchmark Query 3.3.

SELECT c _ c i t y ,
s _ c i t y ,
d_year ,
Sum( lo_revenue ) AS revenue

FROM customer ,
l ineorder ,
suppl ier ,
date

WHERE lo_custkey = c_custkey
AND lo_suppkey = s_suppkey
AND lo_orderdate = d_datekey
AND ( c _ c i t y = ’UNITED KI1 ’

OR c _ c i t y = ’UNITED KI5 ’ )
AND ( s _ c i t y = ’UNITED KI1 ’

OR s _ c i t y = ’UNITED KI5 ’ )
AND d_year >= 1992
AND d_year <= 1997

GROUP BY c _ c i t y ,
s _ c i t y ,
d_year
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ORDER BY d_year ASC,
revenue DESC ;

12.1 Experimental Setup

The experimental framework uses a Delilah device connected to a host via
PCIe3 x8. The host has an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with
four cores and 32 GB DDR3. It runs Ubuntu 22.04 (Linux 6.2.6), and Clang
14.0 compiles eBPF programs.

Furthermore, the setup has a development server, which has a 12th Gen In-
tel(R) Core(TM) i7-12700KF with 12 cores and 32 GB DDR4, and it is running
Ubuntu 16.04 (Linux 4.15.0). We use this server to compile the block design,
offload FPGA bitstream and OS image to the Daisy platform, and monitor
experiments via JTAG.

All experiments in this chapter have been repeated ten times, and all num-
bers are averages of the ten runs. Unless explicitly noted, Delilah runs in JIT
mode, and the shared memory slot is placed in PL memory.

12.2 Experiment 1: Interpretation vs. Just-in-Time

In Figure 12.1, we see a significant difference between Delilah’s performance
in JIT mode versus interpreted mode, particularly when executing the SSB
query fully on Delilah. Figure 12.2 shows a similar comparison, this time
running the query on the host, thus only offloading data transfer from SSD
to host in both JIT and interpreted modes.

Surprisingly, three out of four experiments show similar performance char-
acteristics, an outlier being the interpreted mode for the full offload of the
SSB 3.3 query. This observation indicates that for smaller programs with a
limited set of instructions, the choice between JIT and interpreted mode may
not significantly impact performance. In the host-only experiment, JIT run-
time was measured to 5.59 seconds, only marginally beating the interpreted
mode runtime of 5.60 seconds.

However, the difference in performance becomes much more notable when
working with larger programs, showing an order-of-magnitude difference
between JIT (runtime: 5.85 seconds) and interpreted mode (runtime: 53.77
seconds). The interpreted mode requires multiple ARM instructions for each
eBPF instruction, as time and instructions are spent on parsing, decoding,
and handling individual instructions.

This experimentation leads to a lesson learnt about the current version of
Delilah and uBPF: computational storage processors are best suited to oper-
ate in JIT mode, with interpreted mode being reserved for smaller programs
with minimal instructions. The risks of utilising interpreted mode cannot be
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FIGURE 12.1: The result of a full offload of query 3.3, where
we compare the runtime between running Delilah in JIT mode
versus interpreted mode. In JIT mode, all query instructions are
transpiled into ARM instructions native to the Daisy OpenSSD.
In interpreted mode, an interpreter parses the instructions and

executes them sequentially.

overstated, showing that JIT execution must be enabled for optimal perfor-
mance. However, it should be noted that future versions of eBPF and uBPF
may lead to different conclusions.

12.3 Experiment 2: Partitioned Execution

In Figure 12.3, we experiment with comparing the execution of operators
that work with the maximum amount of data possible and operators that
partition the data into smaller chunks. The partitioning aims to enable the
host to process data earlier, instead of remaining idle until the operator has
finished processing. We want to understand if a computational storage pro-
cessor performs better when operators work on as much data as possible,
or if partitioning increases performance by enabling other processing units,
such as the host, to execute simultaneously. This experiment tests whether
data pipelining is beneficial for computational storage.
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FIGURE 12.2: The result of the host-only experiment, where
Delilah only fetches the files for the host without doing any
processing. We compare the runtime between running Delilah
in JIT mode versus interpreted mode. In JIT mode, all query
instructions are transpiled into ARM instructions native to the
Daisy OpenSSD. In interpreted mode, an interpreter parses the

instructions and executes them sequentially.

The lessons learnt from this experiment are three-fold:

• When partitioning operators, using shared memory regions becomes a
non-trivial task. In the unpartitioned scenario, approximately 1.5 sec-
onds are spent reading all query columns, after which other operators
can concurrently operate on the data. However, when only parts of a
column are read intermittently, and the file size remains to be deter-
mined, managing and allocating shared memory regions raises signifi-
cant challenges.

• Partitioning operators introduce communication and cache overhead.
After processing segments of input data by an operator, the host is no-
tified and must determine the next course of action, while the compu-
tational storage processor remains idle. Mechanisms such as Selective
Cache Invalidation (SCI), discussed in Section 9.5, and JIT compilation,
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FIGURE 12.3: The result of running the full query on Delilah,
either running to completion or in chunks of 128 MB.

are triggered per partition rather than per operation.

• Aggregation operators now incur significant overhead since the input
to the aggregator comes in chunks. As such, the aggregator may need
to make several passes over the same data.

It is most beneficial for computational storage processors to execute larger
tasks and, if possible, avoid partitioning operators artificially.

12.4 Experiment 3: Filesystem Caching

In this experiment, we aim to understand the implications of utilising direct
I/O for file reading by avoiding the traditional process of copying data from
the filesystem cache to the user buffer. The result of this experiment can be
seen in Figure 12.4.

As expected, the performance characteristics across all but one operator are
identical, since the direct I/O only applies to a single operator. In this op-
erator, we observe a difference of approximately 0.27 seconds, showing the
benefits of utilising direct reads over traditional cached filesystem reads.
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FIGURE 12.4: The result of running the full query on Delilah,
either reading column files with or without the O_DIRECT
flag. Contrary to other experiments, this experiment is exe-

cuted with the shared memory slot in PS memory.

In conclusion, the experiment shows the importance of using direct I/O op-
erations in computational storage processors. Using direct I/O where pos-
sible improves the performance of data retrieval and aligns better with the
objective of computational storage processors: to improve performance in
resource-constrained environments.

However, it should be noted that this experiment also introduces questions
about the viability of design decisions. We observe that disabling filesys-
tem caching via O_DIRECT improves performance by removing a level of
indirection. However, O_DIRECT requires the memory region to be mapped
into the kernel as standard memory. UDMA exposes the PL device mem-
ory as standard kernel-mapped memory, even though the memory is not
initially mapped this way. Using UDMA introduces a level of indirection,
making it incompatible with direct reads. This characteristic raises an unan-
swered open question about the design of computational storage devices:
How can memory, which is not considered standard by the kernel, be effi-
ciently utilised by the computational storage device? Is there an alternative
UDMA that enables the computational storage device to map memory more
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FIGURE 12.5: The result of running the full query on Delilah
with various approaches to filtering.

efficiently?

12.5 Experiment 4: Filtering Strategies

In Figure 12.5, we explore four distinct implementations of the filter operator.
The first implementation is a sequential eBPF baseline without specialised
filtering optimisations. In the next experiment, we use bit masks instead of
position lists, potentially enhancing data manipulation efficiency. On top
of this, a third experiment integrates loop unrolling techniques into the bit-
masked filtering process. Finally, we move on to bit masking with ARM
Neon instructions, utilising the hardware capabilities available in the Xilinx
MPSoC processor.

The first observable difference between the baseline implementation and the
three implementations utilising bit masking is the performance improvement
observed during data retrieval back to the host. Moreover, a notable reduc-
tion in the time required to filter over the input data is observable across all
three bit-mask implementations.
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FIGURE 12.6: The result of running the full query on Delilah
with hardware-accelerated filtering on the Filter City operation.

We understand that using bit masks plays a role in minimising the volume of
data written into memory. Furthermore, when utilising bit mask techniques,
the CPU caches will be filled up slower, thus improving bus utilisation.

We observe an exciting performance trend when enabling loop unrolling.
Contrary to expectations, the unrolled version shows no improvement, with
runtimes averaging 4.85 seconds, slower than the bit mask-only implemen-
tation, averaging 4.79 seconds. This unexpected result shows that typical
compiler optimisations may have limited effect in an eBPF-based environ-
ment.

In conclusion, the design of data-intensive operators should prioritise max-
imising bus utilisation to optimise performance. Furthermore, it is essential
to acknowledge that optimisations may not be automatically inferred by the
compiler, requiring the developer to design operators that are efficient by
design.
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12.6 Experiment 5: Hardware Acceleration

In Figure 12.6, we focus on modifying the offloaded query to have a
hardware-accelerated operation. This acceleration is achieved through
High-Level Synthesis (HLS) and accessed using the Hardware module of
Delilah, as described in Section 9.4.1.

Initially, our observations show a marginal difference in performance be-
tween hardware acceleration using HLS and the eBPF baseline. With both ex-
periments concurrently executing four operators, HLS shows a slightly faster
runtime of 5.72 seconds, compared to 5.85 seconds for the eBPF baseline.

To better understand the limited improvement in performance, we modify
the experiment by introducing serial execution for the filtering process. In
the modified version, the four operators are run serially, with only one ac-
tive at any time. Under these conditions, we observe a hardware-accelerated
runtime of 6.46 seconds versus 7.29 seconds for the eBPF baseline. This shift
indicates a surprising aspect: while hardware acceleration does offer perfor-
mance improvements, its impact is reduced when the underlying data path
to memory becomes saturated.

In conclusion, hardware acceleration presents a path for enhancing perfor-
mance. However, it is essential to weigh this against specific considerations.
Hardware-accelerated HLS IPs are often specialised towards a single oper-
ation, and the investment of time and resources in implementing such IPs,
coupled with increases in FPGA Look Up Tables (LUTs) and FPGA Flip-Flops
(FFs), may not always justify the gains. Moreover, the trend indicating that
the data path, rather than the execution itself, serves as the bottleneck sug-
gests that efforts should be directed towards optimising data access latency
rather than solely focusing on execution acceleration.

12.7 Experiment 6: Partial Offload

In Figure 12.7, we explore various degrees of offloading within the context of
the SSB 3.3 query.

Firstly, the fully offloaded query implementation outperforms the implemen-
tation where aggregation is executed on the host. This outcome matches
expectations, as device-side aggregation benefits from operating on data al-
ready available in the device’s L1 and L2 caches, whereas the host-based ap-
proach requires fetching data before aggregation.

A notable observation shows on the host-only implementation, which spends
considerable time on I/O operations from the underlying SSD. This time can
be attributed to guaranteeing cache coherency using Selective Cache Inval-
idation (SCI), as described in Section 9.5. This characteristic is contrary to
device-side I/O operations, which do not require visibility to the host, as
data is kept on the device for the next operator.
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FIGURE 12.7: Three different degrees of offloading the SSB 3.3
query, spanning from full offload to partial offload with aggre-

gation on host and host-only.

This trend prompts a thought-provoking question of the variability of com-
putational storage. If cache coherency is attributed as the main reason for
the success of computational storage devices, one may question said suc-
cess. In the absence of cache coherency issues, as when using traditional
NVMe SSDs, would the host-only implementation outperform the device,
even when competing with computational storage optimisations such as bit
masking and ARM Neon? The numbers of this experiment indicate that this
would be the case.

In conclusion, deciding which operations to offload should be determined
by the nature of the operators involved. When operations primarily involve
data reduction, offloading proves advantageous. However, in cases where
operations focus on transformation tasks over data reduction, conducting
these transformations on the host may be more beneficial. Additionally, the
notable impact of cache coherency on performance shows the importance of
evaluating the feasibility of using computational storage.
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FIGURE 12.8: Two previous experiments, the baseline offloaded
and ARM Neon implementations, with the shared data slot in

PL and PS memory.

12.8 Experiment 7: Slot Placement

In Figure 12.8, we explore the placement of the shared data slot. Recall that
the shared data slot is specialised and shared among all execution engines,
often used to hold state or cache files that are reused in multiple executions.
The host lacks access to the shared data slot, avoiding cache-coherency issues
associated with the regular host-accessible data slots. In this experiment, we
use the baseline eBPF implementation and the ARM Neon implementation.

Our observations in this experiment align with the findings of the memory la-
tency experiments described in Section 11.2. Contrary to expectations, those
experiments revealed higher latency on the Programmable Logic (PL) mem-
ory despite its significantly higher frequency than the Processing System (PS)
memory. While the memory latency experiment was conducted as a micro-
benchmark experiment, this end-to-end experiment verifies the importance
of memory latency in the success of computational storage devices.

To conclude, our findings reveal a lesson learnt: memory frequency should
not be the determining factor in data slot placement. Instead, the focus



Chapter 12. Experimental Evaluation 106

should be understanding the data path from the device’s CPU to memory.
Our experiment showed that the data path may be a more significant bottle-
neck than the memory frequency.

12.9 Discussion

The initial experiment demonstrates the performance differences
between running Delilah in interpreted mode versus JIT mode. The
order-of-magnitude difference in runtime for larger workloads emphasises
the importance of JIT execution in optimising computational storage
processor performance. The minor advantage of JIT in smaller workloads
indicates that while interpreted mode may be sufficient for small programs,
it is not practical for more complex programs. This trend supports the
assumption that JIT should always be the default mode for computational
storage processors to ensure optimal performance. From this, it also
becomes evident that program execution should not be considered a single
operation but a series of operations: one that transfers the program to the
device, one that prepares the program (e.g. JIT compiling), and lastly, one
that triggers the actual execution in the execution environment. Separating
the execution command into several operations makes it possible to transfer
and JIT-compile programs in advance, thus decreasing the preparatory work
for the actual execution. It also makes it possible to re-execute the same
JIT-compiled program multiple times, which is unsupported in Delilah
since the preparation and execution happen within the same command.

The experiments on partitioned execution show the non-triviality of divid-
ing workloads. While partitioning intends to utilise host processing capabil-
ities and the computational storage device, it causes significant overheads in
communication, cache management, and shared memory allocation. These
overheads often negate the benefits of partitioning, making it more beneficial
for computational storage processors to complete as much work as possible
without artificially partitioning the workload. This observation shows the
need to fully understand the consequences of workload partitioning to avoid
unnecessary overhead.

The experiment on filesystem caching shows the benefits of using direct I/O
operations in computational storage processors. Direct I/O bypasses the
filesystem cache, improving the performance of read operations. However,
while direct I/Os may improve performance, they add complexity since the
underlying operation must be aligned and of a specific size, and the memory
must support such operations. In Delilah, only the PS memory supports this
operation.

While exploring different filtering strategies, we learnt that using bit masks
and ARM Neon instructions significantly improves performance. This in-
crease in performance is likely due to more efficient memory access patterns.
However, the lack of expected gains from loop unrolling indicates that typ-
ical compiler optimisations are ineffective in an eBPF-based environment.
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This experiment shows the importance of manually designing efficient oper-
ators and not relying on default compiler optimisations.

The hardware acceleration experiment reveals that while High-Level Synthe-
sis (HLS) can offer performance improvements, the benefits may be limited
by data path saturation. While executing in parallel, the minor performance
difference between hardware acceleration and eBPF indicates that optimising
data access latency is as essential as improving execution time. Furthermore,
this shows the need to balance the investment in hardware-specific optimi-
sations and the potential gains.

The experiment on partial offloading of the SSB 3.3 query shows similar
results to the experiment on partitioning. Aggregation decreases the data
transfer between the computational storage device and the host. In turn, this
decrease also decreases the need for cache coherency guarantees. Reducing
DMA operations is critical in optimising cache coherency performance. This
discovery suggests that computational storage devices should initially focus
on reducing data movement between the device and the host.

Finally, the slot placement experiment shows the direct consequence of mem-
ory latency, which we discussed in Chapter 11. Despite the higher frequency
of Programmable Logic (PL) memory, the higher latency than Processing Sys-
tem (PS) memory suggests that the data path, rather than memory frequency,
is the primary bottleneck. This finding emphasises the need to understand
the entire data path from the device CPU to memory when designing com-
putational storage processors, rather than focusing solely on memory spec-
ifications. On the Daisy OpenSSD and in Delilah, this means that perfor-
mance is generally improved by looking at clock frequencies and congestion
on the FPGA, rather than by inserting higher-frequency memory modules or
increasing processor frequency.

In essence, we can summarise the experiments into a set of design principles.
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Design Principle Experiment Assumption
Prefer Just-in-Time
over interpreta-
tion.

Experiment 1: Both Just-
in-Time (JIT) compilation
and interpretation have
the same baseline per-
formance, but JIT scales
better.

Interpreting a single eBPF in-
struction costs multiple native
instructions.

Maximise operator
workload.

Experiment 2: Operators
should process as much
data as possible in a single
pass.

The overhead of offloading
and scheduling eBPF pro-
grams is high due to the time
spent transferring and prepar-
ing the execution engine.

Avoid operating
system overhead.

Experiment 3: I/Os per-
form better if they avoid
OS overhead, e.g., the
filesystem cache.

Memory latency is high, and
removing overhead optimises
performance.

Reduce memory
accesses.

Experiment 4: Memory-
intensive operations un-
derperform.

Memory latency is high, and
limiting memory accesses op-
timises performance.

Hardware-
accelerate where
possible.

Experiment 5: Hardware
acceleration can avoid
bottlenecks in data paths.

Memory latency is high, and
hardware acceleration helps
limit memory accesses and
improve performance.

All or nothing of-
fload.

Experiment 6: Offloading
only parts of a query leads
to increased overhead.

The overhead of offloading
and scheduling eBPF pro-
grams is high due to the time
spent transferring and prepar-
ing the execution engine.

Prioritise data
path capacity.

Experiment 7: The data
path from CPU to mem-
ory tends to congest be-
fore the memory module
itself.

Memory is connected via AXI
interface and PS-to-PL ports.

TABLE 12.1: Design principles and assumptions derived from
experimenting with Delilah on the Daisy OpenSSD.
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Chapter 13

Lessons Learnt

This chapter describes the lessons learnt from designing, implementing, and
evaluating Delilah.

13.1 Memory Management

Memory management is a crucial open question when combining the func-
tionality of computational storage and integrated data analysis pipelines.
With the emergence of multi-core processors, it is no secret that adding extra
processing capabilities introduces the need for cache-coherency mechanisms.
However, with computational storage, the challenges are more significant
due to the isolation of components.

FIGURE 13.1: The traditional understanding of memory hier-
archy, where the upper levels are always subsets of the levels

below.

Figure 13.1 shows the traditional understanding of the memory hierarchy
of multi-core processors. Here, the memory of higher levels in the memory
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hierarchy are always a subset of lower levels. The typical way to handle
invalidation for multi-core processors is to mark the memory areas that are
now outdated explicitly. Subsequently, when the processor core accesses this
memory, it sees the mark and fetches it from the lower levels.

FIGURE 13.2: The new understanding of memory hierarchy
with computational storage, where multiple memory hierar-
chies share a lower layer but have separate upper layers. This
complicates moving data in and out of various levels of caches

across a collection of compute units.

However, computational storage is more complex. Organising the memory
into a hierarchy becomes non-trivial, even on the device itself. Figure 13.2
shows an example of a computational storage device with a processing unit
and an accelerator IP. The processor and the accelerator may share the same
underlying data slots. However, the CPU’s local caches are unaware of in-
termediate IPs (like AXI connectors or buffer IPs) and local buffers and vari-
ables in the accelerator. It is not clear how to understand and organise the
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hierarchy efficiently.

It becomes even more unclear when including the host in the understand-
ing of the memory hierarchy. For example, are the data slots of the com-
putational storage device a subset of storage? With this understanding, the
host memory must then be a subset of computational storage, which is not
the case since there is not necessarily an overlap between host memory and
computational storage memory.

While understanding the memory hierarchy is not inherently a problem, it
leads to several, critical underlying questions. One issue is how memory
hierarchies, which do not share upper levels, manage data movement in or
out of various levels of caches across a collection of compute units on both
the host and the device. This separation introduces the critical problem of
synchronising data between different cache levels.

In traditional memory hierarchies, invalidating a cache line at the upper level
would automatically trigger the data to be fetched from lower levels again
when needed. However, the memory hierarchy of computational storage
implies that lower levels might have the same outdated data, and synchro-
nisation with the lowest level becomes necessary to ensure consistency. The
challenge is compounded by the fact that the lowest level of the memory hi-
erarchy might be located at a significant distance from the upper levels. This
distance could be physical, involving traversal across PCIe links or other in-
terconnects, which introduces additional latency.

In summary, while the fundamental concept of memory hierarchy is straight-
forward, the practicalities of managing data movement and synchronisation
across non-shared upper levels introduce several critical challenges. These
challenges revolve around ensuring data coherence. Organising and effec-
tively building memory hierarchies for computational storage is a critical
challenge that must be addressed. Until it is addressed, computational stor-
age devices will face allocation and cache coherency issues.

13.1.1 Delilah and NVMe

After experiencing memory management challenges with Delilah, we better
understand the limitations of the NVMe specification. The NVMe specifica-
tion introduces two mechanisms but leaves critical implementation details
up to the vendor.

First, it needs to be clarified how synchronisation and cache coherency work
with the introduction of Memory Range Sets and, thus, overlapping memory
regions. What happens if two programs operate on the same memory from
two different namespaces? What if the host initiates a transfer while a pro-
gram operates on a memory region? How is coherency guaranteed between
namespaces?

Secondly, with the introduction of RTL, eBPF, and other mechanisms for pro-
gram offload, the specification raises more questions than it answers. Even a
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simple eBPF execution environment (e.g., uBPF) has several configurations,
like execution strategy (JIT vs. interpreted) and registered functions that
must be managed. With FPGAs, the number of parameters are much higher.
How does the host manage the execution environment? How are the limita-
tions or restrictions of the execution environment propagated?1

Furthermore, there is also the question of coherency between NVMe itself
and the execution environments. This question, in turn, raises even more
questions: What happens if two different types of computational programs
access the same memory? How is cache coherency guaranteed between these
potentially very diverse execution environments?

13.2 eBPF Complements Computational Storage

Our experiences with eBPF in the context of computational storage have
shown us that eBPF can organise and express many different operators with
varying characteristics. For example, designing and implementing almost
any bounded single-pass algorithm is trivial. We have, however, learnt that
eBPF cannot stand on its own. There must be a mechanism to intertwine
the vendor-neutrality and lightweight characteristics of eBPF with device-
specific functionality. The usage of the call imm instruction in eBPF has
proven to be a viable mechanism to switch between these two domains of
programs.

However, open questions concerning offloading eBPF to computational stor-
age still need to be answered. For example, in the Delilah architecture, we use
function names to map device-specific functions. In our architecture, when
compiling to eBPF, the resulting ELF will contain a mapping table from the
function number in the call imm instruction to the function name, which
the execution environment can invoke. This mechanism means that devel-
opers of computational storage programs must know, at compile time, which
functions are registered on the targeted computational storage device. Subse-
quently, this means that the resulting eBPF ELF binary is not vendor-neutral
but instead compiled for a specific device. This challenge also raises sev-
eral questions on exchanging device capabilities, even before the target de-
vice is connected or known. How does the developer know what functions
are present on the device? What happens if a device typically has a given
registered function but is currently unavailable for external reasons (e.g., in-
compatible underlying storage or resource constraints)? What happens if an
unknown function is offloaded to the device?

Furthermore, we have learnt that error handling in eBPF is another critical
question to solve. When using eBPF in the kernel context, we often have

1eBPF programs and execution environments may have many subtle limitations or differ-
ences. For example, eBPF programs have a 512-byte stack by default, but since this may be
limiting for complex programs offloaded to complex environments like storage, it can now
be overridden in LLVM [22]. How do the execution environment and the host manage the
eBPF stack size? What happens if they are configured with different stack sizes?
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simple and restricted programs with limited outcomes. Here, it is typically
sufficient to communicate with the host program through return values or
eBPF maps. However, in computational storage, the number of outcomes is
larger and more complex to express. Assume that eBPF invokes a device-
specific program or registered function to read a file from the underlying
storage. Now assume this read fails for any reason (e.g., file does not ex-
ist, alignment issues, permission denied). A registered function only has a
scalar return value; how does it inform the eBPF program that the I/O has
failed, and what, in particular, was the underlying problem? A partial solu-
tion could be to provide a data structure as a parameter to the function that
can contain errors if applicable. However, we merely moved the problem, as
we are now left with questions on what attributes such data structure should
contain, and where it should be allocated. Furthermore, eBPF does not have
a mechanism to return anything but a scalar value to the host, so it is up to
the developer to return the device error information to the host via data slots.

Lastly, while eBPF is a promising instruction set architecture for computa-
tional storage, we are left with some critical limitations. For example, the
lack of floating-point operations severely limits the operators that can be of-
floaded. There is a natural tension with eBPF being restricted for safety pur-
poses in the kernel and the need for expressibility with program offload. This
tension is unlikely to be resolved due to the opposing forces of the use cases.

We can summarise the open questions of eBPF in the context of computa-
tional storage into a few bullet points:

• How do the host and computational storage devices exchange device
capabilities? How are the capabilities known at compile time?

• How can registered functions yield error information to the eBPF pro-
gram? How can the eBPF program propagate the error information to
the host?

• How do we manage the natural tension between eBPF as an extension
of the kernel and eBPF as the preferred instruction set architecture for
computational storage?

13.3 Workload-Awareness Is Key

While eBPF complements computational storage despite its limitations, we
have also learnt that not all workloads can be efficiently offloaded to the
storage layer. While this may seem obvious, the critical point is that even
different implementations of the same operators can have widely different
performance characteristics.

For example, we have learnt that interpreting eBPF is inefficient and that
eBPF code should always be JIT-compiled to native processor instructions.
We have learnt that the overhead of offloading eBPF programs and prepar-
ing the execution environment puts pressure on the developer to coalesce as
many operators as possible and only partition where necessary.
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We have learnt that computational storage designers should spend time op-
timising memory throughout and latency, rather than execution throughput
and latency. Our experiment with HLS and ARM Neon showed that perfor-
mance bottlenecks are typically related to memory and not processing fre-
quency.

At the same time, throughput is also a key consideration when designing
operators. While latency limits how often we can execute a given operator,
throughput determines how much data we can process in a single execution.
Improving throughput involves several fundamental design considerations.
For instance, avoiding multiple passes on a dataset is essential, as each addi-
tional pass effectively halves the data sizes processed in a single execution.
Single-pass algorithms reduce the time complexity and minimise the mem-
ory bandwidth consumption, leading to higher operator throughput.

As such, when determining which workloads are suitable for offload to the
storage layer, one must consider the following characteristics:

• Locality: If the workload has low locality, it is better to execute the
operations host-side. This is because the host has a higher frequency
and lower memory access latencies and thus handles cache misses and
unpredictable access patterns better.

• Data Reduction: If the workload does not significantly decrease the
data transferred to the host, it is better to execute the operations host-
side. The lower frequency of the device processor and higher memory
access latencies are partly made worthwhile by the decrease in DMA
transfer time. If data volume is not decreased, the offload may not be
worthwhile.

• Single Pass: The throughput will decrease if the algorithm requires
multiple passes. Requiring too many passes may decrease the through-
put to a degree where executing the operations on the host is better.
This is the case because the host often has lower memory latency and
larger CPU caches, and thus performs better when passing over signif-
icant amounts of data multiple times.

Of course, the optimal offloading strategy depends on the cooperation be-
tween the device and the host. For example, it is worth offloading inefficient
operations to free up host processing capacity if this reduces the total time of
all operations.

Concerning integrated data analysis pipelines, the lessons learnt indicate that
automatically generated operators are too risky to offload. If the generated
operator does not access data sequentially and predictably, the operator will
not be worth offloading compared to executing directly on the host. As such,
to integrate with eBPF-based computational storage devices, integrated data
analysis pipelines should have a set of operators known to be efficient on the
target device. These operators could be filtering or aggregation, which are
single-pass and have a predictable access pattern. At the same time, this also
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minimises the work spent building a scheduler that can generate eBPF code
on the fly.

Furthermore, if automatically generated eBPF code is the preferred approach
for a given pipeline, time should be spent verifying the generated code’s per-
formance, and guaranteeing that the generated code does not perform unde-
fined or risky operations.
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Chapter 14

Summary

In Part III of this thesis, we have experimented with Delilah. In Chapter 11,
we explored the memory characteristics of the Daisy OpenSSD with micro-
benchmarks, and in Chapter 12, we offloaded SSB 3.3 to Delilah with various
configurations. Lastly, in Chapter 13, we described the lessons we have learnt
from experimenting with Delilah.

The experiments revealed memory access characteristics for computational
storage devices like Delilah when deployed to the Daisy OpenSSD. We
analysed Direct Memory Access (DMA) versus Controller Memory Buffers
(CMB) to demonstrate that while CMB is efficient for small data transfers,
DMA performs better for larger transfers, specifically when multiple
channels are utilised. Access patterns play an essential role, with sequential
accesses benefiting from cache prefetching and exhibiting minimal latency,
whereas random accesses suffer from increased latency due to frequent
cache misses. The inefficiencies observed in memory accesses align with
existing research, stressing the importance of understanding and optimising
memory access patterns before selecting the operators to offload to the
storage layer.

The exploration of Delilah’s performance in interpreted mode versus Just-
In-Time (JIT) compilation mode shows the significant advantages of JIT for
larger workloads, suggesting that JIT should be the default mode for com-
putational storage processors (CSPs). The partitioned execution experiments
reveal the complexities and overheads associated with dividing workloads,
indicating that computational storage processors should aim to minimise
unnecessary partitioning to avoid communication and cache management
overheads. Direct I/O operations improve read performance by bypassing
filesystem caching, and hardware acceleration offers limited benefits due to
data path saturation.

The chapter on lessons learnt highlights the complexities of memory manage-
ment in computational storage systems, particularly the challenges of main-
taining cache coherency and organising memory hierarchies. The chapter
identifies critical limitations of the NVMe specification, such as synchroni-
sation issues with overlapping memory regions and the complexities intro-
duced by different execution environments. Using eBPF for computational
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storage shows promise but entails several open questions, including the need
for efficient error handling and managing device-specific function mappings.

The chapter demonstrates the importance of workload awareness in optimis-
ing computational storage. Efficient offloading strategies depend on under-
standing the locality and data reduction characteristics of workloads. Fur-
thermore, the need to fully understand the offloaded workload implies that
automatically generated eBPF code is not a viable approach. Instead, de-
velopers of integrated data analysis pipelines should design and implement
hand-tailored operators that are efficient on the target hardware.

The characteristics of Delilah and eBPF, and how they all play together with
an integrated data analysis pipeline, is too early to conclude upon. We now
know that programs can be efficiently offloaded to the storage layer via
eBPF, and that long-term memory organisation between operators is
possible. However, we have yet to understand how to integrate with
pipelines efficiently. Many open questions have yet to be answered. How
can an integrated data pipeline schedule offload to storage efficiently? How
does the pipeline organise data and state efficiently? Can operators be
generated automatically in an efficient way? All these questions are
considered open for future work.
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Chapter 15

Conclusion

This thesis aims to connect two merging technologies: integrated data anal-
ysis pipelines that connect frameworks from multiple domains, and eBPF, a
vendor-neutral lightweight instruction set architecture (ISA).

In the first part, we thoroughly surveyed the state of the art to understand
how contemporary computational storage devices look, and how they may
support workloads from different host applications. We saw that computa-
tional storage has yet to gain significant traction due to the lack of standard-
ised interfaces and implementation limitations like short-lived, non-stateful
memory. Furthermore, we explored how host applications are currently built
and which characteristics seem essential for consumers of large workloads.
Lastly, we identified the Daisy OpenSSD as a testbed for computational stor-
age.

In the second part, we implemented Delilah, the world’s first public imple-
mentation of an eBPF-based computational storage device. Building Delilah
led us to understand better the challenges, opportunities, and limitations of
computational storage. With Delilah, we encountered several open ques-
tions concerning memory management and cache coherency. We challenged
the current understanding of memory hierarchies to include multiple hier-
archies growing from the same foundation, but in different directions. This
new understanding emphasises the complexities of memory management,
especially concerning cache coherence. While we proposed SCI as a poten-
tial solution, more must be done to resolve the underlying problem. How
do we efficiently manage cache coherency with multiple overlapping hierar-
chies growing in different directions?

By resolving these issues, it becomes possible to integrate computational stor-
age devices like Delilah efficiently into integrated data analysis pipelines,
which opens up a wide range of new optimisation avenues. For example,
since memory lives between offloaded programs, it will be possible for the
integrated data analysis pipeline to make state and intermediate data avail-
able to subsequent executions. Furthermore, since the pipeline now has a
more exhaustive view of the memory layout of computational storage, it will
be possible to use it to start upcoming operations ahead of time, a form of
prefetched I/O operation. With this architecture, the computational storage



Chapter 15. Conclusion 119

device could read and transform data to immediately be ready for more com-
plex processing on the host.

In the third part of the thesis, we explored Delilah’s initial performance char-
acteristics and experimented with offloading a database query. Here, it be-
came clear that the memory management challenges discovered from the im-
plementation broadly impact performance. Delilah suffers from significant
memory latencies when deployed to the Daisy OpenSSD, and these laten-
cies, in turn, make operations like memory management very costly – too
costly for some operations to be worth offloading.

However, despite our challenges, we saw that Delilah could significantly im-
prove performance when handling some operations like filtering. We saw
that when memory optimisations like bit-masking are applied, Delilah per-
forms better than the host. How Delilah or other computational storage de-
vices perform alongside an integrated data analysis pipeline is still an open
question.
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Glossary

API Application Programming Interface. An API is a collection of functions
developers can use to interact with a framework, library, device, or
other system. APIs are often stable and do not change. The under-
lying implementations, however, may change to improve stability or
performance. 11, 15, 17, 35, 42, 43, 45, 59

ARM Advanced RISC Machine. A specific implementation of the RISC ar-
chitecture, which has gained significant traction in recent years. x, xi, 2,
8, 14, 15, 26, 28, 30, 38, 47, 48, 57, 76, 93, 96–98, 101, 104–106, 114

ASIC Application-Specific Integrated Circuit. Like FPGAs, ASICs offer a set
of programmable logic blocks. However, in contrast to FPGAs, ASICs
do not allow reprogramming of the device, thereby increasing security
and reliability. 23

AXI Advanced eXtensible Interface. An on-chip communication bus proto-
col developed by ARM. It is often used to connect IPs in FPGAs. 31–33,
36, 37, 78–81, 90, 93, 94, 108, 110

BAR Base Address Register. BARs provide hardware registers for establish-
ing a shared memory-mapped region between host and device. 18, 29,
33, 56, 63, 68, 70, 88, 90

BPF Berkeley Packet Filter. A simple ISA originally designed for expressing
network packet filters. 2, 8, 10, 12, 14, 47

BRAM Block Random-access Memory. BRAM is a type of IP that exposes
the internal logic gates of an FPGA as system memory. 56, 81

CMB Controller Memory Buffer. CMBs are a mechanism in NVMe to ac-
cess PCIe BARs. The main goals of CMBs are placing queues in host
memory and placing data for DMA in host memory. xii, 88, 94, 116

Computational Storage The concept of moving data processing closer to
where the data physically resides. Computational storage aims to free
up host-side processing capacity and to reduce data movement across
system bottlenecks. ii, iii, x, xi, 1–5, 11, 13–16, 18–22, 25, 26, 28, 44, 45,
47–50, 53, 55, 61, 85, 86, 97, 104, 109–114, 116–118
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Computational Storage Array (CSA) A collection of computational storage
devices, control software, and optional storage devices. A computa-
tional storage array provides computational capabilities to potentially
diverse devices. 20, 22

Computational Storage Device (CSx) A computational storage drive, com-
putational storage processor, or computational storage array. ii, 2, 4, 5,
13–16, 20–23, 26, 47–49, 52, 53, 55, 57–60, 85, 86, 100, 104–107, 110–114,
116, 118, 119

Computational Storage Drive (CSD) A storage element that provides com-
putational storage functions and persistent data storage. The main dif-
ference between computational storage arrays and computational stor-
age drives is the number of underlying persistent storage mediums.
20–22, 49, 58

Computational Storage Engine (CSE) A component that can execute one or
more computational storage functions. A computational storage engine
is a collection of execution environments and device-specific functions
compatible with these environments. 20, 21, 23

Computational Storage Engine Environment (CSEE) An operating
environment for a computational storage engine. A computational
storage engine environment could be a virtual machine, accelerator or
any other unit with computational capabilities. 21, 23

Computational Storage Function (CSF) Specific operations that may be
configured and executed by a computational storage engine. A
computational storage function is a concrete device-specific or
host-offloaded procedure compatible with at least one of the execution
environments embedded within the computational storage device..
20–23

Computational Storage Processor (CSP) A device that provides computa-
tional storage functions for an associated storage system without pro-
viding persistent data storage. The main difference between computa-
tional storage processors and computational storage drives is the fact
that computational storage processors do not have persistent storage.
Instead, they are connected to persistent storage via PCIe, Ethernet, IB,
or similar interfaces. ii, 1, 2, 5, 21, 22, 49, 53, 55–58, 80, 85, 96–100, 106,
107, 116

Computational Storage Resource (CSR) A resource available for a host to
provision on a computational storage device that enables that compu-
tational storage devices to be programmed to perform a computational
storage function. Computational storage resource is a catch-all term for
any subsystem on a device that supports computational storage capa-
bilities. 21, 23
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CQE Completion Queue Entry. A CQE results from an asynchronous I/O
popped from a completion queue of io_uring. When io_uring has con-
sumed and processed an SQE, it will emit a CQE. 59

DAG Directed Acyclic Graph. A type of graph with directed edges between
vertices which will never form a closed loop. 42, 43, 48

Daisy OpenSSD The Daisy OpenSSD is the fourth generation of the
OpenSSD project, built to promote research and education on recent
SSD technologies [55]. The Daisy has several peripheral connectors
and a Xilinx MPSoC. x, xii, 2–4, 28–32, 50, 56, 58, 60, 62–64, 78, 86, 90,
91, 93, 94, 97, 98, 107, 108, 116, 118, 119

DAPHNE DAPHNE is a Horizon 2020 project which aims to build a sys-
tem infrastructure for integrated data analysis pipelines, including data
management and processing, high-performance computing (HPC), and
machine learning (ML) training and scoring [16]. x, 4, 43–46, 48, 49, 55,
61

DDR Double Data Rate. A computer bus using DDR transfers data on the
rising and falling edges of the clock signal simultaneously. It is often
used in the context of computer memory. 28, 39, 49, 56, 60, 64, 79, 84,
90, 93, 94, 96

DIMM Dual In-line Memory Module. DIMM memory is a standardised
type of computer memory. In everyday talk, they are often referred
to as memory sticks. 33, 56, 91

DMA Direct Memory Access. DMA is a system for transferring large
amounts of data to peripherals while bypassing the central processing
unit. x, xii, 18, 29, 31–33, 37, 38, 56, 60, 63, 66, 83, 88–90, 94, 107, 114, 116

eBPF Extended Berkeley Packet Filter. A redesign of the original BPF aimed
at contemporary hardware for improved performance. eBPF is further-
more not limited to network packet filtering but can also be used for
performance monitoring and security auditing. ii, iii, xii, 1–5, 8–14, 18,
19, 22, 23, 25, 26, 47–50, 52–58, 60, 61, 66, 69, 70, 72, 74, 75, 83, 85, 86,
95–97, 101–103, 105–108, 111–118

Eid-Hermes Eid-Hermes is an open-source eBPF accelerator developed by
Eideticom. The aim of Eid-Hermes is to explore how eBPF-based accel-
erators can execute code from a host processor [40]. xii, 2–4, 14, 18, 19,
26, 47, 58–60, 64–68, 70, 83, 85, 86, 88

ELF Executable and Linkable Format. ELF is a flexible, extensible and cross-
platform format designed for executable files, object code, shared li-
braries and core dumps. 10, 47, 70, 112

FPGA Field-programmable Gate Array. FPGAs have a set of programmable
logic blocks and a hierarchy of reconfigurable interconnects that allow
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blocks to be wired together. Many FPGAs can be reprogrammed to
implement different logic functions, allowing features like those within
traditional computer software. 1, 14–20, 22, 23, 25–28, 30–36, 38, 39, 47,
48, 55, 57, 61, 64, 79, 80, 82, 84, 86, 96, 103, 107, 112

Function Data Memory (FDM) Device memory used for storing data that is
used by the computational storage functions and is composed of allo-
cated and unallocated function data memory. 22, 23

GCC GNU Compiler Collection. GCC is a collection of compilers built for
various programming languages, hardware platforms and operating
systems. It is one of the major compilation toolchains, with LLVM being
the other. 8, 34

GPIO General-purpose Input/Output. A simple system for transmitting
signals on pins or wires. 31, 33, 34, 71, 78, 79, 83, 84

GPL GNU General Public License. GPL is an open-source license. Contrary
to BSD or Apache licenses, GPL require users of GPL code to disclose
their code, thus limiting the applications in for-profit use cases. 8, 10,
47

hBPF Hardware Berkeley Packet Filter. A user-space VM for parsing, JIT-
compiling and interpreting eBPF code, targeted at FPGAs. 10, 11, 57,
58

HDF Hardware Design Files. A file describing the hardware components of
an FPGA. HDFs are often created from block designs in programs like
Vivado. Contrary to HDL, HDFs describe the programmable part of
the FPGA. 32, 34

HDL Hardware Description Language. HDL is a domain-specific language
for expressing the hardware components of an FPGA, i.e. the capabili-
ties and constraints of an FPGA. 35, 36

HLS High-Level Synthesis. HLS allows developers to write C programs and
compile them into FPGA IPs. The resulting IPs can be utilised alongside
other IPs in a block design. 31, 36, 37, 53, 70, 71, 79–82, 103, 107, 114

io_uring io_uring is a Linux system call interface for asynchronous I/Os,
built to address performance issues with synchronous interfaces like
read() and write() . io_uring makes use of both submission queues
(see SQE) and completion queues (see CQE). 4, 59, 60, 66, 83

IP Intellectual Property. An IP core is a block of logic wired to other IPs and
deployed on an FPGA. IPs can do simple logical operations or manage
complex tasks like integrating with FPGA peripherals. 4, 31–34, 36, 37,
65, 67, 70, 71, 78–80, 82, 84, 86, 103, 110

IRQ Interrupt ReQuest. An IRQ is a hardware signal sent to the proces-
sor that temporarily stops a running program while executing another
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program. It is often used to signal that some event has occurred on a
peripheral device. 71

ISA Instruction Set Architecture. An abstract model of a computer archi-
tecture that defines the supported instructions, data types, registers,
fundamental features and input/output model. 2, 9, 52, 53, 85, 118

JIT Just-in-Time. Just-in-Time compilation is the concept of compiling pro-
grams dynamically at runtime. JIT is often done if the underlying ar-
chitecture of the execution environment is unknown at compile-time.
x, 2, 8, 11, 25, 42, 47, 57, 67, 96–98, 106, 108, 112, 113, 116

LLVM Low-Level Virtual Machine. LLVM is a collection of compiler and
toolchain technologies that can be used to develop frontends for any
programming language and backends for any ISAs. It is one of the
major compilation toolchains, with GCC being the other. 8, 112

MIG Memory Interface Generator. A specific IP from Xilinx for exposing a
DDR memory stick as an AXI backend. 33, 78–80, 84, 90, 93

MPSoC Multiprocessor System on a Chip. MPSoCs are a specific processing
unit type with both a PS and a PL domain. These provide the benefits
of FPGAs and traditional computers in the same device. 20, 28, 30–34,
36, 38, 39, 48, 61, 68, 80, 83, 93, 101

NVMe Non-Volatile Memory Express. NVMe is a protocol for managing
non-volatile storage devices attached via PCIe. ii, iii, 13, 16, 20, 22–24,
26, 28, 34, 38, 39, 48, 49, 58, 60, 78, 86, 104, 111, 112, 116

PCIe Peripheral Component Interconnect Express. PCIe is a serial
computer expansion bus often used for graphics cards, hard disk drive
host adapters, SSDs, Wi-Fi and Ethernet hardware connections. 1, 3, 4,
15–18, 21, 28, 29, 32, 33, 38, 48, 49, 53, 55, 58, 60, 65, 68, 77, 78, 90, 96, 111

Petalinux The Petalinux SDK, created by Xilinx, enables developers to pack-
age a light-weight operating system and deploy it to a CPU embedded
within Xilinx MPSoCs. 1, 4, 31, 33–35, 61, 63, 68, 79, 83, 84

PL Programmable Logic. The PL domain of an MPSoC contains the FPGA
component and the IPs. xi, xii, 30, 32, 33, 56, 60, 61, 74, 76, 91, 93, 94, 96,
100, 105, 107, 108

PS Processing System. The PS domain of an MPSoC contains an operating
system and a CPU, and it interfaces to PL. xi, xii, 30, 32, 33, 56, 60, 61,
63, 74, 76, 78, 79, 90–94, 100, 105, 106, 108

QEMU Quick Emulator. A Linux emulation tool for emulating hardware.
It is often used while developing drivers and modules when the target
hardware is unavailable to test on. 18
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rBPF Rust Berkeley Packet Filter. A user-space VM for parsing,
JIT-compiling and interpreting eBPF code, written in Rust. 11, 57

RISC Reduced Instruction Set Computer. A computer architecture built for
low cost, minimal power consumption and low heat generation. It
archives this by reducing the number of distinct operations the pro-
cessor can execute. 2, 10, 47

SDK Software Development Kit. A set of tools and packages for writing
software to a particular device or platform. 1, 31, 32, 34, 84

SNIA Storage Networking Industry Association. SNIA is a registered non-
profit that develops global standards and delivers education on all tech-
nologies related to data. ii, iii, x, 1, 20–23, 26, 48, 49, 86

SQE Submission Queue Entry. An SQE is an asynchronous I/O inserted
into a submission queue of io_uring. When io_uring has consumed
and processed the entry, it will emit a CQE. 59, 67

SSB Star Schema Benchmark. The Star Schema Benchmarks is a set of SQL
queries built to measure the performance of database systems. The per-
formance of the queries can be used to compare various characteristics
of diverse database systems. xi, 5, 6, 94–96, 103, 104, 107, 116

SSD Solid-State Drive. A type of storage device with predictable microsec-
ond latency and high throughput. SSDs have no moving parts, contrary
to traditional hard disk drives. xii, 1, 13–16, 18, 28, 31, 32, 34, 38, 48, 55,
77–79, 96, 103, 104

TSL Template SIMD Library. TSL is a C++ template header-only library built
for abstracting away device-specific instruction sets with a particular
focus on SIMD (Single Instruction, Multiple Data). In essence, TSL en-
ables developers to express optimised instructions abstractly and com-
pile them down to device-specific instructions. 53, 62, 76, 83

uBPF User-space Berkeley Packet Filter. A user-space VM for parsing, JIT-
compiling and interpreting eBPF code, written in C. 8, 10, 11, 18, 47, 57,
58, 60, 62, 67, 70, 72, 83, 96, 97, 112

UDMA UDMA or u-dma-buf is a kernel module that easily maps kernel
memory to user-space and manages cache behaviour and coherence.
In Delilah, we use UDMA to expose reserved memory as slots from the
kernel to Delilah. x, 37–39, 63, 74, 75, 84, 91, 92, 100

Vivado Vivado, which comes in a standard and HLS edition, is used to pro-
gram FPGAs. In the standard edition, developers can organise hard-
ware components, called IPs, as a diagram of blocks. In the HLS edi-
tion, developers can write C programs to be compiled into FPGA hard-
ware components. 31, 32, 35–37, 70
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VM Virtual Machine. A virtual machine emulates a computer architecture
and the related hardware only using software. 2, 8, 10, 21, 47, 57, 72, 83

x86 x86 and x86_64 are the most common ISAs. The first iteration of x86,
x86_16, was initially developed by Intel in 1978. 2, 8, 47, 57

XDMA Xilinx Direct Memory Access. XDMA is a specific implementation
of DMA for Xilinx FPGAs. 4, 18, 29, 32, 33, 65–68, 71, 78–80, 84, 90
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