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Abstract

Multilingual automatic phone recognition models can learn language-
independent pronunciation patterns from large volumes of spoken
data and recognize them across languages. This potential can be har-
nessed to improve speech technologies for under-resourced languages.
However, these models are typically trained on phonological represen-
tations of speech sounds, which do not necessarily reflect the phonetic
realization of speech. A mismatch between a phonological symbol and
its phonetic realizations can lead to phone confusions and reduce
performance.

This thesis introduces a formant-based vowel categorization
method aimed at improving cross-lingual vowel recognition by un-
covering a vowel’s phonetic quality from its formant frequencies, and
reorganizing the vowel categories in a multilingual speech corpus to
increase their consistency across languages. The work investigates
vowel categories obtained from a trilingual speech corpus of Danish,
Norwegian, and Swedish using four categorization techniques. Cross-
lingual phone recognition experiments reveal that uniting the vowel
categories of different languages into a shared set of formant-based
categories can improve cross-lingual recognition of the shared vowels,
but also interfere with recognition of vowels not present in one or more
training languages. Nevertheless, improved recognition of individual
vowels can translate to improvements in overall phone recognition on
languages unseen during training.

To assess their wider applicability in automatic speech recogni-
tion (ASR), the investigated vowel representations are also evaluated
as part of pronunciation lexicons used in hybrid ASR systems. These
experiments, however, do not reveal many conclusive patterns, which
demonstrates that hybrid systems are more robust to divergence in
pronunciation from the phonological norm. Nonetheless, a qualita-
tive analysis of phone predictions shows that the models trained on
formant-based vowel representations can infer the distinctive vowel
qualities of an unseen language, especially when their vowel set and
training data align with the vowel system of the target language. This
indicates that formant-based vowel representations could provide use-
ful information for tasks where phonological description is preferred.
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Resumé

Flersproglige modeller til automatisk genkendelse af sproglyde kan
lære fonetiske mønstre fra store mængder taledata og genkende dem
på tværs af sprog. Dette kan bruges til at forbedre sprogteknologier
for sprog der kun har få dataressourcer. Disse modeller er imidlertidig
trænet på fonologiske repræsentationer af sproglyde, som ikke nød-
vendigvis afspejler den fonetiske realisering. En uoverensstemmelse
mellem fonologiske symboler og den fonetiske realisering kan medføre
en sammenblanding af sproglyde og forringe modellen.

Denne afhandling præsenterer en formant-baseret kategorisering
af vokallyde med det formål at forbedre vokallydsgenkendelse på tværs
af sprog. Dette sker ved at undersøge vokallydenes fonetiske karak-
tertræk ud fra formantfrekvenser og derudfra omorganisere vokallyd-
skategorier i et flersprogligt talekorpus for at forøge ensartetheden
af vokallydene på tværs af sprog. Denne afhandling undersøger fire
forskellige måder at kategorisere vokallyde på i et tresprogligt korpus
med dansk, norsk og svensk. I eksperimenter med fongenkendelse
på tværs af sprog kombineres vokalydene fra de forskellige sprog til et
fælles sæt af formant-baserede kategorier. Disse eksperimenter viser,
at man kan forbedre genkendelsen af sprogenes fælles vokaler, men
det indvirker også negativt på hvor godt vokallyde, der ikke findes på
alle sprogene, bliver genkendt. Ikke desto mindre bliver resultatet en
forbedret fongenkendelse på sprog, som modellen ikke er trænet på.

De undersøgte vokallydsrepræsentationer bliver også evalueret
som del af et udtaleleksikon brugt i hydridsystemer til automatisk
talegenkendelse (ASR) for at vurdere deres anvendelighed for ASR-
systemer. Disse eksperimenter viser at imidlertid ikke mange tydelige
mønstre, hvilket betyder at hybride systemer er mere robuste over for
udtaleafvigelser i forhold til den fonologiske norm. Ikke desto min-
dre viser en kvalitativ analyse af modellens sproglydsgenkendelse, at
modeller trænet på formant-baserede vokallydsrepræsentationer kan
udlede distinkte vokallydskaraktertræk fra et nyt sprog, særligt hvis
modellens vokallydssystem og træningsdata stemmer overens med det
nye sprog. Dette indikerer, at formant-baserede vokallydsrepræsen-
tationer kunne give nyttig information til opgaver, hvor fonologisk
beskrivelse foretrækkes.
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Part I

INTRODUCTION



1Motivation

In recent years, the advancements made in automatic speech recog-
nition (ASR) and speech technologies centered on ASR have been
nothing short of remarkable. In particular, self-supervised learning
has enabled general speech representation learning without the need
for large-scale manually transcribed data. This has led to substantial
progress in many of the essential aspects of ASR, including increased
accuracy, robustness, language diversity, contextual language under-
standing, and integration with other technologies. These develop-
ments have, in turn, given rise to a wide range of practical applica-
tions, which have significantly impacted our lives, from improving
accessibility to revolutionizing industries.

However, these improvements in performance have mostly been
restricted to the languages for which large amounts of annotated data
are available. On the other hand, for low-resource languages, such as
indigenous and minority languages, regional varieties, and unwritten
languages, ASR performance generally remains much lower (Scharen-
borg et al., 2020). Unequal access to effective ASR technologies can
have adverse effects on the speakers of low-resource languages and
their communities by worsening social inequalities, economic dis-
advantages, and cultural marginalization, as well as limiting their
opportunities for language preservation. It is, thus, crucial to prioritize
the development of ASR technologies for low-resource languages in
order to bridge the digital and cultural divide.

1.1 Increasing the Linguistic Diversity of ASR Systems

The advent of self-supervised learning and large pre-trained language
and speech models has undeniably made it easier to expand the lin-
guistic diversity of ASR technologies. This is because large pre-trained
models can be fine-tuned on the target task with target domain data.
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Chapter 1 | Motivation

For ASR, fine-tuning approaches generally require less data, but train-
ing ASR systems that perform well for languages with very little data
remains challenging (Bartelds et al., 2023).

1.1.1 Challenges

The main obstacle to developing accurate and robust ASR models
for low-resource languages is the scarcity of linguistic resources in
the target language. Examples of such resources include annotated
speech corpora, which consist of audio recordings paired with their
corresponding orthographic or phonetic transcriptions, pronuncia-
tion lexicons, language models, and natural language processing tools,
such as tokenizers and grapheme-to-phoneme converters. In partic-
ular, transcribing speech data can be a complex and arduous task.
Depending on the speech domain, audio quality, and type of transcrip-
tion, it could take over 50 work hours to manually transcribe an hour
of recorded speech (Strik and Cucchiarini, 2014). Therefore, collecting
and manually transcribing large volumes of speech data, at the scale
required to power modern ASR systems and match their performance
on high-resource languages, is no longer feasible. To address this
challenge, ASR researchers and developers are exploring techniques
such as data collection and automatic creation of speech corpora from
public data sources, automatic phonetic transcription, and transfer
learning from related languages to improve ASR performance for low-
resource languages.

Namely, when developing ASR models for under-resourced lan-
guages, multilingual and cross-lingual models that leverage phonolog-
ical representations of speech sounds have shown promise in learning
language-independent pronunciation patterns from higher-resource
languages and recognizing them cross-linguistically in low- and zero-
resource scenarios (Żelasko et al., 2020; Feng et al., 2021; Li et al., 2020c;
Żelasko et al., 2022; Xu et al., 2022). However, their phone recogni-
tion rates on unseen languages are still far from those achieved on
languages seen during training (Gao et al., 2021; Xu et al., 2022).

Apart from the lack of labeled speech data in the target language,
another possible explanation for the relatively poor results of such
models could be the lack of multilingual speech data transcribed
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Chapter 1 | Motivation

phonetically using a unified cross-linguistically consistent system,
such as the one provided by the International Phonetic Alphabet
(IPA) (International Phonetic Association, 1999), in which phone sym-
bols correspond to their articulatory description. As a result, these
models have usually relied on combined monolingual phonological
systems (Żelasko et al., 2020; Xu et al., 2022), which are rarely consis-
tent across languages due to differences in phonological inventories,
phonological notation, and transcription conventions (Laver, 1994,
p. 549). Moreover, even when designed to be consistent with the IPA,
monolingual phonological systems are typically based on the canon-
ical pronunciation forms from a dominant language variety, which
means they do not take account of all the variation in speech, such as
allophonic, regional, or socioeconomic variation (Laver, 1994, p. 551).

Finally, evaluating multilingual phone recognition models presents
unique challenges due to the aforementioned diversity of languages,
notational and phonetic variation, and the potential for cross-lingual
interference. For example, pooling training languages and their dif-
ferent phonological systems together might result in a model that
predicts tones or vowel length in a target language that does not dis-
tinguish these features (Żelasko et al., 2020). Likewise, it might result
in a model that fails to recognize target phones that were not found in
its training data. Ultimately, if we do not have ground-truth phonetic
annotations for the evaluated language, how can we assess whether
the predicted phones are phonetically and phonologically relevant?

1.1.2 Applications

1.1.2.1 Inclusivity

Multilingual and cross-lingual ASR play a crucial role in promoting
inclusivity and fostering a just and equitable society. When people
are able to interact with technologies in their native language, they
can access relevant information, be more efficient in their work and
daily lives, feel empowered to participate in important activities and
conversations, and in general connect with the world and community
around them.
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1.1.2.2 Accessibility

ASR has a crucial role in making technology more accessible for people
with disabilities, particularly those who have difficulty speaking, typ-
ing, or reading. Multilingual and cross-lingual ASR can make assistive
technologies more effective and tailor them to the specific needs of
individuals from diverse linguistic and cultural backgrounds, ensuring
that everyone has equal access to the tools and resources they need to
thrive. This is particularly important for people with disabilities who
already face challenges due to language or social isolation.

1.1.2.3 Scientific Research and Innovation

Multilingual and cross-lingual ASR play a vital role in advancing sci-
entific research and innovation. By breaking down language barriers
and enabling researchers from diverse linguistic backgrounds to col-
laborate more effectively, ASR facilitates the exchange of ideas and
information across cultures. This, in turn, leads to the development of
more innovative and comprehensive research projects. Additionally,
increased diversity and accessibility provide opportunities to analyze
large-scale datasets in multiple languages, providing valuable insights
and supporting interdisciplinary research.

1.1.2.4 Language and Cultural Preservation

Multilingual and cross-lingual ASR are important for language and
cultural preservation. Being able to use speech technologies in one’s
native language facilitates access to information and education, which
are crucial for language preservation efforts. Furthermore, by docu-
menting endangered languages and preserving spoken language data,
ASR helps to ensure that these languages and their associated cultures
are not lost to time. Additionally, ASR can be used to analyze and
understand the nuances of different languages, providing valuable in-
sights into their history, structure, and cultural significance. This helps
to preserve the richness and diversity of human language and cul-
ture, and potentially reveal general insights into language and human
nature.
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1.1.2.5 Economic Development

Multilingual and cross-lingual ASR are beneficial for economic devel-
opment. By enabling access to information and education in one’s
native language, multilingual speech technologies can help individuals
learn new job skills, find employment, and improve financial stability.
Additionally, by breaking down language barriers and facilitating com-
munication between people from diverse backgrounds, multilingual
ASR can foster international trade, attract foreign investment, and
promote tourism.

1.2 Focus Areas, Objectives, and Scope

Due to the high complexity and diversity of methods that have been
developed over the years to increase the linguistic diversity of ASR
systems and improve their cross-lingual transfer while limiting inter-
ference, it would be impossible to encompass all of them in this thesis.
We have, therefore, singled out three specific focus areas which are
centered on the challenges outlined in the previous section. In this
section, we define each focus area, describe how we approach them in
our research, and list the research questions we seek to answer.

1.2.1 Phonetic Vowel Representations

The creation of phonetic vowel representations that can be recognized
in unseen languages is the main focus area of the thesis and one that
is explored in the most depth. This is because vowels are particularly
prone to phonetic variation and notational inconsistencies (Labov
et al., 2005; Tanner et al., 2022). As a result, phone errors involving
vowels constitute a large portion of the phone error rates of multilin-
gual and cross-lingual phone recognition models.

Different languages have different vowel inventories where each
vowel category is represented as a discrete phonological symbol (Lade-
foged and Maddieson, 1990). Different vowel categories can have
wide and often overlapping ranges of realizations, which can result
in two languages or dialects using the same phonological symbol for
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two phonetically distant sets of vowel realizations,1 or, vice versa, us-
ing multiple different symbols to denote overlapping ranges of vowel
realizations.2 Moreover, vowels can exhibit various additional fea-
tures, such as nasalization, rhotacization, lengthening, tone, stress,
etc., which might be contrastive in one language, but not another. De-
termining which of these features are language-independent, and how
they can be captured and transferred to unseen languages is crucial
for minimizing cross-lingual interference.

Fortunately, the periodicity and resonance of vowels, which can be
measured reliably from the speech signal as vowel formants (Catford,
2001, p. 153), make them amenable to comparative cross-linguistic
studies that could be used to both improve notational consistency and
incorporate phonetic variation. Leveraging these characteristics of
vowels, we propose a formant-based vowel categorization method for
increasing the consistency of phonetic vowel representations used in
multi- and cross-lingual ASR. We hypothesize that the new formant-
based vowel categories would reduce cross-lingual vowel confusions
that stem from a mismatch between a vowel’s phonological symbol
and its phonetic manifestations. We believe that this could lead to
lower phone error rates on unseen languages, including their non-
standard regional dialects.

More specifically, we investigate two approaches to formant-
based vowel categorization: formant-based vowel categorization with
language- specific vowel sets, and formant-based vowel categorization
with a language-universal vowel set. In both approaches, the investi-
gated vowel categories are obtained from a trilingual speech corpus of
Scandinavian languages: Danish, Norwegian, and Swedish.

1.2.1.1 Formant-Based Vowel Categorization with
Language- Specific Vowel Sets

Formant-based vowel categorization with language-specific vowel sets
reorganizes the vowel categories of the source languages based on their

1For example, Danish /a/ (Grønnum, 1998) vs. Bosnian-Croatian-Montenegrin-
Serbian (BCMS) /a/ (Landau et al., 1995)

2For example, Danish /e, E, a/ (Grønnum, 1998) vs. BCMS /e/ (Landau et al.,
1995)
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Chapter 1 | Motivation

formant frequencies while preserving their original language-specific
vowel sets. This means that, for example, if a source language has 14
distinctive vowel categories, after formant-based categorization, it will
still distinguish the same 14 vowel categories, but the distribution of
vowel tokens across the categories will change.

We present the rationale and methodology behind the creation
of language-specific formant-based vowel categories in Chapter 10.
The effect of this vowel categorization approach on the cross-lingual
phone recognition on the three Scandinavian languages is presented
in Chapter 11. Additionally, we break down the trained cross-lingual
models’ performance by dialect region and examine how our vowel
categorization methods affect cross-lingual phone recognition on non-
standard regional dialects. This will highlight whether our approach is
particularly effective for under-resourced speech varieties. Finally, we
investigate for which vowels our approach is most effective. Although
no longer considered low-resource, the three Scandinavian languages
comprise a diverse trilingual corpus suitable for experiments in multi-
lingual and cross-lingual phonetic transfer.

Here, we ask the following main research question:

RQ1 Can we derive phonetic vowel representations, which are
consistent across languages, from the measurements of vowel
formant frequencies using language-specific vowel categories?

We decompose this larger question into:

RQ1.1 Can formant-based vowel categorization with language-
specific vowel sets improve cross-lingual phone recognition on Danish,
Norwegian, and Swedish?

RQ1.2 Does adding more fine-tuning data further improve the cross-
lingual phone recognition?

8
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RQ1.3 Can formant-based vowel categorization improve cross-
lingual phone recognition on under-represented language varieties,
such as regional dialects?

RQ1.4 How does formant-based vowel categorization affect indi-
vidual vowel predictions in cross-lingual phone recognition? Does it
reduce some vowel confusions and which ones?

1.2.1.2 Formant-Based Vowel Categorization with
a Language-Universal Vowel Set

Formant-based vowel categorization with a language-universal vowel
set converts the language-specific vowel sets of the different training
languages into a single unified set of vowel categories shared univer-
sally by all training languages. Unlike language-specific categorization,
language-universal categorization changes both the size of the vowel
sets of the source languages and the distribution of vowel tokens across
vowel categories. This means that, after the categorization, all source
languages will have the same vowel set, regardless of their originally
distinctive vowels categories.

We present the rationale and methodology behind the creation of
language-universal formant-based vowel categories in Chapter 13. The
effect of this vowel categorization approach on the cross-lingual phone
recognition on various evaluation languages and speech domains is
presented in Chapter 14. Moreover, we examine the cross-lingual mod-
els’ predictions on individual vowels and how they relate to the vowel
systems of the different evaluation languages. This will demonstrate
whether formant-based vowel representations can transfer to unseen
languages, such as low-resource and typologically distant languages.
It will also tell us which languages and vowel systems they are more
aligned with.

Here, we ask the following main research question:
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RQ2 Can we derive phonetic vowel representations, which are
consistent across languages, from the measurements of vowel
formant frequencies using language-universal vowel categories?

We decompose this larger question into:

RQ2.1 Can formant-based vowel categorization with a language-
universal vowel set improve cross-lingual phone recognition on a di-
verse set of languages and speech domains?

RQ2.2 Can formant-based vowel categorization with a language-
universal vowel set improve cross-lingual vowel recognition on dif-
ferent languages, including low-resource and typologically distant
languages?

RQ2.3 How do the formant-based vowel representations obtained
from a corpus of Scandinavian languages relate to the vowel systems
of the different evaluation languages?

RQ2.4 Can we use phone recognition models trained on language-
universal formant-based vowel categories to infer the vowel inventory
of an unseen language?

Both approaches to vowel categorization entail the estimation and
normalization of vowel formants from a phonemically transcribed
and aligned speech corpus, followed by new categorizations of vowel
phones based on their location in the vowel space. The obtained vowel
phones are then inserted into the original phonetic utterance tran-
scripts in place of their canonical pronunciations. Finally, we evaluate
the new representations on a cross-lingual phone recognition task and
investigate their potential for cross-lingual transfer to languages and
dialects unseen during training.

It should be noted that our study is focused exclusively on the
major features of the phonetic quality of monophthong vowels, i.e.
height, backness, and lip rounding, as these are distinctive in most
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languages, including all languages studied in this thesis, and can be
directly associated with vowel formants (Ladefoged and Maddieson,
1990). Minor features of vowel quality, such as nasalization, pharyn-
gealization, rhotacization, phonation, length, diphthongization, and
tone, are not clearly distinctive in all three languages in this study, and
thus ignored. For example, Danish and Swedish do not have a clear-
cut distinction between diphthongs and monophthong vowel-vowel
or vowel-consonant sequences (Grønnum, 1998; Riad, 2014).

1.2.2 Extrinsic Evaluation of Phonetic Vowel Represen-
tations

Extrinsic evaluation of phonetic vowel representations is a secondary
focus area in the thesis. It aims to investigate whether the vowel rep-
resentations obtained using the formant-based vowel categorization
methods developed in the thesis can be used to recognize words in
downstream ASR tasks. Namely, the phone recognition models trained
on formant-based vowel representations are used to create pronun-
ciation lexicons for word-based ASR systems, which are then trained
and evaluated on corpora from different languages and speech do-
mains. This evaluation procedure is introduced in Section 13.6 and
demonstrated in Section 14.5.

Here, we ask the following main research question:

RQ3 Can we show that formant-based vowel representations
are useful in word-based speech recognition?

We decompose this larger question into:

RQ3.1 Can we use hybrid ASR systems to evaluate whether formant-
based vowel representations can be phonologically relevant, i.e. can
be used to recognize words?

11
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RQ3.2 Can cross-lingual lexicons created using phone recognition
models trained on formant-based vowel representations improve the
performance of monolingual hybrid ASR systems?

RQ3.3 How do phone predictions on individual vowels in the cross-
lingual lexicons affect the performance of the monolingual hybrid ASR
systems?

1.2.3 Corpus Creation for Lesser-Resourced Languages

The creation of FT Speech : Danish Parliament Speech Corpus is a sec-
ondary focus area in the thesis, intended to provide additional speech
data for Danish at the time when Danish language resources were
more scarce. With over 1,800 hours of speech, it remains the largest
publicly available speech corpus for Danish to date. The details on
how the corpus was created and evaluated are presented in Chapter 7.
It is used as one of the evaluation corpora in our ASR experiments in
Chapter 14.

Here, we ask the following main research question:

RQ4 Can we use Danish parliamentary data to create a large
speech corpus that will significantly expand publicly available
ASR resources for Danish?

We decompose this larger question into:

RQ4.1 Can we create and release an ASR corpus from the the
recorded meetings of the Danish Parliament?

RQ4.2 Can the newly created ASR corpus be used to train general-
purpose hybrid ASR systems?

RQ4.3 How does this ASR corpus change the landscape of existing
resources for Danish and the status of Danish as a medium-resource
language?

12
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1.3 Specific Contributions

The main contributions of this thesis are summarized below.

1. FT Speech : Danish Parliament Speech Corpus, the largest pub-
lic speech corpus for Danish to date, created from the recorded
meetings of the Danish Parliament,

2. Methodology for large-scale speech corpus creation, which can
be used to extend the FT Speech corpus in the future and applied
to similar corpus creation efforts based on forced alignment,

3. Formant-based vowel categorization: methodology for the cre-
ation of formant-based vowel representations, which can be ex-
panded and applied to any spoken language or speech corpus,

4. Application of formant-based vowel representations to unseen
languages and speech domains, including real-world spontaneous
speech and low-resource and typologically diverse languages

5. Downstream application of formant-based vowel representations:
creation of pronunciation lexicons for hybrid ASR systems

6. Extensive and rigorous evaluation pipeline for assessing the appli-
cability of phonetic vowel representations to additional languages,
domains, and downstream tasks

13



2Key Terms and Concepts

2.1 Speech and Speech Sounds

Speech is a form of linguistic communication produced with the hu-
man vocal system and perceived with the auditory system. The basic
units of speech are called speech sounds, speech segments, or phones.
A stretch of speech (series of phones) by a single speaker bounded by
silence is referred to as an utterance. Individual speech sounds can be
described in terms of segmental features, which tell us how the sounds
are produced and how to categorize them based on their place and
manner of articulation.

However, speech is a complex signal, both acoustically and lin-
guistically, and often carries more information than the sum of its
constituent segments. For example, it could reveal personal informa-
tion about the speaker, such as their age and gender, or convey their
emotional state, tone, intent, and many other pragmatic functions.
Rather than being found at the level of individual segments, this infor-
mation is superimposed over an entire utterance and can be described
in terms of suprasegmental or prosodic features.

According to Laver (1994, p. 26), speech can be analyzed at multi-
ple levels ranging from the underlying abstract representation to its
physical realization. The initial level of analysis closest to the physi-
cal realization is the acoustic level. At this level, two separate speech
events will almost never be acoustically the same. Even when they
have the same underlying representation and are produced by the
same speaker, there will almost certainly be a measurable acoustic
difference between them. The next level of analysis is the perceptual
level, which deals with how speech is registered by the listener. At this
level, two speech events are said to be different if there is an audible
difference between them, i.e. a difference that can be registered by
the human auditory system. Then comes the organic level of analysis,
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which takes into account the anatomical and physiological character-
istics of the speaker. Finally, the last two and most abstract levels of
analysis are the phonetic and the phonological level.

The phonetic and phonological levels deal with the learnable lin-
guistic aspects of speech, which allow us to perceive, produce, and
recognize vocal sounds as potentially meaningful speech. The distinc-
tion between the phonetic and phonological level is not always easy to
make, but it is important to define. It will help us understand how the
relatively small set of relevant speech sounds of a particular language
relates to our ability to learn to recognize and produce a wide array
of possible speech sounds, not just in our language but any spoken
language in general. It will also form the foundation of this thesis
and our attempts to create automatic speech recognition models that
transcribe the pronunciation of any speech regardless of its language.

2.1.1 Phonetic Analysis

The phonetic level of speech analysis refers to the learnable aspects of
the use of the vocal apparatus, which allow us to discern and learn any
speech sound regardless of the language it belongs to. Phonetic anal-
ysis is based on the assumption that we can analyze a speech event
phonetically without knowing what linguistic value it might have in
some particular language. In other words, phonetic description of
a given utterance is held to be independent of the phonological de-
scription of the language involved. From this perspective, descriptive
phonetic theory can be regarded as a general theory applicable to the
sounds of any language in the world (Laver, 1994, p. 29).

Phonetic theory allows us to study speech and speech sounds
systematically from a language-neutral point of view in terms of their
phonetic features. The most widely used system for the notation of
speech sounds, known as the International Phonetic Alphabet (IPA),
categorizes the sounds of the world’s languages according to their
articulatory and acoustic features, assigning the same written symbol
to the characteristics of speech from different languages which can be
described as having the same phonetic quality (International Phonetic
Association, 1999).

However, even though, in theory, there should be only one pho-
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netic system that can be applied universally to all languages, phonetic
analysis has not evolved independently of typical correspondences
between phonological units and their phonetic manifestations in lan-
guages. For this reason, general phonetic theory is inevitably colored
by general phonological considerations and contrasts (Laver, 1994, p.
29), (Ladefoged, 1990).

2.1.2 Phonological Analysis

While phonetics is the study of all possible speech sounds, phonology
studies the ways in which speakers of one language “systematically
use a selection of these sounds in order to express meaning” (Crystal,
2010, p. 168). Due to anatomical and physiological differences, every
speaker’s pronunciation is different. Even the pronunciation of a single
speaker can exhibit significant variation. Nevertheless, to use language
efficiently, we are able to disregard the irregularities and focus only on
the sounds and features relevant to the communication of meaning.
The function of phonology, therefore, is to find general patterns and
principles underlying the phonetic layer of speech and relate them to
higher levels of linguistic analysis, notably morphology, syntax, and
semantics (Laver, 1994, p. 30). This means that there is only one
phonetic system, which is, in theory, applicable to all languages, but
every language (or language variety) has its own phonological system,
as an abstraction of the universal phonetic system.

The phonological abstractions of speech sounds (phones) are
called phonemes. According to the traditional definitions, the term
phoneme denotes a speech sound which brings about a difference in
meaning between a pair (or set) of words in a given language, whereas
the phone is any distinct speech sound regardless of the language in
which it occurs or how it affects the meaning of an utterance.

What complicates this distinction is the fact that it is often impossi-
ble to find a minimal pair that distinguishes a given pair of phonemes
in a language. A minimal pair is a pair of words that differ in only one
sound, and substituting this sound for the other causes the difference
in meaning (e.g. read /ri:d/ vs. lead /li:d/). For example, there are
no minimal pairs that differentiate the sounds [S] and [Z], and yet,
the native speakers of English perceive these two sounds as different
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enough to constitute two distinct phonemes.
On the other hand, two phonetically different sounds may be per-

ceived as the same phoneme when their different phonetic realiza-
tions, called allophones, are in complementary distribution (i.e. they
are mutually exclusive and never appear in the same phonetic envi-
ronment), or free variation (i.e. when their use cannot be reliably pre-
dicted from the phonetic context). Therefore, modern phonological
theories define the phoneme in rather abstract and subjective terms:
as a set of phonetically similar speech sounds which the speakers of
a particular language perceive as a single distinctive unit of sound in
the language.

2.2 Phonetic Representations, Variation, and Notation

In this thesis, we are mainly concerned with phones as we try to tran-
scribe speech in general language-independent terms. We use the
term phonetic transcription (conventionally written between square
brackets, [ ]) to refer to a detailed language-independent written repre-
sentation of speech, and phonological transcription (written between
slanted brackets, / /) to indicate a simplified language-specific written
representation of speech which ignores the details whose omission
or mispronunciation does not obstruct communication. We use the
term phonetic representations to refer to the individual phone tokens
specified using the symbols of the IPA that we use to transcribe speech
data phonetically.

A potential source of confusion comes from the fact that, when
designing a system for the phonological transcription of a language,
phonologists often use IPA symbols to represent phonemes, but sim-
plify the symbols to make the transcription easier to read, usually by
dropping inessential diacritical marks or replacing uncommon char-
acters with more convenient ones. As an illustration, compare the
transcriptions of the English word preach using IPA phonetic transcrip-
tion: [phô

˚
itS] and simplified IPA-based phonological notation used by

the Oxford dictionary: /pri:tS/. To those unfamiliar with the notation,
this kind of transcription system may seem indistinguishable from the
IPA, but is, nonetheless, language-specific and thereby not necessarily
comparable to either the IPA or similar IPA-based systems used in the
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phonological analysis of other languages.
For instance, in the shown example, we can see that Oxford uses

the phoneme /r/ to denote the English r-sound. In standard British
English, this sound is pronounced as an alveolar approximant, which
is represented phonetically as [ô]. The symbol that Oxford uses actually
represents an alveolar trill in the IPA, which is considered a different
phone. As most English varieties have only one type of /r/-phoneme,
we can simplify the notation and use /r/. Indeed, there are many
varieties of English where the /r/-phoneme is realized phonetically
as a trill ([ô]). These speakers will have no problem being understood
by the speakers of standard British English as both of their pronuncia-
tions fall under the same phoneme. Nevertheless, they are considered
different phones as there are numerous languages where at least one
of them is distinctive. Therefore, if we want to create a model that
can differentiate these two sounds, it would be beneficial to use a
consistent system of phonetic notation to transcribe our training data.
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3Linguistic Background

3.1 Introduction

Since our vowel categorization experiments are performed on a trilin-
gual corpus consisting of Danish, Norwegian, and Swedish speech, we
provide a brief introduction to the phonology and vowel systems of
these three closely related languages. Danish, Norwegian, and Swedish
belong to the North Germanic language group, a branch of the Indo-
European family, together with Icelandic and Faroese. Although they
are thought to descend from distinct branches of North Germanic,
modern Danish, Norwegian, and Swedish are now considered part of
the same continuum of dialects with varying degrees of mutual intelli-
gibility, commonly referred to as the Continental North Germanic or
Scandinavian dialect continuum (Gooskens, 2020). According to a sur-
vey of studies on the mutual intelligibility of Scandinavian languages,
Norwegian and Swedish have the highest degree of mutual intelligibil-
ity in spoken communication in the Scandinavian group, while Danish
and Swedish have the lowest. However, the mutual intelligibility is
asymmetrical and depends on various factors including amount of
exposure to the other language, geographical distance from the border,
attitude toward regional variation, and historical political influences.
For example, Norwegian speakers understand to a relatively high de-
gree both spoken and written Swedish and Danish (Gooskens, 2020),
while spoken Danish seems to be the most difficult to understand
for both Norwegian and Swedish speakers (Grønnum, 2003), (Basbøll,
2005, p. 7).
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3.2 Phonological Characteristics of Danish, Norwegian,
and Swedish

All three languages have complex phonological systems with partic-
ularly large vowel inventories. There are many parallels among their
phonological systems, especially between those of Norwegian and
Swedish, such as their phoneme sets and certain patterns of allophonic
variation. There are also a number of differences, especially in Dan-
ish, which might explain why speakers of Norwegian and Swedish
find Danish more difficult to understand. Namely, Danish exhibits
several radical reduction processes, such as lenition of obstruents in
syllable-final positions and assimilation and deletion of post-tonic
syllables (Grønnum, 1998; Grønnum, 2003). Another distinguishing
feature of Scandinavian languages is the contrastive use of pitch with
two distinct pitch patterns, often termed tonal accents, which are
found in most varieties of Norwegian and Swedish, as well as some
southern dialects of Danish, and may vary considerably across regions
(Wetterlin, 2010, p. 2-4). On the other hand, most Danish dialects do
not feature tonal accents and instead use stød, typically described as
a form of creaky voice, whose distribution often corresponds to the
distribution of tonal accent 1 in Norwegian and Swedish (for more on
stød, see, e.g., Fischer-Jørgensen (1989) and Grønnum (2023)). These
prosodic differences further reduce the mutual intelligibility of Norwe-
gian and Swedish with Danish (Grønnum, 2003).

3.3 Comparing Vowel Systems Across Scandinavian
Languages

The phonological systems of Danish, Norwegian, and Swedish pre-
sented here belong to the varieties spoken in and around the capital
regions. Although none of the languages have a mandated spoken
standard, the capital regions enjoy a relatively high level of cultural
influence.1 The consonant sets of Norwegian and Swedish have sig-

1The spoken variety of the capital region has a weaker status in Norwegian com-
pared to its counterparts in Denmark and Sweden. This is a result of historical cir-
cumstances, as well as strong social policies in favor of dialect use and preservation.
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Figure 3.1: Abstract vowel spaces of Danish, Norwegian, and Swedish based on the
varieties spoken in their respective capital regions.

nificant overlap and include 18 consonant phonemes each, i.e. 23
if retroflex allophones are counted. Comparatively, Danish has 15
consonant phonemes, or 19 if the most common allophones are in-
cluded (Grønnum, 1998). When it comes to their vowel systems, Dan-
ish has 10 vowel phonemes, Norwegian 8, and Swedish 9. When al-
lophonic variation relating to length, stress, and phonetic context is
taken into account, the Norwegian and Swedish vowel sets increase
to 19 and 21 vowel categories respectively, while the Danish one in-
creases to 30 Grønnum (1998, 1996). Figure 3.1 shows a side-by-side
comparison of the monophthong vowel systems of Danish (Grønnum,
1998), Norwegian (Kristoffersen, 2000, p. 11), and Swedish (Engstrand,
1990) plotted on the cardinal vowel quadrilateral (reproduced here
with permission).

We can see that most of the vowels occur in pairs of short and
long vowels, and that within some pairs there is also a qualitative
difference (e.g. [I, Y, U] vs [i:, y:, u:] in Swedish). In some cases,
the decision to denote short and long vowels in a pair with different
symbols is a matter of convention (Kristoffersen, 2000, p. 11). Another
unusual characteristic of these vowel systems is the large number
of rounded front vowels, whose formant values might overlap with
not only the surrounding rounded vowels but also their unrounded
counterparts. While most of these vowels can be distinguished via
minimal pairs, it should be noted that their number and symbols
are not definitive and might vary across speakers and phonological
interpretations (Grønnum, 1996). In addition to monophthongs, all
three Scandinavian languages have a number of diphthongs, which
will not be explored here. As mentioned before, they are frequently
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analyzed as consonant-vowel and vowel-consonant sequences, both in
literature and the trilingual corpus used in our experiments Grønnum
(1998); Riad (2014). As a result, they are excluded from this study, as
well.

3.4 Dialectal Variation

When it comes to dialectal variation in Scandinavia, traditional re-
gional dialects, with their own phonological and morphological sys-
tems, have largely disappeared in the past century due to industri-
alization, urbanization, and migration (Gooskens, 2020). Especially
in Denmark and Sweden, where the national standard has held a
dominant role, many traditional dialects have been replaced by vari-
eties of the national standard, often called regional standards (Basbøll,
2005, p. 13), (Riad, 2014, p. 7).2 The perceived differences among the
present-day regional standards can be explained, to a large extent, by
differences in prosody and phonetic quality, while morphological, syn-
tactic, and lexical variation across regions has decreased significantly
(Leinonen, 2011). On the other hand, regional dialects have a much
stronger position in Norwegian, where the official language policy
is that all spoken varieties are to be considered equal. Nevertheless,
Norwegian dialects have also undergone regionalization and leveling
to the extent that most regional dialects today are mutually intelligible
(Kristoffersen, 2000, p. 7). Like in Danish and Swedish, phonetic and
prosodic features play an important role in perceived and measured
dialect distances (Gooskens and Heeringa, 2004; Heeringa et al., 2009).

2Local dialects that significantly differ from the standards still exist, mostly in pe-
ripheral areas, e.g. South Jutland and the island of Bornholm in Denmark (Pedersen,
2003), and Jämtland and the island of Gotland in Sweden (Riad, 2014, p. 9).

23
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4.1 Introduction

Vowels are speech sounds produced without any obstructions in the
vocal tract. Traditionally, they have been described by specifying the
position of the tongue and lips during their articulation, namely, in
terms of three parameters: vertical tongue position (vowel height), hor-
izontal tongue position (backness), and lip shape (rounding) (Catford,
2001, p. 120). The articulatory vowel space is thus commonly defined
as a quadrilateral whose points are vowels produced with the tongue in
an extreme position, as far front, back, high, or low as possible without
creating friction. These four points delimiting the vowel space together
with the intermediate points along the edges and inside of the quadri-
lateral form a system of reference vowels known as cardinal vowels
(Figure 4.1). Although the vowel space is continuous, the cardinal
vowel system allows us to describe any vowel in any spoken language
based on its position within the vowel quadrilateral (International
Phonetic Association, 1999, p. 13).

However, the articulatory basis of the vowel space has long been
disputed as the positions of the cardinal vowels do not accurately
reflect their corresponding tongue positions (Ladefoged and Disner,
2012, p. 131). In fact, it has been demonstrated that vowel quality
is more accurately characterized in acoustic terms, using formants,
which represent spectral prominences computed from the speech sig-
nal that correspond to the acoustic resonances of the human vocal
tract and depend on the size, shape, and position of the speech or-
gans during speech production (Joos, 1948; Lindau, 1978; Ladefoged
and Maddieson, 1990). This means that the posited vowel space is
more indicative of our perception of the acoustic properties of vowels
than it is of their articulation. It should thus be viewed as an abstrac-
tion rather than a direct mapping of tongue position (International
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Figure 4.1: IPA vowel quadrilateral with cardinal vowels. Symbols on the left side
of the dots indicate unrounded vowels, and symbols on the right indicate rounded
vowels (International Phonetic Association, 1999).

Phonetic Association, 1999, p. 12).
Apart from the three traditional dimensions, height, backness, and

rounding, there are additional vowel features which may be used to
form phonological contrasts within a language. They include, but are
not limited to, nasalization, advanced tongue root, pharyngealization,
rhotacization, phonation, length, diphthongization, and tone (Lade-
foged and Maddieson, 1990). Moreover, vowels play a vital role in
stress and prosody. They may take on extra features such as pitch or
loudness, or undergo lengthening or reduction, to convey syllabic and
prosodic prominence, intonation, and rhythm. These features can
interact with each other in complex ways to produce a wide range of
vowel sounds in different languages. In this work, we only consider
vowel height and backness, as well as rounding to a certain degree,
as we would like to find general patterns that capture the three most
important vowel features. Nevertheless, we should always keep in
mind that vowels are combinations of complex and dynamic factors
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that are not easily separable.

4.2 Vowel Formants

In acoustic studies of vowels, the first two formants (F1,F2), which
correspond to the two lowest resonant frequencies of the vocal tract,
are typically used to characterize vowels (Ladefoged and Disner, 2012,
p. 39). More specifically, F1 has been found to correlate with vowel
height and F2 with vowel backness and lip rounding (Johnson, 2011, p.
144), (Ladefoged and Johnson, 2015, p. 208). For this reason, plotting
vowels in terms of F1 and F2 allows us to locate them within the ab-
stract cardinal vowel quadrilateral. As the last major feature of vowel
quality, lip rounding has been proposed as the third dimension in
a 3D representation of the vowel quadrilateral (Ladefoged and Mad-
dieson, 1990). However, since rounding has an effect on all formants
(Fant, 1960, p. 64), the third dimension of the vowel space cannot be
independently interpreted as the degree of rounding. Furthermore,
while F1 and F2 have often proved sufficient for vowel identification in
studies on the perception and discrimination of natural and synthetic
vowels (Fry et al., 1962), F3 and higher formants might be required
to distinguish features such as rounding and rhoticity. However, we
restrict our study to the first two formants to be able to visualize our
results in two dimensions and compare them to existing studies of
Danish, Norwegian, and Swedish vowel spaces.

4.3 Cross-Lingual Vowel Normalization

Formant values cannot be directly compared across different speak-
ers, as they also encode information about the physiological charac-
teristics of a speaker’s vocal tract (Ladefoged and Broadbent, 1957).
As a result, any comparison of vowels produced by different people,
including those who differ by dialect or language, requires a vowel
normalization procedure in order to reduce the confounding effects
of individual speaker differences on the formants (Disner, 1980). This
procedure is designed to minimize the acoustic overlap among vowel
categories. This is believed to simulate the ability of human listeners
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to deal with acoustic variability of vowels in speech recognition (Reetz
and Jongman, 2020, p. 285).

A number of different vowel normalization techniques have been
developed and applied to various languages. They are typically de-
scribed as vowel-intrinsic or vowel-extrinsic depending on the type of
information they use to transform the raw formant frequencies. Vowel-
intrinsic procedures have been developed with the aim of modeling
human speech perception. In order to normalize a given vowel, they
rely solely on the acoustic information present in that single vowel
token. They include transformations into log, bark (Zwicker, 1961;
Zwicker and Terhardt, 1980; Traunmüller, 1990), ERB (Glasberg and
Moore, 1990), or mel (Stevens and Volkmann, 1940) frequency scales,
as well as procedures that adjust each formant value based on the val-
ues of the other formants in the same vowel, such as Miller’s formant-
ratio method (Miller, 1989). On the other hand, vowel-extrinsic nor-
malization requires external knowledge about the speaker, and typi-
cally describes vowels in relation to the other vowels in the speakers
vowel space. The most widely used vowel-extrinsic procedures include
Nearey1 and Nearey2 (Nearey, 1978; Adank et al., 2004), which center
the formant values around a speaker’s mean, and Lobanov (Lobanov,
1971), which further standardizes the centered values to unit stan-
dard deviation. Previous studies comparing normalization procedures
have found the vowel-extrinsic methods that involve speaker-specific
centering and standardization to be the best at separating vowel cat-
egories while preserving socio-linguistic variation (Lobanov, 1971;
Disner, 1980; Carpenter and Govindarajan, 1993; Adank et al., 2004;
Kohn and Farrington, 2012; Richter et al., 2017; Persson and Jaeger,
2023). However, few of these methods allow direct comparisons of
vowel systems across different languages, as the systems may not be
comparable on the basis of their mean vowels (Disner, 1980).

The normalization technique we employ in this paper was devised
for a cross-lingual study of vowel spaces by Chung et al. (2012). It
is a modification of the Nearey1 method (as defined in Adank et al.
(2004)), which makes it more robust to cross-lingual differences in
vowel systems. The study demonstrates that this technique is effective
at reducing the variation in formant frequencies due to speakers’ gen-
der and age while maintaining cross-lingual variation. It is performed
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using the following equation:

F Nor m
i ,s = F L

i ,s − F̄ L
i ,s ,

where F L
i ,s is the log-transformed value of Fi for speaker s, and F̄ L

i ,s
is the weighted mean of the mean log-transformed Fi values of each
of the point vowels [i, a, A, u] for speaker s. The mean is weighted
by the number of tokens in each vowel category to account for the
different number of tokens available for each speaker. Intuitively, this
procedure converts all formant frequencies into log space where each
vowel is represented in terms of its distance from the speaker-specific
centroid vowel, i.e. the weighted mean of a speaker’s mean point
vowels (F̄ L

i ,s).
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5.1 Introduction

Automatic Speech Recognition (ASR) is the task of transcribing a digital
recording of a speech signal, commonly referred to as utterance, into
its corresponding textual representation. The textual representation
is usually orthographic, but could also be phonemic or phonetic. In
recent years, monolingual ASR, in which an ASR system is trained,
optimized, and deployed on a single high-resource language or dialect,
has advanced to the point where it can be successfully applied to a
number of practical tasks, such as human-computer communication,
dictation, and automatic caption generation (Jurafsky and Martin,
2020). Their importance for multilingual and cross-lingual ASR is
paramount as most of the multi- and cross-lingual methods were first
developed and perfected in a monolingual setting in line with one of
these two approaches.

At present, there are two main types of ASR architectures in active
development: traditional modular HMM-based ASR systems and mod-
ern neural end-to-end models. Traditional HMM-based ASR systems
range from monophone, simple context-independent phone mod-
els, to triphone, context-dependent phone models, to hybrid Hidden
Markov Model / Deep Neural Network (HMM/DNN) models. Their
advantages include high computational efficiency and ability to learn
from a relatively limited number of training samples. But their disad-
vantages are highly complicated architectures, lack of easily extensible
frameworks for prototype development, and the requirement for pro-
nunciation dictionaries, which are very time-consuming to create and
maintain. On the other hand, neural end-to-end models are easier to
protype and train, but they require large amounts of training data and
greater computational power.
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5.2 Modular Systems

A conventional HMM-based ASR system consists of three separate
modules: an acoustic model (AM), which estimates the observation
likelihoods of the acoustic feature vectors at each time frame of the
input sequence, a pronunciation model, which is a pronunciation
dictionary providing phonemic representations for each word in the
vocabulary, and a language model (LM) which estimates the a pri-
ori probability for each word in the output sequence (Jurafsky and
Martin, 2009, p. 321-329). Inferring the transcription of a given utter-
ance requires integrating all three modules and implementing highly
optimized finite state transducers that can search efficiently over all
possible word sequences in order to find the most likely one (Jelinek,
1998, p. 5-9), (Mohri et al., 2002, 2008).

Today, the mainstream traditional ASR systems have a hybrid
acoustic model architecture combining HMMs with deep neural net-
works (HMM/DNN), in which a feed-forward neural network acts as
a phonetic classifier instead of the previously used Gaussian mixture
models (GMMs) (Jurafsky and Martin, 2020). The most successful
hybrid AMs include time-delay neural networks (TDNNs) (Peddinti
et al., 2015; Povey et al., 2016) and long short-term memory networks
(LSTMs) (Sak et al., 2014; Peddinti et al., 2018). The main advantage of
modular ASR systems is that they can achieve state-of-the-art perfor-
mance using relatively small amounts of spoken training data. How-
ever, their major disadvantages include the need for meticulously
handcrafted pronunciation dictionaries, which exist for only the best-
resourced languages, and a complicated overall architecture (Watan-
abe et al., 2017b).

HMM-based ASR systems view the task of speech recognition
through the metaphor of the noisy channel, which treats the acoustic
signal as a noisy version of the underlying string of words. The goal of
an HMM speech recognizer is to build a model of this channel which
allows us to understand how the channel distorts the underlying sen-
tences and thus recover them by searching through the huge space
of potential source sentences and choosing the one with the highest
probability of generating the “noisy” sentence (Jurafsky and Martin,
2009, p. 321).
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Since probability is used as a performance metric, the problem
of speech recognition can be described as a special case of Bayesian
inference. As a result, the probabilistic noisy-channel ASR architecture
tries to answer the following question: What is the most likely sentence
Ŵ out of all sentences W in the language L given some acoustic input
O? This can be expressed as:

Ŵ = argmax
W ∈L

P (W |O)

To make it easier to compute, the above equation is expanded
using Bayes’ rule into the following:

Ŵ = argmax
W ∈L

P (O|W )P (W )

P (O)

= argmax
W ∈L

P (O|W )P (W )

where the observation likelihood P (O|W ) is computed by the acous-
tic model, the prior probability P (W ) is estimated by the language
model, and P (O) can be ignored because it is a constant term for each
sentence.

5.2.1 Acoustic Model

A general Hidden Markov Model is characterized by the following five
components (Jurafsky and Martin, 2009, p. 325 ):

In HMMs used for speech recognition, the states of the HMM
are phonetic units of speech called subphones. Subphones are parts
of a larger phonetic unit known as phone. In ASR, each phone is
modeled as consisting of three subphones: beginning, middle, and
end subphone, as shown in Figure 5.1. The three-subphone model of a
phone is made to take into account the temporal variation of acoustic
features throughout a phone. Figure 5.2 shows a full HMM for the
example word six which consists of four phones: /s I k s/.

Acoustic observations used as input to a speech recognizer are
derived from digital audio recordings of speech, termed waveforms
when plotted as a function of time (Figure 5.3a). The waveforms are
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Q = q1, q2, ..., qN a set of states
A = a01, a02, ..., an1, ..., anm a transition probability matrix A, each

ai j representing the probability of
moving from state i to state j , s.t.∑n

i=1 ai j = 1∀ i
O = o1,o2, ...,oN a set of acoustic observations
B = bi (ot ) a set of observation likelihoods (emis-

sion probabilities), each expressing the
probability of an observation ot being
generated from state i

q0, qend special start and end states, not associ-
ated with observations

st ar t0 beg1 mi d2 f i n3 end4
a01 a12 a23 a34

a11 a22 a33

Figure 5.1: The standard five-state HMM for a phone (based on (Jurafsky and Martin,
2009, 2, p. 328)).

Figure 5.2: A full HMM for word six /s I k s/, formed by joining four phone models
(Jurafsky and Martin, 2009, p. 326).

first converted to a time-frequency representation called spectrogram
using the short-time Fourier transform (STFT), which segments the in-
put signal into overlapping frames and computes the discrete Fourier
transform for the individual frames:

X [k,λ] = ST F T {x[n]} =
M−1∑
n=0

x̃[n +λR]e− j 2π
M kn

x̃[n +λR] =
{

x[n +λR]w[n]; n = 0,1, ..., N −1

0; n = N , N +1, ..., M −1

where x is a discrete-time signal of length Nx , w an analysis window
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of length N , usually the Hamming window, N the window size, M the
size of the discrete Fourier transform after zero-padding, R the shift
between adjacent windows, Z the overlap between adjacent windows
Z = N −R, λ the frame index λ ∈ {0,1, ...,L −1}, k the frequency bin
index k ∈ {0,1, ..., M −1}, and L the number of frames L = d(Nx −Z )/Re.
The spectrogram is then converted to the mel scale, which gives higher
resolution to frequencies below 1000 Hz to which the human ear is
most sensitive, resulting in a mel spectrogram (Figure 5.3b). The mel
frequency can be computed from the raw acoustic frequency as fol-
lows (Jurafsky and Martin, 2009, p. 333):

mel ( f ) = 1127ln(1+ 1

700
)

The final step in the feature extraction procedure transforms the
mel spectrogram into mel-frequency cepstral coefficients (MFCCs) us-
ing the inverse short-time Fourier transform. The goal of this is to
decorrelate the cepstral features in order to reduce the number of
parameters needed to estimate the emission probabilities (Jurafsky
and Martin, 2009, p. 395). For the purposes of ASR, it is common to
take only the first 13 MFCC values (Figure 5.3c), which are described
as providing the most information about the vocal tract.

The observation likelihoods, or emission probabilities, are mod-
eled using multivariate Gaussian mixture models (GMMs), which
constitute a weighted sum of multivariate Gaussians, which are
parametrized by the mean vector µ, covariance matrix Σ, and mix-
ture weights c (Jurafsky and Martin, 2009, p. 346).

b j (ot ) =
M∑

m=1
c j m

1√
2π|Σ j m | exp[(x −µ j m)>σ−1

j m(ot −µ j m)]

5.2.2 Pronunciation Lexicon

The pronunciation lexicon, or dictionary, contains phonemic pronun-
ciations for each word in the vocabulary of the training data. The
pronunciation is given in terms of phonemes (sometimes referred to as
phones), the basic units of speech in a particular language or dialect,
but may also include suprasegmental markings, such as word stress
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(a) Waveform of a speech signal.

(b) Mel spectrogram of the above waveform.

(c) First 13 MFCC features of the above mel spectrogram.

Figure 5.3: MFCC feature extraction for ASR

or tone. The lexicon is used to estimate the transition probabilities
between within-word HMM states. Lexicons are notoriously difficult
to compile, especially for languages with low grapheme-to-phoneme
correspondence and/or high lexical productivity, where each word
in the vocabulary needs to be manually transcribed phonemically
by expert phoneticians. For this reason, a more common approach
to compiling pronunciation lexicons is by means of grapheme-to-
phoneme conversion tools, such as espeak-ng (eSpeak NG, 2016),
Phonetisaurus (Novak et al., 2012) and its pre-trained models Langua-
geNet (Hasegawa-Johnson et al., 2020), Sequitur G2P (Bisani and Ney,
2008), or Epitran (Mortensen et al., 2018).

5.2.3 Language Model

Language models are used in ASR to obtain transition probabilities be-
tween individual words in a word sequence. They are typically N -gram
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language models trained on large amounts of text data. Depending
on the amount of training data, the size of the N -gram usually ranges
from trigram to 5-gram. N -gram LMs are N th-order Markov chains
that approximate the conditional probability of the next word in a
sequence by just the previous N −1 words. Given this approximation
of the probability of an individual word, the probability of an entire
word sequence can be found by (Jurafsky and Martin, 2009, p. 122):

P (W ) ≈
N∏

k=1
P (wk |w k−1

k−N+1)

5.2.4 Search and Decoding

Integrating all the HMM probability estimators to retrieve the most
probable word sequence is called decoding. This is achieved using the
graph search algorithm named Viterbi, which takes as input an obser-
vation sequence and a trained HMM and returns the probability of the
state path through the HMM trellis that assigns maximum likelihood
to the observation sequence as well as the state path itself.

The value of each cell in the trellis is computed recursively by
taking the most probable path that could lead to this cell. This is done
by first computing the probability of being in every state at time t −1.
Then, the Viterbi probability is computed by taking the most probable
of the extensions of the paths that lead to the current cell. For a given
state q j at time t , the value vt ( j ) is computed as (Jurafsky and Martin,
2009, p. 351-358):

vt ( j ) = N
max
i−1

vt−1(i )aa j b j (ot )

where vt−1(i ) is the previous Viterbi path probability from the pre-
vious time step, ai j the transition probability from previous state qi

to current state q j , and b j (ot ) the state observation likelihood of the
observation symbol ot given the current state j .
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5.2.5 Embedded Training

ASR systems train each phone HMM embedded in an entire sentence.
The segmentation and phone alignment are performed automatically
during training without the need for manually time-coded transcripts.
The transition matrix A and the emission probability estimator B for
the HMMs are conventionally trained using the Baum-Welch algo-
rithm, also known as the forward-backward algorithm, which sums
over all possible segmentations of words and phones using the prob-
ability of being in a certain state and a certain time step and gener-
ating a particular observation. However, since the execution of the
Baum-Welch is very time-consuming in practice, it is common to ap-
proximate it using the Viterbi algorithm. In Viterbi training, instead
of accumulating counts by summing over all paths passing through a
given state at a given time, we approximate this by choosing the most
probable (Viterbi) path. Thus, instead of running the Baum-Welch at
every step of the training, we repeatedly run the Viterbi. This is called
forced Viterbi alignment or just forced alignment (Jurafsky and Martin,
2009, p. 361).

Therefore, we can summarize the embedded training procedure
as shown below. Given a phone set, pronunciation lexicon, and tran-
scribed wavefiles (Jurafsky and Martin, 2009, p. 361):

1. Build a whole sentence HMM for each sentence

2. Initialize A probabilities to 0.5 (for loop-backs and correct next
subphone) or to 0 (for other transitions)

3. Initialize B probabilities by setting the mean and variance for
each Gaussian to the global mean and variance for the entire
training set

4. Run multiple iterations of the Viterbi algorithm (Viterbi forced
alignment)

5.2.6 Discriminative Training

In traditional HMM-based recognizers, the acoustic model relies on
the maximum likelihood estimation (MLE) where the model parame-
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ters are trained to maximize the likelihood of the training data. For a
particular observation sequence O and a particular HMM model Mi

corresponding to a word sequence Wi out of all possible sentences W ′,
the MLE criterion maximizes:

FMLE (λ) =
R∑

i=1
logPλ(Oi |Mi )

However, the goal in speech recognition is to have the correct tran-
scription for the largest number of sentences, which means that the
probability of the correct word sequence should be high while the
probability of all the wrong sequences should be low. Therefore, more
recent ASR systems feature an acoustic model that relies on the crite-
rion that directly maximizes the probability of a word sequence given
an acoustic observation. This criterion is called conditional maximum
likelihood estimation (CMLE) and the models that utilize it are known
as discriminative models (Jurafsky and Martin, 2009, p. 384). The ex-
pression below can be used to describe the CMLE mathematically. The
first line is expanded using Bayes’ rule, and the second one expands
Pλ(O) by summing over all sequences that could have produced the
given observation.

FC MLE (λ) =
R∑

i=1
logPλ(Mi |Oi ) =

R∑
i=1

log
Pλ(Oi |Mi )P (Wi )

Pλ(Oi )

=
R∑

i=1
log

Pλ(Oi |Mi )P (Wi )∑
W ′∈L Pλ(Oi |MW ′)P (W ′)

However, in literature, the CMLE criterion is typically referred to
as maximum mutual information estimation (MMIE). The reason for
this is that maximizing P (W |O) is actually equivalent to maximizing
the mutual information between the word sequence and the acoustic
observation. As shown below maximizing MMI becomes equivalent
to minimizing conditional entropy because the entropy of a word
sequence is difficult to maximize and considered constant for a given
language model.
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I (O,W ) = ∑
O,W

P (O,W ) log
P (O,W )

P (O)P (W )

= ∑
O,W

P (O,W ) log
P (W |O)

P (W )

= H(W )−H(W |O)

≡ H(W |O)

H(W |O) =− ∑
W,O

P (W,O) logP (W |O)

=− ∑
W,O

P (O|W )P (W ) log
P (O|W )P (W )∑

W ′∈L Pλ(O|W ′)P (W ′)

⇒FM M I E (λ) =
R∑

i=1
log

Pλ(Oi |Mi )P (Wi )∑
W ′∈L Pλ(Oi |MW ′)P (W ′)

5.2.7 Hybrid HMM/DNN ASR Systems

Hybrid ASR systems combine traditional statistical models with neu-
ral networks to leverage the strengths of both approaches. Neural
networks, particularly Time-Delay Neural Networks (TDNNs) and
Recurrent Neural Networks (RNNs), have significantly improved the
performance of modular ASR systems. In hybrid ASR systems, neural
networks primarily serve as the acoustic model. They can extract dis-
criminative features from the input speech signal, which are then used
to represent the acoustic properties of the speech. Additionally, their
output layer predicts the posterior probabilities of each acoustic unit
at each time step. These probabilities are then used by the language
model to generate the final transcription.

RNNs using a dynamically changing contextual window over all
of the sequence history have been shown to achieve state-of-the-art
performance on large-vocabulary ASR tasks (Sak et al., 2014). However
due to their recurrent connections, parallelization during training
cannot be exploited to the same extent as in plain feed-forward neural
networks. Unlike traditional RNNs, TDNNs use a delay mechanism
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to access previous time steps of the input sequence, making them
particularly effective for capturing temporal dependencies in speech.
Some of the most effective neural networks for ASR, which are still in
use today, include those described in Peddinti et al. (2015), Povey et al.
(2018), and Peddinti et al. (2018).

5.3 End-to-End Systems

Neural end-to-end models were designed with the intention to elim-
inate the need for handcrafted lexical resources and simplify the
module-based architecture into a single sequence-to-sequence net-
work that can map the acoustic features of an input utterance directly
into the graphemes of its corresponding transcript.

Until recently, the leading types of end-to-end architectures were
recurrent neural networks (RNNs) based on connectionist temporal
classification (CTC) (Graves et al., 2006) and the ones based on the
attention mechanism (Bahdanau et al., 2015; Cho et al., 2014). Loosely
speaking, CTC outputs a single character for every input frame and
then collapses the sequences of identical characters to obtain the final
output (Jurafsky and Martin, 2020; Hannun, 2017). Although it has
led to numerous state-of-the-art models, such as (Graves and Jaitly,
2014; Hannun et al., 2014; Amodei et al., 2016), CTC often requires large
amounts of training data, a separate language model, and graph-based
decoding (Watanabe et al., 2017b). On the other hand, attention-based
ASR models use an encoderdecoder architecture to map speech fea-
ture sequences to text, as well as an attention mechanism that aligns
each element of the output sequence with the hidden states generated
by the encoder network for each frame of the acoustic input. These
models have also led to breakthroughs in end-to-end ASR (Chorowski
et al., 2014, 2015; Chan et al., 2016; Lu et al., 2016; Park et al., 2019),
however, the attention mechanism has been found to result in non-
sequential alignments, making it too flexible for speech recognition
where the acoustic inputs and corresponding orthographic outputs
typically proceed in the same order (Watanabe et al., 2017b). For these
reasons, a joint CTC-attention architecture was proposed (Kim et al.,
2017; Hori et al., 2017; Watanabe et al., 2017b), which leverages the
advantages of both methods by combining attention-based and CTC

39



Chapter 5 | Automatic Speech Recognition

scores in a rescoring beam search algorithm, thereby significantly
reducing the number of irregular alignments (Watanabe et al., 2017b).

However, in recent years, the transformer has become the most
dominant model architecture in both ASR and wider speech and lan-
guage processing. Introduced in 2017, the transformer was designed
to reduce the computational cost of RNNs by eliminating the recurrent
connections and relying solely on attention mechanisms (Vaswani
et al., 2017). Some of the first transformer models successfully applied
to speech were developed by Dong et al. (2018), Karita et al. (2019),
Karita et al. (2019), and Li et al. (2020a).

A transformer model consists of an encoder and a decoder, both
of which are composed of a stack of identical layers. Each layer in the
encoder and decoder contains two sub-layers: multi-head attention
and a feed-forward neural network. Multi-head attention allows the
model to capture dependencies between different parts of the input
sequence. It consists of multiple attention heads, each of which is a
scaled dot-product attention mechanism. The attention mechanism
is the core component of transformer models. It allows the model to
focus on different parts of the input sequence at different times, cap-
turing dependencies between words or sub-words. Since transformers
process input sequences in parallel, positional encoding is used to
provide information about the order of elements in the sequence. This
is typically a sinusoidal function that varies with the position in the
sequence, thus helping the model capture positional relationships.

5.4 Large Pre-Trained Speech Models

The gains in computational efficiency brought on by transformer-
based models have ushered in a new era of self-supervised learning,
in which models are trained on massive amounts of unlabeled data.
This allows them to learn to identify general patterns and relationships
in speech, which can be transferred to various downstream tasks via
fine-tuning on a relatively small amount of target domain data.

One of the first large pre-trained speech models was wav2vec 2.0
proposed in Baevski et al. (2020b). It uses a transformer-based encoder
to learn contextualized representations of the input audio, which allow
the model to capture long-range dependencies in the speech signal. It
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was pre-trained on 53,000 hours of untranscribed speech and able to
achieve near state-of-the-art results on a downstream ASR task after
fine-tuning on only 10 minutes of target domain data. Other first-
generation large pre-trained speech models include HuBERT (Hsu
et al., 2021) and SpeechT5 (Ao et al., 2022).

The latest generation of large speech models are pre-trained on
even more data. For example, Meta’s Seamless is a multi-modal stream-
ing translation model supporting over 140 languages (Communication
et al., 2023). It was pre-trained on over 4.5 million hours of unla-
beled speech (approximately 513 years) and fine-tuned on 125,000
hours. OpenAI’s Whisper is a transformer-based attention encoder-
decoder model with ASR capabilities in 96 languages (Radford et al.,
2022). It was trained initially on 680,000 hours of data which was
later extended to 5 million hours (approximately 570 years). Google’s
Universal Speech Model was trained on 12 million hours of speech
(approximately 1370 years), spanning over 300 languages (Zhang et al.,
2023). It uses a Conformer-based encoder, which combines convolu-
tional layers and transformer blocks, making them particularly well-
suited for speech recognition tasks (Gulati et al., 2020). These models
exhibit impressive ASR capabilities and portability to a large number
of languages. However, they come with huge computational costs and
are not easily extensible to additional languages and speech domains.

5.5 Multilingual and Cross-Lingual Speech Recognition

With the global expansion of speech technologies came the need to
make ASR systems equally usable in all languages, which often means
overcoming a serious lack of resources. Fortunately, it has been shown
that training and optimizing ASR models on multiple languages si-
multaneously can improve performance on minority languages from
the training data when compared to monolingual models trained and
evaluated on the same monolingual data set (Pratap et al., 2020a). This
approach has become known as multilingual ASR. Multilingual models
are usually trained end-to-end, using methods similar to those used
in monolingual end-to-end ASR, as this paradigm does not require
explicit pronunciation modeling. Among the first to make inroads
into large-scale multilingual ASR were private companies using large
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amounts of internal proprietary data (Huang et al., 2013; Heigold et al.,
2013; Li et al., 2018; Toshniwal et al., 2018; Kim and Seltzer, 2018;
Pratap et al., 2020a), though, with the improvements in end-to-end
modeling and rise in open-access multilingual speech corpora, open-
source models were able to follow suit (Watanabe et al., 2017a; Cho
et al., 2018; Karafiát et al., 2019; Adams et al., 2019; Hou et al., 2020).

The most popular public multilingual data sets in ASR literature are
GlobalPhone (Schultz, 2002; Schultz and Schlippe, 2014), Babel (Chan
et al., 1995), Common Voice (Ardila et al., 2020), CMU Wilderness (Black,
2019), and Multilingual LibriSpeech (MLS) (Pratap et al., 2020b). How-
ever, despite their size and linguistic diversity, these data sets still cover
only a small percentage of the world’s languages, and even among the
languages they do cover, there is often great imbalance in favor of
already high-resource languages. For example, the English portion
of MLS is seven times larger than the remaining seven languages put
together. Meanwhile, research has shown that the performance of
multilingual models on individual low-resource languages improves
with the amount of data belonging to the target language present in
the training set (Karafiát et al., 2019).

These limitations of multilingual ASR have spurred interest in zero-
shot cross-lingual ASR in which models are trained to recognize speech
in languages not seen during training. However, this task faces several
challenges. First, for most languages, there is little to no overlap among
their orthographic systems or grapheme-to-phoneme correspondence.
In such scenarios, transfer to unseen languages is poor without fine-
tuning or adaptation to the target data (Cho et al., 2018; Karafiát et al.,
2019; Pratap et al., 2020a). Second, many languages or dialects have
no resources whatsoever, or even a writing system to begin with. For
these languages, no pronunciation or language models can be made
without considerable human effort.

HMM-based systems are relatively amenable to cross-lingual adap-
tation as they use a separate acoustic model, but their adaptation
requires both a pronunciation dictionary and language model of the
target language (Wiesner et al., 2019). For example, Wiesner et al. try
to create zero-shot pronunciation lexicons for cross-lingual adapta-
tion by transcribing a small set of words from an unseen language
using grapheme-to-phoneme (G2P) models of higher-resource lan-
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guages with the most similar orthography, which they use to train
a new G2P transducer that can automatically extend the pronuncia-
tion dictionary for the unseen language. However, they assume that
languages with similar orthography will also have similar pronunci-
ation, which is not necessarily true (one example being Danish and
Norwegian). Moreover, they find that incorrectly transcribed pronunci-
ations adversely affect their performance, especially when they occur
in frequent words (Wiesner et al., 2019).

As introduced in Section 5.4, fine-tuning large speech models to
target languages and domains has become the dominant paradigm
in low-resource ASR. Models such as Whisper (Radford et al., 2022),
Seamless (Communication et al., 2023), and USM (Zhang et al., 2023)
can be fine-tuned to a large number of languages using a relatively
small amount labeled speech. However, they are not easily extensible
to new languages and their performance on unseen languages is still
not on par with that of the fine-tuned models (Bartelds et al., 2023).

5.6 Automatic Phonetic Transcription

To deal with cross-lingual differences in orthography, phonetic repre-
sentations have been proposed as a potentially more viable channel
for transferring ASR models to very low-resource languages. Notable
past attempts include the bottleneck approach, which aimed to ex-
tract language-independent phonetic knowledge from a bottleneck
layer of a multilingual model and use it as additional input features
when training an acoustic model of a target language (Veselý et al.,
2012; Thomas et al., 2012; Knill et al., 2013; Grézl et al., 2014), and
the phoneme-based cross-lingual CTC approach, where a CTC model
trained on multilingual data was ported to an unseen language by
means of a new output layer which was trained on a small amount of
target language data (Tong et al., 2018a,b; Dalmia et al., 2018; Dalmia
et al., 2019; Li et al., 2020c,b). Cross-lingual phonetic transcription has
also been attempted with large pre-trained speech models, such as
wav2vec 2.0 with modest improvements in cross-lingual transfer (Gao
et al., 2021; Conneau et al., 2020; Xu et al., 2022).

Our method is based on the investigation of cross-lingual trans-
fer of phonetic representations performed by Żelasko et al. (2020)
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who train end-to-end transformers with CTC-attention to phoneti-
cally transcribe speech in different languages. Namely, they perform
three types of experiments on 13 languages from the GlobalPhone
and Babel data sets: monolingual, multilingual, and cross-lingual, in
which they find that all languages benefit from a multilingual training
regime (in comparison to monolingual), but observe significant perfor-
mance degradation in the cross-lingual regime, i.e. when attempting
to transcribe an unseen language. Nevertheless, they notice that the
prediction accuracy of certain phones which are shared by most of the
studied languages is relatively stable across all experiments, including
the cross-lingual ones. In their follow-up work, presented in Feng
et al. (2021), where they train modular ASR systems with a separate
hybrid HMM/DNN AM and phone-level n-gram LM, they observe sim-
ilar performance degradation in the cross-lingual evaluation scheme,
but contrary to their prior findings in Żelasko et al. (2020), the per-
formance also decreases in the multilingual setting in comparison to
monolingual, which suggests that transformers are better at leveraging
multilingual data to gain performance improvements on low-resource
languages.

However, despite trying to model language-universal represen-
tations, in both papers, they employ LanguageNet G2P models to
transcribe the training data (Hasegawa-Johnson et al., 2020), which
are often trained on language-specific representations, so their
notation is not always consistent across languages. Moreover, in some
cases, when no training data is available, LanguageNet G2P models
are only rule-based, which can result in inaccurate transcriptions for
languages with highly irregular spelling. They also do not analyze
the performance of their cross-lingual models on out-of-vocabulary
(OOV) tokens, which are phonetic symbols unique to the unseen
languages. It is, therefore, not certain whether the cross-lingual
models could learn broader phonetic categories which, although not
identical to the ground-truth OOV phones, might still be close enough
to prove useful in downstream word recognition. Another potentially
confounding factor could be the fact that the audio recordings in the
Babel data sets have lower sound quality, as the authors themselves
note, which makes it difficult to judge whether the poor cross-lingual
performance is due to a lack of cross-lingual phonetic transfer or
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the presence of background noise. Finally, neither paper provides
a downstream evaluation of the phonetic transcription models,
so it is unclear how they could be applied to predict conventional
orthographic transcriptions. In this thesis, we address these issues
by proposing a method for uncovering more cross-linguistically
consistent phonetic representations through an acoustic-phonetic
corpus analysis of vowels in multilingual ASR data, and evaluating the
obtained representations both intrinsically on APT and extrinsically
on downstream ASR tasks.

5.7 Evaluation of ASR Systems

To measure their accuracy and performance, ASR systems are typically
evaluated in terms of word error rate (WER) or character error rate
(CER). WER and CER are computed using the same formula. They only
differ in how the transcripts are tokenized and what is considered a
token. First, the hypothesized (predicted) transcripts are paired and
aligned with their corresponding reference (ground-truth) transcripts.
The alignment is performed using a dynamic programming algorithm
that performs a global minimization of a Levenshtein distance func-
tion. It allows us to count the number of correctly recognized words, as
well as the number of insertions, deletions, and substitutions, which
are considered errors. The overall error rate is obtained as the sum
of insertions, deletions, and substitutions divided by the total num-
ber of tokens in the reference transcript. These metrics are usually
interpreted as the percentage of tokens that are incorrectly recognized
in a transcription. However, since the error counts include inserted
tokens, which are not part of the reference transcript, the error rates
can actually go over 100%.

The modular (including hybrid) ASR systems are typically evalu-
ated in terms of WER, because they predict word-level tokens from
the pronunciation lexicon, whereas neural end-to-end systems are
usually evaluated in terms of CER, because they predict character
tokens. When the target task is phone recognition or phonetic tran-
scription, these metrics can also be used to measure phone, phoneme,
or phonetic symbol error rate, depending on the relevant token.
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Although error rate is a widely used metric for evaluating ASR sys-
tems, it is not the only measure of performance to consider. Other eval-
uation methods include human evaluation, where human experts as-
sess the quality of the transcriptions based on factors such as accuracy,
fluency, and coherence, and domain-specific metrics tailored to spe-
cific applications, such as medical, legal, or call center transcription.
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6Nordic Language Technology Corpus

6.1 Introduction

The central data used for the creation of formant-based vowel repre-
sentations are the ASR databases for Danish (Språkbanken: The Nor-
wegian Language Bank, 2003a), Norwegian (Språkbanken: The Norwe-
gian Language Bank, 2003c), and Swedish (Språkbanken: The Norwe-
gian Language Bank, 2003g) created in 1990’s by the company Nordisk
Språkteknologi (NST). NST went bankrupt in 2003, but was soon ac-
quired collectively by a group of Norwegian universities, Language
Council of Norway, and IBM, to ensure that the linguistic resources
NST had developed were preserved. In 2011, these resources were
transferred to the National Library of Norway, where they were made
publicly available as part of the Norwegian Language Bank (Språk-
banken). Since all three ASR datasets were part of the same resource
creation effort, we refer to them collectively as the NST corpus, and its
individual monolingual subsets as NST subcorpora.

6.2 Corpus Description

The subcorpora consist of a number of short but phonetically diverse
read-aloud sentences and phrases recorded in a quiet office environ-
ment using high-quality recording equipment. The recordings have
high signal-to-noise ratio, consistent annotations, and speaker meta-
data, which includes speakers gender, age, and regional dialect. All
utterances in the datasets are recorded in the uncompressed WAV for-
mat containing 16-bit linear PCM audio sampled at 16 kHz, and paired
with their corresponding orthographic transcripts.

Furthermore, each subcorpus is accompanied by its corresponding
pronunciation lexicon, namely, Danish (Språkbanken: The Norwegian
Language Bank, 2003d), Norwegian (Språkbanken: The Norwegian

48



Chapter 6 | Nordic Language Technology Corpus

Language Bank, 2003e), and Swedish NST lexicon (Språkbanken: The
Norwegian Language Bank, 2003f). The lexicons provide canonical
pronunciations of the most frequent lexical items in the three lan-
guages, including all words and multi-word expressions from the NST
corpus, manually transcribed in X-SAMPA, an ASCII-based encoding
of the IPA. Furthermore, they come with detailed guides on their re-
spective transcription conventions, which include X-SAMPA-to-IPA
conversion tables and a cross-lingual comparison chart of the three
phonological inventories. These guides will be used to convert the
utterance transcripts to the IPA, to be able to compare vowel categories
across languages and to the theoretical cardinal vowels.

Since the subcorpora do not come with gender and regionally bal-
anced validation and evaluation partitions, we will perform the splits
ourselves. Further steps on subcorpus partitioning, speech data and
lexicon pre-processing, as well as corpus statistics will be presented in
Section 10.2.
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7FT Speech: Danish Parliament Speech
Corpus

7.1 Introduction

In this chapter, we describe the development of a new ASR resource for
Danish, FT Speech . It represents the biggest speech corpus for Danish
spanning nine years of source material (2010–2019) and advancing
Danish from a medium-resource to a high-resource language with
respect to open-access speech data (Kirkedal et al., 2019). We evaluate
baselines for the new corpus and compare them to the ones trained
on existing resources. Since parliamentary recordings are released on
an ongoing basis, our plan is to update the corpus as more source data
becomes available.

To ensure replicability, we release the code required to reproduce
the corpus creation and evaluation from scratch. At the same time,
to ensure accessibility, we also provide the resulting timestamps and
transcripts that can be used to extract the corpus utterances directly
from the meeting recordings. All materials we provide are freely avail-
able for research purposes only. The data, license, and terms of use can
be obtained via https://ftspeech.github.io.1 This chapter was
adapted from the publication: Andreas Kirkedal, Marija Stepanović,
and Barbara Plank. 2020. FT Speech: Danish Parliament Speech Cor-
pus. In Proc. Interspeech 2020, pages 442–446.

7.2 Related Work

Research into ASR for Danish has been rather limited owing to the
scarcity of publicly available speech corpora (Kirkedal et al., 2019).
At present, there are only two public Danish speech corpora: Danish
subset of the NST corpus and DanPASS, which were developed under
different research questions and objectives.

1We thank the Danish Parliament for making their data available.
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The more comprehensive of the two, Danish NST subcorpus, is
included in Språkbanken (Norwegian Language Bank), a collection
of open-access and open-source language resources for Norwegian,
Swedish, and Danish compiled by Nordisk Språkteknologi (NST). It
contains two subsets designed specifically for the development of
ASR systems: NST Danish ASR Database (NST-Read) (Språkbanken:
The Norwegian Language Bank, 2003a), which is used in our experi-
ments and introduced in Section 6, and NST Danish Dictation (NST-
Dictate) (Språkbanken: The Norwegian Language Bank, 2003b).

NST-Read is the only public data set suitable for training ASR sys-
tems. It contains around 320 hours of phonetically balanced read-
aloud speech by a total of 748 speakers, as well as general meta-
data about the speakers. A standardized version of this data set was
released with a recipe to train ASR systems in the Kaldi repository
(sprakbanken) (Kirkedal, 2016). On the other hand, NST-Dictate is
a smaller data set with roughly 54 hours of speech by 151 speakers
aimed at acoustic modeling of automatic dictation. However, despite
their size and speaker variety, both of these data sets are limited by
their highly contrived nature. Namely, the utterances in these data sets
constitute read-aloud sentences or phrases such as personal names,
place names, acronyms, numerals, spelled out letters, etc.

DanPASS is a phonetically annotated speech corpus primarily in-
tended for acoustic and auditory phonetic analyses (Grønnum, 2006).
It contains about 9 hours of speech by 27 speakers recorded in a studio
using professional recording equipment. Although this corpus may
offer a theoretical basis for the development of speech technologies, it
is not particularly suitable for ASR due to its small size and artificial
setting.

Currently, the Kaldi recipe sprakbanken represents the state-of-
the-art on the NST-Read test set and DanPASS (Kirkedal, 2018). How-
ever, for reasons outlined above, the performance of these models
degrades sharply when they are confronted with large-vocabulary
spontaneous speech, as we will show in Section 7.5.

In order to compile a corpus of utterances more akin to rapid spon-
taneous speech, we follow the recent trend of converting open parlia-
mentary data into ASR speech corpora. This has been accomplished
for languages such as Icelandic (Helgadóttir et al., 2017), Finnish (Man-
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sikkaniemi et al., 2017), and Bulgarian (Geneva et al., 2019). In ad-
dition, a multilingual speech corpus has been constructed from the
debates held in the European Parliament (Iranzo-Sánchez et al., 2020).
Meanwhile, the official reports of Folketing meetings have already
been used to create a text corpus released within CLARIN (Hansen,
2018) and proved invaluable for multiple research disciplines (Hansen
et al., 2018; Pedersen et al., 2016; Hansen et al., 2019).

In constructing FT Speech , we follow a procedure similar to the
one used to create LibriSpeech (Panayotov et al., 2015). Other in-
fluential work on automatic alignment methods in the creation or
correction of speech corpora includes Hazen (2006); Haubold and
Kender (2007); Anguera et al. (2014); McAuliffe et al. (2017).

7.3 Corpus Preparation and Alignment

This section presents the corpus preparation and alignment proce-
dures, including the description of the raw source data, audio and text
preprocessing, lexicon creation, and alignment.

7.3.1 Source Data Description

FT Speech was created from the recordings of Danish parliamentary
sessions and their annotated reports, which are freely available on the
Folketing’s official website: ft.dk. The audio recordings are available
in two formats: MP3 (audio only) and AAC (as part of the audio and
video stream container MP4).

The sessions used to create the corpus include 1,003 meetings
of the Parliament recorded in the period from October 5, 2010 (first
video broadcast) until December 20, 2019 (last meeting in 2019). This
amounted to about 4,960 hours of recorded audio material featuring
447 different speakers.

The reports of the parliamentary meetings are transcribed and
published by the Office of the Folketing Hansard. Each report contains
a comprehensive account of all parliamentary activities in the course
of one meeting, including near-verbatim transcripts of the speeches
by Members of Parliament (MPs) accompanied by their corresponding
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metadata, such as the speaker’s name, role, and political affiliation, as
well as the approximate start and end timestamps of the speech.

The reports are released online as XML and PDF documents. Ini-
tially, only a preliminary version is released while the report is still
subject to revision. From this point forward, it can take up to sev-
eral months until the final version is published. During this period,
the reports, and, in particular, the speech transcripts may undergo a
number of modifications to ensure adherence to the formal guidelines
established by the Presidium of the Danish Parliament. Therefore, the
speeches are not transcribed strictly verbatim, but are instead adapted
into standard written form by omitting speech disfluencies, correcting
factual errors and slips of the tongue, and adding context to ensure the
transcripts reflect the intentions of the speaker clearly and accurately
(Folketingstidende).

In addition to prescribing documentation guidelines, the Presid-
ium also enforces observance of parliamentary etiquette, which man-
dates decorum and the use of formal and respectful language in the
Parliament. Some of the official rules state that the MPs must be ad-
dressed as either Mr. or Ms. followed by their full name, while the
Ministers must be addressed with their minister titles. Furthermore,
the MPs may not interject, applaud, express disapproval, or other-
wise make noise during speeches and debates2 (Hansen et al., 2018).
This makes the Folketing meetings well-suited for the extraction of
speaker-annotated monologues used in ASR research and develop-
ment. However, the recordings still occasionally contain an audible
level of spoken background noise.

The speakers come from different administrative regions of Den-
mark, as well as the two autonomous territories within the Kingdom
of Denmark: Greenland and the Faroe Islands. Although some of the
speakers may be native speakers of other local languages or dialects,
the official language of the Parliament is Danish. In particular, since
the linguistic register is strictly formal, while the topics discussed are
primarily concerned with social, political, economic, and legal mat-
ters, the idiolects used in the Parliament converge on Standard Danish.
The manner of delivery ranges from read or rehearsed to spontaneous

2A parliamentary debate is a sequence of monologues on the same topic.
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speech.
The main challenges of converting this kind of raw data into a

corpus suitable for ASR stem from: 1) the inaccuracy of the timestamps
indicating the beginning and end of speeches in the reports by up to
30 seconds, 2) discrepancy between the written transcripts and the
actual speeches, 3) presence of background noise in the audio data,
and 4) use of lossy compression formats (MP3 and AAC) to encode the
audio data.

7.3.2 Audio and Text Preprocessing

First, we downloaded the audio recordings of all Folketing meetings
available on the official website up to and including December 2019.3

All the recordings were in the MP3 format with a bitrate of 128 kbit/s.
Their duration ranged from 5 minutes to 16 hours (mean ≈ 5 h, SD ≈ 3
h).

We began the audio processing by extracting the left channel
stream from the stereo recordings. This was an arbitrary decision
since the two channels were identical. The mono recordings were
left unchanged at this stage. Next, we converted the selected single-
channel MP3 recordings to WAV using a 16-bit linear PCM sample en-
coding (PCM_S16LE) sampled at 16 kHz. Finally, to extract speeches
by single speakers, we segmented the obtained WAV files according to
the timestamps and speaker names provided in the annotated meet-
ing reports in the XML format.4 To ensure the speaker names in the
annotations referred to unique individuals, we cross-checked them
with the biographies of past and present MPs available on the official
website.5 This procedure resulted in 414K speeches whose duration
ranged from less than 1 second to 15 minutes (mean ≈ 40.1 s, SD
≈ 63.68 s). However, most speeches did not perfectly align with their

3URL to the video and audio recordings:
ft.dk/da/dokumenter/dokumentlister/referater

4URL to XML transcripts of the proceedings:
ftp://oda.ft.dk/ODAXML/Referat/samling

5URLs to the biographies of the Folketing MPs in Danish and English:
https://www.ft.dk/da/medlemmer
https://www.thedanishparliament.dk/en/members
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corresponding transcripts due to the inaccuracy of the timestamps
in the XML annotations, which is one of the issues we try to overcome
with the alignment procedure outlined in Section 7.3.4

As stated earlier, the textual transcripts of the speeches were ex-
tracted from the XML documents containing the reports of the Folket-
ing meetings. Their preprocessing involved expanding all common
abbreviations, numbers, dates, and symbols, as well as removing all
punctuation, capitalization, and unspoken parenthetical remarks and
references.

7.3.3 Alignment Lexicon

The lexicon used for alignment was produced by concatenating the
vocabulary created from the preprocessed transcripts of the Folketing
speeches with the sprakbanken lexicon containing all words from the
NST-Read train set. This yielded around 233K unique words (types).
Their pronunciations were generated using eSpeak NG,6 a multilingual
rule-based grapheme-to-phoneme converter and speech synthesizer.
We stripped these pronunciations off all stress, vowel length, and stød
markers. We also made the pronunciations of foreign words consistent
with the Danish phonetic alphabet in eSpeak, and manually added the
unstressed forms of common function words.

7.3.4 Alignment Model

Because the Folketing meeting reports are not transcribed verbatim,
we expect a large proportion of words in the aligned utterances to be
misaligned. For instance, if a speaker mistakenly stated, My uh party
is against tax- taxation of the air used to to create soft ice, but the party
were, in fact, in favor of such taxation, the transcript would be edited
by changing against to for and removing filler words (uh), restarts
(tax-), and repetitions (to). In this example, if against were correctly
recognized by an ASR system, the word would be misaligned because
it did not match the transcript. For this reason, we need to extract
verbatim transcriptions while allowing for word repetitions, restarts,

6https://github.com/espeak-ng/espeak-ng
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and filler words that occur frequently in spontaneous speech. In our
example, we would extract two segments: My party is and taxation of
the air used to create soft ice.

First, we create a word alignment with a procedure similar to the
one used in LibriSpeech.7 To compare ASR hypotheses to transcripts,
we decode the timestamp-segmented Folketing data with a speaker-
independent GMM AM trained with boosted MMI on training data
from sprakbanken. We use standard MFCC features and a GMM AM
because we expect better performance on data from a mismatched
domain than with a DNN AM. The LMs used to generate the word
alignment are trained on groups of utterances and the most frequent
words in the Folketing data. We want to bias the LMs to the training ut-
terances to find a trade-off between accurate decoding of the verbatim
segments and robustness to the text mismatch.

Next, we segment the utterances again and keep segments that
start with a correctly recognized word and end with a misrecognized
word (against in our example). If the segmentation algorithm classifies
a misrecognized word as a word repetition such as to, the word is in-
serted into the reference and we do not split the segment. If segments
contain silences longer than 0.3 seconds, they are split again. All ends
of segments are extended in the audio and transcript to include the
next word and to reduce edge effects in feature extraction from the
core segment. The transcript is padded with a silence token such as
<UNK> unless the segment is at the utterance boundaries.

We restrict the utterances we include in the corpus to utterances
with a duration ranging from 2 to 60 seconds to ensure they can be
used to train AMs. As a result, we discard 487,938 utterances of which
1,320 were longer than 1 minute.

7.4 Corpus Description and Organization

Following the alignment, segmentation, and elimination of overly long
or short utterances, the finished corpus, termed FT Speech , contains

7Implemented in the bash script https://github.com/kaldi-asr/kaldi/
blob/master/egs/wsj/s5/steps/cleanup/clean_and_segment_data.sh
from the Kaldi GitHub repository.
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1,017,244 utterances with a total duration of 1,857 hours produced by
434 speakers.

We partition this corpus into a training, development, and test
set with no speaker overlap. To create the development and test set,
we select the same number of male and female speakers with at least
150 utterances and 900 seconds per speaker, while trying to minimize
training data loss.

Since the total duration per speaker varies significantly, it was im-
possible to create a speaker-balanced development or test set. There-
fore, we decided to further partition both of these sets into two subsets:
balanced and other. The balanced portions (dev-balanced and test-
balanced) contain approximately equal amounts of speech per speaker.
They were created by choosing a random sample of utterances from
each speaker such that the total duration per speaker was 900 seconds
and that the difference in the number of utterances per speaker was
kept low. The other portions (dev-other and test-other) consist of the
remaining utterances by the same speakers which had to be removed
from the training data to avoid speaker overlap. Detailed statistics of
the corpus and each of the partitions are shown in Table 7.1.

7.5 Speech Recognition Experiments

This section describes the ASR experiments conducted for the purpose
of evaluating the new resource, FT Speech . We build two acoustic
models: one trained on FT Speech train (FT AM) and the other on
NST-Read train data (SB AM), as well as two language models: one
trained on the Folketing text data (FT LMs) and the other on NST-
Read training transcripts (SB LMs), and subsequently evaluate their in-
domain and out-of-domain combinations on three different test sets.
Since NST-Read is an established ASR corpus, we use the acoustic and
language models trained on it as a reference point in our performance
evaluation.
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7.5.1 Acoustic Models

We follow the sprakbanken recipe8 to train monophone and triphone
segmentation GMM AMs (Bing-Hwang Juang et al., 1986) from scratch
on FT Speech and generate an alignment to train an iVector model (De-
hak et al., 2011) for speaker adaptation of a Time-Delay Neural Network
(TDNN) (Peddinti et al., 2015) AM. The only modification compared
to the sprakbanken recipe is that we do not perform data augmenta-
tion with speed-perturbation on FT Speech because the size of the
training data is larger than the size of NST-Read augmented with speed-
perturbation. For NST-Read, we use the training, development, and
test split introduced in (Kirkedal, 2018).

We train so-called chain TDNN AMs with the LF-MMI objective
on FT Speech and NST-Read. LF-MMI is a sequence discriminative
training criterion that maximizes the log probability of the correct
phone sequence (Povey et al., 2016). We train the AMs for 4 epochs
on minibatches of 128 chunks where each chunk contains 150 frames.
The frames are 40-dimensional MFCC features. The feature frames
are subsampled so we only train on every third frame, but we create
different versions of the training data by shifting the frames by 1 and
2 frames to create 3 versions. The effect is that every training epoch
corresponds to 3 epochs. We use HMMs with a single state rather than
the classic 3-state topology because of the low frame rate.

The first layer of the TDNN stacks 3 frames and a 100-dimensional
iVector and projects the supervector to a 450-dimensional vector with
an affine transform. The remaining layers consists of an affine trans-
form, ReLU activation and a renorm component which is a layernorm
without the mean term. We use a learning rate that decays from 0.001
to 0.0001 during training and we clip parameters at a Frobenius norm
of 2.0. All hyperparameters are copied from the sprakbanken recipe
and are identical for the two AMs. Note that there are several important
differences to the AM in (Kirkedal, 2018) (see section 7.1).

8The recipe can be found here: https://github.com/kaldi-asr/kaldi/
blob/master/egs/sprakbanken/s5/run.sh
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7.5.2 ASR Lexicon and Language Models

To create the lexicon for the ASR experiments, we reuse the alignment
lexicon but remove all types that appear only in the preprocessed tran-
scripts of speeches by the speakers placed in the FT Speech develop-
ment and test sets.9 With SRILM (Stolcke, 2002), we estimated several
3-gram and 4-gram LMs with Witten-Bell or Kneser-Ney smoothing
on both text from the Folketing meeting reports and on the NST-Read
transcripts. Ultimately, we choose the trigram models with Witten-
Bell smoothing, which we will refer to as FT LM and SB LM, for the
final evaluation, as they achieve the best performance on their cor-
responding development sets. Before training, the transcripts were
segmented into sentences using the spaCy sentence segmenter for
Danish (Honnibal and Montani), and then preprocessed as described
in Section 7.3.2.

7.6 Performance Evaluation

We use the standard word error rate metric (WER) to evaluate the per-
formance. Our evaluation spans all four combinations of the two AMs
and the two LMs (the lexicon is constant in all cases). We evaluate
each of them on three test sets: NST-Read test (introduced in (Kirkedal,
2018) as SPTEST), NST-Dictate test (included in the original NST-
Dictate data (Språkbanken: The Norwegian Language Bank, 2003b)),
and FT Speech test-balanced (Table 7.1). The WER results for all com-
binations of AMs, LMs, and test data are shown in Table 7.2.

From Table 7.2, we can see that for FT Speech , the best WER of
14.01% is obtained with the in-corpus LM and AM. As expected, in-
domain AM and LM combinations perform best in all in-domain set-
tings (boldface in Table 7.2).10 However, going across domains remains
a challenge.

When the LM does not match the domain of the test set, WER
rises by 5–14% absolute, presumably due to significant lexical differ-
ences between NST-Read and FT Speech . As stated previously, a large

9Note that neither the ASR nor the alignment lexicon contains any NST test or
development data.

10Our system SB AM+LM achieves a new best result on NST-Read.
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Table 7.2: WER performance of all four AM+LM combinations on three different test
sets.

AM Test set SB LM FT LM

SB
NST-Read 8.81 15.98
NST-Dictate 14.46 19.77
FT Speech 37.52 23.86

FT
NST-Read 13.07 27.22
NST-Dictate 20.71 33.73
FT Speech 24.25 14.01

number of NST-Read utterances consist solely of either proper nouns,
numerals, spelled out names, or imperative sentences, while some
also contain articulated punctuation symbols used for modeling auto-
matic dictation. These kinds of utterances, most of which were devised
to increase phonetic diversity and type-to-token ratio, do not occur
in FT Speech nor general spontaneous speech. For these reasons,
NST-Read is a less challenging resource, reflected in the lower WER
(8.81).

We see a gap in performance when we fix the test set and LM,
but replace the AM. This decrease in performance occurs as a result
of the acoustic differences between the FT Speech and NST-Read
utterances, especially, the differences in the speech genre, recording
environment and equipment, and audio encodings. Namely, NST-
Read was recorded in a quiet office and encoded in a lossless format,
whereas FT Speech was recorded in the Folketing meeting chamber
and encoded into a lossy format.

Most importantly, however, we observe that the combination of FT
AM and SB LM evaluated on NST-Read test achieves a WER of 13.07%,
which is comparable to the results previously published on this test set
(13.08–13.38% WER, presented in Table 7 in (Kirkedal, 2018)). On NST-
Dictate, it achieves a WER of 20.71 with FT AM+SB LM, which is 6.25%
absolute WER off from in-domain data results. This means that the FT
AM generalizes well to NST-Read data, and it shows the benefit of the
new corpus containing more spontaneous speech in a more realistic
environment with disfluencies and background noise. Interestingly,
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the converse is not the case: the SB AM does not generalize to the
FT Speech domain, resulting in the worst overall WER. This shows
how poorly existing resources generalize, which further underlines the
value of the proposed resource. While not strictly comparable, our
WER results on FT are in similar ranges to related work on Icelandic,
another Northern Germanic language, were a WER of 14.76% was
reported on parliamentary speeches (Helgadóttir et al., 2017).

7.7 Conclusion

This work introduces FT Speech , a novel corpus for Danish ASR con-
taining more than 1,800 hours of speech. It enriches the limited land-
scape of existing resources for Danish with a resource containing more
spontaneous speech in challenging realistic conditions. Our baseline
results show that a combination of FT Speech with in-domain lan-
guage data provides not only comparable results to prior work, but
also a more challenging benchmark for future studies. As the source
material expands naturally, we will update the corpus with new data.
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8.1 Introduction

This section will introduce and briefly describe the remaining four
parliamentary speech corpora used in our experiments.

8.2 Althingi: Icelandic Parliament Speech Corpus

Althingi Parliamentary Speech is an Icelandic ASR corpus created from
the recorded meetings of the Icelandic Parliament (Althingi). It was
built in 2016 for the purpose of developing an ASR system for the
transcription of parliamentary meetings that would reduce the need
for manual speech transcription.

The corpus consists of approximately 542 hours of recorded speech
along with corresponding utterance transcripts, a pronunciation dic-
tionary, and two language models. The parliamentary speeches date
from 2005-2016. The corpus is publicly available and distributed
through Linguistic Data Consortium (LDC) (Helgadóttir et al., 2021).
The corpus creation procedure is described in Helgadóttir et al. (2017).

8.3 ParlamentParla: Catalan Parliament Speech Corpus

ParlamentParla is a Catalan ASR corpus created in 2021 from
the recorded meetings of the Catalan Parliament (Parlament de
Catalunya), which took place between 2007 and 2018.

The corpus consists of approximately 611 hours of recorded speech
along with corresponding utterance transcripts. It is published with a
CC-BY license and fully downloadable from Külebi (2021). The corpus
creation procedure is described in Külebi et al. (2022).
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8.4 ParlaSpeech-RS: Serbian Parliament Speech Corpus

ParlaSpeech-RS is a Serbian ASR corpus created in 2024 from the
recorded proceedings of the National Assembly of Serbia (Narodna
skupština). The transcripts of the parliamentary proceedings were
obtained from the multilingual corpus of parliamentary debates called
ParlaMint 4.0 (Erjavec et al., 2023), while the recordings were taken
from the Serbian Parliament’s YouTube channel.

The corpus consists of almost 900 hours of recorded speech along
with corresponding utterance transcripts and speaker metadata. It is
published with a CC-BY license and freely downloadable from Ljubešić
et al. (2024). The corpus creation procedure is described in Ljubešić
et al. (2022). The corpus is not partitioned into training, development,
and test subsets. We describe further steps on corpus partitioning,
data pre-processing, and corpus statistics in Section 13.2.

8.5 FinParl: Finnish Parliament Speech Corpus

FinParl is a Finnish ASR corpus created from the recorded meetings
of the Finnish Parliament (Suomen eduskunta) by the Aalto Speech
Recognition group. It was first built in 2016 and updated in 2023. It
includes recordings which took place between 2008 and 2020.

The corpus consists of approximately 3,130 hours of recorded
speech along with corresponding utterance transcripts, as well as a
30-million-word-token text corpus that can be used for language mod-
eling. It is freely available from the website of the Language Bank of
Finland Aalto University, Department of Signal Processing and Acous-
tics (2023). The corpus creation and evaluation procedure is described
in Mansikkaniemi et al. (2017) and Virkkunen et al. (2023).

64



9Babel: Low-Resource Noisy Telephone
Speech Corpus

9.1 Introduction

The IARPA Babel program was a research initiative funded by the Intel-
ligence Advanced Research Projects Activity (IARPA) with the goal of
developing ASR systems that can accurately transcribe speech in a vari-
ety of languages and dialects, even in challenging acoustic conditions.
The main focus of the program was the development of speech recog-
nition technologies for noisy telephone conversations in languages
with very little transcribed data. As part of this program, data from 25
low-resource languages was collected and made publicly available via
the Linguistic Data Consortium.

We have selected a subset of five of the Babel languages for our
experiments. They are Amharic, Javanese, Lao, Mongolian, and Zulu.
We aimed to choose languages that were far geographically and typo-
logically from both our training languages and the languages of the
parliamentary corpora, as well ones that had little other data publicly
available. In the following sections, we will introduce and briefly de-
scribe the selected Babel subcorpora, as they are described in their
accompanying documentation. However, while the documentation
states that over 200 hours of speech were recorded from each language,
the actual releases contain only about 50 hours of transcribed speech.
More information on Babel data pre-processing and corpus statistics
is provided in Section 13.2.

9.2 Amharic Subcorpus

IARPA Babel Amharic Language Pack was developed by Appen for the
IARPA Babel program. It contains approximately 204 hours of Amharic
conversational and scripted telephone speech collected in 2014 along
with corresponding utterance transcripts. The corpus can be found
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via (Bills et al., 2019).
The Amharic speech in this release comes from the native speakers

of Amharic from the Addis Ababa, Shewa, and Gondar dialect regions
of Ethiopia. The gender distribution among speakers is approximately
equal, while their age ranges from 16 years to 60 years. Calls were
made using different telephones (e.g., mobile, landline) from a variety
of environments including the street, a home or office, a public place,
and inside a vehicle.

Audio data is presented as 8 kHz 8-bit a-law encoded audio in
sphere format and 48 kHz 24-bit PCM encoded audio in wav format.
Transcripts are encoded in UTF-8 in fidel (Geez/Ethiopic) script and in
a romanization scheme developed by Appen. Transcripts are included
for approximately 75% of the speech.

9.3 Javanese Subcorpus

IARPA Babel Javanese Language Pack was developed by Appen for
the IARPA Babel program. It contains about 204 hours of Javanese
conversational and scripted telephone speech collected in 2014 and
2015 along with corresponding utterance transcripts. The corpus can
be found via (Bills et al., 2020a).

The Javanese speech in this release represents the Central, Western,
and Eastern Javanese dialect regions of Indonesia. The gender distri-
bution among speakers is approximately equal, while their age ranges
from 16 years to 65 years. Calls were made using different telephones
(e.g., mobile, landline) from a variety of environments including the
street, a home or office, a public place, and inside a vehicle.

Audio data is presented as 8 kHz 8-bit a-law encoded audio in
sphere format and 48kHz 24-bit PCM encoded audio in wav format.
Transcripts are encoded in UTF-8 in Latin script for approximately
77% of the speech data.

9.4 Lao Subcorpus

IARPA Babel Lao Language Pack was developed by Appen for the IARPA
Babel program. It contains approximately 207 hours of L conversa-
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tional and scripted telephone speech collected in 2013 along with
corresponding utterance transcripts. The corpus can be found via
(Benowitz et al., 2017).

The Lao speech in this release represents that spoken in the Vien-
tiane dialect region in Laos. The gender distribution among speakers is
approximately equal, while their age ranges from 16 years to 60 years.
Calls were made using different telephones (e.g., mobile, landline)
from a variety of environments including the street, a home or office,
a public place, and inside a vehicle.

Audio data is presented as 8 kHz 8-bit a-law encoded audio in
sphere format and 48 kHz 24-bit PCM encoded audio in wav format.
Transcripts are encoded in UTF-8. The romanization scheme was
developed by Appen and was based on the scheme developed by the
American Library Association and Library of Congress.

9.5 Mongolian Subcorpus

IARPA Babel Mongolian Language Pack was developed by Appen for
the IARPA Babel program. It contains approximately 204 hours of
Mongolian conversational and scripted telephone speech collected in
2014 along with corresponding utterance transcripts. The corpus can
be found through Bills et al. (2020b).

The speech in this release represents Halh Mongolian, which is
spoken by roughly 3 million speakers living in Mongolia. Only native
speakers of Halh Mongolian in Mongolia were recruited for data collec-
tion. The gender distribution among speakers is approximately equal,
while speakers’ ages range from 16 years to 61 years. Calls were made
using different telephones (e.g., mobile, landline) from a variety of
environments including the street, a home or office, a public place,
and inside a vehicle.

Most of the audio data is presented as 8 kHz 8-bit a-law encoded
audio in the sphere format, with some data also being in the 48 kHz
24-bit PCM encoded wav format.

The utterance transcripts are encoded in UTF-8 in both Mongo-
lian Cyrillic and a romanization scheme developed by Appen. They
cover approximately 77% of the speech data. Further information
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about transcription methodology is contained in the documentation
accompanying the data set.

9.6 Zulu Subcorpus

IARPA Babel Zulu Language Pack was developed by Appen for the
IARPA Babel program. It contains approximately 211 hours of Zulu
conversational and scripted telephone speech collected in 2012 and
2013 along with corresponding utterance transcripts. The corpus can
be found via (Adams et al., 2017).

The Zulu speech in this release represents that spoken in the
KwaZulu-Natal urban dialect region of South Africa. The gender distri-
bution among speakers is approximately equal, while their age ranges
from 16 years to 70 years. Calls were made using different telephones
(e.g., mobile, landline) from a variety of environments including the
street, a home or office, a public place, and inside a vehicle.

Audio data is presented as 8 kHz 8-bit a-law encoded audio in
sphere format and 48 kHz 24-bit PCM encoded audio in wav format.
Transcripts are encoded in UTF-8.
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10.1 Introduction

Since the starting pronunciation transcripts are taken from a pronun-
ciation dictionary, where a given word or phrase will always have the
same pronunciation regardless of the speaker or linguistic context,
they are neither intra- nor cross-linguistically consistent, because they
do not reflect the actual realization of words in connected speech. We
try to mitigate these inconsistencies by performing vowel categoriza-
tions based on the normalized formant values. Namely, we categorize
normalized vowels in three ways using k-means clustering: mono-
lingual language-dependent, multilingual language-dependent, and
language-independent categorization. Subsequently, we relabel the
vowels depending on which cluster they are assigned to.

Monolingual language-dependent categorization (mono) is per-
formed at the level of a monolingual subcorpus by clustering all
monophthong tokens in the subcorpus based on their position in the
vowel formant space and relabeling them according to their cluster
membership. This increases the within-language consistency of vowel
representations by allowing vowels to vary in terms of, e.g., their allo-
phonic realization or the speaker’s socio-linguistic identity, regional
dialect, or emotional state.

Multilingual language-dependent categorization (multi ) clusters
and relabels all monophthong tokens from each language in the cor-
pus based on their position in the vowel formant space of a multilin-
gual corpus. This should increase both the within- and cross-language
consistency of phonetic vowel representations, and could, thereby,
help improve vowel recognition on non-standard speech, as well as
low- and zero-resource languages and language varieties.

Language-independent categorization (cardinal ) involves vowel
categorization with respect to a set of cardinal vowels, a system of
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reference vowels that allows us to describe any vowel in any spoken
language based on the tongue position during articulation (Laver,
1994, p. 276). The hypothesized values of cardinal vowel formants are
taken from Catford (2001, p. 154). This form of vowel categorization
should increase the cross-lingual consistency of vowel representations
since all vowels are categorized into the same set of cardinal vowel
categories regardless of the language. Like multilingual clustering, this
could also help improve vowel recognition for low- and zero-resource
languages and varieties. Additionally, it should generalize to unseen
languages better than monolingual and multilingual clustering as the
cardinal vowels do not depend on the vowel systems of the training
languages. However, since the peripheral cardinal vowels are produced
with the tongue in an extreme position, there are few languages with a
vowel system that spans the entire range of cardinal vowels (Catford,
2001, p. 133–134). Therefore, this kind of clustering might require a
large number of diverse languages to achieve better generalization in
cross-lingual vowel recognition.

10.2 Data Preparation

All three NST subcorpora are originally split into a training and test set
only. Since there is no validation data and the test sets are significantly
larger than typical ASR test sets, we extract smaller tune, development,
and test sets from each original test set. The splits are performed
manually in order to maintain gender and dialect balance in the tune,
development, and test sets, and preclude speaker overlap between
any two subsets. In the end, each non-training partition consists of
exactly one male and one female speaker from each regional dialect
available in the corpus. The leftover data from the original test set is
added to the train data. As opposed to the non-training partitions, the
new training sets are not regionally balanced. The capital region is the
majority dialect region in each subcorpus, and about twice as large
as the other regions. The respective sizes of the resulting train, tune,
development, and test partitions for Danish, Norwegian, and Swedish
are shown in Table 10.1.

To transcribe the speech data phonemically, we use the accompa-
nying NST pronunciation lexicons of Danish, Norwegian, and Swedish
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Table 10.1: NST subcorpus partitions and their size in hours, total number of utter-
ances, tokens, types, and speakers. The speaker counts by gender are marked as F
(female) and M (male). Out-of-vocabulary types (OOVs) comprise all types that are
not found in the train set.

hours utts tokens types OOVs speakers (F+M)
Danish

train 263.9 201,580 1,865,932 62,785 / 644 (335+309)
tune 17.9 13,440 130,604 8,532 1,350 14 (7+7)
dev 18.9 13,459 131,426 8,559 1,466 14 (7+7)
test 20.2 13,804 134,546 8,573 1,481 14 (7+7)

total 320.9 242,283 2,262,508 88,440 3,468 748 (397+351)

Norwegian

train 428.1 301,168 2,522,539 82,792 / 911 (489+422)
tune 32.5 21,014 183,753 11,159 2,450 22 (11+11)
dev 33.1 21,691 189,245 11,036 2,570 22 (11+11)
test 33.0 21,692 189,853 10,825 2,504 22 (11+11)

total 526.7 365,565 3,085,390 115,812 5,852 977 (522+455)

Swedish

train 420.2 306,882 2,387,280 87,002 / 954 (526+428)
tune 25.4 18,681 151,288 11,205 2,215 20 (10+10)
dev 28.6 19,720 159,650 10,980 2,315 20 (10+10)
test 27.7 19,720 159,287 11,093 2,350 20 (10+10)

total 501.9 365,003 2,857,505 120,280 5,655 1,014 (556+458)

(Språkbanken: The Norwegian Language Bank, 2003d,e,f). As stated
in Chapter 6, the NST lexicons provide canonical pronunciations of
the most frequent lexical items in the three languages, including all
words and multi-word expressions from the NST corpus, manually
transcribed in X-SAMPA, an ASCII-based encoding of the IPA. Further-
more, they come with detailed guides on their respective transcription
conventions, which include X-SAMPA-to-IPA conversion tables and a
cross-lingual comparison chart of the three phonological inventories.
We use these guides to convert all utterance transcripts to the IPA,
to be able to compare vowel categories across languages and to the
abstract cardinal vowels.
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To be able to represent Danish, Norwegian, and Swedish vowel
phonetic qualities cross-linguistically, we strip the dictionary phone-
mic representations of all suprasegmental features, i.e. stress, tone,
length, and stød (Danish creaky voice) markers. Table 10.2 shows the
number of phone and vowel types for each of the three languages in
the NST corpus.

Table 10.2: The number of phone and monophthong vowel types in the
phonological inventory of each language in the NST corpus.

Number of types Danish Norwegian Swedish

phones 33 45 41
monophthongs
(unround. + rounded)

14 (7 + 7) 17 (7 + 10) 16 (6 + 10)

language unique
(of which monophth.)

5 (2) 9 (1) 4 (0)

10.3 Formant-Based Vowel Categorization with
Language-Specific Vowel Sets

The vowel categorization pipeline consists of three steps: phonetic
corpus alignment, vowel normalization, and vowel clustering and
recategorization.

To obtain the start and end times of each vowel in the NST corpus,
we segment the speech into phones by force-aligning the speech and
the transcriptions of each monolingual subcorpus individually with
forced alignment models. To that end, we use Kaldi’s sprakbanken
recipe to train monophone and triphone acoustic models based on
hidden Markov models and Gaussian mixture models (HMM-GMM).1

The resulting segmentation of the speech signal is used to determine
the start and end times of all vowels in the data.

1The original recipe was created for the Danish NST subcorpus and can
be found here: https://github.com/kaldi-asr/kaldi/blob/master/egs/
sprakbanken/s5/run.sh.
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The parameters of the acoustic models are estimated by alternating
between training and alignment phases where each new training step
uses the aligned output from the previous step to refine the model’s
parameters and improve the alignment between the acoustic data and
the reference transcript. For the final alignment, we train a speaker-
adapted model with fMLLR transforms estimated at the speaker-level
(Gales, 1998). After this stage, we extract phone alignments for each
utterance and convert the integer phone labels to their corresponding
IPA symbols.

Subsequently, for each vowel, the formant frequencies are esti-
mated using Praat (Boersma and Weenink, 2018) and its Python port
Parselmouth (Jadoul et al., 2018). We use standard formant settings
in Praat: pre-emphasis from 50 Hz, Gaussian analysis window with
window length of 0.025 s, dynamic range of 30 dB, 5 formants per
frame, and a formant ceiling of 5500 Hz for female voices and 5000 Hz
for male voices. The output of the formant estimation is a sequence
of formant values for each vowel formant. Since we are dealing with
monophthongs whose formants are relatively constant, we create a
single value that represents the formant frequency as accurately as pos-
sible. First, we discard outlier values that are more than two standard
deviations away from the mean of the sequence, which are assumed
to be formant mistrackings. Then, we extract the midpoint value of
the resulting sequence, which is a point where the formant is consid-
ered the most stable and least affected by adjacent phones (Ladefoged,
2003, p. 104). Finally, the obtained formant midpoints, which we refer
to as raw F1 −F2, are normalized following the procedure explained in
Section 4.3.

The effect of this procedure is visualized in Figure 10.2 which shows
the female and male vowel categories for each language before and
after F1 −F2 normalization. The plots show that this method greatly
reduces both the spread within each vowel and the difference between
corresponding male and female categories. This indicates an overall
reduction of the effects of individual speaker characteristics on for-
mant values and allows us to compare normalized vowel spaces across
languages.

Subsequently, the three formant-based vowel categorizations are
carried out (as introduced in Section 10.1). This results in three types
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of relabeled phonetic utterance transcripts: mono , multi , and cardinal
transcripts. Since all three languages in our corpus are rich in both
unrounded and rounded vowels whose first two formant values can
overlap considerably (Basbøll, 2005; Kristoffersen, 2000; Riad, 2014),
we cluster these two sets of vowels separately. Therefore, for each lan-
guage and categorization, we first separate unrounded and rounded
vowels based on their dictionary IPA symbol, and, then, use k-means
to cluster each group into k clusters, where k is the number of vowel
types in the given vowel group of a given language.

For language-dependent categorization (mono and multi ), we
cluster the unrounded and rounded vowels of a given language into k
clusters, where k is the number of unrounded or rounded vowels in its
vowel system. For mono , the cluster centers are estimated from the
vowels of each monolingual subcorpus separately, whereas, for multi ,
they are estimated from the vowels of all three subcorpora together. In
each case, the k-means algorithm is initialized with a predefined set
of cardinal vowels as cluster centers for the purpose of preserving the
vowel cluster labels. To minimize the effects of outlier vowels, which
might result from errors in phonetic alignment or formant estimation,
for each vowel type, we only cluster the vowel instances whose nor-
malized formant values are within 2 standard deviations (std) from the
mean. The outlier vowels over 2 std from the mean, are, therefore, left
unchanged.

For language-independent categorization (cardinal ), we do not
learn the clusters from the data, but rather create a trained k-means
model using a set of predefined cardinal vowels as cluster centers.
We use this model to determine which cardinal vowel cluster each
monophthong in the speech corpus belongs to. This is equivalent to
classifying each monophthong with a 1-nearest neighbor classifier
trained on a set of normalized cardinal vowels.

The outcome of each of the three forms of clustering is a new
categorization of monophthong vowels which should more accurately
reflect their acoustic realization. These are used to create a new set of
utterance transcripts for each language in the corpus by relabeling the
monophthong vowel tokens of the original transcripts with the new
labels. Figures 10.3-10.5 show the clustering decision boundaries for
each of the categorization methods in relation to the original vowel
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distributions of Danish, Norwegian, and Swedish respectively, while
Figure 10.6 contains all three previous figures for easier cross-lingual
comparison.

It should be noted that none of the categorization methods change
the phone sets of the source languages provided by the NST pronun-
ciation lexicons. They only change the distribution of monophthong
vowel tokens in the utterance transcripts. Preserving the same phone
sets across different clustering methods and their resulting utterance
transcripts makes it possible to compare our experiment results across
the three categorization techniques and the original transcripts.

With mono transcripts, about 21% of the original phone tokens
have undergone relabeling in each NST subcorpus. With multi tran-
scripts, about 22% of the Swedish, 25% of the Norwegian, and 26% of
the Danish phone tokens have undergone a label change. Finally, with
cardinal transcripts, about 22% of the Swedish, 25% of the Norwegian,
and 25% of the Danish phone tokens have undergone a label change.
About 4% of all monophthong tokens were considered outliers and
excluded from any categorization. Tables 10.3 and 10.4 show how each
of the categorization methods affects the distribution of unrounded
and rounded monophthongs in each subcorpus.

10.4 Intrinsic Evaluation: Cross-Lingual Phone Recog-
nition

The utility of the three vowel categorization approaches is assessed
intrinsically in a set of cross-lingual phone recognition experiments.
All phone recognition models are created by fine-tuning the pretrained
multilingual wav2vec 2.0 model, XLSR-53 (Baevski et al., 2020b; Con-
neau et al., 2020), on two NST subcorpora (training languages). The
trained models are then evaluated on the third, unseen NST subcor-
pus (evaluation language). For each evaluation language, we fine-
tune three cross-lingual models using the mono , multi , and cardinal
transcriptions, individually, and one cross-lingual model using the
original dictionary-based pronunciations (nst), which is used as the
baseline. We furthermore investigate the effect of the number of la-
beled fine-tuning samples on the cross-lingual (zero-resource) models’
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Figure 10.6: The decision boundaries of each vowel category for each of the three
categorization methods per language. Each vowel cluster has a different color and is
labeled with the corresponding IPA symbol, which is located at the cluster centers.
The circled vowel symbols and the surrounding ellipses plotted over the decision
plots represent the mean of the original vowels and mean vowel spread 2 std from
the mean.
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performance by fine-tuning on 1000, 2000, 3000, 4000, 5000, and 10K
samples from either training language (so double that number of fine-
tuning samples in total). For fine-tuning, we use randomly sampled
utterances from the training sets of the NST subcorpora, while the en-
tire tune and development sets are used for validation and evaluation
respectively.

The pretrained model is fine-tuned using Connectionist Tempo-
ral Classification (CTC) for wav2vec 2.0 (Graves et al., 2006; Baevski
et al., 2020a) provided by the Hugging Face Transformers library (Wolf
et al., 2020). Each cross-lingual model is fine-tuned on one GPU over
12,000–30,000 training steps. The number of steps is determined as the
number of fine-tuning samples + 10,000. We use a train batch size of 4
with 4 gradient accumulation steps, which simulates training on larger
batches by accumulating gradients over 4 batches before performing a
backward pass. For optimization, we use AdamW with a learning rate
of 3×10−5 with 2,000 warm-up steps and 0.005 weight decay. Once
fine-tuning is finished, cross-lingual evaluation is conducted on the
entire development set of the evaluation language using the model
checkpoint that had the lowest validation loss on the whole tune sets
of both training languages. The test sets are not used in this study.
They are reserved for prospective follow-up studies that will evaluate
the vowel categorization approach extrinsically in downstream tasks.

All fine-tuned models are evaluated in terms of phone error rate
(PER) and phone feature Hamming edit distance (PFHED) (Mortensen
et al., 2016). PER is computed as the standard word error rate in which
each phone token is treated as a word token. It represents the ratio of
errors in the hypothesis to the total number of phones in the reference
transcript, averaged over all utterances in the evaluation set. However,
in this metric, each phone error carries the same weight. For example,
for a reference utterance such as [D I s I z @ kh æ t] (This is a cat.), the
hypotheses such as [d i s I z a k E t] and [o m s I z R v n t] would have
the same PER (55.6%), but, all else being equal, a speaker of English is
more likely to understand the former whose articulation is closer to
the reference than that of the latter. For this reason, we also evaluate
the models using PFHED, which takes articulatory/acoustic features
(e.g., high, low, front, back, round, etc. for vowels) into account when
measuring the error rate. Since both PER and PFHED measure error
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rates, lower scores mean better performance. Furthermore, to ensure
the observed results are not coincidental, we fine-tune and evaluate
each model three times using the same data and hyperparameters,
and report the mean error rates and their standard deviation (std) over
the three experiment runs.
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11.1 Introduction

In this chapter, we present and interpret the performance results of the
phone and speech recognition models. We start with general corpus-
level metrics: phone error rate (PER) and phone feature Hamming edit
distance (PFHED), which are calculated on the development partitions
of the NST corpora. Subsequently, we break down the corpus-level
error rates by dialect region to analyze the models’ performance on
non-standard regional dialects. Finally, we perform a deeper anal-
ysis by looking specifically at phone predictions for each individual
vowel in the three evaluation languages. For each language and cat-
egorization method, we also interpret the phone prediction results
by comparing the prediction rates for each reference vowel and the
amount of cross-lingual overlap between the reference and hypothesis
vowels in the normalized F1-F2 space.

11.2 Cross-Lingual Phone Recognition

To investigate the effect of different types of vowel categorizations on
the overall performance on the cross-lingual phone recognition task,
we first take a look at the PER and PFHED results of each cross-lingual
model.

Table 11.1 shows the mean PERs and Table 11.2 the mean PFHEDs
of each cross-lingual model fine-tuned on the different utterance tran-
scripts and different amounts of fine-tuning data. For Danish, when
the models are fine-tuned on Norwegian and Swedish, the multi and
cardinal models consistently outperform the baseline by 1.34–1.8 and
3.01–3.47 percentage points on average respectively, with the cardinal
models achieving the lowest PERs. In terms of PFHED, all models fine-
tuned on relabeled transcripts consistently outperform the baselines,
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but it is the multi models that achieve the lowest edit distances. For
Norwegian, when the models are fine-tuned on Danish and Swedish,
the mono models consistently outperform the baseline in terms of
PER, by 1.09–1.64 percentage points on average, while the cardinal
are mostly below the baseline. In terms of PFHED, however, the base-
line models outperform all models fine-tuned on relabeled transcripts
despite achieving worse PERs than the mono and cardinal models.
Finally, for Swedish, when the models are fine-tuned on Danish and
Norwegian, the PER scores are similar to those for Norwegian. The
mono models consistently outperform the baseline by 1.13–1.83 per-
centage points on average, while the cardinal models are mostly below
the baseline. In terms of PFHED, all models fine-tuned on relabeled
transcripts consistently outperform the baselines with the mono and
cardinal achieving the best results (cardinal with up to 2000 labeled
samples per training language and mono with 3000 and more).

Regarding the amount of fine-tuning data, most of the models,
irrespective of the transcript type and evaluation language, show little
to no improvement with the increase in fine-tuning data past 3000
samples per training language. This indicates that the pre-trained
XLSR-53 does not benefit from larger amounts of fine-tuning data
when applied to cross-lingual phone recognition on the NST corpus.

11.3 Phone Recognition on Dialect Regions

To examine how the three formant-based vowel categorizations affect
cross-lingual phone recognition on non-standard regional dialects, we
first select the best cross-lingual models for each evaluation language,
and, then, break down their performance by dialect region. The best
models have the lowest mean PER + std among the models fine-tuned
on different amounts of labeled data and are shown enclosed in a
rectangular frame in Table 11.1.

Tables 11.3, 11.4, and 11.5 show the mean PERs and std of the
best cross-lingual models on Danish, Norwegian, and Swedish respec-
tively broken down by dialect region. We also computed the vowel
distance between a non-standard region and the capital region as the
mean Mahalanobis distance (MD) between all vowel points of the
non-standard region, expressed in terms of normalized F1 −F2, and
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the vowel distributions of the capital region. The MD is chosen be-
cause, for each vowel distribution, it takes into account the variance
and correlations in the data. Furthermore, it can be interpreted as
the number of standard deviations away from the mean of the capital
region vowel distributions (Lohninger, 2013).

For Danish, the models fine-tuned on cardinal transcripts consis-
tently achieve the best PERs, with some of the (more distant) dialect
regions, i.e., West, South, and East Jutland, outperforming the base-
lines by ≥4% points. In the case of the Norwegian dialect regions, the
lowest PERs are achieved alternately by models fine-tuned on mono
and cardinal transcripts. Some of the non-capital regions with par-
ticularly better PERs than the baselines (≥2% points of performance
gain) include Oslo Outer Fjord, Voss, Hedmark, and Bergen. Finally, for
Swedish, the lowest PERs are achieved by the mono models. Here, the
non-standard regions with particularly better PERs than the baseline
(≥2% points of performance gain) are Middle Sweden, Östergötland,
Västergötland, West Sweden, and Gothenburg.

To systematically investigate the effect of different vowel catego-
rizations on the cross-lingual performance on non-standard dialect
regions, we carry out correlation analyses on the models’ performance
gain on each dialect region as a function of the regions vowel distance
from the capital region. The performance gain is in comparison to the
performance of the baseline models. For each non-standard dialect
region and categorization method (mono , multi , cardinal ), we cal-
culate how much the model’s performance differs from the baseline
(nst) on the same dialect. Then, we plot these performance gains as a
function of the region’s mean MD from the vowel space of the capital
region and measure the correlations for each categorization method
and evaluation language (Figure 11.1). The analyses reveal weak and
statistically non-significant trends. For mono , the Pearson’s corre-
lation coefficients (r ) are all negative (r ={−0.69,−0.42,−0.2} for all
three evaluation languages (Danish, Norwegian, and Swedish regions
respectively), which makes sense as monolingual clustering is not ex-
pected to be helpful for cross-lingual phone recognition. They are
close to 0 for multi (r ={0.03,0.17,−0.22}) and slightly positive for car-
dinal (r ={0.5,0.19,0.15}). Though a very weak trend, the performance
on dialect regions more distant from the capital seems to improve
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slightly as vowel categories shift from language-dependent to being
more language-independent. However, the correlations are measured
on very small samples. Future research should focus on larger sets of
speakers and dialects to further investigate these weak trends.

11.4 Phone Prediction Analysis

In this section, we analyze individual phone predictions for each of
the best cross-lingual models. Specifically, we look at phone confusion
matrices normalized over the predicted phones. For each reference
phone pref, the confusion matrix shows the percentage of its tokens
that is predicted as each hypothesis phone phyp. We refer to these
percentages as prediction rates.

A review of the full confusion matrices for each evaluation lan-
guage reveals that all models recognize consonants much better than
vowels. Namely, all seen consonants, with the exception of Danish
unaspirated stops [b, d, g]1, have relatively high correct recognition
rates: over 80% (and most of them over 90%). The recognition rates
are similar across models fine-tuned on different relabeled transcript
types and on par with those achieved by the baselines. Furthermore,
vowel-consonant and consonant-vowel confusions are rare: most of
them have prediction rates below 0.5%. On the other hand, the mean
and std of the recognition rates of seen vowels are 45.7±14.9%.

Vowel prediction rates vary substantially across the different tran-
script types for all three languages. We examined the top 3 predictions
for each of the 10 reference vowels that are found in all three languages,
which are shown in Table 11.6. Here, we see that the models fine-tuned
on any type of relabeled transcripts outperform the baselines on 8 of
the 10 shared vowels when evaluated on Danish, 6 out of 10 when
evaluated on Norwegian, and 6 out of 10 when evaluated on Swedish.

The biggest improvement over the baseline is seen in the models
evaluated on Danish: the mono model outperforms the baseline on 6
shared vowels, the multi model outperforms the baseline on 8 shared
vowels, and the cardinal model outperforms all other models on 7 and

1In Danish, [b, d, g] are commonly realized as voiceless unaspirated stops (Grøn-
num, 1998; Puggaard-Rode et al., 2022).
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(a) mono

(b) multi

(c) cardinal

Figure 11.1: Correlation analyses of the cross-lingual models’ performance gain on
non-standard dialect regions of Danish, Norwegian, and Swedish as a function of the
regions vowel distance from the capital region for: a) mono , b) multi , and c) cardinal
models. The performance gain is in comparison to the performance of the baseline
models (nst). The individual plots show the data points fitted with a regression line
and a 95% confidence interval.
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Table 11.6: Top 3 phone predictions and their prediction rates in % for each reference
vowel shared by all three evaluation languages. The prediction rates are the average
over the three experiment runs for each model. del signifies a deletion error, while
spn stands for spoken noise and sil for silence. Bolded results are correct predictions.

eval lang Danish Norwegian Swedish
top hyps 1 2 3 1 2 3 1 2 3

ref ttype

i nst i: 84.77 I: 7.38 del: 2.82 i: 92.35 E: 1.58 I: 1.41 i: 95.29 I: 2.27 del: 0.35
mono i: 89.73 del: 3.47 I: 2.71 i: 93.38 e: 1.96 del: 1.40 i: 88.88 I: 4.96 del: 2.34
multi i: 87.79 del: 4.43 I: 2.05 i: 95.61 e: 1.29 del: 1.00 i: 83.72 e: 8.43 del: 2.94
cardinal i: 91.16 I: 2.95 del: 1.93 i: 97.94 e: 0.79 E: 0.38 i: 98.00 I: 0.59 e: 0.48

e nst e: 27.91 I: 23.07 i: 16.05 e: 55.17 E: 17.46 del: 13.48 @: 38.75 e: 29.56 del: 12.45
mono i: 29.81 I: 20.34 e: 18.37 e: 60.85 del: 10.53 E: 7.74 e: 47.17 E: 9.13 i: 8.60
multi e: 51.91 i: 15.36 del: 12.26 e: 48.32 i: 22.52 del: 8.41 e: 49.51 æ: 19.30 del: 6.96
cardinal e: 60.11 I: 14.60 del: 11.14 e: 73.03 I: 7.75 del: 6.69 e: 55.39 @: 15.60 E: 10.09

E nst del: 25.65 E: 23.65 e: 16.82 E: 73.27 a: 8.02 e: 8.00 E: 44.38 e: 17.56 del: 8.33
mono E: 28.12 del: 18.98 I: 17.77 E: 56.99 e: 10.16 I: 8.52 E: 51.56 æ: 13.39 del: 10.41
multi E: 23.66 e: 21.83 del: 19.32 E: 63.11 I: 8.87 e: 8.85 @: 24.67 E: 23.30 æ: 21.56
cardinal E: 42.63 e: 18.30 del: 15.73 E: 71.60 e: 14.43 del: 5.25 @: 26.64 E: 25.27 æ: 20.02

A nst A: 55.81 del: 18.49 æ: 6.59 A: 41.34 a: 35.29 del: 7.34 A: 85.84 del: 6.73 o: 3.55
mono A: 36.51 æ: 19.23 del: 16.48 A: 63.94 a: 13.84 del: 6.04 A: 71.38 @: 6.50 del: 5.86
multi A: 42.85 del: 14.86 @: 10.31 A: 68.54 a: 10.21 del: 5.67 A: 69.90 @: 14.25 del: 4.81
cardinal A: 52.80 del: 13.43 O: 9.14 A: 75.79 a: 6.25 E: 4.87 A: 69.42 @: 10.49 del: 5.22

O nst 8: 32.58 o: 23.47 O: 12.42 O: 56.63 del: 11.93 œ: 4.34 O: 58.29 o: 20.88 del: 5.84
mono 8: 30.94 U: 18.58 del: 14.87 O: 49.99 o: 12.07 del: 9.89 O: 50.72 o: 16.67 8: 9.11
multi O: 26.82 0: 19.94 8: 15.22 O: 51.01 del: 9.04 U: 6.93 O: 61.47 o: 14.55 8: 8.70
cardinal O: 44.87 8: 30.37 del: 8.13 O: 63.59 8: 7.14 o: 5.98 O: 82.24 o: 3.49 A: 2.94

o nst u: 31.49 U: 21.08 o: 18.38 o: 26.56 O: 25.73 spn: 12.38 o: 62.97 u: 14.61 del: 7.16
mono u: 30.03 o: 27.29 U: 13.74 o: 49.58 O: 16.43 spn: 6.83 o: 65.12 O: 9.95 u: 7.34
multi o: 31.18 O: 19.75 del: 12.80 o: 36.84 O: 26.46 del: 7.56 o: 58.92 O: 18.03 del: 6.46
cardinal o: 51.18 8: 25.97 O: 8.07 o: 59.98 O: 17.05 del: 5.32 o: 51.17 O: 30.33 del: 7.04

u nst u: 48.10 U: 22.65 8: 14.71 u: 69.48 o: 15.51 del: 5.52 u: 71.72 spn: 7.12 U: 6.70
mono U: 43.06 u: 22.88 del: 12.89 u: 75.67 o: 11.13 del: 3.53 u: 69.26 o: 11.48 del: 5.58
multi u: 39.39 U: 31.06 del: 11.31 u: 79.20 U: 8.62 o: 3.08 u: 60.95 o: 16.30 del: 6.06
cardinal o: 34.25 8: 27.37 del: 19.23 o: 50.45 O: 14.66 del: 12.47 o: 27.56 spn: 24.84 O: 12.45

y nst 0: 25.71 del: 23.94 y: 12.22 y: 70.68 Y: 10.44 i: 4.46 y: 55.06 i: 13.21 0: 10.20
mono Y: 25.36 y: 23.73 del: 22.22 y: 64.64 Y: 12.06 ø: 8.08 y: 47.86 del: 13.47 Y: 10.95
multi y: 42.58 del: 17.64 Y: 15.48 y: 63.03 Y: 15.44 i: 6.69 y: 47.39 ø: 11.40 del: 10.18
cardinal del: 23.53 ø: 23.10 y: 18.05 ø: 34.74 Y: 19.48 e: 14.46 Y: 27.90 ø: 15.45 8: 10.44

ø nst ø: 23.91 8: 19.99 0: 18.54 ø: 84.93 œ: 6.14 del: 2.57 ø: 59.34 O: 9.68 del: 9.47
mono ø: 28.47 del: 16.41 0: 13.66 ø: 50.58 0: 9.77 8: 8.55 ø: 52.82 del: 8.90 œ: 6.77
multi ø: 31.39 del: 16.48 Y: 13.75 ø: 48.59 Y: 20.86 0: 5.22 ø: 48.69 œ: 10.95 8: 10.91
cardinal ø: 48.94 del: 12.84 8: 12.64 ø: 77.60 Y: 6.60 e: 4.71 ø: 56.62 œ: 11.49 del: 8.40

œ nst del: 41.26 ø: 16.81 œ: 6.50 œ: 79.91 ø: 7.32 E: 2.73 œ: 35.79 O: 22.98 del: 13.20
mono œ: 26.91 8: 18.33 del: 16.75 8: 24.70 œ: 18.77 O: 11.65 œ: 46.23 del: 12.39 O: 6.77
multi œ: 26.12 del: 18.05 ø: 9.94 œ: 19.21 ø: 16.98 8: 16.92 œ: 41.97 del: 12.05 8: 10.26
cardinal œ: 39.94 8: 17.67 del: 12.13 œ: 44.53 8: 12.54 ø: 12.02 œ: 64.69 del: 6.83 8: 6.25
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the baseline on 8 out of the 10 shared reference vowels. On average,
the correct recognition rates for Danish increase by 9% points over the
baseline with the multi model, and by 13.8% points with the cardinal
model. However, looking at recognition rates of the cardinal model,
we see that it performs exceptionally below average on two reference
vowels only: [u, y]. After analyzing the cardinal decision boundary
plots in Figure 10.6 and measuring vowel distribution in the relabeled
transcripts, we discover that these two have become minority vowels
in the cardinal transcripts. This is a result of their cardinal vowels
being too far out in the vowel space. Therefore, it is likely that the
cardinal models recognize these vowels less because they constitute
less than 1% of all vowel tokens in the cardinal training data. If we
exclude them from the average, the correct recognition rates of the
remaining vowels increase to 22.3% points above the baseline.

Among the models evaluated on Norwegian and Swedish: the mod-
els fine-tuned on the relabeled transcripts perform better than the
baseline on half of the shared reference vowels, but the average recog-
nition rates on Norwegian decrease by 6.6% (mono), 7.7% (multi ), and
7.9% (cardinal ) points, and on Swedish by 0.7% (mono), 5.2% (multi ),
and 9.3% (cardinal ) points below the baseline. However, here we see
again that the cardinal model’s recognition rates on the minority vow-
els [u, y] are outliers. Excluding them from the average increases the
mean recognition rates of the remaining vowels to 6.7% points above
the baseline for Norwegian and 3.9% points above the baseline for
Swedish.

We also investigate the models’ predictions for vowels encountered
in only one of the training languages and vowels not found in the train-
ing languages. The recognition rates of the vowels found in only one of
the training languages vary greatly depending on both the transcript
type and the training and evaluation languages. In particular, the
recognition rates for [a], which appears in Danish and Swedish, and
[@], which appears in Danish and Norwegian, are very low: <3% in most
cases. This indicates that the presence of a language without these two
vowel labels in the training data interferes with cross-lingual transfer
of [a, @] to and from Danish. On the other hand, Danish does not seem
to interfere to such an extent with vowel transfer from Norwegian to
Swedish and vice versa. Namely, the recognition rates for [I, Y, 8, 0,
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Table 11.7: Top 3 predictions and their prediction rates in % for unseen
vowels (del indicates a deletion). The results are the average over the three
experiment runs for each model.

top hyps 1 2 3
ref ttype

6 nst R: 35.06 del: 15.77 O: 15.51
mono o: 24.43 del: 20.23 R: 14.33
multi del: 21.14 8: 20.10 R: 18.28
cardinal O: 25.49 del: 20.66 R: 18.77

2 nst del: 25.18 @: 13.32 A: 13.21
mono del: 22.38 A: 17.51 @: 12.14
multi del: 30.56 @: 11.51 I: 8.32
cardinal del: 26.42 @: 23.05 R: 9.76

æ nst E: 50.46 del: 17.51 a: 8.95
mono a: 47.89 E: 15.88 del: 14.90
multi E: 40.16 a: 20.52 del: 15.62
cardinal E: 37.52 a: 29.53 del: 15.20

U] range from 60% to 89%. Regardless of the evaluation language, the
baselines outperform the other models on all vowels except [a], where
multi and cardinal perform better but still under 3%.

There are three language-unique vowels in our corpus that we
refer to as unseen when encountered in the evaluation language: [6,
2], found in Danish, and [æ], found in Norwegian. Since a cross-lingual
model will never predict nor be able to recognize phone labels that
were not seen in training, the recognition rates on unseen vowels are
always 0%. The top 3 predictions for the 3 unseen vowels are shown
in Table 11.7. As a consonant, [R] is not a plausible prediction for the
Danish vowel [6].2 The top predictions of the other models are closer
to [6] in the vowel space, with the cardinal model’s [O] being the closest
both in the cardinal vowel space and the Danish mean vowel space

2It likely stems from the lexical similarity between Danish and Norwegian words
containing the character sequences 〈or〉 or 〈år〉, which is a typical spelling of the
Danish [6]. In these sequences, the Danish 〈r〉 is almost always silent, whereas the
Norwegian is either pronounced as [R] or fused with the following consonant when
followed by an alveolar Grønnum (1998); Kristoffersen (2000).
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(Figure 10.2). The top vowel predictions for the other two unseen
vowels are all plausible. As seen in Figure 10.6, they correspond to
the vowel categories from the training languages which have the most
overlap with a given reference vowel in the vowel space.
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We have presented a formant-based vowel categorization approach
aimed at improving vowel recognition in cross-lingual ASR by reduc-
ing confusions stemming from possible notational inconsistencies
and phonetic variation of vowels in speech. Specifically, we have
performed three types of categorizations: monolingual language-
dependent (mono), multilingual language-dependent (multi ), and
language-independent (cardinal ), and investigated their effects on
cross-lingual phone recognition using a trilingual corpus comprising
Danish, Norwegian, and Swedish.

Our analyses show that the models fine-tuned on the new vowel
categories reduce cross-lingual phone error rates on all three lan-
guages, as well as phone feature edit distances on Danish and Swedish.
The best-performing models are consistent within languages and
across variations of sample size and experiment reruns, but differ-
ent across languages. Namely, the cardinal models outperform the
baselines in terms of PER on all three languages. They achieve the
best performance among the models evaluated on Danish, whereas
on Norwegian and Swedish, the best performers are the mono mod-
els. Moreover, the cardinal models result in the highest margins of
improvement over the baseline on Danish compared to the best per-
forming models on Norwegian and Swedish.

When it comes to the performance on dialect regions, only weak
and statistically non-significant correlations were observed between
the models’ performance gain on a dialect region and the region’s
mean vowel distance from the capital. Though still non-significant,
these correlations were strongest for Danish dialect regions. Finally,
an analysis of individual phone predictions reveals that most shared
non-minority vowels benefit significantly from cardinal categorization
(especially Danish), while all categorization types reduce the recogni-
tion rates of vowels absent from one or more training languages. At
the same time, a visual comparison of top phone predictions and re-
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categorized vowel plots indicates that having the same vowel category
overlap in the vowel space across languages increases the vowel recog-
nition rates, whereas a cross-lingual mismatch in vowel categories
leads to vowel confusions.

Based on these findings, we can see that cross-lingual vowel recog-
nition remains a challenge, even in the case of a trilingual corpus with
three geographically and typologically close languages with similar
vowel systems. Nevertheless, we also see that converting vowels into
a shared set of formant-based vowel categories can lead to higher
recognition rates. Therefore, we propose that future research efforts
on formant-based cross-lingual vowel recognition include a larger and
more diverse set of languages, use a single shared set of cardinal vowel
categories for all languages, and evaluate the resulting transcripts and
models in downstream applications, such as ASR or speech synthe-
sis. To deal with the added linguistic diversity, future studies could
address additional segmental and suprasegmental features, such as
diphthongization, tone, and prosodic prominence, for example, by
including measurements of the third formant, vocal intensity, and
fundamental frequency. In particular, including the third and possibly
higher formants in the analysis could potentially eliminate the need to
perform separate categorizations of rounded and unrounded vowels.
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13.1 Introduction

In the previous set of experiments, we saw that formant-based
vowel categorization with language-specific vowel sets and language-
independent cardinal vowels can significantly improve cross-lingual
vowel recognition on vowels that are shared between the evaluation
language and across all training languages. This was especially true for
the vowel categories that overlapped in the normalized vowel space
across all of the investigated languages. On the other hand, a cross-
lingual mismatch in vowel categories or absence of a vowel category
from one or more training languages was found to increase vowel
confusions.

This has prompted a follow-up study of a new set of formant-based
vowel categorization methods with a language-universal vowel set that
would investigate whether cross-lingual phone recognition models
trained on language-universal formant-based vowel representations
could generalize to a wider and more diverse set of unseen languages,
real-world speech data, and downstream speech recognition. Namely,
this study will categorize monophthong vowels from the NST subcor-
pora, based on their normalized F1 −F2 values, in a new way derived
from the cardinal categorization technique analyzed in the previous
experiments. We term this vowel categorization method language-
universal because it converts the language-specific vowel sets of the
different training languages into a single unified set of vowel categories
shared universally by all training languages. The previous language-
independent categorization (cardinal ) involved vowel categorization
with respect to a set of cardinal vowels with hypothetical language-
independent formant values, which proved too extreme for the point
vowels in Danish, Norwegian, and Swedish as measured from the NST
corpus. The difference between the previous language-independent
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and the new language-universal categorization is that the new catego-
rization does not rely on hypothetical language-independent formant
values for universal cardinal vowel categories, but rather on cardinal
vowels whose formant values are determined from the NST corpus.

The crucial question, then, is which cardinal vowel categories to
choose for this kind of categorization given that vowel systems can
differ vastly across languages. When deciding which vowel categories
to include in the cardinal vowel sets, we follow three principles: 1) the
vowel set should consist only of cardinal vowels, 2) the selected vowel
categories should be symmetrical and evenly spread out across the
abstract vowel quadrilateral, and 3) the vowel set should contain top
n most common such vowels across studied languages of the world,
as documented by PHOIBLE, an online repository of cross-linguistic
phonological inventory data (UCLA Phonological Segment Inventory
Database, 2019). This way we ensure the selected vowel categories are
the most likely to occur in a given language, as well as that they cover
the entire vowel space.

Since vowel inventory sizes of the world’s languages can range
from 2 to 17 cardinal vowels, according to PHOIBLE, are not always
evenly distributed and symmetrical, and might feature a number of
less frequent vowels, there is no one set of vowels that can cover vowel
distinctions in every language. For this reason, we investigate three
levels of language-universal vowel categorization, with three sets of
cardinal vowels of different sizes: uni-5, uni-10, and uni-16, where the
number indicates the size of the cardinal vowel set. uni-5 and uni-10
levels consist of 5 and 10 primary vowels respectively. Unrounded front
vowels, unrounded open central vowels, and rounded back vowels are
often referred to as primary as they are more common across lan-
guages than their rounded/unrounded counterparts. Still, a number
of languages distinguish one or more of the less common, secondary
vowels, which have opposite roundedness to their primary counter-
parts. For this reason, the third level of vowel categorization uni-16
includes both primary and secondary vowel categories: 8 unrounded-
rounded pairs, or 16 vowels in total. The placement of vowel categories
for each categorization level is shown in Table 13.1. We expect these
three configurations of vowel categories would respectively cover most
vowel distinctions in languages with small, medium, and large vowel
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Figure 13.1: The placement of vowel categories on the abstract vowel quadrilateral
for each categorization level from left to right: uni-5, uni-10, and uni-16 .

inventories.
Although these sets of cardinal vowels are still unlikely to match

vowel distinctions in most languages, they will allow us to investigate
four questions: 1) whether language-universal vowel categorization
can improve cross-lingual vowel recognition, 2) how the different lev-
els of language-universal vowel categorization relate to the actual
vowel inventories of the target languages, 3) whether improvement
in cross-lingual vowel recognition with formant-based vowel cate-
gories can translate to improvement in downstream ASR, and 4) how
changes in individual vowel recognition rates affect downstream word
recognition.

These questions are addressed in a two-stage evaluation pipeline:
intrinsic evaluation in terms of phone error rate and phone feature
Hamming edit distance and extrinsic evaluation in terms of word error
rate. In addition to intrinsic evaluation on the NST corpus, we also
perform both intrinsic and extrinsic evaluation on five parliamentary
speech corpora: Danish, Icelandic, Catalan, Serbian, and Finnish, and
five low-resource noisy telephone speech data sets from the Babel
program: Lao, Zulu, Amharic, Mongolian, and Javanese. The eval-
uation languages are chosen for their typological and phonological
diversity and distance from the training languages in the NST corpus.
At the same time, parliamentary and telephone speech data allow
us to expand our evaluation of formant-based vowel representations
from clean read speech in the previous set of experiments to more
challenging speech domains, including real-world spontaneous and
conversational speech, noisy and lossy audio quality, and low-resource
languages.
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13.2 Data Preparation

For this set of experiments, we will once again use the NST corpus
for formant-based vowel categorization and intrinsic evaluation of
the phone recognition models trained on the resulting relabeled tran-
scripts. The cross-lingual phone recognition models will then be eval-
uated on parliamentary and noisy telephone speech corpora both
intrinsically in terms of phone and phone feature error rates and ex-
trinsically in terms of word error rate. The data preparation methods
for the NST corpus are already described in Section 10.2, so this section
will describe the data preparation methods for only the parliamentary
and noisy telephone speech data.

13.2.1 Parliamentary Data

Of all the parliamentary corpora, Serbian parliament speech corpus is
the only one that does not come with standard training-development-
testing splits. Therefore, we create a standard split for this corpus by
manually selecting 20 testing speakers (10 male and 10 female) and
10 development speakers (5 male and 5 female). The selected male
and female speakers are matched for speech duration so that the eval-
uation partitions have a balanced gender distribution. More detailed
corpus statistics and gender distribution by partition are shown in
Table 13.1.

Table 13.1: Serbian parliament speech corpus partitions and their size in hours, total
number of utterances, tokens, types, and speakers. Speaker counts by gender are
given in parentheses as (Female + Male).

Part. Hours Utterances Tokens Types Speakers (F+M)

train 874.48 284,546 7,215,124 122,014 598 (215+383)
dev 10.22 2,679 82,852 13,660 10 (5+5)
test 11.21 3,465 92,293 14,079 20 (10+10)

total 895.91 290,690 7,390,269 123,628 628 (230+398)

For the rest of the parliamentary corpora, we use the standard
corpus splits for model training and evaluation. Generally speaking,
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we use only the development partitions for the intrinsic evaluation of
the cross-lingual phone recognition models, creation of cross-lingual
pronunciation lexicons, and choosing the best n-gram language model
for the extrinsic evaluation. The monolingual ASR models with cross-
lingual pronunciation lexicons are evaluated extrinsically on both the
development and test partitions.

Both inference with the cross-lingual phone recognition models
and extrinsic evaluation with the monolingual hybrid HMM/DNN ASR
systems require the input audio data to be in the same format: single-
channel WAV with a 16-bit linear PCM sample encoding (PCM_S16LE)
sampled at 16 kHz. Danish, Catalan, and Finnish parliament speech
data are originally available in this format, so they need not undergo
any conversion, while Icelandic and Serbian speech data are encoded
in a compressed format: MP3 and FLAC respectively. Therefore, we
use the sound processing tool SoX to convert the audio data from these
two corpora into the WAV audio format (Bagwell et al., 2015).

When it comes to text preprocessing, all corpora except the Serbian
parliament corpus are released with normalized utterance transcripts.
Text normalization for ASR involves expanding common abbrevia-
tions, numbers, dates, and symbols, as well as removing punctuation,
capitalization, and unspoken parenthetical remarks and references, in
order to make the text as close to the actual speech in the utterances.
We normalize Serbian utterance transcripts in accordance with these
common practices. First, we remove punctuation, capitalization, and
unspoken remarks, and then manually identify and expand abbrevi-
ations, numbers, dates, and symbols using a conversion table. Since
Serbian is an inflected language where nouns, pronouns, adjectives,
and numerals are marked for case, number, and gender, creating an
exhaustive conversion table for every token requiring expansion is not
feasible. For this reason, we perform only a simplified token expan-
sion in the nominative case unless the token is directly preceded by a
preposition commonly denoting a different grammatical case. In the
case of number token expansion, we look at the case endings of the
nouns commonly found directly after the given number token when
determining its inflected forms.

Certain abbreviations such as acronyms can be pronounced in
multiple ways depending on the speaker and context, and there is
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no way of knowing which form is used without listening to the audio.
These and other inconsistent token expansions, both in this corpus
and the other parliamentary corpora, will affect the phonetic align-
ments for both the cross-lingual phone recognition and monolingual
ASR model evaluation, but are not expected to have a substantial effect
on the overall error rates, because their frequency counts are relatively
low.

13.2.2 Low-Resource and Noisy Telephone Data

All Babel data sets come with standard training-development-testing
splits. However, the test data is not publicly available. Therefore, we
use the development data, which has no speaker overlap with the
training data, as the test partition, and set aside randomly selected
10% of the training samples as the development partition. As with the
parliamentary corpora, the development partitions are used for the
intrinsic evaluation of the cross-lingual phone recognition models,
creation of cross-lingual pronunciation lexicons, and selecting the best
n-gram language model for the extrinsic evaluation, while both the
development and test partitions are used for the extrinsic evaluation
with monolingual hybrid ASR systems. More detailed Babel statistics
by language are shown in Table 13.2.

Most of the audio files in the Babel data sets are encoded in the
A-law audio format, which is a single-channel, lossy audio format
typically used to compress telephone signals. They are sampled at
8 kHz and stored in the NIST Sphere file format. A few audio file are
in the single-channel WAV format with a 24-bit linear PCM sample
encoding (PCM_S24LE) sampled at 48 kHz. Since our models expect
inputs in the WAV format, we use the sound processing tool sph2pipe
to convert the NIST Sphere audio files to WAV (, LDC), and the tool
SoX to resample the WAV inputs to 16 kHz (Bagwell et al., 2015).

Since Babel data sets contain noisy conversational speech, the
utterances feature numerous instances of verbal and non-verbal noise,
such as cough, laugh, overlapping speech, disfluencies, clicking, ring-
ing, etc. These are marked with various placeholder tokens in the
utterance transcripts. We do not need so many different noise tokens
since we are only interested in intelligible speech, so we merge the

109



Chapter 13 | Experimental Setup

Table 13.2: Babel data set partitions per language and their size in hours, total
number of utterances, tokens, types, and speakers. The train and dev speakers are
the same.

Lao

Hours Utterances Tokens Types Speakers

train 58.99 59,578 540,302 6,112 733
dev 6.58 6,620 59,919 2,804
test 10.56 11,342 96,576 2,910 119
total 76.13 77,540 696,797 6,679 852

Zulu

Hours Utterances Tokens Types Speakers

train 55.89 54,746 365,267 53,272 718
dev 6.23 6,083 41,165 11,035
test 10.42 10,505 66,887 14,649 119
total 72.54 71,334 473,319 64,126 837

Amharic

Hours Utterances Tokens Types Speakers

train 39.37 37,299 252,840 31,024 478
dev 4.31 4,145 27,908 6,710
test 11.64 10,315 71,669 12,326 121
total 55.32 51,759 352,417 38,944 599

Mongolian

Hours Utterances Tokens Types Speakers

train 41.87 40,398 362,696 20,595 492
dev 4.58 4,489 39,923 5,340
test 11.31 11,145 98,449 8,945 120
total 57.76 56,032 501,068 25,153 612

Javanese

Hours Utterances Tokens Types Speakers

train 41.09 41,873 278,055 13,770 480
dev 4.45 4,653 30,509 4,033
test 11.36 11,269 77,937 6,328 120
total 56.90 57,795 386,501 16,634 600
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numerous placeholder tokens into four broader categories: unknown
or unintelligible speech, verbal noise, non-verbal noise, and silence.
For this step, we follow the noise token conversion rules found in a
preprocessing script in Kaldi’s babel recipe.1 This is the only text
preprocessing step required as the utterance transcripts are already
normalized. We use the transcripts in the standard orthography for
languages and experiments. The romanized transcripts in the Lao,
Amharic, and Mongolian data sets are not used.

13.3 Formant-Based Vowel Categorization with a
Language-Universal Vowel Set

For this set of experiments, we use the same phonetic corpus align-
ments and vowel formant estimates and normalization conducted on
the NST corpus in the previous set of experiments described in Section
10.3. Therefore, this section will only describe the methods for vowel
categorization with a language-universal vowel set.

All three levels follow the same categorization procedure. They
only differ in the number of vowel categories they distinguish. As
mentioned before, this categorization procedure is based on the cardi-
nal categorization from Chapter 10, but instead of categorizing vowel
points with respect to hypothetical formant values of cardinal vowels,
we determine the positions of cardinal vowels in the vowel space based
on F1 −F2 measurements of the point vowels: [i, u, a, A] in the NST
corpus. This is achieved by extracting all point vowels from all three
NST subcorpora together, taking the mean of each point vowel for each
speaker in the corpus, and then calculating the grand mean over all
speaker mean point vowels. The obtained four grand means constitute
the four point cardinal vowels of our language-universal vowel systems.
Connecting the four points with line segments results in a quadrilat-
eral that resembles the abstract vowel quadrilateral. We use the four
point cardinal vowels to determine points along the quadrilateral that
will serve as the inner cardinal vowels. Since the Norwegian vowel

1The script is part of the original Kaldi recipe for Babel data sets and can
be found here: https://github.com/kaldi-asr/kaldi/blob/master/egs/
babel/s5d/local/prepare_acoustic_training_data.pl.
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system used in the Norwegian NST lexicon does not feature the vowel
[a], we use the measurements of the Norwegian [æ]-vowels in the cal-
culation of the cardinal vowel [a]. As seen from Figure 10.2 in Section
10.3, the Norwegian [æ] is relatively close to the Swedish [a] based on
their realizations in the NST subcorpora. Figure 13.2 illustrates the
creation of the point vowel quadrilateral from the normalized formant
measurements of the point vowels in the NST corpus.

Figure 13.2: The point vowel quadrilateral used for determining the central values
of the cardinal vowel categories for each level of language-universal vowel catego-
rization. The red markers are the central values of the point vowels: [i, u, a, A]. They
are the grand means of the speakers’ means for each of the point vowel categories as
measured from the NST corpus, which are plotted in gray.

As introduced in Section 13.1, the uni-5 categorization level dis-
tinguishes 5 vowel categories: [i, efl, ä, ofl, u]. The diacritical mark for
lowering (fl) below [e] and [o] is a phonetic symbol indicating that these
vowels are slightly lower (more open) than their usual positions, while
the two dots over [a] indicate a more central vowel than plain [a]. The
positions of the three inner cardinal vowels [efl, ä, ofl] are determined
simply as the midpoints of the left, right, and bottom side of the point
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vowel quadrilateral. Figure 13.3 compares the abstract and data-driven
vowel categories for this categorization level.

Figure 13.3: The uni-5 vowel categories on the abstract vowel quadrilateral (left) and
NST point vowel quadrilateral (right). The vowel labels left and right of the position
marker indicate unrounded and rounded lip shape respectively.

The uni-10 categorization level distinguishes 10 vowel categories:
[i, e, E, a, A, O, o, u, 1, @]. The positions of the front [e, E] and back inner
cardinal vowels [O, o] are determined as the points dividing the left
and right sides of the point vowel quadrilateral into three equal parts.
The position of the close central unrounded vowel [1] is determined
as the midpoint of the top side of the point vowel quadrilateral. The
position of the mid central vowel [@] is obtained as the cross-section of
the mid and central line segments eflofl and 1ä. Figure 13.4 compares the
abstract and data-driven vowel categories for this categorization level.

Finally, The uni-16 categorization level distinguishes 16 vowel cat-
egories, 8 unrounded: [i, efl, a, A, 7fl, W, 1, @] and 8 rounded: [y, øfl, Œ,
6, ofl, u, 0, 8]. As previously explained, the four points of the NST point
vowel quadrilateral are obtained from the primary point vowels, which
are unrounded when front and open: [i, a, A], and rounded when back
and close: [u]. Their rounded/unrounded counterparts, secondary
point vowels, are given the same four points of the quadrilateral even
though their average F1−F2 values are not exactly matched with those
of the primary point vowels. This is done to make the data-driven
quadrilaterals closer to the abstract quadrilateral, as well as to avoid a
skewed unrounded vowel quadrilateral due to the absence of the close
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Figure 13.4: The uni-10 vowel categories on the abstract vowel quadrilateral (left)
and NST point vowel quadrilateral (right). The vowel labels left and right of the
position marker indicate unrounded and rounded lip shape respectively.

back unrounded vowel [W] from the vowel systems of the three Scandi-
navian languages. The positions of the pairs of inner unrounded and
rounded cardinal vowels are determined in the same way as described
in the paragraphs on the uni-5 and uni-10 categorization levels. A
comparison on abstract and data-driven vowel categories for uni-16
categorization level is shown in Figure 13.4.

Figure 13.5: The uni-16 vowel categories on the abstract vowel quadrilateral (left)
and NST point vowel quadrilateral (right). The vowel labels left and right of the
position marker indicate unrounded and rounded lip shape respectively.

All three vowel categorizations are performed in the same way: by
selecting the appropriate cardinal vowel set, computing the central
values of its cardinal vowel categories, and, then, recategorizing the
source vowels based on their Euclidean distance to the cardinal vowels.
This means that each source monophthong is classified as its first
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nearest cardinal vowel in the normalized F1 −F2 space. With uni-5
and uni-10 categorization, all monophthongs are recategorized with
respect to the same single language-universal vowel set, whereas, with
uni-16 , unrounded and rounded monophthongs are recategorized
separately: unrounded monophthongs are recategorized with respect
to the unrounded, and rounded with respect to the rounded cardinal
vowel set.

As in the previous set of experiments presented in Chapter 4 10,
vowel tokens whose normalized formant values are more than 2 stan-
dard deviations (std) from the mean are excluded from any data-driven
categorization. These tokens are considered outliers which might re-
sult from errors in phonetic alignment or formant estimation. How-
ever, the outlier vowels also have to be relabeled in order to effectively
replace the original vowel sets with the language-universal cardinal
vowel sets. This manual recategorization of outliers is performed
based on the abstract vowel quadrilaterals. If the outlier vowel repre-
sentation is in the target cardinal vowel set, it is left unchanged. If it is
not in the target cardinal vowel set, it is converted to its nearest car-
dinal vowel on the abstract vowel quadrilateral. For example, for the
uni-5 and uni-10 cardinal vowel sets, all outliers with one of the follow-
ing representations [i, I, y, Y] will be relabeled as [i]. Table 13.3 shows
the percentage of outlier and recategorized vowel tokens for each cat-
egorization level and NST subcorpus out of both all monophthong
tokens and total phone tokens. The recategorized tokens include both
data-driven and abstract recategorization. Figures 13.6-13.8 show the
clustering decision boundaries for each of the categorization methods
in relation to the original vowel distributions of Danish, Norwegian,
and Swedish respectively, while Figure 13.9 contains all three previous
figures for easier cross-lingual comparison. Tables 13.4 and 13.5 show
how each of the categorization methods affects the distribution of un-
rounded and rounded monophthongs respectively in each subcorpus.
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Figure 13.9: The decision boundaries of each vowel category for each of the three
categorization levels per language. Each vowel cluster has a different color and is
labeled with the corresponding IPA symbol, which is located at the cluster centers.
The circled vowel symbols and the surrounding ellipses plotted over the decision
plots represent the mean of the original vowels and mean vowel spread 2 std from
the mean.
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Table 13.3: Categorization statistics for each categorization level and language in
the NST corpus. For each language and each categorization level, the numbers in
the left column indicate % of all monophthong tokens, and the ones in the right % of
all phone tokens.

Danish Norwegian Swedish
% monoph. % total % monoph. % total % monoph. % total

outliers 4.23 1.76 4.78 1.80 4.01 1.45
uni-5 89.17 37.15 92.67 34.83 94.25 34.17
uni-10 67.97 28.32 69.01 25.94 67.32 24.41
uni-16 77.01 32.08 75.66 28.44 78.15 28.34

13.4 Intrinsic Evaluation: Multilingual and Cross-
Lingual Phone Recognition

The three language-universal vowel categorization approaches are
assessed intrinsically in a set of phone recognition experiments on
13 different languages spread across two types of speech domains, in-
domain: clean read speech (NST corpus), and out-of-domain: parlia-
mentary and low-resource noisy telephone speech (Babel). All phone
recognition models are created by fine-tuning the 2-billion parameter
pretrained multilingual wav2vec 2.0 model, XLSR-53 (Baevski et al.,
2020b; Conneau et al., 2020), on a small subset of the NST corpus.
The fine-tuning setup is the same as described in the Section 10.4. As
before, we fine-tune and evaluate each model three times, using the
same data and hyperparameters, and report the mean error rates and
their standard deviation (std) over the three experiment runs to ensure
the observed results are not coincidental.

In-domain intrinsic evaluation involves both training and evalu-
ating phone recognition models on the NST corpus transcribed with
different types of vowel categorization methods, original dictionary-
based transcripts (nst), LanguageNet pretrained g2p-based, (lnet),
and formant-based (uni-5 , uni-10 , and uni-16 ). We perform two sets
of in-domain experiments: multilingual, where we train on samples
from all three NST subcorpora together and evaluate individually on
each subcorpus, and cross-lingual, where we train on samples from
two of the NST subcorpora and evaluate on the third unseen subcor-
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pus. All models are trained on 3000 random samples from the training
set of each NST subcorpus, and evaluated on the development set of
each NST subcorpus. We choose 3000 for the number of fine-tuning
samples per training language as as our previous phone recognition
experiments with different numbers of fine-tuning samples from Chap-
ter 10 showed that the performance of cross-lingual models plateaus
when increasing the number of samples beyond 3000. With in-domain
evaluation, we evaluate against references transcribed with the same
vowel categorization method on which the model was trained, as we
have all five types of transcripts for the entire NST corpus.

Out-of-domain intrinsic evaluation involves evaluating the phone
recognition models fine-tuned on all three NST subcorpora (same
models as used for in-domain multilingual evaluation) cross-lingually
and cross-domain on five parliamentary speech corpora in different
languages: Danish, Icelandic, Catalan, Serbian, and Finnish, as well
as five language packs from the low-resource noisy telephone speech
corpus Babel: Lao, Zulu, Amharic, Mongolian, and Javanese. With
out-of-domain evaluation, we evaluate all models, including the ones
trained on formant-based vowel categories, only against references
transcribed using canonical vowel representations (dictionary- or g2p-
based), as we do not have formant-based or phonetically annotated
transcripts for these corpora. Regardless, analyzing and comparing
the performance results of all models across the different languages,
domains, and metrics should allow us to measure how closely the mod-
els trained on different vowel categorization methods can approach
the expected canonical references.

As in the previous set of experiments, all fine-tuned phone recog-
nition models are evaluated in terms of both phone error rate (PER)
and phone feature Hamming edit distance (PFHED) (Mortensen et al.,
2016). PER is a standard metric that shows the ratio of errors (num-
ber of deleted, inserted, and substituted phones) in the hypothesis
to the total number of phones in the reference transcript, averaged
over all utterances in the evaluation set. With PER, each phone er-
ror, insertion, deletion, or substitution, carries the same weight of 1.
On the other hand, PFHED gives the same weight to insertions and
deletions as PER, 1, but less weight to substitution errors. Namely, it
converts all phone tokens in the reference and hypothesis transcripts
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into 24-dimensional articulatory/acoustic feature vectors, and then
computes the Hamming edit distance between the substituted phones,
giving a weight of 1/24 to each feature edit between the reference and
hypothesis feature vectors. While PER is useful for downstream ASR
tasks where exact transcripts are preferred, PFHED shows us how close
the references and hypotheses are in pronunciation.

13.5 Cross-Lingual Pronunciation Lexicons

The next step in the evaluation pipeline involves creating pronuncia-
tion lexicons for the extrinsic evaluation of formant-based vowel cat-
egorization on out-of-domain speech data: parliamentary and noisy
telephone speech. As introduced earlier, the extrinsic evaluation en-
tails training and evaluating modular HMM-DNN ASR systems using
monolingual acoustic and language models and cross-lingual pronun-
ciation lexicons derived from the different proposed vowel categoriza-
tion methods. This will allow us to investigate whether cross-lingual
formant-based vowel representations can also be used to differenti-
ate words in word-based speech recognition tasks, as well as to relate
changes in individual vowel recognition rates to downstream word
recognition rates. To this end, we evaluate and compare ASR systems
trained with three types of pronunciation lexicons: monolingual gold
standard lexicons, cross-lingual baselines, and cross-lingual formant-
based lexicons.

Monolingual gold standard lexicons are standard lexicons used in
modular ASR systems. They provide canonical pronunciations for all
words in the vocabulary, taken either from human-curated dictionaries
or produced by grapheme-to-phoneme conversion software. Modern
HMM/DNN ASR systems trained with pronunciation models based
on gold standard lexicons can achieve SOTA or near-SOTA results. We
train gold standard ASR systems and evaluate them on each evaluation
data set from the selected out-of-domain speech corpora. This will
give us an estimate of a lower bound on word error rates that can be
achieved on these corpora with current modular ASR systems.

For each parliamentary and Babel language, we create one or two
gold standard lexicons, depending on the available resources for a
given language. Specifically, we use manually transcribed lexicons for
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Danish and Icelandic. For Danish, we use the Danish NST lexicon that
accompanies the Danish NST subcorpus. For Icelandic, we use the
Althingi lexicon accompanying the Althingi, Icelandic parliamentary
speech corpus. Since these two lexicons do not cover the entire vo-
cabularies of their corresponding parliamentary corpora, we use them
to train grapheme-to-phoneme transducers, which we, then, use to
expand the original lexicons to include the whole vocabularies. We use
orthographic lexicons for Serbian and Finnish, where the pronuncia-
tion transcripts are the same as their corresponding orthographic tran-
scripts. These two languages have near phonemic orthography, where
there is an almost one-to-one grapheme-to-phoneme correspondence.
For Danish, Serbian, and Finnish, we also use pretrained grapheme-
to-phoneme models to transcribe the gold standard lexicons. These
models are part of the LanguageNet project (Hasegawa-Johnson et al.,
2020), a number of G2P transducers for various languages, trained
with Phonetisaurus, an open-source tool for training, compiling, and
evaluating grapheme-to-phoneme models for speech recognition (No-
vak et al., 2012, 2016). Finally, for Catalan, we create a gold standard
lexicon using eSpeak-NG, a open-source formant synthesizer and rule-
based grapheme-to-phoneme converter (eSpeak NG, 2016), since a
LanguageNet G2P model for Catalan was unavailable.

As opposed to the monolingual lexicons, the cross-lingual lexi-
cons are created using grapheme-to-phoneme models trained on the
reference-hypothesis pairs produced by multilingual phone recogni-
tion models fine-tuned on Danish, Norwegian, and Swedish utterances
from the NST corpus when applied cross-lingually on the parliamen-
tary and telephone speech data. Namely, the phone recognition mod-
els, which were fine-tuned on a small trilingual subset of the NST
training data transcribed using the five different vowel categoriza-
tion methods: nst , lnet , uni-5 , uni-10 , and uni-16 , are, first, used to
transcribe the whole development sets of each parliamentary and tele-
phone speech corpus. Subsequently, these cross-lingual transcripts
are used as training data for different G2P models trained with Phoneti-
saurus (Novak et al., 2012, 2016). Finally, each resulting G2P model is
used to transcribe the whole vocabulary of its corresponding parlia-
mentary or telephone speech corpus. We call the outputs of these G2P
models cross-lingual lexicons. In particular, they are referred to as:
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xl-nst , xl-lnet , xl-uni-5 , xl-uni-10 , and xl-uni-16 , depending on which
type of vowel categories they contain. xl-nst and xl-lnet are used as
baseline cross-lingual lexicons, while xl-uni-5 , xl-uni-10 , and xl-uni-
16 are formant-based cross-lingual lexicons, which will be compared
with the baselines in our experiments and analysis of results. In total,
we create 150 cross-lingual lexicons: 3 phone recognition models (ex-
periment runs) for each of the 5 types of vowel categorization applied
to each of the 10 out-of-domain corpora (and languages), and evaluate
them as part of 150 corresponding ASR systems.

Table 13.6: Absolute vocabulary sizes of the parliamentary corpora covered by the
monolingual and cross-lingual lexicons. For cross-lingual lexicons, the numbers
show the mean absolute vocabulary size and standard deviation over the three phone
recognition experiment runs.

Danish Icelandic Catalan Serbian Finnish

manual 296,400 195,113 / / /
orth / / / 123,631 757,165
g2p 283,520 / 48,650 123,602 757,165

xl-nst 294,547 ± 208 180,815 ± 461 48,475 ± 186 123,391 ± 257 756,746 ± 373
xl-lnet 294,692 ± 55 181,248 ± 4 48,639 ± 2 123,614 ± 2 757,142 ± 8
xl-uni-5 294,719 ± 32 181,143 ± 22 48,621 ± 4 123,585 ± 15 757,057 ± 44
xl-uni-10 294,580 ± 167 180,968 ± 212 48,559 ± 87 123,545 ± 72 756,911 ± 192
xl-uni-16 294,605 ± 34 181,063 ± 15 48,589 ± 21 123,528 ± 21 756,965 ± 44

Table 13.7: Percentage of the parliamentary vocabularies covered by the monolin-
gual and cross-lingual lexicon. For cross-lingual lexicons, the numbers show the
mean percentage and standard deviation over the three phone recognition experi-
ment runs.

Danish Icelandic Catalan Serbian Finnish

monoling. 100.0 100.0 100.0 100.0 100.0

xl-nst 99.4 ± 0.1 92.7 ± 0.2 99.6 ± 0.4 99.8 ± 0.2 99.9 ± 0.0
xl-lnet 99.4 ± 0.0 92.9 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
xl-uni-5 99.4 ± 0.0 92.8 ± 0.0 99.9 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
xl-uni-10 99.4 ± 0.1 92.8 ± 0.1 99.8 ± 0.2 99.9 ± 0.1 100.0 ± 0.0
xl-uni-16 99.4 ± 0.0 92.8 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 100.0 ± 0.0

Tables 13.6 and 13.8 show the absolute vocabulary size covered by
each monolingual and cross-lingual lexicon for each of the extrinsic
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Table 13.8: Absolute vocabulary sizes of the Babel data sets covered by the mono-
lingual and cross-lingual lexicons. For cross-lingual lexicons, the numbers show
the mean absolute vocabulary size and standard deviation over the three phone
recognition experiment runs.

Lao Zulu Amharic Mongolian Javanese

g2p 6,680 64,127 38,945 25,154 16,636

xl-nst 6,119 ± 223 62,844 ± 692 38,488 ± 158 23,812 ± 523 15,725 ± 469
xl-lnet 6,619 ± 13 63,929 ± 38 38,934 ± 2 24,924 ± 32 16,483 ± 16
xl-uni-5 6,328 ± 40 63,616 ± 42 38,603 ± 21 24,323 ± 15 16,210 ± 23
xl-uni-10 6,261 ± 119 63,277 ± 304 38,548 ± 104 23,997 ± 446 15,971 ± 301
xl-uni-16 6,259 ± 60 63,284 ± 190 38,584 ± 14 24,052 ± 105 15,970 ± 67

Table 13.9: Percentage of the Babel vocabularies covered by the monolingual and
cross-lingual lexicon. For cross-lingual lexicons, the numbers show the mean per-
centage and standard deviation over the three phone recognition experiment runs.

Lao Zulu Amharic Mongolian Javanese

g2p 100.0 100.0 100.0 100.0 100.0

xl-nst 91.6 ± 3.3 98.0 ± 1.1 98.8 ± 0.4 94.7 ± 2.1 94.5 ± 2.8
xl-lnet 99.1 ± 0.2 99.7 ± 0.1 100.0 ± 0.0 99.1 ± 0.1 99.1 ± 0.1
xl-uni-5 94.7 ± 0.6 99.2 ± 0.1 99.1 ± 0.1 96.7 ± 0.1 97.4 ± 0.1
xl-uni-10 93.7 ± 1.8 98.7 ± 0.5 99.0 ± 0.3 95.4 ± 1.8 96.0 ± 1.8
xl-uni-16 93.7 ± 0.9 98.7 ± 0.3 99.1 ± 0.0 95.6 ± 0.4 96.0 ± 0.4

evaluation corpora, while Tables 13.9 and 13.9 the percentage of total
vocabulary covered by the same lexicons. Since we have three cross-
lingual lexicons for each type of vowel categorization (from the three
phone recognition experiment runs), for these lexicons, we provide
the mean vocabulary size and standard deviation both rounded to
the closest whole number. We use only the currently official scripts in
tokenization and vocabulary construction for each language. As intro-
duced in Part III, eight of the ten investigated languages use alphabets
as official writing scripts, of which Mongolian is the only language
using a version of the Cyrillic alphabet rather than Latin, while two,
namely, Lao and Amharic, use abugidas. The vocabulary is word-based
and measured simply by tokenizing the utterance transcripts on white
space, since all investigated languages use white space to denote word
separation. As a result, the vocabulary size reflects not only the corpus
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size and lexical diversity, but also certain characteristics of the lan-
guage in question, such as morphological structure, word formation
processes, and writing conventions. As can be seen from the tables,
most of the cross-lingual lexicons do not cover the whole vocabulary.
The missing words are the ones that could not be transcribed by their
respective cross-lingual G2P models.

13.6 Extrinsic Evaluation: Monolingual Speech Recog-
nition

The three language-universal vowel categorization approaches are
assessed extrinsically in a set of word-based speech recognition ex-
periments on 10 different languages divided into two types of speech
domains, parliamentary speech: Danish, Icelandic, Catalan, Serbian,
and Finnish, and low-resource noisy telephone speech: Lao, Zulu,
Amharic, Mongolian, and Javanese. The purpose of the extrinsic evalu-
ation of formant-based vowel categorization is to investigate whether
improvement in cross-lingual vowel recognition with formant-based
vowel representations can translate to improvement in word-based
speech recognition, i.e. whether cross-lingual formant-based vowel
representations can be used to differentiate words in addition to pro-
viding more acoustically grounded descriptions of vowel realizations.

The setup for each extrinsic experiment is the same: we train
and evaluate modular HMM-DNN ASR systems, each consisting of
a monolingual acoustic and n-gram language model coupled with
a cross-lingual pronunciation model derived from the cross-lingual
lexicons described in the previous section. For each ASR system, we
use the training set in its entirety of a given language to train the
acoustic and language model, the development set to train the cross-
lingual G2P model that will transcribe the cross-lingual lexicon, and,
then, evaluate the resulting system on both the development and test
sets. The vocabulary in the lexicons comprises all words from the
entire corpus, including training, development, and test partitions.
This is common practice in the development of modular ASR systems,
as the separate pronunciation model can easily be expanded to include
target-domain words without the need to also retrain the acoustic
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and language models. As described in the previous section, the total
number of trained and extrinsically evaluated ASR systems with cross-
lingual pronunciation models is 150: 3 experiment runs per each of
the 5 vowel categorization types, two baselines (xl-nst and xl-lnet)
and three formant-based (xl-uni-5 , xl-uni-10 , and xl-uni-16 ) for each
of the 10 evaluation corpora and languages. Additionally, for each
evaluation corpus, we also train and evaluate a fully monolingual ASR
system with canonical pronunciation lexicons to have a perspective of
what is currently regarded as competitive performance.

13.6.1 Evaluation on Parliamentary Speech

For each parliamentary corpus, the acoustic model is trained on the
full training set, and evaluated in terms of word error rate on the
development and test sets. The model training and evaluation pro-
cedure follows Kaldi’s sprakbanken recipe that trains from scratch a
HMM-DNN hybrid acoustic model with a Time-Delay Neural Network
(TDNN) (Peddinti et al., 2015). The model is based on monophone
and triphone segmentation GMM acoustic models (Bing-Hwang Juang
et al., 1986) and an i-vector speaker adaptation model (Dehak et al.,
2011).2 This is the same model used to validate the Danish parliament
speech corpus, FT Speech .

We train TDNN acoustic models consisting of 6 layers with an
affine transform, ReLU activation, and a renorm component. The
models are trained with the lattice-free maximum mutual information
(LF-MMI) objective, which maximizes the log probability of the correct
phone sequence (Povey et al., 2016). They are trained for 5 epochs on
mini-batches of 128 chunks, sequences processed in parallel, where
each chunk contains 150 feature frames. The input feature frames
consist of 40-dimension high-resolution MFCCs and 100-dimension
i-vectors. We use a learning rate that decays from 0.001 to 0.0001
during training and clip parameters at a Frobenius norm of 2.0. The
same acoustic model architecture and hyperparameters are used for
all experiments on the parliamentary corpora.

2The original recipe was created for the Danish NST subcorpus and
can be found at: https://github.com/kaldi-asr/kaldi/blob/master/egs/
sprakbanken/s5/run.sh.
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When it comes to language modeling, we use n-gram language
models (LMs) trained exclusively on in-domain parliamentary text
data. We use pretrained LMs when available and estimate our own
for the corpora without pretrained models. More specifically, for the
Catalan, Serbian, and Finnish parliament corpora, we estimate mul-
tiple 3-gram, 4-gram, and 5-gram language models with modified
Kneser-Ney smoothing on parliamentary training text data, and evalu-
ate them on development text data in terms of perplexity. We select
the language model with the lowest perplexity to use for the evalua-
tion of the acoustic and pronunciation models, and report the word
error rate individually for each development and test set. All mod-
els are estimated and evaluated using the SRI Language Modeling
Toolkit (Stolcke, 2002). As training text data for the Catalan and Ser-
bian LMs, we use only the transcripts of the training utterances from
the two parliamentary speech corpora, which contain roughly 6 and
7 million word tokens respectively. The Finnish corpus comes with a
35-million-word-token in-domain text corpus created from the full-
length transcripts of parliamentary sessions. We use this text corpus
to train Finnish LMs. For all three corpora, a 4-gram LM is chosen for
the final evaluation.

On the other hand, the Danish and Icelandic parliament corpora
come with pretrained and evaluated in-domain LMs, which can be
used without modification. The Danish LM is a 4-gram language
model with Witten-Bell smoothing trained on a 43-million-word-token
in-domain text corpus (Kirkedal et al., 2020), whereas the Icelandic
LM is a pruned 3-gram language model with Kneser-Ney smoothing
trained on a 30-million-word-token in-domain corpus (Helgadóttir
et al., 2017). In all five cases, there is no overlap between any of the
evaluation subsets (development or test utterances) and the text data
used for language modeling.

13.6.2 Evaluation on Low-Resource Noisy Telephone
Speech

For each selected Babel language pack, the acoustic model is trained
on the full training set, and evaluated in terms of word error rate indi-
vidually on the development and test sets. The model architecture and
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training procedure follow the discophone Kaldi recipe (Feng et al.,
2021) that trains a HMM-DNN hybrid acoustic model with a factorized
Time-Delay Neural Network (TDNNF) (Povey et al., 2018). The TDNNF
model training relies on frame-level phone alignments obtained by
forced alignment with HMM-GMM acoustic models trained before-
hand. The recipe was originally created for a phone recognition task
and applied on the GlobalPhone and Babel corpora.3

We train TDNNF acoustic models consisting of 12 layers, with a
hidden dimension of 1024, bottleneck dimension of 128, and skip
connections. The models are trained with the LF-MMI objective for
12 epochs on mini-batches of 128 chunks. The input features are the
same as for the acoustic models trained on parliamentary data and
consist of 40-dimension high-resolution MFCCs and 100-dimension
i-vectors. The training hyperparameters are taken from the Kaldi’s
Wall Street Journal recipe.4 The same model architecture and hyperpa-
rameters are used for all experiments on the Babel corpora.

When it comes to language modeling, we do not have any addi-
tional in-domain text data for any of the Babel languages, so we rely
only on the training utterance transcripts for LM estimation. Com-
pared with the text corpora used in the parliamentary ASR systems,
these are much smaller in size, ranging from 300-600 thousand word
tokens. As with parliamentary LMs, for all Babel corpora, we estimate
multiple n-gram language models with different smoothing methods
and parameters, and evaluate them on the development text data in
terms of perplexity. Then, the language model with the lowest per-
plexity is selected for the evaluation of the acoustic and pronunciation
models. For each Babel corpus, this ends up being a 3-gram language
model with modified Kneser-Ney smoothing.

3The recipe is available at: https://github.com/pzelasko/kaldi/tree/
discophone/egs/discophone.

4The recipe can be found at: https://github.com/kaldi-asr/kaldi/blob/
master/egs/wsj/s5/local/chain/tuning/run_tdnn_1g.sh
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14Results

14.1 Introduction

In this chapter, we present and interpret the performance results of the
phone and speech recognition models. We start with general corpus-
level metrics: phone error rate (PER), phone feature Hamming edit
distance (PFHED), and word error rate (WER), which are calculated
on the standard evaluation partitions (development and test subsets)
of the investigated corpora: NST corpus, five different parliamen-
tary corpora, and five language packs from Babel, a noisy telephone
speech corpus. Subsequently, we perform a deeper analysis by looking
specifically at the vowel predictions of both the phone and speech
recognition models on different languages. Finally, for each language
and categorization level, we interpret the phone prediction results
by comparing the prediction rates for each reference vowel with the
amount of overlap between the position of the reference vowel in the
abstract vowel space and the position of the hypothesis vowels in the
normalized F1-F2 space.

14.2 Multilingual and Cross-Lingual Phone Recogni-
tion

We begin by evaluating the language-universal formant-based vowel
representations intrinsically, as we did in the previous set of experi-
ments in Chapter 11. To investigate the effect of the different levels of
vowel categorization on the overall performance on the phone recogni-
tion task, we first take a look at the PER and PFHED results of each mul-
tilingual and cross-lingual model on the NST corpus. Subsequently,
we evaluate the multilingual phone recognition models cross-lingually
on the parliamentary and Babel data sets.
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14.2.1 Performance on the NST Corpus

Table 14.1 shows the mean PERs and Table 14.2 the mean PFHEDs
of both the multilingual and cross-lingual phone recognition models
fine-tuned and evaluated on the NST corpus. The multilingual models,
which are fine-tuned on 3000 samples from each of the three subcor-
pora (9000 in total), are applied cross-lingually on the parliamentary
and telephone data in the further experiments. On the other hand,
the cross-lingual phone recognition models, which are fine-tuned on
3000 samples from two of the NST languages and evaluated on the
third, heldout, language, are created and evaluated only for the pur-
pose of comparing their performance with the performance of the
cross-lingual experiments from Chapter 11. They are not used in any
further experiments.

Firstly, we see that all multilingual models outperform the cross-
lingual models on all evaluation languages both in terms of PER and
PFHED. This is not surprising as the multilingual models are fine-
tuned on the evaluation languages, whereas the cross-lingual ones
are not. Next, we observe that the nst multilingual models, which are
fine-tuned on the nst transcriptions whose monophthong vowel set
consists of 20 unique vowel categories, outperform all other multi-
lingual models on all three languages, including the other baseline,
lnet , with a monophthong vowel set of 16 vowel categories. This is
also not surprising since the nst transcriptions are dictionary-based
and exhibit less phonetic variability than the uni transcriptions. Ad-
ditionally, they were designed to be comparable across the three NST
subcorpora and allow the model to better leverage the cross-lingual
lexical similarities among the three Scandinavian languages.

What is surprising, however, is that the multilingual lnet models
have higher PERs than the uni models in all cases, except the uni-10
and uni-16 models on Danish. Like the nst ones, the lnet transcrip-
tions are dictionary-based and were expected to be more predictable
in the multilingual evaluation scenario. This suggests that the lack
of cross-lingual consistency among the lnet transcription systems is
interfering with the models’ ability to capture general phonetic pat-
terns. We suspect that most interference is caused by the Danish lnet
transcriptions. The current lnet G2P model produces pronunciation
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transcripts that are very similar to their corresponding orthographic
transcripts, which could be problematic for languages with an opaque
orthography, such as Danish. Namely, it has a smaller phone inven-
tory than the nst transcription system, with 10 vowel categories as
opposed to 14 in the nst system. This is likely the reason why the mul-
tilingual lnet model performs better on Danish than on Norwegian
and Swedish, opposite to the trend exhibited by the multilingual nst
model.

Table 14.1: Mean PERs and std of all multilingual and cross-lingual models averaged
over three experiment runs. The best results for each evaluation language are shown
in bold.

exp. type ttype Danish Norwegian Swedish

nst 11.82±1.03 7.66±0.82 9.26±0.92
lnet 22.36±0.61 25.28±0.57 24.34±1.41

multiling. uni-5 20.21±2.47 15.20±1.04 16.08±0.40
uni-10 24.70±0.99 19.30±0.98 22.33±3.01
uni-16 24.37±0.54 17.00±0.67 21.01±1.08

nst 53.29±0.44 39.69±0.40 42.09±0.72
lnet 55.60±0.36 50.88±0.40 50.38±0.64

cross-ling. uni-5 40.27±0.70 31.46±0.68 32.93±0.69
uni-10 46.95±1.38 36.70±0.66 38.30±0.13
uni-16 46.56±0.51 34.03±0.50 36.98±0.26

When it comes to the cross-lingual models, we can see that the uni
models consistently outperform both baselines on all three languages,
in terms of both PER and PFHED. As was the case with the multilin-
gual models, the lnet baseline performs the worst in terms of PER,
especially on Norwegian and Swedish, where we can see a difference
of over 11 and 8 percentage points respectively. Again, this is likely
caused by the discrepancy between the Danish lnet transcriptions
system, on one hand, and the Norwegian and Swedish ones, on the
other. At the same time, we can see that having fewer vowel categories
in the transcription system does not guarantee better cross-lingual
performance.
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Table 14.2: Mean PFHEDs and std of all multilingual and cross-lingual models
averaged over three experiment runs. The best results for each evaluation language
are shown in bold.

exp. type ttype Danish Norwegian Swedish

nst 2.15±0.20 1.43±0.14 1.70±0.11
lnet 2.90±0.12 2.12±0.02 1.80±0.20

multiling. uni-5 2.93±0.56 1.99±0.35 2.19±0.16
uni-10 3.03±0.32 2.20±0.31 2.65±0.63
uni-16 3.25±0.14 2.05±0.16 2.53±0.24

nst 7.88±0.25 6.21±0.10 6.74±0.20
lnet 8.13±0.34 8.02±0.10 6.59±0.10

cross-ling. uni-5 6.03±0.11 5.71±0.18 6.21±0.13
uni-10 6.49±0.07 5.87±0.08 6.26±0.12
uni-16 6.42±0.10 5.72±0.04 6.27±0.09

Returning to the uni models, we can see that shifting to a unified
language-universal vowel set, and effectively ruling out unseen vowel
categories at inference time, greatly reduces both the PER and PFHED
scores on all languages. In almost all cases, the uni-5 models are the
best performing models. The only exception is the Danish-Swedish
uni-16 model, which performs very slightly better on Norwegian in
terms of PFHED. Since the uni-5 transcription system collapses the
large vowel inventories of the Scandinavian languages into only 5
broad vowel categories, it is not surprising that the models dealing with
fewer vowel categories will exhibit fewer vowel confusions. However,
by comparing the uni-10 and uni-16 models, we see that reducing the
number of phone categories does not necessarily lead to higher phone
recognition rates. In fact, the uni-16 cross-lingual models, which are
fine-tuned to distinguish among 16 vowel categories, perform better
on average than the uni-10 models on all three languages both in terms
of PER and PFHED. This tells us that the uni-16 vowel categorization
level seems more suitable for cross-lingual phone prediction on the
Scandinavian languages. This most likely stems from the fact that the
uni-16 level distinguishes vowels based on roundedness, which is an
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important distinctive feature in all three Scandinavian languages.
Since the uni cross-lingual models are fine-tuned and evaluated

on the same subsets of the NST subcorpora, we can compare their
performance to that of the cross-lingual models fine-tuned and evalu-
ated on formant-based vowel representations with language-specific
vowel sets, which we examined in the previous set of experiments, in
Part IV. Here, we see that the language-universal cross-lingual models
outperform all language-specific models both in terms of PER and
PFHED. The difference in performance is likely caused by the main
difference between these two types of models. Specifically, this is the
degree of cross-lingual overlap between the corresponding vowel cate-
gories in the F1-F2 vowel space and the lack of unseen vowels. Even
though the size of the vowel inventory could also contribute to a dif-
ference in performance, its effects are likely not as pronounced. As we
have seen when comparing the uni-10 and uni-16 models, we can see
that the uni-16 models, which are fine-tuned to distinguish 16 vowel
categories, also outperform the language-specific models, which are
fine-tuned to distinguish 18-19 vowel categories. Nevertheless, this
does not guarantee that these models would generalize to other lan-
guages or that the language-universal formant-based representations
could be used in other tasks, such as to provide semantic information.
This is why we will also examine their applications to other languages,
domains, and speech recognition tasks.

14.2.2 Performance on Parliamentary Speech

When it comes to the parliamentary corpora, we do not have their
formant-based transcriptions. Therefore, in this case, we compare
the predictions of all our models to the same dictionary-based refer-
ence transcripts. It should be noted that for these and all subsequent
experiments, we use only the multilingual models from the previous
subsection, i.e. the ones trained on all three Scandinavian languages.
We refer to them as cross-lingual from now on, because we apply them
cross-lingually to the parliamentary and telephone speech data. To
distinguish them from the cross-lingual models in the previous subsec-
tion, we give them the prefix xl- when referring to them in the current
and following sections.
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Table 14.3: Mean PERs and std of all cross-lingual models evaluated on the parlia-
mentary speech data averaged over three experiment runs. The best results for each
evaluation language are shown in bold.

dev-balanced dev-other

Danish xl-nst 17.06 ± 0.57 15.53 ± 0.69
xl-lnet 63.99 ± 0.87 63.55 ± 0.84

xl-uni-5 45.29 ± 0.57 44.65 ± 0.63
xl-uni-10 42.37 ± 0.19 41.59 ± 0.27
xl-uni-16 42.98 ± 0.40 42.19 ± 0.38

dev

Icelandic xl-nst 67.91 ± 0.75
xl-lnet 73.07 ± 0.68

xl-uni-5 64.99 ± 0.74
xl-uni-10 65.61 ± 0.21
xl-uni-16 67.43 ± 1.17

clean-dev other-dev

Catalan xl-nst 54.30 ± 1.18 55.64 ± 1.08
xl-lnet 58.29 ± 1.86 59.96 ± 1.88

xl-uni-5 52.12 ± 1.42 54.06 ± 1.43
xl-uni-10 52.02 ± 1.11 53.70 ± 1.07
xl-uni-16 51.41 ± 0.69 53.05 ± 0.71

dev

Serbian xl-nst 56.91 ± 1.38
xl-lnet 63.49 ± 2.39

xl-uni-5 44.09 ± 1.08
xl-uni-10 53.29 ± 0.45
xl-uni-16 49.23 ± 0.87

2016-dev-seen 2016-dev-unseen

Finnish xl-nst 59.70 ± 1.22 59.03 ± 0.99
xl-lnet 56.46 ± 1.55 56.43 ± 1.54

xl-uni-5 44.17 ± 1.42 42.18 ± 1.37
xl-uni-10 55.74 ± 0.44 55.21 ± 0.40
xl-uni-16 50.24 ± 1.33 49.36 ± 1.28
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Table 14.4: Mean PFHEDs and std of all cross-lingual models evaluated on the
parliamentary speech data averaged over three experiment runs. The best results for
each evaluation language are shown in bold.

dev-balanced dev-other

Danish xl-nst 8.36 ± 0.23 7.31 ± 0.21
xl-lnet 20.17 ± 0.28 19.50 ± 0.34

xl-uni-5 10.49 ± 0.31 9.54 ± 0.31
xl-uni-10 10.60 ± 0.18 9.53 ± 0.11
xl-uni-16 10.93 ± 0.07 9.85 ± 0.14

dev

Icelandic xl-nst 28.70 ± 3.34
xl-lnet 23.56 ± 0.08

xl-uni-5 25.68 ± 0.50
xl-uni-10 27.33 ± 1.76
xl-uni-16 28.96 ± 0.56

clean-dev other-dev

Catalan xl-nst 19.19 ± 2.43 22.60 ± 2.72
xl-lnet 18.38 ± 0.52 21.43 ± 0.61

xl-uni-5 16.55 ± 0.46 19.76 ± 0.53
xl-uni-10 17.40 ± 1.59 20.67 ± 1.78
xl-uni-16 18.78 ± 0.73 22.22 ± 0.89

dev

Serbian xl-nst 27.78 ± 1.20
xl-lnet 38.82 ± 1.53

xl-uni-5 25.65 ± 0.71
xl-uni-10 26.30 ± 0.29
xl-uni-16 25.10 ± 0.20

2016-dev-seen 2016-dev-unseen

Finnish xl-nst 37.55 ± 5.52 30.93 ± 4.36
xl-lnet 28.95 ± 0.24 24.26 ± 0.23

xl-uni-5 30.22 ± 0.77 24.75 ± 0.57
xl-uni-10 33.89 ± 3.65 27.82 ± 2.79
xl-uni-16 36.33 ± 1.54 29.52 ± 1.02
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The mean PERs and PFHEDs of all the cross-lingual models on
the parliamentary speech corpora are shown in Tables 14.3 and 14.4
respectively. The first parliamentary corpus we examine is the Danish
FT Speech . Since the Danish NST subcorpus was part of the fine-
tuning data for all of the cross-lingual models, the models are, techni-
cally, not applied cross-lingually in this case. Rather, they are applied
across different domains, since parliamentary speech is different from
read speech in a quiet office environment. Nonetheless, it is the same
language, and the PER and PFHED scores reflect it. Namely, most of
the models, with the exception of xl-lnet , perform better on the Danish
parliament corpus than on the other parliament corpora, especially in
terms of PFHED. Additionally, the xl-nst models outperform the other
models on both metrics and evaluation data sets by a large margin.
The likely reason for such a large margin between the xl-nst scores
and the rest is the fact that we compare the models’ predictions to the
references transcribed using the NST lexicons. This is because both
the xl-nst predictions and the reference transcripts are based on the
same nst transcription system.

When it comes to the performance of the cross-lingual models on
the other four languages, we see that the xl-uni models consistently
outperform the baselines on all languages in terms of PER. In the case
of Serbian and Finnish, the difference in performance is considerable.
On Serbian, the xl-uni-5 model outperforms the xl-nst by 12.82 and
the xl-lnet by 19.4 percentage points. On Finnish, the xl-uni-5 model
outperforms the xl-nst by 15.53-16.85 and the xl-lnet by 12.28-14.25
percentage points. The xl-uni-5 model is also the best performing
model on Icelandic, while the best performing model on Catalan is the
xl-uni-16 . However, these results are not as convincing as in the case
of Serbian and Finnish.

Looking at the PFHED results for the same corpora, we can see
that the best performing models here do not correspond to the best
performing models in terms of PERs, except in the case of Danish.
The most surprising results are the xl-lnet results on the Icelandic and
Finnish corpora. The xl-lnet models are the best performing models
in terms of PFHED on these two languages, whereas they were among
the worst in terms of PER. The lowest PFHED results on the Catalan
corpus are achieved by the xl-uni-5 model, and on the Serbian by
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the xl-uni-16 model. However, both of these results are close to the
baselines, so it is difficult to determine which model performs best.

A possible reason for the discrepancies between the PER and
PFHED results is the way Panphon’s implementation of PFHED treats
different types of errors. Namely, PHFED has a higher penalty for in-
sertion and deletion errors, and, therefore, favors models that make
more substitutions. This is in line with our observations. For example,
the xl-lnet models made more substitutions than the other models on
the Icelandic corpus (7.5 percentage points more on average). Phone
error rate, on the other hand, gives the same weight to all three types
of errors. As a result, the distribution of error types has no effect on it.

Since the PER and PFHED results are very general and, at times,
conflicting, they do not tell us how the models perform on each vowel
specifically. For this reason, we are going to look at each model’s
performance in more detail in Section 14.4, by investigating how the
performance on individual vowels relates to the position of the vowel
category in the abstract and formant-based vowel spaces.

14.2.3 Performance on Low-Resource and Noisy Tele-
phone Speech

Moving on to the low-resource noisy telephone speech data, we should
note that these are very challenging data sets even for models trained
or fine-tuned them. Previous research involving zero-shot cross-
lingual experiments on Lao, Zulu, and Amharic have reported phone
error rates ranging 70-78% (Żelasko et al., 2020; Gao et al., 2021; Xu
et al., 2022).

The mean PERs and PFHEDs of all the cross-lingual models on
the selected Babel data sets are shown in Table 14.5. As we can see,
the PER results are much higher than on the previous two corpora,
which is in line with our expectation. The xl-uni-5 models achieve the
best PER on Zulu, Amharic, Mongolian, and Javanese. The lowest PER
result on Lao is achieved by the xl-uni-10 models. It is markedly lower
than the xl-lnet baseline, but not significantly lower than the xl-nst .

When it comes to the PFHED results, the smallest edit distances on
Lao, Zulu, and Javanese are achieved by the xl-uni-10 models, while
the xl-lnet models have the lowest PFHEDs on Amharic and Mongo-
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lian. Unlike the phone error rates, the PFHED results of the different
models are quite close, and most of them do not seem significantly
better than the rest. Since these results only provide a general overview,
we are going to look at each model’s performance in more detail in
Section 14.4, by looking at the performance on individual reference
vowels and its relation to the position of the vowel category in the
abstract and formant-based vowel spaces.

14.3 Monolingual Speech Recognition with Cross-
Lingual Pronunciation Lexicons

In this section, we provide a general extrinsic evaluation of the
language-universal formant-based vowel representations in terms
of word error rate (WER) on the five parliamentary corpora and five
languages from the Babel noisy telephone speech corpus. For this
purpose, we train and evaluate monolingual hybrid HMM/DNN ASR
systems with different cross-lingual pronunciation lexicons obtained
from the multilingual phone recognition models that we evaluated
in the previous section. For each evaluation language, we train and
evaluate systems with 5 different cross-lingual pronunciation lexicons,
2 baselines: xl-nst and xl-lnet , and 3 formant-based ones: xl-uni-5 ,
xl-uni-10 , and xl-uni-16 . Additionally, for each evaluation language,
we train and evaluate systems with monolingual pronunciation lexi-
cons to be able to compare our results to what is currently considered
competitive performance. For each type of pronunciation lexicon, we
run 3 experiments and measure mean word error rate and standard
deviation (std) to obtain more reliable results.

14.3.1 Performance on Parliamentary Speech

The mean WERs on the five parliamentary corpora are presented in
the five Tables 14.6-14.10. On each corpus, the lowest WERs are consis-
tently achieved by the models with the xl-lnet lexicons. The results of
the remaining models are quite close to one another. Moreover, they
exhibit high variance, so we cannot choose the best performing xl-uni
model with certainty.
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Table 14.5: Mean PERs and PFHEDs and std of all cross-lingual models evaluated on
Babel data averaged over three experiment runs. The best results for each evaluation
language are shown in bold.

PER PFHED

Lao xl-nst 81.19 ± 2.49 8.73 ± 0.25
xl-lnet 89.21 ± 1.63 8.70 ± 0.44

xl-uni-5 86.53 ± 1.05 8.25 ± 0.03
xl-uni-10 80.50 ± 0.66 8.28 ± 0.40
xl-uni-16 82.00 ± 1.40 8.51 ± 0.16

Zulu xl-nst 83.93 ± 2.12 12.61 ± 0.92
xl-lnet 84.64 ± 2.49 11.33 ± 0.23

xl-uni-5 72.34 ± 0.62 11.42 ± 0.05
xl-uni-10 77.31 ± 1.01 11.95 ± 0.69
xl-uni-16 76.52 ± 1.58 12.30 ± 0.31

Amharic xl-nst 80.76 ± 1.19 15.94 ± 1.34
xl-lnet 82.86 ± 1.94 13.59 ± 0.09

xl-uni-5 76.58 ± 0.34 14.72 ± 0.00
xl-uni-10 76.83 ± 0.38 15.46 ± 0.97
xl-uni-16 77.28 ± 1.55 16.04 ± 0.39

Mongolian xl-nst 91.57 ± 1.61 14.68 ± 1.24
xl-lnet 91.48 ± 1.43 12.63 ± 0.09

xl-uni-5 86.03 ± 0.09 13.86 ± 0.15
xl-uni-10 86.73 ± 0.51 14.50 ± 1.07
xl-uni-16 87.98 ± 0.81 15.18 ± 0.39

Javanese xl-nst 82.65 ± 2.28 8.73 ± 0.57
xl-lnet 83.90 ± 2.70 8.06 ± 0.29

xl-uni-5 74.73 ± 0.76 7.92 ± 0.04
xl-uni-10 76.43 ± 0.83 8.28 ± 0.65
xl-uni-16 77.54 ± 2.35 8.55 ± 0.28
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Table 14.6: Mean WERs and std of all ASR models trained and evaluated on Danish
FT Speech averaged over three experiment runs. The best results among the models
trained with cross-lingual lexicons (xl-models) are shown in bold. The WERs of
the ASR models with monolingual lexicons are shown on top and provide current
approximate SOTA results.

dev-balanced dev-other test-balanced test-other

nst 13.06 ± 0.09 13.03 ± 0.07 13.84 ± 0.01 13.58 ± 0.11
lnet 13.37 ± 0.09 13.27 ± 0.09 14.13 ± 0.04 13.80 ± 0.09

xl-nst 33.38 ± 5.72 33.57 ± 5.72 34.15 ± 5.84 34.03 ± 5.79
xl-lnet 26.01 ± 0.24 26.06 ± 0.18 26.48 ± 0.19 26.34 ± 0.16
xl-uni-5 32.14 ± 2.74 32.22 ± 2.70 32.97 ± 2.65 32.79 ± 2.67
xl-uni-10 35.83 ± 1.74 36.17 ± 1.63 36.74 ± 1.82 36.62 ± 1.69
xl-uni-16 34.98 ± 1.83 35.17 ± 1.75 35.62 ± 1.72 35.61 ± 1.85

However, the consistently lower error rates of the models with the
xl-lnet lexicons seem unusual, since the xl-lnet models were not con-
vincingly better on the phone recognition task. For this reason, we
try to find explanation for this discrepancy in performance. We look
at the vocabulary size comparison of the different lexicons in Section
13.5, and, more specifically, the portion of vocabulary covered by each
lexicon displayed in Table 13.7. We perform correlation analysis to
investigate whether vocabulary coverage could significantly impact
the models’ performance. The correlation plots for each parliamentary
corpus are presented in Figure 14.1. For each corpus, they show the
WER of each model as a function of the vocabulary coverage of that
model’s xl -lexicon. The plots contain the regression line, 95% confi-
dence interval, correlation coefficient, and p-value. These measures
indicate that there is, indeed, a statistically significant correlation be-
tween the lexicon’s vocabulary coverage and the model’s performance.

Since out-of-vocabulary words cannot be recognized by hybrid
ASR systems and the xl-lnet lexicons have the largest vocabulary of all
xl -lexicons, it is likely that the larger vocabulary size contributes to the
models performance. The most plausible reason for the xl-lnet lexi-
cons having the widest vocabulary coverage is due to the xl-lnet phone
recognition models having the lowest deletion error rates compared
with the other xl -models. This is because G2P converters, which were
used to transcribe the xl -lexicons, are more likely to output deletions
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Table 14.7: Mean WERs and std of all ASR models trained and evaluated on the
Icelandic Althingi corpus averaged over three experiment runs. The best results
among the models trained with cross-lingual lexicons (xl-models) are shown in
bold. The WERs of the ASR models with monolingual lexicons are shown on top and
provide current approximate SOTA results.

dev test

althingi 12.63 ± 0.05 12.37 ± 0.05

xl-nst 42.14 ± 8.31 42.29 ± 8.23
xl-lnet 22.98 ± 1.23 23.14 ± 1.23
xl-uni-5 39.83 ± 2.20 40.15 ± 2.22
xl-uni-10 39.65 ± 1.88 40.06 ± 1.83
xl-uni-16 39.64 ± 2.15 39.97 ± 2.12

and empty strings when they are trained on transcripts containing
more deletions. However, it remains unclear to what extent the num-
ber of out-of-vocabulary words can affect a model’s performance. It
seems likely that it should depend on the number of out-of-vocabulary
tokens in the evaluation set.

Still, the overall WERs do not provide information on how individ-
ual vowel predictions in the pronunciation lexicons relate to the ASR
model’s word predictions. This is investigated in Section 14.5, where
we look at phone prediction rates for each reference vowel in correctly
and incorrectly recognized words and relate them the vowel prediction
rates of the phone recognition models, as well as the positions of the
vowel categories in the abstract and formant-based vowel spaces.

14.3.2 Performance on Low-Resource and Noisy Tele-
phone Speech

The mean WERs on all five Babel data sets are presented in the Table
14.11. We observe the same situation as in the case of the parliamen-
tary corpora. Namely, on each data set, the lowest WERs are consis-
tently achieved by the models with the xl-lnet lexicons. The results of
the remaining models are quite close and exhibit high variance, so we
cannot choose the best performing xl-uni model with certainty. Once
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Table 14.8: Mean WERs and std of all ASR models trained and evaluated on the
Catalan parliament corpus averaged over three experiment runs. The best results
among the models trained with cross-lingual lexicons (xl-models) are shown in
bold. The WERs of the ASR models with monolingual lexicons are shown on top and
provide current approximate SOTA results.

clean-dev other-dev clean-test other-test

espeak 7.11 ± 0.03 6.91 ± 0.04 10.11 ± 0.05 10.53 ± 0.04

xl-nst 32.33 ± 7.79 32.76 ± 7.98 35.52 ± 7.71 36.23 ± 7.72
xl-lnet 17.33 ± 3.94 17.18 ± 4.03 20.10 ± 3.87 20.98 ± 3.77
xl-uni-5 24.97 ± 2.07 25.03 ± 2.06 28.10 ± 2.22 29.58 ± 2.06
xl-uni-10 22.93 ± 2.84 22.69 ± 2.94 25.87 ± 2.77 27.07 ± 2.94
xl-uni-16 30.34 ± 4.24 30.54 ± 4.47 33.21 ± 4.17 34.22 ± 4.52

again, the word error rates of the models with the xl-lnet lexicons are
unusually lower than the rest. The explanation for this discrepancy in
performance is likely the same as before.

The vocabulary size comparison of the different lexicons in Section
13.5, and, more specifically, the portion of vocabulary covered by each
lexicon displayed in Table 13.9 reveal again that the xl-lnet lexicons
have the widest lexicon coverage compared to the other xl -lexicons.
We perform correlation analysis to investigate whether the impact
of vocabulary coverage on the models’ performance could be signif-
icant. The correlation plots for the Babel data sets are presented in
Figure 14.2. For each language, they show the WER of each model as a
function of the vocabulary coverage of that model’s xl -lexicon. The re-
gression lines, 95% confidence intervals, correlation coefficients, and
p-values indicate that there is a statistically significant correlation be-
tween the lexicon’s vocabulary coverage and the model’s performance.
The reason for this again seems to stem from the fact that the xl-lnet
phone recognition models make fewer deletion errors compared to
the other xl -models. However, it is not clear why this happens.

However, the overall WERs on Babel data do not explain how in-
dividual vowel predictions in the pronunciation lexicons relate to the
ASR model’s word predictions. For this reason, in Section 14.5, we will
analyze phone prediction rates for each reference vowel in correctly
and incorrectly recognized words and how they relate to the vowel
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Table 14.9: Mean WERs and std of all ASR models trained and evaluated on the
Serbian parliament corpus averaged over three experiment runs. The best results
among the models trained with cross-lingual lexicons (xl-models) are shown in
bold. The WERs of the ASR models with monolingual lexicons are shown on top and
provide current approximate SOTA results.

dev test

orth 10.19 ± 0.03 11.30 ± 0.06
lnet 10.22 ± 0.04 11.21 ± 0.04

xl-nst 29.39 ± 4.45 30.27 ± 4.45
xl-lnet 22.88 ± 2.15 23.59 ± 2.51
xl-uni-5 24.57 ± 3.58 25.65 ± 3.74
xl-uni-10 24.63 ± 3.05 25.72 ± 3.01
xl-uni-16 25.21 ± 3.99 26.35 ± 4.24

prediction rates of the phone recognition models, as well as the posi-
tions of the vowel categories in the abstract and formant-based vowel
spaces.

14.4 Phone Prediction Analysis of Cross-Lingual Phone
Recognition Results

In this section, we break down the performance of each cross-lingual
phone recognition model by prediction rates on individual reference
vowels. We do this for each corpus and cross-lingual model separately.
Namely, we present the results of one cross-lingual model on all eval-
uation languages from a corpus collection side by side in the same
table. For each evaluation language, we show the top phone predic-
tions and their prediction rates for all reference vowels in the language.
This allows us to calculate the mean vowel recognition rate across
all reference vowels in the evaluation language and compare the pre-
diction and recognition rates of each and all reference vowels across
languages within a corpus collection. To put it more concretely, this
means that we have five tables: (xl-)nst, (xl-)lnet, (xl-)uni-5, (xl-)uni-
10, and (xl-)uni-16, per corpus collection: NST corpus, parliamentary
corpus collection, and Babel corpus collection, which adds up to 15
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Table 14.10: Mean WERs and std of all ASR models trained and evaluated on the
Finnish parliament corpus averaged over three experiment runs. The best results
among the models trained with cross-lingual lexicons (xl-models) are shown in
bold. The WERs of the ASR models with monolingual lexicons are shown on top and
provide current approximate SOTA results.

dev-seen dev-unseen test-seen test-unseen 2020-test

orth 9.74 ± 0.04 9.95 ± 0.07 7.18 ± 0.05 6.21 ± 0.06 7.41 ± 0.05
lnet 9.57 ± 0.10 9.85 ± 0.09 7.16 ± 0.04 6.13 ± 0.04 7.40 ± 0.07

xl-nst 23.02 ± 6.43 22.52 ± 6.67 19.81 ± 6.03 18.31 ± 6.00 24.09 ± 6.51
xl-lnet 15.04 ± 1.23 14.44 ± 1.38 11.84 ± 1.45 10.38 ± 1.14 16.56 ± 1.54
xl-uni-5 18.28 ± 3.26 17.64 ± 3.09 15.80 ± 3.13 14.17 ± 3.07 20.57 ± 3.02
xl-uni-10 19.61 ± 3.31 18.84 ± 3.11 16.92 ± 3.39 15.24 ± 3.01 20.96 ± 3.88
xl-uni-16 17.17 ± 4.09 16.98 ± 4.00 14.58 ± 3.88 13.72 ± 3.43 19.66 ± 3.92

tables in total.
Before we analyze performance on individual vowels, we will look

at the overall vowel recognition rates of all phone recognition models
on the NST corpus, parliamentary speech corpora, and Babel lan-
guages. Table 14.12 shows the mean and standard deviation of the
vowel recognition rates of all phone recognition models on the three
corpus collections.

The results on the NST corpus reveal that all uni -models on av-
erage outperform both baselines on all three evaluation languages.
Overall, the uni-5 models yield the best results on all evaluation lan-
guages. On Danish, the uni-5 models improve 30.05 percentage points
over nst and 35.51 percentage points over the lnet baseline. On Nor-
wegian, the uni-5 models improve 22.94 percentage points over nst
and 38.68 percentage points over the lnet baseline. On Swedish, they
improve 24.47 percentage points over nst and 39.74 percentage points
over the lnet baseline. This aligns with our expectations based on
the previous set of cross-lingual experiments in Chapter 11, where we
found that vowel recognition rates increase for vowel categories shared
by all fine-tuning languages when their positions in the normalized
F1 −F2 space overlap.

The results on the parliamentary corpora reveal that the xl-uni
models on average outperform both baselines on all evaluation lan-
guages, with the exception of all xl-uni models on Danish and xl-uni-
10 on Serbian and Finnish. On the Danish parliament corpus, the

149



Chapter 14 | Results

Table 14.11: Mean WERs and std of all monolingual ASR models trained and eval-
uated on the Babel data sets and averaged over three experiment runs. For each
language, the best results among the models trained with cross-lingual lexicons
(xl-models) are shown in bold. The WERs of the models with monolingual lexicons
are shown as current approximate SOTA results.

dev test

Lao lnet 39.18 ± 0.03 42.57 ± 0.12

xl-nst 74.40 ± 6.16 75.79 ± 5.63
xl-lnet 53.13 ± 1.83 55.94 ± 1.83
xl-uni-5 73.18 ± 4.25 74.81 ± 4.18
xl-uni-10 73.33 ± 3.08 75.01 ± 2.74
xl-uni-16 75.03 ± 2.79 76.69 ± 2.59

Zulu lnet 51.91 ± 0.04 53.79 ± 0.06

xl-nst 73.21 ± 3.42 74.49 ± 3.35
xl-lnet 66.01 ± 1.19 67.88 ± 1.47
xl-uni-5 69.87 ± 0.18 71.79 ± 0.39
xl-uni-10 70.39 ± 3.39 72.51 ± 3.23
xl-uni-16 70.75 ± 1.96 72.72 ± 1.59

Amharic lnet 39.11 ± 0.10 42.25 ± 0.08

xl-nst 77.84 ± 3.03 79.27 ± 2.70
xl-lnet 61.67 ± 2.21 63.98 ± 1.86
xl-uni-5 73.33 ± 0.65 75.46 ± 0.48
xl-uni-10 74.76 ± 3.37 77.00 ± 2.86
xl-uni-16 75.44 ± 0.88 77.36 ± 0.48

Mongolian lnet 46.30 ± 0.10 49.60 ± 0.17

xl-nst 86.24 ± 2.94 87.53 ± 2.74
xl-lnet 69.15 ± 0.84 71.07 ± 0.38
xl-uni-5 80.50 ± 2.62 82.18 ± 2.63
xl-uni-10 84.13 ± 2.70 85.72 ± 2.45
xl-uni-16 82.92 ± 0.61 84.41 ± 0.60

Javanese lnet 51.66 ± 0.03 56.34 ± 0.10

xl-nst 75.28 ± 3.36 78.50 ± 3.35
xl-lnet 65.39 ± 1.05 69.80 ± 0.91
xl-uni-5 72.18 ± 1.80 75.63 ± 1.63
xl-uni-10 73.06 ± 3.13 76.86 ± 2.82
xl-uni-16 74.89 ± 1.85 78.70 ± 1.78
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best and considerably higher than all other vowel recognition rates
are achieved by the xl-nst models. As explained before, this is not
surprising since these models are not actually applied cross-lingually
in this case. Overall, the uni-5 models yield the best results on all
evaluation languages excluding Danish. On Icelandic, they improve
11.33 percentage points over the nst and 14.14 percentage points over
the lnet baseline. On Catalan, they improve 4.46 percentage points
over the nst and 9.65 percentage points over the lnet baseline. On
Serbian, they improve 40.55 percentage points over the nst and 28.76
percentage points over the lnet baseline. Finally, on Finnish, they
improve 32.43 percentage points over nst and 23.5 percentage points
over the lnet baseline.

The results on the Babel corpora reveal that the xl-uni models
on average outperform both baselines on all evaluation languages
except Lao. On the Lao data set, the highest vowel recognition rates
are achieved by xl-nst models, but this result is only slightly better
than that of the xl-uni-10 model. On all four other Babel languages,
the xl-uni models score higher than both baselines, with the uni-5
model outperforming all other models. As was the case with the NST
and parliamentary corpora, on average, the uni-5 models yield the
best results on all evaluation languages, except Lao. On Zulu, they
improve 31.62 percentage points over nst and 21.11 percentage points
over the lnet baseline. On Amharic, they improve 13.59 percentage
points over nst and 16.94 percentage points over the lnet baseline.
On Mongolian, they improve 19.4 percentage points over nst and 13.5
percentage points over the lnet baseline. Finally, on Javanese, they
improve 20.69 percentage points over nst and 13.88 percentage points
over the lnet baseline.

To test the significance of our results, we perform two-sample t-
tests for independent samples with unequal variances (also known
as Welch’s t-test). Namely, we test whether each of the (xl-)uni vowel
recognition rates is significantly higher than either of the baselines for
each of the evaluation languages, which adds up to 78 comparisons.
We use the Holm-Bonferroni method (Holm, 1979) to correct the signif-
icance threshold for multiple comparisons, which gives the threshold
of 0.0015. The statistically significant results, the ones below 0.0015,
are marked in Table 14.12. We can see that the results of all uni models
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on the NST corpus are statistically significant. On the parliamentary
corpora, the xl-uni-5 results are statistically significant on Icelandic
compared with the xl-lnet baseline, and on Serbian, compared with
the xl-nst . The xl-uni-10 results are significant on Icelandic compared
with the xl-lnet baseline, while the xl-uni-16 results are significant on
Serbian and Finnish compared with the xl-nst . On the Babel corpora,
only the xl-uni-5 are statistically significant compared with the xl-nst
for Zulu, Amharic, and Javanese, and compared with the xl-lnet for
Mongolian.

These results suggest that fine-tuning models on language-
universal vowel categories can indeed improve cross-lingual vowel
recognition, especially when dealing with only a small number of
broad categories, such as uni-5 . However, they do not tell us how
these models perform on individual vowels and how their performance
relates to the arrangement of the reference and predicted vowel cat-
egories in the vowel space. This will be investigated throughout the
remainder of this section.

14.4.1 Phone Prediction on the NST Corpus

Tables 14.13-14.17 provide phone prediction rates for individual ref-
erence vowels of each of the five cross-lingual models respectively
on the NST corpus. Looking at the nst baseline prediction rates, the
predictions on Norwegian and Swedish are more accurate on average,
and more closely aligned, especially on the vowels: [i, E, O, u, y, ø, œ,
I, Y, 0, U], and [8]. This is presumably due to Norwegian and Swedish
having more similar vowel systems. When it comes to the other base-
line, lnet , it is less accurate than the nst on most of the vowels. This
is most likely a result of the fact that LanguageNet G2P models for
different languages are not cross-linguistically compatible. This is
especially evident for the Danish LanguageNet model. Its transcrip-
tions are almost completely orthographic rather than phonemic and
vowel inventory smaller than the Danish phonological vowel inventory.
This is likely why the lnet is the worst performing model and why its
performance on the Danish NST subcorpus is the least accurate of all
models and NST subcorpora. On the other hand, the recognition rates
of the uni -models seem more balanced across the three languages.
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Their recognition rates are still higher on Norwegian and Swedish than
on Danish, but the difference in performance is not as great as for the
nst baseline.

We will now examine the vowels that occur in the vowel inventories
of both the evaluation language and all of the fine-tuning languages.
For the NST languages, these include the following vowels: [i, e / efl,
E, A, O, o, u, y, ø/ øfl].1 The performance results indicate that the uni
models generally achieve the largest improvement over the baseline
on these vowels. However, this does not mean that all of these vowels
see the same amount of improvement on every evaluation language.
In fact, some uni -models perform below the baseline on certain vow-
els. For example, the most improvement is seen on the vowels [i, e,
o], and [u]. We can see from the prediction tables that recognition im-
proves considerably for the Danish and Norwegian [i] with all three uni
models, but decreases for the Swedish [i]. We can also see that recog-
nition of [e] and [o] improves for almost all uni models on all three
languages. Recognition of the Danish vowel [u] improves the most with
all three uni models, especially the uni-16 . However, the performance
on the Swedish [u] decreases with all three uni models. Relating these
changes in performance to the organization of vowel categories for the
different categorization methods (Figures 13.6-13.9), we can see that,
in the original data, these vowels have different means and spreads
across the three languages. Converting them to the language-universal
vowel categories seems to help recognition in general, but not all vow-
els benefit from the conversion equally. For instance, separating the
broad [efl] and [ofl] categories into the narrower [e] and [E], and [o] and
[O] does not seem to help improve the recognition rates for [E] and [O].

When it comes to the unrounded vowels [y] and [ø] / [øfl], the per-
formance results seem mixed. For example, the recognition rates for
the Danish [y] increase considerably from the baselines to the uni-16
models (from 23.92% and 8.9% to 73.61%). They improve somewhat
for the Norwegian [y] (from 79.51% and 62.04% to 80.28%), but they
decrease for the Swedish [y] (57.01% and 39.67% to 40.82%). Further-

1Although the mid front vowels [efl] and [øfl] are technically not the same categories
as the close-mid vowels [e] and [ø], we group them together because they overlap
in the vowel space and the broader [efl] and [øfl] encompass most of the vowel tokens
from their corresponding narrower categories e and [ø].
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ä:

3.
40

sp
n

:2
.1

3
e fl:6

0.
77

ä:
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ä:
9.

84
u

:7
.9

2
o fl:6

1.
19

ä:
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more, the recognition rates for the Danish [ø] improve somewhat, but
they decrease for both the Norwegian and Swedish [ø]. The reason for
this might be due to Danish having quite different distributions of [y]
and [ø] from their distributions in Norwegian and Swedish. Therefore,
converting to language-universal categories benefits Danish more the
other two languages. At the same time, Norwegian and Swedish have
more than one rounded vowel category high in the front. They have
[y], [Y], and [0], while Danish has only [y]. Merging and splitting these
three categories on formant values might be the source of confusion
and interference for the transformer’s language model.

Next, we look at the vowels that are missing from the phonological
systems of one or both fine-tuning languages, but which are part
of at least one of the language-universal vowel sets. These are the
following vowels: [a / ä, @, 0, 8, 6]. For Danish, the recognition rate
for a improves from 5.23% for the nst and ≈0% for the lnet model
to 42.28% for the uni-5 , 35.78% for the uni-10 , and 37.67% for the
uni-16 model. For Swedish, it improves from 0.45% for the nst and
3.07% for the lnet model to 88.77% for the uni-5 , 67.74% for the uni-10 ,
and 71.75% for the uni-16 model. The low baseline recognition rates
probably stem from the fact that this vowel category has quite different
realizations across the three Scandinavian languages, which can be
seen in Figure 10.2.

For Danish, the recognition rate for [@] degrades from 46.15% for
the nst but improves over the lnet baseline to 23.19% for the uni-5
and 15.41% for the uni-10 model. For Norwegian, the recognition rate
for [@] improves from 3.21% for the nst and ≈0% for the lnet baseline
to 31.44% for the uni-10 and 25.38% for the uni-16 model. The recog-
nition rate for Danish 6 improves from ≈0% for the nst to 8.54% for the
uni-16 model. The recognition rates for Norwegian and Swedish [0]
deteriorate from 83.45% and 77.51% for the nst to 55.17% and 38.77%
for the uni-16 model. However, these rates are still an improvement
over the lnet baseline, which scores 21.37% on Norwegian and 14.49%
on Swedish. The situation is similar for Norwegian and Swedish [8],
whose nst baseline recognition rates degrade from 53.88% and 57.44%
to 31.99% and 53.78% for the uni-16 model. The relatively high and
cross-lingually aligned performances of the nst model on Norwegian
and Swedish 0 and 0 seem to be a result of these two vowels having
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very similar cross-lingual distributions in the normalized F1−F2 space,
especially the vowel 0, which has almost the same mean and spread
in both languages. Another likely reason is that they are due to the
lexical and phonotactic similarity between Norwegian and Swedish,
which can be captured by the transformer model. Converting the
phonological vowel categories to the formant-based categories affects
the transformer’s language model and likely leads to reduced perfor-
mance.

Next, we will look at the vowels that we have introduced as part of
the three language-universal categorization levels but which otherwise
do not occur in the phonological inventories of the NST languages: [1,
7fl, W, Œ]. The performance on these vowels is always markedly below
the mean vowel recognition rate. In most cases, it is less than half the
mean recognition rate and among the worst results compared with
the rest of the vowels. For example, the mean recognition rates of the
xl-uni-16 models on the vowel [Œ] are 16.44% for Danish, 12.12% for
Norwegian, and 32.84% for Swedish. On the vowel [1], they are 9.38%,
34.73%, and 24.54% for the three languages respectively. On the vowel
[7fl], they are 15.54%, 25.64%, and 11.88%, while, on the vowel [W], they
are ≈0%, 5.55%, and 1.85% for the three languages respectively.

Finally, looking at all of the uni models’ predictions, can we some-
how infer the most likely vowel inventory of an unseen language?
Without knowing anything about the target language, it would be diffi-
cult to determine if it has additional vowels that do not occur in our
language-universal vowel sets. For example, there are some Scandina-
vian vowels that are not in any of the uni vowel sets, such as: [I, Y, œ,
U, æ, 2], so our models can never predict them.

Table 14.18 shows the distribution of vowels predicted by the uni
models compared with the distribution of the same vowels in the
nst (dictionary-based) reference transcripts. We merge the vowel cat-
egories [e] and [efl], [ø] and [øfl], [o] and [ofl], and [a] and [ä] from the
different models, so we can show their frequencies side by side. The
vowels [1], [7fl], [W], and [Œ], which do not occur in the nst vowel sys-
tems of any of the evaluation languages, are highlighted in orange. For
all three languages, these four vowels are among the least frequently
predicted by the uni-10 and uni-16 models. As we discussed earlier,
they are also among the most challenging for our models to recognize.
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Table 14.18: Vowel prediction distribution of the uni models compared with the
distribution of the same vowels in the nst reference transcripts. All distributions
are measured on the development sets of the three NST subcorpora. The vowels
highlighted in pale orange are not found in the nst vowel systems of any of the
evaluation languages. The hyphen (-) means that the vowel category does not occur
in a model’s vowel set.

Danish Norwegian Swedish

reference uni-5 uni-10 uni-16 reference uni-5 uni-10 uni-16 reference uni-5 uni-10 uni-16

@ 14.06 - 7.61 4.42 23.23 - 6.90 4.29 - - 8.34 4.51

e 13.34 32.69 17.91 22.25 10.29 36.07 16.92 21.22 22.31 27.67 13.95 16.70

E 12.58 - 12.15 - 7.02 - 11.88 - 11.33 - 13.96 -

i 9.86 30.13 23.85 24.17 5.82 25.51 21.12 20.58 4.44 19.88 14.35 15.91

a 8.76 16.55 9.74 10.21 - 20.75 10.44 13.14 19.05 32.99 17.96 20.77

A 5.36 - 7.25 5.10 13.07 - 9.78 8.57 5.93 - 11.22 12.25

O 4.10 - 4.50 - 6.12 - 7.68 - 5.97 - 6.14 -

o 3.73 11.25 5.40 7.00 5.62 11.42 4.26 7.04 3.59 13.36 5.51 7.32

u 3.52 9.38 6.82 8.58 2.73 6.26 5.04 5.80 2.47 6.10 4.27 5.01

6 2.16 - - 1.49 - - - 0.71 - - - 1.53

y 1.49 - - 4.15 0.93 - - 5.57 1.05 - - 2.18

ø 1.35 - - 2.34 1.19 - - 2.03 2.45 - - 2.33

0 - - - 2.97 2.59 - - 3.46 2.94 - - 3.00

8 - - - 3.37 4.19 - - 2.20 3.62 - - 4.34

1 - - 4.77 1.72 - - 5.98 2.94 - - 4.30 1.86

7 - - - 1.82 - - - 1.95 - - - 1.04

W - - - 0.03 - - - 0.11 - - - 0.07

Œ - - - 0.39 - - - 0.37 - - - 1.18

These two are related and in part stem from the distribution of these
vowels in the fine-tuning data, which can be found in Tables 13.4 and
13.5, in Chapter 13. However, comparing these two tables with the
predicted vowel frequencies from Table 14.18, we can see that vowel
prediction distribution is not always the same as vowel distribution in
the fine-tuning data. Therefore, it is possible that the low prediction
frequency and recognition rate of these vowels could tell us that they
are likely not part of the Scandinavian vowel systems.

At the same time, vowel prediction distributions show that certain
vowels have disproportionately high frequencies in the outputs of
the uni models. These are the vowel [i] for all three uni models on
Danish and Norwegian, vowel [e] for the uni-5 and uni-16 models
on Danish and Norwegian, and the vowels [e] and [a] for the uni-5
model on Swedish. This could indicate that these categories are too
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broad for a single vowel and that they could potentially be split into
more categories. In the case of these three languages, this would be
a correct assumption, as all three vowel systems have a four-level
organization of front unrounded vowels: [i], [e], [E], and [a], as well
as a distinction between front and back open unrounded vowels: [a]
and [A]. Nevertheless, more research is needed to investigate how the
outputs of the phone recognition models could be modified to relate
the predicted vowels to the phonological vowel categories of the target
language.

14.4.2 Phone Prediction on Parliamentary Speech

As previously explained, we use a different approach to evaluate vowel
prediction performance on the parliamentary corpora. Namely, since
we do not have formant-based transcriptions for these data sets, we
evaluate the phone recognition models against their dictionary-based
reference transcriptions. Tables 14.19-14.23 provide phone prediction
rates for individual reference vowels of each of the five cross-lingual
models respectively on the parliamentary corpus. We will first take
a look at the models’ performance on the reference vowels that ex-
ist in a given model’s vowel set. Subsequently, we will analyze the
performance on the reference vowels that do not exist in the vowel
set of a given model. Finally, we will discuss the possibility of infer-
ring the vowel inventory of an unseen language based on the models’
predictions.

Starting with the xl-nst model’s performance on Danish, we can
see from Table 14.19 that this model has all Danish reference vowels in
its vowel set and that it achieves consistently high vowel recognition
rates: 73.29%-93.64% (85.80% on average across all reference vowels).
As discussed earlier, this model has “seen” Danish during fine-tuning
and its transcriptions are based on the original NST lexicons, so its
high vowel recognition rates are not surprising. Moving on to the xl-
lnet baseline, this model has also “seen” Danish but its transcriptions
are based on the LanguageNet G2P model for Danish. It achieves
somewhat worse recognition rates on the vowels in its vowel system
than the the xl-nst baseline, but still relatively high. However, since
three of the Danish reference vowels are missing from its vowel set, this
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brings its average vowel recognition rate to 38.67%. Compared with
the baselines, the xl-uni models all achieve lower vowel recognition
rates. The main reason for this is that they also do not have the full
set of Danish reference vowels in their vowel sets. Namely, the xl-
uni-5 is missing 9 vowels, xl-uni-10 is missing 5, and the xl-uni-16 is
missing 4. Still, their performance on just the known reference vowels
is overall worse than the baseline performances on those same vowels.
We believe that this could be caused, at least in part, by the differences
in the underlying language models between the xl-uni models and the
baselines. In other words, the formant-based vowel representations
in the utterance transcripts interfere with the transformer’s ability
to capture the underlying language model, because the same word
will have different transcripts with each realization, many of which
might not be dependent only on the phonetic context, but also on the
broader situational context and the speaker.

Now when we consider actual cross-lingual performance, for exam-
ple on Icelandic, we can see that both baselines perform considerably
worse: the xl-nst 20.69% and xl-lnet 17.88%, despite the fact that none
of the Icelandic reference vowels are missing from the xl-nst vowel set
and only one is missing from the xl-lnet . This suggests that the base-
line Scandinavian vowel systems are not compatible cross-lingually
with the Icelandic vowel system. Comparing these results with the
performance of the xl-uni models, we can see that the xl-uni-5 model,
which has only 3 out of 8 of the Icelandic reference vowels in its vowel
set, outperforms both baselines because it achieves a relatively high
recognition rate on the three known vowels: [i, a, u]. The xl-uni-10
model, which knows 5 out of 8 Icelandic vowels, also outperforms
both baselines, while the xl-uni-16 , which like the xl-uni-5 knows only
3 of the Icelandic vowels, outperforms only the xl-lnet baseline and
performs slightly below the xl-nst baseline. However, if we look at
only the performance on the known reference vowels, all three xl-uni
models achieve higher than baseline recognition rates on almost all
of the vowels (the exception is the performance of the xl-uni-10 and
xl-uni-16 models on the vowel u).

Analyzing the cross-lingual vowel recognition on Catalan, we can
see that the xl-nst baseline, which has all Catalan vowels in its vowel
set, achieves 35.15%, the xl-lnet baseline, which is missing one of
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the vowels, achieves 29.96%. The three xl-uni models have similar
average vowel recognition rates, which are somewhat higher than both
baselines, but their performance on individual vowels differs across
the models. For example, the xl-uni-5 model, which does not know 4
out 9 Catalan vowels, outperforms both baselines on the 5 reference
vowels that it knows. Likewise, the xl-uni-16 , which knows 6 Catalan
vowels, outperforms both baselines on 3 known vowels, outperforms
only one of the baselines on one known vowel, and has approximately
the same performance as baseline on two known vowels. However,
using the xl-uni-10 model, which distinguishes four degrees of vowel
height, helps improve the recognition of open-mid vowels [E] and [O],
but it does so at the expense of the recognition rates on the close-mid
vowels [e] and [o]. Therefore, its overall recognition rate remains close
to the rates of the other two xl-uni models, despite having a 10-vowel
system that most resembles the Catalan phonological vowel system.

When it comes to cross-lingual vowel recognition on Serbian, we
can see that both baselines know all 5 Serbian reference vowels, but
their overall recognition rates of 33.27% and 45.06% suggest that their
large vowel sets are not well aligned with the Serbian vowel inven-
tory. The xl-uni models also know all Serbian vowels, but they do not
perform equally well on all vowels. Namely, the best performance is
achieved by the xl-uni-5 model. At 73.82%, it is substantially higher
than both baselines. This result is not surprising as we expected that
the xl-uni-5 model’s 5-vowel partition of the vowel space would match
the Serbian phonological 5-vowel system. In comparison, the xl-uni-
16 model also scores above both baselines, but we can see a reduction
in the recognition rates on almost all vowels caused by more frequent
vowel confusions. What is interesting to note here is that confusions
between rounded and unrounded vowels are rare. For instance, fewer
than 1% of [i] vowel tokens are falsely recognized as [y], and fewer
than 1% of [e] vowel tokens are falsely recognized as [ø].2 Therefore,
most of the confusions happen between vowels adjacent in the vowel
space. Since we do not have narrow phonetic transcriptions of the par-
liamentary corpora, we cannot know whether some of the incorrectly
predicted vowels correspond to different allophonic realizations of the

2This cannot be seen from Table 14.23 because it only shows top 3 predictions for
each reference vowel.
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reference vowels. On the other hand, using using the xl-uni-10 model,
which distinguishes four degrees of vowel height, on Serbian vowels
introduces many confusions between the open-mid and close-mid
vowels, i.e. [e] and [E], and [o] and [O], thus bringing its overall vowel
recognition rate below the xl-lnet baseline.

Finally, moving on to cross-lingual vowel recognition on Finnish,
the baseline vowel recognition rates are 20.53% and 29.46%, and both
baselines know all Finnish reference vowels. We should remember that
Finnish is the first non-Indo-European language we have considered
so far, and the only from the whole parliamentary corpus collection.
This means that lexical and phonotactic similarities between the eval-
uation language and the fine-tuning languages are minimal. For this
reason, the baseline phone recognition models will likely not be able
to “guess” the correct vowel using their knowledge of the Scandinavian
language models.

The best performance on Finnish is achieved by the xl-uni-5
model, which has 5 out of 8 Finnish vowels in its vowel system. This
model consistently outperforms both baselines on all known reference
vowels individually, except the vowel [i], which it can recognize cor-
rectly only 44.78% of the time. This recognition rate disagrees with
the rates achieved on the other four languages. Namely, the xl-uni-5
model has a consistent recognition rate of over 80% on all four previ-
ously analyzed languages. This could suggest that the formant-based
vowel space delimited by the mean values of the four point vowels
derived from the Scandinavian NST corpus might not provide the op-
timal position for the Finnish vowel [i]. The xl-uni-16 , which knows
7 out of 8 Finnish reference vowels, also scores above the baseline.
Although the introduction of front rounded vowels helps to improve
the performance on the vowels [y] and [ø], the larger number of vowel
categories also leads to more confusions and reduced performance
on the primary vowels. Finally, the xl-uni-10 model, which like the
xl-uni-5 recognizes only 5 out 8 Finnish vowels, suffers even more
confusions than the other two xl-uni models. As we have seen with
the previous evaluation languages, additional levels of vowel height
lead to confusions particularly between the open-mid and close-mid
vowels which are not distinguished in Finnish ([e] vs. [E], and [o] vs.
[O]), bringing the overall vowel recognition rate below the xl-lnet base-
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line. Another peculiarity that we have observed with Finnish is very
high vowel deletion rate across all models, both baseline and xl-uni.
At this point, it is not clear why this happens, but could be a result of
vowel and consonant lengthening, which is characteristic of Finnish
phonology and was indicated by duplicating the phone tokens in the
reference transcriptions.

Regarding the performance on the reference vowels that do not
occur in the xl-uni models’ vowel sets, we will analyze each model
separately. With five vowels, the xl-uni-5 has the most limited vowel
system of all the xl-uni models. This has proved useful for languages
with smaller vowels sets of primary vowels, but it also means that its
performance drops with the number of vowels outside its vowel set. Its
predictions on the unseen reference vowels of the different languages
tell us that the model usually predicts them as their closest vowel that
is in its vowel set. For example, [A] is frequently predicted as [a], [E] as
[e], [O] as [o], and [U] as [u]. When it comes to the rounded front vowels,
they are often predicted as their unrounded counterparts, or closes
unrounded counterparts. For instance, [y] as [i], [ø] as [e], and [œ] as
[a]. Therefore, the model is generally able to recognize the broadest
vowel categories.

With ten vowels, the xl-uni-10 model’s predictions of the unseen
vowels look more diverse. Namely, it also generally predicts them as
their closest vowels in the vowel space that it can find in its vowel set.
However, its predictions are more evenly distributed across several
closely related vowels. For example, [y] is variably predicted as [i] or
[1], [ø] as [1], [E], [e], and [@], and [œ] as [A], [a], or [@].

With 16 vowels, the xl-uni-16 model has the largest vowel set of all
investigated models. It is also the only model that can distinguish cor-
responding rounded and unrounded vowels. This model has generally
performed better than the xl-uni-10 on the languages of the parlia-
mentary corpora despite having more vowels in its vowel sets and
potential for vowel confusions. We believe that this is not only because
it was able to recognize the front rounded vowels in the languages that
feature them, but also because its 8-primary-vowel set seems more in
line with the languages of the parliamentary corpora. As mentioned
previously, this model had no problem distinguishing rounded and
unrounded vowels, so its predictions looked more closely related to
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the reference vowels, even for the unseen vowels. For instance, the
unseen vowel [E] was often predicted as [e] or [a], the vowel [I] as [e]
or [i], vowel [O] as [o], [u], or [6], vowel [U] as [u] or [o], vowel [Y] as [ø],
and vowel [œ] as [Œ], [6], or [8].

14.4.3 Phone Prediction on Noisy Telephone Speech

We use the same approach here as when evaluating phone predic-
tions on parliamentary speech in the previous section. Namely, since
we do not have formant-based transcriptions for Babel data sets, we
evaluate the phone recognition models against dictionary-based ref-
erence transcriptions of these data sets. Tables 14.24-14.28 provide
phone prediction rates for individual reference vowels of each of the
five cross-lingual models respectively on the parliamentary corpus. It
should be pointed out that none of these languages are Indo-European
and are both typologically and geographically distant to the three Scan-
dinavian languages in our fine-tuning data. Moreover, noisy telephone
conversations are generally a more challenging type of speech, which
was also evident from the overall phone and word error rates on these
languages, which we reported in the previous sections.

We begin by looking at the models’ performance on Lao on the
reference vowels that exist in a given model’s vowel set. The baseline
models know 7 out 9 of Lao’s reference vowels, and achieve mean vowel
recognition rates of 30.68% and 25.27%. The uni models generally
outperform both baselines on each individual known reference vowel
except on the vowel [A]. While the individual recognition rates of the
xl-uni-5 model on the known reference vowels are all above 58%, this
model has only four of Lao’s 9 vowels in its vowel set, so the average
recognition rate ends up being below both baselines. However, we
see that Lao has only one open unrounded vowel, labeled as [A] in
its reference transcription system, and our xl-uni-5 model uses also
only one open (central) unrounded vowel, originally labeled as [ä].3

3We strip the diacritics for centralization ([̈ ]) and lowering ([fl]) from the vowels
in the xl-uni-5 and xl-uni-16 transcription systems when evaluating on the parlia-
mentary and Babel data. These features are rarely marked in phonological systems
as there are few language where the distinctions between a and [ä], or [e] and [efl] are
phonemic.
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Therefore, the difference between the representations [a] and [A] in
this case is a matter of convention.4 As we can see from Table 14.26,
the xl-uni-5 model predicts Lao’s [A] as [a] 36.18% of the time. This
means that if we had used [A] to represent the open central unrounded
vowel in the xl-uni-5 vowel system, the vowel recognition rate of this
model on Lao would have been 33.25%, which is above both baselines.

The xl-uni-10 and xl-uni-16 models have wider coverage of Laos
vowels, 7 out of 9, but their lower performance on individual vowels
bring down their average close to the baselines. Of all our evaluation
languages, Lao is the only one that has the two back unrounded vow-
els [7] and [W]. However, the xl-uni-16 model, which has these two
vowels in its vowel set, could not recognize most of them. As discussed
previously, these two vowels were very rare in the fine-tuning data
as neither occurs as a phoneme in the phonological systems of the
Scandinavian languages. This is likely the reason why the model could
not recognize them. Instead, it often predicted both of them as [e], or
[7] as [a], and [W] as [u].

Looking at the performance results on Zulu, the baseline models
which have seen all 6 of its reference vowels, achieve mean vowel
recognition rates of 21.09% and 31.60%. The xl-uni-5 and xl-uni-16
models outperform both baselines on each seen vowel individually
and on average. The xl-uni-10 model also outperforms both baselines,
but not on all vowels individually and by a smaller margin. As was the
case with the previously analyzed languages, this one also shows that
increasing the number of vowel categories and, especially, levels of
vowel height, decreases the recognition rates of individual vowels.

On Amharic, the baseline models which have both seen 6 of its 7
reference vowels, achieve mean vowel recognition rates of 17.59% and
13.88%. Thexl-uni-5 model outperforms both baselines on each seen
vowel individually and on average. While the xl-uni-10 and xl-uni-16
models also outperform both baselines on average, performance on
individual seen vowels decreases compared with the xl-uni-5 model.
More specifically, the recognition rates of the primary vowels decrease
when an additional level of vowel height is introduced in the xl-uni-10
vowel space. Amharic has one rare vowel which does not occur in the

4Of course, [a] and [A] differ phonetically, but we can expect that their realizations
would overlap to a certain extent in the F1 −F2 space.

174



Chapter 14 | Results

Scandinavian languages: [1], but is seen by the xl-uni-10 and xl-uni-16
models. The xl-uni-10 model was able to recognize 10.62% of those
vowels, and xl-uni-16 recognized only 5.51% of them. This seems
much lower than these models achieve on the other seen Amharic
vowels, especially the primary vowels whose recognition rates range
21.43-58-68%.

On Mongolian, the xl-nst baseline which has seen all 7 Mongolian
reference vowels achieves a recognition rate of 12.92%, while the xl-
lnet baseline, which has seen 6 of them, achieves 18.82%. The xl-uni-5
model achieves the highest performance on this language because it
has the highest recognition rates on all individual seen vowels. It is
worth noting that the reference phonological system used to transcribe
the Mongolian data does not have the mid front unrounded vowel [e],
or the close-mid front unrounded vowel [efl], only the open-mid [E].
The models were able to detect this and no model produced too many
confusions with [e], even the xl-uni-5 and xl-uni-16 which do not
distinguish [e] and [E]. The only xl-uni model that distinguishes these
two vowels, xl-uni-10 , outperformed both baselines on this particular
vowel. However, it was less successful at differentiating the mid back
vowels: [o] and [O], on which it outperformed only one of the baselines.

On Javanese, the xl-nst baseline which has seen all 10 Javanese
reference vowels achieves a recognition rate of 20.86%, while the xl-
lnet baseline, which has seen 9 of them, achieves 27.44%. As before,
the xl-uni-5 model achieves the highest performance on this language
because it has the highest recognition rates on all individual seen
vowels compared to the other models, despite having seen only 5 of the
10 Javanese vowels. Increasing the number of vowel categories from
5 to 10 and 16 leads to higher recognition rates on the added vowels
but at the expense of the initial vowel. Having more but narrower
categories in the vowel set leads to more frequent vowel confusions
among adjacent categories, e.g. [e] and [E], or [a] and [A].

Regarding the performance on the reference vowels that do not
occur in the xl-uni models’ vowel sets, we will analyze the performance
on four pairs of vowels: [E] and [O], [@] and [1], [I] and [U], and [7] and
[W]. As previously mentioned, vowel confusions frequently happen
among vowels that are adjacent in the vowel space. For example, when
[E] and [O] are not in the model’s vowel set, it commonly substitutes [E]
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with [e] and [a], and [O] with [o] and [A]. When [@] and [1] are not in the
model’s vowel set, it often replaces them with [e] or [a]. When [I] and
[U] are not in the model’s vowel set, it tends to replace [I] with [i], [e],
or [E], and [U] with [o] or [u]. Finally, when [7] and [W] are excluded
from the model’s vowel set, [7] is typically replaced with [e], [E], [a], or
[@], and [W] with [e], [u], or [1].

Finally, a general trend toward high vowel deletion rates was ob-
served on all Babel languages with all models. The deletion rates of
all vowels in the Babel languages are generally higher than they were
on the parliamentary corpora in Indo-European languages, and are
on par with the vowel deletion rates on Finnish. We have not carried
out a systematic analysis of deletions, so it is unclear what is causing
them. We expect that finding ways to curb the deletion rates would
help improve cross-lingual phone recognition on these data sets.

14.4.4 Inferring the Vowel Inventory of an Unseen Lan-
guage

In the previous sections, we saw that the xl-uni-5 model had the best
performance on most of the evaluation languages in terms of vowel
recognition rate. However, we also know that this model has the small-
est vowel set and broadest vowel categories. We have also seen that,
for many languages, in particular, those with larger vowel sets, these
five vowel categories do not allow us to distinguish all their contrastive
vowel qualities. Therefore, it is also worth asking which cross-lingual
models are capable of detecting the relevant vowel contrasts in a given
target language. Regrettably, we cannot answer this question con-
clusively yet, as we have investigated only a very small number of
languages with differing vowel systems. We will, however, describe
and visualize some qualitative observations on several of the inves-
tigated languages. They will exemplify how a high correspondence
between the model’s vowel system and the vowel system of the target
language help the model to infer the vowel inventory of the language.

Namely, we will look at diagrams called dendrograms, which result
from the hierarchical clustering of the cross-lingual phone predic-
tions on individual parliamentary and Babel corpora. We analyze the
phone prediction dendrograms of the xl-uni models with vowel sets
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most similar to the vowel system of a target language, and compare
them to the dendrograms of the baselines. They are shown in Fig-
ures 14.3-14.5. The clusters in the diagrams can be interpreted as
groups of phones that tend to have similar patterns of confusions. The
representations clustered lower on the y-axis have more similarity,
while the representations that branch off higher are more distant. This
visualization technique for phone prediction analysis is based on the
work by Żelasko et al. (2022).

We first look at the dendrograms of the baselines and the xl-uni-5
model on Serbian, shown in Figure 14.3. We see that the xl-uni-5
model whose 5-category vowel system closely matches the vowel sys-
tem of Serbian is able to detect all 5 of the Serbian reference vowels, as
well as make a greater distinction between the predicted vowel cate-
gories. In contrast, the categories predicted by the baselines, which
have more vowels and higher vowel error rates, do not seem as distinct
from each other.

Next, we first look at the dendrograms of the baselines and the
xl-uni-10 model on Catalan, depicted in Figure 14.4. Now, we see that
the xl-uni-10 model with a 10-category vowel set is a closer match for
the vowel system of Catalan, which has 9 reference vowels. It is able to
detect and distinguish 8 of the 9 Catalan vowels (all except [U], which is
not in its vowel set). On the other hand, the xl-nst cannot differentiate
between [e] and [E], or [o] and [O] at the same clustering threshold. It
also detects an additional vowel, vowel [I], which is outside of Cata-
lan’s vowel inventory. Unlike the xl-nst , the xl-lnet can distinguish
between the open-mid and close-mid vowels, but fails to distinguish
the vowel [@].

We will now look at the dendrograms of the baselines and the
xl-uni-16 model on Finnish, displayed in Figure 14.5. Here, we see
that the xl-uni-16 model with a 16-category vowel set is better at
distinguishing Finnish vowels than the baselines. It is able to detect
and distinguish all 8 of the Finnish vowels (if [a] is considered close
enough to the Finnish [æ]). On the other hand, the xl-nst cannot
differentiate between [i] and [y], at the same clustering threshold, and
generally finds more similarity between the predicted phones. It also
detects an additional vowel, vowel [0], which is not in Finnish’s vowel
inventory. The xl-lnet baseline does not distinguish the vowel [æ],
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Figure 14.3: Hierarchical clustering of the cross-lingual phone predictions on the
Serbian parliament corpus, visualized as dendrograms. The clustering threshold for
all subfigures is set to 60.
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Figure 14.4: Hierarchical clustering of the cross-lingual phone predictions on the
Catalan parliament corpus, visualized as dendrograms. The clustering threshold for
all subfigures is set to 20.
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and is generally worse at separating the relevant from irrelevant vowel
categories.

On the other hand, if we look at the dendrograms of phone predic-
tions on Lao, shown in Figure 14.6, we can see that none of our models
is able to distinguish all of its 9 vowels. As we remember, Lao has
two rare vowels, mid back unrounded [7] and close back unrounded
[W]. The only model that saw these two representations was the xl-
uni-16 , which means that it was the only model that could predict
them. However, these vowels are not distinctive in the languages of
our fine-tuning corpus and were thus quite rare in the xl-uni-16 tran-
scriptions. As a result, this model was not good at recognizing them
nor distinguishing them as relevant. Additionally, this model could
also not predict the open-mid vowels [E] and [O] as they were not in
its vowel set. From the remaining three models shown in the figure,
the xl-uni-10 and xl-lnet could distinguish both of them, while the
xl-nst had a harder time distinguishing [o] and [O]. Still, none of them
could predict the unrounded back vowels [7] and [W]. Hence, we see
that none of the investigated vowel categorization methods was ap-
propriate for Lao, which is a likely reason that none of the models was
particularly good at recognizing its vowels.

As we can see from these examples, when the model’s vowel system
and training data align with the vowel system of the target language,
the model is better at inferring the vowel inventory of this language.
This does not prove that these models are better at recognizing ref-
erence vowels, but it shows that they can make more intuitive and
phonologically relevant vowel predictions.

14.5 Phone Prediction Analysis of Monolingual Speech
Recognition Results

In the previous section, we looked at individual vowel prediction rates
of the phone recognition models. Here, we are going to examine
individual phone prediction rates of the word-based ASR systems.
However, since these systems predict whole words and not individual
phones, we cannot directly measure their phone error rates. Therefore,
we compute the top phone predictions and their prediction rates for
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Figure 14.5: Hierarchical clustering of the cross-lingual phone predictions on the
Finnish parliament corpus, visualized as dendrograms. The clustering threshold for
all subfigures is set to 30.
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Figure 14.6: Hierarchical clustering of the cross-lingual phone predictions on the
Lao data set from the telephone speech corpus Babel, visualized as dendrograms.
The clustering threshold for all subfigures is set to 20.
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each reference vowel in the test sets of the evaluation corpora based
on their G2P-predicted pronunciation from the cross-lingual lexicon.
We then compare the phone prediction rates for each reference vowel
to its word recognition rate.

The prediction rates of a particular vowel are obtained by counting
the number of its tokens in the test set(s) according to the original
(canonical) pronunciations, and calculating what percentage of those
vowels is predicted as which phone in the given cross-lingual pronun-
ciation lexicon. The word recognition rates of a particular vowel are
measured by counting the number of word tokens in the test set(s)
that contain this vowel in their original pronunciation and calculating
the percentage of them that was correctly recognized by the ASR sys-
tem. Both prediction rates and word recognition rates are averaged
across all experiment runs and evaluation languages. The evaluation
languages include both parliamentary and Babel data sets, but exclude
Danish as this language is seen by the xl phone recognition models
and would bias the results. These results are shown in Table 14.29a-c.
Although these results do not show a direct relationship between the
predicted phones and the word recognition rate, they should tell us
how phone predictions for an individual reference vowel correlate with
the system’s performance on words containing the same vowel.

As we see from the table, the phone predictions for different vowels
vary by cross-lingual lexicon and are roughly in line with the predic-
tions of the phone recognition models. However, the word recogni-
tion rates look very similar across the different ASR systems despite
them using different pronunciation lexicons. Looking at the five most
common vowels: [a, e, i, o, u], which are found in all five cross-
lingual lexicons and whose recognition rate improves the most over
the baselines, we see that their corresponding word recognition rates
are relatively stable across the different ASR systems. Moreover, larger
improvements in vowel recognition, such as those seen with the xl-
uni-5 models on the vowels [a] and [o], are even found to correlate
with worse performance on word recognition. When it comes to the
front rounded vowels: [y, ø, œ], they were also associated with similar
word recognition rates across the ASR systems, with [y] and [ø] hav-
ing two of the three highest recognition rates, even when they were
outside the system’s lexicon. Finally, the results for the rarest vowels:
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Table 14.29a: Phone prediction rates for each cross-lingual lexicon for all ASR sys-
tems evaluated cross-lingually. The table shows top 5 phone predictions and their
prediction rates in % for each reference vowel averaged across the nine evaluation
languages. del signifies a deletion error. Bolded results are correct predictions. The
reference vowels highlighted in gray are not found in the model’s vowel set.

top vowel predictions % correct
1 2 3 4 5 words

xl-nst

a del: 48.79 A: 20.88 @: 9.14 a: 3.07 E: 1.99 33.64
e del: 37.87 e: 21.90 @: 15.31 E: 8.63 A: 2.02 45.36
i del: 44.43 i: 20.06 I: 12.33 @: 3.30 A: 3.10 41.17
o del: 35.11 O: 23.99 o: 18.04 A: 5.39 @: 2.28 45.58
u del: 47.78 u: 20.16 U: 6.30 O: 4.54 A: 2.80 35.47
y del: 37.24 0: 21.12 8: 15.29 d: 6.41 @: 4.35 77.17
æ del: 37.87 @: 26.23 æ: 7.22 E: 6.75 a: 4.13 77.83
ø ø: 37.48 del: 23.27 @: 11.14 O: 8.25 œ: 5.67 80.82
œ del: 38.34 œ: 21.30 ø: 14.90 O: 5.48 k: 2.66 47.76
A del: 59.44 A: 21.05 a: 3.90 E: 1.87 @: 1.42 5.95
O del: 55.83 A: 16.06 O: 11.13 o: 2.59 @: 1.37 10.53
@ del: 52.72 @: 21.93 A: 8.48 e: 3.11 E: 3.04 20.55
E del: 53.01 E: 17.88 e: 8.90 @: 4.55 æ: 1.70 23.10
7 del: 42.28 ø: 27.86 O: 9.44 a: 4.34 @: 3.66 5.45
1 del: 79.63 @: 3.25 A: 2.19 E: 1.90 e: 1.15 5.79

I del: 31.69 @: 19.83 I: 18.43 e: 9.97 i: 5.33 38.84
W del: 66.01 u: 4.43 @: 4.24 O: 4.13 I: 2.99 6.00

U del: 41.55 U: 15.44 O: 15.07 u: 11.22 o: 4.03 38.94
Y del: 33.93 @: 22.47 8: 12.73 ø: 4.39 R: 2.91 44.94

xl-lnet

a del: 34.59 A: 25.78 a: 13.06 e: 4.99 E: 2.89 35.39
e e: 33.75 del: 23.42 E: 14.86 @: 3.76 i: 3.70 45.25
i i: 41.31 del: 28.73 I: 5.00 e: 2.80 t: 1.98 42.81
o O: 29.27 del: 26.36 o: 14.21 A: 7.78 u: 2.99 47.71
u del: 37.30 u: 20.24 O: 16.25 o: 4.66 A: 2.20 37.27
y 0: 43.94 del: 27.75 d: 5.37 u: 3.31 y: 1.65 80.06
æ del: 29.73 E: 18.27 e: 16.38 A: 10.43 a: 7.33 80.92
ø ø: 54.55 del: 10.52 e: 7.23 0: 5.61 E: 2.75 83.08
œ ø: 38.88 del: 26.62 O: 10.37 A: 3.04 o: 2.61 55.84

A del: 36.37 a: 18.82 A: 10.63 e: 10.16 g: 3.91 7.04
O del: 40.88 A: 16.23 O: 14.72 a: 6.82 o: 5.39 11.59
@ del: 47.53 e: 17.06 A: 10.10 E: 3.76 a: 2.41 22.70
E del: 38.16 e: 27.76 E: 8.53 i: 2.22 æ: 2.21 24.60
7 ø: 44.82 del: 20.66 e: 10.36 p: 5.56 0: 4.18 5.27
1 del: 69.43 e: 10.09 ø: 2.22 A: 2.08 i: 1.31 8.25

I i: 31.78 del: 19.87 e: 18.98 I: 3.71 R: 3.05 44.72
W del: 41.90 O: 10.72 0: 9.02 e: 8.89 ø: 6.04 6.61
U del: 29.26 o: 20.40 u: 16.73 O: 15.27 0: 1.96 40.12

Y 0: 23.78 del: 21.61 e: 17.03 u: 10.94 ø: 3.81 53.49

Continued on next page.
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Table 14.29b: Phone prediction rates for each cross-lingual lexicon for all ASR sys-
tems evaluated cross-lingually. The table shows top 5 phone predictions and their
prediction rates in % for each reference vowel averaged across the nine evaluation
languages. del signifies a deletion error. Bolded results are correct predictions. The
reference vowels highlighted in gray are not found in the model’s vowel set.

Continued from previous page.

top vowel predictions % correct
1 2 3 4 5 words

xl-uni-5

a a: 55.73 del: 31.09 e: 4.67 o: 1.61 s: 0.75 34.35
e e: 59.74 del: 24.63 a: 4.77 i: 3.99 o: 1.20 45.65
i i: 42.59 del: 37.50 e: 7.00 a: 2.27 EI: 1.64 41.54
o o: 43.82 del: 28.88 a: 9.27 u: 5.88 e: 3.85 46.58
u del: 40.95 u: 39.04 o: 4.44 e: 3.54 a: 2.87 36.59
y del: 35.93 i: 30.00 e: 17.74 d: 3.96 g: 3.53 77.21

æ a: 40.30 del: 29.04 e: 17.28 d: 5.67 b: 1.74 78.62
ø e: 57.63 del: 21.32 d: 5.67 a: 5.02 i: 3.37 81.15
œ del: 40.92 e: 19.98 a: 16.59 o: 12.14 k: 1.67 47.03
A del: 59.34 a: 22.13 e: 3.05 v: 2.21 g: 1.76 5.63
O del: 54.90 a: 19.43 o: 9.73 e: 2.68 u: 2.11 10.75
@ del: 49.66 e: 20.75 a: 17.49 i: 1.60 d: 1.34 22.33
E del: 53.89 e: 22.48 a: 9.12 d: 1.87 i: 1.47 22.66
7 e: 52.49 del: 27.78 a: 7.64 o: 5.11 n: 1.47 4.90
1 del: 73.27 e: 8.31 a: 5.78 i: 2.70 d: 0.98 7.31
I del: 30.41 e: 28.51 i: 24.16 R: 4.61 a: 2.25 39.81
W del: 57.87 e: 15.51 u: 9.89 a: 4.56 i: 4.35 5.81
U del: 37.65 u: 31.78 o: 11.42 a: 4.01 e: 3.79 39.47
Y e: 43.68 del: 30.50 u: 5.14 o: 4.80 i: 3.38 45.64

xl-uni-10

a del: 39.16 a: 29.05 A: 14.43 E: 3.38 @: 2.38 34.42
e del: 32.17 E: 25.73 e: 22.29 a: 3.90 i: 3.24 45.75
i del: 38.29 i: 35.55 e: 8.53 E: 2.17 A: 1.52 42.08
o del: 32.93 O: 19.60 o: 16.69 @: 7.17 A: 6.53 46.71
u del: 42.34 u: 27.93 o: 6.92 1: 3.66 @: 2.37 36.67
y del: 36.16 1: 24.59 e: 15.61 i: 4.18 g: 3.57 77.87

æ a: 37.48 del: 36.93 E: 9.21 d: 6.05 b: 1.76 78.81
ø del: 36.71 E: 21.41 1: 12.05 @: 11.82 e: 4.63 81.10
œ del: 43.59 @: 20.84 E: 8.07 A: 6.57 a: 3.70 48.65

A del: 59.62 a: 16.91 A: 7.90 E: 1.63 d: 1.48 5.70
O del: 51.36 O: 11.24 A: 10.38 a: 8.68 o: 4.29 11.02
@ del: 51.54 E: 13.72 a: 11.24 A: 4.17 e: 4.11 21.89
E del: 48.54 E: 25.31 a: 7.34 e: 6.15 A: 0.99 23.05
7 E: 44.60 del: 34.63 @: 7.09 i: 2.28 a: 2.25 4.65

1 del: 74.50 E: 5.84 a: 2.95 A: 2.62 1: 1.95 6.94
I e: 37.34 del: 32.06 i: 9.87 E: 3.89 R: 2.63 40.29
W del: 63.44 o: 5.43 e: 5.17 E: 4.66 1: 3.90 5.97
U del: 40.40 u: 21.99 o: 9.79 1: 7.50 O: 4.13 39.07
Y del: 33.04 @: 20.69 1: 14.37 e: 10.35 E: 5.79 46.65

Continued on next page.
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Table 14.29c: Phone prediction rates for each cross-lingual lexicon for all ASR sys-
tems evaluated cross-lingually. The table shows top 5 phone predictions and their
prediction rates in % for each reference vowel averaged across the nine evaluation
languages. del signifies a deletion error. Bolded results are correct predictions. The
reference vowels highlighted in gray are not found in the model’s vowel set.

Continued from previous page.

top vowel predictions % correct
1 2 3 4 5 words

xl-uni-16

a a: 38.94 del: 38.16 A: 8.93 @: 2.98 e: 2.05 34.52
e e: 46.56 del: 32.83 i: 4.39 a: 4.24 @: 3.10 46.18
i i: 41.08 del: 39.69 e: 4.07 EI: 2.04 A: 1.49 41.93
o del: 37.20 o: 28.99 u: 4.51 A: 4.26 6: 4.11 46.76
u del: 42.54 u: 34.95 o: 3.79 0: 2.22 A: 1.87 36.82
y del: 33.33 y: 22.97 0: 11.29 ø: 11.15 d: 4.86 78.96
æ a: 43.31 del: 38.28 e: 4.34 d: 3.91 @: 2.16 79.97

ø ø: 58.12 del: 15.54 @: 8.88 8: 3.93 e: 3.87 81.85
œ del: 51.41 ø: 11.05 8: 8.80 Œ: 5.92 @: 3.88 48.89

A del: 61.32 a: 17.03 A: 7.71 n: 2.69 e: 1.42 5.67
O del: 59.64 a: 10.16 A: 8.68 o: 5.38 n: 1.54 10.87

@ del: 54.18 a: 17.95 e: 8.18 @: 6.64 A: 1.58 21.45
E del: 58.54 e: 14.82 a: 10.38 i: 2.03 @: 1.53 23.01

7 del: 47.13 Œ: 25.74 a: 6.37 8: 5.59 n: 4.89 4.99
1 del: 80.02 a: 3.55 e: 1.91 A: 1.32 d: 1.25 6.96
I del: 33.96 i: 28.46 e: 19.26 R: 3.87 @: 1.43 41.19

W del: 69.81 u: 3.68 a: 3.14 o: 3.05 e: 2.58 6.00
U del: 44.09 u: 25.44 o: 8.65 0: 4.73 a: 1.83 39.16
Y del: 37.52 ø: 18.17 @: 8.55 8: 6.95 e: 4.84 47.12

[7, W], which were present in only the xl-uni-16 lexicon, and [1] in
the xl-uni-10 and xl-uni-16 , were found to correlate with some of
the poorest word recognition rates (4.65%-8.25%). To an extent, this
stems from the fact that each of these vowels were part of only one
of the evaluation languages: [7, W] of Lao, and [1] of Amharic, which
generally had worse word error rates than the parliamentary corpora.

To see how phone predictions are distributed within correctly and
incorrectly predicted words, we can separate the overall prediction
rates into prediction rates for the correctly recognized words and the
incorrectly predicted words only, as shown in Table 14.30a-c. The left
side of the table shows top 5 predictions and their prediction rates for
the reference vowels in the correctly recognized words, whereas the
right side shows top 5 predictions and their prediction rates for the
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reference vowels in the incorrectly predicted words. Concretely, for
each ASR system with a cross-lingual lexicon derived from an xl phone
recognition model and each reference vowel, we first find all correctly
recognized and all incorrectly predicted words that feature the refer-
ence vowel. Then, we use the cross-lingual lexicon used by the ASR
system to obtain all predicted vowels for that reference vowel and mea-
sure their prediction rates. In other words, for each reference vowel,
the prediction rates over the correct words tell us what percentage of
correctly recognized words which feature that vowel in the reference
lexicon was predicted as which phone in the given cross-lingual lex-
icon. Conversely, the prediction rates over the incorrect words tell
us what percentage of incorrectly predicted words which feature a
given vowel in the reference lexicon was predicted as which phone
in its corresponding cross-lingual lexicon. Granted, these results do
not show a direct relationship between the predicted phones and the
predicted words. Nevertheless, intuitively and on average, they should
tell us which phone predictions help the ASR systems the most and
which ones are likely to make them worse.

We first look at the prediction rates for the incorrectly predicted
words to see which prediction patterns are most likely to aggravate the
ASR systems’ performance. As we can see from the table, the top result
for all ASR systems and across all reference vowels is a deletion error
with high deletion rates (over 50%). This indicates that vowel deletion
errors adversely affect the ASR systems’ performance making them
more likely to incorrectly predict the whole word. However, we can also
see that correctly recognizing a reference vowel does not guarantee
that the whole word will be recognized. The systems using the xl-
lnet lexicon have a noticeably lower vowel deletion rate on average
compared to the other ones. Namely, the average deletion rate with the
xl-lnet lexicons is 54.2%, while with the other lexicons they are 67.23%
with xl-nst , 61.7% with xl-uni-5 , 63.94% with xl-uni-10 , and 65.27%
with xl-uni-16 . As we noted before, the xl-lnet phone recognition
model had lower phone deletion rates, which likely resulted in the
wider vocabulary coverage of the xl-lnet lexicons and, ultimately, lower
word error rates of their corresponding ASR systems. Here, we see
further evidence that phone deletion errors lead to higher word error
rates.
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Table 14.30a: Phone prediction rates for each cross-lingual lexicon in correctly
recognized and incorrectly predicted words for all ASR systems evaluated cross-
lingually. The table shows top 5 phone predictions and their prediction rates in
% for each reference vowel averaged across the nine evaluation languages. del
signifies a deletion error. Bolded results are correct predictions. The reference
vowels highlighted in gray are not found in the model’s vowel set.

correctly recognized words incorrectly predicted words
1 2 3 4 5 1 2 3 4 5

xl-nst

a A: 33.17 del: 30.38 @: 15.07 a: 3.04 E: 2.79 del: 68.20 A: 7.93 a: 3.10 @: 2.88 n: 1.52
e e: 30.91 @: 22.03 del: 21.64 E: 12.09 I: 1.48 del: 63.02 e: 7.95 @: 4.90 E: 3.26 A: 3.04
i i: 29.88 del: 26.29 I: 19.76 @: 4.39 A: 3.38 del: 67.51 i: 7.57 I: 2.87 A: 2.75 @: 1.92
o O: 33.91 o: 23.07 del: 20.21 A: 6.15 @: 2.46 del: 62.66 o: 8.74 O: 5.64 A: 3.97 @: 1.97
u u: 34.73 del: 24.77 U: 12.02 O: 7.31 o: 3.90 del: 68.14 u: 7.27 A: 3.06 O: 2.10 o: 1.64
y del: 34.59 0: 22.66 8: 16.55 d: 6.91 @: 4.44 del: 53.73 0: 11.48 8: 7.41 @: 3.73 d: 3.31
æ del: 32.55 @: 29.78 æ: 8.11 E: 7.47 d: 4.43 del: 62.78 @: 9.61 E: 3.41 a: 3.09 æ: 3.02
ø ø: 42.60 del: 15.85 @: 12.59 O: 9.58 œ: 6.39 del: 60.34 ø: 11.93 @: 3.85 E: 2.45 œ: 2.08
œ del: 29.82 œ: 26.14 ø: 18.97 O: 6.96 k: 3.42 del: 61.07 œ: 8.38 ø: 4.04 A: 2.85 @: 2.41
A A: 49.20 del: 19.33 a: 10.68 æ: 3.54 @: 3.26 del: 71.63 A: 12.49 a: 1.84 n: 1.56 E: 1.46
O A: 37.91 O: 25.05 del: 21.77 o: 4.89 2: 2.27 del: 72.55 A: 5.33 O: 4.30 o: 1.45 n: 1.41
@ @: 40.46 del: 25.32 A: 14.98 e: 5.80 E: 5.02 del: 73.71 @: 7.73 A: 3.51 E: 1.52 e: 1.05
E E: 36.92 del: 20.19 e: 19.20 @: 8.21 æ: 3.67 del: 75.76 E: 4.69 A: 2.04 @: 2.01 e: 1.76
7 ø: 52.82 O: 19.34 a: 7.72 @: 7.16 del: 6.09 del: 73.44 ø: 6.37 A: 3.39 n: 2.05 a: 1.43
1 del: 65.38 @: 11.20 E: 4.59 e: 3.34 œ: 2.77 del: 83.42 A: 2.52 E: 1.18 @: 1.13 n: 0.84

I @: 26.27 I: 24.50 del: 18.27 e: 13.31 i: 6.87 del: 58.49 @: 6.98 I: 6.31 e: 3.30 R: 2.90
W del: 39.18 O: 17.73 @: 17.37 I: 12.64 n: 2.79 del: 72.34 u: 4.89 A: 3.30 ø: 2.94 n: 2.25

U U: 26.17 O: 25.09 u: 18.91 del: 16.74 o: 6.11 del: 71.49 O: 2.99 A: 2.71 U: 2.49 @: 2.14
Y @: 28.42 del: 22.91 8: 16.47 ø: 5.96 O: 3.33 del: 57.02 @: 9.98 8: 4.89 R: 3.83 d: 1.84

xl-lnet

a A: 36.92 del: 21.22 a: 14.85 e: 5.85 E: 3.82 del: 55.28 a: 10.29 A: 8.52 e: 3.66 n: 2.02
e e: 41.75 E: 19.04 del: 11.86 @: 5.00 i: 3.77 del: 50.56 e: 14.98 E: 5.07 i: 3.53 n: 2.62
i i: 53.63 del: 15.91 I: 7.11 e: 2.58 E: 1.91 del: 53.22 i: 17.77 e: 3.22 n: 2.28 t: 2.23
o O: 35.80 del: 17.40 o: 16.60 A: 9.29 u: 3.42 del: 50.09 O: 11.96 o: 7.87 A: 3.79 n: 2.37
u u: 29.52 O: 24.43 del: 20.39 o: 6.63 0: 2.74 del: 58.31 u: 8.71 O: 6.08 A: 2.33 o: 2.21
y 0: 46.84 del: 26.20 d: 5.45 u: 2.88 0: 1.73 del: 40.47 0: 20.25 u: 6.84 d: 4.77 e: 4.20
æ del: 28.32 E: 19.30 e: 17.04 A: 10.73 a: 7.64 del: 41.31 e: 10.95 E: 9.77 A: 8.00 a: 4.73
ø ø: 57.59 del: 7.49 e: 7.36 0: 5.95 E: 2.79 del: 35.55 ø: 29.47 e: 6.08 d: 3.78 0: 2.75
œ ø: 43.88 del: 22.06 O: 11.69 o: 2.79 A: 2.78 del: 48.70 ø: 14.63 A: 4.31 O: 3.99 e: 3.55

A a: 29.89 e: 15.80 del: 15.69 A: 13.65 g: 5.82 del: 54.09 a: 9.33 A: 8.04 e: 5.33 n: 3.04
O A: 29.25 O: 21.28 del: 16.27 a: 11.96 o: 9.81 del: 59.60 O: 9.74 A: 6.33 a: 2.91 e: 2.40
@ del: 30.91 e: 27.31 A: 15.15 E: 5.65 l: 3.04 del: 66.00 e: 5.67 A: 4.48 a: 2.07 E: 1.67
E e: 44.95 del: 15.66 E: 12.18 æ: 3.79 V: 2.71 del: 65.69 e: 6.70 E: 4.06 i: 2.16 t: 1.99
7 ø: 61.96 e: 13.37 p: 8.91 0: 6.33 del: 4.76 del: 45.24 ø: 18.30 e: 5.72 a: 3.97 n: 3.57
1 del: 59.36 e: 22.08 ø: 5.04 A: 1.37 O: 1.07 del: 74.84 e: 3.64 A: 2.46 i: 1.47 l: 1.43

I i: 39.05 e: 22.20 del: 10.16 I: 4.64 E: 3.41 del: 48.84 i: 10.07 e: 9.37 R: 3.25 n: 2.64
W O: 25.28 0: 21.81 e: 19.08 del: 13.89 i: 9.51 del: 57.99 ø: 9.27 a: 3.90 n: 3.63 E: 3.17
U o: 30.60 u: 24.75 O: 21.63 del: 9.61 0: 2.94 del: 60.69 O: 5.12 o: 4.09 u: 3.90 t: 2.69

Y 0: 27.87 e: 18.44 del: 15.94 u: 12.13 ø: 4.32 del: 44.25 e: 11.38 0: 7.42 u: 6.22 R: 4.23

Continued on next page.
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Table 14.30b: Phone prediction rates for each cross-lingual lexicon in correctly
recognized and incorrectly predicted words for all ASR systems evaluated cross-
lingually. The table shows top 5 phone predictions and their prediction rates in
% for each reference vowel averaged across the nine evaluation languages. del
signifies a deletion error. Bolded results are correct predictions. The reference
vowels highlighted in gray are not found in the model’s vowel set.

Continued from previous page.

correctly recognized words incorrectly recognized words
1 2 3 4 5 1 2 3 4 5

xl-uni-5

a a: 77.22 del: 10.77 e: 5.65 o: 1.87 s: 0.87 del: 55.76 a: 29.66 e: 3.49 o: 1.29 n: 1.23
e e: 78.44 del: 9.28 a: 4.27 i: 4.03 o: 1.10 del: 53.87 e: 24.10 a: 5.70 i: 3.91 n: 2.14
i i: 60.95 del: 20.22 e: 8.45 EI: 2.71 t: 1.62 del: 62.06 i: 16.52 e: 4.93 a: 3.98 n: 1.81
o o: 56.50 del: 15.09 a: 10.49 u: 7.27 e: 4.00 del: 57.22 o: 17.76 a: 6.77 e: 3.55 u: 3.02
u u: 62.21 del: 21.00 o: 5.72 e: 3.65 i: 1.40 del: 62.55 u: 13.95 a: 4.76 e: 3.42 o: 3.06
y del: 33.90 i: 31.56 e: 18.43 d: 4.12 g: 3.77 del: 50.68 i: 18.63 e: 12.67 a: 3.94 d: 2.83

æ a: 42.40 del: 26.17 e: 18.64 d: 6.05 b: 1.84 del: 48.93 a: 25.72 e: 7.89 d: 3.02 m: 2.68
ø e: 62.10 del: 17.36 d: 5.66 a: 4.97 i: 3.56 del: 50.05 e: 25.23 d: 5.72 a: 5.41 n: 2.25
œ del: 34.49 e: 22.70 a: 18.40 o: 14.87 k: 1.95 del: 60.78 e: 11.57 a: 11.01 o: 3.69 R: 1.48
A a: 53.62 del: 27.42 g: 3.76 e: 3.26 j: 2.54 del: 70.94 a: 10.69 e: 2.97 n: 2.11 v: 2.10
O a: 40.14 del: 26.03 o: 20.60 u: 3.74 e: 2.27 del: 69.66 a: 8.85 o: 4.16 e: 2.90 n: 2.02
@ e: 36.39 a: 27.49 del: 26.05 i: 1.82 d: 1.30 del: 72.91 a: 7.63 e: 5.35 d: 1.38 i: 1.37
E e: 42.21 del: 31.88 a: 13.10 d: 2.73 i: 1.53 del: 72.01 e: 6.25 a: 5.84 n: 1.63 t: 1.53
7 e: 83.89 o: 8.06 a: 6.10 u: 0.68 i: 0.57 del: 59.56 e: 15.95 a: 9.43 n: 3.17 i: 1.70
1 del: 54.07 e: 20.71 a: 10.91 i: 6.81 s: 1.29 del: 79.79 e: 4.10 a: 4.04 i: 1.31 n: 1.10
I e: 35.54 i: 32.61 del: 18.19 R: 5.36 k: 1.50 del: 56.12 e: 13.71 i: 6.37 a: 4.51 R: 3.03
W u: 42.63 e: 18.42 del: 16.91 i: 13.70 m: 5.51 del: 69.23 e: 14.71 a: 5.80 n: 2.09 i: 1.75
U u: 52.79 o: 17.50 del: 13.69 e: 4.46 i: 2.58 del: 67.13 a: 6.54 u: 5.94 o: 3.94 e: 2.96
Y e: 54.81 del: 19.99 u: 6.66 o: 5.83 i: 3.76 del: 54.11 e: 18.64 a: 5.31 R: 2.89 i: 2.52

xl-uni-10

a a: 39.36 A: 22.23 del: 20.70 E: 4.37 @: 3.71 del: 60.66 a: 17.03 A: 5.34 E: 2.22 n: 1.43
e E: 35.30 e: 29.30 del: 17.70 a: 4.04 i: 3.60 del: 58.73 e: 9.43 E: 8.19 a: 3.66 i: 2.58
i i: 51.17 del: 20.42 e: 12.25 E: 2.30 A: 1.49 del: 63.97 i: 13.10 e: 3.18 a: 2.38 E: 1.99
o O: 26.77 o: 21.61 del: 18.15 @: 9.90 A: 8.13 del: 61.34 o: 7.24 O: 5.82 A: 3.45 a: 2.80
u u: 44.78 del: 21.48 o: 11.09 1: 6.28 @: 3.82 del: 64.02 u: 10.41 a: 2.62 o: 2.58 A: 2.19
y del: 34.16 1: 26.13 e: 16.45 i: 3.99 g: 3.91 del: 51.24 1: 13.02 e: 9.37 i: 5.60 a: 2.91

æ a: 40.77 del: 33.42 E: 9.74 d: 6.64 b: 1.91 del: 57.93 a: 17.81 E: 6.03 d: 2.54 m: 2.29
ø del: 34.90 E: 22.41 1: 13.24 @: 12.58 d: 4.63 del: 49.95 E: 14.08 e: 7.61 @: 6.27 a: 4.11
œ del: 37.37 @: 25.17 E: 8.97 A: 7.44 a: 3.79 del: 62.55 @: 7.67 E: 5.32 A: 3.93 a: 3.42

A a: 44.43 del: 26.31 A: 12.68 d: 3.44 j: 2.44 del: 70.91 a: 7.58 A: 6.27 E: 1.63 n: 1.55
O O: 24.72 A: 22.66 a: 18.55 del: 13.10 o: 9.35 del: 71.06 O: 4.29 A: 4.05 a: 3.61 o: 1.69
@ del: 28.07 E: 24.90 a: 18.68 e: 6.97 A: 5.84 del: 73.21 a: 4.36 E: 3.41 A: 2.64 @: 2.07
E E: 48.79 del: 16.95 a: 12.45 e: 11.36 j: 1.33 del: 72.45 E: 7.52 a: 3.48 e: 2.21 A: 1.28
7 E: 73.79 @: 12.85 del: 8.19 i: 2.81 a: 0.42 del: 63.77 E: 12.44 a: 4.27 v: 2.37 A: 2.29

1 del: 56.91 E: 15.95 A: 6.74 a: 4.31 1: 3.96 del: 80.20 E: 2.57 a: 2.50 1: 1.30 A: 1.29
I e: 50.22 del: 19.37 i: 13.08 E: 4.47 R: 2.57 del: 58.51 e: 10.50 i: 3.19 R: 2.75 E: 2.67
W del: 33.45 o: 25.12 e: 19.63 A: 6.40 i: 5.84 del: 70.72 E: 5.45 1: 4.08 a: 3.67 n: 2.56
U u: 36.33 del: 17.70 o: 15.74 1: 12.56 O: 6.34 del: 68.46 u: 4.26 a: 3.86 o: 2.44 A: 1.94
Y @: 26.53 del: 23.59 1: 18.26 e: 12.06 E: 6.64 del: 55.30 @: 6.91 e: 6.31 1: 5.21 E: 3.80

Continued on next page.
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Table 14.30c: Phone prediction rates for each cross-lingual lexicon in correctly
recognized and incorrectly predicted words for all ASR systems evaluated cross-
lingually. The table shows top 5 phone predictions and their prediction rates in
% for each reference vowel averaged across the nine evaluation languages. del
signifies a deletion error. Bolded results are correct predictions. The reference
vowels highlighted in gray are not found in the model’s vowel set.

Continued from previous page.

correctly recognized words incorrectly recognized words
1 2 3 4 5 1 2 3 4 5

xl-uni-16

a a: 55.96 del: 18.61 A: 12.85 @: 4.77 e: 2.02 del: 61.08 a: 18.98 A: 4.33 e: 2.07 n: 1.24
e e: 65.35 del: 15.73 i: 4.93 a: 4.28 @: 4.27 del: 61.26 e: 15.32 a: 4.17 i: 3.48 n: 1.85
i i: 59.81 del: 21.93 e: 4.81 EI: 3.41 A: 1.44 del: 64.37 i: 15.06 e: 3.03 a: 2.60 n: 1.60
o o: 37.96 del: 24.12 u: 5.66 6: 5.64 A: 4.94 del: 62.50 o: 11.63 a: 3.03 A: 2.94 u: 2.30
u u: 57.65 del: 20.65 o: 5.21 0: 3.80 8: 2.21 del: 64.97 u: 11.68 a: 2.79 o: 2.33 A: 1.99
y del: 31.95 y: 23.79 ø: 11.79 0: 11.60 d: 5.01 del: 44.48 y: 16.33 0: 8.74 ø: 5.90 d: 3.58
æ a: 46.63 del: 35.34 e: 4.52 d: 4.37 @: 2.30 del: 56.37 a: 22.88 e: 3.25 m: 2.65 A: 1.40

ø ø: 62.30 del: 11.89 @: 9.22 e: 3.98 8: 3.94 del: 43.93 ø: 25.60 @: 6.29 8: 3.90 a: 3.15
œ del: 44.88 ø: 14.66 8: 10.31 Œ: 7.50 @: 4.59 del: 67.07 8: 5.19 A: 3.27 ø: 2.40 a: 2.25

A a: 44.85 del: 27.83 A: 14.17 n: 3.43 e: 1.59 del: 72.17 a: 8.03 A: 5.62 n: 2.45 e: 1.36
O del: 32.29 a: 21.82 A: 19.15 o: 11.31 6: 2.60 del: 72.81 a: 4.55 A: 3.64 o: 2.53 n: 1.83

@ a: 33.36 del: 28.42 e: 14.98 @: 11.70 s: 1.76 del: 74.78 a: 5.62 e: 2.74 @: 2.59 A: 1.59
E del: 37.07 e: 29.39 a: 17.99 @: 2.80 i: 2.71 del: 75.32 a: 4.43 e: 3.43 i: 1.49 n: 1.37

7 Œ: 50.19 del: 16.68 8: 11.46 a: 8.43 n: 7.74 del: 72.71 Œ: 5.21 a: 4.64 n: 2.50 e: 1.92
1 del: 71.87 a: 6.15 e: 2.78 1: 2.75 d: 2.57 del: 82.63 a: 2.71 e: 1.63 A: 1.07 i: 0.99
I i: 38.99 e: 24.51 del: 21.56 R: 4.46 @: 1.62 del: 59.95 e: 8.27 i: 6.38 a: 2.70 R: 2.64

W del: 48.20 u: 14.94 o: 12.07 0: 6.57 e: 5.46 del: 75.52 a: 3.97 8: 2.86 n: 2.74 e: 1.81
U u: 41.72 del: 24.25 o: 13.31 0: 7.84 8: 2.65 del: 69.35 u: 4.71 a: 3.99 o: 2.71 A: 1.84
Y del: 28.35 ø: 24.22 @: 11.01 8: 8.38 0: 5.62 del: 58.84 e: 4.50 ø: 4.11 8: 3.63 R: 3.06

However, inspecting the prediction rates for the correctly recog-
nized words, we can see that neither lowering the phone deletion rate
or increasing the vowel recognition rate is guaranteed to improve the
word recognition rates. For example, the phone prediction rates for
the vowel [a] within correctly recognized words show that all three
xl-uni lexicons have increased the vowel recognition rate compared
with both baselines. This is especially evident with the xl-uni-5 lex-
icon whose vowel recognition rate increases 74.18% points over the
xl-nst and 62.37% points over the xl-lnet baseline. At the same time,
its vowel deletion rate for [a] is almost three times lower compared to
the xl-nst baseline (10.77% vs. 30.38%) and twice as low compared
to the xl-lnet (10.77% vs. 21.22%). Yet, the word recognition rates for
words containing this vowel are relatively stable across all lexicons.
This suggests that there is no clear correlation between cross-lingual
vowel recognition and downstream word recognition, and that hybrid
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ASR systems are relatively resistant to deviation in pronunciation from
the phonological norm.
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We have presented another formant-based vowel categorization
method aimed at improving vowel recognition in cross-lingual ASR.
The method involves computing the mean F1 −F2 values of the cardi-
nal vowels from the NST corpus of Scandinavian languages and using
them to create three levels of language-universal vowel systems, which
can be used to recategorize the vowels of any spoken language. The
three categorization levels differ in the number of vowel categories
they use to partition the F1 −F2 vowel space. The first level, uni-5 , dis-
tinguishes five very broad vowel categories. The second level, uni-10 ,
distinguishes ten narrower vowel categories. Finally, the third level,
uni-16 , which adds the rounding dimension, distinguishes eight pairs
of vowel categories that differ only in terms of lip rounding, or 16 vow-
els altogether. We applied each of the categorization levels to the NST
corpus to obtain language-universal formant-based vowel represen-
tations of Danish, Norwegian, and Swedish. Then we evaluated the
resulting vowel representations using cross-lingual phone recognition
models in-domain, on the NST corpus, and out-of-domain, on five
parliamentary speech corpora and on five low-resource languages
from the noisy telephone speech corpus, Babel.

As we have seen in the previous chapter, formant-based vowel
categorization with language-universal vowel systems can improve
cross-lingual vowel recognition, both on in-domain NST data and on
unseen languages and speech domains. However, the performance
results are highly dependent on the target language and its vowel
system, as well as the number of vowel categories in the categorization
system. They are also likely dependent on the languages and domains
used for determining the language-universal vowel categories, as well
as on the fine-tuning data.

In particular, the models trained on the uni-5 representations
achieved the best vowel recognition rates on most of the evaluated lan-
guages, even the ones that contrast more than five vowels. Increasing
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the number of vowel categories almost always led to increased vowel
confusions and lower recognition rates. This was especially evident
when increasing the number of categories along the same dimension.
For this reason, the models trained on the uni-10 representations
tended to have worse recognition rates, because they had to distin-
guish four levels of vowel height, i.e. one height level more than the
uni-5 and uni-16 models.

However, the model with the best vowel recognition rate was not
necessarily able to recognize all reference vowels of the target language.
For example, despite having the highest vowel recognition rates, the
uni-5 model could not predict vowels outside of its limited vowel set.
This makes it unsuitable for languages with larger vowel systems. On
the other hand, for languages with smaller vowel systems, the uni-10
and uni-16 models often predicted vowel categories not found in their
vowel inventories. Nevertheless, we found that the models with the
larger vowel sets (uni-10 and uni-16 ) were sometimes able to infer the
vowel inventory of a language by simply suppressing predictions for
the vowels outside the inventory.

To assess their wider applicability in ASR, we also evaluated the
investigated vowel representations as part of a downstream speech
recognition task. Namely, we used the phone recognition models to
create cross-lingual pronunciation lexicons for monolingual hybrid
ASR systems. The hybrid ASR systems were trained and evaluated on
the same parliamentary and noisy telephone speech corpora. These
experiments, however, did not reveal many conclusive patterns as the
hybrid systems tended to have similar word error rates regardless of
their cross-lingual lexicon, both overall and on individual reference
vowels. High phone deletion rates of the phone recognition model was
the only issue we observed to be harmful to the hybrid systems’ perfor-
mance. This resulted in both a high number of deleted vowels in the
cross-lingual lexicon and lower vocabulary coverage, which were both
found to be detrimental to performance. Apart from phone deletion,
the hybrid systems seem robust to deviation in pronunciation from
the phonological norm.
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16Discussion

16.1 Discussion of Research Questions

Over the course of the thesis, we have presented four versions of
a formant-based vowel categorization method aimed at improving
vowel recognition in cross-lingual speech recognition. The main goal
of this method was to uncover the phonetic quality of spoken vow-
els from their formant frequencies. This goal was rooted in the as-
sumption that phonetic quality is more consistent across languages
than language-specific phonological qualities, and is, thus, more likely
to transfer to unseen languages, including the still numerous low-
resource languages throughout the world. Therefore, it has the po-
tential to improve speech recognition for languages with little to no
speech data available.

Specifically, we have investigated whether and to what extent
formant-based vowel categories obtained from a trilingual speech cor-
pus of Danish, Norwegian, and Swedish could transfer to unseen lan-
guages, both in-domain, within the same corpus, and out-of-domain,
on real-world speech data. Although they are no longer considered
low-resource, the three Scandinavian languages are still substantially
less resourced than the highest-resource languages. Moreover, their
rich and diverse vowel systems cover most of the cardinal vowels which
offers portability to a larger and more varied set of languages. Finally,
they also comprise a large trilingual corpus suitable for experiments
in multilingual and cross-lingual phonetic transfer due to its phonetic
diversity and high signal-to-noise ratio.

Specifically, we have performed four types of vowel categorizations:
monolingual language-dependent (mono), multilingual language-
dependent (multi ), language-independent (cardinal ), and language-
universal (uni ) with three different vowel set sizes. We have, then,
investigated their effects on cross-lingual phone recognition, first,
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using the trilingual Scandinavian corpus, and, then, on additional
more challenging speech domains, including parliamentary and noisy
telephone speech data.

We now return to the research questions posed in Section 1.2,
summarize our key findings for each question, and discuss the answers
they provide. Our first question was:

RQ1 Can we derive phonetic vowel representations, which are
consistent across languages, from the measurements of vowel
formant frequencies using language-specific vowel categories?

This question was addressed in Part IV, where we investigated how
the first three types of vowel categorizations: monolingual language-
dependent (mono), multilingual language-dependent (multi ), and
language-independent (cardinal ) affected the performance of cross-
lingual phone recognition models on the three Scandinavian lan-
guages: Danish, Norwegian, and Swedish.

Our analyses of the experiment results showed that the models fine-
tuned on the new vowel categories reduced cross-lingual phone error
rates on all three languages, as well as phone feature edit distances
on Danish and Swedish. The best-performing models were consistent
within languages and across variations of sample size and experiment
reruns, but different across languages. Namely, the cardinal models
outperformed the baselines in terms of phone error rate on all three
languages. They achieved the best performance among the models
evaluated on Danish, whereas on Norwegian and Swedish, the best
performers were the mono models. Moreover, the cardinal models
resulted in the highest margins of improvement over the baseline on
Danish compared to the best performing models on Norwegian and
Swedish. We speculate that the performance improvement was higher
for Danish because its phonological system is more distant to those of
Norwegian and Swedish than they are to each other. For this reason,
its vowel system is also less compatible with the vowel systems of

201



Chapter 16 | Discussion

the other two languages, and, could, thus, benefit the most from the
recategorization.

When it comes to the performance on dialect regions, only weak
and statistically non-significant correlations were observed between
the models’ performance gain on a dialect region and the region’s
mean vowel distance from the capital. Therefore, the answer to the
question whether formant-based vowel categorization could improve
cross-lingual phone recognition on under-represented language vari-
eties, such as regional dialects, remains inconclusive.

Finally, the analysis of individual phone predictions revealed that
most non-minority vowels that were shared by all three languages
benefited from the cardinal categorization (especially Danish). On the
other hand, absence of a vowel from one or both training languages
led to reduced vowel recognition rates for all categorization types. At
the same time, a visual comparison of top phone predictions and re-
categorized vowel plots indicates that having the same vowel category
overlap in the vowel space across languages increases the vowel recog-
nition rates, whereas a cross-lingual mismatch in vowel categories
leads to vowel confusions.

Based on these findings, we can see that cross-lingual alignment
of vowel representations in the formant space can indeed lead to bet-
ter cross-lingual vowel transfer. As a result, converting vowels into
a shared set of formant-based vowel categories can lead to higher
recognition rates. However, cross-lingual vowel recognition remains
a challenge, even in the case of a trilingual corpus with three geo-
graphically and typologically close languages with similar vowel sys-
tems. Finally, to answer our main question, obtaining phonetic vowel
representations from the formant frequencies of vowels using these
categorization techniques is possible to an extent, but more work is
needed to further reduce cross-lingual interference and ensure that
the obtained vowel representations are transferable to a wide variety
of languages and speech domains.

Our second research question was:
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RQ2 Can we derive phonetic vowel representations, which are
consistent across languages, from the measurements of vowel
formant frequencies using language-universal vowel categories?

This question was addressed in Part V, where we investigated how
the fourth type of formant-based vowel categorizations, performed
with a language-universal vowel set (uni ), affected the performance
of cross-lingual phone recognition models on the three Scandinavian
languages, as well as on additional speech data from the parliamentary
and conversational telephone speech domains. This study involved
the creation of three levels of language-universal vowel systems, which
could be used to recategorize the vowels of any spoken language. The
three categorization levels differed in the number of vowel categories
used to partition the F1 −F2 vowel space. The first level (uni-5 ) dis-
tinguished five very broad vowel categories, the second level (uni-10 )
distinguished ten, and the third level (uni-16 ) distinguished 16, eight
unrounded and eight rounded.

The most consequential difference between this categorization
method and the previous one, with language-specific vowel sets, was
that this method replaced the entire phonological vowel system of
each training language with a single vowel system to be shared by
all training languages. As we have seen, this significantly increased
the cross-lingual overlap of corresponding vowel categories from the
training languages in the formant space, and, in turn, led to improve-
ments in cross-lingual vowel and overall phone recognition, on many
of the evaluated languages, including the low-resource ones. However,
not all evaluation languages saw the same amount of improvement.
The performance was highly dependent on the target language and
its vowel system, as well as the number of vowel categories in the cate-
gorization system. They were also likely dependent on the languages
and domains used for determining the vowel categories, as well as
on the fine-tuning data, which, in our case, was the NST corpus of
Scandinavian languages.

In particular, the models trained on the uni-5 representations
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achieved the best vowel recognition rates on most of the evaluated lan-
guages, even the ones that contrast more than five vowels. Increasing
the number of vowel categories almost always led to increased vowel
confusions and lower recognition rates. This was especially evident
when increasing the number of categories along the same dimension,
such as having to distinguish four levels (as with the uni-10 models)
of vowel height instead of three (uni-5 and uni-16 models).

However, the model with the best vowel recognition rate was not
necessarily able to recognize all reference vowels of the target language.
For example, despite having the highest vowel recognition rates, the
uni-5 model could not predict vowels outside of its limited vowel set.
This made it less suitable for languages with larger vowel systems. On
the other hand, for languages with smaller vowel systems, the uni-10
and uni-16 models often predicted vowel categories not found in their
vowel inventories. Nevertheless, a qualitative analysis revealed that
the models with the larger vowel sets were sometimes able to infer the
vowel inventory of a language by simply suppressing predictions for
the vowels outside the inventory.

Finally, to answer the main question, deriving phonetic vowel
representations from the formant frequencies of vowels using the
language-universal vowel categorization techniques is again possible
to an extent. However, future research should investigate how to best
adapt these methods to individual languages, as well as whether the
derived representations agree with human judgments of vowel quality.

Our third research question was:

RQ3 Can we show that formant-based vowel representations
are useful in word-based speech recognition?

This was a secondary research objective for the study presented
in Part V, which was addressed in Sections 13.6, 14.3, and 14.5. There,
we evaluated the vowel representations obtained using language-
universal formant-based vowel categorization techniques as part of a
downstream speech recognition task. With this set of experiments we
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wanted to show whether formant-based vowel representations could
be phonologically relevant, i.e. used to recognize lexical items.

For this purpose, we used the phone recognition models to create
cross-lingual pronunciation lexicons for monolingual hybrid ASR sys-
tems. The hybrid ASR systems were, then, trained and evaluated on
the same parliamentary and noisy telephone speech corpora that we
used for the evaluation of the phone recognition models.

However, these experiments did not reveal many conclusive pat-
terns, as the hybrid systems tended to have similar word error rates
regardless of their cross-lingual lexicon, both overall and on individual
reference vowels. High phone deletion rates of the phone recognition
model was the only issue we observed to be harmful to the hybrid
systems’ performance. This resulted in both a high number of deleted
vowels in the cross-lingual lexicon and lower vocabulary coverage,
which were both found to be detrimental to performance. Apart from
phone deletion, the hybrid systems seemed robust to deviation in
pronunciation from the phonological norm.

Our fourth and final research question was:

RQ4 Can we use Danish parliamentary data to create a large
speech corpus that will significantly expand publicly available
ASR resources for Danish?

This was a secondary research objective addressed in Chapter 7.
In this chapter, we described the creation and the evaluation of the
FT Speech corpus from the recorded meetings of the Danish Parlia-
ment, known as the Folketing. FT Speech was introduced at the In-
terspeech conference and released publicly in 2020. With over 1800
hours of speech, it remains the largest publicly available ASR corpus
for Danish to date.

Prior to its release, there had been very few public speech corpora
in Danish, and almost none of them included real-world spontaneous
speech. In fact, the only available and suitable corpus for ASR at the
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time was the Danish NST subcorpus, which we used in vowel catego-
rization experiments. However, this corpus contains only read speech
recorded in a quiet office environment. Moreover, it was recorded in
the 1990’s and is already around 30 years old. Finally, with 320 hours
of speech, it is also about 5.5 times smaller than FT Speech . Therefore,
we believe that FT Speech is a significant contribution to the repertoire
of publicly available ASR resources for Danish.

16.2 Limitations

As we noted in the beginning, speech is a very complex signal and
can be analyzed at various levels, starting from the most concrete
acoustic level to the most abstract phonological and even pragmatic
levels. However, these levels are not always easy to separate, because
one and the same feature or cluster of features can be informative at
multiple levels. Furthermore, the features at one level can interact
with and affect the features at a different level. For example, stress,
which is manifested through changes in loudness, length, and pitch,
and used to signify prosodic prominence in languages such as English,
can affect the phonetic quality of vowels, making unstressed vowel
appear shorter, weaker, and more centralized.

One of the main limitations of our study is that, while trying to
capture and isolate vowel quality, we have largely ignored other pho-
netic features and the influence they might have on vowel quality. For
example, we have ignored stress, pitch accent, Danish stød, vowel
length, and vowel reduction. This might have skewed the distribution
of certain vowel categories and affected both the vowel normalization
and categorization procedures.

Another limitation is that we have also ignored the temporal di-
mension of speech and treated vowels and their formants as stationary.
This simplified view of formant frequencies made it impossible to in-
vestigate how vowel quality changes from segment to segment, what
happens at segment boundaries, and whether diphthongs can be ana-
lyzed phonetically and compared across languages.

Furthermore, we have also ignored additional vowel features, such
as nasalization, rhotacization, pharyngealization, and tone, which
are distinctive in many languages. Therefore, our phone recognition
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models would not be able to predict vowels with such features. When
it comes to the feature of lip rounding, we have only partially investi-
gated it. Namely, we treated the rounded vowels as completely sep-
arate from the unrounded ones, which meant that a rounded vowel
phoneme could never be recategorized as an unrounded one, and vice
versa. This was done because our study was limited to only the first
two formant frequencies. Expanding the formant analysis to include
the third and higher formants might enable us to capture some of
these additional features.

Since we did not have manually segmented speech data and for-
mant trackings, we relied on automatic forced alignment and formant
estimates, which might have introduced errors in both the segmen-
tation and formant calculations of the speech signals. These errors
would have propagated to the vowel categorization step in the pipeline
and affected its outcome. Moreover, starting always from the canonical
dictionary-based transcriptions at the forced alignment stage means
that we do not allow segment deletions and assimilation, which are
very common sound changes, especially in spontaneous speech.

Our goal was to obtain general phonetic vowel representations that
can be recognized across languages regardless of their phonological
vowel inventory. However, we have based our vowel categories on a
very small set of languages, namely the three Scandinavian languages.
While these languages do have rich and diverse vowel systems, they do
not cover all possible vowels and dimensions of vowel variation. The
cross-lingual evaluation of the obtained vowel representations was
also performed on a rather small sample of languages. Showing that
vowel representations are general enough to be apply to any language
would require a much larger pool of evaluation languages.

Another important limitation is concerned with our evaluation pro-
cedure. Namely, we did not have ground-truth phonetic transcriptions
for any of the evaluation languages due to a general scarcity of phonet-
ically annotated corpora. For this reason, we could only evaluate the
formant-based vowel representations generated by the phone recogni-
tion models against either the formant-based vowel representations
or the dictionary-based vowel representations from the evaluation
corpora. We also did not conduct any human judgment studies to eval-
uate how humans would perceive the vowel representations obtain
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through formant-based categorization.
Finally, the use of a transformer model architecture, as well as a

pre-trained speech model in particular, could have introduced some
confounding factors into our study. Specifically, the attention mech-
anism of the transformer model allows it to learn both short- and
long-distance relationships from the input signal. This might bias the
model toward the lexical content in the fine-tuning languages, making
it more likely to produce the common phonotactic and lexical patterns
of the languages it has seen, which are likely less transferable to unseen
languages than completely language-independent phonetic patterns.
At the same time, the pre-trained speech model we have used has seen
a number of different languages during pre-training, and we do not
know if and to what extent these language affect its predictions after
fine-tuninig.
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While the accuracy, robustness, and multilinguality of ASR systems
have increased significantly over the last decade, the immense com-
plexity and variability of speech and language in general have thwarted
our efforts to create a universal speech recognizer that works for every-
one regardless of what language they use or how they use it. Neverthe-
less, technological development is advancing fast, owing in large part
to increased diversity, accessibility, and inclusivity, which we initially
sought to expand. Therefore, maintaining these ideals will inevitably
bring us ever closer to our ultimate goals. Here, we outline a number
of promising avenues to explore along the way.

Phonetic representations. Addressing the limitations of this study,
such as those listed in the previous chapter, would be one way of con-
tributing to improved cross-lingual speech recognition. For example,
considering additional vowel and other phonetic features could in-
crease their applicability to more types of speech sounds. Taking the
temporal dimension of speech sounds into account would allow us
to track sound changes and transitions. Studying prosodic patterns
across languages could reveal whether pragmatic or emotional cues
have a cross-lingual basis. Finally, expanding the study to not only
more training and evaluation languages, but also to a more diverse set
of speakers, such as children, non-native speakers, and speakers with
speech disorders, could considerably broaden its applications.

Data collection and annotation. Self-supervised learning has made
it possible to port large pre-trained models to the target domain us-
ing a relatively small amount of target domain data. For this reason,
efforts to collect and annotate speech data for under-resourced lan-
guages and language varieties should be encouraged. Additionally,
phonetic analyses and annotations would make it possible to evaluate
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cross-lingual phone recognition models on ground-truth phonetic
representations.

Robust transfer learning. Since data collection and annotation ef-
forts cannot keep up with linguistic creativity and variation, we should
also prioritize robustness in transfer learning. Making efficient large
language and speech models that can learn more from less data would
greatly improve their potential for cross-lingual and cross-domain
transfer. For example, recent speech models based on the Conformer
architecture (Gulati et al., 2020) enable accelerated training and infer-
ence without the need for web-scale data (Rekesh et al., 2023; Puvvada
et al., 2024). This makes it easier and cheaper to fine-tune and extend
such models to additional languages. Parameter-efficient fine-tuning
(PEFT) is another promising approach to reducing the computational
and storage costs of adapting and deploying large pre-trained mod-
els for downstream tasks. Certain PEFT methods have already been
shown to be better than fine-tuning the full model on small amounts
of target data, as well as better at generalizing to out-of-domain sce-
narios (Hu et al., 2022; Liu et al., 2022; Lester et al., 2021). These and
other breakthroughs in the field of transfer learning are some of the
trends that are likely to shape the future of machine learning.
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