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Abstract

Comprehending existing software systems is an activity relevant for,
e.g., preparing the re-engineering of a legacy system. It is often com-
plicated by missing or incomplete documentation and the absence of
a system’s original developers, making source code the only reliable
source of information. However, exploring a software system solely by
reading through its source code is a tedious and challenging task that,
if possible at all, requires significant stamina and motivation. Visual-
izations can offer an overview of otherwise complex source code bases,
making them a valuable tool for assisting software engineers in this ex-
ploration process.

In this thesis, I present work on utilizing virtual reality (VR) to pro-
vide teams of software engineers with interactive, synchronized multi-
user visualizations of source code, for the purpose of exploring software
architecture while taking notes on insights and planning future actions.
To foster software architecture exploration, the presented VR visualiza-
tion methods are based on results from automated software clustering
techniques. Further, they introduce concepts for mixing automatically
interpreted freehand drawing in VR with multimedia annotations, so
that engineers can explore software systems in long-lived sessions.

I demonstrate the presented visualization methods in tool imple-
mentations and assess via empirical studies their suitability for assist-
ing engineers in comprehending software systems. The results of the
studies show that VR software visualization is suitable for assisting engi-
neers – especially those with less experience – in comprehending a sub-
ject system’s architectural structure. Regarding note-taking, the stud-
ies demonstrate that freehand sketching in VR is useful for capturing
high-level views on system architecture, while multi-media annotations
(such as audio recordings) are a valuable means for more general notes.
Lastly, the studies show that software engineers value synchronized
multi-user VR software visualization for focused exploration sessions
with vivid communication where even with little training and despite
their unfamiliarity with VR, engineers are able to gain correct insights
into a subject system.
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Resumé

At forstå eksisterende softwaresystemer er en aktivitet som opstår,
for eksempel, når man forbereder re-design af et ældre system. Aktivite-
ten bliver dog ofte kompliceret af manglende eller ufuldstændig doku-
mentation, og fraværet af de oprindelige udviklere. Dette gør kildekoden
til den eneste pålidelige informationskilde, men at udforske et software-
system ved kun at læse kildekoden, er en tidskrævende og udfordrende
opgave. Visualisering, der giver et overblik over den komplekse kilde-
kode, er derfor et værdifuldt værktøj til softwareingeniører i denne ud-
forskningsproces.

I denne afhandling præsenterer jeg brug af Virtual Reality (VR) til
at give hold af softwareingeniører interaktive og synkroniserede multi-
bruger visualiseringer af kildekoden. Disse visualiseringer kan bruges
til at udforske softwarearkitekturen, mens ingeniørerne tager noter om-
kring indsigter og handleplaner. For at fremme udforskning af den over-
ordnede arkitektur er de præsenterede VR-visualiseringsmetoder base-
ret på resultater fra automatiserede software-clustering-teknikker. Der-
udover introducerer metoderne koncepter til at blande automatisk tol-
kede frihåndstegninger i VR med multimedie-annoteringer, så ingeniø-
rer kan udforske softwaresystemer i længere sessioner.

Jeg demonstrerer de præsenterede visualiseringsmetoder gennem
værktøjsimplementeringer, og vurderer gennem empiriske studier hvor
egnet metoderne er til at hjælpe ingeniører med at forstå softwaresy-
stemer. Studierne viser, at VR-softwarevisualisering er særligt velegnet
til at hjælpe ingeniører - især dem med mindre erfaring - med at for-
stå et systems arkitektur. Studierne viser også, at frihåndstegning i VR er
nyttigt til at opnå et overblik af systemarkitekturen, mens multimedie-
annoteringer, såsom lydoptagelser, er værdifulde midler til generelle
noter. Endelig viser det sig, at ingeniører værdsætter synkroniserede
multi-bruger VR-visualiseringer, da de muliggør fokuserede udforsk-
ningssessioner med livlig kommunikation. Selv med lidt træning og på
trods af manglende erfaring med VR kan ingeniører således opnå vær-
difuld indsigt i et systems struktur.
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Zusammenfassung

Bestehende Softwaresysteme zu verstehen ist entscheidend, bei-
spielsweise zur Vorbereitung der Überarbeitung eines Altsystems. Häu-
fig fehlen jedoch vollständige Dokumentation oder die ursprünglichen
Entwickler, sodass der Quellcode die einzig verlässliche Informations-
quelle ist. Die Erkundung eines Softwaresystems allein durch Lesen des
Quellcodes ist jedoch mühsam und herausfordernd, sodass dies viel
Ausdauer und Motivation erfordert. Visualisierungen, die einen Über-
blick über den komplexen Quellcode bieten, sind daher wertvolle Hilfs-
mittel für Softwareingenieure.

In dieser Dissertation präsentiere ich Methoden zur Nutzung
von Virtual Reality (VR), um verteilten Teams von Softwareinge-
nieuren interaktive, synchronisierte Quellcode Visualisierungen zu
bieten zur Erkundung von Softwarearchitektur und Erstellung von
Notizen über gewonnene Erkenntnisse und Pläne. Um die Erkun-
dung auf Architekturebene zu fördern, basieren die vorgestellten
VR-Visualisierungsmethoden auf Ergebnissen von automatisierten
Software-Clustering-Techniken. Darüber hinaus führen sie Konzepte
ein, um automatisch interpretierte Freihandzeichnungen in VR mit
Multimedia-Anmerkungen zu kombinieren, sodass Ingenieure Soft-
waresysteme in längeren Sitzungen erkunden können.

Ich demonstriere die vorgestellten Visualisierungsmethoden an-
hand von Tool-Implementierungen und bewerte ihre Eignung zur
Unterstützung von Ingenieuren beim Verständnis von Softwaresyste-
men durch empirische Studien. Die Studienergebnisse zeigen, dass
VR-Softwarevisualisierung besonders für weniger erfahrene Ingenieu-
re geeignet ist, um die Architektur eines Systems zu verstehen. Die
Studien zeigen auch, dass Freihandskizzen in VR nützlich sind, um
Übersichten der Systemarchitektur zu erfassen, während Multimedia-
Anmerkungen, wie Audioaufnahmen, wertvolle Hilfsmittel für allgemei-
ne Notizen darstellen. Schließlich wird deutlich, dass Ingenieure syn-
chronisierte Multi-User VR-Visualisierungen schätzen, da sie fokussier-
te Erkundungssitzungen und lebhafte Kommunikation ermöglichen.
Selbst mit wenig Training und trotz fehlender Erfahrung mit VR können
Ingenieure so wertvolle Einblicke in die Struktur eines Systems gewin-
nen.
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Part I

Summary





Chapter 1
Introduction

This thesis is based on a collection of published conference papers. It is di-
vided into two parts and structured as follows.

Part 1 – Summary

In Part 1, I summarize the contributions made in this thesis in the context of
related scientific work.

• In Chapter 2, I motivate the work presented in this thesis by summariz-
ing state-of-the-art software visualization with focus on 3D visualiza-
tions and mediums for displaying these, while pointing out gaps in the
body of research.

• In Chapter 3, I state the research questions addressed in this work based
on the gaps highlighted in Chapter 2 and formulate my thesis.

• In Chapter 4, I summarize the contributions made throughout the con-
ference papers included in this thesis and how they relate to the re-
search gaps and questions.

• In Chapter 5, I answer the research questions formulated in Chapter 3
and thus conclude my thesis.

• Lastly, in Chapter 6, I discuss future work.



4 Chapter 1. Introduction

Part 2 –Papers

In Part 2, I provide one chapter for each of the conference papers included in
this thesis. I contain their manuscripts as printed in the respective conference
proceedings.

Paper A: Adrian Hoff, Michael Nieke, and Christoph Seidl. Towards Immer-
sive Software Archaeology: Regaining Legacy Systems’ Design Knowl-
edge via Interactive Exploration in Virtual Reality. Published in the
Proceedings of the 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE 2021), August 19–28, Athens, Greece

Paper B: Adrian Hoff, Lea Gerling, and Christoph Seidl. Utilizing Software
Architecture Recovery to Explore Large-Scale Software Systems in Vir-
tual Reality. Published in the Proceedings of the 10th IEEE Working
Conference on Software Visualization (VISSOFT 2022), October 2–3,
Limassol, Cyprus

Paper C: Adrian Hoff, Christoph Seidl, and Michele Lanza. Immersive Soft-
ware Archaeology: Exploring Software Architecture and Design in
Virtual Reality. Published in the Proceedings of the 2024 IEEE In-
ternational Conference on Software Analysis, Evolution and Reengi-
neering (SANER 2024), March 12–15, Rovaniemi, Finland

Paper D: Adrian Hoff, Christoph Seidl, and Michele Lanza. Uniquifying Archi-
tecture Visualization through Variable 3D Model Generation. Pub-
lished in the Proceedings of the 17th International Working Con-
ference on Variability Modelling of Software-Intensive Systems (Va-
MoS 2023), January 25–27, 2023, Odense, Denmark

Paper E: Adrian Hoff, Christoph Seidl, Mircea Lungu, and Michele Lanza.
Preparing Software Re-Engineering via Freehand Sketches in Virtual
Reality. Published in the Proceedings of the 39th IEEE Working Con-
ference on International Conference on Software Maintenance and
Evolution (ICSME 2023), October 1–6, Bogotá, Colombia
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Paper F: Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza.
Collaborative Software Exploration with Multimedia Note Taking in
Virtual Reality. Published in the Proceedings of the 46th Interna-
tional Conference on Program Comprehension (ICPC 2024), April
15–16, Lisbon, Portugal

Paper G: Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza. Im-
mersive Software Archaeology: Collaborative Exploration and Note
Taking in Virtual Reality. Published in the Proceedings of the 46th
International Conference on Program Comprehension (ICPC 2024),
April 15–16, Lisbon, Portugal





Chapter 2
Background

In the following, I summarize existing research in the field of software visu-
alization and demonstrate gaps in its body of work. In Section 2.1, I pro-
vide a general introduction to software visualization. In Section 2.2, I discuss
trade-offs between 2D and 3D visualization, motivating the need for 3D dis-
play mediums. In Section 2.3, I introduce XR hardware as a medium for dis-
playing 3D visualizations and their trade-offs with traditional 2D screens. In
Section 2.4, I briefly summarize 2D software visualization. In Section 2.5, I
summarize software visualization in 3D with a focus on employed visualiza-
tion metaphors and their ability to represent software architecture. In Sec-
tion 2.6, I discuss the use of XR for software visualization purposes.

2.1 Software Visualization

Visualization is a powerful tool for working with complex data. It utilizes hu-
mans’ visual cognitive abilities by visually presenting data, metrics on data,
relationships between data points, and so on [1, 2]. This makes visualization
particularly suitable for establishing an overview of otherwise overwhelming
amounts of information. One successful area of application is software visual-
ization, where source code and other artifacts model large-scale systems com-
prised of semantically rich structures with complex interrelations and behav-
ior. Software engineers use such visualizations to explore and comprehend
a subject system (or parts of it), while being provided with a visual overview
and access to information on its structure, behavior, evolution, or combina-
tions of these [3]. However, devising software visualization concepts suitable
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for assisting engineers in their tasks is far from trivial, which gave rise to a
wide variety of techniques, tools, and studies.

“Software is very difficult to visualize. Whether one diagrams
control flow, variable-scope nesting, variable cross-references,
dataflow, hierarchical data structures, or whatever, one feels only
one dimension of the intricately interlocked software elephant. If
one superimposes all the diagrams generated by the many relevant
views, it is difficult to extract any global overview.”
— Frederick P. Brooks, Jr. [4]

A Categorization of Software Visualization. Software visualizations encode
the formless concepts expressed in source code (such as variables, func-
tions, classes, and relations between them) visually. This process requires
what, in this thesis, I refer to as a visual metaphor [5], i.e., a mapping of in-
tangible software concepts to visual elements such as dots, lines, icons, or
even 3-dimensional buildings, islands, forests, and more. Visual metaphors
for software visualization can be abstract – such as graphs with nodes and
edges [6, 7, 8, 9] or hierarchical tree maps [10, 11] – or real-world inspired –
such as metaphors encoding software characteristics as forests [12, 13, 14],
cities [15, 16, 17, 18, 19], islands [20, 21], or planets [22, 23, 24].

Depending on the visual metaphor used, software visualizations can be
distinguished into using two or three spatial dimensions, where 3D visualiza-
tions can further be subdivided by display medium into using 2D standard
screens or x-reality (XR, also referred to as “extended reality”) – an umbrella
term for virtual reality (VR) and augmented reality (AR) [25]. Generally, 2D vi-
sualizations tend to use abstract metaphors, while 3D visualizations lean to-
wards using real-world inspired metaphors, most notably the information city
metaphor [26, 27, 28, 29]. Orthogonal to that, visualizations are distinguished
by the software characteristics they encode into structure, behavior, and evo-
lution [3]. Table 2.1 provides an overview of this categorization of software
visualizations.

2.2 Software Visualization: 2D vs. 3D

Comparisons between 2D and 3D visualizations, highlighting their respective
strengths and weaknesses as well as when to use which and how have been
subject to research since the late 1980s years. The results presented in that line
of research are partially conflicting [30]. In the following, I elaborate on the
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Table 2.1: Categorization of software visualizations by visualized software characteristics according to

Diehl [3] (rows) and combinations of dimensionality and medium (columns). Table cells mark whether

the type of visualization is included in this chapter’s overview of software visualizations.
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Chapter 2

not included
in Chapter 2

trade-offs between 2D and 3D software visualization techniques using stan-
dard 2D computer screens.

Today’s Hardware – 2D Screens. Visualizations in 2D have benefits over 3D
visualizations in terms of the hardware used to display and interact with them.
Today’s display mediums are two-dimensional, i.e., computer screens, phone
displays, light projectors, and so on. This fits the dimensionality of 2D visu-
alizations, whereas displaying a 3D visualization on a 2D medium requires
a projection that removes one dimension, effectively throwing away depth
information. Along with geometry occlusion (visual elements being hidden
behind larger, occluding ones), this causes problems for viewers with under-
standing 3D scenes and interacting with them [6, 31].

Ease of Tool Building. From a tool builder’s perspective, constructing a 2D
visualization is less challenging than constructing a 3D visualization for prac-
tical reasons. It requires less complicated algorithms, coding frameworks, and
assets. In 2D, relevant visualization steps include plotting lines, positioning
and overlaying 2D images, and so on. Creating a 3D visualization on the other
hand requires more complex and computationally heavy tasks such as (pro-
grammatically) creating and layouting 3D elements, providing shading func-
tions to define the visual appearance of elements, and so on. Additionally,
achieving good performance in a 3D visualization on low-end hardware – and
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thus high refresh rate and smooth experiences – can be challenging, espe-
cially with large quantities of visual elements to display at once [30]. While
tool support for creating visualizations in both 2D and 3D exists and contin-
ues to improve, the kind of work associated with creating 3D visualizations
requires more know-how and time investment.

Information Mapping. A key consideration in information visualization is
representing all desired information (expressiveness) in a legible fashion (ef-
fectiveness) [32]. When visualizing semantically rich data (such as on soft-
ware), it is thus advisable to categorize and rank information by importance
and to use more than one visual parameter to encode relevant informa-
tion [33]. Possible visual parameters are the position, scale, color, or shape
of elements, among others.

Many use cases in software visualization require information to be
mapped to more than two visual parameters [34] – to achieve the expressive-
ness desired in a visualization. However, while it is possible to encode infor-
mation via non-spatial visual parameters such as shape, color, and texture,
doing so effectively is far from trivial [35, 33]. For instance, shapes of visual el-
ements become increasingly hard to distinguish when scaled small. The num-
ber of colors clearly distinguishable for viewers is limited, potentially harmed
further by effects such as color blindness.

This means that spatial parameters such as position and scale along dif-
ferent axes are valuable for encoding information. When comparing 2D and
3D visualizations, a third spatial dimension is thus a valuable asset – an op-
portunity and challenge alike.

Real-World Metaphors. Semantically rich data can be represented via visual
metaphors that use objects from the real world to represent data, e.g., build-
ings in a city or trees in a forest. Because viewers already know the adopted
real-world concepts and how these are related, information can be commu-
nicated without spending much effort on understanding the encoding.

While real-world inspired metaphors can also be enacted in the form of
more abstract 2D representations [36, 37], visualizations in 3D resemble the
physical world more than visualizations in 2D. Because the gap between visu-
alization and the real world is smaller, 3D visualizations can go further with
adopting concepts and enhancing details. One indicator of this is the fact that
in software visualization, real-world-inspired metaphors are primarily used in
3D [30].
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Scene Layout and Use of Space. Positioning and scaling a large number of
elements in a 2D software visualization can use up large areas and thus scale
poorly with the size of a subject system [34]. Users must then choose to either
inspect small excerpts of a system or get an overview of the entire visualization
where details are not legible. This is a relevant problem known to users of
many 2D visualizations and tools, impeding usability. Through the use of a
third spatial dimension, 3D visualizations can achieve a significantly higher
density of information [38] while not decreasing the space between individual
elements and, thus, potentially allowing for easier access to both overview and
details.

Line Occlusion. Drawing lines between visual elements is a common prac-
tice in visualizations to represent relations, e.g., for calls between functions in
a software system. A relevant aspect of this is drawing the lines so that they
can be understood and retraced (expressiveness). This is significantly harder
to perform in 2D, where with a growing number of lines, these inevitably over-
lap and create visual clutter [34]. Visualizations in 3D are in favor here: they
can utilize the third spatial dimension to effectively avoid overlap, e.g., using
simple spline techniques [39]. However, it should be noted that displaying 3D
visualizations via 2D projections (which constitute a major display technique
for 3D software visualization) reduces this benefit. When inspecting a steady
frame, it causes a comparable kind of incomprehensible line chaos as in 2D
visualizations. One way to address this is by letting the viewer manipulate the
camera view and thus benefit from motion parallax effects [40, 41].

Summary. For many information visualization purposes, using 2D repre-
sentations is desirable [30]. A prime reason for this is that 2D visualizations
fit the most common kinds of display mediums (computer screens, phones,
etc.). For visualizations of semantically rich data, such as information on soft-
ware systems, representations in 3D offer advantages over 2D due to the addi-
tional spatial dimension available for encoding information. However, due to
the dimensionality mismatch when displaying them on 2D mediums, 3D visu-
alizations have limitations regarding user interaction, resulting in a trade-off
between 2D and 3D [42]. Overcoming this limitation requires mediums able
to display 3D scenes in all three spatial dimensions.
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2.3 X-Reality for 3D Software Visualization

In Section 2.2, I established that 3D visualizations can have benefits over 2D
visualizations, especially when they represent complex and large data sets
such as on software systems. However, when displaying a 3D visualization
on a 2D screen, problems with user interaction and spatial understanding re-
strain potential benefits. In the following, I summarize x-reality (XR) technol-
ogy with a focus on VR and how it can help with addressing these problems in
a software visualization context.

What is XR, VR, AR, and MR? There exist no clear definitions for the terms
XR, VR, AR, and MR and how to differentiate these from one another [43, 44].
In the following, I describe the terms in agreement with their most common
use.

X-reality (XR, sometimes referred to as “extended reality” [44]) is an um-
brella term for various forms of realities – the “X” in XR can be considered a
placeholder. The common approach in XR technology today is using head-
mounted devices to visualize computer-generated virtual 3D geometry, while
sensors track users’ movement in the physical world to adjust and thus align
their view on the virtual 3D geometry. Modern XR hardware tracks users’
movement with six degrees of freedom (6 DOF), i.e., three degrees for 3D po-
sition and three degrees for 3D rotation. Depending on the technology used,
other parts of the body are tracked to let users interact with the presented 3D
scene, i.e., mostly their hands via either physical controllers or hand tracking
and gestures. The most prominent and relevant forms of XR today are virtual
reality on one side and augmented/mixed reality on the other.

Augmented Reality (AR) and Mixed Reality (MR) visually blend the physi-
cal, real world with a virtual one [25]. Users are presented with a view of their
physical real-world environment where virtual 3D objects are embedded into.
While the difference between AR and MR is blurry – often, the terms are used
interchangeably – one popular distinction is that MR visualizations provide
more immersion into a virtual world [43], e.g., by visually altering objects from
the physical world, whereas AR purely superimposes virtual objects.

Virtual Reality (VR) immerses users into an alternative, simulated reality
where, in contrast to AR and MR, they are shut off from their physical sur-
roundings [25]. Due to this difference, VR and AR/MR differ in the kind of
user experiences they achieve. By immersing users into a purely virtual envi-
ronment, VR applications have more control over the user experience, while
reducing distractions from the physical world [45]. This makes VR a promising
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medium for software visualization purposes where engineers should engage
in focused exploration sessions.

XR Hardware Today. Today, the landscape of XR devices is diverse. Never-
theless, XR is a niche technology, adopted and pushed primarily by enthusi-
asts and far from being a commodity. For instance, in a 2023 survey, less than
2% of users on the gaming platform Steam (especially popular for PC VR gam-
ing) stated to own a VR headset1. In comparison with the 2D standard screen,
XR hardware is far less accessible, mature, and thus practical. Although the
price for XR hardware dropped significantly over the past years, it is safe to
say that XR headsets require more financial investment than 2D screens – es-
pecially in the context of software visualization where XR hardware is an ad-
ditional investment to 2D screens. Further, XR hardware of today struggles
with practical aspects. Limitations in computational power and battery life-
time limit the scope of application for stand-alone devices, while cable-bound
headsets restrict user movement. Even worse, users often suffer from motion
sickness and fatigue [45, 46, 47], due to the weight of today’s XR headsets, poor
display resolution in cheap models, tracking inaccuracies (e.g., in poorly lit
environments), and low refresh rates (potentially worsened by limitations in
computational power).

Navigation and Interaction. One accelerator for users’ spatial understand-
ing in 3D visualizations is control over the viewing angle [48]. Users want to
see and interact with objects in certain ways. Using 2D interfaces to achieve
this is difficult. For instance, moving 3D objects via a 2D interface requires
constraints (e.g., to movement on a plane), because information on the third
dimension is not available. For the same reason, most 3D visualizations con-
strain user navigation, e.g., by limiting rotation or movement to one or two
degrees of freedom [49, 50].

XR has the potential to provide better interaction with 3D scenes as com-
pared to using 2D interfaces [51]. With modern hardware, users can freely
change their point of view by moving their heads and interact with elements
via their hands with potentially 6 degrees of freedom. This allows for power-
ful interaction. However, just using XR does not make a visualization more
comprehensible or easier to interact with. Achieving this requires address-
ing aspects of navigation and interaction, while being intuitive to use, e.g.,
for movement over longer distances (beyond simple head movement) or user

1https://www.statista.com/statistics/265018/

https://www.statista.com/statistics/265018/
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interactions for complex operations (such as manipulating views on source
code in a software visualization).

User Performance in Software Visualization. Various studies investigated
quantitative differences in user performance between using 3D visualizations
in XR (particularly VR) as compared to 2D standard screens. While the results
of these studies are partially contradicting, there is a trend towards XR yielding
better results than the 2D standard screen for software exploration purposes.

Rüdel et al. performed a study measuring user performance (speed) in
solving software comprehension tasks in a city metaphor visualization in
which they compared VR with the standard 2D screen [52]. In their study,
participants using 2D screens performed better than those using VR. Moreno-
Lumbreras et al. performed a study in which they compared data visualiza-
tions on a 2D screen with a VR version and concluded they could not find
significant differences for most use cases – although VR seems to perform
better for complex tasks that involve relationships between multiple visual-
izations [53, 45]. On the other hand, early studies on user performance and
spatial understanding in VR data visualization found that immersive medi-
ums can achieve better results than the 2D standard screen [41, 54, 55, 56, 57].
Similarly, more recent studies on VR software visualization performed com-
parisons between VR and 2D screens for software comprehension tasks, con-
cluding that VR can be faster [27] and more efficient in detecting outliers ac-
cording to software metrics [58].

Conclusion. There are a number of factors influencing the outcome of stud-
ies alike to those presented above. Among the most relevant is the quality of
both XR hardware and users’ familiarity with these. XR hardware today is a
niche technology that still combats severe issues such as user fatigue and mo-
tion sickness. Further, only a fraction of potential users are familiar with XR
technology, which is a relevant factor [52]. That poses a significant obstacle to
adopting XR technology in software engineering practice. However, although
this puts XR at a disadvantage in comparison with the well-established, ubiq-
uitous 2D standard screen, the results summarized above indicate potential in
XR technology – even in its immature state today. With potential future inno-
vations steadily decreasing the impact of current limitations, XR visualization
studies today provide valuable insights into establishing software engineering
practices of tomorrow.
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2.4 Software Visualization in 2D

A majority of existing software visualizations use two spatial dimensions to
map information. They represent software elements (such as classes, func-
tions, attributes, etc.) by positioning and scaling visual elements on a flat sur-
face, coloring and texturing them, drawing lines between elements to show
relations, among others.

Generally, 2D visualizations represent software via abstract shapes.
Among the most popular 2D visual metaphors in software visualization are
graphs with nodes and edges representing software elements and relations
between them [6, 8, 59, 60, 61]. Other visualization techniques include hier-
archical edge bundling, where software elements are arranged in a circle and
emphasis is put on relations between these [62, 63]. Hierarchical maps are
popular for illustrating structural aspects of a subject system such as the size
of its sub-components [64, 10, 11, 65]. Other approaches use notation-based
metaphors, e.g., leaning on domain standards such as UML [66]. For evolu-
tionary and behavioral aspects, matrices [67] and timelines [68, 69, 61] are
popular constituents of visual metaphors. Only few real-world inspired 2D
metaphors exist, such as for visualizing software structure via a topography-
inspired metaphor [36, 37].

2.5 Software Visualization in 3D

With advances in computer hardware in the 1990s – most notably graphics
cards becoming commodity hardware, allowing for efficient parallel process-
ing of 3D scenes – a rapidly increasing number of new software visualization
techniques were proposed that represent software systems in three spatial di-
mensions [70]. Table 2.2 provides an overview of that field along with the ap-
pearance dates of respective publications roughly indicating time ranges of
active research. While more tools exist that are suitable for representing soft-
ware, such as general-purpose graph visualizations, Table 2.2 focuses on 3D
visualization methods explicitly tailored for representing software character-
istics.
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Table 2.2: Overview of existing 3D software visualization techniques and their key characteristics rele-

vant to this thesis. “XR” stands for “X-Reality” and indicates whether a technique is designed for head-

mounted x-reality. “Collaboration” indicates whether a technique supports multiple collaborating users

at the same time. “Note-Taking” indicates whether a technique encompasses note-taking capabilities.
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Cone Trees 1991 [71] Abstract Tree

Information Cube 1993 [72] Nested Cubes

Avatar 1995 [73] Matrices and Plots

FileVis 1998 [74] Nested Boxes

GraphVisualizer3D 1993-2000 [54],
[75], [76], [77]

Graphs in
Hierarchical Boxes

Software World 1999-2000 [78],
[79]

Realistic City

3DSoftVis 2000 [80] Abstract Trees,
3D Timeline

Imsovision 2001 [81, 82] ( ) Graph meets
Abstract City

Component City 2002 [83] Realistic City

Graham et al. 2004 [22] Solar System

Balzer & Deussen 2004 [9], [84] Graph of Hierarchi-
cal Spheres meets
Abstract City

CodeCrawler 2003-2005 [85],
[86], [87], [88]

Abstract Tree

TraceCrawler 2005-2006 [7],
[89]

Abstract Tree

Vizz3D 2003-2007 [90],
[91], [92], [93]

Graph, City

Balzer & Deussen 2007 [94] Clustered Graph

Langelier et al. 2005-2008 [95],
[96]

Abstract City
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Source Viewer 3D 2003-2009 [97],
[98], [99], [100],
[101], [102]

Abstract City

EvoSpaces 2007-2009 [103],
[104], [105]

Realistic City

CodeCity 2007-2011 [106],
[15], [107],
[108], [109], [16]

Abstract City

CodeTrees 2012 [12], [13] Realistic Forest

SkyscrapAR 2012 [110] ( ) Abstract City

EvoStreets 2010-2013 [111],
[112]

Abstract City

SynchroVis 2013 [113] Abstract City

SeeIT 3D 2013 [114] Abstract City

Würfel et al. 2015 [115] Abstract City

CuboidMatrix 2016 [116] Matrix of Boxes

Walls, Pillar,
and Beams

2016 [117] Matrix of Points

FlyThruCode 2016-2017 [23],
[24]

Solar System

CityVR 2017 [17] Abstract City

VR City 2017 [18] Abstract City

Schreiber and
Brüggemann

2017 [118] Abstract Graph

CodePark 2017 [119] Abstract City

GoCity 2019 [120] Abstract City

CodeHouse 2019 [121] House

PerfVis 2019 [122] Abstract City
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GetaViz 2017-2020 [123],
[124]

Various

Jung et al. 2020 [125] Abstract City with
Graphs

SEE 2021-2022 [126],
[127], [128]

Various Abstract
Cities

M3tricity 2021-2022 [129],
[130], [131]

Abstract City

BabiaXR 2021-2023 [132],
[133], [134]

Various

VR-GitCity 2023 [135] Abstract City

Li et al. 2023 [14] Realistic Forest

DGT-AR 2023 [136] Abstract Graph

IslandViz 2018-2023 [137],
[138], [139], [20],
[21]

Islands with
Abstract Cities

ExplorViz 2013-2023 [140],
[141], [142], [143],
[144], [145], [146]

Abstract City

Immersive
Software
Archaeology

2021-2024 [147],
[148], [149], [150],
[151], [152]

Solar System,
Hierarchical Spheres
containing Cylinders

2.5.1 Visual Metaphors in 3D Software Visualization

The City Metaphor. Table 2.2 shows that among existing 3D visualizations,
the city metaphor is – by far – the most popular, although there are signifi-
cant differences between each implementation of it. One general distinction
can be made between more abstract implementations with simple cuboids
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as buildings [15] on one side and implementations aiming to provide view-
ers with visually realistic buildings on the other (e.g., including real-world
building features such as doors, windows, and so on) [90]. In comparison,
abstract implementations noticeably outnumber more realistic-looking ver-
sions. A conceptually related, yet less often used visual metaphor is that of
trees forming forests [13, 14].

Graph Visualizations. Another type of popular metaphor for software visu-
alization in 3D and 2D alike is various forms of graphs, especially in tree-
shaped layouts [71, 75, 87, 89]. These are of an abstract nature, consisting
of primitive shapes.

Combinations of Visualization Metaphors. Existing visual metaphors in 3D
visualization are often combined to form new metaphors [153]. A popu-
lar combination is graphs and cities – in the sense of augmenting primarily
city metaphoric visualizations with graph structures spanning from building
to building [104] or vice versa, i.e., graph based visualizations with city-like
structures as their nodes [9, 81, 140].

2.5.2 Software Architecture Visualizations in 3D

When trying to comprehend a subject system from its source code alone, it
is challenging to gain an overview of its structure. That is, for one, due to
the vast amount of information to analyze and comprehend in any non-trivial
software system. For another, it is because even with programming languages
considered “high-level” (such as Java or C#), source code explicitly models in-
formation on a relatively low abstraction level when considering the structure
of an entire system.

Various 3D software visualization techniques were proposed for visualiz-
ing software architecture [5, 35, 154, 155, 156, 157]. However, these consider
a system’s folder organization as a high-level software architecture structure,
often visualizing folders via secondary visual elements (e.g., as districts in a
city visualization).

What is Visualized as Software Architecture Structure?

Existing 3D software visualizations use simple-to-extract information as a sys-
tem’s architectural structure. Mostly, they assume file system folder hierar-
chies as an adequate model of an architectural structure and visualize these,
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e.g., as districts in a city or higher-level nodes in a tree. A notable exception is
the IslandViz tool [138] which displays software architecture based on a sys-
tem’s organization into plugins. However, to achieve that, IslandViz assumes
explicitly modeled architecture via an OSGi plugin system specification – a
strong assumption that holds only for a fraction of systems.

In long-running systems, exposed to effects of architectural drift and ero-
sion over years of evolution [158, 159], folder structure can deviate heav-
ily from an organization into cohesive collections of files, classes, or similar
source code containers. Thus, reliable information on a system’s architectural
structure is only implicitly available in source code, e.g., in the form of com-
plex relationships between multiple classes in an object-oriented system.

A large variety of software clustering techniques exist that (semi-)auto-
matically estimate high-level system structure beyond file system informa-
tion [160, 161, 162, 163]. Among these are techniques for determining a hier-
archical organization in cohesive collections of files, classes, etc. – a poten-
tially valuable source of information for providing engineers with an overview
of a system’s architecture. However, to the best of my knowledge, combin-
ing automated software clustering techniques with 3D visualization was not
studied in the past.

Research Gap 1

There exist no studies on combining results from automated software
clustering techniques with 3D software visualization.

How is Software Architecture Structure Visualized?

Most 3D visualizations represent architectural information via secondary vi-
sual elements. For instance, a popular way to visualize folder structure in
the city metaphor is by distributing buildings for classes or files into city dis-
tricts and coloring the ground respectively, e.g., in different shades of gray.
Although this allows for inspection of higher-level software structure, its en-
coding is subtle and subordinate to lower-level information such as metrics
driving the scale of buildings. Only few techniques exist that represent higher-
level software structure as primary visual elements, e.g., folders as hierarchi-
cally nested spheres [9]. In the realm of XR software visualization, the body
of existing work on this is even thinner. Most notably, ExplorViz uses nested
boxes containing city-like structures to show software execution behavior on
a system level and IslandViz visualizes OSGi plugins as islands in a virtual
ocean [138]. These techniques are valuable for their respective intended use
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cases. However, further research into interaction and visualization metaphors
is required, e.g., to study how to guide engineers into more detailed inspec-
tions of system structure on demand – both IslandViz and ExplorViz lock users
on a fixed abstraction level.

Research Gap 2

There is a lack of studies on the impact of using 3D software visualiza-
tions for presenting software architecture as their primary first-level vi-
sual structure.

Repetitive Visual Patterns in Software Visualization

Software visualizations use procedural techniques for generating visual el-
ements, following intentionally simple rules for determining their shape.
Thereby, they encode information on a software element (e.g., a function) in
the visual element representing it. For instance, to provide engineers with an
overview of the structural size of software elements, visualization elements
could be scaled based on a respective software metric, e.g., buildings in a city
metaphor visualization scaled according to the number of lines of code of the
represented file. This applies to visualizations in 2D and 3D alike. However,
while useful for communicating information visually, the approach causes
repetitive patterns, especially for large-scale subject systems (which consti-
tute a prime use case for 3D visualization, cf. Section 2.2). Thus, visualiza-
tions of large-scale systems tend to result in large-scale landscapes of similarly
shaped visual elements. This makes it hard for viewers to distinguish between
representations for different parts in a subject system, impeding their orienta-
tion and ability to relate information (e.g., “Is this what I have seen before?”).

Related work shows that visually distinct landmarks (i.e., noticeable and
recognizable structures) help viewers with their orientation in information
visualizations [164, 165, 166]. However, existing software visualizations do
not exploit this phenomenon. Doing so would require a method for gener-
ating potentially large quantities of visually distinct landmarks and placing
them in suitable locations throughout the visualization, thus “uniquifying”
different parts of a visualized system. The challenge in this is related to the
problem itself, i.e., potential methods for generating landmarks are prone to
producing repetitive outcomes – after all, they are procedures for generating
visual elements, too. Further, it is not trivial to achieve control over a 3D ge-
ometry generation process such that it reliably produces sufficiently unique
outcomes. How can developers of visualizations control what “sufficiently
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unique” means for their purposes? To the best of my knowledge, there exist
no techniques for reliably generating visually distinct landmarks in quantities
large enough to “uniquify” potentially large-scale visualizations (such as of a
large-scale software system).

Research Gap 3

There exist no methods in 3D software visualization to counteract
repetitive visual patterns impeding viewers’ ability to recognize differ-
ent parts and, thus, orient in a subject system.

2.6 Software Visualization in XR

Table 2.2 shows that a majority of 3D software visualizations, especially work
before circa 2016, use standard 2D computer screens as output medium (see
column “XR”). Noticeable exceptions to this are Avatar [73] (ca. 1995) and
Imsovision [81] (ca. 2001), virtual reality software visualization concepts that
use image projection on walls in a room-scale setup while tracking users’ head
and hands (CAVE [167]).

The main starting point for research on XR software visualization is
2016, around the same time as big technology companies started launching
XR headsets at significantly lower prices than those of existing enthusiast-
oriented models in an attempt to make these commodity hardware [168].
Since then, a variety of different studies on XR software visualization have
been published with a majority of these being about VR technology. However,
while these grant valuable insights into XR and VR as a medium for software
visualization, there is a lack of studies on pivotal aspects that I highlight in the
following.

2.6.1 Note Taking in Long-Lived XR Software Exploration Sessions

A pivotal aspect of exploring and comprehending an unfamiliar software sys-
tem is taking notes on findings as, otherwise, engineers risk losing valuable
insights – especially in long-lived exploration sessions. This is true for all soft-
ware exploration means alike. However, existing XR software visualization
tools do not support engineers in taking notes of any kind (see column “Note
Taking” in Table 2.2). With existing techniques, the only way for engineers to
take notes during XR exploration sessions is by falling back to external note-
taking means, either via third-party applications installed in their XR device
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or via traditional note-taking means such as pen and paper or whiteboards.
For VR visualizations, this is especially harmful because it requires engineers
to disrupt their immersion and exploration.

Research Gap 4

There exist no studies on taking notes during long-lived software explo-
ration sessions in VR visualizations, posing the risk of losing valuable
findings.

2.6.2 Collaborative Software Exploration via XR Visualization

Software exploration is an activity often conducted by teams of collaborating
engineers, e.g., when preparing for the re-engineering of a software system.
However, because commonly used tools such as IDEs are designed for single-
user scenarios, they do not adequately support software exploration in a col-
laborative setting. That is, they lack the means for multi-user interaction and,
even when somehow operated by more than one user, impede engineers in
synchronizing their actions and views on the source code.

Collaborative visualization concepts for 2D exist. Notable examples are
Churrasco [169, 170], a web-browser-based visualization for analyzing soft-
ware evolution, and SourceViz [171], a visualization for co-located exploration
sessions via multi-touch displays.

Compared to 2D mediums, XR provides the potential for a unique form
of collaborative software exploration where engineers simultaneously inves-
tigate synchronized visual elements from different angles. At the same time,
XR techniques (especially VR) can achieve a strong feeling for the presence of
other users, even when they are physically separated, by visualizing avatars
for them and updating their movement in real time. Thus, there is a striking
correlation in 3D software visualization between support for real-time collab-
oration and XR (see column “Collaboration” in Table 2.2); if 3D visualizations
support collaborative exploration, they are designed for use in virtual reality.

However, all in all, there exist only a few visualization techniques for col-
laborative software exploration in XR. The Imsovision project [81], early work
on utilizing VR technology for software exploration purposes, includes plans
for synchronizing and rendering collaborators in VR. However, it is unclear
whether these were eventually implemented. Both Jung et al. [125] and the
ExplorViz tool [144, 146] present collaborative VR software exploration tech-
niques for investigating the execution behavior of a system. SEE [126] is a
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project on collaborative VR software exploration with particular focus on de-
tecting software clones and architectural drift. While these contributions pro-
vide valuable insights, many facets of collaborative software visualization re-
main open, e.g., engineers’ exploration behavior or note-taking during long-
lived collaborative sessions.

Research Gap 5

There is a lack of studies on using VR visualization methods for collab-
orative software exploration, leaving open relevant aspects such as en-
gineers’ exploration behavior.



Chapter 3
Problem Definition

In Chapter 2, I outlined existing research on software visualization with a fo-
cus on 3D metaphors and XR as a medium. Further, I highlighted research
gaps in the body of existing work:

Research Gap 1: There exist no studies on combining results from automated
software clustering techniques with 3D software visualiza-
tion. (Section 2.5.2)

Research Gap 2: There is a lack of studies on the impact of using 3D software
visualizations for presenting software architecture as their
primary first-level visual structure. (Section 2.5.2)

Research Gap 3: There exist no methods in 3D software visualization to
counteract repetitive visual patterns impeding viewers’ abil-
ity to recognize different parts and, thus, orient in a subject
system. (Section 2.5.2)

Research Gap 4: There exist no studies on taking notes during long-lived
software exploration sessions in VR visualizations, posing
the risk of losing valuable findings. (Section 2.6.1)

Research Gap 5: There is a lack of studies on using VR visualization meth-
ods for collaborative software exploration, leaving open rel-
evant aspects such as engineers’ exploration behavior. (Sec-
tion 2.6.2)
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3.1 Research Questions

With my work, I address one central research question:

How can VR software visualization assist engineers in exploring
the architectural structures of software systems in prolonged
sessions with peers?

To answer this question, I define a series of subordinate research questions,
providing insights into solutions for the gaps highlighted in Chapter 2 (and
listed above).

RQ1: How can software be visualized in VR so that it fosters engineers’ explo-
ration of architectural structure? (Research Gaps 1, 2, and 3)

RQ2: What are strengths and weaknesses of using a VR software visualization
for exploring architectural structure? (Research Gaps 1 and 2)

RQ3: How can engineers be supported in taking notes during software explo-
ration sessions in a VR visualization without disrupting their immersive
exploration? (Research Gap 4)

RQ4: How do teams of software engineers explore systems in a collaborative
multi-user VR visualization? (Research Gap 5)

3.2 Thesis

In an attempt to answer the research questions formulated in Section 3.1, I
formulate the following thesis:

VR visualization is suitable for exploring unfamiliar software
systems because it provides engineers with an overview of sys-
tem architecture, an environment fostering collaborative work
with peers, and powerful interaction mechanisms, e.g., for
querying detailed information or for taking notes on findings.

In Chapter 4, I elaborate on the contributions made in Papers A-G and
how these answer RQ1-RQ5. I summarize these results in Chapter 5, provid-
ing agglomerated answers to each research question, and concluding on how
these support my thesis.



Chapter 4
Solution Overview

Papers A-G present concepts, tools, and empirical studies on utilizing VR
to explore software structure through immersive visualizations with multi-
media note-taking capabilities and support for synchronous collaborative us-
age with peers. Figure 4.1 provides a high-level overview of these contribu-
tions and how they relate. Engineers explore visualizations of a system’s ar-
chitecture and detailed structure in VR while profiting from a system-level
overview of architectural structure. In parallel to that, they take notes on
their findings directly in VR, assisted with conformance checks and support
for multi-media recordings. Distributed teams of engineers can collaborate
in these activities through real-time synchronization.

Legend Software ConceptsTool User Activity

IDE VR Visualization

Architectural Structure

Software
System

Detailed Structure

Exploring Taking Notes

Collaborating

Figure 4.1: Overview of the contributions presented in this thesis.
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In the following, I summarize the contributions made throughout Pa-
pers A-G, thus expanding on the concepts and activities illustrated in Fig-
ure 4.1. I briefly touch upon the applied research methodology (Sec-
tion 4.1) before summarizing each paper (Section 4.2) and finally providing
an overview of their contributions in the form of a concise table (Section 4.3).

4.1 Methodology

In the following, I briefly summarize the research methods applied through-
out Papers A-G as referred to in their summary in Section 4.2.

Tool Prototyping. I study concepts designed to help engineers understand
software systems. To evaluate these concepts, I implement them in tools
and assess their strengths and weaknesses through empirical studies with
software engineers. These tool implementations, which encompass all con-
cepts presented in Papers A-G, are available in an open-source repository1

and serve as proof-of-concept demonstrations.

Controlled Experiments. A well-established and thorough form of empiri-
cal assessment with human participants is controlled experiments. These in-
vestigate research questions in a well-defined (controlled) setting where the
researcher stipulates all external influences and variables except those un-
der investigation. Thereby, the researcher can conclude that differences in
participants’ behavior and answers are in a causal relationship with the un-
constrained, isolated variables under investigation, yielding strong empirical
evidence [172]. Paper B presents a controlled experiment.

Case Studies. Another type of empirical assessment with humans is case
studies. Based on a set of predefined research questions, these investigate
phenomena in a realistic setting [173], yielding large quantities of data and
anecdotal evidence even with smaller groups of participants than feasible for
controlled experiments. This is valuable in empirical software engineering.
In comparison to controlled experiments, case studies provide results that are
generally more open, which can generate a deeper understanding of a studied
subject [174]. Papers E and F present different case studies.

1https://gitlab.com/immersive-software-archaeology/

https://gitlab.com/immersive-software-archaeology/
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“Knowledge is more than statistical significance.”
— Runeson and Höst [174]

The case study presented in Paper F demonstrates the open nature of the
approach. Following an incremental and user-centered approach, I collected
primarily qualitative feedback from practitioners, analyzed the results, im-
proved my concepts and prototype, and continued with the next iteration.

4.2 Contributions per Paper

In the following, I summarize Papers A-G. For each paper, I provide a sum-
mary of contributions along with a brief statement on how these relate to the
research questions defined in Chapter 3.

4.2.1 Towards Immersive Software Archaeology: Regaining Legacy

Systems’ Design Knowledge via Interactive Exploration in Virtual

Reality (Paper A)

Paper A is a conceptual contribution presenting a vision for a VR software vi-
sualization method addressing Research Gap 2. It presents concepts for as-
sisting engineers in exploring (legacy) software systems they are not familiar
with via interactive visualizations in immersive virtual reality. I presented Pa-
per A at a general software engineering conference to engage with a broad
expert audience and to gather feedback. With Papers B-G, I follow up on the
concepts presented in Paper A.

Results

In Paper A, I envision a method for visualizing large-scale software systems
in virtual reality. The envisioned method aims to provide engineers with a
higher-level architecture overview of a system while using visualizations of
execution behavior and code quality metrics to guide engineers to interesting
parts of a system where they can query details on fine-grain information on
demand, e.g., textual views on source code for a particular function.

Immersion through Real-World Metaphor. I envision a metaphor that
maps software concepts (functions, classes, etc.) to 3D visual elements com-
monly known from the real world, i.e., planets, cities, buildings, and their in-
habitants. Thereby, the metaphor builds on engineers’ familiarity with the
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associated concepts and relationships between these, e.g., a planet contains
cities, inhabitants live in buildings, and so on. With this metaphor, I propose
to visualize the structure, behavior, and quality of subject software systems.

Visualizing Software Structure. To visualize a system’s structural properties,
the metaphor represents coarse-grain components (e.g., root-level source
folders) as planets. Sub-components of a system are represented as cities
on a planet, where buildings represent elements on the level of files, classes,
structs, or similar concepts. I propose to encode function-level structural in-
formation on each function/method by representing these as the floors of a
building, scaled according to software metrics capturing their structural size.

Visualizing Software Behavior. Visualizing the execution behavior of a sys-
tem helps identify heavily frequented, and thus critical, sections in its source
code. In a software re-engineering effort, these might require special attention
from engineers. I propose to visualize execution behavior as an integral part
of the solar system metaphor visualization summarized above. I envision pre-
viously recorded execution traces to be represented as inhabitants of the solar
system, wandering from building to building, through cities, and across plan-
ets. Thereby, inhabitants represent specific calls through the system, carrying
information that alters the state of the subject system. Users could inspect
these aspects to gain an understanding of the inner workings of the system.

Visualizing Software Quality. Visualizing software quality is useful for point-
ing engineers to re-engineering opportunities. To that end, I propose to en-
code established metrics from existing software quality assessment tools (e.g.,
SonarQube2) into the visual representation of software elements. For in-
stance, the facade of a building (representing a class/file level element, cf.
above) could receive a brittle texture to communicate poor code quality based
on a respective software metric. Effects such as litter spread throughout a city
could indicate a module-level smell.

Guidance. With the concepts summarized above, my envisioned method
aims to guide engineers through a visualization of a subject system and, thus,
foster their exploration. Observable phenomena subtly draw their attention
to points of interest, e.g., a particularly large building that represents an overly
large class/file, a brittle facade or litter in the streets of a city indicating poor

2https://www.sonarsource.com/

https://www.sonarsource.com/
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code quality, or a gathering of inhabitants in certain locations in the city indi-
cating a performance bottleneck.

Overview and Details. With the envisioned method, I aim to assist engi-
neers in exploring software systems with a focus on architectural elements.
I envision a method fostering a top-down exploration style that focuses on
a high-level overview first and then provides engineers with access to details
of interest on demand (Schneiderman’s mantra [175]). I plan for respective
concepts on the aspects of software structure, behavior, and quality.

Regarding software structure, I envision a semantic zoom that enables
users to expand upon more detailed information, e.g., on the members con-
tained in a Java class. In the metaphor summarized above, engineers could
zoom in from a system level (where they see planets) to a city level where
they see buildings larger in scale and detail, presenting further semantic in-
formation. For instance, in a visualization of Java code, individual methods
of a class could be visualized as building floors indicating through geometric
details whether they are encapsulated, abstract, etc.

Regarding software behavior, I envision a mechanism enabling engineers
to manipulate execution time when replaying recorded traces through a sys-
tem, i.e., pausing, rewinding, speeding up/down, etc. This is useful for care-
fully examining both short-lived and prolonged processes.

Regarding software quality, I envision access to explicit raw metric infor-
mation, such as yielded directly from the underlying analysis tool. That is,
besides encoding the results in the form of phenomena such as building fa-
cade textures or litter in a city, I envision a user interface with ground-truth
information.

Interaction. For cases where textual information is required, I envision
diegetic user interfaces, i.e., interactable elements residing in the virtual world
of the VR visualization – as integral parts of it. For example, engineers could
inspect source code or ground-truth information on software quality metrics
via a tablet screen attached to their virtual arm that they can dock to elements
in the visualization and thus query information. While being VR compatible,
this integrates with the metaphor and maintains engineers’ immersion.

Mental & Technical Back-Link. The goal of my envisioned VR visualization
method is to assist engineers in exploring a subject system. A pivotal part of
that is establishing a link between the mental model built in the visualization
and the system’s ground-truth source code. To that end, I plan to connect the
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proposed visualization with an IDE. Based on that, I envision mechanisms
that enable engineers to mark interesting parts of a subject system and to cre-
ate annotations on them. For instance, I propose to address this via sound
recordings attachable to visual elements that are shared between the VR world
and IDE.

Collaboration. Software exploration is an activity often conducted by teams
of engineers. These either collaboratively explore a system simultaneously
or they each explore at different times. In Paper A, I propose concepts for
supporting engineers in the latter use case. I envision a record and replay
mechanism on VR exploration sessions, that stores a guided tour through a
system. Such tours are (asynchronously) replayed by collaborators, e.g., to be
introduced into a system they do not know yet, or receive a status update on
specific new parts or aspects of a system.

Addressed Research Questions

With the contributions summarized above, Paper A envisions concepts for an-
swering RQ1. Based on these visions, I presented more detailed concepts, pro-
totype implementations, and empirical studies in Papers B-G.

The remainder of Section 4.2 summarizes the results of pursuing the vi-
sion laid out in Paper A. However, these deviate slightly from the vision pre-
sented in Paper A. That is, over the course of studying software structure visu-
alizations, I noticed striking research gaps in the body of existing work (sum-
marized in Chapter 2). For that reason, I pushed back plans on supporting
engineers in exploring system behavior and quality to future work, venturing
deeper into aspects of exploring software structure. For a more detailed dis-
cussion on future work, refer to Chapter 6.

4.2.2 Utilizing Software Architecture Recovery to Explore Large-Scale

Software Systems in Virtual Reality (Papers B and C)

Papers B and C address Research Gap 1 and Research Gap 2 (Section 2.5.2) via
a method for (a) automatically analyzing a software system’s structure and (b)
presenting engineers the results in an interactive VR software visualization.
Figure 4.2 outlines this contribution in the scope of this thesis.

While Paper B focuses on concepts developed for the presented method,
Paper C reports on the technical aspects of a tool implementation. Further,



4.2. Contributions per Paper 33

Legend Software ConceptsTool User Activity

IDE VR Visualization

Architectural Structure

Software
System

Detailed Structure

Exploring Taking Notes

Collaborating

B & C

Figure 4.2: Overview of how Papers B and C contribute to the overall thesis.

Paper B reports on a controlled experiment comparing the presented VR vi-
sualization method with an existing state-of-the-art VR software visualization
and, as a baseline, with the open-source Eclipse IDE.

Results

In the following, I summarize the results presented in Papers B and C.

Fully Automated Software System Analysis. The analysis presented in Pa-
per B is split into two stages, i.e., (i) a parsing phase establishing a model on
the level of classes/files and their content and (ii) a clustering technique to es-
timate an organization of the subject system’s class/file level elements into a
hierarchy of cohesive clusters. Because I chose Java as the target language for
the tool implementation presented in Paper C, I use object oriented-concepts
such as classes, methods, etc. in the following summary. Nevertheless, the
summarized method is generally applicable to structured programming lan-
guages with modularization concepts.

Parsing Stage. In its first stage, the analysis parses the system’s source code
to collect explicitly modeled information on the structure of classes. Thereby,
it establishes a model of the subject system’s classes and inheritance relations
as well as information on their members (return type and signature of meth-
ods as well as name and type of fields). Further, the analysis summarizes each
method by calculating two metrics, i.e., one for complexity based on control
flow splits in the method’s body and one for its number of expressions. The
model resulting from this first analysis stage captures all references between
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classes and members in the system (e.g., a constructor accessing a field or
calling a method, a class implementing an interface, or a method referencing
a type).

Automated Clustering Stage. In its second stage, the analysis conducts a
fully automated clustering procedure. It utilizes the model constructed in
the above-mentioned first stage to automatically determine an organization
of the subject system’s classes into a hierarchy of cohesive clusters, i.e., col-
lections of classes that are strongly interconnected among one another, but
weakly connected to other clusters. This process is based on references be-
tween source code elements as captured in the first analysis stage, i.e., type
references, method/constructor calls, and field accesses, thus maximizing the
cohesiveness of clusters. Thereby, the software analysis presented in Paper B
is able to estimate an architectural organization of a subject system’s source
code, independently from potentially flawed and/or outdated folder hierar-
chies.

The presented procedure utilizes existing software clustering techniques
in a novel way, providing users with control over the minimum and maximum
size of clusters in the resulting hierarchy. Further, users can influence the
clustering outcome by blending between different similarity measures used
to determine the cohesiveness between classes and by defining minimum and
maximum cluster sizes. The provided options are useful for visualization pur-
poses where, for instance, constraining cluster sizes to certain boundaries is
useful for layouting purposes.

Interactive VR Visualization. Papers B and C present a visualization con-
cept and tool that visualizes the results from the above-summarized analysis
in virtual reality. Engineers navigate the VR visualization and interact with its
3D elements to explore a subject system visually, supported by an architec-
tural overview, a semantic zoom gradually revealing lower-level information,
relationship graphs summarizing references in the system’s source code, and
– when desired – ground-truth textual representations of software elements.

Visual Metaphor with Architectural Overview. To visualize a subject system’s
structure, the method presented in Papers B and C represents intangible pro-
gramming language concepts via a solar system metaphor. Figure 4.3 pro-
vides an overview of this metaphor. On an architectural level a - c , cohesive
clusters of classes resulting from the above-summarized analysis are repre-
sented as planets (top-level clusters) containing hierarchies of continents and
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Figure 4.3: Screenshots of the prototype implementation presented in Paper C showing an example

system with ∼1.800 Java classes on different levels of abstraction. The upper area shows architecture

level while the bottom area shows class and method level.

sub-continents (intermediate-level clusters). Bottom-level clusters, i.e., those
containing classes directly, are visualized as cities d - f of buildings which
represent classes, interfaces, enums, records, etc. Thereby, the visualization
provides an explicit overview of a system’s architectural structure. Engineers
explore a subject system by navigating through its solar system representation
in VR and interacting with visual elements as described in the following.

Semantic Zoom. To emphasize architectural structure and foster a top-down
exploration, the visualization locates engineers on the level of planets when
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Architecture Overview Design Level View
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Figure 4.4: Example screenshots of the semantic zoom presented in Papers B and C. Engineers can

switch the level of abstraction from architecture level to class/file level and vice versa. When zooming

in, buildings are not only larger in scale, they are also enhanced with semantics by being composed

of individual floors with further geometric features (e.g., windows that indicate a method is publicly

accessible).

starting their exploration (see a - c in Figure 4.3). There, engineers can in-
spect planets, their continents and sub-continent hierarchies, and small-
scaled versions of each city located on the surfaces of planets. The left-hand
side of Figure 4.4 provides an optically zoomed-in view of a city located on a
planet’s surface in the architectural overview.

Engineers can semantically zoom in on a bottom-level component by vis-
iting the city representing it (right-hand side of Figure 4.4). Thereby, buildings
increase noticeably in scale, while being semantically enriched with more in-
formation. That is, buildings are composed of individual floors for each of
the represented classes’ methods. To provide a visual summary of methods
and thus classes, the shape of each floor is determined by metrics measuring
method complexity (floor radius) and the number of contained expressions
(floor height).

Relationship Graphs. To provide engineers with an overview of the relation-
ships between visualized software elements, the method presented in Pa-
pers B and C visualizes references in the source code as animated arced lines
between the corresponding visual elements, forming a relationship graph.
References from one software element (e.g., a class or entire cluster) to an-
other are visualized as an arced line between the two respective visual ele-
ments (e.g., building, city, or entire planet). Figure 4.3 b , d , and e show ex-
amples of this. Engineers interactively blend relationships between elements
in and out by interacting with a graphical user interface in VR (Figure 4.3 f
illustrates the user interface for buildings in a city).
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Source Code as Text. With the above concepts, the method presented in
Papers B and C provides engineers with an interactive visual overview of a
subject system’s structure, including explicitly an architectural view. Nev-
ertheless, engineers can access the ground-truth information on that visual
overview, i.e., the system’s source code, via a user interface in VR (see Fig-
ure 4.3 f ).

Controlled Experiment. In Paper B, I report on a controlled experiment with
54 participants (students and scientific staff of the IT University of Copen-
hagen) assessing the quality of the above-summarized concepts in a com-
parison with a state-of-the-art VR software visualization and a standard IDE.
Participants in the experiment used one of the three methods to solve tasks
while talking out loud and thus providing feedback. I observed how they ap-
proached each task and what results they produced to draw conclusions on
the strengths and weaknesses of the three methods in assisting participants
with relevant software exploration tasks. That is, I investigated in what sense
the methods assisted participants in accessing and relating information on
elements in the subject software system.

Accessing Information A key aspect of software exploration is accessing in-
formation such as identifying a set of classes implementing certain function-
ality. The experiment shows that, for the provided tasks, visualizing high-level
software structure based on results from clustering techniques helped partici-
pants in accessing information, as it groups together software elements based
on their interrelations, e.g., as buildings in the same city or continents on the
same planet. As a result, engineers gain easier access to correlated informa-
tion in comparison to the other methods under test which use the system’s
folder structure to organize classes.

Relating Information Relating information is a crucial task in software ex-
ploration. I distinguish it into relating software elements horizontally (same
abstraction level), such as identifying what methods are called from an in-
spected method, and relating software elements vertically (different abstrac-
tion levels) as in identifying containment relations, e.g., what classes should
be contained in a software module. To perform these tasks, participants in
the IDE need to read through source code. While this provides more experi-
enced developers with deeper insights into implementation details, IDE par-
ticipants generally perform worse in relating their acquired pieces of knowl-
edge than participants using the visualizations. This is especially notable for
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less experienced developers. The experiment shows that an explicit visualiza-
tion of references between software elements, such as provided by the rela-
tionship graphs in the presented method, helps identify horizontal relations,
especially on an architectural level. For relating software elements vertically,
the experiment shows that both visualizations under test (i.e., our method and
the state-of-the-art visualization) provided participants with an overview of
the system’s structure resulting in a better understanding of the dimensions
of architectural structures than those from participants working in the IDE on
a textual representation of source code.

Addressed Research Questions

With the results summarized above, Papers B and C contribute to RQ1 and
RQ2. The papers present concepts and a tool implementation for VR software
visualization with an emphasis on software architecture structure (RQ1). Fur-
ther, Paper B presents a controlled experiment comparing participants’ ability
to perform software comprehension tasks in VR software visualizations com-
pared to a traditional IDE (RQ2).

4.2.3 Uniquifying Architecture Visualization through Variable 3D Model

Generation (Paper D)

In Paper D, I address Research Gap 3 (Section 2.5.2) via concepts for gener-
ating visually distinct 3D landmarks which, when integrated into a software
visualization, can be used to “uniquify” otherwise similar-looking parts. The
contribution made is primarily conceptual and technical, aimed at providing
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Figure 4.5: Overview of how Paper D contributes to the overall thesis.
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(solution space). A hybrid variant derivation procedure generates final landmarks by (1) composing

partial 3D geometry and (2) transforming visual characteristics such as material.

developers of 3D software visualizations with a solution to a non-trivial prob-
lem. Figure 4.5 highlights this contribution in the context of this thesis.

Results

The method proposed in Paper D is centered around defining landmarks as a
visual design language using concepts from variability engineering. Develop-
ers of software visualizations model a design language expressing landmarks
via two kinds of artifacts:

1. A feature model (top part of Figure 4.6), i.e., a tree-shaped model where
nodes are selectable configuration options. Feature models encode se-
mantics on the relationship between features, e.g., two features being
mutually exclusive, thus providing fine-grain control over the space of
valid configuration options of the design language (problem space).



40 Chapter 4. Solution Overview

2. A set of partial 3D geometry, where each piece corresponds to a feature
from the feature model (bottom left part of Figure 4.6). This partial ge-
ometry expresses the space of composable elements (solution space).

A concrete landmark is generated by first deriving a valid configuration
of the design language (problem space), i.e., a valid selection of features, and
then assembling the corresponding geometry pieces (solution space).

From Software To Valid Landmark Configuration (Problem Space). I propose
a method for deriving valid configurations of a design language (defined as
summarized above) based on a collection of source code elements – whose
representation in a visualization should be uniquified. First, the method
generates a software descriptor, deterministically encoding simple high-level
characteristics via the number of contained elements and a hash over its el-
ement names. For instance, this method can be used on a folder to gener-
ate a descriptor that is robust against minor changes in the contents of con-
stituent files while sensitive to higher-level changes such as the deletion of a
file. Second, the method uses deterministic steered random sampling on the
design language’s feature model, driven by the previously calculated software
descriptor. The result is a valid configuration, i.e., a valid selection of features
in the feature model (a “word” of the design language) that is mapped to a
selection of partial geometry.

From Landmark Configuration to 3D Geometry (Solution Space). As a last
step, the method presented in Paper D includes a hybrid variant derivation
mechanism that takes a valid configuration of the design language as input to
generate the landmark geometry described by it. I refer to the mechanism as
“hybrid” because it subsequently employs two variant derivation techniques.
First, the presented method composes the pieces of partial geometry included
in the given configuration. This composition uses a hooks-and-slots mecha-
nism to determine how pieces are matched. That is, each piece of geometry is
annotated with one root hook and arbitrarily many slots. The latter mark the
position and rotation for child elements to be hooked into (where to place a
child piece’s root hook). Second, the presented method transforms the visual
characteristics of the resulting geometry. For now, this transformation can be
used to change the material of geometry pieces based on a simple naming
scheme.
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Tool Implementation. I implemented the concepts presented in Paper D as
an open-source tool3 using the Unity 3D engine4 (a popular tool among de-
velopers of 3D visualizations) and FeatureIDE (“an extensible framework for
feature-oriented software development”5). The tool can be integrated into
existing visualizations – either directly when made with Unity, or in adapted
form when using other technology.

Addressed Research Questions

Maintaining viewers’ orientation in a visualization is crucial as, otherwise,
they are hampered in establishing a coherent mental model of the subject sys-
tem. With the work summarized above, Paper D contributes to achieving this
by augmenting visualizations with distinct, remarkable landmarks. Thereby,
the paper contributes to RQ1.

4.2.4 Preparing Software Re-Engineering via Freehand Sketches in

Virtual Reality (Paper E)

Paper E addresses Research Gap 4 (Section 2.6.1) via concepts and a tool im-
plementation for supporting engineers in taking notes about software struc-
tures via freehand sketching in VR with automatic interpretation, integration
with ground-truth source code, and conformance checks. Further, the paper
presents an iterative case study through which I assessed the strengths and
weaknesses of the presented VR note-taking method while improving it over
the course of each iteration. Figure 4.7 outlines this contribution in the scope
of this thesis.

Results

In the following, I summarize the results presented in Paper E.

Freehand Sketching with Automated Interpretation and Conformance
Checks in Virtual Reality. The note-taking method presented in Paper E ex-
tends VR software visualizations with a virtual whiteboard on which engineers

3https://gitlab.com/immersive-software-archaeology/

variable-3d-landmarks/
4https://unity.com/
5https://featureide.github.io/

https://gitlab.com/immersive-software-archaeology/variable-3d-landmarks/
https://gitlab.com/immersive-software-archaeology/variable-3d-landmarks/
https://unity.com/
https://featureide.github.io/
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Figure 4.7: Overview of how Paper E contributes to the overall thesis.

can pin software elements from the visualization and freely hand-draw arbi-
trary sketches. The method aims primarily at taking notes on architecture-
level software structures, e.g., on how a collection of Java classes interacts with
a library. Figure 4.8 illustrates that concept via screenshots from a tool imple-
mentation.

Pinning Software Elements. Engineers grab architecture-level elements
from the software visualization embedding the virtual whiteboards and pin
them on a whiteboard 1 . For instance, in the tool implementation used in
the case study, users pin Java classes, interfaces, and folders/clusters – they
can choose whether they wish to work with folders/packages or based on the
results of the software clustering technique presented in Paper B when im-
porting a system into the VR visualization.

Pinning a visual elements onto a whiteboard leaves behind a small pin
representing the visual element. Such pins include a small avatar version that
helps engineers with distinguishing between pins for different elements 5 .
The pinning mechanism enables engineers to swiftly add software elements
to a diagram when working in a VR visualization, while at the same time es-
tablishing a direct link to the software element. The note-taking method auto-
matically provides engineers with information on references between pinned
elements by blending in arced, semi-transparent lines between them (see Fig-
ure 4.8).

Interacting with Pins. Engineers position and move pins freely on virtual
whiteboards by grabbing them with their virtual hands and releasing them
at the desired location 6 . Further, they access detailed information on pins
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by tapping on them with their virtual fingertips 2 . That opens a user inter-
face 3 . For instance, the user interface displayed in 3 contains informa-
tion on a pinned Java package. For one, it shows metrics on the number of
contained classes and sub-packages. Further, it provides a list of references
pointing to the pinned element as well as a list of references declared within
the pinned element pointing to other elements in the system. Thereby, user
interfaces for pins provide engineers with navigation shortcuts to related el-
ements on the whiteboard directly, without needing to return to the visual-
ization. Lastly, pins for packages/clusters can automatically be replaced with
pins for their constituent elements. In the tool implementation, users do this
by pressing a button in the user interface (see arrow pointing from 3 to 4 ).

Freehand Drawing. Engineers annotate arrangements of pins by grabbing

a virtual pen 11 and drawing freely 8 - 10 – as they would on a regular
real-world whiteboard. The virtual pen distinguishes between three drawing
modes for the freehand strokes it registers on a virtual whiteboard:

• Uninterpreted Drawing: Pen strokes simply change the whiteboard’s
surface texture 8 , there is no further interpretation (as opposed to the
other two drawing modes explained beneath). This mode is useful for
handwriting, drawing icons, etc.

• Module Drawing: Pen strokes are treated as outlines around pins for
defining so-called “modules”, i.e., collections of pinned software ele-
ments 9 . The note-taking method automatically determines which
pins are contained in a sketched module outline and stores the results in
a model. Engineers can interact with outlined modules by tipping into
their area, thereby opening a user interface similar to that for software
elements.

• Arrow Drawing: Pen strokes are interpreted as arrows between modules
drawn on the whiteboard, connecting the two modules closest to the

starting and end position of the arrow pen stroke 10 (self-references
are possible). Reference lines between pins in modules connected by
a drawn arrow automatically adopt the color of the drawn arrow 7 .
Thereby, the note-taking method provides engineers with conformance
checks between their sketches and the ground-truth source code; if no
reference line across two modules changes color after connecting them
with a hand-drawn arrow, the engineer knows that the arrow does not
correspond to a reference relation in the source code.
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Figure 4.9: Screenshots of notes taken on a virtual whiteboard in VR displayed in an IDE (top left area).

Users can interact with the whiteboard in the IDE, e.g., to open a pinned element’s source code in text

form (top right area).

Access to Notes Outside of VR. Engineers create and edit notes in VR using the
above-summarized mechanisms. However, a key use case for accessing notes
is during programming tasks (e.g., to implement a planned change captured
in notes on a whiteboard) – an activity commonly carried out in traditional 2D
screen IDEs and (at least for now) not in VR. To grant engineers access to notes
created on VR whiteboards in that scenario, the note-taking method provides
them via a web interface, easing integration into existing tools such as an IDE.
While freehand drawn notes can be adapted directly to 2D, three-dimensional
structures are removed, i.e., relationship lines between pins that would cause
visual clutter as well as avatar structures that require a third spatial dimen-
sion.

In my prototype implementation and its integration into the Immersive
Software Archaeology tool, VR whiteboards are accessible via HTTP in the
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browser and, based on that, directly in the Eclipse IDE for convenient ac-
cess. Figure 4.9 illustrates that; the top left area of the figure shows a win-
dow in the IDE embedding a web browser displaying a virtual whiteboard.
In the tool implementation, whiteboards receive live updates when edited in
VR. Further, they provide engineers with features such as goto navigation, i.e.,
mouse-clicking on a pin opens the file of the pinned software element (e.g., a
class) in the IDE (top right area of Figure 4.9).

Iterative Case Study with Practitioners. I conducted an iterative case study
with seven software engineering practitioners from four companies to as-
sess the quality of the VR note-taking method while improving it throughout
the study iterations. In each iteration, participants used the VR note-taking
method in individual sessions to solve tasks on analyzing a software system
they were not familiar with and persisting the results. While participants were
working on these tasks, I went through a catalog of open questions with them
to gather feedback and suggestions for improvement. At the end of each iter-
ation, I analyzed participants’ responses to improve the note-taking concepts
and implemented these improvements in tool prototype used in the study, be-
fore continuing with the next iteration. In total, the study consisted of three
iterations.

In the paper, I summarize participants’ feedback by grouping their state-
ments into recurring topics. Based on that, I discuss how the VR note-taking
method assists engineers in representing software architecture structures.
Further, I investigate how the method assists engineers in reflecting on their
notes in the sense of “Is this what the system looks like?” and “Should the
system really look like this?”

Representing Software Structure. In the first iteration of the case study, par-
ticipants left negative feedback on various issues emerging, such as problems
with certain VR interactions – particularly, with virtual pens accidentally clip-
ping through whiteboards while drawing. I addressed these problems by re-
fining the note-taking concepts and tool implementation for all subsequent
study iterations. On the other hand, participants positively mentioned intu-
itive interaction and the high flexibility offered by the VR note-taking method.
As a side note, it should be mentioned that all tasks provided to participants
were concerned with software architecture structure, as that is the primary
target of the method. For capturing more fine-grain structure (such as on the
level of functions/methods, or even statements) or other aspects of software,
such as the behavior of a system as in data “flowing” through it, the results
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might vary. For instance, participants mentioned operating on a relatively
high abstraction level that would not allow them to capture interactions be-
tween individual methods as easily as between classes. However, for captur-
ing views on an architectural level, participants perceived the workflow of the
VR note-taking method, i.e., primarily pinning and drawing, as powerful and
intuitive.

Reflecting on Software Structure. Participants’ feedback related to reflecting
on what they have noted on VR whiteboards was centered around two main
points of feedback. First, by design, the level of abstraction the VR note-
taking method focuses on primarily benefits an architectural overview and
reflections on it (in alignment with the comments from above). Second, for
that purpose, however, participants positively emphasized the overview of re-
lationships between architectural elements they were provided with – espe-
cially when comparing the VR note-taking method with their usual workflow
in IDEs or with freehand sketching on a physical whiteboard. Participants ac-
count this to the automatically shown reference lines between pins and to the
conformance checks these provide based on hand-drawn arrows.

Addressed Research Questions

Paper E contributes to RQ3 via concepts and a tool implementation for note-
taking in VR software visualizations. Further, it provides insights into the
strengths and weaknesses of the method via an iterative case study with soft-
ware engineering practitioners.

4.2.5 Collaborative Software Exploration and Note-Taking (Papers F

and G)

Papers F and G address Research Gap 4 (Section 2.6.1) and Research
Gap 5 (Section 2.6.2) via a method for a synchronized collaborative VR soft-
ware visualization method with multi-media note-taking capabilities. The
presented method employs a metaphor representing software architecture as
its primary visual structure, thus addressing Research Gap 2. Further, Paper F
reports on a case study that investigates how collaborative VR software visu-
alizations are used by practitioners when exploring an unfamiliar system to-
gether.

Figure 4.10 highlights these contributions in the scope of this thesis. Pa-
per F presents concepts and a case study while Paper G focuses on technical
details of a tool implementation.
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Figure 4.10: Overview of how Papers F and G contribute to the overall thesis.

Results

In the following, I summarize the results presented in Papers F and G.

Collaborative Software Visualization in VR. Papers F and G present a col-
laborative VR software visualization technique that combines and enhances
concepts presented in the papers summarized above. Multiple engineers
can simultaneously immerse into one synchronized visual representation of
a subject software system and thus explore its structure while taking notes on
findings, planning changes, and so on. Figure 4.11 provides example screen-
shots of this from the tool implementation presented in Paper G. Because I
used Java as a target language in the tool implementation, I use Java termi-
nology in the summary beneath. However, the summarized concepts can be
applied to other programming languages – object-oriented languages require
no adaptions.

Folders as Semi-Transparent Spheres. Software elements on an architectural
level are represented as semi-transparent spheres (Figure 4.11 a and b ).
Conceptually, these represent folders, Java packages, clusters resulting from
an analysis such as that presented in Paper B, or other hierarchical organi-
zations of source elements. For brevity, and to remain consistent with the
terminology used in Papers F and G, I refer to them as “folder spheres” in the
following.

To help engineers distinguish between different folder spheres, these re-
ceive a unique color that is determined by their position in the system’s hi-
erarchy of folders, packages, clusters, etc. To foster a top-down exploration



4.2. Contributions per Paper 49

en
la

rg
e

public 
methods

ne
st

ed
 

cl
as

s

at
tri

bu
te

s

ab
st

ra
ct

el
em

en
ts

class 
base

methods with 
restriced access

sh
rin

k

a b

c
d

e

f
g h i

j
k

l

m

Fi
gu

re
4.
11

:
Sc
re
en

sh
ot
s
ta
ke
n
fr
om

th
e
to
ol

pr
es
en

te
d
in

Pa
pe

rG
im

pl
em

en
ti
ng

th
e
m
et
ho

d
pr
es
en

te
d

in
Pa

pe
r
F.
Fo

ld
er
s/
pa

ck
ag

es
ar
e
re
pr
es
en

te
d
as

co
lo
re
d
ne

st
ed

sp
he

re
s
(a
-c
).
C
la
ss
es
,i
nt
er
fa
ce
s,
et
c.

an
d
th
ei
r
m
em

be
rs

ar
e
re
pr
es
en

te
d
as

st
ac
ks

of
cy
lin

de
rs

(c
la
ss

cy
lin

de
rs
),
en

co
di
ng

m
et
ai
nf
or
m
at
io
n

an
d
st
ru
ct
ur
al

m
et
ri
cs

vi
a
lo
ca
ti
on

,s
ha

di
ng

,a
nd

fo
rm

(f
-h
).
En

gi
ne

er
s
ca
n
in
te
ra
ct

w
it
h
el
em

en
ts

(d
,e
)

to
bl
en

d
in

vi
su
al

re
la
ti
on

sh
ip
s
gr
ap

hs
(i,
a)
,r
ea
d
co
de

(m
),
or

sc
al
e
th
e
vi
su
al
iz
at
io
n
up

an
d
do

w
n
(j-
l)
.



50 Chapter 4. Solution Overview

approach and to reduce the amount of information presented to engineers,
folder spheres initially hide their contained elements. Engineers interact with
them to reveal content of interest on demand. For instance, in Figure 4.11 b ,
compare the purple folder sphere on the left-hand side (closed, hiding its con-
tent) with the green folder sphere on the right-hand side (opened, showing
contained sub-spheres). Thereby, the method presented in Papers F and G
adopts the semantic zoom presented in Papers A-C seamlessly and more grad-
ually.

Classes as Stacks of Cylinders. A software element on the level of files or
classes is represented as a stack of cylinders (see Figure 4.11 f - h ), in short,
referred to as a “class cylinder”. Each class cylinder consists of three types of
visual constituents:

• One “base cylinder” that represents the class itself, adopting its color
from the direct parent folder sphere and thus communicating the con-
tainment relationship. The surface of a base cylinder representing an
interface is rendered in a wireframe look, indicating its abstract na-
ture h .

• An arbitrary amount of cylinders for methods and constructors (re-
ferred to as “method cylinders” for brevity). Their shape is deter-
mined similarly to how building floors are shaped in the visualization
metaphor proposed in Paper B (Section 4.2.2). That is, the height is
determined by counting the expressions contained in the visualized
method/constructor. The diameter is determined from a metric on cog-
nitive complexity [176]. To further provide a brief overview of the API of
a class, cylinders for system-wide accessible methods (public keyword
in Java) stack on top of the base cylinder, while encapsulated methods
(private, protected, or package visible in Java) stack beneath the
base cylinder. Similar to base cylinders, the surface of a method cylin-
der representing an abstract method or interface method is rendered in
a wireframe look h .

• An arbitrary amount of “attribute spikes” representing class attributes/-
variables, originating from the base cylinder. Attribute spikes commu-
nicate accessibility via their length, i.e., publicly accessible attributes
are noticeably longer than encapsulated ones (see Figure 4.11 g ).

By visualizing classes with the proposed technique, engineers are provided
with a visual overview of their content (the example shown in Figure 4.11 f



4.2. Contributions per Paper 51

illustrates this well). Figure 4.11 c shows class cylinders within their contain-
ing folder sphere. They are arranged in a circle parallel to the floor to provide
engineers with convenient access.

Interaction with Visual Elements. Engineers interact with folder spheres,
class cylinders and their constituent elements, and the entire system via dif-
ferent interaction mechanisms. To access and reveal further information,
they tip on the visual element of interest with their virtual index finger (Fig-
ure 4.11 d and e ). That causes folder spheres to reveal their content and
class cylinders (and their constituent elements) to show a user interface with
additional information, including the element’s source code m . Further, en-
gineers optically zoom in and out via hand gestures j - l .

Relationship Graph. The method presented in Papers F and G provides en-
gineers with an overview of references between software elements similar to
the method presented in Paper B. However, the relationship graphs presented
in Papers F and G provide (a) more fine-grain control over what is displayed
and (b) more detailed information on which elements are referenced. That
is, the relationship graphs presented in Paper F distinguish between different
types of references, enabling engineers to blend these in separately. In the tool
implementation presented in Paper G, this distinction is made between type
references, method calls, and field accesses in Java source code.

Further, the individual reference lines originate from and point to repre-
sentations of particular class members. For instance, a reference line show-
ing a call between two methods originates from the cylinder representing the
calling method, pointing to the cylinder representing the called method. En-
gineers control the relationship graphs via the user interface they can open on
elements (summarized above and shown in Figure 4.11 i and m ).

Synchronization and Presence of Collaborators. Engineers see their collabo-
rators in the shared, synchronized virtual space around them. For that pur-
pose, the visualization method updates and displays collaborators’ heads and
hands in real-time. The visualization further synchronizes the grabbing of ele-
ments (e.g., Figure 4.11 e shows a collaborator currently holding a class cylin-
der), interactions with user interfaces such as when scrolling through source
code, and blending in or out references in the relationship graph.



52 Chapter 4. Solution Overview

Collaborative Note-Taking in VR. The VR visualization method presented
in Papers F and G integrates and extends the VR note-taking method pre-
sented in Paper E in two aspects.

First, it provides all the functionality presented in Paper E in a collabora-
tive setting where whiteboards are shared between them. Engineers can each
pin elements to the same whiteboard and pick up a pen and draw while see-
ing the results of whiteboard edits made by their peers. Thereby, they can
collaboratively take notes of findings and complement each others’ views. Pa-
per G explains how the collaborative VR note-taking method verifies edits per-
formed by collaborating engineers to ensure their consistent execution.

Second, the method presented in Papers F and G extends the VR white-
boards presented in Paper E with additional means for taking notes. En-
gineers record audio notes via a virtual microphone, enabling them to at-
tach replayable audio pins to whiteboards. Further, they take in-visualization
screenshots via a virtual camera, enabling them to attach specific views (as
bitmaps) on parts of the visualization to whiteboards. These screenshots act
as temporal savepoints because engineers can restore the visualization to the
state it was in when using the camera, instantly restoring the scaling of ele-
ments, open/close states of each folder sphere, and the visibility of lines in
the relationship graph. These new features provide engineers with a means
for effectively expressing thoughts and insights.

Case Study with Practitioners. In Paper F, I present a case study with four
software engineering practitioners assessing the strengths and weaknesses of
the visualization method summarized above. In pairs of two, the engineers
collaboratively explored a software system they had not seen before to gather
insights into its inner workings. I did not interfere with that exploration except
by responding to technical questions raised by the participants regarding tool
functionality and VR hardware.

During the collaborative exploration sessions, I screen-recorded partici-
pants’ activity in VR. Further, I gathered their verdict on the method via an
anonymized, individually filled-in post-session questionnaire. Lastly, I col-
lected information on the quality of participants’ insights by forwarding them
to the subject system’s original developers. By analyzing this data, I answered
research questions related to using a collaborative VR software exploration
method. In the following, I summarize the results.

How do engineers explore and take notes? I analyzed participants’ activity
from the recordings of each VR exploration session to create a detailed time-
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line. Thereby, I identified patterns in participants’ behavior. It shows that
engineers using a collaborative VR software exploration tool oscillate between
examining architectural structure in the visualization and reading through de-
tails of source code as text. When taking notes on findings, they primarily use
handwriting and audio recordings. In the study, participants required prac-
tice to become used to handwriting on a virtual whiteboard and thus used it
only to annotate individual words, outline pins, and draw arrows, relying on
audio recordings to capture longer thoughts. Over the course of both sessions,
I observed ample communication between participants, i.e., ongoing discus-
sions and synchronization of insights and assumptions, interrupted by short
phases of individual exploration.

What strengths and weaknesses do engineers perceive? Based on partici-
pants’ answers to the post-session questionnaire, I extracted their verdict on
different exploration and note-taking mechanisms and how to improve these.
Overall, participants felt more supported in exploring the subject system than
in taking notes on their findings. They especially valued the aspect of explor-
ing an unknown system in a collaborative VR tool thanks to the overview. For
note-taking, participants state that handwriting longer notes on VR white-
boards is not desirable. Generally, they perceive issues with handwriting leg-
ible notes due to their lack of VR experience. For capturing longer and more
general thoughts, they favor audio recordings, strongly wishing for automated
speech-to-text transformation. However, the virtual whiteboards were per-
ceived as overall very useful. Further, participants rated the collaborative as-
pect of the method as highly positive.

What type of insights do engineers extract? I collected insights into the sub-
ject system’s source code gathered by both pairs of participants and identified
patterns in these. The results show that participants’ insights are mainly fo-
cused on system/architecture level concerns – which is in line with the obser-
vations on participants’ exploration style summarized above. Further, I for-
warded all insights to the subject system’s original developers to assess their
correctness and relevance. As per the verdict of the original developers, par-
ticipants’ insights were correct (average of 4.43 on a scale from 1 to 5) with
varying relevance (average of 3.61 on a scale from 1 to 5). I conclude that
while further studies are needed to investigate these results in more detail,
the correctness of participants’ notes along with their feedback and the above-
summarized observations are promising.
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Addressed Research Questions

With the contributions summarized above, Papers F and G contribute to RQ1-
RQ4. They present a new VR software visualization method along with a case
study on its use by practitioners, thus contributing to RQ1 and RQ2. Further,
they extend the note-taking method presented in Paper E, thus contributing
to RQ3. Lastly, Paper F investigates how teams of engineers utilize collabora-
tive VR visualizations for software exploration (RQ4).

4.3 Summary of Contributions

Table 4.1 summarizes the contributions made in Papers A-G and maps these
to research questions (Chapter 3) they provide insights to.
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Chapter 5
Conclusion

In the following, I summarize how the work presented in Chapter 4 provides
answers to the research questions formulated in Chapter 3. Thereby, I con-
clude whether the thesis formulated in Section 3.2 holds:

VR visualization is suitable for exploring unfamiliar software sys-
tems because it provides engineers with an overview of system
architecture, an environment fostering collaborative work with
peers, and powerful interaction mechanisms, e.g., for querying de-
tailed information or for taking notes on findings.

5.1 Fostering Exploration of Software Architecture

Paper A describes a vision for a VR software visualization method using a solar
system metaphor for representing architectural software elements (modules,
folders, packages, clusters, etc.). That vision includes concepts for enabling
engineers to switch between abstraction levels and to access details on de-
mand, most notably through a relationship graph explicitly visualizing source
code references.

Papers B and C extend that vision into concrete concepts and provide a
tool implementation of these. In doing so, Paper B presents an automated
software clustering procedure as the basis for VR visualization that enables
engineers to inspect architecture beyond mere folder structure. Further, Pa-
per B reports on a controlled experiment assessing the suitability of the above
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concepts for assisting engineers in software comprehension tasks. The exper-
iment compares the method envisioned and implemented in Papers A-C with
another state-of-the-art VR software visualization tool and a traditional 2D
screen IDE. This allows for conclusions on differences between comprehend-
ing subject systems in an IDE as compared to VR software visualizations.

Paper D presents a method for using unique, remarkable landmarks in 3D
software visualizations for breaking up repetitive patterns in their landscapes
of visual elements – a problem stemming from the intentionally simple build-
ing rules in 3D visualizations that impedes viewers’ orientation.

Papers F and G present another VR software visualization metaphor en-
coding software elements and their properties via abstract spherical and
cylindrical shapes. This metaphor adopts the concepts presented in Pa-
pers A-C while providing enhancements to both the semantic zoom and
the relationship graph. Further, Paper F presents a case study investigating
strengths and weaknesses of the presented VR visualization method for soft-
ware exploration.

RQ1: How can software be visualized in VR so that it fosters engineers’ explo-
ration of architectural structure?

The two methods presented in Papers B and F visualize software architec-
ture as their first-level visual structure in an immersive VR environment. In
both methods, engineers interact with visual elements in VR, e.g., to navigate
through the visualization or to query further information on demand. The
controlled experiment presented in Paper B shows that, for this purpose, esti-
mating architecture via clustering can be valuable, because it groups together
visual representations of software elements that are strongly related (in the
sense of references in source code), easing the access to information.

In software architecture visualizations in VR suffering from repetitive vi-
sual patterns, landmarks can be used to make different parts of the visualiza-
tion more unique and remarkable.

Lastly, the experiment presented in Paper B shows that visualizing rela-
tionships is valuable for engineers. In the methods presented in Papers B and
F, this is achieved through lines between visual elements. By utilizing three
spatial dimensions, VR visualizations can effectively avoid line overlapping
while stereoscopic vision and motion parallax effects enable engineers to per-
ceive this naturally. The experiment demonstrates that source code reference
visualizations help engineers with relating software elements, especially on
higher abstraction levels such as “How do the classes in this Java package work
together?”.
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RQ2: What are strengths and weaknesses of using a VR software visualization
for exploring architectural structure?

The controlled experiment presented in Paper B suggests that VR software
visualizations are suitable for gaining an overview of complex structures in
a subject system. They provide engineers with a bird’s eye perspective of a
system’s architecture which must largely be mentally imagined when reading
through raw textual representations of source code in an IDE.

While this overview comes at a cost of insights into details, it helps with
comprehending software architecture. The experiment presented in Paper B
shows that, because the visual summary provided in a visualization answers
many high-level questions without reading through code, engineers are less
familiar with implementation details as if they needed to extract the big pic-
ture by reading through source code as text. However, participants using a
VR visualization develop a better understanding of the dimensions of soft-
ware structures on an architectural level when compared to participants using
an IDE. Visualizations of references between software elements play a pivotal
role in this. In textual representations of source code, references are not di-
rectly visible and thus hard to overview and cumbersome to navigate whereas,
in a VR visualization, they can be directly displayed and interacted with while
avoiding line overlap. The case study presented in Paper F reflects this; en-
gineers feel strongly supported in exploring software architecture due to the
overview provided in VR.

Conclusion. Regarding RQ1 and RQ2, I conclude that my thesis holds. VR
Visualization is useful for providing engineers with a bird’s eye perspective
on a subject system. Estimating a system’s architectural structure via auto-
mated clustering is a beneficial first step for that purpose because it allows for
sensible arrangements of a system’s artifacts beyond potentially outdated and
inaccurate folder structure. Further, representations of relationships between
software elements are helpful, especially on higher abstraction levels. VR is
a suitable medium for software visualization because it provides powerful in-
spection and interaction possibilities that utilize three spatial dimensions.

5.2 Note-Taking in Virtual Reality Software Visualization

Paper E presents a method for extending existing VR software visualizations
with note-taking capabilities. The presented concepts are centered around
the idea of providing engineers with a virtual whiteboard on which they take
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notes by pinning visual elements (e.g., a sphere representing a Java package)
and drawing freely as they would on a physical whiteboard in the real world.
Based on these notes, the presented concepts include automated checks pro-
viding engineers with feedback on the conformance of their sketches to the
source code structure these depict. I assessed the strengths and weaknesses
of the note-taking method in an iterative case study, throughout which I ex-
tended and improved its concepts.

Papers F and G extend the whiteboard note-taking method presented in
Paper E with capabilities for recording audio notes and creating screenshots in
VR. Further, Paper F presents a case study assessing the extended note-taking
method (including the concepts presented in Paper E), thereby yielding more
insights into the strengths and weaknesses of note-taking in VR.

RQ3: How can engineers be supported in taking notes during software explo-
ration sessions in a VR visualization without disrupting their immersive explo-
ration?

The note-taking concepts presented in Papers E, F, and G are designed to
integrate with a VR software visualization and its model of a system’s source
code, thus establishing a direct link between notes taken and the software
structure they describe. They are examples of how VR provides potential for
novel interaction metaphors with source code.

One of the presented VR note-taking concepts enables engineers to grab
elements from the VR visualization (i.e., in Paper E, Java classes and packages)
and to pin them to a virtual whiteboard via hand movement, enabling further
tool support. For instance, it allows explicitly visualizing references between
pinned elements via lines between them or augmenting pins with visual sum-
maries of the pinned element (similarly to how the element is represented in
the visualization).

Along with the pinning interaction summarized above, Paper E presents
concepts for VR freehand drawing on virtual whiteboards. Engineers outline
pins on a whiteboard and draw arrows between outlines to take notes on a sys-
tem’s structure and relationships between parts of it. Because these freehand-
drawn notes are created in a purely virtual realm, the method is able to es-
tablish a model capturing the semantics of freehand-drawn lines. Again, this
enables further tool support and automated analysis, e.g., for conformance
checks between the drawn lines and references in the subject system’s source
code.

Lastly, Papers F and G present means for swiftly capturing general
thoughts and insights via audio recordings and screenshots. Audio record-
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ings are a convenient way for engineers to capture longer thoughts and in-
sights. They have a potential for further utilization, e.g., via natural language
processing and conversion to written form or as input for other tools. Screen-
shots are useful for swiftly capturing a view in a VR visualization. Similarly,
they have potential for further utilization, e.g., besides acting as purely visual
artifacts, screenshots can act as temporal snapshots for saving the state of a
visualization at the time point of their creation.

The VR note-taking and interaction concepts summarized above en-
able engineers to capture insights and plans, especially on a subject sys-
tem’s architectural structure. While notes taken in this manner are three-
dimensional when editing and interacting, it is possible to convert them to
two-dimensional representations without introducing clutter. In the method
presented in Papers E, F, and G, this process removes information – such as
relation lines between pins which, in 2D, would lead to inevitable chaos. Nev-
ertheless, it allows mirroring notes to a 2D standard screen, e.g., for integra-
tion into an IDE, while explicitly maintaining a connection to the depicted
source code elements.

The case studies presented in Papers E and F show that, although VR-
specific technical challenges to note-taking do exist, engineers perceive note-
taking in VR as overall suitable and intuitive. In the concepts and prototypes
presented in Papers E, F, and G, challenges and problems include, most no-
tably, hands and pens clipping through whiteboards and issues with legible
VR handwriting in general – both accelerated by engineers’ inexperience with
VR.

On the other hand, engineers described the note-taking approach of pin-
ning elements from the visualization and annotating them via freehand draw-
ing as flexible, powerful, and visually intuitive. VR screenshots were perceived
as useful, although they were not used in the case study presented in Paper F.
Audio recordings were rated useful in combination with further natural lan-
guage processing such as an automated conversion to textual form. All in all,
both studies show that VR is a suitable medium for assisting engineers in tak-
ing notes on software structures or plans for changes to these as well as for
reflecting on notes taken.

Conclusion. Regarding RQ3, I conclude that my thesis holds. The above
means demonstrate how VR and its possibilities to interact with visualizations
can be utilized to enable engineers to take notes during software exploration
sessions without disrupting their immersion and focus on the task. While
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challenges in technical implementations remain, engineers perceive the con-
cepts as suitable for capturing software structure, especially on an architec-
tural level.

5.3 Collaborative Software Exploration in Virtual Reality

Papers F and G present concepts and technical details on a collaborative VR
software visualization method immersing multiple engineers into a shared
and synchronized visualization of a subject system. Further, Paper F presents
a case study that investigates engineers’ exploration behavior in a collabo-
rative VR visualization as well as the quality of insights they gather about a
subject system they are not familiar with.

RQ4: How do teams of software engineers explore systems in a collaborative
multi-user VR visualization?

Currently, VR is a niche technology. In the case study presented in Paper F,
engineers were not experienced in using VR except for rare exceptional occur-
rences. As a result, engineers self-assessed that they were slow in executing
tasks due to their unfamiliarity with using VR and the interaction mechanisms
employed in the study.

Despite the above limitation, engineers stated they felt strongly supported
in collaboratively exploring the subject system, especially its architectural
structure. They engage in vivid communication, e.g., to synchronize with their
peers on new findings or to challenge previous assumptions. Such phases
of communication alternate with short periods of individual detailed inspec-
tion, mostly in the form of briefly reading through source code. Mainly, how-
ever, engineers explore the subject system via the visualized structure and via
sketches on VR whiteboards. Further, in the entirely unguided exploration
conducted throughout the study, engineers yielded correct results as per the
verdict of the original developers of the subject system.

Conclusion. Regarding RQ4, I conclude that my thesis holds. Despite their
unfamiliarity with VR as a medium, engineers are able to utilize VR software
visualization in collaborative sessions with peers where they engage in vivid
communication and gain a correct understanding of the visualized system.



Chapter 6
Future Work

In this chapter, I touch upon future work in XR software visualization that ex-
tends upon the research presented in this thesis. I elaborate on further studies
assessing concepts presented in Papers A-G, visualizations of software execu-
tion behavior, and code editing capability in XR software visualization.

6.1 Further Empirical Studies on VR Software Visualization

While the experiments and studies presented in Papers A-G provide answers
to multiple as of before unaddressed research questions in VR software visu-
alization, there remains a variety of further open questions that require em-
pirical studies.

One unaddressed facet of software exploration in VR is its influence on
engineers’ knowledge retention, i.e., their ability to remember insights into a
subject system’s source code over longer periods of absence. For instance, a
controlled experiment could be useful for comparing VR software visualiza-
tion with the traditional IDE in this matter.

Regarding note-taking, further studies are needed to investigate engi-
neers’ usage of notes taken in VR when implementing changes in an IDE. For
instance, it is unclear how useful engineers perceive different kinds of notes
taken in VR for carrying out this activity.

Lastly, it requires further studies to extend our understanding of collabo-
rative software exploration via multi-user VR visualization. Especially, studies
with larger team sizes are needed to clarify remaining questions. How suit-
able are existing concepts for supporting teams of more than two engineers
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in exploring software? How does the exploration behavior change when larger
teams explore software compared to pairs of developers, e.g., regarding com-
munication? What additional features are useful or even necessary?

6.2 VR Visualizations of Execution Behavior

In the work presented in this thesis, I focus on visualizations of software struc-
ture. These play a pivotal role as, often, they act as a basis for visualizing other
software characteristics such as execution behavior, code quality, or system
evolution. Combining visualizations of these different kinds of software char-
acteristics provides engineers with more information, assisting them in inves-
tigating a subject system.

Visualizations of a system’s execution behavior – as in messages being
passed through its code structure – provide engineers with relevant insights.
Paper A outlines an idea where concrete messages in a recording of a system’s
execution are visualized as entities traveling from one structural element to
another. That is useful for identifying parts of a system that are heavily exe-
cuted and thus relevant when trying to understand the system’s inner work-
ings. In addition to that, VR visualizations of software execution behavior
could enable engineers to interact with messages to inspect the data being
passed through the system.

Another approach could be to attach VR visualizations to the execution
environment of a subject system and, based on that, to provide engineers with
VR interaction features similar to how they are present in debuggers. Engi-
neers could set breakpoints to halt the execution at certain locations in the
code, modify the content of messages being passed through a system at run-
time, or artificially trigger the execution of a method to understand its effects.

More tools and empirical studies are needed to investigate whether and
how similar methods can be utilized to assist engineers in comprehending
software systems.

6.3 Code Editing in X-Reality

Tools and solutions presented in this thesis are view-only, and intended for
pure software exploration and comprehension. However, upon discovering a
re-engineering opportunity during an exploration session, being able to per-
form edits directly from within XR – while benefiting from a visual overview of
the subject system – can be helpful for engineers.
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Because AR and MR visualization tools leave engineers in their real-world
surroundings, these can implement code editing by enabling engineers to use
physical keyboards to perform textual changes to source code, similar to how
they would do it in an IDE. While feasible interaction-wise, this kind of low-
level editing does not necessarily match the strong suit of system-level visu-
alizations and the exploration style these foster. Instead, code edits in XR,
especially VR, could be provided based on interactions with elements of the
visualization.

Simple refactorings such as relocating existing software elements could
be directly supported via XR interaction, e.g., relocating a building in a city
metaphor to move a file from one folder to another. More advanced opera-
tions, including the creation of entirely new functionality, would require more
complex techniques. For creating new functionality, XR visualizations could
enable engineers to spawn new visual elements (e.g., a new building in a city
metaphor), initialized without content. Based on that, visualizations could
utilize generative artificial intelligence to fill in empty structures created in
that manner, e.g., based on speech queries recorded in XR. This process could
be guided via further context, e.g., by processing users’ hand gestures, gaze,
and location in the system, among others. For instance, if the engineer is lo-
cated in a “util” package, staring at a particular visual element, this informa-
tion could be used to assist the code generation process by putting a spoken
query into context. Researching methods akin to that briefly sketched above
could yield relevant results for future development environments.
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Abstract

Many of today’s software systems will become the legacy systems
of tomorrow, comprised of outdated technology and inaccurate design
documents. Preparing for their eventual re-engineering requires engi-
neers to regain lost design knowledge and discover re-engineering op-
portunities. While tools and visualizations exist, comprehending an un-
familiar code base remains challenging. Hence, software archaeology
suffers from a considerable entry barrier as it requires expert knowledge,
significant diligence, tenacity, and stamina. In this paper, we propose
a paradigm shift in how legacy systems’ design knowledge can be re-
gained by presenting our vision for an immersive explorable software
visualization in virtual reality (VR).

We propose innovative concepts leveraging benefits of VR for a) im-
mersion in an exoteric visualization metaphor, b) effective navigation
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and orientation, c) guiding exploration, and d) maintaining a link to
the implementation. By enabling immersive and playful legacy sys-
tem exploration, we strive for lowering the entry barrier, fostering long-
term engagement, strengthening mental-model building, and improv-
ing knowledge retention in an effort to ease coping with the increased
number of tomorrow’s legacy systems.

Video Demonstration – https://youtu.be/Ma83YbQ6ck0

A.1 Introduction

Many of today’s large-scale productive systems will become tomorrow’s
legacy systems when companies do not adapt to advances in technology, de-
sign knowledge is rendered inaccurate over time, or original developers move
on to other projects/companies [1]. While the ongoing use of a legacy system
indicates a continued value for its company, coping with new requirements
(e.g., to accommodate for increased load or changed legislation) may ulti-
mately require substantial re-engineering. To scope that re-engineering, it is
then necessary to regain design knowledge on a legacy system’s structure and
behavior [2, 3], and to identify re-engineering opportunities, i.e., a potential
for quality improvement. For many legacy systems, the only reliable source
for regaining design knowledge commonly consists of the system’s implemen-
tation and its runtime behavior exposed in current use [1, 3]. While tools for
analyzing and visualizing a software system’s design exist [4, 5], exploring an
unfamiliar codebase still requires significant effort, motivation, and diligence,
which, at present, makes regaining legacy systems’ design knowledge a chal-
lenging and tedious procedure.

In this paper, we propose a paradigm shift in how legacy systems’ design
knowledge can be regained by presenting a vision for an immersive and inter-
active software visualization in virtual reality (VR) generated from a system’s
implementation, execution traces, and quality metrics that allows for engag-
ing and playful legacy system exploration. In particular, we aim to capitalize
on the benefits of VR by striving to achieve the following objectives:

• Lowering the entry barrier to exploring legacy systems

• Fostering long-term engagement via a drive for exploration

• Strengthening users’ mental model of a system’s design, behavior, and
quality

https://www.youtube.com/watch?v=Ma83YbQ6ck0


A.2. State of the Art 91

• Improving knowledge retention even over periods of absence

In the following, we present our vision and future core contributions for what
we call immersive software archaeology.

A.2 State of the Art

Three principal approaches exist for regaining a software system’s design
knowledge, i.e., (i) manually browsing through code and models, (ii) guided
by knowledgeable programmers who know the subject system, and (iii)
computer-aided techniques [2]. As browsing through a large-scale system
strictly manually is not feasible and experienced programmers are often not
available, computer-aided techniques in form of (semi) automated tools are
the only realistically applicable approach. Generally, these fulfill two consec-
utive tasks. First, they analyze certain aspects of a subject system, e.g., subsys-
tem decomposition, dependency analysis, or metrics calculation [2]. Second,
they display respective results as text (tables, lists) or visual 2D/3D represen-
tations.

Depending on the purpose of a tool, visual representations can signifi-
cantly improve the legibility of its output by addressing users’ visual cognitive
capabilities [6]. Software visualization aids software comprehension by lever-
aging this benefit and displaying software systems in form of visual represen-
tations in 2D (e.g., graphs, diagrams) or 3D space. Doing the latter requires a
metaphor that maps the intangible concepts of software (e.g., classes) to vi-
sually meaningful objects. These can be subdivided into abstract (e.g., graph
or tree-like) and real-world (e.g., cities, islands, solar systems) metaphors [4].
With recent advances in VR, research gained an increased interest in lever-
aging the technology to improve software comprehension. Studies suggest
that VR can help with software comprehension tasks [7] and knowledge re-
tention [8].

We identify shortcomings of existing 3D software visualization methods
that we aim to address: A majority of methods rigidly visualize all artifacts of
a system at once [4, 5]. This can result in overwhelmingly complex 3D struc-
tures (e.g., large 3D cities) and, thus, impaired legibility and comprehensi-
bility. Additionally, a majority of existing concepts use 3D metaphors solely
to represent selected fundamental metrics of a system’s artifacts (e.g., lines
of code for the size of a 3D structure) where an interpretation in terms of
quality requires significant software engineering expertise. That constitutes
an entry barrier, which is raised further by overloaded visual metaphors and
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Figure A.1: Overview of our envisioned method. An automated process analyzes a subject system and

yields a 3D environment that is explored in VR. The visualization is synchronized with an IDE.

missing explanations. Regarding behavior, existing execution trace visualiza-
tion approaches focus either on scalability with large systems by providing
lucid, yet limited, information or on providing detailed information, which
does not scale with large systems. Generally, we observe that most existing
methods are constructed to ease the comprehension of only one aspect of
a system, i.e., either structure, behavior, or quality. At the same time, most
existing tools serve as additional exploration means that depend on simulta-
neously browsing source code in an IDE. Regarding the potential benefits of
immersive capacities offered by modern VR technology, we conclude that cur-
rent VR methods have yet to overcome the stage of essentially porting existing
standard-screen 3D visualization methods into a VR environment.

A.3 Immersive Software Archaeology

To provide a framework for our envisioned contributions, we briefly elaborate
on the model-driven process for creating core artifacts of our method as de-
picted in Figure A.1: Our method will analyze 1 a legacy system’s implemen-
tation for architectural recovery yielding information on hierarchically nested
sub-systems, components, etc. and their interrelations, e.g., as mentioned
in [9]. Our method will collect behavior information by recording and ana-
lyzing 2 method-call traces passing through that structure. Our method will
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further collect quality information 3 by analyzing the models yielded from
1 and 2 with regards to technical debt on an architectural level, e.g., by con-

ducting dependency analyses and identifying execution bottlenecks. Using a
visual metaphor, our method will synthesize 4 these results into a visualiza-
tion model, i.e., a data model that contains abstract information on the spatial
arrangement and appearance of visual elements that meaningfully represent
a subject system. Based on that model, we will then assemble a virtual 3D
environment 5 to use within our VR visualization.

The models of this process will allow for the representation of object-
oriented languages by successively abstracting from specific target program-
ming language features. We will demonstrate our method and its informa-
tion retrieval mechanisms on the case of legacy systems implemented in Java,
e.g., by instrumenting the Java Virtual Machine to transparently record exe-
cution traces. However, we design our concepts generalizable for imperative
languages that allow deriving data on encapsulation, modularity, and cou-
pling.

To achieve our vision of immersive software archaeology, we will draw on
existing work on software re-engineering [2, 3], software comprehension [10],
software architecture recovery [9, 11], and software visualization [5, 4]. We will
devise innovative concepts that immerse re-engineers into a VR representa-
tion of a subject system (Section A.3.1), provide means for effective navigation
and orientation (Section A.3.2), guide users through understanding both our
method and the subject system (Section A.3.3), while maintaining a link to
the actual source code (Section A.3.4). The synthesis provided by these con-
cepts will constitute an integrated, interactive, and immersive visualization of
a software system’s structure, behavior, and quality.

A.3.1 Immersion: Experiencing the System

Recent research suggests that examining a software system is perceived as
more satisfactory when using a 3D visualization instead of a text-based IDE
[12]. We will extend that idea by exploiting the immersive properties of VR to
foster a drive for exploration.

Exoteric Metaphor with Esoteric Properties We will support users’ mental-
model building by relating to real-world knowledge. Therefore, we will de-
sign an exoteric (common knowledge) metaphor to represent a software sys-
tem’s structure, behavior, and quality on various levels of granularity as ele-
ments from the physical world. For structural aspects, a component could
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be visualized as a planet in a solar system with its sub-components as
cities on that planet and classes as buildings populating the respective city,
where dimensions and placement indicate artifact size and logical relation.
For instance, class buildings could be composed of sub-complexes for each
method, shaped according to method properties such as the number of splits
in their control flow. For behavioral aspects, the control flow of recorded ex-
ecution traces could be visualized as abstract inhabitants traveling through
the representation along the involved software components. For qualitative
aspects, metric values could be conveyed as esoteric properties of our repre-
sentation (common elements with specialized meaning), e.g., communicat-
ing a high degree of coupling via visually complex textures or the presence of
architectural smells via litter in the environment.

Unlike with the majority of existing software visualizations, users will not
only take the role of an overseeing observer but will also explore the repre-
sented structures in first-person view. When roaming freely, users may dis-
cover detailed phenomena, e.g., congregations of numerous “inhabitants” in-
dicating heavily frequented software components. When guided along spe-
cific paths (cf. Section A.3.3), users can explore common system usage or
manually created routes deemed particularly relevant.

Ambient Visuals and Acoustics To subliminally communicate behavior and
quality information, our method will incorporate ambient effects based on
textures, animations, and sound: We will use ambient visuals to highlight
particularly frequented routes through the system (e.g., by worn-out paths),
which creates a focal point for exploration. When replayed, execution traces
may emit 3D positional sounds to indicate location, frequency, and clusters of
events. We will also explore ambient music to convey a subliminal impression
of software quality for a visited part of the software system, e.g., by using tense
music to accentuate bad software quality.

Diegetic Interfaces We will offer various tools to inspect and interact with
the represented software system (cf. Section A.3.2 and Section A.3.4). In-
stead of breaking with immersion by a mere overlay interface (e.g., screen-
space 2D buttons and menus), we will design access to all context-dependent
tools as diegetic interfaces that integrate with the metaphor and the 3D rep-
resentation [13]. Using the above metaphor, users could be provided with an
overview of their current location within a subject system via a holographic
projection originating from a device attached to their virtual arm. To com-
pare software elements (e.g., classes) with each other, users will be able to
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temporarily detach them from their actual environment and transport them
to a dedicated comparison environment. Furthermore, users will be able to
inspect a system’s live behavior by interacting with it directly, e.g., by access-
ing the public interface of a class to input data and observing how the system
reacts.

We will counteract stimulus overflow by offering users to configure what
information they are interested in and filtering the VR environment accord-
ingly. For instance, users that are solely interested in behavior can decide to
filter out information on quality. We will create predefined profiles for differ-
ent exploration purposes.

A.3.2 Exploration: Navigation and Orientation

Exploiting VR’s capability of immersing users into a virtual environment re-
quires providing means for effective and efficient navigation. For that pur-
pose, our method will feature navigation along structure, behavior, and qual-
ity.

Structural Semantic Zoom A Global overview is considered crucial for 3D
information visualization [5]. As a starting point, our method will show a sub-
ject system on its architectural level. Structure and quality will be visualized
on component level, between which recorded traces visualize behavior. As
part of our visual metaphor, we envision a step-wise semantic zoom that en-
ables navigating along a system’s structure to reveal further details. For in-
stance, zooming into a component will visualize its inner structure, behavior,
and quality, i.e., of contained sub-components or classes. A key aspect here
is to maintain users’ orientation, e.g., with an interface showing the current
position in the overall system.

As an example, using the metaphor given in Section A.3.1, a system could
be initially visualized on the level of planets (components). Users could be
able to zoom into a planet that is then enlarged (optically) and augmented
with further semantic details, e.g., abstract representations of its cities (sub-
components). Zooming into a city could be realized by letting users walk
among its individual buildings (classes). To the best of our knowledge, our
envisioned software visualization method is the first to provide such zoom-
ing/abstraction functionality based on functional architectural components
integrated into a real-world metaphor.
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Temporal Behavioral Zoom Cross-cutting to the semantic structural zoom,
we envision a temporal zoom that enables users to manipulate the time in
which recorded execution traces are represented. Users will be able to speed
up, slow down, and freeze time as well as to jump back and forth in time. Ex-
tending the idea of time travel debugging, this mechanism will leverage both
inspecting short-lived phenomena and surveying lengthy procedures.

Context-Dependent Quality Zoom We will make quality information avail-
able on demand by letting users select types of technical debt to be visualized
in the currently visited part of a system. Respective information will be repre-
sented as exoteric property with esoteric meaning, e.g., a dirty floor within a
building as an indicator for a code smell within a class.

A.3.3 Guidance: Fostering Understanding

Our method will progressively self-explain its usage via built-in tutorials. In
parallel, it will adaptively guide users through a subject system, according to
specific interests, e.g., in its behavior.

Understanding the Method Unlike a majority of existing approaches, we will
ease the entry into our method by generating tutorial-style quests from the
actual system that incrementally introduce tools and diegetic interfaces, e.g.,
“locate the class x” or “find the metric value for y”. We will maintain users’
immersion by embedding these tutorials into our metaphor, triggering them
according to what the user intends to do, and enabling to skip or entirely dis-
able the tutorials. Additionally, if a user inspects the visual representation of
a software entity (such as a class), our method will provide hints on how to
“read” it, e.g., via a helping companion.

Understanding a System We will help users with understanding a subject
system more efficiently by using visual effects and audio to create observable
phenomena that draw attention to potentially interesting areas. For instance,
we will encode information on the quality of components and classes via the
texture of their VR representations. Using the metaphor given in Section A.3.1,
a class with an overall high complexity could be represented by a building with
a visually complex texture. To guide users concerning behavioral quality (esp.
on high abstraction levels), we will offer to augment execution trace routes
with visual aids that encode how highly these paths are frequented, e.g., using
a heat map color scheme ranging from dark blue to bright red. Our method
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will explain the meaning of these phenomena to users, e.g., via a helping com-
panion. Furthermore, we will generate quests to explore the system, e.g., to
travel along the most common execution route.

A.3.4 Coalescence: Mental & Technical Back-Link

We will foster a link between a user’s mental model formed in our visual
metaphor and the underlying implementation of a subject system. Unlike
existing software visualizations, we will therefore coalesce and synchronize
our visualization with an IDE, e.g., by extending Microsoft’s language server
protocol1 to place and query markers for system parts of interest.

Details in VR Our method will enable inspecting implementation details di-
rectly from within the VR visualization. For instance, using the metaphor
given in Section A.3.1, that could be achieved by providing users with a
diegetic interface (e.g., a virtual tablet computer) which, once attached to a
class (building), displays its source code. Upon performing changes to arti-
facts within the IDE, we will update the VR visualization accordingly.

Annotations (POIs) Users will be able to annotate points of interest (POI)
throughout the VR environment. These will conserve gained insights in form
of user-created text messages and sound recordings, which are related to
structures represented within the VR representation. Using the metaphor
given in Section A.3.1, POIs could be realized in form of sticky notes that users
pin to the facade of a building (class) or, on a higher level of semantic zoom
(cf. Section A.3.2), to a planet (component). POIs will be synchronized with
the IDE so that markers can be created, inspected, modified, and deleted with
the respective software elements.

Record & Replay We will devise a mechanism that allows users to record se-
quences of previously marked POIs so that they can use contained messages
and voice recordings to construct paths through the system. Encoding expe-
riences in that way will allow for building an asynchronous mentor-mentee
relationship between collaborators and, thus, ease the exploration of a sub-
ject system. We will synchronize recorded paths with the IDE so that they can
be recorded and navigated from within both VR and the IDE.

1https://langserver.org/

https://langserver.org/
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A.4 Evaluation

We are in the process of refining our ideas and visions into concrete concepts
and a prototype. We will use that prototype to empirically evaluate our con-
cepts in a series of controlled experiments which, in turn, will influence fur-
ther development of our concepts and prototype. As subject systems, we will
use multiple real-world legacy systems, e.g., a long-running, undocumented
medical supply system provided by one of our industry partners. To con-
sider diverse backgrounds, we will recruit participants with knowledge in soft-
ware engineering from various countries, already having arranged for partici-
pants from Denmark, Germany, and Switzerland. We will divide participants
into a treatment group using our immersive VR method as well as two con-
trol groups using a) an existing standard-screen 3D visualization tool and b)
a standard IDE along with dedicated tools for architecture recovery, quality
metric calculation, etc. After a brief training period on either of the tools, we
will use two consecutive experiment sessions that are interleaved with two
weeks of absence from the subject system. In the first session, we will eval-
uate our objectives of lowering the entry barrier, maintaining long-term en-
gagement, and easing mental model building by letting participants conduct
a series of extensive tasks, e.g, finding certain system aspects or identifying
performance bottlenecks. We will measure metrics such as completion time
and correctness, collect participants’ subjective verdict (e.g., similar to [14]),
and observe their behavior. In the second session, we will evaluate partici-
pants’ knowledge retention by asking questions about the system’s structure,
behavior, and quality, e.g., by asking them to recall its architecture from mem-
ory or to find the same system aspects as in the first session.

A.5 Conclusion and Future Work

With our envisioned method, we aim to reshape the comprehension phase of
legacy software system re-engineering. Instead of being labor-intensive, te-
dious work, we will immerse re-engineers in an engaging, playful exploration
that builds a strong mental model of a system while still connecting to its im-
plementation. By making software archaeology less tedious and more acces-
sible to a wider audience, we strive for our method to ease coping with an
increased number of legacy systems of the future.
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Abstract

Exploring an unfamiliar large-scale software system is challenging,
especially when based solely on source code. While software visualiza-
tions help in gaining an overview of a system, they generally neglect
architecture knowledge in their representations, e.g., by arranging el-
ements along package structures rather than functional components
or locking users in a specific abstraction only slightly above the source
code.

In this paper, we introduce an automated approach for software ar-
chitecture recovery and use its results in an immersive 3D virtual reality
software visualization to aid accessing and relating architecture knowl-
edge. We further provide a semantic zoom that allows a user to access
and relate information both horizontally on the same abstraction level,
e.g., by following method calls, and vertically across different abstrac-
tion levels, e.g., from a class to its containing component. We eval-
uate our contribution in a controlled experiment contrasting the use-



102 Paper B. Utilizing Software Architecture Recovery to Explore Large-Scale Software Systems in VR

fulness regarding software exploration and comprehension of our con-
cepts with those of the established CityVR visualization and the Eclipse
IDE.

Video Demonstration – https://youtu.be/wmayYcpL7ZY

B.1 Introduction

For software engineers, establishing an understanding of a large-scale soft-
ware system is essential for starting work on a settled project and regaining
design knowledge of a legacy system [1, 2]. The exploration of a software sys-
tem ideally starts with the system’s architecture [3] to gain both an overview of
as well as guidance through the system’s coarse-grained structure. However,
architecture documentation may be inaccurate even for established projects
or outright missing for legacy systems [4, 2], leaving a system’s source code as
the only reliable information. Establishing a mental model of a system’s struc-
ture from source code alone is tedious and challenging due to large amounts
of fine-grained detail and a lack of explicitly represented coarse-grained archi-
tectural concerns. While integrated development environments (IDEs) and
dedicated analysis tools may foster an inspection and navigation of source
code, there are few applied visualization techniques for architectural analysis
and synthesis activities [5].

Various forms of software visualization in 2D, 3D, augmented reality (AR),
and virtual reality (VR) visually represent coarse-grained structures of a soft-
ware system to provide an overview and highlight particular phenomena,
such as especially large classes. Visualizations in VR seem promising as re-
cent research indicates that they provide for more engaging exploration than
both IDEs and standard-screen visualizations [6, 7, 8]. Many visualization
techniques use elementary software architecture information in their repre-
sentation: For example, metric values influence the depiction of individual
elements, or the package structure defines the arrangement of elements. Al-
though a system’s internal organization of implementation artifacts can de-
viate heavily from its actual architecture, especially when the system under-
went long-term evolution and, as a side-effect, experienced architectural ero-
sion [9], existing visualization techniques generally do not consider informa-
tion from advanced architecture recovery, like conceptual components, their
dependencies or control flows, and thereby leave a crucial source of informa-
tion untapped.

In this paper, we present a method for utilizing software architecture re-
covery to visualize and utilize a system’s architecture as a first-level entity. Our

https://www.youtube.com/watch?v=wmayYcpL7ZY
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method allows users to access and navigate information along different ab-
straction levels via a semantic zoom, from architectural component hierar-
chies down to classes and methods. On each abstraction level, our method
additionally provides users with a visualization of relationships among ele-
ments, such as dependencies among components, or calls among methods,
which enables users to efficiently retrace and navigate along relationships.

We demonstrate our method via an implementation for immersive VR and
evaluate it in an empirical experiment with 54 participants in which we com-
pare its ability to foster accessing and relating information on multiple levels
of abstraction with a standard IDE and another state-of-the-art software visu-
alization. Our results show that, compared to the IDE and the state of the art,
our approach provides participants with a better overview of a subject sys-
tem’s architecture, while improving their ability to access and relate elements.

The rest of this paper is structured as follows: In Section B.2, we discuss the
state of the art in software visualization regarding (its lack of) incorporating
software architecture knowledge. In Section B.3, we describe our method for
software architecture recovery (SAR) and how we incorporate its results into
an immersive 3D virtual reality representation. In Section B.4, we evaluate our
contribution in a controlled experiment contrasting its usefulness regarding
software exploration and comprehension with those of the established CityVR
visualization and the Eclipse IDE. Finally, in Section B.5, we close with a con-
clusion and an outlook on future work.

B.2 State of the Art

A software visualization provides a visual overview of a subject system [10].
Depending on the purpose of the visualization, it may encompass a sys-
tem’s structure, behavior, evolution, or quality [11, 12]. A visualization uses a
metaphor to depict (otherwise non-corporeal) elements of a software system
in a coherent setting. While 2D metaphors are mostly abstract, such as graph
or tree representations, 3D metaphors may range from abstract to real-world
representations, such as cities, planets, or islands [12, 13]. Despite a plethora
of different software visualizations, we identify shortcomings regarding their
use of architectural knowledge:

Overview of Software Architecture Existing 3D software visualizations do not
sufficiently use architecture information as a driving first-level element of
their visual structure. Instead, the term “software architecture” is often used
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interchangeably with a system’s internal organization of implementation ar-
tifacts. In consequence, visualization elements are structured according to
folder structures, namespaces, or package hierarchies, which, while indica-
tive of a system’s design, do not adequately represent a system’s architecture,
e.g., in terms of its functional components and their connections. This gap
also manifests in various surveys on 3D software visualization, where a sub-
ject system’s architecture beyond folders, namespaces, and packages is not
among the explicitly extracted aspects that existing 3D software visualizations
address [14, 15, 16, 10, 13, 11].

Accessing Architecture on Various Abstraction Levels Existing 3D software
visualizations fixate their view on a system on one abstraction level, usu-
ally on the level of files, classes, or methods, where a prime aspect is the
visualization of metrics such as lines of code. For the widely used city
metaphor [7, 17, 18, 19, 20, 21, 22, 6, 23], this manifests in complex large-scale
cities where architectural information is mainly used to determine positions
for a large number of buildings, while lower level visual structure is often not
available. As a result, this leaves open potential for guiding engineers along
the abstraction levels of a subject system’s structure altogether.

Relating Architecture Elements There exist only few 3D software visualiza-
tion approaches that both incorporate a system’s architecture while allowing
to switch between abstraction levels. Most notably, Balzer et al. [24, 25, 26] use
a metaphor of hierarchically nested semi-transparent bubbles, starting on ar-
chitectural level. Based on that, they establish a semantic zoom that enriches
elements with more fine-grained information when moving the virtual cam-
era closer. However, while this can strengthen users’ overview on architecture
level, including their ability to relate elements, it does not provide them with
this overview once zoomed in on a fine-grained level, which has an impact on
viewers’ orientation and their ability to retrace relations between elements on
architecture level.
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Figure B.1: Overviewof ourmethod for utilizing software architecture recovery to provide a visualization

with semantic zoom along multiple abstraction levels.

B.3 Immersive Software Archaeology

The goal of our software visualization method is to foster the exploration of
an unfamiliar software system by aiding users with accessing and relating in-
formation on and across design and architecture level. Figure B.1 shows an
overview of that. As a system’s implementation artifacts are the only reliable
source of information, our method conducts an automated software struc-
ture analysis based on only the source code of a system (box A in Figure B.1),
yielding the ground-truth structure of a system’s design as well as, based on
that, an estimation of its higher-level architectural structure. With the de-
sign of a system, we refer to its implementation in terms of constructs such
as classifiers (i.e., classes, interfaces, etc.) and their constituents – commonly
explicit in source code through designated language constructs. With the ar-
chitecture of a system, we refer to a hierarchical organization of its design-
level structure in cohesive components – generally only implicit in source
code. While our concepts are applicable for systems implemented in object-
oriented programming languages in general, we demonstrate them on Java-
based systems and terminology in this paper.
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We visualize the structure resulting from our analysis via an immersive
software visualization in VR (box B in Figure B.1). To provide engineers’ with
access to information on all abstraction levels of the resulting structure, we
establish a semantic zoom that lets users interactively switch between ab-
straction levels while always providing them with an overview. To furthermore
foster engineers’ ability to retrace relations between elements on different ab-
straction levels, our method incorporates an interactive visualization of rela-
tionship graphs along the semantic zoom. Thereby, we address both horizon-
tal relations on the same abstraction level, such as dependencies among com-
ponents or calls among methods, as well as vertical relations across different
abstraction levels, i.e., containment relations, such as between a component
and a classifier.

B.3.1 Automated Software Structure Analysis

Our method encompasses an automated analysis of a system’s static structure
(cf. A in Figure B.1). This analysis consists of two subsequent steps which
populate a software structure model. The first step is an analysis of the sys-
tem’s design on the basis of its source code (Section B.3.1). The second step is
a software architecture recovery procedure based on the results of the recov-
ered design of the system (Section B.3.1).

Software Design Analysis

In the first step of our software structure analysis, our method utilizes a parser
to automatically extract design-level information explicitly available in the
source code of a subject system. This process lifts information about all clas-
sifiers and members of a system into a model structure – an excerpt from our
concrete metamodel is available in our online appendix1 and in Figure B.7 in
the appendix of this chapter. For members with statement bodies, the soft-
ware design analysis gathers metrics such as their respective number of ex-
pressions and cognitive complexity [27]. Subsequently, the analysis extracts
dependencies among classifiers and calls among members. The resulting
model structure encompasses the ground-truth design-level structure of an
entire system, including a classifier-level dependency graph and a member-
level call graph.

1https://gitlab.com/immersive-software-archaeology/

publication-vissoft22

https://gitlab.com/immersive-software-archaeology/publication-vissoft22
https://gitlab.com/immersive-software-archaeology/publication-vissoft22
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Software Architecture Recovery (SAR)

The second step during our software structure analysis is an SAR that estab-
lishes an architecture-level software structure model. For that purpose, we
devise an unsupervised software clustering procedure that organizes a sub-
ject system’s implementation artifacts in a hierarchy of cohesive functional
components. Our procedure operates based on the results of the software de-
sign analysis described above. However, in contrast to the design analysis, an
SAR procedure, automated or not, cannot draw on explicitly available infor-
mation. Instead, it needs to recover implicit high-level connections between
software elements and is therefore driven by heuristics and best guesses [28].
The method we present in this paper serves as an exemplary demonstration
of an unsupervised SAR procedure. If a project’s specifics call for a dedicated
solution, our SAR procedure can be replaced with a suitable alternative pro-
cedure yielding a hierarchical organization of implementation artifacts.

A prime goal of our overall software visualization method is to provide
engineers with an overview of a system’s architecture along multiple levels
of abstraction. Because a hierarchical structure supports engineers in their
thought process [4], we design our SAR procedure to recover a system’s archi-
tecture on multiple abstraction levels in form of nested hierarchies of compo-
nents. To foster the discovery of correlations in the source code of a system,
these components should be as cohesive as possible, i.e., they should group
together what is strongly interrelated. Depending on the level of abstrac-
tion they capture, we distinguish between three kinds of components in our
model structure. We define bottom-level components as components that
contain classifiers directly but do not contain sub-components. For higher
level components, we distinguish between top-level components and inter-
mediate components. We define both as components that do no contain clas-
sifiers directly, but instead an arbitrary amount of sub-components. Top-level
components are the root components in a component hierarchy, whereas in-
termediate components represent the abstraction levels in between top-level
components and bottom-level components. Intermediate components can
be nested, allowing for arbitrarily high hierarchical structures.

Another prime consideration for our SAR procedure is to split a subject
system up into components that are small so that their detailed visualization
does not overwhelm a viewer, yet large enough to result in component hierar-
chies as small and simple as possible. To achieve both, we employ a divisive
hierarchical clustering technique that can be configured with a hard lower
limit and a soft upper limit for cluster sizes. Figure B.2 depicts an example
application of that technique. Initially, it groups all classifiers of a system in
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one root cluster (cf. first row in the upper area of Figure B.2). It then itera-
tively breaks down clusters that exceed the upper limit for cluster sizes. Rows
2 to 4 in the upper area of Figure B.2 illustrate these iterations in the given
example (the upper limit in the example is set to 3, the lower limit is set to
2). As subroutine for the splits, we choose the DBSCAN algorithm (“Density-
Based Spatial Clustering of Applications with Noise” [29]), because thereby (i)
we can directly influence the upper limit for cluster sizes, (ii) we can detect
noise, i.e., in our case, classifiers which are loosely coupled with the rest of the
system and, therefore, need special treatment, and (iii) we calculate clusters
purely based on the similarity between their containment, which, in our case,
ensures cohesiveness among the clustered classifiers.

To achieve a high degree of cohesiveness within the clusters computed
by our technique, we measure the similarity between clusters in terms of the
summarized weight of their dependencies. These are calculated by aggregat-
ing the weight of all direct dependencies between their contained classifiers.
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Once the dividing iterations of our technique are completed, the resulting
hierarchy contains clusters that lay within the specified limits for cluster sizes
as well as noise singleton clusters (cf. row 3 in the upper area of Figure B.2).
As a last step, our technique therefore performs a post-processing procedure
that merges noise singleton clusters with neighboring clusters. The bottom
row in the upper area of Figure B.2 shows the result of that process in the given
example. These clusters are then translated into a hierarchy of components
accordingly, as exemplarily depicted in the lower area of Figure B.2 (note the
arrows connecting clusters to component counterparts).

Cluster Labeling Finally, our SAR procedure labels components on all hier-
archy levels with the most frequently occurring words in the names of their
contained classifiers and members. This process starts with bottom-level
components, iteratively working its way up. It extracts words based on typi-
cal naming conventions, e.g., “exampleName” results in labels “example” and
“name”.

B.3.2 Immersive Virtual Reality Visualization

We present a 3D software visualization method that builds upon the software
structure analysis presented in Section B.3.1 to visualize a subject system’s ar-
chitecture and design on multiple levels of abstraction. It guides users along
a system’s architectural structure via a semantic zoom, while fostering detail
inspection via interactive visualizations of relationships among classifiers and
components. This step is summarized in box B in Figure B.1. In the following,
we elaborate on these concepts, backed up by examples from our prototype
implementation Immersive Software Archaeology (ISA).

Architectural Overview

To guide users’ exploration of a subject system along its architecture, we es-
tablish a real-world metaphor that provides users with an overview of the sys-
tem’s architecture across multiple levels of abstraction. To achieve this, we
visually represent the structures recovered by our software structure analysis
in form of a solar system with planets, continents, cities, and buildings.

Figure B.3 conceptually depicts an example instance of our solar system
metaphor along with its software structure model. Top-level components are
represented as planets, bottom-level components are represented as cities
with classifiers as buildings, where each city receives a piece of land to be
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Figure B.3: Transformation of a software structure model to our solar system metaphor. The illustration

continues the example given in Figure B.2.

located on. Intermediate components determine how cities are grouped to-
gether on a planet so that they form larger land masses, resulting in continents
that are separated by water. Internally, these form hierarchies similar to real-
world continents and their sub compositions in countries, regions, and so on,
which allows representing even deep component nesting.

The three screenshots in the upper area of Figure B.4 depict our VR im-
plementation of this architectural overview in the tool ISA. The left-hand side
of the figure maps the semantic zoom levels to the primarily visualized con-
stituents of our metaphor. Screenshots a and b show the overview on system
level. Screenshot c shows a close-up view of the surface of a planet, where
cities form continents according to the represented component hierarchy.

Semantic Zoom

When entering our visualization, a user is initially presented with the archi-
tectural overview of a subject system (cf. upper screenshots in Figure B.4).
They can navigate through the architectural overview along its different levels
of abstraction by freely inspecting elements. For instance, a user might in-
spect a system on planet level, find interest in a planet, and inspect its cities,
similar to how Screenshot c depicts it.
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(lower area). The left hand side maps the semantic zoom levels to the primarily visualized elements.

To inspect a city and its buildings in-depth, our method incorporates a
semantic zoom that provides a semantically enriched view of a selected city
with more details regarding design-level elements such as methods, cf. lower
area of Figure B.4. While the architectural overview puts a user in the role of
an overseeing observer, using the semantic zoom locates the user within a city
on the surface of a planet where they can explore design-level structure from
a first-person perspective.

In the design-level view, buildings are semantically enriched with further
structural information to allow users to visually scan classifiers with regard to
member-level metrics and, thereby, quickly spot phenomena such as partic-



112 Paper B. Utilizing Software Architecture Recovery to Explore Large-Scale Software Systems in VR

ularly complex or large-scale methods. Therefore, buildings are composed
of visually distinguishable floors with varying heights and diameters, simi-
lar to how their software counterparts have varying lengths and complexity.
The constructors and methods of a classifier are represented as the floors of
a building, where metrics drive the floor’s shape. For the height of a floor, we
use the number of expressions of the respective method or constructor. For
the diameter of a floor, we use its cognitive complexity [27]. Abstract methods
are visualized as construction sites, giving the impression of a raw and incom-
plete structure. Users can interact with buildings and thereby browse through
the source code of resp. classifiers (Screenshot f in Figure B.4).

Maintaining Orientation A shortcoming of existing semantic zooms in 3D
software visualizations is that once having zoomed in, users lack an overview
of the overall system structure (Section B.2). To address this challenge, we
devise concepts that put design-level information in context with the overall
system structure. For one, regardless of where a user is located in our visual-
ization, they can always interact with the architectural overview, as depicted
in the upper area of Figure B.4. While the user is located in the design-level
view, the architectural overview additionally highlights the currently visited
city. In our prototype implementation, this is achieved via an orange arrow
as depicted in Screenshot c in Figure B.4. For another, while users are lo-
cated in the design-level view, our method additionally projects a subject sys-
tem’s planet structure in the sky above the visited city (Screenshot d ). This
strengthens users’ immersion into the metaphor while subtly providing con-
textual information on other parts of a system, for example via connecting
lines according to element interrelations.

Relationships

Our method visualizes relationships among elements on different levels of ab-
straction, embedded into its semantic zoom. We distinguish between verti-
cal relations that express containment, horizontal relations which are either
based on references in code or on membership in a common parent structure
and cross-hierarchical relations which are horizontal relations across compo-
nents.

Vertical Relations On design level, vertical relations are explicitly available
in the source code of elements, for example by the member declarations of a
classifier. On architecture level, vertical relations (i.e., what classifiers belong
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to a component, in what higher-level component is a component contained)
need to be estimated based on the explicitly available information on hori-
zontal and vertical relations on design level. Our method explicitly encodes
vertical relations on all abstraction levels via the hierarchical organization of
its visual elements. These follow a vertical path through the hierarchy of the
solar system, e.g., as a building in a city on a continent. Thereby, our method
encodes vertical relationships directly into its visual structure, allowing users
to retrace these via the semantic zoom.

Horizontal Relations Our method explicitly incorporates two kinds of rela-
tions among elements on the same abstraction level: sibling relations and
reference relations. Sibling relations are relations among elements based on
their common containment in a structure, for example, two members of the
same classifier as two floors in the same building. Reference relations are
based on references in the source code, for example, the call of a method.
We distinguish between incoming and outgoing reference relations to or from
elements.

In the design-level view, our method visualizes reference relations on de-
sign level, for example among buildings. Visualized relations can be calls
among the members of represented classifiers or dependencies among clas-
sifiers. These can be adopted as-is from the ground-truth design level of the
visualized software structure model. Besides being useful with regard to sib-
ling relations, the grouping of heavily interrelated buildings in the same city
helps with navigating along reference relations on city level because informa-
tion is more quickly accessible. Screenshot e in Figure B.4 shows an example
of horizontal city-level relations in our prototype implementation, where the
interrelated buildings are part of the same city.

On architecture level, our method visualizes reference relations on a more
abstract level. Therefore, it determines the reference relations between com-
ponents by agglomerating the dependencies or calls between their contained
classifiers and sub-components accordingly. These are represented as lines
between the respective planets, continents, and cities in the architectural
overview. The user can choose the granularity level on which architecture-
level relations are visualized. Screenshot b in Figure B.4 shows our prototype
implementation of this on the example of outgoing dependencies as blue lines
from a selected city, agglomerated to city level.

Cross-Hierarchical Relations Horizontal relations among elements across
different components are a ubiquitous part of every software system. They
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constitute to the relationship between their parent components. We refer to
them as cross-hierarchical relations. In our visualization, cross-hierarchical
relations manifest in form of relations among buildings across different cities
and among cities across different continents and planets. Cross-hierarchical
relations follow a path through the hierarchical structure of a system’s archi-
tecture along its levels of abstraction. Therefore, they represent not only hor-
izontal relations among elements, e.g., two buildings, but also diagonal rela-
tions, e.g., between a building and the city.

In the architectural overview, cross-hierarchical relations are visualized as
lines that connect related elements along a path through the visualization’s
visual hierarchy, such as the blue lines shown in Screenshot b . In the design-
level view, cross-hierarchical relations from or to buildings in the visited city
are visualized as lines originating from the respective building, pointing to
a location in the planets projected into the sky as shown in Screenshot d .
Thereby, our method embeds the visualization of reference relations into the
different levels of architectural abstraction and across the semantic zoom.

VR Interaction

VR as a medium for 3D software visualization can foster a more engaging ex-
ploration and easier interaction as compared to a standard screen [6, 7, 8, 30].
However, VR visualizations need to provide users with means for orientation
and navigation purposes in their virtual world. To achieve that, our method
incorporates VR interaction concepts that we elaborate on in the following.

Interactable Elements The architectural overview of our method displays a
solar system in a room-scale size (cf. Figure B.4). Users can move back and
forth between the planets and interact with them in various ways. They can
place individual planets in their hands to intuitively change the point of view
from which a planet is regarded. That allows to optically zoom in on struc-
ture (as done in Screenshot c ), allowing for alternative viewing angles while
improving users’ ability to inspect coarse-grained visual structure closer.

The organization of our visualization’s coarse-grain structure in floating
planets and their continents enables our method to draw connecting lines
among them with more degrees of freedom as compared to a layout that fol-
lows a flat 2-dimensional surface. Connecting lines can make use of all three
available dimensions, which provides flexibility while reducing occlusion with
other elements. We strengthen this effect further by making the visualization
interactable, by enabling users to place planets in their hand, moving and ro-
tating them freely, and thereby influencing the 3D paths of connections.
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Information Canvases To access detail information and further interaction
possibilities on demand, our method enables users to open information can-
vases when interacting with planets, continents, cities, and buildings (see Fig-
ure B.4 f ) in the virtual world, both in the architectural overview and the
design-level view. Because diegetic user interfaces have a positive effect on
the immersion and usability of VR tools [31], we design all information can-
vases as diegetic interfaces which we embed into our visual metaphor. When
opening an information canvas, it is attached to the user’s arm where they can
carry it around or detach and fixate it in space.

B.4 Evaluation

We conduct a controlled experiment with 54 participants in which we com-
pare our approach with existing tools used for software exploration, to eval-
uate in what sense our approach fosters users’ ability to access and relate in-
formation on an unfamiliar large-scale software system on and across design
and architecture level. Specifically, our experiment investigates three research
questions, corresponding to key activities that contribute to the exploration of
an unfamiliar software system.

RQ1 In what sense do the different tools facilitate accessing information on
software elements such as methods, classes, or components?

RQ2 In what sense do the different tools facilitate establishing horizontal re-
lations between software elements on the same abstraction level?

RQ3 In what sense do the different tools facilitate establishing vertical rela-
tions between software elements across different abstraction levels?

B.4.1 Subject System

We chose the large-scale open source legacy Java system ArgoUML (∼1.800
classes) as subject for our experiment. ArgoUML is a graphical editor for
creating, editing, and exporting diagrams of the Unified Modeling Language
(UML). ArgoUML was used in prior software visualization evaluations, e.g.,
for the evaluation of CityVR [6] or Softwarenaut [32].
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Table B.1: State-of-the-art VR software visualization tools for Java systems and their fulfillment of our

inclusion criteria.

Tool CJava Copen Ccode

IslandViz [33, 34]

VR FlyThruCode [35]

VR City [23]

SEE / EvoStreets [36]

ExplorViz [37]

CityVR [6]

B.4.2 Software Exploration Tools

We implement our method in a VR visualization tool called Immersive Soft-
ware Archaeology2 (ISA). ISA consists of an extensible analysis back-end inte-
grated into the Eclipse IDE and a stand-alone VR visualization front-end.

As comparison for our method, we choose representatives from two kinds
of software comprehension tools: As an IDE is common to explore software,
we include Eclipse3 as a widely used representative. Features in Eclipse rel-
evant for our experiment are a GOTO navigation (jump to declarations when
clicking), a text search (find occurrences of text in files), a package explorer
(show a system’s organization in packages), and a call hierarchy (show incom-
ing calls to elements).

For a comparison with the state of the art, we include a VR software visu-
alization that satisfies the following criteria:

CJava is able to visualize plain Java systems, i.e., does not require a specific
architecture or underlying framework (such as OSGi).

Copen is openly available (for replicability of the experiment), i.e., is accessi-
ble for download and free of charge.

Ccode provides access to the source code of a subject system.

Table B.1 gives an overview of existing VR software visualization tools and
their respective fulfillment of our inclusion criteria. We pre-filtered existing

2https://gitlab.com/immersive-software-archaeology
3https://www.eclipse.org/

https://gitlab.com/immersive-software-archaeology
https://www.eclipse.org/
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tools that do not visualize Java code or that do not come with native VR sup-
port. As CityVR by Merino et al. [6] is the only tool that fulfills all our crite-
ria, we include it as a representative for state-of-the-art VR software visualiza-
tions. CityVR immerses a user into a room-scale VR representation of a soft-
ware system via the information city metaphor, where classes are represented
as buildings and packages draw the city layout by forming slightly elevated, hi-
erarchically nested districts. CityVR allows users to scroll through the source
code of a class or interface by interacting with the respective building.

B.4.3 Experiment Procedure

We divided the experiment into three phases as depicted in Figure B.5 where
participants receive tool-specific training and tool-unspecific tasks. Each par-
ticipant is assigned to one of the three tools randomly. To make the experi-
ment consistent across participants, we created documents and videos for all
instructions and tasks, which can be accessed via our online appendix1. Each
experiment run takes ca. 35 to 45 minutes.

Entry Survey 1 Each participant starts the experiment with an entry survey1

with questions on experience with VR, programming proficiency (both in gen-
eral and with Java), and prior contact with the subject system ArgoUML.

Tool-Specific Training 2 We present each participant with a training video
on how to operate their tool, e.g., navigating through implementation artifacts
and accessing source code. Subsequently we provide participants access to
their tool and briefly let them familiarize themselves with the tool.

3-5 min 5-10 min 20-25 min
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Figure B.5: Overview of the experiment procedure.



118 Paper B. Utilizing Software Architecture Recovery to Explore Large-Scale Software Systems in VR

Tool Session 3 We provide each participant with five consecutive tasks to
complete, which are identical across all participants and tools. The tool ses-
sion is structured as a dialog between the experiment instructor (i.e., the main
author of this paper) and one participant at a time. The experiment instruc-
tor reads out one task after another, in between which the participant solves
them. At the same time, the experiment instructor provides guidance where
necessary, following a pre-defined tool-specific catalogue1. We record audio
of the conversation between the experiment instructor and participants as
well as video of their interaction with the provided tool via a screen-recording
(of either the IDE window or VR viewpoint). Participants are asked to think
aloud during the entire session.

B.4.4 Tasks

To allow for comparison, we designed tasks for the investigated tools so that
they each emulate a focused examination of the same part of the subject sys-
tem, i.e., ArgoUML’s code generation feature. Table B.2 lists a shortened ver-
sion of the tasks investigated throughout the tool session, along with the re-
search questions and exploration activity they address.

Task T1 Participants access design level information by seeking a specific
Java class, given a description of its functionality (RQ1).

Task T2 Participants access design level information by seeking a specific
Java interface, given its (non-qualified) name, before relating it horizontally
with the class found in T1 (RQ1 & RQ2). While solving T1, participants en-
counter the interface they will search in T2 (without knowing it) via references
in code. We keep track of whether they notice this in Task T2. As the solutions
for both tasks T1 and T2 are prerequisites for their subsequent tasks, we pro-
vide users with help in case they cannot solve the tasks independently. While
doing so, we measure the amount of guidance needed for each participant
according to a scheme, i.e., [none] no help needed, [minor] the participant
required a reiterated explanation from the training video, and [major] the par-
ticipant cannot solve the task in time and receives the solution. Furthermore,
in T2, we measure the accuracy of participants’ understanding of the relation
between the two elements via a three-point grading scheme that awards one
point for each of the following insights:

• There exists a relation between the elements
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• The class (T1) maintains instances of the interface (T2)

• ... and maps these to meta information

Task T3 Participants horizontally relate design-level information broadly,
i.e., they investigate all incoming calls to two elements (RQ2). We identify pat-
terns in participants’ answers to T3 in terms of three categories:

• Participant finds no related classes

• Participant finds only a limited set of classes, e.g., only classes in the
same package, city district, or planet

• Participant finds classes all across the system

Task T4 Participants vertically relate design level information to architecture
level information by defining a functional component based on the insight
gained via the three prior tasks (RQ3). The depictions in Table B.2 visually
sketch the different tasks in a simplified way. Lastly, in Task T5, participants
are asked to establish a horizontal relation between architecture level infor-
mation (RQ2). This aspect is particularly difficult to compare between the dif-
ferent tools as, of the three tested approaches, only ours explicitly works on
architecture level. As a compromise, we therefore ask participants to delimit
the component asked for in T4 with the rest of the system, i.e., how heavily is
it related with other parts of the system horizontally.

B.4.5 Participants

We recruited 56 participants but excluded two: one did not finish the exit sur-
vey, another had knowledge on ArgoUML’s inner workings (on code level). All
remaining participants are students and staff from the IT University of Copen-
hagen: 22 are Bachelor’s students, 20 are Master’s students, 9 are PhD stu-
dents, and 3 are postdoctoral researchers. We distributed participants evenly
across the three evaluated tools, i.e., 18 participants for each tool. Among the
resulting groups, participants’ prior experience levels with VR, general pro-
gramming, and Java are balanced, each ranging from novices to experts.
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Finds no classes

Finds only a limited set of classes

Finds classes all across the system

Task T3: Extensiveness of participants’ list of related classifiers

0 points

1 point

2 points

3 points

Task T2: Extensiveness of participants' understanding of the relation

None

Minor: reminder from tutorial

Major: cannot solve task

Task T2: Guidance required to access the CODEGENERATOR interface

Task T1: Guidance required to access the GENERATORMANAGER class
None

Minor: reminder from tutorial

Major: cannot solve task

0 Particip.5 10 15

IDELegend State-of-the-Art Our Method

Figure B.6: Quantitative evaluation results from the different experiment phases.

B.4.6 Findings

In the following, we both present results and discuss their implications sepa-
rately for each of the posed research questions. Furthermore, summarized re-
sults are depicted in Figure B.6 and detailed results are available via our online
appendix1. To shorten explanations, we refer to participant groups for indi-
vidual tools via abbreviations: groupIDE (Eclipse), groupSOTA (state-of-the-art
visualization CityVR), groupISA (Immersive Software Archaeology; our imple-
mentation).

RQ1: Accessing Information (T1, T2)

To solve T1, groupIDE employed a mixture of Eclipse’s text search (13 of 18)
and an exploration via the system’s package structure (12 of 18), where 7 par-
ticipants use both. We observed that several participants could not match the
classes and interfaces they inspected with their respective location in the sys-
tem’s package hierarchy. For instance, although most participants (12 of 18)
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remembered to have encountered the interface searched in T2 while solving
T1, 11 participants could not locate it in the package hierarchy and, instead,
used the text search to solve T2.

Solving tasks T1 and T2 each required groupSOTA to find one specific build-
ing in the visualized city. During their search, all 18 participants were drawn
to particularly large buildings. While this let them explore various classes
throughout the entire system, the building searched in T1 was not among
these for any participant. To solve T2, most participants (14) made use of
the city layout to narrow down their search, i.e., they assumed the searched
building was in proximity to the building found in T1. While only few (3 of 18)
participants could solve T2, we observe that, in contrast to the IDE, groupSOTA

developed an overview of where in the visualization elements are located.
Similar to groupSOTA, solving tasks T1 and T2 each required groupISA to

find one specific building in the solar system. To solve T1, all 18 participants
explored the planet structure of the architectural overview. We notice that,
similar to groupSOTA, participants in groupISA were drawn to large structures,
i.e., large planets, continents, and large buildings on planet surfaces. How-
ever, to solve T1, almost all participants (17 of 18) utilized the text search to
locate occurrences of elements with promising names. We observe that the
word occurrence tags helped participants with prioritizing their exploration
and search results. Notably, groupISA approached T2 vastly different than they
approached T1. That is, to solve T2, only 5 participants used the text search,
while all others started exploring the city they have previously entered to solve
T1 by inspecting buildings and utilizing the relationship graphs.

When comparing the IDE with our method in terms of participants’ ability
to solve T1 and T2 (i.e., required no help or only a reminder on tool functional-
ity), we observe only minor differences, despite participants’ familiarity with
IDEs and 2D interfaces. That is an identical performance in T1 and a better
performance of our method in T2 where 3 participants in groupIDE did not
solve the task whereas it is 0 for our method.

Discussion An IDE locates users on a low abstraction level where they are
able to access and manipulate design-level information. Our observations
and results support that this can cause a lack of overview. The goal of the
state-of-the-art city metaphor visualization is to provide its users with an ex-
tensive view on design-level information, where city layout and shapes of ele-
ments are driven by metrics. In our experiment, we find that this impedes par-
ticipants’ access to information other than finding outliers according to the
represented metrics (cf. required guidance for tasks T1 and T2 in Figure B.6).
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We conclude that, by grouping interrelated elements into the same structures
(e.g., buildings in the same city, cities on the same continent), our method al-
lows for easier access to information on similar functionality as compared to
grouping elements based purely on a package hierarchy (as done in the IDE
and state-of-the-art visualization). This shows especially in participants’ ap-
proach to solving task T2, where our method relieved participants of finding
relevant software elements for the most part.

RQ2: Relating Information Horizontally (T2, T3, T5)

We investigate RQ2 via Tasks T2 and T3 on design level and via T5 on architec-
ture level.

Design Level To solve T2, participants in groupIDE generally related elements
via reading code. Only 1 participant used Eclipse’s call hierarchy feature. In
contrast, to solve T3, 15 participants used the call hierarchy feature whereas
3 instead used the text search. As a result, 13 participants were able to find
all requested horizontal relations on design level, 5 participants found only
relations to elements within the same package as the investigated class and
interface (see Figure B.6). We observe that participants in groupIDE were gen-
erally not satisfied with the tool support they received for relating elements
horizontally, e.g., they needed to query the call hierarchy for each member
individually. As a consequence, one participant approached T3 by deleting
elements, recompiling the system, and inspecting all files with compilation
errors.

Participants in groupSOTA relied on reading code because the respective
tool does not visualize relations specifically. While 15 participants did not
solve T3, they generally solved T2 in more detail than participants using other
tools (see Figure B.6).

To solve T2, 11 participants in groupISA based their answer on the relation-
ship graphs. The remaining 7 participants solved the task by reading through
the class’ source code. Overall, a majority of participants in groupISA answered
T2 not in much detail, i.e., 10 participants score only 1 point. At the same time,
we observe that only 1 participant using our tool is not able to establish a rela-
tion at all, while it were 3 participants of each of the other tools. To solve T3, all
participants in groupISA (no exception) made use of the relationship graphs.
As a result, 16 of 18 participants are able to find all relationships, while 2 par-
ticipants miss classes located on other planets.
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Architecture Level In their answers to Task T5, we generally notice that
groupIDE based their explanations on code constructs (mainly classes) while
groupSOTA based their answers on visual elements (buildings and city dis-
tricts). On the other hand, while most participants in groupISA use code con-
structs (mainly classes), some mix them with visual elements (continents and
planets) when describing architectural structure.

Similar to groupIDE, multiple participants in groupSOTA answer T5 based
on direct observations in the visualization (e.g., assuming few interrelations
of a classifier with other parts of the system because its city district was small).

While multiple participants in groupISA equally used visual elements in
their explanations, those with decisive answers on architectural concerns had
a clear tendency towards using the relationship graph to argue on various
abstraction levels, i.e., intra-component connections of classes (buildings in
same city) as well as inter-component connections (buildings in different
cities). In contrast to the other tools, some participants have very concrete
ideas regarding the size of the code generation component and how it is re-
lated with the rest of the system.

Discussion While the call hierarchy and GOTO navigation allow quick traver-
sal of the system’s call graph, several participants in groupIDE mentioned that
these features were not ideal for a broad investigation of relations on classifier
level such as in T3. We conclude that an IDE operates on a lower level of ab-
straction than ideal for horizontally relating elements on a higher level than
members, even when inspecting only one specific feature as emulated by T3.
On architecture level (T5), this shortcoming manifests in vague or incomplete
answers.

The state-of-the-art visualization used in our experiment does not include
an explicit visualization of relationships. Thus, we cannot discuss its suitabil-
ity for fostering the exploration of such. However, it allows for conclusions
towards the benefits and drawbacks of an explicit visualization of relation-
ships as encompassed in our method. Relying on establishing a relationship
purely based on code resulted in more accurate description of groupSOTA as
compared to groupISA in T2 where the elements to relate where known and
available, but significantly worse results in T3 where the elements to relate
were unknown (cf. Figure B.6). This translates to architectural level, i.e., be-
cause they could not solve T3, groupSOTA reported a lack of overview when
solving T5.

With the relationship graphs provided by our method, participants in
groupISA across all programming experience levels were able to relate ele-
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ments across abstraction levels. On design level, this shows in T2 where only
1 participant was not able to establish a relation and in T3 where only 2 par-
ticipants missed relations to the investigated elements (see. Figure B.6). In
extension to our answer to RQ1, we conclude that by easing the access to in-
formation via the grouping of interrelated elements, our method also fosters
establishing horizontal relations. Participants in groupISA generally provided
better arguments (see above) for their answers to T5 as compared to groupIDE

and groupSOTA, indicating that they developed a better overview of the sys-
tem’s architecture as compared to participants in other groups.

RQ3: Relating Information Vertically (T4)

To solve Task T4, participants in groupIDE used intersecting combinations of
exploring the system’s package hierarchy (8), reading through code (9), the
text search (5), the call hierarchy (9), and deleting classifiers to see which
other elements break (2). While 5 participants answered T4 very broadly, i.e.,
3 pointed to an entire package containing hundreds of classes while 2 based
their answer entirely on a search term with hundreds of matching classes, 4
participants were very restrictive, i.e., included only 2 or 3 classes. One par-
ticipant stated to miss detail knowledge to formulate a sensible answer and
did not answer the task. In contrast, 4 participants in groupIDE solved T4 thor-
oughly by reading through several classifiers in a bottom-up approach.

Participants in groupSOTA answered T4 superficially by either pointing to
city districts (Java packages) or including only the two core classifiers (pro-
vided in the task description of T4). One participant did not know how to
solve the task at all.

Similar to T3, participants in groupISA made use of the dependency graph
to solve T4. Generally, they expanded upon their answers to T3 by retracing
additional references. That is, 17 out of 18 participants in groupISA vertically
related classifiers to the asked component based on relationships with the
provided core classifiers. However, similar to groupIDE, we observe disparate
inclusion criteria, i.e., some participants included all classifiers that have any
form of relation to the core classifiers, others were more selective and addi-
tionally took class names and source code into account. Only 4 participants
read through source code as a part of that process.

Discussion Participants in groupIDE were generally undecided how to ap-
proach establishing a vertical relationship between the asked component and
its containment. This mirrors in the variety of different IDE features used (11
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participants used 2 or more different features) and the varying degree of detail
in participants’ answers, ranging from a handful of classes to packages with
hundreds of classes. While we, the authors of this paper, are not aware of the
subject system’s ground-truth architecture, it is safe to assume that the asked
component’s actual size is not in the range of hundreds of classes. Building
up on our previous conclusions, we attribute these estimations to a missing
overview on the system’s architecture.

Although the used state-of-the-art tool is slim in its feature set (does not
visualize relations, allows access to only one class at a time), it provided
equally many participants with good enough of an architectural overview to
give an answer to T4 as the IDE. Also, while participants in groupSOTA all pro-
vide superficial answers based on city districts (packages), their answers gen-
erally encompassed more sensible amounts of classifiers than the answers of
a majority of groupIDE.

The differences in the vertical relation approach of participants in
groupISA were considerably less far apart than those in the other groups, es-
pecially than those in groupIDE. Because 17 out of 18 participants in groupISA

vertically related classifiers to a component based on their relationship with
the core classifiers of the component, they formed more cohesive and sensi-
ble components than the participants in the other groups.

B.4.7 Threats to Validity

Construct Validity is concerned with the extent to which an experiment
setup actually investigates the subject of the experiment. Our experiment
subject was to assess the suitability of different tools for the exploration of an
unfamiliar large-scale software system. We formulated three research ques-
tions to investigate that and constructed experiment tasks accordingly, on the
basis of a real-world software system. While RQ1 and RQ2 are addressed by
two and three tasks respectively, RQ3 is addressed by only one task, because
we investigate it in depth on architecture level (what classes make up a com-
ponent) rather than on design level (what members belong to a class).

Internal Validity is concerned with uncontrolled influences that falsely in-
dicate a causal relationship. We minimized this risk by assuring similar con-
ditions for each experiment run with the used tool and its medium as depen-
dent variables. To achieve that, we randomly grouped participants to the three
tools while providing the same tasks across all groups. The resulting groups
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were equally divided regarding experiences in relevant aspects, i.e., prior ex-
perience with VR and programming1. We designed the tasks of our experi-
ment to not favor textual or visual representations. Furthermore, we provided
each participant with a short training video for their assigned tool1.

External Validity is concerned with the degree to which experimental re-
sults can be generalized to settings other than in the experiment. Despite
multiple international students from Asia, the vast majority of participants in
our experiment were of Northern European origin. With 18 participants per
group (54 in total), our results would be more conclusive with a larger sam-
ple size. Furthermore, because we recruited mostly students (no practitioners
with professional experience), our results hold for a rather inexperienced au-
dience. However, a large majority of our participants declared to program reg-
ularly (80.4% program at least once a week) and to be experienced with Java
(82.1% self-assessed to at least medium experience on a 5-step Likert scale)1.
We argue that this is indeed an interesting target audience for our method, as
it resembles young professionals – a group of people that will have to work
with the legacy code produced by current working professionals.

B.5 Conclusion and Future Work

We presented an approach for analyzing and visualizing large-scale software
systems for the purpose of their comprehension. In a controlled experiment
with 54 participants, we compare its ability to support users with key aspects
of software comprehension with an IDE and a state-of-the-art VR software vi-
sualization. Our results show that our approach provides engineers with eas-
ier access to information, including a better overview of a system’s architec-
ture and relationships among elements on all encompassed abstraction lev-
els.

In the future, we will enable engineers to refine the recovered architecture
according to their mental model by reorganizing the architectural structure
within our visualization, e.g., to adjust component boundaries. Furthermore,
we plan to foster engineers’ exploration of a system’s structure via additional
software characteristics, such as a system’s behavior or quality.
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Figure B.8: Additional bar charts from the experiment as provided in the online appendix1.
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Abstract

Comprehending large-scale software systems is a challenging and
daunting task, particularly when only source code is available. While
software visualization attempts to aid that process, existing tools pri-
marily visualize a system’s structure in terms of files, folders, packages,
or namespaces, neglecting its logical decomposition into cohesive ar-
chitectural components.

We present the tool Immersive Software Archaeology (ISA) which (i)
estimates a view of a system’s architecture by utilizing concepts from
software architecture recovery and (ii) visualizes the results in virtual re-
ality (VR) so that users can explore a subject system interactively, mak-
ing the process more engaging. In VR, a semantic zoom lets users gradu-
ally transition between architectural components of different granular-
ity and class-level elements while relationship graphs let users navigate
along connections across classes and architectural components.

We present results from a controlled experiment with 54 partici-
pants to investigate the usefulness of ISA for assisting engineers with
exploring an unfamiliar large-scale system compared to another state-
of-the-art VR approach and an IDE.

Video Demonstration – https://youtu.be/Fl_SsT13l4k

https://www.youtube.com/watch?v=Fl_SsT13l4k
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C.1 Introduction

Software archaeology is the process of recovering knowledge on an unfamiliar
(legacy) software system using the artifacts available, which commonly con-
stitute only source code [1, 2]. A relevant activity is recovering a subject sys-
tem’s architecture which - when conducted based on source code alone - is
tedious, challenging, and error-prone [3, 2]. By explicitly encoding informa-
tion on a system’s structure, behavior, and/or evolution via a visual metaphor,
software visualization supports various tasks such as estimating or relating
architectural components.

The extent of existing tool support is limited: current 3D/VR software vi-
sualizations (i) rigidly locate users on an abstraction level only slightly above
source code while (ii) visualizing a system’s architecture in terms of its organi-
zation in folders, namespaces, or other “physical” structures.

We present the tool Immersive Software Archaeology1 (ISA), which sup-
ports software archaeologists with recovering knowledge on an unfamiliar
large-scale system by visualizing its architecture and design in immersive vir-
tual reality (VR) based on its source code alone. Throughout the paper, we
use the term “design” to refer to elements on class level and below, which are
represented explicitly in source code, and the term “architecture” to refer to
logical elements more abstract than class level, which are not represented ex-
plicitly in source code.

We present four core features of ISA (cf. Figure C.1):

1 ISA employs a fully-automated relationship-based clustering method to
analyze a system’s architecture in terms of cohesive architectural com-
ponents.

2 ISA presents the results of its analysis via an immersive, interactive
metaphor in virtual reality.

3 ISA implements a semantic zoom that lets users navigate seamlessly
along abstraction levels from architecture down to design level (and vice
versa).

4 ISA visualizes relationships between elements (i.e., classes and archi-
tectural components) via interactive relationship graphs, among and
across abstraction levels.

1https://gitlab.com/immersive-software-archaeology

https://gitlab.com/immersive-software-archaeology
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Figure C.1: Overview of ISA from a user’s perspective: After analyzing a subject system in the IDE, users

explore its architecture and design in VR.They can transition between abstraction levels via a semantic

zoom and navigate along relationships via an interactive graph.

We evaluated ISA in a controlled experiment with 54 participants [4],
comparing it to an existing state-of-the-art VR software visualization and the
Eclipse IDE. Our results show that ISA provides better access to information
while fostering users’ ability to relate software elements (classes, architectural
components, etc.) with one another.
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C.2 State of the Art

Many software visualization tools exist that present a system’s architec-
ture [5, 6], both in 2D (e.g., Polymetric Views [7], Samoa [8], Softwarenaut [9],
Beck et al. [10]) and 3D (e.g., Balzer and Deussen [11], IslandViz [12], Ex-
plorViz [13], CityVR [14], CodeCity [15]). Experiments showed that using a
well-constructed 3D software visualization is more effective than using an
IDE in terms of correctness and completion time for software comprehension
tasks [15]. In addition, 3D visualizations have advantages over 2D visualiza-
tions in terms of spatial memory [16]. 3D metaphors become further effective
(task completion time and accuracy) when using the immersive capabilities
of VR to allow for a more natural interaction with a 3D scene as compared to
a standard-screen representation [17, 18].

Metaphors for 3D software visualization can be divided into abstract
metaphors (e.g., 3D graphs [11, 19, 20]) and real-world metaphors (e.g., city
metaphor [15, 14, 17], island metaphor [12], or solar metaphors [21, 22, 23,
24]). A metaphor has to be expressive enough to describe different abstrac-
tion levels without breaking while letting users transition between these.

We observe two major shortcomings in existing 3D (and thus VR) software
visualization tools with regard to presenting a system’s architecture. Many
tools [14, 13, 12, 15] rigidly lock their users on an abstraction level slightly
above the level of (textual) source code, where they focus on code metrics
(such as lines of code) instead of providing an overview of a system’s archi-
tecture. Furthermore, even existing tools focusing on a system’s architecture
commonly visualize merely folders, packages, or namespaces [5], although
these “physical” structures can deviate heavily from a logical arrangement
into architectural components (potentially cutting across folders, packages,
and namespaces) – especially after evolution cycles in a legacy software sys-
tem. This leaves open potential for supporting users in relevant software ar-
chaeology tasks such as identifying and relating architectural components.

C.3 Immersive Software Archaeology

Our tool Immersive Software Archaeology (ISA) is comprised of two parts, i.e.,
an extensible platform of Eclipse2 plugins for the automated analysis of a sub-
ject system’s architecture and an immersive VR application developed with
the Unity 3D engine3 for the exploration of a system based on a previously

2https://www.eclipse.org/
3https://unity.com

https://www.eclipse.org/
https://unity.com
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conducted analysis. Once having analyzed a system in Eclipse, users can en-
ter ISA’s VR visualization and inspect the analyzed system via a real-world
metaphor (see Section C.3.2) with planets, continents, cities, and buildings,
where buildings represent design-level elements (i.e., on the level of classes)
and cities, continents, and planets represent higher-level architectural com-
ponents (i.e., based on a logical structure that is not directly visible in code).
From within the VR visualization, users can access a backchannel to the IDE.
That is, they can open windows in the IDE from within VR that display the
source code of visualized files, e.g., to then directly perform changes in the
IDE.

C.3.1 Automated Architecture and Design Analysis in Eclipse

ISA provides a fully-automated analysis of a software system that takes as in-
put the source code of a subject system and generates as output a coherent
model of its architecture and design. Along with our tool, we provide an im-
plementation for the analysis of Java software systems. ISA’s analysis consists
of two subsequent steps.

First, to provide users with design-level information, ISA’s analysis extracts
design-level information explicit in source code, i.e., the structure of classes,
interfaces, enums, etc. with their members and references between them. In
addition, ISA calculates metrics for design-level elements such as the cogni-
tive complexity of methods [25]. An output model is populated with the anal-
ysis results to capture a view on an entire subject system’s design-level struc-
ture.

Second, to provide users with an overview of a system’s architecture, we
provide a software architecture recovery that estimates a decomposition of
the previously analyzed design-level elements into a hierarchy of architectural
components (i.e., coherent units of functionality). To achieve this, ISA em-
ploys a software clustering technique based on the references between classes
as described in [4]. The resulting output model encompasses all design-level
elements of a system, organized into a hierarchy of cohesive architectural
components. When starting ISA’s VR application, this model is encoded into
the high-level structure of the visualization, determining how planets, their
hierarchies of continents, city layouts, as well as the buildings with their indi-
vidual floors are generated.

On a technical level, ISA’s overall analysis process described above is im-
plemented as an extensible platform of Eclipse plugins, each registering with
a central analysis core plugin. Developers can implement custom analysis
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functionality in their own plugins, e.g., to integrate further target languages
(for instance, based on SrcML4 [26] or Tree-Sitter5), or to employ an alterna-
tive clustering strategy. An analysis configuration dialog ( 1 in Figure C.2) lets
users choose between the available plugins for each step of the analysis. Fur-
thermore, ISA provides detail settings for its plugin, e.g, to adjust parameters
for the software architecture recovery procedure ( 2 in Figure C.2).

We define the above described models for capturing a system’s architec-
ture and design via the Eclipse Modeling Framework6 (EMF). By generat-
ing source code infrastructure from these models in both Java (for use with
Eclipse) and C# (for use with Unity), they serve two purposes. For one, they act
as interfaces between the different analysis steps in the IDE, e.g., between de-
sign analysis and architecture analysis as described above. For another, they
serve as input during the VR visualization’s initialization.

C.3.2 Virtual Reality Exploration of Architecture and Design

ISA’s VR visualization employs an immersive real-world metaphor represen-
tation of a subject system, where users travel through and interact with its
architecture and design. By explicitly representing architectural components
as first-level structural elements, ISA facilitates users’ ability to gain an archi-
tectural overview of a system. A semantic zoom lets users gradually transi-
tion from this architectural overview to architectural components of lower
abstraction levels, down to design-level elements such as classes and their
members. Relationship graphs visualize calls and references between classes
and architectural components in the context of the user’s current abstraction
level.

We implement the ISA VR application with the Unity 3D engine3, building
upon the SteamVR7 library to support major VR headsets currently available.
We illustrate its visualization technique with structures known from object-
oriented programming (e.g., classes and interfaces). However, ISA is able to
visualize systems implemented in any programming languages with an orga-
nization of methods/functions in modules (such as classes) and a hierarchical
organization of these.

4https://www.srcml.org
5https://tree-sitter.github.io/tree-sitter
6https://www.eclipse.org/modeling/emf
7https://www.steamvr.com/en

https://www.srcml.org
https://tree-sitter.github.io/tree-sitter
https://www.eclipse.org/modeling/emf
https://www.steamvr.com/en
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Architecture-Level Overview

To foster users’ ability to explore and comprehend the architecture of an un-
familiar system, ISA visualizes architectural components as first-level struc-
tures in its visualization: It employs a solar system metaphor where the hier-
archically organized architectural components recovered previously (see Sec-
tion C.3.1) are represented as planets ( a - e in Figure C.3). Corresponding
to the hierarchical organization of the architectural component it represents,
each planet contains hierarchically organized pieces of land [4] – similar to
how continents, countries, and regions are hierarchically organized in the real
world. On the lowest abstraction level, architectural components are repre-
sented as cities consisting of buildings which each represent a class-level el-
ement (classes, interfaces, enums, etc.) of the subject system. Buildings con-
sist of floors, each representing a method or constructor with the number of
expressions determining the floor’s height and the cognitive complexity [25]
determining the floor’s diameter. Further, ISA visualizes member encapsula-
tion by equipping floors with windows (not encapsulated – public keyword
in Java) or without windows (restricted access, e.g., private) g . By using these
metrics to determine the visual appearance of each building’s floors (and thus
the building itself), ISA provides users with an impression of the represented
class’ structure without having to read its source code.

Semantic Zoom

To provide users with access to information on a system while not overwhelm-
ing them with details, ISA implements a semantic zoom that displays visual
elements (such as buildings) context-sensitively, i.e., with more or less detail
depending on the abstraction level of users. When starting the ISA VR visu-
alization, users are initially located in an interactive room-scale overview of a
system’s architecture ( a - e in Figure C.3), where they can inspect and inter-
act with its architectural components in form of planets, hierarchies of conti-
nents, and cities. On this abstraction level, cities on planets consist of simpli-
fied versions of their buildings that visually average the metrics for their floors,
cf. d and e in Figure C.3. Users can interact with planets by grabbing and
repositioning them (e.g., to locate two planets close to one another to indicate
coherence) and opening information canvases to inspect further details (e.g.,
the number of buildings on a planet).

Users can change their perspective from the architectural overview to a
detailed city view ( f - i in Figure C.3), where buildings present each method
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Figure C.3: Screenshots of ISA’s VR application: a system’s hierarchy of architectural components is

visualized as a solar system with planets, hierarchies of continents, and cities, while design-level ele-

ments (classes, methods, etc.) are visualized as buildings and floors. A semantic zoom enables users

to gradually transition between abstraction levels, while relationship graphs provide navigation along

relationships.

and constructor of the represented classes explicitly with metric values visual-
izing structural properties. Within a city, users can freely inspect design-level
structures, open information on classes, and read their source code. This
semantic zoom enables users to gradually change their perspective from an
overview of a system architecture down to design level and vice versa, follow-
ing Shneiderman’s mantra “Overview first, zoom and filter, then details on-
demand” [27].

Interactable Relationship Graphs

To support users in gaining an overview of the relationships among and across
architectural components and classes, ISA encompasses interactable rela-
tionship graphs. These visualize relationships between software elements
(i.e., classes or architectural components) as curved lines between their visu-
alization counterparts, with animated textures indicating the flow direction
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of information. To visualize relationships on architecture level (e.g., between
two architectural components represented as planets), ISA automatically ag-
gregates and bundles references of architectural components, i.e., all method
calls, field accesses, and type references (incl. inheritance). Users can inter-
act with these relationship graphs via a VR user interface ( b and i in Fig-
ure C.3) that enables them to highlight forward references (connecting to all
referenced elements) and backward references (connecting all referencing el-
ements), including their transitive closures. Thereby, ISA aids users in tasks
such as identifying module boundaries, e.g., by investigating whether a se-
lected class is strongly connected with a selection of other classes.

C.4 Evaluation

We evaluated ISA in a controlled experiment with 54 participants [4], where
we compared its ability to support engineers with performing software ar-
chaeology tasks with (i) an existing state-of-the-art VR software visualization
(CityVR [14]) and (ii) an IDE (Eclipse) as a baseline. We split the participants
into three groups, each using a different tool (i.e., ISA, CityVR, or Eclipse), and
let them explore a real-world legacy subject system via five software archae-
ology tasks (identical across participants and tools) on accessing and relat-
ing information, e.g., finding a part of the system given a description of its
functionality. Thereby, we simulated a step-wise exploration process in which
participants established an understanding of the subject system, while mea-
suring and observing their behavior and approaches toward solving each task.
Based on that, we concluded in what sense each of the three tools fosters the
software archaeology process. Detailed task descriptions, results, and a repli-
cation package are available in the study’s online appendix8.

Our results [4] show that, in comparison with the other tools, ISA’s orga-
nization of a system’s classes in cohesive architectural components provides
better access to information because interrelated classes (and components)
are likely to be part of the same structure (e.g., buildings in the same city) and
can thus be explored side-by-side. In combination with ISA’s interactable re-
lationship graphs, participants were able to estimate components more sen-
sibly in terms of size and content as compared to the state-of-the-art VR visu-
alization and the IDE. Conversely, while the state-of-the-art VR visualization
did not provide functionality for participants to explore relationships at all,

8https://gitlab.com/immersive-software-archaeology/

publication-vissoft22

https://gitlab.com/immersive-software-archaeology/publication-vissoft22
https://gitlab.com/immersive-software-archaeology/publication-vissoft22


C.5. Conclusion and Future Work 145

ISA’s interactable relationship graphs caused a tendency for participants to
not investigate relations between elements as thoroughly as in the IDE – that
is, beyond seeing a line between the respective visual elements (e.g., build-
ings in a city). However, ISA’s combination of the interactable relationship
graphs with its semantic zoom, especially its ability to agglomerate relation-
ships to architecture level, showed to be useful particularly for inexperienced
engineers who, when using one of the other tools, faced difficulties with re-
constructing relationships even on class level.

C.5 Conclusion and Future Work

We presented the tool Immersive Software Archaeology (ISA) which supports
users in recovering knowledge of an unfamiliar software system via an immer-
sive VR visualization of the system based on only its source code. To achieve
this, ISA provides (i) a fully-automated configurable and extensible architec-
ture recovery method and, based on that, (ii) an interactive VR visualization
that lets users immersively explore and interact with a subject system’s ar-
chitecture and design. A semantic zoom in VR lets users transition between
abstraction levels of architecture and design, while interactable relationship
graphs provide an overview of interactions between elements, e.g., between
architectural components visualized as cities on different planets, between
classes visualized as buildings on the same planet, etc.
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Abstract

Software visualization facilitates the interactive exploration of large-
scale code bases, e.g., to rediscover the architecture of a legacy system.
Visualizations of software structure suffer from repetitive patterns that
complicate distinguishing different subsystems and recognizing previ-
ously visited parts of an architecture.

We leverage variability-modeling techniques to “uniquify” visual-
izations of subsystems via custom-tailored 3D models of recognizable
landmarks: For each subsystem, we derive a descriptor and translate
it to a (random but deterministic) configuration of a feature model of
variable 3D geometry to support large numbers of different 3D models
while capturing the design language of a particular type of landmark.
We devised a hybrid variant derivation mechanism using a slots-and-
hooks composition system for 3D geometry as well as adjusting visual
characteristics, e.g., material. We demonstrate our method by creating
various different trophies as landmarks for the visualization of a soft-
ware system.
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a b

c d

Figure D.1: Example visualization of two architectural elements suffering from hard-to-distinguish pat-

terns (a, b) vs. the same architectural elements “uniquified” through custom-tailored landmarks (c, d).

D.1 Introduction

Software visualization represents the structure, behavior, or evolution of a
software system in a visual format to foster comprehension [1]. When ex-
ploring large-scale code bases, e.g., to rediscover the design of a legacy sys-
tem, visualization, esp. of structural system aspects, is essential for gaining an
overview of a system’s architecture [2, 3]. However, existing software visual-
ization [4, 5, 6, 7, 8] is hampered by a pivotal problem: The structural visual-
izations of different parts of a software system are hard to differentiate due to
repetitive and complex patterns in the visual representation that cannot easily
be distinguished (see Figure D.1).

The lengthy and iterative exploration of large-scale code bases is further
complicated when comparing parts of a system or re-encountering an already
visited part of a system: previously gained insights and mental models cannot
be associated.

We propose a method for 3D software visualization to "uniquify" differ-
ent parts of a software system by placing custom 3D models of recognizable
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landmarks along the structural representation of a particular part of a soft-
ware system (e.g., packages, components, subsystems). We use trophies (as
awarded to winners of sports competitions) as running example for one type
of landmark (but one could also imagine statues, towers, bridges etc.).

To aid the structural representation of (potentially very many) parts of a
system with custom 3D landmarks, we identified two challenges: First, a large
number of sufficiently distinct 3D models is required to ensure that each dif-
ferent part of a system can be represented by a custom landmark. In addition,
each type of landmark follows a certain design language [9, 10] that governs
potential variations in its appearance, which has to be incorporated in the re-
spective variations of the 3D models.

We leverage techniques from variability engineering to uniquify structural
visualizations in 3D by generating distinct 3D models for a large number of
landmarks following a common design language: We capture the design lan-
guage of a particular landmark as configuration logic within a feature model
where each feature is associated with partial 3D geometry or a visual charac-
teristic of a 3D model, e.g., its material. We analyze the source code associated
with the part of a system to be visualized and map its relevant characteristics
to a configuration of the feature model. Finally, we create a custom-tailored
3D model representing one landmark via a hybrid variant derivation mecha-
nism combining composition of partial 3D geometry with transformation of
visual characteristics.

While this paper describes work in progress, we provide explanations and
a prototype implementation1 of all constituent concepts.

D.2 Background

Our work marries concepts from software visualization with techniques from
variability engineering.

D.2.1 Software Visualization

Software visualization presents a software system’s structure, behavior, or evo-
lution in a visual format (using 2D and 3D visual metaphors) to foster the
comprehension of structural arrangements and relations [11, 1, 12, 13].

2D metaphors are mostly abstract graphs, trees, and diagrams [14, 15, 16].
3D metaphors borrow analogies from the physical world to exploit viewers’

1https://gitlab.com/immersive-software-archaeology/

variable-3d-landmarks

https://gitlab.com/immersive-software-archaeology/variable-3d-landmarks
https://gitlab.com/immersive-software-archaeology/variable-3d-landmarks
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familiarity with real-world constructs, e.g., cities, islands, or planets [4, 5, 6, 11,
17, 7, 8]. 3D software visualizations can be distinguished by the medium they
employ, i.e., computer screens, augmented reality, or virtual reality [18, 19].

A fundamental purpose of software visualization is to provide an overview
of a visualized subject system, e.g., to foster top-down exploration [6, 20, 21,
22, 2, 23, 3]. This includes the visualization of architecture-level constructs
such as packages or subsystems. However, software systems may encompass
architecture-level constructs with similar (but not identical) characteristics
and size so that the generative processes for creating visual representations
yield repetitive visual structures (see Figure D.1). As a consequence, the ex-
ploration process is hampered by problems with orientation (inability to dis-
tinguish different architectural elements) and relating previously built mem-
ory models over the course of exploration (inability to recognize previously
inspected parts of a system).

D.2.2 Variability Engineering

A Software Product Line (SPL) [24, 25] permits structured reuse within a
highly-variable software family by exploiting commonalities and managing
variabilities of closely related variations of software artifacts. Within an
SPL, the problem space captures the configuration logic on conceptual level,
whereas the solution space contains realization artifacts for all possible vari-
ants. Configuration logic is represented by a variability model, e.g., a feature
model, which is a hierarchical tree of (de)selectable (optional/mandatory) fea-
tures potentially structured into alternative groups permitting selection of at
least one/exactly one feature (see Figure D.3). Cross-tree constraints (com-
monly formulated in propositional logic) may further reduce the configura-
tion space. A configuration is a valid selection of features obeying the configu-
ration rules imposed by the feature model from the problem space. A variant
is the realization of a configuration as realization artifacts from the solution
space.

Variant derivation translates a configuration to a variant comprising the
realization of one specific product. There are three principal kinds of vari-
ant derivation [25]: Annotative methods prune a representation comprising
all possible variations (150% model) to only the realization artifacts required
for a configuration (100% model). Compositional methods build a variant by
combining constituent pieces associated with individual features or combi-
nations thereof. Transformational methods modify characteristics of an ex-
isting variant to retrieve the desired variant. While realization artifacts of the
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solution space commonly consist of source code, other software artifacts can
be made subject of variability within an SPL as well, e.g., in our case, 3D mod-
els.

D.3 Variable 3D Model Generation

Our method utilizes concepts from variability modeling and 3D model gen-
eration to derive "uniquifying" 3D landmarks based on a configurable design
language to be placed along otherwise similar visual structures in software ar-
chitecture visualizations. A prime consideration for our method is to yield 3D
landmarks that are distinct, yet following a well-defined design language. In
turn, this design language needs to be expressive enough to provide distinct
landmarks for all architecture-level constructs of a visualized software system.
Figure D.2 depicts a conceptual overview of our method.

We define a configurable design language for 3D landmarks via a feature
model and partial 3D geometry 0 . We automatically synthesize a software de-
scriptor 1 that we use to sample a valid configuration of the feature model 2 ,
and forward it to a hybrid variant derivation mechanism 3 yielding a concrete
3D model for a landmark. In the following, we detail each step.

0 Visual Language Definition We perceive–and model–the design sys-
tem [26, 9] associated with a design language in the sense of an SPL: While
the individual visual characteristics of a 3D design language manifest in the
implementation as 3D models, the (as of yet implicit) rules and variations per-
missible within a design language constitute a form of configuration logic. In
consequence, the solution space (see Section D.2.2) is comprised of individ-
ual parts of 3D geometry (partial 3D models). In addition, the problem space
consists of a feature model that explicates design rules in the form of per-
missible configurations described as (de)selectable features. The left part of

Software 
Descriptor

Software 
Elements Configuration

Partial 3D 
Geometry

Feature Model

Variant
Derivation

3D Model
Instance

2 3

0

1

Figure D.2: Overview of our method for generating “uniquifying” landmarks from a software descriptor.
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Figure D.3: A feature model capturing the configuration rules of a design language (problem space) is

aided with partial 3D geometry (solution space) to retrieve custom-tailored 3D models of landmarks via

a hybrid variant derivation procedure composing 3D geometry and transforming visual characteristics,

e.g., material.

Figure D.3 depicts these two artifacts using the example of configurable tro-
phies. The feature model defines which design elements may be combined
and the partial 3D geometry defines how individual parts of a 3D model may
be combined.

To allow the combination of partial 3D geometry according to imposed
rules, we have designed a slots-and-hooks composition system [27] for 3D
models (see Figure D.4). On a conceptual level, a slot serves as an extension
point for 3D geometry that defines where and with which rotation/scale an
element may be attached. Likewise, a hook (defined in another part of 3D ge-
ometry) declares the principle option for serving as an extension to a compat-
ible slot. Whether a slot of part of 3D geometry is actually bound (at all) and,
if so, with the compatible hook of which specific other part of 3D geometry is
determined via a configuration of the feature model during variant derivation
(see below). On a practical level, we implement the slots-and-hooks compo-
sition system for 3D models by using invisible elements of 3D geometry as
markers to define position, rotation, and scale for both slots and hooks. We
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established a naming convention that identifies these markers as either slot
or hook and determine compatibility via matching names.

1 Software Descriptor Synthesis The landmarks we generate have to be cre-
ated deterministically from (the implementation of) an architectural element
and, at the same time, must be stable over miniscule changes to the imple-
mentation. To achieve these goals and steer the subsequent creation of a con-
figuration (see below), we borrow the concept of a descriptor from computer
vision: A visual descriptor is an abstract summary of visual characteristics in
an image [28] (e.g., edges) that can be sensitive to certain characteristics (e.g.,
color changes) and robust against others (e.g., rotation).

We adapt the concept of a visual descriptor to design a software descriptor
for architectural elements: The software descriptor should be robust against
minor changes (e.g., creating a new attribute or method within a class), yet
sensitive toward major modifications (e.g., removing entire classes). In addi-
tion, in our use case, the software descriptor steers the sampling of a configu-
ration for a 3D model and the respective landmarks should be stable for each
architectural element. Hence, creation of the software descriptor must be de-
terministic, i.e., the same input of software elements must always result in the
same descriptor.

While determining the full scope of an expressive software descriptor is
part of our ongoing work, we illustrate the principle use of a software descrip-
tor: For each architectural element, we calculate a software descriptor that
is sensitive to the number of contained elements (e.g., classes, structs, etc.)
as well as their respective qualified names. We devise a canonical form of
the descriptor by combining the number of elements with a hash of all fully
qualified (i.e., unambiguously identifiable) names in alphabetical order. As an
example, consider a Java package com.application consisting of 3 classes
Model, View, and Controller. Our illustrative software descriptor for this
package starts with a 3 (number of contained elements) followed by a hash of
their concatenated fully qualified names resulting in “32117573461” as the
software descriptor.

Through this procedure, we capture relevant high-level aspects of software
constructs contained within an architectural element while abstracting from
negligible details within a deterministic and compact representation.

2 Steered Random Configuration Sampling We derive a valid configuration
from the visual design language based on configuration sampling guided by
our software descriptor. Similar to the synthesis of software descriptors, the
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Figure D.4: Example of the compositional aspect of our variant derivation. A slots-and-hooks composi-

tion mechanism combines partial geometry based on a naming convention of the respective parts.

sampling of configurations must be deterministic, i.e., the same descriptor
should always result in the same configuration. At the same time, different
software descriptors should result in different configurations. However, which
specific configuration is determined for a particular software descriptor is of
no concern (as each represents a viable landmark). Hence, we employ ran-
dom configuration sampling but steer the selection process by using our soft-
ware descriptor as seed for the random generator to ensure deterministic re-
sults. In our implementation1, we use the random sampling provided by Fea-
tureIDE2.

3 Hybrid Variant Derivation To realize a configuration in the form of a vari-
ant comprised of a custom-tailored 3D model, we have devised a hybrid vari-
ant derivation mechanism that includes aspects of compositional and trans-
formational methods.

The compositional part of variant derivation employs the slots-and-hooks
mechanism recursively by stepping through relevant partial 3D geometry and
composing parts according to matches in the contained slots and hooks. For
instance, for each of the four handles of the trophy variant depicted in Fig-
ure D.4, the hook (and, therefore, the associated 3D geometry) is positioned,
rotated, and scaled according to the respective slot defined in this specific
kind of cup. The order for composing slots and hooks may be arbitrary as
each will result in an identical 3D model.

The transformational part of variant derivation mutates the appearance of
3D geometry by revisiting all (previously) partial 3D geometry and exchanging
materials. For that purpose, the variant derivation mechanism uses a selec-
tion of pre-configured materials by matching their names according to a fea-

2https://featureide.github.io/

https://featureide.github.io/
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Figure D.5: Example of multiple visually distinct trophies created through variant derivation for our

running example.

ture naming convention. In our running example, we use two different types
of materials that are (primarily) visible with metallic parts of a trophy (riser,
cup, handles, lid) or with the base of the trophy, where each type of material
has two possible variations (see Figure D.1).

The result of variant derivation is a concrete 3D landmark model that de-
velopers of 3D software architecture visualizations can utilize to "uniquify"
architecture-level constructs similar to the examples depicted in Figure D.5.

D.4 Outstanding Challenges

While we have devised a prototype implementation to demonstrate our con-
cepts, there are outstanding challenges, which we list here to foster academic
discourse and invite potential collaborators.

Unique Configuration for each Descriptor Even though our mapping of a
software descriptor to a configuration of the feature model is deterministic,
there may be cases when two distinct descriptors are mapped to the same
configuration and, thus, yield the same 3D model. In part, this is (inadver-
tently) by design as the number of configurations in the problem space may
be lower than the potential number of different architecture descriptors each
representing a distinct individual architectural element. To address this chal-
lenge, we foresee two promising directions: On conceptual level, we strive to
a-priory assess whether the configuration space is sufficiently large to accom-
modate all possible architectural elements and, if not, to guide expansion of
the configuration space (e.g., in the example shown in Figure D.3, that adding
a new type of lid would add 144 configurations). On practical level, we will
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explore configuration options via attributes and with continuous values (e.g.,
for model scale or custom colors) to further expand the configuration space
with little burden of creating new elements for 3D models.

Continuous Variation Software visualization commonly incorporates rela-
tions between architectural elements in the spatial arrangement of the visual-
ization [11], e.g., hierarchies of nested components or the degree of coupling
between different subsystems. In consequence, architectural elements that
are "more strongly" related to each other are commonly collocated in the vi-
sualization. Currently, our method creates different configurations and, thus,
visually distinct 3D models for each architectural element. However, we see
great potential in exploiting the relation of architectural elements by having
landmarks of closely related architectural elements share certain visual char-
acteristics (e.g., an area where all landmarks have a gold material). For this
purpose, we will extend the software descriptor to incorporate hierarchy and
relation of elements but will also research how to selectively vary a configura-
tion to achieve continuous variation for the generated 3D models.

Robustness toward Evolution While our tentative implementation of an ar-
chitecture descriptor is robust against changes in implementation details
(e.g., methods and attributes), it is sensitive to changes in the set of classes
contained in an architectural element and names of the contained classes.
However, over the course of software evolution, even these characteristics
may change. Currently, this would yield a different configuration and, thus,
an entirely different 3D model for a landmark so that the relation to a previ-
ously established mental model will be harmed. To cope with evolutionary
changes, we strive to either make the software descriptor robust toward cer-
tain architectural changes, so that associated landmarks remain unchanged,
or determine a method that allows creation of largely similar configurations
to that created landmarks contain only minuscule visual differences to the
previous edition.

Landmarks with Semantics In our prototype implementation, we sample 3D
models based on a random configuration of a feature model using a software
descriptor. While this allows us to deterministically generate a large variety of
3D models that follow a configurable design language, the resulting 3D model
variants do not convey characteristics of represented software elements such
as their size (e.g., by scaling landmarks), quality (e.g., by including visual ef-
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fects such as cracks, cf. [29]), or complexity (e.g., by selecting certain features
that indicate complexity such as the complex handle in our running example).

D.5 Conclusion & Future Work

In this paper, we exploited variability engineering techniques to devise a
method for generating custom-tailored 3D models of landmarks to “uniquify”
otherwise visually similar structures in software architecture visualizations.
Our method allows to encode the design language of a family of 3D models
within a feature model while also permitting to leverage 3D modeling soft-
ware to prepare visually appealing (partial) 3D models.

The outstanding challenges of our work are rooted within two fundamen-
tal areas: descriptor robustness and variant similarity. Descriptor robustness:
Our joint goals of providing unique 3D models for landmarks “uniquifying”
conceptually different architectural elements and ensuring a visual similarity
between closely related architectural elements are, at times, diametrically op-
posed. Accommodating both goals requires determining additional charac-
teristics to incorporate in the descriptor as well as finding a tradeoff between
characteristics the descriptor should be sensitive to/robust against. Variant
similarity: While there are methods and measures for determining the simi-
larity of different configurations (i.e., selections from the feature model), our
goal of achieving visual similarity/continuity (for various use cases) requires
the ability to prognose similarity of multiple variants (e.g., visual similarity
of 3D models), ideally, without having to rely on analyzing resulting prod-
ucts. Our future work is aimed at researching solutions for descriptor robust-
ness and variant similarity to further improve the benefits of our method for
demarcating/recognizing architectural elements in the visualization of even
larger and evolving software systems.
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Abstract

Re-architecting a software system requires significant preparation,
e.g., to scope and design new modules with their boundaries and con-
stituent classes. When planning an intended future state of a system as
re-engineering goal, engineers often fall recur to mechanisms such as
freehand sketching (using a whiteboard). While this ensures flexibility
and expressiveness, the sketches remain disconnected from the source
code. The alternative, tool-supported diagramming on the other hand
considerably restricts flexibility and impedes free form communication.

We present a concept for preparing the architectural software re-
engineering via freehand sketches in virtual reality (VR) that can be
seamlessly integrated with the model structure of a software visualiza-
tion and, thus also the code of a system, for productive use: Engineers
explore a subject system in the immersive visualization, while freehand
sketching their insights and plans. Our concept automatically interprets
sketched shapes and connects them to the system’s source code, and
superimposes code-level references into a sketch to support engineers
with reflecting on their sketches.
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We evaluated our method in an iterative interview-based case study
with software developers from four different companies, where they
planned a hypothetical re-engineering of an open-source software sys-
tem.

Video Demonstration – https://youtu.be/NKC5YpH3n4Y

E.1 Introduction

Re-engineering an existing software system is an endeavour that requires
significant preparation [1]. This preparation encompasses cycles of (1) re-
verse engineering (exploring and understanding relevant aspects of the sys-
tem, such as its architectural structure), (2) identifying re-engineering op-
portunities (such as unintended dependencies between architectural compo-
nents), and (3) planning an intended future state as re-engineering goal [2, 3].
Different methods exist that support engineers in preparing for software
re-engineering. Time-proven means include software visualization [4, 5]
and architecture conformance checking techniques such as reflexion mod-
eling [6, 7, 8, 9]. These support engineers in establishing a high-level overview
of a system that they deepen and refine over time while exploring and plan-
ning. In doing so, it is crucial for engineers (and their peers) to persistently ex-
ternalize their insights and intentions [10, 11]. Software engineers’ preferred
method for that is freehand sketching, e.g., on a whiteboard or piece of pa-
per [12, 13, 11]. It allows them to capture complex problems and situations in
intentionally incomplete sketches that they refine over time [12, 14, 15].

Existing techniques for software re-engineering preparation (such as soft-
ware visualization or architecture conformance checking) do not provide suf-
ficient flexibility and expressiveness. Engineers prefer other mediums that
provide the necessary flexibility for capturing insights and plans such as, in
most cases, physical whiteboards. The result is a mix of separate, discon-
nected artifacts that need to be maintained in parallel to the system’s code
itself [16, 10].

We present a method for extending existing VR software visualizations
with virtual whiteboards for creating freehand sketches on a system’s structure
(see Figure E.1) while continuously receiving automated conformance checks,
similar to those proposed by the reflexion modeling approach. Engineers pin
elements from the visualization (representing source code elements such as
classes or packages) on a virtual whiteboard and draw freehand sketches on it
using a virtual pen, as they would on a physical whiteboard.

https://www.youtube.com/watch?v=NKC5YpH3n4Y
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Figure E.1: Freehand Sketching in VR.

Our method enables the re-engineer to sketch outlines around pinned
elements and to connect these outlines with arrows. It automatically inter-
prets sketches and maps them on the source code of the subject system such
that it can subsequently provide engineers with visual feedback on the con-
formance of a sketch with the ground-truth structure of the subject system.
This helps engineers with reflecting on their sketches (“is this what the sys-
tem looks like?”) and planned re-engineering goals (“should it really look like
this?”). Engineers benefit from the overview of a subject system provided
by existing software visualizations, while being able to capture insights and
plans via flexible freehand sketches with instant conformance checks along
the way. To support engineers with implementing their plans, our method
mirrors sketches captured on a VR whiteboard to a traditional 2D-screen IDE.
This closes the gap between otherwise disconnected artifacts and the source
code of a system and, thus, facilitates the preparation of architectural software
re-engineering.

E.2 Related Work: Preparing Re-Engineering

Various techniques exist for preparing software architecture re-engineering,
to support engineers in analyzing the architectural structure and behavior of
a system, identifying re-engineering opportunities, and planning an intended
future state as re-engineering goal. We elaborate on three relevant areas, high-
lighting a gap in the corpus of existing techniques.
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E.2.1 Software Visualization

Software visualization techniques represent the intangible structures, interre-
lations, and interactions of software via visual metaphors in 2D and 3D [17].

Most 2D metaphors are abstract (e.g., graphs and tree maps [2, 18, 19, 20]),
whereas 3D metaphors range from being abstract (e.g., 3D graphs [21, 22, 23])
to real-world inspired with the information city [24, 25, 26, 27, 28, 29, 30, 31]
as one of the most commonly applied 3D software visualization metaphors.
Visualizations in 3D can be distinguished by their medium as being displayed
on a 2D standard screen or in immersive virtual reality (VR) or augmented
reality (AR) via head-mounted devices.

Software visualization is helpful for gaining an overview of a system during
re-engineering [2] [32] [33] and new techniques, such as VR, have the poten-
tial to advance the state of user interaction with visualizations for the purpose
of documenting and planning a re-engineering process.

A common shortcoming of many software visualization techniques is that
they remain disconnected from the source code, and often run as stand-alone
tools or web applications, losing the crucial link to the IDE.

E.2.2 Reflexion Models

Software architecture compliance checking approaches support engineers
with building an understanding of a software system’s architecture by pro-
viding insights into how it conforms to user-specified views or rules [7]. A
prominent instance are reflexion models by Murphy et al. [8, 34] which let
engineers specify a high-level view on a system’s architecture via a graphical
representation (boxes, arrows). Engineers then manually construct a map-
ping from architectural entities to software elements in a system. An auto-
mated analysis provides engineers with feedback on their specified high-level
view on the system’s architecture. That is, which arrows were placed in the
high-level view where there actually are no relations in the system, which ar-
rows are missing in the high-level view, and which arrows do conform with
the code-level relations in the system? This supports engineers in reflecting
on their high-level view and the structures these describe [35, 6]. They iter-
atively refine the high-level view until it reaches a satisfactory state. Along
the way, this workflow fosters activities such as finding re-engineering oppor-
tunities, which in turn makes reflexion models a valuable tool for preparing
architectural re-engineering.
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Subsequent techniques extended Murphy’s approach with advanced sup-
port for hierarchical structures [4], applying it to a behavioral analysis of dis-
tributed systems [36], or easing the detection of architectural flaws [37].

The aspect of reflexion modeling that was most picked up by subsequent
work is its mapping from architectural entities (boxes) to source code ele-
ments. In the original work [8, 34], engineers manually specify this mapping
via regular expressions over the system’s source code artifacts – which can be
tedious and, at times, inaccurate. Subsequent approaches either improve the
manual mapping process directly [38] or they replace it with automated tech-
niques [39, 40, 41, 42, 43, 44].

With regards to note making, reflexion models have the advantage of be-
ing able to capture incomplete views on a system’s architecture, encompass-
ing only architectural entities relevant for a given context. However, reflex-
ion modeling (including its derivatives and extensions) requires engineers to
follow a strict, deliberately limited notation when defining their architectural
views. Deviations from that are not possible while additional comments and
notes need to be externalized, resulting in different artifacts which need to
be maintained separately. Thus, reflexion modeling alone is not suitable for
documentation and planning purposes.

E.2.3 Freehand Sketching on Whiteboards and Paper

Engineers value flexibility when creating diagrams on their software sys-
tems [16, 13, 12], e.g., for planning purposes. More formal visual languages
such as UML notations or ER are used less and are often mixed with informal
sketches [16, 10], especially in early stages of planning, where engineers delib-
erately improvise rough sketches to ad-hoc capture thoughts [45, 13, 10, 12].
Generally, sketches are incomplete abstractions of complex situations and
structures that incorporate only relevant aspects [46, 47], they serve as cog-
nitive tools that externalize ideas to relieve the mind [14]. The workflow is to
sketch situations, discover new relation, refine the sketch, and repeat [48, 49],
which requires a high degree of flexibility in the sketching process.

A popular medium are freehand drawings on whiteboards and paper [10,
16], rated as the most effective [11]. Often, complex problems and situations
are not clear to engineers who intentionally sketch incomplete diagrams and
refine these over time [13, 50, 47]. The relevant feature for supporting en-
gineers in expressing thoughts is being able to mix and improvise notations
without restrictions [13]. The problem is how to persist drawings in a virtual
format [10]: such diagrams have a transient nature, are disconnected from the
code, and thus cannot provide feedback on conformance to reality.
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Smart whiteboards let engineers freehand draw while automatically cap-
turing their pen strokes in a digital format [51, 52, 53, 54]. Tools exist that in-
terpret sketches to detect elements from certain visual notations (UML) [55,
52, 56, 57]. The general idea is to let engineers draw arbitrary forms and map
these to a certain notations, e.g., UML class diagrams. While this is a use-
ful step towards enabling engineers to more conveniently document archi-
tectures and plans digitally, a majority rigidly enforce conformance to cer-
tain notations (whereas we discussed previously that liberty in notation is im-
portant), and none maintain an explicit mapping to represented elements on
source code level.

E.3 Freehand Reflexion Models in VR

Our method extends an existing VR software visualization with a virtual white-
board for the purpose of externalizing insights and plans on a system’s struc-
ture via flexible freehand sketches that automatically integrate with the code
of a system. We provide a conceptual overview over our method in Figure E.2,
which we discuss throughout this section.

Figure E.3 shows an example implementation of our method in an exist-

Virtual Reality Software Visualization

Model-Backed Virtual Whiteboard Plugins

Tool-Supported Reflexion on Current State and Planned Changes in VR and IDE

Visual Superimposition of Code-Level References

Semi-Automated Interpretation of Freehand Sketches

Freehand Sketching of Current and Future States

DrawingInteracting with Softw. ElementsPinning Software Elements

Exploration of Subject System‘s Architecture and Design

IDE

Code Generation

Implementation 
of Planned 
Changes

User ActivityExisting ToolLegend
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Figure E.2: Overview of our method for preparing software re-engineering via model-backed freehand

sketches in a VR visualization.
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ing VR software visualization1. The presented images do not include the em-
bedding visualization, into which we implemented our whiteboard sketching
method. However, the reader should imagine how engineers interact with the
embedding visualization and bring source code elements (e.g., classes in a
Java system) from the embedding visualization over to the whiteboard to pin
them A . They then freehand sketch on the whiteboard to visualize annota-
tions, outline pinned elements, or establish relations between outlined ele-
ments as arrows between them. Our method automatically interprets these
sketches B to establish an explicit mapping between sketched forms and the
source code they describe. It dynamically superimposes code-level references
(such as method calls) between drawn elements on a whiteboard C , which
supports engineers in reflecting on their sketches as well as on the structures
they describe E , e.g., the architecture of a (sub-)system.

Engineers might then go back to the whiteboard to refine or re-plan, or
they implement their intended changes in code using an IDE. To facilitate the
latter, our method (i) mirrors sketches made in VR to an IDE for supporting
fine-grained changes and (ii) offers automated code generation from within
VR based on sketches D . We elaborate on each of these steps.

E.3.1 A Freehand Sketching of Current and Future States

From a user’s perspective in VR, our method consists of a virtual whiteboard
(Figure E.3) on which engineers pin software elements and draw sketches on,
similar to how they would on a physical whiteboard ( A in Figure E.2). Our in-
tention is to provide engineers with the means for flexible and rapid freehand
sketching that integrates with the embedding software visualization (i.e., its
visual elements, user actions, etc.) and the code of a represented system.

Pinning Software Elements

Engineers attach software elements by grabbing their representations in the
VR visualization and pinning them on the whiteboard. Figure E.3 1 depicts
an example implementation of this mechanism: It leaves behind a pin on
the whiteboard which represents and explicitly maps to the represented soft-
ware element. Each pin contains a small avatar, a miniaturized version of the
pinned visual element it represents 5 . For one, these avatars facilitate the
engineers’ mental mapping between pins and visual elements, which helps
with distinguishing pins. For another, because the gestalt of visual elements

1https://gitlab.com/immersive-software-archaeology

https://gitlab.com/immersive-software-archaeology
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Figure E.3: Screenshots of an implementation of our method in an existing VR software visualization.

The embedding visualization is not depicted.
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in software visualizations usually encodes relevant metrics, avatars on pins
carry this information, too.

Including software elements in a sketch by pinning them on a whiteboard
is quick and unambiguous and offers potential for cross-fertilizing effects with
existing mechanisms in the embedding visualization (such as efficient means
for navigating the subject system). It is up to the developers of a VR visualiza-
tion that integrate our method to decide which software elements can be at-
tached to a virtual whiteboard. We illustrate our method with high-level pro-
gramming language constructs such as classes, interfaces, structs, etc. as well
as architectural units that organize these, e.g., packages, namespaces, folders.

Interacting with Attached Software Elements

Engineers can grab pins on a whiteboard after they were placed and freely
reposition or entirely remove them 6 . This creates a rapid editing process
with low costs for subsequent changes, especially when compared to sketch-
ing on a physical whiteboard. Engineers can also open a detail view for a pin
( 2 and 3 ) that displays information on the mapped software element, lists
related elements, and offers element-specific operations.

Navigation along Containment When planning changes to a system’s archi-
tecture, these will concern its organization in architectural components (fold-
ers, packages, namespaces). To support engineers in working with such com-
ponents, and given that many of these elements have nested elements, our
method provides an automated split operation ( 3 and 4 ) that replaces one
pin for an architectural component with pins for all of their constituent el-
ements, e.g., a pin for a Java package can be replaced with pins for all of its
direct children (i.e., sub-packages, classes, interfaces, etc.). The split oper-
ation enables the engineer to zoom in into the contents of an architectural
component when re-planning its internal organization.

We position constituent pins in a circle with noticeable gaps in between
clusters of strongly coherent pins (inspired by a technique by Hoff et al. [58]).
The coherence between pins is computed based on a sibling linkage algorithm
using references in the source code they represent. Figure E.3 4 depicts an
instance of that in our example implementation. With this layout, we aim to
support engineers in finding patterns in the freshly revealed sub-structure,
based on which they might start re-organizing the pin layout manually. To
implement the opposite direction, i.e., gaining an overview of which pins on a
whiteboard represent software elements from the same or a co-located archi-
tectural component, our method uses a pin coloring scheme, which maps a
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unique color to each architectural collection 5 . Sibling components receive
similar colors to emphasize their local relationship.

Navigation along References Regardless of the software element it repre-
sents, a pin’s detail view maintains two lists of references to elements in the
subject system as shown in Figure E.3 3 and 7 : on the left-hand side the
“incoming references” list contains one entry for each software element in
the system that has a code-level reference to the pinned element; on the right-
hand side, the “outgoing references” list contains one entry for each element
that the pinned element has a reference to. Engineers can use the two lists to
navigate the code-level relationships of a pinned element and also attach pins
for related software elements.

Freehand Drawing and Writing

Engineers can pick up a virtual pen and freely sketch on the surface of a virtual
whiteboard, e.g., to outline a selection of attached pins in a group or to make
comments. This enables them to use arbitrary notations in the form of their
own freehand drawings. Engineers can choose between different pen colors
and remove previously drawn pen strokes with an eraser. An operation stack
with undo and redo functionality, as well as features for duplicating a white-
board, changing its size, and resetting it provide engineers with further means
for flexible sketching and low change costs.

E.3.2 B Semi-Automated Interpretation of Freehand Sketches

Figure E.4 shows a meta model of the sketched diagram structure of our virtual
whiteboards.

Virtual 
White-
board

VR Vis.

Software 
System

Sketched Diagram

* * * 1

Pin Module Arrow Bitmap
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represents

1

1

*
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2
connects

Softw. Element

Visual Element
references

*

File/Class/.. *
1 Package/Folder/..
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Legend
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Figure E.4: Meta model for the sketched diagram structure of our method.
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Each diagram includes a simple bitmap that stores engineers’ sketches in
terms of colorized pixels. It also maintains a list of pins that engineers at-
tached to a whiteboard, including their position and a mapping to both the
pinned visual element and the represented software element. Our method in-
terprets drawn sketches ( B in Figure E.2) in terms of two fundamental kinds
of shapes to lay the foundation for subsequent automated analysis and oper-
ations. Our goal is to achieve a solution that is as automated and reliable as
possible while maintaining engineers’ freedom in their choice of visual nota-
tions.

To maximize reliability while ensuring a high degree of automation and
flexibility, our method expects user input on the kind of visual element they
currently sketch on a whiteboard. That is achieved by letting engineers switch
between different drawing modes. We limit this input to the two most fun-
damental types of elements used when visually representing elements and
relations between them [10, 14], i.e., (i) outlines around elements (pins on a
whiteboard) that group these into what we refer to as modules and (ii) arrows
between modules to express directed relations. In addition, we incorporate a
third mode for uninterpreted drawing.

Uninterpreted Drawing 8

Per default, engineers draw on a whiteboard without having their pen strokes
interpreted as visual elements, e.g., to write textual comments or to draw sym-
bols and icons. We persist each pen stroke in the colored bitmap and register
operations in the undo stack.

Module Outlining 9

When editing a sketch in module drawing mode, our method automatically
interprets freehand drawn shapes as outlines around pins on the whiteboard
and assigns included pins as the containment of the module (see Figure E.4).
These outlines can be arbitrarily shaped, so that engineers can freely decide
on the visual notation they use.

We do not specify semantics to modules but, instead, leave this decision
to the engineer and/or visualization that embeds our method. In our exam-
ple visualization in Figure E.3, modules have no semantics beyond grouping
together classes and packages. When engineers interact with the pins on a
whiteboard, e.g., by grabbing and repositioning them on the whiteboard, our
method automatically updates its internal model to re-evaluate the module
contents.
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In cases where two (or more) module outlines are nested or intersecting
one another, pins are assigned to all modules that contain them (cf. Fig-
ure E.4). While this means it is not possible to construct module hierarchies
– at least not in the underlying model structure, visually it is of course possi-

ble (cf. Figure E.3 11 ) – this behavior is easy-to-grasp for users and flexible
because it allows for arbitrary module shapes.

Relation Arrow Drawing 10

Previous work shows that developers draw relations between elements as di-
rected arrows [10]. Our method includes a relation drawing mode in which
it automatically interprets arrows between the borders of previously drawn
modules as relations between these and updates the sketched diagram model
accordingly (cf. Figure E.4). Our method determines which modules a
sketched arrow connects by finding the closest module to the arrow’s start
point and the closest module to the arrow’s end point respectively. This ap-
proach allows engineers to draw self references. To make the direction of
sketched arrows explicit, our method automatically completes them with ar-

row tips at the end (cf. Figure E.3 10 ). By explicitly modeling the relations be-
tween modules in a sketch, we lay the foundation for subsequent automated
steps, especially the visual superimposition of code-level relationships.

E.3.3 C Visual Superimposition of Code-Level References

To support engineers with establishing and maintaining an overview of the
relations between software elements on a virtual whiteboard, our method au-
tomatically superimposes code-level references via arced, semi-transparent
lines between the respective pins on a whiteboard ( C in Figure E.2). Fig-

ure E.3 11 shows examples where pins represent classes in a Java system and
superimposed reference lines between them are based on method calls, field
accesses, and type references. The thickness of reference lines indicates their
weight (number of references to another), while a texture on the lines indi-
cates their direction, which is further emphasized via a subtle animation.

Layout To avoid occlusion of superimposed reference lines, they bend per-
pendicularly to the normal direction of the whiteboard depending on how far
apart the connected pins are located (see Figure E.3). This achieves a layout
where a reference line between a pair of pins that is far apart bends further out
than a line connecting two nearby pins. In case of mutual references between



E.3. Freehand Reflexion Models in VR 175

two pins, i.e., two pins are connected by two superimposed lines (one in each
direction), these are slightly bent in a counter-clockwise rotation.

Color Per default, our method renders reference lines as semi-transparent
black lines. To provide engineers with visual feedback on their freehand
drawn arrows (see Section E.3.2), our method displays superimposed refer-
ence lines in the same color as an arrow if they match the arrow’s path through
the structures depicted in a sketch. Examples of that are depicted in Fig-

ure E.3 11 , where reference lines between two module in one direction are
colored in red due to a red freehand sketched arrows between them. Thereby,
our method provides engineers with continuous automated feedback on their
freehand sketches in the form of conformance checks with the ground-truth
relations between software elements ( E in Figure E.2), similar to the reflexion
modeling approach by Murphy et al. [8, 34]. The key difference is that Murphy
et al. employed a deliberately limited modeling notation and required a man-
ual triggering of the conformance checks at discrete time points, whereas our
approach captures models in the form of flexible freehand sketches while con-
tinuously providing instant conformance feedback. In combination with the
workflow of pinning and repositioning software elements on a whiteboard,
our method thereby achieves quick cycles of visualizing and reflecting which
are tied in closely with ground-truth information on a system’s architectural
structure.

E.3.4 D Integration with IDE and Automated Code Generation

When it comes to implementing planned changes, i.e., performing statement
level edits to a system’s code, we argue that the most suitable tool are IDEs
with their well-established features and user interfaces. To make insights and
plans sketched in VR available in an IDE, our method includes an automated
synchronization that mirrors diagrams from VR to the IDE, where engineers
are then able to zoom and pan in the sketch as well as to click on pins to jump
to the respectively mapped source code artifacts such as a class.

To support engineers in implementing a plan captured in a freehand
sketch, our method provides automated code generation operations ( D in
Figure E.2). These operations are based on the model structure of a plan (see
Figure E.4), allowing for coarse-grained operations, such as the generation of
an interface for a freehand drawn module.
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E.4 Evaluation

The overarching research objective we aim to address with our method is
supporting engineers in representing and reflecting on views and plans on
architecture-level software structures. We evaluate to what extent our method
achieves this objective by answering two research questions.

RQ1 How does VR freehand sketching support engineers in representing
architecture-level software structures?

RQ2 How does VR freehand sketching support engineers in reflecting on
architecture-level software structures?

We collected qualitative data to answer these research questions via an
iterative evaluation with software engineering practitioners from companies
located in 3 different countries (Switzerland, Denmark, and Germany).

We divided our evaluation into three iterations, which each consist of (i)
a study phase where we let participants solve tasks using an implementation
of our method while collecting qualitative data in a semi-structured interview
and (ii) a development phase in which we improved our concepts and tool
based on the results of the preceding evaluation phase. Figure E.5 depicts this
process.

Iteration 1 Iteration 2 Iteration 3

Study
Phase Stud1

Development 
Phase Dev1

Study
Phase Stud2

Development 
Phase Dev2

Study
Phase Stud3

Development 
Phase Dev3

Figure E.5: Structure of our iterative evaluation. We alternated between study phases where we tested

ourmethodwith participants in a case study and development phases where we improved and extended

it.

The groups of participants were mutually exclusive across the iterations
with a distribution as follows:

• Iteration 1: Four developers from one company

• Iteration 2: Three developers from two companies

• Iteration 3: One developer from one company
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E.4.1 Study Phases

The study consisted of tasks which guided the participants through a step-
wise re-engineering preparation for the open-source software system “Apache
Batik” (~2.600 Java classes). To solve the tasks, participants used an imple-
mentation of our VR freehand sketching method. After each task, we queried
participants’ verdict on the support they receive from our method. The aver-
age duration of sessions was ~1 hour.

Tasks

The evaluation phases of our case study are organized into three tasks. Ta-
ble E.1 provides shortened versions of these along with the activity they re-
quired from participants and the research question they cover respectively.
The tasks were consistent across all iterations. A complete version of our in-
terview guide with more elaborate task descriptions and questions is available
in our online appendix2.

In Task1, we asked participants to analyze an example application package
(38 directly contained classes and interfaces, no sub-structure). The idea was
to identify cohesive groups and represent the resulting structure on a white-
board.

In Task2, we asked participants, first, to investigate the relationship of the
example application investigated in Task1 to a package that it builds upon
and, second, to re-plan it. To achieve a plausible scenario for that task, we de-
liberately introduced questionable design decisions into the subject system
as preparation for the case study. That is, we added method calls that resulted
in a mutual dependency between the example application from Task1 and the
package it builds upon.

In Task3, we asked participants to reflect on the change they had planned
in Task2 via a change impact analysis.

2https://doi.org/10.6084/m9.figshare.22710490

https://doi.org/10.6084/m9.figshare.22710490
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Questions

After each task, we collected qualitative feedback from participants via open
questions. These were consistent across all iterations.

• How would you usually [solve this task]?

• How do you assess the support you receive from the virtual whiteboard
for [solving this task]?

→ Do you see benefits over your usual approach?

→ Do you see drawbacks compared to your usual approach?

→ Do you miss functionality that would be helpful?

We substituted task-specific terms in the questions above. Full descriptions
of each task and question are available in our online appendix2.

Analysis

We recorded videos of each participant’s point of view in VR along with au-
dio of their responses to our questions. After each iteration we analyzed
the recordings by transcribing them and applying an open coding procedure.
First, we highlighted verbatim statements in the transcript that we identified
as relevant for answering our research questions. Second, we grouped these
verbatim statements based on their core statement. Tables with details on
these two steps are available in our online appendix2. Third, we sorted par-
ticipants’ core statements and established categories among them. We also
identified recurring topics on the verbatim statements, orthogonal to the es-
tablished categories. Figure E.6 depicts a graphical representation of our re-
sults after Iteration 3.

E.4.2 Development Phases

Subsequent to each study phase, we conducted a development phase in
which we addressed identified problems and suggestions. We discuss relevant
instances of these in Section E.4.3. More detailed descriptions of changes with
a mapping to verbatim statements of participants can be found in our online
appendix2.

In the following, we elaborate on our technical implementation1, which
we provided to participants.
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Implementation

We integrated the concepts presented in Section E.3 into the open-source
VR software visualization tool “Immersive Software Archaeology” (ISA)1. Fig-
ure E.3 depicts screenshots of that implementation. ISA already provides
users with immersive functionality for grabbing and moving its visual ele-
ments. This integrates well with our method. Because our research objective
is concerned with architecture-level software structures, we built upon ISA’s
existing grabbing functionality to allow participants to pin packages and clas-
sifiers (classes, interfaces, and enums) of a Java subject system.

E.4.3 Participants’Answers

During the analysis of our interview transcripts (see Section E.4.1), we ex-
tracted recurring topics in participants replies to our questions. In the fol-
lowing, we elaborate on these (T1-T9). We highlight a number of potential
obstacles in technical implementation of our method and how we addressed
them as well as conceptual challenges that participants identified. The graph-
ical representation in Figure E.6 provides an overview of the core statements
made by the participants, grouped into categories and summarized into top-
ics (T1-T9). Furthermore, we annotate whether any of these statements re-
ferred to issues that were resolved during the prototype’s development (indi-
cated by strikethrough in the figure).

T1) Usual Tools Are Not Ideal

A majority of participants stated that their usual approach for solving Task1

(sorting package contents) would entail graphical notations, most notably in
UML. One participant emphasized that relations between classes are hard to
track in class diagrams. In contrast, participants answered to usually solve
problems like Task2 (analyzing and re-planning a relation between packages)
purely by reading through code with metrics and references as guidance, e.g.,
“looking at each class [in an IDE] and seeing if it is being used in the browser
app or not.” When describing their usual workflow for tasks similar to Task3

(impact analysis for the changes planned in Task2), participants reported on
problems with their current practice. One participant stated to use an IDE for
similar tasks and continues “It’s time consuming. It’s possible, but it’s time con-
suming” while another concludes after solving Task3 “It would be very com-
plex. Much more complex than what just happened now.” Another participant
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comments “Oftentimes, I do not have documentation or visualizations. Often-
times, I only have code [..]which I have to consider as black box. [..]If I now
have a possibility to say ‘okay, I draw a rectangle’ and then I say ‘okay, it in-
cludes this and that method and so on’, then I can myself document code that
was previously undocumented in an easy way.”

T2) Whiteboard Interaction Must be Realistic

In Iterations 1 and 2, participants made remarks on VR interactions in our
concrete technical implementation which they perceived as cumbersome to
use.

We addressed all encountered obstacles in the development phases of our
evaluation. Because these points are specific to the concrete technical imple-
mentation of our method, we refer to our online appendix2 for further points
and details. We discuss two aspects in the following which we deem relevant
for implementations of our (or similar) concepts.

Whiteboard Repositioning In our initial implementation, whiteboards
snapped to the user’s hand when grabbed, adopting its position and rota-
tion. This led to confusion. We addressed this problem in Dev2 by reworking
the grabbing mechanism to attach to the user’s hand relative to its current
position and rotation so that when grabbed, the whiteboard always remains
in place until the user moves the grabbing hand.

Pen Clipping In the real world, physical whiteboards provide feedback on
when a pen touches them simply because the objects collide and the pen can-
not be pushed further. In VR, this is not the case. Users can move their phys-
ical hand further although, in the virtual space, a whiteboard should block
their movement. Major challenges for implementing our method are (i) pro-
viding users with feedback on when their pen touches the whiteboard and
(ii) preventing, to some degree, their virtual hand and pen to clip through a
whiteboard although the physical hand might move further. We solved these
challenges (i) via haptic feedback on the VR controllers (vibrating upon touch-
ing the whiteboard with the pen tip) and (ii) by temporarily disconnecting the
physical and virtual hand’s synchronization and projecting the virtual pen on
the surface of a whiteboard when users push their hands too far into a it.
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T3) Layout Algorithm for Splitting Pins Should be Intuitive

In iteration 1, we used a simple algorithm to determine the layout of split pins
by randomly searching for unoccupied space on the whiteboard.

Participants complained about that: “Spaghetti. Yeah, it’s very messy!”
While manually sorting the randomly positioned pins, they were wondering
“Why is it me who’s doing that?” For the subsequent iteration, we imple-
mented layout algorithms that built on a clustering technique [58] to group
together pins for interrelated software elements, i.e., (a) spawning one circle
of pins for each identified cluster and (b) arranging all pins in a big circle with
pins clustered together as neighbors and noticeable gaps to other clusters (see
Section E.3). Strategy (a) was not perceived as intuitive and, thus, helpful be-
cause splitting one pin resulted in multiple different circles. One participant
remarked “This layout seems to follow some concept. And if I do not under-
stand that concept [..], it does not help me.” before going over to manually
arranging the pins according to strategy (b). Therefore, we decided for strat-
egy (b) in Dev2 which, in comparison with strategy (a), was again assessed as
beneficial in Iteration 3 (Task1): “I like as basic layout this outer ring [of pins],
because it keeps the center tidy, and also it provides a maximum transparency
for the [reference] lines. [..]And then I can say ‘okay, this [pin] seems relevant, I
put it in the center’.”

T4) VR Whiteboards Provide Overview But No Code

Participants across all iterations commented on the overview of the software
structures they represented with our method.

One participant (Iteration 1) reported on a lack of detail due to the high
level of abstraction, pointing out that a more thorough answer to Task2 would
require to read through source code: “This would be just a starting point for
understanding where to investigate” while another remarks “I think it is a great
tool for the overview and a lesser great tool for the detailed look.” after finishing
Task3 (Iteration 2).

The high level of abstraction in our method was perceived as positive. Par-
ticipants across all iterations and tasks mentioned that using our method pro-
vided them with a good overview over what they have sketched compared to
their usual approach, e.g., “In this whiteboard, I have a clearer overview of ev-
erything.” (Iteration 1, Task1) One participant emphasized particularly the ref-
erence lines between pins: “This isolated class would maybe be hard to find [in
code] because it has no relations. But here it popped into my view.” (Iteration
2, Task1)
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T5) Pins Should Visualize Meta Information

In our initial implementation (used in Iteration 1), all pins for classes had an
identical appearance, i.e., white cylinders without further geometry. We re-
ceived multiple comments on this:

Visualizing Metrics One participant remarked “Some of the metrics [from
the original visualization] are missing. [..]They would help me pinpoint faster
which are the classes that have problems.” We implemented this suggestion in
Dev1 by displaying a small avatar of the respective represented visual element
on each pin (see Section E.3.1). Because visual elements in software visual-
izations are usually generated based on relevant metrics for the software ele-
ments they represent, the avatars on pins communicate these metrics as well.
In subsequent iterations, we observed that the avatars on pins helped partic-
ipants with identifying relevant source code entities, e.g., only a few seconds
after seeing all 38 pins of the package in Task1, one participant grabs a pin for
a large class and states “I want to put this aside to demonstrate it is a central
element, from the relations and its size alone.”

Visualizing Pin Origins A problem participants reported on in Iteration 1
was keeping track of pin origins, e.g., “Did that [pin] come from here or there?
So that will kind of confuse my box thinking.” We addressed that problem in
Dev1 by coloring pins according to the subsystem they stem from (see Sec-
tion E.3). It was not brought up in subsequent iterations.

T6) Module and Relation Sketching is (Mostly) Intuitive

Across all iterations and tasks, intuitiveness was often mentioned. We re-
ceived critique and suggestions regarding unintuitive controls for the earlier
stages of our implementation. Because we consider them relevant for tech-
nical implementations of our method, we report on the two most notable in-
stances, both caused by insufficiently explained tool functionality. Both in-
stances could be resolved with a short explanation during the respective ses-
sions. We addressed them via explanations in the UI.

Drawing Nested/Overlapping Modules One point of confusion brought up by
two participants in Iteration 2 (Task2 and Task3) were the semantics of multi-
ple modules outlining one or more common pins (i.e., the modules are over-
lapping or nested into one another).
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For instance, one participant drew a large blue module around ~30 pins
of which 4 were already outlined by a smaller yellow module. The participant
stopped for a moment, pointed at the pins and wondered “Are these both blue
and yellow in principle?” Although the behavior of our method in such cases
was easy to grasp for the participants once explained (in the instance above,
both modules indeed contained the 4 pins in question, cf. Section E.3), it was
not obvious to them initially.

Reference Line Directionality A point of confusion for one participant in Iter-
ation 2 were the semantics of the reference lines between pins. Instead of the
“calls” relationship that they display, one participant interpreted the direction
of the lines as “is called”, leading to wrong assumptions in Task3. The majority
of comments on our method’s intuitiveness was positive across all iterations
and tasks. One participant reported “[..]it feels quite intuitive. It’s fun to keep
grabbing [pins] and moving them.” (Iteration 2, Task 2). Another participant
comments “It seems quite visually intuitive.” (Iteration 2, Task 1).

T7) Good Efficiency and Flexibility

Participants in all iterations highlighted a high degree of flexibility and effi-
ciency in our method. While drawing modules and continuously moving pins
around to solve Task2, one participant in Iteration 1 comments “This is very
powerful. I can, one, define modules and, two, I can use the tool to provide me
visual hints on the kind of relationships and so on. [..]This is way better [than
my usual approach]. I mean, here I can see what I have to do. Yeah, it’s very
cool.” Another participant comments after solving Task3: “The benefit in this
approach here with this whiteboard and especially these relations is being able
to see very quickly and in a very dynamic way – because I was able to move
classes around – where the dependencies lie and in which direction they are.
It’s just way faster than anything I would do with an IDE, for example, because
IDEs usually just let you do one thing at a time. In this case, instead, it’s like do-
ing these kinds of analysis in parallel because I’m doing it for [multiple] classes
at the same time.”

T8) A Full-body VR Experience

While solving the tasks, participants were using their bodies extensively – es-
pecially their arms. They reached out to pins all over their whiteboards, scrib-
bled, outlined and wrote annotations, stepped back to reflect over their draw-
ing, walked to other visual elements in the embedding visualizing to pin them



186 Paper E. Preparing Software Re-Engineering via Freehand Sketches in Virtual Reality

on the board, and so on. While this workflow contributes to the aforemen-
tioned aspects of intuitiveness and flexibility, one participant pointed out:
“The drawback of VR is always that you need put on the headset and change
the environment you are in. VR is a great supplementary tool, but you cannot
use it for 8 hours a day, that would not be pleasant at the state that VR is in
right now.” Another participant comments: “You are requiring your body to be
more used. [..]It’s a full body experience. I like it personally, but it’s something
to keep in mind. Why should people be standing and using their whole body?
What does it add? It needs to add something. I think it does in this case.”

T9) Potential for Communication Purposes

Across all tasks, participants hypothesized a usefulness of our method for
communication purposes.

Two participants each described scenarios where they imagined using our
method to demonstrate software structures to other stakeholders on-screen,
e.g., “I think it would be beneficial, especially [for] a project manager or even
a client trying to understand the complexity of something. You could have a
shared dialog in a more visual way.” Another participant imagined using the
method to communicate with peers: “If I were to communicate with some-
one else about this, it would be much easier for me to introduce them to my
thoughts here than clicking through a thousand [IDE] windows and references.
This is much easier.” To facilitate the latter scenario, the participant suggested
functionality that allows multiple users to enter the same virtual world simul-
taneously to collaboratively edit and view VR whiteboards.

E.4.4 Answers to Research Questions

We use the results presented in T1-T9above to answer our research questions
in the following, highlighting both advantages and disadvantages.

RQ1: How does VR freehand sketching support engineers in representing

architecture-level software structures?

To answer this research question, we identify feedback and comments related
to pinning elements and sketching in different pen modes to persist views and
plans on software structures.

Among that feedback were problems with the VR controls (T2), requests
for improved pin layout algorithms (T3), suggestions for more meta informa-
tion on pinned elements (T5), and more unintuitive functionality (T6). In
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Dev1 and Dev2 (Figure E.5), we addressed all points that emerged directly
from the technical implementation (e.g., problems with the VR controls, T2)
and extended our concepts and implementation for all those that required
further work on our method (e.g., adding semantic structure to pins via color
and avatars, T5).

Positive feedback and perceived strengths of our method related to RQ1

were its intuitiveness (T6) and its high degree of flexibility (T7).
The workflow of pinning software elements on a diagram and simply

drawing on it was perceived as powerful and efficient (T7): “I was able to just
do it all at once: Just selecting all the classes and [it was] telling me [..]which of
these classes are being used in the browser [package]. In that sense, it was way
faster.” This has shown to be particularly useful for planning changes to the
depicted software structures in Task2, because participants were able to freely
position, outline, highlight, and annotate software elements and their inter-
relations. Other key features were those that allowed participants to navigate
along the software hierarchies in a sketch, i.e., splitting pins for architectural
units (T3) while maintaining an overview of the pins’ origins (T5).

RQ2: How does VR freehand sketching support engineers in reflecting on

architecture-level software structures?

To answer this research question, we consider feedback and comments re-
lated to participants having high-level reflections over (a) the software struc-
tures depicted in their sketches (“is this what the system looks like?”) and (b)
the sketches per se (“should it really look like this?”).

Potential problems we identified were unintuitive semantics of reference
lines (i.e., directionality representing “calls” versus “is called”, T6). This was
addressed in the subsequent development phase via UI explanations. For an-
other, it was a perceived lack of detail in the drawn diagrams due to the un-
availability of source code (T4) reported by multiple participants. This is the
most relevant critique of our method. On one hand, our method deliberately
abstracts from target languages and leaves it to the embedding software visu-
alization to display source code (should it allow this at all). This has advan-
tages in terms of overview (T4), programming language independence, and
communication (T9). On the other hand, using our method for in-depth re-
flections on software structures “[..]would be just a starting point for under-
standing where to investigate” (T4).

The majority of comments relevant for RQ2 are positive: The level of
abstraction employed by our method provided participants with a good
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overview of the depicted structures (T4), especially when compared to par-
ticipants’ usual approaches (T1): “it’s faster to get an overview [..]for a task of
identifying which are the problematic classes.” Reference lines between pins
and the continuous checks on their conformance to drawn arrows were em-
phasized as particularly helpful, e.g., “It’s a great tool for having an overview,
especially when you’re getting into a very complicated repository and packages
are cross-referencing as much as this is.” Lastly, participants saw potential in
our method for jointly communicating and reflecting about view, ideas, and
problems with peers and other (non technical) stakeholders (T9).

Summary: How does our method support engineers in preparing for architectural

re-engineering?

Our method has positive effects on participants’ ability to represent and re-
flect on software structures. Although our study showed that the high level
of abstraction in our concepts comes at the cost of an unavailability of de-
tails, it was overall perceived as flexible, powerful, and visually intuitive with
potential value for dissemination purposes. A more extensive answer to how
our method supports engineers in preparing architectural re-engineering re-
quires further investigation into the full re-engineering circle, i.e., letting en-
gineers enact plans made on our virtual whiteboards by performing code
changes. The data gathered in this study alone demonstrates that our method
supports engineers in externalizing views on software structures and plans
to change these and, thus, that it facilitates preparing for architectural re-
engineering.

E.4.5 Reflections on the Evaluation

We collected qualitative data to answer our research questions. In the follow-
ing, we critically reflect on that process.

Number of participants One aspect to consider is the number of participants
in our study, i.e., 4 in study phase Stud1, 3 in Stud2, and 1 in Stud3. Having
only one participant in Stud3 entails a risk to the evaluation of changes made
in Dev2. However, because we did not conceptually change our method in
Dev2, this risk pertains only to implementation aspects, mostly regarding in-
teraction problems noted in Stud2 for concepts developed and implemented
in Dev1.
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Biases in Feedback and Analysis The most critical risk to the results of our
evaluation are potential biases in our participants’ feedback and our analysis.
To mitigate these, we took several countermeasures. For one, to mitigate bi-
ases towards answers that favor certain theories over others, we formulated
tasks and questions neutrally and in an open-ended style. We recorded these
in an interview guide2, which additionally makes participants’ statements and
assessments comparable. As part of that, we explicitly invited both positive
and negative feedback. For another, to mitigate biases in our analysis, we
recorded and transcribed video and audio footage of each session to analyze
participants’ feedback verbatim and in the context of what they were doing.

E.5 Conclusion and Future Work

We presented a method for freehand sketching views and plans on
architecture-level software structures in virtual reality. Our method integrates
with the model structure of an embedding VR software visualization to au-
tomatically (a) augment sketches with information on relations between de-
picted elements and (b) provide instant conformance checks of sketches with
the represented source code.

We evaluated our method in a qualitative study with 8 software engineer-
ing practitioners from 4 companies across 3 countries. Our results show that
participants’ main point of critique was a perceived lack ot detail due to the
high level of abstraction employed by our method. For the same reason, how-
ever, they strongly emphasized obtaining a good overview over the structures
depicted in their drawings. All in all, our method was perceived as flexible, ef-
ficient, and powerful with a high potential value for communication purposes
and eased collaborative efforts.

In future work, we plan to conduct an empirical long-term study on the
usage of VR freehand sketching of architectural views in industrial software
development to observe practical impacts and benefits with larger participant
numbers than presented in this work. That includes further investigations of
our method for facilitating the collaboration between practitioners in explor-
ing and re-documenting software systems.

We further plan to investigate supporting re-engineers with enacting
changes planned with our VR freehand sketching method. In a first instance,
this includes extending the currently available code generation capabilities
of our method, so that re-engineers can start preparing source code changes
based on drawn diagrams from within VR. Detailed code edits on the level
of individual statements, however, should be done in a traditional 2D-screen
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IDE. Thus, we further plan to extend our method such that it transfers changes
planned in a freehand sketch into lists of action items displayed in the IDE.
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Abstract

Exploring and comprehending a software system, e.g., as prepara-
tion for its re-engineering, is a relevant, yet challenging endeavour of-
ten conducted by teams of engineers. Collaborative exploration tools
aim to ease the process, e.g., via interactive visualizations in virtual re-
ality (VR). However, these neglect to provide engineers with capabilities
for persisting their thoughts and findings.

We present an interactive VR visualization method that enables (dis-
tributed) teams of engineers to collaboratively (1) explore a subject sys-
tem, while (2) persisting insights via free-hand diagrams, audio record-
ings, and in-visualization VR screenshots.

We invited pairs of software engineering practitioners to use our
method to collaboratively explore a software system. We observed how
they used our method and collected their feedback and impressions be-
fore replaying their findings to the original developers of the subject sys-
tem for assessment.

Video Demonstration – https://youtu.be/32EIpf4V3b4

https://www.youtube.com/watch?v=32EIpf4V3b4
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F.1 Introduction

Understanding a software system is a crucial task, frequently undertaken by
groups of engineers [1]. For instance, it plays a vital role when preparing for
the re-engineering of legacy software systems [2, 3], or for integrating a new
member into a team. Nevertheless, the sheer size and complexity of a subject
system or the engineers’ proficiency with a programming language can hin-
der the software comprehension process. When attempting to explore and
comprehend a software system by solely studying its source code, gaining an
overview of its structure can be an intricate task.

Software visualization tools are available to assist engineers in gaining a
comprehensive overview of a software system. These tools visually portray
various facets of a system’s structure, behavior, or evolution, offering an ab-
straction from the actual source code [4, 5, 6]. However, there are limited op-
tions for software visualizations that facilitate collaborative exploration. This
becomes increasingly relevant in distributed developer teams [7, 8].

VR software visualization is an appropriate domain for collaboration,
which is why state-of the-art tools support it [9, 10]. However, existing ap-
proaches are limited, because they do not allow developers to take notes, pos-
ing a risk of valuable insights being lost.

We present a method that combines software exploration and note-
making within a VR setting (see Figure F.1). Engineers are immersed in an
interactive 3D visualization of the source code of a subject system, facilitating
collaborative engagement and comprehension of its structure. To document
observations and insights in real-time, engineers have the capability to cre-
ate virtual multi-media whiteboards (inspired by the work of Hoff et al. [11]).
These serve as a medium for pinning software elements from the visualiza-
tion, drawing freehand diagrams with tool assistance, jotting down notes, as
well as pinning recorded audio notes and captured in-visualization screen-
shots of the VR surroundings.

Additionally, these virtual whiteboards remain accessible and interactive
outside the VR environment through synchronization with an Integrated De-
velopment Environment (IDE), enabling further examination and interaction,
e.g., direct access to source code.

We used our method in an exploratory case study to investigate and report
on how practitioners engage with VR tools for collaborative software explo-
ration and, based on that, provide lessons learned for developers of similar
tools. That is, we explored how engineers engage with exploration methods
akin to ours.
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Figure F.1: Screenshot taken from a user’s point of view while exploring a system. A collaborator takes

notes on a virtual whiteboard.

RQ1 How do engineers explore and take notes of a software system in a col-
laborative VR software exploration and note taking tool?

RQ2 What strengths and weaknesses do engineers perceive in using a collab-
orative VR software exploration and note taking tool?

Further, we studied the results of engineers’ explorations to provide first
impressions on the suitability of the approach.

RQ3 What type of insights do engineers extract from a system when using a
collaborative VR software exploration and note taking tool?

To answer these questions, we invited two pairs of developers to use our
method for exploring and comprehending a software system they had not
seen before. We observed their exploration and note taking strategies (RQ1),
gathered their comments and opinions through questionnaires (RQ2), and
scrutinized the insights they accumulated on virtual whiteboards (RQ3) by
consulting with the original developers of the subject system, in order to verify
the accuracy and relevance of the accumulated information.

Our results show that participants engaged vividly in a collaborative
software exploration in VR, appreciating especially the architecture-level
overview on the system’s structure, yielding correct insights.
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F.2 Background and Related Work

Our method integrates collaborative software exploration and note-taking in
a VR software visualization, positioning it within two main research domains:
software visualization and (re-)documentation.

F.2.1 Software Visualization

Software visualization entails the use of visual metaphors to depict abstract
and intangible concepts present in source code, with the intention of aiding
users in obtaining both a general understanding and detailed insights into a
software system’s structural, behavioral, or evolutionary facets [4, 5, 6].

The visual metaphors employed range from abstract representations, such
as graphs [12, 13, 14] or tree maps [15, 16], to real-world inspired structures
like solar systems [17, 18, 19], islands [20], and cities [21, 22, 23, 24, 19]. Addi-
tionally, visual metaphors in software visualization can be categorized based
on their dimensionality into 2D [25, 26, 27] and 3D variants, with the lat-
ter further distinguishable by the medium utilized, spanning standard 2D
screens [28, 29, 30], VR [31, 32, 33], and AR [34, 35, 36].

There is a noticeable gap in research focusing on collaborative software
exploration and understanding. Anslow et al. introduced a method using an
interactive touch-screen table for collaborative exploration, providing differ-
ent structural views of a subject system [37]. This method is inherently de-
signed for co-located collaboration. For distributed teams, research has ex-
plored VR as a medium for collaborative software exploration. Koschke et al.
provide a collaborative VR method with diverse views, i.a., for clone detection
or identifying architectural drift [9, 8]. Krause-Glau et al. propose a method
for behavioral aspects investigation in a collaborative setting across various
devices, including VR headsets [38]. While these contributions are valuable
for collaborative VR software exploration, they lack the means for engineers to
take notes on their insights, potentially leading to loss of valuable information
during prolonged sessions – which constitute a relevant use case. We address
this gap by proposing a method that integrates collaborative note taking into
the exploration process (Section F.3).

Collaborative environments for software exploration exist mainly for VR.
They inadequately support concurrent note-taking, which is essential for pre-
serving insights.



F.3. Collaborative Software Exploration and Note Taking in VR 201

F.2.2 Software Documentation and Note Making

Various techniques and tools exist to aid engineers in generating notes and
documentation on a software system’s source code.

These range from automated documentation generators like RGB [39],
Scribble [40], PAS [41], Re-Doc [42], and others [43, 44], to more informal
methods like freehand sketching on paper or whiteboards [45, 46]. The lat-
ter is particularly prevalent in collaborative scenarios, providing a flexible
medium for capturing ideas and insights. In recent work, Hoff et al. pro-
posed a VR-based sketching method that enables engineers to pin elements
from a software visualization and, based on that, sketch diagrams directly on
whiteboards [11]. Their method performs conformance checks between the
sketched diagrams and the source code, ensuring alignment. However, so far,
the method proposed by Hoff et al. was used in only one study and that was
not in a collaborative exploration setting. Further, to thoroughly capture com-
plex and extensive notes during the software exploration process, we advocate
for additional mechanisms beyond freehand sketching, which are not present
in the previous work by Hoff et al.

While freehand sketching is a valuable tool for note-making in software en-
gineering, current VR-based methods need more versatility to adequately cap-
ture long and complex notes.

F.3 Collaborative Software Exploration and Note Taking in

VR

To support teams of engineers in collaboratively exploring software sys-
tems, we propose a VR method that enables multiple engineers to enter a
shared synchronized virtual environment (each with their individual head
mounted VR device) to collaboratively explore a subject system while captur-
ing thoughts and insights on shared VR whiteboards via freehand sketching,
audio recordings, and in-visualization screenshots. Our method can be used
in a local network as well as over the internet, allowing distributed teams of
engineers to meet up in a virtual space to collaboratively explore a system’s
architecture and design, discuss ideas, and make notes.

F.3.1 Collaborative Interactive VR Visualization

Our method supports teams of collaborating engineers in freely explor-
ing software systems in a top-down fashion [47], following Schneiderman’s
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mantra “overview first, zoom and filter, details on demand” [48]. It provides
engineers with an overview of the folder-level and class-level structure of a
subject system, relationships between elements on both these levels, synchro-
nized mechanisms for navigation and zoom, and details on demand on source
code as text. Our concepts are designed for subject systems written in object-
oriented programming languages. In the following, we elaborate on these us-
ing Java as an example.

Architecture Level - Folder Spheres

To provide engineers with an overview of the subject system, our method vi-
sualizes its folder structure as hierarchy of nested semi-transparent spheres
(see Figure F.3 a ), similar to the software landscapes by Balzer et al. [49, 50].
Each sphere represents one folder with constituent elements (i.e., class-level
elements and sub-folders) contained inside it, arranged in a circular layout
parallel to the floor of the virtual environment c . On system root level, all
visual elements are contained in a root folder sphere containing the entire
subject system b .

Colors for Orientation To help engineers with distinguishing elements from
different parts of the subject system, our method determines colors for folder
spheres based on the position of the represented folder in the system’s hierar-
chy.

Figure F.2 depicts an example that illustrates the color distribution con-
cept. Leaf-level folders are assigned evenly distributed hue values while their
nesting level determines the color’s saturation. Hue values for all remaining
folders result from the average of their sub-folder colors’ hue.

Interaction via Core Depending on the amount and extents of their con-
tained elements, folder spheres vary in size. With their semi-transparent look,
they serve to guide engineers visually, creating an environment engineers can
move through and stand in without unintentionally triggering interactions.
We consistently manage interaction with folder spheres through a central
core, see Figure F.3 c . These cores are uniform in size (independent of the
folder sphere’s radius), ensuring a standard interaction across the system. En-
gineers have the option to grab cores for discussions with peers or tap on them
to access a user interface offering additional information and options d , such
as selecting specific entity relationships to display. When an engineer releases
the core, it automatically repositions itself back to the folder sphere’s center.
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Figure F.2: Example folder sphere hierarchy depicting the color scheme employed by our method.

Opening/Closing Folder Spheres To support engineers with focusing their in-
vestigation on relevant parts of a subject system, the visualization allows ad-
justing the amount of details in a view by opening and closing folder spheres.
This is done via the folder sphere’s core in a user interface or via hand gestures.
When opening a system for the first time, its root folder is opened by default
with all first-level folders visible but closed (cf. Figure F.3 j and l ). Thereby,
our method limits the amount of information immediately presented to en-
gineers - a feature that is useful for large subject systems. Engineers open the
visible folder spheres to look into their directly contained elements. Closing
a sphere hides all constituent elements until opened again. The right-hand
side of Figure F.3 b shows a folder sphere after opening with its sub-folders
spheres closed (compare with j and l ). Opening and closing folder spheres
is synchronized between all collaborating engineers.

While we considered a feature for opening all folders simultaneously, we
decided against it to prevent users from becoming overwhelmed and losing
their overview of the system. Our intention is to promote a top-down ap-
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proach to exploration. Additionally, while our current implementation fa-
voring a simpler user interaction does not allow engineers to completely hide
folders and thereby only display selected non-hidden content, a feature like
this could become valuable for navigating very large systems.

Class Level - Class Cylinders

Our method represents class-level elements in a way that provides engineers
with a rapid overview of their inner member-level structure by encoding infor-
mation in several visual properties: base cylinder, method cylinders, attribute
spikes, and nested class cylinders discussed below.

Base Cylinder Every class cylinder consists of one base cylinder that is col-
ored according to the color of its containing folder (see Figure F.2 on the color-
ing concept and Figure F.3 f as implemented). Further, our method visually
distinguishes between concrete and abstract class-level elements via the sur-
face shading of the base cylinder. For instance, in Java, the base cylinder of a
concrete class is displayed with an opaque surface f whereas abstract classes
and interfaces receive a see-through wireframe surface to convey the look of
a less tangible and less concrete structure h .

Method Cylinders Methods/functions of a class-level element are repre-
sented in form of cylinders where structural metrics determine their shape,
i.e., the number of expressions in a method determines the cylinder’s height
while its cognitive complexity [51] (driven primarily by the depth of control
flow splits) determines the cylinder’s radius.

To rapidly grant engineers an overview of the accessibility of methods,
cylinders for methods with unrestricted access (e.g., public modifier in Java)
are stacked on top of the base cylinder while cylinders for encapsuled meth-
ods (e.g., private, protected, or package visibility in Java) are stacked under-
neath the base cylinder. Figure F.3 f depicts an example of a class with nu-
merous public and private methods with varying size and complexity.

Attribute Spikes Attributes/fields of a class-level element are represented as
evenly distributed spikes originating from the colored base of a class cylinder,
with unrestricted attributes being notably longer than encapsuled attributes,
see Figure F.3 g .
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Nested Class Cylinders Nested class-level elements are represented using the
above described mechanisms for regular classes, with two deviations: (1) their
base cylinder is notably smaller, i.e., half the size of a root-level class; and (2)
to represent the structural connection with their containing class-level ele-
ment, nested class cylinders are arranged in an evenly spaced circle around
the nesting class cylinder. As an example, the left-hand side of Fig. F.3 f de-
picts a nested class “DragMode” in a regular class “DiagramCanvas”.

Interaction Engineers in VR can grab class cylinders and hold them in their
hands e , e.g., to show them to a collaborator in a conversation. When re-
leased, the class cylinder smoothly returns to its original position in the visu-
alization. Further, engineers can tip on the base cylinder, method cylinder, or
attribute spikes of a class cylinder with their virtual fingers to open detailed
views with additional information (see Sections F.3.1 and F.3.1).

Source Code Views

On demand, our method provides engineers with a textual view of a visual-
ized element via a synchronized scrollable user interface, see Fig. F.3 i . This
interface shows the source code of an element in the context of the file it is
stored in. For instance, the source code view for a method displays all code of
the containing file where it (1) initially scrolls to the location of the selected
method and (2) emphasizes it by graying out all leading and trailing code. In
Fig. F.3 i the upper part of the presented code is grayed out to highlight the
currently displayed code section.

Relationships

Our method provides engineers with an overview of the relationships between
elements via an interactive graph based on statically analyzed references in
the subject system’s code. This relationship graph represents references as
animated directed lines between respective visual elements, originating from
the member that contains the reference and ending in the referenced element,
see Figure F.3 a and i . Our method distinguishes between incoming and out-
going references to or from a selected element as well as between type refer-
ences, method calls, and field accesses respectively. Engineers can individu-
ally show and hide relationship lines for each of these categories for a selected
folder, class-level element, method, or attribute via a synchronized user inter-
face attached to the respective visual element, see Figure F.3 i . To reduce
clutter and visual complexity, relationship lines are bundled together as they
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cross folder sphere boundaries, similar to the technique proposed in [49, 50],
see Figure F.3 a . Displaying relationships for a software element containing
multiple members (i.e., folders and class-level elements) summarizes all con-
tained incoming/outgoing relationships.

Navigation and Zoom

Engineers can freely navigate the visualization and change their point of view,
which is synchronized in real time with all collaborators. They can change
their position by (1) teleporting through the virtual space and (2) rotating
around their virtual axis (a VR mechanism commonly referred to as “snap
turning” or “snap rotation”). To facilitate engineers’ potential experience with
other VR tools or games, these resemble standard VR navigation mechanisms
present in a majority of current VR applications. Further, they can use hand
gestures to (a) move/offset the entire visualization (i.e., the hierarchy of folder
spheres with all constituent elements) and (b) zoom in and out to change
scale of the root folder sphere relative to the engineer’s hand position, see Fig-
ure F.3 j to l . To ensure a consistent point of view on the system, these
mechanisms are synchronized between all collaborators. They offer fine-
grain control over the point of view on a subject system while mitigating entry
barriers by being operable when seated and in a small space.

F.3.2 Collaborative Note-Taking on VR Multi-Media Whiteboards

Our method encompasses mechanisms for collaborative note taking that en-
able engineers to persist insights and synchronize their understanding of a
subject system while exploring it in VR: building on work from Hoff et al. [11],
engineers work with virtual whiteboards to (a) pin elements from a VR soft-
ware visualization (such as the folder spheres or class cylinders presented in
Section F.3.1) and (b) pick up a virtual pen and sketch freely. Figure F.4 n , v
and u illustrate these interactions. Software elements pinned to a whiteboard
are represented as pins displaying references between the pinned software el-
ements via curved relation lines. Further, the method presented in [11] au-
tomatically interprets freehand drawn shapes as outlines around pins (called
modules) and relation-arrows between these. Based on that, it provides engi-
neers with conformance checks between their sketches and the represented
software structures by coloring relation lines between pins. Our method ex-
tends Hoff et al.’s work [11] with support for taking multi-media notes during
an ongoing collaborative exploration via: 1) synchronized whiteboard inter-
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action (F.3.2), 2) in-visualization screenshots (“VR-shots”) (F.3.2), and 3) audio
recordings (F.3.2).

Synchronized Whiteboard Interaction

We extend the VR whiteboards presented in [11] by collaborative capabili-
ties. For one, engineers can grab and freely position whiteboards, which is
synchronized to their collaborators in real time. For another, we extend the
virtual whiteboards with support for concurrent edits, see Figure F.4 n . Free-
hand drawn notes and pins on a whiteboard (including those presented in the
remainder of this section) are synchronized in real time so that the content of
all whiteboards is consistent across all collaborators.

In-Visualization Screenshots (“VR-Shots”)

Our method enables engineers to quickly capture and pin screenshots to a
whiteboard in VR, serving as a visual reference alongside other notes.

Engineers can take a screenshot by grabbing a virtual camera in VR and
pressing its trigger, see Figure F.4 q and r . They can then pin the virtual print-
out of the screenshot to a shared whiteboard s . For instance, this can be used
to capture a view on relationship graph lines between two class cylinders in
the visualization.

By tapping on pinned photos on a whiteboard, engineers revert the visual-
ization to its exact state at the screenshot’s capture, including position, scale,
folder spheres’ open/close statuses, and relationship graph state, while simul-
taneously being teleported to the screenshot’s location. A semi-transparent
indicator marks the camera’s position when the photo was taken, aiding in
understanding the photo’s perspective, see Figure F.4 t . This implements a
form of save point for engineers to return to at later points in time.

Audio Recordings

Engineers can share longer and more detailed thoughts using audio record-
ings while exploring a subject system in VR, helping to free up their men-
tal space. They do this by picking up a virtual microphone, speaking their
thoughts aloud, and then pinning the recorded audio to a whiteboard as an
audio pin, see Figure F.4 o and p . By tapping on audio pins, engineers can
play the recording, with playback shared in real-time among all collaborators.
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Figure F.5: VR whiteboards are synchronized with an IDE where they can be inspected an interacted

with (top-left area) by zooming, panning, playing audio recordings, and opening pinned elements.

Synchronization with IDE

With the above mechanisms, our method aims to support engineers in ex-
ploring and comprehending a subject system while persisting thoughts and
insights on virtual whiteboards. Further, it synchronizes these whiteboards
with an IDE to make engineers’ accumulated thoughts and insights accessible
outside the VR environment. Figure F.5 depicts an integration into the Eclipse
IDE; the whiteboard from Figure F.4 is displayed in the top-left area where
engineers can zoom and pan, enlarge screenshots for detail inspection, play
audio recordings, and directly open the code of pinned software elements in
the IDE code editor. This feature bridges the gap between VR exploration and
further use of created notes for subsequent work outside of VR, e.g., to imple-
ment planned changes.
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Exploring (Re-)EngineerLegend Original Developer

Exploration,
Note Taking

Post-Session 
Questionnaire

RQ1 RQ2 Insights RQ3

Developer 
QuestionnaireTutorial

VR
Sessions

Result 
Validation

Figure F.6: Case study procedure: Two pairs of developers collaboratively explore a subject system and

fill in a questionnaire (left-hand side). We relay the gathered insights to the original developers and

assess their correctness and relevance (right-hand side).

F.4 Case Study with Practitioners

We evaluated our method in an observational case study. Two pairs of soft-
ware engineering practitioners participated, using an implementation of our
VR method to explore a subject system in an open and uninterrupted setting
(Figure F.6, left-hand side). We collected their feedback through a post-session
questionnaire. Subsequently, we scrutinized the insights they accumulated
on virtual whiteboards and presented it to the original developers for valida-
tion of accuracy and relevance (Figure F.6, right-hand side).

F.4.1 Tool Implementation

We implemented the concepts presented in Section F.3 in our tool Immer-
sive Software Archaeology1 (ISA). ISA employs a client-server architecture,
with the server ensuring real-time synchronization and consistency of white-
boards and the visualization across clients. The client is developed in C# with
the Unity game engine, relying on the SteamVR platform2 to make it compati-
ble with all major VR hardware. The server side is implemented in Java as part
of ISA’s ecosystem of Eclipse plug-ins where it integrates with an automated
software analysis. All code is open-source in ISA’s repository1.

F.4.2 Case Study Procedure

Our study is divided in two phases (cf. Figure F.6), i.e., VR sessions with soft-
ware engineering practitioners (depicted on the left) and subsequent result

1https://gitlab.com/immersive-software-archaeology
2https://store.steampowered.com/app/250820/SteamVR/

https://gitlab.com/immersive-software-archaeology
https://store.steampowered.com/app/250820/SteamVR/
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validation by the original developers of the subject system (shown on the
right).

VR Sessions

In a first step, we addressed RQ1 and RQ2 through VR sessions with pairs of
software engineering practitioners. Our tool supports both internet-based
distributed setups as well as local network connections. However, for our
study, we chose to have participants collaborate in the same room to facil-
itate a smoother introduction and especially to help with the VR hardware.
The VR sessions were structured in three main stages.

1. Tutorial (max. 30 minutes) Each VR session began with a brief tutorial,
explaining the tool’s visual metaphor and VR controls, navigating the system
and interacting with elements. Participants and the experiment instructor
(first author of this paper) went through this process together in VR, follow-
ing a predefined script. The full tutorial script can be found in our online
appendix3).

2. Exploration and Note Taking (min. 45 minutes) Following the tutorial,
the instructor briefly introduced the subject system (two sentences) and read
out the open experiment task: “Please explore the system and make notes of
your findings.” Subsequently, the instructor did not intervene unless there
were technical issues or if participants requested help with controls or inter-
action. No content-related assistance was given. The entire script is available
in our appendix3). The end result of each session was a set of VR whiteboards
with notes and audio recordings (see online appendix3). Additionally, for both
sessions, we video-recorded participants’ VR point of view as well as audio of
what they were saying.

3. Post-Session Questionnaire After the VR sessions, each participant filled
out an anonymous questionnaire on their own, sharing their thoughts on the
support provided by our method in collaboratively exploring a software sys-
tem and taking notes on gained insights. The full questionnaire is available in
our online appendix3.

3https://doi.org./10.6084/m9.figshare.24499726

https://doi.org./10.6084/m9.figshare.24499726
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Result Validation

In the second phase, we addressed RQ3 by forwarding participants’ insights
from the VR sessions to the subject system’s original developers using the
post-session questionnaire3. For that purpose, we manually analyzed all
handwritten notes and audio recordings on the virtual whiteboards created
by participants of the previously conducted VR sessions, consulting video
recordings of the VR sessions to ensure accurate context interpretation. We
combined video recordings of participants’ VR POV side-by-side, resulting in
one video for each session. We then manually analyzed these videos and ex-
tracted all notes written on virtual whiteboards using the context provided by
the video, e.g., a conversation between participants. We included all insight
explicitly noted and display them in Table F.2. Long audio pins commenting
on multiple aspects resulted in multiple separate insights. The subject sys-
tem’s original developers subsequently evaluated each insight for its accuracy
and relevance (“How relevant is this insight when planning potential changes
to the system?”).

F.4.3 Subject System

Our study focuses on a Java Spring Boot web server backend API, a compo-
nent of a travel journey management system with approximately 10,000 lines
of code. The system enables users to monitor their travel activities, whether
by plane, train, or visits to specific locations. Key features include persistent
access to travel data, a user account system, search functionality, and friend
management. The system’s source code is publicly accessible4.

We chose this system for our study because we could contact the origi-
nal developers, a crucial aspect for validating our results. Moreover, Spring
is among the most popular frameworks for building enterprise applications
and thus the system is a good representative for a large class of relevant Java
systems. However, note that our visualization is not tailored for Spring appli-
cations.

F.4.4 Participants

Our only inclusion criterion for participants of the study was having profes-
sional experience with Java development. We did not explicitly seek partici-
pants experienced with Spring Boot or VR and asked about contact with these

4gitlab.com/usi-si-oss/teaching/projects-showcase/sa4/team-4-pufferfish/backend

https://gitlab.com/usi-si-oss/teaching/projects-showcase/sa4/team-4-pufferfish/backend
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technologies in our questionnaire. Four engineers from one company par-
ticipated in our study, all with limited VR experience prior to the study. One
participant reported having never used VR at all. Concerning their familiar-
ity with software systems akin to the subject system, three of the participants
confirmed their regular use of the Spring platform, while one reported having
previous, yet not extensive, experience with it.

F.4.5 RQ1: How do engineers explore and take notes of a software

system in a collaborative VR software exploration and note taking

tool?

Figure F.7 depicts a timeline highlighting the activities and communication
patterns of each participant in the study. We analyzed video recordings for
both sessions, categorizing participant activities into seven distinct types: (1)
exploring the system through inspecting elements of the visualization (most
notably folder spheres, class cylinders, relationship graphs), (2) exploring re-
lationships between elements on a virtual whiteboard (mostly re-arranging
pins and tracing relations via curved relation lines between pins), (3) exam-
ining and navigating source code on UI canvases, (4) handwriting notes on a
virtual whiteboard, (5) attaching software elements to a whiteboard, e.g., in
proximity to a handwritten note, (6) creating and pinning audio recordings to
a virtual whiteboard, and (7) capturing and pinning VR screenshots to a vir-
tual whiteboard.

We summarize multiple interactions with the visualization under point (1)
since retrospectively determining the participants’ focus during their visual
exploration of a complex view comprised of nested, semi-transparent folder
spheres, numerous class cylinders, and connecting relation lines is challeng-
ing to accurately pinpoint.

Varied Architectural Exploration Throughout both sessions, participants os-
cillated between exploring the overarching architecture and inspecting source
code details, mostly engaging in collaborative work with occasional individ-
ual exploration. In Session 1, participants adopted a top-down, breadth-first
approach for exploring the system’s architecture, employing a mix of exam-
ining the visual elements of the visualization (i.e., folder spheres and class
cylinders) and pinning package folders to virtual whiteboards for continued
examination. They inspected source code when class-level elements aroused
their interest, though their primary focus remained on comprehending the
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system’s architectural structure. This pattern is visible in the activity timeline
for Session 1, as shown in Figure F.7.

Participants in Session 2 adopted a more dynamic approach, swiftly nav-
igating through folder spheres and intermittently analyzing source code,
driven by the spontaneous discovery of relevant folders and classes. In Ses-
sion 2, virtual whiteboards were scarcely used for exploration purposes (cf.
Figure F.7).

Handwriting Varied Across Sessions In both sessions, participants made ex-
tensive use of handwriting for documenting insights, but varied their strate-
gies. Session 1 participants mainly wrote isolated single words to provide con-
text to clusters of pinned class-level elements on the whiteboard, while par-
ticipants in Session 2 produced more elaborate handwritten notes and sup-
plemented them with audio recordings. In both cases, whiteboard pins for
software elements and audio recordings were strategically located in relation
to handwritten notes.

VR Screenshots Not Utilized None of the participants incorporated VR
screenshots in their virtual whiteboards. As far as we can tell, participants
did not experience scenarios in which they perceived capturing an image of a
specific part of the visualization or using it as a save point for future reference
as beneficial.

Ample Communication Figure F.7 shows for each participant both their raw
audio soundwave on our recordings of the VR session as well as periods of
time when they were speaking (as gray background behind the activity time-
lines). It shows that in both sessions, participants were overwhelmingly ac-
tive in communication with only occasional short silent phases of individual
source code inspection. Furthermore, we observed discussion phases, where
exploration and note taking were temporarily halted to deliberate on ideas,
most notably in Session 1 ca. from minute 30 to 33.

F.4.6 RQ2: What strengths and weaknesses do engineers perceive in

using a collaborative VR software exploration and note taking tool?

In the following, we provide a summary of the feedback collected from par-
ticipants of both VR sessions through a post-session questionnaire (cf. Fig-
ure F.6). The questionnaire yielded participants’ quantitative verdict on the
support they received for exploring a subject system and taking notes on the
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Table F.1: Stacked bar chart with participant responses from the post VR session questionnaire. Bars are

colored and sorted by participant (see mapping of participants to colors in Figure F.6). Bars extending

more to the right indicate stronger agreement or perceived usefulness. The answer of Participant 3 to

Q7 was discarded due to a misunderstanding of the question.
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taking notes and documen-

ting the subject system.
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collaborative aspect of the VR tool?

How valuable do you assess 
the audio recording feature?
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the camera feature?

How valuable do you assess 
the whiteboard as a whole?

results in VR (Table F.1) as well as qualitative data in terms of free text com-
ments. A full version with all verbatim comments is available in our online
appendix3.

Exploration Table F.1 shows that participants assessed the support they re-
ceived in exploring significantly higher than the support they received in tak-
ing notes (Q1&Q2 vs. Q3).

Further, Table F.1 shows that participants valued the exploration capabil-
ities in VR especially for architecture-level aspects (Q1 vs. Q2). In their com-
ments, participants reported on a perceived ease in obtaining an overview of
the subject system, identifying relevant software elements, and understand-
ing their interconnections. Apart from that, they wished for textual search for
software elements and reported on a general unfamiliarity with VR resulting
in perceived slow interaction with the tool: “I’m not used to VR, so I was slow
to perform the activities.”.

Note Taking Participants’ overall merit of using VR to take notes was mixed
(cf. Table F.1; Q3). On a positive side, they highlighted the benefits of having
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unlimited space on the virtual whiteboards, their integration with the rest of
the visualization, and the resulting high-level views on a subject system’s ar-
chitecture. One participant particularly emphasized the voice recordings and
the ease of linking audio to visual elements on the whiteboards. Conversely,
criticisms centered around the cumbersome nature of handwriting in VR with
multiple related comments to an unfamiliarity with VR and the need for more
practice.

For audio recording, participants of Session 1 who did not use the feature
gave worse feedback (both giving a 2 on the Likert-scale, Q4) than participants
of Session 2 (who extensively used the audio recordings, and who gave a 5 and
4 grade respectively). Session 1 participants both justified their low scores
with the absence of an automated speech-to-text transcription feature, e.g., “I
wouldn’t use it much because i prefer having written notes. Maybe it would be
useful if I could create a transcript from the recording”.

In accordance with our observations during the VR sessions, participants
perceived the virtual camera as underutilized, yet appreciated (cf. Table F.1;
Q5): “I forgot to use it, but it certainly helps to explore/move faster when switch-
ing between whiteboards and the codebase”.

Overall, despite comments on requiring more practice to feel comfortable
with handwriting in VR, participants assessed the virtual whiteboards as very
useful (Q6).

Collaboration Feedback on VR collaboration was mostly positive (cf. Ta-
ble F.1; Q7) and in line with our observations and answer to RQ1. As sugges-
tions for future work, participants emphasized a wish for locking elements in
space that are shared between collaborators (especially whiteboards) so that
they cannot be moved and repositioned until unlocked again to avoid acci-
dental interactions.

F.4.7 RQ3: What type of insights do engineers extract from a system

when using a collaborative VR software exploration and note

taking tool?

Table F.2 lists all insights on the subject system captured by participants in
form of handwritten notes and audio recordings on virtual whiteboards. Ses-
sion 1 yielded Insights I1.1 to I1.4, while Session 2 provided Insights I2.1 to I2.10.
We investigated these insights to discern patterns and verified their accuracy
and relevance by seeking feedback from the original developers of the subject
system via an online questionnaire (available in our online appendix3).
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Table F.2: Stacked bar chart with feedback from the subject system’s original developers on correctness

and relevance of the insights collected during both VR sessions. Each bar represents an answer from one

of the two original developers. Wider bars with higher values indicate more correctness or perceived

relevance.
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Extracted insights Session 1 participants focused on the system’s overarch-
ing structure, adopting a strict top-down approach (cf. answer to RQ1 above).
This pattern is evident in their notes, which exclusively covered system-level
and architectural aspects without addressing behavioral details.

Conversely, Session 2 participants adopted a use-case centered explo-
ration, focusing on more specific aspects of the system’s behavior and inner
workings rather than system-wide aspects. They started their exploration with
the system’s test package, e.g., investigating example usages of different parts
via unit tests. Thus, notes of Session 2 participants touched upon testing (In-
sights I2.2 and I2.3) while the remaining notes capture the system’s behavior
form a user’s point of view.

Correctness As per verdict of the original developers, the insights partici-
pants noted during their VR sessions were largely correct with an average of
4.43 on a scale from 1 (incorrect) to 5 (correct). Only Insight I2.8 was clearly
incorrect.

Relevance As per the verdict of the original developers of the subject system,
the relevance of participants’ insights varied with an average of 3.61 on a scale
from 1 (irrelevant) to 5 (relevant).

F.4.8 Discussion of Results and Lessons Learned

In the following, we summarize our results for RQ1-RQ3 and highlight lessons
learned from our case study for builders of related VR tools. Overall, our study
demonstrates that even practitioners with minimal prior experience in VR
software visualization can utilize methods like ours for collaborative explo-
ration and comprehension.

Key Suitability at Architecture-Level Through observation and direct partic-
ipant feedback, we identified that a VR exploration and multimedia note-
taking environment primarily enhances work at the architectural level as op-
posed to finer statement-level details.

Freehand Sketching in VR Requires Practice Based on participant actions and
feedback, relying solely on handwriting and sketching in VR for capturing in-
sights can be tedious and time-consuming, a situation that might extend be-
yond VR environments. However, participants also noted improvements in
their VR handwriting skills even within the short duration of the case study
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sessions, an observation made frequently in conversations between them,
e.g., “I wrote ‘friends’. Ah, the handwriting is getting better!”.

Audio Recordings Require Transcription Audio recordings were more favor-
ably received than handwriting, although there was a clear desire for en-
hanced tool support in this area, mostly in terms of automatic conversion of
audio recordings to text.

VR Screenshots Require Further Investigation While screenshots were
deemed valuable, they were not utilized in the VR sessions. Additional re-
search is necessary to explore this phenomenon, e.g., to investigate a correla-
tion with the duration of VR sessions or in usage spanning over multiple VR
sessions.

Communication was Ample There were clear signs of successful collabora-
tion among participants. This was evident not only from our observations
during the VR sessions but also from the constant communication occurring
throughout them, as depicted in the audio waves in Figure F.7. Participants
utilized having different perspectives on the same subject system and syn-
chronizing their insights, e.g., one participant reading code, the other find-
ing a mentioned method through the relationship graph and exploring from
there.

Accurate Results with Varying Relevance In addressing RQ3, we determined
that participants in our case study produced results that were accurate. The
relevance of these results varied, which is understandable considering that we
instructed participants to record all noteworthy findings without specifically
evaluating their relevance in the constrained timeframe of the VR sessions.
Although our findings on the correctness of participants’ insights are encour-
aging, further studies are needed to investigate their relevance, e.g., to find
correlations between insights, their correctness, and their relevance (which
we were not able to find in this work).

VR Requires Practice A recurring theme in feedback and observations was
the novelty and necessary practice associated with both the method and VR
as a technology in general. This applies to both exploring software in VR and
taking notes on the findings as highlighted in participant feedback during the
post-session questionnaires.
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F.4.9 Reflections and Threats to Validity

In the following, we discuss potential risks to our study’s findings and our
strategies to reduce their impact.

Participant Selection and Number The preliminary case study presented in
this work was conducted with only four engineers organized in two pairs that
worked together. These were selected by convenience, i.e., we contacted a
company and asked for volunteering engineers willing to participate in the
study. This indicates a necessity for more extensive investigations to uncover
additional patterns in the behavior of a broader spectrum of engineers. Nev-
ertheless, our study granted first insights into how practitioners use a VR soft-
ware exploration and note taking tool, how they assess different tool features,
what kind of information they extract from it, and how accurate and relevant
these are.

Subject System The subject system used in our study comprises 10,000 lines
of code. Results from our study must thus be interpreted in a context of ex-
ploring similarly sized systems.

Further studies must be conducted to evaluate the scalability of VR explo-
ration and note taking tools for systems of significantly larger scale. We opted
for the subject system used in this study because we had access to its origi-
nal developers, a unique opportunity for assessing the results of participants’
exploration sessions.

Potential Response Biases Response biases in studies can occur due to ques-
tion wording or social dynamics among participants or between participants
and interviewers [52]. In our study, this threat potentially applies to feedback
from VR participants as well as to the result assessments of the subject sys-
tem’s original developers. To counteract response biases, we kept our experi-
ment’s purpose confidential until after its completion and minimized our in-
teraction with both participants and the subject system’s original developers.
With the latter, we had no contact prior to the study other than for forward-
ing the insights collected by VR participants (initial contact was established
by a third party). Moreover, we gathered feedback through anonymous, indi-
vidually answered questionnaires. VR participants completed these directly
following their session.
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F.5 Conclusion and Future Work

Our method allows distributed software engineering teams to immerse into
an interactive VR space to visually analyze and comprehend a subject software
system. In this virtual space, engineers can take multi-media notes on their
observations and insights using a variety of tools including freehand sketch-
ing, diagramming, audio recordings, and screenshots.

We conducted a preliminary case study to investigate how pairs of soft-
ware engineering practitioners use our method to explore a subject system.
The participants, new to the system they were exploring, provided valuable
insights and feedback on different VR features. Further, we assessed the ac-
curacy and relevance of their findings by consulting the system’s original de-
velopers. All in all, despite requiring more practice to fully utilize our method
and VR technology, participants found our approach beneficial for architec-
tural exploration, exhibited vivid communication during the sessions, and
produced correct notes.

Future work will entail larger and more refined studies with additional
software engineering practitioners, and comparisons with traditional (non-
VR) collaborative software exploration methods such as other kinds of soft-
ware visualization and IDEs. Further, we plan to study engineers’ interac-
tion with exported notes in the IDE (such as the one displayed in Figure F.5).
We also plan to enhance our method based on participant feedback, espe-
cially on integrating audio recordings with speech-to-text transcription and
VR-friendly search capabilities (e.g., also via a speech interface).

As a bottom line, it is crucial to interpret our findings within the current
technological landscape. Our participants were navigating a novel technol-
ogy and tool set. As VR technology becomes more mainstream and engineers
become more accustomed to similar tools, we anticipate that the results and
user experiences reported here will improve.

To conclude, we remain optimistic about the potential of VR methods to
enhance collaborative software engineering practices.
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Abstract

Understanding software systems is a vital task, often undertaken by
teams of engineers, for the development and maintenance of systems.
Collaborative software visualization tools are essential in this context,
yet they are limited. Existing tools, particularly in virtual reality, allow
exploration but lack the crucial feature of note-taking, which is a signif-
icant limitation.

We present Immersive Software Archaeology (ISA), a virtual real-
ity tool that enables engineering teams to collaboratively explore and
comprehend software systems. Unique to ISA, it facilitates note-taking
during exploration with virtual multimedia whiteboards that support
freehand diagramming, audio recordings, and VR screenshots. Notes
taken on these whiteboards are synchronized with an Integrated Devel-
opment Environment (IDE), providing easy access to the results of a VR
exploration while performing changes to the system’s source code.

Video Demonstration – https://youtu.be/32EIpf4V3b4

https://www.youtube.com/watch?v=32EIpf4V3b4
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G.1 Introduction and Related Work

Exploring and comprehending an unfamiliar software system, e.g., for re-
engineering a legacy system, is a complex yet crucial task typically performed
by teams of engineers [1, 2]. When done by reading through source code, the
process is hampered the size and complexity of a system.

Software visualization can be beneficial in this scenario: by using visual
metaphors to represent the structure, behavior, or evolution of a system, it
provides software engineers with a comprehensive overview [3, 4].

Software visualizations vary in their metaphor (e.g., graphs [5, 6] or infor-
mation cities [7, 8, 9]), dimensionality (2D [10, 11] or 3D), and – for 3D visual-
izations – display medium (standard screen [12, 13, 14] or virtual/augmented
reality (VR/AR) [15, 16, 17, 18]).

Despite the availability of many software visualization tools, there is a
scarcity of collaborative options, especially for remote settings. VR is a pre-
ferred medium for such settings [19, 20], but a major drawback of existing VR
visualizations is their lack of support for note-taking during exploration, risk-
ing the loss of insights.

We introduce Immersive Software Archaeology (ISA), a collaborative VR
software visualization tool. Based on automated system analysis, ISA allows
software engineering teams to collaboratively explore a system’s structure in
immersive VR using an interactive visualization that is synchronized over the
internet. Engineers can record their thoughts and insights on collaborative
multimedia whiteboards during their VR exploration - which is not possible
with existing VR tools. Post-exploration, these notes are accessible in the In-
tegrated Development Environment (IDE) Eclipse, aiding in the implementa-
tion of changes to the system’s source code.

G.2 Collaborative Software Exploration in VR

We present the collaborative virtual reality software visualization tool Immer-
sive Software Archaeology (ISA) in its current version 2.11. ISA is comprised
of two main components: a model server that integrates with the widely used
open-source development environment Eclipse, and a VR visualization client.
We discuss how users interact with both components, and follow with an
overview of the relevant aspects of its architecture.

1https://gitlab.com/immersive-software-archaeology

https://gitlab.com/immersive-software-archaeology
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G.2.1 Usage from a User’s Point of view

Figure G.1 offers an overview of ISA, illustrated through screenshots captured
from the perspective of a user. The process of using ISA begins within Eclipse,
where users initiate an automated procedure to generate the information
necessary to visualize a selected subject system ( a and b ). Once that is
completed, multiple users are able to jointly explore the subject system in a
collaborative VR visualization and record multimedia notes about their ob-
servations and insights ( c to j ). Finally, notes taken in VR are accessible
in Eclipse, allowing users to review them while making modifications to the
source code of the system under study, as indicated in n , o .

Automated Model Generation in Eclipse

Users start ISA’s automated model generation process via an entry in the
Eclipse project explorer’s context menu a . This process involves multiple
steps (see Section G.2.2), for which users choose between alternative imple-
mentations depending on the ISA Eclipse plugins installed b .

Upon completion of the model generation process, the results are per-
sisted and users make them available for VR visualization clients by launching
ISA’s model server, either through a confirmation dialog that pops up after the
model generation process or by using a control panel view in the Eclipse UI.

Collaborative Exploration in Virtual Reality

Once the ISA Eclipse model server is reachable, multiple users can connect
to it via a local network or the internet using the ISA VR client running on a
head-mounted VR device. Once connected, they have the option to select and
load a system from the range of those analyzed in the connected ISA Eclipse
model server.

After the loading phase completes, users enter in a real-time, synchro-
nized visualization environment of the selected system where they can view
the virtual representations of fellow collaborators, observing each other’s in-
teractions with elements of the visualization as detailed in the subsequent
sections.

Folder Spheres ISA visualizes the folder-level structure of a subject system in
form of nested semi-transparent folder spheres with different colors. These
folder spheres are initially in a closed state, as shown in c . Users can interact
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with them by tapping on them to open and reveal the contents within, com-
pare c and d . This interaction promotes a top-down approach to exploring
the system’s structure [21]. Additionally, ISA enables users to utilize hand ges-
tures to manipulate the scale of the visualization and to move it within the
virtual space, providing an additional form of navigation besides the standard
click-and-point VR teleportation mechanisms.

Class Cylinders Positioned within folder spheres, ISA visualizes the class-
level elements of a subject system as stacks of cylinders e consisting of four
parts: (1) a base cylinder colored according to the containing folder sphere’s
color, (2) cylinders representing methods without access restrictions (e.g.,
public in Java), (3) cylinders representing encapsulated methods (e.g., private,
protected, or package visible in Java), and (4) spikes originating from the base
cylinder represent attributes.

The height of method cylinders is proportional to the number of expres-
sions contained in the represented method while their radius is proportional
to its cognitive complexity as measured by the metric proposed by Camp-
bell e [22]. Attribute spikes vary in length depending on whether they are
encapsulated (short spike) or accessible without restrictions (long spike).

With the above, ISA encodes a summary of structural class metrics into
the shape of class cylinders and their constituents. Users can visually com-
prehend these already before reading code. Due to their cylindrical shape and
symmetrical layout, class cylinders’ outline is independent of the viewing an-
gle, an aspect particularly relevant in a collaborative setting.

Relationship Edges In ISA, tapping on the visual representations of folders,
classes, methods, or attributes enables users to access a user interface that
provides detailed information about the tapped element. This user interface
is interactive and can be repositioned by the users as needed. All interactions
with it are synchronized in real time among all users, enhancing the collabo-
rative experience.

Figure G.1 f depicts the user interface for a selected method. Its upper
section features controls for a relationship visualization that represents refer-
ences to or from a software element (e.g., a method) in the subject system’s
source code. It distinguishes between different types of references into type
references, method calls, and field accesses. Users can dynamically display
or hide these references for a selected element. For example, g shows type
references originating from a selected class. The relationship visualization is
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available for all types of elements, including folders, where it aggregates refer-
ences coming from or going to their constituent elements.

Source Code When opening the user interface for an element containing di-
rect source code (i.e., a class-level element, method, or attribute), it displays
a scrollable view of the source code at its lower section, as shown in f . In
combination, the relationship graph and code view provide a comprehensive
and interactive means for users to explore and understand the code details
and structural relationships between them in a subject system.

Collaborative Note Taking in Virtual Reality

Users can spawn virtual whiteboards to take notes during VR exploration ses-
sions. These whiteboards allow for pinning elements from the visualization,
creating freehand sketched diagrams, and attaching audio recordings as well
as screenshots taken in VR.

Pinning Software Elements Users can grab folder spheres and class cylinders
from the visualization and pin them on a virtual whiteboard via a respective
hand gesture (indicated in h ). When an element is pinned to the whiteboard,
a corresponding pin appears. Users can manipulate these pins by moving
them around or accessing an interface with additional information, such as
a list of referenced classes.

This user interface enables to replace pins representing folders by pins for
class-level elements and sub-folders they contain, arranged in a circular lay-
out. This feature allows users to navigate the hierarchical structure of the soft-
ware system.

Relationships between Pinned Elements If a pinned software element refer-
ences another element also pinned on the same whiteboard, a curved line is
drawn between their pins to show this connection i . These relation lines vary
in thickness depending on how many source code references they represent,
e.g., when showing relations between two folder pins.

Drawing Freehand Diagrams with Automated Conformance Checks Users
can pick up a virtual pen and draw freely on the whiteboards using a variety of
colors i . Based on different drawing modes of the virtual pen, our tool distin-
guishes user’s pen strokes into (1) uninterpreted drawing (for icons, text, etc.),
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(2) outlines around pins, and (3) arrows between outlines. Based on that, re-
lation lines between pins are colored according to the freehand drawn arrows
between outlines, providing users with a check on the conformance between
their hand drawn arrows and the ground truth references in the subject sys-
tem’s source code [23].

Recording Audio To capture elaborate thoughts, users can pick up a virtual
microphone and create arbitrarily long audio recordings j . Once completed,
they pin their audio recording to a whiteboard using the same gesture as for
pinning software elements k .

Capturing VR Screenshots To capture a specific view on the visualization,
users can pick up a virtual camera and take VR screenshots l . These can then
be pinned to a whiteboard as shown in m . When tipping on a VR screenshot
pinned to a whiteboard, users can restore the visualization to the state of tak-
ing the picture, implementing a form of temporal snapshsot in the exploration
process.

Reading Notes in Eclipse

To assist users in working in the source code based on the insights gained dur-
ing VR explorations, they can access their whiteboard notes directly in Eclipse.
For that purpose, ISA extends the Eclipse UI with a view enabling users to
inspect whiteboards, zoom in and out, play audio recordings, and enlarge
screenshots n . Further, users can open files of pinned elements in Eclipse
by clicking on pins in the whiteboard view o .

G.2.2 Tool Architecture

Figure G.2 provides a simplified overview of ISA’s core components and their
interconnections.

Model Server: Platform of Eclipse Plugins

ISA’s model server is implemented as an extensible platform of Eclipse bun-
dles. The lower part of Figure G.2 provides an overview of that platform.

Automated Model Generation ISA’s overall model generation process is han-
dled by a core plugin which successively executes a pipeline of three steps,
each passing its results on to the next:
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1. analyzing Eclipse projects selected by a user and storing the results in
a model suitable for capturing the structure of an object-oriented soft-
ware system from folder to member level,

2. (optional step) employing an architecture recovery procedure [24] that
replaces the folder-level structure in the results of Step 1,

3. transforming the software model resulting from the previous step into a
visualization model as input for VR clients.

A concrete solution for a step, e.g., an analysis for Java source code as Step
1, is implemented in form of an Eclipse bundle registering with the ISA core
plugin via an extension point. ISA’s model generation platform can be ex-
tended with alternative solutions for individual steps, e.g., support for ana-
lyzing an additional programming language (Step 1) or an alternative map-
ping of software elements to visual elements (Step 3), while integrating with
pre-existing solutions for other steps without further adaptions.

To further ease the extension of ISA’s model generation platform, we de-
fine the structure of information passed between its steps via meta models,
using the Eclipse Modeling Framework (EMF).

Communication via Network

To exchange information between Eclipse server and VR clients, ISA uses two
channels:
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1. UDP Channel The ISA server establishes a dedicated UDP connection
with each VR client for continuous sharing of position and rotation data for
users’ heads, hands, and interacted objects such as whiteboards, class cylin-
ders, or cameras. This system does not implement additional measures to
recover dropped network packets, as any lost data is overridden by the subse-
quent successful transmission’s updated information.

2. TCP Channel For information exchange that is less time critical but that
requires reliable and ordered message delivery (e.g, showing relations via the
relationship graph or closing folder sphere), the ISA model server provides an
HTTP-based interface. Upon receiving events from a connected client, the
server (1) verifies their consistency with a log of all pre-existing events, (2)
persists a new version of the log with the inserted events, and (3) forwards the
new events in their respective order to all connected clients.

We use the Eclipse Modeling Framework (EMF) to define meta models for
the data structures in our TCP-based message exchange, to automatically gen-
erate equivalent code from the meta models in both Java (for use in Eclipse
bundles) and C# (for use in the VR visualization client).

VR Visualization Clients

ISA’s VR visualization client acts as local realization of the synchronized vi-
sualization state maintained by the ISA Eclipse server. That includes interac-
tions carried out directly by the user of an ISA VR client – these first go through
the model server and its verification before being sent back and then being
applied in the order consistent with potential other events issued by collabo-
rators in the meantime.

ISA’s VR visualization client is based on the SteamVR platform2 and imple-
mented in C# using the Unity 3D engine3, makingISA’s VR client compatible
with all VR hardware supported by SteamVR.

G.3 Case Study with Practitioners

We evaluated our tool in an exploratory case study with four software engi-
neering practitioners. Working in pairs, participants used our tool to collab-
oratively explore an unfamiliar Java subject system. After these sessions, we

2https://store.steampowered.com/steamvr
3https://unity.com/

https://store.steampowered.com/steamvr
https://unity.com/
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used a questionnaire to collect participants’ feedback on using VR for explor-
ing an unfamiliar software system and taking notes on findings. Further, we
analyzed the whiteboards created by both teams during their session and ex-
tracted all statements about the subject system they have noted. We then re-
layed these statements to the original developers of the subject system to as-
sess their correctness and relevance in a re-engineering context. Below, we
discuss general results of the study. More detailed documents and raw data is
accessible in an online appendix4.

Feedback from the subject system’s original developers show that, while
the relevance of participants’ statements was mixed with some being vital for
future work with the system’s source code and others not concerning relevant
aspects at all, the correctness of participants’ statements was very high. Re-
sults from the analysis of the VR sessions and post-questionnaire show that
ISA provides good support for an exploration on the level of architectural
elements (folders and classes). Regarding note taking, participants valued
the flexible nature of using freehand scribbling, recording audio, and taking
screenshots. At the same time, they pointed out that it requires practice to
fully utilize the immersive VR tool, especially for handwriting on the VR white-
boards. Further, they mentioned potential of an automated audio recording
transcription feature for the virtual whiteboards.

G.4 Conclusion and Future Work

We presented the collaborative VR software exploration tool Immersive Soft-
ware Archaeology (ISA). We described its usage from a user’s points of view
and provided an overview of its architecture. Further, we reported on results
from an exploratory case study with four software engineering practitioners.

In future work, we plan to extend ISA with support for automated audio-
to-text transcription. Further, we plan to conduct quantitative studies in-
volving larger samples of software engineering practitioners to investigate the
tool’s effectiveness, e.g., comparing ISA with traditional software exploration
environments such as an IDE.

Bibliography

[1] Sandra Yin and Julia Mccreary. Myths and realities: Defining re-
engineering for a large organization. In NASA. Goddard Space Flight Cen-

4https://doi.org./10.6084/m9.figshare.24499726

https://doi.org./10.6084/m9.figshare.24499726


G.4. Conclusion and Future Work 241

ter, Proceedings of the Seventeenth Annual Software Engineering Work-
shop, 1992.

[2] Harry Sneed and Chris Verhoef. Re-implementing a legacy system. Jour-
nal of Systems and Software, 155:162–184, September 2019.

[3] Stephan Diehl. Software visualization: visualizing the structure, be-
haviour, and evolution of software. Springer Science & Business Media,
2007.

[4] Denis Graanin, Kreimir Matkovi, and Mohamed Eltoweissy. Soft-
ware visualization. Innovations in Systems and Software Engineering,
1(2):221–230, September 2005.

[5] O. Greevy, M. Lanza, and C. Wysseier. Visualizing Feature Interaction
in 3-D. In 3rd IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pages 1–6, Budapest, Hungary, 2005. IEEE.

[6] M. Lanza and S. Ducasse. Polymetric views - a lightweight visual ap-
proach to reverse engineering. IEEE Transactions on Software Engineer-
ing, 29(9):782–795, September 2003. Conference Name: IEEE Transac-
tions on Software Engineering.

[7] C. Knight and M. Munro. Virtual but visible software. In 2000 IEEE
Conference on Information Visualization. An International Conference on
Computer Visualization and Graphics, pages 198–205, London, UK, 2000.
IEEE Comput. Soc.

[8] Richard Wettel and Michele Lanza. CodeCity: 3D visualization of large-
scale software. In Companion of the 13th international conference on
Software engineering - ICSE Companion ’08, page 921, Leipzig, Germany,
2008. ACM Press.

[9] Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz.
CityVR: Gameful Software Visualization. page 5, 2017.

[10] Mircea Lungu, Michele Lanza, and Oscar Nierstrasz. Evolutionary and
collaborative software architecture recovery with Softwarenaut. Science
of Computer Programming, 79:204–223, January 2014.

[11] Roberto Minelli and Michele Lanza. SAMOA A Visual Software Analytics
Platform for Mobile Applications. In 2013 IEEE International Conference
on Software Maintenance, pages 476–479, September 2013. ISSN: 1063-
6773.



242 Paper G. ISA: Collaborative Exploration and Note Taking in Virtual Reality

[12] P. Young and M. Munro. Visualising software in virtual reality. In Proceed-
ings. 6th International Workshop on Program Comprehension. IWPC’98
(Cat. No.98TB100242), pages 19–26, Ischia, Italy, 1998. IEEE Comput. Soc.

[13] Richard Wettel, Michele Lanza, and Romain Robbes. Software systems as
cities: a controlled experiment. In Proceeding of the 33rd international
conference on Software engineering - ICSE ’11, page 551, Waikiki, Hon-
olulu, HI, USA, 2011. ACM Press.

[14] Frank Steinbrückner and Claus Lewerentz. Understanding software evo-
lution with software cities. Information Visualization, 12(2):200–216,
April 2013.

[15] Adrian Hoff, Michael Nieke, and Christoph Seidl. Towards immersive
software archaeology: regaining legacy systems design knowledge via in-
teractive exploration in virtual reality. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, pages 1455–1458,
Athens Greece, August 2021. ACM.

[16] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. Exploring
software cities in virtual reality. In 2015 IEEE 3rd Working Conference
on Software Visualization (VISSOFT), pages 130–134, Bremen, Germany,
September 2015. IEEE.

[17] David Moreno-Lumbreras, Jesus M Gonzalez-Barahona, and Andrea
Villaverde. BabiaXR: Virtual Reality software data visualizations for the
Web. 2021.

[18] Dussan Freire-Pozo, Kevin Cespedes-Arancibia, Leonel Merino, Alison
Fernandez-Blanco, Andres Neyem, and Juan Pablo Sandoval Alcocer.
DGT-AVisualizing Code Dependencies in AR. In 2023 Working Confer-
ence on Software Visualization (VISSOFT). IEEE, 2023.

[19] Rainer Koschke and Marcel Steinbeck. SEE Your Clones With Your Team-
mates. In 2021 IEEE 15th International Workshop on Software Clones
(IWSC), pages 15–21, Luxembourg, October 2021. IEEE.

[20] Alexander Krause-Glau, Marcel Bader, and Wilhelm Hasselbring. Col-
laborative Software Visualization for Program Comprehension. October
2022. Pages: 86.



G.4. Conclusion and Future Work 243

[21] S. Ducasse and D. Pollet. Software Architecture Reconstruction: A
Process-Oriented Taxonomy. IEEE Transactions on Software Engineering,
35(4):573–591, July 2009.

[22] G Ann Campbell. Cognitive complexity: An overview and evaluation. In
Proceedings of the 2018 international conference on technical debt, pages
57–58, 2018.

[23] Adrian Hoff, Christoph Seidl, Mircea Lungu, and Michele Lanza. Prepar-
ing Software Re-Engineering via Freehand Sketches in Virtual Reality. In
Proceedings of the 39th IEEE International Conference on Software Main-
tenance and Evolution. IEEE, 2023.

[24] Adrian Hoff, Lea Gerling, and Christoph Seidl. Utilizing Software Archi-
tecture Recovery to Explore Large-Scale Software Systems in Virtual Re-
ality. In 2022 Working Conference on Software Visualization (VISSOFT),
pages 119–130, Limassol, Cyprus, October 2022. IEEE.


	Summary
	Introduction
	Background
	Software Visualization
	Software Visualization: 2D vs. 3D
	X-Reality for 3D Software Visualization
	Software Visualization in 2D
	Software Visualization in 3D
	Software Visualization in XR

	Problem Definition
	Research Questions
	Thesis

	Solution Overview
	Methodology
	Contributions per Paper
	Summary of Contributions

	Conclusion
	Fostering Exploration of Software Architecture
	Note-Taking in Virtual Reality Software Visualization
	Collaborative Software Exploration in Virtual Reality

	Future Work
	Further Empirical Studies on VR Software Visualization
	VR Visualizations of Execution Behavior
	Code Editing in X-Reality


	Papers
	Towards Immersive Software Archaeology
	Introduction
	State of the Art
	Immersive Software Archaeology
	Evaluation
	Conclusion and Future Work

	Utilizing Software Architecture Recovery to Explore Large-Scale Software Systems in VR
	Introduction
	State of the Art
	Immersive Software Archaeology
	Evaluation
	Conclusion and Future Work

	ISA: Exploring Software Architecture and Design in Virtual Reality
	Introduction
	State of the Art
	Immersive Software Archaeology
	Evaluation
	Conclusion and Future Work

	Uniquifying Architecture Visualization through Variable 3D Model Generation
	Introduction
	Background
	Variable 3D Model Generation
	Outstanding Challenges
	Conclusion & Future Work

	Preparing Software Re-Engineering via Freehand Sketches in Virtual Reality
	Introduction
	Related Work: Preparing Re-Engineering
	Freehand Reflexion Models in VR
	Evaluation
	Conclusion and Future Work

	Collaborative Software Exploration with Multimedia Note Taking in Virtual Reality
	Introduction
	Background and Related Work
	Collaborative Software Exploration and Note Taking in VR
	Case Study with Practitioners
	Conclusion and Future Work

	ISA: Collaborative Exploration and Note Taking in Virtual Reality
	Introduction and Related Work
	Collaborative Software Exploration in VR
	Case Study with Practitioners
	Conclusion and Future Work



