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Abstract

In this thesis we study differential privacy. Differential privacy
allows us to give formal privacy guarantees of mechanisms for statis-
tical query release by quantifying privacy loss. However, achieving
a good tradeoff between privacy and utility can be challenging. Our
focus in this thesis is on settings where data is either sparse or
skewed. The main contributions of this thesis are:

• We introduce a differentially private data structure for rep-
resenting sparse vectors. The difficulty of this problem lies
in designing a data structure with low error guarantees, low
space complexity, and fast random access to all entries. Previ-
ous techniques achieve only two of these three goals simulta-
neously. Our data structure is the first mechanism with good
guarantees in all three metrics.

• We introduce a mechanism for releasing a Misra-Gries sketch
under differential privacy. The Misra-Gries sketch is com-
monly used in the non-private setting to compute approxi-
mate histograms and find heavy hitters in a data stream. We
present an improved analysis of the structure of the sketch
which allows us to add significantly less noise compared to the
previous state-of-the-art. The error guarantees of our mech-
anism are optimal up to small constants for both pure and
approximate differential privacy.

• We present a simple technique for splitting up the privacy
budget when answering multiple queries with the Gaussian
or Laplace mechanisms. We show that this technique outper-
forms standard approaches for a class of error measures when
the sensitivities of the queries are skewed. We use this tech-
nique in the design of a mechanism for differentially private
mean estimation. We give theoretical error guarantees of our
mechanism under a concentration assumption and perform
experiments with both synthetic and real-world datasets.
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Resumé

I denne afhandling undersøger vi differentiel privathed1. Diffe-
rentiel privathed lader os give formelle privathed garantier af me-
kanismer til offentliggørelse af statistiske data ved at kvantificere
privathedstabet. Det kan dog være udfordrende at opnå en god
balance mellem privathed og brugbarhed. Vores fokus i denne af-
handling er på situationer, hvor data enten er tyndt eller skævt
fordelt. De vigtigste bidrag i denne afhandling er:

• Vi introducerer en differentiel privat datastruktur, som kan
repræsentere tynde vektorer. Udfordringen i dette problem
ligger i at designe en datastruktur med gode fejlgarantier, lav
hukommelseskompleksitet og hurtig vilkårlig adgang til ind-
gangene i vektoren. Tidligere teknikker opnår kun to af disse
tre mål samtidigt. Vores datastruktur er den første mekanisme
med gode garantier for alle tre mål.

• Vi introducerer en mekanisme til at frigive en Misra-Gries
skitse under differentiel privathed. Den ikke-private version af
Misra-Gries skitsen bruges ofte til at beregne approksimative
histogrammer og finde ofte forekommende elementer i en
datastrøm. Vi præsenterer en forbedret analyse af skitsens
struktur, hvilket vi udnytter til at tilføje betydeligt mindre
støj end den tidligere bedste metode. Fejlgarantierne for vores
mekanisme er optimale indenfor små konstanter for både ægte
og approksimativ differentiel privathed.

• Vi præsenterer en simpel teknik til at opdele privathedsbud-
gettet, når vi frigiver flere statistikker med Gauss eller Laplace
mekanismerne. Vi viser, at denne teknik er bedre end stan-
dardmetoder for en klasse af fejl beskrivelser, når følsomheden
af statistikkerne er skævt fordelt. Vi bruger denne teknik i de-
signet af en mekanisme til differentiel privat gennemsnit esti-
mering. Vi giver teoretiske fejlgarantier for vores mekanisme
under en koncentrationsantagelse og udfører eksperimenter
med både syntetiske og virkelige datasæt.

1Der findes ikke en udbredt dansk oversættelse af differential privacy. Vi har valgt at
bruge ordet privathed her til at beskrive “tilstanden af at være privat”.
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Chapter 1

Introduction

1.1 Motivation and background

In our modern world, vast amounts of data are collected by many entities.
We constantly interact with systems and devices that track our location,
search history, health information, etc. The amount of generated data
is increasing globally year by year. This data constitutes an extremely
valuable resource. Data scientists can extract information such as the
statistical properties of the collected data. This information is useful for
many purposes. It can for example help improve existing technologies or
form the basis for new ones. The recent emergence of popular publicly
available generative AI tools is an excellent example of the potential of
large-scale datasets.

However, this data collection also poses a threat to private and sen-
sitive information. There are many examples in recent years of misuse.
One such example is the Facebook-Cambridge Analytica scandal [The18]
in which the personal data of millions of Facebook users was used with-
out their consent with the intent of creating political advertisements.
It is natural to raise privacy concerns over such misuse but privacy
risks are present even when data is publicly released with well-meaning
intentions.

In 2006 AOL made a dataset of 20 million search queries from 650.000
users publicly available [Arr06]. Such a dataset can be useful for re-
searchers in several areas such as search optimization and network
analysis. AOL made an effort towards anonymizing the data by re-
placing usernames with random ID numbers. This approach is called
pseudonymization. The problem was that their approach was easily
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broken. Search queries often contain personally identifiable information
which allows an adversary to link an individual to the ID number after
which they know the entire search history. Sometimes the attack is trivial
because people often search for their names or the names of friends and
families. It took just days for journalists from the NY Times to reveal the
true identity of one such user [BZ06]. The dataset was removed from the
AOL website, but it was too late. The then chief technology officer (CTO)
of AOL resigned as a result of the scandal [Zel06].

Such scenarios set up a trade-off situation. On the one hand, the
personal information of individuals should be protected. The simplest
approach is of course to never collect any data. On the other hand, the
advantages of publicly available datasets are undeniable. Many research
fields rely heavily on understanding population data that might contain
sensitive information. Such datasets come in many forms such as medical
records or search query logs as discussed above. It is impossible to learn
anything about a population without some risk to the privacy of the
individuals that make up the population. This motivates the development
of techniques for extracting statistical information about a dataset while
protecting the privacy of the data subjects.

1.1.1 Privacy-preserving data release

In this thesis we consider the problem of answering statistical queries of
a dataset while protecting the privacy of the individuals that make up
the dataset. Such techniques can be used to safely release data publicly
similar to the intent of AOL discussed above. But it can also be used
internally by companies to e.g. learn how their users interact with the
company’s products without violating their privacy.

Throughout this chapter we use the following terms for the entities
involved in a data release: The data subjects are the individuals whose
data make up a private dataset. In the case of the AOL release the
data subjects were users who had performed search queries. The data
publisher is responsible for the privacy-preserving data release. This is
the role of AOL. The data analysts perform some analysis on the private
data release. A data analyst could be anything from a scientist to a
policymaker looking to make an informed decision based on available
data. In practice, the data publisher and data analyst are sometimes the
same entity. In this thesis we consider differentially private mechanisms.
These are tools that can be deployed by a data publisher to protect privacy
when publishing statistics.
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The challenge of privacy-preserving data release has existed for
many years and several techniques exist that predate differential pri-
vacy. Pseudonymization is a simple technique for protecting the privacy
of a dataset by removing personal identifiers from the data records.
Unfortunately, it is often possible to re-identify data subjects by using
side information. A famous example of this is when Sweeney [Swe15]
showed that the medical records of the governor of Massachusetts could
be uniquely identified by the combination of his publicly available birth
date, gender, and ZIP code. One of the challenges of designing privacy-
preserving tools is that privacy can be very unintuitive. Techniques that
seem reasonable can sometimes be broken. It is important to remember
that a public data release does not exist in a vacuum.

A stronger technique than pseudonymization is k-anonymity [Swe02].
The idea is to use less fine-grained pseudonyms such that there are at least
k copies of all pseudonyms. This protects against the attack described
above. We could for example remove the birth data such that a record is
only identified by gender and ZIP code and we might no longer be able
to uniquely identify the governor’s record. However, it turns out that k-
anonymity is vulnerable to composition attacks. Ganta, Kasiviswanathan,
and Smith [GKS08] showed that it is sometimes possible to uniquely
identify a record based on two separate k-anonymous datasets. Even
in the paper introducing the framework Sweeney [Swe02] noted that
attacks exist that can break the guarantees. These types of approaches
are steps in the right direction but after a public data release the dataset
is effectively available indefinitely. Therefore we want to give privacy
guarantees that are not susceptible to these kinds of attacks.

1.1.2 United States Decennial Census

Throughout this chapter we reference the disclosure avoidance system
(DAS) deployed by the United States Census Bureau. This refers specif-
ically to the TopDown algorithm used during the 2020 US Decennial
Census [AAC+22]. The Census Bureau conducts a census of the Ameri-
can population every 10 years. The decennial census is mandated by the
Constitution of the United States and one of the primary purposes is to di-
vide the seats in the House of Representatives among the states [Uni21a].

The Census Bureau has developed in-house techniques to protect
the privacy of citizens used for the decennial census for many years. A
few years ago they published a report detailing the progression of their
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system from the 1970 to the 2010 Census [McK18]. From 1990 to 2010
they relied on data swapping for privacy protection. The technique was
seen as appropriate at the time, but the Census Bureau has since designed
an attack that could be used to re-identify large parts of the 2010 Census
dataset [Uni21b]. For this reason the data swapping technique was
replaced with a differentially private system for the 2020 Census [Uni23].

1.2 Differential Privacy

Differential Privacy (DP) is a framework that seeks to address some of
the challenges discussed in the previous section. It was introduced by
Dwork, McSherry, Nissim, and Smith [DMNS06]. Differential Privacy
allows us to give formal privacy guarantees by restricting how much the
output distribution of a mechanism is affected by any individual’s data.
Differential privacy is often introduced in a few sentences either as a
technical definition or a vague description. But understanding the impli-
cations of the definition is non-trivial and the vague descriptions often
fail at conveying the guarantees of the framework to end users [CKR21].
Before introducing the exact definition we therefore discuss some core
concepts in the framework of differential privacy. In doing so we also
argue that these concepts are useful for analyzing privacy-preserving
mechanisms.

When discussing the concepts in this section we consider a dataset,
denoted x ∈ UN, to be a collection of records from some universe U .
Each record contains the data about one individual and we want to
perform some arbitrary queryM : UN → R on the dataset.

1.2.1 Neighboring datasets

A central concept in differential privacy is the definition of neighboring
datasets. Intuitively, one can think of two datasets as neighboring if they
are identical except the data from one individual is in one dataset but
not the other. We denote a pair of neighboring datasets as x ∼ x′.

The exact definition for neighboring datasets depends on the setting
and the query we want to answer. The two most common variants of the
definition are add/remove (sometimes referred to as unbounded DP) and
replacement (sometimes referred to as substitution or unbounded DP).
Under the add/remove definition, one of x or x′ is obtained by removing
one record from the other. As such, the sizes of the datasets differ by
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1. In contrast, both x and x′ have the same size under the replacement
definition where the datasets agree on all but one record. That is, under
the replacement definition the existence of a record is not considered
private information. The private information instead lies in the value of
the record. Additional variants of the definition of neighboring datasets
exist that are tailored to specific settings. For example, if a user can
contribute multiple records to the dataset we often distinguish between
event-level and user-level differential privacy (see e.g. [ZWC+22]).

In this thesis, we use both the add/remove and replacement variants
of differential privacy. In most of Chapter 2 we use a generalized defini-
tion that falls under both categories, in Section 2.7 and Chapter 3 we use
the add/remove definition, and in Chapters 4 and 5 we use the replace-
ment definition. The exact definition is introduced in the preliminary
section of each chapter as it depends on the input domain.

Whether the add/remove or the replacement variant is preferred
depends on the given query. The difference has little relevance for many
queries from a theoretical computer science perspective. A mechanism
that satisfies differential privacy with one definition typically also does
so with the other. However, for some queries the distinction is crucial.
We discuss this after Fact 1.5. Next, we argue that the definition of
neighboring datasets is a reasonable concept for privacy-preserving
mechanisms.

Statistical inference is not a privacy violation It is a common miscon-
ception that the purpose of a differentially private query is to restrict
how much a data analyst learns about any individual in the dataset. But
that is not the promise of differential privacy. The definition does not
protect against statistical inference! But that is by design.

Consider a dataset x′ constructed by removing the data of one indi-
vidual, say Mr. S, from dataset x. From a query M(x′) on the dataset
without the data of Mr. S we might hope to learn statistical properties of
the underlying population. We might in turn be able to infer a lot about
Mr. S. But the queryM(x′) had no access to Mr. S’s data and therefore
we do not consider this a privacy violation. This is exactly the kind of
information we hope to learn from a statistical query.

A canonical example of this phenomenon is the correlation between
lifelong smoking and lung cancer. For many years the relationship
between smoking and lung cancer was unclear but large-scale studies
with clear, statistically-significant evidence [WG50] eventually convinced
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the scientific community and later the general public that smoking and
lung cancer are highly correlated. If we know that Mr. S is a lifelong
smoker we can infer that he has an elevated cancer risk. Since we
can learn this from M(x′) we do not necessarily consider it a privacy
violation if we learn this when his data is included in the queryM(x).
However, if the output of M(x) is a list of everyone in the dataset
with cancer we would consider it a privacy violation. In that case, our
assessment of Mr. S’s medical condition is no longer based on statistical
inference and we learn something about him fromM(x) that we could
not learn fromM(x′).

The distinction is subtle but critical. It is easy to confuse the two
situations as was the case in a paper that questioned the effectiveness
of the privacy-preserving properties of the system deployed by the US
Census Bureau [KKM+21]. This prompted a strongly worded response
in the form of a blog post signed by several prominent researchers in the
DP community [BDD+21]. The following quote is their conclusion for
the example discussed above: “The statistical inference of elevated cancer
risk—made before Mr. S was born—did not violate Mr. S’s privacy. To conclude
otherwise is to define science to be a privacy attack.”

As such, we should not think of differential privacy as a framework to
limit what we learn about individuals. Instead, we can think of differen-
tial privacy as a restriction on how much we learn about Mr. S from the
queryM(x) compared toM(x′). The risk to Mr. S should be roughly
the same whether or not his data is in the dataset.

1.2.2 Privacy Loss Random Variables

Next, we discuss how to quantify privacy loss in the framework of differ-
ential privacy. It is important to clarify that privacy loss in differential
privacy is a function of the output and the data release mechanism and
not of the output in and of itself. We have to understand the underlying
mechanism to quantify privacy loss. This is in contrast to some privacy-
preserving frameworks such as k-anonymity [Swe02]. As a motivation
for this choice consider the following toy example: Alice’s personal infor-
mation is part of a dataset that was used for a public data release. She
is examining the data and notices her social security number. Is this a
privacy violation? Intuitively this seems like a clear privacy violation,
but we need to understand the underlying mechanism. If the mechanism
used for the data release looked up Alice’s data to output her social
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security number this is a clear privacy violation. In contrast, a mecha-
nism that prints a string of random numbers clearly does not violate the
privacy of anyone. If the random string happens to match Alice’s social
security number that is merely coincidental. Anyone familiar with the
mechanism would disregard the number as being meaningless.

Privacy loss is a function of an output, the underlying mechanism,
and a pair of neighboring datasets. Throughout this section we assume
that the output domains of all mechanisms are discrete. This assumption
simplifies the discussion of these concepts since we can define the proba-
bility of outputting a specific output, but analogous definitions exist for
continuous output domains.

Definition 1.1 (Privay Loss). Let M : UN → R be any randomized
mechanism where R is discrete. For a pair of neighboring datasets
x ∼ x′ the privacy loss of an output y ∈ R is defined as

fM(x)||M(x′)(y) =


∞, if Pr[M(x′) = y] = 0
−∞, if Pr[M(x) = y] = 0

ln
(

Pr[M(x)=y]
Pr[M(x′)=y]

)
, otherwise.

Privacy loss is undefined for outputs with probability 0 for both datasets.

We can think of privacy loss as an indicator of which of x or x′ is
most likely to be the input given the observed output. This perspective
is related to statistical hypothesis testing. Using the example from the
previous section assume that we suspect that Mr. S has cancer and the
input dataset is x. Our null hypothesis would be that his data was never
collected and the input dataset is therefore x′. If the actual dataset was
x the privacy loss of an output y indicates if we gain support for the
correct hypothesis and therefore learn something about Mr. S. If the
privacy loss is high it strongly supports the correct hypothesis. But if
the privacy loss is negative the output supports the incorrect hypothesis.
When the privacy loss is exactly 0 we do not gain support for either
hypothesis, and if the privacy loss is infinite we can conclude that the
input must be x. From this definition of privacy loss, it follows that all
differentially private mechanisms should be randomized. Since for any
pair of neighboring datasets and a deterministic mapping between inputs
and outputs, we either have (1) the datasets are mapped to the same
output and therefore we effectively disregard part of the dataset or (2)
the datasets are mapped to different outputs implying that the privacy
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loss is infinite. We can define a random variable to describe the privacy
loss from running the mechanism.

Definition 1.2 (Privay Loss Random Variable (PRV)). The privacy loss
random variable for a pair of neighboring datasets x ∼ x′ and M(x) is
given by fM(x)||M(x′)(Y) for Y ←M(x).

The distribution of the PRV defined above describes the privacy
loss from running M(x) in regards to the pair x ∼ x′. Informally, a
mechanism provides good privacy guarantees if the privacy loss random
variable is small with high probability. We are now ready to define
differential privacy. The goal of differential privacy is to give good
privacy guarantees for any input. As such the definition of differential
privacy is a restriction over all possible pairs of neighboring datasets and
their privacy loss random variables. Note that since the neighborhood
relation between datasets is symmetric each pair has two PRV.

Definition 1.3 ((ε, δ)-differential privacy [DR14]). A randomized mecha-
nism M : UN → R satisfies (ε, δ)-differential privacy if and only if for
all subsets of outputs Z ⊆ R and all pairs of neighboring datasets x ∼ x′

it holds that
Pr[M(x) ∈ Z] ≤ eε Pr[M(x′) ∈ Z] + δ

We refer to the case of δ = 0 as pure differential privacy and δ > 0 as
approximate differential privacy. Pure differential privacy is also denoted
simply as ε-differential privacy. We discuss other variants of differential
privacy later in this section. We generally think of δ as negligible in the
size of the dataset (typically δ < |x|−ω(1)).

Early work on differential privacy was primarily on pure differential
privacy. This definition is arguably the most natural and simplest to
understand. The definition states that the privacy loss of any ε-DP mech-
anism is never above ε. This strong guarantee makes pure differential
privacy desirable and several of the most popular mechanisms satisfy
the definition (e.g. [DMNS06, War65, MT07]).

However, the strict requirement of pure differential privacy comes at
a high utility cost for some queries. The definition does not differentiate
between a mechanism that has privacy loss ε with high probability from
one with privacy loss ε with negligible probability. Since events with
infinite privacy loss can never occur the output space must also be the
same for all inputs. The relaxation to approximate differential privacy
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allows us to design mechanisms with much better utility for certain
queries.

One technique for designing an approximate differential privacy
algorithm is to bound the probability that the privacy loss exceeds ε by δ

for all inputs. We use this approach in Chapters 2 and 3. This condition
is sufficient for (ε, δ)-DP but not necessary. Fact 1.1 gives the necessary
condition for satisfying (ε, δ)-DP. In some cases using this exact condition
leads to better utility through an improved analysis (see e.g. [BW18]).

Fact 1.1. Let M : UN → R be a (ε, δ)-differentially private mechanism
and let E := {y ∈ R| fM(x)||M(x′)(y) > ε} be the set of all outputs with
privacy loss greater than ε for a pair of neighboring datasets x ∼ x′. Then

Pr[M(x) ∈ E]− eε Pr[M(x′) ∈ E] ≤ δ .

The strength of differential privacy comes from quantifying privacy
loss. By providing formal quantitative privacy guarantees we can directly
compare the privacy loss of mechanisms with completely different be-
havior. The quantitative privacy parameters also give us the flexibility to
adjust our privacy requirement to a query. For example, we can require
strong privacy guarantees for mechanisms working with highly confi-
dential data such as medical history, but we might accept worse privacy
guarantees for a query on less confidential data such as whether or not
we clicked on a specific advertisement.

Sensitivity A common technique in differential privacy is to first com-
pute some deterministic function over the dataset and then perturb the
output by adding random noise scaled to the sensitivity of the function.
In fact, we use the technique at least once in each chapter of this thesis.
The sensitivity of a function is a restriction on the difference between
outputs of the function with a pair of neighboring datasets as inputs. The
intuition behind this technique is that if the output of a function does
not change much between neighboring datasets we do not need to add
much noise to achieve privacy. In contrast, it requires much more noise
to privatize a function whose output can change drastically by adding
the data of one individual.

Two commonly used variants of sensitivity are `1-sensitivity and
`2-sensitivity. Both are special cases of `p-sensitivity as defined below.
In some papers either of these two variants is simply referred to as the
sensitivity when only one is used. In this thesis the ‘sensitivity’ of a
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deterministic function refers to any restriction on the change to output
that holds over all pairs of neighboring datasets. In Chapter 3 we present
an analysis of the sensitivity of the Misra-Gries sketch that does not fall
under `p-sensitivity.

Definition 1.4 (`p-sensitivity). Let f : UN → Rd be a deterministic func-
tion. For any p ≥ 1 the `p-sensitivity of f is defined as

∆p := max
x∼x′
‖ f (x)− f (x′)‖p ,

where ‖ f (x)− f (x′)‖p :=
(

∑d
i=1 | f (x)− f (x′)|p

)1/p
is the `p-distance.

The Laplace and Gaussian mechanisms add independently sampled
random noise to each coordinate of a query. The noise is scaled to the
`1- and `2-sensitivity, respectively. We define the mechanisms below and
reintroduce them in the preliminary sections in relevant chapters.

Definition 1.5 (The Laplace Mechanism [DMNS06]). The Laplace Mecha-
nism outputs f (x) + η for a vector η ∈ Rd where each entry ηi is sampled
independently from Laplace (∆1/ε). The distribution Laplace (∆1/ε) has
probability density ε

2∆1
e−|y|ε/∆1 at y ∈ R. The Laplace Mechanism satis-

fies ε-differential privacy.

Definition 1.6 (The Gaussian Mechanism [DR14, BW18]). The Gaus-
sian Mechanism outputs f (x) + η for a vector η ∈ Rd where each en-
try ηi is sampled independently from N (0, σ2). The Gaussian Mech-
anism satisfies (ε, δ)-differential privacy if and only if Φ

(
∆2
2σ −

εσ
∆2

)
−

eεΦ
(
−∆2

2σ −
εσ
∆2

)
≤ δ.

1.2.3 Properties of differential privacy

Next, we discuss some useful properties of differential privacy. In later
chapters we again introduce some of the properties. There we only
introduce properties if we use them in the proofs of our results. Here
we also discuss why these properties are desirable for any privacy-
preserving mechanisms. We discuss both the technical benefits when
designing mechanisms and the benefits for data subjects.

The first property is immunity to post-processing. This property
states that applying any function to the output of a differentially private
mechanism does not break the privacy guarantee.
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Fact 1.2. (Post-processing [DR14, Proposition 2.1]) Let M : UN → R
be any (ε, δ)-differentially private mechanism and let g : R → R′ be
any (randomized) function. Then the composed mechanism defined as
g ◦M : UN → R′ satisfies (ε, δ)-differential privacy.

Immunity to post-processing is useful in the design of mechanisms
since we can apply any data analysis if we only access the private dataset
through differentially private mechanisms. The best example in this thesis
is our mechanism introduced in Chapter 2. We design a data structure
that compactly encodes the entries of a vector and prove that releasing a
noisy version of the data structure satisfies differential privacy. We also
design an algorithm for estimating the value of an entry from its noisy
encoding. Since accessing the data structure is merely post-processing
the privacy guarantees follow directly from Fact 1.2. Furthermore, if we
were to change our access algorithm it would not negatively affect the
privacy guarantees. We could also further analyze the noisy encodings.
This can be useful if we for example decide to compute confidential
intervals of an estimate after the data release.

The most important benefit of this property is protection against
unforeseen adversaries. This is one of the strongest arguments for using
differential privacy. In Section 1.1.1 we discussed how pseudonymization
can sometimes be easily broken using side information. But more compli-
cated mechanisms are also vulnerable to attacks. The US Census Bureau
considered data swapping sufficient for more than 20 years before they
broke their technique. Any technique designed to protect against specific
attacks could be vulnerable to this kind of future attack. It is impossible
to predict all kinds of techniques will exist in the future. But Fact 1.2
ensures that no attack can break the privacy guarantees of differential
privacy.

Next we discuss the composition of differentially private mechanisms.
On a high level, this property ensures that a mechanism that performs
multiple differentially private accesses to a dataset still satisfies differ-
ential privacy. This allows us to construct complicated mechanisms by
combining simpler mechanisms. We make use of this in both Chapters
2 and 5. However, the privacy guarantees deteriorate with each access.
This is unfortunately inevitable for any privacy-preserving framework
that allows us to accurately answer arbitrary statistical queries. We know
this due to Dinur and Nissim [DN03] who showed that answering suffi-
ciently many subset sums accurately allows us to reconstruct most of the
underlying dataset.
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Fact 1.3. (Basic Composition [DR14]) Let M1 : UN → R1 and
M2 : UN → R2 denote randomized mechanisms satisfying (ε1, δ1)-
DP and (ε2, δ2)-DP, respectively. Then the mechanism defined as
M(x) := (M1(x),M2(x)) satisfies (ε1 + ε2, δ1 + δ2)-DP.

The basic composition theorem presented in Fact 1.3 gives us an
easy way of upper bounding the privacy parameters of a composed
mechanism. We simply add up privacy parameters for each part of
the mechanism. However, the basic composition theorem is sometimes
far from optimal if we run many queries. Here we could instead use
the advanced composition theorem presented in a simplified setting in
Fact 1.4. Understanding composition is important because it allows us to
give better privacy parameters for a mechanism which in turn improves
the privacy-utility trade-off. There is much more to discuss regarding the
technical details of composition but it is not required for understanding
this thesis. A great resource for more details is the book chapter by
Steinke [Ste22]. He presents some key results for both composition
and privacy amplification. Privacy amplification is another important
technical tool but we do not discuss it since we do not use amplification
for any of the mechanisms in this thesis.

Fact 1.4. (Advanced Composition (simplified) [KOV15, Ste22]) Let
M(x) := (M1(x), . . . ,Mk(x)) whereMi satisfies (ε, δ)-DP for all i ∈ [k].
ThenM satisfies (ε′, δ′)-DP for any δ′ ≥ kδ where

ε′ = kε2/2 +
√

2kε2 ln(1/δ′) .

Composition is a crucial property of any privacy-preserving frame-
work used to publish statistics. In the real world personal information is
not contained in a single dataset. Several entities store part of your sensi-
tive information and therefore it can be included in multiple data releases.
Composition ensures that we can still give formal privacy guarantees
for all of these data releases if each of the independent data releases is
performed with differential privacy. This is in contrast to the example
with k-anonymity discussed in Section 1.1.1 where two k-anonymized
datasets were combined to break privacy [GKS08]. The combination of
composition and immunity to post-processing ensures that we can re-
lease statistics under differential privacy knowing the privacy guarantees
cannot be broken.

The final property we discuss is group privacy. Definition 1.3 guar-
antees that the output distribution of a mechanism does not change
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significantly between neighboring datasets. Under the definition of
neighboring datasets we discussed earlier in the section this protects the
data of any individual in the dataset. However, sometimes we want to
give guarantees to a group of people. That is for example the case if all
members of a family are part of a dataset. Their data could be highly
correlated so we want guarantees similar to Definition 1.3. In such a
situation we can use group privacy.

Fact 1.5. (Group privacy) LetM : UN → R be an (ε, δ)-DP mechanism
for groups of size 1. ThenM is (kε, e(k−1)εkδ)-DP for groups of size k.

We can prove this by constructing intermediate datasets. Consider
the case of k = 2. That is, two datasets x and x′ differ only in the data
of two individuals. Then there must exist at least one dataset x′′ such
x ∼ x′′ and x′′ ∼ x′. It follows from Definition 1.3 that

Pr[M(x) ∈ Z] ≤ eε Pr[M(x′′) ∈ Z] + δ ≤ e2ε Pr[M(x′) ∈ Z] + (1 + eε)δ

Fact 1.5 follows from applying this approach inductively. We can use
the same idea to show that (ε, δ)-DP under add/remove neighborhood
implies (2ε, (1 + eε)δ)-DP under replacement neighborhood. We can
replace an entry of a dataset by first removing it and then adding an
entry with its new value.

Most differentially private mechanisms analyzed under replacement
neighborhood also satisfy differential privacy under add/remove neigh-
borhood. Often the privacy parameters are even slightly better than the
ones under replacement. However, differential privacy under replace-
ment does not imply differential privacy under add/remove neighbor-
hood. Consider a toy example where the dataset is an ordered list of n
bits. If we want to estimate the sum of all entries with an even index
replacing an entry only changes the output by 1. But if we add or remove
an entry the sum can change by up to n/2. This example is of course
extreme by construction. But the takeaway is that we should carefully
choose our definition.

As a final note about the properties discussed in this section, it is
worth mentioning that applying any of them does not always give us a
tight analysis. For example, post-processing can sometimes improve pri-
vacy, some mechanisms compose better than the advanced composition
theorem, and analyzing datasets differing in k entries directly sometimes
gives better guarantees than group privacy. But the strength of these
properties is their versatility and black-box nature. We do not need to
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understand the details of a specific mechanism to give these types of
guarantees. The properties hold for any differentially private mechanism.

1.2.4 Alternative definitions

In recent years several alternatives to Definition 1.3 have been pro-
posed. Most relevant to this thesis is zero-Concentrated Differential
Privacy [BS16]. We use this variant of DP in Chapters 4 and 5.

Definition 1.7 (ρ-zCDP [BS16]). A randomized mechanismM : UN → R
satisfies ρ-zCDP if and only if for all α > 1 and all pairs of neighboring
datasets x ∼ x′ it holds that

Dα

(
M(x)||M(x′)

)
≤ ρα ,

where Dα(P||Q) := 1
α−1 ln

(
Ex∼P

[
(P(x)/Q(x))α−1

])
is the α-Rényi di-

vergence ([Rén61, Equation (3.3)]) between two distributions P and Q.

Various definitions have been introduced to improve the analysis of
specific mechanisms. Each of these definitions has an advantage over
Definition 1.3 in certain settings. Here we list some noteworthy defini-
tions along with one such advantage for each of them: zero-concentrated
differential privacy [DR16, BS16] behaves particularly well under com-
position. Rényi differential privacy [Mir17, MTZ19, WBK18] and the
moments accountant [ACG+16] are useful for analyzing the Gaussian
mechanism under subsampling. Gaussian differential privacy [DRS19]
captures the privacy loss random variable of the Gaussian mechanism
exactly. The notion of f -DP [DRS19] gives a detailed description of
the privacy guarantees in the hypothesis testing formulation of privacy.
Lastly, a line of recent work [KJH20, GLW21, ZDW22] approximates the
privacy curve numerically which gives tighter privacy guarantees than
the analytical bounds in some cases.

These alternative definitions allow us to better analyze the privacy loss
distributions of some mechanisms. This improved analysis is important
because it allows us to give better privacy guarantees which lead to an
improved privacy-utility trade-off.

A common property of all the definitions discussed above is that
they describe a property that holds for all pairs of neighboring datasets.
This means that a mechanism must consider worst-case datasets even if
such datasets are unlikely to occur. Some attempts have been made to
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aggressively relax this property with the intend of improving utility by
only considering a small subset of datasets. Unfortunately, some of these
definitions are vulnerable to reconstruction attacks (see [PDD+22]).

1.2.5 Transparency

Another benefit of differential privacy is the potential for increased
transparency. The details of a differentially private mechanism can be
revealed without affecting the privacy guarantees. This is in contrast
to some ad hoc approaches where obscuring the release mechanism is
necessary. This was the case for the data swapping approach previously
deployed for the US Decennial Census: “Its parameters and the details of
the swapping algorithm cannot be published without compromising the privacy
guarantee” [AAC+22]. Since adopting differential privacy the Census
Bureau have shared details about their disclosure avoidance system.
They even publicly released their source code [Uni21c].

The possibility for transparency of course does not guarantee that a
data release will be transparent. Fortunately, all parties have incentives
to advocate for transparency. The data publisher wants to gain the trust
of the data subjects. By publishing the details of their technique they
show that they have done their due diligence to ensure that privacy is
protected. They can also seek feedback on concrete design decisions for
the mechanism. This can lead to closer collaboration with data analysts
which can benefit both parties.

The biggest advantage for the data analyst is that they can take noise
from the mechanism into account in their analysis. If they for example
discover a strong correlation in the published data they can estimate
whether it is present in the underlying dataset or a consequence of the
injected noise. They would have no way of distinguishing these two
cases from each other if the details of the mechanism is kept secret. It
is worth noting here that the US Census Bureau has been criticized for
the fact that they are injecting noise in the first place since the data is
used by policymakers for important decisions. They were even subject to
a lawsuit [Bre21] which has since been dismissed. But it is impossible
to give any privacy guarantees without perturbing the dataset. It is also
important to remember that all data collection is noisy. As an example,
the Census Bureau themselves estimates that they undercounted the
population of Texas by more than 500.000 people [Uni22]. This noise
from the data collection is much more significant than the noise injected
by the TopDown algorithm and it is much more difficult to account for.
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The data subjects benefit from transparency because they want the
best protection of their data. When the details of a mechanism are
kept secret only a few people can be involved in the design process. If
the mechanism is public privacy experts everywhere can scrutinize the
details. This increases the probability that any mistakes are found.

A long-term benefit of transparency is shared knowledge between
institutions. Designing a mechanism such as the TopDown algorithm
is a challenging task that requires significant resources. The US Census
Bureau has the necessary size to undertake such a process but other
institutions, such as census bureaus from smaller countries, might want
to conduct similar surveys but lack the resources to design a privacy-
preserving system from the ground up. They can instead learn from
the experiences of the US Census Bureau and perhaps even use parts of
their source code. As such they can deploy a better privacy-preserving
mechanism. This benefits everyone because our personal information
is known to several institutions of varying sizes. Many technologies
greatly benefit from the ability to reuse and build upon the work of
others. Privacy concerns affect everyone and as such privacy-preserving
mechanisms should be one such technology.

1.3 Contribution and overview

In the previous section we discussed differential privacy and its use for
quantifying privacy loss. The definition allows us to design privacy-
preserving mechanisms with strong formal privacy guarantees. However,
it is crucial that the mechanisms also provide sufficient utility. In this
thesis we present novel mechanisms with improved utility over previous
state-of-the-art techniques. The thesis is based on the following results

• Chapter 2: Martin Aumüller, Christian Janos Lebeda, and Rasmus
Pagh. Representing Sparse Vectors with Differential Privacy, Low
Error, Optimal Space, and Fast Access [ALP22]. CCS 2021 & JPC
2022.

• Chapter 3: Christian Janos Lebeda and Jakub Tětek. Better Differ-
entially Private Approximate Histograms and Heavy Hitters using
the Misra-Gries Sketch [LT23]. PODS 2023 (Distinguished Paper).
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• Chapter 4: Christian Janos Lebeda and Rasmus Pagh. Differen-
tially Private Vector Aggregation when Coordinates have Different
Sensitivity. Poster presented at TPDP 2022.

• Chapter 5: Martin Aumüller, Christian Janos Lebeda, Boel Nelson,
and Rasmus Pagh. PLAN: Variance-Aware Differentially Private
Mean Estimation [ALNP23]. Unpublished.

• Not included. James Hsin-yu Chiang, Bernardo David, Mariana
Gama, and Christian Janos Lebeda. Correlated-Output-Differential-
Privacy and Applications to Dark Pools [yCDGL23]. AFT 2023.

Common for all projects included in the thesis is that the goal is to
estimate some value in Rd. The exact problem setup and utility measure
are presented in the preliminary section of each chapter. In Chapters 2
and 3 we consider problems with sparse data where the challenge is
to satisfy memory constraints without sacrificing utility. In Chapters 4
and 5 we present mechanisms for settings where the magnitude of entries
is skewed. We tailor the noise to this skew to improve utility. During my
PhD studies I co-authored a paper on applying differential privacy to
market mechanisms [yCDGL23]. The paper is not included in the thesis
as the topic is not on release of statistics. Next, we give a short overview
of each chapter.

Chapter 2 - Representing Sparse Vectors with Differential Privacy, Low Error,
Optimal Space, and Fast Access

We consider the problem of releasing a sparse vector under either pure
or approximate differential privacy. A sparse vector is a d-dimensional
vector of real values where most entries are zero. The Laplace mecha-
nism (Definition 1.5) is often the preferred solution for releasing dense
vectors. However, the Laplace mechanism adds noise to all entries of
the vector. As such, the noisy vector is not sparse and we must store all
entries explicitly. But doing so is infeasible when the dimensionality d
is huge. Therefore we want to design a mechanism with low memory
usage without sacrificing utility. The primary challenge was to design
a compact representation that has low sensitivity and is also robust to
noise. Previous work either requires much more memory than the non-
private representation [DMNS06], results in large error for worst-case
inputs [CPST12, KKMN09], or has slow access time to entries [BV19].
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We introduce the first data structure that performs well in all three met-
rics. We also present other techniques along with variants of our data
structure such as a version designed specifically for sparse histograms
as input. A histogram is a special case of a vector where all entries are
integers. During the Summer of 2021 I was an OpenDP Visiting Fellow.
My contribution was an open-source implementation of a variant of our
mechanism for the OpenDP Library.

Chapter 3 - Better Differentially Private Approximate Histograms and Heavy
Hitters using the Misra-Gries Sketch

The data structure presented in Chapter 2 allows us to release a differ-
entially private sparse histogram (or vector) with memory requirements
within a constant factor of a non-private representation. However, some-
times we cannot store a histogram even when privacy is not a concern. In
the non-private streaming setting the Misra-Gries sketch [MG82] allows
us to approximate a histogram using k counters. Chan, Li, Shi, and
Xu [CLSX12] presented a technique for releasing a Misra-Gries sketch
under ε-differential privacy. However, their technique adds noise that
scales linearly in the size of the sketch. We present an improved analysis
of the sensitivity of the Misra-Gries sketch. We utilize the structure of
the sensitivity and present mechanisms that adds noise with at most
twice the magnitude of the non-streaming setting. That is a significant
improvement over the previous result and our error guarantees are opti-
mal within small constants for both pure and approximate differential
privacy.

Chapter 4 - Differentially Private Vector Aggregation when Coordinates have
Different Sensitivity

In this chapter we consider the problem of releasing d real-valued queries
using either the Laplace or Gaussian mechanisms. We explore a setting
where each query has its own sensitivity. We are mostly interested in
cases where some queries have significantly higher sensitivity than others.
The two most natural approaches in this setting are to either (1) add
noise with the same magnitude to each query or (2) add noise to each
query with magnitude linearly proportional to the sensitivity. However,
it turns out that neither of those approaches achieves the best utility for
our error metric. Our goal is to minimize the p’th moment of the noise

https://github.com/opendp/opendp
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where p > 0 is a parameter. The first approach adds a lot of noise to
queries with low sensitivity while the latter adds a lot of noise to queries
with high sensitivity. We give closed-form expressions for the optimal
way to split the noise between queries for any choice of p. In the case
of mean squared error (p = 2) and the Gaussian mechanism, the noise
is scaled proportional to the root of the sensitivity. As such, we add
less noise to low-sensitivity queries than approach (1) and less noise
to high-sensitivity queries than approach (2). This reduces the mean
squared error by a factor between 1 and d depending on the skew of the
sensitivities.

This work was presented as a poster at the TPDP 2022 workshop but
never resulted in a published paper. Instead, we used the technique in
the design of our mechanism for mean estimation described in Chapter 5.
The project is included as a stand-alone chapter because the idea is
cleaner in this setting and the author list differs between the two projects.

Chapter 5 - PLAN: Variance-Aware Differentially Private Mean Estimation

We present a novel mechanism for estimating the mean of a d-dimensional
distribution. Our mechanism consists of the following (simplified) steps:
(1) we privately compute a rough estimate of the mean (2) the data is
translated such that the rough estimate from the previous step is the new
origin and each coordinate is scaled based on an estimate of the variance
(3) each data sample is clipped to a maximum distance from the new
origin (4) we add Gaussian noise to the mean and reverse the translation
and scaling from step (2) as post-processing.

The rescaling in step (2) follows the approach from Chapter 4 with
the same purpose. By spending more privacy budget on coordinates
with high variance we reduce the error but we still add less noise to coor-
dinates with low variance. Each step of our mechanism is complemented
with theoretical error guarantees under a concentration assumption of
the distribution. We also present and discuss experiments with both
synthetic and real-world datasets.





Chapter 2

Representing Sparse Vectors with
Differential Privacy, Low Error, Optimal
Space, and Fast Access
Originally published in: ACM Conference on Computer and Communications Security (CCS 2021) &
Journal of Privacy and Confidentiality (JPC 2022)

Joint work with: Martin Aumüller and Rasmus Pagh

Representing a sparse histogram, or more generally a sparse vector, is
a fundamental task in differential privacy. An ideal solution would
use space close to information-theoretical lower bounds, have an error
distribution that depends optimally on the desired privacy level, and
allow fast random access to entries in the vector. However, existing
approaches have only achieved two of these three goals.

In this chapter we introduce the Approximate Laplace Projection
(ALP) mechanism for approximating k-sparse vectors. This mechanism
is shown to simultaneously have information-theoretically optimal space
(up to constant factors), fast access to vector entries, and error of the same
magnitude as the Laplace-mechanism applied to dense vectors. A key
new technique is a unary representation of small integers, which we show
to be robust against “randomized response” noise. This representation
is combined with hashing, in the spirit of Bloom filters, to obtain a
space-efficient, differentially private representation.

Our theoretical performance bounds are complemented by simula-
tions which show that the constant factors on the main performance
parameters are quite small, suggesting practicality of the technique.
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2.1 Introduction

One of the fundamental results in differential privacy is that a his-
togram can be made differentially private by adding noise from the
Laplace distribution to each entry of the histogram before it is re-
leased [DMNS06]. The expected magnitude of the noise on each his-
togram entry is O(1/ε), where ε is the privacy parameter, and this is
known to be optimal [HT10]. In fact, there is a sense in which the
Laplace mechanism is optimal [KHP15]. However, some histograms of
interest are extremely sparse, and cannot be represented in explicit form.
Consider, for example, a histogram of the number of HTTP requests
to various servers. Already the IPv4 address space has over 4 billion
addresses, and the number of unique, valid URLs have long exceeded
1012, so it is clearly not feasible to create a histogram with a (noisy)
counter for each possible value.

Korolova, Kenthapadi, Mishra, and Ntoulas [KKMN09] showed that
it is possible to achieve approximate differential privacy with space that
depends only on the number of non-zero entries in the histogram. How-
ever, for (ε, δ)-differential privacy the upper bound on the expected
per-entry error becomes O

(
log(1/δ)

ε

)
, which is significantly worse than

the Laplace mechanism for small δ. Cormode, Procopiuc, Srivastava, and
Tran [CPST12] showed how to achieve pure ε-differential privacy with
expected per-entry error bounded by O

(
log(d)

ε

)
, where d is the dimension

of the histogram, i.e., the number of entries including zero entries. While
both these methods sacrifice accuracy they are very fast, allowing access
to entries of the private histogram in constant time. If access time is not
of concern, it is possible to combine small space with small per-entry
error, as shown by Balcer and Vadhan [BV19]. They achieve an error
distribution that is comparable to the Laplace mechanism (up to constant
factors) and space proportional to the sum n of all histogram entries —
but the time to access a single entry is Õ(n/ε), which is excessive for
large datasets.

2.1.1 Our results

Our contribution is a mechanism that achieves optimal error and space
(up to constant factors) with only a small increase in access time. The
mechanism works for either approximate or pure differential privacy,
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Section 2.5 Section 2.6 Section 2.7 Section 2.8

Evaluation time O(log d) O(log(log(d)/ε)) O(log d) O(1)

Error guarantee Additive Multiplicative Additive Additive

Input domain Reals Reals Integers Reals

Strong tail bounds Yes No Yes No

Table 2.1: Informal overview of our main results for pure differential
privacy. Each mechanism also has an approximate differentially private
version where 1/δ replaces d in evaluation time.

with the former providing faster access time. Our main results are
summarized in Theorem 2.1.

Theorem 2.1 (Informal Version of Theorems 2.3 and 2.4). Let x be a
histogram with d entries each bounded by some value u where at most k entries
have non-zero values. Given privacy parameters ε > 0 and δ ≥ 0, there
exists an (ε, δ)-differentially private algorithm to represent x with per-entry
error matching the Laplace mechanism up to constant factors and the following
properties:

• If δ = 0, the representation uses O(k log(d + u)) bits and the access time
is O(log d).

• If δ > 0, it uses O(k log(d + u) + k log(1/δ)) bits and the access time
is O(log(1/δ)).

For simplicity, the memory requirement does not include the space
needed for storing hash functions. Asymptotically, this additional cost
shows up for k = o(log d) as an additional O(log2 d) or O(log(1/δ) log d)
term. See the theorem statements in Section 2.5 for more details.

We present variations on this central result in Sections 2.6–2.8. These
results provide a tighter error analysis for large ε values, and a way
to improve the access time. These improvements in running time will
sacrifice the property that the per-entry error matches the error of the
Laplace mechanism. Table 2.1 shows an informal overview of notable
properties for each variation.
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2.1.2 Techniques

On a high level, we treat “small” and “large” values of the histogram
differently. Large values are handled by the thresholding technique devel-
oped in [KKMN09, CPST12]. For small entries, we represent them using
a unary encoding as fixed-length bit strings. From [KKMN09, CPST12] we
know that their length is logarithmic in either d (for ε-DP) or 1/δ (for
(ε, δ)-DP). Privacy is achieved by perturbing each bit using randomized
response [War65]. The value of an entry is estimated by finding the unary
encoding that is closest in Hamming distance to the noisy bit string. As
it turns out, the unary encoding is redundant enough to allow accurate
estimation even when the probability of flipping each bit is a constant
bounded away from 1/2. In order to pack all unary representations into
small space, we use hashing to randomize the position of each bit in
the unary representation of a given entry. The access time is linear in
the length of the bit representation, given constant time evaluation of
the hash function. Interestingly, although hash collisions can lead to
overestimates, they do not influence the error asymptotically.

We remark here that a direct application of randomized response
does not give the desired O(1/ε) error dependency, but we solve this
issue with an initial scaling step that gives ε-differential privacy when
combined with randomized response. Though the discussion above has
been phrased in terms of histograms, which makes the comparison to
earlier work easier, our techniques apply more generally to representing
sparse real vectors, with privacy for neighboring datasets with bounded
`1-distance. We also discuss a variant of our mechanism for the special
case of histograms. Here it is possible to get O (1/eε) error dependency,
which is preferred in the low privacy setting.

2.1.3 Overview

In Section 2.2 we define differential privacy for vectors, discuss the
Laplace mechanism, and provide probabilistic tools necessary for the
analysis. In Section 2.3 we discuss related work on differentially private
sparse histograms. In Section 2.4 we introduce the Approximate Laplace
Projection (ALP) mechanism and analyze its theoretical guarantees. In
Section 2.5 we improve space and access time using techniques from
earlier work [KKMN09, CPST12]. Section 2.6 discusses using the ALP
mechanism on bit length-encoded coordinates and shows that this im-
proves the running time while incurring a multiplicative error. Section 2.7
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discusses a tighter utility analysis for the special case of histograms. Sec-
tion 2.8 discusses a data structure that achieves constant access time with
expected error O(1/ε), but with weak tail bounds. In Section 2.9 we
evaluate the performance of the ALP mechanism based on simulations.
We conclude the chapter with suggestions for practical applications in
Section 2.10.

2.2 Preliminaries

Problem Setup.

In this work, we consider d-dimensional k-sparse vectors of non-negative
real values. We say that a vector x ∈ Rd

+ is k-sparse if it contains at
most k non-zero entries. All entries are bounded from above by a value
u ∈ R, i.e., maxi∈[d] xi =: ‖x‖∞ ≤ u. Here [d] is the set of integers
{1, . . . , d}. We consider the problem of constructing an algorithm M
for releasing a differentially private representation of x, i.e., x̃ :=M(x).
Note that x̃ does not itself need to be k-sparse. In fact, Balcer and
Vadhan [BV19] provided a lower bound for the error of any differentially
private mechanism that always outputs a sparse vector. We discuss this
further in Section 2.3.

Utility Measures.

We use two measures for the utility of an algorithmM. We define the
per-entry error as |xi − x̃i| for any i ∈ [d]. We define the maximum error
as maxi∈[d] |xi − x̃i| = ‖x − x̃‖∞. We compare the utility of algorithms
using the expected per-entry and maximum error and compare the tail
probabilities of the per-entry error of our algorithm with the Laplace
mechanism introduced below.

Differential Privacy.

Differential privacy is a constraint to limit privacy loss, introduced by
Dwork, McSherry, Nissim, and Smith [DMNS06]. We use definitions and
results as presented by Dwork and Roth [DR14]. Intuitively, a differen-
tially private algorithm ensures that a slight change in the input does not
significantly impact the probability of seeing any particular output. We
measure the distance between inputs using their `1-distance. In this work,
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two vectors are neighbors iff their `1-distance is at most 1. That is for all
neighboring vectors x, x′ ∈ Rd

+ we have ‖x− x′‖1 := ∑i∈[d] |xi − x′i| ≤ 1.
We can now define differential privacy for neighboring vectors.

Definition 2.1 (Differential privacy [DR14, Def 2.4]). Given ε > 0 and
δ ≥ 0, a randomized algorithm M : Rd

+ → R is (ε, δ)-differentially
private if for all subsets of outputs S ⊆ R and pairs of k-sparse input
vectors x, x′ ∈ Rd

+ such that ‖x− x′‖1 ≤ 1 it holds that:

Pr[M(x) ∈ S] ≤ eε · Pr[M(x′) ∈ S] + δ .

M satisfies approximate differential privacy when δ > 0 and pure dif-
ferential privacy when δ = 0. In particular, a pure differentially private
algorithm satisfies ε-differential privacy. The following properties of differ-
ential privacy are useful in this chapter.

Lemma 2.1 (Post-processing [DR14, Proposition 2.1]). Let M : Rd
+ →

R be an (ε, δ)-differentially private algorithm and let f : R → R′ be any
randomized mapping. Then f ◦M : Rd

+ → R′ is (ε, δ)-differentially private.

Lemma 2.2 (Composition [DR14, Theorem 3.16]). Let M1 : Rd
+ → R1

and M2 : Rd
+ → R2 be randomized algorithms such that M1 is (ε1, δ1)-

differentially private andM2 is (ε2, δ2)-differentially private. Then the algo-
rithmM whereM(x) = (M1(x),M2(x)) is (ε1 + ε2, δ1 + δ2)-differentially
private.

Throughout this chapter, we clamp the output of all algorithms to
the interval [0, u]. An estimate outside this interval is due to noise and
clamping outputs cannot increase the error. It follows from Lemma 2.1
that clamping the output does not affect privacy. We clamp the output
implicitly to simplify presentation.

Probabilistic Tools.

The Laplace Mechanism introduced by Dwork, McSherry, Nissim, and
Smith [DMNS06] satisfies pure differential privacy by adding noise cali-
brated to the `1-distance to each entry. For completeness, Algorithm 1
provides a formulation of the Laplace mechanism in the context of re-
leasing an ε-differentially private representation of a sparse vector.

Here Laplace(1/ε) is the Laplace distribution with scale parameter
1/ε. The PDF and CDF of the distribution are presented in Definition 2.2
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Algorithm 1: The Laplace Mechanism
Parameters : ε > 0.
Input : k-sparse vector x ∈ Rd

+.
Output : ε-differentially private approximation of x.

(1) Let x̃i = xi + ηi for all i ∈ [d], where ηi ∼ Laplace(1/ε) is
sampled independently.

(2) Release x̃.

and the expected error and tail bound of the mechanism are shown in
Proposition 2.1. The Laplace mechanism works well for vectors with
low dimensionality and serves as a baseline for our work. However, it
is impractical or even infeasible in the setting of k-sparse vectors. The
output vector is dense, and as such the space requirement scales linearly
in the input dimensionality d.

Definition 2.2. The probability density and cumulative distribution func-
tions of the Laplace distribution centered around 0 with scale parameter
1/ε are

f (τ) =
ε

2
e−|τ|ε .

Pr[Laplace(1/ε) ≤ τ] =

{
1
2 eτε, if τ < 0
1− 1

2 e−τε, if τ ≥ 0

Proposition 2.1 (Expected Error and Tail Bound [DR14, Theorem 3.8]).
The expected per-entry error and the maximum error of the Laplace
mechanism are E[|xi − x̃i|] = O(1/ε) and E[‖x − x̃‖∞] = O

(
log(d)

ε

)
,

respectively. With probability at least 1− β we have:

|Laplace(1/ε)| ≤ 1
ε

ln
1
β

.

Random rounding (also known as stochastic rounding) is used for
rounding a real value probabilistically based on its fractional part. We
define random rounding for any real r ∈ R as follows:

RandRound (r) =

{
dre with probability r− brc
brc with probability 1− (r− brc)

Lemma 2.3. The expected error of random rounding is maximized when r−
brc = 0.5. For any r we have:

E[|r− RandRound (r) |] ≤ 1
2

.
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Randomized response was first introduced by Warner [War65]. The
purpose of the mechanism is to achieve plausible deniability by changing
one’s answer to some question with probability p and answer truthfully
with probability 1− p. We define randomized response for a boolean
value b ∈ {0, 1} as follows:

RandResponse (b, p) =

{
1− b with probability p
b with probability 1− p

Universal Hashing.

A hash family is a collection of functions H mapping keys from a universe
U to a range R. A family H is called universal, if each pair of different
keys collides with probability at most 1/|R|, where the randomness
is taken over the random choice of h ∈ H. A particularly efficient
construction that uses O(log |U |) bits and constant evaluation time is
presented in [DHKP97].

Model of Computation.

We use the w-bit word RAM model defined by Hagerup [Hag98] where
w = Θ(log(d)+ log(u)). This model allows constant time memory access
and basic operations on w-bit words. As such, we can store a k-sparse
vector using O(k log(d + u)) bits with constant lookup time using a hash
table. We assume that the privacy parameters ε and δ can be represented
in a single word.

Negative Values.

In this chapter, we consider vectors with non-negative real values, but the
mechanism can be generalized for negative values using the following
reduction. Let v ∈ Rd be a real-valued k-sparse vector. Construct
x, y ∈ Rd

+ from v such that xi = max(vi, 0) and yi = −min(vi, 0). By
construction both x and y are k-sparse and the `1-distance between
vectors is preserved. We can access elements in v as vi = xi − yi. As
such, any differentially private representation of x and y can be used as
a differentially private representation of v with at most twice the error.
We can avoid the increased error by instead increasing the access time.
We discuss this variant of our mechanism in Section 2.10.
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Algorithm Space (bits) Access time Per-entry error Maximum error

Dwork et al. [DMNS06] O(d log(u)) O(1) O
(

1
ε

)
O
(

log(d)
ε

)
Cormode et al. [CPST12] O(k log(d + u)) O(1) O

(
log(d)

ε

)
O
(

log(d)
ε

)
Balcer & Vadhan [BV19] Õ

(n
ε log(d)

)
Õ
(n

ε

)
O
(

1
ε

)
O
(

log(d)
ε

)
Theorem 2.3 (this work) O(k log(d + u)) O(log(d)) O

(
1
ε

)
O
(

log(d)
ε

)
Korolova et al. [KKMN09] O(k log(d + u)) O(1) O

(
log(1/δ)

ε

)
O
(

log(1/δ)
ε

)
Theorem 2.4 (this work) O(k(log(d + u) + log(1/δ))) O(log(1/δ)) O

(
1
ε

)
O
(

log(1/δ)
ε

)
Table 2.2: Comparison with previous work. The performance is stated for
worst-case input, and all bounds hold in expectation. Space for storing
hash functions is not considered. The first four rows are results on ε-
differential privacy, and the last two are on (ε, δ)-differential privacy. The
Õ-notation suppresses logarithmic factors.

2.3 Related work

Previous work on releasing differentially private sparse vectors primarily
focused on the special case of discrete vectors in the context of releasing
the histogram of a dataset.

Korolova, Kenthapadi, Mishra, and Ntoulas [KKMN09] first intro-
duced an approximately differentially private mechanism for the release
of a sparse histogram. A similar mechanism was later introduced inde-
pendently by Bun, Nissim, and Stemmer [BNS19b] in another context.
The mechanism adds noise to non-zero entries and removes those with a
noisy value below a threshold t = O

(
log(1/δ)

ε

)
. The threshold is chosen

such that the probability of releasing an entry with true value 1 is at
most δ. The expected maximum error is O

(
log(max(k,1/δ))

ε

)
. Since δ is

usually chosen to be negligible in the input size, we assume that δ ≤ 1/k.
As such, the expected maximum error is O

(
log(1/δ)

ε

)
. We discuss the

per-entry error below. Their mechanism is designed to satisfy differential
privacy for discrete data. We extend their technique to real-valued data
as part of Section 2.5, where we combine it with our mechanism.

Cormode, Procopiuc, Srivastava, and Tran [CPST12] introduced a
differentially private mechanism in their work on range queries for
sparse data. The mechanism adds noise to all entries and removes those
with a noisy value below a threshold t = O

(
log(d)

ε

)
. Here the threshold

is used to reduce the expected output size. The number of noisy entries
above t is O(k) with high probability. The construction time of a naive
implementation of their technique scales linearly in d. They improve on
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this by sampling from a binomial distribution to determine the number
of zero entries to store. They show that their approach produces the same
output distribution as a naive implementation that adds noise to every
entry. Their mechanism works for real-valued data in a straightforward
way.

Since the expected number of non-zero entries in the output is O(k)
for both mechanisms above, their memory requirement is O(k log(d + u))
bits using a hash table. An entry is accessed in constant time. The
expected per-entry error depends on the true value of the entry. If the
noisy value is above the threshold with sufficiently high probability, the
expected error is O(1/ε). However, this does not hold for entries that are
likely removed. Consider for example an entry with a true value exactly
at the threshold t. This entry is removed for any negative noise added.
As such the expected per-entry error is O(t) for worst-case input, which
is O

(
log(1/δ)

ε

)
and O

(
log(d)

ε

)
for the two mechanisms, respectively.

In their work on differential privacy on finite computers, Balcer and
Vadhan [BV19] introduced several algorithms including some with simi-
lar utility as the mechanisms described above. Moreover, they provided a
lower bound of Ω

(
min{log(d), log(ε/δ), n}

ε

)
for the expected per-entry error

of any algorithm that always outputs a sparse histogram. (See [BV19,
Theorem 7.2] for the precise technical statement.) Here n is the number
of rows in the dataset, i.e., the sum of all entries of the histogram. This
lower bound means that an algorithm that always outputs a O(k)-sparse
histogram cannot achieve O(1/ε) expected per-entry error for all input.
They bypass this bound by producing a compact representation of a
dense histogram. Their representation has expected per-entry and maxi-
mum error of O(1/ε) and O

(
log(d)

ε

)
, respectively. It requires Õ

(n
ε log(d)

)
bits and an entry is accessed in time Õ

(n
ε

)
. Note that their problem setup

differs from ours in that each entry is bounded only by n such that
‖x‖∞ ≤ n. That is, n serves a similar purpose as u does in our setup. We
do not know how to extend their approach to our setup with real-valued
input.

In light of the results achieved in previous work, our motivation is
to design a mechanism that achieves three properties simultaneously:
O(1/ε) expected per-entry error for arbitrary input, fast access, and
(asymptotically) optimal space. Previous approaches only achieved at
most two of these properties simultaneously. Moreover, we want the
per-entry error to match the tail bounds of the Laplace mechanism
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up to constant factors. We construct a compact representation of a
dense vector to bypass the lower bound for sparse vectors by Balcer and
Vadhan [BV19]. The access time of our mechanism is O(log(d)) and
O(log(1/δ)) for pure and approximate differential privacy, respectively.
Table 2.2 summarizes the results of previous work and our approach.

2.4 The ALP mechanism

In this section, we introduce the Approximate Laplace Projection (ALP)
mechanism1 and give an upper bound on the expected per-entry error.
The ALP mechanism consists of two algorithms. The first algorithm
constructs a differentially private representation of a k-sparse vector and
the second estimates the value of an entry based on its representation.

2.4.1 A 1-differentially private algorithm

We start by considering the special case of ε = 1 and later generalize to
all values of ε > 0. Moreover, the mechanism works well only for entries
bounded by a parameter ψ. In general, this would mean that we had
to set ψ = u if we only were to use the ALP mechanism. However, in
Section 2.5 we will discuss how to set ψ smaller and still perform well
for all entries.

In the first step of the projection algorithm, we scale every non-zero
entry by a parameter of the algorithm and use random rounding to map
each such entry to an integer. We then store the unary representation
of these integers in a two-dimensional bit-array using a sequence of
universal hash functions [CW79]. We call this bit-array the embedding.
Lastly, we apply randomized response on the embedding to achieve
privacy. The pseudocode of the algorithm is given in Algorithm 2 and
we discuss it next.

Figure 2.1 shows an example of an embedding before applying ran-
domized response. The input is a vector x where the ith entry xi is the
only non-zero value. The result of evaluating i for each hash function is
shown in the table at the bottom and the m = 8 bits representing the ith
entry in the bit-array are highlighted. In Step (1) of the algorithm, xi is

1The name is chosen to indicate that the error distribution is approximately like the
Laplace distribution, and that we project the sparse vector to a much lower-dimensional
representation. It also celebrates the mountains, whose silhouette plays a role in a
certain random walk considered in the analysis of the ALP mechanism.
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Algorithm 2: ALP1-Projection
Parameters : α, ψ > 0, and s ∈N.
Input : k-sparse vector x ∈ Rd

+ where s > 2k. Sequence of
universal hash functions from domain [d] to [s],
h = (h1, . . . , hm), where m =

⌈
ψ
α

⌉
.

Output : 1-differentially private representation of x.
(1) Apply random rounding to a scaled version of each non-zero

entry of x such that yi = RandRound
( xi

α

)
.

(2) Construct z ∈ {0, 1}s×m by hashing the unary representations of y
such that:

za,b =

{
1, ∃i : b ≤ yi and hb(i) = a
0, otherwise

(3) Apply randomized response to each bit of z such that

z̃a,b = RandResponse
(

za,b, 1
α+2

)
.

(4) Release h and z̃.

scaled by 1/α and randomized rounding is applied to the scaled value.
This results in yi = 5. Using the hash functions, we represent this value
in unary encoding by setting the first five bits to 1 in Step (2), where the
jth bit is selected by evaluating the hash function hj on i. The final three
bits are unaffected by the entry. Finally, we apply randomized response
in each cell of the bit-array. The bit-array after applying randomized
response is not shown here, but we present it later in Figure 2.2. Both the
bit-array and the hash functions are the differentially private representa-
tion of the input vector x. We use this construction when estimating the
value of xi later.

The algorithm takes three parameters α, ψ, and s. The parameters α

and s are adjustable and affect constant factors for space usage, error, and
access time. By increasing s, we reduce the probability of hash collisions
while increasing the size of the representation. The parameter α is used
to balance two sources of error: by lowering α, we reduce the error in the
encoding in Step (1) but increase the noise in Step (3). This parameter
also affects the size because it is used to set m. We further discuss these
parameters later as part of the error analysis. In Section 2.9 we discuss
how to select values for α and s. Throughout the chapter we sometimes
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Figure 2.1: Embedding with ψ/α = m = 8, s = 5 and yi = 5.
The ith entry is the only non-zero entry.

assume that α is a constant and s is a constant multiple of k, that is
α = Θ(1) and s = Θ(k). The parameter ψ bounds the values stored in
the embedding. We discuss ψ as part of the error analysis as well.

Lemma 2.4. Algorithm 2 satisfies 1-differential privacy.

Proof. Let x, x′ ∈ Rd
+ denote two neighboring vectors. We prove the

lemma in several steps. First, the vectors differ only in their ith entry. In
this case, we start by assuming that only a single bit of z is affected by
changing x to x′ and that there are no hash collisions. We then allow z to
differ in several bits and include hash collisions. Finally, we generalize to
the case where x and x′ differ in more than one entry.

Assume that z differs only in a single bit for x and x′. Let Y and
Y′ denote the events that the affected bit is set to one after running
the algorithm with input x and x′, respectively. Let p = 1

α+2 be the
parameter of the randomized response step. Then we have Pr[Y] =

(1− r) · p + r · (1− p), where r = xi
α −

⌊
min(xi,x′i)

α

⌋
denotes the probability

of the bit being one before the randomized response step. Similarly

for x′ we define r′ = x′i
α −

⌊
min(xi,x′i)

α

⌋
. The minimum term is needed

when max(xi, x′i) is a multiple of α such that max(r, r′) = 1. We find the
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difference in the probability of Y and Y′ occurring as:

Pr[Y]− Pr[Y′] = (p + r− 2rp)− (p + r′ − 2r′p)
= (r− r′) · (1− 2p)

=
xi − x′i
α + 2

.

By symmetry, the absolute difference in probability for setting the bit

to either zero or one is |xi−x′i |
α+2 . Let Z be an arbitrary output of Algorithm 2.

Since x and x′ agree on all but the ith entry, the change in probability of
outputting Z depends only on the affected bit. Now let Y and Y′ denote
the events that the bit agrees with output Z for input x and x′. Then we
find the ratio of probabilities of outputting Z as:

Pr[ALP1-Projection(x′) = Z]
Pr[ALP1-Projection(x) = Z]

=
Pr[Y′]
Pr[Y]

≤
Pr[Y] + |xi−x′i |

α+2
Pr[Y]

≤
p +

|xi−x′i |
α+2

p
= 1 + |xi − x′i|

≤ e|xi−x′i | .

Here the second inequality follows from p ≤ Pr[Y] ≤ 1− p. Next, we
take hash collisions into account as follows: Let p′ denote the probability
that the bit agrees with Z for input x after setting the ith entry to zero.
That is, we have p ≤ p′ ≤ 1− p and Pr[Y] = (1− r) · p′ + r · (1− p).
The absolute difference in probability is still bounded such that Pr[Y]−
Pr[Y′] ≤ |xi−x′i |

α+2 . As such it still holds that:

Pr[ALP1-Projection(x′) = Z]
Pr[ALP1-Projection(x) = Z]

≤ e|xi−x′i | .

Finally, we remove the assumption that only a single bit of z is
affected by composing probabilities. We provide the following inductive
construction. Let x, x′ ∈ Rd

+ be vectors that differ in the ith entry such
that exactly two bits of z are affected. We consider the case of xi < x′i and
fix a vector x′′ ∈ Rd

+ with xi < x′′i < x′i such that the differences affects
exactly one bit each. Again, let Z be an arbitrary output of Algorithm 2.
Applying the upper bound from above twice, we may bound the change
in probabilities by:
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Pr[ALP1-Projection(x′) = Z]
Pr[ALP1-Projection(x) = Z]

=
Pr[ALP1-Projection(x′′) = Z]
Pr[ALP1-Projection(x) = Z]

· Pr[ALP1-Projection(x′) = Z]
Pr[ALP1-Projection(x′′) = Z]

≤ e|xi−x′′i | · e|x′′i −x′i |

= e|xi−x′i | ,

which can be applied inductively if changing an entry affects more than
two bits of z.

We are now ready to generalize to any vectors x, x′ ∈ Rd
+, i.e., where

vectors may differ in more than a single position. Using the bound from
above, we can bound the ratio of probabilities by:

Pr[ALP1-Projection(x′) = Z]
Pr[ALP1-Projection(x) = Z]

≤ ∏
i∈[d]

e|xi−x′i |

= e∑i∈[d] |xi−x′i |

= e‖x−x′‖1 .

The privacy loss is thus bounded by the `1-distance of the vectors for
any output. Recall that the `1-distance is upper bounded by 1 for two
neighboring vectors. As such the algorithm is 1-differentially private as
for any pair of neighboring vectors x and x′ and any subset of outputs S
we have:

Pr[ALP1-Projection(x) ∈ S] ≤ e‖x−x′‖1 Pr[ALP1-Projection(x′) ∈ S]
≤ e · Pr[ALP1-Projection(x′) ∈ S] .

The following lemma summarizes the space complexity of storing the
bit-array and the collection of hash functions.

Lemma 2.5. The number of bits required to store h and z̃ is

O
(
(s + log d) · ψ

α

)
.

Proof. By definition m = O
(

ψ
α

)
and as such s ·m = O

(
sψ
α

)
bits are used

to store z̃. Each hash function uses O(log(d)) bits for a total of O
(

log(d)ψ
α

)
bits to store h.
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Algorithm 3: ALP1-Estimator
Parameters : α > 0.
Input : Embedding z̃ ∈ {0, 1}s×m. Sequence of universal

hash functions h = (h1, . . . , hm). Index i ∈ [d].
Output : Estimate of xi.

(1) Define the function f : {0, . . . , m} → Z as:

f (n) =
n

∑
a=1

2z̃ha(i),a − 1

(2) Let P be the set of arguments maximizing f . That is,

P = {n ∈ {0, . . . , m} : f (a) ≤ f (n) for all a ∈ {0, . . . , m}}

(3) Let ỹi = average(P)
(4) Return ỹi · α.

2.4.2 Estimating an entry

We now introduce the algorithm to estimate an entry based on the
embedding from Algorithm 2. When accessing the ith entry, we estimate
the value of yi and multiply by α to reverse the initial scaling of xi. The
estimate of yi is chosen to maximize a partial sum. If multiple values
maximize the sum we use their average.

Intuition.

The first yi bits representing the ith entry are set to one before applying
noise in Algorithm 2, cf. Figure 2.1. The last m− yi bits are zero, except if
there are hash collisions. Some bits might be flipped due to randomized
response, but we expect the majority of the first yi bits to be ones and the
majority of the remaining m− yi bits to be zeros. As such the estimate
of yi is based on prefixes maximizing the difference between ones and
zeros. The pseudocode for the algorithm is given as Algorithm 3.

Figure 2.2 shows an example of Algorithm 3. The example is based
on the embedding from Figure 2.1 after adding noise. The plot shows the
value of f for all candidate estimates. This sum is maximized at positions
3 and 5. This is visualized as the global peaks in the plot. The estimate is
the average of those positions.
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Figure 2.2: Estimation of ith entry from Figure 2.1.
The partial sum is maximized at indices 3 and 5.

The estimate is 4, while the true value was 5.

Lemma 2.6. The evaluation time of Algorithm 3 is O
(

ψ
α

)
.

Proof. We can compute all partial sums by evaluating each bit
(z̃h1(i),1, . . . , z̃hm(i),m) once using dynamic programming. As such the

evaluation time is O(m) with m =
⌈

ψ
α

⌉
.

We now analyze the per-entry error of Algorithm 3. We first analyze
the expected error based on the parameters of the algorithm. The results
are presented in Lemma 2.11. In Lemmas 2.12 and 2.13 we bound the
tail distribution of the per-entry error of the algorithm.

Lemma 2.7. The expected per-entry error of Algorithm 3 is bounded by (1
2 +

E[|yi − ỹi|]) · α for entries with a value of at most ψ.

Proof. It is clear that the error of the ith entry is α times the difference
between ỹi and xi

α . The expected difference is bounded by:

E
[∣∣∣xi

α
− ỹi

∣∣∣] ≤ E
[∣∣∣xi

α
− yi

∣∣∣]+ E[|yi − ỹi|] ≤
1
2
+ E[|yi − ỹi|] .

The last inequality follows from Lemma 2.3.

We find an upper bound on E[|yi − ỹi|] by analyzing simple random
walks. A simple random walk is a stochastic process such that S0 = 0
and Sn = ∑n

`=1 X`, where X are independent and identically distributed
random variables with Pr[X` = 1] = p and Pr[X` = −1] = 1− p.

Lemma 2.8. Let S be a simple random walk with p < 1/2. At any step n the
probability that there exists a later step ` > n such that S` > Sn is p

1−p .
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Proof. Alm [Alm02, Theorem 1] showed that for any p < 1/2 there exists

a step ` > n such that S` = Sn + k with probability
(

p
1−p

)k
. The Lemma

follows from the case of k = 1.

For our analysis, we are concerned with the maximum n such that
Sn ≥ 0. For an infinite random walk where p < 1/2 such an n exists
with probability 1.

Lemma 2.9. Let S be a simple random walk with p < 1/2. The expected last
non-negative step of S is: E[maxn : Sn ≥ 0] = 4(p−p2)

(1−2p)2 .

Proof. We use Lemma 2.8 to find the probability that Sn is the unique
maximum in {Sn, . . . , S∞} as follows:

Pr[Sn > max({Sn+1, . . . , S∞})]
=Pr[Xn+1 = −1] · Pr[Sn+1 = max({Sn+1, . . . , S∞})]

=(1− p) ·
(

1− p
1− p

)
= 1− 2p .

The last non-negative step must have value exactly zero and as such
must be at an even numbered step. The probability that step 2i is the last
non-negative is:

Pr[(max
n

: Sn ≥ 0) = 2i] = Pr[S2i = 0] · Pr[S2i > max({S2i+1, . . . , S∞})]

=

(
2i
i

)
pi(1− p)i(1− 2p)

=

(
2i
i

)
(p− p2)i(1− 2p) .

We are now ready to find the expected last non-negative step of an
infinite simple random walk as:

E[max
n

: Sn ≥ 0] =
∞

∑
i=0

2i · Pr[(max
n

: Sn ≥ 0) = 2i]

=
∞

∑
i=0

2i
(

2i
i

)
(p− p2)i(1− 2p)

= 2(1− 2p)
∞

∑
i=0

i
(

2i
i

)
(p− p2)i

=
4(p− p2)

(1− 2p)2 .
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The last equality follows from the identity ∑∞
i=0 i(2i

i )(p − p2)i =
2(p−p2)
(1−2p)3 . See Appendix 2.A for a proof of this identity.

We are now ready to bound E[|yi − ỹi|]. We consider entries with
value at most ψ, i.e., yi ≤ m.

Lemma 2.10. Let yi ≤ m and γ = α+2
1+ αk

s
− 2. Then the expected value of

|yi − ỹi| is bounded such that

E[|yi − ỹi|] ≤
4α + 4

α2 +
4γ + 4

γ2 .

Proof. Recall the definition of P from Algorithm 3. Let ȳi ∈ P denote
an element furthest from yi that is |yi − a| ≤ |yi − ȳi| for all a ∈ P. It is
clearly sufficient to consider ȳi for the proof since |yi − ỹi| ≤ |yi − ȳi|.
We first consider the case of ȳi ≤ yi. It follows from the definition
of ȳi as a maximum that ∑

yi
j=ȳi+1 z̃hj(i),j ≤ 0. As such at least half the

bits (z̃hȳi+1(i),ȳi+1, . . . , z̃hyi (i),yi
) must be zero, that is they were flipped by

randomized response in Step (3) of Algorithm 2. As such the length of
the longest interval ending at bit z̃hyi (i),yi

where at least half the bits were
flipped is an upper bound on the value of yi − ȳi. The expected size
of said interval is bounded by the expected last non-negative step of a
simple random walk with p = 1

α+2 . It follows from Lemma 2.9 that:

E[yi − ȳi | ȳi ≤ yi] ≤
4(p− p2)

(1− 2p)2 =

4α+4
(α+2)2

α2

(α+2)2

=
4α + 4

α2 .

We can use a similar argument when yi ≥ ȳi to show that at least half
the bits in (z̃hyi+1(i),yi+1, . . . , z̃hȳi (i),ȳi

) must be 1 since ȳi is a maximum. In
this case we have to consider the possibility of hash collisions. Each hash
function maps to [s] and at most k entries result in a hash collision. The
probability of a hash collision is at most k

s using a union bound. As such

for j > yi we have Pr[z̃hj(i),j = 1] ≤ (1− k
s ) · p + k

s · (1− p) = 1+ αk
s

α+2 . We

let 1+ αk
s

α+2 = 1
γ+2 such that E[ȳi − yi | ȳi ≥ yi] ≤ 4γ+4

γ2 by Lemma 2.9 and
the calculation above. We isolate γ to find:

1
γ + 2

=
1 + αk

s
α + 2

(⇔) γ =
α + 2
1 + αk

s

− 2 .
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Note that γ > 0 holds due to the requirement s > 2k of Algorithm 2.
By conditional expectation, we may upper bound the total expected error
by

E[|yi − ỹi|] ≤ E[|yi − ȳi|]
≤ E[yi − ȳi | ȳi ≤ yi] + E[ȳi − yi | ȳi ≥ yi]

≤ 4α + 4
α2 +

4γ + 4
γ2 .

(2.1)

As such we can bound the expected per-entry error for entries with
a true value of at most ψ by a function of the parameters α and s. In
Section 2.9 we discuss the choice of these parameters based on the upper
bond and experiments. For any fixed values of α and k

s we have:

Lemma 2.11. Let α = Θ(1) and s = Θ(k). Then the expected per-entry error
of Algorithm 3 is E[|xi − x̃i|] ≤ max(0, xi − ψ) + O(1).

Proof. It follows from Lemmas 2.7 and 2.10 that the expected error for
any entry bounded by ψ satisfies:

xi ≤ ψ =⇒ E[|xi − x̃i|] ≤
(

1
2
+

4α + 4
α2 +

4γ + 4
γ2

)
· α ,

where γ = α+2
1+ αk

s
− 2. Entries above ψ have an additional error of up

to xi − ψ, since yi = m and yi > m are represented identically in the
embedding by Algorithm 2. Since α and k

s are constants we have:

E[|xi − x̃i|] ≤ max(0, xi − ψ) + O(1) .

Next, we bound the tail probabilities for the per-entry error of the
mechanism. We bound the error of the estimate ỹi, which implies bounds
on the error of the mechanism.

Lemma 2.12. Let γ = α+2
1+ αk

s
− 2 and τ > 0. Let p = 1

γ+2 . For any fixed index

i ∈ [d] when using Algorithm 3 we have:

Pr[|yi − ỹi| ≥ τ] ≤ 2 · (4(p− p2))τ/2
√

π(1− 2p)
,
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Proof. Let S be a simple random walk. We find an upper bound on the
probability that the position of the last non-negative step in S is at least
τ:

Pr[(max
n

: Sn ≥ 0) ≥ τ] =
∞

∑
j=dτ/2e

(
2j
j

)
(p− p2)j(1− 2p)

≤ 1− 2p√
π

∞

∑
j=dτ/2e

(4(p− p2))j

=
1− 2p√

π

(4(p− p2))dτ/2e

1− 4(p− p2)

≤ (4(p− p2))τ/2
√

π(1− 2p)
,

where the first inequality follows from (2j
j ) ≤

4j√
π j

when j ≥ 1 [Elk13].

The last inequality simply follows from 1− 4(p− p2) = (1− 2p)2 and
4(p− p2) < 1. As discussed in the proof of Lemma 2.10, the expectation
of |yi − ỹi| can be bounded by two random walks each with p at most

1
γ+2 .

Lemma 2.13. Let γ = α+2
1+ αk

s
− 2 and p = 1

γ+2 . For any fixed index i ∈ [d]

with probability at least 1− β for Algorithm 3 we have:

|yi − ỹi| ≤
2 log

(
2

β
√

π(1−2p)

)
log(1/(4p− 4p2))

.

Proof. We set β = 2·(4(p−p2))τ/2
√

π(1−2p) and isolate τ such that:

τ =
2 log

(
2

β
√

π(1−2p)

)
log(1/(4p− 4p2))

.

By Lemma 2.12 we have: Pr[|yi − ỹi| ≤ τ] ≥ 1− β.

Up to constant factors, the tail probabilities of our mechanism are
similar to the properties of the Laplace mechanism summarized in Propo-
sition 2.1. The probabilities depend on the parameters of the mechanism.
In Section 2.9 we fix the parameters and evaluate the error in practice.
We summarize the tail probabilities for |xi − x̃i| in Lemma 2.14.
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Lemma 2.14. Let γ = α+2
1+ αk

s
− 2, p = 1

γ+2 , xi ≤ ψ, and τ ≥ α. For any fixed

index i ∈ [d] when using Algorithm 3 we have:

Pr[|xi − x̃i| ≥ τ] <
2 · (4(p− p2))(τ/2α)−1/2

√
π(1− 2p)

,

With probability at least 1− β we have:

|xi − x̃i| <

1 +
2 log

(
2

β
√

π(1−2p)

)
log(1/(4p− 4p2))

 · α .

Proof. It is easy to see that |xi − x′i| < (1 + |yi − ỹi|) · α holds, as the
error of random rounding is strictly less than 1. The bounds follow from
Lemmas 2.12 and 2.13.

2.4.3 Generalization to ε-differential privacy

We now generalize the ALP mechanism from 1-differential privacy to
satisfying ε-differential privacy. A natural approach is to use a function
of ε as the parameter for randomized response in Algorithm 2. The
projection algorithm is ε-differentially private if we remove the scaling
step and set p = 1

ε+2 . However, the expected per-entry error would be
bounded by 8ε+8

ε2 by Equation 2.1 (without considering hash collisions),
which is as large as O

(
1/ε2) for small values of ε. Other approaches

modifying the value of p have a similar expectation. In Section 2.7 we
discuss a special case where such an approach is useful for large ε.

In the following, we use a simple pre-processing and post-processing
step to achieve optimal error. The idea is to scale the input vector as well
as the parameter ψ by ε before running Algorithm 2. We scale back the
estimates from Algorithm 3 by 1/ε. These generalizations are given as
Algorithm 4 and Algorithm 5, respectively.

Lemma 2.15. Algorithm 4 satisfies ε-differential privacy.

Proof. It follows from the proof of Lemma 2.4 that for any subset of
outputs S we have Pr[ALP1-Projection(x̂′)∈S]

Pr[ALP1-Projection(x̂)∈S] ≤ e‖x̂−x̂′‖1 . As such for any pair
of neighboring vectors x and x′ we have:

Pr[ALP-Projection(x′) ∈ S]
Pr[ALP-Projection(x) ∈ S]

=
Pr[ALP1-Projection(x̂′) ∈ S]
Pr[ALP1-Projection(x̂) ∈ S]

≤ e‖x̂−x̂′‖1 = eε·‖x−x′‖1 ≤ eε .
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Algorithm 4: ALP-Projection
Parameters : α, ψ, ε > 0, and s ∈N.
Input : k-sparse vector x ∈ Rd

+, where s > 2k. Sequence of
universal hash functions from domain [d] to [s],
h = (h1, . . . , hm), where m =

⌈
ψε
α

⌉
.

Output : ε-differentially private representation of x.
(1) Scale the entries of x such that x̂i = xi · ε.
(2) Let h, z̃ = ALP1-Projectionα,ψ·ε,s(x̂, h).
(3) Release h and z̃.

Algorithm 5: ALP-Estimator
Parameters : α, ε > 0.
Input : Embedding z̃ ∈ {0, 1}s×m. Sequence of universal

hash functions h = (h1, . . . , hm). Index i ∈ [d].
Output : Estimate of xi.

(1) Let x̃i = ALP1-Estimatorα(z̃, h, i).
(2) Return x̃i

ε .

Lemma 2.16. Let α = Θ(1) and s = Θ(k). The output of Algorithm 4 can be
stored using O((k + log d)ψε) bits.

Proof. It follows directly from Lemma 2.5.

Lemma 2.17. Let α = Θ(1) and s = Θ(k). Then the expected per-entry error
of Algorithm 5 is E[|xi − x̃i|] ≤ max(0, xi − ψ) + O(1/ε) and the evaluation
time is O(ψε).

Proof. It is clear that the error of Algorithm 5 is 1
ε times the error of

Algorithm 3 for entries at most ψ. As such the expected per-entry error
follows from Lemma 2.11. The evaluation time follows directly from
Lemma 2.6.

Lemma 2.18. Let γ = α+2
1+ αk

s
− 2, p = 1

γ+2 , xi ≤ ψ, and τ ≥ α
ε . For any fixed

index i ∈ [d] when using Algorithm 5 we have:

Pr[|xi − x̃i| ≥ τ] <
2 · (4(p− p2))(τε/2α)−1/2

√
π(1− 2p)

,
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With probability at least 1− β we have:

|xi − x̃i| <

1 +
2 log

(
2

β
√

π(1−2p)

)
log(1/(4p− p2))

 · α

ε
.

Proof. It follows directly from Lemma 2.14.

We are now ready to state the following theorem which summarizes
the properties of the ALP mechanism.

Theorem 2.2. Let α = Θ(1) and s = Θ(k). Then there exists an algorithm
where the expected per-entry error is O(1/ε) for all entries, the access time is
O(uε), and the space usage is O((k + log d)uε) bits.

Proof. By setting ψ = u, it follows directly from Lemmas 2.16 and 2.17.

The space usage and access time of the mechanism both scale linearly
with the parameter ψ. As such the mechanism performs well only for
small values of u. However, in many contexts u scales with the input
size. One example is a histogram, where u is the number of rows in the
underlying dataset. Next, we show how to handle such cases.

2.5 Combined data structure

In this section, we combine the ALP mechanism with techniques from
previous work to improve space requirements and access time. As shown
in Theorem 2.2 the ALP mechanism performs well when all entries are
bounded by a small value. The per-entry error is low only for entries
bounded by ψ but the space requirements and access time scale linearly
with ψ. Some of the algorithms from previous work perform well for
large entries but have large per-entry error for small values. The idea of
this section is to combine the ALP mechanism with such an algorithm to
construct a composite data structure that performs well for both small
and large entries.

To handle large values, we use the thresholding technique from
Cormode et al. [CPST12]. It adds noise to each entry, but only stores
entries above a threshold. The pseudocode of the algorithm is given as
Algorithm 6.
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Algorithm 6: Threshold [CPST12]
Parameters : ε, t > 0.
Input : k-sparse vector x ∈ Rd

+.
Output : ε-differentially private representation of x.

(1) Let vi = xi + ηi for all i ∈ [d], where ηi ∼ Laplace(1/ε).
(2) Truncate entries below t:

ṽi =

{
vi, if yi ≥ t
0, otherwise

(3) Return ṽ.

Lemma 2.19. Algorithm 6 satisfies ε-differential privacy.

Proof. The algorithm is equivalent to the Laplace mechanism followed by
post-processing. The Laplace mechanism satisfies ε-differential privacy,
and privacy is preserved under post-processing as stated by Lemma 2.1.

Lemma 2.20. Let t = 2 ln(d)
ε . Then the output of Algorithm 6 is k-sparse with

probability at least 1− 1
2d .

Proof. Using Definition 2.2 we find that the probability of storing a zero
entry of x is:

Pr[Laplace(1/ε) ≥ t] = Pr[Laplace(1/ε) ≤ −t] =
1
2

e−tε =
1

2d2 .

If the output is not k-sparse there must exists at least one coordinate i
such that ṽi 6= 0 and xi = 0. By a union bound such a coordinate exists
with probability at most 1/(2d).

As discussed in Section 2.3, the expected per-entry error of Algo-
rithm 6 is O

(
log(d)

ε

)
for worst-case input. We combine the algorithm

with the ALP mechanism from the previous section to achieve O(1/ε)
expected per-entry error for any input. We use the threshold parameter
t as value for parameter ψ in Algorithm 4. The algorithm is presented
in Algorithm 7. We use a separate privacy parameter for each part of
the algorithm. Throughout this section we assume that the ratio between
them is fixed such that ε1 = Θ(ε2). We discuss what happens if this ratio
is not fixed after Lemma 2.23.
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Algorithm 7: Threshold ALP-Projection
Parameters : α, ε1, ε2 > 0, and s ∈N.
Input : k-sparse vector x ∈ Rd

+, where s > 2k. Sequence of
universal hash functions from domain [d] to [s],
h = (h1, . . . , hm), where m =

⌈
tε2
α

⌉
.

Output : (ε1 + ε2)-differentially private representation of x.
(1) Let t = 2 ln(d)

ε1
.

(2) Let ṽ = Thresholdε1,t(x).
(3) Let h, z̃ = ALP-Projectionα,ε2,t,s(x, h)
(4) Return ṽ, h and z̃.

Lemma 2.21. Algorithm 7 satisfies (ε1 + ε2)-differential privacy.

Proof. The two parts of the algorithm are independent as there is no
shared randomness. The first part of the algorithm satisfies ε1-differential
privacy by Lemma 2.19 and the second part satisfies ε2-differential pri-
vacy by Lemma 2.15. As such it follows directly from composition
(Lemma 2.2) that Algorithm 7 satisfies (ε1 + ε2)-differential privacy.

Lemma 2.22. Let α = Θ(1), s = Θ(k), ε1 = Θ(ε2). Then the output of
Algorithm 7 is stored using O(k log(d + u) + log2(d)) bits with probability at
least 1− 1

2d .

Proof. It follows from Lemma 2.20 that we can store ṽ using O(k log(d +
u)) bits with probability at least 1− 1

2d . Since ψ = t it follows from
Lemma 2.16 that we can store h and z̃ using O((k + log(d))tε2) =
O(k log(d) + log2(d)) bits.

To estimate an entry, we access ṽ when a value is stored for the
entry and the ALP embedding otherwise. This algorithm is presented in
Algorithm 8.

Lemma 2.23. Let α = Θ(1), s = Θ(k), and ε = ε1 + ε2 with ε1 = Θ(ε2).
Let ṽ, h, and z̃ be the output of Algorithm 7 given these parameters. Then the
evaluation time of Algorithm 8 is O(log(d)). The expected per-entry error is
O(1/ε) and the expected maximum error is O

(
log(d)

ε

)
.

Proof. The evaluation time follows from Lemma 2.17. That is, the evalua-
tion time is O(ψε) = O(tε) = O(log(d)).
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Algorithm 8: Threshold ALP-Estimator
Parameters : α, ε2 > 0.
Input : Vector ṽ ∈ Rd

+. Embedding z̃ ∈ {0, 1}s×m. Sequence
of universal hash functions h = (h1, . . . , hm). Index
i ∈ [d].

Output : Estimate of xi.
(1) Estimate the entry using either the vector or the embedding such

that:

x̃i =

{
ṽi, if ṽi 6= 0
ALP-Estimatorε2,α(z̃, h, i), otherwise

(2) Return x̃i.

The error depends on both parts of the algorithm. The expected
per-entry error for the ith entry is max(0, xi − ψ) + O(1/ε2) when ṽi = 0
by Lemma 2.17. That is, when ηi is less than ψ− xi in Algorithm 6. When
ṽi 6= 0 the error is the absolute value of ηi. That is, we can analyze it
using conditional probability and the probability density function of the
Laplace distribution from Definition 2.2.

E[|xi − x̃i|] = E[|xi − x̃i| | ṽi = 0] · Pr[ṽi = 0]
+ E[|xi − x̃i| | ṽi 6= 0] · Pr[ṽi 6= 0]
≤ (max(0, xi − ψ) + O(1/ε2)) · Pr[Laplace(1/ε1) < ψ− xi]

+
∫ ∞

ψ−xi

|v− xi| ·
ε1

2
e−|v−xi|ε1 dv

<
∫ ψ−xi

−∞
(|v− xi|+ O(1/ε2)) ·

ε1

2
e−|v−xi|ε1 dv

+
∫ ∞

ψ−xi

|v− xi| ·
ε1

2
e−|v−xi|ε1 dv

<
∫ ∞

−∞
|v− xi| ·

ε1

2
e−|v−xi|ε1 dv + O(1/ε2)

= O(1/ε1) + O(1/ε2) = O(1/ε) .

The expected maximum error of Algorithm 6 is O
(

log(d)
ε

)
and the output

of the Algorithm 5 is at most ψ. Since ψ = O
(

log(d)
ε

)
the expected

maximum error is O
(

log(d)
ε

)
.

The asymptotic properties of the algorithms hold for any fixed ratio
between ε1 and ε2. A natural choice is to set ε1 = ε2. However, the ratio
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affects constant factors, and it might not be the best choice in practice.
The value of the parameter m and in turn the space consumption and
access time of the projection scales with ε2/ε1. But the parameters also
affect the expected error for each part of the algorithm. Furthermore, the
constant factor for the error of the Laplace mechanism is lower than that
of the projection. Therefore one could set ε2 higher than ε1 to balance out
those constant factors. We explore the constant factors of Algorithm 3
further in Section 2.9.

2.5.1 Removing the dependency on dimension

To make access time independent of the dimension d, we can turn to
approximate differential privacy. This allows us to use a smaller threshold
in the initial thresholding approach, which in turn results in smaller
values for ψ in the ALP mechanism.

The following algorithm is similar to that introduced by Korolova et
al. [KKMN09], which we discussed in Section 2.3. It adds noise to non-
zero entries only, and uses a threshold to satisfy approximate differential
privacy. Our algorithm differs from the work of Korolova et al. by using
a random rounding step. This step is not needed in a discrete setting,
where at most a single zero-valued entry is changed to a non-zero entry
for neighboring vectors. However, in the real-valued context, several zero
entries can change.

Lemma 2.24. Algorithm 9 satisfies (ε, δ)-differential privacy.

Proof. Let x and x′ be neighboring vectors. We consider two additional
vectors x̂ and x̂′ such that:

x̂i =

{
min(1, x′i), if xi ≤ 1
xi, otherwise;

x̂′i =

{
1, if x′i < 1 and 1 < xi

x′i, otherwise.

The vectors are constructed such that x and x̂ can only differ for entries
at most 1 in both vectors. The same holds for x′ and x̂′. Additionally, the
`1-distance is still at most 1 between any pair of vectors.
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Algorithm 9: Threshold2 (Following technique by [KKMN09])
Parameters : ε, δ > 0.
Input : k-sparse vector x ∈ Rd

+.
Output : (ε, δ)-differentially private approximation of x.

(1) Apply random rounding to non-zero entries below 1 such that:

yi =

{
RandRound (xi) , if 0 < xi < 1
xi, otherwise

(2) Let vi = yi + ηi for all non-zero entries, where ηi ∼ Laplace(1/ε).

(3) Let t = ln (1/δ)
ε + 2.

(4) Truncate entries below t:

ṽi =

{
vi, if yi 6= 0 and vi ≥ t
0, otherwise

(5) Return ṽ.

We find the probability of outputting anything for an entry less than
or equal to 1 as:

xi ≤ 1 =⇒ Pr[ṽi 6= 0] = Pr[yi = 1] · Pr[Laplace(1/ε) ≥ t− 1]
= xi · Pr[Laplace(1/ε) ≤ −(t− 1)]

= xi ·
1
2

e−(t−1)ε = xi ·
1
2

e− ln(1/δ)−ε =
xiδ

2 · eε
.

Since x and x̂ only differ for entries less than or equal to 1 we have
for any subset of outputs S:

Pr[Threshold2(x) ∈ S] ≤ Pr[Threshold2(x̂) ∈ S] + ∑
i∈[d]
|x̂i − xi|

δ

2 · eε

≤ Pr[Threshold2(x̂) ∈ S] +
δ

2 · eε
.

The inequality holds in both directions and for the pair of x′ and x̂′ as
well.

By definition x̂ and x̂′ only differ for entries of at least 1. As such we
can ignore the random rounding step and we have:

Pr[Threshold2(x̂) ∈ S] ≤ e‖x̂−x̂′‖1ε Pr[Threshold2(x̂′) ∈ S]
≤ eε · Pr[Threshold2(x) ∈ S] .
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Using the inequalities above we have:

Pr[Threshold2(x) ∈ S] ≤ Pr[Threshold2(x̂) ∈ S] +
δ

2eε

≤ eε · Pr[Threshold2(x̂′) ∈ S] +
δ

2eε

≤ eε ·
(

Pr[Threshold2(x′) ∈ S] +
δ

2eε

)
+

δ

2eε

≤ eε · Pr[Threshold2(x′) ∈ S] + δ .

Lemma 2.25. Let δ = O
(

1
k

)
. Then the expected maximum error of Algo-

rithm 9 is O
(

log(1/δ)
ε

)
.

Proof. The expected maximum error added by the Laplace noise is
O
(

log(k)
ε

)
, since we add noise to at most k entries. By removing en-

tries we add error of up to O
(

log(1/δ)
ε

)
. As such the expected maximum

error for worst-case input is:

E[‖x− ṽ‖∞] ≤ O
(

log(k)
ε

)
+ O

(
log(1/δ)

ε

)
= O

(
log(1/δ)

ε

)
.

In the following, we use Algorithm 9 instead of Algorithm 6 in Step (2)
of Algorithm 7.

Lemma 2.26. Let α = Θ(1), s = Θ(k), ε = ε1 + ε2 with ε1 = Θ(ε2),
and δ > 0 with δ = O(1/k). By using Algorithm 9 in Algorithm 7 the
access time is O(log(1/δ)). The expected per-entry error is O(1/ε) and the
expected maximum error is O

(
log(1/δ)

ε

)
. The combined mechanism satisfies

(ε, δ)-differential privacy.

Proof. The proof is the same as the proofs of Lemmas 2.21 and 2.23.

Lemma 2.27. Let α = Θ(1), s = Θ(k), and ε1 = Θ(ε2). Then the memory
requirement of combining Algorithm 9 and the ALP mechanism is O(k log(d +
u) + k log(1/δ) + log(d) log(1/δ)).
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Proof. The output of Algorithm 9 is always k-sparse and we represent
it using O(k log(d + u)) bits. We set ψ = ln(1/δ)

ε2
+ 2 and therefore

h and z̃ are represented using O(k log(1/δ) + log(d) log(1/δ)) bits by
Lemma 2.16.

We are now ready to summarize our results for both pure and ap-
proximate differential privacy.

Theorem 2.3. Let α = Θ(1), s = Θ(k), and ε > 0. Then there exists
an ε-differentially private algorithm with O(1/ε) expected per-entry error,
O
(

log(d)
ε

)
expected maximum error, access time of O(log(d)), and space usage

of O(k log(d + u) + log2(d)) with probability at least 1− 1
2d .

Proof. It follows directly from Lemmas 2.21, 2.22 and 2.23.

Theorem 2.4. Let α = Θ(1), s = Θ(k), and ε, δ > 0. Then there exists
an (ε, δ)-differentially private algorithm with O(1/ε) expected per-entry error,
O
(

log(1/δ)
ε

)
expected maximum error, access time of O(log(1/δ)), and space

usage of O(k log(d + u) + k log(1/δ) + log(d) log(1/δ)).

Proof. It follows directly from Lemmas 2.24, 2.26 and 2.27.

2.6 Faster evaluation with multiplicative error

From the previous sections, we know how to achieve evaluation time
O(log d) and O(log(1/δ)), respectively. In this section, we improve the
evaluation time to O (log(log(d)/ε)) and O (log(log(1/δ)/ε)) at the cost
of a multiplicative error O (1). That is, this technique can be used if it
sufficient to estimate the order of magnitude of an entry. We first describe
the data structure and the estimation algorithm, and then state and
analyze its properties.

Projection.

Let α, ε > 0, B > 1, ψ ≥ max{1, 1/ ln(B)}, and s ∈ N. Given a k-sparse
vector x ∈ Rd

+ with xi ≤ ψ, define ẋ ∈ Rd
+ by ẋi = max{logB(xi ln B), 0}

for all xi > 0. Run Algorithm 4 with input ẋ and a sequence of universal
hash functions from domain [d] to [s], h = (h1, . . . , hm), where m =⌈

logB(ψ ln B)ε
α

⌉
. Let z̃ be the output of Algorithm 4.
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Estimation.

Given z̃, h, and an index i ∈ [d], let ẍi be the output of Algorithm 5 with
parameters α and ε. Return the value x̃i = Bẍi / ln B as an estimate for xi.

Lemma 2.28. The projection algorithm satisfies ε-differential privacy.

Proof. By Lemma 2.15, Algorithm 4 satisfies ε-differential privacy for
neighboring inputs. We have to show that the mapping xi 7→
max{logB(xi ln B), 0} preserves the neighborhood relation for neighbor-
ing x and x′. The function f (x) = logB(x ln B) is Lipschitz continuous
in R>1/ ln B since if x ≥ 1/ ln B, the absolute value of the derivative
f ′(x) = 1

x ln B is at most 1, and thus for x, x′ ≥ 1/ ln B:

|| logB(x ln B)− logB(x′ ln B)||1 ≤ 1 · ||x− x′||1.

Since the mapping xi 7→ max{logB(xi ln B), 0} is constant for xi ≤ 1/ ln B
we conclude that it is neighborhood-preserving.

We next consider the properties of this data structure.

Lemma 2.29. Let ε > 0 and x ∈ Rd
+ be a k-sparse vector with each coordinate

xi ≤ ψ. Let α = Θ(1) and s = Θ(k). Let γ = α+2
1+ αk

s
− 2, p = 1

γ+2 , and set

B = (4(p− p2))−ε/(4α). Then

• for all xi ≥ 1
ln B the (multiplicative) expected per-entry error is

E[max{x̃i/xi, xi/x̃i}] = O (1) .

• the evaluation time is O(log(ψ)), and

• the space is O((k + log(d)) log(ψ)) bits.

Proof. Let ẋ be the transformed input for Algorithm 4 and ẍ the estimate
returned by Algorithm 5. The multiplicative estimation errors of x̃i/xi
and xi/x̃i are bounded by B|ẍi−ẋi|. Let S be a simple random walk with
parameter p. We can bound the estimation error by considering the last
non-negative step of S similar to the proof of Lemma 2.10. The absolute
error between ẋiε/α and the estimate computed in Step (3) of Algorithm 3
is at most one more than the length of longest interval where half the
bits are flipped due to rounding. Using the definition of the expectation
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and the calculations from Lemma 2.12, we upper bound the expected
multiplicative error as follows:

E [max{x̃i/xi, xi/x̃i}] ≤
∞

∑
τ=0

B
(2τ+1)α

ε · 2 Pr[(max
n

: Sn ≥ 0) = 2τ]

≤ (2− 4p)Bα/ε
∞

∑
τ=0

(
B2α/ε4

(
p− p2

))τ

We set B =
(
4(p− p2)

)−ε/(4α) such that

(2− 4p)Bα/ε
∞

∑
τ=0

(
B2α/ε4

(
p− p2

))τ

=
2− 4p

(4p− 4p2)1/4

∞

∑
τ=0

(√
4p− 4p2

)τ

=
2− 4p

(4p− 4p2)
1/4 − (4p− 4p2)

3/4 = O(1) .

With our choice of B, logB(x) = O(log(x)/ε) and logB(ln(B)) < 1
holds for any choice of B. The statements about running time and space
usage follow directly from Theorem 2.2 using u = 1 + O(log(ψ)/ε).

We remark that capping ẋ to zero means that we treat entries where
xi ≤ 1/ ln B as 4α/(ln(1/(4p − 4p2))ε) = Θ(1/ε) for our choice of B,
incurring an additive error of Θ(1/ε) for small entries. The proof above
shows that the expected multiplicative error is bounded by a constant
for any fixed α. If α is not fixed we can choose the value to minimize
the multiplicative error. As an simplified example, we ignore hash
collisions such that p = 1

α+2 . Then the equation for the constant above
is minimized with value ≈ 4.83 when α ≈ 20.26. However, the additive
error is minimized for α ≈ 3.07 where 1/ ln B ≈ 26.89/ε. As such the
choice of α depends on the trade-off between the two kinds of error. It is
worth noting that the analysis for the expected multiplicative error is not
tight. Simulations similar to those in Section 2.9 can be used to balance
the trade-off based on empirical mean error.

2.6.1 Applications

We summarize the properties of the data structure in the settings studied
before:
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1. If we do not combine the data structure with the thresholding
technique as described in Section 2.5, we instantiate the algorithm
described above with ψ = u. The running time is O(log u) and the
data structure uses O((k + log(d)) log u) bits.

2. When combined with the thresholding technique with thresh-
old O(log(d)/ε) for pure differential privacy or O(log(1/δ)/ε)
for (ε, δ)-differential privacy, we may set ψ to these values,
respectively. This results in running time O(log(log(d)/ε))
and O(log(log(1/δ)/ε)) with a space usage of O((k +
log(d)) log(log(d)/ε)) and O((k + log(d)) log(log(1/δ)/ε)) bits,
respectively, not accounting for the space needed for the threshold
data structure.

2.7 Improvements for Sparse Integer-valued Vectors

The algorithms we introduced so far work with real-valued vectors as
input. In this section, we discuss a variation of the ALP mechanism
if we restrict the input to integers. Recall that two vectors x, x′ ∈ Rd

+

are defined as neighboring iff ‖x − x′‖1 ≤ 1. Under this definition
neighboring vectors might disagree on several entries. As an example,
two neighboring k-sparse vectors can differ by 1

2k in 2k entries. However,
for the special case of histograms, that is x, x′ ∈Nd, neighboring input
may only disagree on one entry. We can utilize this to design a version
of the ALP mechanism with improved accuracy for some values of ε.
Algorithm 10 shows a projection algorithm for histograms. It is similar
to Algorithm 4 without the scaling and rounding steps, and with a flip
probability in randomized response that depends on ε.

Lemma 2.30. Algorithm 10 satisfies ε-differential privacy.

Proof. Neighboring histograms only differ in a single entry. As such at
most one bit in z is changed from replacing x with x′. For randomized
response with p = 1

eε+1 it holds for each b ∈ {0, 1} that

Pr[RandResponse (b, p) = b]
Pr[RandResponse (b, p) = 1− b]

=
1− p

p
= eε .

By symmetry the mechanism is ε-differentially private.
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Algorithm 10: Histogram-Projection
Parameters : ε > 0, and ψ, s ∈N.
Input : k-sparse histogram x ∈Nd where s > 2k. Sequence

of universal hash functions from domain [d] to [s],
h = (h1, . . . , hψ).

Output : ε-differentially private representation of x.
(1) Construct z ∈ {0, 1}s×ψ by hashing the unary representations of x

such that:

za,b =

{
1, ∃i : b ≤ xi and hb(i) = a
0, otherwise

(2) Apply randomized response to each bit of z such that

z̃a,b = RandResponse
(

za,b, 1
eε+1

)
.

(3) Release h and z̃.

A key feature of Algorithm 10 is that the parameter for randomized
response is a function of ε. For comparison, in Algorithm 4 it depends
on the adjustable parameter α, and ε is only used for a linear scaling. For
this reason Algorithm 10 is preferred for large values of ε since the noise
is significantly reduced as we show next. However, the technique used
in Algorithm 4 is still preferred for small ε.

For the error analysis, we first consider the expected error when there
are no hash collisions. We later include hash collisions in the analysis.
We estimate the value of an entry with Algorithm 3. We assume that the
true value is at most ψ. If this is not true there is an additional error as
shown in Lemma 2.11.

Lemma 2.31. The expected per-entry error when using Algorithm 3 on output
from Algorithms 10 for entries at most ψ is bounded by 8·eε

(eε−1)2 if there are no
hash collisions.

Proof. By the argument used in the proof of Lemma 2.10 we can bound
the error by examining simple random walks with p = 1

eε+1 . The expected
error is at most twice the expected last non-negative step in the random

walk. By Lemma 2.9 this is 4(p−p2)
(1−2p)2 . As such we can bound the expected
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error by:

2 · 4(p− p2)

(1− 2p)2 = 8 ·
eε

(eε+1)2

(eε−1)2

(eε+1)2

=
8eε

(eε − 1)2 .

Recall from Lemma 2.17 that the expected error of Algorithm 5 is
O(1/ε). As such, we expect the above algorithm to perform better
for “large values“ of ε as the expectation approaches O(1/eε) for ε →
∞. However, it performs worse for “small values“ as the expectation
approaches O(1/ε2) for ε → 0. In Section 2.9 we compare the error of
the two algorithms for varying values of ε.

Next we consider the effect of hash collisions on the expected error.
From previous sections we know that it is sufficient to bound the prob-
ability of hash collisions by a constant for the general ALP mechanism.
That is however not sufficient for large ε as the probability used for
randomized response is very low. That is, a hash collision has a bigger
impact on the probability of outputting a one for larger ε.

Lemma 2.32. The expected per-entry error when using Algorithm 3 on output

from Algorithms 10 for entries at most ψ is bounded by 4eε

(eε−1)2 +

4eε+4
1+(eε−1) k

s
−4(

eε+1
1+(eε−1) k

s
−2
)2 .

Proof. We know from the proof of Lemma 2.10 that the expected last
non-negative step of a simple random walk with p = 1

γ+2 is 4γ+4
γ2 . Since

we use universal hash functions and store at most k ones in each column
the probability of hash collisions is at most k

s . As such we can bound the

probability of changing a bit from zero to one by 1+(eε−1) k
s

eε+1 . By setting
1

γ+2 =
1+(eε−1) k

s
eε+1 and isolating γ we get γ = eε+1

1+(eε−1) k
s
− 2. As such we

can bound the positive error by

4γ + 4
γ2 =

4eε+4
1+(eε−1) k

s
− 4(

eε+1
1+(eε−1) k

s
− 2
)2 .

The expected negative error is still bounded by 4eε

(eε−1)2 since hash colli-
sions have no impact.



2.8. Constant Access Time with Optimal Expected Error 57

If we apply the thresholding techniques before running Algo-
rithm 10 the number of bits needed to store z̃ is O((s log d)/ε) and
O((s log(1/δ))/ε), respectively. By setting s = Θ(k) we bound the prob-
ability of hash collisions by a constant. This works decently for small
values of ε, but we need to use more space for large values. When the
probability of a hash collision is q, the probability of flipping a bit from
zero to one is at least q/2. This would put a lower bound on the error
for any ε. We can use some extra space to get error O(1/ε) or O(1/eε)
expected error for large epsilon as summarized below. The corollary
follows directly from plugging in different choices of s into Lemma 2.32.

Corollary 2.1. Assuming that the threshold technique for ε-DP (Algorithm 6)
was applied, using Algorithm 3 on output from Algorithms 10 has the following
properties:

1. Let s = Θ(kε) and ε > 1. Then the expected error for ε→ ∞ is O(1/ε)
and z̃ is stored in O(k log d) bits.

2. Let s = Θ(keε) and ε > 1. Then the expected error for ε→ ∞ is O(1/eε)
and z̃ is stored in O(eεk log(d)/ε) bits.

The results extend naturally to the case of (ε, δ)-DP using Algorithm 9.

2.8 Constant Access Time with Optimal Expected Error

In this section, we discuss a data structure that achieves access time O(1)
with expected per-entry error O(1/ε), improving on the mechanisms
discussed in previous sections. As a downside, the error bound is only
in expectation and the data structure does not have strong tail bounds as
compared to the ALP mechanism, cf. Lemma 2.14. The data structure is
inspired by the Count-Min sketch [CM05].

2.8.1 The data structure

Algorithm 11 shows the projection algorithm that returns a differentially
private data structure that can be used for estimation. Given a k-sparse
vector x ∈ Rd

+ and a random hash function h mapping from [d] to [s],
the algorithm returns a vector ỹ ∈ Rs for a parameter s to be chosen later.
The idea is that, before noise, each coordinate yi stores the maximum
entry in x for all coordinates of x that are mapped to i by h. We use the
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Algorithm 11: Max-Projection
Parameters : ε > 0, and s ∈N.
Input : x ∈ Rd

+. A universal hash function h from domain
[d] to [s].

Output : ε-differentially private representation of x.
(1) Initialize y ∈ Rs to the all zeroes vector.
(2) For each i ∈ [s], set yi = maxh(j)=i xj.
(3) For each i ∈ [s], sample ηi ∼ Laplace(1/ε)
(4) Release h and ỹ = y + (η1, . . . , ηs).

Laplace mechanism on y to release ỹ as the differentially private version
of x. Given a coordinate i ∈ [d], we estimate xi as ỹh(i).

Lemma 2.33. Algorithm 11 satisfies ε-differential privacy.

Proof. Let x and x′ such that ||x − x′||1 ≤ 1 and define y and y′ as
in Line (2) of Algorithm 11. Each coordinate i such that xi and x′i
differ can contribute a change of not more than |xi − x′i| to ||y− y′||1.
Thus, ||y− y′||1 ≤ 1. Adding Laplace noise with scale 1/ε guarantees
ε-differential privacy.

Lemma 2.34. Given x ∈ Rd
+ and ε > 0, let h, ỹ be the output of Algorithm 11

with s = Ω(ε||x||1). For each i ∈ [d], E[|xi − ỹh(i)|] = O(1/ε). The
evaluation of a single coordinate takes time O(1).

Proof. The running time statement follows because the algorithm evalu-
ates a single hash function value.

Let J be the set of coordinates of the non-zero entries in x. We can
use that the hash function is universal to bound the expected difference
between xi and yh(i) by

E
[
|xi − yh(i)|

]
≤∑

j∈J
Pr(h(i) = h(j)) ·max(xj − xi, 0)

≤ 1
s ∑

j∈J
xj =

‖x‖1

s
.

The expected error from the Laplace noise is O(1/ε) by Proposition 2.1.
For s = Ω(ε||x||1), the expected error is O(1/ε) for zero entries. Since
each non-zero entry xj with h(i) = h(j) potentially contributes to yh(i),
the expected error is only smaller for non-zeroes.
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(a) Upper bound error guarantees (b) Observed mean per-entry error

Figure 2.3: Theoretical expected per-entry error and experiment results.
Note that the y-axes for the plots use different scales.

Corollary 2.2. Let ε > 0 and x ∈ Rd
+.

1. If ||x||1 = n, the data structure described above uses space s = O(εn)
words, guarantees constant access time, and has expected error O(1/ε).

2. If x is k-sparse, then the data structure uses O(k log d) words, has con-
stant access time, and has expected error O(1/ε).

Proof. If ||x||1 = n is known, we can use s = Θ(nε) as the size of the table.
If the vector is k-sparse, we use the thresholding technique (Algorithm 6)
with threshold O (log(d)/ε) and store the entries below the threshold
using Algorithm 11. Restricting on the elements below the threshold, we
know that ||x||1 = O (k log(d)/ε) and the result follows.

This approach guarantees constant access time with expected error
O(1/ε), but does not guarantee good tail bounds similar to the ALP
mechanism and the Laplace mechanism. Let us focus on the case that
we use s = O(k log d) for a k-sparse vector x ∈ Rd

+. The probability that
one of the d− k zero entries collides with a non-zero is O(1/ log d). All
of the non-zero entries can be as large as O(log(d)/ε). Thus, we expect
(d− k)/ log d zero entries to have error O(log(d)/ε).

2.9 Experiments

In this section, we discuss the per-entry error of ALP1-Estimator (Al-
gorithm 3) in practice. Let γ = α+2

1+ αk
s
− 2. By Lemma 2.7 and 2.10 the
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expected per-entry error of ALP1-Estimator is upper bounded by:

E[|xi − x̃i|] ≤
(

1
2
+

4α + 4
α2 +

4γ + 4
γ2

)
· α .

Figure 2.3a shows the upper bound for varying values of k/s and α.
Recall that k/s is a bound on the probability of a hash collision. We see
that the effect of hash collisions on the error increases for large values of
α, as each bit in the embedding is more significant. We discuss how the
upper bound compares to practice next.

Experimental Setup.

We designed experiments to evaluate the effect of the adjustable param-
eters α and s on the expected per-entry error of ALP1-Estimator. The
experiments were performed on artificial data. For our setup, we set
parameter ψ = 5000 and chose a true value xi uniformly at random
in the interval [0; ψ]. We run only on artificial data, as uniform data
does not benefit the algorithm, and we can easily simulate worst-case
conditions for hash collisions. We simulate running the ALP1-Projection
algorithm by computing yi, simulating hash collisions, and applying
randomized response. The probability for hash collisions is fixed in each
experiment and the same probability is used for all bits. This simulates
worst-case input in which all other non-zero entries have a true value
of at least ψ. We increment α by steps of 0.1 in the interval [0.1, . . . , 10]
and the probability of a hash collision by 0.05 in the interval [0, . . . , 0.2].
The probability of 0 serves only as a baseline, as it is not achievable in
practice for k > 1. The experiment was repeated 105 times for every data
point.

Figure 2.3b shows plots of the mean absolute error of the experiments.
As α is increased, the error drops off at first and slowly climbs. The
estimates of yi are more accurate for large values of α. However, any
inaccuracy is more significant, as ỹi is scaled back by a larger value. The
error from the random rounding step also increases with α. The plots of
the upper bound and observed error follow similar trajectories. However,
the upper bound is approximately twice as large for most parameters.

Fixed Parameters.

The experiments show how different values of α and s affect the expected
per-entry error. However, the parameters also determine constant factors
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Figure 2.4: Error distribution of Algorithm 3.
(ε = 1, α = 3, and collision probability = 0.1)

for space usage and access time. The space requirements scale linearly in
s
α and the access time is inversely proportional to α. As such, the optimal
parameter choice depends on the use case due to space, access time, and
error trade-offs.

To evaluate the error distribution of the ALP1-Estimator algorithm
we fixed the parameters of an experiment. We set α = 3 and the hash
collision probability to 0.1. We repeated the experiment 106 times.

The error distribution is shown in Figure 2.4. The mean absolute error
of the experiment is 6.4 and the standard deviation is 11. Plugging in
the parameters in Lemma 2.14, with probability at least 0.9 the error is at
most

|xi − x̃i| < 3 +
6 log

(
5

0.12
√

π

)
log
( 25

19.24

) ≈ 75.33 .

The error of the observed 90th percentile is 15.78, which is shown in
Figure 2.4 using vertical lines. Again, this shows that the upper bounds
are pessimistic.

For comparison, the plots include the Laplace distribution with scale
parameters 1 and 4.5. Note that the Laplace distribution with parameter
1 is optimal for the privacy budget. The standard deviation of the
distribution with scale 4.5 is 6.36 and as such the mean absolute error is
similar to the ALP mechanism.
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Figure 2.5: Mean per-entry error of Algorithms 4 and 10

The distribution is slightly off-center, and the mean error is 2.33. This
is expected due to hash collisions. The effect of hash collisions is also
apparent for the largest observed errors. The lowest observed error was
−114, while the highest was 274. There is a clear trade-off between space
usage and per-entry error. We reran the experiment with hash collision
probability 0.01 using the same value for α. The error improved for all the
metrics mentioned above. The mean absolute error is 4.8, the standard
deviation is 7.8, the mean error is 0.18, the 90th percentile is 11.5, and
the largest observed error is 147.

Histograms.

Next we compare the expected per-entry error of ALP-Projection (Al-
gorithm 4) with the variant designed for histograms introduced in Sec-
tion 2.7. As discussed in the section, Algorithm 10 is more sensitive to
ε than Algorithm 4. The experiment in this section compares the effect
of changing ε on both algorithms. In particular, the experiments are
designed to examine when Algorithm 10 is preferred.

For our setup, we again set ψ = 5000. We increment ε by 0.05 in the
interval [0.25, . . . , 10]. For algorithm 10 we choose an integer uniformly
in [0, . . . , ψ]. We set α = 3 based on the previous experiments. Recall that
Algorithm 4 introduces error in the scaling step if xi is not a multiple of
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α/ε. For this reason we uniformly select a multiple of α/ε in the interval
[0; ψ]. The experiment was repeated 105 times for each data point.

We ran both simulations with no probability of hash collisions as a
baseline. We denote this as s = ∞. We ran Algorithm 4 with a probability
of 0.1 for hash collisions. We denote this as s = 10k in the legend. For
Algorithm 10 we ran the experiment with probabilities of hash collisions
of 0.1/eε and 0.1/ε. However, we use 0.1 for ε < 1. The result of the
experiment is shown in Figure 2.5. The y-axis has a logarithmic scale
and the functions 1/ε and 1/eε are included for comparison.

The plots show that the preferred algorithm depends on the value
of ε as expected. We see that Algorithm 10 is preferred when ε is ap-
proximately 0.7 and above. The error of Algorithm 10 is O(1/eε) and
O(1/ε) for large epsilon as expected if the probabilities of hash colli-
sions is Θ(1/eε) and Θ(1/ε), respectively. However, it still outperforms
Algorithm 4 for large ε by more than an order of magnitude.

Note that Algorithm 4 is much preferred for small ε even though
it is not as clearly visible from the Figure. As discussed in Section 2.7,
Algorithm 10 uses more space and the expected error scales roughly as
O(1/ε2) for ε < 1. We ran the experiment with ε = 0.05 and Algorithm 4
outperformed the mean error of Algorithm 10 by an order of magnitude.

2.10 Suggestions to Practitioners

The ALP mechanism introduced in this chapter combines the best of
three worlds: It has low error similar to the Laplace mechanism, produces
compact representations using asymptotically optimal space, and has an
access time that scales only with O(log d).

In an application that wants to make use of differentially private
histograms/vectors, one first has to get an overview of the assumed
properties of the data before making a choice on which approach to
use. If d is small or the data is assumed to be dense, the Laplace
mechanism will offer the best performance. If the data is sparse and
the dimension d is large, the analyst must know which error guarantee
she wishes to achieve, and which access time is feasible in the setting
where the application is deployed. If a larger error is acceptable for
“small” entries or access time is crucial, just applying the thresholding
technique [KKMN09, CPST12] is the better choice. Otherwise, if small
error is paramount or an access time of O(log d) is sufficient, the ALP
mechanism will provide the best solution.
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Variants.

We assume in this chapter that k is a known bound on the sparsity of the
input data. However, in some applications the value of k itself is private.
Here we briefly discuss approaches in such settings. We use the value of
k to select the size of the embedding, such that the probability of hash
collisions is sufficiently small. When k is not known we can still bound
the probability of hash collisions.

If the input is a histogram the sparsity differs by at most 1 for neigh-
boring datasets. As such we can use a fraction of the privacy budget
to estimate the sparsity. Note that this is not possible for real-valued
vectors, as the difference in sparsity can be as large as d for neighboring
datasets.

If ‖x‖1 = n is known then we have ‖x̂‖1 = nε for the scaled input.
We can bound the probability of hash collisions by a constant when the
size of the embedding is Θ(nε) bits. We also have ‖x‖∞ ≤ n and as such
we can set u = n if no better bound is known. If ‖x‖1 is unknown we can
estimate it using a fraction of the privacy budget. Note that the space
differs from the k-sparse setting, and remains Θ(nε) bits when applying
the thresholding techniques.

In both cases the estimate affects space and error of our mechanism.
We discuss estimating k here but the same principle applies to estimating
‖x‖1. Let k̃ be the estimate of k used to set s such that s = Θ(k̃).
It is clear that the space requirement now scales with k̃ instead of k.
However, the error guarantees of our mechanism depend on k

s . We can
bound this by a constant when k is known, but we might introduce
large error if k̃/k is small. This is only likely to happen if the true value
of k is small. If a small error is more important than space we can
estimate k̃ such that k ≤ k̃ with high probability. For example we can
set k̃ = k + Laplace(1/ε) + ln(d/2)/ε such that k ≥ k̃ only happens with
probability at most 1/d.

In Section 2.2 we gave a simple reduction from real-valued data to
non-negative real-valued data with increased error. It is possible to
extend our mechanism to negative values by instead paying an increase
in access time. The thresholding techniques in Algorithms 6 and 9 are
easily extended to real values by releasing noisy entries with a large
absolute value. However, Algorithm 9 only releases entries whose true
and noisy values have the same sign to preserve the privacy guarantees.
We extend Algorithm 2 by using twice as many columns to store z. The
last m columns store non-negative values as before. The first m columns
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store the negative values. The bits are set to 1 by default and changed to
0 to encode negative values. Algorithm 3 is unchanged but an offset is
used for the returned value.

An implementation of a variant of the ALP mechanism is available as
part of the open source project OpenDP (https://opendp.org/) in the
repository https://github.com/opendp/opendp.

https://opendp.org/
https://github.com/opendp/opendp
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2.A Closed-form proof of Lemma 2.9

Here we provide a closed-form expression used in the proof of
Lemma 2.9.

In the proof, we will make use of general binomial coefficient([GKP94,
Equation 5.1]):(

r
k

)
=

r(r− 1) . . . (r− k + 2)(r− k + 1)
k!

,

and the binomial theorem ([GKP94, Equation 5.12]):
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)
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Starting from an infinite series with z < 1/4, we simplify as follows:
∞
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Finally, let z = p − p2 for p < 1/2. This gives us the closed-form
expression:

∞

∑
k=0

k
(

2k
k

)
(p− p2)k =

2(p− p2)

(1− 4(p− p2))3/2

=
2(p− p2)

(1− 2p)3 .
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We consider the problem of computing differentially private approximate
histograms and heavy hitters in a stream of elements. In the non-private
setting, this is often done using the sketch of Misra and Gries [Science
of Computer Programming, 1982]. Chan, Li, Shi, and Xu [PETS 2012]
describe a differentially private version of the Misra-Gries sketch, but the
amount of noise it adds can be large and scales linearly with the size of
the sketch: the more accurate the sketch is, the more noise this approach
has to add. We present a better mechanism for releasing a Misra-Gries
sketch under (ε, δ)-differential privacy. It adds noise with magnitude
independent of the size of the sketch size, in fact, the maximum error
coming from the noise is the same as the best known in the private non-
streaming setting, up to a constant factor. Our mechanism is simple and
likely to be practical. We also give a simple post-processing step of the
Misra-Gries sketch that does not increase the worst-case error guarantee.
It is sufficient to add noise to this new sketch with less than twice the
magnitude of the non-streaming setting. This improves on the previous
result for ε-differential privacy where the noise scales linearly to the size
of the sketch.
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3.1 Introduction

Computing the histogram of a dataset is one of the most fundamental
tasks in data analysis. This problem has been investigated thoroughly
in the differentially private setting [DMNS06, GRS12, GKOV15, CPST12,
KKMN09, BV19, ALP22]. These algorithms start by computing the his-
togram exactly and they then add noise to ensure privacy. However,
in practice, the amount of data is often so large that computing the
histogram exactly would be impractical. This is, for example, the case
when computing the histogram of high-volume streams such as when
monitoring computer networks, online users, financial markets, and sim-
ilar. In that case, we need an efficient streaming algorithm. Since the
streaming algorithm would only compute the histogram approximately,
the above-mentioned approach that first computes the exact histogram
is infeasible. In practice, non-private approximate histograms are often
computed using the Misra-Gries (MG) sketch [MG82]. The MG sketch of
size k returns at most k items and their approximate frequencies f̂ such
that f̂ (x) ∈ [ f (x)− n/(k + 1), f (x)] for all elements x where f (x) is the
true frequency and n is the length of the stream. This error is known
to be optimal [BKMT03]. In this work, we develop a way of releasing
a MG sketch in a differentially private way while adding only a small
amount of noise.1 This allows us to efficiently and accurately compute
approximate histograms in the streaming setting while not violating
users’ privacy. This can then be used to solve the heavy hitters problem
in a differentially private way. Our result improves upon the work of
Chan, Li, Shi, and Xu [CLSX12] who also show a way of privately releas-
ing the MG sketch, but who need a greater amount of noise; we discuss
this below.

In general, the issue with making approximation algorithms differ-
entially private is that although we may be approximating a function
with low global sensitivity, the algorithm itself (or rather the function it
implements) may have a much larger global sensitivity. This increases the
amount of noise required to achieve privacy using standard techniques.
We get around this issue by exploiting the structure of the difference
between the MG sketches for neighboring inputs. This allows us to
prove that the following simple mechanism ensures (ε, δ)-differential
privacy: (1) We compute the Misra-Gries sketch, (2) we add to each

1See https://github.com/JakubTetek/Differentially-Private-Misra-Gries
for a sample implementation.

https://github.com/JakubTetek/Differentially-Private-Misra-Gries


3.1. Introduction 69

counter independently noise distributed as Laplace(1/ε), (3) we add
to all counters the same value, also distributed as Laplace(1/ε), (4) we
remove all counters smaller than 1 + 2 ln(3/δ)/ε. Specifically, we show
that this algorithm satisfies the following guarantees:
Theorem 3.1 (simplified). The above algorithm is (ε, δ)-differentially private,
uses 2k words of space, and returns a frequency oracle f̂ with maximum error
of n/(k + 1) + O(log(1/δ)/ε) with high probability for δ being sufficiently
small.

A construction for a differentially private Misra-Gries sketch has
been given before by Chan et al. [CLSX12]. However, the more accurate
they want their sketch to be (and the bigger it is), their approach has
to add more noise. The reason is that they directly rely on the global
`1-sensitivity of the sketch. Specifically, if the sketch has size k (and thus
error n/(k + 1) on a stream of n elements), its global sensitivity is k, and
they thus have to add noise of magnitude k/ε. Their mechanism ends up
with an error of O (k log(d)/ε) for ε-differential privacy with d being the
universe size. This can be easily improved to O (k log(1/δ)/ε) for (ε, δ)-
differential privacy with a thresholding technique similar to what we do
in step (4) of our algorithm above. This also means that they cannot get
more accurate than error Θ

(√
n log(1/δ)/ε

)
, no matter what value of k

one chooses. We achieve that the biggest error, as compared to the values
from the MG sketch, among all elements is O(log(1/δ)/ε) assuming δ is
sufficiently small (we show more detailed bounds including the mean
squared errors in Theorem 3.1). This is the same as the best private
solution that starts with an exact histogram [KKMN09]. In fact, for any
mechanism that outputs at most k heavy hitters there exists input with
error at least n/(k+ 1) in the streaming setting [BKMT03] and input with
error at least O(log(min(d, 1/δ))/ε) [BV19] under differential privacy.
In Section 3.6 we discuss how to achieve ε-differential privacy with
error n/(k + 1) + O(log(d)/ε). Therefore the error of our mechanisms
is asymptotically optimal for approximate and pure differential privacy,
respectively. The techniques used in Section 3.6 could also be used to
get approximate differential privacy, but the resulting sketch would not
have strong competitiveness guarantees with respect to the non-private
Misra-Gries sketch, unlike the sketch that we give in Section 3.5.

Chan et al. [CLSX12] use their differentially private Misra-Gries sketch
as a subroutine for continual observation and combine sketches with an
untrusted aggregator. Those settings are not a focus of our work but our
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algorithm can replace theirs as the subroutine, leading to better results
also for those settings. However, the error from noise still increases
linearly in the number of merges when the aggregator is untrusted. As a
side note, we show that in the case of a trusted aggregator, the approach
of [CLSX12] can handle merge operations without increasing error. While
that approach adds significantly more noise than ours if we do not merge,
it can with this improvement perform better when the number of merges
is very large (at least proportional to the sketch size).

Another approach that can be used is to use a randomized frequency
oracle to recover heavy hitters. However, it seems hard to do this with
the optimal error size. In its most basic form [GGK+19, Appendix D],
this approach needs noise of magnitude Θ(log(d)/ε), even if we have
a sketch with sensitivity 1 (the approach increases the sensitivity to
log(d), necessitating the higher noise magnitude), leading to maximum
error at least Ω(log(k) log(d)/ε). Bassily, Nissim, Stemmer, and Guha
Thakurta [BNSGT17] show a more involved approach which reduces the
maximum error coming from the noise to Θ((log(k) + log(d))/ε), but
at the cost of increasing the error coming from the sketch by a factor
of log(d). This means that even if we had a sketch with error Θ(n/k)
and sensitivity 1, neither of these two approaches would lead to optimal
guarantees, unlike the algorithm we give in this chapter.

Relation to [BK21]. Essentially the same result as Theorem 3.1 has been
claimed by Böhler and Kerschbaum [BK21]. However, their approach
ignores the discrepancy between the global sensitivity of a function
we are approximating and that of the function the algorithm actually
computes. Their mechanism adds noise scaled to the sensitivity of the
exact histogram which is 1 when a user contributes a single element to
the stream. But as shown by Chan et al. [CLSX12] the sensitivity of the
Misra-Gries sketch scales linearly with the number of counters in the
sketch. The algorithm from [BK21] thus does not achieve the claimed
privacy parameters. Moreover, it seems unlikely this could be easily
fixed – not without doing something along the lines of what we do in
this chapter.

3.2 Technical overview

Misra-Gries sketch. Since our approach depends on the properties of
the MG sketch, we describe it here. Readers familiar with the MG sketch
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may wish to skip this paragraph. We describe the standard version; in
Section 3.5 we use a slight modification, but we do not need that here.

Suppose we receive a sequence of elements from some universe. At
any time, we will be storing at most k of these elements. Each stored item
has an associated counter, other elements have implicitly their counter
equal to 0. When we process an element, we do one of the following
three updates: (1) if the element is being stored, increment its counter
by 1, (2) if it is not being stored and the number of stored items is < k,
store the element and set its counter to 1, (3) otherwise decrement all
k counters by 1 and remove those that reach 0. The exact guarantees
on the output will not be important now, and we will discuss them in
Section 3.5.

Our contributions. We now sketch how to release an MG sketch in a
differentially private way.

Consider two neighboring data streams S = (S1, · · · , Sn) and S′ =
(S1, · · · , Si−1, Si+1, · · · , Sn) for some i ∈ [n]. At step i− 1, the state of the
MG sketch on both inputs is exactly the same. MGS then receives the
item Si while MGS′ does not. This either increments one of the counters
of MGS (possibly by adding an element and raising its counter from 0 to
1) or decrements all its counters. In `1 distance, the vector of the counters
thus changes by at most k. One can show by induction that this will
stay this way: at any point in time, ‖MGS −MGS′‖1 ≤ k. By a standard
global sensitivity argument, one can achieve pure DP by adding noise
of magnitude k/ε to each count. This is the approach used in [CLSX12].
Similarly, we could achieve (ε, δ)-DP by using the Gaussian mechanism
[DR14] with noise magnitude proportional to the `2-sensitivity, which
is supS,S′ ‖MGS −MGS′‖2 ≤

√
k. We want to instead achieve noise with

magnitude O(1/ε) at each count. To this end, we need to exploit the
structure of MGS −MGS′ .

What we just described requires that we add the noise to the counts
of all items in the universe, also to those that are not stored in the sketch.
This results in the maximum error of all frequencies depending on the
universe’s size, which we do not want. However, it is known that this can
be easily solved under (ε, δ)-differential privacy by only adding noise to
the stored items and then removing values smaller than an appropriately
chosen threshold [KKMN09]. This may introduce additional error – for
this reason, we end up with error O(log(1/δ)/ε). As this is a somewhat
standard technique, we ignore this in this section, we assume that the
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sketches MGS and MGS′ store the same set of elements; the thresholding
allows us to remove this assumption, while allowing us to add noise only
to the stored items, at the cost of only getting approximate DP.

We now focus on the structure of MGS−MGS′ . After we add to MGS
the element Si, it either holds (1) that MGS −MGS′ is a vector of all 0’s
and one 1 or (2) that MGS −MGS′ = −1k 2. We show by induction that
this will remain the case as more updates are done to the sketches (note
that the remainders of the streams are the same). We do not sketch the
proof here, as it is quite technical.

How do we use the structure of MGS − MGS′ to our advantage?
We add noise twice. First, we independently add to each counter
noise distributed as Laplace(1/ε). Second, we add to all counters
the same value, also distributed as Laplace(1/ε). That is, we release
MGS +Laplace(1/ε)⊗k +Laplace(1/ε)1k 3. Intuitively speaking, the first
noise hides the difference between S and S′ in case (1) and the second
noise hides the difference in case (2). We now sketch why this is so for
worse constants: 2/ε in place of 1/ε. When proving this formally, we use
a more technical proof which leads to the better constant.

We now sketch why this is differentially private. Let mS be the mean
of the counters in MGS for S being an input stream. We may represent
MGS as (MGS − mS1, mS) (note that there is a bijection between this
representation and the original sketch). We now argue that the `1-
sensitivity of this representation is < 2 (treating the representation as a
(k + 1)-dimensional vector for the sake of computing the `1 distances).
Consider the first case. In that case, the averages mS, mS′ differ by
1/k. As such, MGS − mS1k and MGS′ − mS′1k differ by 1/k at k − 1
coordinates and by 1− 1/k at one coordinate. The overall `1 change of
the representation is thus

(k− 1) · 1
k
+ (1− 1/k) + 1/k = 2− 1/k < 2.

Consider now the second case when MGS −MGS′ = −1k. Thus, MGS −
mS = MG′S −mS′ . At the same time |mS −mS′ | = 1. This means that the
`1 distance between the representations is 1. Overall, the `1-sensitivity of
this representation is < 2.

2We use 1k the denote the dimension k vector of all ones.
3For D being a distribution, we use D⊗k to denote the k-dimensional distribution

consisting of k independent copies of D.
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This means that adding noise from Laplace(2/ε)⊗k+1 to this represen-
tation of MGS will result in ε-differential privacy. The resulting value after
adding the noise is (MGS −mS1k + Laplace(2/ε)⊗k, mS + Laplace(2/ε)).
In the original vector representation of MGS, this corresponds to
MGS +Laplace(2/ε)⊗k +Laplace(2/ε)1k and, by post-processing, releas-
ing this value is also differentially private. But this is exactly the value
we wanted to show is differentially private!

3.3 Preliminaries

Setup of this chapter. We use U to denote a universe of elements.
We assume that U is a totally ordered set of size d. That is, U = [d]
where [d] = {1, . . . , d}. Given a stream S ∈ UN we want to estimate the
frequency in S of each element of U . Our algorithm outputs a set T ⊆ U
of keys and a frequency estimate ci for all i ∈ T. The value cj is implicitly
0 for any j /∈ T. Let f (x) denote the true frequency of x in the stream S.
Our goal is to minimize the largest error between cx and f (x) among all
x ∈ U .

Differential privacy. Differential privacy is a rigorous definition for
describing the privacy loss of a randomized mechanism introduced by
Dwork, McSherry, Nissim, and Smith [DMNS06]. Intuitively, differential
privacy protects privacy by restricting how much the output distribution
can change when replacing the input from one individual. This is
captured by the definition of neighboring datasets. We use the add-
remove neighborhood definition for differential privacy.

Definition 3.1 (Neighboring Streams). Let S be a stream of length n. Two
streams S and S′ are neighboring denoted S ∼ S′ if there exists an i such
that S = (S′1, . . . , S′i−1, S′i+1, . . . , S′n+1) or S′ = (S1, . . . , Si−1, Si+1, . . . , Sn).

Definition 3.2 (Differential Privacy [DR14]). A randomized mechanism
M : UN → R satisfies (ε, δ)-differential privacy if and only if for all
pairs of neighboring streams S ∼ S′ and all measurable sets of outputs
Z ⊆ R it holds that

Pr[M(S) ∈ Z] ≤ eε Pr[M(S′) ∈ Z] + δ .

Samples from a Laplace distribution are used in many differentially
private algorithms, most notably the Laplace mechanism [DMNS06]. We
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write Laplace(b) to denote a random variable with a Laplace distribution
with scale b centered around 0. We sometimes abuse notation and write
Laplace(b) to denote the value of a random variable drawn from the
distribution. Our mechanism also works with other noise distributions.
We briefly discuss this in Section 3.5.2.

Definition 3.3 (Laplace distribution). The probability density and cumu-
lative distribution functions of the Laplace distribution centered around
0 with scale parameter b are fb(x) = 1

2b e−|x|/b, and Pr[Laplace(b) ≤ x] =
1
2 ex/b if x < 0 and 1− 1

2 e−x/b for x ≥ 0.

3.4 Related work

Chan et al. [CLSX12] show that the global `1-sensitivity of a Misra-Gries
sketch is ∆1 = k. (They actually show that the sensitivity is k + 1 but
they use a different definition of neighboring datasets that assumes n is
known. Applying their techniques under our definition yields sensitivity
k.) They achieve privacy by adding noise with scale k/ε to all elements
in the universe and keep the top-k noisy counts. This gives an expected
maximum error of O(k log(d)/ε) with ε-DP for d being the universe size.
They use the algorithm as a subroutine for continual observation and
merge sketches with an untrusted aggregator. Those settings are not a
focus of our work but our algorithm can replace theirs as the subroutine.

Böhler and Kerschbaum [BK21] worked on differentially private heavy
hitters with no trusted server by using secure multi-party computation.
One of their algorithms adds noise to the counters of a Misra-Gries sketch.
They avoid adding noise to all elements in the universe by removing noisy
counts below a threshold which adds an error of O(log(1/δ)/ε). This is
a useful technique for hiding differences in keys between neighboring
sketches that removes the dependency on d in the error. Unfortunately, as
stated in the introduction their mechanism uses the wrong sensitivity. The
sensitivity of the sketch is k. If the magnitude of noise and the threshold
are increased accordingly the error of their approach is O(k log(k/δ)/ε).

If we ignore the memory restriction in the streaming setting, the
problem is the same as the top-k problem [MMNW11, DR19, CWGM20,
QSZ21]. The problem we solve can also be seen as a generalization of
the sparse histogram problem. This has been investigated in [CPST12,
KKMN09, BV19, ALP22]. Notably, Balcer and Vadhan [BV19] provides a
lower bound showing that for any (ε, δ)-differentially private mechanism
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that outputs at most k counters, there exists input such that the expected
error for some elements is Ω(min(log(d/k)/ε, log(1/δ)/ε, n)) (assuming
ε2 > δ). The noise that we add in fact matches the second branch of the
min over all elements.

A closely related problem is that of implementing frequency oracles in
the streaming setting under differential privacy. This has been studied in
e.g. [ZQR+22, PT22, GGK+19]. These approaches do not directly return
the heavy hitters. The simplest approach for finding the heavy hitters is
to iterate over the universe which might be infeasible. However, there
are constructions for finding heavy hitters with frequency oracles more
efficiently (see Bassily et al. [BNSGT17]). However, as we discussed in the
introduction, the approach of [BNSGT17] leads to worse maximum error
than what we get unless the sketch size is very large and the universe
size is small.

The heavy hitters problem has also received a lot of attention in local
differential privacy, starting with the paper introducing the RAPPOR
mechanism [EPK14] and continuing with [QYY+16, ZZC+22, WLJ19,
BNS19a, WW22, BNSGT17]. This problem is practically relevant, it is
used for example by Apple to find commonly used emojis [App]. The
problem has also been recently investigated when using cryptographic
primitives [ZKM+20].

[BGMZ22, Tět22] have recently given general frameworks for design-
ing differentially private approximation algorithms; however, if used
naively, they are not very efficient for releasing multiple values (not more
efficient than using composition) and they are thus not suitable for the
heavy hitters problem.

3.5 Differentially Private Misra-Gries

In this section, we present our algorithm for releasing Misra-Gries
sketches. We say that two input streams S1, S2 are neighboring if one can
be obtained from the other by removing one element. This definition
is convenient in that it allows us to use the algorithm even if the input
length is not public knowledge.

We first present our variant of the non-private Misra-Gries sketch
in Algorithm 12 and later show how we add noise to achieve (ε, δ)-
differential privacy. The algorithm we use differs slightly from most
implementations of MG in that we do not remove elements that have
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weight 0 until we need to re-use the counter. This will allow us to achieve
privacy with slightly lower error.

At all times, k counters are stored as key-value pairs. We initialize the
sketch with dummy keys that are not part of U . This guarantees that we
never output any elements that are not part of the stream, assuming we
remove the dummy counters as post-processing.

The algorithm processes the elements of the stream one at a time. At
each step one of three updates is performed: (1) If the next element of
the stream is already stored the counter is incremented by 1. (2) If there
is no counter for the element and all k counters have a value of at least 1
they are all decremented by 1. (3) Otherwise, one of the elements with a
count of zero is replaced by the new element.

In case (3) we always remove the smallest element with a count of zero.
This allows us to limit the number of keys that differ between sketches
for neighboring streams as shown in Lemma 3.1. The choice of removing
the minimum element is arbitrary but the order of removal must be
independent of the stream so that it is consistent between neighboring
datasets. The limit on differing keys allows us to obtain a slightly lower
error for our private mechanism. However, it is still possible to apply
our mechanism with standard implementations of MG. We discuss this
in Section 3.5.1.

Algorithm 12: Misra-Gries (MG)

Input : Positive integer k and stream S ∈ UN

(1) T ← {d + 1, . . . , d + k} // Start with k dummy counters
(2) ci ← 0 for all i ∈ T
(3) foreach x ∈ S do
(4) if x ∈ T then // Branch 1
(5) cx ← cx + 1
(6) else if ci ≥ 1 for all i ∈ T then // Branch 2
(7) ci ← ci − 1 for all i ∈ T
(8) else // Branch 3
(9) Let y ∈ T be the smallest key satisfying cy = 0

(10) T ← (T ∪ {x}) \ {y}
(11) cx ← 1
(12) return T, c

The same guarantees about correctness hold for our version of the
MG sketch, as for the original version. This can be easily shown, as
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the original version only differs in that it immediately removes any key
whose counter is zero. Since the counters for items not in the sketch are
implicitly zero, one can see by induction that the estimated frequencies
by our version are exactly the same as those in the original version. We
still need this modified version, as the set of keys it stores is different
from the original version, which we use below. The fact that the returned
estimates are the same however allows us to use the following fact

Fact 3.1 (Bose et al. [BKMT03]). Let f̂ (x) be the frequency estimates given
by an MG sketch of size k for n being the input size. Then for all x ∈ U ,
it holds f̂ (x) ∈ [ f (x)− n/(k + 1), f (x)], where f (x) is the true frequency
of x.

Note that this is optimal for any mechanism that returns a set of at
most k elements. This is easy to see for an input stream that contains
k + 1 distinct elements each with frequency n/(k + 1) since at least one
element must be removed.

We now analyze the value of MGS−MGS′ for S, S′ being neighboring
inputs. We will then use this in order to prove privacy. As mentioned
in Section 3.4, Chan et al. [CLSX12] showed that the `1-sensitivy for
Misra-Gries sketches is k. They show that this holds after processing the
element that differs for neighboring streams and use induction to show
that it holds for the remaining stream. Our analysis follows a similar
structure. We expand on their result by showing that the sets of stored
elements for neighboring inputs differ by at most two elements when
using our variant of Misra-Gries. We then show how all this can be used
to get differential privacy with only a small amount of noise.

Lemma 3.1. Let T, c ← MG(k, S) and T′, c′ ← MG(k, S′) be the outputs of
Algorithm 12 on a pair of neigboring streams S, S′ such that S′ is obtained by
removing an element from S. Then |T ∩ T′| ≥ k− 2 and all counters not in
the intersection have a value of at most 1. Moreover, it holds that either (1)
ci = c′i − 1 for all i ∈ T′ and cj = 0 for all j /∈ T′ or (2) there exists an i ∈ T
such that ci = c′i + 1 and cj = c′j for all j 6= i.

Proof. Let S ∼ S′ be pair of neighboring streams where S′ is obtained
by removing one element from S. We show inductively that the Lemma
holds for any such S and S′. Let w = T − T′ and w′ = T′ − T denote the
set of keys that are only in one sketch. Let c0 and c′0 denote the smallest
element with a zero count in the respective sketch when such an element
exists. Then at any point during execution after processing the element
removed from S the sketches are in one of the following states:
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(S1) T = T′ and ci = c′i − 1 for all i ∈ T.

(S2) There exist x1, x2 ∈ U such that w = {x1} and w′ = {x2}, cx1 = 0,
c′x2

= 1 and ci = c′i − 1 for all i ∈ T ∩ T′.

(S3) T = T′ and there exists x1 ∈ U such that cx1 = c′x1
+ 1 and ci = c′i

for all i ∈ T \ {x1}.

(S4) There exist x1, x2 ∈ U such that w = {x1} and w′ = {x2}, cx1 = 1,
c′x2

= 0 and ci = c′i for all i ∈ T ∩ T′.

(S5) There exist x1, x2, x3 ∈ U such that cx1 = c′x1
+ 1, w = {x2}, w′ =

{x3}, cx2 = 0, c′x3
= 0 and ci = c′i for all i ∈ T ∩ T′ \ {x1}.

(S6) There exist x1, x2, x3, x4 ∈ U such that w = {x1, x2} and w′ =
{x3, x4}, cx1 = 1, cx2 = c′x3

= c′x4
= 0, ci = c′i for all i ∈ T ∩ T′ and

x4 = c′0.

Let x = Si be the element in stream S which is not in stream S′. Since
the streams are identical in the first i− 1 steps the sketches are clearly
the same before step i. If there is a counter for x in the sketch we execute
Branch 1 and the result corresponds to state S3. If there is no counter for
x and no zero counters we execute Branch 2 and the result corresponds
to state S1. Otherwise, the 3rd branch of the algorithm is executed and
c0 is replaced by x which corresponds to state S4. Therefore we must
be in one of the states S1, S3, or S4 for T, c ← MG(k, (S1, . . . , Si)) and
T′, c′ ← MG(k, (S′1, . . . , S′i−1)).

We can then prove inductively that the Lemma holds since the streams
are identical for the elements (Si+1, . . . , Sn). We have to consider the
possibility of each of the branches being executed for both sketches. The
simplest case is when the element has a counter in both sketches and
Branch 1 is executed on both inputs. This might happen in all states and
we stay in the same state after processing the element. But many other
cases lead to new states.

Below we systematically consider all outcomes of processing an ele-
ment x ∈ U when the sketches start in each of the above states. When
processing each element, one of the three branches is executed for each
sketch. This gives us up to 9 combinations to check, although some are
impossible for certain states. Furthermore, when Branch 3 is executed we
often have to consider which element is replaced as it leads to different
states. We refer to T, c and T′, c′ as sketch 1 and sketch 2, respectively.
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State S1: If x ∈ T then x ∈ T′ and Branch 1 is executed for both
sketches. Similarly, if Branch 2 is executed for sketch 1 it must also be
executed for sketch 2 as all counters are strictly larger. Therefore we stay
in state S1 in both cases. It is impossible to execute Branch 3 for sketch 2
since all counters are non-zero by definition. As such the final case to
consider is when x /∈ T and there is a counter with value 0 in sketch 1.
In this case, we execute Branch 3 for sketch 1 and Branch 2 for sketch 2.
This results in state S4.

State S2: If x ∈ T we execute Branch 1 on sketch 1 and there are two
possible outcomes. If x 6= x1 we also execute Branch 1 on sketch 2 and
remain in state S2. If x = x1 we execute Branch 2 on sketch 2 in which
case there are no changes to T or T′ but now cx = 1 and ci = c′i for all
i ∈ T ∩ T′. As such, we transitioned to state S4.

Since cx1 = 0 by definition Branch 2 is never executed on sketch 1 and
Branch 3 is never executed on sketch 2 as all counters are non-zero. If
x = x2 Branch 3 is executed on sketch 1 and Branch 1 is executed for
sketch 2. If c0 = x1 the sketches have the same keys after processing x
and transition to state S1, otherwise if c0 6= x1 the sketches still differ for
one key and remain in state S2.

Finally, if Branch 3 is executed on sketch 1 and Branch 2 is executed
on sketch 2 we again have two possibilities. In both cases, the sketches
store the same count on all elements from T ∩ T′ after processing x. If
c0 = x1 it is removed from T and replaced by x with cx = 1 which
corresponds to state S4. If c0 6= x1 we must have that c0 ∈ T ∩ T′. The
two sketches now differ on exactly two keys after processing x. One
of the two keys stored in sketch 2 that are not in sketch 1 must be the
minimum zero key since the elements c0 and x2 now have counts of zero
in sketch 2 and c0 was the minimum zero key in T ∩ T′. Therefore we
transition to state S6.

State S3: The simplest case is x ∈ T since then x ∈ T′ and Branch 1
is executed for both sketches. If Branch 2 is executed for sketch 1 and
c′x1
6= 0 Branch 2 is also executed for sketch 2. For both cases, we remain

in state S3. Instead, if c′x1
= 0 Branch 3 is executed for sketch 2. Since

all counters are decremented for sketch 1 and x1 is replaced in sketch 2
we transition to state S2. Lastly, if Branch 3 is executed for sketch 1 it is
also executed for sketch 2 and there are two cases. If the same element is
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removed we remain in state S3. Otherwise, if x1 is replaced in sketch 2
we transition to state S4.

State S4: Sketch 2 contains a counter with a value of zero in states S4,
S5, and S6. Therefore Brach 2 is never executed on sketch 2 in the rest of
the proof. If Branch 1 is executed for both sketches we stay in the same
state as always but if x = x1 Branch 1 is executed for sketch 1 and Branch
3 is executed for sketch 2. If c′0 = x2 then T = T′ after processing x and
we transition to state S3. If c′0 6= x2 another element is removed from
sketch 2 which must also have a count of zero in sketch 1 and we go to
state S5.

If Branch 2 is executed on sketch 1 we know that c′x2
must be the only

zero counter in sketch 2. Therefore it does not matter if Branch 1 or 3
is executed on sketch 2. For both cases, we set cx = 1 and the sketches
differ in one key which corresponds to state S2.

Finally, if Branch 3 is executed on sketch 1 we again have two cases
that lead to the same state. If x = x2 or c′0 = x2 the counter c′x2

is updated
or replaced but the counter that was removed from sketch 1 still remains
in sketch 2. Otherwise, we have c0 = c′0 and we replace the same counter
in sketches 1 and 2. Therefore we remain in state S4 in both cases.

State S5: Since by definition both sketches contain counters with a
value of zero, Branch 2 is never executed while in this state. If x ∈ T ∩ T′

we remain in the same state as always. We have to consider the cases
where x = x2, x = x3, and x /∈ T ∪ T′. The resulting state depends on
the elements that are replaced in the sketch. For x = x2 we transition to
state S3 if c′0 = x3 and remain in state S5 otherwise. The same argument
shows that we transition to state S3 or S5 based on c0 if x = x3. When
x /∈ T ∪ T′ we execute Branch 3 on both sketches. We transition to state
S3 only if c0 = x2 and c′0 = x3 since otherwise both sketches still have a
zero counter that is not stored in the other sketch and we stay in state S5.

State S6: Similar to state S5, Branch 2 is never executed from this state.
Here we have to consider the five cases where x ∈ T ∩ T′, x = x1, x = x2,
x ∈ w′, and x /∈ T ∪ T′. We know that x4 is replaced whenever x /∈ T′. If
x ∈ T ∩ T′ we execute Branch 1 on both sketches and remain in state S6.
If x = x1 we transition to state S5 and for x = x2 we transition to state
S4. When x ∈ w′ there are two possibilities. We always have cx = c′x after
updating. If c0 = x2 the sketches will share k− 1 keys and transition to
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state S4. If c0 6= x2 then another element that has a count of zero in both
sketches is replaced in sketch 1. We know that either this element or the
remaining zero-valued element of w′ must be the smallest zero-valued
element in sketch 2. Therefore we remain in state S6.

The final case to consider is when x /∈ T ∪ T′. In this case Branch,
3 is executed for sketch 2 and x4 is replaced with x in T′. If c0 = x2
we transition to state S4. Otherwise, either x3 or the element that was
replaced from sketch 1 must be the minimum element with a count of
zero in sketch 2. As such, we remain in state S6.

Next, we consider how to add noise to release the Misra-Gries sketch
under differential privacy. Recall that Chan et al. [CLSX12] achieves
privacy by adding noise to each counter which scales with k. We avoid
this by utilizing the structure of sketches for neighboring streams shown
in Lemma 3.1. We sample noise from Laplace(1/ε) independently for
each counter, but we also sample one more random variable from the
same distribution which is added to all counters. Small values are then
discarded using a threshold to hide differences in the sets of stored keys
between neighboring inputs. This is similar to the technique used by
e.g. [KKMN09]. The algorithm takes the output from MG as input. We
sometimes write PMG(k, S) as a shorthand for PMG(MG(k, S)).

Algorithm 13: Private Misra-Gries (PMG)
Parameters : ε, δ > 0
Input : Output from Algorithm 12: T, c← MG(k, S)

(1) T̃ ← ∅
(2) Sample η ∼ Laplace(1/ε)
(3) foreach x ∈ T do
(4) cx ← cx + η + Laplace(1/ε)
(5) if cx ≥ 1 + 2 ln(3/δ)/ε then
(6) T̃ ← T̃ ∪ {x}
(7) c̃x ← cx
(8) return T̃, c̃

We prove the privacy guarantees in three steps. First, we show that
changing either a single counter or all counters by 1 does not change
the output distribution significantly (Corollary 3.1). This assumes that,
for neighboring inputs, the set of stored elements is exactly the same.
By Lemma 3.1, we have that the difference between the sets of stored
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keys is small and the corresponding counters are ≤ 1. Relying on the
thresholding, we bound the probability of outputting one of these keys
(Lemma 3.3). Finally, we combine these two lemmas to show that the
privacy guarantees hold for all cases (we do this in Lemma 3.4).

Lemma 3.2. Let us have x, x′ ∈ Rk such that one of the following three cases
holds

1. ∃i ∈ [k] such that |xi − x′i| = 1 and xj = x′j for all j 6= i.

2. xi = x′i − 1 for all i ∈ [k].

3. xi = x′i + 1 for all i ∈ [k].

Then we have for any measurable set Z that

Pr[x + Laplace⊗k(1/ε) + Laplace(1/ε)1k ∈ Z]

≤ eε Pr[x′ + Laplace(1/ε)⊗k + Laplace(1/ε)1k ∈ Z]

Proof. We first focus on the simpler case (1). It holds by the law of total
expectation that

Pr[x + Laplace(1/ε)⊗k + Laplace(1/ε)1k ∈ Z] =

EN∼Laplace(1/ε)

[
Pr[Laplace(1/ε)⊗k ∈ Z− x− N1k|N]

]
≤

eεEN∼Laplace(1/ε)

[
Pr[Laplace(1/ε)⊗k ∈ Z− x′ − N1k)|N]

]
=

eε Pr[x′ + Laplace(1/ε)⊗k + Laplace(1/ε)1k ∈ Z]

where to prove the inequality, we used that for any measurable set A,
it holds Pr[Laplace(1/ε)⊗k ∈ A] ≤ eε Pr[Laplace(1/ε)⊗k ∈ A − φ] for
any φ ∈ Rk with ‖φ‖1 ≤ 1 (see [DMNS06]). Specifically, we have set
A = Z− x− N1k and φ = x− x′ such that ‖φ‖1 = 1.

We now focus on the cases (2), (3). We will prove below that for x, x′

satisfying one of the conditions (2), (3) and for any measurable A, Z and
N1 ∼ Laplace(1/ε)⊗k, it holds

Pr[x + N1 + Laplace(1/ε)1k ∈ Z|N1 ∈ A]

≤eε Pr[x′ + N1 + Laplace(1/ε)1k ∈ Z|N1 ∈ A]
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This allows us to argue like above:

Pr[x + Laplace(1/ε)⊗k + Laplace(1/ε)1k ∈ Z] =

EN1∼Laplace(1/ε)⊗k
[

Pr[x + N1 + Laplace(1/ε)1k ∈ Z|N1]
]
≤

eεEN1∼Laplace(1/ε)⊗k
[

Pr[x′ + N1 + Laplace(1/ε)1k ∈ Z|N1]
]
=

eε Pr[x′ + Laplace(1/ε)⊗k + Laplace(1/ε)1k ∈ Z]

which would conclude the proof. Let g : R → Rk be the function
g(a) = a1k and define g−1(B) = {a ∈ R|g(a) ∈ B} and note that g is
measurable. We focus on the case (2); the same argument works for (3)
as we discuss below. It holds

Pr[x + N1 + Laplace(1/ε)1k ∈ Z|N1 ∈ A] =

Pr[Laplace(1/ε)1k ∈ Z− x− N1|N1 ∈ A] =

Pr[Laplace(1/ε) ∈ g−1(Z− x− N1)|N1 ∈ A] =

Pr[Laplace(1/ε) ∈ g−1(Z− x′ − 1k − N1)|N1 ∈ A] =

Pr[Laplace(1/ε) ∈ g−1(Z− x′ − N1)− 1|N1 ∈ A] ≤
eε Pr[Laplace(1/ε) ∈ g−1(Z− x′ − N1)|N1 ∈ A] =

eε Pr[Laplace(1/ε)1k ∈ Z− x′ − N1|N1 ∈ A] =

eε Pr[x′ + N1 + Laplace(1/ε)1k ∈ Z|N1 ∈ A].

To prove the inequality, we again used the standard result that for any
measurable A, Pr[Laplace(1/ε) ∈ A] ≤ eε Pr[Laplace(1/ε) ∈ A − 1]
holds. The same holds for A + 1; this allows us to use the exact same
argument in case (3), in which the proof is the same except that −1 on
lines 4,5 of the manipulations is replaced by +1.

Corollary 3.1. Let T, c and T′, c′ be two sketches such that T = T′ and one of
following holds:

1. ∃i ∈ T such that |ci − c′i| = 1 and cj = c′j for all j 6= i.

2. ci = c′i − 1 for all i ∈ T.

3. ci = c′i + 1 for all i ∈ T.

Then for any measurable set of outputs Z, we have:

Pr[PMG(T, c) ∈ Z] ≤ eε Pr[PMG(T′, c′) ∈ Z]
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Proof. Consider first a modified algorithm PMG′ that does not per-
form the thresholding: that is, if we remove the condition on line 5.
It can be easily seen that PMG′ only takes the vector c and releases
c + Laplace(1/ε)⊗k + Laplace(1/ε)1k. We have just shown in Lemma 3.2
that this means that for any measurable Z′,

Pr[PMG′(T, c) ∈ Z′] ≤ eε Pr[PMG′(T′, c′) ∈ Z′].

Let τ(x) = x for x ≥ 1 + 2 ln(3/δ)/ε and 0 otherwise. Since
PMG(T, c) = τ(PMG′(T, c)), it then holds

Pr[PMG(T, c) ∈ Z] = Pr[PMG′(T, c) ∈ τ−1(Z)] ≤
eε Pr[PMG′(T′, c′) ∈ τ−1(Z)] = eε Pr[PMG(T′, c′) ∈ Z]

as we wanted to show.

Lemma 3.3. Let T, c and T′, c′ be two sketches of size k and let T̂ = T ∩ T′.
If we have that |T̂| ≥ k− 2, ci = c′i for all i ∈ T̂, and for all x /∈ T̂, it holds
cx, c′x ≤ 1. Then for any measurable set Z, it holds

Pr[PMG(T, c) ∈ Z] ≤ Pr[PMG(T′, c′) ∈ Z] + δ

Proof. Let PMG′(T, c) denote a mechanism that runs PMG(T, c) and
performs post-processing by discarding any elements not in T̂. It is
easy to see that (a) Pr[PMG′(T, c) ∈ Z] = Pr[PMG′(T′, c′) ∈ Z] since
the input sketches are identical for all elements in T̂. Moreover, for
any output T̃, c̃ ← PMG(T, c) for which T̃ ⊆ T̂, the post-processing
does not affect the output. This gives us the following inequali-
ties: (b) Pr[PMG(T, c) ∈ Z] ≤ Pr[PMG′(T, c) ∈ Z] + Pr[T̃ 6⊆ T̂]
and (c) Pr[PMG′(T′, c′) ∈ Z] ≤ Pr[PMG(T, c) ∈ Z] + Pr[T̃′ 6⊆ T̂]. Com-
bining equations (a)− (c), we get the inequality Pr[PMG(T, c) ∈ Z] ≤
Pr[PMG(T′, c′) ∈ Z] + Pr[T̃ 6⊆ T̂] + Pr[T̃ 6⊆ T̂′].

As such, the Lemma holds if Pr[T̃ 6⊆ T̂] + Pr[T̃′ 6⊆ T̂] ≤ δ. That is,
it suffices to prove that with probability at most δ any noisy count for
elements not in T̂ is at least 1 + 2 ln(3/δ)/ε. The noisy count for such
a key can only exceed the threshold if one of the two noise samples
added to the key is at least ln(3/δ)/ε. From Definition 3.3 we have
Pr[Laplace(1/ε) ≥ ln(3/δ)/ε] = δ/6. There are at most 4 keys not in
T̂ which are in T ∪ T′ and therefore at most 6 noise samples affect the
probability of outputting such a key (the 4 individual Laplace noises and
the 2 global Laplace noises, one for each sketch). By a union bound the
probability that any of these samples exceeds ln(3/δ)/ε is at most δ.
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We are now ready to prove the privacy guarantee of Algorithm 13.

Lemma 3.4. Algorithm 13 is (ε, δ)-differentially private for any k.

Proof. The Lemma holds if and only if for any pair neighboring of neigh-
boring streams S ∼ S′ and any measurable set Z we have:

Pr[PMG(T, c) ∈ Z] ≤ eε Pr[PMG(T′, c′) ∈ Z] + δ,

where T, c ← MG(k, S) and T′, c′ ← MG(k, S′) denotes the non-private
sketches for each stream.

We prove the guarantee above using an intermediate sketch that “lies
between” T, c and T′, c′. The sketch has support T′ and we denote the
counters as ĉ. By Lemma 3.1, we know that |T ∩ T′| ≥ k − 2 and all
counters in c and c not in T ∩ T′ are at most 1. We will now come up
with some conditions on ĉ such that if these conditions hold, the lemma
follows. We will then prove the existence of such ĉ below. Assume that
ĉi = ci for all i ∈ T ∩ T′ and ĉj ≤ 1 for all j /∈ T′ \ T. Lemma 3.3 then tells
us that

Pr[PMG(T, c) ∈ Z] ≤ Pr[PMG(T′, ĉ) ∈ Z] + δ.

Assume also that one of the required cases for Corollary 3.1 holds be-
tween ĉ and c′. We have

Pr[PMG(T′, ĉ) ∈ Z] ≤ eε Pr[PMG(T′, c′) ∈ Z].

Therefore, if such a sketch T′, ĉ exists for all S and S′ the lemma holds
since

Pr[PMG(T, c) ∈ Z] ≤ Pr[PMG(T′, ĉ) ∈ Z] + δ

≤ eε Pr[PMG(T′, c′) ∈ Z] + δ .

It remains to prove the existence of ĉ such that ĉi = ci for all i ∈ T ∩ T′

and ĉj ≤ 1 for all j ∈ T′ \ T and such that one of the conditions (1)− (3)
of Corollary 3.1 holds between ĉ and c′. We first consider neighboring
streams where S′ is obtained by removing an element from S. From
Lemma 3.1 we have two cases to consider. If ci = c′i − 1 for all i ∈ T′

we simply set ĉ = c. Recall that we implicitly have ci = 0 for i /∈ T.
Therefore the sketch satisfies the two conditions above since ĉi = ci for
all i ∈ U and condition (2) of Corollary 3.1 holds. In the other case where
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ci = c′i + 1 for exactly one i ∈ T there are two possibilities. If i ∈ T′ we
again set ĉ = c. When i /∈ T′ there must exist at least one element j ∈ T′

such that c′j = 0 and j /∈ T. We set ĉj = 1 and ĉi = c′i for all i 6= j. In both
cases ĉi = ci for all i ∈ T ∩ T′ and ĉj is at most one for j /∈ T. There is
exactly one element with a higher count in ĉ than c′ which means that
condition (1) of Corollary 3.1 holds.

If S is obtained by removing an element from S′ the cases from
Lemma 3.1 are flipped. If ci − 1 = c′i for all i ∈ T and c′j = 0 for j /∈ T
we set ĉi = ci if i ∈ T and ĉi = 1 otherwise. It clearly holds that ĉi = ci
for all i ∈ T ∩ T′ and ĉj ≤ 1 for all j /∈ T. Since ĉi = c′i + 1 for all i ∈ T′

condition (3) of Corollary 3.1 holds. Finally, if ci + 1 = c′i for exactly
one i ∈ T′ we simply set ĉ = c. ĉi = ci clearly holds for all i ∈ T ∩ T′,
ĉj = 0 for all j /∈ T, and condition (1) of Corollary 3.1 holds between ĉ
and c′.

Next, we analyze the error compared to the non-private sketch. We
state the error in terms of the largest error among all elements of the
sketch. Recall that we implicitly say that the count is zero for any element
not in the sketch.

Lemma 3.5. Let T̃, c̃← PMG(T, c) denote the output of Algorithm 13 for any
sketch T, c with |T| = k. Then with probability at least 1− β we have

c̃x ∈
[

cx −
2 ln

( k+1
β

)
ε

− 1−
2 ln

(
3/δ

)
ε

, cx +
2 ln

( k+1
β

)
ε

]

for all x ∈ T and c̃x = 0 for all x /∈ T.

Proof. The two sources of error are the noise samples and the threshold-
ing step. We begin with a simple bound on the absolute value of the
Laplace distribution.

Pr
[
|Laplace(1/ε)| ≥ ln((k + 1)/β)

ε

]
=

2 · Pr
[

Laplace(1/ε) ≤ − ln((k + 1)/β)

ε

]
= β/(k + 1) .

Since k + 1 samples are drawn we know by a union bound that the abso-
lute value of all samples is bounded by ln((k + 1)/β)/ε with probability
at least 1− β. As such the absolute error from the Laplace samples is at
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most 2 ln((k + 1)/β)/ε for all x ∈ T since two samples are added to each
count. Removing noisy counts below the threshold potentially adds an
additional error of at most 1 + 2 ln(3/δ)/ε. It is easy to see that c̃x = 0
for all x /∈ T since the algorithm never outputs any such elements.

Theorem 3.1. PMG(k, S) satisfies (ε, δ)-differential privacy. Let f (x) denote
the frequency of x ∈ U in S and let f̂ (x) denote the estimated frequency of
x from the output of PMG(k, S). For any element x with f (x) = 0 we have
f̂ (x) = 0 and with probability at least 1− β we have for all x ∈ U that

f̂ (x) ∈
[

f (x)−
2 ln

(
k+1

β

)
ε

− 1− 2 ln(3/δ)

ε
− |S|

k + 1
, f (x) +

2 ln
(

k+1
β

)
ε

]

Moreover, the algorithm outputs all x, such that f̂ (x) > 0 and there are
at most k such elements. For any fixed x ∈ U , the mean squared error is

E[( f̂ (x)− f (x))2] ≤ 3
(

1 + 2+2 ln(3/δ)
ε + |S|

k+1

)2
. PMG(k, S) uses 2k words

of memory.

Proof. The space complexity is clearly as claimed, as we are storing at
any time at most k items and counters. We focus on proving privacy and
correctness.

If f (x) = 0 we know that x /∈ T where T is the keyset after running
Algorithm 12. Since Algorithm 13 outputs a subset of T we have f̂ (x) = 0.
The first part of the Theorem follows directly from Fact 3.1 and Lemmas
3.4 and 3.5.

We now bound the mean squared error. There are three sources of
error. Let r1 be the error coming from the Laplace noise, r2 from the
thresholding, and r3 the error made by the MG sketch. Then

E[( f̂ (x)− f (x))2] = E[(r1 + r2 + r3)
2] ≤ 3(E[r2

1] + E[r2
2] + E[r2

3])

by equivalence of norms (for any dimension n vector v, ‖v‖1 ≤
√

n‖v‖2).
The errors r2, r3 are deterministically bounded r2 ≤ 1 + 2 ln(3/δ)/ε and
r3 ≤ |S|/(k + 1). E[r2

1] is the variance of the Laplace noise; we added
two independent noises each with scale 1/ε and thus variance 2/ε2 for a
total variance of 4/ε2. This finishes the proof.

3.5.1 Privatizing standard versions of Misra-Gries

The privacy of our mechanism as presented in Algorithm 13 relies on our
variant of the Misra-Gries algorithm. Our sketch can contain elements
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with a count of zero. However, elements with a count of zero are removed
in the standard version of the sketch. As such, sketches for neighboring
datasets can differ for up to k keys if one sketch stores k elements with a
count of 1 and the other sketch is empty. It is easy to change Algorithm 13
to handle these implementations. We simply increase the threshold to
1+ 2 ln

(
k+1
2δ

)
/ε since the probability of outputting any of the k elements

with a count of 1 is bounded by δ.

3.5.2 Tips for practitioners

Here we discuss some technical details to keep in mind when implement-
ing our mechanism.

The output of the Misra-Gries algorithm is an associative array. In Al-
gorithm 13 we add appropriate noise such that the associative array can
be released under differential privacy. However, for some implementa-
tions of associative arrays such as hash tables the order in which keys are
added affects the data structure. Using such an implementation naively
violates differential privacy but it is easily solved either by outputting
a random permutation of the key-value pairs or using a fixed order e.g.
sorted by key.

We present our mechanism with noise sampled from the Laplace
distribution. However, the distribution is defined for real numbers which
cannot be represented on a finite computer. This is a known challenge and
precision-based attacks still exist on popular implementations [HDH+22].
Since the output of MG is discrete the distribution can be replaced by
the Geometric mechanism [GRS12] or one of the alternatives introduced
in [BV19]. Our mechanism would still satisfy differential privacy but it
might be necessary to change the threshold in Algorithm 13 slightly to
ensure that Lemma 3.3 still holds. Our proof of Lemma 3.3 works for the
Geometric mechanism from [GRS12] when increasing the threshold to
1 + 2dln(6eε/((eε + 1)δ))/εe.

Lastly, it is worth noting that the analysis for Lemma 3.3 is not tight.
We bound the probability of outputting a small key by bounding the value
of all relevant samples by ln(3/δ)/ε which is sufficient to guarantee that
the sum of any two samples does not exceed 2 ln(3/δ)/ε. This simplifies
the proof and presentation significantly however one sample could exceed
ln(3/δ)/ε without any pair of samples exceeding 2 ln(3/δ)/ε. A tighter
analysis would improve the constant slightly which might matter for
practical applications.
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3.6 Pure Differential Privacy

In this section, we discuss how to achieve ε-differential privacy. We
cannot use our approach from Section 3.5 where we add the same noise
to all keys because the set of stored keys can differ between sketches
for neighboring datasets. Instead, we achieve privacy by adding noise
to all elements of U scaled to the `1-sensitivity. Chan et al. [CLSX12]
showed that the sensitivity of Misra-Gries sketches scales with the num-
ber of counters. We show that a simple post-processing step reduces
the sensitivity of the sketch to 2 and the worst-case error of the sketch
is still n/(k + 1) where n = |S|. This allows us to achieve an error of
n/(k + 1) + O(log(d)/ε).

The `1-sensitivity scales with the size of the sketch since the counts
can differ by 1 for all k elements between neighboring datasets. This
happens when the decrement step is executed on a given input one
fewer or one more time than on a neighboring input. We get around
this case by post-processing the sketch before adding noise. We first
run the Misra-Gries algorithm on the stream but we count how many
times the counters were decremented. That is, we count the number of
times Branch 2 of Algorithm 12 was executed and denote this count as γ.
The Misra-Gries algorithm decrements the counters at most bn/(k + 1)c
times. We use this fact by first adding γ and then subtracting n/(k + 1)
from each counter in the sketch. We then remove all elements with
negative counters. Although we increase the error of the sketch for
some datasets, the worst-case error guarantee is still the same as at most
n/(k + 1) has been subtracted from each count. Next, we show how this
post-processing step reduces the `1-sensitivity to 2.

Let S ∼ S′ denote any pair of neighboring streams where S′ is ob-
tained by removing one element from S. Consider the effect of running
the following procedure on the Misra-Gries sketches for both streams (1)
add γ and γ′ to the counters of MGS and MGS′ , respectively (2) subtract
|S|/(k + 1) from the counters in both sketches (3) remove any negative
counters from both sketches. It can be shown that the new sketches are
either identical or differ by 1 in a single counter. Specifically, we may
use the argument from the proof of Lemma 3.1 to argue that we end in
one of the 6 states introduced in that proof before running the procedure.
One may verify that the claim holds in all 6 states. Specifically, we get
γ = γ′ + 1 in the first 2 states and γ = γ′ for the final 4 states. The post-
processing step we introduced in the previous paragraph uses the length
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of the stream which differs by 1 between S and S′. As such, there is an
additional difference of 1/(k + 1) for each counter. The `1-sensitivity is
bounded by 2 since 1 + k/(k + 1) < 2.

We achieve ε-differential privacy by adding noise to our new sketch.
We essentially use the same technique as Chan et al. [CLSX12] but the
noise no longer scale linearly in k as the sensitivity is bounded by 2.
Specifically, we add noise sampled from Laplace(2/ε) independently to
the count of each element from U and release the top-k noisy counts.
A simple union bound shows us that with probability at least 1 − β

the absolute value of all samples is bounded by 2 ln(d/β)/ε. Note that
it might be infeasible to actually sample noise for each element when
U is large; we refer to previous work on how to implement this more
efficiently [CLSX12, CPST12, BV19].

It is worth noting that the low sensitivity of the post-processed sketch
can also be utilized under (ε, δ)-differential privacy. We can use an ap-
proach similar to [KKMN09]. They add noise to all non-zero counters
and remove noisy counts below a threshold to hide small counters. Ap-
plying the standard approach for histograms would require a threshold
with a small dependence on k as neighboring sketches might disagree
on all keys. However, [ALP22] extended the technique to real-valued
vectors by probabilistically rounding elements with a value less than
the `1-sensitivity. If we apply their technique directly we get a thresh-
old of 4 + 2 ln(1/δ)/ε. This approach has error guarantees that match
those from Theorem 3.1 up to constant factors. However, this approach
has worse guarantees than Algorithm 13 when comparing to the non-
private Misra-Gries sketch. By Lemma 3.5 the error of Algorithm 13
is O(log(1/δ)/ε) with high probability (for sufficiently small δ). Here
the error is n/(k + 1) +O(log(1/δ)/ε) since we subtract up to n/(k + 1)
from the counters before adding noise.

3.7 Privatizing merged sketches

In practice, it is often important that we may merge sketches. This is
for example commonly used when we have a dataset distributed over
many servers. Each dataset consists of multiple streams in this setting,
and we want to compute an aggregated sketch over all streams. We say
that datasets are neighboring if we can obtain one from the other by
removing a single element from one of the streams. If the aggregator
is untrusted we must add noise to each sketch before performing any
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merges. This is the setting in [CLSX12] and we can run their merging
algorithm. However, since we add noise to each sketch the error scales
with the number of sketches. In particular, the error from the thresholding
step of Algorithm 13 scales linearly in the number of sketches for worst-
case input. In the rest of this section, we consider the setting where
aggregators are trusted. We can apply the post-processing step from
the previous section to each sketch before aggregating the counters of
each element. The `1-sensitivity of the aggregated sketch is still bounded
by 2 so we can use the approach from the previous section. However,
the aggregated sketch might have much more than k counters. Next we
consider a merging algorithm where aggregators never store more than
2k counters.

Agarwal, Cormode, Huang, Phillips, Wei, and Yi [ACH+13] in-
troduced the following simple merging algorithm in the non-private
setting. Given two Misra-Gries sketches T1, c1 ← MG(k, S1) and
T2, c2 ← MG(k, S2) they first compute the sum of all counters c1 + c2.
There are up to 2k counters at this point. They subtract the value of
the k + 1’th largest counter from all elements. Finally, any non-positive
counters are removed leaving at most k counters. They show that merged
sketches have the same worst-case guarantee as non-merged Misra-Gries
sketches. That is, if we compute a Misra-Gries sketch for each stream
(S1, . . . , Sm) and merge them into a single sketch, the frequency estimate
of all elements is at most N/(k + 1) less than the true frequency. Here
N is the total length of all streams. This holds for any order of merging
and the streams do not need to have the same length.

Unfortunately, the structure between neighboring sketches where
either a single counter or exactly k counters differ by 1 breaks down
when merging. Therefore we cannot run Algorithm 13 on the merged
sketch. However, as we show below, the global sensitivity of merged
sketches is independent of the number of merges. The sensitivity only
depends on the number of counters. We first show a property for a
single merge operation; this will allow us to bound the sensitivity for
any number of merges. Note that unlike in the previous section, we do
not limit the number of keys that differ between sketches and we do not
store keys with a count of zero.

Lemma 3.6. Let T1, c1, T′1, c′1 and T2, c2 denote Misra-Gries sketches of
size k and denote the sketches merged with the algorithm above as T̂, ĉ ←
Merge(T1, c1, T2, c2) and T̂′, ĉ′ ← Merge(T′1, c′1, T2, c2). If T′1 ⊆ T1 and
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c1i − c′1i ∈ {0, 1} for all i ∈ U then at least one of the following holds (1)
T̂′ ⊆ T̂ and ĉi − ĉ′i ∈ {0, 1} for all i ∈ U or (2) T̂ ⊆ T̂′ and ĉ′i − ĉi ∈ {0, 1}
for all i ∈ U .

Proof. Let c̄ and c̄′ denote the merged counters before subtracting and
removing values. Then clearly c̄i − c̄′i ∈ {0, 1} for all i ∈ U . Therefore
we have that c̄k+1 − c̄′k+1 ∈ {0, 1} where c̄k+1 denotes the value of the
k + 1’th largest counter in c̄. Note that it does not matter if the k + 1’th
largest counter describes a different element. If c̄k+1 = c̄′k+1 we subtract
the same value from each sketch and we have ĉi− ĉ′i ∈ {0, 1} for all i ∈ U .
If c̄k+1 − c̄′k+1 = 1 we subtract one more from each count in ĉ and we
have ĉ′i − ĉi ∈ {0, 1} for all i ∈ U .

Corollary 3.2. Let (S1, . . . , Sm) and (S′1, . . . , S′m) denote two sets of streams
such that Si ∼ S′i for one i ∈ [m] and Sj = S′j for any j 6= i. Let T, c and T′, c′

be the result of merging Misra-Gries sketches computed on both sets of streams
in any fixed order. Then c and c′ differ by 1 for at most k elements and agree on
all other counts.

Proof. It is clearly true for sketches of a pair of neighboring datasets
by Lemma 3.1. It holds by induction after each merging operation by
Lemma 3.6.

Since the `1-sensitivity is k we can use the algorithm in [CLSX12]
that adds noise with magnitude k/ε to all elements in U and keeps the
top-k noisy counts. If we only add noise to non-zero counts we can
hide that up to k keys can change between neighboring inputs with a
threshold. The two approaches have expected maximum error compared
to the non-private merged sketch of O(k log(d)/ε) and O(k log(k/δ)/ε),
respectively.
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We consider the problem of releasing of a sum of vectors with differential
privacy in the setting where coordinates have different sensitivity, repre-
sented by a (known) vector

−→
∆ . Each of n users provides a d-dimensional

real-valued vector where the ith coordinate is in [−−→∆ i/2,
−→
∆ i/2]. The aim

is to minimize the expected pth moment of the error introduced by the
mechanism. Focusing on mechanisms that add independent Gaussian or
Laplace noise to each coordinate of the sum, we consider the constrained
optimization problem of minimizing the expected error. For example,
in the case of p = 1 (average error across coordinates) it turns out to be
optimal to scale the magnitude of Gaussian noise on coordinate i propor-
tionally to

−→
∆ 2/3

i , and for p = 2 (mean squared error) one should scale the

magnitude of Gaussian noise proportionally to
√−→

∆ i. Compared to the
Gaussian mechanism and the Mininum Enclosing Ellipsoid mechanism,
this decreases the 2nd moment of the noise by a factor d||−→∆ ||22/||−→∆ ||21,
which is between 1 and d depending on the skew of coordinates in

−→
∆ .
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4.1 Introduction

Privately releasing the sum of vectors (or equivalently their mean) is a
typical problem within the field of differential privacy. It occurs natu-
rally in machine learning applications, for example when aggregating
gradient vectors where each vector is derived from data that needs to
be kept private [ACG+16]. The problem can be solved, in the curator
model, by the Laplace mechanism [DMNS06] or the Gaussian mecha-
nism (see [DR14, BW18]), both of which achieve differential privacy by
adding i.i.d. noise to each coordinate. The magnitude of the noise needed
scales with the maximum `1-norm of inputs (in the case of Laplace noise)
or the maximum `2-norm of inputs (in the case of Gaussian noise). In
this chapter we are interested in a situation where we have more infor-
mation about the input vectors, in the form of coordinate-wise bounds
on the magnitude of vector entries. Specifically, each of n users pro-
vides a d-dimensional real-valued vector where the ith coordinate is in
[−−→∆ i/2,

−→
∆ i/2], where

−→
∆ is a known vector encoding coordinate sensi-

tivities. The motivation is that many naturally occurring datasets have
skewed distributions, and we want to be able to take advantage of this
structure when designing mechanisms for vector aggregation.

The problem we study is a special case of a more general set-
ting [HT10, NTZ16] in which the contribution of each user to a sum is in
the convex hull of a point set P ⊆ Rd. In our case the point set consists of
the corners of a hyperrectangle with edge lengths {−→∆ 1, . . . ,

−→
∆ d}1. Hardt

and Talwar [HT10] introduce the K-norm mechanism which achieves pth
moment noise magnitude (in our setting) proportional to ||−→∆ ||pp. Nikolov,
Talwar, and Zhang [NTZ16] propose the Least Squares Mechanism and
show that its second moment error is within a polylogarithmic factor
from optimal. A simpler baseline algorithm, also discussed in their
work, is the Minimum Volume Ellipsoid Mechanism which in our setting
adds Gaussian noise scaled proportionally to

−→
∆ i to the ith coordinate,

achieving noise with magnitude similar to the K-norm mechanism. This
baseline solution has also been suggested in on-line forums as a poten-
tially “best” solution (see [Mar20]). However, as noted by Nikolov et
al. [NTZ16] this mechanism is not optimal, motivating the need for better
mechanisms.

1The formulation in these papers is to express the mean of user inputs in the form
of a convex combination of points in P, but this is equivalent to computing the sum of
vectors since n is public knowledge.
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Our contribution

In this chapter we consider mechanisms where independent noise is
added to the ith coordinate of the sum (with either Gaussian or Laplace
distribution) with magnitude depending on i and

−→
∆ . To minimize the

pth moment of the error, we consider how the noise is best distributed
among coordinates under the privacy constraint. Like the Minimum
Volume Ellipsoid Mechanism we sample noise at each coordinate with
magnitude based on the coordinatewise sensitivities. However, scaling
the noise differently allows us to reduce the overall noise when the
magnitudes of entries are skewed. At a high level, we reduce the noise
for coordinates with low sensitivity by slightly increasing the noise at
coordinates with high sensitivity.

We show that there is a choice of parameters for Gaussian noise such
that the pth moment of the error, E

[
‖M(x)− f (x)‖p

p
]

where f (x) is the

true sum, is proportional to ‖−→∆ ‖p
2p/(p+2). In comparison, the standard

Gaussian mechanism has error proportional to d‖−→∆ ‖p
2 , which is never

smaller and can be up to d times bigger. The Minimum Volume Ellipsoid
Mechanism has error proportional to dp/2‖−→∆ ‖p

p, which is also never
smaller than our mechanism. Similarly, for Laplace noise we can obtain
error proportional to ‖−→∆ ‖p

p/(p+1) while the standard Laplace mechanism

has error proportional to d‖−→∆ ‖p
1 .

4.2 Preliminaries

Problem setup. We consider the problem of releasing the sum of vectors
under differential privacy. Given a matrix x ∈ Rn×d with n rows, each a d-
dimensional real-valued vector, our goal is to estimate the coordinatewise
sum over all rows. Given an input dataset x ∈ Rn×d, we denote the sum
over all rows as f (x) := ∑i∈[n] xi. We write [n] to denote {1, . . . , n}. We
consider the problem in the setting with bounded sensitivity for each
coordinate. We discuss this below in Definition 4.2.

Differential privacy. We define two datasets as neighbors if they differ
for at most a single row. That is, x, x′ ∈ Rn×d are neighboring datasets if
and only if |{i ∈ [n] : xi 6= x′i}| ≤ 1. We denote neighboring dataset as
x ∼ x′. The goal of differential privacy is to preserve privacy by limiting
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the impact of any one users data on the output distribution. We consider
ε-differential privacy and ρ-zCDP in this chapter as defined below.

Definition 4.1 (Differential Privacy [BS16, DMNS06]). A randomized
algorithmM : Rn×d → R is ε-differentially private if for all measurable
sets of outputs Z ⊆ R and all pairs of neighboring datasets x ∼ x′ it
holds that

Pr[M(x) ∈ Z] ≤ eε · Pr[M(x′) ∈ Z] .

A randomized mechanismM : Rn×d → R satisfies ρ-zCDP if and only
if for all α > 1 and all pairs of neighboring datasets x ∼ x′ it holds that

Dα

(
M(x)||M(x′)

)
≤ ρα ,

where Dα(P||Q) := 1
α−1 ln

(
Ex∼P

[
(P(x)/Q(x))α−1

])
denotes the α-

Rényi divergence between two distributions P and Q.

The notion of sensitivity captures the biggest change to the output of a
query over all pairs of neighboring datasets. In our setting the sensitivity
is bounded for each coordinate. Each user provides a d-dimensional
real-valued vector where the ith coordinate is in

[
−−→∆ i/2,

−→
∆ i/2

]
. As

such the sum at the ith coordinate changes by at most
−→
∆ i for neighboring

datasets. Throughout the chapter, we use the notion as specified in the
definition below.

Definition 4.2 (Sensitivity). Define f (x) := ∑i∈[n] xi as the sum over all

rows of x. We write
−→
∆ = (

−→
∆ 1, . . . ,

−→
∆ d) to denote the sensitivity at each

coordinate such that

−→
∆ i = max

x∼x′
| f (x)i − f (x′)i| .

We denote the `2-sensitivity as

∆2 = max
x∼x′
‖ f (x)i − f (x′)i‖2 .

It is easy to see that ‖ f (x) − f (x′)‖2 is maximized when f (x) −
f (x′) =

−→
∆ . Therefore we have ∆2 = ‖−→∆ ‖2. The same argument shows

that the `1-sensitivity is ∆1 = ‖−→∆ ‖1.
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Error measure. Let f (x) := ∑i∈[d] xi be the true sum of all rows and
let M : Rn×d → Rd be a randomized algorithm estimating f (x). We
measure the accuracy of an estimate in terms of the pth power of the
absolute error. For any p > 0 the error ofM(x) is ‖M(x)− f (x)‖p

p :=
∑i∈[d] |M(x)i − f (x)i|p. We are concerned with the pth moment of the
error ofM, that is, E

[
‖M(x)− f (x)‖p

p
]
. This generalized error metric

includes some common error metrics such as average absolute error
and the mean squared error. Note that the problem setup is sometimes
studied as the equivalent problem of estimating the mean of all vectors.
Converting the error from the aggregation setting to the mean setting
simply requires scaling by n−p.

The Gaussian Mechanism. The Gaussian Mechanism is an often used
algorithm for differentially private release of real-valued queries. The
mechanism adds i.i.d. noise from the Gaussian distribution to each
coordinate. The mechanism is shown in Algorithm 14.

Algorithm 14: The Gaussian Mechanism
Parameters : Scale σ > 0.
Input : Dataset x ∈ Rn×d.
Output : ρ-zCDP estimate of f (x) := ∑i∈[n] xi.

(1) Sample ηi ∼ N
(
0, σ2) independently for each i ∈ [d].

(2) Return f (x) + η.

Lemma 4.1 ([BS16, Proposition 1.6]). The Gaussian Mechanism satisfies
ρ-zCDP if and only if σ2 ≥ ∆2

2/(2ρ).

Throughout the chapter we consider the Gaussian Mechanism in
terms of ρ-zCDP. But our technique applies to other definitions of dif-
ferential privacy as well. The Gaussian mechanism also satisfies Ap-
proximate Differential Privacy [DR14, BW18], Concentrated Differential
Privacy [DR16], Rényi Differential Privacy [Mir17], and Gaussian Differ-
ential Privacy [DRS19]. For each of these privacy notions there exists an
analogue version of Lemma 4.1.

Lemma 4.2. For any of (µ, τ)-CDP, (ε, δ)-DP, (α, ε)-RDP, and µ-GDP, let
σopt be the smallest value such that the Gaussian Mechanism satisfies the chosen
privacy notion for input with `2-sensitivity of 1. Then the Gaussian Mechanism
is differentially private under the chosen definition if and only if σ ≥ σopt‖∆‖2
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Our results for ρ-zCDP extends to any of the above privacy definitions
by replacing

√
1/(2ρ) with σopt.

We use the absolute moments of a Gaussian distribution shown below
to calculate the expected error.

Lemma 4.3 ([Win12, Equation 18]). The pth absolute moment of a zero
centered Gaussian distribution for any p > 0 is

E
[
|N (0, σ2)|p

]
= σp ·

2p/2Γ
(

p+1
2

)
√

π
.

The expected error of the Gaussian Mechanism follows from the
linearity of expectation.

Corollary 4.1. Let M denote Algorithm 14 with parameter σ = ∆2/
√

2ρ.
Then the expected error ofM for any input x ∈ Rn×d is

E
[
‖M(x)− f (x)‖p

p
]
= d · ∆p

2 ·
Γ
(

p+1
2

)
ρp/2√π

.

The Laplace Mechanism. The Laplace Mechanism works similar to the
Gaussian Mechanism by adding i.i.d. noise to each coordinate. The
noise is sampled from the Laplace distribution with magnitude based on
`1-sensitivity and ε. The mechanism is described in Lemma 4.4.

Lemma 4.4 (The Laplace Mechanism [DMNS06]). The probability density
function of the Laplace distribution centered around 0 with scale s is

fs(x) =
1
2s

e−|x|/s .

The Laplace Mechanism satisfies ε-differential privacy by adding i.i.d. noise from
Laplace(∆1/ε) to each coordinate.

We can find the pth absolute moment of the Laplace distribution as
shown below.

Lemma 4.5. The pth absolute moment of a zero centered Laplace distribution
for any p > 0 is

E
[
|Laplace(s)|p

]
=
∫ ∞

−∞

1
2s

e−|x|/s|x|pdx = sp · Γ(p + 1) .
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4.3 Calibrating elliptical Gaussian noise

The Gaussian Mechanism discussed in the previous section is calibrated
based on the `2-sensitivity. However, in our setting we have additional
information about the sensitivity at each individual coordinate. The stan-
dard mechanism adds noise of the same magnitude at each coordinate
and as such we might add a lot of noise to entries even though their
sensitivity is low.

We can think of the Gaussian Mechanism as adding spherical
noise to the output. The mechanism satisfies differential privacy if
‖ f (x)− f (x′)‖ ≤ ∆2 holds for all x ∼ x′. That is, the vector f (x)− f (x′)
always lies within the d-dimensional ball centered at the origin with
radius ∆2. We can easily generalize the Gaussian Mechanism to elliptical
noise. The idea is to sample noise from Gaussian distributions where
the magnitude can differ between coordinates. This allows us to add
less noise at coordinates with small sensitivity by adding slightly more
noise at coordinates with high sensitivity, keeping the overall privacy
budget. The general mechanism, parameterized by a vector b is shown
in Algorithm 15.

Algorithm 15: Elliptical Gaussian Mechanism

Parameters : ρ > 0 and
−→
∆ ∈ Rd

>0 and b ∈ Rd
>0 with ‖b‖2 = 1.

Input : Dataset x ∈ Rn×d.
Output : ρ-zCDP estimate of f (x) := ∑i∈[n] xi.

(1) Let σi =
−→
∆ i/(bi

√
2ρ).

(2) Sample ηi ∼ N (0, σ2
i ) independently for each i ∈ [d].

(3) Return f (x) + η.

Lemma 4.6. Algorithm 15 satisfies ρ-zCDP.

Proof. Consider the following equivalent algorithm. Construct a new
dataset x̂ ∈ Rn×d by scaling the entries of x such that x̂j,i = xj,i · bi/

−→
∆ i.

Notice that the transformation means that any row that lies within the
d-dimensional ellipsoid with radii (b1/

−→
∆ 1, . . . , bd/

−→
∆ d) centered at the

origin is mapped to within the unit ball centered at the origin. In
particular, for neighboring datasets x ∼ x′ we have that

‖ f (x̂)− f (x̂′)‖2 ≤
√

∑
i∈[d]

(−→
∆ i · bi/

−→
∆ i

)2
= 1 .
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Figure 4.1: Two-dimensional example of noise from Algorithms 15 and 16
with three choices of b. The ellipses and parallelograms bound the set of
input vectors for which the mechanism is private, all touching the corners
of the axis aligned box that contains all input vectors. The coordinatewise
sensitivities are 4 and 1, respectively. The magnitude of noise at each
coordinate is scaled by the intersection point between the shape and
the axis. For Algorithm 15 depicted in (a) the expected total squared
error in both the blue and orange cases is E[‖η‖2

2] = d‖−→∆ ‖2
2/(2ρ) =

17/ρ. For the green case we have E[‖η‖2
2] = ‖

−→
∆ ‖2

1/(2ρ) = 12.5/ρ. For
Algorithm 16 depicted in (b) the expected total error in both the blue and
orange cases is E[‖η‖1] = d‖−→∆ ‖1/ε = 10/ε. For the green case we have
E[‖η‖1] = ‖

−→
∆ ‖0.5/ε = 9/ε.

By Lemma 4.1 the Gaussian Mechanism with scale σ = 1/
√

2ρ is ρ-zCDP
for inputs with `2-sensitivity of 1. As such the mechanism is private for
x̂. Since differential privacy is preserved under post-processing we can
scale back the output at each coordinate i by

−→
∆ i/bi, yielding the same

output distribution as Algorithm 15.

Figure 4.1a depicts a small example of how b affects the noise of
Algorithm 15. If

−→
∆ i/bi = ‖−→∆ ‖2 the mechanism adds noise of the

same magnitude at each coordinate and it is identical to Algorithm 14.
The mechanism presented by Mark [Mar20] adds noise proportional to
the sensitivity at each coordinate. This corresponds to the case where
−→
∆ i/bi =

√
d
−→
∆ i. As a “sweet spot” between these options we may choose

−→
∆ i/bi ∝

√−→
∆ i to reduce the noise at coordinates with low sensitivity

with a sublinear dependence on the sensitivity for large coordinates. As
we show later in Lemma 4.8 this choice of b is preferred for p = 2. The
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error of Algorithm 15 for any choice of b is described in the following
Lemma.

Lemma 4.7. The expected error of Algorithm 15 for any p > 0 is

E
[
‖η‖p

p
]
=

Γ
(

p+1
2

)
ρp/2√π

∑
i∈[d]

(−→
∆ i/bi

)p
.

Proof. It follows directly from linearity of expectation by computing the
sum of the pth absolute moment of all coordinates. By Lemma 4.3 we
have

E
[
|ηi|p

]
= (σi)

p
2p/2Γ

(
p+1

2

)
√

π
.

The values of ρ, p and
−→
∆ are all fixed, but we are free to choose the

value of b that minimizes the expected error. As shown in Lemma 4.7 the

expected error scales linearly with ∑i∈[d]

(−→
∆ i/bi

)p
. The optimal choice

for b is a function of both
−→
∆ and p shown in Lemma 4.8.

Lemma 4.8. Given p > 0, the expected error E
[
‖η‖p

p
]

of Algorithm 15 is
minimized when

bi =

−→
∆ p/(p+2)

i√
∑i∈[d]

−→
∆ 2p/(p+2)

i

.

Proof. We use the method of Lagrange multipliers for the proof. The
method is used to find local maxima or minima of a function subject to
equality constraints. In our case, it turns out that there is only one mini-
mum and as such we find the global minimum using the method. The
expected error is minimized by finding the smallest value of the function

∑i∈[d]

(−→
∆ i/bi

)p
subject to the restriction ‖b‖2 = 1, i.e, ∑i∈[d] b2

i − 1 = 0.
The minimum is at the stationary point of the Lagrangian function

L(b, λ) = ∑
i∈[d]

(−→
∆ i/bi

)p
+ λ

 ∑
i∈[d]

b2
i − 1

 ,

where λ ∈ R is the Lagrange multiplier.
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We start by finding the partial derivative of the Lagrangian function
with respect to bi.

∂

∂bi
L(b, λ) =

∂

∂bi

(−→
∆ i/bi

)p
+ λb2

i = −p
−→
∆ p

i /bp+1
i + 2λbi .

We then find the root of this function with respect to bi, that is,

−p
−→
∆ p

i /bp+1
i + 2λbi = 0⇔ bp+2

i = p
−→
∆ p

i /(2λ)⇔ bi =
−→
∆ p/(p+2)

i /γ ,

where γ = (p/(2λ))−1/(p+2). We find the value of γ using the
restriction on b that is

∑
i∈[d]

b2
i = 1 ⇔ ∑

i∈[d]

−→
∆ 2p/(p+2)

i = γ2 ⇔ γ =

√
∑

i∈[d]

−→
∆ 2p/(p+2)

i .

Substituting this value of γ in bi =
−→
∆ p/(p+2)

i /γ proves the Lemma.

We are now ready to prove our main result as shown in Theorem 4.1.

Theorem 4.1. Given ρ, p > 0 and a dataset x ∈ Rn×d with known coordinate-
wise sensitivities

−→
∆ =

(−→
∆ 1, . . . ,

−→
∆ d

)
. There exists an ρ-zCDP algorithm

M : Rn×d → Rd that estimates f (x) := ∑i∈[n] xi with expected error

E
[
‖M(x)− f (x)‖p

p
]
=

Γ
(

p+1
2

)
ρp/2√π

· ‖−→∆ ‖p
2p/(p+2) .

Proof. We first find the value of
(−→

∆ i/bi

)p
when bi is chosen according

to Lemma 4.8.

(−→
∆ i/bi

)p
=

−→∆ 2/(p+2)
i

√
∑

i∈[d]

−→
∆ 2p/(p+2)

i

p

=
−→
∆ 2p/(p+2)

i

 ∑
i∈[d]

−→
∆ 2p/(p+2)

i

p/2

.
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From this we find that

∑
i∈[d]

(
−→
∆ i/bi)

p =

 ∑
i∈[d]

−→
∆ 2p/(p+2)

i

1+p/2

= ‖−→∆ ‖p
2p/(p+2) .

The Theorem follows from Lemma 4.7 and the calculation above by
running Algorithm 15 with b chosen according to Lemma 4.8.

Throughout the chapter, we used the error measure ‖η‖p
p. Here we

consider the expected error for two typical choices for p and compare
the result with the standard Gaussian Mechanism.

For p = 1 we set bi ∝
−→
∆ 1/3

i and find that the expected total error of
Algorithm 15 is

E [‖η‖1] =
‖−→∆ ‖2/3√

ρπ
.

To instead minimize the expectation total squared error we set p = 2
and bi ∝

−→
∆ 1/2

i such that

E
[
‖η‖2

2

]
=
‖−→∆ ‖2

1
2ρ

.

The ratio between the expected error of Algorithms 14 and 15 is

d‖−→∆ ‖2/‖−→∆ ‖2/3 and
(√

d‖−→∆ ‖2/‖−→∆ ‖1

)2
for p = 1 and p = 2, respec-

tively. The improvement is most significant when
−→
∆ is skewed. If all

entries of
−→
∆ are equal the ratio is 1. This is of course expected because the

two algorithms are identical since
−→
∆ i/bi = ‖

−→
∆ ‖2. In the other extreme

all but one entry of
−→
∆ is zero in which case the error is improved by a

factor of d. Since a coordinate with sensitivity 0 contains no information
we can assume that all sensitivities are non-zero. As such Algorithm 15
always improves the expected error of Algorithm 14 by a factor in [1, d)
for d > 1. This is true for all p > 0 when choosing bi ∝

−→
∆ p/(p+2)

i .

4.4 The Laplace mechanism

In the previous section we showed how to improve the expected error
of the Gaussian Mechanism in our setting by choosing different mag-
nitude of noise at each coordinate. In this section we show that the
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approach can be applied to other mechanisms. We consider the Laplace
Mechanism which achieves ε-differential privacy. The noise scales with
the `1-sensitivity. The magnitudes of the noise should be distributed
differently from the Gaussian Mechanism where the noise is scaled to the
`2-sensitivity. Note that the proofs in this section are shortened as they
follow the same ideas as the corresponding proofs from the previous
section.

Algorithm 16: Parallelotope Laplace Mechanism

Parameters : ε > 0 and
−→
∆ ∈ Rd

>0 and b ∈ Rd
>0 with ‖b‖1 = 1.

Input : Dataset x ∈ Rn×d.
Output : ε-differentially private estimate of f (x) := ∑i∈[n] xi.

(1) Let si =
−→
∆ i/(bi · ε).

(2) Sample ηi ∼ Laplace(si) independently for each i ∈ [d].
(3) Return f (x) + η.

Lemma 4.9. Algorithm 16 satisfies ε-differential privacy.

Proof. The proof is similar to the proof of Lemma 4.6. We consider an
equivalent algorithm by scaling the input such that x̂j,i = xj,i · bi/

−→
∆ i. For

neighboring datasets x ∼ x′ we have

‖ f (x̂)− f (x̂′)‖1 ≤ ∑
i∈[d]

(−→
∆ i · bi/

−→
∆ i

)
= 1 .

The mechanism that adds i.i.d. noise from Laplace(1/ε) to each coordi-
nate of x̂ is ε-differentially private by Lemma 4.4. We can scale back each
coordinate by

−→
∆ i/bi as post-processing.

Lemma 4.10. The expected error of Algorithm 16 for any p > 0 is

E
[
‖η‖p

p
]
=

Γ (p + 1)
εp ∑

i∈[d]

(−→
∆ i/bi

)p
.

Proof. It follows directly from linearity of expectation by computing the
sum of the pth absolute moment of all coordinates. By Lemma 4.5 we
have

E
[
|ηi|p

]
=
(−→

∆ i/(bi · ε)
)p
· Γ (p + 1) .
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Lemma 4.11. Given p > 0, the expected error E
[
‖η‖p

p
]

of Algorithm 16 is
minimized when

bi =

−→
∆ p/(p+1)

i

∑i∈[d]
−→
∆ p/(p+1)

i

.

Proof. The proof is similar to the proof of Lemma 4.8. We still want to

minimize
(−→

∆ i/bi

)p
but here it is subject to ‖b‖1 = 1. That is, we find

the minimum by finding the stationary point of the Lagrangian function

L(b, λ) = ∑
i∈[d]

(−→
∆ i/bi

)p
+ λ

 ∑
i∈[d]

bi − 1

 .

Following the same steps as proof of Lemma 4.8 we find that bi ∝
−→
∆ p/(p+1)

i for all i ∈ [d]. We use the restriction ∑i∈[d] bi = 1 to find that

bi =
−→
∆ p/(p+1)

i / ∑i∈[d]
−→
∆ p/(p+1)

i .

Theorem 4.2. Given ε, p > 0 and a dataset x ∈ Rn×d with known coordinate-
wise sensitivities

−→
∆ =

(−→
∆ 1, . . . ,

−→
∆ d

)
. There exists an ε-differentially private

algorithm M : Rn×d → Rd that estimates f (x) := ∑i∈[n] xi with expected
error

E
[
‖M(x)− f (x)‖p

p
]
=

Γ (p + 1)
εp · ‖−→∆ ‖p

p/(p+1) .

Proof. We find the value of ∑i∈[d]

(−→
∆ i/bi

)p
when bi is chosen according

to Lemma 4.11 as such

∑
i∈[d]

(
−→
∆ i/bi)

p = ∑
i∈[d]

−→∆ 1/(p+1)
i ∑

i∈[d]

−→
∆ p/(p+1)

i

p

=

 ∑
i∈[d]

−→
∆ p/(p+1)

i

1+p

= ‖−→∆ ‖p
p/(p+1) .

The Theorem follows from Lemma 4.10 and the calculation above by
running Algorithm 16 with b chosen according to Lemma 4.11.
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Differentially private mean estimation is an important building block in
privacy-preserving algorithms for data analysis and machine learning.
Though the trade-off between privacy and utility is well understood in
the worst case, many datasets exhibit structure that could potentially be
exploited to yield better algorithms. In this chapter we present Private
Limit Adapted Noise (plan), a family of differentially private algorithms for
mean estimation in the setting where inputs are independently sampled
from a distribution D over Rd, with coordinate-wise standard deviations
σ ∈ Rd. Similar to mean estimation under Mahalanobis distance, plan

tailors the shape of the noise to the shape of the data, but unlike pre-
vious algorithms the privacy budget is spent non-uniformly over the
coordinates. Under a concentration assumption on D, we show how to
exploit skew in the vector σ, obtaining a (zero-concentrated) differentially
private mean estimate with `2 error proportional to ‖σ‖1. Previous work
has either not taken σ into account, or measured error in Mahalanobis
distance — in both cases resulting in `2 error proportional to

√
d‖σ‖2,

which can be up to a factor
√

d larger. To verify the effectiveness of plan,
we empirically evaluate accuracy on both synthetic and real-world data.
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5.1 Introduction

Differentially private mean estimation is an important building block
in many algorithms, notably in for example implementations of pri-
vate stochastic gradient descent [ACG+16, PSY+19, DMR+22]. While
differential privacy is an effective and popular definition for privacy-
preserving data processing, privacy comes at a cost of accuracy, and
striking a good trade-off between utility and privacy can be challenging.
Achieving a good trade-off is especially hard for high-dimensional data,
as the required noise that ensures privacy increases with the number of
dimensions. Making matters worse, differential privacy operates on a
worst-case basis. Adding noise naïvely may result in a one-size-fits-none
noise scale that, although private, fails to give meaningful utility for
many datasets.

Motivating example. Consider the following toy example: take a con-
stant q ∈ (0, 1) and let λ� 1/d be a value close to zero. We consider a
set of vectors x(1), . . . , x(n) ∈ Rd where, independently,

x(j) =

{
(1, λ, . . . , λ) with probability q
(0, 0, . . . , 0) with probability 1− q .

Though the nominal dimension is d, the distribution is “essentially 1-
dimensional”. Thus, we should be able to release a private estimate of
the mean (q, λq, . . . , λq) with about the same precision as a scalar value
with sensitivity 1. However, previous private mean estimation techniques
either:

• add the same amount of noise to all d dimensions, making the `2
norm of the error a factor Θ(

√
d) larger, or

• split the privacy budget evenly across the d dimensions, making
the noise added to the first coordinate a factor Θ(

√
d) larger than

in the scalar case.

Instead, we would like to adapt to the situation, and spend most of
the privacy budget on the first coordinate while still keeping the noise
on the remaining d − 1 coordinates low. Dimension reduction using
private PCA (see e.g. [ADK+19, DTTZ14, HP14]) could be used, but we
aim for something simpler and more general: to spend more budget on
coordinates with higher variance.
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We explore the design space of such variance-aware budget allocations
and show that, perhaps surprisingly, the intuitive approach of splitting
the budget across coordinates proportional to their spread (which is
optimal for Mahalanobis distance [BGS+21]) is not optimal for `p er-
rors. Using this insight, we design a family of algorithms, Private Limit
Adapted Noise (plan), that distributes the privacy budget optimally. The
contributions of this work cover both theoretical and practical ground:

• We present Private Limit Adapted Noise (plan) (Section 5.3), a
family of algorithms for differentially private mean estimation
for `2 error, and its accompanying privacy and utility analysis
(Section 5.4).

• We formalize, introduce, and exemplify the notion of (σ, p)-well
concentrated distributions (Section 5.4 & Section 5.5) that allows for
the study of variance-aware algorithms for mean estimation.

• We generalize the analysis of plan to hold for arbitrary `p error
(Section 5.4.6).

• We prove that plan matches the utility of the current state-of-the-
art algorithm [HLY21] for differentially private mean estimation up
to constant factors in expectation — without requiring computa-
tionally expensive random rotations (Section 5.6).

• We implement two instantiations of plan, for `1 and `2 error re-
spectively, and empirically evaluate the algorithms on synthetic
and real-world datasets (Section 5.7).

Scope. We consider the setting where we have independent samples
x(1), . . . , x(n) from a distribution D over Rd, and use σ ∈ Rd to denote
the vector where σi is the standard deviation of the ith coordinate of a
sample from D. For mean estimation, error is often expressed in terms
of Mahalanobis distance (Section 5.2.2), which is natural if D is a Gaussian
distribution. Our objective is instead to estimate the mean µ of D with
small `p error. This is natural in other settings, for example if input
vectors:

• represent probability distributions over {1, . . . , d}, so that `1 error
corresponds to variation distance, or
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• are binary, so that `1 and `2 error corresponds to mean error and
root mean square error, respectively, over d counting queries.

Our exposition will focus primarily on the case of `2 error, which is most
easily compared to previous work.

plan’s privacy guarantees are expressed as ρ-zero-Concentrated Dif-
ferential Privacy (zCDP), where similar results follow for other notions,
such as approximate differential privacy (Lemma 5.1). We consider the
number of inputs, n, fixed — the neighboring relation is changing one
vector among the inputs.

In the non-private setting, the empirical mean 1
n ∑j x(j) is known to

yield the smallest `2 error of size O(‖σ‖2/
√

n). We are interested in
the situation where the privacy parameter ρ is small enough that the
sampling error of the empirical mean is dominated by the error introduced
by differential privacy.

Our results. We show, both theoretically and empirically, that a careful
chosen privacy budgeting can improve the `p error compared to existing
methods when the vector σ is skewed. Some limitation, beyond bounded
variance, is needed for the distribution D. We say that D is σ-well
concentrated if, roughly speaking, the norm of distance to the mean µ

of vectors sampled from D is unlikely to be much larger than vectors
sampled from a multivariate exponential distribution with standard
deviations given by σ or some root of σ. In the case p = 2 our upper
bound is particularly simple to state:

Theorem 5.1. (simplified version) Suppose D is σ-well concentrated and
that we know σ̂ such that ‖σ − σ̂‖∞ < ‖σ‖1/d. Then for n =
Ω̃
(
max

(√
d/ρ, ρ−1)) there is a mean estimation algorithm that satisfies ρ-

zCDP and has expected `2 error

Õ(1 + ‖σ‖2/
√

n + ‖σ‖1/(n
√

ρ))

with high probability, where Õ suppresses polylogarithmic factors in error
probability, d, n, and a bound on the `∞ norm of input vectors.

Comparing Theorem 5.1 to applying the Gaussian mechanism directly
provides a useful example. Given the vectors x(1), . . . , x(n) sampled
from N (µ, Σ) for Σ = diag(σ2) where ‖µ‖2 = O(‖σ‖2), and clipping at
C = Θ(‖σ‖2), would give an `2 error bound of

Õ(‖σ‖2/
√

n +
√

d‖σ‖2/(n
√

ρ)) .
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Crucially, Theorem 5.1 is never worse, but can be better than applying
the Gaussian mechanism directly. The value of ‖σ‖1 is in the interval
[‖σ‖2,

√
d‖σ‖2], where a smaller value of ‖σ‖1 indicates larger skew.

Thus, Theorem 5.1 is strongest when σ has a skewed distribution such
that ‖σ‖1 is close to the lower bound of ‖σ‖2, assuming that the privacy
parameter ρ is small enough that the error due to privacy dominates the
sampling error.

5.2 Preliminaries

We provide privacy guarantees via zero-Concentrated Differential Privacy
(zCDP) in the bounded setting, where the dataset has a fixed size, as
defined in this section. Since previous work measure error using different
distance measures, we give both the definition for `p error (which we use),
as well as Mahalanobis distance. Lastly, we give an overview of private
quantile estimation which is a central building block of our algorithm.

5.2.1 Differential privacy

Differential privacy [DMNS06] is a statistical property of an algorithm
that limits information leakage by introducing controlled randomness
to the algorithm. Formally, differential privacy restricts how much the
output distributions can differ between any neighboring datasets. We
say that a pair of datasets are neighboring, denoted x ∼ x′, if and only if
there exists an j ∈ [n] such that x(i) = x′(i) for all i 6= j.

Definition 5.1 ([DMNS06] (ε, δ)-Differential Privacy). A randomized
mechanismM satisfies (ε, δ)-DP if and only if for all pairs of neighboring
datasets x ∼ x′ and all set of outputs Z we have

Pr[M(x) ∈ Z] ≤ eε Pr[M(x′) ∈ Z] + δ

Definition 5.2 ([BS16] zero-Concentrated Differential Privacy (zCDP)).
LetM denote a randomized mechanism satisfying ρ-zCDP for any ρ > 0.
Then for all α > 1 and all pairs of neighboring datasets x ∼ x′ we have

Dα

(
M(x)||M(x′)

)
≤ ρα,

where Dα(X||Y) denotes the α-Rényi divergence between two distribu-
tions X and Y.
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Lemma 5.1 ([BS16] zCDP to (ε, δ)-DP conversion). IfM satisfies ρ-zCDP,
thenM is (ε, δ)-DP for any δ > 0 and ε = ρ + 2

√
ρ log(1/δ).

Lemma 5.2 ([BS16] Composition). If M1 and M2 satisfy ρ1-zCDP and ρ2-
zCDP, respectively. Then M = (M1, M2) satisfies (ρ1 + ρ2)-zCDP.

The Gaussian Mechanism adds noise from a Gaussian distribution
independently to each coordinate of a real-valued query output. The
scale of the noise depends on the privacy parameter and the `2-sensitivity
denoted ∆2. A query q has sensitivity ∆2 if for all x ∼ x′ we have
‖q(x)− q(x′)‖2 ≤ ∆2.

Lemma 5.3 ([BS16] The Gaussian Mechanism). If q : Rn×d → Rd is a

query with sensitivity ∆2 then releasing N (q(x), ∆2
2

2ρ I) satisfies ρ-zCDP.

5.2.2 Distance measures

Here we introduce the distance measures for the error of a mean estimate.
Let µ̃ =M(x) denote the mean estimate of a distribution with mean µ.
We measure the utility of our mechanism in terms of expected `p error
as defined below. Here p is a parameter of our mechanism where the
most common values for p are 1 (Manhattan distance), and 2 (Euclidean
distance).

Definition 5.3 (`p error). For any real value p ≥ 1 the `p error is

‖µ̃− µ‖p =

(
d

∑
i=1
|µ̃i − µi|p

)1/p

Note that we sometimes present error guarantees in the form of the
pth moment, i.e. E[‖µ̃− µ‖p

p], when it follows naturally from the analysis.
Notice that the pth moment bounds the expected `p error for any p ≥ 1
as E[‖µ̃− µ‖p] ≤ (E[‖µ̃− µ‖p

p])
1/p.

As stated in Section 5.8 several previous work on mean estimates
measure error in Mahalanobis distance. Although this is not the focus
of our work we include the definition here for completeness. A key
difference between Mahalanobis distance measure and `p error is that
the directions are weighted by the uncertainty of the underlying data.
We weight the error in all coordinates equally.
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Definition 5.4 (Mahalanobis distance). The error in Mahalanobis distance
of a mean estimate for a distribution with covariance matrix Σ is defined
as

‖µ̃− µ‖Σ = ‖Σ−1/2(µ̃− µ)‖2

5.2.3 Private quantile estimation

Our work builds on using differentially private quantiles, whose rank
error (i.e. how many elements away from the desired quantile the output
is) we will define for our utility analysis. When estimating the q’th
quantiles of a sequence z(1) . . . z(n) with z(j) ∈ Rd, we ideally return
a vector z̃ ∈ Rd such that for each coordinate i we have |{j ∈ [n] :
z(j)

i ≤ z̃i}|/n = q. We use the notation PrivQuantile
M
ρ (z(1) . . . z(n), q)

to denote a ρ-zCDP mechanism that estimates the q’th quantiles of
z(1) . . . z(n) where each coordinate is bounded to [−M, M].

There are multiple applicable choices for the instantiation of
PrivQuantile from the literature, e.g. [Smi11, HLY21, KSS22]. In
this chapter we will use the binary search based quantile estimator
[Smi11, HLY21] for our utility analysis (Section 5.4), and the exponential
mechanism based quantile estimator by Kaplan et al. [KSS22] in our
empirical evaluation (Section 5.7). Note that the choice of instantiation
of PrivQuantile has no effect on the privacy analysis of plan. The
binary search based method gives us cleaner theoretical results because
the error guarantee of the exponential mechanism based technique is
highly data-dependent, and the error is large for worst-case input. Em-
pirically, however, the exponential mechanism based quantile is more
robust, which is why we use it in our experiments.

The binary search based quantile subroutine performs a binary search
over the interval [−M, M]. At each step of the search, branching is based
on a quantile estimate for the midpoint of the current interval. Since
branching must be performed privately the privacy budget needs to
be partitioned in advance, this limits the binary search to T iterations.
Huang et al. [HLY21] describes the algorithm for discrete input where
T is the base 2 logarithm of the size of the input domain. Treating T
as a parameter of the algorithm gives us the following guarantees for
1-dimensional input.

Lemma 5.4 (Follows from [HLY21, Theorem 1]). PrivQuantile satisfies
ρ′-zCDP and with probability at least 1− β it returns an interval containing at
least one point with rank error bounded by

√
T log(T/β)/(2ρ′).
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Figure 5.1: Step-by-step illustration of plan (Algorithm 17): (a) Raw data,
with statistical mean (yellow star), (b) Recentering (blue) and scaling
(orange) corresponding to Line 4, (c) Clipping, as determined by Line 6,
(d) Private mean (green cross).

When estimating the quantiles of multiple dimensions, we split the
privacy budget evenly across each dimension such that ρ′ = ρ/d for
each invocation of PrivQuantile. By composition releasing all quantiles
satisfies ρ-zCDP.

Lemma 5.5. With probability at least 1− β, PrivQuantile
M
ρ returns a point

that for all coordinates is within a distance of M2−T of a point with rank error
at most

√
dT log(Td/β)/2ρ for the desired quantile.

Proof. Running binary search for T iterations splits up the range [−M, M]
in 2T evenly sized intervals. By a union bound there is a point with
claimed rank error in each of the intervals returned by PrivQuantile.
Returning the midpoint of each interval ensures we are at most distance
M2−T from said point.

Throughout this chapter, we set T = log2(M) unless otherwise speci-
fied such that the error distance of Lemma 5.5 is 1.

5.3 Algorithm

Conceptually, Private Limit Adapted Noise (plan) is a data-aware family
of algorithms that exploits variance in the input data to tailor noise to
the specific data at hand. Since it is a family of algorithms, a plan

needs to be instantiated for a given problem domain, i.e. for a specific
`p error and data distribution. In Section 5.7 we showcase two such
instantiations, using `1 error for binary data, and using `2 for Gaussian
data. Pseudocode for plan is shown in Algorithm 17, and a step-by-step
illustration of plan is provided in Figure 5.1.
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5.3.1 plan overview

Based on the input data (Line 1, Figure 5.1 (a)) plan first computes a
private, rough, approximate mean µ̃ (Line 3). plan then recenters the
data around µ̃, and scales the data (Line 4, Figure 5.1 (b)) according to an
estimate on the variance σ̂2 — this scaling allows the privacy budget to be
spent unevenly across dimensions. Next, plan clips inputs to a carefully
chosen ellipsoid (Line 6, Figure 5.1 (c)) centered around µ̃ that most data
points fall within. The size of the ellipsoid is determined privately based
on the data (Line 5). Finally, plan adds sufficient Gaussian noise (Line 7)
to make the contribution of each clipped input differentially private, and
transforms the results back to the original format (Figure 5.1 (d)). Each
of these techniques has been used for private mean estimation before —
we show that choosing the ellipsoid differently leads to smaller `p error.

Algorithm 17: plan

1: Input: x(1), . . . , x(n) ∈ Rd, estimate σ̂2 ∈ Rd

2: Parameters: M, p, ρ1, ρ2, ρ3
3: µ̃← PrivQuantile

M
ρ1
(x(1), . . . , x(n), 1/2)

4: y(j) ← (x(j) − µ̃) Σ̂−1/(p+2) for j = 1, . . . , n
5: k←

√
n + Θ

(√
1/ρ2

)
6: C ← PrivQuantile

M
√

d
ρ2

(‖y(1)‖2, . . . , ‖y(n)‖2, n−k
n )

7: sample η ∼ N (0, 2C2

ρ3
I)

8: return µ̃ + 1
n

(
∑j min

{
C

‖y(j)‖2
, 1
}

y(j) + η
)

Σ̂1/(p+2)

5.3.2 plan building blocks

Like Instance-optimal mean estimation (iome) [HLY21], our algorithm
computes a rough estimate of the mean as a private estimate µ̃ ∈ Rd

of the coordinate-wise median. This step uses the assumption that all
coordinates are in the interval [−M, M]. It is known that a finite output
domain is needed for private quantile selection to be possible [BNSV15].
Suppose `p is the error measure we are aiming to minimize. The next step
is to scale coordinates by multiplying with the diagonal matrix Σ̂−1/(p+2),
where Σ̂ = diag(σ̂2) is the diagonal matrix of variance estimates σ̂2.

Note that since Σ̂ is a diagonal matrix, it is not necessarily close to the
covariance matrix of D outside of the diagonal. Note that for p = 2 the
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exponent of Σ̂ is −1/4, which is different from the exponent of −1/2 that
would be used in order to compute an estimate with small Mahalanobis
distance.

The scaling stretches the ith coordinate by a factor σ̂
−2/(p+2)
i . Since

σ̂2
i ≈ σ2

i this changes the standard deviation on the ith coordinate from

σi to roughly σ
p/(p+2)
i . Next, we compute vectors y(j) that represent

the (stretched) differences x(j) − µ̃. Conceptually, we now want to es-
timate the mean of y(1), . . . , y(n), which in turn implies an estimate of
( 1

n ∑j x(j))− µ̃. The mean of y(1), . . . , y(n) is estimated using the Gaussian
mechanism. In order to find a suitable scaling of the noise we privately
find a quantile C of the lengths ‖y(1)‖2, . . . , ‖y(n)‖2 (all shorter than M

√
d

by assumption) such that approximately k vectors have length larger than
C, and clip vectors to length at most C. Clipping, private mean estima-
tion, scaling, and adding back µ̃ are all condensed in the estimator in
Line 8 of Algorithm 17.

5.4 Analysis

Assumptions:

• We assume that for a known parameter M, all inputs are in x(j) ∈
[−M, M]d for j = 1, . . . , n. (If this is not the case, the algorithm will
clip inputs to this cube, introducing additional clipping error.) Also,
we assume that data has been scaled sufficiently such that σi ≥ 1
for i = 1, . . . , d (this can be enforced by adding independent noise
of variance 1 to each coordinate of inputs).

• We are given a vector σ̂ ∈ Rd such that

σi ≤ σ̂i < σi + ‖σ‖1/d . (5.1)

If no such vector is known we will have to compute it, spending
part of the privacy budget, but we consider this a separate question.

Definition 5.5. Consider a distribution D over Rd, denote the mean and
standard deviation of the ith coordinate by µi and σi, respectively. We
say that D is σ-well concentrated if for any vector σ̂ ∈ Rd with σi ≤ σ̂i <
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σi + ‖σ‖1/d, the following holds for t > 1

Pr
X∼D

[
d

∑
i=1

(Xi − µi)
2 > t‖σ‖2

2

]
= exp(−Ω̃(t)) (5.2)

Pr
X∼D

[
d

∑
i=1

(Xi − µi)
2/σ̂i > t‖σ‖1

]
= exp(−Ω̃(t)) . (5.3)

Intuitively, these assumptions require concentration of measure of the
norms before and after scaling.

5.4.1 Analysis outline

We will show that plan returns a private mean estimate that, assuming
D is σ-well concentrated, has small expected `p error with probability at
least 1− β. All probabilities are over the joint distribution of the input
samples and the randomness of the plan mechanism. For simplicity we
focus on the case p = 2, but the analysis extends to any p ≥ 1 as we will
show at the end of this section.

Privacy. It is not hard to see that plan satisfies ρ-zCDP with ρ =
ρ1 + ρ2 + ρ3: The computation of µ̃ satisfies ρ1-zCDP and the computation
of C satisfies ρ2-zCDP by definition of PrivQuantile. Finally, given the
values C and µ̃ the `2-sensitivity of ∑j min

{
C

‖y(j)‖2
, 1
}

y(j) with respect

to an input x(j) is 2C, so adding Gaussian noise with variance 2C2/ρ3
gives a ρ3-zCDP mean estimate. By composition, and since the returned
estimator is a post-processing of these private values, the estimator is
ρ-zCDP with ρ = ρ1 + ρ2 + ρ3.

Utility. It is known that mean estimation in Rd requires n = Ω(
√

d/ρ)
samples to achieve meaningful utility [HLY21, KLSU19]. Thus we will
assume that n is sufficiently large, n = Ω̃(

√
d/ρ), where the Ω̃ notation

hides polylogarithmic factors in d, β, and M. Let Σ̂ denote the scaling
matrix diag(σ̂2). In the following, we assume that ρ1, ρ2, ρ3 are fixed
fractions of ρ.

The utility analysis has three parts:

1. First, we argue that |µ̃i − µi| < 3σi for all i = 1, . . . , d with high
probability.
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2. Let J denote the set of indices for which ‖y(j)‖2 > C. We argue that
with high probability,

∑
j∈J
‖x(j) − µ̃‖2 = Õ

((
k +

√
1
ρ

)
‖σ‖2

)
,

bounding the error due to clipping.

3. Finally, we argue that with high probability∥∥∥∥η Σ̂
1

p+2
∥∥∥∥2

2
= Õ(‖σ‖2

1/ρ),

bounding the error due to Gaussian noise.

5.4.2 Part 1: Bounding |µ̃− µ|
In the following K is a universal constant chosen to be sufficiently large.

Lemma 5.6. Assuming that n > K max(
√

d log(M) log(log(M)d/β)/ρ,
log(d/β)) then with probability 1− β, the coordinate-wise median µ̃i satisfies
µ̃i ∈ [µi − 3σi, µi + 3σi] for all i = 1, . . . , d.

Proof. Sample X = (X1, . . . , Xd) ∼ D. By Chebychev’s inequality, for
each i with 1 ≤ i ≤ d:

Pr[|Xi − µi| ≤ 2σi] ≥ 1−
σ2

i
(2σi)2 = 3/4 .

Fixing i, these events are independent for j = 1, . . . , n so by a Chernoff
bound with probability 1− exp(−Ω(n)) there are at least 2

3 n indices j

such that |X(j)
i − µi| ≤ 2σi. Condition on the event that this is true for

i = 1, . . . , d.
If the rank error of the median estimate µ̃i is smaller than n/6, µ̃i ∈

[µi − 3σi, µi + 3σi], using the assumption that σi ≥ 1. By Lemma 5.5 this
is true for every i with probability at least 1− β, given our assumption
on n and K if K is a sufficiently large constant.
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5.4.3 Part 2: Bounding clipping error

Let J = {j ∈ {1, . . . , n} | ‖y(j)‖2 > C} denote the set of indices of vectors
affected by clipping in plan. By the triangle inequality and assuming
the bound of part 1 holds,

∑
j∈J

∥∥∥(x(j) − µ̃)
∥∥∥

2
≤∑

j∈J

∥∥∥(x(j) − µ)
∥∥∥

2
+ |J| · ‖µ− µ̃‖2

≤∑
j∈J

∥∥∥(x(j) − µ)
∥∥∥

2
+ 3|J| · ‖σ‖2 .

By assumption (5.2) the probability that ‖x(j) − µ‖2
2 > t‖σ‖2

2 is expo-
nentially decreasing in t, so setting t = log2(n/β) we have ‖x(j) − µ‖2 =
Õ(‖σ‖2) for all j = 1, . . . , n with probability at least 1− β. Using the
triangle inequality again we can now bound

∑
j∈J
‖x(j) − µ‖2 = Õ(|J| · ‖σ‖2) .

Since
∥∥∥y(j)

∥∥∥
2
≤ M

√
d, by Lemma 5.4, with probability at least 1− β

(over the random choices of the private quantile selection algorithm)
there are at most Õ

(
k +

√
1
ρ

)
vectors y(j) for which ‖y(j)‖2 > C. So

with probability at least 1− β we have |J| = Õ
(

k +
√

1
ρ

)
, and using the

bounds above we get

∑
j∈J
‖x(j) − µ̃‖2 = Õ(|J| · ‖σ‖2) = Õ

((
k +

√
1
ρ

)
‖σ‖2

)
.

5.4.4 Part 3: Bounding noise

By triangle inequality:

‖y(j)‖2 =

∥∥∥∥(x(j) − µ̃) Σ̂
− 1

p+2
∥∥∥∥

2

≤
∥∥∥∥(x(j) − µ) Σ̂

− 1
p+2
∥∥∥∥

2
+

∥∥∥∥(µ− µ̃) Σ̂
− 1

p+2
∥∥∥∥

2

For p = 2, the ith coordinate of (x(j) − µ) Σ̂−1/(p+2) equals (x(j)
i −

µi)/
√

σ̂i, so assumption (5.3) implies that the length of the first vector is
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Õ(
√
‖σ‖1) with probability at least 1− β/2. From part 1 we know (again

for p = 2) that the ith coordinate of (µ− µ̃) Σ̂−1/(p+2) has absolute value
at most

3σi/
√

σ̂i ≤ 3
√

σi,

where the inequality uses the lower bound on σ̂i in assumption (5.1). So
‖(µ− µ̃) Σ̂−1/(p+2)‖2 ≤ 3

√
‖σ‖1, and we get that ‖y(j)‖2 = Õ(

√
‖σ‖1)

for all j with probability at least 1− β/2.
The value of C is bounded by the maximum length of a vector ‖y(j)‖2,

and thus by a union bound, with probability at least 1− β, C2 = Õ(‖σ‖1).
The scaled noise vector η Σ̂1/(p+2) has distribution N (0, 2C2

ρ3
Σ̂1/(p+2)), so

using σ̂i ≤ σi + ‖σ‖1/d from assumption (5.1), for p = 2:

E[‖η Σ̂1/(p+2)‖2
2] =

2C2

ρ3

d

∑
i=1

Σ̂2/(p+2)
ii

= 2C2

ρ3

d

∑
i=1

σ̂i

≤ 2C2

ρ3

d

∑
i=1

(σi + ‖σ‖1/d) = Õ(‖σ‖2
1/ρ3) .

5.4.5 Proof of Theorem 5.1

The output of plan can be written as

1
n

n

∑
j=1

x(j) − 1
n ∑

j∈J

‖y(j)‖2−C
‖y(j)‖2

(x(j) − µ̃) + 1
n η Σ̂1/(p+2)

Using that ‖y
(j)‖2−C
‖y(j)‖2

< 1 for j ∈ J and the triangle inequality, the `2

estimation error of plan can thus be bounded as∥∥∥∥∥ 1
n

n

∑
j=1

x(j) − µ

∥∥∥∥∥
2

+ 1
n ∑

j∈J
‖x(j) − µ̃‖2 +

1
n‖η Σ̂1/(p+2)‖2

The first term is the sampling error, which is Õ(‖σ‖2/
√

n) with prob-
ability at least 1 − β. The sum over J was shown in part 2 to be
Õ
((

k +
√

1
ρ

)
‖σ‖2

)
, so for k ≤

√
n and using the assumption n =

Ω̃(max(
√

d/ρ, ρ−1)), this term is bounded by Õ(‖σ‖2/
√

n). Finally, the
noise term in part 3 is Õ(‖σ‖1/(n

√
ρ)).

We have shown a more detailed version of Theorem 5.1:
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Theorem 5.2. For sufficiently large n = Ω̃(
√

d/ρ), plan with parameters
k =

√
n and ρ1 = ρ2 = ρ3 = ρ/3 is ρ-zCDP. If inputs are independently

sampled from a σ-well concentrated distribution, the mean estimate has expected
`2 error Õ(1 + ||σ||2/

√
n + ||σ||1/(n

√
ρ)) with probability at least 1− β,

where Õ suppresses polylogarithmic dependencies on 1/β, n, d, and the bound
M on the `∞ norm of inputs.

5.4.6 General `p error

To address the general case we need a definition of well-concentrated
that depends on p. For simplicity we assume that p is a positive integer
constant.

Definition 5.6. For integer constant p ≥ 1 consider a distribution D over
Rd, where the ith coordinate has mean µi and pth central moment σ

p
i .

We say that D is (σ, p)-well concentrated if for any vector σ̂ ∈ Rd with

σi ≤ σ̂i <

(
σ

2p
p+2

i + ‖σ
2p

p+2‖1/d
) p+2

2p

, the following holds for t > 1:

Pr
X∼D

[
d

∑
i=1
|Xi − µi|p > t‖σ‖p

p

]
= exp(−Ω̃(t)) (5.4)

Pr
X∼D

[
d

∑
i=1

(Xi − µi)
2

σ̂
4/(p+2)
i

> t‖σp/(p+2)‖2
2

]
= exp(−Ω̃(t)) . (5.5)

Theorem 5.3. For sufficiently large n = Ω̃(max(
√

d/ρ, ρ−1)), plan with
parameters k =

√
n and ρ1 = ρ2 = ρ3 = ρ/3 is ρ-zCDP. If inputs are

independently sampled from a (σ, p)-well concentrated distribution, the mean
estimate has expected `p error

Õ

(
1 +
||σ||p√

n
+
‖σ‖2p/(p+2)

n
√

ρ

)

with probability at least 1− β, where Õ suppresses polylogarithmic dependencies
on 1/β, n, d, and the bound M on the `∞ norm of inputs.

The proof of this theorem follows along the lines of the proof in this
section and can be found in Appendix 5.B. In comparison, the standard

Gaussian mechanism for `2 sensitivity ‖σ‖2 has expected `p error d1/p‖σ‖2√
ρ .
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5.5 Examples of well-concentrated distributions

In the following we give examples for some (σ, p)-well concentrated
distributions. We start with a general result.

Lemma 5.7. For integer constant p ≥ 1, consider a distribution D over Rd

were the ith coordinate has mean µi and standard deviation σi such that for
X ∼ D, the pth moment E [|Xi − µi|p] ≤ Kσ

p
i for some constant K. Then D

is (σ, p)-well concentrated.

Proof. We first prove the bound (5.4) from Definition 5.6. Sample X
from D and define Yi = |Xi − µi|p −E[|Xi − µi|p] and note that ∑ Yi ≤
∑ |Xi − µi|p. Each Yi is zero-centered, so we may apply Bernstein’s
inequality (Lemma 5.11)

Pr

[
d

∑
i=1

Yi > t‖σ‖p
p

]
≤ exp

(
−

t2‖σ‖2p
p /2

∑d
i=1 E[Y2

i ] + Mt‖σ‖p
p/3

)
.

We distinguish two cases depending on which term is dominating the
denominator. In the first case,

d

∑
i=1

E
[
Y2

i

]
≤

d

∑
i=1

E
[
(Xi − µi)

2p
]
≤ K‖σ2p‖1 ≤ ‖σ‖

2p
p ,

where we applied the triangle inequality. This means that the probability
of ∑ |Xi − µi|p to exceed t‖σ‖p

p is exp
(
−Ω

(
t2)). In the second case,

t2‖σ‖2p
p /2

Mt‖σ‖p
p/3

=
3t‖σ‖p

p

2M
.

By Chebychev’s inequality almost surely Yi ≤ C maxi σ
p
i ≤ ‖σ‖

p
p. Thus,

the probability is bounded by exp(−Ω(t)) in this case.
For the second property (5.5), note that ∑(Xi − µi)

2/σ̂
4/(p+2)
i is maxi-

mized for σ̂i = σi. For this choice, the calculations are analogous to the
ones above.

We will now proceed with studying the Gaussian distribution for `2
error and a sum of Poisson trials for `1 error. These are the distributions
that we will empirically study in Section 5.7.
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5.5.1 Gaussian data

Lemma 5.8. Let p = 2 and fix µ ∈ Rd and Σ ∈ Rd×d. The multivariate
normal distribution N (µ, Σ) is (σ, 2)-well concentrated.

Before presenting the proof, we remark that the independent case
with diagonal covariance matrix Σ can easily be handled by Chernoff-
type bounds. Furthermore, Lemma 5.7 holds for N (µ, Σ) for diagonal
covariance matrix. In the lemma, we handle the general case of (non)-
diagonal covariance matrices, thus allowing for dependence among the
variables.

Proof. Consider property (5.2) of Definition 5.5 and fix any i ∈ {1, . . . , d}.
Let σ2

i = Σii and sample Xi ∼ N (µi, σ2
i ). Since X is normally distributed,

for all t > 0 it holds that [MU05, Theorem 9.3]

Pr[|X− µi| ≥ t] ≤ 2exp(−t2/(2σ2
i )).

Fix a value t > 0 and let t′ = t ln(d)σ2
i . We proceed to bound the

deviation as follows:

Pr[(X− µi)
2 ≥ t′] = Pr[|X− µi| ≥

√
t′]

≤ 2 exp
(
−
(

t ln(d)σ2
i

)
/
(

2σ2
i

))
= 1/d exp(−Ω̃(t)).

Consider the case that we sample X1, . . . , Xd from N (µ, Σ). By a union
bound over X1, . . . , Xd, we may assume that with probability at least
1− exp

(
−Ω̃(t)

)
, for all i ∈ {1, . . . , d} we have (Xi − µi)

2 ≤ t ln(d)σ2
i ,

which implies that their sum is at most t ln(d)‖σ‖2
2 = Õ(t‖σ‖2

2).
Next, consider property (5.3) of Definition 5.5. Sample X ∼ N (µi, σ2

i )
and consider the transformation (X − µi)

2/σi. Setting t′ = t ln(d)σi,
the same calculations as above show that with probability at most
1/d exp(−Ω̃(t)), (X− µi)

2/σi is larger than t ln(d)σi.
Consider the case that we sample X from N (µ, Σ). Again using

a union bound, with probability at least 1 − exp(−Ω̃(t)), all scaled
values are within t ln(d)σi. Conditioned on this, ∑d

i=1(Xi − µi)
2/σ̂i ≤

t ln(d)‖σ‖1, which finishes the proof.
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5.5.2 Binary data

We next consider binary strings of length d in which bit i is set indepen-
dently and at random with probability qi. Lemma 5.7 is not applicable in
this case, because the pth moment is roughly equal to max{qi, 1− qi}.

Lemma 5.9. Let d ≥ 1 be an integer, and let Dbinary be the distribution over
length-d binary strings such that the bit in position i is set with probability qi. If
for each i ∈ {1, . . . , d}, σ2

i = qi(1− qi) ≥ 1/d2/5, then Dbinary is (σ, 1)-well
concentrated.

Proof. Since we assumed in Section 5.4 that σi ≥ 1, we consider the
mapping x 7→ d1/5x := x̄. Consider Property (5.4) of Definition 5.6. Since
σ̄2

i ≥ 1, ‖σ̄‖1 ≥ d. Using a generalized Chernoff bound (Lemma 5.13) we
conclude that ∑ |d1/5 (Xi − µi) | exceeds t‖σ̄‖1 with probability at most

exp
(
−(t‖σ̄‖1)

2/
(

2d2/5d
))

= exp
(
−Ω(t2)

)
.

Next, consider Property (5.5). Define Yi =
(
d1/5(Xi − qi)

)2
/σ4/3

i .
Note that Yi takes values in an interval of length di ≤ d2/5. |∑ Yi −
E[∑ Yi]| exceeds t‖σ̄2/3‖1 with probability at most

exp

(
−

t2‖σ̄2/3‖2
1

2 ∑d
i=1 d2

i

)
≤ exp

(
−

t2‖σ̄2/3‖2
1

2d9/5

)
≤ exp

(
−t2d1/5/2

)
= exp

(
−Ω(t2)

)
.

5.6 Generic Bounds in the Absence of Variance estimates

Algorithm 17 requires as input estimates σ̂2 on the coordinate-wise
variances. If the input is σ-well concentrated, Theorem 5.2 provided
bounds on the expected `2 error of the algorithm. In this section, we
consider the case that no such estimates are known and we run the
algorithm without the scaling step. This is similar in spirit to using the
“shifted-clipped-mean estimator” of Huang et al. [HLY21]. The following
theorem shows that even without carrying out the random rotation (see
Section 3.3 in [HLY21]), we match their bounds up to constant terms in
expectation. This result makes their algorithm useful in settings where a
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random rotation impacts performance negatively, e.g., when vectors are
sparse.

Let D ⊆ Rd be the collection of n vectors x(1), . . . , x(n). Let w(D) =
maxx,y∈D ‖x − y‖2 be the diameter of the dataset. For simplicity we
assume that w(D) ≥ 1 and M = O(w(D)). In comparison to the distri-
butional setting studied before, there is no sampling error involved in
mean estimation and we only measure clipping error and the error due
to noise.

Theorem 5.4. Let d ≥ 1, ρ > 0, and D be of size n = Ω̃
(√

d
ρ

)
. If Algo-

rithm 17 is run with k = Θ̃
(√

d
ρ

)
, ρ1 = ρ2 = ρ3 = ρ/3, and σ̂2

i = 1 for all
i ∈ {1, . . . , d} then the expected `2 error due to clipping and noise is

Õ

(√
d
ρ

w(D)

n

)
.

Before proceeding with the proof, we introduce some helpful notation.

Definition 5.7. Let µ ∈ Rd be the coordinate-wise median of D. For
0 ≤ α < 1/2, we say that µ̃ ∈ Rd is α-good if each µ̃i has rank error at
most αn from µi.

Lemma 5.10. Given 0 ≤ α < 1/2, let µ̃ be α-good. For each x(j) ∈ D,
1 ≤ j ≤ n, ‖x(j) − µ̂‖2

2 ≤
w(D)2

1/2−α .

Proof. Fix x(j) and compute

(n− 1)w(D)2 ≥ ∑
j 6=j′
‖x(j) − x(j′)‖2

2

=
d

∑
i=1

∑
j 6=j′

(
x(j)

i − x(j′)
i

)2

≥
d

∑
i=1

(1/2− α)(n− 1)
(

x(j)
i − µ̂i

)2

= (1/2− α)(n− 1)‖x(j) − µ̂‖2
2.

The lemma follows by re-ordering terms.

Proof of Theorem 5.4. We instantiate PrivQuantile as the binary search
based method of [HLY21] with T = log(Mn

√
ρ). Fix some value for α,
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Figure 5.2: `2 error for synthetic Gaussian data when varying (a) dimen-
sions with data without a skew, (b) skewness of the variances, and (c)
dimensions for skewed data — note that we compute error relative to
the empirical mean rather than the statistical mean in this experiment as
sampling error dominates in this setting. Also notice the different scales
on the y-axis.

say 1/3. By Lemma 5.5 the coordinate-wise median computed on Line 3
of Algorithm 17 is within `2 distance

√
d/ρ/n of an α-good point with

high probability. We assume for simplicity that µ̃ is itself α-good as an
additional error of

√
d/ρ/n is dominated by the error from clipping and

noise.
Since µ̃ is α-good, the maximum length of a shifted vector x(j) − µ̃ is

O(w(D)), so C = O(w(D)) on Line 6 of Algorithm 17. As in Section 5.4.4,

the expected `2 error due to noise is at most 1/n ·
√

2C2(∑d
i=1 σ̂i)/ρ =

Õ
(√

d
ρ

w(D)
n

)
.

In the same way as in the calculations carried out in Section 5.4.3, we
can bound the error due to clipping for all vectors ‖y(j)‖2 > C. Setting
k = Θ̃(

√
d/ρ) shows that this clipping error is

Õ
(√

d/ρ · w(D)/n
)

.

5.7 Empirical Evaluation

To put plan’s utility into context, we measure error in diverse experi-
mental settings. We use the empirical mean as a baseline, since it reflects
an inevitable lower bound, i.e. the sampling error Õ(‖σ‖2/

√
n). Ad-

ditionally we compare plan to Instance-optimal mean estimation

(iome) [HLY21], which has been shown to perform at least as good as
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Figure 5.3: (a) Synthetic binary data, varying the ratio of 0s to 1s (b)
Kosarak dataset (c) POS dataset

CoinPress [BDKU20] in empirical settings [HLY21] hence representing
the current state-of-the-art for differentially private mean estimation.
Since plan works for (σ, p)-well concentrated distributions, we evaluate
accuracy for Gaussian and binary data, representing `2 and `1 error, re-
spectively. We run our experiments with synthetic data as input. For the
binary case, we also evaluate our error on the Kosarak dataset [BKT18]
which represents user visits (or, conversely, non-visits) to webpages, as
well as the Point of Sale (POS) dataset1 which represents user purchases.

5.7.1 Implementation

We evaluate the empirical accuracy of plan by instantiating Algorithm 17
in Python 3. Our implementation contains two different instantiations
of plan: one version for binary data (p = 1), and one version for data
from multivariate Gaussian distributions (p = 2). The pseudocode for
both instantiations of plan is shown in Listing 5.1. Both instances use
the PrivQuantile search by Kaplan et al. [KSS22]. The implementation
of iome uses the original source code from Huang et al. [HLY21].

1https://github.com/cpearce/HARM/blob/master/datasets/BMS-POS.csv

https://github.com/cpearce/HARM/blob/master/datasets/BMS-POS.csv
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1 def PLAN(data, n, d, M, p, rho, beta) {
2 rho1, rho2, rho3 = divideBudget(rho)
3 mu = center(M, rho1*0.25, data, beta/3)
4 std = estimateStd(M, rho1*0.75, data, beta/3)
5 scaleFactors = std**(-1/(p + 2))
6 y = (data-mu) * scaleFactors #coordinate-wise
7 k = sqrt(n) + rankError(M, n, d, rho2, beta/3)
8 z = clip(M, y, rho2, (n-k)/n)
9 return ((z+noise(p, rho3))/scaleFactors)+mu
10 }

Listing 5.1: Pseudocode for the plan instantiation for n vectors in Rd,
with each coordinate being in the range [−M, M], targeting the expected
`p error with privacy budget ρ and a failure probability of at most β.
Note that budget is spent on estimating the standard deviation unlike in
Algorithm 17 where σ̂2 is an input parameter.

Estimating σ2. Note that Algorithm 17 assumes an estimate of the
variances as input. In the absence of public knowledge, these parameters
have to be estimated on the actual data in a differentially private way, as
mentioned in Listing 5.1.

In the Gaussian case, given X, Y ∼ N (µi, σ2
i ), E[(X − Y)2/2] =

E[X2]−E[X]2 = σ2
i . Since (X−Y)2/2 follows a generalized Chi-squared

distribution, we use PrivQuantile for each coordinate to differentially
privately estimate the median µ̃i of a sequence of values (X−Y)2/2, and
estimate the mean as µ̃i/(9/7)3. In the binary case where each coordinate
is 1 with probability qi, we estimate the variance by private estimation of
the mean q̃i using the Gaussian mechanism with `2-sensitivity 1/n, and
use σ̂2

i = q̃i(1− q̃i). In both cases, we regularize the estimate σ̂ on the
standard deviation by adding ‖σ̂‖1/d to each coordinate.

In Section 5.C, we generalize the estimator on Gaussian data to distri-
butions with bounded fourth moment and provide more details on the
empirical evaluation.

Bounding the clipping universe. Having an estimate on σ2 provides
an opportunity to trim the universe used when searching for the clipping
radius (Algorithm 17 Line 6). Specifically, instead of using M

√
d as

the upper bound to cover the entire universe, we use the tighter bound√
log(d) log(1/β)‖σ‖1.
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5.7.2 Experiment design

Parameter input space. The following parameters need to be chosen
for each execution of plan: the universe M, the `p error norm, and the
privacy budget ρ as well as the partitioning of ρ into ρ1, ρ2, ρ3. Since
iome uses a binary search for their quantile selection, the amount of
steps to use also needs to be chosen. iome sets the amount of steps to
10 by default, but an empirical investigation shows that this value is too
low for many of our settings — the binary quantile search ends early
which causes inaccurate results. To level the playing field, we use 20
steps to ensure that iome does not suffer any disadvantages from the
binary quantile search failing.

Input data. We will use both synthetic and real-world datasets to evalu-
ate plan. When generating synthetic data, the following parameters need
to be chosen: the dataset size n, the dimensionality d, the means µ, and
the variances σ2. Since plan and iome both ignore potential correlations
in data, we use covariance matrices of the form Σ = diag(σ2).

Gaussian data

To show the effectiveness of plan on Gaussian data, we design three
diverse experiments. The first experiment (Gaussian A) reflects the
parameter settings used in previous work by Huang et al. [HLY21]
where data has no skew, which is the case iome is intended for. The
second experiment (Gaussian B) simulates data ranging from no to
significant skew across dimensions, showcasing how plan improves with
increasing skew. Finally, the third experiment (Gaussian C) highlights
how plan scales as dimensionality increases for data with a skew. For
each experiment, we vary ρ between 1 and 0.125 to show how accuracy
scales in higher and lower privacy regimes. We summarize the settings
used in the experiments in Appendix 5.D. All experiment settings are
run 50 times for each algorithm. iome is run with 20 steps for the binary
quantile selection. Note that ρ1 is split between recentering and variance
prediction for plan.

Budget division. Our algorithm needs to perform two preprocessing
steps: estimating µ for re-centering, and estimating σ2 for scaling the
noise. We fix the initial estimation of µ and σ2 to use 25% of the total
privacy budget — the same proportion used for preprocessing as in



130 Chapter 5. PLAN: Variance-Aware Differentially Private Mean Estimation

Huang et al. [HLY21]. In the same spirit, we set the budget to determine
the clipping threshold (ρ2) to 25% of the remaining budget, and use the
larger part (ρ3) for the Gaussian noise.

Choosing valid settings. Just like for iome, M needs to be set such that
µ is within the universe. We will use two different approaches to set
M: the approach from [HLY21] (M =

√
50d), and a more pessimistic

approach where we assume all values have the worst-case standard
deviation across all dimensions, and create more leeway by scaling with
a constant (M = 100d max {σ}).

Additionally, the rank error needs to be tuned such that PrivQuan-
tile search can be expected to return a quantile close to the requested one.
Since plan calls PrivQuantile multiple times, plan needs to tolerate
the worst-case rank error for all calls. We set n such that the rank error is
at most 0.1n for each value of ρ.
Gaussian A: no skew. To show that plan performs comparatively to iome

we run it on data where variance is the same across all dimensions. In
this setting we expect plan to perform similarly to iome. We reuse the
experiment settings used by Huang et al. [HLY21] for a fair comparison.
Gaussian B: varying skewness. To show how plan improves as the input
data’s skew increases, we vary the skewness of the variance. We introduce
a parameter α, and simulate a Zipfian like skew to the data, and set the
variances σ2 = ((d/d)α, (d/(d− 1))α, . . ., (d/1)α) for α ∈ {0, 0.5, . . ., 2}. In
this setting we expect plan to outperform iome for α > 0.
Gaussian C: varying dimensionality. To show how plan’s advantage scales
compared to iome, we vary dimensionality as we expect an improvement
up to a factor

√
d. Since plan’s advantage is based on data having a

skew, we set σ2 = (d/d)α, (d/(d− 1))α, . . ., (d/1)α, where α = 2. Note
that plan’s improvement is in noise error, as sampling error is unavoidable
— we compute the error relative to the empirical mean in this experiment
to showcase the difference in noise error.

Binary data

To diversify our experimental scope, we consider binary data represented
by n bitvectors of length d in which each bit i, 1 ≤ i ≤ d, is set indepen-
dently to 1 with probability qi. We usually think about these bitvectors
as sets representing a selection of items from {1, . . . , d}. To vary the error
measure, we focus on the `1 error. This is akin to computing the total
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Figure 5.4: Histogram for Kosarak (left) and POS (right). The orange line
is the smallest allowed variance according to Lemma 5.9 which we clip
to.

variation distance (TVD) 1/2‖x− y‖1, but we avoid the normalization of
x and y to have unit `1 norm.

We design three experiments: the first (Binary) varies the skewness in
the probabilities to make controlled experiments on the accuracy of plan.
The two remaining experiments (Kosarak, POS) use real-world datasets
that naturally exhibit skew between coordinates.
Binary: Varying skewness. This experiment follows the same design
principle as Gaussian B: to show how skewness affects the performance
of plan. Given n, d, and ρ, we choose two probabilities q1 = 0.5 (high
variance) and q2 = 0.01 (low variance). Given α ∈ [0, 1], we sample the
first dαde bits with probability q1 each, and the remaining positions with
probability q2. The low variance setting is slightly below the minimum
threshold of 1/d2/5 discussed in Lemma 5.9 to test the robustness of our
implementation. We clip all estimated variances to 1/d2/5 from below.
Kosarak: Website visits. The Kosarak dataset2 represents click-stream data
of a Hungarian news portal. There are n = 75 462 users and a collection
of d = 27 983 websites. In total, users clicked on 4 194 414 websites (each
user clicked on 55.6 websites on average), and there is a large skew
between the websites, see Figure 5.4.
POS: Shopping baskets. The POS dataset contains merchant transactions on
d = 1 657 categories from n = 515 596 users. In total, there are 3 367 019
transactions (around 6.5 on average per user). Again, there is large skew
in the different categories, see Figure 5.4. The dataset is particularly
challenging because the minimum variance d−2/5 (cf. Lemma 5.9) has to
be clipped on many coordinates.

2http://fimi.uantwerpen.be/data/

http://fimi.uantwerpen.be/data/
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5.7.3 Results

For the Gaussian case, we ran our experiments using Python 3.11.3 on
a MacBook Pro with 24GB RAM, and the Apple M2 chip (8-core CPU).
For the binary case, we had to run the experiments on a more powerful
machine to support iome on the real-world datasets. While Kosarak and
POS are sparse datasets, iome requires that the entire dataset (not just
the sparse representation) is loaded into memory to perform a random
rotation the algorithm uses as a preprocessing step. As a consequence, we
ran the binary experiments using Python 3.6.9 on a machine with 512GB
RAM, on a Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz (56-core CPU).
Even on this more powerful machine, a single run of iome took at least
26 minutes on Kosarak, and at least 9 minutes on POS. In comparison,
plan spent an average of 12, and 9 seconds running on Kosarak and
POS, respectively.

Gaussian data

All results are shown in Figure 5.2. Figure 5.2 (a) shows Gaussian A,
where plan and iome have comparable accuracy until d = 2048, when
plan performs worse as we reach a setting where the assumptions on
rank error no longer hold. This is expected behavior as plan spends
some additional budget estimating σ2 in comparison to iome.

Figure 5.2 (b) shows Gaussian B, where plan performs better than
iome for α > 0. For α = 0 the error between plan and iome is similar.
This is expected behavior, as α = 0 represents the same input data as in
Gaussian A. Notice how plan approaches the empirical mean as α grows
for both ρ = 0.5 and ρ = 1.

Figure 5.2 (c) shows Gaussian C, where we compare against the
empirical mean since sampling error is larger than the noise error for
plan in this case. As expected, plan increases its advantage over iome

as d grows.

Binary data

All results are shown in Figure 5.3. Figure 5.3 (a) shows Binary, where
plan has an advantage over iome for α < 1 which increases as α de-
creases. This is the expected behavior, as plan is able to exploit the skew
in variance whereas iome treats every dimension the same.

Figure 5.3 (b) shows Kosarak. As we can see, plan outperforms iome

for sufficiently large values of ρ. For small ρ (ρ ≤ 0.125), plan is running



5.8. Related Work 133

in an invalid setting — our assumptions on rank error are not fulfilled in
these cases.

Figure 5.3 (c) shows POS. plan has a slight advantage compared to
Instance-optimal mean estimation in this case, which decreases as ρ

grows.

5.8 Related Work

Our work builds on concepts from multiple areas within the literature on
differential privacy. We provide an overview of the most closely related
work.

Statistical private mean estimation. There is a large, recent literature
on statistical estimation for d-dimensional distributions under differential
privacy, mainly focusing on the case of Gaussian or subgaussian distri-
butions (see e.g. [AKT+22, AL22, BDKU20, BGS+21, BHS23, DFM+20,
DHK23, HKM22, KV18, KLSU19, KMS+22, KMV22]). The error on mean
estimates is generally expressed in terms of Mahalanobis distance, which
is natural if we want the error to be preserved under affine transforma-
tions. Some of these efficient estimators are even robust against adver-
sarial changes to the input data [AKT+22, KMV22]. Other estimators
work even for rather heavy-tailed distributions [KSU20]. What all these
estimators have in common is that the nominal dimension d influences
the privacy-utility trade-off such that higher-dimensional vectors have a
worse trade-off. To our best knowledge, the algorithm among these that
has been shown to work best in practical (non-adversarial) settings is the
CoinPress algorithm of Biswas, Dong, Kamath, and Ullman [BDKU20].

Adapting to the data. The best private mean estimation algorithms
are near-optimal for worst-case d-dimensional distributions in view
of known lower bounds [CWZ21]. However, it is natural to consider
ways of improving the privacy-utility trade-off whenever the input dis-
tribution has some structure. One way of going beyond the worst
case is by privately identifying low-dimensional structure (see e.g.
[ADK+19, DTTZ14, HP14, SS21]). Such methods effectively reduce the
mean estimation problem to an equivalent problem with a dimension
smaller than d. However, we are not aware of any work showing this
approach to be practically relevant for mean estimation.
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Another approach for adapting to the data is instance optimality, in-
troduced by Asi and Duchi [AD20] and studied in the context of mean
estimation by Huang et al. [HLY21] who use `2 error (or mean square
error) as the utility metric. The goal is optimality, i.e. matching lower
bounds, for a class of inputs with a given diameter but no further struc-
ture. Huang et al. [HLY21] found that their private mean estimation
algorithm often has smaller error than CoinPress in practice. Because of
this, and since they also aim to minimize an `p error, this algorithm was
chosen as our main point of comparison.

Neither of the mentioned approaches takes skew in the data distri-
bution into account, so we believe this is a novel aspect of our work
in the context of mean estimation. However, we mention that privacy
budgeting in skewed settings has recently been studied in the context of
multi-task learning Krichene, Jain, Song, Sundararajan, Thakurta, and
Zhang [KJS+23]. Also, the related setting of mean estimation with het-
erogeneous data (where the sensitivity with respect to different clients’
data can differ) was recently studied by Cummings, Feldman, McMillan,
and Talwar [CFMT22].

Clipping. An important aspect of private mean estimation for un-
bounded distributions, in theory and practice, is how to perform
clipping to reduce the sensitivity. This has in particular been stud-
ied in the context of differentially private stochastic gradient de-
scent [MRTZ18, PSY+19, ATMR21, BWZK22]. Though clipping in-
troduces bias, Kamath, Mouzakis, Regehr, Singhal, Steinke, and Ull-
man [KMR+23] have shown that this is unavoidable without additional
assumptions.

Huang et al. [HLY21] used a clipping method designed to cut off a
carefully chosen, small fraction of the data points. The clipping done in
plan follows the same pattern, though it is applied only after carefully
scaling data according to the coordinate variances. Thus, it corresponds
to clipping to an axis-aligned ellipsoid.

To formally bound clipping error one can either express the error in
terms of the diameter of the dataset or analyze the error under some
assumption on the data distribution. Both approaches are explored in
Huang et al. [HLY21], but in this chapter we have chosen to focus on the
latter.
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5.9 Conclusion and future work

We introduce Private Limit Adapted Noise (plan), a family of algorithms
for differentially private mean estimation of d-dimensional data. plan

exploits skew in data’s variance to achieve better `p error. In the case of `2
error we achieve a particularly clean bound, namely error proportional to
‖σ‖1. This is never worse than the error of

√
d‖σ‖2 obtained by previous

methods and gives an improvement up to a factor of up to
√

d when σ

is skewed. While the privacy guarantees hold for any input, the error
bounds hold for independently sampled data from distributions that
follow a well-defined assumption on concentration.

Finally, we implement two plan instantiations and empirically evalu-
ate their utility. Practice follows theory — plan outperforms the current
state-of-the-art for skewed datasets, and is able to perform competitively
for datasets without skewed variance. To aid practitioners in implement-
ing their own plan, we summarize some practical advice based on our
lessons learned.

Advice for practitioners. When implementing a plan instantiation,
practitioners should pose the following questions:

1. Is there a suitable estimator for the variances σ2
i of the data distri-

bution?

2. Can a tighter bound on the clipping universe (M
√

d) be used?

3. How robust is plan for my given settings, i.e., will the rank error
be too high and cause plan to fail?

We give examples of how to answer these questions in our evaluation.
To answer Question 1, we derive private variance estimators tuned to
the data distribution. As for Question 2, when the distribution is (σ, p)-
well concentrated, much better bounds on the universe size can be
derived by using Assumption (5.5) in Definition 5.6. Finally, answering
Question 3, robustness must carefully be evaluated using the assumption
on minimum ρ values and maximum dimensionality d. Both parameters
in conjunction give minimum requirements to the required sample size
n.
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5.A Useful statements from probability theory

Lemma 5.11 (Bernstein’s inequality). Let X1, . . . , Xn be independent zero-
mean random variables. Suppose that |Xi| ≤ M almost surely for all i. Then
for all t > 0,

Pr

[
n

∑
i=1

Xi ≥ t

]
≤ exp

(
− t2/2

∑n
i=1 E[X2

i ] + Mt/3

)
.

Lemma 5.12 ([Win12, Equation (18)]). The pth absolute moment of a zero-
centered Gaussian distribution for any p > 0 is

E
[∣∣∣N (0, σ2

)∣∣∣p] = σp ·
2p/2Γ

(
p+1

2

)
√

π
.

Lemma 5.13 (Generalized Chernoff-Hoeffding Bound [DP09]). Let X :=
∑1≤i≤n Xi where Xi, 1 ≤ i ≤ n are independently distributed in [ai, bi] for
ai, bi ∈ R. Then for all t > 0

Pr[|X−E[X]| ≥ t] ≤ 2 exp

(
−t2/2

∑i (ai − bi)
2

)
.

5.B Proof of Theorem 5.3

Theorem 5.5. For sufficiently large n = Ω̃(max(
√

d/ρ, ρ−1)), plan with
parameters k =

√
n and ρ1 = ρ2 = ρ3 = ρ/3 is ρ-zCDP. If inputs are

independently sampled from a (σ, p)-well concentrated distribution, the mean
estimate has expected `p error

Õ

(
1 +
||σ||p√

n
+
‖σ‖2p/(p+2)

n
√

ρ

)

with probability at least 1− β, where Õ suppresses polylogarithmic dependencies
on 1/β, n, d, and the bound M on the `∞ norm of inputs.

Proof. We proceed in the same three steps as in the proof of Theorem 5.2
in Section 5.4.

By Lemma 5.6, with probability at least 1− β, all |µi − µ̃i| ≤ σi. In
this case, ‖µ− µ̃‖p = O(‖σ‖p).
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Let J = {j ∈ {1, . . . , n} | ‖y(j)‖2 > C} denote the set of indices of
vectors affected by clipping in plan. By the triangle inequality and
assuming the bound of part 1 holds,

∑
j∈J

∥∥∥(x(j) − µ̃)
∥∥∥

p
≤∑

j∈J

∥∥∥(x(j) − µ)
∥∥∥

p
+ |J| · ‖µ− µ̃‖p

≤∑
j∈J

∥∥∥(x(j) − µ)
∥∥∥

p
+ 2|J| · ‖σ‖p .

By assumption (5.4) the probability that ‖x(j) − µ‖p
p > t‖σ‖p

p is
exponentially decreasing in t, so setting t = Ω̃(logp(n/β)) we have
‖x(j) − µ‖p = Õ(‖σ‖p) for all j = 1, . . . , n with probability at least 1− β.
Using the triangle inequality again we can now bound

∑
j∈J
‖x(j) − µ‖p = Õ(|J| · ‖σ‖p) .

The same line of argument as in Section 5.4.3 shows that |J| = Õ(k +√
1/ρ). Thus, the clipping error can be bounded by O((k +

√
1/ρ)‖σ‖p),

and setting k = n−1/2 balances the clipping error with the sampling error
‖σ‖p√

n .
Lastly, we consider the error due to noise. First, we find a bound on

the clipping threshold C. By the triangle inequality, we may bound

‖y(j)‖2 =

∥∥∥∥(x(j) − µ̃) Σ̂
− 1

p+2
∥∥∥∥

2

≤
∥∥∥∥(x(j) − µ) Σ̂

− 1
p+2
∥∥∥∥

2
+

∥∥∥∥(µ− µ̃) Σ̂
− 1

p+2
∥∥∥∥

2

The ith coordinate of the first vector (x(j) − µ) Σ̂−1/(p+2) equals
(x(j)

i − µi)/σ̂
2/(p+2)
i , so assumption (5.5) implies that the length of the

first vector is Õ(
√
‖σ2p/(p+2)‖1) with high probability. By using that

the ith coordinate of |µ− µ̃| ≤ σ, (µ− µ̃) Σ̂−1/(p+2) has absolute value

Õ(
√
‖σ2p/(p+2)‖1) as well. The clipping value of C is bounded by the

maximum length of a vector ‖y(j)‖2, and thus C2 = Õ(‖σ2p/(p+2)‖1),
with probability at least 1− β.
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The scaled noise vector η Σ̂1/(p+2) has distribution N (0, 2C2

ρ3
Σ̂2/(p+2)).

Using σ̂i <

(
σ

2p
p+2

i + ‖σ
2p

p+2‖1/d
) p+2

2p

and Lemma 5.12, we conclude

E[‖η Σ̂1/(p+2)‖p
p] = O

(
2pCp

ρ
p/2
3

d

∑
i=1

Σ̂p/(p+2)
ii

)

= O

(
2pCp

ρ
p/2
3

d

∑
i=1

σ̂
2p/(p+2)
i

)

= Õ

(
2p‖σ‖p

2p/(p+2)

ρ
p/2
3

)
.

The result of Theorem 5.3 is achieved by putting together the different
error terms as in the proof of Theorem 5.2.

5.C Algorithms for Variance Estimation

While plan (Algorithm 17) assumes that estimates on the standard devi-
ations are known, such estimates have to be computed in a differentially
private manner. Two such ways were described in Section 5.7 and we
will provide more details and empirical results in this section.

We remark that the standard attempt to estimate the variance from a
mean estimate µ̃ is (

1/n
n

∑
i=1

x2
i

)
− µ̃2

If xi ∈ [−M, M], the sensitivity of this function is M2/n, which,
depending on the application, means that too much noise must be added.

5.C.1 A Generic Variance Estimation Algorithm

Given a distribution D with mean µ and variance σ2, we showed in
Section 5.7 that for X, Y ∼ D, E

[
(X−Y)2/2

]
= σ2. Algorithm 18 is

a generalization of the approach used for Gaussian in Section 5.7. For
Gaussian data, we made use of the fact that (X−Y)2/2 is χ2 distributed
and it is well-known how to translate an approximate median to an
approximate mean.



5.C. Algorithms for Variance Estimation 139

Algorithm 18: VarianceEstimate

1: Input: Samples x(1), . . . , x(n) ∈ R from D
2: Parameters: M, ρ, k
3: Split x(1), . . . , x(n) into n′ = b n

2kc groups G1, . . . , Gn′ .

4: For each i ∈ {1, . . . , n′}: For Gi = (x̂(1)i , . . . , x̂(2k)
i ), let

ŷ(i) = ∑k
j=1(x̂(2j)

i − x̂(2j+1)
i )2/2.

5: return σ̃2 ← PrivQuantile
M
ρ (ŷ(1),...,ŷ(n

′),1/2)
k .

Lemma 5.14. Let β > 0, ρ > 0, and n = Ω̃(ρ−1/2). Let D be a distribution
over R with mean µ and variance σ2 ≥ 1. For a constant κ, assume that
E[(X − Y)4] ≤ κσ4. With probability at least 1 − β, Algorithm 18 using
k = 16κ returns an estimate σ̂2 such that σ2/2 ≤ σ̂2 ≤ 3σ2/2.

Proof. Fix a group Gi, 1 ≤ i ≤ n′. Since E[(X − Y)2/2] = σ2, we know
that E(ŷ(i)) = kσ2. By Chebychev’s inequality,

Pr(|ŷ(i) −E[ŷ(i)]| > kσ2/2) ≤ Var(ŷ(i))
(kσ2/2)2 ≤

k ·E[(X−Y)4]

(kσ2/2)2 ≤ 1
4

,

using our assumption on E[(X−Y)4] and k.
As in the proof of Lemma 5.6, with probability at least 1 −

exp(−Ω(n′)), there are more than 2/3n′ groups i for which

|ŷ(i) −E[ŷ(i)]|
k

≤ σ2/2.

As long as the private quantile selection returns an element σ̂2 with
rank error at most n′/6, σ2/2 ≤ σ̂2 ≤ 3/2σ2. By Lemma 5.4, assuming
n > K

√
1/ρ log(1/β) log(M2) = Ω̃(ρ−1/2), this is true with probability

at least 1− β.

In contrast to the naïve estimator mentioned above, this estimator has
only a logarithmic dependency on the input universe. In contrast to it, it
does not improve from increased sample size above a minimum sample
size in relation to the parameter k that is necessary to guarantee that the
rank error is at most n/(6 · 2k).

By running Algorithm 18 on each coordinate independently with
target probability 1− β/d, and using a union bound, we may summarize:
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Corollary 5.1. Let β > 0, ρ > 0, and n = Ω̃(
√

d/ρ). Let D be a distribution
over Rd with mean µi and variance σ2

i ≥ 1 on each coordinate i ∈ {1, . . . , d}.
For a constant κ, assume that E[(X−Y)4] ≤ κσ4. For each i, with probability
at least 1− β, Algorithm 18 on each coordinate using k = 16κ returns an
estimate (σ̂2

1 , . . . σ̂2
d ) such that σ2

i /2 ≤ σ̂i
2 ≤ 3σ2

i /2.

Why hidden in the Ω̃(.) notation, only having n′ = n/(2k) to choose
a private quantile might be incompatible with the rank error of the input
domain and the dimensionality. In this case, we can use more groups to
“boost” n′, but we need to adjust ρ because each element is potentially
present multiple times. To cover variances that are smaller than 1, let
σ2

min be a minimum bound on the variance. Then, use PrivQuantile

with T = Θ(log(M/σ2
min)) to quantize the input space in steps of σ2

min,
which gives a logarithmic depends on 1/σ2

min.

5.C.2 Variance estimation for Gaussian Data

In the case that we know that the data is distributed as N (µ, σ2), we can
tune the variance estimation more towards the distribution as follows.
Given an estimate µ̃ on µ, we can estimate the variance as follows:

σ̃← PrivQuantile
M
ρ (x(1), . . . , x(n), .841)− µ̃

It is a well-known property of the Gaussian distribution that the .841
quantile is approximately the value µ + σ. However, when estimating
the quantile privately we have to adjust for the rank error of the quantile
selection, so aiming for this exact quantile may be unwise.

We run the following experiment: we sample n = 4000 fromN (10, σ2)
with σ2 ∈ {0.001, 1}. For ρ ∈ {10−3, 10−2} we compare (i) three different
methods that use different quantiles of the input data (.75, .841, and
.9) to (ii) two different instantiations of Algorithm 18 for k = 1 and
k = 4. Since we know that (X − Y)2 is χ2 distributed, we use the
mean to median transformation and divide the approximate median by
(1− (2/(9k)))3. Each parameter setting is run 100 times and we report

on the average relative error |σ̂
2−σ2|
σ2 . Table 5.1 reports on empirical results

for the variance estimation. We summarize that Algorithm 18 is more
accurate than direct estimation for both values of k, and guarantees very
small relative error even for small σ2.
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ρ σ2 Method Relative error

0.001

0.001 direct-075 0.350444
0.001 direct-0841 0.038144
0.001 direct-09 0.240120
0.001 general (k=1) 0.035163
0.001 general (k=4) 0.019068

1 direct-075 0.330807
1 direct-0841 0.031329
1 direct-09 0.296298
1 general (k=1) 0.022601
1 general (k=4) 0.010411

0.01

0.001 direct-075 0.319298
0.001 direct-0841 0.007646
0.001 direct-09 0.276414
0.001 general (k=1) 0.023152
0.001 general (k=4) 0.008120

1 direct-075 0.319716
1 direct-0841 0.010308
1 direct-09 0.284934
1 general (k=1) 0.019798
1 general (k=4) 0.006361

Table 5.1: Comparison of variance estimation algorithms. Variants named
direct directly use a quantile of the input to estimate the standard devia-
tion. Variants named general use Algorithm 18 with k = 1 and k = 4, and
use the median to mean conversion for χ2 distributed random variables.
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Chapter 6

Conclusion and Open Problems

We conclude the thesis by revisiting our main results and discussing
open problems and directions for future work.

In Chapter 2 we introduced a differentially private data structure
for representing sparse vectors with asymptotically optimal space com-
plexity and per-entry error. The access time is O(log(d)) or O(log(1/δ))
for pure and approximate differential privacy, respectively. The main
open problem that we leave is if it is possible to achieve similar space
and error with constant time access. In Section 2.8 we demonstrated
how to achieve optimal expected error with constant time access and
space within a logarithmic factor of optimal. However, this method does
not have strong tail bounds on the error. While our data structure can
be used to represent sparse vectors a solution for the special case of
histograms would in and of itself be significant because that is a typical
use case. Lolck and Pagh [LP23] recently made progress towards this
goal. They give a more compact integer encoding which is still robust to
noise by combining ideas from error-correcting codes and Grey codes.

Our mechanism presented in Chapter 3 adds error of magnitude
O(log(1/δ)/ε) to a Misra-Gries sketch and as such achieves optimal
error guarantees for histograms up to a small constant. A natural
direction for future work is to consider the setting where users can
contribute up to m distinct elements. The preferred solution in the
non-streaming setting is the Gaussian mechanism. The noise at each
entry is scaled proportional to the `2-sensitivity, that is

√
m since each

count changes by at most 1. However, our mechanism must add noise
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linearly proportional to m. Simply adding Gaussian noise instead of
Laplace noise does not solve this problem because a single count in the
Misra-Gries sketch can change by m between neighboring streams. As
such it remains an open problem if we can achieve error that scales with√

m in the streaming setting.

In Chapter 4 we gave a closed-form expression for distributing noise
between coordinates of different magnitudes for the Gaussian and
Laplace mechanisms. We used this idea for the Gaussian mechanism in
the design of a mechanism for differentially private mean estimation
in Chapter 5. We performed experiments to support our claim that
the mechanism outperforms state-of-the-art when the magnitudes of
coordinates are sufficiently skewed. We see several possible directions
for future work.

• Our mechanism tailors noise to the skew of the magnitude at
each coordinate. An interesting avenue to explore would be to
capture skew in the input vector that is not necessarily visible in the
standard basis. For example, one could use private PCA to rotate
the space into a basis in which coordinates are nearly independent,
and then apply plan.

• Though our algorithm chooses optimal parameters within a class
of mechanisms, we have not ruled out that an entirely different
approach could have better performance. We conjecture that for
any choice of σ there exists an input distribution for which our
mechanism achieves an optimal trade-off up to logarithmic factors.

• We rely on having access to reasonable estimates of coordinate
variances (the diagonal of the covariance matrix). It would be
interesting to study this problem in its own right since it is likely
that estimating the entire covariance matrix is strictly harder than
estimating the diagonal.

• Finally, another direction would be to apply some of our techniques
to differentially private stochastic gradient descent (DP-SGD). Previ-
ous work has successfully applied similar ideas by using coordinate-
wise adaptive clipping of the gradient [PSY+19]. However, most
implementations of DP-SGD use spherical Gaussian noise. There-
fore it would be interesting to further explore techniques that add
noise of different magnitudes to each coordinate.
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