
PhD Thesis

Securing Distributed Business Process Model Execution

Mads Frederik Madsen

Advisor: Søren Debois
Submitted: March 24, 2023

i

Abstract

This PhD thesis investigates the secure execution of distributed busi-
ness process models. When collaborating actors use distributed process
model execution to coordinate and execute a process, they put them-
self at risk of foul play; malicious collaborators may give false testimony
of events in the process, both their own and others, if this is to their
benefit. Similarly, they may try to extract secret steps taken by their
co-collaborators. In this thesis, I study security properties for preventing
and discovering such malicious behaviour.

I present in this thesis 3 main results from 3 papers I have co-written
during my PhD project. The papers’ relevance to distributed business
process execution is demonstrated in the context of the consistency prob-
lem. In the consistency problem, one must ensure that a process behaves
as specified even when executed as distributed partitions.

The first paper shows how to utilise Trusted Execution Environments
to translate Byzantine faults to omission faults in arbitrary distributed
algorithms. In the setting of distributed business process execution, this
translates to a method for preventing malicious collaborators from ac-
tively lying about which steps they have taken in the process.

The second paper considers the definitions of equivocation – acting
maliciously different towards two or more co-collaborators – and redefines
exactly what it means to prevent equivocation. We define two different
kinds of non-equivocation, one strong and one weaker, which captures
properties gained from known non-equivocation subsystems. These non-
equivocation properties can be used to eliminate active malicious be-
haviour other than lying in distributed business process execution. They
can also be used to make solutions to agreement problems cheaper, so-
lutions which inherently solve the consistency problem, although at the
cost of local autonomy of collaborators.

The third and last paper considers passively malicious collaborators,
i.e. collaborators who attempt to cheat in the process by simply fol-
lowing the process and passively listen in an attempt to extract secrets.
To prevent such behaviour, we define a possibilistic notion of secrecy of
actions in processes with run-based semantics. The secrecy definition
captures under which conditions a collaborator can take a step in the
execution of a distributed business process, safe in the knowledge that
a specific collaborator cannot know that the action was taken. We then
show that this definition of secrecy is computationally hard to deter-
mine in some business process models, specifically Dynamic Condition
Response graphs, and present a sufficient condition to determine secrecy
for some actions as an alternative.

ii

Resumé

Denne ph.d.-afhandling undersøger sikre eksekveringer af distribuerede
forretningsprocesmodeller. Når aktører der samarbejder bruger, dis-
tribuerede forretningsprocessmodeller til at koordinere og udføre en pro-
ces, risikerer de, at samarbejdspartnere med ondsindede intentioner videre-
giver forkerte oplysninger om hvad, der har fundet sted i systemet, hvis
en sådan udlægning er til deres egen fordel. De kan ligeledes forsøge at
udlede forretningshemmeligheder ud fra hvilke handlinger, deres samar-
bejdspartnere tager. I denne afhandling undersøger jeg sikkerhedsegen-
skaber, der har til formål at forhindre og afsløre ondsindet opførsel som
dette.

Jeg præsenterer i denne afhandling 3 hovedresultater fra 3 respek-
tive artikler, som jeg har skrevet under mit ph.d.-projekt. Disse artik-
lers relevans for eksekvering af distribuerede forretningsprocesser bliver
demonstreret i kontekst af consistency problemet. Målet i consistency
problemet er at opnå, at kompositionen af lokale del-processer og disses
udførsler ikke afviger fra en global procesbeskrivelse.

Den første artikel viser, hvordan man kan bruge et Trusted Execution
Environment til at oversætte Byzantinske fejl til beskedtab (omissions) i
arbitrære distribuerede algoritmer. Ift. eksekvering af distribuerede for-
retningsprocesmodeller kan dette omsættes til en metode, der forhindrer
ondsindede samarbejdspartnere i at lyve.

Den anden artikel forholder sig til definitioner af tvetydighed (equiv-
ocation) – at opføre sig ondsindet forskelligt overfor to samarbejdspart-
nere – og redefinerer præcis, hvad det betyder at forhindre tvetydighed.
Tvetydighed er nært beslægtet med at lyve, men det adskiller sig ved, at
aktører kan være tvetydige uden at lyve f.eks. ved at kommunikere med
en mindre andel af de samarbejdspartnerne, som de burde. Vi definerer
to forskellige slags utvetydighed, en stærk og en svagere, som modellerer
forskellige egenskaber, fra kendte subsystemer der giver utvetydighed.
Disse egenskaber kan bruges til at forhindre ondsindet opførsel, som ad-
skiller sig fra at lyve. De kan også bruges til at gøre løsninger til enighed-
sproblemer (agreement problems) billigere, løsninger som grundlæggende
løser consistency-problemet på bekostning af lokal autonomi.

Den tredje og sidste artikel forholder sig til passivt ondsindede samar-
bejdspartnere, dvs. samarbejdspartnere som forsøger at snyde i pro-
cessen ved at følge processen, mens de passivt forsøger at udlede for-
retningshemmeligheder. For at forhindre sådan en opførsel definerer vi
en possibilistisk ide om hemmelighed af handlinger i procesmodeller med
run-baseret semantik, således at en samarbejdspartner kan tage en speci-
fik handling i en distribueret proces, sikker i sin viden om at specifikke
samarbejdspartnere ikke ved, at de tager den. Vi viser derefter, at denne
definition af hemmelighed er beregningsmæssigt svær at bestemme for
nogle forretningsprocesmodeller, specifikt Dynamic Condition Response
grafer, så vi præsenterer som alternativ en betingelse, der er tilstrækkelig
til at bestemme hemmelighed.

Acknowledgements

Thanks to Søren Debois for supervising me in my bachelor’s thesis, mas-
ter’s thesis and now PhD thesis. Throughout this time Søren has gone
above and beyond his duties as a supervisor. He has believed in me, even
when I did not believe in myself, and he knows how to bring out the best
researcher in me. He has been very gracious in giving me input when I
needed it, but likewise, he has known when to tell me to move on and
get working I have been able to share my struggles with him throughout
this project, and I have enjoyed his good counsel on both academic and
personal matters.

Thanks to Holger Stadel Borum for your friendship and collaboration
during our bachelor’s, master’s and PhD studies. I appreciate your ad-
vice and support and am very privileged to have it still.

Thanks to Jonas Kastberg Hinrichsen for taking me under his wing
when I first started as a PhD student. He welcomed me with open arms
and eased my transition from a student to a researcher as much as any-
one possibly could.

Thanks to Simone Rasmussen for being steady as a rock when I find
myself on shaky ground. I could not have finished this project without
her love and support.

iii

Contents

Contents iv

1 Introduction 1
1.1 Necessary formalisms and terminology 2
1.2 Related work . 7
1.3 Introducing the Transforming paper 10
1.4 Introducing the Non-equivocation paper 18
1.5 Introducing the Impalpable Differences paper 22
1.6 Discussion: Lying in a distributed business process execution 23
1.7 Future work . 29
1.8 Introductory conclusion . 33

2 Transforming Byzantine Faults Using a Trusted Execu-
tion Environment 35

3 On the Subject of Non-Equivocation: Defining Non-
Equivocation in Synchronous Agreement Systems 44

4 Impalpable Differences: Secret Actions in Processes
and Concurrent Workflows 57

Bibliography 78

iv

Chapter 1

Introduction

Collaboration is a fundamental necessity for companies to survive; no
company can secure all their necessary competencies and resources with-
out also engaging in collaborations with their customers. And as the
world has become more internationally interconnected, and the number
of collaborations companies engage in has increased, the collaborations
have grown more complex. One way of clarifying collaborations in a
systematic and rigorous manner is by using business process models to
model collaborative processes.

The rich research area of Business Process Management (BPM) in-
cludes ways of executing instances of such processes, making much of
the process automatic. Such execution engines have the potential to al-
low for an increase in collaboration volume; with a formal process and
automated communication and recording of the steps taken, companies
can handle a larger volume of collaborations. But with such an expan-
sion in collaboration also comes an increased surface of attack: the more
collaborative efforts a party engages in, the greater the risks of some
collaborator violating the agreed-upon process, possibly with malicious
intent. In this thesis I take steps towards preventing foul play by such
malicious collaborators, thereby eliminating some of the risks that com-
panies must take when engaging in collaboration.

This introductory chapter continues as follows: first, we introduce
the formalisms necessary to properly discuss the subject. This includes
a basic formal model for a distributed business process, a system model
and a formal problem statement. Then we present work related to the
research area of secure business processes. This is followed by three
sections, each of which describes in greater detail the main results of
this thesis, their relevance to the problem statement and their uses. The
last part of this chapter is a section on the future work of this topic.

1

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 2

Chapters 2, 3, and 4 are the papers associated with my PhD project
and the source of the main results described in this chapter.

1.1 Necessary formalisms and terminology

A business process model is a process model of one or more enterprises
or businesses. A process model consists of a collection of smaller activ-
ities, tasks or actions that are related and serve to fulfil the common
goal of the process. Each entity able to take an action in a process
is referred to as an agent or an actor. The process model may have
different implementations with different semantics. Examples of these
include Business Process Model Notation (BPMN) [1], Dynamic Con-
dition Response (DCR) graphs [2], Petri-nets [3], Even-driven Process
Chains (EPC) [4], Business Process Execution Language (BPEL) [5],
UML activity diagrams [6], and many others. My main focus during
my research has been DCR graphs, but we will use a very basic formal
process model during this chapter, that is nonetheless representative of
the semantics of most process models.

The execution or the run of a process model is the initialisation of a
process model and the consequent execution of the actions of the model
by the actors. We may refer to the instance of a process model as simply
a process. Each run of a process produces a trace: a description of the
actions taken in the process and the (partial) order in which they were
taken.

A distributed business process model is a model where different parts
of the model are time- or space-decoupled, i.e. different actors are not
temporally or spatially co-located and they must therefore coordinate
their actions with each other for the correct execution of the process.
This coordination and communication between the actors in a collabo-
rative business process is known as process choreography. A system al-
lowing for distributed process executions is called a distributed process
execution engine. We may refer to them as simply execution engines
throughout this chapter.

One aspect of creating an execution engine where actions can be taken
in a distributed manner is to ensure consistency. In classical concurrency
theory, consistency refers to the property that concurrent operations pre-
serve the integrity of the system i.e. does not cause the system to enter
a state that it could not have entered under sequential operation (see
e.g. [7, Ch. 16]). Similarly in execution engines: when actors can take
actions in a time- and space-decoupled manner, consistency refers to the

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 3

property that the same runs are possible in a sequential implementation.
More formally: given a partitioned process model, the concurrent exe-
cutions of the partitions must behave as the sequential execution of the
process. We use the terms global process to refer to the entire process,
and local process to refer to a single partition of the process. Hildebrandt
et al. refer to this problem as the consistency problem [8], a name that
we adopt here. Note that the problem is also described elsewhere, e.g. by
van der Aalst and Weske [9], although they focus on extending partitions
of the process, and the closely related to the notion of composition(see
Section 1.2.) Hildebrandt et al. [8] show how to solve the consistency
problem for DCR graphs, notably in a synchronous environment with
no faults. In this thesis, we take steps towards solving the consistency
problem, but in a malicious setting: actors may behave in a malicious
manner. They may lie, cheat and steal (secrets), and we still require
consistent behaviour in the global process. The steps presented in this
thesis aim to prevent the actors from lying, cheating and stealing, by
using trusted subsystems and information flow theory.

Seeing as a large part of this thesis deals with both distributed com-
puting and business process modelling, the term process is ambiguous,
meaning both a collection of actions as described above and a comput-
ing entity in a distributed algorithm. To avoid any ambiguity, we will
refer to a process in distributed computing (i.e. a computing entity in a
distributed algorithm) as a processor (see e.g. [10]), while retaining the
meaning of the word process from the world of business process mod-
elling.

Problem statement

Given a consistency problem in a synchronous system with reliable chan-
nels and malicious actors, how can we:

• Prevent the malicious actors from sabotaging consistency by lying
about what actions they take?

• Prevent the malicious actors from sabotaging consistency by cheat-
ing without lying?

• Prevent the malicious actors from stealing secrets?

Achieving solutions to the above is central to achieving successful adver-
sarial collaboration.

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 4

Note that we do not attempt to solve the consistency problem per se,
but rather prevent malicious actors from acting maliciously in the set-
ting of the problem. If the above is a comprehensive list of all malicious
actions in adversarial collaboration, then applying the preventative mea-
sures to existing solutions will allow these solutions to become resistant
to adversarial behaviour.

My research into the topic began before my PhD, with the paper
Collaboration among Adversaries: Distributed Workflow Execution on a
Blockchain [11]. In that paper, my co-authors and I describe a way
to implement an execution engine on the Ethereum blockchain, thereby
preventing malicious actors from lying and cheating, since all actions
taken are public information. While successful, that solution has several
shortcomings. Firstly, even back in 2018, executing even small processes
on the Ethereum blockchain was fairly expensive. For a small process
with 5 different possible actions, a single regular execution would cost
between 6.6 and 16.2 USD, depending on the chosen implementation,
at the time of publication. As of March 1st 2023, this has drastically
increased to cost between 36.28 and 87.64 USD [12, 13] for the same
workflow. Note that the ratio between the implementations has changed
due to a change in the ratio of cost between a computation (gas) and
the cost of Ethereum currency (ETH). Secondly, the throughput of the
number of actions taken per minute is bounded by the time it takes for
a block to be published and verified in the blockchain, which results in
the number of actions per minute being 1–2. Furthermore, the solution
limits local autonomy: an actor cannot simply take an action that they
are allowed to take per the semantics of the process, rather they have to
attempt to take the action and wait for that fact to either be accepted or
rejected on the blockchain. Ultimately, the approach using blockchains
served as a proof-of-concept, and this thesis can be viewed as the natural
next step in this research area.

Process model

Throughout this chapter, we will use an informal notion of a process
model where a process consists of (1) a set of actors, (2) a set of actions
per actor, that the actor may take at some point in the process (3) a rule
restricting when actions are enabled, i.e. when that can be taken. A trace
of a process run is a sequence of actions taken. Such a process describes
a set of possible runs, and so a set of possible traces. We call this set
of traces the language described by the model. During a run, each actor
has access only to their set of actions, the sequence of actions they have

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 5

Accept list

Goliath Inc.

Choose suite 1

David LLC

Chose suite 2

David LLC

Certify correct
installation

IT Defender

Certify correct
installation

IT Guard

Notify Goliath Inc.

David LLC

Agree to
collaborate

Goliath Inc.

+▼

+▼

+▼

+▼

+▼

+▼
+▼

%▼

%▼

%
▼

%▼

%▼

%▼

%▼

%▼ %▼

Figure 1.1: DCR graph of the recurring example process.

taken, and which of their actions are currently enabled. This model is
very simple but it is useful for discussion about the different main results
in the context of adversarial collaboration and the consistency problem.

Recurring example process

Throughout this chapter, we will use the following example of a pro-
cess recurringly. Consider two companies, Goliath Inc. and David LLC
ready to enter into some continuous collaboration. The legal and prac-
tical details for the collaboration are all settled when Goliath Inc.’s se-
curity department notices that David LLC is using an old and inse-
cure internal security suite. This is not a problem at present, since
the security suite is only in place on David LLC ’s intranet, which only
collaborators with David LLC have access to. However, since the col-
laboration will entail that David LLC must store several critically con-
fidential documents digitally, Goliath Inc. postpones the signing of the
collaboration agreement until David LLC upgrades their internal secu-
rity suite, to prevent other collaborators from gaining access to these
documents. David LLC agrees to this stipulation, but with the adden-
dum that David LLC will use one of several named security suites, but
keep exactly which one they use confidential. That way, for a malicious
collaborator to exploit a zero-day vulnerability, the malicious collabora-
tor would have to keep track of all vulnerabilities of the named security
suites. Goliath Inc. agrees to this addendum, and they agree on the
following process for choosing and implementing a new security suite on

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 6

David LLC ’s intranet:
When David LLC has presented an adequate list of security suites to

Goliath Inc., Goliath Inc. starts the process by accepting the list. Then
David LLC chooses one of the suites from the list – in this example
we consider the list to be of size 2, for the sake of simplicity. When
the suite has been installed, the appropriate security company certifies
the correct installation: mutually exclusive events which can be taken by
either IT Defender or IT Guard . David LLC then notifies Goliath Inc.
of successful implementation, who then finally signs the collaboration
agreement.

It is important to distinguish between the specific notions of collabo-
ration and security in the example, and the general notions of such that
we apply elsewhere in the thesis. We will make explicit when we are
referring to these terms in the context of the example.

The process is available as a visualised DCR graph in Figure 1.1. In
DCR notation the dashed lines indicate that the action is excluded, i.e.
cannot be taken (yet). The green arrows indicate that, after the action
at the origin has been taken, the action at the destination will no longer
be excluded. Likewise, the red arrows indicate that, after the action at
the origin is taken, the action at the destination will be excluded. For
a more comprehensive explanation of DCR notation, see in Chapter 4,
Section 4.1. By the semantics of the DCR notation, then the graph
in Figure 1.1 describes a process where Goliath Inc. must accept a list
before David LLC can choose suite 1 or 2, which in turn is followed by
first a certification of the chosen suite, then a notification by David LLC
to Goliath Inc., who can then finally agree to collaborate. In short, it
models the recurring example described above.

TEEs, non-equivocation and BPMs

The first two papers in this thesis are not obviously in the field of BPM.
Rather, they contain more general results in the fields of trusted com-
puting and distributed computing that also applies to the field of dis-
tributed business process models. They generally study how to limit
adversarial behaviour in distributed systems. Specifically, Chapter 2
studies Trusted Execution Environments (TEEs), and Chapter 3 studies
the trusted computing property non-equivocation. Their results apply
to adversarial collaboration by the distributed nature of such collabora-
tion, and so we can apply the results from those papers to the research
area of securing adversarial collaborations. Their exact application will

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 7

be expounded upon in their respective introductions below (Sections 1.3
and 1.4).

They also share an application to agreement problems in distributed
computing, where a set of processors has to reach agreement on the input
values of the processors. This is relevant to the problem of adversarial
collaboration since we can achieve a solution to the consistency problem
by using an agreement algorithm. Such a solution is achieved by replicat-
ing the state of the global business process on each processor, and then
using an agreement algorithm to agree on each step of the process. That
way we can achieve consistency in the global process, simply by the fact
that each processor is aware of the global process state. This is known
as the state machine approach or state machine replication (SMR), and
it is well-known that agreement is central to this problem [14]. By using
an agreement algorithm that is tolerant to Byzantine faults, we can elim-
inate malicious behaviour by simply filtering out requests that are not
consistent with the shared global state, see e.g. [15]. Note that in this
solution to the consistency problem, each actor must necessarily know
the full current state of the global process which has consequences for
the possibility of secrecy. See Section 1.5 & Section 1.7 for discussions
on how consistency and secrecy conflict. Furthermore, by using an SMR
solution, the local autonomy of each actor is lessened, since they have
to make a request before taking a step in the process (i.e. executing an
action), a request that may fail.

1.2 Related work

We give in this section a high-level overview of relevant work in the BPM
space. For a recent (2021) state-of-the-art literature review on security
in business processes, we suggest the excellent work of Abdmeziem et
al. [16].

Abdmeziem et al. [16] use a 3x3 matrix system for classifying re-
search in the security of business processes The classification system is
built on the observation that there are three different dimensions in busi-
ness process research, and three different goals in security research: the
informational-, logical- and organisational dimensions and the integrity-,
confidentiality- and availability goals, respectively. In the nomenclature
of that work, this thesis is situated firmly in the logical dimension of
business process research, which considers the control flow logic of the
process, rather than the data and artefacts (the informational dimen-
sion) or the role delegation (the organisational dimension). The first

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 8

two papers of this thesis (Ch. 2 & 3) implicitly study the security goal of
integrity of the logical dimension. They contain results that give guar-
antees about correct control flow logic, i.e. consistency of the global
process, in a Byzantine setting. The third paper (Ch. 4) studies the se-
curity goal of confidentiality of the logical dimension, i.e. when actions
are secret.

We now move away from the classification system of [16].
Composition & partitioning of business processes A central part of col-
laborative business process executions is to ensure correct global be-
haviour of partitioned processes. It is not necessarily obvious that this
is a security concern, but when we consider the classification matrix
above, it is easy to see that composition can be classified as an integrity
property of the logical business process dimension.

Considering the business process model notation workflow nets(see
[3]) van der Aalst and Weske [9] show that a public inter-organisational
(i.e. collaborative) process can be partitioned into smaller (private) pro-
cesses, which can then be extended with more actions while still pre-
serving the behaviour of the public process. This is called the Public-
to-Private (P2P) approach. The only requirement is that the extended
private process must be a subclass of the unextended process partition,
which intuitively translates into not extending the behaviour of the par-
tition, only limiting it. This approach can allow for an extended applica-
tion to the notion of secrecy in Section 1.5, since extensions of the public
workflow are necessarily unknown to other collaborators.

Hildebrandt et al. [8] present the consistency problem as described
previously. The solution presented uses a notion of dependency of actions
defined in a way such that preventing the concurrent execution of such
dependent actions, together with the appropriate updates to enabledness
of action, directly implies global consistency.

Goettelmann et al. [17] uses partitioning similar to the P2P approach
to utilise cloud technology for executing business processes while still
keeping fragments of the process secret from the cloud provider. This
approach, put in simplistic terms, partitions the processes in ways where
a confidential fragment of the process is distributed across multiple cloud
providers, whereby they cannot deduce the logic of that fragment. Nacer
et al. [18] extends this approach by including fake fragments as well, to
account for collaborating providers.
BPM on the blockchain The research into applications of blockchains
in business processes has been extensive. Mendling et al.[19] present
challenges and opportunities to this application, with the main take-

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 9

away regarding executions being that blockchains can function both as
a medium of coordination through message parsing and as a medium
ensuring consistency. Henry [20] includes an excellent overview of recent
work, classifying current research into 3 areas: (1) Business process exe-
cution engines, (2) flexibility (i.e. dynamic changes) and (3) privacy (i.e.
confidentiality).

Business process execution engines using blockchains include the work
of López-Pintado et al. [21] (BPMN) and Madsen et al. [11] (DCR
graphs), while Tran et al.[22] presents a modelling tool for designing
BPMN processes and exporting them as separate blockchain smart con-
tracts, which differs from the other approaches by the fact that no single
contract will manage all relevant processes. This has a slightly positive
impact on the privacy of the collaborators in comparison with the other
two, but at the cost of publishing a smart contract.

An interesting other application is presented by Müller et al. [23]
where the trust layer in BPMN presented in [24] is used as an analysis
tool to analyse trust relationships before mitigating any found issues
with blockchain technology.
BPM and cryptography Cryptography is a common solution to security
issues of confidentiality and integrity, and so it is naturally widely used
when solving security issues in business processes as well. These uses
include that of Backes et al. [25], which uses cryptographic primitives
to ensure confidentiality and integrity for security requirements based
on trust relationships. The authors present a method for identifying
such relationships when modelling business processes, and then how to
protect data with cryptography when trust is not present. As such, they
do not consider the confidentiality of activities.

Rohm et al. [26] present the specification language ALMO$T, which
can specify secure transactions in business processes. After such speci-
fication, the secure transactions can be executed by a framework, guar-
anteeing confidentiality and integrity of the transaction by way of cryp-
tography. The ALMO$T specification language is highly specific and is
not applicable to general business process models.

Carminati et al. [27] suggest a method for encrypting a BPEL [5]
process which preserves the execution logic of the process. This allows
them to publish the process on a blockchain while preserving the confi-
dentiality of the process.
Process mining Process mining – extracting process models from exe-
cution logs – is a well-studied area in business processes (see e.g. [28]
for a review). Process mining with security considerations includes the

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 10

work by Müller et al. [29], which uses a Trusted Executions Environment
(TEE) to mine collaborative processes with private sub-process (using
the P2P approach described in [9]). The reasoning is that collaborators
might be reluctant to share logs of their private sub-processes. To enable
process mining under such conditions, a TEE is utilised to keep the logs
and private sub-processes confidential to everyone but the appropriate
actors.
BPM and compliance The European Union’s General Data Protection
Regulation (GDPR) has been the catalyst for research into how to show
that a process complies with such regulation. This implies confidentiality
requirements, but from the point of view of the users rather than the
organisation.

An approach for determining the purpose with a process is presented
by Basin et al. [30], which leads to a methodology for auditing compliance
with the GDPR in BPMN. With the addition of a dataflow model, such
compliance can be shown algorithmically.

Taking a modelling approach, Agostinelli et al. [31] present a set
of design patterns based on GDPR, which allows for compliance to be
modelled directly into the business process.
BPM and game theory Applying game theory to business processes al-
lows for interesting analyses of adversarial collaboration in business pro-
cesses. It supports analysis of adversarial behaviour where the adver-
sarial collaborator attempts to derail the process or steer it into a state
beneficial to them. This game-theoretic approach is introduced by Hein-
del and Weber [32] and expanded to a solution using secure multiparty
computation by Haagensen and Debois [33].

1.3 Introducing the Transforming paper

The purpose of this section is to introduce the paper Transforming byzan-
tine faults using a trusted execution environment [34], available in Chap-
ter 2.

The main contribution of the paper is a transformation of distributed
algorithms. The transformation includes a translation of Byzantine
faults to omission faults. That is, after the transformation, a correct
processor running the algorithm will act as if it received no message –
the message was omitted – when it receives a message from a (Byzan-
tine) faulty processor. The transformation relies on a Trusted Execution
Environment (TEE) to act as a Byzantine fault detector. In fact, the
paper is an attempt to formalize that this is exactly what a TEE is. The

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 11

paper is based on a chapter in a master thesis [35], in which I and my co-
authors attempt to show that a TEE is essentially a tool for preventing
integrity faults of running code and associated data, which can be con-
sidered equivalent to Byzantine faults in a distributed algorithm. The
paper expands upon this idea and formalises exactly how a TEE might
catch Byzantine faults, and discard messages from faulty processors.

The argument goes as follows: a TEE is a subsystem able to run code
with the properties of integrity, confidentiality, authenticity and remote
attestation. Using the property of remote attestation, which allows an
application running inside a TEE to identify and authorise itself to re-
mote TEEs, we can provision TEEs with cryptographic secrets. Such
secrets can then be used to cryptographically authenticate messages,
thus proving to receiving TEEs that the message originates from an au-
thenticated application in a TEE, and has not been altered since leaving
the TEE.

The confidentiality property guarantees that no other code, than the
authorised code in the TEE can access the associated data. The integrity
property guarantees that if data is changed from somewhere else than
the authorised code in the TEE, then the data stops being available.
This way, the cryptographic secret provisioned by the remote attestation
algorithm becomes unavailable on integrity violations that might lead to
a Byzantine fault. Lastly, the authenticity property guarantees that the
code running in the TEE has not been altered since compilation.

Putting these concepts together, we can eliminate integrity faults of
code, data and messages, simply by moving the data and code run-
ning the distributed algorithm on each processor into respective TEEs.
Thereby the code cannot change due to the authenticity and integrity
guarantees, data cannot change due to the integrity guarantee, messages
cannot change (without being noticed) due to the confidentiality of the
cryptographic secret, and no maliciously (Byzantine-) faulty processor
can imitate a non-faulty processor due to the confidentiality of the cryp-
tographic secret. If a processor receives a message from a processor that
has experienced an integrity fault, or if the message itself has experi-
enced one such fault, then the cryptographic authentication will ensure
that the receiving processor drops the message, thereby transforming the
fault into a message omission.

Note that the transformation is based on several uses of cryptographic
authentication, both in the implementation of integrity and confidential-
ity of the TEE, remote attestation and message authentication. As such,
the guarantees are probabilistically rather than information-theoretically

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 12

secure, meaning that it relies on standard cryptographic assumptions and
that the guarantees can be broken with negligible – i.e. incredibly small
– probability.

Relation to adversarial collaboration

The ability to translate Byzantine faults into omission faults is quite
powerful for the use of adversarial collaboration. Consider an adver-
sarial collaboration that utilises a distributed process execution engine.
If this execution engine has been transformed using a TEE to translate
Byzantine fault, then every time an actor receives a message of an action
taken by another actor, then they are guaranteed that the sending actor
has actually recorded the action in their own execution engine, and so
cannot repudiate their actions. In effect, it prevents the malicious actor
from lying, by guaranteeing the consistency of all local processes.

Consider the example in Section 1.1. The major threats to Goliath Inc.
and David LLC by Byzantine faults in the execution engine are the fol-
lowing:

1. If David LLC believes that Goliath Inc. has accepted the list of
security suites, but Goliath Inc. has not, then David LLC might
spend considerable resources on implementing a suite that is unac-
ceptable.

2. If David LLC believes that one of the security companies has in-
stalled their suite, but they have not, then David LLC might acci-
dentally leak Goliath Inc.’s confidential information.

3. If Goliath Inc. believes that David LLC has been certified due to
notification of such, but David LLC actually did not receive such
certification, then Goliath Inc. might similarly risk sending confi-
dential information to David LLC and so risk leakage of this infor-
mation.

By eliminating Byzantine faults, the actors can trust when the execu-
tion engine informs them that an action has been taken by some other
actor. This actively eliminates all of the above threats. It even allows
the actors to transitively apply this guarantee: when Goliath Inc. sees
that David LLC has taken the action of notifying Goliath Inc. of certi-
fication, Goliath Inc. is guaranteed that not only did David LLC take
this action, but the prerequisites for this action have also been taken! So
Goliath Inc. is guaranteed that either IT Guard or IT Defender did, in
fact, certify a security suite for David LLC ’s intranet.

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 13

Aside from the use of the transformation directly on the distributed
process execution engine layer, the transformation also has uses in the
implementation details of the execution engine. As described in Sec-
tion 1.1, another way of achieving consistency is by the use of agreement
algorithms. However, such agreement algorithms can be computationally
expensive: they require a lot of communication and a lot of replicated
processors to ensure fault tolerance, i.e. that no malicious actor(s) can
break non-repudiation in this case. However, by eliminating Byzantine
faults, such a solution can be achieved more cheaply.

Where the transformation does not help, is if a malicious actor figures
out a way to act correctly according to the prescribed process, but still
cheat in some way. For instance by using omissions to break consistency,
since the transformation does not handle omission faults. An example
of this can be found in Section 1.4.

Vulnerability: replay attacks

The transformation does not always protect against replay attacks. This
vulnerability is not mentioned in the paper. After the remote attestation
step, message authentication in the paper is achieved by a generic non-
interactive message authentication code (MAC) algorithm. The impor-
tance of non-interactiveness comes from the fact that the transformation
aims to add no additional communication steps after remote attestation,
and so the MAC must be computed without communicating with the
receiving processor. However, the paper does not examine how this
leaves the transformation vulnerable to replay attacks for distributed
algorithms where identical messages are sent from different processors
or at different times.

Consider a distributed algorithm in a synchronous system, in which
all processors broadcast some value in the first synchronous round. Then,
in round 2, the processors forward the lowest value it received in round
1. Since the processors simply forward values in round 2, repetition
of identical messages does occur. If a Byzantine faulty processor in a
transformed version of the algorithm then fails after the send step in the
first round, but before receiving any messages, the processor can simply
forward an arbitrary or maliciously chosen value in round 2. And since
the messages are correctly MAC’ed, they are indistinguishable from mes-
sages sent by a non-faulty processor, which circumvents the translation
of faults.

As is apparent from the above example, a Byzantine faulty processor
can break the guarantees of a transformed general omission fault-tolerant

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 14

algorithm by replaying messages, if that algorithm uses identical mes-
sages at different times or from different processors. We suggest three
different ways to solve this vulnerability: (1) the underlying algorithm
could be changed to make messages identifiably unique. In the above
example, this could be achieved simply by appending the processor iden-
tifier to each message. That way, the faulty processor could not replay
messages to appear as correct messages from the faulty processor without
corrupting the authentication code. This does not fix the vulnerability
for all systems, however, e.g. systems where malicious processors have
control over the channels.

(2) In that case, one could solve the issue by changing the use of re-
mote attestation. Rather than provisioning the processors with a com-
mon cryptographic secret, the remote attestation step could be used to
provision the processors with a public key infrastructure (PKI)i and sign
the messages with a private key, rather than using a MAC. By doing so,
a replayed message would be easily identifiable as originating from an-
other processor than the processor replaying the message. (2.1) If the
TEE implementation in question is Intel ® software guard extensions
(SGX), then the remote attestation based on Intel® EPID enables pro-
cessors in establishing secure channels protected by the same guarantees
as the TEE itself [36]. However, a PKI is a lot more complex and re-
quires several communication steps to provision, so it may not useful in
all cases.

(3) A third possibility is to alter the transformation to allow for each
message in the original algorithm to be extended with a 2-step challenge-
response protocol: first, the sender requests a nonce – a random num-
ber – from the receiver, who supplies such a nonce. Then the nonce is
appended to the original message before the authentication code is gen-
erated and appended and the entire sequence is sent. This is a standard
way of preventing replay attacks, and more information can be found
e.g. [37, Ch. 3]. Of course, (3) changes the translation of fault from
being a 1-round, n = f + 1 translation to being a 3-round, n = f + 1
translation, since the non-interactiveness of the transformation is sacri-
ficed.

Vulnerability: TEE

Since the time of publication of the paper, many new vulnerabilities
to most TEE implementations have been discovered, including the three
major hardware technologies that support TEE implementations, namely
AMD’s Platform Security Processor (SP), ARM’s TrustZone and In-

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 15

tel’s Software Guard Extension (SGX). Some good overviews of vulner-
abilities in different TEE implementations include Van Bulck et al. [38]
who present 35 vulnerabilities across Intel, RISC-V [39] and Sancus [40]
TEEs, Khalid and Masood [41] who present 5 Intel TEE vulnerabili-
ties, 5 ARM TEE vulnerabilities, and 3 AMD TEE vulnerabilities, and
Muñoz et al. [42] who present a variety of attacks on 48 different TEE
implementations, classified under software-attacks, side-channel attacks
and architectural attacks.

Considering that the transformation requires all of the security guar-
antees a TEE provides, i.e. integrity, confidentiality, authenticity and
remote attestation, any attack on a TEE will break the guarantees of
the transformation. In the following two major vulnerabilities on Intel
SGX are outlined, one for integrity and one for confidentiality.
Integrity Plundervolt [43, 44] is an exploit on the integrity of Intel SGX.
It utilises an undocumented API for controlling voltage to the Intel CPU,
to induce relatively predictable errors in integrity-protected code. Er-
rors that crucially are not detected by the SGX framework. The attack
works by requesting a lower-than-expected voltage to the CPU (i.e. by
undervolting) just before calling integrity-protected code. By doing so
an attacker can cause predictable errors in some CPU instructions while
maintaining correct behaviour for the rest. Notably, an attacker can with
relative predictability cause a bit-flip in the third byte of a multiplication
instruction.

If this bit represents whether an action is enabled in an execution en-
gine, an attacker could be allowed to execute an action despite it being
disabled in the global state. Consider the example in 1.1. By using Plun-
dervolt, an adversarial David LLC could notify Goliath Inc. that they
had successfully had a new security suite implemented, without having
done so, and no security company has provided a certificate, since Plun-
dervolt could allow execution of disabled actions. Goliath Inc., believing
that such a lie is impossible due to the protection of the underlying TEE,
would then accept the word of David LLC and terminate the process.
Confidentiality SGXpectre [45] is a confidentially exploit on Intel SGX,
based on the Spectre [46] and Meltdown [47] exploits on Intel CPUs.
SGXpectre abuses the speculative execution of Intel CPUs to access
confidential data and leak it via side-channel attacks. A common ex-
ample of one such side-channel attack is a timing attack on cache-state
changes.

By forcing a speculative execution of a specific function, an attacker
can force SGX to load a cryptographic key. Then, having carefully con-

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 16

trolled the contents of a specific cache, they can note the loading time,
thus deducing how much of the cache changed. By repeating this exploit
with different contents in the cache, an attacker can eventually deduce
the loaded secret.

Using SGXpectre, an attacker could extract the key for signing the
messages in the transformation. By doing so, they can circumvent the
TEE entirely, and sign any message as being free from Byzantine faults.
Any adversarial collaborator could use this to circumvent the integrity
guarantee of the transformed execution engine and execute any action
despite the enabledness of that action.
Vulnerability effect Both of the described exploits require, at least partial,
physical access to the device under attack. Unfortunately, this is exactly
the adversarial model for the transformation: the adversaries are running
their own code on their own machines. Together with the sheer amount of
TEE vulnerabilities found in recent years, this indicates that one cannot
implicitly trust the guarantees of a TEE. It should be noted that the
exploits described above have been patched, and are no longer viable, and
so has most other serious TEE vulnerabilities (see e.g. [42]). Regardless,
it seems that TEE-technology is not yet mature enough to secure critical
systems, so one should use the transformation of the paper with care.

Discussion: Integrity- vs. Byzantine faults

The paper presents an argument of how a TEE can transform integrity
faults of code, data and messages into message omissions. However,
this is not necessarily the same as transforming all Byzantine faults,
as suggested by the title. In a system model with a Byzantine fault
model, we generally consider arbitrary faults possible [7, Ch. 2], so that
the Byzantine fault model encompasses both the general omission-1 and
crash fault models – see Figure 1.2 for an Euler diagram of the fault
models.

Usually, we refer to a Byzantine fault as one that is not encompassed
by the general omission fault model, so when we say that we translate a
Byzantine fault to an omission fault, it means that we translate an arbi-
trary fault outside the omission fault model to one inside it. The only as-
sumption we make is that Byzantine faults cannot simulate the guessing
of cryptographic secrets. Notable exceptions to this definition of Byzan-
tine faults include [48] and [49], both of which define a Byzantine fault as

1The general omission fault model allows faulty processors to omit messages they are
supposed to send, and that they have received.

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 17

Byzantine

Omission

Crash

Figure 1.2: Euler diagram of the traditional fault models.

“a fault presenting different symptoms to different observers” – almost
exactly the definition of equivocation, see Section 1.4 and Chapter 3.
Since this definition does not include faults outside the general omis-
sion fault model which presents consistent symptoms to all observers,
we will use the traditional definition. Regardless, it is not immediately
clear that all Byzantine faults are integrity faults, and that our claim to
translate Byzantine faults is, in fact, achieved by using a TEE.

An advantage of using the traditional definition of Byzantine faults
is in this definition a Byzantine fault is equivalent to one or more faulty
messages2, at least in traditional distributed system models where com-
munication is only available via message-parsing. In [50], this is de-
scribed as “[a faulty processor], beside failing to send the required mes-
sages, may also send false and contradictory messages, even according
to some malevolent plan.” This equivalence is because the behaviour of
a processor is exactly defined by the messages it sends since this is the
only way for the processor to communicate; to deviate from the expected
behaviour is exactly to deviate from sending the expected messages since
this is the expected behaviour3.

Since the fault of omitting a message is included in the general omis-
sion fault model, and so excluded from being a Byzantine fault, the
only unexpected behaviour left is the sending of messages, i.e. messages
inconsistent with the behaviour specified in the algorithm. And this is
exactly what the transformation prevents: any unexpected and unautho-
rised changes to integrity-protected data and code. The cryptographic
authentication even allows processors to see changes made to the mes-
sage during transmission. The only thing that the transformation cannot

2To be precise: a faulty message is a message that is not specified as correct behaviour
of a non-faulty processor.

3We will leave aside discussion of whether a processor can be considered faulty while it
behaves in a non-faulty manner. In this thesis, a faulty processor is a processor that behaves
faulty.

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 18

protect against is faults in the implementation or the hardware of the
TEE, and faults in the implementation of the algorithm, all of which
we assume to be without faults. These are reasonable assumptions: the
former because a TEE is a trusted computing device – if one cannot
trust a trusted subsystem in trusted computing to behave as expected,
then both the practise and the subsystem becomes useless – and the
latter because if one cannot trust the implementation of an algorithm
to be correct of, then surely the properties of the algorithm cannot be
expected to still hold; imagine if the merge sort algorithm guaranteed
performance of O(n · log n), even if the implementation did not correctly
behave as the specification.

There are, however, real-world use cases where the above assumptions
are not as reasonable. For instance, [15] suggests that a use-case for
agreement algorithms is in critical systems, where each processor could
run different implementations of the critical system, and for each output,
the processors could run an agreement algorithm. That way, one could
eliminate faults due to faulty implementation. As such, it is important
to note that this is outside the scope of use of the transformation, due to
our basic assumption of correct implementation. Similarly, we showed
various vulnerabilities of TEEs, which seems to indicate that the trusted
computing device in question is, in fact, not trustworthy.

1.4 Introducing the Non-equivocation paper

Here we introduce the paper On the Subject of Non-Equivocation: Defin-
ing Non-Equivocation in Synchronous Agreement Systems [51], available
in Chapter 3. The paper revolves around the notion of equivocation:
when a faulty processor acts differently towards two or more non-faulty
processors. The idea of equivocation can be found back in 1980 in the
seminal paper Reaching Agreement in the Presence of Faults by Pease
et al. [10], which also introduces the problem of interactive consistency,
showed how cryptographic signatures eliminate the need for duplication
in synchronous agreement systems, and is the paper which inspired the
famous The Byzantine Generals Problem [52]. In the first paragraph of
Reaching Agreement, we find the following quote “a bad processor might
report one value to a given processor and another value to some other
processors”, explicitly defining equivocation as the fault to be aware of
in Byzantine systems, but without naming the fault equivocation.

The term equivocation was, to the best of my knowledge, not given to
this kind of faulty behaviour before 2007, when it was introduced in the

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 19

paper Attested Append-Only Memory: Making Adversaries Stick to Their
Word [53]. This paper introduces a small trusted cryptographic com-
ponent which eliminates the possibility for a faulty processor to equivo-
cate, called Attested Append-Only Memory (A2M). This component, and
those similar to it, essentially allows a processor to digitally associate an
index in a monotonic increasing counter to one, and only one, message.
This ensures that a processor that is supposed to send a message as a
part of distributed algorithm, can choose only one message to send since
any other would be associated with a different index in the monotonic
counter. This protects against equivocation, as a faulty processor can no
longer “report one value to a given processor and another value to some
other processors”.

Another way of preventing equivocation is by the use of different
kinds of broadcast channels, see e.g. [54], such that when the proces-
sor sends a message on a channel, that message is delivered to several
processors. This eliminates the possibility for a faulty processor to send
different messages to different processors, simply because the processor
only has access to the one channel. Here the non-equivocation prop-
erty – the property that prevents equivocation – is located, not with
the processors, but with the channels. And that has a quite profound
effect: when the non-equivocation property is located with the processor
a faulty processor can still choose whom to send the message to, and,
more importantly, whom not to send it to. When the non-equivocation
property is located on the channels, however, a faulty processor has only
the choice between sending a message on that channel, and not sending
it. It can no longer try to violate system properties by tactically choos-
ing specific processors not to send values to. It is this difference that the
paper in Chapter 3 examines.

In the paper my co-author and I identify the properties strong and
weak non-equivocation: in strong non-equivocation, a faulty processor
can only choose to send a message to all recipients or send no message at
all, while in weak non-equivocation a faulty processor is allowed to choose
the recipients of each message. For ease of reasoning, we define the dual
of these properties: strong equivocation is when a processor sends at
least two distinct messages, and weak equivocation is when a processor
sends only one distinct message but omits to send that message to at
least one processor. In this terminology, weak non-equivocation prevents
strong equivocation, and strong non-equivocation prevents both weak
and strong equivocation. The differences between the non-equivocation
properties are most distinct in synchronous system models with reliable

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 20

channels since the difference is the omission of certain messages – some-
thing which only happens to faulty processors in this system model. Note
that this is also the system model of the global consistency problem in
Section 1.1. We show in the paper how the non-equivocation proper-
ties allow for different fault tolerances and amounts of communication
for different agreement problems; strong non-equivocation allows for the
lowest of both.

Considering the definition of weak equivocation, it seems reasonable
to think that weak equivocation is a kind of message omission. It is
important to understand the distinction. When a processor commits a
message omission, the message it is (not) sending is the message that is
appropriate according to the algorithm. When a processor commits weak
equivocation, there are no restrictions on what message the processor
is (not) sending. In other words, non-equivocation does not prevent a
processor from lying; a faulty processor can freely choose the message
that they want to send.

Agreement and equivocation are closely linked. The act of reporting
two different messages to two different processors, when you are supposed
to report the same message, is an attack on agreement. The two proces-
sors were supposed to agree on the message that they received, which
they no longer do. It is, therefore, no surprise that we show that sub-
systems providing the properties also provide solutions to well-known
agreement problems: strong non-equivocation solves Byzantine broad-
cast4 [52], and weak non-equivocation solves crusader agreement [55].
This is not to say that (non-)equivocation has no interest outside research
into agreement protocols, rather, this shows that non-equivocation can
be used in systems where agreement can be used to achieve some other
goal, for example in distributed process execution.

Relation to adversarial collaboration

Intuitively, there seem to be two uses of non-equivocation in adversarial
collaboration. The first is as a tool to eliminate equivocation directly in
an existing solution to the consistency problem with a weaker adversary
model, such as the one in [8]. The other is to implement an agree-
ment algorithm to handle communication in the system, as described in
Section 1.1, and then use non-equivocation tools to increase the fault
tolerance of those systems, thereby making the solution robust against
more malicious actors. Unfortunately, what follows now is an argument

4This should certainly be no surprise, since the inspiration to the property came from
broadcast channels

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 21

that to guarantee fairness and consistency with non-equivocation, one
must also solve an agreement problem, even with the use of a TEE as
described in Section 1.3. The basic intuition is that, due to well-chosen
omissions, an adversary can break consistency of a global process by not
letting other actors know that their actions are no longer enabled.

At first glance, strong non-equivocation seems to handle malicious
omitting of messages – the malicious actor can only choose to inform the
correct set of actors when they take an action, or no one at all, which
looks equivalent to not taking the action at all. So using a subsystem
providing strong non-equivocation together with a TEE to prohibit the
possibility of lying, as described in Section 1.3 and Chapter 2, seems
to prevent a malicious actor from acting maliciously at all. This is,
unfortunately, not the case.

Recall the process model from Section 1.1, and consider a process with
the actors A and B, such that A’s actions are {a, c, d} and B’s actions
are {b, d}. The restrictions of the process are such that it produces
the language {a, ab, ac, abd, acd}. Assume that taking action d brings
some value to the actor taking it, and A and B are competing to take
the action. It is clear that A must inform B when taking the action
a, since this makes b enabled. However, if A does not – they instead
choose to inform no one, which is allowed under strong non-equivocation
– they can continue to take the actions c and then d, with B never
having the possibility to do so. Put in security terms, A starves B by
attacking availability of b. Even worse, a malicious actor could also
attack the global consistency of the system, forcing illegal runs: consider
a process with the language {a, b, ac, bc}, and the actors A and B, where
A’s actions are {a, c} and B’s actions are {b, c}. By taking action a,
and omitting to tell B, A can enable B to still take b and then c, giving
the run abc, which is not part of the language, thus breaking global
consistency.

These problems arise from the fact that, even if the TEE enforces
correct local behaviour, the strong non-equivocation property cannot
enforce correct global behaviour, since messages of changing enabledness
of other actions can still be omitted5. This eventually reduces to the
problem of two processors achieving coordination for a single value, when
messages can be omitted. This problem is known as the two generals
problem or the two lovers problem, and is known to be impossible [56,
57] and [58, Ch.3].

5Neither can weak non-equivocation, since it restricts the actors strictly less than strong
non-equivocation

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 22

One way of circumventing this impossibility is to include more than
two processors and use an omission-resilient uniform agreement algo-
rithm (which requires more than two processors [59]), which is to say,
use an approach like the SMR one described in Section 1.1. So, by ap-
plying the non-equivocation properties directly to an execution engine,
we must more or less still solve an agreement problem. And here, one
might utilise non-equivocation subsystems to reduce the fault tolerance
for a cheaper and more resilient implementation, as shown in the paper
in Chapter 3.

1.5 Introducing the Impalpable Differences paper

In this section, we present the paper Impalpable Differences: Secret Ac-
tions in Processes and Concurrent Workflows, available in Chapter 4.
The paper is currently under peer review for publication. This section
does not include a section on its relevance to adversarial collaboration
as the relevance is self-evident.

The paper examines when an actor in a distributed process execution
can consider an action secret. Recall the example in Section 1.1. A vital
part of that process is to keep secret if David LLC chooses suite 1 or 2.
So when can we consider such an action secret?

The paper presents a possibilistic secrecy definition of actions in pro-
cess models with run-based semantics. The term possibilistic refers to
the type of inferences we allow the adversary, namely only possibilistic
inferences, meaning that we model an adversary as only knowing some-
thing if they can deduce it without reservations. This is opposed to
probabilistic inferences, where we allow an adversary to know something
if they can infer that it holds except for some negligible probability.

To define secrecy of actions, we first define an indistinguishability re-
lation on runs: when can an actor not distinguish between two distinct
runs of a process? This, of course, depends on what we allow the actor to
know in each run. If they know the sequence of actions in the run6, then
they can distinguish all distinct runs from each other. If, on the other
hand, they know nothing in any run, then all runs are indistinguishable.
This notion of what an actor knows is captured in an observation func-
tion. Each actor in a process has their own observation function, limited
by a universe of possible observations, and the subset of actions they can
observe.

6as actors do in when using an agreement algorithm each time they take an action, see
Section 1.1

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 23

An obvious observation function for an actor in the process model
presented in Section 1.1, would be the sequence of the sets of enabled
and disabled actions that the actor experiences throughout the run, along
with the actions they take themselves. E.g. if taking action a makes a
disabled, then an actor taking the action a records that they took a and
that a is now disabled. When another actor then takes an action that
makes a enabled again, then the first actor records that a has become
enabled again.

It is now easy to see when two runs are indistinguishable, namely
when they produce the same observation. And then secrecy is relatively
straightforward: if all runs where a is taken at least once are indistin-
guishable from some runs where a is not taken, then a can be considered
secret from the observing actor.

We apply the secrecy definition to DCR graphs and show that de-
termining indistinguishability, in general, is infeasible by a reduction of
reachability, i.e. determining if an action can ever be enabled, which is
known to be a computationally hard problem [60]. We then go on to
show a sufficient condition of when actions in a DCR graph are secret
to some actor, namely when the action is non-trivially isomorphic with
another action in the graph, and neither is observable by the actor in
question. It is then easy to see that choice of suites 1 and 2 are secret
to Goliath Inc. in Figure 1.1 since there exists an isomorphism where
Choose suite 1 maps to Choose suite 2, and vice versa, and the two
certification actions map to each other in a similar manner.

Unfortunately, secrecy is directly at odds with the solution guaran-
teeing consistency based on an agreement algorithm: by requiring agree-
ment by all actors on all actions taken, no action can be secret, since all
runs are distinguishable from each other. We leave a further investiga-
tion of this issue as future work.

1.6 Discussion: Lying in a distributed business process
execution

In Section 1.3 and Chapter 2 we present a result on how to prevent
lying in a distributed system. This is transferable to prevent lying in a
distributed business process execution, but some major distinctions need
to be made.

First, we must define what lying is. For the purposes of this dis-
cussion, we can consider a lie any announcement of a falsehood. Doing
so, we disregard the motivation behind the lie which is important for

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 24

more fine-grained discussions on lying in computer systems, see e.g. [61]
and [62, Ch. 17], but the definition suffices for this discussion: in a
distributed system, a message is either truthful and correct or it is a lie

When a malicious actor lies in a distributed business process exe-
cution, it is different from when a malicious processor lies in a generic
distributed algorithm. A distributed business process is usually tightly
coupled with non-digital actions; actual people are doing something and
recording it in the process execution engine, and other people then react
to that action by taking other actions and so forth, often with computers
taking only a few or no automated actions during a run. This is more
rarely the case with other distributed algorithms, e.g. agreement algo-
rithms. While the inputs to an agreement algorithm can be provided
both by computer systems (e.g. sensors), or people, the intermediate
steps between input and output are rarely observed by people, and even
more rarely observed during the execution of the algorithm. Sure, you
can run an agreement algorithm with people acting as the processors
of the algorithm, but this is surely an exercise with few practical use
cases. For distributed business process models on the other hand, the
tight coupling between a run of a business process and the real world
has impacts on how lies may be executed and caught in a distributed
business process execution.

Firstly, the tight coupling allows for malicious actors to lie in a new
manner that is difficult to detect, namely by acting non-maliciously in the
distributed business process execution engine, but not letting it represent
their real-world actions. Doing so, they might act as if they have taken
some action in the execution engine but actually have not taken this
action, or even taken some other action instead, in the real world. This
is a problem that extends beyond distributed business process execution
to any problem where we attempt to use computers to represent and
coordinate the state of real-world objects and behaviour. It is especially
prevalent in blockchain supply chain solutions. We will discuss this issue
below.

Secondly, the tight coupling allows us to verify some actions. When
an actor indicates they have taken an action in the real world, it allows
us to go check if this is actually the case. Similarly, if an actor attempts
to hide that they have taken an action in the process, we might be able
to observe them taking the action in any case. This added verifiability
can mitigate some of the added threat from point 2, and even some of
the more traditional threats from lying by acting maliciously inside the
execution engine.

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 25

The digital-real-world disconnect

It is important to distinguish between taking a step in a process in the
execution engine of that process, versus taking a step in that process
in the real world. Consider the example process from Section 1.1. Af-
ter David LLC has chosen suite 1, IT Guard could easily claim to have
installed the suite correctly, without actually having done so, thereby
undermining the entire purpose of the process. This disconnect between
what is recorded digitally vs. what has happened in the real world is
well-known. The disconnect often crops up as a challenge for blockchain
implementations of supply chains, see e.g. [63]7, [64]8 and [65]9. Going
forward, we will refer to the disconnect as the digital-real-world discon-
nect.

The digital-real-world disconnect is a major obstacle to secure and
trustworthy implementations of process execution engines when the col-
laborators might be adversarial. Even if a benign collaborator can trust
the execution engine to ensure that no actor can act maliciously, they
might be deceived into taking steps that they would otherwise have pre-
ferred not to, by a malicious collaborator who indicated that they took
steps in the process they did not, in fact, take in the real world. In
the above example, Goliath Inc. could be a victim of such a scheme if
David LLC , in malicious collaboration with IT Guard , took the step
of notifying Goliath Inc. of the correct installation, while they had no
installation made in the real world.

The digital-real-world disconnect does not make process execution
engines useless as tools for collaboration among adversaries, however.
Taking the point of verifiability in distributed business process execu-
tion into account, at least the easily verifiable actions can be considered
relatively safe from lies via the digital-real-world disconnect. Further-
more, actions that exist only in the process model, i.e. that have no
real-world counterpart, can likewise be considered secure. This includes,
for instance, the actions that deal only with the coordination of the
process itself – the choreography.

7“block chain veracity is reliant on appropriate audit processes to verify each transactional
record to ensure it is accurate at the time it is entered into the blockchain”

8“one of the primary challenges of blockchain supply chains, and indeed blockchain gen-
erally, [is] the problem of the quality of data entered into a blockchain”

9“Assuring integrity of input data is a difficult task”

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 26

Circumventing the digital-real-world disconnect

One way to increase the usefulness of a process execution engine in the
face of the digital-real-world disconnect is to implement the process in
terms of giving information to other parties. That way, if the execution
engine, and the information in it, is trustworthy, then taking an action
in the process becomes taking the action in the real world by way of the
execution engine.

One benefit of multi-actor business processes is that the actions that
are important to multiple actors generally are part of the choreography
and deal with coordinating the order of those actions. In the example
in Section 1.1, the entire process is part of the choreography, since all
actions affect, or are affected by, the actions of other actors, and so
require coordination.

A coordination model in distributed computing refers to a computa-
tional model where we describe protocols as the messages exchanged by
the processors, rather than the computational steps taken by each pro-
cessor [66, Ch. 13]. Applying this concept to business process models,
a coordination process is a process described in terms of the communi-
cation between the actors in that process. It is immediately clear that
not every part of a collaboration can be rewritten into a coordination
process. E.g. in the Public-to-Private approach (P2P) [9], where actors
share a public part of a business process, but have their own private
extension of this public part, the actions that do not affect the public
parts of the process require no communication with other actors.

In the example in Section 1.1, David LLC could have an entire inter-
nal process for choosing between suites 1 and 2, which then could not be
modelled as a coordination process10. However, the choreography must,
by definition, be expressible as the communication between the actors in
the process, since this is what they necessarily represent. And so we can
model this crucial part of the process as a pure information exchange,
thereby circumventing the digital-real-world disconnect, since they have
been merged with their real-world counterpart.

This is the way we have designed the example process in Section 1.1,
so let us use that as an apt example: when Goliath Inc. takes the action
Accept list, and that fact becomes known to David LLC via the execu-
tion engine, then Goliath Inc. has for all intents and purposes accepted
the list in the real world. They might change their mind, and try to
recall their acceptance, but they cannot repudiate that they did, in fact,

10Unless one also models the internal departments of David LLC as actors in the process.

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 27

issue an acceptance in the first place. The same holds for all the other
actions in the example process: when David LLC notifies Goliath Inc.
of certification, then taking that action is the same thing as notifying
Goliath Inc. of certification in the real world. The execution engine
simply becomes the platform for notification.

Perhaps the actions of the security companies are the most non-trivial
examples of actions modelled as information – installing a security suite
is not just an exchange of information between collaborators. This is why
the actions have been modelled as certifications: a certificate is a formal
document attesting some fact, and so it is, in fact, pure information
given to other parties: “IT Guard hereby attests that David LLC has
had our security suite correctly installed”. However, the usefulness of
this modelling method also stops here. While the certification itself may
be pure information and coordination, it still refers to actions having
been taken in the real world. These real-world actions are not modelled
in the business process model and so one might get the impression that
it is safe from the digital-real-world disconnect; it is not. A certification
is a guarantee given by a collaborator that some action has been taken
in the real world, but one should only trust such a certification as far as
one trusts the actor giving it and the risk they run of being caught in a
lie.

It seems that modelling actions as information exchange is no silver
bullet against the digital-real-world disconnect. If the information ex-
change action becomes a substitute for a action in the real world, then
a malicious actor will still be able to lie about the real-world part of
that action. By modelling actions as information exchange, we can only
make a guarantee about what actors say they do, not what they actu-
ally do. However, this part of the digital-real-world disconnect extends
beyond digitalisation and is rooted in all collaborative efforts, regard-
less of whether they use a digital medium such as an execution engine
for coordination. In an adversarial collaboration where coordination is
handled by e.g. all collaborators meeting weekly and coordinating their
efforts, the problem of handling discrepancies between what an actor
says and what they actually do still exists. We can still mitigate this
risk, however, by utilising the verifiability of actions, and trusted third
parties.

One of the benefits of the coupling between an action in a business
process model and the real world is that we can verify whether an action
has actually taken place. In the recurring example from Section 1.1,
Goliath Inc. can verify that the same flaws are not present after being

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 28

notified by David LLC that a new security suite has been installed.
Similarly, when a company requires payment for goods, the company can
usually verify payment before finalising the transfer of goods. When an
insuree makes a claim to their insurance company through their digital
portal, the insurance company usually requires proof of the claim, e.g.
pictures or a police report, which can be uploaded through their portal.

However, not all actions are easily verifiable. In the recurring exam-
ple, it is not easily verifiable to either Goliath Inc. or David LLC if a
suite has been installed correctly. For the company requiring payment,
it may be that requiring payment before transferring goods is prohibited
by law. And a claim to the insurance company could require expert
knowledge to determine the exact size of the compensation. In these
cases, the actors of the processes can use trusted third parties to elim-
inate any discrepancies between what an actor says they do, and what
they actually do. This is the purpose of the certification actions in the
recurring example. The insurance company could, for instance, use a
mechanic to verify the extent of the damages, if the claim was regarding
a car accident. In such cases, the actor substitutes the difficult-to-verify
action with a certification from a trusted third party. It is, of course,
vital that such a third party is actually trustworthy since any malicious
behaviour negates the guarantees of the process.

In conclusion, there are 3 ways of mitigating the risk of lying by util-
ising the digital-real-world disconnect in a distributed business process
execution. First, actions can be modelled as pure information exchange,
allowing for the use of the results in this thesis to secure the actor from
lying about the action. One should take care to not simply move the
problem into the real world again by doing so, though. Secondly, by ver-
ifying easily verifiable actions, one can gap the disconnect and ensure no
discrepancies between what an actor says they do and what they actually
do. Finally, if neither of the other two possibilities is possible, one can
outsource the action to some trustworthy third party. It should be noted
that both verifying actions and using trusted third parties reduce the
usefulness of distributed business process execution engines to a degree;
both mitigations require more real-world work and lessen automation.
As such, the cost of mitigating risks from the digital-real-world discon-
nect must be weighed against the cost of potential adversarial behaviour
by collaborators. One question that is left is how far one can push the
idea of modelling collaboration as an information exchange before either
of the other two possibilities are necessary. We leave this as future work.

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 29

1.7 Future work

In this thesis, we take steps to prevent malicious behaviour in the exe-
cution of a distributed business process. However, the steps taken are
by no means exhaustive. They rely on strong assumptions, that may
not always hold true for practical purposes. We have likewise left several
avenues of research for the future. In this section, we present and discuss
four major questions left unanswered in this thesis, which can serve as a
point of departure for future research into the subject:

1. How can we prevent malicious behaviour in partially synchronous or
asynchronous distributed business model executions? Which tools
can we reuse, and where do we have to invent new tools?

2. Can malicious actors act maliciously in other ways than lying,
cheating and stealing?

3. Does modelling the choreography as information flow allow for fur-
ther circumvention of the digital-real-world disconnect?

4. How exactly are consistency and secrecy opposed, and how far can
we push each without violating the other?

Partially synchronous and asynchronous systems

The first and most significant assumption made in this thesis is the
synchronicity of the system model. The synchronous system model is
generally considered a strong assumption due to its impractical, and
sometimes even impossible, implementation details. As such, synchrony
is a major limitation to the usefulness of the results in this thesis. For-
tunately, not all the results presented requires the strong assumption
of complete synchrony: the transformation of Byzantine faults using a
TEE in Chapter 2 is independent of synchrony.

Similarly, the notion of secret actions in Chapter 4 is defined without
any assumptions of synchrony. It is important to factor such assump-
tions into the observation notion, however, since observing a run in an
asynchronous system may lead to lost or reordered observations of run
fragments. This translates into the observation function being inherently
non-deterministic, i.e. a random function, in such a system model. While
this, of course, must be accounted for in specific uses of the definition,
it does not present a problem for most systems where the observation in
a synchronous version of the system is still possible in the asynchronous
system; if an action is secret for a deterministic observation function,

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 30

then, intuitively, it must also be secret in a randomized version of that
function, when all images in the random function must contain their
counterpart in the deterministic function. This means, however, that
one should take care not to assume an action to be secret when this is
modelled under asynchronous assumptions, since these actions may not
be secret in systems with a high degree of synchrony. It may also be
prudent to examine further probabilistic notions of secrecy for use in
asynchronous systems since there clearly is an element of probability by
virtue of the random function.

The results regarding non-equivocation in Chapter 3, have less use
in asynchronous or partially synchronous systems. Inherently, the dif-
ference between strong non-equivocation and weak non-equivocation lies
in the possibility for actors to omit messages in the weak version and
not in the strong one. And it is imperative to the analysis of weak non-
equivocation that a processor can determine that another processor is
faulty by the omission of a message. But if messages can be delayed
indefinitely, as they can in asynchronous systems, then this is indistin-
guishable from the actor omitting the message, making both the distinc-
tion and the analysis of the properties invalid. A need for further study
of how these properties behave for distributed business process models
in asynchronous and partially synchronous systems is indicated.

Other malicious actions

The second significant assumption we have made is that the described
malicious actions are exhaustive: that a malicious actor can only lie,
cheat by equivocation, or attempt to steal secrets. However, it may be
that this list is, in fact, not exhaustive. Heindel and Weber [32] describe
a model of a malicious actor that follows the prescribed process and con-
serves consistency, but whose goal is to achieve a specific outcome in the
process. By choosing their action appropriately, such a malicious actor
may force other actors to make suboptimal choices, thereby achieving
their goal. Such malicious behaviour is not explicitly covered under any
of the assumptions for malicious behaviour. However, there does seem
to be a link to the definition of secrecy of actions: both types of mali-
cious actors follow the described process. Also, for a malicious actor to
force other actors to take certain choices, they must be aware of which
action the other actors take, or at least the effect such actions have on
the process as a whole. For two or more actions that are secret by virtue
of being isomorphic as described in Chapter 4, Section 4.3, this may hold
true. Actions that are secret for other reasons, though, could obscure

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 31

the process state as a whole to the malicious actor, and so may actually
be a way to prevent or limit such behaviour. Further analysis of the
interaction between action secrecy and such malicious behaviour looks
to be a promising avenue of research.

In Sections 1.3 and 1.4, we saw that neither the TEE transformation,
nor the non-equivocation properties could alone prevent active malicious
behaviour of actors in an execution engine. Even the composition of the
transformation with the strong non-equivocation guarantee was vulner-
able to an attack on consistency where the adversary omitted messages
that are supposed to update the enabledness of actions of other actors,
due to the two generals problem. However, in the event of the inven-
tion of an execution engine that is resilient to (malicious) omissions, the
results of Chapters 2 and 3 are immediately applicable.

Other malicious behaviours that may not have been accounted for,
include malicious behaviour that exploits the concurrency of actions. It
may be that there exists an attack on the described countermeasures for
malicious behaviour if the malicious actor can make use of the inherent
concurrency of actions. This is related to the notion of synchrony since
concurrency implies some asynchrony in the system. We have discounted
such attacks since concurrency must be handled by all solutions to the
consistency problem. However, current solutions do not include asyn-
chrony and do not suppose malicious behaviour, so it may be that this
assumption is too strong.

Extending the modelling of choreographies

In Section 1.6, we described how one could model the choreography as
an exchange of information to circumvent the digital-real-world discon-
nect. This has some limitations, as described, and must be used with
caution. The idea of modelling actions as a flow of information may
also have important benefits, that can be extended and used beyond the
choreography. Recall that the benefit of modelling actions this way is to
decouple them from, or preferably even entirely merge them with, their
real-world counterpart. As such it may be beneficial to the actors of pro-
cesses with a lot of repetition or with many instances of the same process
to apply this modelling to actions outside the choreography. A formal
investigation into this way of modelling may yield important results in
both creating more performant and more secure processes.

As an aside, there seems to exist a curious relationship between the
choreography, information flow of a process, and secrecy of actions. Part
of the research that did not make it into the paper in Chapter 4, was

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 32

the definition of total secrecy of actions. The definition in Chapter 4,
Section 3, implies that an observing actor cannot determine if an action
has been taken in any run where the action actually has been taken. The
observing actor is allowed to determine that an action has not been taken
in runs where it has, in fact, not been taken (e.g. the empty run). Total
secrecy, on the other hand, implies that an actor can never determine
if an action had been taken or not. The total secrecy property implies
that no information flows from the totally secret action to the observing
actor. This, in turn, implies that such actions cannot exist in the chore-
ography between the two actors, since, by definition, information flows
between actions in the choreography.

Consistency vs. secrecy

In Section 1.5, we describe how the secrecy of an action and the consis-
tency of a global process using an agreement algorithm are directly at
odds. This is due to the fact that, if an action is secret, then determining
if an actor has taken that action must be impossible. Meanwhile, by us-
ing an agreement algorithm (see 1.1, actions are published when taken.
This dichotomy between consistency and secrecy seems to extend partly
beyond agreement algorithms: when an action is secret, it means that
the amount of information flowing from one actor to another is limited or
lacking when taking the secret action. Consistency, on the other hand,
implies that information must flow between at least some actions in the
process, otherwise the rules of the global process cannot be preserved.

One way to conserve some secrecy and still use agreement algorithms
is to require only agreement on the public part of a process (assuming a
P2P approach). There may be no need to ensure consistency of actions
not affecting the public part of the process, since these only affect the
actor’s private process. Due to the digital-real-world disconnect, each
actor can do as they please for such actions anyway; there is no need
to communicate any information, the only actor that has any interest in
verifying the action is the actor taking the action, and if a trusted third
party is made to take the action, then the action invariably becomes
part of the public part of the process. So the secrecy of such local
actions may be possible to achieve by using a solution with an agreement
algorithm. However, there are plenty of examples where we are more
interested in keeping the actions that are part of public process secret.
For instance, when David LLC chooses which security suite to protect
its infrastructure. Other ways of circumventing this discordance could
prove beneficial.

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 33

In Chapter 4, the assumption is that consistency is guaranteed: the
actors cannot circumvent the rules of the global process. This natu-
rally limits which actions can be secret to those where small amounts of
information are required to flow between actors for consistency to be pre-
served. However, this leaves the question of how weakening the require-
ments of consistency might improve secrecy: if, for instance, we allow
the system to enter inconsistent states that are guaranteed to eventually
become consistent again at a later time, can we increase the number of
secret actions? Might we even be able to achieve total secrecy of actions
in the choreography? What other reasonable weakening of consistency
might be beneficial to secrecy, and what exactly is the relationship be-
tween the two properties, in information flow terms?

1.8 Introductory conclusion

Thank you for following me this far. I trust that you have gotten a
good overview of the results of the papers that make up this thesis, and
how they relate to securing business process model executions. For good
measure, I will summarise the major points here.

The main result of the paper in Chapter 2 is a transformation of
omission-resistant distributed algorithms to Byzantine ones, by using a
TEE. The transformation applies to adversarial collaboration by pre-
venting malicious actors from actively lying about which actions they
have taken. This application disregards the notion of the digital-real-
world disconnect and does not prohibit malicious actors from attacking
consistency by omitting messages. Another application of the transfor-
mation is the fact that it can reduce the cost of agreement algorithms –
which can be used to solve the consistency problem – and increase their
fault tolerance. However, the transformation includes some vulnerabili-
ties and should be used with care.

The main result of the paper in Chapter 3 is an analysis of two differ-
ent kinds of non-equivocation, and their application to agreement algo-
rithms. At first glance, non-equivocation seems to have an application
directly to adversarial collaboration, but we show that this application
is rather negligible, due to the inherent two generals problem present
whenever malicious actors can omit messages. However, their applica-
tion to agreement algorithms makes them useful for any execution engine
that uses this approach.

The main result of the paper in Chapter 4 is a rigorous definition
of when an action is secret. This is directly applicable to adversarial

CHAPTER 1. SECURING DISTRIBUTED BPM EXECUTION 34

collaboration since it prevents malicious actors from extracting business
secrets by observing the collaborative process.

Below follow the papers I have written during the course of my PhD
project, from which stems the main results described in this introduction.
I hope that you will enjoy reading them.

Chapter 2

Transforming Byzantine Faults
Using a Trusted Execution
Environment

35

Transforming byzantine faults using a trusted
execution environment

Mads Frederik Madsen, Mikkel Gaub, Malthe Ettrup Kirkbro, and Søren Debois
Department of Computer Science

IT University of Copenhagen
{mfrm,mikg,maek,debois}@itu.dk

Abstract—We present a general transformation of general
omission resilient distributed algorithms into byzantine fault
ones. The transformation uses the guarantees of integrity and
confidentiality provided by a trusted execution environment to
implement a byzantine failure detector. Correct processes in
a transformed algorithm will operate as if byzantine faulty
processes have crashed or their messages were dropped. The
transformation adds no additional messages between processes,
except for a pre-compute step, and the increase in states of
the algorithm is linearly bounded: it is a 1-round, n = f + 1
translation, making no assumptions of determinism.

Index Terms—Byzantine faults, translation, TEE, TPM, SGX

I. INTRODUCTION

In the byzantine fault model, we know that 3f+1 processes
are necessary to solve the consensus problem [1]–[3], while
2f + 1 processes are sufficient to solve the problem in the
crash-fault model [3]. By solve, we mean with some relaxation
of either liveness, asynchrony or determinism, to circumvent
FLP impossibility [4]. Using hybrid fault models, where some
subsystems are assumed to fail only by crashing, new solutions
have achieved 2f + 1 fault tolerance [5]–[10]. The trusted
subsystem prevents a process from equivocating, the action
of sending contradicting messages, which increases the fault
tolerance from 3f + 1 to 2f + 1 [5,11].

These small trusted subsystems take different forms. Most
notable are the attested append-only memory (A2M) identified
by Chun et. al. in [5], and the authenticated monotonic counter
(TrInc) identified by Levin et. al. in [11]. The solutions using
these trusted subsystems make the common assumption that
the component, in fact, does not experience byzantine faults,
but fails only by crashing.

We show how any algorithm tolerant to general omission
faults and unreliable channels can be transformed into a
byzantine fault-tolerant algorithm. Note that while the trans-
formation works regardless of synchrony, it does require the
underlying algorithm to be resilient to omission faults also in
the synchronous setting. It is also assumed that the transformed
algorithm is correct before the transformation takes place.

The transformation operates by moving the entirety of the
algorithm into a trusted execution environment (TEE). We
do not assume that the TEE is free from byzantine faults,
but rather use its integrity and confidentiality guarantees.
Intuitively, the integrity guarantee simulates a perfect local
byzantine fault detector oracle. which can be used to translate
any such fault to a crash or a message omission. Meanwhile,

the confidentiality guarantee ensures that, given a shared secret
between the integrity protected processes, no process can
falsely pass itself off as being integrity protected.

The transformation works on both synchronous (but omis-
sion resilient) and asynchronous algorithms; transforms both
deterministic and randomised algorithms; introduces no over-
head on the number of messages past pre-computation; im-
poses only a small constant overhead on message size; and
preserves the algorithm’s fault tolerance. To our knowledge,
no transformation with these properties currently exists.

The overhead of transformations are traditionally measured
in rounds and fault tolerance (e.g. [12]–[15]). E.g. a 4-round,
n = 3f + 1 transformation converts one round of message
send/receives in the algorithm into four and requires that at
most bn−13 c processes exhibits faults. (A translated algorithm
will have the lower fault tolerance of the transformation and
the original.) We say that a transformation is a crash to
byzantine transformation if it can transform a crash fault-
tolerant algorithm to be byzantine fault-tolerant and that the
transformation translates byzantine faults to crash faults if a
byzantine fault on one process presents as a crash fault to
the transformed algorithms on other, correct, processes. Using
these terms, this paper presents a 1-round, n = f + 1 general
omission to byzantine transformation.

This paper comprises 5 sections: in Section II we present
related work; in Section III we give our system model; in Sec-
tion IV we present and prove correct our core transformation;
and in Section V we give an example application.

II. RELATED WORK

Automatically transforming or translating algorithms to have
fault tolerance in stronger fault models is a well-known idea.
Our improvement is to extend such transformations with the
use of trusted hardware, as trusted hardware has shown some
promise in eliminating byzantine faults. E.g., Attested Append-
only Memory [5] and Trusted Incrementers [11], which elimi-
nate equivocation in byzantine consensus systems; the PoeT
consensus algorithm for Hyperledger Sawtooth [16], where
mining is replaced with a proof of elapsed time from trusted
hardware; and by the blockchain-based cloud service provider
iExec [17], where trusted hardware secures confidentiality of
data computed at untrusted remote actors.

Transformations generally focus on the translation of faults
and are therefore referred to as translations. Translations are

36

distinguished by the synchrony of the system in which they
are applied, since they, usually, cannot translate faults in both
synchronous and asynchronous systems.

Synchronous translations. These include the composable
translations of [12], where the composition of auxiliary trans-
lations results in two crash-to-byzantine translations: a 4-
round, n = 4f + 1 translation and a 6-round, n = 3f + 1
translation. The translations differ in their broadcast primitives
(reliable, validated, etc.). These results were improved upon
in [13], which presents 2, 3, and 4-round translations, with fault
tolerance related to the round-increase: n > max(6f − 3, 3f),
n > max(4f −2, 3f) and n = 3f +1, respectively. Later [18]
proposed a translation assuming each process has a unique
cryptographic signature and that at most one in any replicated
pair of a process fail simultaneously, achieving under these
assumptions a crash-to-authenticated-byzantine translation.

None of these translations caters to randomized algorithms:
they all rely on comparing deterministic behaviour to check
whether a process is exhibiting byzantine faults.

Asynchronous translations. In this setting, [19] proposes a
crash-to-byzantine translation, by building a reliable broadcast
primitive which filters messages to present byzantine faults as
crashes. The protocol requires three broadcast rounds and has
a fault tolerance of n = 3f + 1. Coan [14] builds upon this
result and proposes a 2-round, n = 4f+1 translation, and a 3-
round, n = 3f+1 translation; both making asynchronous crash
fault-tolerant algorithms into byzantine fault-tolerant ones. Ho
et. al. [20] proposes an asynchronous crash to byzantine trans-
lation using an ordered1, authenticated and reliable broadcast
primitive, yielding a fault tolerance of n = 2f + 1 if the
primitive is built using cryptography, or n = 3f + 1 if it is
built without cryptography. The broadcast primitive requires 3
rounds for each original message.

Lastly, our translation is related to that of Clement et. al.
in [15], where it is shown that the non-equivocation given
by a trusted subsystem is not enough to ensure the 2f + 1
lower bound in the hybrid fault model, but that transferable
authentication—e.g., digital signatures—is needed as well. In
this setting, they create a 1-round, n = f + 1 crash to byzan-
tine translation using a trusted subsystem that ensures non-
equivocation and transferable authentication. Our translation
distinguishes itself on the following points: their translation
can translate asynchronous algorithms, while ours can translate
both synchronous and asynchronous algorithms; they assume
that the trusted subsystem can only fail by crashing, while
we assume only the integrity and confidentiality of a TEE;
their translation requires the algorithm to be deterministic,
as their primitive requires simulation of the sending process’
underlying state machine by the receiving process, while
ours require no such simulation, and thus can translate both
randomized and deterministic algorithms; each sent message
from a process in their translation includes all previously

1FIFO-ordered per sending process, and not ordered between distinct
processes, since this would make the construction of such a primitive reduce
to a consensus problem.

received and sent messages to enable complete simulation
of the sending process by the receiving process, making the
message size grow linearly with the number of rounds. In our
transformation, the messages have the constant overhead of a
Message Authentication Code tag (MAC).

III. SYSTEM MODEL

We will now present our system model, which is related to
that of [20], where the traditional system model is extended
with several state machines per process, each with separate
state and progression. We will not, however, model channels
as separate state machines, but instead, use the abstraction of
channels as passive components for delivering messages.

A. Processes and channels

A system comprises processes, state machines and chan-
nels: A distributed algorithm consists of n processes
{p0, . . . , pn−1}, each containing a set of state machines. State
machines on the same process may be connected with reliable
FIFO-channels; whereas state machines on separate processes
can be connected only with unreliable channels, which may
drop, reorder, duplicate, corrupt, or redirect messages. We
make no synchrony assumptions about channels and processes,
as we solely use the assumptions of the underlying system.

“State machines” here are any kind of automaton that con-
sumes inputs and produces outputs. A simple example is Mealy
Machines; however, we emphasise that our transformation also
applies to more powerful machines such as pushdown automata
or Turing machines. Note that some of the machines introduced
by our translation—notably the wrapper machines and the
machines appending MAC codes to messages— can not be
adequately represented as finite state machines, but require
more powerful computational models.

Formally, a state machine in this paper consists of a set
of states, transitions between the states, and an initial state.
(When state, transitions, and alphabet of actions are all finite,
the machine is a Mealy Machine.) Transitions are on the form
(s0, tin) → (s1, tout), where s0 and s1 are, respectively, the
beginning and end states of the transition. tin and tout are
tuples of the form (B, c), where B is an arbitrary length bit
string, and c is a named channel. tin is an input message
on channel c required for the transition to initiate, and tout
is the output message produced and sent via channel c as
a consequence of the transition. We use ∅ to indicate that a
transition does not require an input or an output.

P0 P1

SM0

SM1

SM2

SM3

SM4SM5

c0
c1

c2

c3

c4

Fig. 1. Simple example of processes and channels in our system model.

Figure 1 shows an example of processes and channels. This
simple setup has 2 processes, P0 with the state machines
SM0, . . . SM2 and P1 with state machines SM3, . . . SM5. The

37

state machines of P0 are connected with the reliable channels
c0 and c1, while the state machines of P1 are connected with
the reliable channels c2 and c3. The processes are connected
through the unreliable channel c4 between SM1 and SM3.

This model is inherently non-deterministic: state machines
of a process can be in different states across otherwise identical
runs. However, we do not rely on the determinism of an
algorithm in our transformation, and our transformation does
not introduce non-determinism.

B. Faults

As mentioned, channels between processes are unreliable:
messages may be dropped from these channels. We use channel
omissions as a proxy for all omission faults in the system,
including send- and receive omissions. Note that this conven-
tion makes it impossible to detect where the message omission
has taken place, a key problem in general omission resilient
systems [21]. Formally, we model a crash failure by an ε-
transition to a special state se, with no outgoing transitions. In
this state, a state machine can neither transition away, receive
inputs, nor create outputs, altogether behaving as if crashed.

To model byzantine faults, we must allow arbitrary be-
haviour. To this end, we model a byzantine fault of a process
as the removal, addition or substitution of any number of that
process’ state machines with arbitrary replacement machines.
An initially faulty process can be perfectly approximated by
such a substitution occurring at the very beginning before any
communications or internal actions take place.

We make conventional assumptions about cryptography: a
byzantine fault cannot produce faults requiring the simulation
of secrets—so no byzantine fault can produce new messages
with correct Message Authentication Codes (MACs).

C. TEE guarantees

A TEE is a subsystem2 providing Authenticity, Integrity,
Confidentiality and Remote Attestation [22]–[24]. Authentic-
ity is the property that a program saved to persistent storage
and later loaded into a TEE, loads successfully into the TEE
only if it is the unaltered original program. In other words, the
program cannot be changed after it has been compiled into a
TEE compliant binary. Integrity is the property that only a
program running in a TEE can change the data in the memory
of a TEE, and the program can only change the data in the
TEE that has been allocated to it. This integrity property still
holds while the data resides outside the TEE, e.g. in persistent
storage. We presently work with a weaker integrity property:
unauthorised changes to data inside the TEE cause the immedi-
ate loss of all cryptographic secrets in that TEE. We choose this
weaker model because nothing prevents a byzantine process
from trying to impersonate a newly crashed process. In the
worst case, the imposter process would replicate the crashed
process’ state, making it indistinguishable from the crashed
process from the point of view of other correct processes,
except for any confidential secrets the crashed process might

2Note, we are not referring to the implementation of a TEE, which can be
achieved in several ways, but the properties implementations have in common.

have had. Confidentiality is the property that data created
in the TEE can only be read by a program running inside
the TEE, both during program execution and when residing
in persistent storage. Furthermore, a program inside the TEE
can only read its own confidential data. Remote Attestation
is the property that a program running inside a TEE can
prove its Authenticity to remote hosts. We will assume that
the Remote Attestation property enables a confidential and
integrity-protected exchange of symmetric cryptographic keys
between TEE programs, as seen in e.g. [25].

For ease of modelling, we let Integrity encompass Au-
thenticity, i.e. we view programs as data generated by an
application running inside a TEE, which means that we will
be given Authenticity as a by-product of Integrity.

We note that for practical TEE implementations, the In-
tegrity property is up to common assumptions about cryptog-
raphy, e.g., the TEE implementation Intel R© Software Guard
Extensions (SGX) detects integrity violations except with
negligible probability under the assumption that AES128 is
a random permutation [26]. Our notion of Integrity conforms
to the one of SGX, where the processor will halt entirely
on an integrity fault. Nothing prevents a byzantine process
from trying to impersonate a crashed process, but the integrity
property will ensure that the impostor process will not be able
to replicate the confidentiality-protected secrets.

To model these properties, we need three more concepts:
1) An integrity protected area of each process.
2) A state machine (SMc) for each such area in which all

cryptographic secrets resides.
3) An attestation process (PRA) and an attestation state

machine (SMA). An SMA resides on each process, and
together with PRA enables Remote Attestation.

The state machine SMc enjoys the Confidentiality property:
so only SMc may access cryptographic secrets residing on
the process. We assume that no other process, including ones
arising from byzantine faults, can “guess” these secrets. The
integrity protected area enjoys the Integrity property in the
sense that if it encounters a byzantine fault—if one of its state
machines is substituted—the SMc machine disappears.

Details of Remote Attestation varies with the implemen-
tation, e.g., the GlobalPlatform standard has no standardised
Remote Attestation mechanism, but supports different imple-
mentations [27,28]. We assume that SMA and PRA are able
to perfectly attest to state machines in the integrity protected
area, i.e. uniquely identify the state machines and their states
and verify that they are located in an integrity protected
area. Moreover, we assume that, as part of that attestation,
the remote attestation process is able to securely provision
SMc with a shared symmetric secret. These assumptions are
supported by, e.g., Remote Attestation in SGX [29,30], which
relies on trusting an Intel R© Attestation Server (IAS).

As some implementations of TEEs have limited access to
hardware peripherals, we do not allow channels from the
integrity protected area of a process to another process. Instead,
we introduce state machines outside the integrity protected area
that has a reliable channel into the integrity protected area, and

38

an unreliable channel to another process. We name these state
machines wrapper state machines or simply wrappers.

D. Weakening of channels

To allow failing processes arbitrary behaviour, we allow
correct state machines to receive messages from all state
machines on faulty processes. Messages from faulty processes
can be received on any and all channels by state machines on
correct processes. The only exception we allow is that faulty
state machines outside the integrity protected area cannot send
messages on channels with both endpoints inside an integrity
protected area. This is a realistic assumption: communication
between modules in the same TEE is usually implemented by
shared memory, which also resides inside the TEE, and thus
is protected from tampering by modules outside the TEE.

E. Integrity violations vs. byzantine faults on SGX

We explain in more detail, using Intel SGX as an example,
exactly in what sense we can construct a byzantine failure
detector using SGX primitives. The primary protection against
integrity violations in SGX is an integrity tree with the root
stored in SRAM on-die [26]. All integrity-protected memory
is MAC’ed in blocks collected in a Merkle-tree, with the root
of this stored in on the CPU itself. When reading data from
memory, MACs are verified against the Merkel tree: If they
do not verify, the CPU halts, requiring a physical reset.

However, Gueron notes in [26] that, both the CPU and its
caches are trusted components, i.e., reside within the “Trust
boundary perimeter”, which results in some confidentiality
attacks [31]–[33]. It follows that SGX might not protect against
faults taking place in the CPU cache, nor any affecting the CPU
itself. To the best of our knowledge, the integrity attacks that
exists on SGX requires a vulnerability in the program running
in the enclave [34,35], which we assume is not the case for
the algorithm to be transformed.

Regardless, this mechanism protects against physical and
software attacks on memory: No process, including other SGX
processes, can (except with negligible probability) modify
data in the integrity protected memory without the CPU
halting [29]. This is an argument that SGX can detect and
protect against byzantine faults that change code and main
memory after process initiation. Note that a “byzantine fault”
here may not “guess” secrets encapsulated in SGX.

IV. TRANSFORMATION

We now present the transformation of general omission tol-
erant algorithms to byzantine fault-tolerant algorithms, under
the assumption that the algorithm handles unreliable channels.

The core idea of our transformation is to move the entire
set of state machines into the integrity protected area, thus
guaranteeing the integrity of the algorithm. However, we will
need to ensure the integrity of all messages between the
protected areas, both on the unprotected areas of the processes
and while in transit on the channels. To this end, the trans-
formation involves modifying both processes and individual
state machines. On the process-level, we move constituent state

P0 P1

SM0

SM1

SM2

SM3

SM4SM5

c0 c1

c2

c3

Step 1:

P0 P1

SM0

SM1

SM ′1

SM2

SM3

SM ′3

SM4SM5

c0 c1

c2

c3

c4

c′4 c′′4

Step 2:

P0 P1

SM0

SM1

SM ′1

SM2

SM3

SM ′3

SM4SM5

SMc0 SMc1

c0 c1

c2

c3

c4

c′4 c′′4

cc0

cc1

Step 3:

PRA

P0 P1

SM0

SM1

SM ′1

SM2

SM3

SM ′3

SM4SM5

SMc0 SMc1

SMRA

SMA0 SMA1

c0 c1

c2

c3

c4

c′4 c′′4

cc0

cc1

ca0 ca1

c′a0 c′a1

Step 4:

Fig. 2. Visualisation of the process-level transformation of Figure 1.

machines into the integrity protected area; on the individual
state machine level, we sign messages from the state machines
to ensure integrity during transmission.

The transform is in 6 steps, where steps 1–4 adds integrity
protection and remote attestation; and 5–6 implements byzan-
tine failure detectors by validating such attestations.

A. Stage 1: Integrity protection & remote attestation

These are steps 1–4:

1) Encapsulate state machines in their process’ integrity
protected area.

2) Add wrapper machines and connect them to the integrity
protected state machines, and to each other.

3) Add SMc, a machine hosting secrets, to each process.
4) Add SMA to all processes, and connect them to PRA.

39

Note that the machines added in steps 2–4 are not finite. We
visualise these steps for a very simple protocol in Figure 2.

Step 1 moves the state machines of each process into the
integrity protected area of that process, visualised in Figure 2
as a box inside the processes. We temporarily remove channels
to external processes. Step 2 adds back the missing channels
via a “wrapper” state machine residing outside the integrity
protected area of a process. For each (unreliable) inter-process
channel, we add (1) a wrapper at each endpoint, (2) an
(unreliable) channel with endpoints in the wrappers and (3) a
(reliable) channel from each end-point wrapper to the original
state machine end-point. Step 3 adds a cryptographic state
machine SMc to all integrity protected areas. SMc will store
any secrets, will MAC messages to be transmitted, and will
be cleared of secrets if a byzantine fault is detected in the
integrity protected area. Step 4 adds remote attestation: A
machine SMA on all processes and a PRA process.

B. Stage 2: Detecting byzantine failures

All processes must first complete a pre-compute step to
participate in the transformed algorithm. In the pre-compute
step, the processes are (a) remotely attested and (b) provisioned
with a shared cryptographic secret. All processes will share
the same secret after completing step (b). These steps do not
presuppose synchrony or eventual delivery: Any message of
the remote attestation being infinitely delayed is equivalent to
the first message of the underlying algorithm being infinitely
delayed. With this shared key, a Message Authentication Code
(MAC) is appended to messages, which verifies to other
processes that the message was constructed by a non-failed
integrity protected state machine. Because we assume that
byzantine faults manifest as the loss of cryptographic secrets,
a correct MAC guarantees that the message originated from a
correct process. Thus, steps 5–6:

5) MAC each outbound inter-process message sent from
within the integrity-protected area. We transform each tran-
sition (s0, tin)→ (s1, (B, c)) into the two transitions:

(s0, tin)→ (s′, (B, cc))
(s′, (B||MAC(B), cc))→ (s1, (B||MAC(B), c))

Here cc is a reliable channel to SMc, s′ is a new state,
where the state machines wait for a reply from SMc, and
B||MAC(B) is B appended with a valid MAC tag.

6) Verify the MAC on each inbound message. Each transition
of the form (s0, (B, c))→ (s1, tout) becomes:

(s0, (B||MAC(B), c))→ (s′, (B||MAC(B), cc))
(s′, (”1”, cc))→ (s1, tout)
(s′, (”0”, cc))→ (s0, ∅)

Here s′ is an intermediate state in which we await a reply from
SMc. If SMc replies that the MAC is valid (”1”) we proceed
to s1; otherwise, the MAC is invalid, and we return to the state
s0. In the latter case, the machine behaves as if no message
was ever received.

Note that the machines added in steps 5 and 6 are not
finite. Step 5 and 6 compose; if a transition has inter-process
messages as both input and output, the transition is transformed
by step 5, and the resulting transition with the inter-process
output is then transformed by step 6. Note that if SMc handles
requests in order, neither step 5 nor step 6 introduce new non-
determinism, because both steps use a waiting state, such that
the requesting state machine must receive a response from
SMc before continuing. The entirety of the transformation
introduces no new non-determinism since each external send
and receive have simply been broken up into smaller atomic
steps, during which the state machine is waiting.

C. Overhead

The number of new states and transitions are both linearly
bounded by the number of messages to/from state machines
on other processes. Each inter-process message send adds one
state and one transition; each inter-process message receival
adds one state and two transitions.

Counting messages, each inter-process message in the orig-
inal system incurs additional intra-process messages in the
transformed system for MAC’ing (2), for the sending and re-
ceiving wrappers (2), and for MAC verification (2); altogether
6 messages. Intra-process messages incur no overhead.

An algorithm with me inter-process (external) messages and
mi intra-process messages, the transformed system will use me

inter-process messages and 6me +mi intra-process messages,
plus the messages for the initial remote attestation and provi-
sioning pre-compute step. Note that the overhead is all intra-
process: barring the initial remote attestation, the number of
inter-process messages, messages between processes, does not
increase. In practice, each inter-process message has only the
small constant-size overhead of a MAC. We leave an empirical
investigation of overhead as future work.

D. Correctness

We show how a byzantine fault in any part of the process
will be translated to either perpetual or sporadic message
omission. A failed process with perpetual message omission
seems crashed to all other processes since it cannot in any way
affect the other processes in the system. We call this failure
mode constant omission. Note that a single byzantine fault
might affect more than one state machine and thus several
different types of state machines on the same process.

Integrity protected state machines. Recall that a byzantine
fault consists of the removal, addition, or replacement of
machines; and that such a fault causes the removal of the
SMc state machine containing secrets of the integrity protected
area. With the lost secrets assumed unguessable by new state
machines, no machine in the failed process will be able to
produce MACs (Step 5). State machines of correct processes
will, therefore, behave as if they received no messages from the
failed process (Step 6): all correct non-wrapper state machines
experience constant omission from the faulty process. Note that
this case includes the cryptographic machine SMc.

40

Wrapper state machines. A replacement for a wrapper ma-
chine cannot fake correct MACs and so behaves equivalently
to an unreliable channel: the failed machine can drop, reorder,
corrupt and redirect the messages. The original algorithm
is assumed to handle unreliable channels, hence also these
faults, except malicious corruptions, which is handled by the
MAC. Removing or adding machines are special cases of re-
placements. Altogether a byzantine fault in wrapper machines
translates to ordinary channel faults or constant omission.
Remote attestation state machines. We assume that remote
attestation is atomic, and do not consider faults during that
attestation process. We proceed to consider the two cases of
the remote attestation machine SMA experiencing a byzantine
fault (1) before and (2) after the attestation completes.

(1) If the remote attestation machine suffers a byzantine fault
before being remotely attested, it can drop, reorder, corrupt
or redirect messages. However, it cannot create new valid
messages in this process, nor can it read the shared secret that
is provisioned to the cryptographic state machine as a result
of the attestation. As such, a fault in the remote attestation
machine can at worst have the consequence that either the
cryptographic state machine is provisioned with a wrong
secret, or not provisioned at all. Both cases translate to constant
omission: any message sent from the integrity protected area
will be dropped by any correct receiving process. (2) If the
remote attestation state machine experiences a byzantine fault
after the remote attestation process has completed, that fault
is equivalent to a byzantine fault in a wrapper state machine,
since the remote attestation state machine resides outside the
integrity protected area, and does not have special privileges.

Clearly, an unhandled byzantine fault in PRA violates all
of the former guarantees, as byzantine processes can now
be provisioned with the shared secret. Therefore, the remote
attestation process must be protected in a way that guarantees
that only correct processes are provisioned with the shared
secret. Such mechanisms exist [36]–[38].

Except for byzantine faults in the remote attestation process
(PRA and SMRA), we have seen that on all ordinary processes,
the transformation translates byzantine faults to omissions,
constant omissions, unreliable channels and crashes.

V. TRANSFORMATION EXAMPLE

We exemplify the transformation with the classic central-
server mutual exclusion algorithm (CSME), see, e.g. [39]. In
mutual exclusion, a collection of processes share access to
one or more resources, referred to as the critical section (CS).
To prevent data-races and race-conditions, a mutual exclusion
algorithm ensures that at most a single correct process has
access to the critical section at any given time, that is, at most
one correct process may execute in the CS at a time (safety)
and any requests to enter and exit the critical section eventually
succeeds (liveness). As an aside, this example demonstrates
that the translation has relevance outside consensus problems.

This algorithm does not provide liveness under process
crashes: If the server crashes, no process can gain access
tokens, so no requests for access succeed; if a client crashes

with the token, the token is lost. However, safety is still
guaranteed: no process can access the critical section without
a token. Under byzantine faults, neither safety nor liveness is
guaranteed. E.g., the server could distribute multiple tokens.

We now apply the transformation from Section IV to CSME,
obtaining an algorithm which provides the same guarantees
(safety) under byzantine faults as the untransformed does under
crash faults. First, we model the algorithm as Mealy Machines,
channels and processes. We model two different state ma-
chines: a client state machine, and a server state machine. The
modelling is more straight-forward with pushdown automata,
but we continue with Mealy Machines for clarity.

Fig. 3. Client state machine from the central server algorithm for mutual
exclusion. Note that the channel cc represents the unreliable channel to the
server, and is different across client instances.

The client state machine is modelled in Figure 3. It is in
one of four states: not having requested access to the CS (s0),
waiting for the token from the server (s1), being in the CS
(s2), or have crashed (se).

Fig. 4. Server state machine from the central server algorithm for mutual
exclusion. Note that this server can only handle two client processes.

Figure 4 shows a model of the server state machine in an
algorithm with two client processes. It encompasses 6 states:

s0 no client has the token, no requests have been received
s1 client 1 has requested the token
s2 client 2 has requested the token
s3 client 1 has the token, client 2 has requested the token
s4 client 2 has the token, client 1 has requested the token
se the state machine has crashed.

We will assume a CSME system with two client processes
P1 and P2 each running an instance of the state machine from
Figure 3, with an unreliable channel to the server process P0,
which runs an instance of the state machine from Figure 4.

We first show how the state machines are transformed to
have their messages MAC’ed by SMc and to have SMc verify
the messages they receive. This is done by applying the state
machine transformation described in Section IV.

41

Fig. 5. Client state machine in CSME, after it has been transformed to handle
byzantine faults.

Figure 5 shows the transformed client state machine. To
enter the critical section, a request is sent to SMc over the
inter-process channel cc for MAC’ing and transitions to s′0.
When the MAC’ed message is returned, it is sent to the server
process. The state machine is now at s1, which is equivalent
to s1 in the untransformed state machine. cs is now a channel
to/from the wrapper state machine. When a token is received
from cs, the message’s MAC is sent to SMc for verification.
If the MAC is correct, the state machine will transition to s2,
which is in the critical section and is equivalent to s2 in the
untransformed state machine. A similar process is followed
when exiting the critical section: the exit message is sent to
SMc for MAC’ing, and the returned message is sent to the
wrapper state machine for redirection to the server process.
Figure 9 shows the transformed server state machine, omitting
se for readability. Figures 6 and 7 show the processes before
and after the transformation, respectively.

P1 P0 P2

SM1 SM0 SM2

c0 c1

Fig. 6. Processes and channels in the central server algorithm for mutual
exclusion, with one server and two clients. SM0 is an instance of Figure 4,
while SM1 and SM2 are instances of Figure 3.

PRA

P1 P0 P2

SMc1 SMc0 SMc2SM1

SM ′1

SM0

SM ′0 SM ′′0

SM2

SM ′2

SMRA

SMA1
SMA0

SMA2

Fig. 7. Processes and channels in the central server algorithm for mutual
exclusion, after they have been transformed to handle byzantine faults.

In the transformed CSME algorithm, correct processes ex-
hibit the same behaviour under byzantine faults as they did
under crash faults in the original algorithm. The example
shows that the translation directly inherits fault resilience
properties of the original algorithm: CSME has safety but not
liveness under crash and omission faults, so the transformed
CSME algorithm also has safety but not liveness, but under the

stronger fault model of byzantine faults and omission faults.
Consider the fault where the server state machines try to

serve tokens on any request, without waiting for the token to
be released by the client holding it, violating safety. Model this
byzantine fault as SM0 has been exchanged with SMbyz (see
Figure 8), which serves a token to any request by the clients.
Under this byzantine fault, none of the tokens can be MAC’ed.
Thereby, any correct client process (Figure 5) will get stuck
in a loop between s1 and s′1, when SMc rejects the token as
it has not been MAC’ed. This is behaviour is equivalent to the
server process crashing: a token will never be accepted, and
the client will be unable to enter the CS.

While the transformation does seem quite complex in this
example, we emphasize that the transformation can be fully
automated by applying the 6 steps described in Section IV.

Fig. 8. The byzantine fault state machine SMbyz on the server process.

VI. CONCLUSION

We have given a 1-round, n = f + 1 transformation
which translates byzantine faults to crashes and omission.
The transformation relies on the integrity and confidentiality
guarantees of a trusted execution environment and requires
remote attestation. Using this model, we have shown how,
by the properties of a TEE, the transformation translates the
byzantine faults into either crashes, unreliable channels or
omission faults. This ultimately makes an argument for the use
of TEEs as trusted subsystems, and for the validity of using
TEEs as the subsystem running other small trusted subsystems,
by use of the presented transformation. Future work includes
investigating performance of this technique when applied to
more complex distributed algorithms; and implementing au-
tomated variants of this translation for protocol specification
languages such as Session types, SDL or UML-variants.

REFERENCES

[1] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp.
228–234, 1980.

[2] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, Jul. 1982.

[3] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” Journal of the ACM, vol. 32, no. 4, pp. 824–840, 1985.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, 1985.

[5] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
Append-only Memory: Making Adversaries Stick to Their Word,” in
Proceedings of Twenty-First ACM SIGOPS Symposium on Operating
Systems Principles, ser. SOSP ’07. ACM, 2007, pp. 189–204.

[6] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “EBAWA:
Efficient Byzantine agreement for wide-area networks,” in High-
Assurance Systems Engineering (HASE), 2010 IEEE 12th International
Symposium On. IEEE, 2010, pp. 10–19.

42

Fig. 9. Server state machine in the central server algorithm for mutual exclusion, after it has been transformed to handle byzantine faults. Note that se has
been omitted for improved readability.

[7] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “CheapBFT: Resource-efficient
byzantine fault tolerance,” in Proceedings of the 7th ACM European
Conference on Computer Systems. ACM, 2012, pp. 295–308.

[8] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, 2013.

[9] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzan-
tine Consensus via Hardware-assisted Secret Sharing,” preprint
arXiv:1612.04997, 2016.

[10] J. Behl, T. Distler, and R. Kapitza, “Hybrids on Steroids: SGX-Based
High Performance BFT,” in Proceedings of the Twelfth European Confer-
ence on Computer Systems, ser. EuroSys ’17. ACM, 2017, pp. 222–237.

[11] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc: Small
Trusted Hardware for Large Distributed Systems.” in NSDI, vol. 9, 2009,
pp. 1–14.

[12] G. Neiger and S. Toueg, “Automatically increasing the fault-tolerance
of distributed algorithms,” Journal of Algorithms, vol. 11, no. 3, pp.
374–419, Sep. 1990.

[13] R. A. Bazzi and G. Neiger, “Simplifying Fault-Tolerance: Providing
the Abstraction of Crash Failures,” Georgia Institute of Technology,
Technical Report, 1993.

[14] B. A. Coan, “A compiler that increases the fault tolerance of asyn-
chronous protocols,” IEEE Transactions on Computers, vol. 37, no. 12,
pp. 1541–1553, 1988.

[15] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues, “On the (limited)
power of non-equivocation,” in Proceedings of the 2012 ACM Symposium
on Principles of Distributed Computing. ACM Press, 2012, p. 301.

[16] Intel, “Hyperledger Sawtooth,” Jun. 2019. [Online]. Available: https:
//sawtooth.hyperledger.org/

[17] iExec, “iExec Documentation,” Jun. 2019. [Online]. Available: https:
//docs.iex.ec/

[18] D. Mpoeleng, P. Ezhilchelvan, and N. Speirs, “From crash tolerance to
authenticated byzantine tolerance: A structured approach, the cost and
benefits,” in 2003 International Conference on Dependable Systems and
Networks, 2003. Proceedings., Jun. 2003, pp. 227–236.

[19] G. Bracha, “Asynchronous Byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[20] C. Ho, D. Dolev, and R. van Renesse, “Making Distributed Applications
Robust,” International Conference On Principles Of Distributed Systems,
vol. 4878, pp. 232–246, 2007.

[21] K. J. Perry and S. Toueg, “Distributed agreement in the presence of
processor and communication faults,” IEEE Transactions on Software
Engineering, no. 3, pp. 477–482, 1986.

[22] GlobalPlatform, Inc., “Introduction to Trusted Execution Environments,”
May 2018.

[23] Intel, “Intel(R) Software Guard Extensions Programming Reference,
Revision 2,” October 2014.

[24] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution En-
vironment: What It is, and What It is Not,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1, Aug. 2015, pp. 57–64.

[25] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
Technology for CPU Based Attestation and Sealing,” in Proceedings of
the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, vol. 13, 2013, p. 7.

[26] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose
Processors,” Intel Development Center, Israel, Tech. Rep. 204, 2016.

[27] GlobalPlatform, Inc., “GlobalPlatform Technology TEE System Archi-
tecture Version 1.2,” Nov. 2018.

[28] C. Shepherd, R. N. Akram, and K. Markantonakis, “Establishing mutu-
ally trusted channels for remote sensing devices with trusted execution
environments,” in Proceedings of the 12th International Conference on
Availability, Reliability and Security. ACM, 2017, p. 7.

[29] V. Costan and S. Devadas, “Intel SGX Explained.” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[30] Intel, “Intel(R) Software Guard Extensions Developer Reference for
Linux OS.”

[31] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache Attacks on
Intel SGX,” in Proceedings of the 10th European Workshop on Systems
Security - EuroSec’17. Belgrade, Serbia: ACM Press, 2017, pp. 1–6.

[32] F. Brasser, U. Muller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” in Proceedings of the 11th USENIX Conference on Offensive
Technologies. USENIX Association, 2017, p. 12.

[33] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SGX-
PECTRE Attacks: Leaking Enclave Secrets via Speculative Execution,”
arXiv preprint arXiv:1802.09085, 2018.

[34] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado,
and B. B. Kang, “Hacking in Darkness: Return-oriented Programming
against Secure Enclaves,” p. 19, 2017.

[35] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi, “The
Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel SGX,”
p. 16, 2018.

[36] F. Stumpf, O. Tafreschi, P. Roder, and C. Eckert, “A Robust Integrity
Reporting Protocol for Remote Attestation,” in Future Wireless Networks
and Information Systems. Springer Berlin Heidelberg, 2006.

[37] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei, “Remote attestation
on program execution,” in Proceedings of the 3rd ACM Workshop on
Scalable Trusted Computing - STC ’08. ACM Press, 2008.

[38] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” International Journal of Information Security, vol. 10, no. 2,
Jun. 2011.

[39] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simula-
tions, and Advanced Topics. John Wiley & Sons, Mar. 2004.

43

Chapter 3

On the Subject of
Non-Equivocation: Defining
Non-Equivocation in Synchronous
Agreement Systems

44

On the Subject of Non-Equivocation
Defining Non-Equivocation in Synchronous Agreement Systems

Mads Frederik Madsen
IT University of Copenhagen

Copenhagen, Denmark
mfrm@itu.dk

Søren Debois
IT University of Copenhagen

Copenhagen, Denmark
debois@itu.dk

ABSTRACT
We study non-equivocation in synchronous agreement proto-
cols: the restriction on faulty processes that they cannot act
differently towards distinct non-faulty processes. Guarantees
of non-equivocation have been used to provide improved fault
tolerance in agreement protocols, and various mechanisms for
achieving it, have been proposed. However, the exact meaning
of non-equivocation varies subtly in the literature. In this paper,
we propose two different formal notions of non-equivocation:
strong and weak. We define both as fault models for synchronous
agreement protocols with reliable channels, and we show how
the two models yield distinct bounds for the minimal number of
communication rounds required and the maximum number of
faulty processes tolerable to achieve agreement: 1 round, n > t
for strong non-equivocation; and t + 1 rounds, n > 2t for weak
non-equivocation. This makes weak non-equivocation the only
fault model with a lower bound on fault tolerance of n > 2t for
broadcast agreement and interactive consistency, confirming the
folklore knowledge that equivocation is, in a sense, the most critical
of the Byzantine faults. Finally, we show how the weak and strong
non-equivocation fault models relate to well-known agreement
problems: strong non-equivocation corresponds to Byzantine
broadcast and weak non-equivocation to crusader agreement.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms.

KEYWORDS
Agreement, non-equivocation, fault tolerance, synchronous sys-
tems

ACM Reference Format:
Mads Frederik Madsen and Søren Debois. 2020. On the Subject of Non-
Equivocation: Defining Non-Equivocation in Synchronous Agreement Sys-
tems. In Proceedings of The 39th ACM Symposium on Principles of Dis-
tributed Computing (PODC’20). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PODC’20, August 3–7 2020, Salerno, Italy,
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Equivocation is the act of a faulty process acting differently when
correct behaviour is to be consistent. In this paper, we study non-
equivocation in synchronous agreement protocols: the guarantee
that otherwise Byzantine processes will never equivocate.

The notion of equivocation was introduced informally and with-
out the name by Lamport et al. [25]. Subsequently, Chun et al. [11]
named it and showed that assuming non-equivocation (in one form)
allows for an improvement in fault tolerance. Mechanisms provid-
ing non-equivocation can be constructed in different ways, with the
most well-known being perhaps Attested Append-Only Memory
(A2M) [11] and Trusted Incrementers (TrInc) [26].

Studies of non-equivocation have used subtly different defini-
tions of the concept, leading to subtly different results. E.g.,[27]
proposes the non-equivocation based “f -resilient” condition for
agreement in synchronous systems, and conjecture informally that
this property will be enough also in asynchronous ones. Mean-
while, [12] proves that transferable authentication is a necessary
addition to non-equivocation for a fault tolerance improvement
in asynchronous systems. The result of [12] does not contradict
the conjecture in [27] as the two papers are referring to different
notions of non-equivocation.

Thus, we propose two different concepts of non-equivocation:
strong and weak. Both require faulty processes to not “lie differ-
ently”, but weak non-equivocation allows faulty processes to se-
lectively omit messages to some participants, where strong non-
equivocation does not. In the above example [27] refers to a notion
like that of strong non-equivocation, while [12] refers to one like
that of weak non-equivocation.

Both A2M and TrInc can provide at best weak non-equivocation
since a malicious or faulty process using a trusted module can still
choose to simply not send messages. On the other hand, partial
broadcast channels [13, 21, 22, 33], and local broadcast channels [23,
24] provide strong non-equivocation, as they guarantee broadcast
messages are reliably and identically received by all neighbours.

Technically, we work in the original framework of Pease et al.
[30], where we define both weak and strong non-equivocation as
fault models for synchronous systems with reliable channels. We
show for both how to solve the agreement problem of interactive
consistency [30]. For strong non-equivocation, this is trivial; we
obtain a 1-round, n > t fault-tolerant algorithm simply by broad-
casting a value, where n is the number of processes, and t is the
number of faulty processes. For weak non-equivocation, we show
how the problem is solvable using the algorithm of Pease et al. [30]
with only minor adjustments. In this case, t+1 rounds are necessary,
and we obtain exactly a fault-tolerance of n > 2t .

45

PODC’20, August 3–7 2020, Salerno, Italy,
Mads Frederik Madsen and Søren Debois

We relate the present results to the existing body of work on
agreement protocols in Table 1 on page 3. To the best of our knowl-
edge, weak non-equivocation is the only fault model with a lower
bound of n > 2t on the fault tolerance of broadcast agreement
and interactive consistency in a synchronous model with reliable
channels. This result demonstrates formally how equivocation is at
the core of impossibility of Byzantine fault tolerance.

The notions of weak and strong non-equivocation as fault
models fit neatly with our existing understanding of agreement
problems in the following sense. Under guarantees of strong
non-equivocation, it is trivial to implement Byzantine broadcast;
conversely, given a Byzantine broadcast oracle, it is trivial to obtain
strong non-equivocation. Similarly, under guarantees of weak
non-equivocation, it is trivial to solve crusader agreement [15];
and conversely, weak non-equivocation is straightforward to
obtain given a crusader agreement oracle. Essentially, properties of
non-equivocation in synchronous models come down to properties
of an oracle for the corresponding agreement problem.

The weak non-equivocation fault model resembles the authenti-
cated Byzantine fault model in that both can be achieved by the use
of cryptographic mechanisms. However, we show that while they
do share a subspace of runs not in the omission fault model, both
also contain a subspace of runs that the other fault model does not.
So as fault models, they overlap, but only partly.

Overview. We proceed as follows. After presenting related
work, we give in Section 2 a system model, in particular recalling
the framework of Pease et al. [30]. We introduce strong non-
equivocation in Section 3, followed by weak non-equivocation
in Section 4. In Section 5 we give bounds on rounds and fault
tolerance, and in Section 6 we prove those bounds tight. Finally, we
discuss relations to other agreement problem variants in Section 7.

Related work. In agreement protocols processes attempt to agree
on one or more values. Processes are given an input value, a pri-
vate value, and must agree on one or more of these values, the
decision value(s). Table 1 shows optimal fault tolerance for agree-
ment problems under various fault models, including results of the
present paper. The notion of (authenticated) Byzantine agreement
problems was introduced by Pease, Shostak, and Lamport [30][25],
formulated as interactive consistency and the Byzantine generals
problem. In interactive consistency, the non-faulty processes must
agree on a value for each process, while in the Byzantine generals
problem (i.e. Byzantine broadcast agreement) the non-faulty pro-
cesses must agree on the private value of a pre-specified process.
Interactive consistency can be achieved by running an instance of
broadcast agreement per process [19]. Consensus is the problem
formulation where every process suggests a value, and non-faulty
processes decide on a single common value. It notably differs from
interactive consistency and broadcast agreement in the validity
property [3, 19]: if all non-faulty processes suggest the same value,
then all non-faulty processes must decide that value. This stronger
validity property makes the problem impossible to solve, unless
n > 2t , when processes are allowed to lie about their value. Consen-
sus can be achieved, if n > 2t , by running a majority function an
interactive consistency vector, and similarly broadcast agreement
can be achieved by running a consensus algorithm on the received
values of a broadcast [19]. Uniform consensus differs from the other

agreement problems in that also faulty processes must agree on
the decided value [32, 34]. Fault-tolerant agreement is generally
impossible under asynchrony (FLP-impossibility), as shown by Fis-
cher, Lynch, and Paterson [20] because non-faulty processes cannot
distinguish a faulty process from delayed messages. This impossibil-
ity is commonly circumvented with either partial synchrony [18],
relaxation of termination or determinism [5, 7, 31] or the use of
failure-detectors [9, 10].

Non-equivocation was suggested by Chun et al. [11] as a means
of improving fault-tolerance, exemplified via improvements to
PBFT by Castro and Liskov [8] for asynchronous Byzantine consen-
sus with relaxed termination. The non-equivocation mechanism
used was an attested append-only log. Levin et al. [26] showed
how to construct such a log more efficiently using increment-
only counters. Non-equivocation is strongly linked to broadcast
primitives, and such two primitives have been used to achieve
non-equivocation; partial broadcast channels [13, 21, 22, 33] and
local broadcast channels [23, 24]. Here, non-equivocation means
that messages sent through special channels are received reliably
and identically by all neighbours. This corresponds to our no-
tion of strong non-equivocation in Section 3 but limited to sub-
sets of all processes. Other non-equivocation notions, e.g. that
of [1, 4, 11, 12, 14, 27], are weaker system-wide properties, where
faulty processes may omit messages. This corresponds to our notion
of weak non-equivocation in Section 4. Algorithms that use non-
equivocation to achieve agreement with improved fault-tolerance
include [1, 14, 27].

Fitzi and Maurer [21] showed that synchronous Byzantine broad-
casts (i.e. Byzantine generals) can be achieved with n > 2t using
a partial broadcast mechanism, which provides a property akin to
strong non-equivocation, between only subsets of 3 processes. Chun
et al. [11] showed how non-equivocation can be used to implement
an n > 2t resilient PBFT solution. Clement et al. [12] showed that
neither non-equivocation nor transferable authentication is enough
to give an n > 2t resilient agreement protocol under asynchrony
with relaxed termination; both are needed. Lastly, Jaffe et al. [22]
examined the trade-off between equivocation and redundancy by
showing under which conditions a fault-tolerance of n = 2t + h,
for any h > 0, can be achieved using partial broadcast channels
providing (strong) non-equivocation.

2 SYSTEM MODEL AND NOTATION
A system comprises n synchronous processes connected with syn-
chronous and reliable point-to-point channels. Up to t processes
may be faulty, and can deviate arbitrarily from the protocol, but
not break the guarantees awarded by the fault model. To simplify
the presentation, we separate the message-exchange protocol from
the rest of the algorithm. By slight abuse of language, we will refer
to the message-exchange as the protocol, and the calculation made
by a process on its received messages as the algorithm.

We define P = {p,q, r , . . .} to be the set of all processes, N to
be the subset of all non-faulty processes, and F to be the subset of
faulty processes: N ∪ F = P , N ∩ F = ∅, |N | = n, and |F | = t . As
usual, P∗ denotes all finite strings over P , P+ denotes all non-empty
finite strings, and we refer to an element of P∗ as a process-sequence.

46

On the Subject of Non-Equivocation
PODC’20, August 3–7 2020, Salerno, Italy,

Table 1: Optimal fault tolerance of different agreement problems in different fault models, assuming synchronous processes
and reliable, synchronous channels. Rows titled in bold represent results of the present paper.

Fault model Broadcast agreement Interactive consistency Consensus Uniform consensus

Byzantine n > 3t [25]† n > 3t [30] n > 3t [25]‡ N/A
Weak non-equivocation n > 2t n > 2t n > 2t N/A
Authenticated Byzantine n > t [25] n > t [30] n > 2t [35] N/A

Omission n > t [34] n > t [34] n > t [34] n > 2t [32]
Crash n > t [28] n > t [28] n > t [28] n > t [34]

Strong non-equivocation n > t n > t n > 2t N/A
† Aka Byzantine generals n processes, t faulty
‡ Aka Byzantine agreement

Each message sent comprises of a value v ∈ V , and a member
of P+, representing the route the value has been sent along. Each
process can correctly determine the immediate sender of a message.
Note that lying about the process-sequence of a message is equiva-
lent to lying about the value [30], so we consider only lies about
values for the remainder of this paper.

We will define non-equivocation as a fault model for the protocol.
A fault model limits which messages faulty processes may send.
For this purpose, we use the framework of [30], where the message-
exchange is represented as a map σ : P+ → V from process-
sequences to values. For instance, σ (p |q) = v means that q has sent
v top, (“|” denotes string concatenation); andσ (p |q |r) = v thatq has
reported top that r has reported the initial valuev toq. Processes do
not send messages to themselves, so, abusing notation, we consider
only process-sequences which do not contain consecutive duplicate
characters, e.g., we disregard p |p |q.

A process p obviously has access only to the messages it has
received. Formally, we define σp as ∀w ∈ P∗ : σp (w) = σ (p |w).
For ease of notation, and since process-sequences cannot include
consecutive duplicates, we let σp (p |w) = σp (w). In cases of message
omissions, we use ⊥ to denote the absence of a value in σ . We
use ⟨⊥⟩ as the value specifying the absence of a value, that is, if
σ (p |r) = ⊥ then a correct p will report ⟨⊥⟩ to any q: σ (q |p |r) = ⟨⊥⟩.

2.1 Interactive consistency
Recall the interactive consistency problem [30]. Each process p starts
with a private value vp and must compute a vector, vecp , of size n
such that:
Agreement: All non-faulty processes compute the same vector:

∀p,q ∈ N : vecp = vecq
Validity: If q is non-faulty, all non-faulty processes sets the q’th

element in the vector to q’s private value:
∀p,q ∈ N : vecp [q] = vq

Termination: All non-faulty processes must eventually compute
a vector.

Interactive consistency is known to be reducible to Byzantine broad-
cast and vice versa [19], so to solve interactive consistency, it is
sufficient to give an algorithm describing Byzantine broadcast. We
exploit this equivalence to interchangeably solve one or the other,
depending on which is more convenient: We generally find it more
convenient to solve Byzantine broadcast, however, interactive con-
sistency supports a more intuitive induction proof in Section 5.

For Sections 3 to 5, we use the following protocol, which is a
specialized round-based message-passing protocol. All processes
go through t + 1 information exchange broadcast rounds. In the first
broadcast round, the non-faulty processes broadcast their private
values, and subsequently, in round r they broadcast the values they
received in round r −1, along with the route that value has taken so
far. As we consider only a finite number of rounds and synchronous
channels and processes, termination of the protocol is trivial, and
we need only consider the termination of the algorithm.

This protocol gives us the following guarantee: a non-faulty pro-
cess neither lies about its private value, nor its previously received
messages.

Definition 2.1 (Non-faulty process guarantee). A non-
faulty process truthfully broadcast values, reporting ⟨⊥⟩ only when
they have observed a message omission:

∀q ∈ N : ∀p ∈ P \ {q} : ∀w ∈ P∗ :

σ (p |q |w) =
{
⟨⊥⟩, if σ (q |w) = ⊥
σ (q |w), otherwise

In the non-faulty process guarantee, ⟨⊥⟩ can be interpreted as the
reporting process reporting that there exists a suffix of the process-
sequence of that message, let’s call it w ′, for which σ (w ′) = ⊥.
Note that ⟨⊥⟩ is simply a value, and can be reported as any process’
private value. Also, note that this interpretation is not a guarantee;
a faulty process can report ⟨⊥⟩ having received neither ⊥ nor ⟨⊥⟩
in the previous round. Faulty processes are allowed to deviate
arbitrarily from the protocol and so from Definition 2.1; they are
restricted only by the fault model.

3 STRONG NON-EQUIVOCATION
We define strong non-equivocation fault model as a weakening of
the Byzantine fault model:

Definition 3.1 (Strong non-eqivocation). For any given
process-sequence, all processes—faulty or not—report the same value
to all other processes:

∀p, r , r ′ ∈ P : ∀w ∈ P∗ : σ (r |p |w) = σ (r ′ |p |w)

47

PODC’20, August 3–7 2020, Salerno, Italy,
Mads Frederik Madsen and Søren Debois

Sincew can be the empty string and is prefixed with the same p on
both sides of the equality, this is equivalent1 to

∀r , r ′ ∈ P : ∀w ∈ P+ : σ (r |w) = σ (r ′ |w)
Under strong non-equivocation, a faulty process may still lie: a

faulty process q may receive v from p in round 1, but proceed to
claim to other processes that p saidw in round 2. Similarly, a faulty
process may omit messages under the strong non-equivocation
fault model, but only if it omits all messages in that round.

The strong non-equivocation fault model overlaps with the crash
fault model: a faulty process may fail by not sending any messages
from a given round onwards, thereby acting as if crashed. However,
the strong non-equivocation fault model does not contain the crash
fault model: in the crash fault model a faulty process can fail during
its broadcast, leading to a situation where some processes have
received a message from the crashing process, while others have
not; a violation of Definition 3.1. Conversely, a faulty process can lie
in a given round in the strong non-equivocation fault model, which
is not allowed in either the general omission- or the crash fault
model. So the strong non-equivocation fault model must overlap
with a strict subspace of the crash fault model, but also extend into a
strict subspace of the Byzantine fault model, see Figure 4 on page 9
for an illustration of the fault model spaces.

Given a guarantee of strong non-equivocation, it is trivial to
solve Byzantine broadcast, and so also interactive consistency. For
source q, each correct p simply decides on the value it was sent by
q in round 1: vecp [q] = σp (p |q). Clearly, if q is correct, each correct
process sets the same value. If q is faulty, then by Definition 3.1,
each other process has received the same message from q, and so
all decide on the same value. (We give a formal proof of correctness
in Appendix A.) Note that the strong non-equivocation fault model
really is very strong: all is done in one round, and within that single
round, the source process cannot fail in a way that makes it in any
way distinguishable from a correct process, making interactive con-
sistency and Byzantine broadcast solvable for n > t . Note that for
the problem of consensus, the lower bound is n > 2t , as processes
can lie about their private value (see Section 1).

We argue that Byzantine broadcast and strong non-equivocation
are interchangeable in the sense that strong non-equivocation im-
plies a trivial solution to Byzantine broadcast as shown above. Sim-
ilarly, a Byzantine broadcast oracle can be used to make algorithms
assuming the strong non-equivocation fault model work in the
Byzantine fault model. Informally, the latter holds because, after
Byzantine broadcast, all non-faulty processes agree on some value
for the source process, which is exactly strong non-equivocation.

Strong non-equivocation is most useful in systems with partial
trust, or given primitives providing the properties to parts of the
system. For examples, the extensive work on partial broadcast chan-
nels, e.g. [13, 21, 22, 33], use a definition of non-equivocation exactly
like strong non-equivocation; every process on the partial broadcast
channel receive the same messages. Using this primitive, Fitzi and
Maurer [21] consider the problem of achieving global broadcast, i.e.
Byzantine broadcast, from such strongly non-equivocating partial
broadcast channels. Given that strong non-equivocation is inter-
changeable with Byzantine broadcast, the problem of achieving
1We are implicitly understanding this requirement to be only when r ′ |w contains no
consecutive duplicates, see Section 2.

global broadcast from partial broadcast channels can be rephrased
as a problem of extending strong non-equivocation across systems;
achieving system-wide strong non-equivocation from strongly non-
equivocating partial broadcast channels.

4 WEAK NON-EQUIVOCATION
Key practical approaches to non-equivocation revolve around using
cryptographic primitives in trusted modules, possibly hardware,
making equivocation readily detectable by non-faulty processes.
This is the approach taken by TrInc and A2M [11, 26]. In this case,
strong non-equivocation is not an appropriate fault model, since the
possibly faulty process employing the trusted module may still omit
any message it chooses, including omitting messages to some but
not all other processes within a single round. Thus, we define weak
non-equivocation, where all processes still must report the same
value to other processes for each process-sequence, but are allowed
to omit messages to some subset of processes. Recall absence of a
message is represented as ⊥ in σ .

Definition 4.1 (Weak non-eqivocation). For any given
process-sequence, all processes—faulty or not—report the same value
to a subset of processes, and omit messages to the rest:

∀p, r , r ′ ∈ P : ∀w ∈ P∗ : σ (r |p |w) , ⊥ ∧ σ (r ′ |p |w) , ⊥ =⇒
σ (r |p |w) = σ (r ′ |p |w)

Sincew can be the empty string and is prefixed with the same p on
both sides of the equality, this is equivalent to:

∀r , r ′ ∈ P : ∀w ∈ P+ : σ (r |w) , ⊥ ∧ σ (r ′ |w) , ⊥ =⇒
σ (r |w) = σ (r ′ |w)

Observe that the omission- and crash fault models are strict
subspaces of the weak non-equivocation fault model as a faulty
process can arbitrarily omit any message, and consequently also
stop sending messages altogether from a given round onwards,
thereby acting as if crashed See Figure 4 on page 9 for an illustration
of the fault model spaces.

4.1 Algorithm for t = 1
To establish intuition about the general algorithm, we give in Al-
gorithm 1 on page 5 a solution to Byzantine broadcast under weak
non-equivocation when t = 1. (For the general case, see Section 5.)
Note that for n = 3 this is the traditional Byzantine generals prob-
lem, which is not solvable in the Byzantine fault model [25].

The algorithm proceeds as follows over two rounds. If a non-⊥
value is received in the first round (line 3), we decide on that value
(line 4). Otherwise, the source must be faulty and (as t = 1) all
other processes non-faulty. If any other non-faulty process received
a value from the source, they correctly report that in the second
round (line 5), and we decide on that value (line 6). Otherwise, no
non-faulty process can have received a value in the first round,
and so we decide on ⟨⊥⟩ as the value. The non-faulty processes
all set the same value because they consider only the value sent
by the source in the first round, and by weak non-equivocation
(Definition 2.1), all who received the a value in round 1 received the
same value. Altogether, we have correctness (for full proof, refer to
the generalisation in Theorem 5.1):

48

On the Subject of Non-Equivocation
PODC’20, August 3–7 2020, Salerno, Italy,

p q

r

⊥

v

⟨⊥⟩
v

(a) Report to only one

p q

r

⊥

⊥
⟨⊥⟩

⟨⊥⟩

(b) Report to no one

p q

r

⊥v

v
v

v

(c) Act non-faulty

Figure 1: Three examples of n = 3, t = 1 executions, showing
all possible actions a faulty source, p, can take under weak
non-equivocation, parametric on the value of v.

Theorem 4.2. In the weak non-equivocation fault model, interac-
tive consistency is solvable for any n > 1 if t ≤ 1.

It is instructive to consider the different possibilities a faulty
process has for lying under weak non-equivocation in the case
n = 3, t = 1. Refer to Figures 1 and 2. In each case, it is immediately
apparent to non-faulty nodes either who is faulty, or what the
correct value should be. E.g., in Figure 1a, r knows to decide on v
upon receiving it; q knows that p is faulty from the omission, thus
deciding upon the value from r , whichmust be correct because t = 1.
In Figure 2b, r knows that q is faulty as p could not have reported
v ′ to q without violating weak non-equivocation (Definition 4.1).

4.2 Properties of weak non-equivocation
To reason about the general case, we introduce the formal device of
consistent majorities. Consider a process p trying to decide on the
value of a source process q. A consistent q-majority for a value v is

p q

r

v

v

⊥
v

(a) Don’t relay

p q

r

v

v

v ′
v

(b) Relay incorrectly

p q

r

v

v
v

v

(c) Act non-faulty

Figure 2: Three examples of n = 3, t = 1 executions, showing
all possible actions a faulty non-source, q, can take under
weak non-equivocation, parametric on the values of v and
v ′ and assuming that v , v ′.

Algorithm 1 Algorithm for process p to set q’th value in vector
functionWNEt=1(σp , p, q)

1: if p = q then ▷ p is q
2: return σp (p)
3: else if σp (p |q) , ⊥ then ▷ q reported a value to p
4: return σp (p |q)
5: else if ∃r .σp (p |r |q) , ⟨⊥⟩ then ▷ Someone else told p

about q
6: return σp (p |r |q)
7: else ▷ q have reported ⊥ to everyone
8: return ⟨⊥⟩
9: end if

end function

a setQ of more than t processes, including q, who have consistently
reported the value v to p, both for themselves and for each other.

Definition 4.3 (consistentmajority). Wewritemajq,vp,Q (t,σp , P)
and say that p has a consistent q-majority, when

∀w ∈ Q∗ : |w | ≤ t : σp (p |w |q) = v ∧ |Q | ≥ t + 1 ∧Q ⊆ P

Note that p having a consistent q-majority does not imply that
any other process has a consistent q-majority, as p may have re-
ceived different messages.

A consistent majority is related to the notion of a quorum but
differs by, (1) the source process must be part of a consistent major-
ity, and (2) the processes in a consistent majority Q also agree that
everybody in Q agree on the same value, at least as far as p knows.
The principle behind consistent majorities was described in [30].

Just from the message exchange σ , we can derive helpful re-
lationships between the distribution of faulty processes and the
existence of consistent majorities, provided we may assume n > 2t .
Recall that P = N ∪ F is the set of n processes, where F is the set of
at most t faulty processes, and N is the set of non-faulty processes.
Let p,q and r be processes and let σ be a map of messages after at
least t + 1 information exchange rounds according to Definition 2.1
and in the weak non-equivocation fault model (Definition 4.1).

Lemma 4.4. If p is non-faulty, then all non-faulty processes will
have a consistent majority for p’s private value vp :

∀q ∈ N : ∃Q ⊆ P : p ∈ N =⇒ maj
p,vp
q,Q (t,σq , P)

Proof. By Definition 2.1, all non-faulty processes correctly for-
ward values each round. So p must have reported vp to the set of
non-faulty processes N in the first round, and all processes in N
must have reported vp to each other in all following rounds. Then
N must be a consistent majority for vp , noting |N | > t . □

Lemma 4.5. If a process p does not have a consistent q-majority
then q must be faulty:

∀p,q ∈ P : (∀v ∈ V : ∀Q ⊆ P : ¬majq,vp,Q (t,σp , P)) =⇒ q ∈ F

Proof. Contraposition of Lemma 4.4. □

49

PODC’20, August 3–7 2020, Salerno, Italy,
Mads Frederik Madsen and Søren Debois

Lemma 4.6. If p has a consistent q-majority for v , then it cannot
also have a consistent q-majority for a distinct value v ′:

∀v,v ′ ∈ V : ∀p,q ∈ P : ∃Q,R ⊆ P :

majq,vp,Q (t,σp , P) ∧majq,v
′

p,R (t,σp , P) =⇒ v = v ′

Proof. By contradiction. Assume that for some process p,
majq,vp,Q (t,σp , P),majq,v

′
p,R (t,σp , P) andv , v ′ holds. By definition of

consistent majority (Definition 4.3), any set Q s.t. majq,vp,Q (t,σp , P)
must include q, so it must be the case that σ (p |q) = v . But then
by majq,v

′
p,R (t,σp , P) it must be the case that σ (p |q) = v ′, which

contradicts v , v ′. □

Lemma 4.7. No consistent majority for ⊥ can exist:

∀p,q ∈ P : ∀v ∈ V : (∃Q ⊆ P : majq,vp,Q (t,σp , P)) =⇒ v , ⊥

Proof. By contradiction. Assume that there exists a Q s.t.
majq,⊥p,Q (t,σp , P). By Definition 4.3, |Q | > |F |, so there must exist a
non-faulty process in Q , i.e. a non-faulty process that has reported
⊥. But, by Definition 2.1, non-faulty processes never report ⊥. □

Lemma 4.8. If non-faulty processes p and q each have a consistent
r -majority, then those must be for the same value:

∀p,q ∈ N : ∀v,v ′ ∈ V :

(∃Q,R ⊆ P : majr,vp,Q (t,σp , P) ∧majr,v
′

q,R(t,σq , P)) =⇒ v = v ′

Proof. By contradiction. Assume that p and q have consistent
r -majorities for respectively different values v and v ′. By Defi-
nition 4.3, p having an consistent r -majority for v implies that
σ (p |r) = v , and q having an consistent r -majority for v ′ implies
σ (q |r) = v ′. By weak non-equivocation (Definition 4.1), σ (p |r) ,
σ (q |r) implies that either v or v ′ is ⊥. But by Lemma 4.7, no con-
sistent majority for ⊥ can exist: a contradiction. □

5 SOLVING INTERACTIVE CONSISTENCY
UNDERWEAK NON-EQUIVOCATION

To solve interactive consistency, it is sufficient to define an algo-
rithm that achieves agreement, validity and termination for one
source process, and then run that algorithm for each process in the
system [19, 30]. Assuming n > 2t and weak non-equivocation, we
give such an algorithm in Algorithm 2, which is a generalisation of
Algorithm 1 and an adaptation of the algorithm by Pease, Shostak,
and Lamport [30], which assumes the Byzantine fault model. The
key differences are the addition of ⊥ and ⟨⊥⟩, the required size of
consistent majorities in Definition 4.3, and the size of the set in
line 20, which is adapted to fit with a fault tolerance of n > 2t .

Algorithm 2 relies on two insights. (1) If a process cannot find
a consistent majority, then the source process must be faulty
(Lemma 4.5). (2) After t + 1 rounds, if the source process is faulty,
we can treat the other processes reports about the source process
as their private values in a new instance of interactive consistency;
write σ̂ for the restriction of σ where we remove any mention
of the source. This σ̂ will have t message rounds regarding these
values. Since the faulty source process is excluded, σ̂ can be used
to recursively find the values reported to the rest of the processes,

Algorithm 2 Algorithm for process p to set source process q’s
value in an interactive consistency vector

function PSL(σp ,n, t,p,q, P)
1: if p = q then ▷ p’s own private value
2: if σp (p) = ⊥ then ▷ ⊥ < V , so choose default ⟨⊥⟩
3: return ⟨⊥⟩
4: else
5: return σp (p)
6: end if
7: end if
8: if ∃Q ⊆ P : majq,vp,Q (t,σp , P) then ▷ Consistent majority

for v
9: return v
10: end if ▷ No consistent majority; q is faulty (Lemma 4.5)
11: σ̂p ← {} ▷ Start constructing σ̂p
12: P̂ ← P \ {q} ▷ Exclude q from σ̂p

13: for allw ∈ P̂∗, s.t. p |w |q is in the domain of σp do
14: σ̂p (p |w) ← σp (p |w |q)
15: end for ▷ Done constructing σ̂p
16: v̂ec← [] ▷ Constructing v̂ec: IC vector of σ̂p
17: for all r ∈ P̂ do
18: v̂ec[r] ← PSL(σ̂p ,n − 1, t − 1,p, r , P̂)
19: end for ▷ Done constructing v̂ec
20: if ∃v , ⟨⊥⟩ : |{r | v̂ec[r] = v}| ≥ t then
21: return v ▷ Min. one non-faulty process received v
22: else
23: return ⟨⊥⟩
24: end if

end function

by either finding a consistent majority for them or recursively
applying the same method. In the base case, there is only one faulty
process left, in which case Algorithm 2 behaves like Algorithm 1.

We proceed to prove correctness of Algorithm 2.

Theorem 5.1. Algorithm 2 is correct.
Proof sketch (full proof in Appendix C). Validity. As-

sume a non-faulty source p; we must show that for any non-faulty
process, Algorithm 2 returns the private value vp . Because p is
non-faulty, all non-faulty processes have a consistent p-majority
for vp (Lemma 4.4), and cannot have a consistent p-majority for
another value (Lemma 4.6). Thus Algorithm 2 will return vp in
line 9.Agreement. We must show that for all non-faulty processes,
Algorithm 2 returns the same value. Consider a source p. If p is
non-faulty, agreement follows trivially from validity (line 9), so
assume p faulty. We proceed by induction on t . For the base case,
t = 1, p either reports a value to some processes, in which case
all others know to trust a forwarded value (line 21), or not report
at value at all, in which case everybody agrees that this is the
case (line 23), and choose a default value. For the induction case,
consider two arbitrary non-faulty processes, and proceed by cases
on which have a consistent p-majority. If they both do, then it
is for the same value by Lemma 4.8. If neither has a consistent
p-majority, then both know that p is faulty, and run Algorithm 2
recursively with p, obtaining a correct interactive consistency

50

On the Subject of Non-Equivocation
PODC’20, August 3–7 2020, Salerno, Italy,

vector by IH. They both run a majority function on this vector (line
20), arriving at the same result. If one has a consistent majority,
and the other does not, then the latter must have a recursive vector
with a majority of the same value as that of the consistent majority
by Definition 4.3 and IH (see also Lemma C.1 in Appendix C).
Termination. Immediate from the observation that message
exchange is bounded at t + 1; the domain of σ is then finite; the
domain of σp is then also finite; and it is now obvious that all loops
in Algorithm 2 terminates. □

Theorem 5.1 shows that interactive consistency can be solved
for n > 2t under weak non-equivocation. However, the solution is
not efficient, requiringΘ(nt+1)messages to construct the necessary
σ . Algorithms that solve interactive consistency in a polynomial
number of messages, e.g. [16] exists for the Byzantine fault model,
andwe leave a polynomial algorithm for theweak non-equivocation
fault model as future work.

6 TIGHTNESS
Having proved interactive consistency possible for n > 2t under
weak non-equivocation, we now show that it is a tight lower bound.

Theorem 6.1. Given any finite number of rounds, k , and n ≤ 2t ,
no synchronous deterministic algorithm exists which, given a σ in
the weak non-equivocation fault model, always finds an interactive
consistency vector with the properties of agreement, validity and
termination.

Proof. By contradiction. Assume a deterministic algorithm, A,
where any process p can run A(p,σp ,q) and obtain a value for q
fulfilling the requirements of agreement and validity. Without loss
of generality assume that n = 2t and that each run continues for
k rounds, where k ≥ t + 1. Partition all processes into sets O,Q,R
and S , s.t. |O | = ⌊ t

2
⌋
, |Q | = ⌈ t

2
⌉
, |R | = ⌈ t

2
⌉
and |S | = ⌊ t

2
⌋
. Note that

all processes in any two partitions can be simultaneously faulty,
except for Q and R as their combined size may be greater than t .

Let the source process be p ∈ O . We construct four runs with
different faulty partitions, such that some non-faulty process will be
unable to distinguish two specific runs from each other, leading to a
contradiction if the algorithm achieves both validity and agreement.
Let v1 and v2 be distinct values not equal to ⊥ or ⟨⊥⟩. For ease of
notation let A(Q,σRun1,p) denote the value each process in Q will
decide for p in run 1. We construct runs such that A(Q,σRun1,p) =
v1 by validity, and A(Q,σRun1,p) = A(Q,σRun3,p) by determinism
ofA. Similarly we will construct the runs such thatA(R,σRun2,p) =
v2 by validity, and A(R,σRun2,p) = A(R,σRun4,p) by determinism
of A. Lastly we will construct the runs such that A(S,σRun3,p) =
A(S,σRun4,p) by determinism ofA, ultimately showing that S must
decide both v1 and v2 which is impossible as v1 , v2.

We construct the runs as follows. Let the processes inO broadcast
to the other partitions in round 2 exactly as p broadcast in round 1.
Run 1 (The processes of R and S are faulty):

• p broadcasts the value v1 in the first round.
• In the second round, the processes in R broadcast the value
v2 and the processes in S broadcast ⟨⊥⟩.
• In the third round the processes in R broadcast the value
v2 and the processes in S broadcast ⟨⊥⟩, as the respective
values received from O .

• All processes correctly report all other messages.
By validity, all processes in Q decide v1.

Run 2 (The processes of Q and S are faulty):
• p broadcasts the value v2 in the first round.
• In the second round, the processes in Q broadcast the
value v1 and the processes in S broadcast ⟨⊥⟩.
• In the third round the processes in Q broadcast the value
v1 and the processes in S broadcast ⟨⊥⟩, as the respective
values received from O .
• All processes correctly report all other messages.
By validity, all processes in R decide v2.

Run 3 (The processes of O and R are faulty):
• In the first round p broadcasts the value v1 to all except
for the processes in partition S , resulting in S recording ⊥.
• In the second round the processes in R broadcast v2, and
O broadcasts v1 to all but S , resulting in S recording ⊥.
• In the third round the processes in R broadcast the value
v2 as the values received from O .
• All processes correctly report all other messages.
For the processes in Q , this run is indistinguishable from
run 1: in both runs, they have received v1 fromO , v2 from R,
and ⟨⊥⟩ from S by the end of round 2, and all partitions will
act the same for the remaining rounds. By determinism, Q
should decide v1 to be the value for p. By agreement, S must
then decide v1 to be the value for p.

Run 4 (The processes of O and Q are faulty):
• In the first round p broadcasts the value v2 to all except
for the processes in partition S , resulting in S recording ⊥.
• In the second round processes in Q broadcast v1, and O
broadcasts v2 to all but S , resulting in S recording ⊥.
• In the third round the processes in Q broadcast the value
v1 as the values received from O .
• All processes correctly report all other messages.
For the processes in R, this run is indistinguishable from run
2: in both runs, they have received v2 from O , v1 from Q ,
and ⟨⊥⟩ from S by the end of round 2, and all partitions will
act the same for the remaining rounds. By determinism, R
should decide v2 to be the value for p. By agreement, S must
then decide v2 to be the value for p. But for the processes
in S , this run is indistinguishable from run 3: in both runs,
they have received nothing (⊥) from any process in O , v1
from all processes in Q , and v2 from all processes in R by
the end of round 2, and all partitions will act the same in the
two runs for the remaining rounds. So, by determinism all
processes in S should decide v1 to be the value for p, leading
to the contradiction that the processes in S should decide
both v1 and v2 for distinct v1 and v2. □

Note that this proof uses determinism only to restrict that non-
faulty processes decides the same value under indistinguishable
runs. This restriction may be implied by the validity and agreement
properties, making the proof have no requirement of determinism.
We leave a more thorough investigation of this as future work.

The weak non-equivocation fault model is, to the best of
our knowledge, the only fault model with this lower bound
fault-tolerance for interactive consistency and broadcast in the
synchronous model; the Byzantine fault model has n > 3t and all

51

PODC’20, August 3–7 2020, Salerno, Italy,
Mads Frederik Madsen and Søren Debois

O

Q

{O : v1,R : v2, S : ⟨⊥⟩}

R

{O : v2,Q : v1, S : ⟨⊥⟩}

S

v1 v2

⟨⊥⟩

(a) Run 1

O

Q

{O : v1,R : v2, S : ⟨⊥⟩}

R

{O : v2,Q : v1, S : ⟨⊥⟩}

S

v2

v1
⟨⊥⟩

(b) Run 2

O

Q
{O : v1,
R : v2,
S : ⟨⊥⟩}{O : v1,R : v2, S : ⟨⊥⟩}

R

{O : v2,Q : v1, S : ⟨⊥⟩}

S

{O : ⊥,
Q : v1,
R : v2}

v1

⊥ v2

v2
v1

⟨⊥⟩

(c) Run 3

O

Q

{O : v1,R : v2, S : ⟨⊥⟩}

R

{O : v2,Q : v1, S : ⟨⊥⟩}

S

{O : ⊥,Q : v1,R : v2}

v2

⊥

v1

v1
v2⟨⊥⟩

(d) Run 4

Figure 3: Runs described in the proof of Theorem 6.1. Faulty partitions are bold. Arrows are selected messages sent in round
2. The source process p is inO , so the arrows fromO are messages in both round 1 and 2. For selected partitions, the messages
received by end of round 2 are annotated. Note how partitionQ receives the samemessages in run 1 and 3, partition R receives
the same messages in run 2 and 4, and partition S receives the same messages in run 3 and 4.

others has n > t (see Table 1). This uniqueness confirms formally
the folklore knowledge that equivocation is the most critical of
the Byzantine fault and what necessitates the triple replication of
processes in Byzantine agreement problems.

Considering the fault tolerance of general omission algorithms
(n > t), Theorem 6.1 also suggests that the type of faults that
separates general omission from weak non-equivocation, i.e. lying
without equivocating, is what necessitates anything but the least
amount of replication. This hypothesis is also backed up by the
fault tolerance of the authenticated Byzantine fault model (n > t),
where faulty processes are prevented from lying at all about (but
not omitting) the messages of non-faulty processes.

A proof sketch of the tightness of the bound of t + 1 rounds is
simply showing that weak non-equivocation encompasses the crash
fault model. As it is known that the broadcast agreement cannot
be solved for less than t + 1 rounds in the crash fault model [2], it
follows that the problem requires at least as many rounds in weak
non-equivocation. A formal proof can be found in Appendix B.

7 OTHER MODELS
In this section, we relate weak non-equivocation to (1) the prob-
lem of crusader agreement as defined by Dolev [15], and (2) the
authenticated Byzantine fault model as defined by Pease et al. [30].

7.1 Weak non-equivocation and Crusader
Agreement

From weak non-equivocation to crusader agreement. Weak non-
equivocation (Definition 4.1) implies a trivial solution to the prob-
lem of crusader agreement [15]. Crusader agreement is an agreement
problem weaker than Byzantine broadcast: non-faulty receiving
processes must decide a value in agreement with all other non-
faulty processes unless the receiving process knows that the sending
process is faulty. Formally, processes in the crusader agreement
problem decides a value for the process p’s private value vp , with
these properties:

Crusader agreement: All non-faulty processes decide the same
value unless they know that p is faulty.2

Validity: If process p is non-faulty, then all non-faulty processes
decide vp .

Termination: All non-faulty processes must eventually decide on
a value, or know that p is faulty.

These properties are exactly true for any message in the weak non-
equivocation fault model: for some message, a non-faulty process
either receives a value from the sending process or it receives
nothing; if the receiving process receives nothing, then it knows
that the sending process is faulty; if the process receives a value,
then it is guaranteed that every other non-faulty process that also
received a value, have received the same value. Thus, a procedure
where the non-faulty processes (1) decides on the received value if
they receive one, and (2) otherwise sets the source process a faulty,
solves crusader agreement under weak non-equivocation.

From Crusader Agreement to Weak non-equivocation. Suppose
there exists an oracle producing crusader agreement upon request,
and that we use this oracle to produce crusader agreement for
the value of some source process p. After finishing deciding such a
value, all processes will (knowingly) be either faulty; non-faulty and
having decided a common value; or non-faulty and knowing that
p is faulty. This is exactly the same three states a process will find
itself in after p has broadcast a value under weak non-equivocation:
for some v , all correct processes q will have either σq (p) = v or
σq (p) = ⊥; in the latter case, q knows for a fact that p is faulty.

Dolev [15] showed that crusader agreement has a fault tolerance
of n > 3t in the pure Byzantine fault model, but that it only requires
a constant of 2 information exchange rounds. Dolev’s crusader
agreement algorithmworks by using a purifying function much like
Definition 4.33 to agree on a value or know that the source is faulty.
Assuming that n > 3t , we can use Dolev’s crusader agreement

2"know that p is faulty" is a slightly imprecise definition. For more precision, the
phrase "can prove that if the receiving process itself is non-faulty, then p must be
faulty" can be used.
3The most notable difference between Definition 4.3 and Dolevs purifying function
is that the purifying function does not require the source process to be part of the
consistent majority, and, of course, that the consistent majority must be of size at least
2t + 1, due to the lower fault tolerance.

52

On the Subject of Non-Equivocation
PODC’20, August 3–7 2020, Salerno, Italy,

algorithm as a primitive to map any σ with t + 2 rounds in the
Byzantine fault model into a σ with t + 1 rounds in the weak
non-equivocation fault model. The mapping proceeds by using the
extra (last) round as the second round in Dolev’s algorithm, thus
achieving crusader agreement for the values transmitted in round
t + 1. These values can then be used to achieve crusader agreement
for the values transmitted in round t , and so on.

Altogether, it seems any algorithm that operates correctly given
a crusader agreement primitive, can replace that primitive with
an assumption of weak non-equivocation. Examples of algorithms
using such a primitive can be found in [6, 17, 29].

7.2 Comparison to the authenticated Byzantine
fault model

In this section, we examine the weak non-equivocation fault
model’s relationship with the authenticated Byzantine fault model.
We refer to the authenticated Byzantine fault model as defined in
Pease et al. [30], which says that a faulty process cannot lie (but
can omit messages) about the values of non-faulty processes:

∀p ∈ N : ∀w ′,w ∈ P∗ : σ (w ′ |p |w) = σ (p |w) ∨ ⊥ .
Given that interactive consistency problem is solvable in the au-
thenticated Byzantine fault model for n > t , and that the same
problem is solvable for weak non-equivocation for a tight n > 2t ,
one would expect the authenticated fault model is the stronger
fault model. However, we shall see that whereas the authenticated
fault model and weak non-equivocation obviously have an intersec-
tion, they also have a non-empty set difference in either direction.
As Clement et al. [12] showed in the asynchronous setting both
authentication and non-equivocation is needed to achieve a fault
tolerance of n > 2t for agreement problems, this relationship be-
tween the fault models is not entirely surprising. See Figure 4 for a
Venn diagram of spaces of σ ’s that exist in different fault models.

We demonstrate that (1) there exists σ ’s where algorithms for
weak non-equivocation can solve agreement, but algorithms for
the authenticated Byzantine fault model cannot; (2) there exists
σ ’s where algorithms for the authenticated Byzantine fault model
can solve agreement, but algorithms for weak non-equivocation
cannot; and (3) there exists σ ’s where algorithms for either fault
model can solve agreement, but algorithms for general omission
cannot. Examples of each follow here:

(1) For any such σ , no process can equivocate, but some process
must lie about the value of a non-faulty process. Let n =
3, t = 1, p, r ∈ N and q ∈ F . Let r be the source process,
and broadcast v in the first round. Then let q proceed to
report that they received u in the next round. Any algorithm
for authenticated Byzantine faults will wrongly conclude
that r is faulty, as only fault processes can have their value
spoofed, while any algorithm for weak non-equivocation
will correctly conclude q is faulty, as r has not equivocated.

(2) For any such σ , no process can lie about the value of a non-
faulty process but some process must equivocate. Let n =
3, t = 1, p,q ∈ N and r ∈ F . Let r be the source process,
and send a v to p, and a u to q in the first round, and let p
and q proceed to report their received values. Any algorithm
for authenticated Byzantine faults will correctly conclude

Byzantine

AB
WNE

Omission

Crash

Figure 4: The relationship between spaces of σs described
by various fault models. Abbreviations: AB – authenticated
Byzantine, WNE – weak non-equivocation. Not pictured is
strongnon-equivocation,which overlapswith but is not con-
tained in the crash fault model, yet contained in the weak
non-equivocation fault model.

that r is faulty, as different values can only exists for faulty
processes, while any algorithm for weak non-equivocation
will wrongly conclude the other non-faulty process is, in
fact, faulty, as it “believes” that r is unable to equivocate.

(3) For any such σ , the following three properties must hold: (I)
Some process must lie, so that general omission algorithms
cannot solve agreement. (II) No process can equivocate, so
that weak non-equivocation algorithms can solve agreement.
(III) No faulty process can lie about the values of non-faulty
processes so that authenticated Byzantine algorithms can
solve agreement. From (I), (II) and (III), we can deduce that
t ≥ 2, and, by the lower bound fault tolerance of weak non-
equivocation, that n ≥ 5: Let n = 5, t = 2, p,q, r ∈ N and
s, x ∈ F . Let s be the source process, and send v to p in
the first round and nothing, ⊥, to q and r . Let x act as if it
received u, but otherwise, let every process report correctly
for the proceeding rounds4. Both weak non-equivocation
and authenticated Byzantine algorithms will deduce that
s is faulty, and that there is no majority for any specific
value, and so decide some default value. Meanwhile, for a
general omission algorithm, q and r know that s is faulty,
but have received the contradicting values v and u, and will
thus behave in an unspecified manner.

8 FUTUREWORK
Our results on fault-tolerance together with that of [12] suggests
that the property of transferable authentication alone can bridge the
gap between an agreement algorithm with non-equivocation in a
synchronous system and an asynchronous system with weakened
termination. An examination of this result, and in which other
system models this translation is valid, could lead to more efficient
translations between synchronous and asynchronous algorithms.

Given that the strong non-equivocation fault model is over-
lapping with the crash fault model, and that it implies a trivial
4For the sake of argument, let r and q receiveu from x before they receivev from p , to
prevent early stopping general omission algorithms from deciding v before receiving
the contradicting u value

53

PODC’20, August 3–7 2020, Salerno, Italy,
Mads Frederik Madsen and Søren Debois

solution to Byzantine agreement as seen in Section 3, it seems
that FLP-impossibility may not apply in systems using a primi-
tive providing strong non-equivocation. This opens up questions
of whether any weakening of termination, determinism or asyn-
chrony is strictly needed in asynchronous agreement systems that
use strong non-equivocation primitives such as partial broadcast
channels, e.g. [13, 21, 22, 33].

9 CONCLUSION
In this paper, we addressed and formalised the notion of non-
equivocation in synchronous agreement protocols. We have pro-
posed two different notions of non-equivocation: strong and weak.
Both require faulty processes to not “lie differently”, however, weak
non-equivocation allows faulty processes to selectively omit mes-
sages to some participants, where strong non-equivocation does
not. We defined both formally as fault models for synchronous
agreement protocols with reliable channels, and we showed how
the two models yield distinct round- and fault tolerance-bounds
for agreement: 1 round, n > t for strong non-equivocation; and
t + 1 rounds, n > 2t for weak non-equivocation. This makes weak
non-equivocation the only fault model with a lower bound on fault
tolerance of n > 2t for broadcast agreement and interactive con-
sistency, thus confirming formally the folklore knowledge that
equivocation is somehow the most critical of the Byzantine faults.
Finally, we have shown how the weak and strong non-equivocation
fault models relate to well-known agreement problems: strong
non-equivocation corresponds to Byzantine broadcast and weak
non-equivocation to crusader agreement.

REFERENCES
[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. 2017.

Efficient Synchronous Byzantine Consensus. arXiv:1704.02397 [cs] (Sept. 2017).
arXiv:cs/1704.02397 http://arxiv.org/abs/1704.02397

[2] Marcos Kawazoe Aguilera and Sam Toueg. 1999. A Simple Bivalency Proof That
T-Resilient Consensus Requires T+1 Rounds. Inform. Process. Lett. 71, 3 (1999),
155–158.

[3] Chagit Attiya, Danny Dolev, and Joseph Gil. 1984. Asynchronous Byzantine
Consensus. In Proceedings of the Third Annual ACM Symposium on Principles of
Distributed Computing (PODC ’84). Association for Computing Machinery, New
York, NY, USA.

[4] Michael Backes, Fabian Bendun, Ashish Choudhury, and Aniket Kate. 2014.
Asynchronous MPC with a Strict Honest Majority Using Non-Equivocation. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing
(PODC ’14). Association for Computing Machinery, Paris, France, 10–19.

[5] Michael Ben-Or. 1983. Another Advantage of Free Choice (Extended Abstract):
Completely Asynchronous Agreement Protocols. In Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Computing (PODC ’83).
Association for Computing Machinery, Montreal, Quebec, Canada, 27–30.

[6] Malte Borcherding. 1997. Byzantine Agreement with Limited Authentication. In
Safe Comp 96, Erwin Schoitsch (Ed.). Springer, London, 404–413.

[7] Gabriel Bracha and Sam Toueg. 1985. Asynchronous Consensus and Broadcast
Protocols. J. ACM 32, 4 (Oct. 1985), 824–840.

[8] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and Implemen-
tation (OSDI ’99). USENIX Association, New Orleans, Louisiana, USA, 173–186.

[9] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. 1996. The Weakest
Failure Detector for Solving Consensus. J. ACM 43, 4 (July 1996), 685–722.

[10] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors for
Reliable Distributed Systems. J. ACM 43, 2 (March 1996), 225–267.

[11] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.
Attested Append-Only Memory: Making Adversaries Stick to Their Word. In Pro-
ceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles
(SOSP ’07). Association for Computing Machinery, Stevenson, Washington, USA,
189–204.

[12] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. 2012.
On the (Limited) Power of Non-Equivocation. In Proceedings of the 2012 ACM

Symposium on Principles of Distributed Computing (PODC ’12). Association for
Computing Machinery, Madeira, Portugal, 301–308.

[13] Jeffrey Considine, Matthias Fitzi, Matthew Franklin, Leonid A. Levin, Ueli Maurer,
and David Metcalf. 2005. Byzantine Agreement Given Partial Broadcast. J
Cryptology 18, 3 (July 2005), 191–217.

[14] Miguel Correia, Giuliana S. Veronese, and Lau Cheuk Lung. 2010. Asynchronous
Byzantine Consensus with 2f+1 Processes. In Proceedings of the 2010 ACM Sym-
posium on Applied Computing (SAC ’10). Association for Computing Machinery,
Sierre, Switzerland, 475–480.

[15] Danny Dolev. 1981. The Byzantine Generals Strike Again. Technical Report.
Stanford University, Stanford, CA, USA.

[16] Danny Dolev, Michael J. Fischer, Rob Fowler, Nancy A. Lynch, and H. Ray-
mond Strong. 1982. An Efficient Algorithm for Byzantine Agreement without
Authentication. Information and Control 52, 3 (March 1982), 257–274.

[17] Danny Dolev and Avi Wigderson. 1983. On the Security of Multi-Party Protocols
in Distributed Systems. In Advances in Cryptology. Springer US, Boston, MA.

[18] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
Presence of Partial Synchrony. J. ACM 35, 2 (April 1988), 288–323.

[19] Michael J. Fischer. 1983. The Consensus Problem in Unreliable Distributed
Systems (a Brief Survey). In Foundations of Computation Theory (Lecture Notes in
Computer Science), Marek Karpinski (Ed.). Springer Berlin Heidelberg, 127–140.

[20] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (April 1985),
374–382.

[21] Mattias Fitzi and Ueli Maurer. 2000. From Partial Consistency to Global Broad-
cast. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing (STOC ’00). Association for Computing Machinery, Portland, Oregon,
USA, 494–503.

[22] Alexander Jaffe, Thomas Moscibroda, and Siddhartha Sen. 2012. On the Price of
Equivocation in Byzantine Agreement. In Proceedings of the 2012 ACM Symposium
on Principles of Distributed Computing (PODC ’12). Association for Computing
Machinery, Madeira, Portugal, 309–318.

[23] Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya. 2019. Exact
Byzantine Consensus on Undirected Graphs under Local Broadcast Model. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(PODC ’19). Association for Computing Machinery, Toronto ON, Canada, 327–
336.

[24] Muhammad Samir Khan and Nitin H. Vaidya. 2019. Byzantine Consensus under
Local Broadcast Model: Tight Sufficient Condition. arXiv:1901.03804 [cs] (Jan.
2019). arXiv:cs/1901.03804 http://arxiv.org/abs/1901.03804

[25] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gener-
als Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 382–401.

[26] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. 2009.
TrInc: Small Trusted Hardware for Large Distributed Systems. In Proceedings of
the 6th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’09). USENIX Association, Boston, Massachusetts, 1–14.

[27] Chuanyou Li, Michel Hurfin, Yun Wang, and Lei Yu. 2016. Towards a Restrained
Use of Non-Equivocation for Achieving Iterative Approximate Byzantine Con-
sensus. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS’16). IEEE, 710–719.

[28] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[29] Stephen R. Mahaney and Fred B. Schneider. 1985. Inexact Agreement: Accuracy,
Precision, and Graceful Degradation. In Proceedings of the Fourth Annual ACM
Symposium on Principles of Distributed Computing (PODC ’85). Association for
Computing Machinery, Minaki, Ontario, Canada, 237–249.

[30] M. Pease, R. Shostak, and L. Lamport. 1980. Reaching Agreement in the Presence
of Faults. J. ACM 27, 2 (April 1980), 228–234.

[31] Michael O. Rabin. 1983. Randomized Byzantine Generals. In 24th Annual Sympo-
sium on Foundations of Computer Science (SFCS’83). 403–409.

[32] Philippe Raipin Parvedy and Michel Raynal. 2003. Uniform Agreement Despite
Process Omission Failures. In 2003 IEEE International Parallel and Distributed
Processing Symposium (IPDPS’03). IEEE.

[33] D. V. S. Ravikant, V. Muthuramakrishnan, V. Srikanth, K. Srinathan, and C. Pandu
Rangan. 2004. On Byzantine Agreement over (2,3)-Uniform Hypergraphs. In 18th
International Symposium on Distributed Computing (DISC’18), Rachid Guerraoui
(Ed.). Springer, Berlin, Heidelberg, 450–464.

[34] Michel Raynal. 2002. Consensus in Synchronous Systems: A Concise Guided
Tour. In 2002 Pacific Rim International Symposium on Dependable Computing, 2002
(PRDC’02). 221–228.

[35] Michel Raynal. 2010. Fault-Tolerant Agreement in Synchronous Message-Passing
Systems. Morgan & Claypool.

54

On the Subject of Non-Equivocation
PODC’20, August 3–7 2020, Salerno, Italy,

Appendices

A STRONG NON-EQUIVOCATION
CORRECTNESS PROOF

Algorithm 3 Algorithm for process p to set q’th value in vector,
under the strong non-equivocation fault model

function SNE(σp , p, q)
1: if p = q then
2: return σp (p)
3: else
4: return σp (p |q)
5: end if

end function

Lemma A.1. Algorithm 3 guarantees validity for n > t , in the
strong non-equivocation fault model.

Proof. We must prove that for any non-faulty process, p, run-
ning Algorithm 3 for some other non-faulty process q, Algorithm 3
will produce q’s private value vq .
Assume n > t + 1, since validity is trivially ensured for n = t + 1.

Let p and q be non-faulty processes. By the Definition 2.1 we
know that σ (p |q) = σ (q), for all non-faulty q.

□

Lemma A.2. Algorithm 3 guarantees agreement for n > t , in the
strong non-equivocation fault model.

Proof. We must prove that for any two non-faulty processes, p
and r , running Algorithm 3 for some third process q, Algorithm 3
will produce the same result for p and r .

Proof by contradiction. Let p and r be non-faulty processes. As-
sume that p and r get different results from Algorithm 3, for some
other process q. Then σ (p |q) , σ (r |q), but this contradicts Defini-
tion 3.1. □

Lemma A.3. Algorithm 3 guarantees termination for any termi-
nating protocol.

Proof. The proof follows trivially from the fact that the protocol
terminates, which implies that a lookup in σ terminates. □

B TIGHTNESS OF ROUNDS FORWEAK
NON-EQUIVOCATION

We will now show that t + 1 rounds is the least amount of
rounds needed to solve interactive consistency in the weak
non-equivocation fault model. We do this by arguing that the weak
non-equivocation fault model completely encompasses the crash
fault model (i.e. any σ under the crash fault model can exist under
the weak non-equivocation fault model). Since it is well-known, e.g.
from [2], that agreement problems in a crash fault model cannot be
solved with less than t + 1 information exchange rounds, it must
follow that agreement problems in weak non-equivocation must
use at least as many. And with the proof of Theorem 5.1, we know
that interactive consistency is solvable using t + 1 information
exchange rounds, showing that t + 1 rounds is a tight lower bound.

That weak non-equivocation encompass crash faults follow triv-
ially from the fact that faulty processes can arbitrarily not report
anything and thus can act exactly as a crashed process by not report-
ing anything from some time and until the protocol has terminated.
A formal proof follows:

Theorem B.1. Any σ that can exist under the crash-failure model
must also be possible under weak non-equivocation.

Proof. By contradiction. Assume that there exists a σ in the
crash-failure model that cannot exist under weak non-equivocation,
and denote such a σ as σcrash . In σcrash there must exist two pro-
cesses p,q, a (possibly empty) string w and value (or ⊥) v such
that σcrash (q |p |w) = v , and no σ restricted under weak non-
equivocation can produce the same v given the input q |p |w :

∀σWNE ∈WNE : σWNE (q |p |w) , v
where WNE is the space of possible σ ’s restricted under weak
non-equivocation.

Now we construct a contradiction by cases on the faultiness of
p:
Case 1: (p is non-faulty): as p is non-faulty,v must be a correct and
valid value determined byw : σcrash (p |w) = v , which must be pos-
sible in all σ ’s restricted under weak non-equivocation according to
the non-faulty process guarantee. As such p cannot be non-faulty.
Case 2: (p is faulty): as p is faulty, it can act non-faulty which
is identical to Case 1, which we have shown cannot be the case.
Alternatively, p can act faulty, which in the crash-failure model
means crashed. If p is crashed then v = ⊥. But according to weak
non-equivocation, is always allowed to report ⊥, meaning any such
σ must be possible under the restriction of weak non-equivocation.
As such p cannot be faulty.
Leading to the contradiction that p is neither faulty nor non-faulty.

□

So we can conclude that the number of information exchange
rounds of Algorithm 2 is optimal. This should not be mistaken as
the algorithm being efficient or optimal in the number of messages;
we conjecture that a message-efficient (polynomial) algorithm such
as the one presented by Dolev et al. [16] could be modified to allow
for optimal fault tolerance in a weak non-equivocation fault model,
but leave this as future work.

C PROOFS OF CORRECTNESS FOR THE
GENERALWEAK NON-EQUIVOCATION
ALGORITHM

The proof relies on the following technical Lemma.

Lemma C.1. If a process p has a consistent q-majority for the value
v , then p’s v̂ecp must contain at least t v-values.

∀p,q ∈ P : ∀v ∈ V : (∃Q ⊆ P : majq,vp,Q (t,σp , P)) =⇒ |v̂ecp [·] = v | ≥ t

Proof. By Definition 4.3, each process in Q have consistently
reported v wrt. all other processes in Q including q, to p:

∀w ∈ Q∗ : |w | ≤ t : σp (p |w |q) = v

55

PODC’20, August 3–7 2020, Salerno, Italy,
Mads Frederik Madsen and Søren Debois

So σ̂p , the map used to create v̂ecp , must have the property that
each process in Q \ {q} have consistently reported v about itself
and all other processes in Q \ {q}, to p:

∀w ′ ∈ (Q \ {q})∗ : |w ′ | ≤ t − 1 : σ̂p (p |w ′) = v
So, for each process in Q \ {q}, p must be able to find a consistent
majority for v in the recursive call that makes up v̂ec:

∀r ∈ Q \ {q} : majr,vp,(Q\{q})(t − 1, σ̂p , P \ {q})
And since |Q | ≥ t + 1 by Definition 4.3, then (Q \ {q}) ≥ t , giving
us the result that v̂ecp must contain at least t v-values. □

We can now proceed to prove Algorithm 2 correct, by proving
that it satisfies validity, agreement and termination:

Lemma C.2. Algorithm 2 satisfies validity when n > 2t .

Proof. Assume a non-faulty source p; we must show that for
any non-faulty process, Algorithm 2 returns the private value vp .
Because p is non-faulty, all non-faulty processes have a consistent
p-majority for vp (Lemma 4.4), and cannot have a consistent p-
majority for another value (Lemma 4.6). Thus Algorithm 2 will
return vp in line 9. □

Lemma C.3. Algorithm 2 satisfies agreement when n > 2t .

Proof. We must prove that every non-faulty process will get
the same result by running Algorithm 2 for some source-process q.
By cases on the faultiness of q:
Case 1: (q is non-faulty) Agreement follows from validity if q is
non-faulty.
Case 2: (q is faulty) By induction on t :

Base step: t = 1. By cases on the q’s first messages:
Case 2.i: First consider the case ∀p ∈ P \ {q} : σ (p |q) = ⊥, i.e.
where the source process does not send a single message in the
first round. By Lemma 4.7, none of the non-faulty processes will
have a consistent majority. Thus all processes will calculate v̂ec,
excluding the source process and make a recursive call with t = 0.
By Definition 2.1 and since t = 0 in the recursive call, all other
processes must have sent ⟨⊥⟩ in round 2. Thus all values in v̂ec
must be ⟨⊥⟩, making Algorithm 2 return ⟨⊥⟩ for all non-faulty
processes on line 23.
Case 2.ii: Next consider the case ∃p ∈ P \ {q} : σ (p |q) , ⊥ i.e.
where the source process sends a value v (, ⊥) to one or more
processes in the first round. For any process, p, receiving v in
the first round, Algorithm 2 will return v on line 9 as {p,q} is a
consistent q-majority. All other processes must have received ⊥ in
the first round by weak non-equivocation (Definition 4.1), and thus,
by Lemma 4.7, calculate v̂ec, excluding q and with t = 0. By the
non-faulty process guarantee (Definition 2.1), and Lemma 4.4, v̂ec
consist only of ⟨⊥⟩ and a v value for each process that received v
in the first round, which is at least 1. As v̂ec contains only ⟨⊥⟩ and
v Algorithm 2 will, for all non-faulty processes that did not receive
v in the first round, return v in line 21 since 1 ≥ t = 1.

Induction step: Induction hypothesis: Algorithm 2 satisfies
agreement for t − 1 for any n > 2(t − 1). We must prove that,
given the induction hypothesis, Algorithm 2 satisfies agreement for
t . Recall that by assumption n > 2t . Consider any two non-faulty

processes, q and r , and a faulty source process p. The proof is on
cases of existence of consistent p-majorities for q and r .
Case 2.iii: Consider the case∃v,v ′ ∈ V : ∃(Q,R) ⊆ P : majp,vq,Q (t,σq , P)∧
majp,v

′
r,R (t,σr , P) i.e. where q has a consistent p-majority for some

value v , and r has a consistent p-majority for some value v ′. By
Lemma 4.8, we know that v = v ′.
Case 2.iv: Consider the case∀v,v ′ ∈ V : ∀Q ⊆ P : ¬majp,vq,Q (t,σq , P)∧
¬majp,v

′
r,Q (t,σr , P) i.e. where neither q nor r have a consistent

p-majority. Both q and r will calculate v̂ec by calling Algorithm 2
with n − 1 and t − 1 and each process other than p as the source
process. By assumption n > 2t , so n − 1 > 2(t − 1). As such the
induction hypothesis applies, and so q’s v̂ec and r ’s v̂ec must be
equal.
Case 2.v: Consider the case (∃v ∈ V : ∃Q ⊆ P : majp,vq,Q (t,σq , P))∧
(∀v ′ ∈ V : ∀R ⊆ P : ¬majp,wr,R (t,σR , P)) i.e. where q has a consistent
p-majority for some value v , and r does not have a consistent p-
majority for any value. Let q calculate v̂ec using σq , despite having a
consistent p-majority, and denote the result v̂ecq . By the induction
hypothesis r will calculate the same v̂ec as q: v̂ecr = v̂ecq . By
Lemma C.1 we know that there is at least t v-values in v̂ecq and
therefore also in v̂ecr . As there is t v-values in v̂ect Algorithm 2
returns v on line 21 for r , while returning v for q in line 9, as q has
a consistent p-majority for v .

Note that in the case where n = 2t + 1, v̂ecr will contain exactly
2t values, leaving room in v̂ecr for a value different from v with t
instances. However, such a value can only be ⟨⊥⟩ by the following
argument. If there are two different values with t instances in v̂ecr ,
then q’s consistent p-majority for value v must be of size exactly
t + 1 by consequence of Lemma C.1. As r does not have a consistent
p-majority, q’s consistent majority must contain at least 1 faulty
process by Lemma 4.5. This implies that there is at least one non-
faulty process, s , that is not part of q’s consistent majority. Note
that s and r may be the same process. According to weak non-
equivocation (Definition 4.1) s must have received either v or ⊥ in
the first round. And by validity (Lemma C.2), v̂ecr [s] must then be
either v or ⟨⊥⟩, ensuring that if v̂ecr t instances of a value other
than v , that value must be ⟨⊥⟩.

□

Lemma C.4. Algorithm 2 satisfies termination for any terminating
protocol.

Proof. Termination follows from the following facts: (1) when
t = 0 there is always a consistent majority (Lemma 4.4); (2) all loops
are finite, including the loop over all w ∈ P̂∗ s.t. p |w |q is a key in
σ (line 13), as there is a finite amount of keys in σ ; and (3) n and t
are finite, and so the number of recursion-calls to PSL(σ̂p ,n − 1, t −
1,p, r , P̂) (line 18) must be finite. □

Proof of Theorem 5.1. Immediate from Lemmas C.2 (valid-
ity), C.3 (agreement), and C.4 (termination). □

56

Chapter 4

Impalpable Differences: Secret
Actions in Processes and
Concurrent Workflows

57

Impalpable Differences:
Secret Actions in Processes and Concurrent

Workflows

Mads Frederik Madsen and Søren Debois

IT University of Copenhagen, Copenhagen, Denmark
{mfrm,debois}@itu.dk

Abstract. We study secrecy of actions in concurrent systems where
multiple actors collaborate on executing a process, and not all actors are
privy to all parts of that process. This problem is particularly relevant in
the field of business process modelling, where the situation that organi-
sations engage in 3-way collaborations, but two parties wish the details
of their sub-collaboration to be hidden from the third, is quite common.
To this end, we present a novel theory of indistinguishability of actions,
generally applicable to LTS-based or run-based process semantics, and
use it to derive concrete results about indistinguishability of workflow
sub-models in the declarative DCR process notation.

Keywords: Action secrecy, concurrent workflows, indistinguishability

1 Introduction

We consider secrecy of observable actions in systems where multiple agents work
in concert to execute a process. We are especially interested in this concept in the
setting of formal models of collaborating business processes, where the problem
becomes harder because agents (businesses and organisations) must necessarily
observe some of each other’s actions. If an agent wants to keep some action
secret from some other agent, it must ask itself: Can I be sure that my adversary
cannot, through observation and inference, determine whether I took the action?

While this work is in principle situated in information flow theory [14,33,11],
we draw heavily on work on secrecy in process models [10,18,26] and in formal
models of business processes [24,2]. We are motived by applications within the
latter, in particular collaborative business process execution. Experience from
attempts to apply tenets of Secure Multiparty Computation (MPC) (see e.g. [13])
led to the realisation that even under ideal secrecy conditions, some actions are
impossible to keep secret due to the process model itself, and the necessary
information leakage through required communication between parties.

As an example, consider a collaboration between a supplier of goods and
a shipping agent. The shipping agent may pick up a parcel from a warehouse
speculatively but must wait for the supplier to confirm receipt of payment before
undertaking actual delivery. Thus, in this process, the supplier must observe a

58

2 M. F. Madsen, S. Debois

“confirm payment” action at the supplier to decide availability of the “delivery”
action. Moreover, if the recipient of the parcel (who may not be the buyer) knows
of the underlying process, he can deduce from receiving the parcel that “confirm
payment” happened, even though he cannot observe it directly.

Formally, we model this situation in labelled transition systems (LTSes),
where actions become labels, and each agent is responsible for some subset of
actions and decides if and when to take those actions. The actions of agents are
not independent: the availability of actions for one agent may depend on actions
previously taken by others. Thus agents must be informed of such previous
executions, at least enough to decide which actions are currently available.

We model this communication via observations on runs. An adversary has
access to certain observations for a run, and the question is whether the adversary
can, from those, determine if the secret actions have happened or not. Formally,
our theory is parametric in a notion of observability (N), akin to the ones of
[31,32]. It is in this setup we define runs of the system as being indistinguishable
to an adversarial agent, from which we derive notions of secrecy. It is presumed
here that the adversary knows the structure of expected interactions, modelled
by the adversary knowing the set of all possible runs.

Altogether, our contributions are: (1) we give a general definition of indistin-
guishability in LTSes of concurrent systems, parametric in a notion of observa-
tions available to the adversary. (2) We give a sufficient condition for actions to
be indistinguishable in the general case of LTS models. (3) We apply this theory
to the setting of Dynamic Condition Response Graphs, showing how (a) deciding
indistinguishability is generally coNP-hard; and (b) the practically useful result
that secrecy is guaranteed under certain graph isomorphisms.
Overview After related work in the next subsection, Section 2 defines indistin-
guishability on runs, serving as the foundation for definitions and characterisa-
tion of secrecy in Section 3. We then apply the theory to Dynamic Condition
Response (DCR) graphs in Section 4, in particular obtaining both the above-
mentioned infeasibility and isomorphism results.

For want of space, some proofs have been relegated to App. A.2.

1.1 Related work

The present work draws from and contributes to work in the overlapping spaces
of both information flow security and process modelling, in particular business
process modelling. In information flow security, it is helpful to distinguish be-
tween probabilistic and possibilistic secrecy.
Probabilistic secrecy is concerned with defining secrecy of information over prob-
abilities; can an adversary make a good guess on secret information, even with-
out knowing with certainty if their guess is correct. Examples include Perfect
Secrecy [28], flow models [22] and probabilistic non-interference [12]. However,
this work concerns possibilistic secrecy.
Possibilistic secrecy is concerned with defining secrecy of information over cer-
tainty; can an adversary ever know some secret information with certainty. Pos-

59

Impalpable Differences 3

sibilistic secrecy definitions include non-interference [11], non-deducibility [30],
restrictiveness [21] and more (e.g. [33]). We, to some extent, follow Sutherland’s
non-deducibility methodology , which defines information functions – our obser-
vation functions are essentially parametric versions of these – and define that
secrecy is upheld when any deducible information flowing from one information
function to another is not secret. In that sense, our work can be considered a
specialisation of non-deducibility of actions but translated to process models,
parametric in notions of observability and descriptive rather than prescriptive.
The observation function gives rise to an indistinguishability relation upon which
we define secrecy. This approach is similar to that of [14], which defines secrecy
in epistemic modal logic by way of an indistinguishability relation on possi-
ble worlds [9], i.e. scenarios that are considered possible by the observing agent.
Epistemic logic is very powerful and general tool. Our goal in this paper has been
to create a theory for dealing with secrecy solely in process models. As such we
have specialised notions from epistemic logic where possible, and created new
where appropriate. Since the temporal logic HyperCTL∗ for Hyperproperties is
known to overlap with epistemic logic [3], some the of the results in this paper
could, in all likelihood, be rediscovered using HyperCTL∗.
Secrecy in process models Secrecy is also a well-studied concept in process mod-
elling. There has been headway in language based-approaches, see [27] where
static analysis is made with a security focus, e.g. [18]. In the area of business
process modelling [24] uses an extension of BPMN to capture privacy require-
ments, which [2] extends with model checking techniques to detected unintended
leakages. In [10] the authors (1) translate possibilistic security properties from
system models to LTSes, and (2) lift the bases of security properties from trace-
equivalence to weak bisimulation. This work similarly concerns LTSes, and lift
secrecy from trace-equivalence, but differs by focusing on a single notion of se-
crecy: non-deducibility, and only of actions, while lifting this property, not only
to weak bisimulation, but to any system equivalence through generalisation.
Related to (2) is [26], which defines non-interference properties in the process al-
gebra CSP showing how different information flow security definitions reduce to
different system equivalences. Inspired by this idea, our observation function is
parametric in notions of observability – what kind of information an adverssary
can observe during a run. This term is inspired by the work [31,32], where dif-
ferent notions of observability of systems define different system equivalences.
By being parametric in notions of observability, the secrecy notion of actions
remains independent of an underlying system equivalence.

2 Indistinguishability

In this section we define indistinguishability of Labelled Transitions System
(LTS) runs, parametric in the set of observed events, π. We call the relation
π-indistinguishability, which is the foundation of our later secrecy definitions.

We note that while the LTS model is to some degree an obvious choice of
model, pervasive as it is in both concurrency theory and semantics of business

60

4 M. F. Madsen, S. Debois

process notations, the present development is phrased in terms of runs of LTSes ,
so conceivably the theory would apply also in other settings that provide notions
of runs, e.g., asynchronous transition systems [20].

Definition 1 (Labelled transition system[23]). A labelled transition system
is a quadruple T = (S, s0, E, δ), where S is the set of states, s0 ∈ S is the initial
state, E is a set of actions, and δ is a set of transition triplets (s, e, s′) where

s, s′ ∈ S and e ∈ E. We write s
e−→ s′ for (s, e, s′) ∈ δ, and s

e−→ s′
e′−→ s′′ . . . for

(s, e, s′), (s′, e′, s′′), . . . ∈ δ.

Definition 2 (Run fragments[1]). Let T = (S, s0, E, δ) be an LTS. A run

fragment in T is a sequence of transitions s.t. s e−→ s′
e′−→ s′′

e′′−→ . . . If s0 = s,
we call that run fragment a run. We denote the set of all runs in T as RT .

Note that a run fragment may be infinite. If a run fragment is finite we refer
to the last state as the final state. If there exists a transition s

a−→ s′ in a run
fragment r, we say that action a is in r, or that r contains a, denoted a ∈ r.

During a run, the agents in the system are provided with information rele-
vant to the correct execution of the specific system. This is encapsulated in the
observation function, which is parametric in what kind of information this is
(N):

Definition 3 (Observation function). Let N be a universe of observations.
An observation function of an LTS T is a function ON : r∞ → N∞, where r∞

is the set of run fragments in T , and N∞ is the set of sequences of observations.

Intuitively, ON gives the observation, as defined by the universe N , of a run
fragment in T . A basic example is an LTS that produces strings of 0’s and 1’s. The
universe of observations (N) could then be {1}, and ON could be the sequence
of 1’s traversed by a given run. We will see more interesting examples of ON
in the example in Sec. 4.2. Our observation functions are essentially parametric
versions of [30]’s information functions.

The intuition behind the observation function is that each agent participates
in the execution of the system, and because of that participation, observe the
actions of other agents. Given their prior knowledge, i.e. runs of the process in
which they are participating, this observation may give rise to information leaks.
As a very basic example, suppose that the system has actions a, b, c, d, and the
adversarial agent can observe actions b and c. If this agent knows that the system
admits only the two runs ⟨abda⟩ and ⟨adca⟩, observing just a single b or c tells
the agent exactly what the underlying run must have looked like.

In general, observations can be both more and less complex than simply
restricting to particular actions. E.g., for some systems, an agent may observe
all possible future traces in an observation, so that they may choose their actions
based on the possible outcomes. In other systems, an agent may observe only
information about the final state of the run, thus allowing them only to choose
their actions on the current state of the system while ignoring the history of
the run. This work gives only one formal example of N (see Section 4), but all

61

Impalpable Differences 5

definitions not restricted to a specific choice of N are general under the central
assumption that no further information is acquired than that provided by ON .

As mentioned, each agent is privy to only part of the system’s actions. We
assume that an agent has some responsibility over the actions in their partial
system. To model this responsibility, we introduce the notion of an ownership:

Definition 4 (Ownership). Let T = (S, s0, E, δ) be an LTS. An ownership,
denoted π for projection, is any subset of E.

Def. 4 allows us to define what an agent with ownership π can see during a
run. Intuitively an agent is only responsible for the actions in their ownerships,
and so an agent’s observation of a run should be limited to the information rele-
vant to that agent’s ownership. Ownerships allows us to augment the observation
function, denoting that the observation is limited by π:

Definition 5 (π-Observation function). Let T = (S, s0, E, δ) be an LTS, ON
be an observation function, and π be an ownership. A π-observation function of
T , denoted Oπ

N , is ON projected onto π. We require only that such a projection is
idempotent and that π = E =⇒ Oπ

N = ON . Otherwise a projection is dependent
only on the choice of N .

An adversarial agent may attempt to determine which actions outside their
ownership have been previously executed, both by passively observing a run of
the process, and by actively forcing the execution of other actions by choosing
which of their own actions are (not) executed during a run.

We consider only the case where an agent has a single ownership, i.e. a single
subset of actions. For most observation functions, it will be the case that observ-
ing multiple ownerships is equivalent to observing the union of those ownerships,
but not always. An agent with multiple ownerships, i.e. an agent observing both
π and τ separately, is analogous to collaborating agents sharing observations, an
interesting topic which we will leave as future work.

Using Def. 5 we define π-equivalence leading us to indistinguishability.

2.1 π-indistinguishability

We proceed as follows. First, we define an equivalence of runs using Def. 5.
Next, we lift this idea to sets of runs. If the runs in both sets produce the same
observations, we say that the two sets are π-indistinguishable (Lemma 8). We
then only need to define when a set of runs characterises an action, and the
indistinguishability relation on actions becomes obvious.

We define the relation of runs equivalent under observation of π:

Definition 6 (π-equivalence). Given an LTS T , a π-observation function Oπ
N

and two run fragments r1, r2, we say that r1 and r2 are π-equivalent, denoted
r1 ≡π

N r2, iff
Oπ

N (r1) = Oπ
N (r2)

≡π
N is an equivalence-relation as per equality. By Jr1KπN we denote the class of

runs equivalent to r1. We lift the notation J−KπN pointwise from run fragment to
sets of run fragments: JRKπN = {JrKπN | r ∈ R}.

62

6 M. F. Madsen, S. Debois

We may omit to specify the implicit Oπ
N assumed by the J−KπN notation.

Essentially JrKπN are the runs that the observer considers possible after run
r. This heavily inspirred by Halpern & O’Neill’s Ki relation [14], and possible
worlds in epistemic modal logic [9], however, the theory diverges from here.

The definition of π-equivalence immediately suggests that some run frag-
ments are not π-equivalent, and can be distinguished by an agent observing π.
We call this π-distinguishability and define it on sets of runs:

Definition 7 (π-indistinguishability). Given an LTS T and two sets of run
fragments of T , R1 and R2, we say that R1 is distinguishable by π, or π-
distinguishable, from R2 iff

∃r ∈ R1. JrKπN ̸∈ JR2KπN
Indistinguishability of runs are easily derived from π-distinguishability:

Lemma 8. Given an LTS T and two sets of run fragments R1, R2, we say that
R1 is not π-distinguishable from R2 and vice versa iff

JR1KπN = JR2KπN
If so, we say that R1 and R2 are indistinguishable by π, or π-indistinguishable.

Intuitively, Lemma 8 says that given two π-indistinguishable sets of runs
and an observation of a run from either set, an agent observing π cannot know
from which set it was chosen. This is an excellent basis for a possibilistic secrecy
definition. We will now narrow the scope to actions and full runs of the system.

Going forward, we will refer to runs containing an action a as RT
a , s.t. RT

a =
{r ∈ RT | a ∈ r}. Note that RT

a contains only runs, not run fragments. Lemma 8
easily lends itself to define when one action in the system cannot be distinguished
by an agent with ownership π from some other action:

Definition 9 (π-indistinguishability of actions). Given an LTS
T = (S, s0, E, δ) and two actions a, b ∈ E. We say that a is indistinguishable by
π, or π-indistinguishable, from b iff

JRT
a KπN ⊆ JRT

b KπN
This relation is trivially a preorder on actions. If a is π-indistinguishable from b
and b is π-indistinguishable from a, we say that a and b are π-indistinguishable,
which is an equivalence-relation by the addition of symmetry to a preorder.

On the surface, π-indistinguishability looks like a good definition for se-
crecy of actions: if an agent cannot distinguish the runs containing a from the
runs containing b, then surely a is secret? Counter-intuitively, no: if a is π-
indistinguishable from b, an agent with ownership π may still deduce that a run
contains an a. E.g., suppose RT

a = RT
b = {r}, i.e., just a single run r which

contains both as and bs. Since RT
a = RT

b , a is trivially π-indistinguishable from
b. But since Oπ

N (r) is unique, an agent observing π can deduce that a is in the
observed run, and so a cannot be said to be secret.

63

Impalpable Differences 7

Consequently, π-indistinguishability of actions does not necessarily say any-
thing about what the observing agent can infer about the inclusion and cardinal-
ity of the actions for some given observation. π-indistinguishability is a step in
the right direction, though, and serves as a good foundation for defining secrecy.

3 Observational π-secrecy

From the notion of π-distinguishability we derive a notion of an action being
secret to an agent: that any observation of run containing that action is also an
observation of a run without it.

Definition 10 (π-secrecy of actions). Given an LTS T and an action a, we
say that a is secret to π, or π-secret, iff

∃H ⊆ (RT \RT
a). JHKπN = JRT

a KπN
We call H a π-hiding set for a, and say that it hides a from π, or just hides a.

It is instructive to consider the case where RT
a = ∅, i.e. when there is no run

in the system containing the action a. In this case, the empty set is a hiding set,
and so a is π-secret. Intuitively, a is secret since no agent will be able to observe
a run and identify that a is part of the run. An agent may still dedcuce that a
run does not contain a – we leave this strengthening of secrecy as future work.

If action a is π-secret, an agent with ownership π cannot distinguish a run
that contains a from a run that does not, as captured by the following theorem:

Theorem 11. Let a be π-secret, then for any run r containing a, there must
exist some run r′ not containing a, s.t. r ≡π

N r′

Proof. By contradiction. Assume that such an r′ does not exist. Then
JrKπN ̸∈ J(RT \RT

a)KπN .
But then ∀H ⊆ (RT \RT

a). JHKπN ̸= JRT
a KπN , which contradicts π-secrecy.

Intuitively, Thm. 11 shows that Def. 10 captures exactly the essence of a
possibilistic secrecy definition. When observing the system during a run with
a π-secret action a, no agent observing π can know that the run did, in fact,
contain a since another run without a could have caused the same observation.

Having defined secrecy of an action using sets of runs, we now want to lift this
notion to actions making other actions secret. A further examination of hiding
sets will allow us to define this secrecy property. In Section 4 we shall also see
how hiding sets are a building block in designing processes with π-secret actions.

3.1 Hiding sets

An important special case is if the hiding set essentially replaces the secret action
b with some other action a:

64

8 M. F. Madsen, S. Debois

Definition 12 (π-hiding actions). Given an LTS T and two actions a, b in
T , we say that a is a π-hiding action for b, or that a hides b (from π) iff

∃H ⊆ (RT
a \RT

b). JHKπN = JRT
b KπN

We say that H is a hiding set in RT
a .

Def. 12 says that if a hiding set for b is in the runs that contain a’s
and no b’s, then a hides b. Note that the π-hiding action relation, unlike
π-indistinguishability, is not transitive: if a hides b, and b hides c, the hiding set
in RT

a for b may contain c’s, and so is no valid hiding set of c. Also note that an
action cannot hide itself, as the hiding set would be empty, so the hiding action
relation must be irreflexive.

It follows from Def. 12 that if a hides b, then b is π-secret:
Corollary 13. If a hides b, then b is π-secret.

From Def. 12 also follows that if a hides b, b is π-indistinguishable from a:
Lemma 14. If a hides b, then b is π-indistinguishable from a.

Considering Cor. 13, and Lemma 14, then Def. 12 characterises exactly when
π-indistinguishability implies secrecy. Def. 12 thus circumvents the problem with
π-indistinguishability, where a run containing both a’s and b’s might produce a
unique observation allowing for deduction of b in the run.

Considering Cor. 13, and Lemma 14, then Def. 12 the central difference be-
tween b being π-indistinguishable from a and a hiding b lies in the runs containing
both a’s and b’s (RT

a ∩ RT
b). Intuitively, this is due to the example at the end

of Section 2: two actions may be π-indistinguishable while still allowing for the
existence of a run with both a’s and b’s that have a unique observation. As it
happens, such ones turn out to be key to obtaining π-secrecy, so we investigate
them in more detail.

As the following theorem states, if we design a system with action a being
π-indistinguishable from action b, while ensuring that any run with both an a
and a b is π-indistinguishable from a run with a b and no a, then a will be secret:

Theorem 15. If a is π-indistinguishable from b, and RT
a ∩ RT

b is π-
indistinguishable from RT

b \RT
a , then b hides a.

Proof. We show that b is a π-hiding action for a by showing that
∀r ∈ RT

a . ∃r̂ ∈ (RT
b \RT

a). r ≡π
N r̂.

Let r be any run in RT
a . Since a is π-indistinguishable from b there must exist

an r′ ∈ RT
b s.t. r ≡π

N r′. Then either r′ ∈ RT
a , or r′ ̸∈ RT

a

If r′ ̸∈ RT
a then r′ ∈ (RT

b \RT
a), and we are done.

If r′ ∈ RT
a then r′ ∈ RT

a ∩RT
b . And since JRT

a ∩RT
b KπN ⊆ JRT

b \RT
a KπN , there

must exist a run r′′ ∈ (RT
b \RT

a) s.t. r′ ≡π
N r′′. By transitivity, then r ≡π

N r′′.

It follows that if no run contains both a’s and b’s, then a being π-
indistinguishable from b is enough to ensure secrecy of a from π:
Corollary 16. If a is π-indistinguishable from b and RT

a ∩ RT
b = ∅, then b

hides a.

65

Impalpable Differences 9

4 Applications to DCR Graphs

With our theory of secrecy in place, we turn to applications in business process
modelling, specifically the declarative notation DCR [25,8,4,29]. To understand
how secrecy may be important in this setting, consider the following Example.

Example 17. Imagine a manufacturing company. Occasionally, products are dis-
covered to be defective and must be recalled. The finance or engineering depart-
ment can independently initiate a recall, as can the board of directors. For the
former two, the legal department can veto the recall, but not when the board of
directors issues the recall. The recall itself is executed by the sales department.

This process requires secrecy since recalls are expensive, and costly to em-
ployee bonuses, and therefore hugely unpopular in the sales department. To
avoid that the powerful sales departments exerts undue pressure on finance or
engineering, the sales department must not discover which of these departments
initiated a recall. The sales department can exert no such power over the board
of directors, so a recall from the board of directors need not be kept secret.

4.1 DCR Graphs: Syntax & Semantics

We present here, rather tersely, core DCR syntax and semantics. We refer the
reader to [5, Sec. 2] for a more comprehensive and gentler introduction.

The DCR formalism is a declarative process model with primary use in busi-
ness process modelling (see e.g. [16,6,7]). The actions in the model have state,
by virtue of the marking (M) of the graph.

Definition 18 (Dynamic Condition Response Graphs [7]). A DCR Graph
is a tuple G = (E, M, R, L, l), where

– E is a set of events
– M = (Ex, Pe, In) ∈ (P(E)×P(E)×P(E)) is the marking of the graph (mnemon-

ics: Executed, Pending, and Included)
– R = (→•, •→,→+,→÷) is the (binary) relations between events of the graph

consisting, respectively, of conditions, responses, includes and excludes.
– L is the labels of the graph
– l is the labelling function of the graph, mapping events to labels: l : E → L

For all intents and purposes, E is the set of actions in the system, and we
shall conflate events and actions. A nontrivial labelling function may provide
opportunities for additional secrecy as it allows processes different ways to take
the same action. However, we leave this as future work, and so we let l(e) = e for
all events in E. For that reason, we ignore L and l in specifying a DCR Graph.
When e ∈ Ex, we say that e is executed, and when e ̸∈ Ex, we say that e is not
executed. Similarly, for events’ inclusion in the sets Pe and In, which we refer to
as pending and included, respectively. As shorthand we refer to {e′ | (e, e′) ∈→}
as e →, and {e′ | (e′, e) ∈→} as → e, for some relation →.

The semantics of a DCR Graph is an LTS defined as follows:

66

10 M. F. Madsen, S. Debois

Definition 19 (Semantics of a DCR Graph as an LTS [16]). Let G =
(E, M, R) be a DCR Graph (L and l omitted). The corresponding LTS is the tuple
T (G) = (M(G), M, E,→⊆ M(G)×E×M(G)), where M(G) ⊆ (P(E)×P(E)×P(E)),
and → is the transition relation given by M′

e−→ M′′ s.t.

– M′ = (Ex′, Pe′, In′) is the marking before the transition
– M′′ = (Ex′ ∪ {e}, Pe′′, In′′) is the marking after the transition
– e ∈ In′

– (In′ ∩→•e) ⊆ Ex′

– In′′ = (In′ ∪ e→+) \ e→÷
– Pe′′ = (Pe′ \ {e}) ∪ e•→

By M(G), we denote the set of markings reachable by → from M, including M.
By RT (G) we denote all (possibly infinite) runs of G, consistent with Def. 2.

The works [7,16] also includes a notion of acceptance, however, that is incon-
sequential to this work and so we have omitted any such consideration.

In Section 2 and 3, we modelled the agents’ prior knowledge as all possible
runs in the system. By Def. 19, the initial marking of a DCR Graph captures this
knowledge. So from here on in, we assume that each agent knows the relations
and initial marking of the DCR Graph they are participating in.

DCR Graphs include a notion of enabledness. If there exists a run r = r′ · e
in RT (G), then the event e is enabled in the marking reached by r′. Formally:

Definition 20 (Enabled event [7]). For a DCR Graph G with relations R =
(→•, •→,→+,→÷), for some marking M = (Ex, Pe, In) we say that an event e ∈ E

is enabled, denoted M ⊢ e, iff:

e ∈ In ∧ (In ∩→•e) ⊆ Ex

if e is not enabled in M, we say that it is disabled in M, denoted M ⊬ e.

Note that enabledness is included as bullet 3 and 4 in Def. 19, and we define
it separately here only for convenience of reasoning later.

Example 17 can be straightforwardly modelled as a DCR process, by choosing
the actions in Table 1, and embedding them into a graph as follows. Let G =
(E, M0, R) be a DCR Graph, s.t. E = {A,B,C,D,E}, M0 = (Ex0, Pe0, In0), R =
(→•, •→,→+,→÷) and

Ex0 = Pe0 = ∅, In0 = {A,B,C,D},
→• = {(A,C), (B,C)}, •→ = ∅,→+ = {(B,E), (A,E), (D,E)},
→÷ = {(A,A), (B,B), (C,C), (D,D), (E,E), (A,B), (B,A), (C,E)}

Fig. 1 is a visualisation of the DCR Graph G.

Example 21. We sketch the semantics of G. Relations (arrows) define (a) how
events prevent each other from executing, and (b) update the marking of G.

In the initial marking, finance, engineering or the board can initiate a recall
(events A, B and D, respectively). These events include the recall event E, which

67

Impalpable Differences 11

Recall

Finance

Recall

Engineering

Revision
veto

Legal

Start
recall

Sales

Recall

Board

▼
▼

+▼

+▼

+
▼

%
▼

%▼

%▼

%▼

%▼

%▼ %▼

%▼

Fig. 1. Visualisation of the recall example
DCR Graph.

Actor Activity Event

Finance Recall A
Engineering Recall B
Legal Veto C
Board Recall D
Sales Start recall E

Table 1. Actions of the recall
process

becomes eligible for execution. If finance or engineering initiates a recall, then
the other is excluded from initiating one (exclusion relations). Legal can execute
the revision veto (event C), but only if either A or B has happened (condition
relations, in combination with mutual exclusion of A and B). If legal executes
a veto, sales lose the option of starting the recall (exclude relation C,E), unless
the board subsequently re-instates the option (include relation D,E).

4.2 Ownership and observability

We now consider appropriate notions of ownerships and observations for DCR
Graphs. The work [15] includes a notion of distribution of DCR Graphs, by a
projection parameter : a subset of events and labels, which induces a subgraph.
For a partitioning of the events in a DCR Graph, the collection of such subgraphs
composes into the original graph. Simplifying this concept slightly, we simply
consider a distribution as a subset of events – exactly an ownership as per Def. 4.

Similarly, for notions of observations. In [15] each event is considered a process
in a distributed message-passing system. As an event is executed, a message
identifying the executing event is sent to all the events that change marking or
enabledness as a result. This, intuitively, translates into a notion of observability
where the marking of all events that can affect marking or enabledness of an
ownership is included in the observation of a run.

We consider a similar scenario where agents observe changes to the marking
and enabledness of their ownership, but, crucially, cannot directly observe what
events produced those changes. For an ownership π and marking M = (Ex, Pe, In)
we refer to (Ex ∩ π, Pe ∩ π, In ∩ π) as the marking of π, denoted M⇃π.

Definition 22 (Observation function for distributed DCR Graphs). Let
G = (E, M0, R) be a DCR Graph, where M0 = (Ex0, Pe0, In0). Let d (for DCR)
denote a notion of observability, observing of the marking and enabledness of

68

12 M. F. Madsen, S. Debois

events. Then oπd , i.e. the observation of a single transition in T (G), is defined as

oπd ((Ex, Pe, In)
e−→ (Ex′, Pe′, In′)) = (Ex′ ∩ π, Pe′ ∩ π, In′ ∩ π, En′ ∩ π)

where En′ = {e′ ∈ E | (Ex′, Pe′, In′) ⊢ e} – the enabled events, post-transition.
We let Oπ

d denote the pointwise lifting of oπd to runs, with consecutive dupli-
cates removed.

Ex′ ∩ π contains the events in π marked executed after the transition. Since
an agent’s prior knowledge is the initial marking, this provides exactly the in-
formation of how the executed-marking has changed for π, and similarly for the
Pe′ ∩ π and In′ ∩ π. Since En′ ∩ π contains the events that are enabled after the
transition, the observation describes exactly any change to the marking and en-
abledness of π. Any consecutive duplicate elements are removed from Oπ

d , since
activity not affecting π, should be hidden from the agent; they should not be
able to distinguish no action taken from actions taken that does not concern π.

We show in App. A.1 that deciding π-distinguishability in a DCR Graph with
the observation function from Def. 22 is NP-hard. We do so by reduction of the
known–to–be–NP-hard problem of event-reachability [8] to a decision-problem of
π-distinguishability. It follows that determining π-indistinguishability of events
using the observation function from Def. 22 is coNP-hard:

Corollary 23. Determining π-indistinguishability of two events in a DCR
Graph, using the observation function from Def. 22, is coNP-hard.

Since the event-reachability problem is considered generally infeasible in DCR
Graph [8,17], it follows that π-indistinguishability is generally infeasible, and,
by extension, that π-secrecy is generally infeasible. We will therefore look for
sufficient conditions for creating DCR-graphs with π-secret actions by design.

4.3 π-indistinguishability of automorphic events in DCR Graphs

In this section, we will show that (nontrivially) automorphic DCR events are
π-indistinguishable. For ease of reasoning, we consider only DCR Graphs with
finite runs. We conjecture the results to be general to all DCR Graphs. Infinite
runs in DCR graphs are ω-regular, and finite runs are regular [8], so the two
structures are similar.

Definition 24 (DCR Graph isomorphism). Given two DCR Graphs
G = (EG, MG, RG) and H = (EH , MH , RH), where MG = (ExG, PeG, InG),
MH = (ExH , PeH , InH), RG = (→•G, •→G,→+G,→÷G), and RH =
(→•H , •→H ,→+H ,→÷H), an isomorphism of G and H is a bijection be-
tween the events of two DCR Graphs f : EG → EH s.t. f is marking-preserving:

e ∈ InG iff f(e) ∈ InH , e ∈ ExG iff f(e) ∈ ExH , and e ∈ PeG iff f(e) ∈ PeH

and f is relation-preserving:

(e, e′) ∈ →+G iff (f(e), f(e′)) ∈ →+H , (e, e′) ∈ →÷G iff (f(e), f(e′)) ∈ →÷H ,

(e, e′) ∈ •→G iff (f(e), f(e′)) ∈ •→H , and (e, e′) ∈ →•G iff (f(e), f(e′)) ∈ →•H

69

Impalpable Differences 13

We say that G and H are isomorphic if there exists an isomorphism EG → EH .

We lift a DCR-isomorphism f as follows: to sets of events by pointwise ap-
plication. Then to markings by pointwise application to a marking’s sets. Then
to transitions by pointwise application to the start- and end-marking and the
executing event. Then to runs by pointwise application to the transitions. And,
finally, to observations of Oπ

d (Def. 22), by applying f pointwise to each ele-
ment in the sequence (recall that Oπ

d produces sequences of quadruples of sets
of events).

First, we show a foundational lemma, namely that isomorphisms on DCR
Graphs are run-preserving – a run exists in a graph iff its isomorphic image
exists in the isomorphic graph:

Lemma 25. Given two DCR Graphs G and H isomorphic under f : G → H,
then r ∈ RT (G) iff f(r) ∈ RT (H)

Proof. (=⇒)
By induction over the length n of r.
Base step n = 0. The empty run is trivially in all DCR Graphs (since we ignore
the acceptance criteria of DCR Graphs).
Induction step n > 0. Let r = r′ · t, where r′ is a run with final state M and
t = (M, a, M′) is a transition in T (G). By IH, we know that f(r′) ∈ RT (H), so we
need only show that f(t) = (f(M), f(a), f(M′)) is a transition in T (H).
Seeking a contradiction, assume not. Since, by IH, f(M) is a state in T (H), then
f(t) can only be missing from the transitions of T (H) if (1.) f(a) is not enabled
in f(M), or (2.) executing f(a) from f(M) does lead to the state f(M′):

1. If f(a) is not enabled in f(M), then f is not relation-preserving, since en-
abledness of f(a) is a function only on the relations to f(a) and the marking
f(M), see (Def. 20).

2. If executing f(a) from f(M) does lead to the state f(M′), then f is not relation-
preserving, as the resulting marking is a function depends only on the rela-
tions of f(a) and the marking f(M) (see Def 19).

Leading to that contradiction that f both is and is not relation-preserving.
The (⇐=) direction is identical with the (=⇒) direction, but for f−1 rather
than f .

From Lemma 25 follows another foundational result, namely that isomor-
phisms of DCR Graphs preserves the space of reachable markings:

Corollary 26. Given two DCR Graphs G and H isomorphic under f : G → H,
then

M ∈ M(G) iff f(M) ∈ M(H)

Lemma 25 and Cor. 26 will be used as shortcuts for reasoning about π-
indistinguishability in the following.

Lifting an isomorphism f to observations of Oπ
d allows us to reason about

isomorphic observations. Specifically, we can show that the observation of a run’s
isomorphic image is the same as the observation’s isomorphic image of the run:

70

14 M. F. Madsen, S. Debois

Lemma 27. Consider two DCR Graphs G and H that are isomorphic under
f : G → H. In that case:

∀r ∈ RT (G). O
f(π)
d (f(r)) = f(Oπ

d (r))

Proof. By induction on the length of r. First, note that f(r) must be in RT (H)

by Lemma 25. Let n denote the length of r.
Base step If n = 0, then r = f(r) is the empty run. The rest follows trivially.

Induction step Let r = r′·t, for some transition t, where Of(π)
d (f(r′)) = f(Oπ

d (r
′))

by IH. Seeking a contradiction, assume that

O
f(π)
d (f(r)) ̸= f(Oπ

d (r))

Then, by IH and definition of Oπ
d (Def. 22),

o
f(π)
d (f(t)) ̸= f(oπd (t))

Then either

f(ExG⇃π) ̸= ExH⇃f(π) or f(PeG⇃π) ̸= PeH⇃f(π) or
f(InG⇃π) ̸= InH⇃f(π) or f(EnG⇃π) ̸= EnH⇃f(π)

all of which violate Cor. 26.

Lemma 27 intuitively says that being given the observation of the isomorphic
image of a run is equal to being given the isomorphic image of the observation of a
run. This, in turn, implies that an isomorphism is what we might call observation-
preserving; we can apply the isomorphism to an observation without losing or
gaining information about the run that produces it.

Recall that an isomorphism f from a structure to itself is called an automor-
phism, and e s.t. f(e) = e is called a fixed point of f . We say that e and f(e) are
automorphic and, if e is no fixed point in f , they are nontrivially automorphic.
If f has e ̸= f(e), we say that f is a nontrivial automorphism.

With these foundations in mind, we are ready to show that, given certain
conditions of an ownership, a run and its automorphic image produces the same
observation:

Lemma 28. Given a graph G, an ownership π, and an automorphism f on
G, if the events of π are fixed points in f , then, for any run r ∈ RT (G),
Oπ

d (r) = Oπ
d (f(r))

Proof. The proof follows from Lemma 27:

Oπ
d (r)

π are fixed points in f
=

f(Oπ
d (r))

Lemma 27
=

O
f(π)
d (f(r))

π are fixed points in f
=

Oπ
d (f(r))

71

Impalpable Differences 15

Lemma 28 has immediate uses for π-indistinguishability; given a set of runs
R, then f(R) is a π-indistinguishable set. We will show how this applies to π-
indistinguishability of events, after a Corollary, an immediately consequence of
Lemma 25, needed for reasoning.

Corollary 29. Given a graph G and an automorphism f on G. Then, for any
automorphic events e and f(e), f(RT (G)

e) = R
T (G)
f(e)

Theorem 30. Given a graph G, an ownership π, and a nontrivial automor-
phism f on G. If the events of π are fixed points in f then any nontrivial auto-
morphic events in G are π-indistinguishable.

Proof. Fix the automorphic events e and f(e). Since π are fixed points in f , then
neither e nor f(e) is in π. We must now show that JRT (G)

e Kπd = JRT (G)
f(e) Kπd :

JRT (G)
e Kπd

Def. 6
=

{{r′ | Oπ
d (r

′) = Oπ
d (r)} | r ∈ RT (G)

e } Lem. 28 & Cor. 29
=

{{r′ | Oπ
d (r

′)) = Oπ
d (r)} | r ∈ R

T (G)
f(e) } Def. 6

=

JRT (G)
f(e) Kπd

Thm. 30 is the main takeaway from this section. It says that, as long as there
exists an automorphism in which two events are nontrivially automorphic, then
they are π-indistinguishable. This serves as a sufficient condition for creating
π-indistinguishable events by design. Together with Cor. 16, we can then create
π-secret events by design, as stated by the following Corollary:

Corollary 31. Given a graph G, an ownership π, and a nontrivial automor-
phism f on G. If the events of π are fixed points in f , then any mutually-
exclusive nontrivial automorphic events hide each other from π.

Note that nontriviality is a strict requirement here; the π-hiding action rela-
tion is irreflexive, making Cor. 31 inapplicable to trivially automorphic events.

It should be noted that the complexity of finding a nontrivial automor-
phism is unknown, but believed to be in NP, while neither being in P nor
NP-complete [19]. Regardless, the real power of of Thm. 30 comes from the
fact that it makes simple the process of constructing DCR Graphs with π-
indistinguishable actions by design: Consider an existing process with an action
a, that should eventually become secret. Adding another event a′ with relations
equal to a’s, ensures π-indistinguishability, as there now exist a nontrivial auto-
morphism, where e and e′ are nontrivial automorphic events, and all other events
are fixed points. Now making e and e′ mutually exclusive ensures π-secrecy, by
Cor. 31. This can, for example, be ensured by adding exclude-relations between
e and e′, and ensuring there exists no include-relations to them.

The DCR Graph (G) of the recall workflow (Fig. 1) has been constructed
using the above procedure, with the actions A and B designed to be π-secret.

72

16 M. F. Madsen, S. Debois

Proposition 32. In G, for an agent with ownership π = {E}, A and B will be
π-secret by isomorphism and mutual exclusivity of A and B.

Proof. Consider f : E → E, s.t. f(A) = B, f(B) = A, and otherwise f(e) = e.
Clearly, f is both relation- and marking preserving, so f is a nontrivial auto-

morphism on G. Likewise, E is a fixed point in f , and A and B are nontrivially
automorphic events. So, by Thm. 30, A and B are π-indistinguishable. Since
(A,B) ∈ →÷ and (B,A) ∈ →÷, and →+A = →+B = ∅, at most one of the
actions A or B can be in a run, by the semantics of DCR Graphs (Def. 19), so
they are mutually exclusive. And so, by Cor. 31, A and B are π-secret.

5 Future work

Possibilistic secrecy has its uses, especially in the business process modelling
world, where a dual to non-repudiation is sometimes a requirement for multi-
participant workflows. For security-critical tasks where an action must be com-
pletely obscured, however, possibilistic secrecy is not always enough and can be
vulnerable to statistical analysis (see [33]). A natural next step is, therefore, to
examine probabilistic secrecy properties of actions.

We have not considered collaborating adversarial agents in this work, except
in Section 2, where we mentioned that collaborating agents can be considered
a single agent with the union ownership, only for some notions of observabil-
ity. Examining which notions of observability has this property might give rise
to a deeper understanding of the relationship between system equivalence and
secrecy.

Several weakenings of action secrecy also present themselves. E.g. keeping
secrecy before/after a state, or allowing agents to deduce the first n secret ac-
tions, but nothing after. Such weakening could allow leakage of secret actions as
the process reaches an end-state, which could have applications in game theory.

Lastly, we have shown that computing π-indistinguishability for some notions
of observability is infeasible in the general case. An approximation routine could
serve as the foundation for more process models with secret actions.

6 Conclusion

In this paper, we have defined possibilistic secrecy of actions in concurrent sys-
tems where multiple actors collaborate on executing a process, but where not all
actors are privy to all parts of that process. This secrecy of actions is parametric
in notions of observability, which makes the definition usable regardless of what
an agent can observe in specific system implementation. We have shown the
practical use of action secrecy in the declarative process model of DCR Graphs,
and through that, have shown how computing secrecy of actions for a chosen
notion of observability is infeasible. We have also shown that, under that notion
of observability, automorphic actions are indistinguishable to an agent, which
serves as a foundation for creating processes with secret actions by design.

73

Impalpable Differences 17

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge,
Mass (2008)

2. Belluccini, S., De Nicola, R., Dumas, M., Pullonen, P., Re, B., Tiezzi, F.: Ver-
ification of Privacy-Enhanced Collaborations. In: Proceedings of the 8th Inter-
national Conference on Formal Methods in Software Engineering. pp. 141–152.
FormaliSE ’20, Association for Computing Machinery, New York, NY, USA (Oct
2020). https://doi.org/10.1145/3372020.3391553

3. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal Logics for Hyperproperties. In: Hutchison, D., Kanade, T., Kittler, J.,
Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Ran-
gan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum,
G., Abadi, M., Kremer, S. (eds.) Principles of Security and Trust, vol. 8414, pp.
265–284. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

4. Debois, S., Hildebrandt, T.: The DCR workbench: Declarative choreographies
for collaborative processes. Behavioural Types: from Theory to Tools pp. 99–124
(2017)

5. Debois, S., Hildebrandt, T., Slaats, T.: Hierarchical Declarative Modelling with
Refinement and Sub-processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) Busi-
ness Process Management, vol. 8659, pp. 18–33. Springer International Publishing,
Cham (2014)

6. Debois, S., Hildebrandt, T., Slaats, T.: Safety, Liveness and Run-Time Refinement
for Modular Process-Aware Information Systems with Dynamic Sub Processes. In:
Bjørner, N., de Boer, F. (eds.) FM 2015: Formal Methods. pp. 143–160. Lecture
Notes in Computer Science, Springer International Publishing, Cham (2015)

7. Debois, S., Hildebrandt, T., Slaats, T.: Concurrency and asynchrony in declarative
workflows. In: International Conference on Business Process Management. pp. 72–
89. Springer (2016)

8. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability:
Complexity in dynamic condition-response graphs. Acta Informatica 55(6), 489–
520 (2018)

9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
press (2004)

10. Focardi, R., Gorrieri, R.: Classification of security properties. In: International
School on Foundations of Security Analysis and Design. pp. 331–396. Springer
(2000)

11. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In:
1982 IEEE Symposium on Security and Privacy. pp. 11–11 (Apr 1982).
https://doi.org/10.1109/SP.1982.10014

12. Gray III, J.: Probabilistic interference. In: Proceedings. 1990 IEEE Computer So-
ciety Symposium on Research in Security and Privacy. pp. 170–179 (May 1990).
https://doi.org/10.1109/RISP.1990.63848

13. Guanciale, R., Gurov, D., Laud, P.: Business Process Engineering and Secure Mul-
tiparty Computation. In: Applications of Secure Multiparty Computation, p. 21.
No. 13 in Cryptology and Information Security Series (2015)

14. Halpern, J., O’Neill, K.: Secrecy in multiagent systems. In: Proceed-
ings 15th IEEE Computer Security Foundations Workshop. CSFW-
15. pp. 32–46. IEEE Comput. Soc, Cape Breton, NS, Canada (2002).
https://doi.org/10.1109/CSFW.2002.1021805

74

18 M. F. Madsen, S. Debois

15. Hildebrandt, T., Mukkamala, R., Slaats, T.: Safe distribution of declarative pro-
cesses. In: Proceedings of the 9th International Conference on Software Engineering
and Formal Methods. pp. 237–252 (2011)

16. Hildebrandt, T.T., Mukkamala, R.R.: Declarative Event-Based Workflow as Dis-
tributed Dynamic Condition Response Graphs. Electronic Proceedings in Theoret-
ical Computer Science 69, 59–73 (Oct 2011). https://doi.org/10.4204/EPTCS.69.5

17. Høgnason, T., Debois, S.: DCR Event-Reachability via Genetic Algorithms. In:
Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) Business Process Management Work-
shops. pp. 301–312. Lecture Notes in Business Information Processing, Springer
International Publishing, Cham (2019)

18. Honda, K., Vasconcelos, V., Yoshida, N.: Secure Information Flow as Typed Pro-
cess Behaviour. In: Smolka, G. (ed.) Programming Languages and Systems. pp.
180–199. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2000)

19. Lubiw, A.: Some NP-Complete Problems Similar to Graph Isomorphism. SIAM
Journal on Computing 10(1), 11–21 (Feb 1981). https://doi.org/10.1137/0210002

20. Mazurkiewicz, A.: Trace theory. In: Advanced Course on Petri Nets. pp. 278–324.
Springer (1986)

21. McCullough, D.: Noninterference and the composability of security prop-
erties. In: Proceedings. 1988 IEEE Symposium on Security and Pri-
vacy. pp. 177–186. IEEE Comput. Soc. Press, Oakland, CA, USA (1988).
https://doi.org/10.1109/SECPRI.1988.8110

22. McLean, J.: Security models and information flow. Tech. rep., Naval Research Lab
Washington DC Center for High Assurance Computing Systems (1990)

23. Mukund, M., Nielsen, M.: CCS, locations and asynchronous transition systems. In:
International Conference on Foundations of Software Technology and Theoretical
Computer Science. pp. 328–341. Springer (1992)

24. Pullonen, P., Tom, J., Matulevičius, R., Toots, A.: Privacy-enhanced BPMN:
Enabling data privacy analysis in business processes models. Software and Sys-
tems Modeling 18(6), 3235–3264 (Dec 2019). https://doi.org/10.1007/s10270-019-
00718-z

25. R. R. Mukkamala, T.: Declarative Event-Based Workflow as Distributed Dynamic
Condition Response Graphs,. In: Post-Proceedings of PLACES. vol. 69, pp. 59–73
(2010)

26. Ryan, P.Y.A., Schneider, S.A.: Process algebra and non-interference. Journal of
Computer Security 9(1-2), 75–103 (Jan 2001). https://doi.org/10.3233/JCS-2001-
91-204

27. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE
Journal on Selected Areas in Communications 21(1), 5–19 (Jan 2003).
https://doi.org/10.1109/JSAC.2002.806121

28. Shannon, C.E.: Communication Theory of Secrecy Systems*. Bell System Technical
Journal 28(4), 656–715 (Oct 1949)

29. Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics Declara-
tive Case Management Workflows as DCR Graphs. In: Proceedings of International
Conference on Business Process Management (BPM2013) (2013)

30. Sutherland, D.: A model of information. In: Proceedings of the 9th National Com-
puter Security Conference. vol. 247, pp. 175–183. Washington, DC (1986)

31. van Glabbeek, R.: The linear time-branching time spectrum I. In: International
Conference on Concurrency Theory. pp. 278–297. Springer (1990)

32. van Glabbeek, R.: The linear time—branching time spectrum II. In: International
Conference on Concurrency Theory (1993)

75

Impalpable Differences 19

33. Wittbold, J.T., Johnson, D.M.: Information Flow in Nondeterministic Systems. In:
IEEE Symposium on Security and Privacy. vol. 161 (1990)

A Appendix

A.1 Showing NP-hardness of distinguishability

In this section, we show how π-distinguishability is NP-hard. We use this fact
to argue for the infeasibility of computing π-indistinguishability in the general
case.

To show that π-distinguishability is NP-hard, we show a reduction from DCR
event-reachability [8] to π-distinguishability. First, we recall the former problem:

Definition 33 (The event-reachability problem [8]). For (G, e), where
G = (E, M, R) is a DCR Graph, and e ∈ E, the event-reachability problem of
(G, e) is deciding if there exists a run M

r−→ M′ s.t. M′ ⊢ e. We call such an r a
witness of the reachability of e. If such a witness exists, we say that e is reachable.

Definition 34 (The π-distinguishability problem). For (G, e, e′, π),
where G = (E, M, R) is DCR Graph, π is an ownership, and e, e′ ∈ E, the
π-distinguishability problem is deciding if RT (G)

e is π-distinguishable from R
T (G)
e′

in T (G) (Def. 7), under the notion of observability in Def. 22. If R
T (G)
e is

π-distinguishable from R
T (G)
e′ in T (G) then there exists a run r ∈ R

T (G)
e s.t.

JrKπd ̸∈ JRT (G)
e′ Kπd . We call such an r a witness of distinguishability. If such a

witness exists, we say that e is distinguishable from e′.

Lemma 35. For any DCR Graph, there exists a reduction (G, e) → (G′, e, e′, π)
from event-reachability to π-distinguishability.

Proof sketch. Construct a new DCR Graph, G′, with the new events e′ and
e′′. Let e′ have a condition to itself, making it unreachable. Add exclude relations
from e and e′ to e′′, ensuring that they have the same effect on e′′. Since e′ is
unreachable, then e and e′ will be π-distinguishable for π = {e′′} iff e is reachable
in G.

From Lemma 35 follows the NP-hardness of π-distinguishability:

Theorem 36. The π-distinguishability problem is NP-hard

Proof. From [8] we know that event-reachability is NP-hard. From Lemma 35
we know that event-reachability is reducible to π-distinguishability.

76

20 M. F. Madsen, S. Debois

A.2 Proofs

Proof of Lemma 8

Proof.

¬(∃r ∈ R1. JrKπN ̸∈ JR2KπN) ∧ ¬(∃r′ ∈ R2. Jr′KπN ̸∈ JR1KπN)

⇔ (∀r ∈ R1. JrKπN ∈ JR2KπN) ∧ (∀r′ ∈ R2. Jr′KπN ∈ JR1KπN)

⇔ {JrKπN | r ∈ R1} ⊆ JR2KπN ∧ {Jr′KπN | r′ ∈ R2} ⊆ JR1KπN
⇔ JR1KπN ⊆ JR2KπN ∧ JR2KπN ⊆ JR1KπN
⇔ JR1KπN = JR2KπN

Proof of Cor. 13

Proof. Since RT
a ⊆ RT it follows that

∃H ⊆ (RT
a \ RT

b). JHKπN = JRT
b KπN =⇒ ∃H ⊆ (RT \ RT

b). JHKπN = JRT
b KπN

Proof of Lemma 14

Proof.

∃H ⊆ (RT
a \RT

b). JHKπN = JRT
b KπN

=⇒ ∃H ⊆ RT
a . JHKπN = JRT

b KπN
⇐⇒ JRT

b KπN ⊆ JRT
a KπN

Proof of Cor. 16

Proof. Special case of Thm. 15, where RT
a ∩ RT

b = ∅, so JRT
a ∩ RT

b KπN = ∅. As
such RT

a ∩RT
b is vacuously π-indistinguishable from RT

b \RT
a .

Proof of Cor. 23

Proof. Since the problem of determining π-indistinguishability of two events in
a DCR-graph is the complement of the π-distinguishability problem (Def. 34),
coNp-hardness follows trivially from Thm. 36.

77

Bibliography

[1] Stephen A. White. “Introduction to BPMN”. In: Ibm Cooperation (2004).

[2] Thomas T. Hildebrandt and Raghava Rao Mukkamala. “Declarative Event-
Based Workflow as Distributed Dynamic Condition Response Graphs”.
In: Post-proceedings of PLACES 2010 (2010).

[3] Wil MP Van der Aalst. “The Application of Petri Nets to Workflow Man-
agement”. In: Journal of circuits, systems, and computers 8.01 (1998),
pp. 21–66.

[4] Wil MP Van der Aalst. “Formalization and Verification of Event-Driven
Process Chains”. In: Information and Software technology 41.10 (1999),
pp. 639–650.

[5] Rania Khalaf, Nirmal Mukhi, and Sanjiva Weerawarana. “Service-Oriented
Composition in BPEL4WS.” In: WWW (Alternate Paper Tracks). 2003,
pp. 27–28.

[6] Marlon Dumas and Arthur HM Ter Hofstede. “UML Activity Diagrams
as a Workflow Specification Language”. In: UML 2001—The Unified Mod-
eling Language. Modeling Languages, Concepts, and Tools: 4th Interna-
tional Conference Toronto, Canada, October 1–5, 2001 Proceedings 4.
Springer, 2001, pp. 76–90.

[7] George Coulouris et al. Distributed Systems, Concepts and Design. 5th
ed. 2012. isbn: 978-0-13-214301-1.

[8] T. Hildebrandt, R.R. Mukkamala, and T. Slaats. “Safe Distribution of
Declarative Processes”. In: Proceedings of the 9th International Confer-
ence on Software Engineering and Formal Methods (Montevideo, Uruguay).
2011, pp. 237–252. doi: 10.1007/978-3-642-24690-6_17.

[9] Wil MP van der Aalst and Mathias Weske. “The P2P Approach to In-
terorganizational Workflows”. In: Advanced Information Systems Engi-
neering: 13th International Conference, CAiSE 2001 Interlaken, Switzer-
land, June 4–8, 2001 Proceedings 13. Springer, 2001, pp. 140–156.

[10] M. Pease, R. Shostak, and L. Lamport. “Reaching Agreement in the
Presence of Faults”. In: J. ACM 27.2 (Apr. 1, 1980), pp. 228–234. issn:
0004-5411. doi: 10.1145/322186.322188. url: https://doi.org/10.
1145/322186.322188 (visited on 05/15/2020).

78

https://doi.org/10.1007/978-3-642-24690-6_17
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188

BIBLIOGRAPHY 79

[11] Mads Frederik Madsen et al. “Collaboration among Adversaries: Dis-
tributed Workflow Execution on a Blockchain”. In: 2018 Symposium on
Foundations and Applications of Blockchain (SFAB ’18). 2018.

[12] Google Finance. Ether (ETH) Price. Mar. 1, 2023. url: https://www.
google.com/finance/quote/ETH-USD (visited on 03/06/2023).

[13] ethereumprice. Ethereum Gas Price Charts & Historical Gas Fees. Mar. 1,
2023. url: https://ethereumprice.org/gas/ (visited on 03/06/2023).

[14] Fred B. Schneider. “Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial”. In: ACM Comput. Surv. 22.4 (Dec. 1,
1990), pp. 299–319. issn: 0360-0300. doi: 10.1145/98163.98167. url:
https://doi.org/10.1145/98163.98167 (visited on 03/13/2023).

[15] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Toler-
ance”. In: OSDI. Vol. 99. 1999, pp. 173–186.

[16] Farah Abdmeziem, Saida Boukhedouma, and Mourad Chabane Oussalah.
“On the Security of Business Processes: Classification of Approaches,
Comparison, and Research Directions”. In: 2021 International Confer-
ence on Networking and Advanced Systems (ICNAS). 2021 International
Conference on Networking and Advanced Systems (ICNAS). Oct. 2021,
pp. 1–8. doi: 10.1109/ICNAS53565.2021.9628908.

[17] Elio Goettelmann et al. “Paving the Way towards Semi-Automatic Design-
Time Business Process Model Obfuscation”. In: 2015 IEEE International
Conference on Web Services. IEEE, 2015, pp. 559–566.

[18] Amina Ahmed Nacer et al. “Obfuscating a Business Process by Splitting
Its Logic with Fake Fragments for Securing a Multi-Cloud Deployment”.
In: 2016 IEEE World Congress on Services (SERVICES). IEEE, 2016,
pp. 18–25.

[19] Jan Mendling et al. “Blockchains for Business Process Management-
Challenges and Opportunities”. In: ACM Transactions on Management
Information Systems (TMIS) 9.1 (2018), pp. 1–16.

[20] Tiphaine Henry. “Towards Trustworthy, Flexible, and Privacy-Preserving
Peer-to-Peer Business Process Management Systems”. PhD thesis. Insti-
tut Polytechnique de Paris, 2022.

[21] Orlenys López-Pintado et al. “Caterpillar: A Blockchain-Based Business
Process Management System.” In: BPM (Demos) 172 (2017).

[22] An Binh Tran, Qinghua Lu, and Ingo Weber. “Lorikeet: A Model-Driven
Engineering Tool for Blockchain-Based Business Process Execution and
Asset Management.” In: BPM (Dissertation/Demos/Industry). 2018, pp. 56–
60.

[23] Marcel Müller et al. “Engineering Trust-Aware Decentralized Applica-
tions with Distributed Ledgers”. In: Trust Models for Next-Generation
Blockchain Ecosystems (2021), pp. 1–35.

https://www.google.com/finance/quote/ETH-USD
https://www.google.com/finance/quote/ETH-USD
https://ethereumprice.org/gas/
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1109/ICNAS53565.2021.9628908

BIBLIOGRAPHY 80

[24] Marcel Müller et al. “Towards Trust-Aware Collaborative Business Pro-
cesses: An Approach to Identify Uncertainty”. In: IEEE Internet Com-
puting 24.6 (2020), pp. 17–25.

[25] Michael Backes, Birgit Pfitzmann, and Michael Waidner. “Security in
Business Process Engineering”. In: Business Process Management: In-
ternational Conference, BPM 2003 Eindhoven, The Netherlands, June
26–27, 2003 Proceedings 1. Springer, 2003, pp. 168–183.

[26] Alexander W. Rohm, Gaby Herrmann, and Günther Pernul. “A Language
for Modelling Secure Business Transactions”. In: Proceedings 15th Annual
Computer Security Applications Conference (ACSAC’99). IEEE, 1999,
pp. 22–31.

[27] Barbara Carminati, Christian Rondanini, and Elena Ferrari. “Confiden-
tial Business Process Execution on Blockchain”. In: 2018 Ieee Interna-
tional Conference on Web Services (Icws). IEEE, 2018, pp. 58–65.

[28] Wil Van Der Aalst. “Process Mining: Overview and Opportunities”. In:
ACM Transactions on Management Information Systems (TMIS) 3.2
(2012), pp. 1–17.

[29] Marcel Müller et al. “Process Mining in Trusted Execution Environments:
Towards Hardware Guarantees for Trust-Aware Inter-organizational Pro-
cess Analysis”. In: Process Mining Workshops: ICPM 2021 International
Workshops, Eindhoven, The Netherlands, October 31–November 4, 2021,
Revised Selected Papers. Springer International Publishing Cham, 2022,
pp. 369–381.

[30] David Basin, Søren Debois, and Thomas Hildebrandt. “On Purpose and
by Necessity: Compliance under the GDPR”. In: Financial Cryptogra-
phy and Data Security: 22nd International Conference, FC 2018, Nieuw-
poort, Curaçao, February 26–March 2, 2018, Revised Selected Papers 22.
Springer, 2018, pp. 20–37.

[31] Simone Agostinelli et al. “Achieving GDPR Compliance of BPMN Pro-
cess Models”. In: Information Systems Engineering in Responsible In-
formation Systems: CAiSE Forum 2019, Rome, Italy, June 3–7, 2019,
Proceedings 31. Springer, 2019, pp. 10–22.

[32] Tobias Heindel and Ingo Weber. “Incentive Alignment of Business Pro-
cesses”. In: Business Process Management: 18th International Confer-
ence, BPM 2020, Seville, Spain, September 13–18, 2020, Proceedings 18.
Springer, 2020, pp. 93–110.

[33] Frederik Haagensen and Søren Debois. “Incentive Alignment Through
Secure Computations”. In: Business Process Management: 20th Inter-
national Conference, BPM 2022, Münster, Germany, September 11–16,
2022, Proceedings. Springer, 2022, pp. 343–360.

[34] Mads Frederik Madsen et al. “Transforming Byzantine Faults Using a
Trusted Execution Environment”. In: 15th European Dependable Com-
puting Conference (EDCC ’19). 2019.

BIBLIOGRAPHY 81

[35] Mikkel Gaub, Malthe Ettrup Kirkbro, and Mads Frederik Madsen. “Trusted
DCR: Decentralised Workflow Management in a Byzantine Setting”. [Un-
published Master Thesis]. IT University of Copenhagen, June 1, 2018.

[36] Simon Johnson et al. “Intel Software Guard Extensions: EPID Provision-
ing and Attestation Services”. In: White Paper 1.1-10 (2016), p. 119.

[37] William Stallings et al. Computer Security: Principles and Practice. 4th ed.
Pearson Upper Saddle River, 2018.

[38] Jo Van Bulck et al. “A Tale of Two Worlds: Assessing the Vulnerability of
Enclave Shielding Runtimes”. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 2019, pp. 1741–
1758.

[39] Dayeol Lee et al. “Keystone: An Open Framework for Architecting Trusted
Execution Environments”. In: Proceedings of the Fifteenth European Con-
ference on Computer Systems. 2020, pp. 1–16.

[40] Job Noorman et al. “Sancus 2.0: A Low-Cost Security Architecture for
IoT Devices”. In: ACM Transactions on Privacy and Security (TOPS)
20.3 (2017), pp. 1–33.

[41] Fatima Khalid and Ammar Masood. “Hardware-Assisted Isolation Tech-
nologies: Security Architecture and Vulnerability Analysis”. In: 2020 In-
ternational Conference on Cyber Warfare and Security (ICCWS). IEEE,
2020, pp. 1–8.

[42] Antonio Muñoz et al. “A Survey on the (in) Security of Trusted Execution
Environments”. In: Computers & Security (2023), p. 103180.

[43] Kit Murdock et al. “Plundervolt: Software-based Fault Injection Attacks
against Intel SGX”. In: 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 1466–1482.

[44] Kit Murdock et al. “Plundervolt: How a Little Bit of Undervolting Can
Create a Lot of Trouble”. In: IEEE Security & Privacy 18.5 (2020),
pp. 28–37.

[45] Guoxing Chen et al. “Sgxpectre: Stealing Intel Secrets from Sgx Enclaves
via Speculative Execution”. In: 2019 IEEE European Symposium on Se-
curity and Privacy (EuroS&P). IEEE, 2019, pp. 142–157.

[46] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”.
In: Communications of the ACM 63.7 (2020), pp. 93–101.

[47] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”.
In: Communications of the ACM 63.6 (2020), pp. 46–56.

[48] Kevin Driscoll et al. “Byzantine Fault Tolerance, from Theory to Reality”.
In: Computer Safety, Reliability, and Security. Ed. by Stuart Anderson,
Massimo Felici, and Bev Littlewood. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 235–248. isbn: 978-3-540-39878-3.

BIBLIOGRAPHY 82

[49] K. Driscoll et al. “The Real Byzantine Generals”. In: The 23rd Digital
Avionics Systems Conference (IEEE Cat. No.04CH37576). The 23rd Dig-
ital Avionics Systems Conference. Salt Lake City, UT, USA: IEEE, 2004,
pp. 6.D.4-61–11. isbn: 978-0-7803-8539-9. doi: 10.1109/DASC.2004.
1390734. url: http://ieeexplore.ieee.org/document/1390734/
(visited on 01/11/2023).

[50] Gabriel Bracha and Sam Toueg. “Asynchronous Consensus and Broadcast
Protocols”. In: J. ACM 32.4 (Oct. 1, 1985), pp. 824–840. issn: 00045411.
doi: 10.1145/4221.214134. url: http://portal.acm.org/citation.
cfm?doid=4221.214134 (visited on 10/21/2019).

[51] Mads Frederik Madsen and Søren Debois. “On the Subject of Non-Equivocation:
Defining Non-Equivocation in Synchronous Agreement Systems”. In: Pro-
ceedings of the 39th Symposium on Principles of Distributed Computing
(PODC ’20). 2020, pp. 159–168.

[52] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine
Generals Problem”. In: ACM Trans. Program. Lang. Syst. 4.3 (July 1,
1982), pp. 382–401. issn: 0164-0925. doi: 10.1145/357172.357176. url:
https://doi.org/10.1145/357172.357176 (visited on 05/15/2020).

[53] Byung-Gon Chun et al. “Attested Append-Only Memory: Making Ad-
versaries Stick to Their Word”. In: Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles. SOSP ’07. New
York, NY, USA: ACM, 2007, pp. 189–204. isbn: 978-1-59593-591-5. doi:
10.1145/1294261.1294280.

[54] Alexander Jaffe, Thomas Moscibroda, and Siddhartha Sen. “On the Price
of Equivocation in Byzantine Agreement”. In: Proceedings of the 2012
ACM Symposium on Principles of Distributed Computing. PODC ’12.
Madeira, Portugal: Association for Computing Machinery, July 16, 2012,
pp. 309–318. isbn: 978-1-4503-1450-3. doi: 10.1145/2332432.2332491.
url: https://doi.org/10.1145/2332432.2332491 (visited on 05/15/2020).

[55] Danny Dolev. The Byzantine Generals Strike Again. 1981, p. 30.

[56] Eralp A. Akkoyunlu, Kattamuri Ekanadham, and Richard V. Huber.
“Some Constraints and Tradeoffs in the Design of Network Communi-
cations”. In: Proceedings of the Fifth ACM Symposium on Operating Sys-
tems Principles. 1975, pp. 67–74.

[57] J. Gray. “Notes on Data Base Operating Systems”. In: Operating Systems
(1978), pp. 393–481.

[58] Gadi Taubenfeld. “Distributed Computing Pearls”. In: Synthesis Lectures
on Distributed Computing Theory 7.1 (2018), pp. 1–123.

[59] Michel Raynal. “Consensus in Synchronous Systems: A Concise Guided
Tour”. In: 2002 Pacific Rim International Symposium on Dependable
Computing, 2002. PRDC’02. Dec. 2002, pp. 221–228. doi: 10.1109/
PRDC.2002.1185641.

https://doi.org/10.1109/DASC.2004.1390734
https://doi.org/10.1109/DASC.2004.1390734
http://ieeexplore.ieee.org/document/1390734/
https://doi.org/10.1145/4221.214134
http://portal.acm.org/citation.cfm?doid=4221.214134
http://portal.acm.org/citation.cfm?doid=4221.214134
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/2332432.2332491
https://doi.org/10.1145/2332432.2332491
https://doi.org/10.1109/PRDC.2002.1185641
https://doi.org/10.1109/PRDC.2002.1185641

BIBLIOGRAPHY 83

[60] Søren Debois, Thomas T. Hildebrandt, and Tijs Slaats. “Replication,
Refinement & Reachability: Complexity in Dynamic Condition-Response
Graphs”. In: Acta Informatica 55.6 (2018), pp. 489–520.

[61] John Morris. “Can Computers Ever Lie?” In: The Philosophy Forum.
Vol. 14. 4. Taylor & Francis, 1976, pp. 389–401.

[62] Bruce Schneier. Secrets and Lies: Digital Security in a Networked World.
John Wiley & Sons, 2015.

[63] Shireesh Apte and Nikolai Petrovsky. “Will Blockchain Technology Revo-
lutionize Excipient Supply Chain Management?” In: JEFC 7.3 (Sept. 25,
2016). url: https://jefc.scholasticahq.com/article/910-will-
blockchain-technology-revolutionize-excipient-supply-chain-
management (visited on 01/18/2023).

[64] Darcy WE Allen et al. “International Policy Coordination for Blockchain
Supply Chains”. In: Asia & the Pacific Policy Studies 6.3 (2019), pp. 367–
380.

[65] Pankaj Dutta et al. “Blockchain Technology in Supply Chain Operations:
Applications, Challenges and Research Opportunities”. In: Transporta-
tion Research Part E: Logistics and Transportation Review 142 (Oct.
2020), p. 102067. issn: 13665545. doi: 10.1016/j.tre.2020.102067.
url: https://linkinghub.elsevier.com/retrieve/pii/S1366554520307183
(visited on 01/17/2023).

[66] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems:
Principles and Paradigms. 2nd ed. Upper Saddle RIiver, NJ: Pearson
Prentice Hall, 2007. 686 pp. isbn: 978-0-13-239227-3.

https://jefc.scholasticahq.com/article/910-will-blockchain-technology-revolutionize-excipient-supply-chain-management
https://jefc.scholasticahq.com/article/910-will-blockchain-technology-revolutionize-excipient-supply-chain-management
https://jefc.scholasticahq.com/article/910-will-blockchain-technology-revolutionize-excipient-supply-chain-management
https://doi.org/10.1016/j.tre.2020.102067
https://linkinghub.elsevier.com/retrieve/pii/S1366554520307183

	Contents
	Introduction
	Necessary formalisms and terminology
	Related work
	Introducing the Transforming paper
	Introducing the Non-equivocation paper
	Introducing the Impalpable Differences paper
	Discussion: Lying in a distributed business process execution
	Future work
	Introductory conclusion

	Transforming Byzantine Faults Using a Trusted Execution Environment
	On the Subject of Non-Equivocation: Defining Non-Equivocation in Synchronous Agreement Systems
	Impalpable Differences: Secret Actions in Processes and Concurrent Workflows
	Bibliography

