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Abbreviations

3DMM 3D Morphable Model

AdaIN Adaptive Instance Normalization

BU-3DFE Binghamton University 3D Facial Expression

CFG Classifier-Free Guidance

CLIP Contrastive Language-Image Pretraining

CNN Convolutional Neural Network

DDIM Denoising Diffusion Implicit Model

DDM Denoising Diffusion Model

DDPM Denoising Diffusion Probabilistic Models

DGM Deep Generative Model

FFHQ Flickr-Faces-HQ

FID Fréchet Inception Distance

GAN Generative Adversarial Network

HOSVD Higher-Order Singular Value Decomposition

JVP Jacobian Vector Product
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LDM Latent Diffusion Model

LPIPS Learned Perceptual Image Patch Similarity

MLP Multilayer Perceptron

NeRF Neural Radiance Field

NFE Neural Function Evaluation

NRSfM Non-Rigid Structure-from-Motion

PCA Principal Component Analysis

PPL Perceptual Path Length

ProGAN Progressive GAN

SfM Structure-from-Motion

SVD Singular Value Decomposition

SVM Support Vector Machine

VAE Variational Autoencoder

WGAN Wasserstein GAN
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English Abstract

This PhD thesis proposes several novel methods for semantic editing of human

faces using Deep Generative Models (DGMs). DGMs such as Generative Ad-

versarial Networks (GANs) and Denoising Diffusion Models (DDMs) have seen

rapid improvements in image quality in recent years and are now able to synthe-

size human face portraits that are almost indistinguishable from real photographs.

DGMs compress the high-dimensional manifold of plausible face images to a re-

duced representation called the latent space. This thesis seeks to develop methods

for discovering preferred directions or trajectories in the latent space of DGMs that

correspond to semantically interpretable changes to the generated images, for ex-

ample, changes to pose or facial expression. The first part of the thesis focuses on

StyleGAN, a state-of-the-art GAN architecture that has revolutionized the field of

unconditional synthesis of human faces. First, this thesis proposes a novel editing

method for StyleGAN using a multilinear tensor model and a real facial expres-

sion data set as supervision. Next, this thesis explores how StyleGAN represents

3D structure. StyleGAN generates 2D images and does not have any explicit 3D

understanding. We use Non-Rigid Structure-from-Motion (NRSfM) to recover the

underlying 3D structure from generated 2D images and propose a novel method

for connecting the NRSfM model with the latent space of StyleGAN, allowing for

explicit control of the 3D geometry of the generated images. Very recently, DDMs

have emerged as a strong competitor to GANs, both in terms of the quality and

diversity of the generated images. However, the latent space of DDMs is still not

well understood. The final part of this thesis proposes novel supervised and fully

unsupervised approaches for semantic editing of face images using DDMs.
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Resume p̊a Dansk

Denne PhD afhandling foresl̊ar flere nye metoder til semantisk redigering af an-

sigter ved hjælp af Deep Generative Models (DGMs). DGMs s̊asom Generative

Adversarial Networks (GANs) og Denoising Diffusion Models (DDMs) har set hur-

tige forbedringer i billedkvalitet de seneste år og er nu i stand til at syntetisere

ansigter, der næsten er umulige at skelne fra ægte fotografier. DGMs komprimerer

den højdimenionale manifold af plausible ansigts biller til en reduceret repræsen-

tation kaldet det latente rum. Denne afhandling søger at udvikle metoder til at

opdage foretrukne retninger eller baner i det latente rum DGMs’, der svarer til

semantisk fortolkelige ændringer i de genererede billeder, for eksempel ændringer i

positur eller ansigtsudtryk. Første del af afhandlingen fokuserer p̊a StyleGAN, en

state-of-the-art GAN-arkitektur, der har revolutioneret feltet indenfor syntese af

ansigtsbilleder. Først foresl̊ar denne afhandling en ny redigeringsmetode for Style-

GAN ved hjælp af en multilinear tensor model og et ansigtsudtryks datasæt som

supervision. Derefter udforsker denne afhandling, hvordan StyleGAN repræsen-

terer 3D-struktur. StyleGAN genererer 2D-billeder og har ikke nogen eksplicit 3D-

forst̊aelse. Vi bruger Non-Rigid Structure-from-Motion (NRSfM) til at gendanne

den underliggende 3D-struktur fra genererede 2D-billeder og foresl̊ar en ny metode

til at forbinde NRSfM-modellen med StyleGANs latente rum, hvilket muliggør ek-

splicit kontrol med 3D geometrien af de genererede billeder. For nylig er DDMs

kommet frem som en stærk konkurrent til GANs, b̊ade hvad ang̊ar kvalitet og

diversitet af de genererede billeder. Dog er DDMs’ latente rum stadig ikke godt

forst̊aet. Den sidste del af denne afhandling foresl̊ar nye metoder til semantisk

redigering af ansigtsbilleder ved hjælp af DDMs.
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Chapter 1
Introduction

1.1 Background and motivation

Deep Generative Models (DGMs) have seen impressive advancements in recent

years, achieving unprecedented capabilities in generating photorealistic images

across diverse domains. DGMs take a data-driven approach to image generation

as these models aim to capture the underlying distributions of given data sets,

enabling the generation of new images. Importantly, while the generated images

are not contained in the training data itself, they follow the distribution of the

training data. Thus, DGMs are able to generate entirely novel images from the

domain of the training data. In particular, current state-of-the-art DGMs are able

to generate near-perfect images of human faces. This PhD thesis focuses on the

use of DGMs as a tool for modeling images of human faces and expressions and

proposes several novel methods for controlling the output of DGMs in this context.

Before the advent of powerful DGMs, the primary method for generating synthetic

facial images in computer graphics was based on creating 3D models and render-

ing textures onto them. This traditional method offers explicit and fine-grained

control over the generated images: the 3D structure can be precisely manipulated

by altering the underlying mesh, textures can be selectively applied, and lighting

conditions and camera positions can also be controlled explicitly. However, despite

the high level of control allowed by traditional computer graphics methods these
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methods still fall short of achieving true photorealism when modeling human faces.

As humans we have evolved a strong perceptual sensitivity to faces and can detect

even very subtle deviations from realistic face images. Thus, even with a field as

mature as 3D modeling, there arguably still remains an “uncanny valley” (Mori

et al., 2012) when using traditional 3D modeling techniques to generate images of

human faces.

On the other hand, modern DGM architectures like Generative Adversarial Net-

works (GANs) (Goodfellow et al., 2014) and, more recently, Denoising Diffusion

Models (DDMs) (Sohl-Dickstein et al., 2015) are able to synthesize images with

a high level of photorealism. In particular, the StyleGAN (Karras et al., 2019,

2020, 2021) family of models has shown a remarkable capability in producing pho-

torealistic face images that are almost indistinguishable from real images. For

this reason StyleGAN, has been described as the de facto gold standard (Bermano

et al., 2022) for face synthesis applications. In fact, a recent study by Tucciarelli

et al. (2022) examined the ability of human subjects to differentiate between real

photographs and face images generated by StyleGAN. Surprisingly, the results in-

dicated that StyleGAN images were frequently perceived as more authentic than

real images by human evaluators. However, despite the impressive photorealism of

images produced by models like StyleGAN, modern DGMs typically fall short of

the fine-grained control over facial features, expressions, and orientation that more

traditional computer vision methods offer.

The central aim of this PhD thesis is to develop novel methods for attaining more

explicit control over the images generated by DGMs, particularly in the context of

synthesizing human portrait images. At a high level, DGMs are models that learn

latent representations from their training data and organize the information into a

latent space. This thesis aims to develop new methods to discover preferred direc-

tions or trajectories in the latent space of DGMs that encode semantic information

that we might be interested in controlling, such as the ability to explicitly control

the pose or facial expression of the generated face images.
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1.2 Project description and research objectives

The primary objective of this PhD project is to advance the understanding of how

DGMs can be used to model human faces, including emotions and facial expressions

as well as the 3D geometry of the generated images. A central objective is to develop

methods to discover meaningful subspaces and directions within the latent space of

these models that have a clear semantic interpretation. The project explores how

traditional facial modeling methods can be integrated with state-of-the-art DGMs

in order to leverage the learned latent representations to achieve greater control

over the images generated with DGMs.

In particular, this PhD thesis aims to answer the following research questions.

� How can we find preferred directions in the latent space of DGMs that change

only a single, semantically meaningful, attribute of the generated images, such

as the pose or facial expression?

� Can a multilinear treatment be used to factorize the latent space of DGMs

into interesting subspaces that each control different semantic content of the

generated image, for example the pose or facial expression?

� Modern DGMs can generate high-quality 2D images but have no explicit 3D

understanding. Can we use traditional approaches for 3D reconstruction,

such as Non-Rigid Structure-from-Motion (NRSfM), to get explicit control

over the 3D structure of the images generated by modern DGMs?

1.3 Thesis contributions

This PhD thesis has made several contributions in the field of deep generative

modeling with applications for semantic editing of face portrait images. In the

following, I will summarize the main scientific contributions of this thesis. While

the first four papers focus on StyleGAN, as the primary object of study, the last

paper proposes novel editing techniques in the semantic latent space of DDMs.
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First, in Paper I and Paper II, this thesis provides the first attempt at combining

a multilinear tensor model with current state-of-the-art deep generative models

like StyleGAN. In the papers, we showed that, using a real facial expression data

set as supervision, multilinear tensor models can successfully uncover meaningful

semantic subspaces in StyleGAN. Specifically we found subspaces corresponding to

the six prototypical human emotions as well as a direction corresponding to yaw

rotation. Coupled with a state-of-the-art technique for GAN inversion, our method

proved an effective framework for editing the facial expressions of real face portrait

images.

Second, in Paper III, this thesis provides the first approach for combining NRSfMs,

which has a long-standing history in computer vision, with the latent space of deep

generative models like StyleGAN. By connecting NRSfM with the latent space

of StyleGAN, our method allows for attaining more explicit control over the 3D

structure and camera orientation of face images generated with StyleGAN.

Third, in Paper IV, this thesis proposes an approach for using DGMs to disseminate

large art collections that are too vast to adequately exhibit in a traditional museum

setting. The work contributed with an art installation in the form of an interactive

drawing table where the audience directly interacts with a trained StyleGAN model

by providing pen and paper sketches as the input to the system. The system

then translates the sketch provided by the user into an image in the domain of

the training data – in this case, a large collection of hand-drawn sketches by the

Norwegian painter Edvard Munch.

Finally, in Paper V, this thesis contributes to the emerging field of diffusion models

by proposing novel supervised and unsupervised methods for discovering seman-

tically meaningful directions in the semantic latent space of diffusion models. In

particular, we are among the first to propose methods that facilitate semantic image

editing using DDMs in an entirely unsupervised fashion.
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1.4 Thesis outline

The rest of this thesis is organized as follows.

� Chapter 2 presents a general overview of core concepts and applications of

GANs. The chapter will begin with a general introduction to GANs, and

continue with an introduction to the StyleGAN architecture. The chapter

proceeds with a review of the work of other researchers focusing on the topics

of GAN inversion and semantic editing.

� Chapter 3 introduces Paper I and Paper II. The chapter begins with an

overview of core concepts and operations from multilinear algebra. It then

continues with an introduction to our proposed method, that uses a multilin-

ear model to factorize the latent space of StyleGAN into various semantically

meaningful subspaces.

� Chapter 4 introduces Paper III. The chapter begins with an introduction of

NRSfM problem and continues with a summary of our proposed method for

combining NRSfM with the latent space of StyleGAN in order to achieve

more explicit control of the 3D structure of face images generated by the

model.

� Chapter 5 introduces Paper IV. The paper proposes using StyleGAN as a

tool for creating an interactive art experience. Here the audience can interact

directly with the model in order to explore the sketching style of the famous

Norwegian painter Edvard Munch.

� Chapter 6 introduces Paper V. The chapter begins with a general introduc-

tion to DDMs and continues with an introduction to the recently proposed

semantic latent space of DDMs and to our proposed supervised and unsuper-

vised approaches for editing of face images using the semantic latent space.

� Chapter 7 begins with a discussion of the various ethical considerations that

arise with the advent of powerful image generation systems, in particular in

relation to DGMs capable of synthesizing photorealistic human faces. The

chapter ends with a discussion of the limitations of the methods proposed in

this thesis as well as perspectives for future work.
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Chapter 2
StyleGAN: Architecture and applications

This chapter provides an introduction to GANs with special emphasis on the Style-

GAN architecture. In recent years, GANs has emerged as one of the most successful

approaches in generative modeling of images. StyleGAN, a state-of-the-art GANs

architecture, has gained significant attention for its impressive performance in gen-

erating images with near-perfect photorealism. StyleGAN excels in the generation

of images from structured domains such as images of human faces and the archi-

tecture is a core object of study of this thesis.

The chapter begins with a brief overview and history of GANs in Section 2.1.

Section 2.2 will introduce different metrics that are commonly used to evaluate

the performance of DGMs as well as to measure the similarity between images

and, in the context of face images, evaluate the degree of identity similarity. Next,

Section 2.3 introduces StyleGAN and gives a brief overview of its evolution along

the three main versions of the architecture. Section 2.4 gives an introduction to

different methods for GAN inversion. Finally, the chapter ends in Section 2.5 with

an introduction of different methods for utilizing the latent space of StyleGAN for

semantic editing of the generated images.

16



(a) Evolution of GANs (b) StyleGAN samples.

Figure 2.1: Evolution and quality of face images synthesized by GANs.
(a) Tweet by Ian Goodfellow illustrating the rapid improvements in the quality
of GAN generated face images in recent years. (Goodfellow, 2019) (b) Modern
StyleGAN models are able to synthesize images of human faces that are almost
indistinguishable from real portrait photos. The images are created using Style-
GAN2 (Karras et al., 2020).

2.1 Generative Adversarial Networks

GANs have gained widespread popularity in recent years. Since the original pro-

posal by Goodfellow et al. (2014), there have been rapid improvements to the image

quality of face images produced by various GANs architecture as illustrated in Fig-

ure 2.1a. Currently, the style-based generator architecture (StyleGAN) (Karras

et al., 2019) is one of the most widely used and successful GAN architectures. A

selection of samples from a StyleGAN2 (Karras et al., 2020) model trained on the

Flickr-Faces-HQ (FFHQ) (Karras et al., 2019) data set is shown in Figure 2.1b.

The figure demonstrates the impressive face generation capabilities of StyleGAN

models as it is not a trivial task for a human to identify that these images are not

real photographs.

The basic premise of GANs is conceptually simple and on a high level it can be

formulated as a game between two competing neural networks: a generator and a

discriminator. The generator’s objective is to create images that are realistic and

resemble the images in the training data set. The input to the generator is a ran-
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Figure 2.2: High-level architecture of a Generative Adversarial Networks.
GANs train to networks simultaneously. The generator synthesizes new samples
resembling the training data and the discriminator is tasked to differentiate between
the real and generated images.

dom noise vector z that is drawn some prior distribution pz. Typically pz is chosen

to be the standard multivariate Gaussian distribution N (0, I). The generator then

transforms the random noise vector into an image in a deterministic way such that

a particular realization of the random noise will correspond to a particular image.

The discriminator is a binary classifier whose objective is to classify whether a

given image is coming from the data distribution (i.e., the training data set) or

the generated distribution (i.e., produced by the generator). The generator and

discriminator are trained simultaneously, with the generator attempting to produce

more realistic images and the discriminator becoming better at distinguishing be-

tween real and fake images. This iterative process continues until the discriminator

is no longer able to distinguish the generated images from the training data. A

diagram of the GAN training setup is shown in Figure 2.2.

In the original paper by Goodfellow et al. (2014), both the discriminator and gen-

erator architectures were parameterized as simple Multilayer Perceptrons (MLPs).

The original training objective was formulated as

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (2.1)

During training, the weights of the generator and discriminator are updated in
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an alternating fashion. Goodfellow et al. (2014) proposed to alternating between

updating D for k-steps and updating G for a single step in order to ensure that D

is kept near its optimal solution during training.

To update the weights of the discriminator a set of m noise samples {z1, · · · , zm}
are drawn from the noise prior pz as well as a set of real images {x1, · · · ,xm}
from the data distribution pdata. The weights of the discriminator θd can then be

updated by ascending the gradient

∇θd

1

m

m∑

i=1

[logD(xi) + log (1−D(G(zi)))] . (2.2)

Correspondingly the weights of the generator θg are updated by descending the

gradient

∇θg

1

m

m∑

i=1

[log (1−D(G(zi)))] . (2.3)

In the paper, Goodfellow et al. notes that the term log(1−D(G(z))) in Eq. (2.1)

has a small gradient early in training when G is still bad (i.e., when the probability

of images being classified as fake is still high). Instead Goodfellow et al. proposes

a non-saturating loss that trains G to maximize logD(G(z)) (or equivalently min-

imize − logD(G(z))). Intuitively this corresponds to a shift in perspective where

G tries to maximize the probability of images being classified as real rather than

minimizing the probability of the images being classified as fake. This small change

gives stronger gradients early in training while it does not affect the fixed point

dynamics of either G or D.

To gain insights into the optimally conditions of the min-max objective, Eq.(2.1)

can be expanded into its integral form

min
G

max
D

V (D,G) =

∫

x

[pdata(x) log(D(x)) + pG(x) log(1−D(x))] dx, (2.4)

where a change of variables has been used to write

∫

z

pz(z) log(1−D(G(z)))dz =

∫

x

pG(x) log(1−D(x))dx. (2.5)
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The integrand in Eq.(2.4) has the form a log(y)+b log(1−y) which has an extremum

at y = a
a+b

for y ∈ [0, 1]. Thus for a fixed generator G, the optimal discriminator

D∗ can be written in terms of the data and generator distributions as

D∗(x) =
pdata(x)

pdata(x) + pG(x)
. (2.6)

Before proceeding, recall the definition of the Kullback–Leibler divergence

DKL(P ||Q) = Ex∼P (x)

[
log

P (x)

Q(x)

]
(2.7)

and the Jensen-Shannon divergence

DJS(P ||Q) =
1

2
DKL

(
P

∣∣∣∣
∣∣∣∣
P +Q

2

)
+

1

2
DKL

(
Q

∣∣∣∣
∣∣∣∣
P +Q

2

)
. (2.8)

The JS divergence goes to zero if the distributions match and unlike the KL-

divergence the JS divergence is symmetric, i.e., DJS(P ||Q) = DJS(Q||P ).

We can plug the expression of the optimal discriminator in Eq. (2.6) into the cost

function in Eq. (2.1) to get an upper bound on the loss

V (D∗, G) = Ex∼pdata(x)

[
log

pdata(x)

pdata(x) + pG(x)

]
+ Ex∼pG(z)

[
log

pG(x)

pdata(x) + pG(x)

]

= −2 log 2 + Ex∼pdata(x)

[
log pdata(x)

1
2
(pdata(x)+pG(x))

]

+ Ex∼pG(z)

[
log pG(x)

1
2
(pdata(x)+pG(x))

]

= − log 4 + 2DJS(pdata||pG). (2.9)

So for the optimal discriminator, the generator is trying to minimize the Jensen-

Shannon divergence between the data distribution pdata and the generator distribu-

tion pG. Eq. (2.9) has global minimum of V (D∗, G) = − log 4 when the generator

distribution perfectly matches the data distribution, i.e., pG = pdata. At this point

the D∗ = 1/2 everywhere and the discriminator will be unable to differentiate

between the two distributions.

Training GANs using the min-max objective in Eq. (2.1) can be difficult due to
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issues such as mode collapse and vanishing gradients. Arjovsky et al. (2017) pro-

posed Wasserstein GAN (WGAN) that makes adaptations to the training proce-

dure of GANs in order to overcome these issues and make training more stable.

The primary idea in WGAN is to replace the Jenson-Shannon divergence with the

Wasserstein distance. In the min-max objective in Eq.(2.1) the discriminator D

acts like a binary classifier while in WGAN the discriminator is utilized to approx-

imate the Wasserstein distance, which is a regression task. For this reason the

sigmoid activation in the last layer of D is removed so D is not constrained to

output a number between zero and one. Since the discriminator is not trained as

a classifier it is referred to as a “critic” in the paper by Arjovsky et al. (2017).

Using concepts from convex optimization (Villani et al., 2009), Arjovsky et al.

(2017) proposed an implementation of the Wasserstein objective that requires D

to be a 1-Lipschitz scalar function, i.e., a function that obeys |f(x)−f(y)| ≤ |x−y|.
As a way to enforce the Lipschitz constraint, Arjovsky et al. (2017) proposed to

clip the weights of D at every training iteration. With regard to the choice of using

weight clipping is a simple way to enforce the Lipschitz constraint in D the authors

note that

“Weight clipping is a clearly terrible way to enforce a Lipschitz con-

straint. If the clipping parameter is large, then it can take a long time

for any weights to reach their limit, thereby making it harder to train

the critic till optimality. If the clipping is small, this can easily lead

to vanishing gradients [...] we stuck with weight clipping due to its

simplicity and already good performance.” (Arjovsky et al., 2017, p.7)

Rather than relying on weight clipping, Gulrajani et al. (2017) proposed adding a

“gradient penalty” term to the WGAN loss as an alternative way to enforce the

Lipschitz constraint. This leads to the WGAN-GP training objective LWGAN-GP,

than can be written as

LWGAN-GP = Ex∼pG [D(x)]− Ex∼pdata [D(x)]︸ ︷︷ ︸
Original WGAN loss

+λEx∼τ [(||∇xD(x)||2 − 1)2]︸ ︷︷ ︸
Gradient penalty term

, (2.10)

where λ is a strength parameter that is set to ten in the paper and τ := τ(pG, pdata)
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is a distribution created from sampling uniformly along straight lines between pairs

of points, sampled from the generator and data distributions respectively. The

WGAN-GP objective in Eq. (2.10) leads to more stable training than the original

GAN loss in Eq. (2.1).

DCGAN (Radford et al., 2016) is a GAN architecture which uses Convolutional

Neural Networks (CNNs) as the architecture in both the generator and discrimi-

nator rather than the MLPs proposed by Goodfellow et al. (2014). In their paper,

Radford et al. demonstrated the linear vector space property of the learned latent

space of GANs for the first time. Treating the latent representations as semantic

vectors where semantic manipulations can be formed as simple linear arithmetic

operations was first shown in the context of word representations by Mikolov et al.

(2013) who showed that using their word representations, the nearest neighbors of

the resultant vector for “King” - “Man” + “Woman” is the vector representation

of the word “Queen”. Radford et al. showed that the latent space of GANs has

a similar property where semantic concepts in face images such as whether the

person is smiling or has glasses can be edited using simple arithmetic operations

in the latent space.

Progressive GAN (ProGAN) (Karras et al., 2018) is the immediate predecessor to

StyleGAN which will be introduced in Section 2.3. The main idea of ProGAN

is that rather than generating full-resolution images at the beginning of training,

instead, the training takes place in several stages where the output resolution of

the images is progressively increased. At each stage extra layers are added to both

the generator and discriminator in order to accommodate the higher resolutions.

ProGAN is the first GAN architecture that can produce near-photorealistic images

with resolutions as high as 1024× 1024.

2.2 Image Similarity Metrics

Before introducing StyleGAN in the next section, this section will introduce differ-

ent metrics that have been used to measure the similarity of images, the similarity

of faces in particular, and the similarity between image and text pairs. These

metrics have been widely used both as cost functions for training and evaluating
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GANs and as components in different approaches for semantic editing which will

be discussed in Section 2.5.

A simple way to compare two images is to compare the pixel values directly. The

L2 distance quantifies the pixel-wise similarity of images and is defined as

L2(x,x0) = ∥x− x0∥2 . (2.11)

There are several reasons why the L2 distance between two images is not always a

good similarity metric. For example, if an image is translated a few pixels in any one

direction, the resultant image could potentially have a very large L2 distance when

compared to the original, even though humans would have no problem identifying

the two images as being essentially the same.

The Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) met-

ric is widely used to measure the perceptual similarity between pairs of images

and has been specifically designed to capture the way that humans perceive image

similarity. The LPIPS between two images x, x0 is calculated by first feeding them

to a feature extraction network F . Here, the network F is some CNN where the

exact choice of architecture is flexible. In the paper, Zhang et al. showed that

LPIPS can be implemented using either a VGG (Simonyan and Zisserman, 2015)

network, AlexNet (Krizhevsky et al., 2012) or SqueezeNet (Iandola et al., 2016).

Regardless of architecture, features are extracted using network F from L layers

and by denoting the normalized feature map activation at layer l for the image as

yl,yl
0 ∈ RHl,Wl,Cl , the LPIPS between the images x and x0 can be calculated as

LPIPS(x,x0) =
∑

l

1

HlWl

∑

h,w

∥∥wl ⊙ (yl
hw − yl

0,hw)
∥∥2

2
, (2.12)

where wl ∈ RCl is a learnable weight that scales the channel dimensions as each

layer. Zhang et al. (2018) show that LPIPS often agrees more with the similarity

judgements made by humans than more traditional similarity metrics.

Arcface (Deng et al., 2019) is a similarity metric that takes two images as input

and outputs a measure of how likely it is that the two images are of the same per-

son. Measuring identity similarity is a challenging task since the system needs to
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be robust to variations in pose, expression, illumination, etc., and still recognize if

the images are of the same person. Arcface achieves good performance in this task

by replacing the softmax loss, which is typically used for multi-class classification

problems, with a proposed Angular Margin Loss which ensures that the angle be-

tween feature embedding is maximized for different classes i.e. different identities.

In the context of analyzing DGMs in the domain of human faces, Arcface is often

used to define an identity loss as

LID(x0,x) = 1− ⟨F(x),F(x0)⟩, (2.13)

where F(x) denotes features extracted with the Arcface network F . In Paper III,

we use Arcface as regularization term in order to increase the degree of identity

preservation when performing semantic edits of face images.

The Fréchet Inception Distance (FID) (Heusel et al., 2017) has become the stan-

dard metric evaluating sample quality and diversity in DGMs. FID calculates the

Fréchet Distance (Dowson and Landau, 1982) between two Gaussian Distributions

N (µr,Σr) and N (µg,Σg) where the feature representations of the images are cal-

culated using a pretrained and frozen Inception network (Szegedy et al., 2016).

The FID score can be calculated as

FID = ∥µr − µg∥+ Tr(Σr + Σg − 2(ΣgΣr)
1/2). (2.14)

Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) models of-

fer a way to measure the similarity between text and images pairs. Radford et al.

(2021) trained their model on a large data set consisting of 400 million image and

text pairs which are collected from the internet. The idea is to extract represen-

tations from both the images and text and project each into a shared embedding

space. In this space, the similarity can be measured by calculating the cosine sim-

ilarity between the text and image representations. The text encoder in CLIP is

a transformer (Vaswani et al., 2017) architecture and in the paper, Radford et al.

(2021) experimented with both ResNet (He et al., 2016) and Vision Transformer

(ViT) (Dosovitskiy et al., 2021) architectures for the image encoder where the ViT

model was found to perform the best. CLIP allows for easy zero-shot image clas-

sification simply by creating a textual description for each of the desired classes
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Figure 2.3: Interpolations in latent space The latent space of StyleGAN is
smooth and highly disentangled, allowing for smooth interpolations between pairs
of images.

and comparing the extracted image features to the textual features corresponding

to each class. In Paper V we use the zero-shot classification capability of CLIP

to evaluate the effectiveness of our proposed method for disentangling semantic

directions in the semantic latent space of DDMs.

2.3 StyleGAN

This section will outline the theory, evolution, and applications of StyleGAN (Kar-

ras et al., 2019). StyleGAN offers impressive performance in image generation and

can synthesize images with a near-perfect photorealism. Since its initial release,

StyleGAN has emerged to become one of the most well-studied generative models

in recent years, and has been called a de facto gold standard for the synthesis and

editing of face images (Alaluf et al., 2023). One of the core strengths of StyleGAN

models is their smooth and highly disentangled latent space. This property allows

for linear interpolations between different pairs of images where each intermediate

image is meaningful by itself, and where the image features vary smoothly along

the interpolation path. Figure 2.3 shows examples of interpolations in the latent

space of StyleGAN between three pairs of images.
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The StyleGAN architecture draws inspiration from the literature on style transfer

(Huang and Belongie, 2017). In a traditional GAN architecture, a latent code

is initially sampled from a known prior distribution and then fed to the generator

through an input layer, i.e., the first layer in a feed-forward or convolutional neural

network.

There are two main ways in which the StyleGAN generator differs from that of a

traditional GAN architecture. First, the introduction of an intermediate learned

latent space, and secondly, the way in which latent codes influence the synthesis

process. The StyleGAN generator G : Z → X is composed of two networks, a

mapping network f : Z → W and a synthesis network g :W → X that outputs the

generated image x ∈ X . The following will account for how the introduction of the

mapping network encourages a more disentangled latent space before continuing

to describe how the latent codes influence the image generation process in the

synthesis network.

The mapping network f maps latent codes z ∈ Z, from the Gaussian latent space

Z onto an intermediate latent spaceW . The motivation for the inclusion of such an

intermediate mapping network is to encourage disentanglement of the latent space.

We say that a latent space is entangled if we, when interpolating between two points

in latent space, observe features along the interpolation trajectory that are absent

in both endpoints. For example, consider an interpolation between two images

depicting a man and a woman, both without glasses. If glasses suddenly appear

along the interpolation trajectory that would signify an entangled latent space.

As an example of why entanglement may arise, consider a simplified representation

where all human faces can be represented on a two-dimensional plane. For the sake

of argument, assume that the two available factors of variation correspond to the

attributes of gender and facial hair. When sampling from the Gaussian Z space,

the probability of each combination of factors must match that of the training data.

However, data sets might not have an equal representation of all possible factors of

variation. In the current example, we may imagine that women with facial hair are

absent in the training data. This absence of a specific combination of factors causes

the latent space to become warped such that the invalid combinations disappear

in the latent space and consequently it becomes entangled (Karras et al., 2019).
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The argument made by Karras et al. (2019) for the introduction of the mapping

network, is that it is able to “undo” much of the warping since the intermediate

latent space does not have follow any fixed distribution. Karras et al. further

notes that there is as natural pressure for the generator to learn disentangled

representations in the intermediate latent space since it should be easier for the

generator to generate realistic images based on a more disentangled representation

rather than an entangled one.

Perceptual Path Length (PPL) was introduced in the original StyleGAN paper

(Karras et al., 2019), as a way quantify the degree of disentanglement of the latent

space of the trained generator. In W space1 the PPL metric can be written in

closed form as

lW = E
[

1

ϵ2
d(g(lerp(w1,w2; t)), g(lerp(w1,w2; t+ ϵ)))

]
, (2.15)

where w1,w2 ∼ W , ϵ denotes a small subdivision that the authors set to 10−4, lerp

denotes linear interpolation, i.e., lerp(w1,w2, t) = (1−t)w1+tw2, t is sampled from

the uniform distribution U(0, 1) and d(·, ·) measures perceptual similarity between

the two generated images, i.e., the distance measure d can be implemented as

LPIPS. Using the PPL metric, Karras et al. (2019) showed that the intermediate

W space is quantitatively more disentangled than the Z space.

Figure 2.4 provides a qualitative illustration highlighting the superior degree of

disentanglement in W space as compared to Z space. As seen in Figure 2.4b,

interpolations inW space lead to a smooth transition between the endpoint images,

where the middle images exhibit a balanced combination of attributes from both

endpoints. Conversely, interpolating between the same two images in Z space

results in exaggerated attributes in the interpolated images, which do not form

a balanced mixture of the endpoints’ characteristics. For example, we observe

significantly larger eyeglasses and a darker skin tone in the interpolated images

than in either of the two endpoints.

Unlike a traditional GAN architecture where image synthesis begins from the latent

1To calculate the PPL distance in Z space the synthesis network g should be replaced by the
full generator G = g ◦ f and spherical linear interpolation (slerp) should be used rather than
linear interpolation (lerp) due to the normalization of the input latent codes in Z space.
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(a) Interpolation in Z space. (b) Interpolation in W space.

Figure 2.4: The mapping network encourages a disentangled latent space.
Karras et al. (2019) found that the addition of a mapping network f : Z → W to
the GAN architecture allows the model to learn an intermediate latent space W
that is more disentangled than the Gaussian Z space. By comparing interpolations
in Z and W , we clearly see that the intermediate W space is more disentangled
and offers a smoother transition between the two endpoints of the interpolations.

code, StyleGAN initiates the synthesis process from a learned constant 4× 4× 512

tensor. The synthesis network consists of a series of synthesis blocks, each con-

taining two layers. After the first block, a 2x upsampling operation occurs at the

beginning of each subsequent block. Thus, the full 1024×1024 resolution synthesis

network has 9 blocks and a total of 18 synthesis layers. The mapping network

produces an intermediate latent code w ∈ W . This latent code is copied and then

separately fed to each affine transformation associated with each of the synthesis

layers. The output from each affine transformation is then used to influence the

synthesis process. The exact process by which the output of the affine transfor-

mations influence the synthesis has evolved through the three main versions of the

StyleGAN architecture.

The first version of StyleGAN (Karras et al., 2019) used the progressive growing

approach proposed by Karras et al. (2018) to gradually increase the resolution of

the generated images during training. After the initial mapping to the intermediate

latent space w ∈ W , the latent code w is transformed into style codes y = (ys,yb)

using learned affine transformations (see Figure 2.5), which then act on the in-

termediate feature maps throughout the synthesis network g using the Adaptive

Instance Normalization (AdaIN) operation. The AdaIN operation can be written

as

AdaIN(xi,y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i, (2.16)

where each feature map is first normalized and then scaled and biased accord-
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Figure 2.5: Illustration of the StyleGAN architecture. The StyleGAN map-
ping network first transforms latent codes from a Guassian latent space Z to an
intermediate learned latent space W . The latent code w ∈ W is then copied and
passed to a set of learned affine transformations (“A” in the figure) which influ-
ence the synthesis process using either the AdaIN operation in StyleGAN1 (Karras
et al., 2019) or by a “demodulation” operation which is applied to the convolutional
weights in StyleGAN2 (Karras et al., 2020).

ing to the style vector y. Thus, in the first incarnation of StyleGAN, the latent

codes influence the synthesis process by directly affecting the feature maps through

AdaIN.

Although StyleGAN1 is able to synthesize highly realistic and high-resolution im-

ages, the architecture had some flaws that adversely affected the quality of the

generated images. The subsequent paper, StyleGAN2 (Karras et al., 2020), fo-

cused on alleviating these limitations and improving the architecture.

While the progressive growing methodology introduced by Karras et al. (2018) is

effective in stabilizing the training of high-resolution generators, it also introduced

its own problems. Karras et al. (2020) noted that progressive growing leads to

“phase artifacts” where certain features like the teeth or eyes have a strong location

preference. This means that these features would stay in one place before quickly

jumping to the next preferred location instead of varying smoothly when editing

pose. In StyleGAN2 (Karras et al., 2020), this problem was solved by removing

the progressive growing of the generator and instead incorporating skip connections

into the generator and increasing the number of feature maps in the layers of the

generator corresponding to higher resolutions.

Another problem with the original architecture is that all images synthesized by
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StyleGAN1 had characteristic water droplet-like artifacts. Although these were

not always immediately visible in the generated images, they would always be

present in the feature maps of the generator after a certain resolution Karras et al.

(2020). The authors pinpointed the problem to the use of AdaIN as the course

of these blob-like artifacts. As an alternative to the AdaIN operation, StyleGAN2

introduces convolution modulation and demodulation operations that acts directly

on the convolutional weights as

w′′
ijk = w′

ijk/

√∑

i,k

w′2
ijk + ϵ with w′

ijk = siwijk, (2.17)

where wijk denotes the convolution weights (as opposed w that denotes a latent

code). The insight here is that, instead of controlling the synthesis process with in-

stance normalization applied to the feature maps, the same control can be achieved

by modulating and demodulating the convolution kernel weights directly.

The third version of StyleGAN (Karras et al., 2021) addressed another limita-

tion present in the previous two architectures. The authors observed a “texture

sticking” phenomenon in StyleGAN1 and StyleGAN2 where, when interpolating

in latent space, fine details like the hair would not move naturally along with

the location of the face, but rather appear to be stuck to certain pixel locations.

StyleGAN3 is specifically designed to overcome this texture sticking problem and

at the same time the authors propose changes to the architecture that make the

generator equivariant to both translation and rotation. Along with several other

architectural changes, StyleGAN3 replaces the learned 4× 4× 512 constant input

tensor with Fourier Features, allowing for continuous translations and rotations

to be applied to the input. This endows the StyleGAN3 generator with explicit

control over translation and rotation.

In the original StyleGAN paper (Karras et al., 2019), the authors proposed to use

a truncation trick to gain explicit control over a trade-off between the quality and

diversity of generated samples. To employ the truncation trick, the center of mass

is first computed in W space as

w̄ = Ez∼N (0,I) [f(z)] , (2.18)
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where w̄, in the case of a model trained on FFHQ, can be interpreted as the

“average face” of the data set. Using the truncation trick, a truncated latent code,

w′ can then be written as a linear combination of a sampled latent code w and the

center of mass w̄ using the truncation parameter ψ with 0 ≤ ψ < 1 as

w′ = w̄ + ψ(w − w̄). (2.19)

Lower values of the truncation parameter ψ steer the generated images closer to

the mean of the data distribution, which improves image quality but reduces image

diversity. On the contrary, higher values of ψ produce images that are more diverse

but generally of lower quality with a higher rate of artifacts.

While traditional GAN models have a singular well-defined latent space, StyleGAN

has several innate spaces that can be considered as the latent space. These different

spaces correspond to different stages in the synthesis process and offer different

strengths and weaknesses depending on the application. We have already touched

on the Gaussian Z space and the intermediate, learned latent space W . In the

following sections on GAN inversion and latent space editing, we will see two

additional spaces that have been proposed in the literature, denoted as W+ and

S space respectively.

2.4 GAN Inversion

Contrary to Variational Autoencoders (VAEs) (Kingma and Welling, 2014), GANs

do not have an encoder as part of their design. For any application involving the

editing of real images, it is necessary to first find a good latent representation for the

target image. This problem is known as GAN inversion and was first introduced

by Zhu et al. (2016). Specifically, we seek to find a latent code that, when passed

to the generator, both faithfully reconstructs the target image and also resides in

a region of the latent space that has properties suitable for semantic editing.

There are three main lines of techniques for GAN inversion in the context of Style-

GAN. These techniques are either (1) optimization-based, (2) encoder-based, or

more recently (3) methods that fine-tune the StyleGAN generator in order to
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reconstruct a given target image. Traditionally there has been a trade-off be-

tween reconstruction quality vs. inference time when comparing optimization

and encoder-based approaches. While optimization-based approaches tend to give

higher-quality reconstructions, they are also slow, typically taking several minutes

to invert a single image. On the other hand, encoder-based techniques are fast,

requiring only a single forward pass through a trained encoder network, however

typically as the cost of a lower reconstruction quality. As we will see, combining

encoder-based approaches with techniques such as iterative refinement and fine-

tuning of the generator has largely solved these issues allowing for both fast and

accurate reconstructions.

Early work (Abdal et al., 2019; Nikitko., 2019) used an optimization-based ap-

proach where the latent code w is iteratively optimized with gradient decent such

that the distance between the generated images G(w) is as close as possible to some

target image I. These optimization-based approaches can be formulated in terms

of a minimization objective that minimizes the LPIPS and L2 distance between

the generated image G(w) and target image I as

w∗ = arg min
w

LPIPS(G(w), I) + λ ∥G(w)− I∥22 . (2.20)

Abdal et al. (2019) proposed to optimize over latent codes in an extension of the

intermediate latent space denoted as W+ space. The W+ space is the space

arising from allowing the latent code to be different for each layer of the generator.

Thus, whileW is a 512-dimensional space, theW+ space consists of a collection of

different 512-dimensional latent codes corresponding to each layer. As mentioned

earlier, the full 1024× 1024 resolution generator has 18 layers, so a latent code in

W+ space has 18×512 = 9216 dimensions. Abdal et al. (2019) found that inversion

into the extended W+ space leads to considerably lower reconstruction error than

inversion into the native W space. In the StyleGAN2 paper, Karras et al. (2020)

pointed out that although inversion into the W+ enables a projection that finds a

closer match to the target image, it also enables the projection of arbitrary images

that should not have a latent representation in a given trained model.

We use the optimization-based approach in Eq. (2.20) in Paper I in order to invert

a facial expression data set of real images (Yin et al., 2006) into the W+ space
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of StyleGAN. Although this approach gives accurate reconstructions of the target

images, latent codes found using this method are not necessarily ideal for editing

applications as will be discussed later in this section.

Richardson et al. (2021) proposed the encoder-based pixel2style2pixel (pSp) frame-

work which directly embeds an image into the extendedW+ space without requir-

ing additional optimization. The pSp encoder works by first extracting feature

maps from the input image using a feature pyramid (Dollár et al., 2014) over a

ResNet (He et al., 2016) backbone. This creates three levels of feature maps,

which are then used to extract latent codes that are fed to the StyleGAN gen-

erator before the learned affine transformations. The pSp architecture naturally

facilitates a range of image-to-image translation tasks such as image inpainting,

super-resolution, and face frontalization as well as conditioning the synthesis on a

semantic mask or a user provided sketch. In Paper V, we use the image-to-image

translation capability of the pSp encoder to create an interactive art experience

where user-provided pen-and-paper sketches are transformed into images following

the style of the Norwegian painter Edward Munch.

Alaluf et al. (2021) presented another approach that aims to close the gap between

the usually slow but accurate optimization-based approaches and the faster but less

accurate encoder-based methods. The approach also uses an encoder, but rather

than asking the encoder to predict the latent code based on a single pass through

the encoder network, Alaluf et al. (2021) instead proposes to supply the encoder

with a current estimate, and let the encoder predict the residual with respect to

the current estimate. That is, the encoder predicts how the current estimate of

the latent code should be changed in order to improve the reconstruction. This

allows for passing the current estimate to the encoder several times, thus allowing

the encoder to refine its prediction in each pass. The authors denoted this process

of repeated application of the encoder as iterative refinement and their method

enables a significant speedup compared to optimization-based approaches while

maintaining a good reconstruction quality.

While the W+ space generally offers good results with respect to reconstruction

quality, Tov et al. (2021) noted that the W+ space is not necessarily the best

choice of latent space if we also wish to edit the projected images by traversing the
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latent space. Tov et al. suggested that there exists a trade-off between distortion

and editability when selecting which latent space to project a given target image

into. To overcome this issue Tov et al. proposed an encoder architecture that is

specifically designed to project real images into “well-behaved” and editable regions

of the latent space. The encoder builds on the architecture from the pSp framework

proposed by Richardson et al. and adds two main approaches for encouraging the

latent codes that are projected into the W+ to lie as close to the native W space

as possible. The first idea is to initially predict a single latent code w ∈ W which

is then extended toW+ by learning a series of offset ∆i from w such that the final

predicted latent code can be written as (w,w+ ∆1,w+ ∆2, · · ·w+ ∆N−1) ∈ W+.

This allows the network to first learn a coarse reconstruction, which is then refined

by sequentially learning the offsets ∆i. To enforce that the latent codes have high

proximity to W a regularization loss Ld-reg =
∑N−1

i=1 ∥∆i∥2 is employed during the

training of the encoder. Secondly, to further ensure that the individual style codes

of the projected latent codes lie within the actual distribution of the W space,

Tov et al. proposed to regularize the encoder by adding the prediction of a latent

discriminator to the loss during training. The latent discriminator is trained to

discriminate between two types of samples: real samples from the W space, which

can be generated by passing Gaussian samples through the mapping network, and

the latent codes that are learned by the encoder.

Although the inversion method proposed by Tov et al. (2021) provides a good trade-

off between reconstruction quality and editability of the resultant latent codes, the

reconstructed images are still noticeably different from the original target image.

Another line of research seeks to overcome this by fine-tuning the generator to

accommodate a near-perfect reconstruction of a given target image while also pre-

serving editability. Roich et al. (2021) showed that real images can be projected

into W space with a near-perfect reconstruction quality by fine-tuning the trained

generator around the target image, thus circumventing the need for projecting into

W+ space.

Nitzan et al. (2022) proposed to use StyleGAN as a personalized face prior, focusing

on modeling the key facial features of a particular person. The method works by

first projecting a collection of real images of the same person into the latent space
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using the pivotal tuning approach proposed by Roich et al. (2021). This gives

a collection of “anchor” latent codes. Nitzan et al. then proposed to define the

personalized space, denoted as P space, as the convex hull of the projected latent

corresponding to the same person. The personalized face prior can then be used

for applications such as super-resolution, inpainting, or semantic editing, while

preserving the key facial characteristic of the person in question.

Alaluf et al. (2022) proposed the HyperStyle encoder which combines the ideas of

pivotal tuning proposed by Roich et al. (2021) and the iterative refinement method

proposed by Alaluf et al. (2021). The aim is to train a hyper-network that is tasked

with predicting how the weights of the pretrained generator should be changed so

as to best reconstruct the target image. Like the method proposed by Roich et al.

(2021), HyperStyle starts out by estimating an initial latent code winit ∈ W that

offers an approximate reconstruction using the original weights θ of the generators.

Based on the initial reconstruction g(winit, θ), the hyper-network then predicts a

set of weight offsets ∆i which are used to update the weights of the generator

according to θ̂i = θi(1 + ∆i) such that the final reconstruction g(winit, θ̂) more

closely matches the target image. By modifying the weights of the generator, rather

than projecting into the extended W+ space, HyperStyle sidesteps the distortion-

editability trade-off altogether by only projecting images into the more editableW
space while maintaining a good reconstruction quality. Further, HyperStyle offers

a substantial speedup when compared to the per-image optimization procedure

proposed by Roich et al. (2021). The latter could take up to a few minutes to

fine-tune the generator weights for a single image. In contrast, inference with

HyperStyle typically takes only approximately a second. Additionally, HyperStyle

utilized the iterative refinement approach proposed by Alaluf et al. (2021), where

the weight offsets are iteratively refined by making several passes through the

HyperStyle network, improving the reconstruction quality in each pass. By default,

HyperStyle performs five forward passes to invert a single image. Importantly, the

changes in the generator weights do not change the latent space in a way that affects

the applicability of editing directions that were found using the original generator

weights. Therefore, editing directions that had been precomputed for the original

generator can also be applied to the updated generator. We utilize this fact in

Paper III, where we demonstrate that HyperStyle can be used in conjunction with

35



our proposed editing technique in order to facilitate the editing of real images.

2.5 Latent space editing

As mentioned earlier, the latent space of StyleGAN is arranged smoothly, meaning

that latent codes that are close in latent space corresponds to generated images

that are also similar. Further, the mapping network of StyleGAN endows the

intermediate W space with a high level of disentanglement. As noted by Karras

et al. (2019)

“if a latent space is sufficiently disentangled, it should be possible to

find direction vectors that consistently correspond to individual factors

of variation.” (Karras et al., 2019, p.7)

This thesis explores novel methods for finding such direction vectors that, when

applied to a given latent code, results in a change in the image that can be identified

as a single semantically meaningful attribute while leaving all other attributes in

the image unchanged. Examples of such semantically interpretable attributes, in

the context of human face portraits, include gender, age, facial expression, pose,

illumination and eyeglasses. Identifying such directions is the primary prerequisite

for the application of latent-based editing.

As a rough demarcation, the literature dealing with finding such semantically mean-

ingful latent directions can first be divided into linear and non-linear approaches.

In the remainder of this text, the term trajectories will be used when the path of

traversal in the latent space is assumed to be non-linear, and the term direction

will be used to denote linear direction vectors. Secondly, these special directions

or trajectories can be found using either supervised or unsupervised methods.

The literature on semantic editing using StyleGAN has grown rapidly during the

past few years and an exhaustive review of current methods is beyond the scope of

this thesis. This section will present an overview of the work of other researchers

that is most closely related to the work presented in this thesis. For a more ex-

haustive review of editing methods in StyleGAN, excellent survey articles exists,
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see for example the work by Bermano et al. (2022), Melnik et al. (2022) and Liu

et al. (2023).

Jahanian et al. (2020) proposed finding linear editing directions corresponding to

edits that are easily attainable manually in the output image space, such as changes

to color, zoom, 2D rotations or translations. They denote such transformations in

the image space by an edit operation and proposed finding linear editing directions

by minimizing the objective

n∗ = arg max
n

Ez,α[L(G(z + αn), edit(G(z, α)))], (2.21)

where α controls the strength of the edit and L is an image similarity metric that

they implement as either the L2 distance or LPIPS. The authors further proposed a

variation of the optimization objective to find non-linear trajectories in the latent

space. Jahanian et al. (2020) noted that there are limitations to which kind of

editing directions can be found using their method, and they argued that this

can be explained by the distribution of the images used to train the models. For

example, for a model trained on cars and for a found direction corresponding to

“blueness”, the authors observed that is it possible to change the color of a sportscar

from red to blue by traversing the latent space in the found direction. However,

when applying the same direction to a latent code corresponding to a red firetruck,

the authors found that it was not possible to change the color in this case. Thus,

the found latent space directions are constrained by the particular biases in the

training data. To overcome this limitation, the authors proposed to augment the

data set using the edit operation and fine-tune both the generator and editing

directions on the augmented data set.

Shen et al. (2020a,b) proposed to find linear directions in a supervised fashion.

This was done by first generating a collection of synthetic images and then using

pretrained binary attribute classifiers to annotate the generated images according

to the desired attributes. This annotation step effectively creates a labeled data

set suitable for supervised learning. Shen et al. proposed to fit a Support Vector

Machine (SVM) for each binary attribute, thus defining a hyperplane in the latent

space corresponding to each attribute. All images corresponding to latent codes

on one side of the hyperplane exhibit a particular attribute that is absent in all
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images corresponding to latent codes on the other side of the hyperplane. Thus, the

normal vectors to each of the supporting hyperplanes can be interpreted as semantic

directions that corresponds to changes to the respective attributes. However, it was

observed that moving in certain directions would also sometimes result in undesired

changes in other attributes. As an example, moving in a direction corresponding

to age would sometimes make eyeglasses appear in the generated image. This

entanglement between age and eyeglasses can be attributed to the correlation in

the training data, where older people are also more likely to be wearing eyeglasses.

The authors showed that this situation could be solved by projecting the original

direction onto the direction corresponding to the undesired attribute an subtracting

the result from the original direction. In Paper V, we demonstrated that a similar

situation occurs in the semantic latent space (Kwon et al., 2023) of diffusion models

and that orthogonal projection of linear semantic directions is also an effective

strategy for disentanglement for these models despite the differences in architecture.

Härkönen et al. (2020) proposed an entirely unsupervised method for finding linear

semantic directions based on Principal Component Analysis (PCA) on a collection

of sampled latent codes. The authors showed that this strategy yields interpretable

directions in the latent space of BigGAN (Brock et al., 2019) as well as StyleGAN.

As this approach is unsupervised, there is no a priori knowledge about the semantic

meaning of the found directions, and therefore the effect of the found principal

directions must be interpreted by manual inspection. It was observed that some of

the found directions were entangled such that a single direction affected multiple

semantically interpretable attributes in the output image. For example, a direction

found to change the pose would also affect gender. In the context of StyleGAN, it

was observed that some of this entanglement could be alleviated by only applying

the found directions to certain layers of the StyleGAN synthesis network. Drawing

inspiration from the work of Härkönen et al. (2020), Paper V proposes to utilize

PCA to discover semantically interpretable directions in diffusion models which

will be discussed in Chapter 6.

In StyleRIG, Tewari et al. (2020) proposed another supervised method aiming for

full control over the head pose, facial expression, and scene illumination by using

use a 3D Morphable Model (3DMM) (Blanz and Vetter, 1999). 3DMMs have
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previously been widely used to model human faces. 3DMMs allow for disentangled

control of a 3D face model by specifying appropriate control parameters. However,

images generated by 3DMMs lack the photorealism found in StyleGAN models.

In the StyleRIG framework, both the StyleGAN generator and the 3DMM remain

fixed, and the goal is to learn a mapping between the parametric space of the 3DMM

and the latent space of StyleGAN. The method works by learning a rigging network

that takes a StyleGAN latent code w ∈ W as input, along with a target semantic

control parameter p, and outputs a modified latent code ŵ = RigNet(w,p). The

modified latent code corresponds to a modified image g(ŵ) that is consistent with

the target control parameter while maintaining other attributes in the generated

image, such as facial identity. This idea of leaning a mapping between the latent

space of StyleGAN and the parameters of another model, which offers more explicit

control, is similar to our proposed method in Paper III which will be presented in

Chapter 4.

Wang et al. (2021) framed the application of semantic editing as a black box attack

problem where the “attacker” has access to only the input and output of the model.

That is, the “attacker” has access to the input latent code zZ and the generated

image G(z), but does not have access to inspect the inner workings of the generator

and it is assumed that the gradients of the generator are not available. Instead

the authors assume access to one or more “victim task models”M : I → A which

map images I to a space of attribute scores A. They proposed to train an proxy

model P : Z → A using sampled tuples (z,M(G(z))) as a supervised training set.

The gradients of the proxy models can then be calculated and a given latent code

can be edited by steering though the trajectory defined by

zi+1 = zi − λJn, (2.22)

where Jn is the nth row of the Jacobian of the proxy model P with respect to the

latent code z. The method proposed by Wang et al. is related to the method pro-

posed in Paper III, the similarities and differences will be discussed in Section 4.3.

Shen and Zhou (2021) proposed a related approach that considers factorization of

the weights of the trained generator rather than the latent codes as was proposed

by Härkönen et al. (2020). In the Shen and Zhou (2021) work it is noted that the
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synthesis process for an arbitrary GAN architecture can be seen as consisting of

multiple layers of projection, starting from the initial latent space, and ending in

the space of the final image in a series of steps. Considering the first layer which

acts on the initial latent code z, this can be written as an affine transformation

G1(z) ≡ y = Az + b. (2.23)

Shen and Zhou (2021), suggests finding the direction in the latent space that in-

duces a maximal change in the projected latent code after the step y, which is done

using the maximization objective

n∗ = arg max
n

∥An∥22 s.t nTn = 1. (2.24)

In the context of StyleGAN the authors considered the transformation from latent

codes to style codes. Thus, the weight matrix A corresponds to the concatenation

of the weights of the affine transformations in the synthesis network of StyleGAN.

In a follow-up work by Zhu et al. (2022) this approach was extended to allow for

region-specific semantic edits by maximizing a modified objective

n∗ = arg max
n

nTJT
f Jfn

nTJT
b Jbn

s.t nTn = 1, (2.25)

where Jf and Jb are the Jacobians of G with respect to the latent code, for the

foreground (region selected by the user) and background (the complement of the

selected region), respectively. This approach enables location-specific edits like

opening or closing the eyes, modifying the mouth, or changing the density of the

eyebrows. However, Zhu et al. (2022) pointed out that the method was not able

to control individual elements of symmetric pairs within the image; for example,

the method is unable to close only one eye while keeping the other open. Further,

this approach is not able to change global attributes that are not confined to a

well-defined region in the image, such as changes to pose, age and gender.

Rather than editing in the Z, W or W+ spaces, Wu et al. (2021) proposed us-

ing a different latent space for semantic editing in StyleGAN. The proposed style

space, denoted as S space, is the space spanned by the outputs of the learned
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affine transformations in the synthesis network. The authors presented a method

to automatically discover directions in S space that control a single attribute in

the generated image. Specifically, they propose calculating the gradient map of

the generated images with respect to each dimension of the style codes s ∈ S.

These gradient maps were then compared to semantic maps obtained from a pre-

trained segmentation network. The aim is to identify style space channels where

the corresponding gradient maps have a high overlap with the segmentation maps

corresponding to a single specific semantic label. Wu et al. (2021) showed that this

method successfully identifies style space channels that control highly localized at-

tributes in the generated images such as the color and style of the hair, shape of

the ears, eyes, and eyebrows as well as gaze direction.
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Chapter 3
A multilinear model for faces

This chapter serves to introduce Paper I and Paper II. The central idea in these

publications is to use a multilinear model to factorize the latent space of StyleGAN

into semantically meaningful subspaces, thus allowing for more explicit control over

the generated images.

Concretely, we used a labeled facial expression data set of real face images which

we initially project into the latent space of StyleGAN. We then used a tensor

decomposition method to factorize the projected data according to the provided

labels. In this way we discover subspaces in the StyleGAN latent space which

corresponds to each of the six prototypical expressions, happiness, surprise, anger,

sadness, fear, and disgust as well as a subspace that controls the yaw rotation of

the generated image.

This chapter begins in Section 3.1 with an overview of basic definitions and op-

erations from multilinear algebra that are used in the papers. Next, Section 3.2

will review related work where multilinear tensor models have been used to model

human faces and expressions in contexts other than DGMs. Finally, Section 3.3

will summarize the main findings of the papers.
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3.1 Multilinear algebra

Tensors are multidimensional arrays, a generalization of vectors and matrices. The

order a tensor specifies the number of indices required to uniquely specify an ele-

ment of the tensor. From this definition, we can associate first- and second-order

tensors with vectors and matrices respectively. Tensors with order three or higher

are called higher-order tensors. In the remainder of this text, the word tensor is

reserved for these higher-order tensors. While linear algebra involves the study of

vectors and matrices, multilinear algebra studies tensors and operations on tensors.

Fibers are the higher-order analog to the notion of matrix rows and columns. We

can extract the mode-n fiber of a tensor by fixing all but the nth index. For

example, consider the third-order tensor T ∈ RI1×I2×I3 with components Tijk, then

the mode-2 fiber of T is the vector obtained by selecting a particular i and k while

leaving j as a free index. Kolda and Bader (2009) denoted this with the “matlab-

esque” notation ti:k ∈ RI2 . Higher-order analogs to fibers can also be defined, for

example, slices are two-dimensional sections of a tensor defined by fixing all but

two indices. In the notation of Kolda and Bader, the third-order tensor T would

have Ti:: ∈ RI2×I3 , T:j: ∈ RI1×I3 and T::k ∈ RI1×I2 as the possible slices.

The mode-n unfolding, or matricization of a tensor is essentially a reshaping

operation that transforms a tensor T ∈ RI1×···×In×···×IN into a matrix T(n) ∈
RIn×I1···In−1In+1···IN by arranging the mode-n fibers as the rows and all other rear-

ranged as the columns of the matrix. The mode unfolding operation is intuitively

easy to understand since one just moves the relevant mode index of the tensor to

become the first index of the resultant matrix, and concatenates all other modes

of the tensor into the second mode of the matrix. A graphical illustration of the

unfolding operation is provided in Figure 3.1. However the exact definition of the

necessary index permutation is a bit clunky. In fact, there are several ways that

the unfolding operation can be defined (Kossaifi, 2017). Here we follow Kolda and

Bader (2009) and define the index permutation on the unfolding operation in such
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Figure 3.1: Graphical illustration of the mode-n unfolding. The mode-n
unfolding is an operation that transforms a tensor into a matrix. An order 3 tensor
T ∈ RI1×I2×I3 , has three possible unfoldings, T(1) ∈ RI1×I2I3 , T(2) ∈ RI2×I3I1 and
T(3) ∈ RI3×I1I2 . The figure was made with inspiration from the work of Vasilescu
and Terzopoulos (2002).

a way that the tensor element T i1···in··· ,iN maps to the matrix element (T(n))inj with

j = 1 +
N∑

k=1
k ̸=n

(ik − 1)Jk with Jk =
k−1∏

m=1
m̸=n

Im. (3.1)

The mode-n product is an operation that multiplies a tensor by a matrix. For a

general order N tensor T ∈ RI1×I2×···×In×···×IN the mode-n product of T with a

matrix A ∈ RJn×In is defined as

(T ×n A)i1,i2,··· ,in−1,jn,in+1,··· ,iN =
In∑

in=1

Ti1,i2,··· ,in−1,in,in+1,··· ,iNajn,in (3.2)

with T ×n A ∈ RI1×I2×···×Jn×···×IN . The mode-n product is commutative when the

matrices are applied along distinct modes, i.e.,

(T ×n A)×m B = (T ×m B)×n A (3.3)

for A ∈ RJn×In and B ∈ RJm×Im when n ̸= m.

The Higher-Order Singular Value Decomposition (HOSVD) or Tucker decomposi-
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Figure 3.2: Graphical illustration of the HOSVD/Tucker decomposition.
The HOSVD is a generalization of the matrix SVD which composes an arbitrary
tensor T into a core tensor S and a set of factor matrices U(i).

tion (Tucker, 1966) can be seen as a generalization of the well-known matrix SVD

to higher-order tensors. The HOSVD factorizes an arbitrary tensor T into a core

tensor S and a set of orthogonal factor matrices U(n), one for each mode of the

tensor T . Thus the HOSVD of an order-N tensor consists of a single core tensor

and N factor matrices. As an example consider the HOSVD of the order-3 tensor

T ∈ RI1×I2×I3 . The HOSVD of T can be written as

T = S ×1 U
(1) ×2 U

(2) ×3 U
(3), (3.4)

where S ∈ RJ1,×J2×J3 is the core matrix and U(n) ∈ RIn×Jn are the corresponding

factor matrices. An intuitive graphical illustration of the HOSVD operation is

shown in Figure 3.2. The algorithm to calculate the HOSVD is relatively simple

and can be defined by calculating the ordinary matrix SVD for each of the mode-n

unfoldings of the tensor T . The factor matrices are then the left hand singular

vectors of the mode-n unfoldings and the core tensor can be calculated by applying

the transpose of each factor matrix to the tensor via the mode-n product. The full

algorithm is provided in Algorithm 1.

An order-N tensor is rank one if it can be written as an outer product of N vectors

T = t(1) ⊗ t(2) ⊗ · · · ⊗ t(N), (3.5)

where ⊗ is the vector outer product which can be defined component-wise as

(t(1) ⊗ t(2) ⊗ · · · ⊗ t(N))i1i2···iN = t
(1)
i1
t
(2)
i2
· · · t(N)

iN
(3.6)
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Algorithm 1 Higher-order Singular Value Decomposition (HOSVD)

Input: T ∈ RI1×···×In×···×IN

Output: (S ∈ RJ1×···×Jn×···×JN , U(n) ∈ RJn×In) - Core tensor and factor matrices.
for n = 1, · · · , N do

T(n) ← Unfoldn(T ) ▷ Mode-n unfolding of T
U(n),Σ(n),V(n) ← SVD(T(n)) ▷ Matrix SVD of the mode-n unfolding

end for
S ← T ×1 U

(1)T ×2 U
(2)T · · · ×N U(N)T

Any tensor can be defined as a sum of rank one tensors as

T =
R∑

r=1

t(1)r ⊗ t(1)r ⊗ · · · ⊗ t(N)
r . (3.7)

The rank of a tensor is defined as the minimal number of rank one tensors needed

to reconstruct it. If R is minimal, then a decomposition of the form of Eq. (3.7) is

also called the Canonical Polyadic Decomposition (Kolda and Bader, 2009).

The HOSVD can be used for dimensionality reduction of tensors in a way similar

to how PCA is used to reduce the dimensionality of matrices. By truncating the

factor matrices in the HOSVD, we can reduce the dimensionality of each of the

modes. By selecting only the first Ĩn, with Ĩn ≤ In, dominant mode singular vectors

contained in each of the factor matrices U(n) we can calculate truncated core tensor

S̃ and obtain an approximation of T denoted as T̂ as

T ≈ T̂ = S̃ ×1 Ũ
(1) ×2 Ũ

(2) ×3 Ũ
(3), (3.8)

with T ∈ RI1×I2×I3 , S ∈ RĨ1×Ĩ2×Ĩ3 and Ũ(1) ∈ RI1×Ĩ1 . The error of the approxima-

tion is bounded by the sum of squared singular values associated with the discarded

singular vectors (Vasilescu and Terzopoulos, 2003)

||T − T̂ ||2F ≤
∑

i1

σ2
i1

+
∑

i2

σ2
i2

+ · · ·
∑

in

σ2
in . (3.9)

In Paper II, we use this technique to define a linear expression intensity subspace

by truncating the mode of the data tensor corresponding to expression intensity

up to the dominant mode singular vector.
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3.2 Related Work

The HOSVD has been used as a central tool for modeling faces and expressions

in multiple prior works. Vasilescu and Terzopoulos (2002) used a model based

in the HOSVD to analyse face images from the Weizmann face database (Moses

et al., 1996). The database contains 512×352 grayscale images of 28 male subjects

from 5 different pose angles, 3 different illumination conditions, and 3 different

expressions. Vasilescu and Terzopoulos performed a multilinear analysis on this

data set utilising the HOSVD to decompose the data tensor T ∈ R28×5×3×3×(512·352)

according to the different modes of variation as

T = S ×1 Upeople ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixel. (3.10)

The authors note that the multilinear treatment has significant advantages over and

subsumes the conventional PCA treatment and note that the images contained as

the columns of Upixel are identical to the more conventional eigenfaces (Sirovich

and Kirby, 1987). This point is easy to see since Upixel contains the left singular

vectors of the particular mode unfolding of T which exactly matches the design

matrix containing the pixels in each row and each data point along the columns.

The left-hand singular vectors of the design matrix are identical to the principal

components derived from PCA

Graßhof et al. (2017) used a HOSVD-based tensor model to analyse 3D facial

feature points of the Binghamton University 3D Facial Expression (BU-3DFE) (Yin

et al., 2006) database. They used 83 3D facial feature points stemming from scans

of 100 subjects performing 25 different expressions. They performed a HOSVD on

the data in the space of 3D point shapes and proposed to model data points by

selecting an appropriate linear combination of the mode singular vectors as

ŵ = S×1 U
(1) ×2 p

T
2U

(2) ×3 p
T
3U

(3), (3.11)

where p2 and p3 are parameter vectors corresponding to the person and expression

respectively and U(2) and U(3) contains the basis vectors for the person and ex-

pression subspace respectively. By analyzing the expression subspace determined
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by U(3), the authors found that this expression feature space had a “star-shaped”

structure and that expression trajectories intersect in a unique point which they re-

garded as the origin point of the expression subspace. This point is different from

the neutral expression which is present in the data set, and the authors coined

this special point the “point of apathy” due to the emotionless apathetic facial

expression generated by selecting this point as the coefficient pT
3 in Eq. (3.11).

In order to estimate the model the parameters p2 and p3 of a new previously unseen

shape, Graßhof et al. proposed the minimization problem

min
p2,p3

∥ŵ −w∥+ λ1 ∥p2∥22 + λ2
∥∥pT

2 1− 1
∥∥2

2

+ λ3 ∥p3∥22 + λ4
∥∥pT

3 1− 1
∥∥2

2
,

(3.12)

which can be solved using an alternating least squares method which is also ex-

plained in detail in Paper I. Further, Graßhof et al. (2017) experimented with using

the tensor model for expression classification by estimating p3, the parameter cor-

responding to facial expressions, using Eq.(3.12).

3.3 Tensor-based expression editing

The main aim of Paper I and Paper II is to gain greater control over the images

synthesized by StyleGAN enabling the synthesis of face images with a specific pose

or facial expression. The central idea in the papers is to use a HOSVD-based tensor

model to factorize the latent space of StyleGAN into several, semantically mean-

ingful, subspaces. These subspaces control the identity, expression, and rotation

of the generated faces respectively. This is the first time a HOSVD-based tensor

model has been used in the context of state-of-the-art DGMs like StyleGAN.

To construct a HOSVD-based tensor model for the StyleGAN latent space we use

a real facial expression data set as supervision. As in Graßhof et al. (2017) we use

the BU-3DFE database, but use the raw images rather than the 3D facial feature

points. The data consists of images of 100 different persons, 56 females, and 44

males, with good coverage of different ages (18-70 years) and ethnicity. Each sub-

ject was asked to perform a selection of different facial expressions in front of a
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(a) Anger (b) Fear (c) Disgust

(d) Sadness (e) Happiness (f) Surprise

Figure 3.3: Samples from BU-3DFE database. The BU-3DFE database con-
sists of real images of 100 different people each performing the six prototypical
expressions at various levels of intensity. The figure shows the images correspond-
ing to the most intense expressions for the first person in the data set.

3D face scanner. Concretely, the subjects were asked to perform a single natural

expression as well as each of the six prototypical expressions (happiness, disgust,

fear, anger, surprise, and sadness). Each of the prototypical expressions was per-

formed at four different levels of intensity. The participants of the database were

undergraduates, graduates, and faculty from Binghamton University’s departments

of psychology, arts, and engineering. Each of the performed facial expressions was

captured at two view views (about +45° and -45° from a frontal angle). With 100

unique identities performing 25 expressions from two views, the data set contains

5000 unique images. Figure 3.3 shows the raw (aligned) data for the most intense

expressions for the first person in the data set.

The first step for constructing a tensor model from the BU-3DFE data set is to

project each image into the latent space of StyleGAN to obtain a latent represen-

tation for each of the data points. In Paper I we used a hybrid two-step inversion

technique where a ResNet encoder was first trained1 to provide a good initial es-

timate of the latent code w ∈ W+ which is subsequently refined using LPIPS

perceptual loss. An illustration of this approach is shown in Figure 3.4a.

Although this hybrid approach gave good initial reconstructions of the images

1Training code is provided by Baylies. (2019)
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(a) Illustration of projection method in Paper I

(b) Illustration of projection in Paper II

Figure 3.4: Illustration of GAN inversion methods used in the papers. (a)
In Paper I we used a two-step inversion technique where a ResNet-based encoder is
first used to obtain a rough estimate of a latent code which is subsequently refined
using LPIPS as a perceptual loss. (a) In Paper II we used the e4e encoder proposed
by Tov et al. (2021) which ensures that the found latent codes reside in an editable
resion of the latent space.

from BU-3DFE and the method can define latent directions corresponding to yaw

rotation, editing expressions was more challenging. We attribute this to the lower

editability of the latent codes according to the distortion-editability trade-off which

was introduced in Section 2.5. In Paper II, we used the e4e encoder (Tov et al.,

2021) to obtain a latent representation of the BU-3DFE data set, which had a good

trade-off between distortion and editability. An illustration of the GAN inversion

using the e4e encoder is shown in Figure 3.4b.

We project the images from BU-3DFE into the W+ space of StyleGAN, thus

representing each image by a latent code of dimension (18× 512). We flatten each

of the latent codes inW+ into vectors vec(w) ∈ R9216. In Paper I, we then arrange
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Figure 3.5: Visualizing the expression subspace. We see that each of the
six prototypical expressions follows approximately linear trajectories in the latent
space. Extrapolating the trajectories indicates that they have a common origin
in the “point of apathy”, which is different from both the average and neutral
expression.

the data in a fourth-order data tensor T such that each mode of T corresponds to

a single factor of variation. In this case, the first mode corresponds to the mean-

centered latent codes, the second mode corresponds to each of the 100 person

identities, the third mode contains the 25 expressions and finally, the fourth mode

contains the 2 rotations.

The HOSVD of the mean-centered data tensor T − T̄ ∈ R9216×100×25×2, where T̄ is

the tensor with the mean latent code w̄2 repeated in all entries, can be written as

T − T̄ = S ×1 Ulat ×2 Uper ×3 Uexp ×4 Urot. (3.13)

In Paper I, we investigated the structure of expression subspace. The columns of

Uexp define a basis for the 25-dimensional expression subspace. Figure 3.5 shows

2D and 3D projections of how the data points from the BU-3DFE data set are

distributed in the expression subspace. We observe the same “star-shaped” struc-

ture that was reported by Graßhof et al. (2017) even though we here use projected

latent codes rather than 3D point features.

In Paper II, we consider ordering the expression intensities into a dedicated mode of

the data tensor by discarding the neural expression and reshaping the data tensor

2In this context, the mean latent code w̄ refers to the mean of the projected latents from the
BU-3DFE data set, rather than the mean of the distribution of the pretrained generator.
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from an order 4 to an order 5 tensor T ∈ R9216×100×6×4×2 woth HOSVD

T − T̄ = S ×1 Ulat ×2 Uper ×3 Uexp ×4 Uint ×5 Urot. (3.14)

We can introduce relevant subspace parameters qper ∈ R100, qexp ∈ R6, qint ∈ R4,

qrot ∈ R2, controlling identity, expression, expression intensity, and rotation re-

spectively. These subspace parameters pick out the appropriate linear combination

from each of the factor matrices to reconstruct individual data points as

w = w̄ + S ×1 Ulat ×2 q
T
perUper ×3 q

T
expUexp ×4 q

T
intUint ×5 q

T
rotUrot. (3.15)

In Paper I it was assumed that the subspace parameters should first be estimated

to perform semantic editing on latent codes which were not a part of the training

data. On the contrary, in Paper II we propose to use the tensor model formulation

to extract global semantic directions that can be applied to any latent code without

the need for estimating the parameters of the tensor model beforehand.

To find such global editing directions corresponding to the six prototypical expres-

sions, we truncate the expression intensity subspace to the dominant mode singular

vector by selecting only the first column of Uint which is denoted at uint. We then

select the average parameters associated with identity and rotation, q̄per and q̄rot

respectively, and global editing directions nexpr can then be defined as

nexpr = S ×1 Ulat ×2 q̄
T
perUper ×3 q

T
expUexp ×4 q

T
intuint ×5 q̄

T
rotUrot. (3.16)

Editing can then be performed by linearly perturbing the latent codes in the di-

rection of the expression directions as wedit = w0 + γnexpr where γ controls the

intensity of the edit.

Figure 3.6 shows the result of interpolating along semantic directions found using

Eq. (3.16). In Figure 3.6a the directions are applied to the average face of the

BU-3DFE data set and in Figure 3.6b they are applied to a real image of Elon

Musk that has been projected into the latent space of StyleGAN2 using the e4e

encoder (Tov et al., 2021).
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(a) BU-3DFE “mean face”. (b) Projected image of Elon Musk.

Figure 3.6: The effect of global editing directions. (a) Shows the effect of
interpolation along the found linear editing directions for the mean face of the BU-
3DFE data set. (b) Shows the effect of applying the same semantic directions to
an image of Elon Musk that has been projected into the latent space using the e4e
encoder (Tov et al., 2021).
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Chapter 4
Controllable synthesis using NRSfM

This chapter will introduce Paper III which proposes a simple and efficient method

to control the 3D geometry of face images synthesized by StyleGAN. Since the

StyleGAN generator has been exclusively trained on 2D images, it does not have

any explicit knowledge about the 3D structure of the objects that it can generate.

In Paper III, we propose to use Non-Rigid Structure-from-Motion (NRSfM) as a

simple framework for endowing StyleGAN with explicit 3D control of the geometry

of the synthesized faces. This allows us to both predict the 3D structure directly

from the latent codes and modify the latent codes such that the generated 2D

images are consistent with a specified 3D geometry. Paper III provides the first

method for combining NRSfM, a classical problem in computer vision, with a

modern DGM architecture like StyleGAN.

The chapter begins in Section 4.1 with an introduction to the NRSfM problem.

Next, Section 4.2 introduces the method proposed in Paper III that connects a

sparse face model based on NRSfM with the latent space of StyleGAN. Finally,

Section 4.3 discusses Paper III in relation to other research related to semantic

editing and methods for gaining explicit 3D control of face images generated with

StyleGAN.
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4.1 Non-rigid structure from motion

The Structure-from-Motion (SfM) problem is a classical problem in computer vi-

sion and dates back to the early nineties with the seminal work of Tomasi and

Kanade (1992). The aim of SfM is to reconstruct the 3D geometry of a scene

consisting of non-deformable objects using a sequence of corresponding 2D points

as the input. In the traditional formulation of the problem we have N correspond-

ing points in each of F frames. The Tomasi-Kanade factorization method seeks

to factorize a set of observations, which are collected into a measurement matrix

W ∈ R2F×N , in terms of a motion matrix M ∈ R2F×3 and a structure matrix

S ∈ R3×N as

W = MS, (4.1)

where the structure matrix S contains the 3D world coordinates for the object of

the scene and the motion matrix M =
[
M1 M2 · · · MF

]T
contains the 2 × 3

projection matrices Mi for each of the given F frames.

The factorization in Eq. (4.1) can be performed by arguing the that the measure-

ment matrix W must be rank 3. Recall that the rank of the product of two matrices

is constrained by the rank of the factors. In other words, for two arbitrary matrices

A ∈ Rn×m,A ∈ Rm×l we have

rank(AB) ≤ min(rank(A), rank(B)). (4.2)

This implies that the measurement matrix W must have rank(W) = 3 if N,F ≥ 3.

For this reason the Singular Value Decomposition (SVD) (Golub and Reinsch, 1970)

of W, written as W = UΣVT has at most 3 non-zero singular values. Now assume

that the singular values are ordered in decreasing order and let U0 denote the first

3 columns of U, Σ0 the first 3-by-3 submatrix of Σ and VT
0 he first 3 rows VT

Then a valid decomposition of Eq. (4.1) is

W = U0Σ
1/2
0︸ ︷︷ ︸

M

Σ
1/2
0 VT

0︸ ︷︷ ︸
S

. (4.3)

However, this decomposition is not unique since for any invertible matrix Q the
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decomposition M′ = MQ and S′ = Q−1S is also valid since it leaves W unchanged

M′S′ = (MQ)(Q−1S) = M(QQ−1)S = MS = W. (4.4)

In practice, this ambiguity can be solved by imposing additional constraints on the

factorization in Eq. (4.1). This can be done by demanding that the rows of Mi have

unit norm and are orthogonal to each other, i.e. by demanding that MiM
T
i = I2,

in which case the factorization is unique up to an arbitrary rotation (Trucco and

Verri, 1998, p.207).

In SfM it is assumed that the reconstructed object is rigid and non-deformable.

This is a strong limitation as many real-world objects are deformable and might

change. This is particularly true for human faces where, for example, different

facial expressions are highly non-rigid deformations to the underlying 3D shape. If

we wish to model complex non-rigid deformations such as human facial expressions

we will need to extend SfM to allow for non-rigid deformations.

The NRSfM problem seeks to find the 3D reconstruction of scenes where the

object is allowed to undergo non-rigid deformations. The first method for solving

the NRSfM problem is often attributed to Bregler et al. (2000). The fundamental

assumption of NRSfM is that any 3D shape can be expressed as a rigid basis-shape

B0 and a linear combination of a finite set of K non-rigid basis shapes {Bi}Ki=1.

The rigid basis-shape describes the average reconstructed 3D shape and each of

the non-rigid basis shapes model the variation from this average shape. Thus, the

resultant 3D shape under an arbitrary 3D deformation can be written as

S = B0 +
K∑

i=1

αiBi. (4.5)
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Using this assumption we see that the measurement matrix W can be written as

W =




M1 α11M1 α12M1 · · · α1KM1

M2 α21M2 α22M2 · · · α2KM2

...
...

...
. . .

...

MF αF1MF αF2MF · · · αFKMF




︸ ︷︷ ︸
M




B0

B1

B2

...

BK




︸ ︷︷ ︸
B

, (4.6)

where the 2F × N measurement matrix W is be decomposed as a 3(K + 1) × N
structure matrix B =

[
B0 B1 B2 · · · BK

]T
and a 2F × 3(K + 1) motion

matrix M. Here the motion matrix can be recovered by first computing the SVD

of the measurement matrix as W = UΣVT and then defining M as the first

3(K + 1) columns of U, each multiplied by their respective singular values as

M =
[
σ1u1 σ2u2 · · · σ3(K+1)u3(K+1)

]
(Hartley and Zisserman, 2004, p.444).

As in the in rigid case, the non-rigid factorization in Eq. (4.6) is not unique since

the insertion of an invertible 3(K+1)×3(K+1) matrix Q leaves the measurement

matrix W unchanged since W = MB = MQQ−1B. However, in the non-rigid

case it is an additional requirement that the matrix Q is chosen such that MQ has

the block structure of Eq. (4.6).

In Paper III we used the NRSfM method proposed by Brandt and Ackermann

(2019) which proposed to assume that the non-rigid basis shapes are rank-one i.e.

can be written as Bi = dib
T
i for some vectors di ∈ R3 and bi ∈ RN . The method

works by first splitting the measurement matrix in a rigid and non-rigid part as

W = W0 + δW = M0B0 + δMδB. (4.7)

Here, the rigid part W0 is obtained from the first 3 singular vectors of the mea-

surement matrix where we use the definition.

W0 = U0Σ0︸ ︷︷ ︸
M0

VT
0︸︷︷︸

B0

, M0 ∈ R2F×3, B0 ∈ R3×N . (4.8)

So far, we have shown how to recover the average 3D reconstruction B0 from a
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(a) Corresponding 2D points ex-
tracted from StyleGAN images.

(b) 3D reconstruction of the rigid basis shape
projected under different rotations.

Figure 4.1: Illustration of input data and the rigid basis shape. (a) shows
the corresponding 2D points which is used as the input data for the NRSfM al-
gorithm. These 2D points are extracted as landmarks from synthetic StyleGAN
images. Only the rightmost column is used in the NRSfM algorithm which received
no information about the pixels of the original image other than the coordinates
for the extracted 2D landmarks. (b) shows the rigid basis shape B0 which is deter-
mined from the first three right hand singular vectors of the measuring matrix. To
illustrate that B0 is a 3D shape it is projected into the image plane using various
rotations.

data set consisting only of corresponding 2D points. In Paper III, we extract

such corresponding 2D points from synthetic StyleGAN images using a pretrained

landmark extractor. Figure 4.1a shows examples of the synthetic images as well as

the extracted 2D landmarks. Figure 4.1b provides an illustration of the recovered

rigid 3D basis shape B0 under various rotations.

In Eq. (4.7), the rigid basis shape B0 describes the average 3D reconstruction, and

M0 contains the 2×3 projection matrices associated with each of the F observations

in the measurement matrix

M0 =
[
M1 M2 · · · MN

]T
∈ R2F×3. (4.9)

Each of these individual projection matrices Mi can be further factorized into
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Algorithm 2 Recover camera and rotation matrix from projection matrix

Input: M ∈ R2×3 ▷ Projection matrix
Output: K ∈ R2×2, R ∈ R2×3 ▷ Camera and rotation matrix
M′ = flipud(M) ▷ Flip up-down
Q, R̃← QR(M′T) ▷ QR Decomposition
K′ ← flipud(R̃T)
K′′ ← fliplr(K′) ▷ Flip left-right
R′ ← flipud(QT)
S← diag(sign(diag(K′′))) ▷ Ensure K will have positive diagonal
K← K′′S
R← SR′

return K,R

upper triangular camera matrices Ki and rotation matrices Ri as

Mi = Ki[I|0]Ri =

[
k
(i)
11 k

(i)
12

0 k
(i)
22

][
1 0 0

0 1 0

]

r
(i)
11 r

(i)
12 r

(i)
13

r
(i)
21 r

(i)
22 r

(i)
23

r
(i)
31 r

(i)
32 r

(i)
33


 . (4.10)

The procedure for the decomposition of the projection matrix M into camera ma-

trix K and rotation matrix R as in Eq. (4.10) relies on QR factorization is given

in Algorithm 2.

In Paper III, we choose to parameterize the rotation matrices Ri by Euler angles

θ = (θx, θy, θz). Thus the matrices Ri are composed of 3-by-3 rotation matrices

where we chose the ordering R(θ) = Rz(θz)Ry(θy)Rx(θx) where Rx, Ry and Rz

are the standard rotation matrices in three dimensions given by

Rx =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 ,Ry =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 ,Rz =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 .

(4.11)

The non-rigid basis shapes can be defined as follows. First we define the the

non-rigid part of the measurement matrix by subtracting the rigid part. We then
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calculate the SVD of the resultant matrix

δW = W −W0 = δUδΣδVT = δMδB, (4.12)

where we define δB ≡ δVT ∈ RN×N . Now, the main idea of the rank-one approach

to NRSfM (Brandt and Ackermann, 2019) is to use the first K rows of δB, denoted

as bT
1 ,b

T
2 , · · ·bT

K ∈ R1×N . These are used to construct the non-rigid basis shapes

as Bk = dkb
T
k ∈ R3×N where the vectors dk ∈ R3 are constrained to have unit

norm and found by minimizing the reprojection error

min
αfk,dk

F∑

f=1

∥∥∥∥∥Xf −Mf

[
B0 −

K∑

k=1

αfkdkb
T
k

]∥∥∥∥∥

2

F

s.t dT
kdk = 1. (4.13)

Figure 4.2 visualizes the effect of applying each of the first six non-rigid basis shapes

Bk to the rigid basis shape B0.

4.2 Controlling the 3D geometry of StyleGAN

In Paper III, we propose a method for combining NRSfM with a DGMs like Style-

GAN. We first write the NRSfM model described in the previous section in closed

form as

R(q) = K[I2|0]R(θ)︸ ︷︷ ︸
M

[
B0 +

K∑

k=1

αkBk

]
+ t⊗ 1T

L, (4.14)

where q = (k,θ,α, t) is an attribute vector, describing the camera parameters

k = (k11, k12, k22), rotation θ = (θx, θy, θz), non-rigid basis shape coefficients

α = (α1, α2, · · · , αK) and two dimensional translation t = (tx, ty). Thus, the

attribute parameter q completely specifies the sparse 3D structure via α as well

as its projection onto the image plane via k, θ and t.

The model R can be seen as a mapping from the space of attribute vectors q ∈ Q
to the space of 2D landmarks. In the following our aim is to connect the NRSfM

model in Eq. (4.14) with the latent space of StyleGAN. In Paper III, we propose
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Figure 4.2: Effect of the non-rigid basis shapes The figure shows the effect of
the non-rigid basis shapes when they are added to the rigid basis shape individually
as B0 + αkBk. The columns corresponds to k = 1, · · · , 6 and the rows show the
effect of applying each basis space with the strength parameter αk increasing from
top to bottom.

doing this by training a regressor network ϕ to predict the attribute vector q of the

model in Eq. (4.14) directly from individual StyleGAN latent codes w such that

ϕ(w) = q.

The regressor network ϕ is implemented as a simple MLP network that is trained

using a L2 loss between the predicted 2D landmarks R(ϕ(w)) and the “ground

truth” 2D landmark, which we extract from generated StyleGAN images G(w)

using a pretrained landmark extractor denoted as ψL. The training loss is then

written as

L (w) = ∥R(ϕ(w))− ψL(G(w))∥2F . (4.15)

We propose two methods for using the trained regressor model ϕ to control the

images generated by StyleGAN, a linear method and an iterative gradient-based

method. The linear method is derived from the first order Taylor expansion of ϕ

which can be rearranged to obtain a formula describing how the latent code should
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be updated to achieve a specified edit

ϕ(w) ≈ ϕ(w0) + J|w=w0(w −w0)→ w = w0 + J†(q− q0), (4.16)

where ϕ(w) = q and ϕ(w0) = q0 and J† is the Moore-Penrose (Penrose, 1955)

pseudo-inverse of the Jacobian of ϕ evaluated at w0. The linear method is attractive

as it gives a closed form solution for semantic editing with just a single step.

Because editing only requires a single application of Eq. (4.16), the linear method

is fast and can run in near-real time on a consumer-grade GPU.

As an alternative to the linear method in Eq. (4.16), we further propose a gradient-

based method for semantic editing, that can be formulated as

min
w
∥ϕ(w)− qtarget∥22 + λD(G(w), G(w0)), (4.17)

where the D is an image similarity metric that we add as a regularization term

with a strength parameter λ ∈ R+. In Paper III, we show that although the linear

method is able to edit latent codes such that structure of the edited images agrees

with the specified target attribute vector q, the method suffers from a shift in

identity during edits. The gradient-based method, although slower, can effectively

increase the degree of identity preservation by using a pretrained ArcFace network

(Deng et al., 2019) as a the regularization term.

Figure 4.3 shows the effectiveness of this approach, by conditioning the sampling

on different attribute vectors. Without conditioning, the generated faces have a

variety of poses and facial expressions as shown in Figure 4.3a. The approach

proposed in Paper III allows for conditional sampling by specifying the geometry

by choosing a particular desired attribute vector. Figure 4.3b, 4.3c and 4.3d show

conditional sampling for attribute vectors corresponding to a neutral frontal view,

a smiling expressions and a rotated view respectively.
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(a) Unconditional sampling (b) Neutral frontal view.

(c) Smiling. (d) Rotated view.

Figure 4.3: Controllable sampling. Our method allows for controllable synthesis
by conditioning on a specific attribute vector q. Using unconditional sampling as
shown in (a) the generated faces have a variety of poses and facial expressions. By
choosing an appropriate attribute vector, we can sample the same identities from
a frontal view with a neutral expression as shown in (b) or with a smile or specific
pose as shown in (c) and (d), respectively.

4.3 Conclusions

The tensor model from Paper I and Paper II ultimately finds linear editing direc-

tions each corresponding to a specific semantic change in the output image. Thus

we end up with a collections of seven directions n ∈ W+ corresponding to the

six prototypical facial expressions as well as a direction for yaw rotation. While

the tensor model is only able to control yaw rotation, the NRSfM approach in

Paper III is able to define arbitrary poses. When combined, these two approaches

allow for controlling the facial expressions as well as poses of face images generated
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with StyleGAN. While the tensor model is only able to find linear directions, the

NRSfM approach is able find both linear editing directions with Eq. (4.16) as well

as non-linear editing trajectories using Eq. (4.17).

As mentioned in Section 2.5, StyleRIG (Tewari et al., 2020) aims to gain more

explicit control over the synthesis process in StyleGAN by using a 3DMM. In com-

parison, the method proposed in Paper III does not require access to a pretrained

3DMM and relies only on access to a pretrained landmark extractor on the domain

of the generator. Since StyleRIG renders synthetic images from the 3DMM, they

are able to control the illumination of the generated images. Our method is not

able to model illumination. Our method shares limitation with StyleRIG as modes

of variation, such as background or hair style, that are not modeled by either our

NRSfM model or the 3DMM from StyleRIG cannot be explicitly controlled.

In order to achieve greater 3D controllability Gu et al. (2022) proposed to inte-

grate Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) into the StyleGAN

architecture. Compared to our approach in Paper III, StyleNeRF requires both

adaptation to the StyleGAN architecture as well as expensive retraining, whereas

our method can be applied to existing model checkpoints without the need for

altering the StyleGAN architecture or any retraining of the generator.

The editing techniques proposed in Paper III are in some way related to the meth-

ods proposed in Hijack-GAN by Wang et al. (2021) which was introduced in Section

2.5. In Paper III, we train an regressor network ϕ to predict an attribute vector

that encodes information about the 3D geometry and orientation of the generated

faces. In our work, the regressor ϕ plays a similar role to the proxy network from

Hijack-GAN. However, as we do not frame the editing process as an attack problem

there is no restriction with respect to access of the gradients of the generator. We

leverage this access to the gradients to apply identity regularization which improves

identity preservation along the editing trajectories. Further having explicit access

to the generator enables us to work in the intermediateW space allowing for more

disentangled edits.
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Chapter 5
An interactive art experience

This chapter introduces Paper IV: The paper takes a departure from the focus

on semantic editing of face images and instead explores another application of

StyleGAN. The paper was a collaboration with a fellow PhD student and was

submitted as an extended abstract to CHI2023.

Some museums have accumulated vast amounts of digitized artworks that can con-

tain thousands of individual pieces of art. In collaboration with the Munch Museum

in Oslo (MUNCH), we had access to a digital collection of 5800 crayon, ink, and

pencil drawings made by the famous artist Edvard Munch. It is a challenging task

to showcase such vast collections adequately using conventional museum exhibi-

tions. In Paper IV, we propose to utilize a StyleGAN model in conjunction with a

pSp encoder (Richardson et al., 2021) to design an interactive experience consist-

ing of a drawing table where the museum audience can directly interact with the

trained models. This allowed the users to explore the sketching style of Edward

Munch though the representations learned by these models.

We first trained a StyleGAN2 model on the Edward Munch collection. This allowed

us to generate new artworks that follow the particular style of the collection. Fig-

ure 5.1a shows samples from the trained StyleGAN model along with interpolation

results in Figure 5.1b.

After training StyleGAN on the data set, the next step was to train a pSp encoder

65



(a) Samples from the model. (b) Interpolation in latent space.

Figure 5.1: StyleGAN2 trained on a collection of artworks by Edvard
Munch. (a) shows random samples from the trained model. (b) shows interpola-
tions in W space of the trained model.

(Richardson et al., 2021). The architecture of the pSp encoder was introduced in

Section 2.4.

To facilitate inversion from a sketch provided by the user to the domain of the data,

we first simplified images generated with the StyleGAN model such that they are

closer to the expected input from the user. We do this as proposed by Richardson

et al. (2021) by first applying a “pencil sketch” filter1 to the generated images

and then simplifying the result using the pre-trained deep “sketch-simplification”

model provided by Simo-Serra et al. (2016).

We sample 10K synthetic images x from the trained StyleGAN model and for each

image, we obtain a corresponding simplified sketch x̃ which we can use to train

the pSp encoder E. The encoder is trained to predict the offset from the average

latent code ŵ of the trained StyleGAN generator. Thus, the pSp model is defined

as pSp(x) := G(E(x) + w̄) (Richardson et al., 2021).

In order to facilitate domain translation from the simplified input sketches, we

train the pSp encoder to make reconstructions based on the simplified sketches x̃ as

x̂ = pSp(x̃) such that the reconstruction x̂ are as close to the original x as possible.

This is done by minimizing the L2 and LPIPS distance between the generated

synthetic samples and the reconstructions x̂. As in the work by Richardson et al.

1The code for this pencil “sketch filter” is provided by Richardson et al. at github.com/

eladrich/pixel2style2pixel/blob/master/scripts/generate_sketch_data.py
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Figure 5.2: Sketch generation pipeline. Generated images from the trained
StyleGAN model are first processed to generate simplified sketches. We then train
the pSp encoder to map the simplified sketches into theW+ space of the StyleGAN
model.

(2021) we also employ a regularization loss Lreg(x̃) = ||E(x̃)−w̄||2 that encourages

the output of the encoder to stay close to the average latent code w̄. An illustration

of the training pipeline is shown in Figure 5.2.

This research project culminated in the creation of an interactive drawing table

where the user draws with a pen on a piece of tracing paper. A camera under

the table continuously captures the current state of the user-generated sketch. The

sketch images are converted to binary and the frames are then sent to the pSp model

that projects each frame into the W+ space of the trained StyleGAN model. New

images are then synthesized from the inverted latent codes and are projected back

onto the drawing table in order to provide feedback to the user. This setup allows

the user to directly interact with the trained StyleGAN model and by extension

interact with the collection of Edvard Munch artworks that the model was trained

on. This provides a new way of interacting with the art collection, which would be

too large to adequately show to the audience otherwise.

67



Chapter 6
Denoising Diffusion Models

This chapter serves to introduce Paper V. Contrary to the other contributions

within this thesis, Paper V shifts the focus from GANs to explore novel methods

for semantic editing in an alternative class of generative models, namely, Denois-

ing Diffusion Models (DDMs) (Sohl-Dickstein et al., 2015). DDMs have recently

emerged as a powerful class of generative models with remarkable capabilities in

producing high-quality images from diverse domains. In line with the topic of this

thesis, Paper V focuses on the use of DDMs for controllable generation of face

images.

Section 6.1 will introduce the reader to the core ideas of DDMs focusing on the

framework of Denoising Diffusion Probabilistic Modelss (DDPMs) as proposed by

Ho et al. (2020) and the deterministic reformulation proposed by Song et al. (2021)

known as Denoising Diffusion Implicit Models (DDIMs).

Section 6.2 introduces the notion of the semantic latent space within DDMs as

proposed by Kwon et al. (2023) and will summarize the contributions of Paper V

that proposes novel editing techniques in DDMs by utilizing the semantic latent

space.
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6.1 Diffusion Models

DDMs are a new class of deep generative models that have recently emerged as a

strong competitor to GANs and even surpassing them (Dhariwal and Nichol, 2021)

on unconditional image synthesis where GANs have otherwise had a dominating

role in the field. As DDMs are are a fairly new type of generative models, the rest

of this section serves as an introduction and will review the core theory of DDPMs

and DDIMs.

On a high level, the aim is DDMs is to approximate the true distribution of the

training data q(x0) by some learned distribution pθ(x0) such that we can sample

new data points x0 ∼ pθ(x0). Intuitively, DDMs are characterized by two dis-

tinct processes, a forward process, and a reverse process. The forward process

gradually adds Gaussian noise ϵ ∼ N (0, I) to data x0 in T steps, starting from

a clean image x0 and producing a sequence of progressively more noisy images

x1,x2, · · · ,xT−1,xT . In the generative reverse process, we would like to move in

the other direction. Given a fully noised sample xT ∼ N (0, I), we aim to learn a

model that can gradually remove the noise and give us a new sample x0 ∼ pθ(x0).

The generative process of DDMs is illustrated in Figure 6.1 for a model trained on

face images.

In DDPM (Ho et al., 2020), the forward noising process is defined as a fixed Markov

chain where Gaussian noise is gradually added to the training data according to a

variance schedule β1, β2, · · · , βT as

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (6.1)

Using the reparameterization trick for Gaussians, we can sample create a sample

xt ∼ q(xt|xt−1) as

xt =
√

1− βtxt−1 +
√
βtϵ with ϵ ∼ N (0, I). (6.2)

An interesting property of the forward process in Eq. (6.1) is that it allows for

sampling at an arbitrary noise level in a single step directly from the clean image
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Forward noising process
xt+1 ∼ q(xt+1|xt)

←−

−→
Reverse generative denoising process

xt−1 ∼ pθ(xt−1|xt)

Figure 6.1: Illustration of the generative process in DDMs. The denoising
process of DDMs is illustrated by showing the variable xt as various timesteps
during the generative process.

x0. By defining1 αt ≡ 1− βt and ᾱt ≡
∏t

i=1 αi, we can write

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (6.3)

This property can be shown as follows. First, recall that a Gaussian random

variable x ∼ N (µ, σ2I) can be sampled as x = µ + σϵ with ϵ ∼ N (0, I). To prove

Eq. (6.3), we first sample from Eq. (6.1) as

xt =
√

1− βtxt−1 +
√
βtϵt−1 (6.4)

≡ √αtxt−1 +
√

1− αtϵt−1 (6.5)

=
√
αt(
√
αt−1xt−2 +

√
1− αt−1ϵt−2) +

√
1− αtϵt−1 (6.6)

=
√
αtαt−1xt−2 +

√
αt(1− αt−1)ϵt−2 +

√
1− αtϵt−1 (6.7)

1Note that in the DDIM paper (Song et al., 2021) and many other works, the symbol αt is
defined as the cumulative product, which is denoted as ᾱt in this text following Ho et al. (2020).
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Now, the two last terms can be rewritten by merging two Gaussians (i.e., if x ∼
N (0, σ2

1I) and y ∼ N (0, σ2
2I) then x + y ∼ N (0, (σ2

1 + σ2
2)I)), so

αt(1− αt−1) + (1− αt) = 1− αtαt−1. (6.8)

We can merge the two Gaussian variables ϵt−2 ∼ N (0, I) and ϵt−1 ∼ N (0, I) into

a combined Gaussian variable ϵ ∼ N (0, I) and continue the calculation as

xt =
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ (6.9)

=
√
αtαt−1αt−2xt−3 +

√
1− αtαt−1αt−2ϵ (6.10)

=

√√√√
T∏

i=1

αix0 +

√√√√1−
T∏

i=1

αiϵ (6.11)

=
√
ᾱtx0 +

√
1− ᾱtϵ, (6.12)

which proves the form of q(xt|x0) in Eq. (6.3). Thus we have shown that at every

timestep t each noise image xt can be obtained as a linear combination of the

original clean image x0 and Gaussian noise ϵ ∼ N (0, I) as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (6.13)

It is worth noting that the noise schedule is chosen such that ᾱT ≈ 0 in order to

ensure that q(xT |x0) ≈ N (xT ,0, I).

Having established how noise can be efficiently added to the training data to obtain

progressively noisier samples using the forward process, we now transition to task

of learning a model that can remove the noise. The objective is to approximate the

reverse conditional distribution q(xt−1|xt) by employing a neural network param-

eterized by θ, denoted as pθ(xt−1|xt). Approximating the true reverse conditional

distribution enables us to sample xT ∼ p(xT ) = N (0, I) and subsequently use

pθ(xt−1|xt) in a sequential manner to reverse the noising process and ultimately

obtain a novel sample following the data distribution x0 ∼ q(x0).

The true reverse distribution q(xt−1|xt) is intractable since it would require knowl-

edge of the entire data set (Ho et al., 2020). However, it is noteworthy that it
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becomes tractable when conditioned on x0 as q(xt−1|xt,x0). This makes intuitive

sense since if we know the clean image and a noisy version of it should be possible

to approximate the intermediate steps. Using Bayes Theorem, we can write the

tractable posterior as

q(xt−1|xt,x0) = q(xt|xt−1,x0)
q(xt−1|x0)

q(xt|x0)
. (6.14)

Now, due to the Markov property of the forward process in Eq. (6.1), we have that

q(xt|xt−1,x0) = q(xt|xt−1). Further, the expression for q(xt−1|x0) can be derived

directly from the expression for q(xt|x0) in Eq. (6.13). Thus, all terms in Eq. (6.14)

are known and can be written as explicit closed form Gaussians. These can be

plugged into Eq. (6.14) and the expression simplified. In practice, this results in

a fairly involved calculation of which Luo has provided a very detailed write-up

(Luo, 2022, p.12). The result of the calculation is that the tractable posterior

q(xt−1|xt,x0) yields a new Gaussian

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0, t), β̃t) (6.15)

where the true denoising mean µ̃ is given by

µ̃(xt,x0, t) =

√
ᾱt−1βt

1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt

xt (6.16)

and true forward process variance β̃t is given by

β̃ =
1− ᾱt−1

1− ᾱt

βt. (6.17)

Now, using the property in Eq. (6.13), we can write x0 in terms of xt as

x0 =
xt −

√
1− ᾱt√
ᾱt

ϵ0. (6.18)

Plugging this back into Eq. (6.16) we can write the true transition mean of the
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forward process as

µ̃(xt) =
1√
αt

(
xt +

1− αt√
1− ᾱϵ0

)
. (6.19)

We can parameterize the reverse processes as a neural network pθ(xt−1|xt) as

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (6.20)

where Eq. (6.19) shows that we can model the approximate transition mean µθ(xt, t)

in terms of a neural network ϵθ that is trained to predict the noise ϵ at timestep t

µθ(xt, t) =
1√
αt

(
xt +

1− αt√
1− ᾱϵθ(xt, t)

)
. (6.21)

Ho et al. (2020) proposed to set the forward variance to untrained time dependent

constants Σθ(xt, t) = σ2
t I where the choices σ2

t = β̃t and σ2
t = βt were reported to

produce similar experimental results. In general, there is some freedom of design

in how the forward variances βt are set. Ho et al. (2020) proposed to define the

variance schedule as a sequence of linearly increasing constants, starting from β1 =

10−4 all the way up to βT = 0.02. In follow-up work by Nichol and Dhariwal

(2021), the authors noted that although the linear noise schedule proposed by Ho

et al. (2020) worked well for high-resolution images, it was sub-optimal for images

of resolutions 64 × 64 and 32 × 32. To address this problem Nichol and Dhariwal

(2021) proposed a cosine noise schedule defined as

ᾱt =
f(t)

f(0)
with f(t) = cos2

(
t/T + s

1 + s

π

2

)
, (6.22)

where s is a small offset.

With µθ(xt, t) parameterized as in Eq. (6.21), Ho et al. (2020) proposed a simplified

training objective that minimizes the squared L2 distance between ϵ and ϵθ(xt, t)
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as

Lsimple = Et∼U(0,T ),x0∼q(x0),ϵ∼N (0,I)

[∥∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱϵ︸ ︷︷ ︸

xt

, t)
∥∥∥
2]
. (6.23)

After training the network ϵθ to predict the added noise, we can use it to generate

new samples. The DDPM sampling procedure starts by drawing a Gaussian sample

xT ∼ N (0, I) and then iteratively applying the denoiser as

xt−1 =
1√
αt

(
xt +

1− αt√
1− ᾱϵθ(xt, t)

)
+ σtϵ, ϵ ∼ N (0, I). (6.24)

So far, this text has treated DDMs in the context of the DDPM framework provided

by Ho et al. (2020). Although DDPMs are able to create images with impressive

quality and variation, they require many function evaluations to produce a single

sample. Typically DDPMs are trained with a thousand timesteps in the forward

process and require the same amount of function evaluations to run the reverse

process. In contrast, GANs only need a single forward pass though the generator to

produce a sample. The need to make many sequential function evaluations makes

DDPMs much slower than GANs. Comparing the two generative architectures,

Song et al. (2021) noted that it would take around 20 hours to sample 50k images

of size 32×32 on a Nvidia 2080 Ti GPU using a DDPMs, where sampling the same

amount of images using a GANs would take less than a minute.

In order to speed up the sampling of DDMs, Song et al. (2021) proposed to gener-

alize DDPMs to a larger family of generative process indexed by σ as

qσ(xt−1|xt,x0) = N (xt1 ;
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt

, σ2
t I). (6.25)

The idea is that the entire family of models in Eq. (6.25) can be optimized by the

same objective function as DDPMs in Eq. (6.23). Thus, a model that is trained for

the original DDPM process can be used for any sampling process in this extended

family of generative processes.
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Figure 6.2: Comparison xt and Pt(ϵ
θ
t (xt)) at different timesteps

The sampling process using DDIM sampling is written as

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ

θ
t (xt)√

ᾱt

)

︸ ︷︷ ︸
predicted x0

+
√

1− ᾱt−1 − σ2
t ϵ

θ
t (xt)︸ ︷︷ ︸

direction pointing to xt

+ σtϵt︸︷︷︸
noise

(6.26)

with ϵt ∼ N (0, I) and

σt = ηt
√

(1− ᾱt−1)(1− ᾱt)
√

(1− ᾱt/ᾱt−1) = ηt

√
β̃ (6.27)

When ηt = 1 for all t in Eq. (6.27) we have that σ2
t = β̃ and the sampling pro-

cedure in Eq. (6.26) reduces to the DDPM sampling in Eq. (6.24). When ηt = 0

for all t, the sampling in Eq. (6.27) is DDIM and the reverse process becomes fully

deterministic and reversible. For 0 < ηt < 1 the sampling in Eq. (6.27) the con-

trol parameter ηt allows for controlling the level of stochasticity in the generative

process. In this way, DDIMs generalizes DDPMs to a larger class of models.

Using the notation proposec by Kwon et al. (2023) and used in Paper V, the

prediction of x0 given xt can be written as

Pt(ϵ
θ
t (xt)) =

xt −
√

1− ᾱtϵ
θ
t (xt)√

ᾱt

. (6.28)

During the sampling process, the prediction Pt(ϵ
θ
t (xt)) “clears up” much faster

than he latent variables xt, which is illustrated in Figure 6.2. In the DDIM setting
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(ηt = 0) the deterministic generative process can then be written as

xt−1 =
√
ᾱt−1Pt(ϵ

θ
t (xt)) +

√
1− ᾱt−1ϵ

θ
t (xt). (6.29)

It is possible to reverse Eq. (6.29) such as to uniquely determine the particular

xT that would produce a given clean image x0. In the limit of small steps, the

inversion can be written as

xt+1 =
√
ᾱt+1Pt(ϵ

θ
t (xt)) +

√
1− ᾱt+1ϵ

θ
t (xt). (6.30)

The DDIM framework allows for much faster inference than DDPM by sampling

only a subset of the latent variables during the generative reverse process. Instead

of sampling all xt for t ∈ [1, · · · , T ], Song et al. (2021) proposed to only sample

a subset of the latent variables {xτ1 , · · · ,xτi , · · · ,xτS} with S < T during the

reverse process. This results in a significant speedup as good quality samples can

be achieved with far fewer evaluations of ϵθ.

6.2 Editing in the semantic latent space.

While there exists extensive literature dealing with semantic editing in the latent

space of GANs, a selection of which has been treated in Section 2.5, the same

is not true in the case of unconditional DDMs. The ease of applying text-based

conditioning in DDMs using Classifier-Free Guidance (CFG) (Ho and Salimans,

2021) has resulted in a surge of works dealing with text-based synthesis and editing

using DDMs, see e.g . Ramesh et al. (2022), Saharia et al. (2022), Kawar et al.

(2023), Ruiz et al. (2023), and Gal et al. (2022).

As noted by Luo (2022), it is currently understood that a main drawback of DDMs

when compared to other types of generative models such as GANs, is that they do

not produce interpretable latents since the intermediate latent variables in the dif-

fusion chain are restricted as noisy versions of the original input. Further, since the

latent variables are restricted to have the same dimensionality as the input, DDMs

do not enable a compressed latent representation that carries semantic information.
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Figure 6.3: Illustration of the U-Net architecture The U-Net is a model
architecture that produces an output of the same dimensionality as the input. The
semantic latent space in diffusion models consists of the space of activations of the
deepest bottleneck layer of the U-Net. This is denoted by ∆ht in the figure.

The introduction to DDMs in Section 6.1 did not explicitly address the actual

implementation or architecture of the neural network suitable to act as the denoiser

ϵθ. The DDM formalism introduced in Section 6.1 does not put any restrictions

on the type of network that can be used to implement ϵθ as long as the model

represents a mapping Rn → Rn, i.e., the input and output dimensions remain the

same. Thus, in principle, any architecture is applicable as long as it obeys this

constraint.

In practice, most DDM denoisers are implemented as U-Nets (Ronneberger et al.,

2015). U-Nets are a type of CNN that was initially developed for semantic segmen-

tation of biomedical images. The architecture consists of an encoder and decoder

part with skip connections. The encoder gradually down-samples the input image

using convolutional blocks where in each pass, the spatial dimension of the image

is decreased while the number of channels is increased.

The semantic latent space of DDMs. Recently, Kwon et al. (2023) introduced

the idea of a semantic latent space in DDMs. Rather than treating the variables

{xt}Tt=1 in the diffusion process as the latent variables, Kwon et al. (2023) suggested

looking closer at the intermediate representations in the denoising U-Net. The
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main idea is to define the intermediate representation in the deepest feature map

of the denoising U-Net as the latent representation. Kwon et al. (2023) proposed

to denote this space as h-space. In each step of the diffusion process, the current

noisy image xt is fed to the U-Net where it is down-sampled until the deepest

feature map ht. For the model used in Paper V, xt has dimensions (3, 256, 256)

and ht has dimensions (512, 8, 8). A diagram of the U-Net architecture along with

an illustration of the semantic h-space is shown in Figure 6.3.

In Paper V, we propose several novel editing techniques for discovering interpretable

semantic editing direction in DDMs. To this end, we use the notion of the semantic

latent space which is comprised of the bottleneck representations in the U-Net.

Since the editing techniques depend on this smaller representation, the methods

proposed in Paper V are specific to DDMs which use a U-Net type architecture

and are not immediately applicable to DDMs which use other architectures for

implementing the denoiser ϵθ.

Principal directions in h-space. As mentioned in Section 2.5, PCA has pre-

viously been used to identify semantically meaningful direction in GANs. In

GANSpace (Härkönen et al., 2020), PCA directions were shown to lead to in-

terpretable direction in StyleGAN. In Paper V, we perform PCA on a collection of

sampled bottleneck representations {ht}Ni=1 and show that many of these directions

lead to semantically meaningful editing directions in the semantic latent space.

Concurrent work by Park et al. (2023) also attempts to discover unsupervised

directions by working h-space. In their work, due to the high dimensionality of the

bottleneck feature maps, the authors proposed using a reduced h-space, consisting

of sum-pooled feature maps of the bottleneck representation. In contrast, our

methods always work on the full bottleneck representations of the U-net, i.e. the

full h-space, as proposed by Kwon et al. (2023).

Park et al. (2023) also attempted to find directions in DDMs using PCA, however

with limited success. The authors note that PCA directions resulted in severe

distortions in the generated images while only somewhat altering attributes such

as expression, rotation, and age. The exact reason for the difference in results is

unclear, but one might hypothesize that the difference in the definition of the h-

78



(a) Age (b) Pose

(c) Smile (d) Gender

Figure 6.4: Interpolation results for semantic direction found using PCA.
In Paper V, we find that many of the latent directions found using PCA carry
interpretable semantic meaning such as pose, age, gender, and smile. The found
directions allow for smooth interpolation along the different directions in the se-
mantic latent space of DDMs.

space plays an important role. In contrast to the findings of Park et al. (2023), the

results of Paper V suggest that directions in h-space, determined using PCA, can

modify semantically meaningful attributes of the generated images. In Figure 6.4,

this is illustrated by interpolating along directions corresponding to pose, age,

gender, and smile.

Image-specific directions. In Paper V, we propose a novel unsupervised tech-

nique to discover interesting semantic directions from only a single image. This is in

contrast to the PCA method where many samples are needed in order to calculate

the principal directions. The intuition is that we seek to find a set of orthogonal

directions in h-space that produce the largest change in the image at every timestep

during the generative process. In Paper V, we identify such directions as the right

hand singular vectors of the Jacobian of the denoiser with respect to h-space at

each timestep. The Jacobian at timestep t can be written as Jt = ∂ϵθt (xt,ht)/∂ht.

In practice, the high dimensionality of the h-space quickly becomes a barrier to

calculating the Jacobian directly. Rather than redefining the h-space by reducing
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the dimensionality by pooling as proposed by Park et al. (2023), we propose finding

the top singular vectors of the Jacobian using the power iteration method, which

allows us to find the dominant eigenvalues and eigenvectors of JT
t Jt. The eigen-

vectors of JT
t Jt are equivalent to the right-hand singular vectors of the Jacobian

Jt. The power iteration method provides a way to find the dominant eigenvector

and eigenvalue of a matrix A by first randomly initializing a non-zero v0 and then

iterating over the recursive formula vi+1 = Avi/||Avi||. The vector v will converge

towards the dominant eigenvector of A with eigenvalue λ given by λ ≈ vTAv/vTv.

The dominant eigenvectors of JT
t Jt can be calculated without ever explicitly cal-

culating the Jacobian using the following trick. We first calculate the Jacobian

Vector Product (JVP) Jtv using

Jtv =
∂

∂a
ϵθt (xt,ht + av)

∣∣∣∣
a=0

. (6.31)

and then calculate an iteration of JT
t Jtv using

JT
t Jtv =

∂

∂ht

〈
ϵθt (xt,ht),Jtv

〉
. (6.32)

This process process is then repeated until convergence. This trick is applicable

in general and not only in this specific context. Eq. (6.31) is an application of

the chain rule. To see this, consider a vector-valued function f : Rn → Rm. The

Jacobian of f is denoted as J ∈ Rm×n with components Jij = ∂fi/∂xj. Now, let

u = x+av for some scalar a and constant vector v ∈ Rn, then we have component

wise

(
d

da
f(x + av)

)

i

=

(
d

da
f(u)

)

i

=
n∑

j=1

∂fi
∂uj

duj
da

=
n∑

j=1

∂fi
∂uj

vj (6.33)

which is exactly the ith component of Jv. To show Eq. (6.32), consider another

arbitrary vector q ∈ Rm, y = f(x) then

d

dxi
⟨y,q⟩ =

d

dxi

m∑

j=1

yjqj =
m∑

j=1

dyj
dxi

qj, (6.34)
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(a) Eyes (b) Gaze

(c) Opening mouth (d) Mouth shape

(e) Eyebrows (f) Frown

Figure 6.5: Interpolation results for image-specific directions. Direction
found using the Jacobian method typically finds highly localized directions specific
to a single image such as opening the mouth or eyes, changing the gaze direction,
or raising the eyebrows.

which is ith component of JTq. Setting q = Jv allows us to implement the power

iteration algorithm without ever explicitly calculating the Jacobian.

In Paper V, we show that the right-hand singular vectors of Jt contains semantically

meaningful information corresponding to highly localized changes to the generated

images. Figure 6.5 shows a selection of edits found using this method.

Classifier Supervision. We further propose to find specific labeled semantic

directions using a pretrained attribute classifier as supervision. Concretely we use

an attribute classifier released by Lin et al. (2021), which is trained on the 40 binary

classes of the CelebA data set (Liu et al., 2015). In addition, we use Hopenet (Ruiz

et al., 2018) to predict pose where the network regresses scalar values corresponding
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Figure 6.6: Illustration proposed disentanglement approach. Given two
entangled semantic directions x1, x2 we can define a disentangled direction by
removing the projection of x2 onto x1 from x2. The right-hand side of the figure
illustrates that this approach can effectively remove the entanglement between two
found directions corresponding to age and gender.

to yaw, pitch, and roll. Using the attribute networks we annotate random samples

from the DDM model. For each sample, we record the bottleneck activation ht and

define semantic editing directions simply as the difference vector between averages

of positive and negative examples from each class. This approach is related to

vector arithmetic properties reported for GANs by Radford et al. (2016), but have

not previously been shown for DDMs.

We observe that some of our found directions affect several attributes in the image,

e.g ., a direction for controlling eyeglasses would also make the person in generated

image appear older. Inspired by the work of Shen et al. (2020a,b) – which encoun-

tered a similar situation for semantic directions found for StyleGAN – we propose

to a simple method for disentangling such directions in DDMs. Let n1 and n2

denote two semantic directions that are entangled. We can find a new direction

n1,⊥2 that is perpendicular to n2 by removing the projection of n2 onto n1 as

n1,⊥2 = n1 −
⟨n1,n2⟩
⟨n1,n1⟩

n1. (6.35)

This approach can easily be generalized to remove the effect of several directions

as explained in Paper V. Figure 6.6 illustrates this approach and shows the results

of disentangling directions corresponding to age and gender.
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In summary, Paper V leverages the editing capabilities of the recently proposed

semantic latent space (Kwon et al., 2023) in DDMs and proposes several novel

methods for discovering interpretable semantic editing directions in this space.

To the extent of our knowledge, Paper V provides the first method (concurrently

with Park et al. (2023)) for utilizing DDMs for semantic image editing in a fully

unsupervised fashion without the need to provide either a semantic mask as a guide

as in the work by Couairon et al. (2022) or text-based guidance as in the works by

Ramesh et al. (2022), Saharia et al. (2022), and Rombach et al. (2022).
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Chapter 7
Conclusions

This final chapter concludes the thesis. The chapter begins in Section 7.1 by

addressing some of the numerous ethical and legal issues that arise with the advent

of powerful generative models. The chapter ends in Section 7.2 with a discussion

of the limitations of the methods proposed in this thesis, perspectives for future

work, and a summary of the contributions of this thesis.

7.1 Ethical considerations

The emergence of powerful DGMs such as GANs and DDMs is making it easier to

synthesize high-quality images with almost arbitrary content. Additionally, these

model enable the editing of existing real images in a way that is very difficult

for humans to detect. This raises important ethical issues. In this section, I will

outline different categories of ethical issues that arise in the context of modern

DGMs capable of image synthesis and editing.

Perpetuating societal biases. The images synthesized by DGMs may reflect

and perpetuate biases contained in the training data. In the context of face images,

the distribution of images in available large-scale face data sets, such as FFHQ and

CelebA (Liu et al., 2015), is biased towards over-representing Caucasian-looking
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Figure 7.1: Ethnicity bias in StyleGAN. The super-resolution system PULSE
(Menon et al., 2020) upscales an image of Barack Obama as a Caucasian man.
Image from Twitter (Chicken3gg, 2020).

persons. This bias is reflected in the images produced by DGMs trained on these

data sets.

An example that gained some attention in the media is the super-resolution system

PULSE proposed by Menon et al. (2020). PULSE takes a low-resolution input im-

age and searches the latent space of StyleGAN for a corresponding high-resolution

image that, when downsampled, is consistent with the given input image. Sev-

eral users on Twitter noticed that when inputting low-resolution images of non-

Caucasian people, the system tends to produce images of white people Vincent

(2020). An example is shown in Fig. 7.1 where the PULSE system upscales a low-

resolution image of Barack Obama in a way that results in a Caucasian-looking

man.

In connection to the PULSE controversy, Yann LeCun argues on Twitter that the

bias is contained in the training data rather than the model:

ML systems are biased when data is biased. This face upsampling

system makes everyone look white because the network was pretrained

on FlickFaceHQ, which mainly contains white people pics. Train the

*exact* same system on a data set from Senegal, and everyone will look

African. (LeCun, 2020)
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A related example of bias was found in Shen et al. (2020a,b) where latent directions

in StyleGAN found to control age, would also often result in the appearance of

eyeglasses in the generated images. This is due to the correlation between age and

eyeglasses in the FFHQ training data: older people are more likely to wear glasses.

The same bias was found in Paper V in the context of a diffusion model trained

on the CelebA data set.

Additional examples in text-to-image diffusion systems were reported in the DALL-

E2 model card (Mishkin et al., 2022) where the DALL-E2 system shows strong

gender biases when prompted to create images of various professions. For example,

when prompting the system to produce images of nurses and flight attendants,

DALL-E2 would create images depicting only women in these roles. However,

when prompting the system to create images of CEOs and lawyers the generated

images would depict only males.

These examples show the importance of recognizing and mitigating the biases that

may be present in the training data of image generation systems. As the field

advances and these models become more available to the public, it is important

and should be a priority of both researchers and companies to ensure that the

models adequately reflect the diversity of the real world and do not contribute to

perpetuating existing cultural biases.

Secondary and malicious use. The collection of large-scale data sets required

for training state-of-the-art models like StyleGAN and Stable Diffusion raises sev-

eral ethical issues related to privacy, informed consent, and intellectual property

rights.

In the case of StyleGAN, the model used in Paper I, Paper II and Paper III is

trained on FFHQ which consists of 70k images that was crawled from Flickr. Many

of the images were originally uploaded to Flickr by private individuals. Only images

under various permissive licenses are used. These licenses allow for the free use,

redistribution, and adaptation of the images for non-commercial purposes and in

some cases require an indication of which changes have been made and appropriate

credit is given to the original author.
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Although the images were initially released under these permissive licenses, and

as such the users have consented to the use of their images within the scope of

the license, the ethical question of informed content is not as clear. With a public

platform like Flickr, there is no way of knowing if individuals would have agreed

to publish their images if they had known that they would be used for research

purposes and for the training of large-scale DGMs.

Although the FFHQ data set is only intended for research purposes, there is a risk

that it could be used by malicious actors for unintended and potentially harmful

applications. For example, the data set could be exploited to train or enhance facial

recognition systems. In the release notice1 for the FFHQ data set, Nvidia explicitly

states that the use of “this data set is not intended for, and should not be used for,

development or improvement of facial recognition technologies”. However, there is

little that prevents malicious actors from misusing the data despite the stated use

restrictions.

While the potential for malicious usage of data should be taken into account when

releasing large-scale data sets to the public, arguably more severe risks arise from

the potential of malicious use of the models themselves. One potential misuse

of generative models involves the creation of deceptive deepfakes. Deepfakes are

videos or images that have been manipulated using generative models or related

technology, possibly with malicious intent. Deepfakes can be used to misrepre-

sent someone as doing or saying something that was not actually done or said

thereby spreading misinformation or damaging the reputation of innocent individ-

uals. Deepfakes can range from the relatively benign – as for example the viral

images of Pope Francis wearing a Balenciaga-style puffer jacket (Huang, 2023) –

to incipiently concerning cases like the viral fake images of Trump getting being

arrested (Placido, 2023) to outright dangerous cases as for example the poorly

made deepfake that surfaced shortly after the 2022 invasion of Ukraine depicting

the Ukrainian President Volodymyr Zelensky asking his soldiers to lay down their

weapons (Allyn, 2022).

1Available at https://github.com/NVlabs/ffhq-dataset
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Attacks on verification systems. Recently, Shmelkin et al. (2021) proposed a

generative algorithm for discovering master faces using StyleGAN as a face prior.

A master face is a face image that passes authentication by an image-based identity

authentication system for a large number of stored identities. This shows that the

advances in modeling photorealistic human faces might raise security concerns in

existing identity verification systems.

Copyright ambiguities. Large-scale text-to-image diffusion systems like Dall-

E2, Midjourney, and Stable Diffusion require vast amounts of training data. Re-

cently, the methods by which these data sets have been acquired have come under

public scrutiny. As a notable example, consider the current lawsuit from Getty

Images against Stability AI, the company behind the release of the Stable Diffu-

sion family of text-to-image diffusion models. In the lawsuit text (Getty Images v.

Stability AI, 2023), Stability AI is accused of copyright infringement at a “stagger-

ing scale” of the intellectual property right of Getty Images. According to Getty,

Stability AI has used more than 12 million images with corresponding captions and

metadata collected from Getty without permission.

Another example is the lawsuit by three American artists against Stability AI,

Midjourney, and DeviantArt (Butterick, 2023). Systems like Stable Diffusion have

the ability to create new images “in the style of” any artists who’s work is repre-

sented in the training data. For example, it is possible to condition the system to

create new images in the style of famous artists like Picasso, Monet, or Edward

Munch. However, it is also possible to create new images in the style of contempo-

rary artists. In the lawsuit, it is argued that the training images were used without

the consent and without compensating any of those artists thus infringing on their

intellectual property rights.

In an interview with the online medium Sifted (Smith, 2023), the CEO of Stability

AI stated that the use of the images is protected by “fair use” due to the “trans-

formative” nature of the technology. Here being “transformable”, in the context of

“fair use” laws, means that the work adds “something new, with a further purpose

or different character, and does not substitute for the original use of the work”2

2https://copyrightalliance.org/faqs/what-is-fair-use/

88

https://copyrightalliance.org/faqs/what-is-fair-use/


and therefore changes the nature of the used material.

The central question is thus if these models are truly able to generate novel art

or if they are only coping from their training data and, as stated in the court

filing, “merely a complex collage tool”. It will ultimately be up to governments,

international bodies, and the outcomes of court cases like these to decide the future

legal framework for the training, use, and distribution these types of models.

Environmental impact. The training of large-scale DGMs requires extensive

computational resources. As an example, the reported training compute of Style-

GAN was reported to be 41 days and 4 hours (988 hours) on a single Tesla V100

GPU. Using the Machine Learning Impact calculator presented in Lacoste et al.

(2019) this amounts to roughly 266 kg of CO2 emitted3 for training a single high-

resolution StyleGAN2 model. For comparison Stable Diffusion 2 was reported to

require 200000 GPU hours on a Nvidia A100 GPU, amounting to a total equivalent

emission of 15000 kg CO2. For comparison, the average yearly emission per capita

in Denmark in 2021 was 5100kg (Ritchie et al., 2020).

7.2 Limitations and future work

A limitation of the tensor model proposed in Paper I and Paper II is that it imposes

strong restrictions on which data sets can be used. In particular, the model requires

a data set with highly structured labels such that all data is available for each mode

in the data tensor. In other words, it is a requirement that for each person, images

with all expressions and rotations are available without any missing data. This is

a strong requirement that limits the applicability of the method since most data

sets do not have such a complete structure.

An avenue for future research could be to formulate the model such that some

missing data is allowed using tensor completion methods. This might make the

method applicable to less structured data sets. For example, the model could

possibly be extended to accommodate the 40 binary attributes from CelebA.

3Assuming training on AWS.
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In Paper III, we proposed a novel method to utilize NRSfM to get explicit control

over the 3D structure of StyleGAN images. However, we only showed results on

models trained on human face images. Since the method only requires access to a

landmark extractor trained on the domain of the generator, it would be interesting

to see if the proposed method can be extended to other structured domains, such

as full-body humans or hands.

Further, our approach has only had access to face landmarks as annotation during

training. Previously, semantic editing using only landmarks has been described

as a challenging application (Wang et al., 2021) since 2D landmark points are

extremely localized as compared to more global attributes such as age and gender.

Very recently, DragGAN Pan et al. (2023) has made significant progress in point-

based semantic editing. Their method allows for fine-grained point-based control

of images generated with StyleGAN and allows the user to drag points selected in

the image towards new specified target points. It would be interesting to integrate

the insights from Pan et al. (2023) into the NRSfM-based approach presented in

Paper V.

The discovery that DDMs have a semantic latent space which facilitates semantic

editing opens interesting avenues of future research. As mentioned in Paper V, we

did preliminary experiments on DDM models trained on churches and bedrooms.

However, in their current form, our proposed methods were not able to convinc-

ingly discover semantic directions in DDMs that were trained on less structured

data sets than human faces. Concurrent work by Park et al. (2023) shows editing

results on animal faces in addition to human faces for their unsupervised method.

However, the study did not show results on more unstructured domains. Thus, it

is still unclear how to develop unsupervised methods for semantic editing in se-

mantic latent space of DDMs when the denoiser is trained on domain that are less

structured domains than faces.

Another open question is whether our proposed editing techniques can be trans-

ferred to models trained on other modalities than images. For example, it would

be interesting to see to which extent our methods can be extended to perform se-

mantically interpretable edits in diffusion models trained to generate video, e.g .,

those proposed by Ho et al. (2022a,b), or models designed for audio generation.
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In summary, this thesis has made several novel contributions to the field of deep

generative modeling. Specifically, the thesis has proposed methods aimed at gaining

additional semantic control over face images generated with DGMs.

The thesis demonstrates that using a HOSVD-based factorization approach, as de-

scribed in Paper I and Paper II, can identify semantic directions in the latent space

of StyleGAN. These directions control single, semantically meaningful, attributes

of generated images. Our multilinear treatment provides a method for factorizing

the latent space into different subspaces, each governing different semantic content

of the generated images. In particular, the thesis has shown that this approach

is capable of finding latent directions that allow for explicit control over facial

expressions in generated images.

Furthermore Paper III has contributed to bridging the gap between the explicit

3D control offered by traditional computer graphics techniques and the quality

of images generated with data-driven deep generative models such as StyleGAN.

Specifically, we have shown that explicit 3D control can be achieved over the gen-

erated images by incorporating NRSfM into the image generation process.

Finally, Paper V proposed several novel techniques for discovering meaningful edit-

ing directions in the latent space of diffusion models trained on the domain of hu-

man face images. In particular, we proposed a method that successfully identifies

semantically meaningful edits in an entirely unsupervised fashion. In combination,

the methods presented in Paper V can identify editing directions that correspond

to a diverse set of semantic changes in the images. These changes include pose,

age, gender, and eyeglasses as well as localized changes to specific facial features

like the mouth, eyes, eyebrows, and hairstyle.
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Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative

visual manipulation on the natural image manifold. In Computer Vision–ECCV

2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,

2016, Proceedings, Part V 14, pages 597–613. Springer, 2016.

105



Appendix A
Papers

A.1 Paper I:

Tensor-based Subspace Factorization for Style-

GAN

106



Tensor-based Subspace Factorization for StyleGAN

René Haas, Stella Graßhof and Sami S. Brandt
IT University of Copenhagen, Copenhagen, Denmark

Abstract— In this paper, we propose τGAN a tensor-based
method for modeling the latent space of generative models.
The objective is to identify semantic directions in latent space.
To this end, we propose to fit a multilinear tensor model
on a structured facial expression database, which is initially
embedded into latent space. We validate our approach on
StyleGAN trained on FFHQ using BU-3DFE as a structured
facial expression database. We show how the parameters of the
multilinear tensor model can be approximated by Alternating
Least Squares. Further, we introduce a stacked style-separated
tensor model, defined as an ensemble of style-specific models
to integrate our approach with the extended latent space of
StyleGAN. We show that taking the individual styles of the
extended latent space into account leads to higher model
flexibility and lower reconstruction error. Finally, we do several
experiments comparing our approach to former work on both
GANs and multilinear models. Concretely, we analyze the
expression subspace and find that the expression trajectories
meet at an apathetic face that is consistent with earlier work.
We also show that by changing the pose of a person, the
generated image from our approach is closer to the ground
truth than results from two competing approaches.

I. INTRODUCTION

In this paper, we propose a novel framework for finding
semantic directions in the latent space of Generative Ad-
versarial Networks (GANs) [10]. GANs have, since their
proposal, emerged as one of the most dominant approaches
for unsupervised representation learning in Computer Vision
and beyond [23].

Architecturally GANs refer to the simultaneous training
of two neural networks: a generator and a discriminator.
The generator produces images by sampling from its latent
space, while the discriminator, a binary classifier, tries to
discriminate the generated images from the training images.
The goal of training is to reach the equilibrium of the min-
max game between the two adversaries, such that neither can
improve by changing the parameter values. At equilibrium,
the discriminator can be discarded, and the generator can
then be used to produce new data by sampling from the latent
distribution. The new data points follow the same statistics as
the training data but are not contained in it. Modern state-
of-the-art GAN variations have borrowed from the Style-
transfer literature [14], [22] to disentangle the latent space
and synthesize high-quality face images. Work by [17], [18],
and most recently [16], showed how to a train state-of-the-art
StyleGAN model, even in cases of limited data.

A recent goal has been to find semantically interpretable
directions in GAN latent spaces, and several approaches
for semantic face editing have been proposed. Semantic
face editing refers to the ability to change various semantic

input reconstructed rotated

estimate

parameters

edit

parameters

Fig. 1: Overview of the proposed approach.

attributes, such as identity, expression, and rotation, gender,
of the generated images. Early work used an information
criterion (InfoGAN) [6] to determine semantic directions.
However, as pointed out in [8], there is no guarantee that
the latent codes produced by this method are semantically
meaningful. Additional unsupervised approaches for finding
semantic directions in StyleGAN include Principal Compo-
nent Analysis (PCA) on sampled latent codes [15] and the
closed-form factorization suggested by [25].

A recent approach for finding semantic directions in
StyleGAN in a supervised fashion is to train binary linear
classifiers (SVMs) to detect single binary semantic attributes
such as smile vs. no smile, male vs. female, glasses vs. no
glasses. For a given semantic attribute, the semantic direction
could then be defined as the normal to the supporting hyper-
planes of the trained SVM [24].

In the literature, a wide collection of multilinear meth-
ods have been proposed to model and analyze faces and
expressions. Early, PCA or dictionary-based 3D Morphable
Models (3DMM) [3], [9] capture the variation in shape and
texture of neutral 3D faces. Recently 3DMMs have also
been used to make semantic edits to images generated by
StyleGAN [27]. More recently, factorization methods, based
on higher-order data representations, were introduced with
the benefit of better disentanglement of dimensions, such
as person-specific shape and expression, when compared to
matrix methods [28], [30]. These models were built on the
Higher-Order Singular Value Decomposition (HOSVD) to
factorize the data, and have successfully been used to model
faces, their 3D reconstruction, as well as in transferring
expressions [4], [5]. Moreover, in [11], [12] a HOSVD
tensor model was constructed from the Binghamton 3D
facial expression database (BU-3DFE) [33], which revealed
a practically planar expression subspace, in which the six
basic emotions form one-dimensional affine subspaces [11].
These six lines intersect in a common vertex, the origin of
expressions, which surprisingly does not represent the neutral
face, but an extrapolated expression referred to as apathetic.

The main novelty of this work is to use a multilinear
face model to analyze the latent space of GANs. More
specifically, we propose to use the HOSVD to factorize the978-1-6654-3176-7/21/$31.00 ©2021 IEEE
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Fig. 2: Architecture of the StyleGAN generator.

latent space into semantically meaningful linear subspaces
that yield a multilinear tensor model. Given an input image,
we estimate the model parameters to approximate the input,
and then change one attribute, such as rotation, as illustrated
in Fig. 1.
The main contributions of this paper are as follows:

• We propose a novel method for semantic face editing
with StyleGAN.

• We propose a method to estimate model parameters
and present reasonable regularization, enabling stable
parameter transfer.

• We show that expression trajectories intersect at a
unique point, corresponding to the origin of expressions,
which differs from the neutral face confirming the
earlier findings [11], [12] based on BU-3DFE.

• We propose an extended model, based on style separa-
tion, which leads to greater model flexibility and lower
reconstruction error for independent test images.

The paper is organized as follows: In Sec. II we will
review the architecture and outline the process on how to
embed reference images into the latent space of StyleGAN.
In Sec. III we present our Tensor-Based GAN model which
we build ”on top of” the StyleGAN latent space. Here we will
also elaborate on how we can approximate model parameters
for a given latent vector. Experiments and results of our
proposed approach are presented in Sec. IV, followed by
a summary and conclusion in Sec. V.

II. STYLEGAN

In this section, we will review the StyleGAN architecture
and explain how to embed reference images into the latent
space of the pre-trained models released by Nvidia [17], [18].

A. StyleGAN Architecture

The StyleGAN generator G : Z → X , where G = g ◦ f ,
is composed of two networks, the mapping network f : Z →
W and the synthesis network g : W → X , see Fig. 2. The
mapping network f , maps the latent vector z ∈ Z onto the
auxiliary latent space W to the vector w = f(z) while the
synthesis network g : W → X maps the vector w ∈ W
to the final output image x ∈ X in image space. The full
generator G thus maps the latent vector z to an image x.
The notation used in this paper is summarized in Tab. I.

ResNetinput: x

ŵ0

g(ŵ0) = x̂0

VGG16 loss ŵi

g(ŵi) = x̂i

initial: x̂0

x

x̂i

repeat

Fig. 3: Diagram illustrating image embedding into the aux-
iliary latent space W .

B. Generator Inversion

GANs do not include an encoder as part of their archi-
tecture. Therefore, a goal in GAN research has been to
find a method for finding a latent code that produces an
image as close as possible to a given reference image, which
we refer to as embedding an image into the latent space.
The problem can be considered as inverting the synthesis
network g−1 : X → W [1], [21] while inverting G, and
thereby embedding into Z space, has been investigated in
[18]. Contemporary techniques for W space embedding, i.e.
finding g−1, use a VGG network [26]. Our approach for
embedding onto the auxiliary latent space W is illustrated
in Fig. 3. The inverse generator G−1 : X → Z yields the
latent vector z = G−1(x) with G−1 = f−1 ◦ g−1 for the
input image x.

The initial estimate for the auxiliary latent vector for
a given reference image is computed as follows. We use
the pre-trained weights of StyleGAN [17] and the recently
revised StyleGAN2 [18] architecture. Then, as proposed in
[2], we train a ResNet [13] in a supervised setting using
synthetic StyleGAN data to approximate g−1 that yields the
initial estimate ŵ0 for the latent vector. The refinement for
the auxiliary latent vector is computed by first using the
VGG16 network [26], pre-trained on ImageNet database, and
then removing the classification layer, hence the truncated
network produces a high dimensional feature vector for a
given input image, as described in [34]. Since the trained
generator is fully differentiable, the loss can be calculated
in VGG space and gradients back-propagated through the
generator, hence we can iteratively update the latent code.
This approach is also used in [21]. We also found that
using the ResNet estimate as initialization for the VGG
optimization process, leads to faster convergence than not
using ResNet initialization.

III. MULTILINEAR MODEL

This section introduces τGAN, our latent space factor-
ization method for GANs that augments the StyleGAN
synthesis network g with a multilinear tensor model. We
do this by embedding a facial expression database into the
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ŵ

w̃

q̂

q̃

g−1
τ−1

τg

edit
p
a
ra

m
eters

Fig. 4: Overview of the different spaces and how the function
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change of one of the parameter vectors for transfer of person,
expression or rotation.

TABLE I: Overview of the notation used in this work.

Symbol Description

X Image Space
Z Latent Space
W Auxiliary Latent Space
Q Parameter Space

Operator Name

f : Z → W Mapping Network
g : W → X Synthesis Network
g−1 : X → W StyleGAN Embedder
τ−1 : W → Q Parameter Estimator
τ : Q → W Tensor Model

auxiliary latent space W of StyleGAN. We then order the
embedded database into a tensor, which we factorize into
semantic subspaces. The resulting parameter space Q will
thus be the Cartesian product of the semantic subspaces
Q = QP × QE × QR, where QP is the person space, QE

the expression space, and QR is the rotation subspace. An
overview of the different spaces and how the operators relate
them are displayed in Fig. 4 and Tab I.

A. Tensor Factorization

The Higher-Order Singular Value Decomposition
(HOSVD) is a generalization of the matrix SVD to
higher-order tensors [7], [32], [11], [29], [28], [19].

The starting point for our analysis is a standardized data
tensor T ∈ RN×P×E×R, where N refers to the number of
elements in the latent vector, P is the number of people, E
the number of expressions, and R number of viewpoints or
rotations. Using the HOSVD T can then be factorized as

T ≃ C ×1 U1 ×2 U2 ×3 U3 ×4 U4, (1)

where ×k denotes the k-way product, C ∈ RÑ×P̃×Ẽ×R̃ is
the core tensor, and U1 ∈ RN×Ñ , U2 ∈ RP×P̃ , U3 ∈
RE×Ẽ , U4 ∈ RR×R̃ are matrices with orthonormal columns
constructed from the singular vectors of the k-mode matrix
unfoldings of T . In general we have that Ñ ≤ N , P̃ ≤ P ,
Ẽ ≤ E, and R̃ ≤ R.

B. Multilinear Tensor Model for GANs

The HOSVD (1) factorizes the data tensor into a core
tensor, and a set of factor matrices Ui, one for each subspace.
By selecting appropriate rows from Ui, i = 2, 3, 4, one
normalized latent vector, i.e. a single mode-1 fiber of T ,
can be recovered. For example, to recover the latent vector of
person p performing expression e with rotation r, the pth row
of U2, eth row of U3, and rth row of U4 is selected. This can
be conveniently formulated by a canonical basis, where the
parameter vectors q′

2 ∈ RP , q′
3 ∈ RE and q′

4 ∈ RR pick a
weighted linear combination of the rows of the Ui matrices.
Therefore, a given latent code y′ can be approximated by
the model prediction ŷ′ as

ŷ′ = C ×1 U1 ×2 q
′
2
T
U2 ×3 q

′
3
T
U3 ×4 q

′
4
T
U4. (2)

This expression can be further simplified by defining qT
i ≡

q′T
i Ui and analogously ŷ = UT

1 ŷ
′. Now applying ×1U

T
1 to

both sides of (2) and recalling that the columns the respective
U matrices are orthonormal we can write a more compact
model representation as

ŷ = C ×2 q
T
2 ×3 q

T
3 ×4 q

T
4 , (3)

where the unprimed coordinates refer to the latent code in the
eigenspace spanned by the columns of the Ui matrices. In
this formulation, we have 3 individual parameter vectors and
use repeated n-mode products to relate these to the model
prediction.

We can rewrite (3) in a more general form to illustrate
the mathematical structure of our model. Let us define the
P × E × R, rank-1 parameter tensor Q = qT

2 ⊗ qT
3 ⊗ qT

4 ,
where ⊗ refers to the tensor product. Then the components
of the rank-1 parameter tensor Q ∈ RP×E×R is given by
Qνρλ = q

(2)
ν q

(3)
ρ q

(4)
λ where q(k)ν refers to the νth component

of the subspace vector qk ∈ Qk for k = {2, 3, 4}.
With this definition, we can write (3) in a more compact

and convenient representation using the Einstein summation
convention

Ŷ µ = CµνρλQνρλ. (4)

This lets us write the latent code, in the auxiliary latent
space W , as an application of the multilinear map, defined
by the core tensor C, on the parameter tensor Q.

Our entire tensor model τ can thus be written as the
composite map of the core C followed by the change-of-
basis transformation defined by U1 : W → W , and the
inverse standardization operator Ω−1 :W →W , where Ω−1

translates and scales a latent vector back to the original scale
of W space according to the mean and variance of the BU-
3DFE data.

C. Stacked Style-Separated Model

In addition to the previously presented model, we propose
an alternative approach, where styles are separated instead
of vectorizing the latent code. That is, we interpret the
S styles of w as separate vectors of dimension L, which
is also indicated in Fig. 2. To separate the S styles, we



propose to order the latent codes into the data tensor Tstyle ∈
RS×L×P×E×R.

Then the shape dimension can be addressed separately by
defining the style-specific tensors

Ts ∈ RL×P×E×R, s = 1, 2, · · · , S. (5)

We factorize each style-specific tensor Ts , and define style-
specific tensor model τs. The ensemble of these models is
referred to as the stacked style-separated model τS , which
has S(P +E+R) parameters. In conclusion, while the prior
vectorized model τ , based on T , has P +E+R parameters,
this formulation τS has S(P + E + R) parameters since it
models the style separately.

D. Optimization
Our next aim is to estimate the model parameters by

constructing the estimator τ−1 : W → Q. The estimator
is defined as the solution to the optimization problem

min
Q
||ŷ − y||22 subject to

||qi||22 ≤ c2 and
||Uiqi||1 ≤ c1 for i = 2, 3, 4.

(6)

The form of (6) is inspired by [11], [12], and enforces
constraints on the model parameters to retrieve a stable
representation of new latent vectors by linear combinations
within the training data. We regularize the model using
Ridge and Lasso regression. Then the Lagrangian for the
constrained problem (6) can be written as

L(Q,λ1, λ2) = ||ŷ − y||22

+
4∑

k=2

λ2,k ||qk||22 + λ1,k ||q′
k||1

(7)

where λ1,k, λ2,k ≥ 0 refer to regularization parameters,
i.e. Lasso and Ridge. Note that there is no prime on the
Ridge term since ||q′

i||22 = (UT
i qi)

T(UT
i qi) = ||qi||22 since

UT
i Ui = I. We will now continue to present a strategy

for solving the constrained optimization problem in (6) by
Alternating Least Squares.

As in [11], [12] the minimization can be solved by first
rewriting (3) as a matrix-vector multiplication separately for
each of the three model parameter vectors as

ŷ = A(k)qk, k = 2, 3, 4, (8)

where the matrices A(k) are given by

A(2) = C ×3 q
T
3 ×4 q

T
4 , (9)

A(3) = C ×2 q
T
2 ×4 q

T
4 , (10)

A(4) = C ×2 q
T
2 ×3 q

T
3 . (11)

Therefore, an unknown latent vector y can be estimated
by alternating between the systems (8), while updating the
matrices A(k) in each step.

IV. EXPERIMENTS

In the following, we give some additional details for the
BU-3DFE database and continue to report on our experimen-
tal results.

Fig. 5: Validation of decomposition results. Energy of sin-
gular values for each mode of T .

A. Facial Expression Database

As mentioned in the introduction, we use the BU-3DFE
database [33]. The database contains 3D face scans and
images of 100 persons (56 female and 44 male), with varying
ages (18-70 years) and diverse ethnic/racial ancestries. Each
subject was asked to perform the six basic emotions: anger,
disgust, happiness, fear, sadness, and surprise, each with
four levels of intensity. Additionally, for each participant,
the neutral face was recorded. Hence, for each person, there
are a total of 25 facial expressions recorded from two pose
directions, left and right, resulting in 5000 face images.

B. Data Prepossessing

As a pre-processing step, we embedded each face im-
age from the BU-3DFE database, into the latent space of
StyleGAN, as described in Sec. II-B. We then collected the
resulting latent vectors into the 4-way data tensor T0 ∈
RN×P×E×R. We then calculated the mode-1 unfolding
T

(1)
0 ∈ RN×PER of T0 containing all the PER latent

vectors. We then standardized this matrix to zero mean and
unit variance for each latent variable and then finally folded
this standardized matrix into a N ×P ×E×R dimensional
tensor T which we used for all subsequent experiments.

C. Subspace Analysis

The standardized tensor T was factorized by the HOSVD,
as described in (1), yielding the four subspaces spanned by
the columns of Uk, k = 1, . . . , 4. The distribution of the
energy of the subspaces is shown in Fig. 5, which illustrates
the compactness of the subspaces.

In Fig. 6 we show a visualization of the expression
subspace. As an initial step, we truncated the expression
subspace from 25 dimensions to 3D. It can be seen that
for each emotion, the variation in expression strength forms
linear trajectories in expression space. These trajectories are
star-shaped and meet at an origin of expression which is
shared by all emotion trajectories. This is neither the neutral
nor the mean face, but the “apathetic” face, found in [11],
[12], see Fig. 7(a)-(c). In this case, the apathetic face in
Fig. 7(c) is closer to the mean face than in [11], [12],
displayed in Fig. 7(f) for comparison.

D. Vectorized vs. Stacked Style-Separated Model

In Sec. III we proposed to build two different versions of
tensor models. (1) The vectorized model flattens each latent
code of one image and then orders them into the tensor
T ∈ RN×P×E×R, and (2) the stacked style-separated model
Tstyle ∈ RS×L×P×E×R which considers the S = 18 styles of
StyleGAN separately. We estimated the parameters for the



Fig. 6: Projection of the expression subspace, defined by U3,
onto 3 dimensions.

(a) Mean (b) Neutral (c) Apathy

(d) Mean (e) Neutral (f) Apathy

Fig. 7: Synthesized faces for (a) the mean face, (b) neutral
face, and (c) apathetic face. Accordingly, (d), (e), (f) show
the 3D faces synthesized by the method in [11].

two models, using the ALS procedure (8). The results are
illustrated in Fig. 8. It can be seen, that the ground truth
(Fig. 8a), is visually closer to the stacked style-separated
model (Fig. 8c) than the vectorized model (Fig. 8b) for
test images from the BU-3DFE data set (top row), as well
as for arbitrary images (2nd and 3rd row). We conclude
that the proposed adaptation by the separate styles improves
performance.

E. Validation of Regularization Parameters

The optimization problem defined in (7) contains six
regularization parameters λ1,k and λ2,k, k = 2, 3, 4, two for
each of the three parameter vectors, which must be manually
set. In the following experiment we investigated how the
hyperparameters influenced the quality of the results, and
assume that they are the same for the three parameters, hence
λ1 = λ1,k, and λ2 = λ2,k. Here we used the vectorized
model on the basis of the standardized latent codes in (3).
Initially, we divided the data into a training, validation, and
test set by a randomized 90–5–5 split over the P = 100
person identities. The validation set thus had a total of
5ER = 250 samples. We estimated the tensor model based

(a) Reference (b) Vectorized (c) Style-Separated

Fig. 8: Reconstructions: (a) Ground truth images, and the
results from either (b) the vectorized model, and (c) the style-
separated model. The top row shows an example from the
BU-3DFE database, while the 2nd and 3rd rows illustrate
reconstruction of novel images which are not part of BU-
3DFE.

on the training set. For each latent vector in the validation
set we then estimated the subspace parameters qi by ALS
using (8).

We evaluated three kinds of errors for the validation set:
the approximation error, and the expression and rotation
transfer errors. The approximation error between the ground
truth y and estimated latent code ŷi is defined as ϵapprox =

||ŷ − y||22. The transfer errors result from exchanging es-
timated parameters q̂k by known values q̃k. Hence using
ỹexpr ≡ τ(q̂person ⊗ q̃expr ⊗ q̂rot) gives rise to an expression
transfer error which we define as ϵexpr = ||ỹexpr − y||2

2
.

Analogously, the rotation transfer error is defined as the
error arising from only changing the parameters associated
with the rotation subspace according to ϵrot = ||ỹrot − y||22.
The three error metrics ϵapprox, ϵexpr, and ϵrot were then
calculated for each sample, with varying hyperparameter
values λ1 and λ2. In this experiment, we investigate Lasso
and Ridge regression independently, i.e., we set λ1 = 0 while
varying λ2, and vice versa. We restrict ourselves to only
consider cases where the regularization strength is equal for
all subspaces.

The results are illustrated in Fig. 9. In general, it can be
seen that the approximation error is more stable than the
other two errors. Fig. 9a suggests that high values of λ1
should be chosen for rotation transfer, while for expression
transfer λ1 ≈ 1 seems to be a reasonable choice. Fig. 9b
reveals that for λ2 ≈ 1 all error metrics are small, and hence
this interval is a good choice.



(a) Lasso (L1 penalty)

(b) Ridge (L2 penalty)

Fig. 9: Influence of the hyper parameters, λ1 and λ2 steering
the (a) Lasso and (b) Ridge constraints, on (from top to
bottom row) the approximation error, expression transfer
error, and rotation transfer error.

F. Regularization and Parameter Transfer

We used the regularization parameters above to perform
expression and rotation transfer on samples from the test set.
We then synthesized images from the estimated parameters
by applying the composite transformation x̂ = g(τ(Q̂))
to the estimated subspace parameters Q̂. Additionally, we
performed expression and rotation transfer by replacing one
of the three estimated parameter vectors by known values,
as described before. We did this for the regularized model
(λ1 > 0, λ2 > 0) and the non-regularized model (λ1 =
λ2 = 0). Fig. 10 shows how well the ground truth, in W
space, (Fig. 10a) can be approximated by the non-regularized
solution (Fig. 10b) and the regularized solution (Fig. 10c). It
seems that the non-regularized solution matched the ground
truth slightly better with respect approximation expression
transfer. However, for rotation transfer (Fig. 10e) the reg-
ularized solution clearly outperformed the non-regularized
solution. Because in the non-regularized solution the result-
ing image is not recognizable as a face anymore at all, while
the regularized solution is not deformed and the rotation of
the depicted faces conform to ground truth. This experiment
thus showed that adding a small L2 regularization term yields
stable rotation transfer.

(a) Ground Truth (b) Non-regularized (c) Regularized

(d) Expression Transfer (e) Rotation Transfer

Fig. 10: Reconstruction and regularization results. (a) Ground
truth (b) approximation by the non-regularized model, and
(c) the regularized model. (d,e) Results from rotation and
expression transfer containing ground truth (top row), the
non-regularized solutions (middle row), and the regularized
solution (bottom row).

Fig. 11: To find the optimal interpolation strength α for
rotation transfer for InterFaceGAN [24] and GANSpace [15]
we compare the images generated by shifting the latent code
corresponding to an image from the one rotation towards the
other and compare the result with the ground truth.

G. Quantitative Comparison

Finally, we compare τGAN to InterFaceGAN [24] and
GANSpace [15] for the application of semantic face editing
by using rotation transfer as one example.

Since the BU-3DFE database [33], see Sec. IV-A, contains
5000 faces images, 2500 from the left and from the 2500
right; we chose one of the two views as the reference image,
and then used InterFaceGAN, GANSpace and τGAN to
estimate a reconstruction of the image from the comple-
mentary rotation. The resulting image was then compared to
the Ground Truth (GT) by 1) Pearson correlation coefficient
(pcorr), 2) Structural Similarity Index Measure (SSIM) [31],
and 3) Learned Perceptual Image Patch Similarity (LPIPS)
[34]. For the LPIPS measure, we employed two versions:
one based on VGG [26], referred to as lpips-vgg, and the
other, lpips-alex, on AlexNet [20].

In InterFaceGAN [24] the authors find semantic directions



of StyleGAN by fitting SVMs to single semantic attributes
using an annotated data set. Using these directions, semantic
editing can be performed by interpolating in the direction
n ∈ RN defined by the SVM hyper-plane normal vector for
a given latent code w ∈ W , as

wedit = w + αn, (12)

where α is the strength of the shift in semantic direction
associated with n. To perform rotation transfer, we chose the
pose direction for the StyleGAN1 model trained on FFHQ
provided by [24] as n.

GANSpace finds semantic directions in an unsupervised
fashion using PCA. The semantic meaning of the found
principal components needs to be assigned by a one-time
manual labeling. In the paper the authors report that the
10th principal component applied only to the first 7 layers
produces a shift in rotation for the pretrained StyleGAN1
network. Using this definition, and the rotation direction, we
can perform semantic edits with GANSpace in a similar way
as in eq. 12.

To determine the optimal interpolation strength α for
both methods, we design an experiment where we perform
rotation transfer with varying values for α. From the latent
code representing an image of one rotation, we edit the latent
code towards the complementary rotation resulting in a latent
vector wedit which is then used to synthesize an edited image.
We then compare the edited image to the ground truth using
the four metrics mentioned above. For each value of α we
average the metrics and pick the minimum. The results are
presented in Fig. 11, where it can be seen that the best
performance for InterFaceGAN is reached at α = 2.77, and
for GANSpace at α = 1.66, respectively. These values are
used for the quantitative comparison presented in Fig. 13.

To perform rotation transfer with τGAN model, we first
estimated the model parameter vectors q̂k, k = 2, 3, 4 for a
given input image as described in Sec. III-D. Then we used
the rotation subspace defined by U4 in (1). For τGAN we
take the subspace direction m = u

(4)
2 − u

(4)
1 ∈ QR, where

u
(4)
1 , u(4)

2 are the first and second row of U4, respectively.
The rotation parameter was then changed as

q̃4 = q̂4 + γm, (13)

which then yields the edited latent code

wτ ,edit = τ(q̂2 ⊗ q̂3 ⊗ q̃4). (14)

Fig. 12 shows synthesized images produced by InterFace-
GAN, GANSpace and τGAN, respectively. These are com-
pared against the reconstructions generated by latent codes
interpolated directly in W space by w = βwleft + (1 −
β)wright where wleft and wright refer to the left and right
rotation, respectively. The results show that τGAN provides
an alternative way for generating rotation in the StyleGAN
latent space. Compared to InterFaceGAN, our model seems
to create rotations which better preserve features like skin
tone and gaze direction, and compared to GANSpace the
face shape seems better preserved. However, for all methods

(a) Direct Interpolation

(b) InterFaceGAN

(c) GANSpace

(d) τGAN (Ours)

Fig. 12: Comparison of rotation transfer among varying
methods. The ground truth images in pixel space are shown
in the top row in the outermost columns. We use the latent
code corresponding to the left hand rotation (top left) and try
to recover the right hand rotation (top right). The provided
images have been created by: (a) direct interpolation, (b)
InterFaceGAN, (c) GANSpace, and (d) our proposed τGAN.

we note that the identity of the person slightly changes in
this example.

Additionally, we objectively compare the quality of ro-
tation transfer resulting from different methods as follows.
We apply the previously introduced three methods: Inter-
FaceGAN, GANSpace, and our proposed τGAN, to shift the
rotation of the 125 left-oriented images in the validation set
towards the right orientation. We then compare the edited
images to the known ground truth using the same four
metrics introduced at the beginning of this section. The
results in Fig. 13 show that τGAN has the lowest median
value for all metrics when compared with InterFaceGAN and
GANSpace.

V. CONCLUSIONS

In this work, we proposed τGAN, a tensor-based model
for the auxiliary latent space of the StyleGAN. It is con-
structed by first embedding the images of the BU-3DFE
database into the latent space of StyleGAN. The latent codes
were stored into a tensor which is then factorized into
semantically meaningful subspaces by HOSVD. This con-
struction ensured that the semantic directions were directly
interpretable in contrast to unsupervised methods, where this



Fig. 13: Quantitative comparison of rotation transfer per-
formed by varying methods. We start with images from
the left rotation and shift the latent codes towards the right
rotations using τGAN, InterFaceGAN, and GANSpace. The
edited images are then compared to the GT based on the
previously used adapted metrics, redefined to be the lower
the better. We observe that the edited images produced by
τGAN are more similar to the GT across all four metrics.

is not always the case.
We were able to generalize previous results [11] of face

analysis by showing that the expression subspace has the
structure where the expression trajectories meet in a specific
apathetic expression, which is different from the mean or
neutral face. We evaluated our approach quantitatively and
qualitatively, and compared different versions of the pro-
posed tensor models on the basis of approximation of unseen
samples, and demonstrated the stability in the transfer of
expression and rotation. From the results, we conclude that
the proposed approach is a powerful way for characterizing
and parameterizing the latent space of StyleGAN.

The current setting assumes complete data that contains
measurements of all the people performing the same ex-
pressions from each rotation without any missing data. This
requirement could be relaxed by low-rank completion meth-
ods that is left for future work. To conclude we employed a
model trained on FFHQ, and received promising results on
the BU-3DFE data set.
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Figure 1. Using our model we can edit StyleGAN latent codes in the direction of the six prototypical emotions.

Abstract

In this paper, we use a tensor model based on the Higher-
Order Singular Value Decomposition (HOSVD) to discover
semantic directions in Generative Adversarial Networks.
This is achieved by first embedding a structured facial ex-
pression database into the latent space using the e4e en-
coder. Specifically, we discover directions in latent space
corresponding to the six prototypical emotions: anger, dis-
gust, fear, happiness, sadness, and surprise, as well as a
direction for yaw rotation. These latent space directions
are employed to change the expression or yaw rotation of
real face images. We compare our found directions to simi-
lar directions found by two other methods. The results show
that the visual quality of the resultant edits are on par with
State-of-the-Art. It can also be concluded that the tensor-
based model is well suited for emotion and yaw editing, i.e.,
that the emotion or yaw rotation of a novel face image can
be robustly changed without a significant effect on identity
or other attributes in the images.

1. Introduction

Generative Adversarial Networks (GANs) [12] have
emerged as one of the most promising architectures for im-
age synthesis. GANs can produce synthetic images with
near-perfect photorealism [5, 18–21]. GANs learn to orga-
nize the data they are trained on into a latent space and are,
by drawing samples from the latent space, able to synthesize
new images which are not contained in the training data but
follow the same distribution. In particular, in the field of
face synthesis StyleGAN has set new standards for what is
possible [19–21].

Recent work has explored methods to gain artistic con-
trol over the images produced by modern GANs [1, 17, 25,
29, 33–35, 41]. In this work, we use a multilinear tensor
model to derive latent space directions in StyleGAN2 [21]
corresponding to the six prototypical emotions: anger, dis-
gust, happiness, fear, sadness, and surprise as well as yaw
rotation. With these directions, we are able to edit the emo-
tion of real face images as shown in Fig. 1.
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StyleGAN. The StyleGAN generator G is composed of
two networks, the mapping network f and the synthesis
network g. The mapping network f maps the latent vector
z P Z onto the auxiliary latent spaceW while the synthesis
network maps a vector w P W to the final output image.
The latent vectors in Z follow the standard normal distri-
bution N p0, Iq while the distribution of the auxiliary latent
codes inW is learned by the mapping network f . The main
benefit of this mapping is that the W space is more disen-
tangled if compared to the Z space [20].

Every major block corresponding to a resolution of
the synthesis network is modulated by two style vectors
w1, w2 P R512. Thus, for the full 1024 by 1024 genera-
tor there are 9 major blocks and the synthesis network takes
a total of 18 style vectors as an input. Each set of style
vectors has different effects on the synthesized image. In
detail, the style vectors for the early layers, corresponding
to coarse spatial resolutions, control high-level aspects of
the image such as pose and face shape. Style vectors on the
middle layers control smaller scale facial features like hair
style and if the eyes and mouth are open or closed. The style
vectors on the later layers correspond to higher resolutions
controls such as the texture and the microstructure of the
generated image [20]. InW space, each of the style vectors
are identical. However, we can also allow them to be differ-
ent, in which case the resulting space is denoted as theW`
space. The W` space can be used for style mixing [20]
and GAN inversion [28, 45]. Recently, an additional latent
space referred to as style space has also been proposed [41].

Semantic Face Editing. Several methods have been pro-
posed to enable edits of the images produced by StyleGAN.
InterFaceGAN [32,33] uses pre-trained binary classifiers to
annotate StyleGAN generated images based on single bi-
nary attributes, e.g., young vs. old, male vs. female, glasses
vs. no glasses. Support vector machines are then trained on
the annotated data to discriminate between each attribute in
the latent space. The normal vectors of the separating hy-
perplane define a direction in latent space that changes the
corresponding binary attribute. GANSpace [17] finds in-
terpretable directions in an unsupervised fashion with PCA
while manual examination of the found directions is re-
quired. Directions found with PCA are typically entan-
gled, affecting multiple attributes. It was shown that the
degree of entanglement can be reduced by only applying the
found directions to a subset of the style vectors. It has also
been proposed to make the eigenvalue decomposition on the
weights of the pre-trained generator to discover meaning-
ful semantic directions in the latent space [34]. Recently,
StyleCLIP [25] demonstrates text driven semantic editing
by minimizing CLIP [27] loss between a text input and
the generated image. StyleFlow [1] proposed editing along
non-linear paths using normalizing flows to better preserve

identity.
Separate from StyleGAN research, different multilinear

methods have been widely used to model and analyze faces
and expressions [4, 10, 15, 38]. Recently there has been
some interest in applying these methods to explore the la-
tent space of GANs. For example, StyleRig [35] proposes
edits by minimizing the loss between the image produced by
the generated image and an image rendered by a 3D mor-
phable model. Furthermore, models based on the Higher-
Order Singular Value Decomposition (HOSVD) have suc-
cessfully been used to model faces, their 3D reconstruction,
as well as in transferring expressions [6,7,39,40]. Recently,
it has been suggested [16] to use such a HOSVD-based ten-
sor model for semantic face editing in StyleGAN. Here a
facial expression database was projected into the StyleGAN
W` space and relevant semantic subspaces corresponding
to identity, expression and yaw rotation were defined using
HOSVD-based subspace factorization. The model showed
limited flexibility for representing arbitrary latent codes and
to overcome this a stacked style-separated model was pro-
posed. This extended the tensor model to an ensemble of
tensor models, one for each style vector in the StyleGAN
W` space. Further, it was shown that in the derived expres-
sion subspace, each of the six prototypical emotions formed
nearly linear trajectories in agreement with [14]. Although
initial results were promising, convincing expression edit-
ing using a HOSVD-based model on the StyleGAN latent
space was however not yet demonstrated. We propose a so-
lution to this shortcoming, and demonstrate the robustness,
and competitiveness of our approach in this work.

Generator Inversion. To facilitate editing of real images,
the images first need to be projected into the StyleGAN la-
tent space. This is also referred to as GAN inversion [46]
and the problem is to find a latent code that, when passed
to the generator, produces an image as close as possible
to the given target image. Typically GAN inversion tech-
niques are either based on training an encoder [2,26,30,37],
which can embed an image into latent space at inference
time, or optimization-based techniques [21, 28, 29, 42]. In
the latter approach, the latent code is found by minimizing
a loss function, typically pixel-wise L2 or perceptional im-
age similarity [44] is used. Hybrid approaches have also
been proposed which use a trained encoder to find a good
initial condition for subsequent iterative optimization of the
latent code [23, 45].

Recently, [31] shows that novel images can be embed-
ded intoW space with a lower reconstruction error by fine-
tuning the pre-trained generator on the target image such
that the latent code inW space yields an image closer to the
target.

Recent work [37] suggests that there is a trade-off be-
tween distortion and editability when selecting which latent
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Figure 2. Diagram of our method. We first project a facial expres-
sion database intro the W` space of StyleGAN. We then use the
HOSVD to factorize the latent representation of the data in order
to derive meaningful semantic subspaces. From the subspaces we
define a set of global editing directions in W` corresponding to
yaw rotation and each of the six basic emotions.

space to project a given target image into. When projecting
out-of-domain images into the StyleGAN latent space pick-
ing the extendedW` space leads to a higher quality recon-
struction, i.e, it yields an image closer to the target image.
However, latent codes in the W` space are generally less
editable than latent codes inW space. To find latent codes
with the optimal trade-off between distortion and editabil-
ity a novel training methodology was proposed [37] which
embeds images intoW` space in a way that constrains the
latent codes to be as close toW space as possible.

Contributions. Our contributions can be summarized as
follows

• We show that a HOSVD-based tensor model is able
to discover novel semantic directions robustly, cor-
responding to the six prototypical emotions, in pre-
trained GANs.

• We show that convincing emotion directions can be de-
rived by truncating the expression intensity subspace.

• We show that, by using the e4e encoder [37] for pro-
jecting real images into the latent space of StyleGAN,
it is possible to construct a tensor model which enables
stable rotation and expression transfer on real faces.

• We show the previously proposed tensor model for the
GAN latent space [16] had an implicit rank-one con-
straint, which can be relaxed, leading to lower recon-
struction error.

2. Method

In this section, we describe tensor model formulation
[16] and propose two extensions to it: (1) We show how
to relax the implicit rank-one constraint of the model by
replacing the set of parameter vectors of the model with a
single full rank parameter tensor, and (2) show how to de-
rive emotion directions inW` by truncating the expression
intensity subspace. An overview of our approach is shown
in Fig. 2.

2.1. Multilinear Tensor Model

Given a data set of StyleGAN latent codes in W` we
represent them so that each latent code is equivalent to a
vector w P RD, where D “ 9216 for the generator produc-
ing 1024ˆ 1024 images. Suppose we have latent codes for
P different persons, performing E expressions each with I
different intensities from R different rotations, then we ar-
range the data into the 5th order tensor T P RDˆPˆEˆIˆR.
We then proceed to calculate the Higher-Order Singular
Value Decomposition (HOSVD) on the mean-centered data
tensor as

T ´ sT “ S ˆ1 U1 ˆ2 U2 ˆ3 U3 ˆ4 U4 ˆ5 U5, (1)

where S is the core tensor and ˆn denotes the n-mode ten-
sor matrix product. The mean tensor is written as sT “

swb 1P b 1E b 1I b 1R, where sw is the mean latent code
from the data set, 1P is a vector of ones with dimension P ,
and b denotes the tensor product. The Ui matrices have
orthonormal columns, i.e., UT

i Ui “ I and are constructed
from the left singular vectors of the mode-n matrix unfold-
ings of the mean-centered data tensor. The columns of Ui

form the basis for the respective subspace. The columns of
U1 form a basis for the latent space and are identical to the
principal components [15]. Likewise U2, U3, U4, and U4

form the bases for the person identity, expression, intensity
and rotation subspaces respectively.

Parameter Vectors. To recover a specific latent code
from the tensor model, we select appropriate rows of U2,
U3, U4 and U5 corresponding to the desired person, ex-
pression, expression intensity, and rotation respectively. By
introducing one-hot vectors q1i which we will refer to as the
canonical parameters for the tensor model, we get

pw “ sw ` C ˆ2 q
1T
2 U2 ˆ3 q

1T
3 U3 ˆ4 q

1T
4 U4 ˆ5 q

1T
5 U5,

(2)

where C “ S ˆ1 U1. This formulation is analogous to the
one proposed in [14, 15] and subsequently, [16]. Now, (2)
can be further simplified by defining qT

i “ q1
T
i Ui which

allows us to write

pw “ sw ` C ˆ2 q
T
2 ˆ3 q

T
3 ˆ4 q

T
4 ˆ5 q

T
5 , (3)

which gives is a more compact representation of the tensor
model.

Recovering Subspace Parameters. To find the parame-
ters pq2,q3,q4,q5q for a novel latent code w, with corre-
sponding to the latent code pw which best approximates w,
one could minimize the L2 loss,

Lpq2,q3,q4,q5q “ ||pwpq2,q3,q4,q5q ´w||22. (4)
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Additionally, it has been proposed in [14] to regularize the
solution by the Tikhonov regularizer and sum constraint as

Rpq2,q3,q4,q5q “

5
ÿ

i“2

”

λ1,i||q
1T
i ||

2
2 ` λ2,ipq

1T
i 1´ 1q2

ı

,

(5)

that yields the regularized minimization problem

min
q2,q3,q4,q5

Lpq2,q3,q4,q5q `Rpq2,q3,q4,q5q. (6)

This regularization is important for finding a stable param-
eter vector representations and thereby enables expression
editing for latent codes corresponding to novel images, as
will be seen below.

Relaxing the Rank-One Constraint. In the tensor model
(3), each latent code is entirely determined by four param-
eter vectors q2, q3, q4 and q5 corresponding to identity,
expression, expression intensity and rotation, respectively.
Using component notation and the Einstein summation con-
vention we rewrite (3) as

pwi “ swi ` Cijklmq
p2q
j q

p3q
k q

p4q
l qp5qm , (7)

where Qjklm “ q
p2q
j q

p3q
k q

p4q
l q

p5q
m is a rank-one tensor.

Now, we propose to relax this implicit rank-one con-
straint and instead allow the tensor Qjkl to be full rank that
leads to the problem

min
Q
||pwpQq ´w||22. (8)

The relaxation increases the number of parameters of the
tensor model from P ` E ` I ` R parameters to PEIR
parameters. This results in a more flexible model which
yields lower reconstruction errors for novel latent codes.

2.2. Truncating the Expression Intensity Subspace

From (1), the expression intensity subspace is truncated
to a one-dimensional subspace by selecting the dominant
singular vector, i.e., the first column of U4 which we denote
ru4. The truncated core tensor is then written as

rS “ pT ´ sT q ˆ1 U
T
1 ˆ2 U

T
2 ˆ3 U

T
3 ˆ4 ru

T
4 ˆ5 U

T
5 . (9)

Defining rC “ rS ˆ1 U1 as before, then the model is written
similarly to (2) and (3) as

pw “ sw ` rC ˆ2 q
1T
2 U2 ˆ3 q

1T
3 U3 ˆ4 q

1T
4 ru4 ˆ5 q

1T
5 U5,

(10)

where the corresponding intensity parameter q1T4 ru4 “ q4
is a scalar since the expression intensity subspace has been

truncated. Thus, the expression intensity factors out of the
model and we may write

pw “ sw ` q4p rC ˆ2 q
T
2 ˆ3 q

T
3 ˆ5 q

T
5 q, (11)

where q4 can now be interpreted as the expression intensity
parameter. We trivially unfold the singleton dimension of
rC corresponding to the intensity subspace, i.e., rCijklm Ñ

rCijkm and then write the model as

pwi “ swi ` q
p4q

rCijkmq
p2q
j q

p3q
k qp5qm . (12)

2.3. Recovering Semantic Directions

Emotion Directions. We define emotion directions in la-
tent space by selecting an appropriate row qexpr

3 of U3 cor-
responding to the emotion of interest. The combined pa-
rameter tensor corresponding to an expression direction is
then written as

Q(expr) “ sq2 b qexpr
3 b sq5, (13)

where sq2 and sq5 is the mean person and rotation parame-
ters respectively. To change the expression of a given latent
code w, we interpolate linearly in the direction given by the
vector n(expr) with components

n(expr)
i “ rCijkmQ

(expr)
jkm , (14)

thus performing an expression edit as

w(expr)
edit “ w ` q4n

(expr). (15)

Rotation Direction. We edit rotations in a similar way.
First we select the mean person, expression and expression
intensity parameters sq2 sq3 and sq4 and then define the ro-
tation direction parameter qprotq

5 as the difference between
the parameters corresponding to the left and right rotations,
i.e., the difference between the two rows of U5. We write
the rotation direction parameter directly as

q
protq
5 “

1
?
2

„

1
´1

T

U5. (16)

Now the combined rotation direction tensor is written as

Q(rot) “ sq4psq2 b sq3 b q
protq
5 q, (17)

and we can change the rotation of a latent code as

w(rot)
edit “ w ` βn(rot) with n(rot)

i “ rCijkmQ
(rot)
jkm, (18)

where β is the strength of the rotation.
With this formulation, we apply semantic edits directly

inW`without the need for estimating the tensor model pa-
rameters beforehand as has otherwise been suggested [16].
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(a) (b) (c)

Figure 3. Image embeddings. (a) BU-3DFE images, (b) random samples from the generator, and (c) real images. The embeddings of the
original images are shown in the top row, the parameter vector embeddings in the middle, and the parameter tensor embeddings in the
bottom row.

3. Experiments

Our tensor model was trained with the latent space pro-
jection of images from the Binghamton University 3D Fa-
cial Expression database (BU-3DFE) [43]. The BU-3DFE
database contains 2500 3D face scans and corresponding
images from two views of 100 persons (56 female and 44
male) with varying ages (18-70 years), and diverse eth-
nic/racial ancestries. Each subject was asked to perform
the six basic emotions: anger, disgust, fear, happiness, sad-
ness, and surprise, each with four levels of intensity. Ad-
ditionally, for each participant, a neutral face is provided.
Hence, for each person, there are 25 facial expressions in
total, recorded from two pose directions, left and right, re-
sulting in 5000 face images. Additionally, we used the FEI
face database [36] which contains 14 images of each of the
200 individuals, 100 male and 100 female. For each the
database contains two frontal images, one with a neutral or
non-smiling expression and the other with a smiling facial
expression, the rest of the images depicts each individual
with a neutral expression from various yaw rotations.

3.1. Implementation Details

We use the full resolution, i.e. 1024ˆ 1024, StyleGAN2
[19] generator which has been pre-trained on FFHQ [20].
The tensor model was implemented in PyTorch [24] using
tntorch [3] to calculate the HOSVD. To estimate the tensor
model parameters we used gradient descent implemented in
PyTorch with the Adam optimizer. For comparing images
we use two different metrics. For perceptual image similar-
ity we use LPIPS [44] and for identity similarity we uses Ar-
cface [9]. To measure the pose of the generated images we
uses MediaPipe [22] to extract 2D and 3D landmarks and
then proceeded to solve the Perspective-n-point (PnP) [11]
problem which gave us a scalar value for the yaw rotation
of a given image. We embedded all images intoW` space
using the e4e encoder [37].

Table 1. Comparison of reconstruction error ||pw´w||22 by repre-
senting randomly sampled latent codes and latent codes from the
BU-3DFE data set with parameter vector and a parameter tensor
respectively.

Random Latents BU-3DFE Latents

Rank one p12˘ 3q ˆ 102 p1.7˘ 0.2q ˆ 102

Full rank p6˘ 1q ˆ 102 7˘ 1

3.2. Subspace Parameter Recovery

We computed estimated the tensor model parameters for
3 types of novel latent codes: 1) BU-3DFE latent codes
where we left one person out in the calculation of the tensor
model, 2) randomly sampled latent codes, and 3) real im-
ages projected into latent space. Fig. 12 shows the result of
recovering the tensor model parameters for these three types
of latent codes when recovering the parameters in vector
and tensor form, respectively. It can be seen that using pa-
rameter vectors for the tensor model led to a significant re-
construction loss if compared to using a representation with
a parameter tensor, as illustrated in Fig. 4 and quantified
in Tab. 1. It seems that the randomly sampled images are
slightly harder to reconstruct than the embedded real im-
ages.

For the representation with parameter vectors, we find
that although the proposed regularization (5) leads to a
slightly higher reconstruction error, it is important in or-
der to find parameter vectors which are suitable for expres-
sion editing. Fig. 5 shows that performing expression edits
on the regularized parameters leads to less identity change
compared to the non-regularized parameters. The impor-
tance of regularization is more noticeable when we recover
the parameters for a randomly generated image if compared
to an image contained the in BU-3DFE database.

Moreover, it can be seen that the tensor model is not nec-
essary for expression editing, because we can edit the latent
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Figure 4. Representing a latent code in the tensor model with pa-
rameter vectors with and without regularization compared with a
representation using a parameter tensor.

(a) Without regularization.

(b) With regularization.

Figure 5. Visual comparison of the effect of regularization for
expression editing using parameter vectors for the tensor model.

Figure 6. Direct edit in the W` space without prior estimation of
the model parameters.

code directly by perturbing in the directions defined by (15),
instead of manipulating the estimated parameters of the ten-
sor model. The effect of such a direct edit is illustrated in
Fig. 6. The main advantage of performing expression edits
in this way, is that we avoid the reconstruction error associ-
ated with representing the latent code in terms of the tensor
model parameters.

3.3. Expression Direction Recovery

Fig. 7 shows the effect of applying the found six latent
space directions to the BU-3DFE mean face. We found that
subtracting the sadness direction from the mean face also

produces a happy facial expression. However, the resulting
expression is qualitatively different from adding the happy
direction to the mean face. While adding the happy direc-
tion results in a wide smile, subtracting the sadness direc-
tion results in a smile that is narrower but where the mouth
is more open. See the supplementary materials for videos
showing the found emotion directions on real face images.

3.4. Comparison to Related Work

We compared the rotation and smile directions found
by our approach to those previously found by InterFace-
GAN [33] and GANSpace [17]. For InterFaceGAN, we
used the PyTorch version of the rotation and smile direc-
tions provided by the authors of [31] at their GitHub repos-
itory1. For the rotations, we chose a manipulation strength
that resulted in a similar degree of rotation. To perform rota-
tions with GANSpace [17], we initially used the 2nd princi-
pal component applied to the first three style vectors. How-
ever, we found that if we only changed the first three style

1https://github.com/danielroich/PTI/tree/main/
editings/interfacegan_directions

Figure 7. Effect of applying the direction corresponding to the six
prototypical expressions to a real image. The rows show the differ-
ent expressions determined by q3 while the strength is modulated
by q4, while the rotation parameters q5 remain unchanged. The
right column shows edits in the direction of the respective expres-
sion while the left column illustrates the subtraction of it.
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Figure 8. Comparison of rotations produced by GANSpace [17]
(top 2 rows), InterFaceGAN [33] (third row) and our approach
(bottom). Here GANSpace* refers to a manipulation where we
edit the first five style vectors rather than the first three as described
in the main text.

vectors to edit the rotation, the result tends to break down
when the editing strength is large, which is demonstrated in
the first row in Fig. 8. If we applied the edit to the first five
style vectors instead, we generally received better results,
see second row in Fig. 8.

We visually compared the rotations by GANSpace, In-
terFaceGAN and our proposed method on images which
are randomly sampled from the generator as well as images
from the FEI face database [36]. For the FEI database we
used the frontal face images as initial conditions and then
applied rotations with GANSpace, InterFaceGAN and our
method to approximate the latent codes corresponding to
rotated images from the database. The results on randomly
sampled images are shown in Fig. 8 and on the FEI database
in Fig. 9, respectively. It can be seen that the quality of the
edits are visually on par, except the gaze direction follows
the camera in the InterFaceGAN results.

3.5. Happy Faces

We compared the found happiness direction to the smile
directions from GANSpace and InterFaceGAN, respec-
tively. For GANSpace we used the 47th principal compo-
nent applied to the 5th and 6th style vectors. The results are
shown in Fig. 10. Although each method resulted in a smile
in the generated image, the style of smile is different. Our
method yielded a wider smile whereas GANSpace yielded
a smile with a larger mouth opening, while the smile by In-
terFaceGAN seems to fall between these two.

3.6. Face Frontalization

To experiment face frontalization, we started with the la-
tent codes corresponding to the rotated images in the FEI
database [36], then edited the yaw of latent code to frontal-
ize the images. Quantative comparison is shown in Fig. 11.
In Tab. 2, we compare the perceptual and identity similar-

Figure 9. Qualitative comparison of the found rotation direction
with the equivalent edits from InterFaceGAN [33] and GANSpace
[17] applied on the FEI face database [36].

Figure 10. Visual comparison of editing a randomly sampled latent
code in the smiling directions found in GANSpace [17] and Inter-
FaceGAN [33] with the happiness direction found in this work.

ity scores of the frontalized images to the ground truth. It
can be seen the frontalized images are very similar to the
result obtained by using the pose direction from InterFace-
GAN. However, our method yielded better similarity scores
against to the ground truth. In addition, the gaze direction
by InterFaceGAN is not straight ahead whereas ours is.
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Figure 11. Qualitative comparison of facial frontalization with In-
terFaceGAN [33] and our method on FEI face database [10].

Table 2. Comparison of perceptual and identity similarity scores
of facial frontalization of images from the FEI face database with
InterFaceGAN [33] and our method. The results are reported as
mean value ˘ standard error of the mean.

LPIPS [44] ArcFace [9]

InterFaceGAN 0.315˘ 0.003 0.402˘ 0.008
TensorGAN 0.305˘ 0.004 0.372˘ 0.008

3.7. Validation with expression classifier

To validate that the semantic directions recovered with
our approach produce a change in the generated images cor-
responding to the intended labels, we use a pre-trained ex-
pression classifier [8] which is trained on the FER2013 data
set [13]. We sampled 5 ˆ 103 random images with vary-
ing expressions from StyleGAN and edited these in the di-
rection of each basic emotion. Using the classifier, we ob-
tained the probability mass distribution of expressions for
the sampled and edited images. From this, we calculated
the average difference in probability mass due to the edit
and visualize the results with a heatmap in Fig. 12.

The edits in the direction of anger, happiness, sadness,
and surprise lead to changes in the class probabilities which
corresponds to an increase in probability of the expected
class labels. However, the edits in the disgust direction lead
to an increase in probability for anger as well as disgust
while edits in the fear direction leads to a larger probability
mass for the surprise label. This is explained by the fact that
PyFeat also classifies the BU-3DFE raw images in a similar
way as can be seen in the confusion matrix in Fig. 13. Thus,
this discrepancy is not due to a limitation of our model, but
rather due to systematic differences between the BU-3DFE
and FER2013 data sets, which are especially apparent for
data points annotated with the fear or disgust labels.

4. Conclusion
In this work, we have presented an extension of the

HOSVD-based tensor model, proposed in [16]. In contrast
to [16], (1) we use the e4e encoder [37] to recover highly

Figure 12. Heatmap of the average difference in expression prob-
ability masses due to expression edits with our approach. Note
that Fear increases the probability mass for Surprise and Disgust
increases the probability mass for Anger. The reason is explained
in the main text.

Figure 13. Confusion matrix showing the Pyfeat classifica-
tion results on BU-3DFE. It shows that the correlation between
Fear/Surprise and Disgust/Anger is not due to a limitation of our
model, but can attributed to the differences between the BU-3DFE
and FER2013 data sets.

editable latent codes for the BU-3DFE database, (2) we im-
prove reconstruction in the tensor model by allowing the pa-
rameters to be full-rank, and (3) we show that edits can be
applied directly in latent space. Further, we showed that we
can calculate linear directions in latent space corresponding
to the six prototypical emotions by truncating the emotion
intensity subspace. After obtaining a latent representation
of the data, constructing the tensor model is fast, requiring
only a few minutes to calculate the HOSVD. Further, the
latent space directions corresponding to the six prototypi-
cal emotions can be calculated from the tensor model and
subsequently applied to any latent code in the original la-
tent space without the need to first estimate the subspace
parameters as otherwise suggested in [16]. In other words,
the found semantic directions are global and can be applied
to any latent code without any further calculations. Our
method is able to identify directions in latent space corre-
sponding to yaw rotation, as well as each of the six ba-
sic expressions. The quality of the edits performed with
these directions is on par with the corresponding edits using
GANSpace [17] and InterFaceGAN [33].
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Abstract

In this paper, we present an approach for combining non-
rigid structure-from-motion (NRSfM) with deep generative
models, and propose an efficient framework for discover-
ing trajectories in the latent space of 2D GANs correspond-
ing to changes in 3D geometry. Our approach uses re-
cent advances in NRSfM and enables editing of the cam-
era and non-rigid shape information associated with the la-
tent codes without needing to retrain the generator. This
formulation provides an implicit dense 3D reconstruction
as it enables the image synthesis of novel shapes from ar-
bitrary view angles and non-rigid structure. The method
is built upon a sparse backbone, where a neural regressor
is first trained to regress parameters describing the cam-
eras and sparse non-rigid structure directly from the latent
codes. The latent trajectories associated with changes in
the camera and structure parameters are then identified by
estimating the local inverse of the regressor in the neigh-
borhood of a given latent code. The experiments show that
our approach provides a versatile, systematic way to model,
analyze, and edit the geometry and non-rigid structures of
faces.

1. Introduction
In recent years, Generative Adversarial Networks

(GANs) [15] have seen rapid improvements in image qual-
ity as well as training stability. GANs have achieved re-
markable results in tasks such as image synthesis [23–27],
image-to-image translation [11, 12, 36], semantic editing
[1,2,21,33,39,43,47] as well as regression tasks [32]. Espe-
cially the StyleGAN [24–27] family of models show state-
of-the-art results in unconditional synthesis human faces
images. However, the standard StyleGAN architecture pro-
vides no way to directly control semantics like the pose and
expression of the generated images. This has led to a large
interest in finding semantic directions in the latent space of
StyleGAN which controls specific semantic attributes such
as pose, expression, hairstyle, illumination, etc.

The non-rigid structure-from-motion (NRSfM) problem

Original ———————– Edits ———————–

Figure 1. Semantic editing of real image. Our method parame-
terizes the latent space of StyleGAN in terms of camera and shape
parameters. This allows for editing of rotation, translation, and
non-rigid shape deformation of the synthesized images. Coupled
with a strong latent encoder, like e4e [45] or HyperStyle [5], our
method allows for semantic editing of real images. Here we show
two non-rigid changes corresponding to facial expressions (2nd
and 3rd column) as well as a rigid edit corresponding to camera
orientation (4th column).

is a difficult, under-constrained problem with a long his-
tory in computer vision. NRSfM aims at obtaining the
three-dimensional reconstruction of a scene with dynami-
cal deformable structures from a sequence of 2D correspon-
dences. Given a set of 2D correspondences, the standard
assumption is that the deformable 3D shape is a linear com-
bination of basis shapes; the camera information, describ-
ing how the 3D structure is projected onto the image plane,
also needs to be recovered. In this work, we incorporate a
sparse 3D model based on NRSfM into a generative model
like StyleGAN. This is interesting for two reasons: first, this
allows us to find trajectories in the latent space correspond-
ing to well-defined semantic attributes corresponding to the
camera geometry and non-rigid structure. Second, using a
generative model in conjunction with NRSfM provides a



Figure 2. Rigid edits to rotation and translation. Our method
discovers trajectories in latent space corresponding to arbitrary ro-
tations and translation.

way to obtain an implicit dense 3D reconstruction by using
only the sparse 2D inputs. By this, we refer to the fact that
we are able to view the dense 2D face from an arbitrary 3D
orientation, as if we had an explicit dense 3D reconstruc-
tion available. In other words, our approach enables dense
image synthesis of novel shapes from arbitrary view angles
and non-rigid deformation without the need for an explicit
dense 3D reconstruction.

In Fig. 1, we demonstrate semantic editing of real images
by using our method in conjunction with a recent method
for GAN inversion [45]. In Fig. 2 we show latent trajecto-
ries corresponding to changes in the rigid camera parame-
ters such as rotation and translations. Note that such edits
are only possible if the generator has been trained on a data
set that contains such variations, i.e., of translation and roll
rotation. In other words, we need an unaligned data set, like
FFHQU [25].

Our method utilizes a sparse backbone that is a 3D model
based on the approach for NRSfM given in [8, 16]. The 3D
model is constructed using solely 2D landmarks extracted
from synthetic face images generated by StyleGAN, thus
our approach requires no 3D supervision.

In this approach, we first factorize the measurement ma-
trix, consisting of corresponding 2D landmark points, into
a rigid and non-rigid part each composed of camera and 3D
shape information respectively. Any arbitrary 3D shape can
then be represented as the sum of a rigid basis shape and a
linear combination of rank-one non-rigid basis shapes. Our
approach provides a way to recover a set of expansion co-
efficients that contains all the information about the 3D re-
construction of the extracted 2D face landmarks. Addition-
ally, for each set of 2D landmarks, we recover a projec-
tion matrix, describing the camera information for project-
ing the 3D shapes onto the image plane as well as informa-
tion about the orientation of the recovered 3D structure.

We then proceed to connect the information recovered
from the sparse 2D landmarks to the latent space of Style-
GAN by training a regressor in the form of a multilayer
perceptron (MLP) network to regress the shape and cam-
era information directly from the latent codes. By estimat-
ing the local inverse of the regressor at a given latent code,
we can identify trajectories in latent space corresponding to
changes in camera or non-rigid geometry, while preserving

other attributes of the generated image, like identity, texture,
and illumination. We show that the regressor network can
be used for semantic editing of latent codes, either by using
the first-order Taylor expansion of the trained network to
define linear directions in latent space or by using the pre-
diction of the network as a loss term for a gradient-based
optimization algorithm.

As noted in [46], performing semantic editing in Style-
GAN using only 2D landmarks is a very challenging prob-
lem since the 2D coordinates are extremely localized com-
pared to more global attributes like age or gender.

In summary, we propose an editing framework that relies
solely on sparse 2D landmarks. From the landmarks, we use
NRSfM to extract camera and shape parameters describing
the underlying 3D geometry. We train a regressor to predict
these parameters directly from the latent codes and show
how the regressor naturally enables editing of the camera
and non-rigid geometry of the generated images.

The main contributions of this paper are the following.

• We propose a framework that incorporates the NRSfM
problem into the latent space of generative models.

• Based on NRSfM we suggest a framework to get artis-
tic control over images synthesized by StyleGAN.

• We show how our approach can model the camera,
pose, and non-rigid structure of the synthesized im-
ages, without an explicit dense 3D reconstruction.

• We propose a general method for enabling 3D aware-
ness in 2D GANs without requiring any retraining or
changes to the generator architecture.

• We propose a regularization technique that preserves
the identity of the synthesized faces during the edits.

2. Related Work
StyleGAN. The StyleGAN [24–27] generator is inspired
by the style transfer literature [14,20] and consists of a map-
ping network f which maps a latent vector z ∈ Z , sampled
from the standard Gaussian N (0, I) in order to obtain an
intermediate representation w ∈ W . The latent space W
is more disentangled than Z [26]. To synthesize an image,
the latent code w is copied and fed to each synthesis block
of the synthesis network G which produces the final image.
Instead of feeding the same vector to each of the synthe-
sis blocks, if the vectors are allowed to differ, the resulting
space is typically denoted as W+. It has been shown that
usingW+ space can lead to lower reconstruction loss when
performing GAN inversion [35, 50], however at the cost of
lower editability [45] of the resultant latent codes.

Semantic Editing. Several methods have been proposed
to enable semantic edits of the images produced by Style-
GAN. InterFaceGAN [38, 39] enables editing of binary se-
mantic attributes like left/right pose, gender, presence or ab-



sence of smile, etc. Here, a set of latent codes are first sam-
pled and the images are annotated using pre-trained binary
classifiers. Following the annotation step, a support vector
machine was fitted on the labeled data for each binary se-
mantic attribute. The normal vector for the supporting hy-
perplane then defines the semantic direction in latent space.
Another approach for semantic editing is GANSpace [21]
which proposes to use PCA on sampled latent codes to find
semantic directions in an unsupervised fashion. Another
related approach also factorizes the weights of the trained
generator [40, 42] rather than the latent codes. Both meth-
ods then change the semantics of the generated images by
perturbing latent codes in the direction of the found se-
mantic directions. Additionally, [2] uses normalizing flows
for attribute-conditioned semantic editing and explores both
linear and non-linear trajectories in latent space. Another
related approach, StyleRIG [43] proposes semantic editing
in StyleGAN using 3D morphable models [7]. Recently
it was proposed to regard the space of channel-wise style
parameters after the learned affine transformation in each
block in the StyleGAN synthesis network as a separate la-
tent space, complementing the previously mentioned Z ,W
and W+ spaces. This latent space was named StyleSpace
and denoted as S [47]. It has been shown that S space has
superior disentanglement properties, especially in Style-
GAN3 [4, 25], compared to W space thus enabling fine-
grained and highly localized edits, like the closing of the
eyes or changes to hair color [47].

Inversion. For purposes involving the editing of real im-
ages, it is necessary to find a good latent representation.
That is, we need to find a latent code that, when passed
to the generator, reconstructs the target image. This prob-
lem is known as GAN inversion. Techniques for GAN
inversion have either used optimization-based approaches,
where the latent code is directly optimized in order to re-
construct the target image [1, 27, 35] or encoder-based ap-
proaches, where a target image is directly mapped into the
latent space [3, 34, 36] or hybrid approaches [6, 50].

Recent work [45] suggests that there is a trade-off be-
tween distortion and editability when selecting which latent
space to project a given target image into. Projecting im-
ages into the extendedW+ space typically leads to higher
reconstruction quality [35], i.e., produces a generated im-
age which is more similar to the target image. However,
latent codes inW+ are generally less suitable for semantic
editing than latent codes in the nativeW space.

The e4e encoder proposed in [45] seeks to find a good
trade-off between reconstruction and editability by project-
ing images intoW+ but constraining the latent codes to be
close to W . Recently [37] shows that real images can be
embedded into W space by fine-tuning the trained gener-
ator around the target image, thus circumventing the need

for projecting into W+ space. In [3], a combination of
the iterative and encoder-based methods is proposed. Here
the encoder predicts the residual with respect to the cur-
rent estimate of the latent code and thus is able to refine
the latent code using only a few forward passes of the en-
coder in a process referred to as iterative refinement. Re-
cently, [5] proposed to unite the ideas of fine-tuning the gen-
erator from [37] with the iterative refinement from [3] by
introducing a hypernetwork which predicts how the param-
eters of the generator should be changed in order to faith-
fully embed a given real image into the native, and more
editable,W space.

Explicitly 3D aware GANs. Several works have investi-
gated incorporating explicit 3D understanding into GANs
[17, 31, 48]. Compared to these, our approach can be used
to control the 3D structure in existing 2D GANs without the
need for adaptation of the generator architecture nor does
our approach require any retraining.

NRSfM. Structure-from-motion (SfM) deals with the
problem of inferring the scene geometry and camera in-
formation from image sequences. In [44], an orthographic
camera model was assumed to infer rigid shape and mo-
tion by a factorization of the measurement matrix. In [10],
this problem was formulated to include non-rigid deforma-
tions by assuming that a shape is a linear combination of
3D basis shapes, hence proposing an approach for non-rigid
structure-from-motion (NRSfM). Various works have fol-
lowed up on this approach over the years this is still an area
of active research [22].

Recently, there have been attempts to solve the NRSfM
problem by employing neural networks. However, most re-
quire a large training data set [29], 3D supervision, or an as-
sumption of an orthographic camera model [29,41]. Specif-
ically, [29] formulates the NRSfM problem as a multi-layer
block sparse dictionary learning problem converted into a
deep neural network. In neural NRSfM [41], the authors
rely on dense 2D point tracks to recover dense 3D represen-
tations, and train an auto-decoder-based model with sub-
space constraints in the Fourier domain. Our method differs
from these works in several aspects, because (1) it relies
only on sparse 2D points, (2) it does not rely on a block
structure, and (3) it assumes an affine camera model. This
makes our approach direct, lightweight, fast, and efficient.

3. Method
Let I = G(w) be an image generated by the StyleGAN

generator by the latent code w. Our goal is to locally param-
eterize the manifold of latent codes, in the neighborhood of
a fixed latent code w0, by an attribute vector q so that

w = Ωw0
(q), (1)



Figure 3. Overview of our method. We first create a sparse 3D model R of facial landmarks from a data set of 2D landmarks X using
NRSfM. The 3D model is parameterized by an attribute vector q which contains information about the camera, rotation, and non-rigid 3D
structure. We then train a regressor ϕ to predict the parameters q directly from latent codes w. Once the regressor is trained, it can be used
for semantic editing. Given a latent code w0 with corresponding attribute vector q0 we can define a different, target attribute vector q̃ and
transfer it onto w0 using the transformation Ωw0 which depends on the regressor ϕ.

where q describes the pose, shape, and camera informa-
tion of the generated image. This formulation facilitates the
transfer of the target attributes q onto the latent code w0

to obtain an edited code w where only the target attributes
have changed in the image, while preserving all other at-
tributes such as identity, texture, and illumination.

Our method is composed of three distinct elements. (1)
The sparse back-bone relies on a pre-trained landmark ex-
tractor ψL, which extracts the 2D landmarks X = ψL(I),
from a generated image I coupled with a closed-form pa-
rameterization for the 2D landmarks as X = R(q), where
R maps the 3D shape defined by the attribute vector q onto
the image plane. (2) The attribute regressor ϕ predicts the
attribute vector q = ϕ(w) from the latent code w, where
the regressor is trained by minimizing the squared distance
between the ground truth landmarks X = (ϕL ◦ G)(w)

and predicted landmarks X̂ = (R ◦ ϕ)(w). (3) The regres-
sion inversion constructs the local inverse of the regressor
ϕ around the latent code w0, i.e., finds the local parame-
terization of the latent space so that w = Ωw0

(q), where
ϕ(w0) = q0. In Fig. 3 we provide a graphical overview of
our approach.

The remaining part of this section is organized as fol-
lows. In Section 3.1 we introduce the landmark parameter-
ization R(q) and detail how the 3D basis shapes can be re-
covered from a data set of sparse 2D landmarks. The train-
ing of the attribute network ϕ is discussed in Section 3.2 and
finally, in Section 3.3 we show how the regressor ϕ is used
to facilitate highly interpretable semantic editing.

3.1. Rank-one model

The rank-one approach for non-rigid structure-from-
motion, proposed in [8, 9, 16], is an affine camera model
for non-rigid structure-from-motion which is able to recover
3D structure from sparse 2D correspondences using rank-

one basis shapes. In this paper, we frame the model as a pa-
rameterization of the space of possible 2D shapes in terms
of camera, rotation, translation, and shape parameters. We
propose to write the model of [8, 9] in closed-form as

R(q) = K[I2|0]R(θ)︸ ︷︷ ︸
M

[
B0 +

K∑

k=1

αkBk

]
+ t⊗ 1T

L, (2)

where K ∈ R2×2 an upper triangular matrix, containing
the camera parameters k = (k11, k12, k22). The rotation
matrix R ∈ R3×3 is parameterized in terms of the Eu-
ler angles θ = (θx, θy, θz). The rigid basis shape B0 de-
scribes the average 3D reconstruction while the non-rigid
basis shapes Bk for k > 0 describe the non-rigid varia-
tion from the rigid basis shape. The expansion coefficients
α = (α1, α2, · · · , αK) determine the strength of the contri-
bution of each of the non-rigid basis shapes Bk. Finally, the
translation vector t determines the offset from the origin. In
(2), ⊗ denotes the Kronecker product, 1L ∈ RL is a vector
of ones, thus t⊗1T

L ∈ R2×L yields a matrix where t ∈ R2 is
repeated L-times column-wise. To summarize, with (2) any
2D shape X can be parameterized in terms of an attribute
vector q as X = R(q) where the attribute vector contains
the camera, rotation, shape, and translation parameters as
q = (k,θ,α, t).

In the next section, we see how the rigid basis shape B0

and non-rigid basis shapes Bk, k > 0, can be recovered
given a data set of corresponding 2D landmark points.

3.1.1 Non-rigid Factorization.

Given N 2D shapes Xn ∈ R2×L, we stack them into a
measurement matrix X ∈ R2N×L. Our aim is to factorize
X into a rigid X0 and non-rigid δX part such that

X = X0 + δX = M0B0 + δMδB. (3)



To recover the rigid basis shape B0 from (2) we first cal-
culate the singular value decomposition (SVD) of the mea-
surement matrix as X = UΛVT. The rigid part X0 is then
constructed by selecting the three dominant singular vectors
such that

X0 = U0Λ0V
T
0 = M0B0 with (4)

M0 = U0Λ0 ∈ R2N×3, B0 = VT
0 ∈ R3×L. (5)

The matrix M0 contains theN affine projection matrices
Mn, associated with each shape in the data set, which are
stacked on top of each other in M0.

To recover the non-rigid basis shapes Bk, we subtract the
rigid part from the measurement matrix, i.e., δX = X −X0,
and calculate the SVD of the remaining part as

δX = δUδΛδVT = δMδB. (6)

In the following, we use δB = δVT ∈ RL×L to construct
the non-rigid basis shapes as Bk = dkb

T
k , where bT

k is the
kth row of δB, and dk is a 3 × 1 unit vector which will be
determined by gradient-based optimization. Now our goal
is to recover D = [d1, · · · ,dK ] ∈ R3×K which defines the
non-rigid basis shapes. In [8, 9, 16], D was recovered by an
alternating least squares optimization scheme by exploiting
the orthonormality of the non-rigid basis shapes. Here we
use gradient-based optimization instead. For this purpose, it
is convenient to write the factorization of the measurement
matrix X as

X = M0B0 +MαB, (7)

where

Mα = (α⊗ 12×3)⊙ (1K ⊗M0)

=




α11M1 α12M1 · · · α1KM1

α21M2 α22M2 · · · α2KM2

...
...

. . .
...

αN1MN αN2MN · · · αNKMN



, (8)

where ⊙ is the Hadamard product and

B = diag(vec(D))(IK ⊗ 13)δB =




d1b
T
1

d2b
T
2

...
dKbT

K


 =




B1

B2

...
BK


 .

(9)

Then we can jointly find D and α by minimizing

min
D,α
||X̂ (D,α)−X||2F + λ

K∑

k=1

(dT
k dk − 1)2, λ ∈ R+,

(10)

by gradient descent. Once we have found the D and α
which minimizes (10), the non-rigid basis shapes can be
constructed using (9). The found basis shapes Bi com-
pletely specify the parameterization in (2).

The parameterization of a new unseen set of landmarks
Xnew can be obtained as

q∗ = argmin
q

||R(q)−Xnew||2F . (11)

3.2. Connection to the latent space

Having found the parameterization R in (2), we train a
MLP network ϕ to regress the parameters q directly from
the latent codes w such that ϕ(w) = q̂. Predicting q is
equivalent to predicting the landmarks of the generated im-
ages asR(ϕ(w)) = X̂. We train the network ϕ to minimize
the objective function

L (w) = ∥R(ϕ(w))− ψL(G(w))∥2F , (12)

where ψL is some pre-trained landmark extractor.

3.3. Semantic Editing

In the following, we provide an analytic as well as a
gradient-based approach for locally inverting the trained
network ϕ, to control the pose and non-rigid shape of im-
ages generated by StyleGAN. For the analytic approach,
the first order Taylor expansion of ϕ around w0 yields

ϕ(w) = ϕ(w0) + J|w=w0
(w −w0), (13)

where J|w=w0
is the Jacobian of ϕ evaluated at w0. Now

since ϕ(w0) = q0 we can rewrite this as

w = w0 + J†(q− q0), (14)

where J† is the Moore-Penrose pseudo-inverse of J|w=w0
.

This allows us to edit a latent code w0 with associated 2D
landmarks X0 parameterized by q0 as X0 = R(q0) in such
a way as to obtain a new latent code w with a corresponding
set of landmarks parameterized by q.

The analytic method described in (14) requires evaluat-
ing J at w0 and defines a linear path in latent space. As an
alternative to (14) we propose a gradient-based approach
where we directly minimize the difference between the net-
work prediction ϕ(w) and a target attribute vector qtarget via

min
w
∥ϕ(w)− qtarget∥2 + λD(G(w), G(w0)), (15)

where D(·, ·) is an image similarity metric such as Learned
Perceptual Image Patch Similarity (LPIPS) [49] or Arcface
[13], which we employ for regularization purposes. The
gradient-based editing is analogous to what is proposed in
[46]. However, here we allow for the passing of gradients
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Figure 4. Rigid and non-rigid edits. Our approach disentangles
rigid edits (rotation) from non-rigid edits (facial expression). We
observe that the predicted landmarks agree well with the target
landmarks for both types of edits.

through the generator G in order to calculate the identity
loss in (15).

In Fig. 4 we visualize the landmarks predicted by our re-
gressor from the latent code asR(ϕ(w)) in blue. Addition-
ally, we showcase semantic editing by changing the latent
code w towards a set of target landmarks R(qtarget) in or-
ange. We show a rigid edit of camera rotation, by changing
θ and a non-rigid edit to facial expression by changing α,
as well a combination.

4. Experiments

4.1. Implementation Details

We used the StyleGAN2 [27] networks pre-trained on
FFHQ [26] as well as StyleGAN3 [25] pre-trained on
FFHQU [25]. FFHQ consists of 70K face images from
flicker and FFHQU is the unaligned version. To construct
the model R in (2) we first sampled N = 5 × 104 syn-
thetic images and from each extracted L = 68 landmark
points with Dlib [28] and L = 468 using MediaPipe [30],
which were then normalized to the interval [0, 1]. In each of
the following experiments, we have set the number of non-
rigid basis shapes to K = 12. Further, we rotated the basis
shapes to face the camera when θ = 0 in (2) in order to
stabilize the training of the regressor. We trained the regres-
sor, to predict the mean-centered output features q̂ for each
of the N samples. We used the Adam optimizer, 3 hidden
layers, each of size 512, and ReLU activation. To evaluate
image similarity we use LPIPS and as a metric for identity
similarity, we use Arcface [13].

4.2. Model Evaluation

To evaluate our approach we sampled 1000 latent codes
w from the generatorG and measured the landmark loss

LL(w) = ||(R ◦ ϕ)(w)− (ψL ◦G)(w)||2. (16)

Table 1. Model evaluation. Comparison of editing results in the
latent spaces: Z , W , and W+ of StyleGAN2 and 3. Performance
is measured using different metrics, lower is better.

Model /
latent space LL(w) LL(wedit) Lϕ LR LID

sg2 / Z 0.037 0.094 0.029 0.123 0.190
sg2 /W 0.006 0.026 0.024 0.057 0.331
sg2 /W+ 0.008 0.036 0.058 0.181 0.019
sg3 / Z 0.021 0.036 0.032 0.063 0.264
sg3 /W 0.007 0.019 0.028 0.045 0.296
sg3 /W+ 0.009 0.021 0.071 0.160 0.034

We then perform a series of edits wedit = Ωw(qedit) us-
ing the gradient-based method in (15) with Arcface for iden-
tity regularization with λID = 0.01 For each edit, we mea-
sure the landmark loss LL(wedit) as well as three additional
losses. First, we measure how well the edits results in the
correct change in the prediction of the attribute vector with
a metric Lϕ which we define as

Lϕ = ||ϕ(wedit)− qedit)||2. (17)

Secondly, we measure how well the new ”ground truth”
landmarks of the edited latent code agree with the target
landmarks

LR = ||R(qedit)− (ψL ◦G)(wedit)||2. (18)

Finally, we measure the identity loss LID, between the orig-
inal and edited images.

For this experiment, we used Dlib as the ”ground truth”
landmark extractor ψL and evaluated the full 10242 res-
olution StyleGAN2 and 3 generators, both trained on the
aligned FFHQ data set. We show the results in Table 1. The
model was better at predicting landmarks in W and W+
compared to Z space when measuring losses LL(w) and
LL(wedit).

We also observe that the identity loss LID is very low for
W+ space, however, LR is also dramatically higher, indi-
cating that it is much harder to change the generated image
in such a way that the extracted GT landmarks agree with
the specified target when performing edits in W+ space.
The same point is supported by the Lϕ metric with is also
substantially higher forW+ space.

4.3. Identity Regularization

We performed a qualitative comparison between the lin-
ear (14) and gradient-based method (15), proposed in Sec-
tion 3.3. Here we edited pose and smile using both methods
and show the effect of adding identity regularization, i.e.,
ArcFace, to the gradient-based method in Fig. 5. In the sec-
ond column, it can be seen that the linear method is able
to define directions in latent space which mostly change
the target attribute, i.e., pose or smile, however, we note
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Figure 5. The effect of identity regularization. We observe that
adding ArcFace to the loss function improves the identity preser-
vation of two edits: rotation (top) and smile (bottom).

that the identity is not preserved well in the edit. This can
be alleviated by the gradient-based method which defines a
non-linear trajectory in latent space. Further, the gradient-
based method in (15) allows for explicit identity regulariza-
tion using ArcFace which substantially improves the degree
of identity preservation for both pose and smile edits as can
be seen in column 4 of Fig. 5.

4.4. Attribute Transfer

Our approach enables the transfer of attributes, such as
pose or facial expression, from one image to another in a
straightforward manner, while preserving other attributes
such as identity and illumination. Given two latent codes,
w1 and w2 with corresponding attribute vectors q1 and q2

we can transfer the pose and face shape from w1 to w2 by
performing the edit w̃2 = Ωw2

(q1). Here both q1 and q2

can be recovered using either the regressor ϕ or using the
minimization procedure in (11). We demonstrate the results
of our method in Fig. 6, where we changed the rotation and
facial expression of three source images to match different
target images, i.e., transferring attributes from the target to
the source, while preserving the identity in the source im-
ages.

4.5. Rotation and Translation with StyleGAN3

Our method is able to define trajectories in latent space
corresponding to roll rotation as well as translations. As
noted in [4] roll rotations and translations are a native part
of the architecture of the StyleGAN3 generator and can be
achieved by manipulating the Fourier features using the four
parameters (sinα, cosα, x, y) which are obtained from the
first learned affine layer of the synthesis network. In com-
parison, our method can edit rotation and translation di-
rectly in the native W space of StyleGAN3. In Fig. 7, we
qualitatively compare the effect of performing roll rotation
and translation using our method to the effect of manipulat-
ing the Fourier features directly. We note translations look
very similar with both methods. However, for roll rotations,

Source

Ta
rg

et

Figure 6. Attribute transfer. Our method can edit the rotation and
expression of the source image (left column) to match the target
image (top row) while preserving identity of the source.

Original Roll (SG3) Roll (Ours) Trans. (SG3) Trans. (Ours)

Figure 7. Comparing our method to Fourier feature editing.
Our method finds a direction for roll rotation where the axis of
rotation is at the center of the object. In comparison, manipulating
the Fourier features results in an upward movement of the entire
face since the axis of rotation is in the middle left border of the
image. The vertical dotted line highlights the level of the nose for
easier comparison.

we note that the axis of rotation is located in the middle of
the left-hand image border when manipulating the Fourier
features (see the location of the nose in Fig. 7), whereas,
with our method, the axis of rotation is located at the center
of the face.

4.6. Comparison with other Methods

We compared the editing directions corresponding to
pose (yaw rotation) and smile with three off-the-shelf
techniques for semantic editing: InterFaceGAN [38, 39],
GANSpace [21], and TensorGAN [18, 19]. Although our
method supports arbitrary 3D rotations in latent space, we
focused on editing yaw rotations and smile since previous
techniques have also been reported to enable these edits, en-
abling a direct comparison. A qualitative comparison of the
edits to smile and yaw rotations generated by each of the
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(b) Yaw rotation edits applied to the original image shown in blue.

Figure 8. Qualitative comparison to other methods. We com-
pare editing smile and yaw rotation using our method with equiv-
alent edits using other off-the-shelf techniques.

four methods is shown in Fig. 8a and Fig. 8b respectively.
When evaluating the degree of identity preservation dur-

ing the semantic edits it can be seen that our method is on
par with the competing methods when performing yaw ro-
tations and arguably better when editing smile.

4.7. Editing real images

Coupled with an encoder, our approach facilitates editing
of real images. We qualitatively compared the projection
and editing results when using our method in conjunction
with e4e [45] and HyperStyle [5], respectively. The results
are shown in Fig. 9. The two methods operate in different
spaces, e4e project images into W+ space while Hyper-
Style instead makes an initial prediction in W space and
then fine-tunes the generator such that the prediction more
faithfully reconstructs the target. Despite the fine-tuning of
the generator it is not necessary to retrain the regressor when
using HyperStyle for GAN Inversion.

Real Image Reconstruction Pose Edit Smile edit

e4
e
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er
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Figure 9. Editing real images. Qualitative comparison of pro-
jection and editing results when combining our method with two
state-of-the-art encoders, e4e [45] and HyperStyle [5] respectively.

5. Conclusions
We presented a framework for highly interpretable image

editing in pre-trained 2D GANs. Our framework provides
an efficient method to find trajectories in the latent space
of GANs which change the generated images according to
camera, orientation, and shape parameters. This enables the
discovery of trajectories in the latent space corresponding
to arbitrary transformations of shape and orientation of the
generated images.

In summary, we first used NRSfM to derive a sparse 3D
model on the domain of the generator. We then trained a re-
gressor to relate the 3D model to the latent space. We then
proposed two methods for using the regressor for seman-
tic editing: a linear method, and a gradient-based method.
The latter is similar to the iterative editing algorithm in [46],
however, we integrate explicit identity regularization which
improves identity preservation.

Our method provides an efficient framework for manip-
ulating the 3D structure of objects generated by 2D GANs.
Compared to other methods, our approach is fast compared
to existing frameworks for training explicitly 3D aware
GANs [17, 31, 48] and compared to [43] our method is
lightweight and able to perform rotations and edits to face
shape without the need for a 3D morphable model. Since
our method only requires access to a landmark extractor
trained on the same domain as the generator, our approach
does not require any additional training data and can be
trained in a fully self-supervised fashion. Further, our ap-
proach does not require retraining of the generator or any
changes to the generator architecture.

As to limitations, our method allows for adjustments to
the position, orientation as well as non-rigid deformation of
the face shape of the generated images. Since our method
only captures the 3D orientation and face shape our method
is not able to add or remove face accessories, eye-glasses,
earrings, and hats nor change the skin tone or hair color.
Overcoming those limitations is an avenue for future work.
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Figure 1: Inferring a Munch-like sketch from a hand-drawn line. From left to right: 1) infrared webcam image from beneath
the drawing surface. 2) The cleaned input image. 3) The synthesized sketch. 4) A composite image of the input image over the
synthesized sketch.

ABSTRACT
New Snow is an interactive drawing table that investigates human
interaction with a deep generative model based on Edvard Munch’s
sketching practice. Through drawings with pen and paper, the user
can interact with the model which will return synthetic sketches
based on the input drawings in real time. Themodel is a reflection of
the training data, and it is thus constrained to representing images
within the latent space of Edvard Munch’s sketching practice. As
the user familiarizes themselves with the model it allows them to
become sensitized to the visual aesthetic belonging to this practice.
This potential for familiarization with the aesthetic of a dataset
via the model has implications for human-AI interaction and non-
verbal art mediation.

CCS CONCEPTS
• Human-centered computing → Interface design prototyping;
Interaction design; Interaction devices; • Applied computing
→ Fine arts; • Computing methodologies → Machine learning.
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sketching, embodied interaction, interaction, stylegan, fine art
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1 INTRODUCTION
Museums across the world have built up large collections of dig-
itized artwork collections. This vast amount of material can be
difficult to present to an audience. Several projects investigate ways
to expose museum visitors to large datasets and allow for brows-
ing or reauthoring the content [17–19, 23]. However, collection
interfaces are often designed to offer overview and searchability
rather than engagement with the artworks. To support the media-
tion of large art collections, interfaces are necessary that support
alternative and embodied modes of engagement.

Tapping into recent developments in image synthesis, New Snow
attempts to explore a new way to engage with a large collection of
digitized artworks through a novel machine-learning-enabled inter-
face. Deep Generative Models (DGM) are models that can generate
images that resemble the training data. These have recently become
well-known through the current wave of text-to-image systems like
Midjourney, DALL-E [21] and Stable Diffusion [5] that allow for
anyone to generate synthetic images in the style of famous artists,
that is, artists whose works have a large presence on the internet
from where much of the data for the underlying datasets are found.
In contrast to these systems, New Snow employs a model trained
specifically on the drawings of Edvard Munch (fig. 2), to allow
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Figure 2: The upper half of the image shows samples from the
original sketch data. The lower half shows synthetic samples
from the StyleGAN model

museum visitors to engage with this well-known artist’s drawing
practice through their own drawing actions. New Snow is an inter-
active drawing table that offers museum visitors an embodied mode
of interaction, where the system responds to the user’s drawing by
adding lines and patterns generated by the DGM. This simulates
an experience of the artist "filling in" the lines drawn by the visitor.

This project aims for three main contributions. First, it enables
a way for visitors to engage with a large corpus of artworks that
could not feasibly be explored individually, through the proxy of a
DGM offering a synthesis of the data. Second, the system allows an
embodied and creative engagement through the drawing actions of
the visitor, and the interplay between the visitor and the system.
Third, the system explores a novel use of a DGM, in which the user’s
efforts to learn how to interact with the model are offered as a way
to learn about the aesthetics of Munch’s drawings. As the user
investigates the model through the drawing actions, the user learns
about its qualities, and by proxy certain qualities of the artworks
constituting the underlying dataset. This means that building a
mental model of the system becomes a way of learning about the
aesthetics of the drawings, and the image synthesis becomes an
enabler of the exploration rather than the end goal.

2 RELATEDWORK
Large databases of cultural heritage collections are usually accessed
through search interfaces letting the users find content based on
written prompts and filters. This is useful for situations where the
users have a good idea of what they are looking for. However, when
the domain is unfamiliar to the user, curation and recommendation

are often used as a way of guiding the user to relevant content.
Earlier projects have attempted different visualization strategies
for large cultural heritage datasets like T_Visionarium II [23], Cloud-
browsing[19] and ECLOUDWW1[17] that all utilize large projection
surfaces to display content and allow the user to browse through
the individual data objects.

The two projects Draw to Art [11] and Draw to Art: Shape Edition
[10] explores visual search by allowing users to draw images on a
tablet surface to query a large art database for artworks matching
the drawing. In the first version, the match is based on classifying
the input image as a word and then returning images relating to
that word. In the second version, the system returns images with
shapes matching the input image, which is constrained to simple
geometric shapes. This difference marks a significant change as
it enables exploration that is driven by visual concepts such as
composition and shapes.

Human-AI interaction research stipulates that the system should
provide the user with clear concepts of its capabilities [2] by being
explainable or transparent e.g. [3, 12]. Another related concept is
that of interpretable AI [6, 8], asserting that the users of a system
should be able to interpret the underlying reasons for the output.

Building expertise in the interaction with image synthesis mod-
els is seen in prompt engineering, the practice of developing text-
based prompts through optimization or exploration that makes
text-to-image or text-to-text generation systems generate the con-
tent intended by the user. According to Oppenlaender, achieving
the best results requires a deep understanding of the underlying
dataset [20].

Based on the works above we derive three insights, which have
informed the design of New Snow:

(1) We understand the deep generative models as reflecting qual-
ities of the data from which it is trained.

(2) Exploration of datasets and models can happen through non-
verbal means.

(3) Learning how to prompt a model effectively means building
an understanding of the data on which it is trained.

3 CONCEPT AND INTERACTION
New Snow is a project that explores how exploring an image syn-
thesis model using drawing actions as a means of prompting lets
the user learn about certain qualities of the underlying data.

From the digital collection of MUNCH, we have identified 5800
uncolored, crayon, ink, or pencil drawings made by Edvard Munch
(see examples in fig. 2). Based on these drawings we have trained a
StyleGAN 2 model [14, 16] and then a pixel2style2pixel (pSp) model
[22]. Together this allows us to map drawings made by a user into
the model and synthesize sketches from this input.

The prototype consists of a table with amatte transparent surface.
The user places a piece of tracing paper on the surface and draws
with a pen (fig. 3). Underneath the table, a camera tracks the lines
on the paper and sends them to the pixel2style2pixel model. From
the lines on the paper, the model synthesizes an image based on
Edvard Munch’s sketches (fig. 1). This image is projected back
onto the tracing paper for the user to see. As the user draws or
moves the paper around, the system continuously and multiple
times per second updates the synthesized image to match. This
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allows the user to explore the qualities of the model through an
almost conversational relation to the system.

Figure 3: The top image is a render of the prototype with
the sides open, so the inner structure can be seen. The image
below shows a user interacting with the drawing interface.

The aim of this project is to help the user develop an attention
to the aesthetic of Edvard Munch’s drawing practice. We are not
attempting to explain the technical details of his practice nor the
historical or biographical relations. However, through the embodied
engagement with the visual aesthetic derived from his drawings, we
expect the user to develop a sense of the visual qualities related to
Munch’s sketching and drawing practice. That does not necessarily
require the original works to be reproduced, the aim is rather to
create a focus on the dynamics and patterns in Munch’s sketching
practice that a person not skilled in the act of drawing or analyzing
drawings might not otherwise have noticed.

Models like Dall-E, Midjourney, and Stable Diffusion have be-
come famous for their ability to synthesize coherent images from
almost any prompt in the style of well-known artists. In compari-
son, this model provides much more resistance. It does not draw for
the user, but it responds to their drawings and attempts to expand
and complete them. Due to the nature of the underlying model, the
user will have to adapt a particular drawing strategy in order to
achieve the greatest level of control, as the model does not respond
to symbolic representation but rather the saliency of particular
lines constituting an image.

This tension requires the user to explore the workings of the
model to understand how it works and what it responds to. In that
way, the function of the model is to provide a space to explore
rather than being a tool to reach other ends. The exploration is by
proxy an exploration of Munch’s sketching practice. It asks the user

to contemplate and then draw not what Munch might have drawn,
but how he might have drawn.

At the core of the experience is the user interaction with the
DGM, however, that interaction happens within an embodied and
material context. People’s bodily relations to artworks shape how
they might cast the art objects in specific cultural roles i.e. as a com-
modity, a fragile piece of history, or a toy [24]. With this awareness
we expect the embodied relation to the drawings in New Snow to
influence people’s cultural connotations of the drawing activity.
Thus we have opted for a physical setup where the user performs
the drawing action with an actual pen on paper. First, the paper
and pen have other affordances than a touchscreen and pen inter-
face, one being that erasing is not possible, and the drawn image
can be moved around on the surface, lifted off the surface, and
brought along. Secondly, the tactile feeling of pen and paper differs
significantly from the glass surface of a tablet and e-pen and evokes
different connotations and importantly a closer material connection
to the tools used by Edvard Munch.

4 TECHNICAL DESCRIPTION
The drawing table is built into a flight case 110 cm tall with a semi-
transparent polycarbonate window on top. The drawing surface
is lit with infrared (IR) light by LEDs within the table to elimi-
nate shadows. An IR-sensitive camera fitted with an 850nm filter
records the drawing surface (fig. 4). This is to avoid interference
from the visible light cast by the projector. With software made
with TouchDesigner, OpenCV, and Python the video feed is pre-
processed into binary images, isolating the lines drawn on the paper.
This image is submitted to the pixel2style2pixel model and a synthe-
sized drawing is returned within a second. Adjustments are made
to saturation and contrast before the projected image interpolates
from the current to the new image.

4.1 Machine Learning
DGMs have seen tremendous progress in recent years and Gen-
erative Adversarial Networks (GANs) [9] have become one of the
most influential deep generative architectures. Recently, inspired by
style transfer [7, 13], the StyleGAN family of models [14–16] have
been shown to give state-of-the-art results across a wide variety of
image generation tasks [4]. Due to the exceptional quality of the
images generated by StyleGAN models, the architecture has been
called one of the most intriguing and well-studied architectures in
recent times [1].

After training, StyleGAN has learned a mathematical space, de-
noted the latent space, where each point in the space corresponds
to a unique image. The GAN is trained such that the distribution
of the generated images follows the distribution of the images in
the training data, both with respect to image quality as well as the
internal variation between images in the training data.

The latent space is smooth, which means that if we interpolate
between two points in the latent space, e.g two points correspond-
ing to portraits, the corresponding generated images will change
gradually from one portrait to the other where each intermediate
image is itself fully self-consistent and resembles Munch’s style in
its own right. Thus the latent space can be seen as a representation
of the space between all Munch sketches in the data set.
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Figure 4: The prototype house a pico projector and a camera
that are aligned with the drawing surface. An infrared filter
removes the visible light from the camera input. Right below
the top are two strips of infrared LED that illuminate the
drawing surface. The lower part of the table can house a PC
for processing the images.

To allow for direct user interaction with this latent space, we
have trained a pSp encoder [22] which is able to map user-provided
pen-and-paper sketches, into the latent space, thus transforming
the user input to a sketch that follows the style of Munch.

5 AESTHETIC DRAWING STRATEGIES
In preliminary testing of the prototype, we have seen participants
engaging actively with the drawing task. Participants apply widely
different strategies, and we see indications that certain mental mod-
els yield more satisfying interactions than others. When users draw
conceptually, e.g. a simplified house or tree, the system generates
only limited visual response since these shapes lie far away from
the images in the dataset. A more fruitful drawing strategy seems to
be drawing one long stroke at first and then looking at the response
of the system. Often a variety of more or less defined lines will
appear. These lines can be reinforced or challenged by drawing
other lines in the same area, which often results in more defined
shapes and features, and the process can continue and evolve into a
meaningful drawing. These are the strategies that we are interested
in exploring and tuning the system to support.

6 CURATING THE DATASET
As the aesthetic qualities in Edvard Munch’s sketching practice
are mediated through the DGM, particular attention needs to be
paid to the ways in which the sketches have been prepared for
training and how the chosen model interprets the data. The images
constituting the dataset for the StyleGANmodel have been cropped
from photographs of notebooks or loose paper sheets by human
annotators that have made decisions on composition and the tight-
ness of the crop to leave out damaged paper, smudges, handwritten
notes, and other artifacts that have been deemed irrelevant for the
project. This curation shapes the concept of the images created by
the model. It determines what belongs to a drawing, and where
on the page certain shapes will appear. Another limitation is the
necessity for this type of model to be trained with square images.
This requires the input images to be either stretched or cropped
to fit this requirement. These issues reappear when the pSp model
is trained as the input images are simplifications derived from the
syntheses. However, the amount of simplification determines how
far from the input image the synthesized images will be visually.
This means that a significant part of the interaction design lies in
the data curation process, making the iterative loop longer and
more time-consuming than when designing heuristic interactive
systems.
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Figure 1. Our semantic image editing. We present new methods for finding interpretable disentangled semantic directions in the latent
space of DDMs. Specifically, we propose a supervised (left) and two unsupervised (right) methods, where the latter finds either global
directions based on a collection of images or local directions based on the analysis of a single sample.

Abstract

Denoising Diffusion Models (DDMs) have emerged as
a strong competitor to Generative Adversarial Networks
(GANs). However, despite their widespread use in image
synthesis and editing applications, their latent space is still
not as well understood. Recently, a semantic latent space
for DDMs, coined ‘h-space’, was shown to facilitate se-
mantic image editing in a way reminiscent of GANs. The
h-space is comprised of the bottleneck activations in the
DDM’s denoiser across all timesteps of the diffusion pro-
cess. In this paper, we explore the properties of h-space
and propose several novel methods for finding meaningful
semantic directions within it. We start by studying unsuper-
vised methods for revealing interpretable semantic direc-
tions in pretrained DDMs. Specifically, we show that inter-
pretable directions emerge as the principal components in
the latent space. Additionally, we provide a novel method
for discovering image-specific semantic directions by spec-
tral analysis of the Jacobian of the denoiser w.r.t. the la-
tent code. Next, we extend the analysis by finding direc-
tions in a supervised fashion in unconditional DDMs. We
demonstrate how such directions can be found by anno-
tating generated samples with a domain-specific attribute
classifier. We further show how to semantically disentan-

gle the found directions by simple linear projection. Our
approaches are applicable without requiring any architec-
tural modifications, text-based guidance, CLIP-based opti-
mization, or model fine-tuning.

1. Introduction
Denoising Diffusion Models (DDMs) [37] have emerged

as a strong alternative to Generative Adversarial Networks
(GANs) [5]. Today, they outperform GANs in uncondi-
tional image synthesis [3], a task in which GANs have
been dominating in recent years. Besides synthesizing high-
quality and diverse images, DDMs can also be used for con-
ditional synthesis tasks by guiding them on various user in-
puts [10], such as a user-provided reference image [13, 17]
or a text-prompt by utilizing Contrastive Language-Image
Pretraining (CLIP) [23]. Conditional DDMs have seen great
success, particularly in the context of text-based synthesis.
Specifically, recent large-scale text-conditional systems like
DALL-E [26, 27], Stable Diffusion [28] and Imagen [33]
have sparked a surge of research related to text-driven im-
age editing using DDMs [2,4,8,11,12,18,19,31,41]. While
there has been extensive research on finding disentangled
editing directions in the latent space of unconditional GANs
[1, 6, 7, 25, 34, 36, 39], comparatively little work has been
done on this topic for unconditional DDMs. Despite their



popularity, it is still not well understood how to leverage
the latent space of DDMs for semantic image editing in the
unconditional setting, i.e., in the absence of CLIP-guidance
and without conditioning on a reference image.

In this paper, we propose novel editing techniques by
utilizing the semantic latent space of DDMs which was re-
cently proposed by Kwon et al. [14]. The semantic latent
space, coined ‘h-space’, is the space of the deepest fea-
ture maps of the denoiser. Our research explores supervised
and unsupervised methods for finding semantically inter-
pretable editing directions in unconditional DDMs.

We start by proposing two unsupervised methods. In
Sec. 4, we demonstrate that interpretable editing directions,
like pose, gender, and age emerge as the principal compo-
nents in the semantic latent space. Additionally, we propose
a novel unsupervised method for discovering image-specific
semantic directions resulting in highly localized edits like
opening/closing of the mouth and eyes that can also be ap-
plied to other samples. We illustrate a selection of these
unsupervised editing directions in Fig. 1 (right pane). Next,
in Sec. 5, we utilize the linear properties of the semantic
latent space and propose a simple supervised method for
finding interpretable editing directions, like age and gender
or the appearance of glasses or a smile. We illustrate exam-
ples of these edits in Fig. 1 (left pane). We demonstrate our
approach by annotating samples generated by an uncondi-
tional DDM using a pretrained attribute classifier. We fur-
ther propose a simple method for disentangling directions
that affect multiple attributes. Our approaches allow for in-
tuitive and semantically disentangled image editing and can
be applied to the latent space of DDMs without requiring
any CLIP guidance, fine-tuning, optimization or any adap-
tations to the architecture of existing DDMs.

2. Related work
2.1. The latent space of diffusion models

GANs have a well-defined latent space suitable for se-
mantic editing. To which extent DDMs possess such a con-
venient latent space is still a topic of ongoing research. Here
we start by reviewing two approaches for defining a latent
space in DDMs that facilitate semantic editing.

Using DDIM sampling proposed by Song et al. [38], the
generative process is a deterministic mapping from a Gaus-
sian noise vector xT ∼ N (0, I) to a sampled image x0. In
the DDIM framework, the fully noised image xT , can be
regarded as the latent representation. DDIM has the prop-
erty that fixing xT leads to images with similar high-level
features irrespective of the length of the generative process.
Furthermore, interpolating between two latent codes x

(1)
T

and x
(2)
T leads to images that vary smoothly between the

two corresponding endpoint images, x(1)
0 and x

(2)
0 .

Kwon et al. [14] propose h-space for DDMs, the set

of bottleneck feature maps of the U-Net [29] across all
timesteps, {hT , . . . ,h1} as the latent space. Each bottle-
neck feature map ht has a lower spatial dimension but more
channels than the output image. They show that semantics
can be edited by adding offsets ∆ht to the feature maps dur-
ing the generative process. To find editing directions, they
use an optimization procedure involving CLIP, where the
semantics to be edited are described by text prompts. The
h-space has the following properties: (i) a direction ∆ht

has the same semantic effect on different samples; (ii) the
magnitude of ∆ht controls the strength of the edit; (iii) h-
space is additive in the sense that applying a linear combi-
nation of different directions where each ∆ht corresponds
to a distinct attribute, results in a generated image where all
attributes have been changed.

2.2. Semantic image editing in generative models

Semantic editing has been widely explored in GANs
[6, 7, 21, 25, 34, 36, 39, 40, 45]. Shen et al. [34] used a bi-
nary classifier to annotate generated samples and trained a
SVM to separate classes like pose, age, and gender. Linear
editing directions in latent space were then defined as the
normal vectors of the separating hyper-planes. Härkönen et
al. [7] found interpretable control directions in pretrained
GANs by applying principal components of latent codes to
appropriate layers of the generator. Another line of work
[6,36,39,47] uses various factorization techniques to define
meaningful directions in the latent space of GANs.

Semantic image editing has also been shown in DDMs
but many existing methods make adaptations to the ar-
chitecture, employ text-based optimization or model fine-
tuning. In DiffusionAE [22], a DDM was trained in con-
junction with an image encoder. This enabled attribute ma-
nipulation on real images, including modifications of gen-
der, age, and smile, but requires modifying the DDM archi-
tecture. Another line of work includes DiffusionCLIP [12],
Imagic [11], and UniTune [42], combined CLIP-based text
guidance with model fine-tuning. Unlike these methods,
our approaches do not require CLIP-based text-guidance
nor model fine-tuning and can be applied to existing DDMs
without retraining or adapting the architecture.

We acknowledge as concurrent work the unsupervised
method proposed by Park et al. [20]. They perform spec-
tral analysis on the Jacobian of a mapping from pixel space
to a reduced h-space consisting of the sum-pooled feature
map of the bottleneck representation. In comparison, our
proposed method is able to operate on the full bottleneck
representation using power iteration to circumvent the in-
tractable computational cost of calculating the Jacobian ex-
plicitly. We further propose to allow for additional region-
specific control by calculating the Jacobian with respect to
a region of interest, allowing for fine-grained and highly lo-
calized semantic editing.



3. The semantic latent space of DDMs
Diffusion models are defined in terms of a forward dif-

fusion process that adds increasing amounts of white Gaus-
sian noise to a clean image x0 in T steps, and a learned
reverse process that gradually removes the noise. During
the forward process each noisy image xt is generated as

xt =
√
αtx0 +

√
1− αtn, (1)

where n ∼ N (0, I) and the noise schedule is defined
by {αt} . In [38], generating an image from the model
is done by first sampling Gaussian noise xT ∼ N (0, I),
which is then denoised following the approximate reverse
diffusion process

xt−1 =
√
αt−1Pt(ϵ

θ
t (xt)) +Dt(ϵ

θ
t (xt)) + σtzt, (2)

where zt ∼ N (0, I). Here ϵθt is a neural network (usually a
U-Net [29]), which is trained to predict n from xt, and the
terms

Pt(ϵ
θ
t (xt)) =

xt −
√
1− αtϵ

θ
t (xt)√

αt
(3)

Dt(ϵ
θ
t (xt)) =

√
1− αt−1 − σ2

t ϵ
θ
t (xt) (4)

are the predicted x0 and the direction pointing to xt at
timestep t, respectively. The variance σt is taken to be

σt = ηt
√

(1− αt−1)/(1− αt)
√

1− αt/αt−1. (5)

The special case where ηt = 0 for all t is called DDIM [38].
In this setting the noise variance is σt = 0, so that the
sampling process is deterministic and fully reversible [3, 9]
(i.e., xT can be uniquely obtained from x0). The case where
ηt = 1 corresponds to the stochastic DDPM scheme [9].

Following Kwon et al. [14], we study the semantic la-
tent space of DDMs corresponding to the activation of the
bottleneck feature maps of the U-Net. We denote the con-
catenation of the bottleneck activation across all timesteps
as hT :1 see supplementary material (SM) Sec. A for il-
lustration and additional details. In [14] image editing
was performed via an asymetric reverse process (Asyrp),
where ∆ht is only injected into Pt of (2) and not to Dt.
Empirically, we find that Asyrp amplifies the effect of the
edits but semantic editing is also possible without using
Asyrp. In this paper, we inject ∆ht into both terms of (2).
This has the benefit of only requiring a single forward pass
of the U-Net at each step of the sampling process, as op-
posed to the two forward passes needed in Asyrp (one for
Pt with injection and one for Dt without the injection). In
SM Sec. B we provide a comparison of the effect of editing
with and without using Asyrp.

The bottleneck activation ht is determined directly
from xt in each step of the generative process. It is worth

S1 S2 S1
(htfrom S2)

S2
(htfrom S1)

(a) Effect of swapping the bottleneck activation.

(b) Vector arithmetic in the semantic latent space.

Figure 2. Illustration of properties of the h-space. (a) Swap-
ping hT :1 between two samples, S1 and S2, swaps the semantic
content without affecting background. (b) Adding the difference
in bottleneck activation hT :1 between a smiling and non-smiling
person results in a smile in a new sample. The result are shown
with strength parameter γ = 1/5.

noting that although most of the high-level semantic con-
tent of the generated image is determined by hT :1, it is not
a complete latent representation in the sense that it does
not completely specify the generated image. We illustrate
this point in Fig. 2a where we swap hT :1 between two sam-
ples while keeping {xT , zT :1} fixed. We observe that swap-
ping hT :1 results in a swap of the high-level semantics, like
the gender, but not the background.

A key property of h-space is that it obeys vector arith-
metic properties which have previously been demonstrated
for GANs by Radford et al. [24]. Specifically, image editing
can be done in h-space as follows. Suppose we have found
a direction vT :1 associated with some semantic content that
we wish to apply to a sample with latent code hT :1. Then
h
(edit)
T :1 = hT :1+γvT :1 is the latent code of the edited image,

where γ controls the strength of the edit. In Fig. 2b we il-
lustrate the vector arithmetic property of h-space by adding
a difference vector which has the semantic effect of adding
a smile.

4. Unsupervised semantic directions

4.1. Principal component analysis

Our first goal is to uncover interesting semantic direc-
tions in an unsupervised fashion. To this end, we first ex-
plore the use of principal component analysis (PCA) in h-
space. In the context of GANs [7], it was shown that the
principal components of a collection of randomly sampled
latent codes result in semantically interpretable editing di-
rections. Here we demonstrate that the same is true for
DDMs if the PCA is performed in the semantic h-space.
Specifically, we consider PCA where we generate n ran-



Figure 3. PCA in the semantic latent space. PCA in h-space pro-
vides a way for discovering disentangled and semantically mean-
ingful directions. Here we show a selection of semantic edits cor-
responding to pose, smile, gender and age.

dom samples and save the bottleneck activation h
(i)
t for

each sample i at all timesteps. Then, for each timestep
t we vectorize {h(i)

t }ni=1 and calculate the principal com-
ponents. We define the editing direction vj as a concate-
nation of the j’th principal component from all timesteps.
To demonstrate our method, we use Diffusers [43] and a
DDPM1 trained on the CelebA [16] data set. Unless stated
otherwise, all results use ηt = 1 during the synthesis pro-
cess.

It can be seen that many principal directions have clear
semantic interpretations, Fig. 3 demonstrates the effect of
several of these directions, including directions correspond-
ing to gender (v1), pose (v2), age (v4), and smile (v10).
Fig. 4a and 4b compares the effect of applying the two
dominant principal components to applying random direc-
tions. For a fair comparison, we set the norm of ∆ht for
the random directions to match that of the principal compo-
nents. While interpolating along principal directions leads
to semantically interpretable edits, shifting along random
directions only induces minor changes to the image at small
scales and rapid degradation of the image at larger scales.

4.2. Discovering image-specific semantic edits

The directions found with PCA are computed based on
many samples and tend to find global changes such as pose
and gender, while more local changes like the closing of the
eyes are absent. The smile direction is the only direction
we observed where the semantic changes are localized to a

1https : / / huggingface . co / google / ddpm - ema -
celebahq-256

(a) Two dominant PCA directions

(b) Random directions

Figure 4. PCA v. random directions While directions found with
PCA have a clear semantic meaning, like pose and gender, inter-
polating along random directions results in only minor changes to
the image when using the same scale. Increasing the scale results
in a degradation of the image.

specific region like the mouth. In the following, we present
a method to find directions that are specific to a single image
and region of interest.

To find directions specific to a single image we wish
to find a set of orthogonal directions in h-space that in-
duce the largest change in the prediction of the clean image
Pt(ϵ

θ
t (xt)) at every timestep. This is equivalent to finding

the directions that change ϵθt (xt) the most (see SM Sec. C).
For small perturbations, these directions are the top right-
hand singular vectors of the Jacobian of ϵθt with respect to
ht. Due to the skip-connections in the U-Net, the output
of the network depends on both xt and ht. Yet, here we
only consider the dependency on the latent variable ht. In
the following, we denote the Jacobian of ϵθt by Jt and its
singular value decomposition (SVD) as

Jt ≜
∂ϵθt (xt,ht)

∂ht
= UtΣtV

T
t . (6)

The right singular vectors corresponding to the largest
singular values, (the columns of Vt) are the set of orthog-
onal vectors in h-space which perturb the predicted image
the most. Note that for each timestep t, we have a different
set of directions. In practice, we find that semantically in-
teresting effects are obtained by applying directions found
at timestep t across all timesteps. Thus, computing k di-
rections per timestep provide us kT potential edits in each
of the T timesteps. In SM Sec. D, we illustrate the qual-
itative difference between directions computed at different
timesteps.



Figure 5. Unsupervised image-specific edits. Spectral analysis of the Jacobian of ϵθt yields directions corresponding to localized changes
in the generated image, e.g. eyes opening/closing and raising of the eyebrows. Although this method is image-specific, directions found
for one sample can be transferred to others, where they result in semantically similar edits.

In practice, calculating Jt directly is computationally ex-
pensive. Instead, we find the dominant singular vectors by
power-iteration over the matrix JT

t Jt, whose eigenvectors
are precisely the right singular vectors of Jt. Each itera-
tion requires multiplication by JT

t Jt, which can be com-
puted without ever storing the Jacobian matrix in memory.
Specifically, for any vector v, the product JT

t Jtv can be
computed as

JT
t Jtv =

∂

∂ht

〈
ϵθt (xt,ht),Jtv

〉
(7)

with

Jtv =
∂

∂a
ϵθt (xt,ht + av)

∣∣∣∣
a=0

. (8)

Our algorithm is summarized in Alg. 1 and uses (7)
to calculate the singular vectors of the Jacobian of an ar-
bitrary vector-valued function f . The algorithm starts by
randomly initializing a set of vectors {vi}ki=1 and iterative
computes (7) using automatic differentiation while enforc-
ing orthogonality among the singular vectors. Importantly,
it was shown that batched power iteration with an orthog-
onalization step, such as presented here, is guaranteed to
converge to the SVD of positive semi-definite matrices [32,
Ch. 5].

Algorithm 1 Jacobian subspace iteration

Input: f : Rdin → Rdout , h ∈ Rdin and V ∈ Rdin×k

Output: (U,Σ,VT) – k largest singular values and singu-
lar vectors of the Jacobian ∂f/∂h
y← f(h)
if V is empty then

V← i.i.d. standard Gaussian samples
end if
Q,R← QR(V) ▷ Reduced QR decomposition
V← Q ▷ Ensures VTV = I
while stopping criteria do

U← ∂f(h+ aV)/∂a at a = 0 ▷ Batch forward
V̂← ∂(UTy)/∂h

V,Σ2,R← SVD(V̂) ▷ Reduced SVD
end while
Orthonormalize U

Regarding implementation, in (7) we compute a deriva-
tive of high dimensional output w.r.t. a scalar. This is effi-
ciently done by utilizing forward mode automatic differen-
tiation. Further, (7) can be calculated in parallel for multi-
ple vectors using the batched Jacobian-vector product, e.g.
in PyTorch. However, parallel calculation of a large num-



Figure 6. Region-specific edits. Given a mask specifying a region of interest, our method can be guided to focus on finding directions
which change only the target area. The first column shows the input with the mask shown in green.

ber of vectors can be memory intensive. For such cases, we
give a sequential variant of Alg.1 in SM, Sec. E.

Our proposed method successfully identifies semanti-
cally meaningful directions that correspond to highly lo-
calized semantic changes in the image, such as closing or
opening of the eyes and mouth, or raising of the eyebrows.
We show a selection of such localized edits at the top of
Fig. 5. While the semantic directions found by this method
are image-specific and may vary depending on the sam-
ple analyzed, we find that they result in the same local-
ized changes when applied across different images. This
is illustrated in the lower part of Fig. 5 where each of the
found editing directions is applied with the same magnitude
γ across a selection of samples. These results suggest that
our approach is effective in identifying meaningful seman-
tic directions that generalize across different images.

If additional information is available in the form of a
mask specifying a region of interest, our method can be nat-
urally extended by applying the mask to the noise prediction
ϵ̃θt in order to find directions in h-space that change a spe-
cific region the most rather than the whole image. We seek
the singular vectors of the Jacobian of the masked output of
the U-net. We define the a masked Jacobian Jmasked

t as

Jmasked
t = ∂ϵ̃θt (xt,ht)/∂ht, (9)

with ϵ̃θt (xt,ht) = ϵθt (xt,ht) ⊙M, where ⊙ denotes the
Hadamard product and M is a binary mask corresponding
to a region of interest. We show examples of such region-
specific edits in Fig. 6 where we apply masking to discover
editing directions corresponding to changes to the eyes, hair
and eyebrows.

5. Supervised discovery of semantic directions
While the methods we presented in Sec. 4 discover inter-

pretable semantic directions in a fully unsupervised fashion,
their effects must be interpreted manually. In this section,
we demonstrate a simple supervised approach to obtain la-
tent directions corresponding to well-defined labels.

Linear semantic directions from examples. The vector
arithmetic property of h-space suggests an intuitive method

for discovering semantically meaningful directions, by pro-
viding positive and negative examples of a desired attribute.
Let {(x−

i ,x
+
i )}ni=1 be a collection of generated images,

such that all x+
i have a desired attribute that is absent in x−

i ,
e.g. a smile, old age, glasses, etc. Let q−

i and q+
i denote

the latent representation corresponding to the images x−
i

and x+
i . Then, we can find a semantic direction v as

v =
1

n

n∑

i=1

(
q+
i − q−

i

)
. (10)

Note that this method can be applied using either hT :1

or xT as the latent variable. However, defining semantic di-
rections using hT :1 as the latent variable requires far fewer
samples than using xT . Figure 8a illustrates this for DDIM
(ηt = 0) for a direction corresponding to smile where (10)
is calculated using a varying number of samples.

Classifier annotation. We now propose to find linear se-
mantic directions by using pretrained attribute classifiers to
annotate samples generated by the model. Using the at-
tribute classifier from [15], we annotate samples with prob-
abilities corresponding to the 40 classes from CelebA [16],
and use Hopenet [30] to predict pose (yaw, pitch, and roll).
We sort the annotated samples according to the attribute
scores and select the samples with the highest and lowest
scores from each class as the positive and negative examples
respectively. We then calculate semantic directions corre-
sponding to the different attributes using the method given
in (10).

As shown in Fig. 7, we can successfully find seman-
tic directions controlling a wide selection of meaningful
attributes like yaw, smile, gender, glasses, and age. Fur-
thermore, directions calculated by (10) can be applied in
combination with one another. For example, adding ∆hT :1

for two attributes, like pose and smile, results in an im-
age where both attributes are changed. Figure 8b illustrates
sequential editing, showcasing changes in expression fol-
lowed by pose, age, and eyeglasses for two samples. In
SM Sec. F we show that this method can be applied to find
directions corresponding to facial expressions using DDIM



(a) Yaw (b) Smile

(c) Gender (d) Pitch

(e) Glasses (f) Age

Figure 7. Single attribute manipulation. Using a domain-
specific binary attribute classifier, we find linear directions in h-
space corresponding to a variety of semantic edits.

inversion and a real facial expression data set [46] as super-
vision.

Disentanglement of semantic directions. Latent direc-
tions found by (10) might be semantically entangled, in the
sense that editing in the direction corresponding to some
desired attribute might also induce a change in some other
undesired attributes. For example, a direction for eye-
glasses may also affect the age if it correlates with eye-
glasses in the training data. To remedy this, we propose
conditional manipulation in h-space in a way similar to
what was suggested in the context of GANs by Shen et
al. [34, 35]. Let v1 and v2 be two linear semantic direc-
tions, where the two corresponding semantic attributes are
entangled. We can define a new direction v1⊥2 which only
affects the semantics associated with v1, without changing
the semantics associated with v2. This is done simply by
removing from v1 the projection of v1 onto v2, namely
v1⊥2 = v1−⟨v1,v2⟩/∥v2∥2v2. In case of conditioning on
multiple semantics simultaneously, our aim is to remove the
effects of a collection of k directions {vi}ki=1 from a primal
direction v0 in order to define a new direction v which only
affects the target attribute. This can be done by concate-
nating the k directions into a matrix V = [v1,v2, · · · ,vk]
and projecting v0 onto the orthogonal complement of the

(a) Editing in h-space vs. using xT .

(b) Sequential manipulation.

Figure 8. Editing properties of h-space. (a) A qualitative com-
parison of the editing effect using xT (top) and hT :1 (bottom) as
the latent variables using a smiling direction found by (10). While
the direction in h-space converges with a few labeled examples,
more than 200 are required to achieve a similar result using xT as
the latent variable. (b) Directions found with our method can be
applied in combination with one another. Here, we sequentially
accumulate four effects, starting from a single effect in the second
column up to four effects in the fifth column.

column space of the matrix V using

v =
[
I−V

(
VTV

)−1
VT

]
v0. (11)

The resulting direction will be disentangled from each of the
directions {vi}, meaning that moving a sample along this
new direction will result in a large change in the attribute
associated with v0 while minimally affecting the attributes
associated with the other directions. Figure. 9 visualizes
the effect of interpolating in the directions of age and eye-
glasses for two samples. As can be seen, these directions are
entangled with gender and age, respectively. By using our
method we can successfully remove the entanglement and
define a direction which only affects age or the presence of
glasses.

To validate the effectiveness of our disentanglement
strategy, we performed an experiment where we edited
attributes corresponding to smile, glasses, age, gender,
and wearing a hat. We edited samples using both the
original and the disentangled directions while measuring
the effect of each edit using CLIP [23] as a zero-shot
classifier. We selected appropriate positive and negative
prompts for each attribute. For smiling, glasses, and hat we
used "A smiling person", "A person wearing



Figure 9. Disentanglement of semantic directions. Given a direction that is entangled with other attributes, we can create a disentangled
direction by removing the projection onto undesired semantics. The top row shows the original direction, whereas the bottom row shows
the disentangled direction.

Table 1. Evaluation of disentanglement strategy. We quantitatively evaluate the effect of disentangling semantic directions using linear
projection. The rows correspond to the applied directions, while the columns correspond to the effect of the edits according to CLIP. We
draw and edit 100 random samples and repeat the experiment 10 times with different seeds and report the mean and standard deviations.
The strongest effect in each row is highlighted.

Edit
Effect

Smile Glasses Age Gender Hat Smile Glasses Age Gender Hat

Original directions Disentangled directions
Smile 0.26±0.02 0.29±0.02 0.08±0.02 0.31±0.04 0.07±0.01 0.24±0.02 0.20±0.02 0.04±0.02 0.09±0.03 0.03±0.01
Glasses 0.48±0.02 0.32±0.02 0.68±0.03 0.66±0.04 0.14±0.02 0.22±0.01 0.38±0.02 0.13±0.02 0.07±0.03 0.36±0.02
Age 0.07±0.01 0.40±0.03 0.74±0.03 0.66±0.04 0.18±0.01 0.02±0.02 0.38±0.03 0.59±0.04 0.16±0.03 0.04±0.02
Gender 0.40±0.02 0.28±0.03 0.58±0.03 0.66±0.04 0.09±0.02 0.20±0.02 0.01±0.01 0.08±0.02 0.39±0.03 0.07±0.02
Hat 0.42±0.02 0.39±0.02 0.37±0.03 0.66±0.04 0.41±0.02 0.13±0.01 0.03±0.03 0.02±0.03 0.02±0.09 0.44±0.02

glasses" and "A person wearing a hat" for
the positive prompts respectively, and "A person" as the
negative prompt. For age and gender, we used "A man"
/ "A woman" and "An old person" / "A young
person" respectively. For each sample, we edited each
of the five attributes and measured the change in attribute
score according to CLIP. Table 1 shows the results. We
can see that the original directions are highly entangled
with other attributes while the disentangled directions in-
duce the largest changes in the intended attributes. This
demonstrates that semantic directions can be disentangled
by a simple linear projection.

6. Discussion and conclusion

We presented several supervised and unsupervised meth-
ods for finding interpretable directions in the recently pro-
posed semantic latent space of Denoising Diffusion Models.
We showed that the principal components in latent space
correspond to global and semantically meaningful editing
directions like pose, gender, and age. Additionally, we pro-
posed a novel method for discovering directions based on a
single input image. These directions correspond to highly

localized changes in generated images, such as raising the
eyebrows or opening/closing the mouth and eyes. Although
these directions were found with respect to a specific image
they can be transferred to different samples.

As our proposed methods enable high-quality editing of
face images, we provide a broader impact statement in SM
Sec G. Although our unsupervised approaches are effec-
tive in discovering meaningful semantics when the DDM
was trained on aligned data like human faces, we found
that models trained on less structured data have less inter-
pretable principal directions. We refer the reader to SM
Sec. H for experiments on models trained on churches and
bedrooms.

Further, we proposed a conceptually simple supervised
method utilizing the linear properties of the semantic latent
space. We showed that a diverse set of face semantics can
be revealed using an attribute classifier to annotate samples.
Finally, we demonstrated that simple linear projection is an
effective strategy for disentangling otherwise correlated se-
mantic directions. All of our proposed methods apply to
pretrained DDMs without requiring any adaptation to the
model architecture, fine-tuning, optimization, or text-based
guidance.
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Zöllhofer, and Christian Theobalt. StyleRig: Rigging Style-
GAN for 3d control over portrait images. In Proc. CVPR).
IEEE, June 2020. 2

[41] Narek Tumanyan, Michal Geyer, Shai Bagon, and
Tali Dekel. Plug-and-play diffusion features for text-
driven image-to-image translation. arXiv preprint
arXiv:2211.12572, 2022. 1

[42] Dani Valevski, Matan Kalman, Yossi Matias, and Yaniv
Leviathan. Unitune: Text-driven image editing by fine tuning
an image generation model on a single image, 2022. 2

[43] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro
Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj,
and Thomas Wolf. Diffusers: State-of-the-art diffusion
models. https://github.com/huggingface/
diffusers, 2022. 4

[44] Xin Wang, Hui Guo, Shu Hu, Ming-Ching Chang, and Si-
wei Lyu. Gan-generated faces detection: A survey and new
perspectives. ArXiv, abs/2202.07145, 2022. 19

[45] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace
analysis: Disentangled controls for StyleGAN image gener-
ation. In Proc. CVPR, Dec 2020. 2

[46] Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and M.J.
Rosato. A 3d facial expression database for facial behavior
research. In 7th Intern. Conf. on Automatic Face and Gesture
Recognition (FGR06), pages 211–216, 2006. 7, 19

[47] Jiapeng Zhu, Ruili Feng, Yujun Shen, Deli Zhao, Zhengjun
Zha, Jingren Zhou, and Qifeng Chen. Low-rank subspaces
in GANs. In Advances in Neural Information Processing
Systems (NeurIPS), 2021. 2



Supplemental Materials

A. Illustration of h-space.
In this paper, we define h-space as the space of bottleneck activations ht across each of the T timesteps in the synthesis

process. See illustration in Fig.10. Each downsampling block increases the number of channels while decreasing the spacial
dimension of the feature maps. In our case, using the pretrained DDPM model trained on CelebA released by Google2. The
input pixel space has dimensions (3, 256, 256) and the deepest feature map has dimensions (512, 8, 8). Thus an element of
h-space, hT :1, has dimensions (T, 512, 8, 8) and is defined as

hT :1 = hT ⊗ hT−1 ⊗ · · · ⊗ h2 ⊗ h1. (12)

We apply directions in h space by perturbing hT :1 with some offset as hT :1 +∆hT :1 during the generative process in (2).
When ηt ̸= 0 the clean image is completely specified by the triple (xT , zT :1,∆hT :1) and for ηt = 0 (DDIM) it is determined
by the tuple (xT ,∆hT :1).

Downsample

+Middle
Block Upsample

Upsample

Upsample

Upsample

Downsample

Downsample

Downsample

-space

Figure 10. Illustration of h-space. In this paper, we define the semantic latent space of DDMs as the activation after the deepest bottleneck
layer of the U-Net.

2https://huggingface.co/google/ddpm-ema-celebahq-256



B. The effect of Asyrp
In the main text, we stated that using Asyrp [14] acts to amplify the effect edits in h-space. However, Asyrp is computa-

tionally costly since it requires two forward passes of the U-Net at each denoising step. Hence, Asyrp is not used for any of
the results shown in the main paper. In Figs. 11 and 12 we qualitatively compare edits with and without using Asyrp. We
observe that simply adjusting the scale of the applied direction results in very similar edits.

(a) Eyes (b) Mouth

Figure 11. The Effect of Asyrp. Results are shown for directions found with Alg. 1.

(a) Age (b) Rotation

(c) Gender (d) Glasses

Figure 12. The effect of Asyrp. Results are shown for directions found using the supervised method presented in Sec. 5.



C. A Note on image-specific directions
In the main paper, we state that the right singular vectors of the Jacobian of ϵθt with respect to h-space, denoted as Jt, are

the set of orthogonal vectors in h-space which perturb the noise prediction ϵθt the most. An equivalent statement is that those
right singular vectors perturb the predicted image Pt(xt,ht) at timestep t the most. Specifically, since

Pt(xt,ht) =
xt −

√
1− αt√
αt

ϵθt (xt,ht) (13)

we have that

∂

∂ht
Pt(xt,ht) = −

√
1− αt√
αt

∂

∂ht
ϵθt (xt,ht) = −

√
1− αt√
αt

Jt. (14)

Thus, the eigenvectors of (∂Pt/∂ht)
T(∂Pt/∂ht) and JT

t Jt are the same with the same ordering.



D. Image-specific directions at different timesteps
Our proposed image-specific unsupervised method in Alg. 1 finds different directions for each timestep. In Figures 13,

14, 15 and 16 we show the effect of the three dominant directions (the three top singular vectors of the Jacobian) at different
timesteps along the reverse diffusion process.

Figure 13. Directions found by Alg. 1.



Figure 14. Directions found by Alg. 1.



Figure 15. Directions found by Alg. 1.



Figure 16. Directions found by Alg. 1.



E. Sequential algorithm for Jacobian subspace iteration

As mentioned in the main text, Alg. 1 can be memory intensive when calculating a large number of singular vectors in
parallel. In cases where limited memory is available, we provide an alternative sequential version of our method in Alg. 2.
Here we calculate the singular values and vectors in mini-batches of size b. The value of b should be set according to the
parallel computation capacity. For example, in the special case of b = 1, the algorithm computes the vectors one by one and
will use small memory. Note that lowering the mini-batch size b comes at the expense of longer running time.

Algorithm 2 Sequential Jacobian subspace iteration

Input: function to differentiate f : Rdin → Rdout , point at which to differentiate h ∈ Rdin , initial guess Θ ∈ Rdin×k [optional],
mini-batch size b < k

Output: (U,Σ,VT) – k top singular values and vectors of the Jacobian ∂f/∂h
Initialization: y← f(h), istart ← 1, iend ← b, V← [ ], Σ← [ ], U← [ ]
while istart ≤ k do

if Θ is empty then
Φ← i.i.d. standard Gaussian samples in Rdin×(iend−istart+1)

else
Φ← columns istart to iend of Θ

end if
Q,R← QR(Φ) ▷ Reduced QR decomposition
Φ← Q ▷ Ensures ΦTΦ = I
while stopping criterion do

if V is not empty then
Φ←

[
I−V

(
VTV

)−1
VT

]
Φ

Φ,R← QR(Φ) ▷ Reduced QR decomposition
end if
Ψ← ∂f(h+ aΦ)/∂a at a = 0 ▷ Batch forward
Φ̂← ∂(ΨTy)/∂h

Φ,S,R← SVD(Φ̂) ▷ Reduced SVD
end while
V← [V;Φ]

Σ←
[
Σ 0
0 S1/2

]

U← [U;Ψ]
istart ← istart + b
iend ← min{iend + b, k}

end while
Orthonormalize U



F. Facial expressions from real data.
We conducted an additional experiment where domain-specific semantic directions were extracted using real images as

supervision. We wish to find directions corresponding to expressions like happiness, sadness, and surprise. Here we used
the BU3DFE data set [46]. BU3DFE contains real images of 100 subjects, each performing a neutral expression in addition
to each of the prototypical facial expressions at various intensity levels. Using DDIM inversion (ηt = 0) we recorded
hT :1 during the inversion process and used (10) to calculate directions. We used the most intense expressions for the positive
examples and the neutral expressions for the negative examples. The effect of the directions found using our method is shown
in Fig. 17. The extracted directions are shown on generated samples. The figure shows that latent directions in h-space can
successfully be found by applying our supervised method presented in Sec. 5 on a dataset of real images.

Figure 17. Facial expressions from real data. We extract semantic directions corresponding to different facial expressions using a data
set of real images. The directions are calculated via DDIM inversion and applied in the semantic h-space to synthetic images.

G. Broader impact
In this paper, we have introduced several techniques for semantic editing of human faces using DDMs. While the creation

of high-quality edited images that are difficult to distinguish from real images has significant positive applications, there is
also the potential for malicious or misleading use, such as in the creation of deepfakes. Although some research has focused
on detecting and mitigating the risk of AI-edited images, these have mostly focused on GANs [44] and, so far, there has
been little research into detecting images that have been edited using DDMs. Given the differences in the generative process
between DDMs and GANs, methods which are effective in detecting images edited by GANs might not be as effective for
images edited by DDMs [17]. Further research is needed to develop effective methods for forensic analysis of edits using
DDMs. Such research could help address the risk of malicious use of image-editing technologies.



H. Unsupervised methods on other domains

In addition to the model3 trained on CelebA, which is used throughout the main paper, we also conducted experiments
with models trained on churches4 and bedrooms5. Although the unsupervised directions found with both PCA and Alg. 1 on
these models lead to various changes to the images, these directions are less interpretable than those obtained for faces in the
main paper. We showcase the first 5 PCA directions on the models trained on churches and bedrooms in Figures 18 and 19
and directions found using Alg. 1 in Figures 21 and 20.

Figure 18. PCA directions. For a DDM trained on churches.

3https://huggingface.co/google/ddpm-ema-celebahq-256
4https://huggingface.co/google/ddpm-ema-church-256
5https://huggingface.co/google/ddpm-ema-bedroom-256



Figure 19. PCA directions. For a DDM trained on bedrooms.



Figure 20. Directions found with Alg. 1. For a DDM trained on bedrooms.



Figure 21. Directions found with Alg. 1. For a DDM trained on churches.
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