
PhD Thesis

Bio-Inspired Approaches to Adaptive
Artificial Agents

A thesis submitted in compliance with the requirements for the degree
of Doctor of Philosophy

by

Joachim Winther Pedersen

Supervisor:
Sebastian Risi

Date:
July 31st 2023

Department of Digital Design
IT University of Copenhagen

ii

Abstract
Despite significant recent advances, artificial agents are still far behind bio-
logical agents in their abilities to adapt to novel and unexpected situations.
This thesis contributes to the field of adaptive artificial agents, taking in-
spiration from biology to develop new methods that extend the capabilities
of artificial agents controlled by neural networks. Several methods are in-
troduced: (a) An algorithm, named Evolve & Merge, that progressively de-
creases the number of plasticity rules used to update the synapses of a neural
network until the number of rules is orders of magnitude smaller than the
number of rules. This is done without diminishing the agent’s performance
and without extending the overall training time; (b) A parameterization of
neurons in a neural network that makes each neuron a tiny dynamical system.
These neurons are shown to be expressive enough to solve several reinforce-
ment learning (RL) tasks even when no synapses are optimized and only
the parameters of the neurons are evolved in random neural networks; (c) A
meta-learning framework that optimizes a network to provide a reward signal
for an RL agent. The evolved reward signal is shown to enhance the training
stability of the RL agent as well as enable the agent to maintain performance
in novel circumstances through continued optimization with the evolved re-
ward signal; (d) A demonstration of the minimal requirements for agents to
become invariant to permutations of the input elements as well as the size
of the input and output vectors; (e) A framework, named Structurally Flexi-
ble Adaptive Neural Networks (SFANN) that combines ideas from the earlier
contributions of the thesis. SFANNs have a small number of plasticity rules,
parameterized dynamic neurons, the ability to learn from rewards, and are
flexible in the structure both when it comes to the input and output, and
the hidden layers. This framework is put forward as a method that can be
optimized in environments of different input and output dimensions to even-
tually allow a single set of parameters to serve as a general learner across
many contexts.

iii

Resumé
Trods betydelige fremskridt er kunstige agenters evner til at tilpasse sig nye
og uventede situations stadig langt bagud i forhold til biologiske agenter.
Denne afhandling henter inspiration fra biologi til at udvikle nye metoder
der udvider evnerne hos kunstige agenter styret af neurale netværk. Denne
afhandling bidrager med flere nye metoder: (a) En algoritme, kaldet Evolve
& Merge, som gradvist reducerer antallet af plasticitetsregler, der bruges til
at opdatere synapserne i et neuralt netværk, indtil antallet af regler er mange
størrelsesordener mindre end antallet af synapser. Dette gøres uden at for-
ringe agentens ydeevne og uden at forlænge den samlede træningstid; (b)
En parameterisering af neuroner i et neuralt netværk, der gør hver neuron
til et lille dynamisk system. Disse neuroner viser sig at være i stand til at
løse flere reinforcement learning (RL) -opgaver, selv når ingen synapser er
optimeret, og kun neuronerne udvikles i tilfældige neurale netværk; (c) En
meta-læringsmetode, der optimerer et netværk til at give et belønningsig-
nal til en RL-agent. Det optimerede belønningsignal forbedrer træningssta-
biliteten for RL-agenten og giver mulighed for, at agenten kan opretholde sin
præstationsevne under nye omstændigheder ved fortsat optimering med det
optimerede belønningsignal; (d) Demonstration af de minimale krav for agen-
ter for at gøre dem invariante over for permutering af inputelementerne såvel
som størrelsen af input- og outputvektorerne; (e) En metode kaldet Struc-
turally Flexible Adaptive Neural Network (SFANN), der kombinerer ideer fra
afhandlingens tidligere bidrag. SFANN bruger et lille antal plasticitetsregler,
parameteriserede dynamiske neuroner, belønnings-baseret læring og er flek-
sibel i strukturen, både når det kommer til input, output og de skjulte lag i
netværket. Denne fremgangsmåde foreslås som en metode, der kan optimeres
i miljøer med forskellige input- og outputdimensioner for med tiden at tillade,
at et enkelt sæt af parametre fungerer som en generel læringsmekanisme på
tværs af mange kontekster.

iv

Denne afhandling er dedikeret til min familie, mine forældre, mine brødre
Rasmus og Laurits og til min elskede Monica.

v

Acknowledgements
Working on this thesis has been my dream job and I have been privileged to
have had the opportunity to work with many kind and interesting people. I
would first and foremost like to thank my supervisor Professor Sebastian Risi
who has given me extraordinary advice, inspiring ideas, and steady support
throughout my time as a PhD student. His mentorship has played a pivotal
role in shaping the outcome of this thesis. I am also indebted to the Robotics
Evolution and Art Lab (REAL) and the Creative AI Lab at ITU for fostering
a positive and conducive work environment.

I would like thank Andrea Soltoggio and his students, Eseoghene Ben-Iwhiwhu,
Saptarshi Nath, and Christos Peridis for welcoming me into their group for
my stay abroad. I am truly grateful for the opportunity to work with them.

Further, I would like to express my gratitude to everyone I had the chance to
work with on different projects and from whom I have learned a lot. These
include Weiyi Zou, Djordje Grbic, Rasmus Berg Palm, Worasuchad ”Happy”
Haomachai, and Binggwong Leung.

I would also like to extend a special appreciation to Vibe Qvist Mathiasen and
Julie Tweddell Jacobsen, who have worked as an outstanding PhD Support
team. Their assistance and dedication have always been extremely helpful
and it has been invaluable knowing that I could always come to PhD Support
with any questions.

Lastly, I am grateful to the Independent Research Fund Denmark (Danmarks
Frie Forskningsfond) for funding the research of this PhD thesis.

vi

Table of Contents

Abstract . iii
Resumé . iv
Acknowledgements . vi

1 Introduction 1

2 Background 7
2.1 Artificial Agents and Environments 7
2.2 Neural Networks . 8
2.3 Reinforcement Learning . 11
2.4 Bio-Inspired Optimization: Neuro-Evolution 13
2.5 Meta-Learning . 18

3 Mapping Loss Landscapes of Meta-Learning 25
3.1 Optimizing a Starting Point 31
3.2 Optimizing Loss Landscapes 44
3.3 Optimizing an Optimizer . 59
3.4 Putting it All Together . 61

4 Evolving and Merging Hebbian Learning Rules 64
4.1 Approach . 67
4.2 Results . 71
4.3 Discussion . 75
4.4 Conclusion . 81

5 Learning to Act through Evolution of Neural Diversity in
Random Neural Networks 83
5.1 Related Work . 85
5.2 Evolving Diverse Neurons in Random Neural Networks 87

vii

5.3 Experiments . 89
5.4 Results . 92
5.5 Discussion and Future Work 98

6 Evolution of an Internal Reward Function for Reinforcement
Learning 101
6.1 Related Work . 103
6.2 Approach: Evolving Internal Reward for Reinforcement Learn-

ing . 105
6.3 Experiments . 107
6.4 Results . 111
6.5 Discussion . 118
6.6 Conclusion . 121

7 Minimal Neural Network Models for Permutation Invariant
Agents 122
7.1 Related Work . 123
7.2 Approach: A Minimal Neural Model for Permutation Invariance126
7.3 Experiments . 127
7.4 Results . 134
7.5 Discussion . 137
7.6 Conclusion . 141

8 Evolution of Structurally Flexible Adaptive Neural Networks:
Toward a Model for General Learners 143
8.1 Related Work . 145
8.2 Structural Flexibility through Parameter Sharing Neuron and

Synapse Classes . 147
8.3 Experiments . 155
8.4 Results . 158
8.5 Discussion and Future Work 163

9 General Discussion and Future Research 169
9.1 General Discussion . 169
9.2 Future Research . 179

10 Conclusion 185

Bibliography 187

viii

Appendix 213
A Appendix Section 1 . 213

ix

x

Chapter 1

Introduction

The ability to adapt to the environment is critical for any agent in the real
world. Agents that can only function in circumstances that are exactly like
those in an original training set are of limited use. The world is full of
possible interactions between objects and agents in ever-expanding and un-
predictable ways. Evolution has since the beginning of life created creatures
of an enormous variety of shapes, sizes, and behavioral niches. With more
complex creatures came increased needs for motor control and perception of
the world, which was accompanied by a growing nervous system, nature’s
ultimate adaptation machine.

One of the long-standing challenges of artificial intelligence (AI) research
is to create artificial agents that can cope with varying environments at the
same level as animals. An early idea meant to bring these capabilities to
machines is that of connectionism. From McCulloch-Pitts neurons from the
1940s to the deep artificial neural networks (ANNs) with billions of parame-
ters of today, the idea of weighting and integrating information as a primary
means to make machines more intelligent has come a long way.

The past decade has seen much progress in the research fields of deep
learning (Schmidhuber, 2015; LeCun et al., 2015; Arulkumaran et al., 2017;
Chauhan and Singh, 2018; Tay et al., 2022), and robotics (Pierson and Gash-
ler, 2017). Using large data sets, neural networks have achieved state-of-the-
art performance in domains such as computer vision (Voulodimos et al., 2018;
Khan et al., 2022), natural language processing (Wolf et al., 2020), sequence
modeling (Salehinejad et al., 2017), and speech recognition (Nassif et al.,
2019). At the same time, detailed simulators of robots have enabled im-
mense speed-ups in collecting trajectories of moving robots (Collins et al.,

1

Chapter 1 | Introduction

2021; Choi et al., 2021).
However, a pervasive challenge for ANNs is their immense need for train-

ing data. Another is that ANNs after training can be vulnerable to failures
if the incoming data comes from a different distribution than the training
data. These challenges are especially limiting to the development of artificial
agents meant to interact with complex environments. First, in a complex
environment, out-of-distribution (OOD) events can occur at a frequent level,
as it is not possible to plan for every single contingency and include it in the
training data of the agent. Second, if the agent needs an extensive fine-tuning
time every time a distributional shift occurs it will be at risk of always being
behind and thus not able to exhibit useful behavior.

One framework that attempts to mitigate these challenges for artificial agents
is called meta-learning, i.e., learning to learn. Several approaches exist to
meta-learning. For some, the goal is to decrease the length of the adaptation
phase when a distributional shift has occurred, or a novel task is encountered.
For others, the goal is to let the network change a subset of its parameters
continually so that the agent can adapt to the environment online. In either
case, common for meta-learning approaches is that they consist of a double
optimization loop. The idea is that the outer-loop optimization process only
must be done once, allowing for inner-loop optimization to be run efficiently
whenever needed in the future, or as a continual process for the rest of the
agent’s lifetime. Chapter 3 will revolve around the concept of meta-learning
and how the loss landscapes of the two loops interact with each other during
optimization. Using small experiments to visualize loss landscapes, the goal
of Chapter 3 is to demonstrate that the parameters optimized in the outer-
loop can affect the loss landscapes of the inner-loop parameters in one or
more of three different manners. It is argued that categorizing meta-learning
approaches in terms of how the outer-loop parameters affect the inner-loop
loss landscape might be a useful alternative to the traditional focus on the
type of optimizer used in the inner-loop.

Meta-learning is a broad framework that is not limited to approaches inspired
by biology. While ANNs were originally inspired by the brain, they differ
from biological neural networks on several key points. One crucial difference
is that most ANNs have their connection strengths trained during a training
phase, after which they stay fixed forever. Biological neural networks on
the other hand undergo changes throughout their lifetimes. The framework

2

Chapter 1 | Introduction

of Evolved Plastic Artificial Neural Networks (EPANNs) (Soltoggio et al.,
2018) aims to incorporate the plasticity – and thereby the adaptability –
of biological neural networks into artificial agents. The brain architectures
found in biological agents have been shaped by evolution throughout millions
of years (Breedlove and Watson, 2013). The specific wiring of the synapses
within each individual brain is a result of learning to adapt to sensory input,
faced within the lifetime of the individual (Power and Schlaggar, 2017; Stiles,
2000; Greenough and Black, 2013). Chapter 4 contributes to the EPANN
framework by introducing the Evolve and Merge method. Here, a neural
network is initialized with a unique parameterized synaptic learning rule
for each of its synapses. These are optimized using evolution. However,
these learning rules are during evolution clustered together with other similar
rules, so that the number of unique rules gradually decreases, resulting in a
parameter space that is just a fraction of the original size.

The work presented in this chapter was peer-reviewed and published as a
conference paper: Pedersen, J. W., & Risi, S. (2021). Evolving and merging
Hebbian Learning Rules: Increasing Generalization by Decreasing the Num-
ber of Rules. In Proceedings of the Genetic and Evolutionary Computation
Conference (pp. 892-900).

Brains of animals are characterized by the presence of neurons of many dif-
ferent classes (Lillien, 1997; Soltesz et al., 2006). Each neural class has been
shaped by evolution to contain unique properties that allow the processing
of incoming signals in different manners. Further, biological neurons are dy-
namical systems, capable of integrating information over time and respond-
ing to inputs in a history-dependent manner (Sekirnjak and Du Lac, 2002;
Izhikevich, 2003, 2007; Wasmuht et al., 2018). Whereas the evolutionary
optimization of biological neural networks has resulted in networks having
multiple classes of recurrent processors, artificial neural networks (ANNs)
tend to contain homogeneous activation functions, and optimization is most
often focused on the tuning of synaptic weights.

Information in neural networks spreads through many synapses and con-
verges at neurons. Given that a single biological neuron is a sophisticated
information processor in its own right (Marder et al., 1996; Beaulieu-Laroche
et al., 2018; Beniaguev et al., 2021), it might be useful to reconsider the
extreme abstraction of a neuron as being represented by a single scalar, and
an activation function that is shared with all other neurons in the network.
This is exactly the goal of Chapter 5. Here, a parameterization of neurons

3

Chapter 1 | Introduction

in a neural network is introduced that turns neurons into tiny dynamical
systems that are updated in parallel. The evolved neurons can respond in
diverse manners to the same incoming inputs and this expressiveness lets the
neural networks with optimized neurons solve several reinforcement learning
tasks without optimizing the weights of the networks.

The work in this chapter was peer-reviewed and published as a confer-
ence paper: Pedersen, J. W., & Risi, S. (2023). Learning to Act through
Evolution of Neural Diversity in Random Neural Networks. In Proceedings
of the Genetic and Evolutionary Computation Conference (pp. 1248-1256).

One component of the ability to adapt to one’s environment is to recognize
the differences between useful and maladaptive behavior. Sub-systems of
biological nervous systems have evolved mechanisms that convert sensory
input to feedback signals used to guide future behavior. Internal reward
systems are important as there exist no actions in complex environments
that are objectively beneficial regardless of the circumstances. Agents thus
need to not only have systems that can decide what to do next but also
systems that can motivate behavioral changes going forward. Examples of
this include the evolved taste perception of many species and the interaction
different tastes have with dopaminergic networks that support the learning
of food preferences (Sclafani et al., 2011; Waddell, 2013; Beauchamp, 2016).
Further, some studies have shown that there are motivational neural circuits
in the brain of animals located in the limbic system and striatum (Chau
et al., 2004; Price and Drevets, 2012). These motivational neural circuits
receive and integrate multiple types of information to generate reward and
punishment signals and allow the animal brain to perform reinforcement
learning processes based on these internal signals (Averbeck and Costa, 2017;
Neftci and Averbeck, 2019). Chapter 6 of this thesis presents a series of
experiments where a small recurrent neural network is evolved to provide
a reward signal to a reinforcement learning agent. The results show that
the evolved learning signal results in enhanced training stability and in some
experiments a better recovery of performance after a distributional shift.

A shortened version of the work presented in this chapter was published
and presented at GECCO’23: Zou, W., Pedersen, J. W., & Risi, S. (2023).
Evolution of an Internal Reward Function for Reinforcement Learning. Com-
panion to the Proceedings of the Conference on Genetic and Evolutionary
Computation (GECCO Companion 2023).

4

Chapter 1 | Introduction

A different type of flexibility found in biological neural networks that is miss-
ing in most ANNs is structural flexibility. The fact that the parameters of
an optimized ANN are strictly tied to their specific indices in the network
architecture, also means that they are dependent on the elements of the ex-
ternal inputs always being presented in the same ordering. There are several
downsides to this inflexibility. First, we might not always know beforehand
the number of inputs that are ideal for our model. Ideally, we would be able
to add a new sensor and the model would during deployment figure out how
to integrate that information. However, most neural architectures do not
easily allow this, and we would be forced to start all over if we wanted to
incorporate the new input.

Additionally, there might be cases where we cannot guarantee that inputs
to our model will always arrive in the same order as during the optimization
phase. When parameters are tied to the indices of the ANN, any permuta-
tion of the input elements might be catastrophic. Recently, multiple methods
have been proposed to mitigate the inflexibility of ANNs and make them in-
variant to permutations of inputs (Tang and Ha, 2021; Kirsch et al., 2021).
In these studies, it was also found that the properties of invariance to per-
mutations and changes in the size of the input vector were accompanied by
extra robustness of the models to unseen perturbations after training. In
Chapter 7, the minimal requirements that must be fulfilled in order to con-
struct a neural network model that is invariant to permutations and the size
of the inputs are identified. Such models are then constructed and tested
along with different ablations to demonstrate the invariance properties of
these minimal models.

The work in this chapter was peer-reviewed and published as a conference
paper: Pedersen, J. W., & Risi, S. (2022). Minimal neural network models
for permutation invariant agents. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (pp. 130-138).

An idea that underpins this thesis is that incorporating properties into our
ANNs such that they become more flexible, both in terms of synaptic plastic-
ity and network structure, will result in enhanced opportunities for optimiz-
ing agents with general learning capabilities. For this reason, the framework
of Structural Flexible Adapting Neural Networks (SFANNs) is presented in
Chapter 8 with a small series of experiments that serve as a proof-of-concept
of the potential of the approach. Using ideas from earlier chapters and build-
ing on the Variable Sharing Meta-Learning framework by Kirsch and Schmid-

5

Chapter 1 | Introduction

huber (Kirsch et al., 2019), networks are evolved that after evolution can be
freely reconfigured and use a reward signal to organize into a functional net-
work, even for environment variations that were never seen during evolution.
This type of network has more properties in common with biological neural
networks compared to normal ANNs. Namely, SFANNs consist of dynamical
neurons and plastic synapses of different classes. By focusing on evolving the
parameters of these building blocks rather than the parameters of a specific
network architecture, the freedom is gained to put together a network of any
size after evolution.

Chapter 9 contains a general discussion of the topics and approaches that
have themed the thesis, and Chapter 10 contains the overall conclusion.
First, Chapter 2 will provide a brief introduction to the topics that are fun-
damental to this thesis.

6

Chapter 2

Background

This chapter will provide introductions to areas that the experiments in later
chapters are based on. These areas include neural networks, reinforcement
learning, evolution algorithms, and meta-learning. First, a small section will
introduce the basic terminology of artificial agents and their environments.

2.1 Artificial Agents and Environments
An agent is an entity that interacts with its environment. It has the ability
to perceive and comprehend information from the environment, subsequently
taking actions that impact the state of its surroundings. As a result, these
alterations in the environment reciprocally influence the agent’s future per-
ceptions.

In the case of an artificial agent, its actions are governed by a controlling
model, typically a neural network, responsible for interpreting environmental
inputs and generating appropriate responses. Throughout this thesis, artifi-
cial agents will always be controlled by various types of neural networks.

Environments can range from simple virtual ones to the real world. One
crucial aspect is that the state of an environment depends on its past his-
tory. Alternatively, an environment may consist of static structures such
as mazes or grids, with the only dynamic element being the agent’s chang-
ing perspective over time. In either case, temporal consistency remains a
significant characteristic of any environment. Additionally, environments
are typically designed with specific tasks or objectives that agents must ac-
complish through their actions. Some environments are episodic, wherein

7

Chapter 2 | Background

the environment is reset after a fixed number of time steps or following the
agent’s successful completion or failure of a task.

The lifetime of an agent spans the entire duration during which the agent
operates and undergoes evaluation. This period may encompass multiple
episodes and tasks within a particular environment, and the agent might
traverse through various environments over its lifetime.

2.2 Neural Networks
Neural networks and deep learning are sub-fields of machine learning that
draw inspiration from the structure and functioning of the human brain (Mc-
Clelland et al., 1987). With enough data, artificial neural networks (ANNs)
can be optimized, or trained, to solve complex tasks, surpassing traditional
machine learning algorithms in various domains. This section will provide a
brief introduction to feedforward neural networks, which is the simplest deep
learning architecture, and which lays the foundation for all methods used in
Chapters 3 to 8.

A feedforward neural network is a directed acyclic graph that consists
of interconnected layers of artificial neurons, also known as nodes or units
(Goodfellow et al., 2016). The flow of information within the network moves
strictly in a forward direction, from the input layer to the output layer,
without any feedback loops. When information reaches a layer of a neural
network, we say that the neurons in the layer become activated. This simply
means that a value is calculated for each neuron based on the incoming infor-
mation, and this value corresponds to the level of activation of the neuron.
Between each layer of neurons is a matrix, known as a weight matrix, that de-
termines the strength of the connection between each of the sending neurons
to each of the receiving neurons. The strength of a connection, also known
as a weight, is represented by a single scalar in the matrix. The weights thus
determine the communication between layers and shape the information as
it is propagated forward through the network. Together, the weights in a
neural network form a parameterized function, and it is the weights that
are subject to optimization when training a neural network. In biological
neural networks, connections between neurons are referred to as synapses.
Along with the weights of a neural network, another set of parameters that
are optimized during the training of a neural network are called the biases.
A bias is a scalar, and each neuron in a feedforward neural network has a

8

Chapter 2 | Background

bias associated with it. The bias contributes to the level of activation of the
neuron in addition to the sum of incoming values coming from neurons of
a previous layer. The input layer of a neural network is special in that the
input neurons have no biases. The input simply passes the input features
forward without any computation, and the output of the input layer is thus
the input vector itself.

Practically, information is propagated from input to output using matrix
multiplication. The weighted sum zl+1 of the inputs al to each neuron in
layer l + 1 is computed as follows:

zl+1 = Wl+1 · al + bl+1

Here, ”·” represents matrix multiplication. The matrix multiplication be-
tween the weight matrix Wl+1 and the input vector al performs the summa-
tion of weighted inputs from the previous layer. The bias term bl+1 is added
element-wise. After information is propagated through a weight matrix,
and the biases have been added, a non-linear activation function is applied
element-wise to neurons of the receiving neurons. Activation functions facili-
tate the network’s ability to approximate non-linear functions by introducing
non-linearity in the network’s computations. By making the transformation
of information between layers non-linear they enable the neural network to
capture and represent patterns and dependencies that are not linear within
the data. Many different activation functions exist with commonly used ones
being the ReLU function and the hyperbolic tangent function.

The choice of activation function also impacts the training of the neural
network. Most commonly, neural networks are optimized in a process called
backpropagation. This process involves the iterative adjustment of the net-
work’s weights to minimize a defined loss or error function. The error is
computed by comparing the network’s output with the desired output, for
example a labels to inputs that need to be classified. The gradients of the loss
function with respect to the network’s weights are calculated using the chain
rule and propagated backward through the network. Gradient descent can be
used to update the weights and the biases of the network to minimize the loss
and improve the network’s performance. An alternative to backpropagation
is the use of neuro-evolution, described in Section 2.4 below.

9

Chapter 2 | Background

2.2.1 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a class of ANNs specifically designed
to process sequential data by incorporating feedback connections (Salehine-
jad et al., 2017). In contrast to traditional feedforward neural networks,
which treat input data as independent instances, RNNs possess an internal
memory that allows them to retain and utilize information from previous
time steps. This capability enables RNNs to effectively model temporal de-
pendencies and learn from sequential patterns, making them highly valuable
in domains such as natural language processing, speech recognition, and time
series analysis.

In simple RNNs, the internal memory can simply be activations that are
fed back into the input of the network or concatenated to one of its internal
representations. Many architectures of RNNs exist (Yu et al., 2019) with
varying levels of sophistication of how the internal memory is maintained
and updated. Two commonly used architectures are called Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent
Unit (GRU). These are used in experiments in Chapter 8 and Chapter 7,
respectively. These two differ slightly from each other in their architectures
but are known to have similar performances.

Here are the equations that define the operations within an LSTM cell:

it = σ(Wi[ht−1,xt] + bi), (2.1)

ft = σ(Wf [ht−1,xt] + bf), (2.2)

ot = σ(Wo[ht−1,xt] + bo), (2.3)

gt = tanh(Wg[ht−1,xt] + bg), (2.4)

ct = ft⊙ ct−1 + it ⊙ gt, (2.5)

ht = ot ⊙ tanh(ct), (2.6)

Here, σ represents the sigmoid activation function and tanh represents
the hyperbolic tangent activation function. it is the input gate, ft is the
forget gate, and ot is the output gate. gt is used to update the cell state, ct is
the cell state, and ht is the hidden state at time step t. Wi, Wf , Wo, and Wg

are weight matrices. bi, bf , bo, and bg are bias vectors. ht−1 and xt represent
the previous hidden state and current input at time step t, respectively. ⊙
denotes element-wise multiplication.

10

Chapter 2 | Background

For the GRU, the hidden state and the outputs are determined as follows
(Cho et al., 2014):

zt = σ(Wz[ht−1,xt] + bz), (2.7)

rt = σ(Wr[ht−1,xt] + br), (2.8)

gt = tanh(Wg[rt ⊙ ht−1,xt] + bg), (2.9)

ht = (1− zt)⊙ ht−1 + zt ⊙ gt, (2.10)

2.3 Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learning that focuses on
the development of intelligent agents capable of learning optimal decision-
making strategies through interactions with an environment (Sutton and
Barto, 2018).

In contrast to supervised learning, where training data is typically pro-
vided with explicit labels or annotations, and unsupervised learning, which
aims to discover hidden patterns or structures in unlabeled data, reinforce-
ment learning takes a different approach. RL agents learn from the conse-
quences of their actions rather than from pre-labeled examples. Through a
process of trial and error, they explore the environment and gradually de-
velop an understanding of which actions yield desirable outcomes and which
do not.

In order to learn, an agent must receive feedback from the environment.
At each step of interaction with the environment, the RL agent receives a
numerical reward (or in cases of negative rewards, a numerical punishment)
that serves as feedback, indicating the desirability of its recent action. In
some environments, the reward value is simply zero the majority of the time,
with meaningful feedback only being provided sparsely. The agent’s objective
is to maximize the long-term cumulative rewards it receives over time. By
using this reward-based mechanism, RL agents learn to identify the actions
that lead to higher rewards and, consequently, to more optimal decision-
making.

The RL agent interacts with an environment that can be modeled as a
Markov Decision Process (MDP). An MDP consists of a set of states repre-
senting the different configurations of the environment, a set of actions that
the agent can choose from, and a transition function that determines the
probability of transitioning from one state to another based on the chosen

11

Chapter 2 | Background

action. Additionally, the environment provides rewards to the agent based
on its actions and the resulting state transitions.

The RL agent’s decision-making strategy is captured by a policy, which
defines the mapping between states and the actions the agent should take.
The policy can be deterministic, where it directly maps states to actions,
or stochastic, where it specifies a probability distribution over actions for
each state. The goal of RL is to learn an optimal policy that maximizes the
expected cumulative reward over time. A core challenge in reinforcement
learning lies in finding an appropriate balance between exploration and ex-
ploitation (Norman and Clune, 2023). The agent needs to explore enough
to discover better actions and continuously update its policy, while also ex-
ploiting the already learned knowledge to maximize its rewards. Striking this
balance is crucial to avoid getting stuck in sub-optimal policies or missing out
on discovering more rewarding actions. Reinforcement learning algorithms
employ various techniques to learn optimal policies. These algorithms can be
categorized into model-free (Çalışır and Pehlivanoğlu, 2019) and model-based
approaches (Moerland et al., 2023). Model-free methods directly learn the
policy or action-value functions without explicitly modeling the dynamics of
the environment. A popular model-free RL algorithm, which is also used in
Chapter 6, is called Proximal Policy Optimization (PPO) (Schulman et al.,
2017). To update the PPO’s policy, a surrogate objective function is used
that is constructed using the ratio of the new policy’s probability to the old
policy’s probability. The loss is then calculated as the minimum of the ratio
weighted by a calculated advantage and the clipped ratio weighted by the
advantage. This prevents large updates to the current policy and is meant
to ensure training stability. The pseudo-code for the PPO can be found in
Algorithm 1

12

Chapter 2 | Background

Algorithm 1 Proximal Policy Optimization (PPO)
Require: Environment dynamics: P (s′|s, a)
Require: Initial policy parameters: θ
Require: Number of optimization epochs: K
Require: Number of mini-batches: M
Require: Learning rate: α
Require: Clipping parameter: ϵclip

1: for k = 1 to K do
2: Collect trajectories using the current policy: D = {(si, ai, ri)}
3: Compute advantages: Â = compute_advantages(D)
4: Normalize advantages: Â← (Â−mean(Â))/std(Â)
5: for m = 1 to M do
6: Sample mini-batch: B ∼ D
7: Compute old policy probabilities: πold(a|s)
8: Compute ratio of new and old policy probabilities: r(θ) = πθ(a|s)

πold(a|s)
9: Compute clipped surrogate objective:

L(θ) = mean
(
min

(
r(θ) · Â, clip (r(θ), 1− ϵclip, 1 + ϵclip) · Â

))
10: Compute policy gradient: ∇θL(θ)
11: Update policy using gradient ascent: θ ← θ + α∇θL(θ)
12: end for
13: end for

Like other with other deep learning methods, RL methods based on neural
networks have been known to come with the risk of overfitting to specific
conditions of the training set (Zhang et al., 2018b). This can then challenge
the trained model’s ability to perform if conditions later change even just
slightly (Wang et al., 2022; Zhou et al., 2022).

2.4 Bio-Inspired Optimization: Neuro-Evolution
The experiments presented in this thesis all made use of evolution algorithms
for the optimization of artificial agents. This section will provide an intro-
duction to evolution algorithms as optimization algorithms for deep neural
networks that control the behaviors of agents.

13

Chapter 2 | Background

The theory of evolution is arguably the most consequential scientific the-
ory of modern biology (Dennett, 1995; Kuhn, 2012). More specifically, it
provides a theory of the mechanisms that made all life on the planet come
to be in their various forms. One of the accomplishments of the theory of
evolution is that it can be used to explain the emergence of creatures of any
complexity from single to billions of cells using the same simple processes of
sexual and natural selection. The famous phrase “survival of the fittest” is
a short, intuitive explanation of why lifeforms look, act, and spread the way
they do all around the planet.

All living beings are situated in an environment, and the lifeforms most
well-adapted to their surroundings will multiply and spread their genes more
readily than maladjusted organisms. Small genetic mutations, which occur
during the process of gene inheritance, lead to random variations in the
expressed traits, i.e., the genotypes, of organisms.

The competition for finite resources acts like a sorting mechanism of these
random mutations; some will lead to well-adapted organisms that will flourish
and become more plentiful, while others will perish (Lewontin, 1970). This
sorting mechanism is what is referred to as evolution. As demonstrated by the
Tree of Life (Pace, 2009), natural selection has resulted in the vast diversity
of lifeforms we see today, all originating from a common ancestor. Natural
evolution has inspired a branch of algorithms for black-box optimization of
parameterized functions. While it is debatable whether natural evolution
itself can be characterized as an optimization algorithm, evolution algorithms
(EAs) have a long and successful history within the field of computer science
(Bäck and Schwefel, 1993).

The domain of natural life is full of examples of agents that are equipped
by their genome with the ability to learn and adapt their behaviors, i.e.,
their phenotype during their lifetime (West-Eberhard, 1989). Optimization
algorithms that take inspiration from this natural process might be well-
positioned to achieve artificial agents with such adaptable capabilities as
well.

Evolution algorithms first and foremost have the great advantage that
it is always possible to optimize for exactly what we want, with no need to
restrict our models to be differentiable (Such et al., 2017). This is something
that evolution algorithms have in common with all algorithms that belong
to the broader category of black-box optimization algorithms. It is, on the
other hand, a major difference compared to RL algorithms. This provides
two major advantages for EAs. First the possibility of introducing discrete

14

Chapter 2 | Background

interventions to the genomes that are being optimized. An example of this
could be a change in the size of the genome, e.g., adding or removing neurons
or whole layers from the neural network being optimized. Further, the non-
linear activation functions of the network could be subject to change and are
not restricted to differentiable functions. Second, not relying on gradients
provides the freedom to always optimize for the exact objectives that we are
interested in. This plays a role in environments with sparse or deceiving
reward structures as mentioned earlier (Such et al., 2017). Here we are
usually not interested in the outcomes of specific actions but in the ability
of the network to generate the optimal sequence of action. The culminated
lifetime reward is a measure of exactly this. Perhaps even more significantly,
EAs allow for optimizing directly for generalization across different episodes
within an environment or even across different environments altogether. This
only requires expanding the lifetime of the individuals in the population to
include multiple episodes and aggregating performances in each episode to a
single scalar. Being able to optimize directly for generalization is significant
as RL algorithms are notoriously brittle.

The following will describe specific examples of evolution algorithms. The
algorithms described below were all used in one or more of the experiments
presented throughout this thesis.

2.4.1 Genetic Algorithms
Genetic algorithms (GA) are arguably the simplest of the evolution algo-
rithms. At the same time, the simple genetic algorithm is perhaps the opti-
mization algorithm that is most directly inspired by natural evolution. The
algorithm works in the following manner: A population of random neural
networks is initialized. In this case, the parameters of the neural networks
constitute the genome of the individuals. They are all evaluated on the
given task. Individuals are then sorted according to their scores. The top-
performing individuals, often referred to as “elites”, are then used to deter-
mine the parameters of the next generation using both crossover and random
mutation to create variation. For crossover, elites are paired up to generate
an off-spring genome, where each of its parameters is copied from one of the
parents at random. For mutation, Gaussian noise is added to the param-
eters of the newly spawned genomes (Ha, 2017b). This is the most basic
implementation of a genetic algorithm, but many more advanced types exist.
An advantage shared across genetic algorithms is their ability to maintain a

15

Chapter 2 | Background

diversity of solutions within the population. This decreases the risk of the
optimization getting stuck forever in a local optimum. Diversity of solutions
can be further encouraged in multiple different manners. One of these is the
use of speciation. Speciation is the process of grouping together the most
similar genomes within a population. Genomes then only compete directly
with genomes belonging to the same species as themselves (Li et al., 2002).

A prominent example of a more advanced genetic algorithm that uses spe-
ciation is the Neuro-Evolution of Augmented Topologies (NEAT) algorithm
(Stanley and Miikkulainen, 2002; Papavasileiou et al., 2021). NEAT is also
an example of an evolution algorithm that allows for genomes of different
sizes within the population. Beyond using crossover and random noise as
mutation operators, the NEAT algorithm also contains operators that allow
for adding neurons and connections to the neural network. Speciation helps
ensure that genomes with novel innovations that might not be immediately
useful, get the chance to integrate the newly added neuron into the solution
in an adaptive manner (Stanley and Miikkulainen, 2002).

2.4.2 Natural Evolution Strategies
Algorithms referred to as Natural Evolution Strategies (NES), evaluate a
population of individuals across several generations (Wierstra et al., 2014).
However, unlike GA, with NES the scores of individuals in each generation
are used to approximate a gradient used for updating the mean of the popu-
lation. Instead of preserving a number of elite individuals and letting them
recombine to form the next generation, all members of a new generation are
generated by adding noisy perturbations drawn from a Normal distribution
to the current mean of the population. After evaluation of each individ-
ual, we know which perturbations improved the mean of the population and
which worsened it. Using this information, all the tested perturbations can
be combined to form a pseudo-gradient that can then be used to update the
mean of the population, such that the next generation has a new and im-
proved starting point. Since the updates form a pseudo-gradient, they can
be passed to any optimizer traditionally used with backpropagation, such as
Adam or RMSprop, which then determines what the exact parameter up-
dates should be (Ha, 2017a). Since all the tested perturbations are used for
calculating the pseudo-gradient, the updates to the population contain infor-
mation about both favorable and unfavorable directions to move the mean
toward. NES thus directly uses more information than GA, which simply

16

Chapter 2 | Background

discards all but the best individuals. This is an advantage when, e.g., fine-
tuning parameters of a neural network since the updates are more directed
than the random mutations of GA; NES updates are able to find and follow a
smooth gradient and converge towards optima more easily than GA updates,
which remain noisy throughout the optimization process. On the other hand,
natural evolution strategies are limited in their types of mutation operators,
as these algorithms assume that all genomes have the same size. Similar to
GAs, NES has a long history. The surge of interest in deep neural networks
with many parameters also resulted in a renewed interest in NES and their
ability to optimize a large parameter space. Salimans et al. (2017) showed
that NES can be a scalable alternative to RL algorithms due to the great
potential of parallelization of the individuals within a population.

2.4.3 Covariance Matrix Adaptation Evolution Strat-
egy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is an evo-
lution strategy that uses even more information from its evaluated popula-
tion to not only update its mean but also to guide its search when generating
the subsequent generation. As NES described above, CMA-ES iteratively
updates the mean of its population to move it toward a better and better
solution. However, NES usually draws perturbations to the mean from a
distribution with a fixed standard deviation (or standard deviation with a
scheduled decay) that is the same across all parameters. CMA-ES, on the
other hand, uses elite individuals to calculate the covariance matrix of the
parameters to be optimized and uses it to adapt the specific standard de-
viation of each parameter. This means that depending on the evaluations
of the perturbations, some parameters might be perturbed much more than
others. The dynamic adaptation of the search area allows the algorithm to
widen the search if the best solutions have parameters far from the mean
and narrow the search as the mean gets closer to the best solutions. For
the technical details of the algorithm, see (Hansen, 2016). The sophisticated
search of CMA-ES allows it to function well with small population sizes rela-
tive to other evolution strategies. However, the computational requirements
for the calculation of the covariance matrix increase quadratically with the
number of parameters to be optimized, which means that large parameter
spaces can be prohibitively expensive to optimize with CMA-ES (Müller and

17

Chapter 2 | Background

Glasmachers, 2018). Tang et al. (2020) used CMA-ES to optimize their self-
interpretable agents for RL tasks. In the study by Ha and Schmidhuber (Ha
and Schmidhuber, 2018), CMA-ES was used to optimize a small controller
using latent representations of a recurrent world model as inputs.

2.5 Meta-Learning
This section will cover the concept of meta-learning. The goal of meta-
learning approaches is to optimize for learning capabilities rather than solely
immediate performance. Standard RL algorithms typically assume that the
agent operates in a fixed environment with stationary dynamics, which limits
their ability to adapt to new and changing environments. To address this lim-
itation, meta-reinforcement learning (meta-RL) has emerged as an approach
to enable agents to learn to adapt quickly and effectively to novel and unseen
environments (Beck et al., 2023). In meta-RL, the agent is trained on a dis-
tribution of tasks and learns to quickly generalize to new tasks by leveraging
its prior experience. With the terminology introduced in Section 2.1, we say
that meta-reinforcement learning produces agents that can learn during their
lifetimes.

2.5.1 Meta-learning in nature: The Genomic Bottle-
neck, Phenotypic Plasticity, and the Baldwin Ef-
fect

This section provides examples of research in meta-learning in biology. Al-
though the principles of evolution apply to all organisms, including plants
and fungi, animals are intuitively closer to the definition of agents laid out
in Section 2.1. The actions performed by animals during their lifetime deter-
mine their fitness in their environment. The behavior of animals is shaped by
many factors on multiple timescales, some of which are genetically evolved
and others that are learned (Breedlove and Watson, 2013).

The phenotype of animals can be characterized as either fixed or labile
(Scheiner, 1993). Labile traits have the ability to change during an animal’s
lifetime, adapting at least as fast as the changes in the environment. On the
other hand, fixed traits remain constant after the developmental phase.

All biological entities possess a genome, which serves as their underlying
code. The genome contains a growth algorithm that provides instructions

18

Chapter 2 | Background

during the developmental phase for cells to assemble into various structures
such as the skeleton, organs, muscle tissue, and nervous system. The resulting
morphology, determined by the genetic code, inherently constrains the types
of behavior available to an animal throughout its lifetime. For example,
a turtle will never learn how to fly, and a giraffe will never learn how to
breathe underwater due to the constraints imposed by their respective body
structures dictated by their genomes.

However, animals that can learn from their environment and adapt their
behavior within the constraints of their morphology have a competitive ad-
vantage over those that repeat the same mistakes (West-Eberhard, 1989).
Learning during an individual’s lifetime relieves the genome from the burden
of containing all the necessary information for survival and reproduction. In-
stead, learning allows information to be stored externally and incorporated
into an animal’s behavior throughout its lifetime. The information required
to describe the detailed configurations of animals with larger brains is too
extensive to be contained within the genome alone, leading to what is known
as the genomic bottleneck (Zador, 2019). By containing information on how
to learn, more complex and adaptive behavior can emerge while keeping the
genome relatively compact.

The selection for learning capabilities, rather than explicit behavior, can
actually accelerate evolution towards optimal points, known as the Baldwin
effect. Lifetime learning modifies the loss landscape of evolutionary search,
transforming optimal areas into stronger attractors. This phenomenon was
famously demonstrated by Hinton and Nowlan (1987), although the exact
mechanisms may differ from those observed in animals.

However, learning capabilities come at a cost. Firstly, they require an in-
tricate structure to support the learning process (Turney, 2002). An animal
must possess an adequate sensory system to recognize relevant information
from the environment and an internal reward system to guide learning. Addi-
tionally, the morphology and motor control system of the animal must be so-
phisticated enough to enable a range of behaviors that can be learned. These
requirements necessitate an elaborate nervous system, which is metabolically
costly to maintain.

The second cost of learning is the risk of outsourcing the information
needed for certain skills to the environment, rather than having the skills
innately developed. It is not guaranteed that the environment will always
provide the correct learning opportunities for an individual, and there is a
possibility that an individual may encounter a situation where a particular

19

Chapter 2 | Background

skill is necessary for survival before having learned that skill.
For these reasons, learning is most relevant when the same genome can

find itself in diverse environments. In a completely static environment, in-
nate skills are likely to be more beneficial than innate learning capabilities.
However, the capacity for learning even in static environments may facilitate
the evolution of certain traits (Scheiner, 1993). Over time, these traits can
transition from being learned to innate, a process known as accommodation.

The same is true in the case of optimizing artificial agents: if we have full
information about the environment that the artificial agent is to be deployed
in, and we do not expect this to ever change, a regular reinforcement learn-
ing algorithm for learning a static neural network model is likely sufficient
and will allow the agent to perform will as soon as it is deployed. On the
other hand, if there is uncertainty about the environment and the tasks that
the agent will need to solve during deployment, meta-reinforcement learning
might be necessary (Wang, 2021).

Put in machine learning terms, any learning exhibited by animals is the
result of meta-learning, as the learning must be supported by a genome that
was in turn discovered through evolution.

2.5.2 Meta-Learning in Machine Learning
In the field of machine learning, meta-learning is a sub-field that focuses
on developing algorithms and models that can learn to adapt quickly and
efficiently to new tasks or environments (Tian et al., 2022). In traditional
machine learning, the model is typically trained on a fixed dataset and then
deployed to make predictions on new inputs. However, in meta-learning, the
goal is to train the model to learn how to learn, such that it can quickly
adapt to new tasks with minimal additional training.

Meta-learning approaches address these challenges by leveraging the con-
cept of ”meta-knowledge” or ”prior knowledge” about a task distribution.
Instead of training models for a specific task, meta-learning algorithms train
models to learn how to learn from a set of related tasks. This training pro-
cess equips the model with the ability to quickly adapt and generalize its
knowledge to new tasks.

Meta-learning algorithms aim to capture the underlying patterns and
regularities across tasks and use them to improve generalization and adap-
tation. By observing multiple tasks, the meta-learner gains insights into the
commonalities, differences, and relationships between tasks. This acquired

20

Chapter 2 | Background

meta-knowledge can then guide the model’s learning process.
The learning-to-learn process involves two levels of learning: the meta-

level and the task-level. At the meta-level, the algorithm learns how to learn
by adjusting the model’s parameters to optimize performance across a set of
training tasks. The goal is to find an initialization of the model’s parameters
that allows for efficient adaptation to new tasks (Hospedales et al., 2021). In
more general terms, meta-learning involves a double optimization loop: the
meta-level is the outer-loop and the task-level is the inner-loop.

At the task-level, the model is presented with individual tasks and is ex-
pected to learn the optimal solution using limited data. The meta-learned
knowledge influences the model’s learning process by providing useful initial-
ization or regularization. By utilizing the insights gained from meta-learning,
the model can adapt more quickly, effectively, and accurately to new tasks,
even with limited data.

In order to demonstrate the meta-learning algorithm’s ability for quick
adaptation, support, and query sets are used (Beck et al., 2023). A support
set refers to a small subset of examples that are sampled from a specific task.
This set is used during the adaptation phase to fine-tune the task-specific
learner’s parameters. The support set provides the necessary context and
information for the learner to update its parameters based on the charac-
teristics and requirements of the task at hand. By exposing the learner to
task-specific examples, the support set allows the learner to specialize and
adapt its knowledge to the specific task, enabling improved performance.

On the other hand, a query set represents another subset of examples
sampled from the same task, distinct from the support set. The query set is
used to evaluate the performance of the adapted task-specific learner after
the adaptation phase. It serves as a test set to assess how well the learner
has generalized and learned from the support set. By evaluating the learner’s
predictions on the query set, we can measure its ability to generalize to new,
unseen examples from the same task. The query set provides a means to
estimate the learner’s performance and assess the effectiveness of the adap-
tation process. In the few-shot learning setting, support sets and query sets
are utilized together to simulate the scenario of encountering new tasks with
limited labeled data. The support sets enable the learner to adapt quickly to
new tasks by leveraging a small number of task-specific examples, while the
query sets provide a measure of the learner’s ability to generalize to unseen
examples from the same tasks.

Meta-learning approaches are usually categorized as either a gradient-

21

Chapter 2 | Background

based approach or a black-box approach. The following will provide brief
descriptions of some of the most influential approaches within each category.

2.5.2.1 Model Agnostic Meta-Learning:

A popular meta-learning algorithm in the field of deep learning is called
Model Agnostic Meta-Learning (MAML) (Finn et al., 2017). Since it was
introduced many variations of the algorithm have been proposed(Abbas et al.,
2022; Jeong and Kim, 2020; Behl et al., 2019; Kayaalp et al., 2022; Javed
and White, 2019; Beaulieu et al., 2020; Nguyen et al., 2021), but MAML is,
in essence, an approach to meta-learning that aims to learn an initialization
of a model that can quickly adapt to new tasks with minimal data. MAML
achieves this by training a model on a set of related tasks. In the inner-
loop, the initialization is only optimized with a few gradient descent steps
on a small set of data points from a specific task. When this has been
done for a number of tasks, the original initialization is then updated via
gradients through the inner-loop gradients, such that the initialization over
time becomes maximally sensitive to task losses. This means that after
the meta-optimization has concluded, the MAML model can now improve
extremely rapidly on tasks within the task distribution compared to a random
initialization. Any neural network architecture that can be trained with
gradient descent can be used within the framework of MAML.

2.5.2.2 Black-Box Meta-Learning:

A different meta-learning approach has more specific requirements for the
neural network architecture used. Black-box meta-learning seeks to optimize
networks with memory capabilities to learn to self-correct. This has typi-
cally been done using RNNs. An RNN can be optimized to correct itself
in supervised learning if the input to the network is extended with the loss
of its previous output as well as the previous output itself(Hochreiter et al.,
2001). When the RNN is optimized in this manner across multiple tasks it
can over time learn to incorporate self-correcting updates within the dynam-
ics of its internal memory. This has also been shown to be the case for RL
tasks (Wang et al., 2017; Duan et al., 2016).

22

Chapter 2 | Background

2.5.3 Plastic Neural Networks

A bio-inspired approach that can also be considered a meta-learning approach
is that of plastic neural networks. A neural network can be considered to
be plastic if some function updates the connection strengths of the network
during the network’s lifetime (Mouret and Tonelli, 2014). In other words, the
goal is to learn learning functions. One type of plasticity function is known
as Hebbian learning rules. In neuroscience, Hebbian theory proposes that if a
group of neurons is activated close to each other in time, the neurons can in-
crease their efficacy in activating each other at a later point (Holscher, 2008).
In this way, the full group could thus become active, even if just a part of the
group was initially activated by external stimuli (Lansner, 2009). This type
of plasticity constitutes a local learning rule, where the change in connection
only depends on information local to the two connected neurons, such as
their activation. In this way, recurrent connections within a layer of neu-
rons endow a network with the ability to “complete patterns”(Hunsaker and
Kesner, 2013): if a stimulus at an earlier time has activated a certain group
of neurons, also called a cell assembly, the network might be able to respond
with the activation of this same cell assembly if it is faced with an incomplete
or noisy presentation of this stimulus (Hoffmann, 2009). These cell assem-
blies have been proposed to be the basic units for thoughts and cognition
(Buzsáki, 2010; Pruszynski and Zylberberg, 2019; Saxena and Cunningham,
2019), and their existence was first suggested by Hebb (Pulvermüller et al.,
2014).

Several past studies have focused on finding ways to use plasticity inspired
by Hebbian plasticity in ANNs. The motivation for this has for some studies
been to study network plasticity in computational models (Song et al., 2000;
Abbott and Nelson, 2000), and for other studies the aim has been to better
enable models to generalize. For example, Soltoggio et al. (2008) evolve
modulatory neurons that when activated will alter the connection strengths
between other neurons. With this approach, they are able to solve the T-
Maze problem, where rewards are not stationary. In a study by Orchard and
Wang (2016), linear and non-linear learning rules are evolved to adapt to a
simple foraging task. Yaman et al. (2019) use genetic algorithms to optimize
delayed synaptic plasticity that can learn from distal rewards. Common to
these examples is that learning rules that update neural connections have
access to a reward signal during the lifetime of the agent.

23

Chapter 2 | Background

2.5.3.1 Indirect Encoding with Plasticity

Optimization of plasticity rules can also be linked to the area of indirect en-
codings of ANNs. One of the goals of indirect encoding approaches is to be
able to represent a full solution, like a large neural network, in a compressed
manner (Bentley and Kumar, 1999; Gruau et al., 1996; Stanley and Miikku-
lainen, 2003). Indirect encoding schemes come in many variations. Exam-
ples include letting smaller networks determine the connection strengths of a
larger network (Ha et al., 2016; Risi and Stanley, 2012a, 2011; Carvelli et al.,
2020), or representing the connections of a neural network by Fourier coeffi-
cients (Koutnik et al., 2010; Gomez et al., 2012). Of particular relevance to
our work are methods that use plasticity rules to make indirect encodings.

Early approaches include that of Chalmers (1991), where a single param-
eterized learning rule with 10 parameters was evolved to allow a feedforward
network to do simple input-output associations. A bit more recently, ap-
proaches such as adaptive HyperNEAT (Risi and Stanley, 2010) have been
deployed to exploit the geometry of a neural network to produce patterns of
learning rules. The HyperNEAT approach has previously been used for im-
proving a controller’s ability to control robot morphologies outside of what
was experienced during training (Risi and Stanley, 2013). Indirectly encod-
ing plasticity has been shown to improve a network’s learning abilities, with
networks that are more regular showing improved performance (Tonelli and
Mouret, 2013). These earlier results point to a deep connection between
plasticity and indirect encodings, which has so far received little attention.

With these introductions, we are ready to delve deeper into the double
optimization loop of meta-learning in the next chapter, which explores how
the two optimization loops interact with each other.

24

Chapter 3

Mapping Loss Landscapes of
Meta-Learning

Most of the results presented in later chapters involve meta-learning. As
meta-reinforcement learning is an important part of this thesis, and a grow-
ing field in general, this chapter is dedicated to exploring the dynamics of the
double-loop employed in meta-learning. An introduction to meta-learning
can be found in Section 2.5 of the previous chapter. As described, meta-
learning approaches are usually divided into two main categories: gradient-
based methods and black-box meta-learning. In this chapter, a different
delineation is proposed based on how the outer-loop optimization affects the
inner-loop optimization. In other words, how does the ”meta” affect the
”learning” in different meta-learning setups? The standard way of catego-
rizing meta-learning approaches separates them based on what optimization
methods are used in the inner-loop: is gradient descent used, or is inner-loop
optimization a learned function (Beck et al., 2023)? Distinguishing between
meta-learning approaches in this manner has roots in the history of how
early meta-learning approaches were developed. However, with an increas-
ing number of meta-learning approaches being developed in recent years, a
more principled way of categorizing these might be beneficial. First of all, the
gradient-based versus black-box categorization has no room for approaches
that use other types of optimization processes in the inner-loop, such as evo-
lution algorithms, swarm optimization, or Bayesian optimization (see, e.g.,
(Song et al., 2019a)). Note, that there is also a bit of confusion of the terms
here, as evolution algorithms (Bäck and Schwefel, 1993), swarm optimization
(Kennedy and Eberhart, 1995; Poli et al., 2007), or Bayesian optimization

25

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Starting Point
Optimization

Loss Landscape
Optimization

Optimizer
Optimization

Outer- and Inner-loop
optimize the same set
of parameters.

Loops optimize different
parameters. Outer-loop
parameters are directly
part of solution.

Outer-loop optimizes a
function to output inner-
loop parameters.

Figure 3.1: Model of Meta-Learning Categories This figure shows the
three different ways a meta-learning outer-loop can improve the inner-loop
loss landscape. The black curves depict loss landscapes of a single parameter
optimized by the inner-loop. The green dots are the starting point of the
inner-loop optimization. The dotted circle is the ”reach” of the inner-loop
optimization, i.e., the area of the loss landscape from which the inner-loop
optimization process is able to select parameters. Outer-loop optimization
can aid inner-loop optimization through one or more of 1) Moving the starting
point of the inner-loop optimization process to a more advantageous point;
2) Modifying the inner-loop loss landscape to be easier to navigate or; 3)
Changing the reach of the inner-loop optimizer to make certain areas of the
loss landscape more searchable.

26

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

(Frazier, 2018) are usually referred to as black-box optimizers - or gradient-
free optimization - while in the terminology of meta-learning, ”black-box”
refers to an optimizer that is itself learned, usually represented by a neural
network. Second, and more importantly, within the established categories
of gradient-based or black-box meta-learning, different setups exist that can
have major consequences for the overall optimization process regardless of
the optimizer used. The perspective laid forward in this chapter is that it
is not the particular type of optimizer used in any of the loops that is the
most interesting, but rather how these two optimizers interact. More specifi-
cally, how can we expect the outer-loop optimization to aid the optimization
of the inner-loop such that it can result in learning that is both fast and
meaningful? Crucially for this argument is the simple observation that a
particular optimizer and its particular hyperparameters only affect the abil-
ity of the optimizer to navigate in the loss landscape of the parameters it is
optimizing, not the loss landscape itself. However, the outer- and inner-loop
in a double-loop each have different loss landscapes associated with them,
and depending on which parameters their respective optimizers operate on,
these loss landscapes can be either static or dynamic throughout the opti-
mization process. Categorizing double-loop optimization, or meta-learning
algorithms, based on how they interact helps elucidate what a specific double-
loop optimization algorithm is capable of, and the purpose of its individual
optimizers.

There are some interactions that are always true in any double-loop op-
timization. The loss landscape of the outer-loop is from the onset of the
optimization always shaped by the inner-loop optimizer, but it is also always
static throughout the optimization process. Inner-loop optimization is always
reset and restarted at the beginning of each new iteration of the outer-loop,
and it is thus impossible for the inner-loop to dynamically change, which
parameters are the most optimal of the outer-loop. Put differently, after we
have made a choice of 1) the set of parameters that will be optimized in
the outer-loop, and 2) the optimizer to be used in the inner-loop, the loss
landscape of the outer-loop will be set in stone throughout its optimization
process. The only time we might see any changes to the outer-loop loss
landscape during the optimization process is when multiple different tasks
are sampled in the inner-loop. Then the loss landscape of the outer-loop
changes with the specific batch of tasks being sampled. This is just like any
other optimization setting where the training set is defined by the current
batch that it is optimized on. In the limit of having an infinite number of

27

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

tasks from the task distribution in the batch, there would be no changes to
the outer-loop loss landscape.

There are three main ways in which the outer-loop can improve the ef-
ficiency of the inner-loop: 1) Starting point optimization: the outer-loop
places the initial parameters of the inner-loop optimization in an area of the
loss landscape that can be easily found; 2) Loss landscape optimization: the
outer-loop shapes the inner-loop loss landscape itself, and makes is easier to
navigate for the inner-loop optimizer; 3) Optimizer optimization: the outer-
loop shapes how the inner-loop optimizer optimizes, and thus what points of
the inner-loop loss landscape can be reached. See Figure 3.1 for an overview
of this approach to categorizing meta-learning settings.

All of these ways of improving the inner-loop search have the same goal,
but achieve them in different manners, providing meta-learning researchers
with different opportunities and challenges. Despite this, loss landscape dy-
namics are usually not paid attention to in surveys and reviews of meta-
learning of deep neural networks.

Throughout the chapter, I demonstrate the interaction between the two
optimization loops in different meta-learning scenarios using a very simple
environment that is solved using only at most two parameters for each loop.
In this way, it is possible to derive and plot an accurate map of the loss land-
scapes associated with each loop through a grid search of the parameters.

Simple Environment:
To map loss landscapes of different meta-learning scenarios, an environment
that is simple, fast to compute, and that can easily generate different tasks
from a distribution, is needed. Here, I use the possibly most simple version
of a point navigation task. In this environment, the agent navigates a 2-
dimensional space. The agent begins at the origin of a graph and must move
to a goal location. The input to the agent is its current location. An action
in this environment is a 2-dimensional vector that is added to the agent’s
current location to determine the next location. The agent outputs actions
until it has reached the goal location or it has run out of time. The reward at
each time step is the negative of the square root of the distance between the
agent’s current location and the goal location. A single task in this environ-
ment is defined by the specific goal location. Goal locations can be randomly
generated to constitute a task distribution. A neural network can easily be
optimized to solve a single task in this environment. With the use of meta-
learning, it is likewise easy to optimize a network that in a few attempts can

28

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

.

.

.

.

.

.

B

A

A

A

A

B

B

B

A } Optimized
parameters

Figure 3.2: Model with two trainable parameters. A neural network
where the weights are not trained. Rather, two scalars that are multiplied
with the neurons’ pre-action values are subject to optimization.

find any given goal location. However, due to the many parameters of neural
networks, their loss landscapes are non-trivial to visualize. Some methods
have been devised to make approximations of loss landscapes of neural net-
works. It is, however, a sad fact of the world that it is impossible to visualize
a high-dimensional space in 2- or 3D without loss of information. Therefore,
to show the loss landscapes as clearly as possible, I solve the task with just
two parameters. Obviously, any task within this simple environment could
be solved by simply optimizing a fixed action directly, which is always taken
regardless of the input. Any fixed action that is equivalent to the goal loca-
tion or scaled by a scalar between zero and one would indeed solve this task.
However, in order to make the solution closer to the reinforcement learning
situation, as well as to create a more interesting loss landscape, I construct a
special neural network to solve this task. An illustration of this can be seen
in Figure 3.2.

In this network, all weights and biases are fixed and never optimized.
When the network is constructed, each neuron in the network is randomly
assigned one of two scalars. These are depicted as A and B in Figure 3.2.
The scalars are the parameters to be optimized. Computation of a layer in
this neural network is:

x̂t
l = tanh((x̂l−1 ·Wl + bl)⊙ αl), (3.1)

29

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Figure 3.3: Single-Loop Loss Landscapes. The loss landscape contains
40,000 evaluations of the two parameters in the range (-3,3). The colors of
the shortest wavelengths correspond to the highest fitness values. The black
circle marks the most optimal point found through the grid search.

where α is a vector containing the scalars as they were assigned to the
neurons. The same fixed network is used across all meta-learning scenarios
below.

The fixed weights of the network can be seen as part of the task, in that
they shape the loss landscape in a way that cannot be directly optimized.
Using a fixed network as part of the task also makes it so that some goal
directions are harder to reach, rather than having all tasks have the same
level of difficulty. Throughout this chapter, the evolution algorithm used in
each scenario is NES as described in Chapter 2, Section 2.4. For simplicity,
this was chosen as both the outer- and inner-loop optimizer.

Before looking at different meta-loop scenarios, the loss landscape for a
single optimization loop that solves a single task is shown in Figure 3.3. In
this task, the agent needs to move to the point (0.25, 0.45).

This loss landscape was found through a grid search of both parameters in
the interval [-3,3]. For each parameter, the interval was divided evenly by 200
points. These 200 points were used as the values for each parameter, resulting

30

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

in 40,000 evaluations. The shorter wavelengths of the rainbow spectrum
signify a better performance. The loss landscape appears smooth, except
for the most purple spots in the landscape that clearly stand out from their
surroundings. This loss landscape will be used as a reference for comparison
to different double-loop loss landscapes throughout the chapter.

Instead of a grid search, it is also possible to optimize the parameters
with NES. This results in the training curve shown in Figure 3.5 in the next
section.

3.1 Optimizing a Starting Point

3.1.1 Common Parameters - Single Task
The first meta-learning setting is characterized by two traits. First, there is
still only a single task to solve, i.e., not a distribution of tasks. The single-
task setting was also used in the seminal paper of Hinton and Nowlan (1987)
to demonstrate the interaction between evolution and learning. Having just
a single task is not a common situation for the use of meta-learning. How-
ever, interesting characteristics of different meta-learning settings can still be
observed with just a single task. The single-task case is used here to enable
an accurate depiction of the outer-loop loss landscape, and due to it being
less computationally expensive than the multi-task setting.

Second, the inner- and outer-loop both optimize the same parameters.
NES is used as the optimizer in both loops. The double-loop optimization
works as follows: the outer-loop optimizer generates a population of can-
didates. Each of these candidates serves as a starting point from which a
different optimizer searches. Specifically, since both optimizers are NES op-
timizers, each individual in the outer-loop population becomes the initial
population means used to generate new populations around. Using a similar
grid search as in the section above, it is possible to map the loss landscapes
of both inner- and outer-loop optimization. There are some notable points
to consider in the scenario. First, when using the same task as in the above
section, the inner-loop loss landscape looks identical to the case of a single-
loop optimizer. The outer-loop optimizer does not affect the inner-loop loss
landscape in any way. Further, the loss landscapes of both optimizers remain
static throughout the process of optimization. As a general note, it is also
important to keep in mind that the hyperparameters of an optimizer do not

31

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Neural Network:
ANN Layers [2, 256, 128, 2]

Activation function tanh
Inner-Loop Optimizer:

Pop. Size 64
Generations 10
Init. Sigma Varying

Sigma Decay 0.99
Learning Rate 0.1

Outer-Loop Optimizer:
Pop. Size 350

Generations 300
Init. Sigma 0.1

Sigma Decay 0.99
Learning Rate 0.01

Table 3.1: Optimization Hyperparameters. This is the standard setting
of the two optimizers of their respective loops throughout this chapter. These
hyperparameters are used in all experiments unless stated otherwise.

change the loss landscape associated with the parameters to be optimized.
The optimizer’s hyperparameters can be extremely important in how well the
optimizer can navigate the loss landscape, but they do not modify the land-
scape itself. However, as seen below, any changes in the hyperparameters of
an inner-loop optimizer might have a great impact on the loss landscape of
the outer-loop. Since the inner-loop loss landscape is identical to the single-
loop case, the following focuses on mapping outer-loop loss landscapes. For
the first loss landscape, an optimizer identical to the one used for the single-
loop optimization in the section above was used. The hyperparameters of
the inner-loop optimizer can be seen in Table 3.1.

32

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Figure 3.4: Outer-Loop Loss Landscapes. Loss landscapes that the
outer-loop optimizer has to navigate. For comparison, the single loop loss
landscape is included to the left. The outer-loop loss landscape changes
as the sigma of the inner-loop NES optimizer increases. Smaller inner-loop
sigmas result in outer-loop loss landscapes closer to the single-loop loss land-
scape. The larger sigma in the inner-loop means that the inner-loop opti-
mizer searches through a wider range of solutions. As the inner-loop sigma
increases, the areas of good performance in the outer-loop loss landscape
expand and become more connected. At the same time, a larger inner-loop
sigma makes the outer-loop loss landscape more noisy. Black circles indi-
cate the optimal point of the outer-loop loss landscape as found through grid
search.

As stated above, any changes to the parameters of the inner-loop opti-
mizer have the potential to have an impact on the outer-loop loss landscape.
Not because it changes anything in the inner-loop loss landscape, but be-
cause it changes how the inner-loop optimizer navigates the loss landscape
associated with its parameters. This in turn changes how much it can im-
prove upon the starting point provided by the outer-loop, and that in turn
modifies what the outer-loop loss landscape looks like.

For each point in Figure 3.4, the inner-loop optimizer evaluated a pop-

33

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

ulation of 64 individuals and optimized it for 10 generations, resulting in a
total of 25,600,000 evaluations in the environment to produce the landscapes
of the outer-loop. Two things are noteworthy when comparing this plot with
the single-loop loss landscape. First, the most well-performing areas have
increased, while the areas of worst performance have decreased. This is what
is meant when it is stated that learning can accelerate evolution and move
the problem from finding a needle in a haystack to only having to find the
area of the haystack that contains the needle (Hinton and Nowlan, 1987).
Each point sampled in the outer-loop has a “reach” within the single-loop
loss landscape that allows the sampled outer-loop point to end up with a
better score than had its performance been recorded directly. If we concep-
tualize the outer-loop as evolution and the inner-loop as learning, we can
say that adding the ability to learn on top of the evolved parameters makes
advantageous traits more evolvable.

The second noteworthy point is that the loss landscapes look a bit less
smooth. This is due to the noise introduced by the random sampling of
individuals by the inner-loop optimizer. Note, that even though NES intro-
duces noise in a specific manner, any inner-loop optimizer, including gradient
descent-based RL algorithms, introduces noise in one way or another due to
the use of random exploration.

The hyperparameter that most directly modifies the reach of the NES
algorithm used in the inner-loop is the standard deviation of the distribution
that it samples perturbations from, i.e., the sigma of the optimizer. Figure
3.4 demonstrates this well: the larger the sigma, the more pronounced the
changes to the outer-loop loss landscape. The loss landscape with the largest
inner-loop sigma (0.5), has the largest well-performing area, which is also
fully connected. However, the most optimal score was found when using an
inner-loop sigma of 0.1. This is likely because the smaller sigma allows for
more tuning of the parameters in a more fine-tuned manner within the al-
lowed number of generations.

Having a depiction of the loss landscape associated with the outer-loop,
it is also interesting to examine the actual optimization of the outer-loop pa-
rameters, to see the impact of the inner-loop and different settings. Figure
3.5 shows training curves of the outer-loop for 300 generations of NES.

34

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

0 100 200 300

10

8

6

4

2

Fit
ne

ss

Single Loop

Pop. Mean
Pop. Best
Evaluations

0 100 200 300

7

6

5

4

3

2

1

Sigma:0.01

0 100 200 300

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Sigma:0.1

0 100 200 300

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5
Sigma:0.5

Generation

Figure 3.5: Training curves of the outer-loop. Different inner-loop sig-
mas affect outer-loop optimization. With a larger inner-loop sigma, good
solutions tend to be found faster. However, the evaluations become less reli-
able, and the outer-loop optimization becomes increasingly difficult, as seen
by the mostly flat population mean training curve in the right-most plot.

In Figure 3.5, it can be seen that the best individual in the population is
already well-performing starting from the very first generation of the outer-
loop optimization. It should be remembered, however, that this comes at
the price of 640 times more evaluations per generation when we compare
the double-loop optimization with the single-loop. Further, there does not
seem to be much optimization going on, in that the curves of the outer-loop
optimization runs are mostly flat. This is despite the fact that none of the
runs have found solutions that are as good as the best solutions in Figure
3.4. While it is possible that better solutions would be found if given more
generations to optimize, some trends are clear. First, the higher the inner-
loop sigma, the better the initially found solution. At the same time, this
also results in a smaller deviation from the initially found solution. A larger
inner-loop sigma also results in a more flat population mean curve and more
volatile evaluations.

35

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Pa

ra
m

et
er

 B
Single Loop

Starting Point
Generational Best
Overall Best

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.01

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.5

Parameter A

Figure 3.6: Best outer-loop solutions in each generation. For each
generation, the best parameters are plotted as points in the graph. The
brighter points were found later in the evolution run and the darker found
earlier. The green point marks the best parameters found during the run.
A larger inner-loop sigma results in a wider exploration of the outer-loop
optimizer. However, in all runs, points are mostly concentrated in the same
area, and in none of the runs did the outer-loop optimizer find solutions close
to the optimal solutions found through grid search in Figure 3.4.

To shed more light on the optimization processes, Figure 3.6 shows the
best solutions found in each generation in the evolution runs of Figure 3.5.
The solutions do not venture for from the starting point in any of the double-
loop runs. The larger the sigma, the less clear the direction away from the
starting parameters of (0,0) there is. This highlights a negative effect that the
inner-loop optimization risks having on the ability of the overall optimization
process to find a solution. While learning (or any other conceptualization of
inner-loop optimization) turns the optimal point into a stronger, and wider
attractor in the outer-loop loss landscape, the same is also true for local
optima. Two aspects of a larger inner-loop sigma make outer-loop optimiza-
tion more difficult. First, if the inner-loop optimizer has a wider reach than
the outer-loop optimizer (as is the case in this small experiment), there is
a potential for all of the starting points sampled by the outer-loop to end

36

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

up in the exact same local optima. This limits the ability of the outer-loop
optimizer to differentiate between any of the sampled points, and thus its
ability to calculate a meaningful gradient. At the same time, a wider sam-
pling in the inner-loop decreases the reliability of the outer-loop evaluations,
simply by introducing more noise. This also makes meaningful gradients
harder to obtain and increases the risk that the outer-loop parameters will
never improve. The aspect of noise could be mitigated by either increasing
the population size or the number of generations of the inner-loop optimizer.
However, these are both parameters that in turn drastically increase the
number of evaluations needed. Alternatively, the fitness score of each set
of outer-loop parameters could be calculated as an average of the outcome
of multiple inner-loop optimizations. Again, such a measure would also be
computationally expensive.

0 100 200 300

40

30

20

10

0

Fit
ne

ss

Single Loop

Pop. Mean
Pop. Best
Evaluations

0 100 200 300

12

10

8

6

4

2

0

Sigma:0.01

0 100 200 300

8

6

4

2

0

Sigma:0.1

0 100 200 300

4

3

2

1

0

Sigma:0.5

Generation

Figure 3.7: Training curves of the outer-loop. These training curves
show the same small experiments as in Figure 3.5, except that the outer-
loop sigma here was 1 instead of 0.1. Even though the hyperparameters of
the outer-loop do not modify the outer-loop loss landscape, they can obvi-
ously still have a great effect on the optimization process. The same trends
as in Figure 3.5 are visible here. However, here, there is a trend of early
populations containing the optimal solutions.

While Figure 3.5 and 3.6 show the impact of inner-loop hyperparameters

37

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

on the optimization of the outer-loop, this optimization is obviously also
affected by the hyperparameters of the outer-loop optimizer. Figure 3.7
shows training curves for the same experiment as in Figure 3.5 with the only
difference being that the outer-loop optimizer had a sigma of 1 instead of 0.1.
Strikingly, while the population means gradually becomes better, the best
solution found in each generation decreases in performance over time. All the
double-loop runs find solutions close to the global optima at the beginning
of the evolution, but then seem to converge toward a less optimal point.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Pa
ra

m
et

er
 B

Single Loop
Starting Point
Generational Best
Overall Best

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.01

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.5

Parameter A

Figure 3.8: Best outer-loop solutions in each generation. A larger
sigma in both outer- and inner-loop optimizers results in a larger area of
search. Only the runs with double-loop optimization have found good solu-
tions clustered in different areas of the loss landscape. However, the runs
with larger inner-loop sigmas were unable to converge to the most optimal
solution found.

Once again, we can track where the best solutions were found in each
generation in Figure 3.8. First of all, we see that the double-loop optimiza-
tion runs include more diverse solutions than the single-loop case. Even
with the much larger standard deviation of the sampled solutions, the single-
loop optimizer still mostly finds a solution within the same area as with the
smaller standard deviation. For the double-loop runs, the effect of increas-
ing the reach of the outer-loop optimizer had more pronounced effects. The

38

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

run with the largest inner-loop sigma includes solutions that are the furthest
from the starting point. However, for the runs with an inner-loop sigma
of 0.1 and 0.5, Figure 3.8 also shows that while the best solutions sampled
in early generations were close to the optimal points of the respective loss
landscapes of Figure 3.4, the later solutions were concentrated elsewhere, in
a less optimal area. This is likely due to where the most optimal point in
the inner-loop loss landscape is located. The black circle in Figure 3.3 indi-
cates that the most optimal point is isolated within an area of bad solutions.
This means that missing the optimal point slightly results in a very poor
performance, and that it is impossible to reach the point through gradient
descent unless one has a starting point that is already really close to it. In
dynamical systems terms, this optimal solution acts more like a fixed point
repeller than an attractor in the loss landscape.

The main points in this section that are relevant for the next sections
are that parameters of the inner-loop optimizer can have large impacts on
the outer-loop loss landscape, but when the outer-loop optimizes the starting
point for the inner-loop optimization, the inner-loop landscape remains the
same as in the single-loop case throughout the whole evolution. Further, one
should keep in mind that while ”learning” (or inner-loop optimization) can
accelerate the ”evolution” (outer-loop optimization), by making areas of high-
performance into stronger attractors, this is true for both local and global
optima. The inner-loop can thus increase the risk of the overall solution
getting stuck in a local optimum that is impossible to escape for the outer-
loop.

3.1.2 Common Parameters - Multiple Tasks
In the second meta-learning scenario, both loops still optimize the same
parameters, but tasks are now drawn from a distribution. This is the scenario
the MAML approach fits into. What does the sampling of tasks mean for
the loss landscapes? For the inner-loop, there is a separate loss landscape
for each task. Regardless of how good a starting point the outer-loop might
provide, these separate loss landscapes remain the same from the beginning
to the end of the optimization process. It is obviously true that a better
starting point will make it easier for the inner-loop optimizer to find good
parameters within its loss landscape, but the inner-loop loss landscape that
can be mapped via grid search does not change.
The sampling of multiple tasks also affects the outer-loop loss landscape

39

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Figure 3.9: Outer-loop loss landscapes for multiple inner-loop tasks.
Altogether, this figure contains six different task sets: three sets with three
tasks, and three sets with 10 tasks. The outer-loop loss landscape is shown
twice for each set, one with an inner-loop sigma of 0.01 and one with 0.5.
Each set of tasks results in slightly different outer-loop loss landscapes. For
each point in the loss landscape, the score was assigned as the mean of the
scores found by the inner-loop optimizer in each of the tasks associated with
the run. The differences between larger and smaller inner-loop sigmas are
similar to the case of a single task. The areas of well-performing solutions are
generally smaller in the loss landscapes with 10 tasks compared to the ones
with only three tasks. However, the best solutions are of the same magnitude
across the size of task sets.

in the same way as different batches do in, e.g., supervised learning. In the
extreme case that only a single task is sampled per outer-loop generation, the
outer-loop loss landscape changes just as rapidly as the inner-loop; every new
task constitutes a new loss landscape. In the other extreme case, the limit of
sampling an infinite number of tasks for each generation, the outer-loop loss
landscape should remain fixed from generation to generation. A fixed loss
landscape should be easier to navigate for the outer-loop optimizer, but more
tasks per generation also make the optimization process more expensive.

Figure 3.9 shows the outer-loop loss landscapes for different sets of tasks
and with different inner-loop sigmas. They all have a very similar overall

40

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

structure, which is expected for tasks coming from the same distributions.
Some solutions will perform poorly for any goal location, for example, solu-
tions that involve taking large steps in some direction, overshooting the goal,
and continuing away from it. While the task sets all result in outer-loop
landscapes that share a coarse-grained structure, the specific location of the
most optimal points can vary a lot from across task sets, and can even be
in opposite directions. The main difference between the setting with more
tasks in the task set seems to be that the areas of high performance shrink
when there are more tasks, meaning that there are fewer good solutions to
be found. The optimal points are of a similar score, whether there are 10
or only three tasks. The intuitive explanation for this is that even though
more tasks are sampled, there is the same probability of getting easy or hard
tasks. The mean scores should thus be similar across the numbers of tasks
in the set, with a higher variability in the means across task sets when the
sets are small.

Figure 3.10: Inner-loop loss landscapes of tasks from task sets. The
individual loss landscapes of each of the tasks that make up the task sets
of three tasks in Figure 3.9. They all have a similar structure, but different
optimal points.

For comparison, the inner-loop loss landscapes of the three task sets con-
sisting of three tasks are shown in Figure 3.10. On an individual basis, the
loss landscapes are also very similar, although the optimal points have a ten-

41

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

dency to be further from the origin. For some of the tasks, the optimal score
within the searched area is much worse than in others. It might be the case
that for some goal points, very good scores are impossible to obtain given
the fixed neural network. It could also be that better optimal points could
be found through a grid search of a wider area. Like the single task used
throughout the previous section, some of these tasks have optimal points
that are isolated within areas of poor performance.

0 50 100 150 200 250 300

12

10

8

6

4

2

0

Fit
ne

ss

Sigma:0.01

0 50 100 150 200 250 300
4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Sigma:0.5

Generation

Figure 3.11: Outer-loop training curves for multiple tasks. Shown are
the training curves for one of the task sets of three tasks from Figure 3.10. In
both cases, the best solution in the population in the first generation found
the optimal solution, and not much actual optimization was done.

Outer-loop optimization on one of the task sets with three tasks is shown
in Figure 3.11. The outer-loop loss landscape of this task set can be seen in
the first row and first column of Figure 3.9 for an inner-loop sigma of 0.01
and the first row and fourth column for an inner-loop sigma of 0.5. The
outer-loop optimizer had a sigma of 1 in these runs. As can be seen, the
best solutions for both runs were already found in the very first generation
of evolution. It is worth noting that none of the outer-loop loss landscapes
of Figure 3.9 have optimal points that are isolated from the main area of
high-performing solutions.

42

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Pa
ra

m
et

er
 B

Sigma:0.01
Starting Point
Generational Best
Overall Best

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.5

Parameter A

Figure 3.12: Best outer-loop solutions in each generation. The solu-
tions reflect that the initial best individual in the population remained the
best throughout. The run with a larger inner-loop sigma did not converge
to any specific point, because an optimal solution could be reached by the
inner-loop optimizer from a large area of starting points.

Looking at the best solutions of each generation in Figure 3.8, it is clear
that in the run with a small inner-loop sigma, all of the best outer-loop
solutions are concentrated close to the optimal point of the loss landscape
in Figure 3.9. This is true for all generations, and while these plots do not
tell us how easy it was for the inner-loop optimization to reach any of the
optimal points in the individual tasks, it is reasonable to assume that the
starting point with the best mean score is a very strong attractor, since it
could be found so early in the outer-loop optimization. The best points of
the run with a larger inner-loop sigma are more diffuse throughout, with the
most recent solutions being concentrated closer to the optimal point of the
loss landscape in Figure 3.9. However, since the scores of the best solutions
are virtually identical for all these points (as seen in 3.11), it means that the
whole area is close to being optimal. This is likely because there are multiple
ways of getting a high score on average. Different starting points will be
closer to the optimal points of different inner-loop loss landscapes, but yield
close to the same average result.

43

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

In terms of loss landscape dynamics, the small experiments in this section
demonstrated the same situation as the MAML approach (Finn et al., 2017):
a starting point for inner-loop optimization is optimized in an outer-loop
across multiple different tasks. The optimization runs showed that the opti-
mal points of outer-loop loss landscapes can actually be easier to find when
the loss landscape is calculated over multiple different tasks in the inner-loop.

3.2 Optimizing Loss Landscapes

3.2.1 Different Parameters - Single Task
In the third scenario, the outer-loop and inner-loop no longer optimize the
same parameters, but only a single task is used, like in Scenario 1. This means
that altogether four scalars are optimized in the fixed neural network instead
of only two. The same fixed neural network weights and biases as in the
previous scenarios are used in this section. However, each neuron is instead
assigned one of the four different scalars at random to be multiplied by. The
outer-loop optimizes two of these, and the inner-loop optimizes the other
two. The two output neurons are assigned the two inner-loop parameters,
respectively. The outer-loop no longer changes the starting point of the inner-
loop optimization, which means that the inner-loop starting point is always
(0,0).

The optimization of different parameters has a profound impact on the
dynamics of the loss landscapes. In particular, the loss landscape of the
inner-loop no longer remains the same throughout the evolution but changes
every time the outer-loop parameters change. From the point of view of the
inner-loop, the outer-loop parameters create a new, fixed network that the
inner-loop parameters have to adapt to.

The hyperparameters of an optimizer generally do not affect the loss
landscape that the optimizer navigates in. However, in this scenario, things
are a bit more complicated. As we have seen in multiple different settings
above, hyperparameters of the inner-loop optimizer impact the loss landscape
of the outer-loop. Since the outer-loop parameters now affect the inner-
loop loss landscape, a feedback mechanism from the hyperparameters of the
inner-loop optimizer, through the outer-loop loss landscape, and back to the
inner-loop loss landscape can now occur during optimization.

Figure 3.13 shows an example of an inner-loop loss landscape that changes

44

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

with the parameters of the outer-loop. The same goal location of (0.25, 0.45)
as in Figure 3.3 was used for this demonstration. The loss landscapes differ
from Figure 3.3 since there are now more different parameters in different
random locations.

Figure 3.13: Inner-loop loss landscape changing with outer-loop op-
timization. When the outer- and inner-loop optimizers optimize different
parameters that are all part of the solution, the outer-loop parameters modify
the inner-loop loss landscape. Shown here are grid searches on the inner-loop
parameters at different points in the evolution run with an inner-loop sigma
of 0.01 from Figure 3.14. The top left loss landscape was recorded at the
first generation of the evolution, and the subsequent recordings can be seen
following the reading direction. Each of the loss landscapes are slightly dif-
ferent even though evaluation is always on the same task. However, as seen
in Figure 3.15, most solutions found by the outer-loop optimizer were very
similar, and the changes to the inner-loop loss landscapes are thus subtle.
The optimal points in the loss landscapes remain in the same area throughout
evolution.

The changes to the loss landscapes in Figure 3.13 are mostly minor. These
small changes make sense in the context of the outer-loop optimization pro-
cess, from which they were recorded, and which are visualized in Figures 3.14
and 3.15. Here, the optimization curves are largely flat, and the best points

45

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

0 50 100 150 200 250 300
3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25
Fit

ne
ss

Sigma:0.01

0 50 100 150 200 250 300

3.0

2.5

2.0

1.5

1.0

Sigma:0.1

0 50 100 150 200 250 300

4

3

2

1

Sigma:0.5

Generation

Figure 3.14: Training curves of the outer-loop. These runs only show
minor improvements in the population mean over time. The run with an
inner-loop sigma of 0.5 finds the best solution out of the three runs, but
evaluations are highly volatile.

in each generation do not seem to converge toward a specific point, which
means that the inner-loop loss landscape is also unlikely to change in a spe-
cific direction. There are some notable differences between these outer-loop
loss landscapes and those of Figure 3.4. First, the overall structure of the
loss landscapes changes less with an increasing inner-loop sigma. Second, the
landscapes are all more noisy than their counterparts in Figure 3.4. Lastly,
the optimal points are orders of magnitude worse than when only two pa-
rameters were optimized. Granted, a one-to-one comparison to Figure 3.4
cannot be made, since the scalars are not placed at the same locations in the
fixed neural network. The differences in performance are, however, pretty
striking.

46

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Pa
ra

m
et

er
 B

Sigma:0.01
Starting Point
Generational Best
Overall Best

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.5

Parameter A

Figure 3.15: Best outer-loop solutions in each generation. Lighter
points signify solutions found later in the evolution. The plotted solutions
over time show that there is no strong trend of converging toward a specific
solution in any of the three runs. This is especially true for the run with the
largest inner-loop sigma of 0.5.

An explanation for the relatively poor performance with double the op-
timized parameters can come from the fact that each set of parameters in
this double-loop setting has a smaller reach than the two parameters that
were optimized in both loops in Figure 3.5. Since the inner-loop optimization
now always has the same starting point, it relies on a high-performing point
being within its reach during the relatively short inner-loop optimization.
However, as seen in Figure 3.13, the optimal points tend to be located far
from the origin and surrounded by low-performing solutions. This makes it
extremely difficult for the inner-loop optimizer to make progress toward the
optimal point. With this in mind, it makes sense that the best solution was
found in the loss landscape with the largest inner-loop sigma.

47

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Figure 3.16: Outer-Loop Loss Landscapes. The loss landscapes of the
outer-loop when outer- and inner-loop parameters are different, and only a
single inner-loop task is sampled. The loss landscapes are much noisier than
in Figure 3.4, even though the task is the same. When the outer-loop does
not influence the starting point of the inner-loop parameters, finding a good
solution depends more on the initial random exploration in the inner-loop,
which makes the results more volatile. A noisier loss landscape is harder for
the outer-loop optimizer to navigate.

It is further evident from Figure 3.13, that even though the outer-loop
parameters have the potential to modify the inner-loop loss landscape, the
inner-loop loss landscape does not seem to become easier to navigate over
time. An easily testable hypothesis could be that the outer-loop parameters
are not expressive enough to make a meaningful impact on the inner-loop
loss landscape.

48

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

0 50 100 150 200 250 300

5

4

3

2

1

0

Fit
ne

ss

10 Parameters in Outerloop - Sigma:0.01

Generation

Figure 3.17: Training curve of an outer-loop with more parameters.
The run shows minor improvements in the population mean over time.

Figure 3.17 shows an optimization run where 10 parameters are optimized
in the outer-loop instead of just two. Unfortunately, the extra parameters
make it impossible to visualize an accurate depiction of the outer-loop loss
landscape. However, this run finds a much better solution than the runs of
Figure 3.14. Further, the best solution in the generation tends to always
be close to perfect. With a more expressive set of outer-loop parameters,
the changes to the inner-loop loss landscape also become more directed from
the beginning of the optimization process towards the end, as can be seen in
Figure 3.18. Importantly, the optimal point of the loss landscape is gradually
moved from being surrounded by very low-performance solutions to becoming
embedded within less poor solutions, and closer to the starting point of the
inner-loop optimizer.

This section showed major differences in the loss landscape dynamics
compared to the previous two sections. The main role of the outer-loop is no
longer to find a good starting point that the inner-loop can navigate from,
but the change the inner-loop landscape itself to be easier to navigate.

3.2.2 Different Parameters - Multiple Tasks
In this section, how the same loss landscape dynamics as in the previous sec-
tion affect multiple inner-loop loss landscapes at once is examined. In Figure

49

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Figure 3.18: Inner-loop loss landscape changing with outer-loop op-
timization. Shown are the same loss landscapes as in Figure 3.13, but with
more parameters optimized in the outer-loop. Here, the inner-loop loss land-
scapes change more throughout the evolution. The most important change
that occurs throughout the evolution of the outer-loop parameters, is that
the optimal point in the inner-loop loss landscape moves closer to the start-
ing point of the inner-loop parameters (the origin) and that it is moved from
areas of very low performance towards areas with higher performance. This
means that the outer-loop parameters successfully have created a loss land-
scape for the inner-loop optimizer that is easier to navigate.

50

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

3.19, three outer-loop loss landscapes are shown for three different task sets.
The two look very similar and also have similar optimal points. However, the
left-most loss landscape in the figure looks qualitatively different from the
others and has a much better optimal point. This is a difference compared
to what we saw in Figure 3.9 with the same sets of tasks. In Figure 3.9 the
optimal points differ across the task sets, but the overall structure remains
similar. A possible explanation could be that with the outer-loop parame-
ters’ ability to alter the inner-loop loss landscapes comes the potential for
higher sensitivity to different sets of tasks. With small sets of tasks, it could
be the case that some sets of inner-loop loss landscapes are easier to modify
in a synergistic direction than other sets. However, this hypothesis would
have to be tested with many more experiments, which is outside the scope
of this chapter.

Figure 3.19: Outer-loop loss landscapes for different task sets. Three
different task sets consisting of three tasks each. The inner-loop sigma was
0.5 in each case. The loss landscape to the left, which has by far the best
scoring optimal point, looks quite different from the other two loss landscapes
are similar in both structure and score of their optimal points.

Figure 3.20 shows the outer-loop loss landscapes for three different sets of
10 tasks. As expected, the loss landscapes are more similar to each other than

51

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

the loss landscapes in Figure 3.19. However, once again, the loss landscapes
differ more from each other compared to the same task sets in Figure 3.9,
supporting the above hypothesis. The magnitudes of the best points are
similar to the loss landscapes of only three tasks.

Running optimization of the outer-loop for 300 generations using one of
the task sets of three tasks results in the training curves found in Figure 3.21.
In the previous section, it seems very difficult for the outer-loop optimization
process to find better solutions than what was found in the initial generations.
Only the run with an inner-loop sigma of 0.01 sees a small improvement in
its best solutions over time.

Figure 3.20: Outer-loop loss landscapes for task sets with 10 tasks.
Shown are loss landscapes similar to those in Figure 3.19, but with each task
set consisting of 10 different tasks instead of 3. Structurally, the landscapes
are similar, however, the loss landscape to the left has a much better scoring
optimal points than the other two. Note, that the tasks here are chosen
independently from the tasks in Figure 3.19 and it is by coincidence that it
is the loss landscape to the left that is scoring best in both cases.

We can record the inner-loop landscapes of each of the three tasks before
and after the 300 generations of outer-loop optimization. This is done in
Figures 3.22 and 3.23. From these figures, it is clear that there is the most

52

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

0 50 100 150 200 250 300

3.0

2.5

2.0

1.5

1.0

0.5

Fit
ne

ss
Sigma:0.01

0 50 100 150 200 250 300

0.8

0.6

0.4

0.2

0.0

Sigma:0.5

Generation

Figure 3.21: Training curves for outer-loop optimization with three
inner-loop tasks. As was also the case in 3.14, the curve of the population
mean remains flat throughout all generations.

change occurring to the inner-loop loss landscapes in the run with an inner-
loop sigma of 0.01. There is a trend of optimal points in the loss landscapes
becoming better after the outer-loop optimization, but this is not always the
case. It is also not clear from visual inspection of the loss landscapes whether
the optimal points are actually easier to reach after optimization in either of
the two optimization runs.

The lack of clear improvements of the loss landscapes after outer-loop
optimization makes sense when considering Figures 3.21 and 3.24. There
does not seem to be any clear direction of the outer-loop optimization process,
except for the switch in the clusters of best solutions occurring in the run
with an inner-loop sigma of 0.01.

As in the previous section, we can try to improve the outer-loop opti-
mization by adding more parameters for the outer-loop to optimize. This
once again prevents the mapping of the outer-loop loss landscapes in 2D, but
it provides the training curves found in Figure 3.25, as well as the chang-
ing inner-loop loss landscapes in Figures 3.26 and 3.27. In the plots of the
changing loss landscapes, some of the same trends are present with fewer
parameters in the outer-loop. The loss landscapes after outer-loop optimiza-
tion tend to have better optimal points, than before optimization, but it is
not always the case.

53

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Figure 3.22: Changing inner-loss landscapes with inner-loop sigma
0.01. This figure shows the inner-loop loss landscapes of the three different
tasks within the task set before and after the outer-loop parameters have
been optimized for 300 generations. For tasks 1 and 3, the scores of the
optimal points in the loss landscapes are better after optimization, whereas
the score of the optimal point for task 2 is slightly worse.

Figure 3.23: Changing inner-loss landscapes with inner-loop sigma
0.5. In this setting, the loss landscapes change less than in Figure 3.22. The
optimal points in tasks 1 and 3 are similar before and after. Task 2 has a
better optimal point in the loss landscape after outer-loop optimization.

54

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Pa
ra

m
et

er
 B

Sigma:0.01
Starting Point
Generational Best
Overall Best

3 2 1 0 1 2 3
3

2

1

0

1

2

3 Sigma:0.5

Parameter A

Figure 3.24: Best solutions found in each generation. For the inner-
loop sigma of 0.5, the best solutions found are mostly diffusely placed in the
parameter space. The run with a sigma of 0.01 has a change in where the
best solutions are clustered at the beginning of evolution to where most of
the best solutions are found later in evolution.

0 50 100 150 200 250 300
3.5

3.0

2.5

2.0

1.5

1.0

0.5

Fit
ne

ss

Sigma:0.01

0 50 100 150 200 250 300

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Sigma:0.5

Generation

Figure 3.25: Training curves for an outer-loop with 10 parameters.
When adding trainable parameters to the outer-loop, the optimization results
are slightly better than in Figure 3.21 within the 300 generations.

We can observe some differences compared to Figures 3.22 and 3.23.
The loss landscapes obviously already before optimization different when

55

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

the outer-loop optimizes more parameters. However, in Figures 3.26 and
3.27 with more outer-loop parameters, the inner-loops of the different runs
are already more different from each other than the initial inner-loop loss
landscapes when only two parameters were optimized in the outer-loop.

Figure 3.26: Changing inner-loss landscapes with inner-loop sigma
0.01 and 10 outer-loop parameters. The top solutions in the loss land-
scapes are improved in tasks 2 and 3. After optimization, the magnitudes of
the top solutions are similar for each task.

Another difference when the outer-loop optimized more parameters can
be seen in the loss landscapes after optimization. In the runs with 10 outer-
loop parameters, the area of well-performing solutions in the inner-loop loss
landscapes appears to be smaller after optimization. This is especially true
for the run with an inner-loop sigma of 0.01.

56

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Figure 3.27: Changing inner-loss landscapes with inner-loop sigma
0.5 and 10 outer-loop parameters. Only the optimal point of the loss
landscape of task 2 changed materially.

To emphasize the difference more outer-loop parameters make to the
changes in the inner-loop throughout optimization, the same experiment can
be repeated with even more outer-loop parameters to be optimized. Figures
with the results of using 100 parameters in the outer-loop can be found in
Appendix A With 100 trainable parameters in the outer-loop, the outer-loop
training curves look similar to with 10 parameters. The same trends with
the inner-loop loss landscapes also hold: most landscapes after outer-loop
optimization have better optimal points, but this is not true for all of them.

Building on the previous section, this section showed that the outer-loop
parameters have the ability to modify the loss landscapes of the inner-loop
parameters in all the tasks that are involved in calculating the performance
of the outer-loop parameters. The small experiments showed that after opti-
mization most inner-loop loss landscapes had improved optimal points, but
that this was not true for all inner-loop loss landscapes. That some inner-loop
loss landscapes actually had worse optimal points after outer-loop optimiza-
tion is likely the consequence of a compromise that the outer-loop parameters
have to make to gain the highest possible average score across the different
tasks. Since the outer-loop parameters do not have the ability to change the

57

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

starting point of the inner-loop optimization, nor do they have the ability
to influence how the optimizer searches in terms of depth or breadth, the
only option is to modify the loss landscape of the inner-loop parameters such
that good solutions can be found consistently. With more outer-loop param-
eters, there is a greater potential to modify the inner-loop loss landscape,
but it is likely unreasonable to assume that all optimal solutions across all
tasks could be moved into the same place. After all, the optimal solutions
are constrained by the objective realities of the task environment. For this
reason, we might see sacrifices made to what scores are possible to reach in
individual tasks in order to secure a consistently high average return.

An interesting dynamic between the outer- and inner-loop optimization
is worth emphasizing here: changes to the inner-loop reach by changing, e.g.,
the inner-loop sigma has consequences for the outer-loop loss landscape, as
we have seen in all experiments in this chapter. Since the outer-loop param-
eters in this meta-learning setting affect the inner-loop loss landscape, this
means that changing the hyperparameters of the inner-loop optimizer has
downstream effects on its own loss landscape. This is seen most clearly by
comparing Figures A2 and A3 in the appendix. With a smaller inner-loop
sigma, the inner-loop loss landscape changes more than with a larger one.
Since an inner-loop sigma of 0.01 means that the inner-loop optimizer focuses
its search in a smaller area, it makes sense that the outer-loop parameters
need to adapt the space more to accommodate the narrower search com-
pared to when the inner-loop optimizer has a broader reach. We can thus
say that for this particular meta-learning setting, a larger inner-loop sigma
has a greater effect on the outer-loop loss landscape, but a smaller inner-loop
sigma results in greater changes to the inner-loop loss landscapes throughout
the outer-loop optimization process.

Some interesting additional studies could be made with regard to the number
of parameters it takes in the outer-loop to significantly modify the inner-loop
loss landscape. Will the inner-loop loss landscape change more or less over
time, if we add more inner-loop parameters relative to the outer-loop pa-
rameters? Or is the most important thing that the outer-loop actually has a
chance of improving and does not have entirely flat training curves?

58

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

3.3 Optimizing an Optimizer
Black-box meta-learning is sometimes framed as learning a function that
optimizes another set of parameters. Arguably the simplest and most used
version of this type of meta-learning is to optimize the hyperparameters of
a function that already has the characteristics of an optimizer. Figure 3.28
shows the outer-loop loss landscape where parameters optimized in the outer-
loop are the learning rate and the sigma of the inner-loop optimizer. The
inner-loop is the same as for 3.4 with the same fixed network and the same
task, and the inner-loop loss landscape is thus the same as in Figure 3.3.
Again, changing the hyperparameters of the inner-loop optimizer does not
change the loss landscape of the inner-loop, only its ability to navigate the
landscape. It is also important to keep in mind that even though changing the
inner-loop sigma resulted in changes to the outer-loop loss landscapes in all
of the examples in the previous sections of this chapter, it does not mean that
the outer-loop loss landscape changes throughout the outer-loop optimization
process in this case with the varying inner-loop sigma and learning rate.
This is because the outer-loop loss landscape in Figure 3.28 directly shows
the resulting scores of using different sets of sigma- and learning rate-values
themselves, and not their effects on some other optimized parameters.

Thus, even though the parameters in the outer- and inner-loop are differ-
ent from each other, the inner-loop loss landscape is not dynamic throughout
the optimization process. This is because the outer-loop parameters are not
part of the model that is ultimately evaluated, and the inner-loop param-
eters that are part of this model do not have to adapt to the outer-loop
parameters. This case thus differs from the meta-learning settings presented
in the sections above in that the parameter sets of the two loops are not
the same, no starting point is learned for the inner-loop optimization, and
the inner-loop landscape is not optimized for easier navigation. The way
that the outer-loop improves the inner-loop optimization is by adapting the
reach of the optimizer. The small experiment of Figure 3.28 is just a very
simple example of increasing the reach through adapting the learning rate
and sigma, which are obviously highly associated with the reach of the NES
optimizer. However, it is easy to imagine much more intricate ways of evolv-
ing an optimizer to change the way it navigates the loss landscape associated
with its parameters.

More advanced examples of using an outer-loop to optimize an inner-loop
optimizer can be found in the field of plastic artificial neural networks. An

59

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Figure 3.28: Optimizing hyperparameters of an inner-loop optimizer.
Outer-loop loss landscape when the parameters optimized in the outer-loop
are the learning rate and sigma of the inner-loop optimizer. The inner-loop
loss landscape is the same as in Figure 3.3.

introduction to this field can be found in Section 2.5.3 of Chapter 2. Instead
of optimizing the solution directly, several studies show that it is possible
to optimize rules for how the solution should change over time. Thus, with
such approaches, the parameters in the outer-loop do not participate di-
rectly in the solution but determine which solutions it is possible to reach.
The same logic can be applied to any methods that involve meta-learning
of a hypernetwork or an indirect encoding of a solution. As long as the role
of the outer-loop parameters is to help find a different model, the particu-
lar approach belongs to the same meta-learning category as meta-learning
hyperparameters of a solution. Meta-learning approaches within this cate-
gory can, obviously, vary widely in how much the outer-parameters need to
learn from scratch, where learning hyperparameters of an already established
optimization function is at one extreme end of the spectrum.

With regards to plastic neural networks, it is, unfortunately, generally
not possible to visualize the inner-loop loss landscapes in the same way as
has been done throughout this chapter. This is because most plastic neural
network approaches involve updating the weights of the network at every
time step within the environment that the plastic neural network operates

60

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

in. Even if only two parameters were updated by the plasticity rules, we
are dealing with optimal sequences of parameters instead of simply optimal
parameters. Whether inner-loop parameters are updated continually with
each time step in the environment makes a big difference in what kind of
solutions can be found. It certainly creates challenges in visualizing the solu-
tions of an episode as a whole. On the other hand, the frequency of updates
can be seen as a hyperparameter of the inner-loop optimizer. Thus, from
the perspective of meta-learning categories, updating inner-loop parameters
more or less frequently should not change which meta-learning category a
method belongs to.

3.4 Putting it All Together
Throughout this chapter, it has been demonstrated how the outer-loop can
improve the inner-loop optimization in three different ways: finding a better
starting point as seen in Section 3.1; shaping the inner-loop loss landscapes
as seen in Section 3.2; and through optimizing the inner-loop optimizer itself
as briefly seen and discussed in Section 3.3. Optimizing solutions of only two
parameters allows for visualizing the results of a grid search that uncovers
the loss landscape of the task at hand. This helps in explaining concepts and
strengthening intuitions. However, most interesting problems often require a
large number of parameters to solve. One should always be careful when ex-
trapolating intuitions from low-dimensional spaces to dimensions with many
dimensions. It has for example been shown, that local optima points are
much more common in low-dimensional loss landscapes and that in higher
dimensions, saddle-points are more frequent (Lipton, 2016). That being said,
there is no reason to believe that the three mechanisms of the outer-loop to
affect the inner-loop, described throughout this chapter, are not the same for
meta-learning of large neural networks.

The three different mechanisms have so far only been shown and described
separately from each other. However, it is certainly possible for meta-learning
approaches to make use of more than one of these at a time. For example,
when optimizing an LSTM to implement an RL algorithm in its dynamics
(as described in Chapter 2, Section 2.5), the outer-loop optimizes the gates of
the LSTM, which in turn optimizes the hidden state of the LSTM during in-
teractions with the environment. Thus, the LSTM gates act as an optimizer
(Wang et al., 2017; Duan et al., 2016). However, the gaits of the LSTM are

61

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

also part of the direct solution, as the hidden state has to interact with an
output gate to produce the output of model.

As another example, the model of Beaulieu et al. (2020) has an outer-loop
that optimizes both a starting point of a model, as well as a function that
is used to modulate the inner-loop updates of the model. It could even be
argued that the activity-independent term in the Hebbian ABCD-learning
rule provides a starting point for plastic neural networks in the work of Na-
jarro and Risi (2020) so that this variant of plastic neural networks learns
both a starting point and an optimizer in the form of the set of learning
rule. Table 3.2 lists a number of meta-learning approaches and labels which
of the three outer-loop mechanisms for improved inner-loop optimization are
involved with the methods.

Considering the possible mechanisms that can be at play in meta-learning
can help inform our decisions when developing new algorithms. It can also
be beneficial when analyzing cases where existing algorithms fail. Such con-
siderations will obviously be specific to any concrete pairing of algorithm and
problem, but an understanding of how meta-learning dynamics allows us to
ask questions such as whether it is reasonable to assume that starting point
optimization can find a good initial point for inner-loop optimization for all
of the given task distribution. Or, as another example, whether the reason
that a particular loss landscape optimizer fails is because the inner-loop opti-
mizer cannot reach any optimal points from its starting point, or because the
outer-loop parameters are not expressive enough to make meaningful modi-
fications to the inner-loop loss landscape. Or, as a last example, if we have
good reasons to believe that the inner-loop loss landscapes generally are easy
to navigate, might it then make the most sense to focus on optimizing the
inner-loop optimizer for faster inner-loop optimization?

The next chapter revolves around experiments using a particular form of
meta-learning, specifically evolved Hebbian learning rules.

62

Chapter 3 | Mapping Loss Landscapes of Meta-Learning

Paper Name Citation 1 2 3
Model Agnostic

Meta-Learning for
Fast Adaptation

of Deep Networks (Finn et al., 2017) X
Practical Bayesian

Optimization of Machine
Learning Algorithms (Snoek et al., 2012) X

Designing Neural
Network Architectures

Using RL (Baker et al., 2016) X
Learning to

Reinforcement Learn (Wang et al., 2017) X X
Learning to

Continually Learn (Beaulieu et al., 2020) X X
Meta-Learning through

Hebbian Learning in
Random Networks (Najarro and Risi, 2020) X

Introducing Symmetries
to Black-Box

Meta-RL (Kirsch et al., 2021) X X
Meta Networks (Munkhdalai and Yu, 2017) X X

ES-MAML
Simple Hessian-Free

Meta-Learning (Song et al., 2019a) X

Table 3.2: Meta-Learning Algorithms. Examples of meta-learning algo-
rithms and how the outer-loop influences the inner-loop loss landscape in one
or more of the three possible ways. 1: Starting point optimization. 2: Loss
landscape optimization. 3: Optimizer optimization.

63

Chapter 4

Evolving and Merging Hebbian
Learning Rules

The inability to adapt to out-of-distribution (OOD) situations makes arti-
ficial agents less useful and despite many advances in the field of reinforce-
ment learning and evolutionary strategies, making adaptable agents remains
a challenge (Zhang et al., 2018a,b; Zhao et al., 2019; Justesen et al., 2018).
If we want agents to be deployed in complex environments, we cannot expect
to be able to train them in all possible situations beforehand. Incorporating
synaptic plasticity rules, introduced in Chapter 2, Section 2.5.3, has been
shown to endow agents with enhanced behavioral flexibility and robustness.

64

Chapter 4 | Evolving and Merging Hebbian Learning Rules

1 2
3 4

5
6 7

8
9

1 4
3 5

2
2 1

4
3

1. ⍺ ABCD
2. ⍺ ABCD
3. ⍺ ABCD
4. ⍺ ABCD
5. ⍺ ABCD
6. ⍺ ABCD
7. ⍺ ABCD
8. ⍺ ABCD
9. ⍺ ABCD

Initialize learning rule
parameters:

Merge the rules:

1. ⍺ ABCD
2. ⍺ ABCD
3. ⍺ ABCD
4. ⍺ ABCD
5. ⍺ ABCD

Learning rules adapt
connections at each time step.

Evolve for a specified
number of generations:

Repeat

I. II. III.

Figure 4.1: Evolve and Merge Approach. First, one learning rule is ran-
domly initialized for each connection in the network. Then, the learning rule
parameters are evolved for a predetermined number of generations. Subse-
quently, the rules that have similar parameters are merged into a single rule.
The new reduced rule set is then evolved further. This process is repeated
and continues until the maximum number of generations allowed has been
reached.

Here, we build upon the approach introduced in Najarro and Risi (Na-
jarro and Risi, 2020), where parameters of local plasticity rules - not the
connections of the network - were evolved. With this approach, ANNs with
plastic connections showed better performances than static ANNs when faced
with changes in robot morphology not seen during training.

However, in contrast to nature, in which genomes encode an extremely
compressed blueprint of a nervous system, the approach by Najarro and Risi
(2020) required each connection in the network to have its own learning rule,
significantly increasing the number of trainable parameters.

The amount of information it takes to specify the wiring of a sophisticated
brain is far greater than the information stored in the genome (Breedlove and
Watson, 2013). Instead of storing a specific configuration of synapses, the
genome is thought to encode a much smaller number of rules that govern how
the wiring should change throughout the lifetime of the individual (Zador,
2019). In this manner, learning and evolution are intertwined: evolution
shapes the rules that in turn shape learning (Hinton and Nowlan, 1987;
Price et al., 2003; Snell-Rood, 2013). If the rules encoded by the genome

65

Chapter 4 | Evolving and Merging Hebbian Learning Rules

do not allow the individual to learn useful behavior, then these rules will
have to be adapted or go extinct. The phenomenon that a large number of
synapses has to be controlled by a small number of rules has been called the
”genomic bottleneck”, and it has been hypothesized that this bottleneck acts
as a regularizer that selects for generic rules likely to generalize well (Zador,
2019).

Here, we aim to mimic the genomic bottleneck by limiting the number
of rules to be much smaller than the number of connections in the neural
networks, in the hope that we can evolve more robust agents. The main
insight in the novel approach introduced in this chapter (Figure 4.1) is that
after having optimized one learning rule for each synapse in the network, it is
possible with a simple clustering approach to drastically reduce the number
of unique learning rules required to achieve good results. In fact, we show
that starting from having one rule per connection in the ANN (12,288 rules)
we can decrease this number of rules by 96.875 % to have only 384 rules
controlling all 12,288 connections. We further show that as the number of
learning rules decreases, the robustness to unfamiliar morphologies tends to
increase. In addition to being inspired by the compressed representations
in genomes, the method proposed in this chapter is related to the field of
indirect encoding, which has a long history in artificial intelligence research
(Gruau et al., 1996; Bentley and Kumar, 1999; Stanley and Miikkulainen,
2003; Tonelli and Mouret, 2013), and further introduced in Section 2.5.3.

As we gradually decrease the number of learning rules, we end up with a
set of rules, which have a smaller number of trainable parameters than there
are connections in the network. We operationalize robustness as being able to
perform well across an array of settings not seen during training. We compare
the robustness of plastic ANNs to that of different static ANNs (described
further in section 4.1.4): a plain static network with the same architecture
as our plastic networks, a smaller static network, and static networks where
noise is applied to their inputs during optimization. The plastic networks
outperform the plain static networks of different sizes in terms of robustness
and perform at the same level as the best configurations of static networks
with noisy inputs while requiring a significantly lower number of trainable
parameters.

In the future it will be interesting to further increase the expressivity of
the evolved rules, potentially allowing an even greater genomic compression
with increased generalization to robots with drastically different morpholo-
gies.

66

Chapter 4 | Evolving and Merging Hebbian Learning Rules

4.1 Approach
The approach introduced in this chapter evolves a set of local learning rules,
where the number of rules is ultimately much smaller than the number of
connections. In contrast to other indirect encoding methods, instead of start-
ing with a small rule set, the Evolve & Merge approach starts with a large
number of trainable parameters compared to the number of trainable param-
eters in the ANN and only over the course of the evolution end up with a
smaller number of trainable parameters by merging rules that have evolved
to be very similar (Figure 4.1).

For learning rules, we use a parameterized abstraction of Hebbian learn-
ing. The so-called ”ABCD” rule, which has been used several times in the
past as a proxy for Hebbian learning (Najarro and Risi, 2020; Niv et al., 2002;
Risi et al., 2010; Orchard and Wang, 2016), updates the connection between
two neurons in the following manner:

∆wij = α(Aoioj +Boi + Coj +D) (4.1)

where wij is the connection strength between the neurons, oi and oj are the
activity levels of the two connected neurons, α is a learned learning rate, and
A, B, C, and D are learned constants.

Instead of directly optimizing connection strengths in the plastic net-
work, we only optimize parameters of the ABCD learning rules, which in
turn continually adapt the network’s connections throughout the lifetime of
the agent. The parameters of the learning rules are randomly initialized be-
fore evolution following a normal distribution, N (0, 0.1), and are optimized
at the end of each generation. At the beginning of each new episode, the con-
nection strengths of a plastic network are randomly initialized, drawn from
a uniform distribution, Unif(−0.1, 0.1). At each time step of the episode,
after an action has been taken by the agent, each connection strength is
changed according to the learning rule that it is assigned to. Below, we
show the training and performance of models for which a unique learning
rule is optimized for each connection in the network, as well as models where
multiple connections share the same learning rule.

4.1.1 Environment
We train and evaluate our models on how well they can control a simulated
robot in the AntBullet environment (Ellenberger, 2018). Here, the task is to

67

Chapter 4 | Evolving and Merging Hebbian Learning Rules

Figure 4.2: Robot Environment. Right: The standard morphology that
the models were optimized for. Left: An example of the most severe leg
reduction done to a leg to test robustness. The lower part of the leg was
reduced from 0.4 to 0.35. In this figure, the reduction was done to the red
part of the leg in the foreground of the image.

train a three-dimensional four-legged robot to walk as efficiently as possible
in a certain direction.

The neural network controlling the robot receives as input a vector of
length 28, in which the elements correspond to the position and velocity of
the robot, as well as the angles and angular velocities of the robot’s joints.
To control the robot’s movements, the output of the neural network is a
torque for each of the eight joints of the robot, resulting in a vector of eight
elements.

Previous research has mostly focused on a robot’s ability to cope with
catastrophic damages to a leg (Cully et al., 2015; Colas et al., 2020; Najarro
and Risi, 2020). Here we take a different approach, where legs are modified,
but still usable (Figure 4.2). For evaluation, we create slight variations on
the standard morphology by shrinking the lower part of the robot’s legs (the
“ankles” in the robot’s xml file). The standard length of an “ankle” is 0.4.
We evaluate five different reductions, reducing the length of an “ankle” to
0.39, 0.38, 0.37, 0.36, and 0.35, respectively. One by one, each of the four
legs has its ankle reduced to each of these five lengths. In addition, we
evaluate in a setting where both front legs are reduced at the same time, as
well as a setting where the front left leg and the back right leg are reduced
at the same time. We thus have five different reductions on six different
leg combinations, amounting to 30 different morphology variations. This
way we can more precisely determine how much variation from the original
setting the models are able to cope with. When evaluating with a varied
morphology, we adapt the reward to solely reflect the distance traveled in
the correct direction, so that no points are given for just ”staying alive”.

68

Chapter 4 | Evolving and Merging Hebbian Learning Rules

Table 4.1: Hyperparameters for ES

Parameter Value
Population Size 500
Learning Rate 0.1

Learning Rate Decay 0.9999
Learning Rate Limit 0.001

Sigma 0.1
Sigma Decay 0.999
Sigma Limit 0.01

Weight Decay 0

4.1.2 Evolution Strategy
All models are optimized using Evolution Strategy (ES) (Salimans et al.,
2017). In static networks connections are evolved directly and in plastic net-
works only the learning rule parameters are evolved. We use an off-the-shelf
implementation of ES (Ha, 2017a) with its default hyperparameters, except
that we set weight decay to zero (see Table 4.1 for complete hyperparameter
configurations). This implementation uses mirrored sampling, fitness rank-
ing, and the Adam optimizer for optimization. In all runs, a population size
of 500 is used, and optimization spans 1,600 generations.

4.1.3 Merging of Rules
In order to produce rule sets with fewer rules than the number of connections
in the network, we use the K-Means clustering algorithm (Pedregosa et al.,
2011) to gradually merge the learning rules throughout training. We first
initialize a network with one learning rule for each synapse (12,288 different
learning rules) and optimize these learning rules for 600 generations. We
then half the number of learning rules by using the K-Means algorithm to
find 6,144 cluster centers among the 12,288 rules. The new learning rule of a
given synapse will simply be the cluster center of the learning rule, to which
it was previously assigned. The newly found smaller set of learning rules is
then optimized for 200 generations before K-Means clustering is used to half
the number of rules again. The number of generations between merging of

69

Chapter 4 | Evolving and Merging Hebbian Learning Rules

Figure 4.3: Rule Merging. The number of rules is iteratively halved using
K-Means clustering. Every reduced rule set is optimized until the time limit
of 1,600 generations so that fair comparisons between models can be made.

the rules as well as how many cluster centers to reduce the rule set to are hy-
perparamters that were determined to work well in preliminary experiments,
and the choices mainly depend on how much total training time is permit-
ted. This process is repeated until we have optimized for 1,600 generations
altogether. In order to be able to make fair comparisons of the different
reduced rule sets, we also optimize each individual reduced set until it has
been optimized for 1,600 generations (see Figure 4.3).

4.1.4 Experiments
We compare a total of 12 different models in terms of their ability to learn
and their robustness (see Table 4.2 and Figure 4.9a, 4.9b). Common to
all of them is that they are feedforward networks, they have two hidden
layers, they have no biases, and the hyperbolic tangent function is used for
all activations.

All networks have 128 neurons in the first hidden layer and 64 neurons in
the second. The plain static model is a static neural network without any
Hebbian learning. We also optimize and evaluate a smaller static model,
in which the hidden layers are sizes 32 and 16 (1,536 parameters). Two other
static network models were trained in a setting where noise was applied to
the input throughout the optimization. If the models can perform well de-
spite noisy inputs, they might also be more robust to morphology changes
despite being static, and therefore we create these models as additional base-
lines to compare our approach to. At each time step during optimization,
a vector of the same size as the input with elements drawn from a normal

70

Chapter 4 | Evolving and Merging Hebbian Learning Rules

distribution was created and then added to the input element-wise. For one
model, the distribution was N (0, 0.05), and the other had a distribution of
N (0, 0.1). In the figures below, these models are named after the amount of
noise their inputs received during optimization.

The ABC model type was trained with an incomplete ABCD rule: the
learning rate and the D parameter were omitted, so only the activity-dependent
terms were left. For all other plastic network models, the rules consisted
of five parameters (A, B, C, D, and the learning rate). The model called
αABCD was optimized with a rule for each connection throughout evolu-
tion, and the number of rules was never reduced. This is the same method
as was introduced by Najarro and Risi (Najarro and Risi, 2020). The model
called ”500 rules from start” was initialized with just 500 rules, and this
number remained unchanged. Each connection of the ANN was randomly
assigned to one of the 500 rules at initialization. In the figures summarizing
the results (Figures 4.8,4.7, 4.9a, 4.9b), the rest of the plastic models are
simply named after the number of rules they have in their rule sets.

4.2 Results
After optimizing for 1,600 generations, we see that the static networks tend
to perform much better on the standard morphology that the models are
optimized on. Figure 4.4 presents the training curves of each of the re-
duced rule sets and Figure 4.5 shows the training curves of the rest of the
models. For comparisons with different reinforcement learning algorithms in
the standard AntBullet environment see Pardo (Pardo, 2020) for baselines
where, e.g., Proximal Policy Optimization (PPO) achieves a score of around
3100, Deep Deterministic Policy Gradient (DDPG) scores around 2500, and
Advantage Actor-Critic (A2C) scores around 1800.

Performances after optimization are summarized in Table 4.2 and Fig-
ures 4.7,4.8, 4.9a, 4.9b. The reduced rule sets generally end up with a better
performance when evaluated on the original settings compared with the case
where the number of rules is equal to the number of connections through-
out. Looking at the box plots in Figure 4.9a, we see that all models with
reduced rule sets (named by the number of rules) have a higher mean perfor-
mance across all novel settings than the model with a rule for each connection
(named αABCD in the figures). They also have a higher mean performance
than the plain static model, which has a large variability in its performance

71

Chapter 4 | Evolving and Merging Hebbian Learning Rules

0 200 400 600 800 1000 1200 1400 1600
Generations

0

500

1000

1500

2000

2500

3000

Sc
or

es

 12244 rules

 1536 rules
 3072 rules

 384 rules

 6144 rules

 768 rules

Evolve & Merge Optimization

Figure 4.4: Evolve & Merge Training Results. Training curves of five
independent evolution runs. The solid lines reflect the average population
means for each run of each model. The filled areas are the standard deviations
of the models’ population means. Immediately after a merging of rules has
occurred, the newly reduced rule set is set back a bit in its performance
compared to before merging, but performance quickly recovers and improves.
Without adding to the total optimization time of 1600 generations, a rule set
of just 384 different rules reaches a comparable population mean score as a
rule set with 12244 rules.

0 200 400 600 800 1000 1200 1400 1600
Generations

0

500

1000

1500

2000

2500

3000

3500

Sc
or

e

ABC
noise 0.1
small static model

αABCD
plain static model

500 rules
 from start
noise 0.05

Figure 4.5: Training Results. For all models, we ran five independent
evolutionary runs. The solid lines reflect the average population means for
a given model throughout evolution. The filled areas are the standard de-
viations of the models’ population means. While the static models end up
with better scores, all models, except ’ABC’, are able to obtain reasonably
well-performing populations within 1600 generations.

72

Chapter 4 | Evolving and Merging Hebbian Learning Rules

Model Name Num. Params. Orig. Score Novel Score
plain static model 12,288 3,513±221 2, 095±442
small static model 1,536 3,040±170 923±387
noisy (0.05) 12,288 3,283±213 2,172±395
noisy (0.1) 12,288 3,020±126 2,256±226
500 from start 2,500 2,185±92 1,931±90
ABC 36,864 1,731±158 1,462±206
α ABCD 61,440 2,528±52 2,173±126
6, 144 rules 30,720 2,649±13 2,259±100
3, 072 rules 15,360 2,631±21 2,244±123
1, 536 rules 7,680 2,631±27 2,323±90
768 rules 3,840 2,580±33 2,286±157
384 rules 1,920 2,516±44 2,267±186

Table 4.2: Parameter counts and scores after optimization. Orig. Scores are
scores under original morphology settings, and Novel Scores are under the
unseen altered settings. Scores reflect the means of 5 models of each model
type. A model’s score is its mean performance over 100 episodes. Standard
deviations are provided next to each mean. The plain static network has the
highest score in the original settings but has a massive decrease in scores in
the novel settings. All reduced rule sets have higher mean scores with smaller
standard deviations in the novel settings, than any static network.

73

Chapter 4 | Evolving and Merging Hebbian Learning Rules

Figure 4.6: Evolved Rules Examples. Strip plots of values of connection
weight changes of the top 10 most followed rules in an optimized version of
each of the reduced rule sets. The names of each of the strips seen along
the x-axis are the indices of the rules, and in parentheses are the number of
updates that the rule made during an episode with the original environment
settings. A strip indicates what updates were made by the rules during this
episode.

across its different evolution runs. The average performance tends to in-
crease as the number of rules decreases. The ABC model and the model
that had only 500 rules from the beginning achieved training performances
considerably lower than the rest of the models. The static models optimized
with noisy inputs obtain similar scores as the reduced rule sets. When the
noise added to the input is drawn from N (0, 0.05), the best evolution run of
the model is, like the static network, better than any of the runs with the re-
duced rule sets, but its worst run is far worse. When the noise is drawn from
N (0, 0.1) the average performance is at the same level as the most reduced
rule set and the top performance is a bit better. Overall, while the ceiling of
the performances seems to be lower for the plastic networks, the floor tends
to be much higher (except for the case of the ABC-only models). The latter
point is especially visible if we look at the worst performances of the runs of
each model, as is done in Figure 4.9b. Here we see that the model trained
with 500 learning rules from the beginning of the training is the least likely
to get catastrophically bad performances.

4.2.1 Discovered Rules
To get a visual intuition of what type of learning rules evolved, Figure 4.6
shows strip plots of the top 10 most followed rules in each of the reduced rule

74

Chapter 4 | Evolving and Merging Hebbian Learning Rules

sets. From these, we can see that several different types of rules are found by
evolution. First, one type of rule that is found in the top 10 of all the rule sets,
has all its updates closely concentrated around zero (e.g., the rule indexed
1020 in the rule set of 1536 rules, or the rule indexed 114 in the set of 384
rules). Second, multiple rules provide relatively strong updates, both positive
and negative, but which have a gap around zero (e.g., index 104 in the 384
set, or 837 in the 6144 set). Another apparent type of rule provides both
positive and negative updates but has no gap around zero (e.g., index 734 in
the 768 set, or 248 in the 3072 set). Lastly, we see a type of rule, that has the
vast majority of its updates to be of a specific sign (e.g., index 240 in set 768
(mostly negative), or 784 in set 3072 (mostly positive)). These observations
suggest that many connections are destined to only receive very small updates
throughout the episode, and remain largely unchanged compared to some
of the stronger updates that other rules provide. Further, the fact that
multiple of the rules that have the most connections assigned to them can
provide both positive and negative updates, confirms that two connections
following the same rules might end up being updated very differently from
each other. Fewer rules do therefore not necessarily make the neural network
less expressive.

4.3 Discussion
In this chapter, we build upon the results of Najarro and Risi (Najarro and
Risi, 2020) which showed that increased robustness can be achieved by evolv-
ing plastic networks with local Hebbian learning rules instead of evolving
ANN connections directly. We show that the robustness can be enhanced
even further with an Evolve & Merge approach: throughout optimization
we iteratively use a clustering algorithm to merge similar rules, resulting in
a smaller rule set at the end of the optimization process. While the plas-
tic networks are not able to get scores as high as the highest scores of the
static networks, the plastic networks are less likely to get catastrophically
bad scores, when the morphology of the robot is changed slightly. Note, that
since the plastic networks are initialized randomly at the beginning of each
new episode, a somewhat lower score for plastic networks under the original
training setting is to be expected. This is because we cannot expect the
initially random network to perform well in the first few time steps when the
learning rules have only had a little time to adapt the connections. Static

75

Chapter 4 | Evolving and Merging Hebbian Learning Rules

pl
ai

n
st

at
ic

 m
od

el
sm

al
l s

ta
tic

 m

od
el

no
isy

 in
pu

ts

 (0
.0

5)
no

isy
 in

pu
ts

 (0

.1
)

50
0

ru
le

s
 fr

om
 st

ar
t

AB
C

ru
le

αA
BC

D
 (1

22
88

 ru

le
s)

61
44

 ru
le

s

30
72

 ru
le

s

15
36

 ru
le

s

76
8

ru
le

s

38
4

ru
le

s

1500

2000

2500

3000

3500

Sc
or

es

Figure 4.7: Original Environment Scores. Box plots for the scores of the
optimized models in the original environment setting. For each model, the
score is averaged over 100 independent episodes. As we optimized 5 models
of each type, the box plots show the variation of the scores within a given
model type. See Section 4.1.4 for model descriptions. All static models have
better scores than any plastic model in the original setting. The reduced rule
sets see no decrease in performance compared to the model with a rule for
each connection.

networks, on the other hand, can be optimized to perform well under familiar
settings from the very first time step, but suffer from a lack of robustness.

Our results indicate that the generalization capabilities tend to improve as
the number of rules is reduced. At the end of the Evolve & Merge approach,
we thus have a model, that has a smaller number of trainable parameters
and at the same time generalizes better. Using a simple clustering algorithm
as a way of merging the learning rules, we are able to go from initially
having 12,288 rules (corresponding to 61,440 trainable parameters) to having
just 384 learning rules (corresponding to 1,920 trainable parameters) while
improving robustness, all without increasing the number of generations used
for optimization.

In order to make fair comparisons between all the models, we did not
allow for more generations for the reduced rule sets here. However, it is
likely that if we were to permit more optimization time, we could decrease the
number of learning rules even further. The observed robustness cannot just
be attributed to a smaller number of trainable parameters, since the smaller
static networks that performed at the same level as the plastic networks in
the original settings, did not show robust performances in altered settings.

The static network optimized with noisy inputs, on the other hand, had

76

Chapter 4 | Evolving and Merging Hebbian Learning Rules

0

1000

2000

3000

Front Left Leg Front Right Leg Back Left Leg

0.01 0.02 0.03 0.04 0.050

1000

2000

3000

Back Right Leg

0.01 0.02 0.03 0.04 0.05
Reduction Size

Both Front Legs

0.01 0.02 0.03 0.04 0.05

Front Left & Back Right

M
ea

n
Sc

or
e

small static
6144
ABC

3072
plain static
noise 0.1

αABCD
384

768
1536

noise 0.05
500 rules
 from start

Figure 4.8: Mean scores for all models in all novel environment set-
tings. As leg reductions increase (x-axis), the models tend to perform worse
(y-axis). The mean scores are calculated over 100 episodes for each model.
The static models have much more variability in their scores than the plastic
ones. Further, static networks tend to start with a good score for the small-
est reduction but decrease rapidly as reductions become larger. The plastic
networks, on the other hand, have much flatter performance curves.

77

Chapter 4 | Evolving and Merging Hebbian Learning Rules

pl
ai

n
st

at
ic

 m
od

el
sm

al
l s

ta
tic

 m

od
el

no
isy

 in
pu

ts

 (0
.0

5)
no

isy
 in

pu
ts

 (0

.1
)

50
0

ru
le

s
 fr

om
 st

ar
t

AB
C

ru
le

αA
BC

D
 (1

22
88

 ru

le
s)

61
44

 ru
le

s

30
72

 ru
le

s

15
26

 ru
le

s

76
8

ru
le

s

38
4

ru
le

s500

750

1000

1250

1500

1750

2000

2250

2500
Sc

or
es

(a) Mean Scores

pl
ai

n
st

at
ic

 m
od

el
sm

al
l s

ta
tic

 m

od
el

no
isy

 in
pu

ts

 (0
.0

5)
no

isy
 in

pu
ts

 (0

.1
)

50
0

ru
le

s
 fr

om
 st

ar
t

AB
C

ru
le

αA
BC

D
 (1

22
88

 ru

le
s)

61
44

 ru
le

s

30
72

 ru
le

s

15
26

 ru
le

s

76
8

ru
le

s

38
4

ru
le

s

0

500

1000

1500

2000

Sc
or

es

(b) Worst Mean Scores

Figure 4.9: Generalisation Performance. Box plots for the (a) mean scores
and (b) worst mean scores of the optimized models across all novel environ-
ment settings. For each model, the score is averaged over 100 independent
episodes. The worst mean scores shown in (b) show how bad a model is at
its worst across 100 episodes. The worst scores of the plastic networks tend
to be much better than the worst scores of the static ones. This shows that
plastic models are at less risk of getting a catastrophically bad score where
the robot is barely able to move at all. As in Figure 4.7, the box plots show
the variation of the scores within a given model type.

average performances across all novel settings and optimization runs, which
were very similar to that of the best plastic network model. Noisy inputs
have long been used for data augmentation in supervised tasks, such as speech
recognition, to gain more robust models (Cui et al., 2015). Adding noise to
inputs has also been used as a way to get robust representations in autoen-
coders (Vincent et al., 2008). However, using noise in training has been
explored to a lesser extent in reinforcement learning-type frameworks (Igl
et al., 2019). In this chapter, the static networks with noisy input provide
a strong baseline to compare the reduced plastic networks in terms of their
robustness, and as we can see, the plastic networks achieve similar perfor-
mances. However, in order to achieve such results by applying noise to the
inputs to static networks, we need to carefully pick the correct amount of
noise to apply; too little noise and the results will be indistinguishable from
the plain static approach, and too much noise is likely to hinder progress
completely. Using the plastic approach, the parameters will regulate them-
selves, and with the Evolve & Merge method, we have the added benefit of
ending up with a smaller number of trainable parameters. The similar per-
formances between static networks with noisy inputs and plastic networks

78

Chapter 4 | Evolving and Merging Hebbian Learning Rules

are interesting and will have to be explored further in the future. The rather
naive approach to using noise by simply adding it on top of the input is
unlikely to be a promising method to improve upon to make even more ro-
bust models. It is, on the other hand, easier to imagine improvements to the
learning rules (see section 4.3.1).

The evolved learning rules used here are inspired by Hebbian learning.
However, the model that used only the activity-dependent terms of the pa-
rameterized rule (the ABC terms), failed to perform well, making it clear that
the stability provided by the constant terms is necessary for the locomotion
task used here.

The results also showed that starting from a complete rule set, and then
merging the rules throughout optimization achieved superior results com-
pared to starting with a small number of rules. This draws parallels to the
recent ”Lottery Ticket Hypothesis” (Frankle and Carbin, 2018) that builds
upon the notion that a trained neural network can most often be pruned
drastically, resulting in a much smaller network that performs just as well as
the unpruned network (Li et al., 2016). However, if one were to start training
from scratch with a randomly initialized small network of the same size as
the pruned network, the training is likely to be much more difficult, and one
is unlikely to get the same performance. The hypothesis states that when
initializing a large network, it is likely that one of the combinatorially many
sub-networks inside the full network will be ”easily trainable” for the given
problem; we are more likely to have a ”winning ticket” within the random
initialization since we have so many of them. The number of sub-networks -
or potential winning tickets - dwindles rapidly if we decrease the size of the
full network. To the best of our knowledge, the methods used for finding
winning tickets (Frankle and Carbin, 2018; Zhou et al., 2019) have not yet
been explored in the case where the optimization method is ES, and much
less in the context of indirect encoding. Our results hint that the Lottery
Ticket Hypothesis might also hold in the indirect encoding setting that we
employ here. Further investigations into when the Lottery Ticket Hypothesis
asserts itself in indirect encoding schemes might provide valuable insights for
future approaches.

Deciding how to evaluate one’s models on OOD circumstances can seem
a bit arbitrary, as countless different changes to a simulated environment can
be made. Several previous studies have focused on the ability of a robot to
show robustness in the face of a severe leg injury (Cully et al., 2015; Colas
et al., 2020; Najarro and Risi, 2020). Here we opted for slight variations on leg

79

Chapter 4 | Evolving and Merging Hebbian Learning Rules

lengths instead, partly to highlight how quickly neural network models can
break completely. For many of the models, a severe injury is not required
in order to put a well-performing model at risk of malfunctioning. Had
we chosen a larger range of reductions, it is likely that the results would
have been tilted to favor the plastic networks more, whereas a smaller range
would have had the opposite effect. The issue of deciding how to evaluate
the generalization capabilities of a model speaks to a larger discussion of
overfitting in artificial agents (Zhao et al., 2019). In some sense, the static
networks do what we ask them to more so than the plastic ones; when we
optimize the networks we implicitly ask them to overfit as much as possible to
the problem that we present them. In the approach presented in this chapter,
we explicitly optimize for one setting but hope that our models will also be
able to perform in different settings. This is different from the normal meta-
learning framework described in Chapter 2, Section 2.5. However, meta-
learning approaches require us to make somewhat arbitrary choices regarding
which different tasks we should expose our models to during training. For
this reason, it is still useful to develop methods that are intrinsically as robust
as possible.

4.3.1 Future Directions
We showed that it is indeed possible to evolve relatively well-performing mod-
els with an increased robustness to morphology changes, while at the same
time having fewer trainable parameters; this approach opens up interesting
future research directions.

As mentioned in Section 2.5.3, an important concept within Hebbian
theory is that of cell assemblies, which after repeated exposure to stimuli
can become increasingly correlated and able to perform pattern completion.
In this theoretical framework that has been supported by a wide array of evi-
dence(See et al., 2018; Miller et al., 2014; Hampson and Deadwyler, 2009)(for
a review, see (Saxena and Cunningham, 2019)), recurrent connections be-
tween the neurons are often assumed. In the current study, we have only
used simple feedforward networks with two hidden layers. Applying the
Evolve & Merge approach to local learning rules for more advanced neural
networks with recurrent connections will be an interesting line of research in
the future. More generally, the Evolve & Merge approach also lends itself
well to be combined with methods that evolve the neural architecture of the
network that the learning rules apply to. An example of this is the NEAT

80

Chapter 4 | Evolving and Merging Hebbian Learning Rules

algorithm (Stanley et al., 2003; Risi and Stanley, 2011, 2012a).
It will also be interesting to combine this indirect encoding method with a

meta-learning framework such as MAML (Finn et al., 2017). Models with few
trainable parameters, controlling a large, expressive ANN might intuitively
be an ideal candidate for few-shot learning in the MAML framework.

Further, while local learning rules such as spike-time dependent plasticity
are important drivers of change in synapses in the brain, synaptic plasticity
is also affected by neuromodulators (Dayan, 2012; Feldman, 2012). Extend-
ing the evolved learning rules to be able to take into account reward signals
could greatly improve the model’s ability to respond to changes in the en-
vironment in an adaptive manner, and it is something we look forward to
implementing in future studies. Something similar to this has been explored
in other approaches to plastic networks (Soltoggio et al., 2008; Ellefsen et al.,
2015; Bertens and Lee, 2020; Ben-Iwhiwhu et al., 2020), and we expect this
to also be a beneficial addition to our approach.

While we have evolved a set of relatively simple learning rules, our ap-
proach could just as well be used in conjunction with more complicated rules,
e.g., rules with more parameters (Chalmers, 1991), or rules that produce
non-linear outputs of the inputs (Orchard and Wang, 2016; Bertens and Lee,
2020). With more expressive rules, it might be possible to limit the number
of rules and trainable parameters even further.

On a practical note, having few trainable parameters opens up for the
possibility of using more sophisticated optimization methods such as CMA-
ES as described in 2, Section 2.4.3.

4.4 Conclusion
If the environment one wishes to deploy an artificial agent in is guaranteed
to be identical to the training environment, one might be better off evolving
a static network to control the agent. However, if the aim is to have artificial
agents act in complex real-world environments, such guarantees cannot be
made. The evolution of plastic networks that can better adapt to changes,
is therefore an interesting prospect. The results shown in this chapter con-
tribute to the development of robust plastic networks. We show that it is
simple to achieve a fairly small rule set and that as the number of rules de-
creases, the robustness of the model increases. This can be achieved with no
additional optimization time. We believe that there are several exciting ways

81

Chapter 4 | Evolving and Merging Hebbian Learning Rules

to continue this line of research. The next chapter explores a method that
might be helpful for plastic networks in a more indirect manner by focusing
on parameters associated with the activity of the neurons.

82

Chapter 5

Learning to Act through
Evolution of Neural Diversity
in Random Neural Networks

This chapter turns the attention away from connections of ANNs and focuses
the neurons on the networks, another area with much room for extending ex-
isting methods with bio-inspired approaches. As the name suggests, ANNs
originally took inspiration from biological networks found in the brains of
animals (Fasel, 2003; Hassabis et al., 2017). The main analogous feature of
ANNs to biological ones is that nodes in the network distribute information
to each other and that the network learns to represent information through
the gradual tuning of their interconnections. In ANNs, neuro-centric compu-
tation is abstracted to an activation function that is usually shared between
all neurons within a layer or even the whole network.

By parameterizing neurons to a larger degree than current common prac-
tice, we might begin to approach some of the properties that biological neu-
rons are characterized by as information processors.

Inspired by the neural diversity found in biological brains, we introduce
a parameterized neural unit with a feedback mechanism (Figure 5.1). The
idea is that evolving a unique set of parameters for each neuron has the po-
tential to create a diverse set of neurons. While we are ultimately interested
in potential synergies from evolving both weights and neural parameters, in
order to investigate the expressive power of the proposed neural units in isola-
tion, here we only evolve the parameters of neurons; the randomly initialized
synaptic weights are fixed throughout the entire process.

83

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

New
state

Out

State

1

R
andom

 W
eights

Neuron

A B

R
andom

 W
eights …

.

Inp.

Figure 5.1: Illustration of the proposed neural unit. (A) Neural net-
work with random weights and a layer of neural units. (B) Zoomed-in view
of a neural unit. The parameters pi are optimized in order to achieve an
expressive function. These parameters are used to integrate the input with
a neural state and a bias term through a vector-matrix multiplication. It
outputs a value to be propagated to the next layer, as well as its own new
state. For further details, see Section 5.2.

Our results show that even when never optimizing any synaptic param-
eters, the random networks with evolved neural units achieve performances
competitive with simple baselines in different reinforcement learning tasks.
For baseline comparisons, we evolve the weights of feedforward neural net-
works using a standard hyperbolic tangent function as non-linearities. We
compare our approach both with (1) a small network with a similar num-
ber of weights as there are trainable parameters in the neural units of the
main experiments, and (2) a network with the same number of neurons as
in the main experiments and thus many more tunable synaptic weights. We
also test a non-recurrent version of the neural units. The environments used
are a variation of the classic CartPole environment (Gaier and Ha, 2019),
the BipedalWalker-v3 environment, and the CarRacing-v0 environment
(Brockman et al., 2016). In all cases, networks with evolved neurons per-
formed on par with the weight-optimized networks.

By showcasing the potential of these more expressive and diverse neurons
in fixed random networks, we hope to pave the way for future studies explor-
ing potential synergies in the optimization of synaptic and neural parameters.
More specifically, we believe that more expressive neural units like the ones
proposed here could be useful in combination with online synaptic activity-
dependent plasticity functions (van Ooyen, 1994; Abbott and Nelson, 2000;

84

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

Stiles, 2000; Soltoggio et al., 2018; Najarro and Risi, 2020).

5.1 Related Work
Neurocentric Optimization. Biases in neural networks are examples of
neuro-centric parameters. When an ANN is optimized to solve any task,
the values of the network’s weights and biases are gradually tuned until a
functional network has been achieved. The network most commonly has
a one bias value for each neuron and the weight parameters thus greatly
outnumber these neuro-centric bias parameters. It is well known that the
function of biases is to translate the activations in the network (Benítez
et al., 1997) and ease the optimization of the network.

Another well-known example of neuro-centric parameters is found in the
PReLU activation functions (He et al., 2015) where a parameter is learned
to determine the slope of the function in the case of negative inputs. Intro-
ducing this per-neuron customization of the activation functions was shown
to improve the performance of networks with little extra computational cost.

Neuro-centric parameter optimization can also be found within the field
of plastic neural networks (see Chapter 2, Section 2.5.3). In one of their
experiments, Urzelai and Floreano (Urzelai and Floreano, 2001) optimized
plasticity rules for each neuron (they referred to this as ’node encoding’), such
that each incoming synapse to a node was adapted by a common plasticity
rule. The idea of neuro-centric parameters is thus far from new. However, in
contrast to earlier work, in this chapter, we explore the potential of solely op-
timizing neuro-centric parameters in a randomly initialized network without
ever adapting the weights.

Activation Functions in Neuroevolution. How artificial neurons
are activated has a major impact on the performance of ANNs (Nwankpa
et al., 2018). Evolution has been used to discover activation functions to
optimize performance in networks that are optimized on supervised classifi-
cation problems using backpropagation (Basirat and Roth, 2018; Liu et al.,
2020; Bingham et al., 2020; Bingham and Miikkulainen, 2022). These ap-
proaches aim to find a single optimal activation of neurons that all neurons
within a layer or a whole network share.

Not all ANNs have a single activation function for all hidden neurons.
Some versions of Neuro-Evolution of Augmented Topologies (NEAT) (Stan-
ley and Miikkulainen, 2002; Papavasileiou et al., 2021) allow for different

85

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

activation functions on each neuron. The NEAT algorithm searches through
networks with increasing complexity over the process of evolution. Starting
from a simple network structure, each new network has a chance of adding a
new neuron to the network. When a new neuron is added, it can be allocated
a random activation function from a number of predetermined functions. In
newer versions of NEAT, mutations allow activation functions of neurons to
be changed even after it was initially added (Hagg et al., 2017). This resulted
in more parsimonious networks.

In their weight agnostic neural network (WANN) work, Gaier and Ha
(2019) used NEAT to find network structures that could perform well, even
when all weights had the same value. Notably, hidden neurons could be
evolved to have different activation functions from each other. This likely
extended the expressiveness of the WANNs considerably. Our work is similar
in spirit to that of Gaier and Ha, in that we are also exploring the capabilities
of a component of neural networks in the absence of traditional weight opti-
mization. However, in our work, all networks have a standard fully connected
structure. Furthermore, we do not choose from a set of standard activation
functions but introduce stateful neurons with several parameters to tune for
each neuron.

Lottery Tickets & Supermasks. The Lottery Ticket Hypothesis
(Frankle and Carbin, 2018; Frankle et al., 2019) was mentioned in Section
4.3 of the previous chapter. An even stronger take on the Lottery Ticket
Hypothesis states that due to the sheer number of sub-networks that are
present within a large network, it is possible to learn a binary mask on top
of the weight matrices of a randomly initialized neural network, and in this
manner get a network that can solve the task at hand (Malach et al., 2020;
Wortsman et al., 2020; Ramanujan et al., 2020). This has even been shown
to be possible at the level of neurons; with a large enough network initial-
ization, a network can be optimized simply by masking out a portion of the
neurons in the network (Wortsman et al., 2020; Malach et al., 2020).

Learning parameterized versions of neurons could be seen as learning a
sophisticated mask on top of each neuron as opposed to a simple binary
mask. The idea of learning a binary mask on top of a random network relies
on the random network being sufficiently large (Malach et al., 2020) so that
the chance of it containing a useful sub-network is high. Masking neurons is
a less expressive masking method than masking weights: it is equivalent to
masking full columns of the weight matrices instead of strategically singling
out weights in the weight matrix. As such, the method of masking neurons

86

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

with binary masks requires larger random networks to be successful. In this
chapter, we optimize neuro-centric parameters in relatively small networks.
This is possible because the neurons themselves are much more expressive
than a binary mask.

5.2 Evolving Diverse Neurons in Random Neu-
ral Networks

Typically, optimization of ANNs has been framed as the learning of dis-
tributed representations (Bengio et al., 2013) that can become progressively
more abstract with the depth of the network. Optimization of weights is a
process of fine-tuning the iterative transformation of one representation into
another to end up with a new, more useful representation of the input. How
the intermediate layers respond to a given input depends on the specific con-
figuration of the weight matrix responsible for transforming the input as well
as their activation function.

Randomly-initialized networks can already perform useful computations
(Ulyanov et al., 2018; He et al., 2016; Hochreiter and Schmidhuber, 1997).
When neural units are trained specifically to interpret signals from a fixed
random matrix, as is the case in this chapter, the initially arbitrary trans-
formations will become meaningful to the function, as long as there exist
detectable patterns between the input the function receives and the output
that the function passes on and is evaluated on. Whether a pattern is de-
tectable depends on the expressiveness of the function. With this in mind,
it is reasonable to assume that if neurons in the network are made more ex-
pressive, they can result in useful representations even when provided with
arbitrary transformations of the input.

Motivated by the diversity of neuron types in animal brains (Soltesz et al.,
2006), we aim to test how well a neural network-based agent can perform rein-
forcement learning tasks through optimization of its neuro-centric parameters
alone without optimizing any of its neural network weights. An illustration of
the neural model we optimize in this chapter is shown in Fig. 5.1. Each neu-
ral unit consists of a small three-by-three matrix of values to be optimized.
Each neural unit in a layer is at each time step presented with a vector with
three elements. The input value, propagated through the random connection
from the previous layer, is concatenated with the current state of the neuron

87

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

and a bias term. Together, these form a vector. The output of a neuron is
the vector-matrix multiplication. From the perspective of a single neuron,
this can be written as:

[x̂t
l,i, h

t
l,i, o] = tanh(nl,i · [xt

l,i, h
t−1
l,i , 1]T). (5.1)

Here, xt
l,i is the input value, ht−1

l,i is the state of the neuron, and nl,i

the matrix of neural parameters, with l denoting the current layer in the
network, i the placement of the neuron in the layer, and t is the current time
step. The hyperbolic tangent function is used for non-linearity and to restrict
output values to be in [-1, 1]. x̂t

l+1,j is the value that is propagated through
weights connecting to the subsequent layer, and ht

l,i is the updated state of
the neuron. o, the third value in the output of the neuron is discarded. As
the three-by-three matrix has nine values in total, we need to optimize nine
parameters for each neuron in the network.

Representing a neuron by a small matrix means that the neuron can take
more than a single value as input, as well as output more than one value.
Here, we utilize this to endow each neuron with a state. The state of the
neuron is integrated with the input through the optimized neural parameters.
Part of the neuron’s output becomes the new state of the neuron, which is fed
back to the neuron with the next input. This turns our neurons into small
dynamical systems. Presented with the same input value at different points
in the neuron’s history can thus yield different outputs. We find that stateful
neurons provide a convenient and efficient way of equipping a network with
some memory capabilities. One can see a layer of such neurons as a set of
tiny recurrent neural networks (RNNs) that are updated in parallel with local
inputs, unique to each RNN. As such, a layer of this proposed neural unit
differs from simple RNN architectures, such as Jordan Networks (Jordan,
1997) or Elman Networks (Elman, 1990) in that a state associated with a
neuron only affects the next state and output of that particular neuron.
These local recurrent states only rely on the small matrix of the neural unit,
i.e., n times nine parameters, where n is the number of neurons in the layer.
A recurrent layer of, e.g., an Elman Network requires an n-by-n sized matrix
to feed its activations back into itself. Additionally, the calculation of the
neural state and the output of the neuron are separated to a higher degree
for the neural units, compared to the hidden state being a copy of the neural
output.

88

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

5.3 Experiments
We optimize neural units in otherwise standard fully connected feedforward
neural networks. All networks in our experiments have two hidden layers,
containing 128 and 64 neurons, respectively. We use learned neural units
for all neurons, including in the input and output layers. The sizes of the
input and output layers vary with the environments described below. The
fixed weight values are sampled from N (0, 0.5). We ran each experiment
three times on different seeds, except for the weight-optimized models in the
Car Racing environment, which we ran only twice due to its longer training
times.

While neurons with recurrent states are common in the field of spiking
neural networks that emphasizes biological realism (Gerstner, 1990; Izhike-
vich, 2003, 2007; Garaffa et al., 2021), it is a departure from the simple
neurons found in most ANNs. As a control, we also optimize neuro-centric
parameters for neurons without a recurrent state (Simple Neuron). The
setup for optimizing these is very similar to that of the stateful neurons,
but no part of the output of the vector-matrix multiplication is fed back to
the neuron’s input at the next time step. Instead of being represented by
three-by-three matrices, these simple neurons are represented by two-by-two
matrices and thus have fewer parameters to optimize.

As baselines, we optimize the weights of standard feedforward networks.
For these, we run two different settings: one has a similar number of ad-
justable parameters as the number of parameters in the neural unit approach
(Small FFNN). To get the number of weights to be similar to neural pa-
rameters, the widths, and depths of these networks have to be considerably
smaller than the random networks used in the main experiments. In the sec-
ond baseline setting (Same FFNN), we train weights of networks that have
the same widths and depths as the networks in the main experiments, and
thus many more adjustable parameters. Unless stated otherwise, the activa-
tion function for all baseline experiments is the hyperbolic tangent function
for all neurons.

5.3.1 Environments
We test the effectiveness of evolving a diverse set of neurons in randomly
initialized networks in three diverse continuous control tasks: the Cart-
PoleSwingUp environment (Gaier and Ha, 2019), the Bipedal Walker en-

89

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

Figure 5.2: Environments used for experiments. Left:
CartPoleSwingUp. Middle: BipedalWalker-v3. Right: CarRacing-v0.

vironment, and the Car Racing environment (Brockman et al., 2016), which
are described below:

CartPoleSwingUp. This environment is a variation of the classic con-
trol task (Barto et al., 1983), where a cart is rewarded for balancing a pole
for as long as possible (Fig. 5.2; left). In the CartPoleSwingUp variation,
an episode starts with the pole hanging downwards, and to score points, the
agent must move the cart such that the pole gets to an upright position.
From there, the task is to keep balancing the pole. We use the implemen-
tation of Gaier and Ha (Gaier and Ha, 2019). The agent gets five values as
input and must output a single value in [−1, 1] in order to move the cart left
and right. With these input- and output layers, the total number of neurons
in the network becomes 198, and we optimize 1,792 parameters. For a feed-
forward network with a similar number of weights, we optimize a network
with two hidden layers of size 48 and 32, respectively.

Bipedal Walker. To get a maximum score in the BipedalWalk
er-v3 environment (Brockman et al., 2016), a two-legged robot needs to
learn to walk as efficiently and robustly as possible (Fig. 6.3; middle). The
terrain is procedurally generated with small bumps that can cause the robot
to trip if its gait is too brittle. Falling over results in a large penalty to the
overall score of the episode. Observations in this environment consist of 24
values, including LIDAR detectors and information about the robot’s joint
positions and speed. For actions, four continuous values in [−1, 1] are needed.
This results in a network with 220 neurons altogether. To get a network with
a similar number of weights as there are parameters in the main experiment,
we train a feedforward network with two hidden layers, both containing 32
neurons.

Car Racing. In the CarRacing-v0 domain (Brockman et al., 2016), a
car must learn to navigate through procedurally generated tracks (Fig. 5.2;
right). The car is rewarded for getting as far as possible while keeping inside

90

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

Table 5.1: Convolutional Layer Parameters.

Layer 1 Layer 2
Input Channels 3 6

Output Channels 6 8
Kernel Size 3 5

Stride 1 2
Activation Function tanh tanh

Bias Not used Not used

the track at all times. To control the car, actions consisting of three continu-
ous values are needed. One of these is in [−1, 1] (for steering left and right),
while the other two are in [0, 1], one for controlling the gas, and the other
for controlling the break. The input is a top-down image of the car and its
surroundings. For the experiments in this chapter, we wanted to focus on the
effectiveness of the neural units in fully connected networks. We, therefore,
followed a strategy closely mimicking that used by Najarro and Risi (2020)
to get a flat representation of the input image. We normalize the input val-
ues and resize the image into the shape of 3x84x84. The image is then sent
through two convolutional layers, with the hyperparameters of these spec-
ified in Table 5.1. After both layers, a two-dimensional max pooling with
kernel size 2 and stride 2 was used to gradually reduce the number of pixels.

The output of the convolutional layers is flattened, resulting in a vector
containing 648 values. This vector is then used as input to a fully connected
feedforward network with our proposed neural units. Importantly, the pa-
rameters of the convolutional layers stay fixed after initialization and are
never optimized. The output layer has three neurons. With the much larger
input layer, this network has 844 neurons and 7,596 adjustable parameters.
Since two of the action values should be in [0, 1], a sigmoid function is used
for these two output neurons in place of the hyperbolic tangent function as
shown in Equation 5.1.

For the baseline experiments, we use the same strategy of convolutional
layers with fixed parameters to get a flat input for the feedforward networks,
the weights of which we are optimizing. Since the input is so large, the
feedforward network can only have a single hidden layer of size 12 to get
a similar number of adjustable parameters as in the main approach. This

91

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

results in a network with 7,827 parameters, including weights and biases. The
activation function for all neurons in the network is the hyperbolic tangent
function, except for two of the output neurons, which are activated by the
sigmoid function.

5.3.2 Optimization Details
For parameter optimization, we use a combination of a Genetic Algorithm
(GA) and CMA-ES (Hansen, 2006). More specifically, GA is used for the
first 100 generations of the optimization. The GA used here searches the
parameter space broadly with a larger population size than CMA-ES. The
best solution found by the GA is then used as a good starting point for the
CMA-ES algorithm to continue evolution. Starting with a GA search with
a large sigma, was in preliminary experiments found to help the CMA-ES
avoid getting stuck early at a local optimum. For both algorithms, we use
off-the-shelf implementations provided by Ha (2017a) and Hansen (2006).
For all experiments, the GA uses a population size of 512, and its mutations
are drawn from a normal distribution N (0, 1). All other hyperparameters
are the default parameters of the implementation. The large sigma means
that the GA can cover a large area but in a coarse manner. For the CMA-ES
algorithm, we use a population size of 128, and set weight decay to zero.
Other than that, hyperparameters are the default parameters of the imple-
mentation. The total number of generations is 1,400 for the Car Racing
environment and 4,000 for the BipedalWalker and CartPoleSwingUp envi-
ronments.

For the large weight-optimized networks, CMA-ES becomes impractical
to use due to its use of the covariance matrix of size N2 with N being the
number of parameters to optimize. For this reason, we instead use Evolution
Strategy (sometimes referred to as “OpenES” (Ha, 2017b)) as described by
Salimans et al. (2017) and. We use a population size of 128 and otherwise
use the default parameters of the implementation (Ha, 2017b).

5.4 Results
Evaluations of the most successful runs of each experimental setting are sum-
marized in Table 5.2. All experimental settings achieved good scores on the
CartPoleSwingUp task. Only the weight-optimized network with hidden lay-

92

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−2 0 2
−1

0

1

−2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2

Figure 5.3: Evolved Neural Diversity. Displayed are each of the 64 acti-
vated neurons of the second hidden layer optimized to solve the CarRacing
task. In blue are the activations that are passed on to the next layer. In
orange are the neural states. One thousand inputs are given from −3 to
3 in an ordered manner, from most negative to most positive. Given the
updatable neural state, the ordering of the inputs matter, and a different
ordering would have yielded different plots. For all plots, the neural state
is initialized as zero before the first input. Several of the found activations
look like we would expect the hyperbolic tangent function with a bias and/or
the possibility of a negative sign to look. Few functions seem unresponsive
to the input. However, many functions are clearly both responsive and dif-
ferent from the standard form of the hyperbolic tangent function. We find
functions that have oscillatory behavior in some or all of the input space.
Other functions are non-monotonic and have peaks and valleys in particular
areas.

93

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000
Swing-Up: Simple Neuron

simple neuron pop. mean
simple neuron pop. best
simple neuron pop. eval.

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000
Swing-Up: Recurrent Neuron

recurrent neuron pop. mean
recurrent neuron pop. best
recurrent neuron pop. eval.

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000
Swing-Up: Small Architecture

small net. pop. mean
small net. pop. best
small net. pop. eval.

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000
Swing-Up: Same Architecture

same net. pop. mean
same net. pop. best
same net. pop. eval.

0 500 1000 1500 2000 2500 3000 3500 4000

−100

0

100

200

300
Bipedal Walker: Simple Neuron

simple neuron pop. mean
simple neuron pop. best
simple neuron pop. eval.

0 500 1000 1500 2000 2500 3000 3500 4000

−100

0

100

200

300
Bipedal Walker: Recurrent Neuron

recurrent neuron pop. mean
recurrent neuron pop. best
recurrent neuron pop. eval.

0 500 1000 1500 2000 2500 3000 3500 4000

−100

0

100

200

300
Bipedal Walker: Small Architecture

small net. pop. mean
small net. pop. best
small net. pop. eval.

0 500 1000 1500 2000 2500 3000 3500 4000

−100

0

100

200

300
Bipedal Walker: Same Architecture

same net. pop. mean
same net. pop. best
same net. pop. eval.

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000
Car Racing: Simple Neuron

simple neuron pop. mean
simple neuron pop. best
simple neuron pop. eval.

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000
Car Racing: Recurrent Neuron

recurrent neuron pop. mean
recurrent neuron pop. best
recurrent neuron pop. eval.

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000
Car Racing: Small Architecture

small net. pop. mean
small net. pop. best
small net. pop. eval.

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000
Car Racing: Same Architecture

same net. pop. mean
same net. pop. best
same net. pop. eval.

Generation

Sc
or

e

Figure 5.4: Training curves for all experimental settings. Means and
standard deviations for populations of runs on different seeds. Each setting
was run three times except for the weight-optimized models in the Car Rac-
ing environment, which were run twice. Every 50th generation, the current
solution was evaluated 64 times (red).

94

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−2 0 2
−1

0

1

−2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2

Figure 5.5: Activations of Non-Recurrent Neurons. Displayed are
each of the 64 activations of the second hidden layer optimized to solve the
CarRacing task. One thousand inputs are given from -3 to 3 in an ordered
manner, from most negative to most positive. Neural activations are either
monotonically increasing or decreasing, or unresponsive to the input.

ers of size 128 and 64 managed to average a score above 300 points over 100
episodes in the BipedalWalker-v3 environment. However, the optimized
recurrent neurons in a random network came close with just a fraction of
the number of optimized parameters. The smaller weight-optimized network
and the simple neurons achieved similar scores of 235 and 239, respectively.
This is indicative of the agent having learned to walk to the end of the level
in most cases but in an inefficient manner.

In the CarRacing-v3 environment, the agent based on recurrent neurons
scored the highest, though none of the approaches reached an average score
above 900 over 100 episodes, which is needed for the task to be considered
solved. However, with a mean score above 800, the agent was able to suc-
cessfully complete the majority of the procedurally generated test episodes.
Training curves for all experimental settings can be found in Figure 5.4.

5.4.1 Investigating Evolved Neurons
To gain a better idea of how a neural network with random weights but op-
timized neuro-centric parameters is solving the task, we plotted all activated
neurons of a layer of the champion network (Fig. 5.3) of the CarRacing en-
vironment. The figure shows that while several of the found activations look

95

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

Table 5.2: Table of Results. Means and standard deviations over 100
episodes, and the number of parameters optimized for each experimental set-
ting. Scores are evaluated with the most successful run in each setting. For
context, results from Weight Agnostic Neural Networks (WANN) (Gaier and
Ha, 2019) are included as another method that does not optimize weights.
The number of parameters listed for WANN is the final number of connec-
tions in the evolved structure.

Model Score # Param.
Simple Neurons 892 ± 177 792
Rec. Neurons 916 ± 79 1,782

CartPoleSwingUp Small FFNN 927 ± 83 1,889
Same FFNN 922 ± 73 9,089

WANN 732 ± 16 52
Simple Neurons 239 ± 52 880
Rec. Neurons 295 ± 63 1,980

BipedalWalker Small FFNN 235 ± 13 1,988
Same FFNN 318 ± 46 11,716

WANN 261 ± 58 210
Simple Neurons 820 ± 118 3,372
Rec. Neurons 822 ± 74 7,587

CarRacing Small FFNN 770 ± 167 7,827
Same FFNN 752 ± 171 91,523

WANN 608 ± 161 245

96

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

like the standard form we would expect from a hyperbolic tangent function
with a bias, many of the other types of functions also emerged after optimiza-
tion. We see functions with strong oscillatory behaviors, some in the whole
input space, and some only in smaller sections. Other functions have extra
peaks and valleys compared to the standard hyperbolic tangent. We hypoth-
esize that this property allows each neuron to respond with more nuance
to its input. Additionally, given the same inputs, this collection of neurons
responds diversely. As seen in Table 5.2, this evolved a diversity of neural
computations within a layer allowed the agents to perform well, even though
information between layers is projected randomly. For a similar depiction of
the activations of the simple, non-recurrent neurons, see Figure 5.5.

5.4.2 Comparison to Weight Agnostic Neural Networks

An approach similar in spirit to ours is the weight agnostic neural network
(WANN) approach by Gaier and Ha (2019). As detailed in Section 5.1, in
WANNs, only the architecture of the neural network is learned (including
choosing an activation function from a predefined set for each neuron) while
avoiding weight training. While an apples-to-apples comparison is not pos-
sible (due to different optimization algorithms), it is nevertheless interesting
to see how these two methods compare in terms of performance. Since con-
nections are added to the WANN models during optimization, we cannot
directly compare the number of parameters that were optimized in these
models to that of the neural units. In Table 5.2, we simply list the final
number of synapses in the evolved network structures reported by Gaier and
Ha, to give an idea of the network sizes. The optimized neurons tend to
score better in all three environments. These results suggest that it might
be easier to optimize customizable neural units for each position in a fully
connected network than it is to learn a network structure from scratch.

In the future, these approaches could be complementary. We imagine that
extending the WANN approach with more expressive neurons could allow
their evolved neural architectures to become significantly more compact and
higher performing.

97

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

5.5 Discussion and Future Work
In this chapter, we introduced an approach to optimize parameterized, state-
ful neurons. Training these alone yielded neural networks that can control
agents in the CartPoleSwingUp, CarRacing, and BipedalWalker environ-
ments, even when the weights of the network were never optimized. While
optimizing small neural units alone is unlikely to beat state-of-the-art meth-
ods on complicated tasks, the neuro-centric optimization alone did enable
meaningful behavioral changes in the agents. We find these results encour-
aging, as they pave the way for interesting future studies.

The weight-optimized networks achieved superior scores compared to the
neural units in the CartPoleSwingUp and BipedalWalker environments.
This is not surprising; weight optimization of ANNs now has a long history of
success in a plethora of domains. When using random transformations, there
is a risk of getting a degraded signal, something that can be compensated
for easily by tuning the weights of the transformations. Surprisingly, the
optimized neural units achieved the best score of the experimental settings
in the CarRacing task. The failure of the larger weight-optimized network
to perform well here might be explained by the relatively low population size
compared to the number of parameters being optimized (128, and 91,523,
respectively). This population size was the same for all experimental set-
tings to ensure that all models were evaluated the same number of times in
the environments during optimization. The advantage of having a smaller
number of adjustable parameters also came into display in that the larger
models could not be optimized by the more powerful CMA-ES method.

As part of the proposed parameterized neurons, we included a persistent
neural state that is fed back to the input of the neuron at the subsequent
time step. This endows the network with a memory mechanism. Memory as
local neural states is unusual in ANNs but is much more common in more the
biologically inspired Spiking Neural Networks (SNNs) (Tavanaei et al., 2019;
Pfeiffer and Pfeil, 2018; Izhikevich, 2006). Such a neural state is most useful
for data with a temporal element, such as agents acting in an environment.
It is reasonable to assume that the same approach would have limited use in
tasks with unordered data. However, for RL tasks, stateful neurons provide
a relatively inexpensive way of allowing the network to have some memory
capacity. Setting up more common recurrent neural networks (RNNs), like
LSTMs (Hochreiter and Schmidhuber, 1997) or GRUs (Cho et al., 2014),
for the tasks used in this chapter, would result in the need for many more

98

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

adjustable parameters than the number of parameters in the neural units
optimized here. Combining stateful neurons with more commonplace RNNs
could result in interesting memory dynamics on different timescales.

A simpler version of the parameterized neurons with no recurrent state
was also tested. Examples of activations of these neurons can be found in
5.5. While a variety of activation curves are displayed, they are all limited
to monotonically increasing or decreasing along the x-axis. However, even
the more simple representation of neurons was able to be optimized within a
randomly connected network to get relatively high scores - though lower than
the recurrent neurons - in all tasks. Especially surprising was the performance
in the CarRacing environment, which was close to the score achieved by the
recurrent neurons. While memory capacity might be an advantage, it does
not seem necessary to perform relatively well in the chosen RL tasks. Note,
that it is straightforward to incorporate different or more information into the
neural units. Interesting examples of additional information could be reward
information from the previous time step or the average activation value of
the layer at the previous time step in order to add some lateral information
to the neural activation.

The ability to improve performance while leaving weights random opens
up the possibility for future work of combining neural units like the ones
proposed here with the approach of masking weights (Frankle and Carbin,
2018) mentioned in Section 5.1. An advantage of using masks is that one
can train masks for different tasks on the same random network (Wortsman
et al., 2020). With pre-trained neural representations, it should be possible
to bias the random network to perform actions that are generally useful
within a specific task distribution. One could then train masks on top of
the untouched weights to perform well on specific tasks, conceivably more
efficiently than with generic activation functions.

Another potentially interesting avenue for future work is to combine the
optimization of neurons with synaptic plasticity functions (Soltoggio et al.,
2018). A lot of work has been done in the area of learning useful Hebbian-like
learning rules (Chalmers, 1991; Miconi, 2016; Mouret and Tonelli, 2014; Flo-
reano and Mattiussi, 2008; Najarro and Risi, 2020; Risi and Stanley, 2012b;
Soltoggio et al., 2008; Tonelli and Mouret, 2013; Wang et al., 2019; Chalvidal
et al., 2022; Pedersen and Risi, 2021). Less work in the field has explored
the interaction between learning rules and neural activation in ANNs, de-
spite the fact that most learning rules take neural activations as inputs. It
seems likely that more expressive neural units would in turn result in more

99

Chapter 5 | Learning to Act through Evolution of Neural Diversity in Random Neural
Networks

expressive updates of weights via activity-dependent learning, and thus more
powerful plastic neural networks.

Having shown that the proposed neural units can achieve well-performing
networks when optimized alone, future experiments will explore the co-
evolution of neural and synaptic parameters. It will be interesting to see
whether a synergistic effect arises between these two sets of parameters. If
both weights and neurons are optimized together, will there be as much
diversity in the resulting set of neural units, or will the need for diversity
decrease?

The work presented in this chapter demonstrates yet another way to ex-
tend ANNs, which are still far from their biological counterparts in countless
aspects. While the work presented here does not claim to have presented a
biologically plausible approach, we do believe that inspiration from biological
intelligence still offers great opportunities to explore new variations of ANNs
that can ultimately lead to interesting and useful results. This perspective
is discussed in more detail in Chapter 9. Before that, a method for evolving
a reward signal for a reinforcement learning agent is presented in the next
chapter.

100

Chapter 6

Evolution of an Internal
Reward Function for
Reinforcement Learning

Actiont-1
Observationt

Observationt Actiont

Reward Signalt-1

Internal Reward Network

PPO Agent

Figure 6.1: Overview of EIR-RL. The Internal Reward Network takes
inputs that are readily available to the PPO agent and outputs a reward
signal that is used to update the parameters of the networks of the PPO.

Whereas the previous two chapters focused on experiments concerning
mechanisms internal to the policy networks, the main focus of this chapter
is on evolving a network that can support the learning process of a separate
policy network.

101

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

Figure 6.2: Quadruped robot having learned to walk with a severe short-
ening of its legs using rewards from an internal reward network.

Research has shown that ANNs can be trained to control robots using
reinforcement learning (RL) (Kober et al., 2013). Training ANNs with RL
has two requirements: lots of example trajectories to train the ANNs on
and a useful reward signal that leads to desired behavior when maximized.
Since these requirements can be met through several modern simulators,
most training of ANNs to control robots happens in simulations (although
see (Wu et al., 2022) and (Smith et al., 2022)).

However, in dynamic environments, there is a risk that environmental
circumstances change over time and in unpredictable ways. Policies learned
with reinforcement learning are notoriously brittle, meaning that even small
changes in the environment can lead to failures (Rajeswaran et al., 2017;
Zhang et al., 2018a; Song et al., 2019b) and the need for more training (Julian
et al., 2020). Unfortunately, as also highlighted by Smith et al. (2022), the
reward signal that was used during the simulation might not be available to
use after training, e.g., in the real world. For this reason, it would be useful
for the agent to be able to estimate a reward signal that it can learn from,
using only information that is always available to it.

With this goal in mind, we introduce Evolved Internal Reward Reinforce-
ment Learning (EIR-RL). As the name suggests, we evolve a function that
creates a signal that can be used to optimize an RL agent. As long as the
original goal stays the same, the agent can optimize its parameters indef-
initely, and recover performance even in the face of a distributional shift.
The evolved function can do this without relying on information beyond the
inputs and outputs of the agent. In the proposed approach, a simple re-

102

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

current neural network (RNN) (Elman, 1990; Cheng et al., 2002) is evolved
to provide a reward signal that can be used to optimize an RL agent. We
test the EIR-RL approach on various reinforcement learning tasks of differ-
ing difficulty and reward structures. After optimization, EIR-RL is found to
produce enhanced training speed and training stability of the RL agent, as
well as the ability to recover performance in a changing environment without
the need to refer to a reward signal granted by the environment.

Small changes in an individual’s morphology or environmental conditions
might render a specific solution of how to achieve a goal obsolete. However,
with the ability to assess whether the results of one’s own actions are desirable
or not comes the possibility of improving maladaptive behavior, resulting in
an overall more generally capable agent.

6.1 Related Work
Inverse reinforcement learning. This is a class of algorithms that, given
some operational trajectories (i.e., expert trajectories), attempts to infer the
reward function of the Markov Decision Process, so that the agents can learn
how to solve problems where no reward function is initially available (Arora
and Doshi, 2021). Since the reward function is naturally more robust and
transferable than the policy (Abbeel and Ng, 2004), some studies use inverse
reinforcement learning to obtain the reward function and achieve greater
generalizability (Munzer et al., 2015; Melo and Lopes, 2010; Finn et al.,
2016; Metelli et al., 2021).

As will be demonstrated in the experiments below, EIR-RL also enables
agents to obtain better generalizability through the reward function. How-
ever, the reward function is obtained through evolution, not a priori by a
policy or some operational demonstration. On the other hand, in order to
evolve EIR-RL, an external reward from the environment is needed initially.

Continual reinforcement learning. This class of methods studies
models that learn in a series of tasks. Generally, requirements for the con-
tinual reinforcement learning model include: (1) the model can learn incre-
mentally without a fixed training set; (2) the tasks learned in the past can
help the model learn better in the future (i.e., forward transfer); (3) the model
will not forget the tasks learned in the past and learning new tasks should
ideally improve the performance of the past tasks (i.e., backward transfer);
and (4) the model can effectively adapt to changes in the environment and

103

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

recover quickly (Khetarpal et al., 2020; Hadsell et al., 2020). The EIR-RL
has some characteristics of continual reinforcement learning because the in-
ternal reward network continually trains the policy when the agent interacts
with the environment.

In the field of continual reinforcement learning, studies have developed
different training and testing methods for demonstrating continual learning
(Xie et al., 2020; Mendez et al., 2020; Huang et al., 2021). In this chapter, we
did not design corresponding tests for different aspects of continuous learning
but focused on testing the generalizability of EIR-RL for out-of-distribution
(OOD) tasks without access to environmental rewards.

Intrinsic reward-based meta-reinforcement learning (Zheng et al.,
2018, 2020; Stadie et al., 2020). These methods use a similar concept called
intrinsic rewards and usually require second-order gradient descent in meta-
training. Similar to some other meta-reinforcement learning methods for op-
timizing parameters (Duan et al., 2016; Xu et al., 2018; Zhou et al., 2020b),
the goals of these methods are to achieve enhanced final performance (Stadie
et al., 2020) or to obtain faster training speed for new tasks based on the
meta-training results (Zheng et al., 2018, 2020). EIR-RL, on the other hand,
meta-learns an internal reward that serves as a substitute for external re-
wards, with the potential added benefits of increased training speed and
stability.

Evolved Loss Functions. Closely related to our approach are meth-
ods that meta-learn losses or gradients. Houthooft et al. (Houthooft et al.,
2018) introduced an approach named Evolved Policy Gradients (EPG). This
research carries out the evolution strategy in the outer loop of meta-learning
as well. Therefore, when testing in new scenarios, EPG can theoretically get
rid of extrinsic rewards and train based on the objective obtained in meta-
training. EPG directly evolves strategy losses rather than internal rewards
as inputs to an RL agent. To calculate the policy loss, the EPG employs
an intricate setup, using convolution over a fixed number of steps to cre-
ate context vectors. Context vectors, along with memory units updated by
stochastic gradient descent, as well as experience vectors of the agent are
used as inputs for a dense feedforward neural network to generate policy
losses (Houthooft et al., 2018). To generate internal rewards, EIR-RL uses
a simple RNN that takes state-action-pairs as input. In a similar vein of re-
search, Gonzales and Mikkulainen (Gonzalez and Miikkulainen, 2022) were
able to demonstrate theoretically that their TaylorGLO method (Gonzalez
and Miikkulainen, 2021) for meta-learning loss functions with evolution acted

104

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

as a regularizer that prevented overfitting.

6.2 Approach: Evolving Internal Reward for
Reinforcement Learning

The goal of EIR-RL is to obtain a function that can produce a reward signal
that can be used for RL using only information that is directly available for
the RL agent. We achieve this by optimizing the parameters of a neural
network. We call this the Internal Reward (IR) network.

As input, the IR network takes the same observation as the policy network
of the RL agent, as well as the resulting output of the policy network. The IR
network outputs a single scalar that is used for optimizing the policy using
Proximate Policy Optimization (PPO) (Schulman et al., 2017) instead of
the reward scalar provided by the environment. Our approach thus requires
two optimization processes: an inner- and an outer loop, as described in
Algorithm 2, where ’ES’ denotes evolution strategy, ’IRN’ denotes internal
reward network, ’ENV’ denotes environment, ’ir’ and ’er’ denotes internal
and extrinsic reward, respectively.

We use an evolution strategy (see Section 6.2.1) for the outer loop opti-
mization of the IR network. In each generation, a population of IR networks
is generated. The fitness of each IR individual is determined by evaluating
the score of a policy that was optimized using the IR output in place of
the reward provided by the environment. Importantly, the fitness is based
on the true score in the environment, not the evolved reward signal. The
parameters of the IR network are updated through evolution and stay fixed
during the PPO training phase. From the point of view of evolution, each
individual is born with a reward system in the form of the IR network and
a learning system in the form of the PPO. Together, these innate systems
provide a way of shaping a random policy into a functioning one. The fittest
individuals will be the ones that have the reward system most suited for
learning under the constraints of an objective function determined by the
external environment.

6.2.1 Optimization
For the outer loop optimization of the IR network parameters, we use CMA-
ES (Hansen et al., 2003; Hansen, 2006). For these experiments, a particular

105

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

Algorithm 2 Meta-training of EIR-RL
Initialize ES
for epoch = 1,· · · do ▷ Outer Loop

for agent = 1, · · · , population_size do ▷ Inner Loop
Sample vector ε from ES
Initialize IRN parameters with ε

Initialize POLICY network parameter φ randomly
Sample ENV from task distribution
Initialize state from ENV
for t = 1,· · ·, max_t do

action = POLICY(state) ▷ Agent part
ir = IRN(action, state)
POLICY.update(ir) ▷ Based on Eq.1
er, state = ENV(action) ▷ Environment part

end for
fitness = SUM(er) for each t

end for
Update ES by the fitness of each agent

end for

106

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

advantage of CMA-ES is the reduced reliance on a large population size in
order to work well (Hansen, 2016). In our experiments, the IR networks
are all small-sized neural networks with a relatively low number of parame-
ters, making CMA-ES a favorable gradient-free candidate for the outer loop
optimization of EIR-RL.

The fitness of an IR network is the performance of a policy that has been
optimized using the IR signals as a reward. As mentioned above, the RL
algorithm used for maximizing the IR signal was Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017). Different from the general PPO, the
output of the internal reward network replaces the original extrinsic reward
at each time step to train PPO (as shown in Fig. 6.1). In this case, the loss
gradient of the policy is expressed as:

∇θJ(θ) ∼
T∑
t=0

∇θlogπθ(at|st)(Rε(at+1, st+1) + γVυ(st+1)− Vυ(st)) (6.1)

In this loss, there are three functions parameterized by neural networks:
internal reward network Rε, actor network πθ, and value network Vυ. The
three networks assume orthogonal functions. The actor network outputs
the actions of policy; the value network outputs the expected return under
the current strategy; the internal reward network outputs estimated policy-
independent rewards from the Markov Decision Process. Actor and value
networks are updated based on the loss by using the PPO method (Schulman
et al., 2017).

6.3 Experiments

6.3.1 Environments

For testing our approach, we used three different environments the OpenAI
Gym. The environments described below represent various levels of difficulty
to solve. Of special interest to our approach, these also provide different
reward structures to learn from, each of which EIR-RL must be evolved to
substitute. All experiments share the basic approach outlined in Algorithm
2

107

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

Figure 6.3: Environments. From left to right: CartPole-v0,
LunarLander-v2, Ant-v3.

6.3.1.1 CartPole-v0

In this control task, a pole needs to be balanced on a cart. The task of
the agent is to control the cart such that the pole does not fall (Barto et al.,
1983). The environment has four inputs and two discrete actions. The reward
returned by this environment is 1.0 for each time step that the pole is being
balanced and 0.0 if it falls below a threshold and the balance has been lost.
If the pole falls, the episode ends and no more rewards can be collected. If
the agent is successful in balancing the pole, the episode ends after 200 time
steps, and the agent thus achieves the maximum score of 200.

For the evolution strategy, the population is set to 80 and the outer loop
is run for 150 generations. In the inner loop, each PPO has its value- and
policy networks randomly initialized and is optimized for 100 episodes. The
evolved internal reward is used for PPO training, and the score in terms of
the original reward from the environment is used to determine the fitness
given to the CMA-ES. The parameters of the internal reward network are
initialized by CMA-ES and fixed during the inner loop.

At each time step, the policy network in EIR-RL receives the environment
state vector of four elements and outputs the direction in which to move the
cart (left/right). Meanwhile, the internal reward network also receives the
state vector and outputs an internal reward signal. The PPO is updated every
256th time step, using a batch size of 32. For this simpler environment, the
internal reward network is a small feedforward network of four layers (two
hidden) with {4, 16, 8, 1} nodes per layer. This network has 225 parameters,
which is thus the number of parameters optimized by the evolution strategy.
The PPO consists of the actor network with {4, 32, 16, 1} nodes per layer
and the critic network with {4, 16, 8, 1} nodes per layer. The hyperbolic
tangent function is used to activate all hidden neurons.

108

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

6.3.1.2 LunarLander-v2

In the LunarLander-v2 environment, the goal is to safely guide a small
rocket ship to land within the correct landing grounds. Each new episode is
procedurally generated with changing terrain. The agent receives an eight-
dimensional vector as input from the environment and has to output one of
four discrete actions to steer the rocket ship. This environment was chosen
due to the particular reward structure provided by the environment. While
there is a continuous reward signal that rewards the agent for steering closer
to the landing pad, some events result in non-continuous reward signals. For
example, crashing the rocket will result in a one-time penalty of −100 points.
Crashing the rocket also results in ending the episode, so that no more points
can be collected. Landing safely with the legs on the ground results in a one-
time bonus of 10 points for each leg landed. Landing within the landing pad
with both legs results in a bonus of 100 points. Due to this mix of continuous
and sparse reward signals, this environment presents an interesting challenge
for the EIR-RL method.

For the outer loop optimization, a population size of 64 is used, and
optimization runs for 500 generations. The internal reward network is an
RNN with {9,32,32,32,1} nodes per layer, where the last layer of size 32 is
a non-recurrent dense layer to reduce the output to a single scalar, resulting
in 3, 521 parameters to be optimized by CMA-ES in the outer loop. As
input, the IR network took the observation from the environment as well
as the discrete action of the policy network from the previous time step.
The fitness of an IR network was determined after 100,000 time steps in
the environment. The PPO updated policy- and critic parameters every
1024 steps, with a batch size of 32. Both the policy network and the critic
network of the PPO had two hidden layers of 64 neurons activated by ReLU.

6.3.1.3 Ant-v3

This locomotion environment revolves around training the agent to control
a simulated three-dimensional robot with four legs. The goal is to get the
robot to walk as far as possible in a straight line. At each time step, the
agent is rewarded for progress toward the goal direction, and for not falling.
Excessive energy expenditure is penalized at each time step. If the robot
falls, the episode ends. Otherwise, the episode ends after 1000 time steps.
The input to the agent is a vector of 27 elements, containing proprioceptive

109

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

information about the robot. At each time step, the agent needs to output a
vector of eight elements, describing the torque that is to be applied to each
of the eight rotors of the robot, respectively.

In the Ant-v3 environment, we run the training in two different scenarios.
The first is simply the default setting of this environment. In the second
scenario, one of the legs of the robot is sometimes shortened. Specifically,
in each new episode, there is a probability 20% that no change is applied
to the leg. The rest of the time, the length of the leg is sampled to be
between 0.01 and 0.4 with uniform probability, where 0.4 is the original leg
length. See Figure 6.2 for a robot with one leg shortened to 0.01. Only the
third leg of the robot is selected for reduction, whereas all other legs are
always maintained at the standard length. Earlier studies have shown that
shortening a single leg of a quadruped by approximately 10% can significantly
decrease the performance of a policy optimized with standard leg lengths only
(Pedersen and Risi, 2021). In general, increasing the distribution of tasks
during meta-training can improve the generalizability of a policy (Kirsch
et al., 2022; Feng et al., 2022), so here we test whether the same is true for
an evolved reward function. Apart from the leg-shortening in one scenario,
all settings of the training are identical between the two scenarios.

The population for CMA-ES is set to 80, and optimization is run for
1,500 generations. In the inner loop, the PPO agent is allowed 500,000 time
steps (at least 200 episodes) in this environment. The PPO is updated every
2048 time steps based on internal rewards The internal reward network is
an RNN with {35,32,32,32,1} nodes per layer, where the last layer of size 32
is a non-recurrent dense layer to reduce the output to a single scalar. Thus
a total of 4, 353 parameters are optimized by CMA-ES. The PPO consists
of the policy feedforward network with {27,32,32,8} nodes per layer and the
critic feedforward network with {27, 32, 16, 1} nodes per layer. All hidden
neurons are activated by the hyperbolic tangent function.

In this more challenging environment, we pre-train the IR network before
optimizing it in the outer loop. We do this by training a single PPO to per-
form well in the Ant-v3 environment. Throughout this process, we collect
the observations, actions, and external rewards for each time step. With
this data set, the pre-training process is simply to optimize the IR network
via gradient descent on the supervised regression problem with observations
and actions as the input and the reward as the target. Preliminary exper-
iments showed that the pre-trained internal reward network has a similar
performance to environmental reward when training a new PPO network.

110

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

Finally, we used the parameters of the pre-trained internal reward network
as the initial parameters of the evolutionary strategy. Another option to ease
the optimization of the IR network was used by Houthooft et al. (Houthooft
et al., 2018). To bootstrap the learning process, they initially used a combina-
tion of an external and an internal reward signal. Throughout the evolution,
they gradually phased out the external part of the signal and in the end relied
exclusively on the evolved reward signal. We tested a similar approach in
preliminary experiments but found the pre-training with supervised learning
to yield better results.

6.4 Results

0 25 50 75 100 125 150 175 200
Episodes

0

25

50

75

100

125

150

175

200

Sc
or

e

EIR-RL (ours)
Oracle

Figure 6.4: Cart Pole: PPO Training
Curves. Comparing EIR-RL without access to
environmental reward to training with access to
environmental reward (Oracle) on the default
CartPole-v0 task. Means and standard devia-
tions are calculated over 100 training runs. Train-
ing with EIR-RL results in faster improvements.

Here we show the results
of evaluating the opti-
mized IR networks in dif-
ferent environments. We
evaluate models on de-
fault environmental set-
tings that were used for
training, as well as al-
tered settings novel to
trained IR networks. In
the plots below, ’Ora-
cle’ refers to a PPO
trained with the reward
provided by the environ-
ment. This is to em-
phasize that the primary
motivation of EIR-RL is
to enable optimization in
the absence of externally
provided reward signals.
PPOs trained with ei-
ther reward signal have
the same specifications
in terms of network sizes and other hyperparameters.

111

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

6.4.1 Cart Pole
For testing, we use the trained parameters for the internal reward network
and random initializations for PPO networks. For comparison, we also train
PPOs with the only difference being they are trained with extrinsic envi-
ronmental rewards. Fig. 6.4 shows the training curves of using each reward
signal on the default CartPole-v0 task. The means and standard deviations
in the plots are calculated from 100 PPO optimization runs, each lasting for
200 episodes. As can be seen, not only is it possible to optimize the PPO
without any external reward, but compared to ‘Oracle’, optimizing with EIR-
RL results in faster improvements of the policy.

We also test the evolved IR network’s ability to provide an adequate
reward signal under out-of-distribution environmental settings. In Fig. 6.5,
training curves are shown for when the length of the pole is changed from
0.5 to 3.0. Once again, the means and standard deviations in the plots
are calculated from 100 PPO optimization runs. While training with either
reward signal eventually converges to similar scores, initial improvements
happen quicker when using the internal reward network compared to the
external environmental reward.

In Fig. 6.6, we plot the internal reward signal as well as each of the input
values from the environment at each time step of a successful episode. The
observation space includes cart position, cart velocity, pole angle, and pole
angular velocity. Qualitatively, the evolved reward signal and the absolute
value of the pole angular velocity seem to be highly inversely correlated. In
contrast, the environmental reward is always 1.0, except for the last time
step in the case of an unsuccessful episode. The IR network’s reward signal
thus provides more informative feedback to the agent based on the current
observational state, which is likely the cause of the increased learning speed,
seen in Fig. 6.4 and 6.5.

6.4.2 Lunar Lander
After the optimization of the IR network on the LunarLander-v2 environ-
ment, we first compared PPO training with the reward given by the environ-
ment, and the reward from the IR network. The use of either reward signal
did result in policies that could score above 200 in the environment. How-
ever, as can be seen in Figure 6.7, only the PPOs trained with the evolved
reward signal were able to achieve and sustain a high moving average over

112

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

0 25 50 75 100 125 150 175 200
Episodes

25

50

75

100

125

150

175
Sc

or
e

EIR-RL (ours)
Oracle

Figure 6.5: Cart Pole: PPO Training Curves. Training from scratch
after the pole length is changed from 0.5 to 3.0 as an out-of-distribution task
to test the performance of EIR-RL and ’Oracle’. Means and standard devia-
tions are calculated over 100 training runs. Once again, initial improvements
are faster with EIR-RL.

0 25 50 75 100 125 150 175 200
Timesteps

−2

−1

0

1

2

Intrinsic Reward
Cart Position
Cart Velocity
Pole Angle
Pole Angular Velocity

Figure 6.6: Inputs and evolved reward signal over a successful Cart
Pole episode. The evolved reward seems to have a strong inverse correlation
with the angular velocity of the pole.

113

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

0 100 200 300 400 500 600

Episodes
−300

−200

−100

0

100

200

Sc
or
e

EIR-RL
Oracle

Figure 6.7: Lunar Lander: PPO Training Curves. Means and standard
deviations over 10 different PPO runs. Plotted is the moving average of
the objective (non-evolved) scores of the latest 100 episodes. While in both
cases, the training leads to models that can achieve objective scores above
200, training with the evolved reward leads to better training stability that
maintains high scores with continued training.

the latest 100 episodes, indicating improved training stability.

In Figure 6.8, the PPO is first optimized for 400 episodes in the default
environmental settings as in Figure 6.7. Then, in the following 800 episodes,
a strong wind (wind level 20 is the strongest possible in LunarLander-v2) is
applied in the environment, making it harder to steer the rocket ship. The
performance of EIR-RL initially suffers, but then gradually improves and is
consistently well above a score of 100, which indicates that the rocket ship is
not crashing. Once again, the PPO trained with the original rewards from the
environment suffers from training instability and fails to sustain high perfor-
mance. The curve labeled ”No Extra Training” shows how an agent trained
only in the first 400 episodes performs when the wind is applied. As can be
seen, the continued training with the original rewards from the environment
results in a training curve similar to simply not optimizing anymore.

114

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

−400

−300

−200

−100

0

100

200
Sc

or
e

EIR-RL
No Extra Training
Oracle

0 200 400 600 800 1000 1200

Episodes
0

10

20

W
in

d
Po

we
r

Figure 6.8: Lunar Lander: PPO Training Curves. Means and standard
deviations over 5 different PPO runs. Plotted is the moving average of the
objective (non-evolved) scores of the latest 20 episodes. The EIR-RL is able
to recover most of the performance when strong wind is applied.

6.4.3 Quadruped

Figure 6.9 shows the PPO training curves using EIR-RL under both training
scenarios described in section 6.3.1.3, as well as using the original reward
from the environment. The means and standard deviations are calculated
from 10 PPO runs for each curve. Curves of either of the EIR-RL training
scenarios show a rapid increase in performance compared to training with
the original external reward.

Figure 6.10 shows training curves under different out-of-distribution sce-
narios. In all cases, the PPO was first trained to perform well on the default
task, and the plots show attempts to recover performance when the envi-
ronmental setting is changed afterward. Three OOD leg length scenarios
were examined for each of the four legs of the robot: fixed at 0.35, fixed at
0.01, and gradually shortened from 0.35 to 0.01. The shown curves are the
averaged curves over 10 different PPO runs.

115

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

0 50k 100k 150k 200k 250k 300k 350k 400k
Timesteps

−1000

0

1000

2000

3000

4000

5000

6000

Sc
or

e

EIR-RL (sampled task)
EIR-RL (default task)
Oracle

Figure 6.9: Ant: PPO Training Curves. The performance of EIR-RL
evolved under default settings (orange) and sampled leg lengths (blue) in
the Ant-v3 environment, and policy network with access to environmental
reward (Oracle) on the default Ant-v3 task. Both versions of EIR-RL show
significantly faster improvements compared to training with original rewards.
Means and standard deviations are calculated from 10 training runs.

116

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

0

500

1000

1500

2000

2500

3000

Sc
or
e

Change: 1st leg

EIR-RL (sampled task)
EIR-RL (default task)
Oracle

2nd leg 3rd leg 4th leg

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250
Episodes

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250
Episodes

0 50 100 150 200 250
Episodes

0 50 100 150 200 250
Episodes

0.
35

 le
g

le
ng

th
0.

01
0.

35
 to

 0
.0

1

Sc
or
e

Sc
or
e

Figure 6.10: Ant: PPO Training Curves. Testing EIR-RL with different
leg changes (indicated by the red lines) after an initial training phase under
default settings. The IR network trained with changes to the third leg showed
an advantage in the same setting. Otherwise, training curves are similar
across the three different reward signals.

As can be seen, the EIR-RL trained with different sampled leg lengths
(blue curves) of the third leg performs better when the third leg is changed
during testing. The EIR-RL trained with sampled leg lengths has better
performance only in one other scenario and that is when the fourth leg of
the quadruped robot is gradually shortened from 0.35 to 0.01. However, the
three methods have similar performance overall. Notably, no disadvantage in
terms of training speed or performance can be detected in any of the scenarios
- including the default settings in Figure 6.9 - when using the EIR-RL trained
with sampled leg lengths.

In short, for new scenarios within the meta-training distribution, the
training speed of EIR-RL is faster than that of ‘Oracle’. In the out-of-
distribution scenarios, the training speeds of EIR-RL and ‘Oracle’ are similar.

117

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

6.5 Discussion
In this chapter, we demonstrated several advantages of EIR-RL. The most
obvious use case for the evolved reward function is in the case where addi-
tional training is needed, but no other reward signal is available. In this case,
EIR-RL makes the additional training possible, even when circumstances dif-
fer from those under which the internal reward function was evolved. This
robustness of the reward function to OOD situations compared to the lack of
robustness often associated with policies learned in the same environments
is likely due to the fact that every optimization step of the reward function
in the outer loop comprises hundreds to thousands of policy optimization
steps. This long time horizon makes the reward function unlikely to overfit
to overly specific relations between observations, actions, and external re-
wards. For example, there are many different observation-action-pairs that
would lead to similar rewards in the Ant-v3 environment, and during the
course of training an agent from scratch a plethora of such pairs are likely to
have manifested at some point.

We also observe that the internal reward function can have advantages
over the original reward signal provided by the simulation environments.
These advantages seem to depend on the structure of the original rewards.
In the CartPole-v0 environment, using the evolved internal reward resulted
in faster training of the PPO compared to the original reward signal. This
is most likely due to the sparse reward structure of CartPole-v0, where the
reward signal is always 1 except in the case of failures. The evolved reward
function was able to produce a more instructive reward signal that in turn
resulted in faster learning.

In the LunarLander-v2, training with the evolved internal reward sig-
nal resulted in enhanced training stability. Training with the original reward
would yield functioning policies within the same number of episodes as train-
ing with the internal reward signal. However, sustained training with the
original reward signal leads to large fluctuations in the training curve. The
stable training curves when training internal rewards are likely due to how
the fitness of individuals was evaluated for the evolution in the outer loop
optimization. Each individual was evaluated on its performance after a fixed
number of time steps in the environment (100,000 steps in LunarLander-v2).
It is, in other words, not enough to have had a well-performing model at some
point during this time frame. A successful individual would need to achieve
a high performance before the 100,000th time step and sustain this perfor-

118

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

mance, thus implicitly selecting for training stability. Stability over sustained
training is an important feature for models that potentially need indefinite
training. If we cannot predict how the environment will change, it is unlikely
that we can predict the timing of the changes. Instead, in order to deal with
unforeseen distributional shifts it might be preferable to keep updating the
model parameters to always be up-to-date without having to worry about
performance decrease due to training instability.

In the Ant-v3 environment, the evolved reward signals resulted in similar
performance as the original reward under the default environmental settings,
but with much faster improvements. Here, the faster improvements can again
be attributed to the fact that the IR network was evaluated after a fixed num-
ber of time steps (500,000) in the environment. This created pressure to as
quickly as possible make improvements that remained stable with sustained
training. Further, the evolved internal reward has the advantage that it can
be exposed to different settings during its evolution. Including a shortened
leg in the training during evolution resulted in enhanced training compared
to training with the original reward when the same leg was changed during
meta-testing. This benefit was specific to that particular leg and did not
lead to enhanced training compared to the original reward when other legs
were changed during meta-testing. Importantly, the benefit in the additional
scenario did not come at the expense of performance or training speed, nor
did it require additional outer loop optimization of the IR network.

The advantages of the EIR-RL approach come at some cost. The evolu-
tion of the IR networks is a time-consuming process. This is because evalu-
ating the fitness of a single individual involves optimizing a PPO agent from
scratch for many time steps in the environment. Further, a limitation of the
EIR-RL approach is that while EIR-RL can be used when a new behavior
is required to reach the same goal, the approach only works as long as the
original goal stays fixed. For example, in the Ant-v3 environment, the IR
network optimized in the experiments above can only reward behavior that
moves the robot along the default goal-direction.

With these results and limitations in mind, we here propose directions
for future studies. One promising approach might be to co-evolve the PPO
parameters and the IR network in the outer loop optimizer using a diverse
set of environmental settings (such as multiple leg changes, gravity settings,
terrain variations, etc., in Ant-v3). In the current chapter, we confirmed that
EIR-RL can be used for the optimization of randomly initialized PPOs at
least as fast as training with the original reward, and most often faster. We

119

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

also demonstrated that when a leg-change was included in the training during
the evolution of the IR network, the internal reward signal resulted in faster
reinforcement learning for that setting than the original reward signal. By
instead optimizing the PPO parameters in both the outer- and inner loop and
focusing on adaptation with few gradient steps to many different settings, the
approach would resemble the model-agnostic meta-learning (MAML) (Finn
et al., 2017) framework, and other approaches leveraging the Baldwin effect
(Fernando et al., 2018). Based on our findings in the experiments above, we
expect that extending the MAML approach to include an evolved internal
reward function would enhance both the training stability and the speed of
adaptation compared to vanilla MAML.

In order to mitigate the EIR-RL’s limitation when it comes to reward-
ing goals that are entirely different from each other (such as different goal-
directions in Ant-v3), an interesting avenue of future research is to evolve
IR networks in a goal-conditioned manner. By including a goal-embedding
(Sukhbaatar et al., 2018; Liu et al., 2022; Islam et al., 2022) in the inputs of
the IR network, a single function capable of rewarding behavior to separate
objectives might be possible.

It is worth noting that even though the method introduced in this chapter
is conceptually very different from evolving plasticity rules as in Chapter 4,
these two approaches are similar in that the inner-loop parameters of both
approaches are a function of the outer-loop parameters. This means that
both EIR-RL and the evolution of Hebbian learning rules fall into the same
category of meta-learning where an optimizer for the inner-loop is optimized.
On the other hand, the plasticity rules and EIR-RL clearly deal with different
aspects of the optimization of the inner-loop parameters. EIR-RL only gen-
erates a reward signal and relies on a different algorithm to make use of it to
change the inner-loop parameters. In Chapter 4, no reward information was
given to the plasticity rules. Given that Evolve & Merge and EIR-RL focus
on different aspects, they could plausibly be combined. In this case, EIR-RL
could be seen as a neuromodulatory function for the plasticity rules, which
in turn would have to be extended with a term that weighs the generated
reward signal as part of the synaptic update.

120

Chapter 6 | Evolution of an Internal Reward Function for Reinforcement Learning

6.6 Conclusion
In this chapter, we presented an approach to evolve a reward function to
use for reinforcement learning to replace the reward signal provided by the
environment. The reward function only relied on information that was readily
available to the agent during deployment after training. The main purpose
of such an evolved function is to enable continued training after deployment,
such that the agent can recover performance in the case the environment
changes after the training phase.

In addition to enabling sustained policy updates after an initial training
phase, we observed several advantages of training with the evolved inter-
nal reward signal. These observed benefits included faster training speed in
default environments and improved training stability. When adding more
environmental settings in the Ant-v3 environment during the optimization
of the internal reward network, an increased recovery of performance was
observed if a similar change occurred during testing. This happened without
showing any negative consequences in terms of recovery in settings unseen
during training. This result is particularly encouraging, as potential envi-
ronmental changes can be the reason for the need for extra training in the
first place. The wider the range of changes that it is possible to recover from
at a faster speed, the more useful will the evolved reward function be.

Overall, the experiments presented in this chapter demonstrate the im-
portance of giving adequate rewards to reinforcement learners and that re-
wards tailored by evolution can make meaningful differences in the training
of such learners. This is shown with a meta-learning design that is simple
both conceptually and in terms amount of parameters evolved. The EIR-
RL approach as presented here has the potential to be useful as is, but the
simplicity of the method also makes it well-positioned to be combined with
other meta-learning and reinforcement learning approaches in future studies
of autonomous, adapting agents.

121

Chapter 7

Minimal Neural Network
Models for Permutation
Invariant Agents

This chapter focuses on a different aspect in which ANNs lack flexibility and
that is when it comes to the structure of the network after training as well
as the ANNs’ reliance on the specific ordering of input elements to function.

This chapter aims to contribute to the trend of making the neural archi-
tectures of artificial agents more flexible (Kirsch et al., 2021; Tang and Ha,
2021). We do so by proposing a conceptually simple model that after opti-
mization can output coherent actions for a performing agent, even when the
inputs to the model are continually shuffled in short intervals. Throughout,
we emphasize the minimal requirements that an ANN must follow in order
to be invariant to both changes in size and permutations. For the latter,
no parameter in the network can be optimized in relation to any specific
index in the input vector. In order to be able to take in inputs with varying
lengths after optimization, the input must somehow be aggregated to a rep-
resentation, the size of which does not increase with the number of inputs.
An example of such an aggregation is simply to take the average of a range
of numbers; regardless of how many numbers there are in the range, their
average will always be represented by a single number.

With these requirements in mind, we can choose the simplest solutions
to each of them, in order to keep our model as minimal as possible. Thus,
the model and its variations presented below do not include a Transformer
layer like in the model of Tang and Ha (Tang and Ha, 2021). Indeed, in one

122

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

Figure 7.1: Model Overview: At each time step, the external input is
presented to the network (1). Each element of the input vector is sent into
a separate recurrent neural network (RNN) cell that we call input units (2).
The RNNs in (2) all share the same parameters in their gates. This means
that none of the parameters are evolved to be specific to a single element in
the external input. The output vectors of the RNNs in (2) are then summed
onto a single vector (3). This vector is then passed on to a single RNN (4).
The output of this RNN is used to update the hidden states of the RNNs in
(2). The same output is also propagated through a dense layer (6) that is
connected to the final output of the model (7).

ablation study, we show that it is possible to evolve a network that is invariant
to permutations of its input vector and to changes in the input size, even when
all elements of the network are simple feedforward networks. Kirsch et al.
(Kirsch et al., 2021) aims at meta-learning a black-box reinforcement learning
algorithm with a shallow network structure that has invariance properties
for both inputs and outputs. In terms of the model structure, our model
is similar to that of Kirsch et al., but adding an integrator unit (explained
further in Section 7.2) gives us the flexibility to choose to focus only on
invariance properties for the input. This makes our model comparably easy
to optimize. However, we also show how our model can easily be extended
to also have invariance properties for the output.

7.1 Related Work
Transformer-based models have properties that allow them to take sequences
of different lengths as input (Vaswani et al., 2017). Further, in language tasks
where Transformers in recent years have been used to great effect (Devlin

123

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

et al., 2018; Brown et al., 2020), explicit steps must be taken in order to
avoid invariance to permutation of the inputs. This is because it is most
often useful to be able to interpret words differently depending on where in
a sentence they occur. The use of Transformers in RL tasks is less frequent
(but see (Chen et al., 2021; Gupta et al., 2022)). Recently, however, Tang
and Ha (Tang and Ha, 2021) presented a model to control artificial agents
that utilized the properties of Transformers to gain invariance properties for
the input. The fact that their Transformer-based model complies with both
conditions for permutation and size invariance, can be seen by considering
that the key, query, and value transformations use shared parameters for all
instances in the input. Then, by fixing the size of one of the transformation
matrices (Q in their model), as opposed to letting it depend on the input,
the attention matrix is always reduced to a representation of the same size,
regardless of the number of elements in the input. Together, this means that
parameters in the rest of the network can be optimized in relation to indices
in the aggregated representation without being related to any specific indices
in the input vector. This highlights the relatedness of the problems of size
and permutation invariance. By meeting the condition for size invariance
by aggregation of the inputs, the problem of input permutation invariance
is contained in the part of the network prior to the aggregation. The rest
of the network can thus be structured as any normal network. However,
attention-based aggregation is not the only type that meets the conditions;
as we show below, a simpler aggregation by averaging can also be used.

Plastic neural networks (Soltoggio et al., 2018; Coleman and Blair, 2012)
(see Chapter 2, Section 2.5.3) is another class of models that under the
right circumstances can be permutation invariant as well as size invariant.
Although this field can be related to Transformers and Fast Weight Pro-
grammers (Schlag et al., 2021), plastic networks are usually framed quite
differently, with a stronger emphasis on biological inspiration. Plastic net-
works are also more often used for RL tasks (Soltoggio et al., 2018). Not all
plastic networks have the properties that we are interested in here. Interest-
ingly, plastic neural networks, where a single plasticity mechanism governs
all connections in randomly initialized networks, automatically meet condi-
tions to be invariant to permutations in the input, as well as to changes in
size. This observation might give a clue as to how biological neural networks
achieve their high level of architectural flexibility. Biological brains learn
complicated tasks as a whole (Caligiore et al., 2019) but vary in the num-
ber of neurons over a lifetime (Breedlove and Watson, 2013). Of course, the

124

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

brain is governed by a plethora of different plasticity mechanisms (Abbott
and Nelson, 2000; Dan and Poo, 2004; Dayan, 2012), not just a single one,
but not all parts of a brain might necessarily need to be invariant in relation
to all other parts. Further, the conditions could also be met if instead of
a single plasticity mechanism, there is a meta-function that organizes local
plasticity mechanisms, just as the plasticity mechanisms in turn organize the
individual connection strengths.

A recent approach that falls into this category is presented by. Yaman
et al. (2021). In this work, the authors evolve a single discrete Hebbian
rule to change the synapses of a randomly initialized network to solve a
simple foraging task. They also test their rule’s ability to control networks
with more hidden neurons. More closely related to our method, is the work
of Bertens and Lee (2020). They evolve a set of recurrent neural network
cells and use them as basic units to form a network between them. In this
approach, the synapses and neurons of the overall network are thus recurrent
units, and the plastic parameters are the hidden states of the recurrent units.
Since all synaptic recurrent units share parameters, and all neural recurrent
units share parameters, the network is effectively governed by one overall,
homogeneous non-linear plasticity mechanism. The network is shown to be
permutation invariant, and this type of network was shown to be able to
solve a simple t-maze task with non-stationary rewards.

Closely related to the approach of Bertens and Lee (2020) is the work
of Kirsch et al. (2021). They evolve a shallow network structure where all
connections consist of recurrent neural networks with shared parameters.
Like Bertens and Lee, the goal of the approach of Kirsch et al. is to evolve
a network with learning capabilities, and they showcase the abilities of their
network to exhibit some level of learning in tasks unseen during training. As
we extend our model to have invariance properties in the output vector as
well as the input in Section 7.3.3.7, we show that we can have an intermediate
integrator unit, between input and output units, and is therefore not bound
to a shallow network structure like Kirsch et al. (2021). Common to all
methods mentioned in this section is that no parameters are optimized in
relation to any specific index in the network. Further, new elements can be
added to the network architecture after optimization. This is possible as
such added elements will be adapted by the same plasticity mechanism as all
other elements in the network.

125

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

7.2 Approach: A Minimal Neural Model for
Permutation Invariance

The requirement a network needs to meet in order to be invariant to per-
mutations in the input is that no parameter can be optimized in relation to
any specific element in the input. This has to hold throughout the entire
network. As noted by Tang and Ha (Tang and Ha, 2021), a trivial strategy
to achieve this is to constantly permute the input vector throughout the op-
timization phase. The logic behind this strategy is similar to that of data
augmentation strategies used in some image classification studies (Taylor and
Nitschke, 2018). If the original dataset does not include examples of rotated
objects, a way to make the classifier more general is to augment the dataset
with rotated copies of original images. Rotation is a continuous operation
and meaningful interpolations can be made between rotations with different
angles. However, permutations of indices are discrete and have no meaningful
interpolations between them. This means that we would need to augment the
dataset with every single possible permutation and thus potentially increase
optimization time exponentially.

A visual presentation of the model introduced here is shown in Figure 7.1.
When the input vector from the environment is presented to the model at
each time step, each element of the input vector is passed into a separate
input unit. These input units are a type of recurrent neural network called
Gated Recurrent Unit (GRU) (Cho et al., 2014) with an added output gate.
Other types of RNNs, such as the Long Short-Term Memory unit (Hochreiter
and Schmidhuber, 1997), or any of the many other RNN variations (Yu et al.,
2019) could also have been used. Importantly, the input units all share the
same weight matrices. This means that regardless of how many elements
there are in the input vector, we only optimize parameters for a single input
unit and copy these to all the input units.

This separation of the input elements to input units with shared param-
eters is crucial for achieving input permutation invariance and is a major
difference from how inputs are processed by traditional deep RNNs. Note,
that even though the input units share their evolved weight matrices, their
hidden states and their outputs are not necessarily the same at any given
time, since these are influenced by the different inputs presented to each in-
put unit. With this approach of routing the input elements into separate
units, our method can be described as falling under the category of instance

126

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

slot models (reviewed by Greff, van Steenkiste & Schmidhuber (Greff et al.,
2020)).

Each input unit outputs a vector of dimension (m, 1). All these vectors
are summed into a single vector of dimension (m, 1) each element of this
vector is divided by the number of input units. This averaging of the input
units’ outputs will have the same dimensionality of (m, 1) regardless of the
number of input units. This vector is analogous to the global latent code in
the approach by Tang and Ha (Tang and Ha, 2021). It is then passed to
another RNN (also a GRU with an output gate). We call this the integrator
unit. It processes the summed outputs of the input units just as any normal
GRU cell with an output gate would do. The output vector of the integrator
is passed through two dense layers, the last of which projects to a vector
with the number of elements that are needed to make an action in the given
environment. The output vector of the integrator is also fed back to the input
units. The input units get their hidden states updated through a separate
set of GRU gates, the parameters of which are also shared between all the
input units.

This model complies with both requirements for permutation and size
invariance. First, no parameters are specifically optimized in relation to any
specific input index. This is ensured by making the input units share their
optimized parameters and averaging all their outputs to a single vector. The
optimized parameters of the rest of the network are optimized in relation
to indices of this aggregate of input units’ outputs, but these cannot be
traced back to any specific indices of the input vector. Second, averaging also
means that we can add any number of the input units without disrupting
the structure of the rest of the network, and without the need for additional
optimized parameters. All RNN cells in all experiments below are GRUs
(Cho et al., 2014) with an additional output gate. See Chapter 2, Section
2.2.1 for more details on RNNs and GRUs.

7.3 Experiments

We test the model described in Section 7.2, as well as several variations of it
with different ablations and three different environments. The particulars of
each of these are specified in the sections below.

127

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

Figure 7.2: Environments Used in Experiments. From left to right:
Acrobot-v1, MountainCar-v0, CartPole-v1

7.3.1 Environments
We test our model in multiple simple control tasks (Fig. 7.2) from the OpenAI
gym suite (Brockman et al., 2016). In all experiments, the ordering of the
inputs to the models stays fixed throughout the entire optimization time.

7.3.1.1 CartPole-v1

In this classic control task, a pole is balancing on a cart and the agent needs to
control the cart such that the pole does not fall for as long as possible (Barto
et al., 1983). The environment has four inputs and two discrete actions. A
stopping condition score for the evolution strategy (see below) was set to 495
for this environment.

7.3.1.2 Acrobot-v1

The task in Acrobot-v1 is to move a fixed 2-dimensional robotic arm with
two joints such that the non-fixed end of the arm reaches a certain height
(Sutton, 1995). The faster this is achieved the better the score, and a fitness
point of -1 is given for each time step spent. The environment has six inputs
and three discrete actions. We set the stopping condition to be an average
score of -96.

7.3.1.3 MonutainCar-v0

The goal is to move a car from a valley on a one-dimensional track up a large
hill (Moore, 1990). The car needs to build up momentum by first moving

128

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

Table 7.1: Hyperparameters for ES

Parameter Value
Population Size 128
Learning Rate 0.1

Learning Rate Decay 0.9999
Learning Rate Limit 0.001

Sigma 0.1
Sigma Decay 0.999
Sigma Limit 0.01

Weight Decay 0

up a smaller hill on the opposite side. The environment has two inputs and
three discrete actions. We set the stopping condition to be an average score
of -105.

7.3.2 Optimization Details

We use an evolutionary strategy (Salimans et al., 2017) (ES) to optimize the
parameters of the system. We use an off-the-shelf implementation of ES (Ha,
2017a) with its default hyperparameters, except that we set weight decay to
zero (unless stated otherwise, hyperparameter configurations of all experi-
ments match those in Table 7.1). However, for experiments in the Mountain
Car experiments, weight decay is set to 0.01. This is because successes in
this environment are initially very sparse, and if all individuals score the
same, there is an increased risk of the evolution getting stuck. Weight decay
helps evolution differentiate between individuals. The implementation uses
mirrored sampling, fitness ranking, and the Adam optimizer for optimiza-
tion. This optimization implementation is similar to that used by Palm et
al. (Palm et al., 2021; Palm, 2020), and Pedersen and Risi (Pedersen and
Risi, 2021). Every 20th generation, the mean solution of the population is
evaluated over 128 episodes, and if it achieves an acceptable average score,
the solution is saved and the evolution run is ended. For all experiments, if
a solution was not found within 5, 000 generations, the run was terminated.

129

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

7.3.3 Model Ablations

7.3.3.1 Full Model

We refer to the model described in Section 7.2 as the full model. It is fully
specified by the following weights matrices: Four weight matrices and bias
vectors in the input units that adjust the units’ hidden states according to the
external input following equations (1) through (5) in Section 7.2. Three more
weight matrices and bias vectors in the input units adjust the units’ hidden
states according to the feedback from the integrator following equations (1)
through (4). The feedback only serves to adjust the hidden states of the
units, and there are thus no output gates for the feedback. Then, there are
the four weight matrices and bias vectors in the integrator and two weight
matrices and bias vectors for the dense layers that determine the final output
of the model. The sizes of the matrices of the GRUs are fully determined
by their input sizes, the size of their hidden states, and the output sizes.
These hyperparameters are summarized in 7.2. Each input unit receives a
value from a particular environmental input element, copied eight times to
produce a vector. The input size of eight for the input units was chosen
partly to dictate the sizes of the following matrices, and to ensure that the
input would be able to impact the hidden state better than if it had just
been represented by a single value. The sizes of the networks for different
tasks only differ in the output vector. CartPole-v1 has two discrete actions,
whereas MountainCar-v0 and Acrobot-v1 both have three. For each time
step in any environment, the index of the largest element of the output
vector becomes the action taken by the agent at that time step. At the
beginning of each episode, all hidden states are initialized with noise from a
Normal Distribution, N (0, 0.05). The total number of optimized parameters
in the network is 24, 064 for the Cart-Pole environment and 24, 096 for the
two other environments.

7.3.3.2 No Feedback Model

We run the same experiments with a variation of the full model with the only
difference being that the input units do not receive a feedback signal from the
integrator. The total number of optimized parameters in the network is 5, 584
for the Cart-Pole environment and 5, 616 for the two other environments.

130

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

Table 7.2: Network Size Specifications

Name Size
Input Unit In 8

Input Unit Hidden 16
Input Unit Out 24

Inp. Un. Feedback In. 24
Integrator In 24

Integrator Hidden 16
Integrator Out 24

Dense 1 32
Dense 2 environment dependent

7.3.3.3 Integrator as Feedforward Network

In another variation of the full model, we skip the integrator and send the
averaged outputs of the input units directly to the first dense layer. The
input units receive the output of the first dense layer as feedback to adjust
their hidden states. The total number of optimized parameters for Cart-Pole:
20, 904, others: 20, 928.

7.3.3.4 Input Units as Feedforward Networks

In this variation, the input units are not GRUs but simple feedforward net-
works with multiple hidden layers. As in the other variations, the optimized
parameters in the weight matrices are shared between the input units. The
number of hidden units in the layers of the input units are from beginning
to end: 8, 32, 24, 24, 24. The activation function for all the layers is tanh.
The rest of the network is identical to the full model with no feedback. The
total number of optimized parameters for Cart-Pole: 6, 064, others: 6, 096.

7.3.3.5 No RNNs

Finally, we run experiments with a model with no recurrence in the network
at all; input units are feedforward networks with multiple hidden layers and
their averaged outputs are sent through multiple dense layers. The size of the
input units is the same as in Section 7.3.3.4, and the average output is then
sent through layers of sizes: 24, 32, 24, 24, 16, 32, before being projected

131

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

Figure 7.3: Model Extended to Output Permutation Invariance: The
first part of this model is identical to that in Fig. 7.1. However, instead of
dense layers projecting to the output, this model has two recurrent units with
shared parameters as the final output nodes.

to the number of actions in the given environment. The total number of
optimized parameters for Cart-Pole: 5, 760, others: 5, 792.

7.3.3.6 Standard RNN

In addition to variations of our proposed model, we run experiments with
a traditional RNN structure. This consists of a GRU unit with additional
output gates following equations (1) through (5) in Section 7.2. The input
size of this RNN is equal to the input vector given by the environment in
which it is optimized. Its hidden state has 16 elements, and so does its
output. It is connected to two dense layers, one with 32 hidden notes, and
one that has a number of nodes equal to the number of possible actions in the
environment. Total number of optimized parameters for Cart-Pole: 1, 954,
Mountain Car: 1, 859, Acrobot: 2, 115.

7.3.3.7 Output Permutations

In our last experiment, we adapt the full model to also be invariant to per-
mutations and changes in size to the output of the network. The first half

132

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

of this model is identical the that of the full model. However, instead of
projecting to a dense layer, the integrator projects to two units of the same
type as the input units, but with their own set of shared optimized param-
eters. In this experiment, these output units have weight matrices of sizes
equal to those of the input units, but this is not required. The output units
have no weight matrices for feedback. Only experiments on the Cart-Pole
environment are done with this model and the total number of optimized
parameters is 24, 176. For these evolution runs, weight decay was set to 0.01.
Further, the fitness of each individual of a generation was here the average
performance over four episodes, instead of just a single episode. We extend
the optimization in this way, as we are now attempting to solve another
problem on top of what was solved by the previous models.

133

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

7.4 Results

0 1000 2000 3000 4000 5000
0

200

400

Ca
rtp

ol
e-

v1

0 1000 2000 3000 4000 5000

−400

−200

Ac
ro

bo
t-v

1

0 1000 2000 3000 4000 5000
−200

−150

−100

M
ou

nt
ai

nC
ar

-v
0

Integrator FFN No Feedback Stand. RNN No RNNs Full Model Input Units FFN

Figure 7.4: Training Curves: Means and standard deviations. Each
curve represents the mean of five independent evolution runs with a specific
method. The full model as described in Figure 7.1 and its variation without
feedback from the integrator to the input units tend to find solutions to the
tasks quickly. The same is true for the standard RNN. When the input units
are feedforward networks rather than RNNs, evolution in most cases did not
end up finding a solution within the set time limit of 5000 generations.

Training curves of each experiment are shown in Figure 7.4, except for the
experiment described in Section 7.3.3.7 that is presented in Figure 7.5. Each
curve represents the mean of five independent evolutionary runs. From Fig-
ure 7.4, it is clear that evolution tends to find solutions much faster with
some models than with others. Specifically, the full model, the full model
without feedback, and the standard RNN find solutions in the matter of hun-
dreds of generations for all problems. On the contrary, for the models where
the input units are not RNNs, a solution was often not found within the time
limit of 5,000 generations.

134

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

Full Model
Env. Input Doubling No Perm.

Cart-Pole 488 ± 68 485 ± 77
Acrobot -106 ± 48 -109 ± 58

Mountain Car -100 ± 6 -99 ± 6
Standard RNN

Cart-Pole N/A 172 ± 210
Acrobot N/A -396 ± 168

Mountain Car N/A -149 ± 48
No RNNs
Cart-Pole 496 ± 35 496 ± 36
Acrobot -119± 63 -118 ± 63

Mountain Car -106 ± 7 -105 ± 8

Table 7.3: Table of Results. Means and standard deviations over 1000
episodes. Numbers are rounded to the nearest integer. For each method,
we choose the run with the highest population mean score at the end of evo-
lution. Input Doubling means that each element of the input vector is copied.
E.g., in the Cart-Pole environment, this means that there are eight input ele-
ments and therefore also eight input units instead of four. No. Perm. means
that the input vector is not permuted online. However, at the beginning of
each new episode, the ordering is randomized.

135

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

Table 7.4: Online Permutations Evaluations Same as in Table 7.3 Re-
sults show that variations of our model both with and without recurrent
dynamics are able to do well in the tasks, even when the input is permuted
online several times. Note, however, as seen in Figure 7.4, evolution runs of
the model without recurrent dynamics, did not reliably result in a solution
within the set time limit. The standard RNN model does not do well in any
of these scenarios.

Full Model
Env. Every 100 Every 50 Every 10 Every 5

Cart-Pole 489 ± 68 489 ± 68 490 ± 66 482 ± 87
Acrobot -107 ±55 -107 ± 57 -108 ± 61 -105 ± 45

Mountain Car -100 ± 6 -100 ± 6 -100 ± 6 -108 ± 22
Standard RNN

Cart-Pole 73 ± 87 48 ± 51 20 ± 15 23 ± 13
Acrobot -293 ± 152 -296 ± 138 -279 ± 108 -280 ± 106

Mountain Car -146 ± 46 -171 ± 41 -180 ± 35 -193± 21
No RNNs
Cart-Pole 495 ± 43 496 ± 37 498 ± 29 496±37
Acrobot -122±69 -120±70 -124±76 -117± 62

Mountain Car -105 ± 7 -105±7 -105±7 -105±7

After optimization, we are interested in how well the models do with
online permutations of the input vectors. In Tables 7.3 and 7.4, such evalu-
ations are shown for an optimized full model, the model consisting of feedfor-
ward units only, and the standard RNN model. Across the board, the models
designed for invariance tend to achieve similar scores under all conditions,
even when the inputs are shuffled at intervals as frequent as every 5th time
step. The standard RNN fails under all permutation conditions. Following
Tang and Ha (Tang and Ha, 2021), we also evaluate the models when given
a larger input vector than seen during optimization with redundant values.
Here too, the models designed for invariance show no signs of deterioration
in performance. It was not possible to evaluate the standard RNN using a
doubled input size, due to its rigid structure.

Figure 7.5 shows that it takes longer for evolution to find solutions to
the Cart-Pole environment when the full model is extended to also have out-
put units with shared parameters, but that solutions are consistently found.

136

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

0 500 1000 1500 2000 2500 3000 3500
Generations

0

100

200

300

400

500

Fi
tn
es
s

CartPole-v1

Figure 7.5: Training Curve for Model with Output Units. Means and
standard variations of five independent evolution runs.

Further, in Figure 7.6, we see that the optimized model does not tend to
perform well with frequent permutations of both the input and output vec-
tors. However, as shown by the left-most box plot in the figure, the model
performs well under random orderings, as long as they stay fixed during the
episode.

We can look closer at how the input units behave under conditions without
and with online input permutations. Such cases are presented for a full
model performing in the Cart-Pole environment in Figure 7.7 and Figure
7.8 respectively, where we see the 16 hidden state elements of each of the four
input units over a full episode. Figure 7.7 shows that when no permutations
occur, the mode of each input unit tends to look similar throughout the
episode. However, as can be seen in Figure 7.8, the input units are able to
quickly switch roles in response to a permutation.

7.5 Discussion
In this chapter, we demonstrate that the requirements needed for making
a network invariant to permutation and size changes of the external inputs
can be met by relatively simple models. Importantly, no parameters can be

137

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

No Permutation Permute Every 100 step Every 50 step Every 10 step Every 5 step

0

100

200

300

400

500
Pe

rfo
rm

an
ce

CartPole

Figure 7.6: Performance Under Online Permutation of Input and
Output. The model performs well under random permutations of both the
input and output when the random ordering is fixed during the episode.
However, online permutations make the model fail at increasing levels.

0 100 200 300 400 500

−0.4

−0.2

0.0

0.2

0.4

0 100 200 300 400 500

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

0 100 200 300 400 500

−0.4

−0.2

0.0

0.2

0.4

0 100 200 300 400 500
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Figure 7.7: CartPole Hidden States: No Shuffling The 16 hidden state
elements of each of the four input units over a full episode in the Cart-Pole
environment. The units seem to have separate, fixed roles.

138

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

0
index: 1

100
index: 1

200
index: 2

300
index: 0

400
index: 3

500

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

0
index: 0

100
index: 0

200
index: 0

300
index: 3

400
index: 1

500

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

0
index: 2

100
index: 3

200
index: 3

300
index: 1

400
index: 0

500

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

0
index: 3

100
index: 2

200
index: 1

300
index: 2

400
index: 2

500
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Figure 7.8: CartPole Hidden States: Shuffle Every 100th Step Black
dotted lines indicate the times at which the input vector was randomly per-
muted. The hidden states rapidly adapt their activity levels in response to
permutations.

optimized in relation to any specific index of the input vector, and projec-
tions of the input must at some point in the network be aggregated to a
representation that does not grow with the number of inputs.

The simple solution we use in the model presented here is to average the
outputs of input units with shared parameters. Even when optimized with
fixed inputs, the models are remarkably robust to frequent permutations of
the input vector. The solution does not specify that the input units need
to be recurrent neural networks. Indeed, we find that in the environments
we use for experimentation here, it is possible to find solutions solely using
feedforward networks. However, such solutions tend to be more difficult to
find compared to when input units are RNNs. This effect might only be
exacerbated in more difficult environments. The use of feedback from the
integrator did not tend to make a difference in our experiments. This could
be due to the simplicity of the environments, as Tang and Ha (Tang and
Ha, 2021) report that their analogous input units need to get the model’s
previous outputs as additional inputs in order to work. One might expect
that the more overlapping the values of the input vector can be, the more
need there is for some form of global signal as well as a memory of previous

139

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

inputs.
We further show that it is simple to extend the model to also be able to work
with different permutations of the output vector. This is done by following
the same principle as for the input vector: no parameters in the network can
optimized in relation to a specific index of the output vector. We solve this
by having output units with shared parameters that receive a common input
from the integrator. However, the problem of invariance to permutations
of the output vector is different in important ways. First of all, the output
units almost certainly need to be recurrent, as having different hidden states
is the only way that the units are able to give different outputs in response
to the identical inputs they are presented with from the integrator. Second,
dealing with online permutations of the output vector is much harder than
with the input vector as indicated by the results in Figure 7.6. This is not
surprising considering that every time the output vector is permuted, the
next action of the network will be random. For the Cart-Pole environment
with only two actions that are oppositely directed, this might be somewhat
feasible, as only a single random action is needed in order to have a perfect
overview of all actions. For environments with larger numbers of available
actions, the agent would have to behave randomly for potentially many time
steps before being able to settle into a learned behavior. Still, even though
rapid online permutations of the output might be insurmountable at large
scales, the properties of a model like the one presented in Section 7.3.3.7
can still be interesting. In this model, the number of parameters to be
optimized is completely decoupled from the size of the external input and
the number of actions in the environment. As such, the model can potentially
be optimized on multiple different environments that do not need to share
the input and output spaces. This idea is not unlike the one presented by
Kirsch et al. (Kirsch et al., 2021). However, Kirsch et al. are in their work
aiming for evolving a black-box reinforcement learning algorithm. While
the optimization procedure of the model presented in this chapter could be
altered to mimic that of Kirsch et al., our model currently does not take any
rewards into account but focuses solely on solving the problems of invariance.
With the model presented here, we get these invariance properties with only
a small fraction of the optimization time reported by Kirsch et al. on the
same problems.

140

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

7.5.1 Future Directions
Having shown that our model can be reliably evolved to be invariant to per-
mutations on simple problems, it is worth considering how the model might
be scaled up to bigger problems. In future experiments, we also aim to use
our model to solve continuous control problems with more inputs and out-
puts. Trivially, it is always possible to make the model more expressive by
increasing the sizes of the weight matrices throughout the network. However,
there are other ways the model can be expanded, while still conforming to
the laid out restriction. It should for example be possible to add a layer of
input units parallel to the ones in the model in Figure 7.1. Each element
in the input vector would thus be sent through two different input units.
The added input units would still have to share optimized parameters with
each other, but, importantly, not with the ”original” layer of input units.
The averaged output vectors of the input unit layers can then be concate-
nated and sent through the network as in Figure 7.1. An added, separate
set of optimized parameters for processing the input could allow for more
specialization, without hurting the ability to deal with permutations of the
input.

7.6 Conclusion
The world is a messy place and it might not always be possible for us to
fully anticipate how inputs will be presented to agents meant to perform in
it. With this chapter, we contribute to the efforts of making artificial agents
more adaptable to changes to their inputs. We do so by being explicit about
what the models at the very least will need to be able to adapt to permu-
tations and size changes and use these restrictions to develop simple models
that adhere to them. We hope that this will inspire even more research in
making more adaptable artificial agents.

We have now seen several approaches that extend the capabilities of
ANNs in different bio-inspired manners. Chapter 4 presented an algorithm
for increasing the robustness of ANNs with relatively small rule sets. In
Chapter 5 the need for optimizing synaptic weights was alleviated as param-
eterized neurons in random networks were shown to be expressive enough to
perform in RL-tasks. In Chapter 6 RL agents were able to maintain their per-
formance in novel circumstances through the guidance of an evolved reward

141

Chapter 7 | Minimal Neural Network Models for Permutation Invariant Agents

function. Finally, minimal models with invariance properties were evolved in
this chapter. In the next chapter, a framework is presented that combines the
ideas of plasticity with a few learning rules, parameterized neurons, learning
from rewards, and structural flexibility.

142

Chapter 8

Evolution of Structurally
Flexible Adaptive Neural
Networks: Toward a Model for
General Learners

In this chapter, we present our approach called Structurally Flexible Adap-
tive Neural Networks (SFANN). With this approach, we aim to leverage
the concepts of plasticity, optimized neural units, and structural flexibility,
which were themes of earlier chapters of this thesis, to develop a parame-
terized reinforcement learning function capable of learning and adapting to
multiple environments. Plasticity plays a crucial role in transforming an
initially random connectivity structure into a functional one, allowing the
network to adapt its connections based on experience. By incorporating
trainable parameters within neural units and employing learning rules, we
enable complex neural interactions using a limited set of rules. The key to
achieving a versatile learning algorithm lies in structural flexibility, which
liberates the model from being tied to specific input and output spaces.

The primary objective is to devise a parameterized learning algorithm
that exhibits fast adaptation across various environments, regardless of their
dimensionality, and the permutations of the input and output elements. If
successful, such a model could serve as a general foundation model (Bom-
masani et al., 2021; Yang et al., 2023) for black-box meta-reinforcement learn-
ing.

Our proposed approach builds on the Variable Shared Meta-Learning

143

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

framework (Kirsch and Schmidhuber, 2020) and generalizes it by introducing
dynamic neurons and by relaxing the constraint that all units in the network
have to share the same parameters. These extensions contribute to resolving
the symmetry dilemma. The symmetry dilemma, described in more detail
later in the chapter, summarizes the insights that inform most of the design
decisions of the SFANN approach. In short, the symmetry dilemma is that
on the one hand, we need the learning mechanism of the network to be
symmetric enough so that it can be used flexibly on any network structure
and for any input/output space. On the other hand, the learning mechanism
must be able to produce structures that are not symmetric, such that signals
propagated through them can be processed appropriately.

This chapter presents promising preliminary results showcasing a single
parameter set capable of solving tasks with different input and output sizes.
The optimized model demonstrates its proficiency in simple point navigation
tasks with both discrete and continuous output spaces. Remarkably, the
trained model exhibits the ability to perform actions that were unseen dur-
ing training, illustrating its generalization capabilities. Starting with random
connectivity, random initial synaptic and neural states, and random num-
bers of hidden neurons, the evolved classes of plastic synapses and dynamic
neurons organize during the lifetime to achieve better performance in the
given environment.

The SFANNs presented in this chapter adhere to the requirements for
permutation and size invariance as discussed in the previous chapter. How-
ever, it is important to note that the objective of these networks differs from
the models presented in Chapter 7.

In the current chapter, the focus is on enabling synapses and neurons to
form functional networks of any shape and size guided by a reward signal.
Unlike the models in Chapter 7, where robustness to online permutations
was a primary goal, these networks aim to acquire functional network con-
figurations through learning.

It is worth noting that as these networks become proficient in perform-
ing tasks with a particular network configuration, they lose their structural
flexibility and may at the end of the agent’s lifetime not readily adapt to
permutation, unlike the models in Chapter 7. In other words, while the
models satisfy the requirement of not optimizing parameters relative to spe-
cific positions in the network on an evolutionary scale, they do not do so at
a lifetime scale. This is by design, as we prioritize reward-based learning to
perform well across environments, rather than being tolerant to rapid online

144

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

permutations, as the former might be of more general interest to real-world
scenarios. However, the observations made in Chapter 7 are valuable in that
they inform how the outer-loop parameters must be optimized.

8.1 Related Work
The approach described in this chapter is related to other studies on black-
box meta-reinforcement learning (see Chapter 2, Section 2.5), plastic neural
networks (see Chapter 2, Section 2.5.3), and permutation invariant models
(see Chapter 7). In addition to the areas of work that have already been
described in detail elsewhere in this thesis, there are some topics that are
more specifically related to the approach presented in this chapter.

8.1.0.1 Graph Neural Networks:

The network type presented in this chapter consists of neurons and synapses
that are themselves recurrent neural networks, more specifically LSTMS.
This means that they all have hidden state vectors associated with them,
and these are updated using local information. This is similar to how Graph
Neural Networks (GNNs) work. GNNs are designed to analyze data that
is represented as graphs (Wu et al., 2020). Nodes in a GNN have internal
states and pass information to their neighbors through parameterized mes-
sage functions that are optimized during the network’s training phase (Zhou
et al., 2020a). A neural network with neurons and synapses being LSTMs
can be seen as a graph where some nodes (the synapses) can only have two
neighbors (neurons), whereas the ”neuron” nodes can have many ”synaptic”
nodes as neighbors. In the neural networks of this chapter, these different
types of nodes also differ in how they propagate information and update
their states. However, the idea of optimizing how nodes with internal states
interact with each other is analogous to that of GNNs. GNNs have been
used to control simulated robots showing that they can take advantage of
the fact that robot morphology can be expressed as a graph (Wang et al.,
2018). In contrast, the networks presented in this chapter do not make as-
sumptions about the spatial structure of inputs or outputs of the model but
are only concerned with how the units of the network can best be updated
to transform inputs into outputs in a manner that maximizes rewards.

145

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

8.1.0.2 Foundation Models:

Foundation models refer to models with large numbers of parameters trained
on huge, varied datasets (Bommasani et al., 2021). These models require a
great amount of resources to optimize. However, it has recently been shown
that such models can be fine-tuned to specific tasks at lower costs than would
have been required to train a new model for the specific task from scratch.
The initial large investment in the general foundation model thus pays off
in the form of reduced cost of new specialized models. Foundation models
have mainly been used within the fields of language- and image processing,
as these are generally the areas where access to large amounts of data is
the most abundant (Zhou et al., 2023). Large language models in particular
have in recent years achieved great success, being trained on large amounts
of unlabelled text. Recently, the notion of foundation models has also sur-
faced in the context of reinforcement learning (Yang et al., 2023). Some
examples have been leveraging large pre-trained language models to speed
up offline reinforcement learning (Reid et al., 2022). Other examples of foun-
dation models are optimized both on language, vision, and RL tasks, as with
GATO (Reed et al., 2022) and RoboCat (Bousmalis et al., 2023). In the
case of GATO and RoboCat, these models rely on supervised learning on
demonstrative trajectories in the environments they attempt to solve.

A foundation model optimized via reinforcement learning was recently in-
troduced as AdA (Team et al., 2023). This framework also utilizes sequence-
modelling with versions using either RNNs or Transformers. This type of
foundation model was able to be trained on variable context lengths, result-
ing in the varying and flexible use of memory. However, the model depends
on fixed-sized embeddings of the observations and actions that make up the
sequences. This makes the approach less suited to be used across environ-
ments that require differing observation and action sizes.

Due to the structural flexibility of SFANNs, the parameters of the SFANNs
approach presented in this chapter could be exposed to any reinforcement
learning environment in existence during its evolution. As such, this ap-
proach provides an ideal candidate for a foundation model for black-box
reinforcement learning that only relies on reward signals and is trained by
directly interacting in the environments.

146

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

8.2 Structural Flexibility through Parameter
Sharing Neuron and Synapse Classes

This section will explain the details of the proposed network, how information
propagates through it, how synaptic strengths are updated, how the property
of structural flexibility is gained, as well as the architecture of the network.

8.2.1 Information Propagation and Update of Synapses
and Neurons

The networks presented here consist of synapses and neurons that are all
represented by LSTMs (Hochreiter and Schmidhuber, 1997) introduced in
Chapter 2, Section 2.2.1. The LSTMs that make up the synapses of the net-
work can be conceptualized as non-linear history-dependent plasticity rules,
responsible for updating synaptic strengths. The neurons are responsible
for integrating information sent to them, also in a history-dependent man-
ner. Inputs and outputs of both synapses and neurons are vectors rather
than scalars as in standard neural networks. Being LSTMs, all synapses and
neurons maintain a hidden state that is updated as information propagates
through the network.

Neurons and synapses differ in the way they are updated. Neurons in the
network behave the most like normal LSTMs. As input, a neuron receives
the summed signal propagated to it from other neurons through connecting
synapses. To this input, the reward signal from the previous time step is
concatenated. This input is then used to update the cell state and hidden
state of the neuron using the usual LSTM update procedure. The input and
the updated hidden state are then concatenated and sent through an output
gate. The output vector is then passed along the outgoing synapses of the
neuron.

An output vector is propagated through a synapse using an element-wise
multiplication of the output vector and the hidden state of the synapse. The
resulting vector is then added to all other vectors arriving at the same post-
synaptic neuron and the result of this is divided by the number of synapses.
When the post-synaptic neuron has been updated and created an output
vector, the output vectors of the pre-synaptic neuron and the post-synaptic
neuron, as well as the reward signal from the previous time step, are con-
catenated and used as input for updating the hidden state of the synapse.

147

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

Hidden State

Global Reward

Pre-Neuron Post-NeuronSynapse

Element-wise multiplication

Pre- and post activations for
synaptic update

Figure 8.1: Pre- and post-neurons connected by synapse Representa-
tion of the flow of activity from one neuron to another through a synapse.
The output of the pre-neuron is first weighted by the synapse using element-
wise multiplication with the hidden state of the synapse (solid black arrows).
The output of both pre- and post-neurons are then used for updating the
hidden state of the synapse (dotted blue arrows). The global reward sig-
nal provided by the environment is concatenated to the input every time a
hidden state is updated.

In sum, a neuron uses information from all incoming synapses to update
its state and create an output vector. Output vectors of neurons are propa-
gated through synapses via simple element-wise multiplication with hidden
states of synapses. The hidden state of a synapse is updated using the out-
put vectors of the two neurons that it connects. The reward signal from the
environment is available for the update of the hidden states for all neurons
and synapses. See Figure 8.1

8.2.2 The Symmetry Dilemma
Structural flexibility is achieved in much the same way as the permutation
invariance property of Chapter 7. It is needed for the reasons explained by
Kirsch et al. (2021): the symmetry of backpropagation and its accompany-
ing ability to optimize any network permutation and size are absent in most

148

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

black-box meta-reinforcement learning approaches. This ties the learned re-
inforcement learning algorithms to specific input and output spaces, making
them of limited general use.

The challenge that comes with constructing a parameterized approach
that is symmetric and invariant to permutations and sizes, is that the ap-
proach must be capable of resulting in information processing that is not
symmetric. A completely symmetric network where all output neurons al-
ways end up having the same values is not very useful. Even a case where
output values can differ, but are too tightly connected to each other, such
that, e.g., two outputs always have the same interval between them, is prob-
lematic for environments that require continuous outputs.

This problem is what we might call the symmetry dilemma of black-box
meta-reinforcement learning. We have to optimize the outer-loop parameters
in a symmetric manner, such that they do not break the necessary conditions
for permutation and size invariance, but also in a manner that can result in
inner-loop parameters that are arbitrarily asymmetric. Kirsch and Schmid-
huber (2020) introduced a fully connected network where all synapses were
LSTMs sharing the same parameters. Such a network is clearly symmetric
in its meta-optimized parameters, and the idea is that LSTMs that share
parameters can still develop different hidden states over time, potentially
resulting in an asymmetric network inner-loop parameter structure.

However, there are some downsides to such a network architecture. One
downside has to do with the option of adding more trainable outer-loop pa-
rameters. From the standpoint of traditional machine learning, a surprising
finding in research in deep neural networks is that overparameterization can
be beneficial both in terms of trainability and generalization (Rocks and
Mehta, 2022; Hasson et al., 2020). A network such as the one presented
by Kirsch and Schmidhuber (2020) (Kirsch and Schmidhuber, 2020), where
synapses all share LSTM parameters can only increase parameterization by
increasing the size of the LSTM unit. By allowing multiple classes of neurons
and synapses, outer-loop parameters can be added by adding more classes.
One reason that this is useful is that the computational cost of propagating
through the network increases with the size and number of the network’s
units, not with the number of different parameter sets of these units.

The second downside has to do with the symmetry dilemma: a fully con-
nected structure of identical LSTM units is vulnerable to hidden states of
the synapses converging to similar values. When the network is first initial-
ized, the initial hidden states (the inner-loop parameters) of the synapses are

149

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

randomly sampled, and this is what makes the network asymmetric. The
approach is fully reliant on the hidden states to be able to diverge from each
other and not fall into the same attractors, even though the parameters that
update them are identical and inputs are the same for all synapses that are
connected to the same pre-neuron. This makes it challenging for the out-
put neurons to be independent of each other, which is especially problematic
in environments that require continuous outputs. The risk of having units
converge to the same hidden states is even bigger in deep structures of homo-
geneous LSTM parameters. This can be seen by considering the case where
two synapses connecting the same input element to different hidden neurons
become similar to each other. The more similar they get, the greater the
risk that their respective post-synaptic neurons become similar in their ac-
tivations. This can result in a vicious circle where these neurons propagate
more similar signals forward through all their synapses, the hidden states of
which now have an even greater risk of falling into the same attractor and
becoming identical. In shallow networks used for supervised learning, as in
some experiments in Kirsch and Schmidhuber (2020), this risk is smaller,
as the error vector can enforce more differentiated signals used to update
the synapses. However, in reinforcement learning any error or reward signal
usually provides less fine-grained information.

The approach presented in this chapter is greatly influenced by that of
Kirsch and Schmidhuber (2020) and Kirsch et al. (2021), but attempts to
mitigate these downsides through the introduction of parameterized neurons,
and LSTMs with different parameter sets.

It is possible to introduce these additions to a permutation and size-
invariant network without optimizing any parameters relative to a fixed po-
sition in the network. This is done through additional randomization of the
network initialization beyond just randomly sampled hidden states. Any as-
pect of the network configuration that, if fixed throughout the outer-loop
optimization phase, would result in the outer-loop parameters overfitting to
it must be presented with variation during the optimization phase for the
parameters to be invariant to it. The reason that hidden states can be ini-
tialized randomly to form an asymmetric structure in the network of Kirsch
et al. (2021) and still maintain permutation and size invariant properties, is
that the the outer-loop optimization process has no information about these
random initializations, and the outer-loop optimization does not take any
specific initialization of the hidden states into account.

The same logic can be applied to different aspects of randomness in the

150

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

initialization of the networks in the inner-loop. Rather than initializing a
synapse with random noise, some synapses can be deleted at random, mak-
ing for more sparse connectivity. As long as synapses are dropped out ran-
domly at initialization, the outer-loop parameters cannot overfit to a specific
connectivity. This point was also noted by Bertens and Lee (2020).

Having parameterized neurons rather than just synapses provides addi-
tional opportunities for asymmetries. Trivially, the hidden states of neurons
also can have random initializations. Further, with more neurons in a net-
work come more synapses that can potentially be dropped out to make the
structure more asymmetric.

8.2.3 Neural and Synaptic Diversity
Another advantage of adding hidden layers of neurons is that it also creates
multiple layers of synapses. As noted in Chapter 7, all input units must share
parameters to be invariant to permutations of the input elements. However,
synapses from the input to a hidden layer, do not need to share parameters
with synapses between other layers to adhere to the requirements for invari-
ance. In addition, skip connections from earlier to later layers can also have
unique synapses without breaking any invariance requirements. In fact, only
synapses that connect the same inputs to the same outputs must share pa-
rameters. This means that if the inputs can be divided into different groups
in a manner that can be generalized across any environment, then synapses
connecting to different groups can have different parameters as well, even
if they project onto the same hidden neurons. An example of this is if the
network gets its outputs from the previous time step concatenated to the
observation vector from the environment. In this case, the previous can be
projected to the first hidden layer using a different set of synapse parameters
than that of the observation from the environment.

Having multiple sets of parameters for synapses relieves the responsibil-
ity for each of them to work across potentially significantly differing contexts
throughout the network, and this might make solutions easier to find for the
outer-loop optimization process. In Chapter 3, we saw that adding parame-
ters to the outer-loop increases the ability of the outer-loop to alter the loss
landscape of the inner-loop.

Of course, the addition of parameterized neurons in and of itself adds a
new parameter set that can complement the synaptic parameters. Further,
just like synapses of different layers do not need to share parameters, the

151

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

Observation:

Previous Action:

Input Vector: Hidden Reservoir Layer Output

Figure 8.2: Structurally Flexible Adaptive Neural Network The in-
put vector consists of the observation of the environment and the previous
output of the network. This is sent through a reservoir layer with random
connectivity. Neurons that share color are from the same class and share
LSTM parameters. Neurons of a class are always pre-neurons to synapses
of the same class. Different classes of synapses project within the reservoir
(solid) and to the output layer (dotted).

same is true for neurons.
Compared to a shallow network structure with homogeneous synapses

there is thus ample opportunity to increase the parameter space beyond
increasing the size of the LSTMs that make up the network.

8.2.4 Network Architecture
Rather than dividing the hidden nodes into multiple distinct layers, a single
reservoir (Lukoševičius and Jaeger, 2009) of different neuron classes makes
up the network. An illustration can be found in Figure 8.2 There is thus
an adjacency matrix encompassing all hidden neurons in the entire network.
Each class of neurons has a class of synapses associated with it. The asso-
ciated synapse class always serves as the vehicle for the outputs of the class
of neurons. A neuron can project to any other neuron within the reservoir
regardless of their classes, but always through the same class of synapse.

In the networks used for the experiments below, three classes of neurons

152

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

are used. Networks are initialized in two steps. These initialization steps
include different elements of randomness that are supposed to mitigate the
symmetry dilemma described above. First, the size of the reservoir is ran-
domly chosen from a range of integers. Neurons and their associated synapses
are placed randomly in the reservoir. When a new network is initialized, the
input vector consisting of the observation and the previous action produced
by the network projects to the hidden neurons in a fully connected manner.
Hidden neurons also project to the output of the network, again with each
class of neuron having a specific class of synapse to send each activation
through.

Step two of the initialization is to randomly remove synapses from all
layers. Unless stated otherwise, each synapse in the experiments below has
an independent probability of 50 % of being removed from the network.

8.2.5 From Input to Action
At each time step, the observations from the environment are concatenated
with the network’s output of the previous time step. At the very first time
step, each vector of zeros is put in the place of the previous output vector.
Each element of this combined input vector to the network is sent through a
synapse to the hidden neurons in the reservoir. One class of synapses projects
elements from the observation, and another class of synapses projects from
the previous output. Since a synapse takes a vector as input, each element
of the input vector is copied to match the number of input channels of the
synapses.

When the activity of the input synapses reaches the hidden neurons,
these are updated according to their LSTM parameters. The hidden neurons
then send their outputs to all the other hidden neurons in the reservoir that
they are connected with. The outputs of the neurons are used to update the
hidden state of the input synapses. The neurons are then updated, and so are
the synapses connecting the hidden neurons. This is repeated so that hidden
neurons get to project to each other, update their hidden states, and update
the synapses twice. After this, the neurons send their outputs through the
output synapses of the network. These projects to the action units. Action
units are not LSTMs. They are simply an average of the values of output
synapses connected to them, respectively. Since the outputs of synapses are
vectors, and the environments only require a single scalar per action, the
average values of the first output channel of the synapses are used as action

153

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

Table 8.1: SFANN Hyperparameters

Neuron Hidden Size 15
Synapse Hidden Size 2

Total Number of Outer-loop Parameters 4,290
Reservoir Size Range 15-30

Neural Ouput Activation Function ReLU
Number of Neuron Classes 3
Number of Synapse Classes 8

Number of Reservoir Ticks per Time step 2

elements, and the values of the rest of the output channel are discarded.

The activation of the output units is then determined by whether the
environment expects a discrete or continuous action. If a discrete action is
needed, the action vector is turned into a probability distribution using a
softmax activation. These probabilities are used to sample an action from a
categorical distribution. If a continuous action is needed, the action vector
is first activated by the hyperbolic tangent function. The resulting vector is
then used as the mean in a multivariate normal distribution with a standard
deviation that has the value of 1 at the first time step in the lifetime of the
agent and decays at every time step by a factor of 0.975. The sampling of
actions serves to dual purpose of aiding early exploration and de-correlating
the activations of continuous actions by forcing different activations and thus
different local feedback that updates the output synapses.

The elements of the final action vector are in both cases used to update
the hidden states of the output synapses.

Table 8.1 provides an overview of the numbers relevant to the networks in
the experiments below, such as the number of different neurons and synapses,
their sizes, and the number of hidden units in the networks.

154

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

8.3 Experiments
8.3.1 Environments
As a proof-of-concept, we use the approach in two variations of a simple point
navigation task, one with a discrete action space and one with a continuous
action space. In this environment, the agent has to find a specific point on a
square surface. The agents start at the origin of a square two-dimensional co-
ordinate system with the points (-10,-10), (-10,10), (10,-10), (10,10) marking
the border of the area wherein the agent is allowed to move. At each time
step, the observation from the environment is the point in the coordinate
system that the agent currently occupies.

In the version that requires a continuous action, the agent outputs at each
time step a vector with two elements that are added to its current location.
In the version that requires a discrete action, the agent outputs an integer in
the range of [0,3]. These, respectively, result in adding or subtracting 1 from
one of the coordinates of the agent’s current location.

Whenever a new episode is created, a goal point is randomly sampled
to be anywhere within the boundaries of the coordinate system. At each
time step, the reward information given by the environment is the difference
between the current distance to the goal and the distance to the goal at the
previous time step. If the agent reaches a distance that is less than 1.5 from
the goal point, the agent receives a reward of +10, and the episode ends. If
the agent has not reached the goal point within 50 time steps, the episode
ends as well with a reward signal of -10.

8.3.2 Training Setup
The training of the type of network described in Section 8.2 is set up as
described in the following. The parameters of the neural and synaptic units
are optimized using CMA-ES (see Section 2.4.3 in Chapter 2).

The fitness assigned to each individual is determined as the average score
over four lifetimes in the environments, two lifetimes with discrete actions
and two lifetimes with continuous actions. A lifetime of an agent consists of
a total of 300 time steps in the environment, repeating the same episode the
goal point is reached or the episode has reached its time limit of 50 time steps.
For each episode during the lifetime of the agent, the accumulated reward
for each time step is recorded. The lifetime score of the agent is then the

155

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

weighted sum of recorded episode scores. Scores obtained in episodes later
in the agent’s lifetime are weighted higher than scores obtained early in life.
The exact weight of each episode is calculated using the softmax activation on
a range of enumerating each episode of the lifetime. This weighting method
constitutes a convenient way of emphasizing the importance of performance
later in the lifetime, while keeping the magnitude of the lifetime score similar
to the simple average, as all the weights sum to one. A lifetime score above
9.5 can be considered successful with these settings.

The reason for assigning a larger weight to later episodes is to encourage
learning over time and to maintain performance. Agents that perform well in
the first half of their lifetimes, but then start to fail, should be differentiated
from agents that with experience are able to improve their scores. Letting
scores from the end of the agent’s lifetime be more important for the lifetime
score also serves to not punish early exploration.

For each of the four lifetimes in a generation, a common initialization of
the network structure is chosen for all individuals in the population. This
means that all individuals have the same reservoir layer size, the same ran-
dom placement of neuron classes in the reservoir layer, as well as the same
deleted synapses. The individuals differ only in the parameters of the neural
and synaptic classes, as well as the hidden state initializations. The choice
of making sure that all individuals were initialized with the same network
structure was made to get a more fair evaluation of the parameters. In the
graphs below, this is the approach named SFANN.

When an individual is initialized for a new episode, the number of input
and output units are set to fit the specifics of the particular environment.
This means that networks initialized for the environment with a discrete
action space, have four output units and therefore also four elements being
concatenated to the observation vector with two elements. Networks initial-
ized for the environment with a continuous action space are initialized with
just two output units.

8.3.2.1 Necessity of rewards:

To show that reward feedback is vital for this setup, a training setup identical
to the one described above is run with the only exception being that rewards
are always set to zero. The approach is referred to as No Reward.

156

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

8.3.2.2 Shallow Networks:

As an indication of the usefulness of the hidden reservoir of neurons, experi-
ments are also run with shallow network structures for comparison. In these
networks, there are no hidden neurons and only two different synapse classes,
the synapses connected to input elements, and the synapses connected to ele-
ments of the action vector of the previous time step. All the synapses project
directly to the output units.

Three variations of experiments with shallow connections are run: 1) The
synapse classes have the same number of parameters as the synapse classes
in the main experiment (Small Shallow). Half of all the connections are
still deleted at step two of the network initialization. In this setting, the
total number of outer-loop parameters is just 144. 2) The synapse classes
have a combined number of parameters that are similar to the combined
number of parameters in the main experiments (Big Shallow). Half of all
the connections are still deleted at step two of the network initialization. 3)
The synapse classes have a combined number of parameters that are similar
to the combined number of parameters in the main experiments, and no
connections are deleted as part of initializing the networks (Full Shallow).
The total number of outer-loop parameters in this setting is 5,040.

8.3.2.3 Standard LSTM:

We also optimize a standard LSTM with a number of parameters similar to
that of the network of the main experiment as a policy in the two environ-
ments. Since the standard LSTM is not flexible in its input and output space,
the LSTM is trained with fixed input and output sizes, and the parts that
are not needed in a particular environment are simply masked by zeros and
ignored. The fixed number of outputs of this LSTM is 10; two elements are
to be used as continuous actions, four for the discrete environment, and four
extra outputs are to be used during the evaluation of the models with unseen
actions. Actions are sampled using the output vectors in the same manner
as for the main experiments. The LSTM has a total number of optimized
parameters of 5106.

8.3.2.4 Random LSTM:

The last set of models that were run was named Random LSTM. The differ-
ence between this model compared to the standard LSTM was that in every

157

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

new lifetime, the order of the observations and the actions were randomly
shuffled to encourage permutation invariant properties. Further, an extra in-
put element that was always set to zero doing training was concatenated to
the input vector so that it is possible to also use the models in a variation of
the point-finding environment that has three observation elements, described
in more detail in Section 8.4. The total number of outer-loop parameters in
this setting is 5218.

8.4 Results

0 1000 2000 3000 4000 5000

Generation

15

10

5

0

5

10

15

Fit
ne

ss

SFANN
No Reward
Small Shallow

Big Shallow
Full Shallow

LSTM
Random LSTM

Figure 8.3: Training plots. Shown are the average and standard deviations
of the population means of five runs for each model. The graphs depict
the moving averages over 100 generations. Only the SFANN approach with
neurons and the standard LSTM progress to achieve population means above
a lifetime score of 10.

Training Curves of the different runs are shown in Figure 8.3. Only our pro-
posed SFANN approach and the standard LSTM resulted in well-performing
solutions within the 5,000 generations of evolution. The fully connected
shallow version of SFANN with no hidden neurons did achieve better-than-
random results but did not reach a solution that consistently solved the

158

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

tasks in the environments. The other shallow versions did not improve sig-
nificantly during their evolution phases, and the population means remained
close to zero. The LSTM with randomly selected input and output ordering
never achieved a positive population mean. Unsurprisingly, with no reward
information, the SFANN approach did not learn to solve the tasks in the
environments either.

Figure 8.4 summarizes evaluations of the performances in 100 different
tasks in the training environments. These are shown for the SFANN, the
standard LSTM, and the fully connected shallow SFANN, Full Shallow.
The lifetimes in these evaluations consisted of 10 episodes, regardless of the
episodes’ lengths.

SFANN Cont. SFANN Disc. LSTM Cont. LSTM Disc. Shallow Cont. Shallow Disc.

10

5

0

5

10

15

20

25

Lif
et

im
e

Sc
or

es

Figure 8.4: Lifetime Performance in Training Environments. Yellow
violin represents scores of SFANNs. Green plots represent scores of the
standard LSTM. Blue plots represent scores of the Full Shallow. In the
environments that were seen during training, the LSTM scores are compara-
ble to the SFANN scores. The shallow SFANN did not achieve good scores
consistently. 100 lifetimes were run for each model in each of the respective
environments.

159

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

0 2 4 6 8
0.0

2.5

5.0

7.5

10.0

12.5

15.0

SF
AN

N

Discrete

0 2 4 6 8
0.0

2.5

5.0

7.5

10.0

12.5

15.0
Continuous

0 2 4 6 8
0.0

2.5

5.0

7.5

10.0

12.5

15.0

LS
TM

0 2 4 6 8
0.0

2.5

5.0

7.5

10.0

12.5

0 2 4 6 8
0

2

4

6

Sh
al

lo
w

0 2 4 6 8
0

2

4

6

8

Figure 8.5: Lifetime Progress in Training Environments. Bar plots
showing the average score of each episode that when combined make up the
lifetime scores shown in Figure 8.4. Each bar represents the average score in
the episode of its respective enumeration. Most models have lower scores in
earlier episodes and achieve better scores upon repetition. Notable, SFANN
has the same average score across all episodes in the continuous version of
the environment, indicating rapid learning of the correct direction.

Figure 8.5 shows the models’ average scores in each of the 10 tasks across
the 100 tasks. The SFANN and LSTM are both able to sustain high scores
throughout the lifetime, whereas the shallow SFANN fails to retain a reached
score. On average, both SFANN and LSTM get high scores even in the very
first episode, and in the continuous version of the environment, the SFANN is
able to consistently find a fast route to the goal point within the first episode.
This is not the case in the discrete version, but the agent is then, on average,
able to solve the task in the second episode instead. Agents controlled by the
LSTM tend to find the goal point in the first episode, and then find faster
routes to the goal point in the subsequent episodes.

8.4.1 Evaluation in Novel Environments
To investigate whether our model has achieved the desired versatile learning
ability, we test the trained models in variations of the point-finding environ-

160

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

 Perm. Cont.
 Perm. Disc.

 Perm. Cont.
 Perm. Disc.

 Diag. Diag+Straight
 Diag. Diag+Straight

 3D

60

40

20

0

20

Lif
et

im
e

Sc
or

es

Figure 8.6: Performance in Unseen Environments. Yellow: SFANNs.
Green: standard LSTM. Performances are in environments not seen during
training. The SFANN approach generally does well in new environments.
The LSTM only succeeds in the case where the straight movements (up,
down, left, right) are switched for diagonal actions. Permuting the inputs
and outputs severely decreases the consistency of the LSTM score compared
to the scores in Figure 8.4. 100 lifetimes were run for each model in each of
the respective environments.

ment that were not seen during the outer-loop optimization phase.
One variation is simply to randomly change the ordering of the observa-

tion and output elements of the model at the beginning of each new lifetime.
Two other variations are introduced to the environment with a discrete ac-
tion space. In one of these, the four straight movements (up, down, left,
right) are replaced with four diagonal movements. In the other variation,
the diagonal movements are, instead, added to the action space, such that
there are eight available actions instead of four.

The last variation of the point-finding environment has a continuous ac-
tion space, but a dimension is added to the environment, such that instead
of moving around in a square, the agent is now searching for the point in a
cube. This increases both the observation and action space to contain one
extra element.

We only tested the SFANN and LSTM, as these were the only ap-
proaches that were successful in the training environments.

161

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

In
iti

al
iza

tio
n

0 4 8 12 16 20 24 28
0

3
6

9
12

15
18

21
24

27

Continuous

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

Discrete

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27En

d
of

 L
ife

tim
e

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

0 4 8 12 16 20 24 28

0
3

6
9

12
15

18
21

24
27

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Figure 8.7: Reservoir Connectivity Matrices Resulting after Life-
time. The top row displays random initializations of the reservoir connec-
tivity matrices of six different networks, three deployed in the continuous
version of the environment and three deployed in the discrete version of the
environment. On the bottom is shown how these connectivity matrices look
after having spent 10 episodes in their respective environments. Since the
hidden states of the synapses that make up the connectivity have two dimen-
sions, each square in the plots depicted here is the sum of the two dimensions
in its position.

8.4.2 Investigating Evolved Neurons
Figure 8.7 shows examples of different connectivity initializations of the hid-
den reservoir layer and the connectivity resulting from a successful lifetime
in the training environments. The connectivity is depicted in the form of
the summed hidden state elements of the synapses that connect neurons in
the reservoir. These visualizations demonstrate that the SFANN can end up
with different-looking weight matrices that all have similar performance.

Figure 8.8, shows the SFANNs performance across 100 lifetimes of each
of the described training and novel environments depending on the number
of neurons in the hidden reservoir. From this figure, the trend is that larger
reservoirs have a more stable performance across many lifetimes. This is

162

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

6 15 30 60
Number of Neurons in Reservoir

50

40

30

20

10

0

10

20

Lif
et

im
e

Sc
or

es

Figure 8.8: Performance of SFANNs of Different Sizes The violin plots
summarize lifetime scores gathered from five different environments: the two
training environments, the two environments that include diagonal move-
ments, and the 3D environment. Each violin plot thus consists of 500 val-
ues, 100 values for each environment. The violin plots are separated by the
number of neurons that were in the reservoir of the SFANN solving the en-
vironments. The trained parameters were the same across different network
sizes, as well as all hyperparameters other than reservoir size. Less variation
in performance is seen in the networks with larger reservoirs.

despite the fact, that the networks never had more than 30 hidden neurons
during the outer-loop optimization phase. However, the connection matrix
of the reservoir increases quadratically with the number of neurons, and a
network of 60 neurons takes significantly more time to run than a network
of, e.g., 15 or 30 neurons.

8.5 Discussion and Future Work
This chapter introduced a network type that can have outer-loop parame-
ters optimized flexibly across environments with different input and output
shapes, and learn online to optimize rewards during the lifetimes of the agents

163

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

that it controls.
Networks with shallow structures failed to improve on the same tasks

that the networks containing hidden neurons performed well in. This shows
that at least in this specific setup, the neurons played an important role.

The evaluation of the shallow structures revealed that these networks
failed to properly de-correlate the output elements from each other, con-
tinuing to output very similar values for all output units throughout their
lifetimes. This points toward a failure to resolve the symmetry dilemma for
structurally flexible black-box meta-reinforcement learning, explained in Sec-
tion 8.2.2. The reservoir of hidden neurons provided one way of mitigating
this dilemma.

The SFANN was tested in a very simple environment. However, it should
be noted, that due to the permutation invariance of the network, a network
initialized in for any of the environments has no built-in knowledge about
which directions in the coordinate system the observation vector corresponds
to. Further, there is no built-in knowledge about the direction of its actions.
These must be inferred during the agent’s lifetime through the obtained
rewards.

The standard LSTM network was able to solve both environments when
given the appropriate number of actions to train with, and, as can be seen in
Figure 8.3, had a faster training progression compared to the SFANN. How-
ever, as seen in Figure 8.6, the LSTM performed poorly on nearly all unseen
tasks, with the exception of when the straight movements were replaced by
random ones. Testing the standard LSTM on the three-dimensional version
of the environment was not even an option, since the models were only trained
with two inputs. To improve the chances of the LSTM models performing
well in the test environments, we also trained LSTM models where input-
and output elements were randomly shuffled at the beginning of the lifetime
of each agent. Further, a third input element that was set to zero during the
training phase was concatenated to the observations so that we would have
the option of testing the models in the environment that required an extra
input. However, these models never progressed enough to get a population
with a positive mean score. Note, that the random LSTMs should be invari-
ant to permutations to inputs and outputs since no parameters were trained
relative to a specific ordering. However, as noted in Chapter 7, setting up
the training in this way, requires that all possible permutations are shown
during training. The issue is exacerbated when we are unsure how large we
might need to have the input and output spaces be after training. The safest

164

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

option would be to choose the maximum sizes that we could need, but this
of course extends the number of permutations combinatorially.

The SFANN method has a high number of hyperparameters and design
choices. Some of these include how many parameters to use in the LSTMs
that make up the units in the network, how many different neuron- and
synapse classes should be included in the network, and the percentage of
connections to delete as part of the initialization. Ideally, a hyperparameter
sweep could be conducted with a grid search to empirically support the op-
timal settings. Alternatively - and more feasible in terms of computational
resources - as discussed in more detail in Section 9.2.3 of Chapter 9, some
of these hyperparameters could be included as parameters in the outer-loop
and thus be optimized instead of being manually chosen by researchers.

On the other hand, the method also eliminates some choices that have to
be made for other types of networks before training can begin. Most notably,
we do not need to decide on the exact number of actions we would like to
available for the agent after training. Even with a number of actions never
seen during training, our networks could still learn to solve the task during
its lifetime. Further, it is not required to select the number of hidden nodes
beforehand, but only a range. This means that we after training can evaluate
networks of different sizes and, for example, identify the smallest number of
neurons needed and gain a functioning model with minimal computational
expenditure.

These freedoms create the potential for the networks to be candidate mod-
els for foundation models for black-box meta-reinforcement learning. This
would require training in as wide a range of environments as possible. Having
trained a set of parameters to be able to improve on a wide range of tasks
and environments would be a step toward a general learner. The more envi-
ronments the SFANN is able to generalize across, the more useful it would
potentially be in future tasks. The ultimate goal is to be able to put the
trained neurons and synapses together in a network for any reinforcement
learning-type task and let the network improve through interactions in the
network. However, scaling up the approach to many more environments
could face some obstacles.

The variations on the point-finding environments used in this chapter had
the same range of values in the observations and the rewards. Training across
a diverse set of tasks would require normalization of inputs and rewards. A
more challenging issue might be the determination of the length of lifetimes
that an agent should have within an environment during the training phase.

165

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

Environments with challenging tasks might require much more exploration
and many more attempts than others, but it might not be obvious beforehand
exactly how much time should be allocated to each specific environment. One
strategy might be to simply have very long lifetimes in all environments,
eliminating the need for choosing lifetimes on an individual basis for each
environment. However, this would exacerbate the already costly training.

The experiments in this chapter used environments with small input and
output sizes. All challenges related to the symmetry dilemma are magnified
when input and output sizes are increased. More specifically, more input ele-
ments potentially make it harder for the input synapses with shared parame-
ters to distinguish them and make properly individualized synaptic strengths
for each of them. In the same vein, more outputs mean a greater risk that
some of them do not become sufficiently de-correlated in their activations
to provide adequate continuous actions. More experiments are needed to
determine whether more classes of neurons and synapses in the hidden reser-
voir are sufficient to mitigate the symmetry dilemma in high-dimensional
environments.

A point of discussion can also be made related to the design choice of
utilizing a reservoir where hidden neurons of different classes are placed. The
benefit of a reservoir layer is that it with its adjacency matrix in principle
can implement any feedforward or residual network only constrained by its
size and number of times per forward propagation the reservoir neurons are
allowed to be updated. Of course, with the randomized initialization of the
adjacency matrix, it is very unlikely that the connectivity is ordered such
that activations propagate in a pure feedforward manner. Mixing neurons
and synapses in the same layer is also an effective way of making the network
less symmetric. At the same time, updating the hidden neurons multiple
times by using a common adjacency matrix encompassing all neurons, gives
the neurons the opportunity to incorporate information about the current
state of all connected neurons into their own update.

However, breaking the symmetry of the network by placing neurons in
the same layer with a random adjacency matrix requires the training phase
to incorporate different permutations of the adjacency matrix and ordering
of neurons so that the outer-loop parameters do not overfit to any specific
configuration. This state of affairs resembles that which was criticized in
Chapter 7, Section 7.2: achieving a network with permutation invariance by
simply shuffling the observation vector throughout the training process so
that the weights of the network do not overfit to a particular permutation.

166

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

This idea was discarded because of its inherent inscalability that stems from
the fact that the number of needed permutations increases combinatorially
with the number of elements in the observation. So what is different here?
There are two points that make the need for training with multiple permuta-
tions more acceptable with the networks presented in this chapter. First, as
opposed to the example in Chapter 7, Section 7.2 we do not expect that it is
required that all possible permutations of the adjacency network are present
during training. This is because of the black-box reinforcement learning ca-
pabilities of the LSTMs that control all units of our networks. All units get
information about the global reward at each time step, and each unit can
be seen as a distinct reinforcement learner that is evolved to adapt across
different tasks. From the perspective of a neuron or synapse in the network,
even if the environment and the task stay the same throughout optimization,
it will be placed in different parts of the network in each new initialization
of the network. It will thus be under much the same conditions as an LSTM
trained as a policy network across different tasks. For this reason, it should
be feasible for the units to adapt to structures not seen during the training
phase, limiting how much the training needs to be extended from all possible
permutations to just a subset of these.

Another reason that it is preferred to rely on training with multiple per-
mutations of the hidden layer rather than the input layer is that the amount
of permutations of the adjacency matrix in the hidden reservoir is to a lesser
degree affected by the specific environment and to a higher degree by the
choices we make in terms of the number of neurons and how many synapses
are deleted. This is preferable when we want to optimize across different
environments. Besides, these choices could be subject to optimization rather
than being manually decided, which is clearly not the case for the size of the
observation vector.

One could imagine other types of models to train for structural flexibil-
ity and adaptation. One possibility could be a sequence-to-sequence model
(Yousuf et al., 2021) that takes input elements from the environment one at
a time and outputs action elements one at a time. This model would have
the same size regardless of the number of elements in the input- and out-
put spaces. However, such a model would have some significant downsides.
First, in many environments, such as the point-finding environments of this
chapter, there is no meaningful sequential information between the inputs,
but the processing of each new element would be affected by the previous
elements. Further, the model would still depend on seeing many permuta-

167

Chapter 8 | Evolution of Structurally Flexible Adaptive Neural Networks: Toward a
Model for General Learners

tions of input and output vectors during training to avoid overfitting to a
specific ordering in a way that might be harmful to performance in novel
environments. Lastly, while it is generally true for all models that an in-
creased input- and/or output space will result in increased computational
requirements, this is especially true for sequence-to-sequence models as the
one imagined here, which would need an entirely new forward propagation
for each new element in the input.

Another option could be to use Set Transformers that are specifically
designed to be permutation invariant and would not rely on being exposed
to all permutations during the training phase (Lee et al., 2019). To make
this type of model invariant to the length of the observation vectors from
different environments, the set would be the observation elements for a given
environment, instead of sequences of multiple time steps like in the case of
the AdA framework. However, the standard architecture of Set Transformers
does include fully connected feedforward layers in the network. This limits
the possibility of varying the size of the networks after the outer-loop opti-
mization phase, as was done in Figure 8.8 for the SFANNs. This inflexibility
would also make it more difficult to eventually extend the approach to in-
clude a developmental growth phase. The potential of using a developmental
algorithm as part of the SFANN foundation model is discussed in more detail
in Chapter 9, Section 9.2.4.

On the other hand, attention mechanisms have proved to be powerful
tools across multiple domains (Lin et al., 2022), and there could be ways
of mitigating the structural inflexibility of the Set Transformers. Future
studies could explore this as well as the possibility of combining attention
mechanisms with the SFANN framework.

In future studies an interesting extension to the training and testing of
the models’ ability to learn multiple tasks during a lifetime. How difficult
is it for the networks to reconfigure themselves to solve a new task after
having already organized from its random initialization to solve one task? In
order to be successful in such task switching, it will likely be necessary to
incorporate multiple tasks into the agents’ lifetimes during training.

168

Chapter 9

General Discussion and Future
Research

This chapter will build upon the results and the discussions of the previous
chapters. The general discussion will then be followed by suggestions for
future studies that could further advance the pursuit of adaptive artificial
agents.

9.1 General Discussion
The topics of chapters of this thesis have centered around approaches aimed
at furthering the adaptive capabilities of artificial agents. Most approaches
involved some degree of meta-learning as well as inspiration from biological
neural networks. We have studied different ingredients that each have the
potential to contribute to the goal of making artificial agents more robust to
changes in their environments, making them more adaptable. Part of such a
contribution has come in the form of a framework for thinking about meta-
learning and how the two optimization loops affect each other as described in
Chapter 3. However, the main contributions have come from the experiments
in Chapters 4 to 8 as summed up below.

In Chapter 4, we presented experiments involving plastic neural networks
and showed that unique learning rules can be merged together to form smaller
rule sets without decreasing the performance. The activity-dependent Heb-
bian learning rules used in these experiments were shown to yield agents
more robust to morphology changes than static networks.

169

Chapter 9 | General Discussion and Future Research

A less explored aspect of activity-dependent plasticity in artificial neural
networks is the activity of the neurons themselves. In Chapter 5, neuro-
centric parameters were optimized to enable different artificial neurons to
have unique, history-dependent outputs to identical inputs. The expressive-
ness of neuro-centric parameters in networks with fixed random connectivity
matrices was shown to be sufficient to perform well in several environments.

In Chapter 6, a simple RNN was evolved to provide a reward signal
for a gradient-based RL algorithm, and the learned reward was shown to
accelerate learning in both seen and unseen scenarios. Chapter 7 revolved
around structural flexibility and the principles that must be adhered to in
order to build a network that has this kind of flexibility. Structural flexibility
is important for enabling a network to work across environments that have
different input and output sizes.

The concept of structural flexibility was further explored in Chapter 8,
where some of the ideas of the earlier chapters were combined. Here a set
of preliminary experiments were presented where both synapses and neurons
were represented by small RNNs with shared parameters. It was shown that
such networks could exhibit flexibility in both input-, output-, and hidden
layers. This meant that the same set of parameters could be concurrently
optimized on tasks that had different input and output sizes. Driven by a
reward signal, a network could be initialized randomly and then self-organize
into a functional network over the lifetime of the agent.

Together, these experiments provided validation for different biology-
inspired ideas, showing that they could work independently. In Chapter
8, the first steps toward putting these ideas together in a combined approach
were taken. However, much work is still needed in order to enhance how
these are optimized and improve the possible final structures. Such work
requires outlining new experiments, as well as considerations of the overall
framework. To this end, several topics that are general to the presented
experiments are worth discussing, before suggesting potential future studies.

9.1.1 Bio-Inspiration and the Bitter Lesson
Our methods have been inspired by biological systems and proposed ways of
implementing some similar capabilities. However, there are no claims that
the proposed methods are biologically realistic at the level of implementa-
tion. So what is the value of biological inspiration? In recent years, several
researchers have argued for using biology and in particular neuroscience as

170

Chapter 9 | General Discussion and Future Research

inspiration in developing new AI approaches (Zador et al., 2023; Poo, 2018;
Kudithipudi et al., 2022). One of the main arguments is that since today’s
agents are still far from having achieved the same level of adaptiveness to
novel situations as animals have, it makes sense to take inspiration from the
biological counterparts of ANNs.

However, Sutton (2019) pointed out that historically, it is the approaches
that are best able to leverage increasing computational resources that tend to
best stand the test of time: ”We have to learn the bitter lesson that building
in how we think we think does not work in the long run.” In outlining different
paths toward general AI, Clune (2019) argues that approaches that seek to
mimic biological brains are not likely to be the fastest to get us to general AI.
This is because such approaches by design do not take advantage of potential
abstractions that are functionally but not implementationally equivalent to,
e.g., neocortical columns.

More important than achieving biological realism in models is whether
an approach, when pushed to its limits, holds the potential to yield stronger
more general artificial intelligence. Approaches that closely resemble biolog-
ical implementations of intelligence could be considered advantageous in this
regard since we know that biological implementations have resulted in intelli-
gent beings. However, despite the growing body of neuroscientific knowledge
(Kandel et al., 2000), the exact ingredients necessary for the emergence of
intelligence remain elusive. This uncertainty poses a significant challenge in
implementing biologically inspired intelligence, as researchers must rely on
educated guesses, and at times, arbitrary assumptions when optimizing our
models. Each assumption that requires handcrafted programming carries the
risk of leading down an ultimately unfruitful path. It could demand substan-
tial resources to realize that a chosen ingredient, or even a set of ingredients,
is leading to a dead-end.

That is not to say that any research that does not ultimately result in
strong and general artificial intelligence is useless. AI research has produced
numerous practical and useful tools that have found applications across mul-
tiple domains. Furthermore, it is often impossible to predict the future im-
plications of a particular approach (Stanley and Lehman, 2015). Following
the line of thinking presented by Sutton and Clune, it is possible that the
most general and wide-ranging approach has the best chance of discovering
potentially narrow and specific paths.

The stance taken in this thesis is that the objective of drawing inspiration
from biological brains is not solely to achieve biologically accurate or realistic

171

Chapter 9 | General Discussion and Future Research

solutions. Rather, the emphasis lies in incorporating mechanisms known to
benefit biological systems into our approaches. However, this should not
hinder the ability of the approach to leverage increasing computing power. In
other words, the preferred methods are those capable of expressing solutions
that are closely aligned with biological implementations of intelligence as a
subset of the broader range of possible solutions. While biologically plausible
mechanisms hold value, the optimization process should have the flexibility
to explore other effective strategies without being constrained to exclusively
biological solutions.

By adopting this approach, we acknowledge the potential benefits of in-
corporating biologically inspired elements while remaining open to alterna-
tive approaches that may leverage computational advantages. This approach
allows for the exploration and discovery of efficient and effective solutions,
regardless of their strict adherence to biological systems. The optimization
process should be able to identify and utilize biologically plausible mecha-
nisms if they prove advantageous, but it should not be limited to them in
order to encourage the exploration of a wider solution space.

Comparisons between artificial and biological neural network representa-
tions have suggested that artificial neural networks can find solutions that
represent inputs in ways that resemble representations in biological neural
networks (Khaligh-Razavi and Kriegeskorte, 2014). Evolution of the type
of network presented in Chapter 8 with neurons and synapses being rep-
resented by RNNs arguably has the potential to result in structures and
representations that resemble biological networks even more. The reason for
this is that like biological neural networks, synapses and neurons are dy-
namical systems (Izhikevich, 2007). The parameterized RNNs that make up
different neuron and synapse types have the potential to result in behavior
that imitates biological neurons and synapses. However, in contrast to their
counterparts found in spiking neural networks, the RNN representations are
general enough to also encompass functions that are biologically implausible.

In sum, the position of this thesis on the discussion on the value of biolog-
ical inspiration is that methods that can incorporate some of the properties
found in biological networks are preferred to ones that cannot, as long as this
does not detract from the methods’ ability to find other solutions that are
not faithful to any biological realism. It is further argued that networks of
recurrent units with partially shared parameters, for which the blueprint is
described in Chapter 8, represent an approach that has the potential to live
up to this preferred criteria. To make that argument even stronger, some

172

Chapter 9 | General Discussion and Future Research

suggestions for extending and improving the evolution of such networks can
be found in the Discussion section of Chapter 8, as well as Sections 9.2.4 and
9.2.3 below.

9.1.2 Learning versus Adaptation
The experiments presented in this thesis encompass both learning and adap-
tation, prompting a discussion on the preference between the two and the
circumstances that warrant each approach. In this context, learning and
adaptation can be seen as points on a spectrum. The distinction lies in the
extent of change occurring to the agent’s starting point and the effort re-
quired to enact that change. Effort can be loosely measured by the time it
takes to implement the desired modifications. Adaptation involves smaller
changes that can be achieved with relatively little effort. Conversely, an
agent capable of learning can enact more significant changes but at a higher
cost in terms of effort.

The abilities of both adaptation and learning can be cultivated through a
meta-learning setup. Referring to the framework of meta-learning described
in Chapter 3, the determination of whether an agent exhibits learning or
adaptation depends on how the outer-loop optimization process influences the
inner-loop’s ability to optimize within changing inner-loop loss landscapes.
As discussed in Chapter 3, the outer-loop can impact inner-loop optimization
through one or a combination of three different ways. To achieve an inner-
loop that demonstrates what we classify as adaptation, the outer-loop could,
in any combination, (1) identify a starting point that is close to good so-
lutions in multiple inner-loop loss landscapes, (2) adapt the loss landscapes
of multiple inner-loops to position good solutions at similar points, or (3)
optimize the inner-loop optimizer to search only in areas that have proven
promising throughout the training phase.

One could argue that for learning since all the same ways of improving the
inner-loop are available, the only difference between learning and adaptation
in the meta-learning setting is how many resources are allowed in the inner-
loop. While this is in principle true, some practical considerations make
the two regimens differ. It should be noted that for adaptation, problems
like catastrophic forgetting and the stability-plasticity dilemma are not as
prominent problems as for learning. It is, for example, not as important
to simultaneously maintain the ability to control many variations of a robot
morphology if these abilities can be picked up quickly, should the morphology

173

Chapter 9 | General Discussion and Future Research

change from one setting to another. The longer a skill takes to learn, the more
costly it is to forget. The problem of catastrophic forgetting was not the focus
of the experiments of this thesis, but this should ideally be taken into account
when setting up the meta-learning procedure. The outer-loop can mitigate
catastrophic forgetting in several ways. Riemer et al. (2018) added a term to
their objective function to minimize forgetting with new inner-loop updates.
Beaulieu et al. (2020) optimized two networks in the outer-loop one of which
modulated the outputs of the other thus modifying the inner-loop updates
of the other network to encourage updates that maintained earlier learned
skills. In terms of adapting the inner-loop loss landscapes themselves, one
strategy would be to make the optimal areas for the inner-loop parameters
as wide as possible so that it takes larger movements in the parameter space
to lose an ability once it has been learned.

It is important to note that optimizing an agent to possess the ability to
learn necessitates a longer inner-loop training setup. This distinction presents
a significant difference between the training setups described in Chapters 4
and 5 compared to the training setup required for the experiments in Chapter
8. In the latter, agents have lifetimes spanning multiple repeated episodes,
making the training process more computationally expensive.

These observations underscore the increased complexity involved in opti-
mizing for learning as opposed to adaptation. However, there is no inherent
reason to believe that it is impossible to optimize for both learning and
adaptation within the same agent, provided that the neural architecture can
accommodate it. One possible approach could involve allowing shorter inner-
loop training times for variations of essential skills to encourage adaptation
while allocating more time for other tasks sampled within the inner-loop.

By designing training setups that strike a balance between learning and
adaptation, we can harness the benefits of both capabilities, leading to more
versatile and capable agents. This nuanced approach recognizes the potential
trade-offs involved and seeks to optimize the agent’s neural architecture and
training procedures accordingly.

9.1.3 Limitations of Episodic Tasks
All experiments have used episodic environments for testing the proposed
approaches. However, real-world use-cases might, generally speaking, not be
structured in such clearly defined episodes. One natural example of episodes
in the real world could be the day-night-cycle. However, a full day could

174

Chapter 9 | General Discussion and Future Research

contain many different tasks that are hierarchically interwoven and that need
to be solved at different timescales, and thus very different from the simple
environments with a single defined task per episode.

On the other hand, there is nothing in particular in the presented ap-
proaches that excludes them from being optimized in non-episodic environ-
ments. The Hebbian learning approach used in chapter 4 only relies on the
inputs to adapt its parameters. Likewise, the permutation invariant models
presented in Chapter 7 re-configure their input units online with no regard
to when in the episode the permutation occurs.

The episodic structure is arguably more important for the approaches that
involve learning from a reward signal, namely the approaches from Chapter
6 and Chapter 8. Episodic structures are in these cases important insofar
as they determine the reward structure of the environment. For example, if
rewards are only provided at the end of an episode, the length of episodes de-
termines how sparse the reward signal is, and thus how often the parameters
of the network can be adapted towards maximizing the rewards. In the case
of the point navigation task, it would be significantly harder for an individual
starting with random connectivity to learn anything if it was only rewarded
at the end of each episode instead of at each time step. This is because
there would be significantly fewer opportunities to update the inner-loop pa-
rameters in a goal-directed manner. Learning usually becomes harder, when
feedback is rare as demonstrated by, e.g., Dubey et al. (2018) in experiments
where usual human priors were rendered useless in modified video games. As
a result, humans had a difficult time self-evaluating progress and the reward
signal effectively became more sparse. Showing that an individual is able
to improve with a sparse reward signal should therefore be considered more
convincing than learning from dense, informative rewards as was the case in
Chapter 8.

In sum, the use of episodic environments is less important in and of
itself than the consequences the episodic structure might have on the reward
structure of the environment.

9.1.4 Scaling Up Experiments
The experiments presented in the thesis have mainly served the purpose
of proving the viability of proposed approaches, rather than improving the
state-of-the-art for the task environments in which they were tested. All
series of experiments could be scaled up both in terms of the number of

175

Chapter 9 | General Discussion and Future Research

environments tested as well as the number of replications in each environ-
ment. To enhance the comprehensiveness and robustness of the findings, it
would be beneficial to scale up the experiments in terms of the number of
environments tested and the number of replications conducted in each envi-
ronment. Naturally, such an expansion would require additional resources.
Nevertheless, investing in the scaling up of these experiments would solidify
the knowledge acquired thus far, while also enabling a more nuanced inves-
tigation of the approaches through statistical tests of the performances of
models with small variations from the main ones. Such up-scaling would
also help map out which types of environments the different approaches are
most suited to solve. With this additional knowledge, necessary adaptations
to the approaches could become apparent, if, for example, there is a certain
type of environment wherein the approach systematically fails to improve.

9.1.5 Rewards for Reinforcing Adaptation and Learn-
ing

Only the experiments of Chapter 6 and 8 involved a reward signal in the
inner-loop. In Chapter 8, the reward signal given to the agent during its
lifetime was the same signal used to calculate the fitness for outer-loop op-
timization. In Chapter 6, the whole point was to optimize a reward signal
for inner-loop learning different from the original reward signal. It is not a
requirement that the reward signals for the two loops are the same, although
this is the case in much of the meta-learning literature. Most often, however,
we might want the reward signals for the two loops to be aligned, so that
optimizing one reward signal also improves the optimization of the other.
As done in Chapter 8, it likely makes sense for most purposes to have the
reward signal provided to the outer-loop be as close as possible to reflecting
the performance of the task we are actually interested in solving. As for the
reward signal provided to the agent during its lifetime in the inner-loop, the
type of feedback signal provided to it is less important, as long as it results
in behavior that solves the task in its given environment. Considerations of
the reward signal given to the agent become increasingly important when
the goal is to optimize the agent over tasks sampled from multiple domains.
If these tasks do not share a reward structure, it creates an added challenge
for generalization, in that the agent potentially has to be able to cope with
different input- and output sizes, different magnitudes of input values, as

176

Chapter 9 | General Discussion and Future Research

well as different guiding signals to improve from. This extra challenge could
be mitigated by shaping the reward signal given to the agent to be consistent
across different environments.

Part of the solution could be to include a generic reward signal that can
always be used across environments. A framework like SFANN, where inputs
to the network’s units are already in the form of vectors, is not limited to
reward signals that consist of a single scalar. The reward signal could be
a vector as well. A simple example could be a signal after each episode
indicating whether or not the agent achieved a new personal high-score. Such
a signal could be present in any environment with scores and it could make
up its own element of a reward vector. Other generic extensions of the reward
signal could come from the literature on intrinsic motivation (Aubret et al.,
2019). However, for SFANN, most of these techniques could be problematic in
that there is an element of learning of the intrinsic motivation. One intrinsic
motivation technique uses a measure of surprise that is determined by the
ability of e.g., an autoencoder associated with the agent to reconstruct the
input (Hafez et al., 2019; Bougie and Ichise, 2020). Such a method is not
easily transferable to the SFANN framework, as the inputs across different
environments do not have the same sizes, and the same autoencoder could
not be used. This also exposes why the EIR-RL of Chapter 6 does not fit
easily in the SFANN framework: The RNN of EIR-RL takes the input from
the environment as well as the previous action of the agent as inputs, and
none of these have fixed sizes across environments. Within the framework of
SFANN, the closest solution to EIR-RL would be to have one or more neuron
classes within the network have their outputs concatenated to the reward
signal that is sent to all the other neurons. However, since the connectivity
of such neurons would themselves also necessarily be random initially, they
would first need to be guided by a different reward signal before potentially
being useful later in the lifetime of the agent.

9.1.6 Evolving General Learners: Ending Evolution or
Open-Ended Evolution?

As highlighted earlier, the training process plays a crucial role in developing
artificial agents with learning capabilities. One key consideration is providing
the agent with sufficient time to learn the given task within its lifetime.
The extent to which an agent can become a general learner depends on the

177

Chapter 9 | General Discussion and Future Research

diversity of learning tasks it encounters during the outer-loop optimization
process. For instance, the study by Kirsch et al. (2022) on emergence in
transformers demonstrates the importance of a varied set of training tasks
in shaping the agent’s learning abilities.

However, determining the appropriate set of training tasks or designing
an effective curriculum is not a straightforward task. It raises the question
of the feasibility for researchers to anticipate the specific tasks that are nec-
essary to foster interesting, useful, and general learning behaviors. As Clune
(2019) emphasizes, the selection of a suitable training set or curriculum is a
non-trivial challenge. Given this complexity, it may be unrealistic to expect
that training an agent with a finite outer-loop alone will result in an agent
capable of learning on a sufficiently general level to excel in unstructured
real-world scenarios.

Open-endedness in training approaches offers an alternative to handcraft-
ing a fixed training set, providing a more dynamic and adaptable learning
environment. Open-endedness can be described as a characteristic of systems
that generate novel and diverse outputs continuously, without predetermined
limits (Stanley et al., 2017). In this context, agents can be rewarded for tasks
of interest, but the specific conditions of these tasks are not fixed throughout
the optimization process.

The SFANN architecture aligns well with open-ended settings due to its
structural flexibility. Allowing individuals to modify the number of neurons
in any layer of the network facilitates convenient co-evolution of agents’ bod-
ies and brains. For instance, in an environment where agents start with
small and simple body morphologies and networks, mutations that extend
the brains and bodies simultaneously expand the possibilities of evolutionary
processes. This flexibility contrasts with cases where the neural network, and
consequently the inputs and outputs of the body’s sensors, remain fixed in
size indefinitely. Using a more open-ended training regimen and leveraging
adaptable neural network architectures, researchers can explore the emer-
gence of diverse and novel behaviors that go beyond handcrafted tasks and
promote more flexible and robust learning in artificial agents.

178

Chapter 9 | General Discussion and Future Research

9.2 Future Research

9.2.1 Evolve & Merge Neural Parameters
A natural progression from the experiments conducted in Chapters 4 and
5 would be to explore the combination of both approaches into a unified
framework. There are several possible ways to achieve this combination. One
approach could involve optimizing the parameters of both Hebbian learning
rules and neural units simultaneously but keeping them separate during the
merging process. This means that the learning rule set and neural unit set
could be merged independently of each other. To maximize the effectiveness
of this merging process, it may be beneficial to stagger the events of merging
the learning rules and the neural units, allowing each newly reduced param-
eter set to adapt and recover from any temporary performance dip before
reducing the other parameter set.

The motivation behind combining the optimization of neural parameters
and local activity-dependent learning rules is the potential synergy that could
arise from these parameter sets. A hypothesis for this study could be that by
combining the two sets, it is possible to achieve a smaller combined parameter
size while maintaining or even improving performance compared to using
the evolve and merge approach on each parameter set separately. Control
experiments should be conducted with networks of similar sizes, where only
the learning rules or only the neural units are evolved and merged. In all
cases, the merging of parameter sets should continue until a permanent drop
in performance is observed, indicating that there are too few parameters to
adequately solve the given task.

An interesting question to address in this study is whether it is more effec-
tive to first reduce one parameter set as much as possible before attempting
to reduce the other set, or if it is preferable to interweave the merging events
of the two parameter sets. Exploring the optimal sequencing of parameter
set merging could shed light on the dynamics of the combined approach and
provide insights into the best strategies for reducing parameter size without
sacrificing performance.

9.2.2 Automatic Evolve & Merge
Another future study involving the evolve and merge approach involves ex-
tending the approach to have the timing and intervals of parameter merging

179

Chapter 9 | General Discussion and Future Research

be controlled by the evolution algorithm, rather than being manually decided
by the researcher. This could be realized as part of a genetic algorithm as a
mutational operator. More specifically, in each new generation each individ-
ual would have some probability of undergoing parameter merging. Given
that parameter reductions are associated with a loss of performance, some
mechanism of innovation protection should be put in place, so that individ-
uals have some time to recover performance after a merging event, without
the risk of going extinct immediately.

Additionally, an accompanying mutational operator could be introduced
to split learning rules or neural unit parameters, thereby expanding the num-
ber of optimizable parameters. By dynamically changing the parameter
count as part of the optimization process, the approach could automati-
cally converge at the optimal number of parameters, eliminating the need
for manual decisions by researchers.

It would be intriguing to investigate whether replications with different
seeds would yield consistent numbers of parameters for the same environ-
ment and network size, or if there would be significant variance across seeds.
Comparing the performance and the final number of parameters obtained
using this approach with NEAT (Stanley and Miikkulainen, 2002), another
genetic algorithm that evolves the number of trainable parameters could pro-
vide valuable insights into the relative effectiveness of different optimization
strategies.

Furthermore, once the final number of parameters is obtained, it might
also be enlightening to try and optimize standard fully connected networks
with a similar number of trainable parameters on the same task. This com-
parison could contribute to the discussion on different types of parameters
in artificial neural networks. Many studies compare the trainable parameter
counts across different models but is a parameter just a parameter? How can
we take into account the context in which a parameter is embedded when de-
termining its value in terms of how much it contributes to the expressiveness
of the overall model?

9.2.3 Dynamic Genome Size for Networks of Neural
Units

In the same vein as a more dynamic, extended version of evolve and merge,
it would likely be useful for the optimization of structurally flexible neu-

180

Chapter 9 | General Discussion and Future Research

ral networks consisting of RNN units to have more of what are currently
hyperparameters optimized rather than hard-coded.

The experiments in Chapter 8 were preliminary and there are many ways
the approach could be enhanced to potentially be much more expressive
and to better fit the description of a path towards more general artificial
intelligence as discussed in Section 9.1.1. Having an optimizable genome
that not only optimizes the parameters of the LSTM gates. A way to better
leverage computational power would be to have mutational operators decide:

• The range that the number of hidden neurons in the reservoir can
drawn from.

• The number of different neural classes in the network.

• The proportion of the total number of neurons each neuron class should
take up in the network.

• The probability that each neural class has to connect to each of the
other neural classes.

• The number of times the reservoir of hidden neurons should project to
itself before the activity is propagated to the output of the model.

• The initial values of the hidden states and cell states of each neuron
class and its associated synapses.

Making these aspects of the model subject to evolution instead of manual
tuning could greatly enhance the applicability of the method, especially when
the goal is to use the same neural units in several different contexts. As the
optimization process becomes more intricate with multiple moving parts,
it becomes increasingly challenging for researchers to accurately determine
adequate hyperparameter values.

These extensions of the optimization process could in principle result in
one specific network with no room for variation in network initializations for
different individuals. In an extreme case, a network might be evolved with a
fixed number of neurons in the reservoir, where each hidden neuron belongs
to its own distinct class, with the predetermined connection probabilities to
other neurons being exclusively either one hundred or zero. While it remains
to be seen whether such a network would be able to generalize across multiple
environments with varying input and output sizes, it is within the realm of
possibility for the approach to yield such a solution.

181

Chapter 9 | General Discussion and Future Research

9.2.4 Developmental Phase to Supplement Symmetric
Randomness

A central theme explored in Chapter 7 and 8 revolves around the concept of
structural flexibility and the necessary conditions for achieving it within a
model. The fundamental requirement is that no parameters in the network
should be optimized with respect to a fixed position, as this would result
in parameter overfitting to the position and thus the loss of structural flex-
ibility. To mitigate this issue, parameter sharing across neural units can be
employed, which prevents parameters from being overly specific to a partic-
ular network position. As demonstrated in Chapter 8, it is possible to meet
this requirement while still allowing for diversity within the network, by sub-
jecting the connectivity matrix of hidden neural units to randomness during
network initialization.

In addition to relying solely on randomness for network initialization,
an extension of the approach could involve incorporating a developmental
phase to guide the network’s structure throughout the agent’s lifetime. The
structural flexibility potentially allows for leveraging a developmental phase
of the network structure throughout the lifetime of the agent.

Introducing a developmental phase that progressively grows the network,
as opposed to directly initializing it based on probabilities, offers several po-
tential advantages. First, it may result in reduced performance variability
within a parameter set, as the developmental phase could yield networks
with more consistent morphologies across different initializations. Addition-
ally, a developmental process could help avoid network structures that, by
random chance, are incapable of learning. Using randomness for making
an asymmetric network structure does come with a challenge related to the
amount of training data required for the outer-loop optimization problem.
If, for example, random connections are removed at initialization, there is a
risk that there simply are not sufficient connections present from one layer to
the next to propagate information from the input needed to solve the task.
This would make the outer-loop parameters achieve a bad fitness score, re-
gardless of how great the parameter set would be in a functional network
structure. This in turn makes the optimization process more noisy and could
stifle progress, especially early in the optimization phase. There are some
ways, not related to growth, that might mitigate this issue. One solution is
to calculate the fitness of a parameter set as an average over more lifetimes,
that are initialized independently from each other. This would reduce the

182

Chapter 9 | General Discussion and Future Research

risk of any parameter set being unlucky. However, it would also increase
the required training data, likely many-fold. Another solution could be to
increase redundancy in the network by simply using more hidden neurons,
making it more likely that some circuits or connectivity patterns are present
across different initializations. However, added redundancy comes with an
added cost of propagating information through the network. A developmen-
tal process that grows the network structures in a directed manner based
on interactions with the environment might prove to be the better solution.
Some form of algorithmic growth not only makes sure that dysfunctional
structures are avoided, but it could also serve as a bottleneck for the number
of different structures and network permutations that may appear during the
training phase. If this could be achieved, this would mean that the demand
on outer-loop parameters’ ability to generalize over essentially all possible
network structures would be relaxed.

Another advantage of the incorporation of a developmental phase could
facilitate the creation of networks with reservoirs of minimal size necessary to
solve a given task. By initially starting with a small network and allowing it
to grow as needed, potential redundancies that arise from randomly selecting
network size can be minimized.

Another potential benefit lies in the opportunity to synchronize the devel-
opment of the neural network with the agent’s body. An environment where
the agent begins with a simple body and brain could serve as a curriculum,
with initial stages involving constrained and simple actions that gradually
evolve into more complex behaviors.

Furthermore, a developmental phase can better tailor the network’s struc-
ture to different tasks. In the SFANN framework presented in Chapter 8,
certain aspects of the network structure, such as zero entries in the connec-
tivity matrices and the number of neurons in the hidden layer, are deter-
mined during network initialization without considering the task. However,
for specific tasks, certain network morphologies might be more effective than
others. Thus, incorporating the task environment into the network’s devel-
opmental phase allows for the incorporation of task-specific inductive biases
early on, enhancing the learning capabilities of dynamic neurons and synapses
throughout the agent’s lifetime in that particular task.

A developmental phase could also be useful for sequentially switching
between environments of different dimensionality in inputs or outputs. We
might have a network initialized in one environment and have it learn a
functional network configuration here. If we then wish to solve a new envi-

183

Chapter 9 | General Discussion and Future Research

ronment, leveraging some of the skills learned in the first, a developmental
phase during the initial interactions in the new environment could determine
how the network should grow or adapt its structure beyond synapse strengths
in a way that preserves the learned skills from the original environment.

Designing a useful developmental phase that can grow the network during
the lifetime is not a trivial task, and potentially adds a lot of moving parts
to the approach. A simple idea might just employ pruning of connections
(Sietsma and Dow, 1991; Blalock et al., 2020). For example, if part of the
hidden state of a synapse reaches a certain threshold during a developmental
phase, this could serve as a signal for it to be removed.

Alternatively, more sophisticated developmental algorithms could be used.
One example could be the recent approach to a neural developmental pro-
gram by Najarro et al. (2023). Here one neural network guides the develop-
ment of another network based on the activations of the growing network.
This, of course, comes with the added complexity of having to optimize the
neural developmental program.

The growth signal could also come from the evolved neurons themselves.
In the same way as some neurons in the work of Soltoggio et al. (2008) come to
have a dedicated responsibility for exerting neuromodulatory signals, evolved
neurons in SFANN could be responsible for signaling when more neurons need
to be added to the network.

184

Chapter 10

Conclusion

The successes of ANNs have inspired research in a plethora of new directions,
with new network architectures and mechanisms being introduced at a fast
pace.

The purpose of this thesis has been to contribute to the field of research
in adaptive agents controlled by ANNs. Despite all the advancements that
have been made with ANNs in recent years, agents that can adapt to and
learn from their surroundings to the same degree as animals – let alone
humans – still elude us. For this reason, approaches introduced throughout
this thesis have sought to build on the tradition of taking inspiration from
the mechanisms in biological neural networks that are believed to contribute
to their remarkable abilities to learn and adapt. The work in this thesis has
revolved around synaptic plasticity, neural diversity, and structural flexibility.

The contributions of the thesis culminated with the introduction of the
SFANN approach in Chapter 8, as well as the suggestions for its extensions
in Chapter 9. SFANN combines the concepts used in earlier chapters and im-
plements them in a way that generalizes the Variable Shared Meta-Learning
framework. A key component of this was to identify and attempt to miti-
gate the symmetry dilemma for black-box meta-reinforcement learning with
structural flexibility properties. The way to identify the symmetry dilemma
was paved for by the reasoning of Chapter 7 which was used to construct min-
imal permutation invariant neural network models. One of the observations
made in Chapter 7 was that even if the Evolve & Merge approach of Chapter
4 was able to significantly reduce the number of the plasticity rules of the
network, the rules would still be tied to the particular network architecture
that the rules were trained in, as the rules were optimized relative to specific

185

Chapter 10 | Conclusion

coordinates of the connectivity matrices in the network. The only way that
the evolved plasticity rules could be used in other network structures was if
it was possible to merge the rules into a single rule for the whole network.
This seemed unlikely exactly because of the symmetry dilemma.

An important component of learning is the feedback provided to learn
from. This was the focus of Chapter 6. The evolved internal reward network
was shown to enable faster learning for the RL agents, and as argued in
Chapter 9, even if the exact same method might not be compatible with the
SFANN framework, incorporating similar mechanisms is likely a promising
direction for enhancing the SFANN framework as well. This ties into the
common ultimate goal of the contributions of the thesis to achieve artificial
agents that adapt to their environments.

The SFANN was argued to have the potential to be trained in a wide range
of environments for black-box meta-reinforcement learning due to its plastic-
ity and flexible structure. It was further argued that the neural and synaptic
diversity of SFANN makes it better capable of coping with the dangers posed
by the symmetry dilemma compared to similar earlier approaches. Experi-
ments in simple environments with discrete and continuous output spaces of
different sizes showed that this framework indeed showed promising learn-
ing abilities across different network structures. Further developments to
this promising framework could evolve networks of any complexity in terms
of the number of different neural and synaptic classes as well as their re-
spective probabilities of connecting with each other. Whether the approach
will evolve structures that resemble structures found in biological neural net-
works remains to be seen. SFANNs contain at least some key ingredients to
make this possible, in that the networks consist of sub-units that are all dy-
namical systems, with history-dependent neurons being connected by plastic
synapses.

186

Bibliography

Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen.
Sharp-maml: Sharpness-aware model-agnostic meta learning. In Interna-
tional conference on machine learning, pages 10–32. PMLR, 2022.

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse rein-
forcement learning. In Proceedings of the twenty-first international confer-
ence on Machine learning, page 1, 2004.

Larry F Abbott and Sacha B Nelson. Synaptic plasticity: taming the beast.
Nature neuroscience, 3(11):1178–1183, 2000.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learn-
ing: Challenges, methods and progress. Artificial Intelligence, 297:103500,
2021.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. A brief survey of deep reinforcement learning. arXiv
preprint arXiv:1708.05866, 2017.

Arthur Aubret, Laetitia Matignon, and Salima Hassas. A survey on intrinsic
motivation in reinforcement learning. arXiv preprint arXiv:1908.06976,
2019.

Bruno B Averbeck and Vincent D Costa. Motivational neural circuits under-
lying reinforcement learning. Nature Neuroscience, 20(4):505–512, 2017.

Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algo-
rithms for parameter optimization. Evolutionary computation, 1(1):1–23,
1993.

187

Bibliography

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing
neural network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167, 2016.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike
adaptive elements that can solve difficult learning control problems. IEEE
transactions on systems, man, and cybernetics, (5):834–846, 1983.

Mina Basirat and Peter M Roth. The quest for the golden activation function.
arXiv preprint arXiv:1808.00783, 2018.

Gary K Beauchamp. Why do we like sweet taste: a bitter tale? Physiology
& behavior, 164:432–437, 2016.

Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stan-
ley, Jeff Clune, and Nick Cheney. Learning to continually learn. arXiv
preprint arXiv:2002.09571, 2020.

Lou Beaulieu-Laroche, Enrique HS Toloza, Marie-Sophie Van der Goes,
Mathieu Lafourcade, Derrick Barnagian, Ziv M Williams, Emad N Eskan-
dar, Matthew P Frosch, Sydney S Cash, and Mark T Harnett. Enhanced
dendritic compartmentalization in human cortical neurons. Cell, 175(3):
643–651, 2018.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf,
Chelsea Finn, and Shimon Whiteson. A survey of meta-reinforcement
learning. arXiv preprint arXiv:2301.08028, 2023.

Harkirat Singh Behl, Atılım Güneş Baydin, and Philip HS Torr. Alpha maml:
Adaptive model-agnostic meta-learning. arXiv preprint arXiv:1905.07435,
2019.

Eseoghene Ben-Iwhiwhu, Pawel Ladosz, Jeffery Dick, Wen-Hua Chen,
Praveen Pilly, and Andrea Soltoggio. Evolving inborn knowledge for fast
adaptation in dynamic pomdp problems. In Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference, pages 280–288, 2020.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-
ing: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828, 2013.

188

Bibliography

David Beniaguev, Idan Segev, and Michael London. Single cortical neurons
as deep artificial neural networks. Neuron, 109(17):2727–2739, 2021.

José Manuel Benítez, Juan Luis Castro, and Ignacio Requena. Are artificial
neural networks black boxes? IEEE Transactions on neural networks, 8
(5):1156–1164, 1997.

Peter J Bentley and Sanjeev Kumar. Three ways to grow designs: A com-
parison of embryogenies for an evolutionary design problem. In GECCO,
volume 99, pages 35–43, 1999.

Paul Bertens and Seong-Whan Lee. Network of evolvable neural units can
learn synaptic learning rules and spiking dynamics. Nature Machine In-
telligence, 2(12):791–799, 2020.

Garrett Bingham and Risto Miikkulainen. Discovering parametric activation
functions. Neural Networks, 148:48–65, 2022.

Garrett Bingham, William Macke, and Risto Miikkulainen. Evolutionary
optimization of deep learning activation functions. In Proceedings of the
2020 Genetic and Evolutionary Computation Conference, pages 289–296,
2020.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Gut-
tag. What is the state of neural network pruning? Proceedings of machine
learning and systems, 2:129–146, 2020.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran
Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, et al. On the opportunities and risks of foun-
dation models. arXiv preprint arXiv:2108.07258, 2021.

Nicolas Bougie and Ryutaro Ichise. Skill-based curiosity for intrinsically
motivated reinforcement learning. Machine Learning, 109:493–512, 2020.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin,
Alex X. Lee, Maria Bauza, Todor Davchev, Yuxiang Zhou, Agrim Gupta,
Akhil Raju, Antoine Laurens, Claudio Fantacci, Valentin Dalibard, Mar-
tina Zambelli, Murilo Martins, Rugile Pevceviciute, Michiel Blokzijl, Misha
Denil, Nathan Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Żołna,
Scott Reed, Sergio Gómez Colmenarejo, Jon Scholz, Abbas Abdolmaleki,

189

Bibliography

Oliver Groth, Jean-Baptiste Regli, Oleg Sushkov, Tom Rothörl, José En-
rique Chen, Yusuf Aytar, Dave Barker, Joy Ortiz, Martin Riedmiller,
Jost Tobias Springenberg, Raia Hadsell, Francesco Nori, and Nicolas Heess.
Robocat: A self-improving foundation agent for robotic manipulation,
2023.

S. Marc Breedlove and Neil V Watson. Biological psychology: An introduction
to behavioral, cognitive, and clinical neuroscience. Sinauer Associates,
2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33:1877–1901, 2020.

György Buzsáki. Neural syntax: cell assemblies, synapsembles, and readers.
Neuron, 68(3):362–385, 2010.

Daniele Caligiore, Michael A Arbib, R Chris Miall, and Gianluca Baldassarre.
The super-learning hypothesis: Integrating learning processes across cor-
tex, cerebellum and basal ganglia. Neuroscience & Biobehavioral Reviews,
100:19–34, 2019.

Sinan Çalışır and Meltem Kurt Pehlivanoğlu. Model-free reinforcement learn-
ing algorithms: A survey. In 2019 27th signal processing and communica-
tions applications conference (SIU), pages 1–4. IEEE, 2019.

Christian Carvelli, Djordje Grbic, and Sebastian Risi. Evolving hypernet-
works for game-playing agents. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, pages 71–72, 2020.

David J Chalmers. The evolution of learning: An experiment in genetic
connectionism. In Connectionist Models, pages 81–90. Elsevier, 1991.

Mathieu Chalvidal, Thomas Serre, and Rufin Van-Rullen. Meta-
reinforcement learning with self-modifying networks. In 36th Conference

190

Bibliography

on Neural Information Processing Systems (NeurIPS 2022), pages 1–19,
2022.

David T Chau, Robert M Roth, and Alan I Green. The neural circuitry
of reward and its relevance to psychiatric disorders. Current psychiatry
reports, 6(5):391–399, 2004.

Nitin Kumar Chauhan and Krishna Singh. A review on conventional machine
learning vs deep learning. In 2018 International conference on computing,
power and communication technologies (GUCON), pages 347–352. IEEE,
2018.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision
transformer: Reinforcement learning via sequence modeling. Advances in
neural information processing systems, 34, 2021.

Yuan-chu Cheng, Wei-Min Qi, and Wei-You Cai. Dynamic properties of
elman and modified elman neural network. In Proceedings. International
Conference on Machine Learning and Cybernetics, volume 2, pages 637–
640. IEEE, 2002.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259, 2014.

HeeSun Choi, Cindy Crump, Christian Duriez, Asher Elmquist, Gregory
Hager, David Han, Frank Hearl, Jessica Hodgins, Abhinandan Jain, Fred-
erick Leve, et al. On the use of simulation in robotics: Opportunities,
challenges, and suggestions for moving forward. Proceedings of the Na-
tional Academy of Sciences, 118(1):e1907856118, 2021.

Jeff Clune. Ai-gas: Ai-generating algorithms, an alternate paradigm for
producing general artificial intelligence. arXiv preprint arXiv:1905.10985,
2019.

Cédric Colas, Vashisht Madhavan, Joost Huizinga, and Jeff Clune. Scaling
map-elites to deep neuroevolution. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, pages 67–75, 2020.

191

Bibliography

Oliver J Coleman and Alan D Blair. Evolving plastic neural networks for
online learning: review and future directions. In Australasian Joint Con-
ference on Artificial Intelligence, pages 326–337. Springer, 2012.

Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard. A
review of physics simulators for robotic applications. IEEE Access, 9:
51416–51431, 2021.

Xiaodong Cui, Vaibhava Goel, and Brian Kingsbury. Data augmentation
for deep neural network acoustic modeling. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 23(9):1469–1477, 2015.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret.
Robots that can adapt like animals. Nature, 521(7553):503–507, 2015.

Yang Dan and Mu-ming Poo. Spike timing-dependent plasticity of neural
circuits. Neuron, 44(1):23–30, 2004.

Peter Dayan. Twenty-five lessons from computational neuromodulation. Neu-
ron, 76(1):240–256, 2012.

Daniel C Dennett. Darwin’s dangerous idea. The Sciences, 35(3):34–40,
1995.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and
Pieter Abbeel. Rl2: Fast reinforcement learning via slow reinforcement
learning. arXiv preprint arXiv:1611.02779, 2016.

Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L Griffiths, and
Alexei A Efros. Investigating human priors for playing video games. arXiv
preprint arXiv:1802.10217, 2018.

Kai Olav Ellefsen, Jean-Baptiste Mouret, and Jeff Clune. Neural modularity
helps organisms evolve to learn new skills without forgetting old skills.
PLoS Comput Biol, 11(4):e1004128, 2015.

Benjamin Ellenberger. Pybullet gymperium.
https://github.com/benelot/pybullet-gym, 2018.

192

Bibliography

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

B. Fasel. An introduction to bio-inspired artificial neural network architec-
tures. Acta neurologica belgica, 103(1):6–12, 2003.

Daniel E Feldman. The spike-timing dependence of plasticity. Neuron, 75
(4):556–571, 2012.

Gilbert Feng, Hongbo Zhang, et al. Genloco: Generalized locomotion con-
trollers for quadrupedal robots. arXiv preprint arXiv:2209.05309, 2022.

Chrisantha Fernando, Jakub Sygnowski, Simon Osindero, Jane Wang, Tom
Schaul, Denis Teplyashin, Pablo Sprechmann, Alexander Pritzel, and An-
drei Rusu. Meta-learning by the baldwin effect. In Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, pages 1313–
1320, 2018.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep
inverse optimal control via policy optimization. In International conference
on machine learning, pages 49–58. PMLR, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In International Conference
on Machine Learning, pages 1126–1135. PMLR, 2017.

Dario Floreano and Claudio Mattiussi. Bio-inspired artificial intelligence:
theories, methods, and technologies. MIT press, 2008.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael
Carbin. Stabilizing the lottery ticket hypothesis. arXiv preprint
arXiv:1903.01611, 2019.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018.

Adam Gaier and David Ha. Weight agnostic neural networks. Advances in
neural information processing systems, 32, 2019.

193

Bibliography

Luíza C Garaffa, Abdullah Aljuffri, Cezar Reinbrecht, Said Hamdioui, Mot-
taqiallah Taouil, and Johanna Sepulveda. Revealing the secrets of spiking
neural networks: The case of izhikevich neuron. In 2021 24th Euromicro
Conference on Digital System Design (DSD), pages 514–518. IEEE, 2021.

Wulfram Gerstner. Associative memory in a network ofbiological’neurons.
Advances in neural information processing systems, 3, 1990.

Faustino Gomez, Jan Koutník, and Jürgen Schmidhuber. Compressed net-
work complexity search. In International Conference on Parallel Problem
Solving from Nature, pages 316–326. Springer, 2012.

Santiago Gonzalez and Risto Miikkulainen. Optimizing loss functions
through multi-variate taylor polynomial parameterization. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 305–313,
2021.

Santiago Gonzalez and Risto Miikkulainen. Effective regularization through
loss-function metalearning. arXiv preprint arXiv:2010.00788, 2022.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

William T Greenough and James E Black. Induction of brain structure by
experience: Substrates. In Developmental behavioral neuroscience: The
Minnesota symposia on child psychology, page 155, 2013.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding
problem in artificial neural networks. arXiv preprint arXiv:2012.05208,
2020.

Frederic Gruau, Darrell Whitley, and Larry Pyeatt. A comparison between
cellular encoding and direct encoding for genetic neural networks. In Pro-
ceedings of the 1st annual conference on genetic programming, pages 81–89,
1996.

Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. Meta-
morph: Learning universal controllers with transformers. arXiv preprint
arXiv:2203.11931, 2022.

194

Bibliography

David Ha. Evolving stable strategies. blog.otoro.net, 2017a. URL
http://blog.otoro.net/2017/11/12/evolving-stable-strategies/.

David Ha. A visual guide to evolution strategies. blog. otoro. net, 2017b.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy
evolution. Advances in neural information processing systems, 31, 2018.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint
arXiv:1609.09106, 2016.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Em-
bracing change: Continual learning in deep neural networks. Trends in
cognitive sciences, 24(12):1028–1040, 2020.

Muhammad Burhan Hafez, Cornelius Weber, Matthias Kerzel, and Stefan
Wermter. Deep intrinsically motivated continuous actor-critic for efficient
robotic visuomotor skill learning. Paladyn, Journal of Behavioral Robotics,
10(1):14–29, 2019.

Alexander Hagg, Maximilian Mensing, and Alexander Asteroth. Evolving
parsimonious networks by mixing activation functions. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 425–432,
2017.

Robert E Hampson and Sam A Deadwyler. Neural population recording in
behaving animals: Constituents of a neural code for behavioral decisions.
2009.

Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards
a new evolutionary computation, pages 75–102, 2006.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772, 2016.

Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the
time complexity of the derandomized evolution strategy with covariance
matrix adaptation (cma-es). Evolutionary computation, 11(1):1–18, 2003.

Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and
Matthew Botvinick. Neuroscience-inspired artificial intelligence. Neuron,
95(2):245–258, 2017.

195

Bibliography

Uri Hasson, Samuel A Nastase, and Ariel Goldstein. Direct fit to nature:
An evolutionary perspective on biological and artificial neural networks.
Neuron, 105(3):416–434, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision,
pages 1026–1034, 2015.

Kun He, Yan Wang, and John Hopcroft. A powerful generative model using
random weights for the deep image representation. Advances in Neural
Information Processing Systems, 29, 2016.

Geoffrey E Hinton and Steven J Nowlan. How learning can guide evolution.
Adaptive individuals in evolving populations: models and algorithms, 26:
447–454, 1987.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn
using gradient descent. In International Conference on Artificial Neural
Networks, pages 87–94. Springer, 2001.

Kari L Hoffmann. A face in the crowd: Which groups of neurons process
face stimuli, and how do they interact? 2009.

Christian Holscher. How could populations of neurons encode information?
In Information Processing by Neuronal Populations, pages 3–20. Cam-
bridge University Press, 2008.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey.
Meta-learning in neural networks: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(9):5149–5169, 2021.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, Ope-
nAI Jonathan Ho, and Pieter Abbeel. Evolved policy gradients. Advances
in Neural Information Processing Systems, 31, 2018.

Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. Con-
tinual model-based reinforcement learning with hypernetworks. In 2021

196

Bibliography

IEEE International Conference on Robotics and Automation (ICRA),
pages 799–805. IEEE, 2021.

Michael R Hunsaker and Raymond P Kesner. The operation of pattern
separation and pattern completion processes associated with different at-
tributes or domains of memory. Neuroscience & Biobehavioral Reviews, 37
(1):36–58, 2013.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng
Zhang, Sam Devlin, and Katja Hofmann. Generalization in reinforcement
learning with selective noise injection and information bottleneck. arXiv
preprint arXiv:1910.12911, 2019.

Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex Lamb, Kenji Kawaguchi,
Xin Li, Romain Laroche, Yoshua Bengio, and Remi Tachet Des Combes.
Discrete factorial representations as an abstraction for goal conditioned
reinforcement learning. arXiv preprint arXiv:2211.00247, 2022.

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions
on neural networks, 14(6):1569–1572, 2003.

Eugene M Izhikevich. Polychronization: computation with spikes. Neural
computation, 18(2):245–282, 2006.

Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

Khurram Javed and Martha White. Meta-learning representations for con-
tinual learning. Advances in neural information processing systems, 32,
2019.

Taewon Jeong and Heeyoung Kim. Ood-maml: Meta-learning for few-shot
out-of-distribution detection and classification. Advances in Neural Infor-
mation Processing Systems, 33:3907–3916, 2020.

Michael I Jordan. Serial order: A parallel distributed processing approach.
In Advances in psychology, volume 121, pages 471–495. Elsevier, 1997.

Ryan Julian, Benjamin Swanson, Gaurav S Sukhatme, Sergey Levine,
Chelsea Finn, and Karol Hausman. Never stop learning: The effec-
tiveness of fine-tuning in robotic reinforcement learning. arXiv preprint
arXiv:2004.10190, 2020.

197

Bibliography

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa,
Julian Togelius, and Sebastian Risi. Illuminating generalization in deep
reinforcement learning through procedural level generation. In NeurIPS
Workshop on Deep Reinforcement Learning, 2018.

Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum,
A James Hudspeth, and Sarah Mack. Principles of neural science, vol-
ume 4. McGraw-hill New York, 2000.

Mert Kayaalp, Stefan Vlaski, and Ali H Sayed. Dif-maml: Decentralized
multi-agent meta-learning. IEEE Open Journal of Signal Processing, 3:
71–93, 2022.

James Kennedy and Russell Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks, vol-
ume 4, pages 1942–1948. IEEE, 1995.

Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised,
but not unsupervised, models may explain it cortical representation. PLoS
computational biology, 10(11):e1003915, 2014.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fa-
had Shahbaz Khan, and Mubarak Shah. Transformers in vision: A survey.
ACM computing surveys (CSUR), 54(10s):1–41, 2022.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. To-
wards continual reinforcement learning: A review and perspectives. arXiv
preprint arXiv:2012.13490, 2020.

Louis Kirsch and Jürgen Schmidhuber. Meta learning backpropagation and
improving it. arXiv preprint arXiv:2012.14905, 2020.

Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving
generalization in meta reinforcement learning using learned objectives.
arXiv preprint arXiv:1910.04098, 2019.

Louis Kirsch, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Jun-
hyuk Oh, and Yutian Chen. Introducing symmetries to black box meta
reinforcement learning. arXiv preprint arXiv:2109.10781, 2021.

198

Bibliography

Louis Kirsch, James Harrison, et al. General-purpose in-context learning by
meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research, 32
(11):1238–1274, 2013.

Jan Koutnik, Faustino Gomez, and Jürgen Schmidhuber. Evolving neural
networks in compressed weight space. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation, pages 619–626, 2010.

Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim
Bazhenov, Douglas Blackiston, Josh Bongard, Andrew P Brna, Suraj
Chakravarthi Raja, Nick Cheney, Jeff Clune, et al. Biological underpin-
nings for lifelong learning machines. Nature Machine Intelligence, 4(3):
196–210, 2022.

Thomas S Kuhn. The structure of scientific revolutions. University of Chicago
press, 2012.

Anders Lansner. Associative memory models: from the cell-assembly theory
to biophysically detailed cortex simulations. Trends in neurosciences, 32
(3):178–186, 2009.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi,
and Yee Whye Teh. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International conference on
machine learning, pages 3744–3753. PMLR, 2019.

Richard C Lewontin. The units of selection. Annual review of ecology and
systematics, 1(1):1–18, 1970.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710,
2016.

Jian-Ping Li, Marton E Balazs, Geoffrey T Parks, and P John Clarkson. A
species conserving genetic algorithm for multimodal function optimization.
Evolutionary computation, 10(3):207–234, 2002.

199

Bibliography

Laura Lillien. Neural development: instructions for neural diversity. Current
Biology, 7(3):R168–R171, 1997.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of
transformers. AI Open, 2022.

Zachary C Lipton. Stuck in a what? adventures in weight space. arXiv
preprint arXiv:1602.07320, 2016.

Hanxiao Liu, Andy Brock, Karen Simonyan, and Quoc Le. Evolving
normalization-activation layers. Advances in Neural Information Process-
ing Systems, 33:13539–13550, 2020.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforce-
ment learning: Problems and solutions. arXiv preprint arXiv:2201.08299,
2022.

Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to
recurrent neural network training. Computer science review, 3(3):127–149,
2009.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Prov-
ing the lottery ticket hypothesis: Pruning is all you need. In International
Conference on Machine Learning, pages 6682–6691. PMLR, 2020.

Eve Marder, LF Abbott, Gina G Turrigiano, Zheng Liu, and Jorge
Golowasch. Memory from the dynamics of intrinsic membrane currents.
Proceedings of the national academy of sciences, 93(24):13481–13486, 1996.

James L McClelland, David E Rumelhart, PDP Research Group, et al. Par-
allel distributed processing, volume 2: Explorations in the microstructure
of cognition: Psychological and biological models, volume 2. MIT press,
1987.

Francisco S Melo and Manuel Lopes. Learning from demonstration using
mdp induced metrics. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 385–401. Springer, 2010.

Jorge Mendez, Boyu Wang, and Eric Eaton. Lifelong policy gradient learning
of factored policies for faster training without forgetting. Advances in
Neural Information Processing Systems, 33:14398–14409, 2020.

200

Bibliography

Alberto Maria Metelli, Giorgia Ramponi, Alessandro Concetti, and Mar-
cello Restelli. Provably efficient learning of transferable rewards. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 7665–7676. PMLR, 18–24 Jul 2021.
URL https://proceedings.mlr.press/v139/metelli21a.html.

Thomas Miconi. Learning to learn with backpropagation of hebbian plastic-
ity. arXiv preprint arXiv:1609.02228, 2016.

Jae-eun Kang Miller, Inbal Ayzenshtat, Luis Carrillo-Reid, and Rafael Yuste.
Visual stimuli recruit intrinsically generated cortical ensembles. Proceed-
ings of the National Academy of Sciences, 111(38):E4053–E4061, 2014.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al.
Model-based reinforcement learning: A survey. Foundations and Trends®
in Machine Learning, 16(1):1–118, 2023.

Andrew William Moore. Efficient memory-based learning for robot control.
1990.

Jean-Baptiste Mouret and Paul Tonelli. Artificial evolution of plastic neural
networks: a few key concepts. In Growing adaptive machines, pages 251–
261. Springer, 2014.

Nils Müller and Tobias Glasmachers. Challenges in high-dimensional rein-
forcement learning with evolution strategies. In International Conference
on Parallel Problem Solving from Nature, pages 411–423. Springer, 2018.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International
Conference on Machine Learning, pages 2554–2563. PMLR, 2017.

Thibaut Munzer, Bilal Piot, Matthieu Geist, Olivier Pietquin, and Manuel
Lopes. Inverse reinforcement learning in relational domains. In Twenty-
Fourth International Joint Conference on Artificial Intelligence, 2015.

Elias Najarro and Sebastian Risi. Meta-learning through hebbian plasticity
in random networks. Advances in Neural Information Processing Systems,
33, 2020.

201

Bibliography

Elias Najarro, Shyam Sudhakaran, and Sebastian Risi. Towards self-
assembling artificial neural networks through neural developmental pro-
grams. In ALIFE 2023: Ghost in the Machine: Proceedings of the 2023
Artificial Life Conference. MIT Press, 2023.

Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled
Shaalan. Speech recognition using deep neural networks: A systematic
review. IEEE access, 7:19143–19165, 2019.

Emre O Neftci and Bruno B Averbeck. Reinforcement learning in artificial
and biological systems. Nature Machine Intelligence, 1(3):133–143, 2019.

Thanh Nguyen, Tung Luu, Trung Pham, Sanzhar Rakhimkul, and Chang D
Yoo. Robust maml: prioritization task buffer with adaptive learning pro-
cess for model-agnostic meta-learning. In ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3460–3464. IEEE, 2021.

Yael Niv, Daphna Joel, Isaac Meilijson, and Eytan Ruppin. Evolution of
reinforcement learning in uncertain environments: A simple explanation
for complex foraging behaviors. 2002.

Ben Norman and Jeff Clune. First-explore, then exploit: Meta-learning in-
telligent exploration. arXiv preprint arXiv:2307.02276, 2023.

Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Mar-
shall. Activation functions: Comparison of trends in practice and research
for deep learning. arxiv 2018. arXiv preprint arXiv:1811.03378, 2018.

Jeff Orchard and Lin Wang. The evolution of a generalized neural learning
rule. In 2016 International Joint Conference on Neural Networks (IJCNN),
pages 4688–4694. IEEE, 2016.

Norman R Pace. Mapping the tree of life: progress and prospects. Microbi-
ology and molecular biology reviews, 73(4):565–576, 2009.

Rasmus Berg Palm. Evostrat. https://github.com/rasmusbergpalm/evostrat,
2020.

202

Bibliography

Rasmus Berg Palm, Elias Najarro, and Sebastian Risi. Testing the genomic
bottleneck hypothesis in hebbian meta-learning. In NeurIPS 2020 Work-
shop on Pre-registration in Machine Learning, pages 100–110. PMLR,
2021.

Evgenia Papavasileiou, Jan Cornelis, and Bart Jansen. A systematic litera-
ture review of the successors of “neuroevolution of augmenting topologies”.
Evolutionary Computation, 29(1):1–73, 2021.

Fabio Pardo. Tonic: A deep reinforcement learning library for fast prototyp-
ing and benchmarking. arXiv preprint arXiv:2011.07537, 2020.

Joachim Winther Pedersen and Sebastian Risi. Evolving and merging heb-
bian learning rules: increasing generalization by decreasing the number of
rules. arXiv preprint arXiv:2104.07959, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons:
opportunities and challenges. Frontiers in neuroscience, 12:774, 2018.

Harry A Pierson and Michael S Gashler. Deep learning in robotics: a review
of recent research. Advanced Robotics, 31(16):821–835, 2017.

Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm opti-
mization: An overview. Swarm intelligence, 1:33–57, 2007.

Mu-ming Poo. Towards brain-inspired artificial intelligence, 2018.

Jonathan D Power and Bradley L Schlaggar. Neural plasticity across the
lifespan. Wiley Interdisciplinary Reviews: Developmental Biology, 6(1):
e216, 2017.

Joseph L Price and Wayne C Drevets. Neural circuits underlying the patho-
physiology of mood disorders. Trends in cognitive sciences, 16(1):61–71,
2012.

203

Bibliography

Trevor D Price, Anna Qvarnström, and Darren E Irwin. The role of phe-
notypic plasticity in driving genetic evolution. Proceedings of the Royal
Society of London. Series B: Biological Sciences, 270(1523):1433–1440,
2003.

J. Andrew Pruszynski and Joel Zylberberg. The language of the brain: real-
world neural population codes. Current opinion in neurobiology, 58:30–36,
2019.

Friedemann Pulvermüller, Max Garagnani, and Thomas Wennekers. Think-
ing in circuits: toward neurobiological explanation in cognitive neuro-
science. Biological cybernetics, 108(5):573–593, 2014.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M
Kakade. Towards generalization and simplicity in continuous control. Ad-
vances in Neural Information Processing Systems, 30, 2017.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi,
and Mohammad Rastegari. What’s hidden in a randomly weighted neural
network? In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11893–11902, 2020.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo,
Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky,
Jackie Kay, Jost Tobias Springenberg, et al. A generalist agent. arXiv
preprint arXiv:2205.06175, 2022.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help
offline reinforcement learning? arXiv preprint arXiv:2201.12122, 2022.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish,
Yuhai Tu, and Gerald Tesauro. Learning to learn without forgetting
by maximizing transfer and minimizing interference. arXiv preprint
arXiv:1810.11910, 2018.

Sebastian Risi and Kenneth O Stanley. Indirectly encoding neural plasticity
as a pattern of local rules. In International Conference on Simulation of
Adaptive Behavior, pages 533–543. Springer, 2010.

Sebastian Risi and Kenneth O Stanley. Enhancing es-hyperneat to evolve
more complex regular neural networks. In Proceedings of the Genetic and

204

Bibliography

Evolutionary Computation Conference (GECCO 2011). New York, NY:
ACM. http://eplex. cs. ucf. edu/papers/risi_gecco11. pdf, 2011.

Sebastian Risi and Kenneth O Stanley. An enhanced hypercube-based en-
coding for evolving the placement, density, and connectivity of neurons.
Artificial life, 18(4):331–363, 2012a.

Sebastian Risi and Kenneth O Stanley. A unified approach to evolving plas-
ticity and neural geometry. In The 2012 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE, 2012b.

Sebastian Risi and Kenneth O Stanley. Confronting the challenge of learning
a flexible neural controller for a diversity of morphologies. In Proceedings
of the 15th annual conference on Genetic and evolutionary computation,
pages 255–262, 2013.

Sebastian Risi, Charles E Hughes, and Kenneth O Stanley. Evolving plastic
neural networks with novelty search. Adaptive Behavior, 18(6):470–491,
2010.

Jason W Rocks and Pankaj Mehta. Memorizing without overfitting: Bias,
variance, and interpolation in overparameterized models. Physical review
research, 4(1):013201, 2022.

Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and
Shahrokh Valaee. Recent advances in recurrent neural networks. arXiv
preprint arXiv:1801.01078, 2017.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever.
Evolution strategies as a scalable alternative to reinforcement learning.
arXiv preprint arXiv:1703.03864, 2017.

Shreya Saxena and John P Cunningham. Towards the neural population
doctrine. Current opinion in neurobiology, 55:103–111, 2019.

Samuel M Scheiner. Genetics and evolution of phenotypic plasticity. Annual
review of ecology and systematics, 24(1):35–68, 1993.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are
secretly fast weight programmers. In International Conference on Machine
Learning, pages 9355–9366. PMLR, 2021.

205

Bibliography

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

John Schulman, Filip Wolski, et al. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Anthony Sclafani, Khalid Touzani, and Richard J Bodnar. Dopamine and
learned food preferences. Physiology & behavior, 104(1):64–68, 2011.

Jermyn Z See, Craig A Atencio, Vikaas S Sohal, and Christoph E Schreiner.
Coordinated neuronal ensembles in primary auditory cortical columns.
Elife, 7:e35587, 2018.

Chris Sekirnjak and Sascha Du Lac. Intrinsic firing dynamics of vestibular
nucleus neurons. Journal of Neuroscience, 22(6):2083–2095, 2002.

Jocelyn Sietsma and Robert JF Dow. Creating artificial neural networks that
generalize. Neural networks, 4(1):67–79, 1991.

Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learn-
ing to walk in 20 minutes with model-free reinforcement learning. arXiv
preprint arXiv:2208.07860, 2022.

Emilie C Snell-Rood. An overview of the evolutionary causes and conse-
quences of behavioural plasticity. Animal Behaviour, 85(5):1004–1011,
2013.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. Advances in neural information
processing systems, 25, 2012.

Ivan Soltesz et al. Diversity in the neuronal machine: order and variability
in interneuronal microcircuits. Oxford University Press, 2006.

Andrea Soltoggio, John A Bullinaria, Claudio Mattiussi, Peter Dürr, and
Dario Floreano. Evolutionary advantages of neuromodulated plasticity in
dynamic, reward-based scenarios. In Proceedings of the 11th international
conference on artificial life (Alife XI), number CONF, pages 569–576. MIT
Press, 2008.

206

Bibliography

Andrea Soltoggio, Kenneth O Stanley, and Sebastian Risi. Born to learn:
the inspiration, progress, and future of evolved plastic artificial neural
networks. Neural Networks, 108:48–67, 2018.

Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian
learning through spike-timing-dependent synaptic plasticity. Nature neu-
roscience, 3(9):919–926, 2000.

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo
Pacchiano, and Yunhao Tang. Es-maml: Simple hessian-free meta learning.
arXiv preprint arXiv:1910.01215, 2019a.

Xingyou Song, Yiding Jiang, et al. Observational overfitting in reinforcement
learning. arXiv preprint arXiv:1912.02975, 2019b.

Bradly Stadie, Lunjun Zhang, and Jimmy Ba. Learning intrinsic rewards as
a bi-level optimization problem. In Conference on Uncertainty in Artificial
Intelligence, pages 111–120. PMLR, 2020.

Kenneth O Stanley and Joel Lehman. Why greatness cannot be planned: The
myth of the objective. Springer, 2015.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary computation, 10(2):99–127,
2002.

Kenneth O Stanley and Risto Miikkulainen. A taxonomy for artificial em-
bryogeny. Artificial Life, 9(2):93–130, 2003.

Kenneth O Stanley, Bobby D Bryant, and Risto Miikkulainen. Evolving
adaptive neural networks with and without adaptive synapses. In The
2003 Congress on Evolutionary Computation, 2003. CEC’03., volume 4,
pages 2557–2564. IEEE, 2003.

Kenneth O Stanley, Joel Lehman, and Lisa Soros. Open-endedness: The last
grand challenge you’ve never heard of. While open-endedness could be a
force for discovering intelligence, it could also be a component of AI itself,
2017.

Joan Stiles. Neural plasticity and cognitive development. Developmental
neuropsychology, 18(2):237–272, 2000.

207

Bibliography

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman,
Kenneth O Stanley, and Jeff Clune. Deep neuroevolution: Genetic al-
gorithms are a competitive alternative for training deep neural networks
for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Sainbayar Sukhbaatar, Emily Denton, Arthur Szlam, and Rob Fergus. Learn-
ing goal embeddings via self-play for hierarchical reinforcement learning.
arXiv preprint arXiv:1811.09083, 2018.

Richard S Sutton. Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding. Advances in neural information processing
systems, 8, 1995.

Richard S Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1), 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

Yujin Tang and David Ha. The sensory neuron as a transformer:
Permutation-invariant neural networks for reinforcement learning. Ad-
vances in Neural Information Processing Systems, 34, 2021.

Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of self-
interpretable agents. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pages 414–424, 2020.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Tim-
othée Masquelier, and Anthony Maida. Deep learning in spiking neural
networks. Neural Networks, 111:47–63, 2019.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient trans-
formers: A survey. ACM Computing Surveys, 55(6):1–28, 2022.

Luke Taylor and Geoff Nitschke. Improving deep learning with generic data
augmentation. In 2018 IEEE Symposium Series on Computational Intel-
ligence (SSCI), pages 1542–1547. IEEE, 2018.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Fer-
yal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg, Michael
Chang, Natalie Clay, Adrian Collister, et al. Human-timescale adaptation
in an open-ended task space. arXiv preprint arXiv:2301.07608, 2023.

208

Bibliography

Yingjie Tian, Xiaoxi Zhao, and Wei Huang. Meta-learning approaches for
learning-to-learn in deep learning: A survey. Neurocomputing, 494:203–
223, 2022.

Paul Tonelli and Jean-Baptiste Mouret. On the relationships
between generative encodings, regularity, and learning abilities
when evolving plastic artificial neural networks. PLOS ONE, 8
(11):1–12, 11 2013. doi: 10.1371/journal.pone.0079138. URL
https://doi.org/10.1371/journal.pone.0079138.

Peter D Turney. Myths and legends of the baldwin effect. arXiv preprint
cs/0212036, 2002.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9446–9454, 2018.

Joseba Urzelai and Dario Floreano. Evolution of adaptive synapses: Robots
with fast adaptive behavior in new environments. Evolutionary computa-
tion, 9(4):495–524, 2001.

Arjen van Ooyen. Activity-dependent neural network development. Network:
Computation in Neural Systems, 5(3):401–423, 1994.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Extracting and composing robust features with denoising autoen-
coders. In Proceedings of the 25th international conference on Machine
learning, pages 1096–1103, 2008.

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Eftychios
Protopapadakis, et al. Deep learning for computer vision: A brief review.
Computational intelligence and neuroscience, 2018, 2018.

Scott Waddell. Reinforcement signalling in drosophila; dopamine does it all
after all. Current opinion in neurobiology, 23(3):324–329, 2013.

209

Bibliography

Jane X Wang. Meta-learning in natural and artificial intelligence. Current
Opinion in Behavioral Sciences, 38:90–95, 2021.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z
Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt
Botvinick. Learning to reinforcement learn, 2017.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang
Lu, Yiqiang Chen, Wenjun Zeng, and Philip Yu. Generalizing to un-
seen domains: A survey on domain generalization. IEEE Transactions on
Knowledge and Data Engineering, 2022.

Lin Wang, Junteng Zheng, and Jeff Orchard. Evolving generalized modula-
tory learning: Unifying neuromodulation and synaptic plasticity. IEEE
Transactions on Cognitive and Developmental Systems, 12(4):797–808,
2019.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning
structured policy with graph neural networks. In International conference
on learning representations, 2018.

Dante Francisco Wasmuht, Eelke Spaak, Timothy J Buschman, Earl K
Miller, and Mark G Stokes. Intrinsic neuronal dynamics predict distinct
functional roles during working memory. Nature communications, 9(1):
3499, 2018.

Mary Jane West-Eberhard. Phenotypic plasticity and the origins of diversity.
Annual review of Ecology and Systematics, 20(1):249–278, 1989.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and
Jürgen Schmidhuber. Natural evolution strategies. The Journal of Machine
Learning Research, 15(1):949–980, 2014.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. Transformers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 conference on empirical methods in natural
language processing: system demonstrations, pages 38–45, 2020.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi,
Mohammad Rastegari, Jason Yosinski, and Ali Farhadi. Supermasks in

210

Bibliography

superposition. Advances in Neural Information Processing Systems, 33:
15173–15184, 2020.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter
Abbeel. Daydreamer: World models for physical robot learning. arXiv
preprint arXiv:2206.14176, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems, 32(1):4–24, 2020.

Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning
amidst lifelong non-stationarity. arXiv preprint arXiv:2006.10701, 2020.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient rein-
forcement learning. Advances in neural information processing systems,
31, 2018.

Anil Yaman, Giovanni Iacca, Decebal Constantin Mocanu, George Fletcher,
and Mykola Pechenizkiy. Learning with delayed synaptic plasticity. In
Proceedings of the Genetic and Evolutionary Computation Conference,
pages 152–160, 2019.

Anil Yaman, Giovanni Iacca, Decebal Constantin Mocanu, Matt Coler,
George Fletcher, and Mykola Pechenizkiy. Evolving plasticity for au-
tonomous learning under changing environmental conditions. Evolutionary
computation, 29(3):391–414, 2021.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale
Schuurmans. Foundation models for decision making: Problems, methods,
and opportunities. arXiv preprint arXiv:2303.04129, 2023.

Hana Yousuf, Michael Lahzi, Said A Salloum, and Khaled Shaalan. A sys-
tematic review on sequence-to-sequence learning with neural network and
its models. International Journal of Electrical & Computer Engineering
(2088-8708), 11(3), 2021.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of
recurrent neural networks: Lstm cells and network architectures. Neural
computation, 31(7):1235–1270, 2019.

211

Bibliography

Anthony M Zador. A critique of pure learning and what artificial neural
networks can learn from animal brains. Nature communications, 10(1):
1–7, 2019.

Anthony M Zador, Sean Escola, Blake Richards, Bence Ölveczky, Yoshua
Bengio, Kwabena Boahen, Matthew Botvinick, Dmitri Chklovskii, Anne
Churchland, Claudia Clopath, et al. Catalyzing next-generation artificial
intelligence through neuroai. Nature communications, 14(1):1597, 2023.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting
and generalization in continuous reinforcement learning. arXiv preprint
arXiv:1806.07937, 2018a.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A
study on overfitting in deep reinforcement learning. arXiv preprint
arXiv:1804.06893, 2018b.

Chenyang Zhao, Olivier Sigaud, Freek Stulp, and Timothy M Hospedales. In-
vestigating generalisation in continuous deep reinforcement learning. arXiv
preprint arXiv:1902.07015, 2019.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards
for policy gradient methods. Advances in Neural Information Processing
Systems, 31, 2018.

Zeyu Zheng, Junhyuk Oh, Matteo Hessel, Zhongwen Xu, Manuel Kroiss,
Hado Van Hasselt, David Silver, and Satinder Singh. What can learned
intrinsic rewards capture? In International Conference on Machine Learn-
ing, pages 11436–11446. PMLR, 2020.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang,
Cheng Ji, Qiben Yan, Lifang He, et al. A comprehensive survey on pre-
trained foundation models: A history from bert to chatgpt. arXiv preprint
arXiv:2302.09419, 2023.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstruct-
ing lottery tickets: Zeros, signs, and the supermask. arXiv preprint
arXiv:1905.01067, 2019.

212

Appendix

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural net-
works: A review of methods and applications. AI open, 1:57–81, 2020a.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Do-
main generalization: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

Wei Zhou, Yiying Li, Yongxin Yang, Huaimin Wang, and Timothy
Hospedales. Online meta-critic learning for off-policy actor-critic meth-
ods. Advances in Neural Information Processing Systems, 33:17662–17673,
2020b.

A Appendix Section 1

0 50 100 150 200 250 300
2.5

2.0

1.5

1.0

0.5

Fit
ne

ss

Sigma:0.01

0 50 100 150 200 250 300

0.8

0.6

0.4

0.2

0.0

Sigma:0.5

Generation

Figure A1: Training curves for outer-loop with 100 parameters.
Training curves for inner-loop sigmas look similar to when 10 parameters
were optimized in the outer-loop. As better top solutions are found in the
run with an inner-loop sigma of 0.01, the population mean becomes more
volatile.

213

Appendix

Figure A2: Changing inner-loss landscapes with inner-loop sigma
0.01 and 100 outer-loop parameters. Large changes in the inner-loop
loss landscapes occur after outer-loop optimization. The optimal point in
task 3 is worse than before optimization but is now placed almost directly
at the starting point of the inner-loop optimization, and therefore very easy
to find. The overall shape of the optimized loss landscapes and the isolated
placements of the optimal points in task 1 and 2, makes it plausible that in
these loss landscapes, the inner-loop optimizer always settles on points very
close the starting points.

214

Appendix

Figure A3: Changing inner-loss landscapes with inner-loop sigma
0.5 and 100 outer-loop parameters. Once again, the inner-loop loss
landscapes change to a smaller degree throughout outer-loop optimization
when the inner-loop sigma is larger. Loss landscapes and their optimal points
are more similar before and after outer-loop optimization than in Figure A2.

Figure A2 shows how the inner-loop loss landscapes changed when the inner-
loop sigma was 0.01, the landscapes has changed more than in any other
loss landscapes. The loss landscape for task number three has after opti-
mization an optimal point with worse performance than before. However, its
new optimal point is very close to the starting parameters of the inner-loop
optimization. Further, when examining the optimal points of the two other
tasks after optimization, we can see that they are not located near the ori-
gin, and are isolated in areas of low performance. It seems plausible that the
outer-loop parameters have shaped the inner-loop loss landscapes such that
the solutions in area around the starting parameters are well-performing if
not exactly optimal. This would be a way for the outer-loop to increase the
probability of getting a good mean score across all three tasks.

215

