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Abstract

Secure Multiparty Computation (MPC) is a technology that enables a set of mutually-
distrustful parties to securely compute a function on their inputs, without leaking any
information about these inputs, beyond what is inferred from the output of the function.
MPC is a useful tool in settings where it is unacceptable to rely on a trusted third-party to
compute the function on behalf of the parties. This includes settings where data privacy
is desirable (e.g. private auctions) but also in places where law and regulation (e.g. GDPR,
CCPA, LGPD) would otherwise prevent such data from being subject to computation. The
study of MPC protocols dates back to the seminal work of Andrew Yao (FOCS, 1986) and has
garnered significant attention from cryptography researchers exploring new techniques,
added e�ciency, and inherent limitations of MPC protocols.

The emergence of large-scale permissionless networks such as Bitcoin and Ethereum
has driven new interest in specific branches of MPC research aimed at combining the
input-privacy of MPC with the resilience and scalability of modern blockchain networks.
This would allow a set of limited clients to outsource a computation to “the blockchain”
without revealing their inputs aka. MPC-as-a-Service. However, existing MPC protocols
are designed to thrive when executed in the context of static and homogenous networks
with high availability and low-latency communication and this makes them incompatible
with the heterogenous and dynamic nature of permissionless networks. Moreover, the
communication complexity of these protocols scales quadratically with the number of
parties making them prohibitively expensive to execute at this scale.
Recent work of Gentry et al. (CRYPTO, 2021) proposed a model for MPC with the goal of
identifying MPC protocols that overcome the above challenges. Such protocols are exe-
cuted by a set of small randomly-selected committees and only allow each committee
member to send a single message. Hence, the name: YOSO (You Only Speak Once) model.
They also presented actual YOSO MPC protocols with statistical and computational se-
curity but left the question of establishing the underlying communication channels to
future committee members largely unanswered.

This thesis provides a rigorous treatment of the problem of sending secret messages to
future committee members. We provide a definitional framework around our main primi-
tive - Encryption to the Future - and propose concrete constructions improving on existing
protocols for establishing communication channels in the YOSO model. In addition, these
existing protocols are not amenable to new e�cient techniques for publicly verifiable re-
sharing which is a key primitive when designing MPC protocols in the YOSO model. We
observe that our framework naturally generalizes to settings where these e�cient tech-
niques are applicable by taking advantage of the underlying additive homomorphism of
the encryption scheme. Thus, instead of relying on expensive generic non-interactive
zero knowledge proofs for proving correct resharing, we utilize the algebraic structure
and obtain extremely e�cient proofs. Finally, we take a step back from communication
in the YOSO model and ask a basic question of feasibility of perfect and fully secure pro-
tocols in the setting of standard MPC but with a specific layered interaction pattern. We
answer this question in the a�rmative and prove interesting implications for the YOSO
model and other areas of dynamic MPC.
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Abstrakt

MPC (Multiparty Computation) er en teknologi som giver forskellige parter muligheden
for at beregne en given funktion på deres fælles data mens disse data samtidig holdes
privat. Teknologien er især nyttig i scenarier hvor parterne ikke har tillid til at en betroet
tredje-part modtager data og udfører beregningen på deres vegne. Det være sig både
hvis privat beregning er ønskværdigt (f.eks. ved en auktion) men også når det er den
eneste mulighed for at få lov at beregne på data (f.eks. GDPR-beskyttet data). Studiet af
protokoller for MPC startede med det skelsættende arbejde af Andrew Yao (FOCS, 1986) og
har siden da nydt megen opmærksomhed i kryptografi-kredse som herefter har forbedret
protokollerne i et utal af forskellige retninger.

I de seneste år har større tilladelsesfrie netærk såsom Bitcoin og Ethereum skabt in-
teresse for en specifik avart af MPC-forskning. Denne form for MPC bestræber sig på
både at holde data privat men samtidig opnå samme skaleringsmuligheder og sikker-
hedsegenskaber som det bagvedliggende netværk. Med andre ord, de benytter mask-
inerne i blockchain netværket til at eksekvere den private beregning. Eksisterende pro-
tokoller er dog ikke designet til opnå høj ydeevne i dette miljø. De er istedet skabt til
at være e�ektive i en kontekst hvor netværket er stabilt, maskinerne har høj tilgæn-
gelighed og latensen er lav i kommunikationen mellem maskinerne. Ydermere, disse
protokoller har kommunikations-kompleksitet der skalerer kvadratisk med størrelsen af
netværket og er derfor praktisk talt umulige at eksekvere på disse store tilladelsesfrie
netværk. Gentry et al. (Crypto, 2021) foreslog en MPC model der havde til hensigt at iden-
tificere protokoller som kan imødekomme ovenstående udfordringer. Disse protokoller
er baseret på en teknik hvor en række tilfældigt-valgte komitéer udfører beregningen på
vegne at det større netværk. Modellen blev præsenteret under navnet YOSO (You Only
Speak Once) da alle maskinerne i denne model kun forventes at kunne sende én eneste
besked på netværket. Forfatterne præsenterede også forskellige protokoller og påviste
deres sikkerhed i denne nye YOSO model men spørgsmålet om hvordan disse maskiner
kommunikerer fra én komité til den næste forblev i et stort omfang ubesvaret.

Denne afhandling bidrager med en grundig behandling af teknikker til at kommunikere
med kommende komitéer. Til samme formål definerer vi et nyt krypterings-primitiv ved
navn Encryption to the Future og bygger protokoller som opfylder kravende for denne
definition og samtidig forbedrer ekisterende konstruktioner med samme formål. Vi be-
mærker at det ikke kun er kommunikationen som kan forbedres men også den måde
den bliver brugt på. En vigtig sub-protokol i YOSO MPC - publicly verifiable resharing -
har stor betydning for e�ektiviteten i YOSO MPC men eksisterende protokoller udnytter
ikke de enorme fremskridt fra traditionelle (ikke-YOSO) MPC protokoller. Vi observerer at
vores krypterings-primitiv faktisk også omfatter disse sub-protokoller og viser at dette
kan lede til markant højere e�ektivitet i YOSO MPC protokoller. Til sidst bevæger vi os
et smule væk fra kommunikations-delen og fokuserer på YOSO MPC beregningen givet
at kommunikationen allerede er etableret. Ved hjælp af en vigtig indsigt; at YOSO MPC
næsten er traditionel MPC blot med begrænset kommunikationsgraf formår vi at kon-
struere en ny YOSO MPC protokol med den højeste sikkerhedsgaranti og dermed besvare
et essentielt spørgsmål omkring hvad der er muligt i YOSO modellen.
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Chapter 1

Background

In January 2008 the first practical application of Secure Multiparty Computation (MPC)
took place by facilitating a live sugar beet auction in Denmark [BCD+08]. This, somewhat,
famous event in the cryptography community was a culmination of research conducted
since Yao’s garbled circuits [Yao86] in 1986. One year later, in January 2009, another inge-
nious idea was proposed when Satoshi Nakamoto published a paper [Nak08] describing
the simple longest chain-idea that underpins the novel consensus mechanism which ap-
plications like Bitcoin and Ethereum [W+14] are build on. Fast-forward a decade and the
two technologies have created a synergistic e�ect where the rise of blockchain serves as
an enabler for many unresolved issues in MPC [GG17,CGJ+17] and, similarly, decades of re-
search of MPC protocols has been applied to meet some of the challenges in the realm of
blockchains [Lin17,GG18,RA23]. In this thesis we focus on a specific area of cryptography
which considers “blockchain-friendly” MPC protocols for general computation and the
communication within those protocols. This section provides the necessary background
and motivates the contributions presented in later sections.

1.1 Multiparty Computation

At a high level, an MPC protocol allows a set of parties to compute a function on their
joint inputs in a secure way. Security means, roughly speaking, that even when some
parties misbehave, they can neither disrupt the output to honest parties (correctness),
nor can they obtain more information from the computation than what is contained in
their individual inputs and outputs (privacy). Misbehaving parties are represented by
adversary types; semi-honest (passive) and malicious (active) where the semi-honest
adversary merely observes the state and messages received at corrupted parties but
must follow the protocol specification and the malicious adversary is, moreover, free to
arbitrarily change the messages on behalf of the corrupted parties.

Seminal results from the 1980s [Yao86, GMW87] showed that, under standard crypto-
graphic assumptions, any multi-party functionality can be securely computed in the
presence of a polynomial bounded and semi-honest adversary corrupting arbitrarily
many parties1. In [GMW87], it was proven that arbitrarily many corruptions by a mali-
cious adversary can only be tolerated if we are willing to relax the correctness property,

1This is also known as security with dishonest majority. Obviously, if all parties are corrupted the security
of the protocol is meaningless.
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give up fairness2 and settle for security-with-abort instead of guaranteed output delivery
(G.O.D.).

The situation is di�erent in the realm of information-theoretic (IT) security where there
are no restrictions on the adversary’s computational power. Here, [BGW88,CCD88] showed
that IT security is possible only in the setting of honest super-majority where the mali-
cious adversary may corrupt at most t < n/3 (t < n/2, if the adversary is semi-honest).
The protocol in [BGW88] enjoys perfect full security meaning there are no probability
of error (perfect security) and the output is guaranteed to arrive at the honest parties
(G.O.D.).

In [RB89], Rabin and Ben-Or relaxed the requirement of perfect security and instead
allowed for a negligible probability of error (statistical security) and, moreover, assumed
the availability of a broadcast channel3. In this setting, they proved that any function
can be computed with honest majority i.e. if a malicious adversary may corrupt at most
t < n/2. The same result was also achieved by [Bea92a] but with better e�ciency.

Often information theoretic protocols are preferred since they tolerate a computationally
more capable adversary and in general demonstrate good concrete e�ciency. Moreover,
protocols in the IT-setting are known to enjoy strong composability guarantees [KLR06]
as opposed to their computationally secure counterparts where composability without a
trusted setup (such as a common reference string (CRS)) is generally impossible [CF01].

In relation to the protocol’s degree of composability, a crucial distinction is made be-
tween two types of protocol execution. The stand-alone setting is where the protocol is
executed only once in isolation. All the results above were initially obtained by analyzing
the protocols in the stand-alone setting. And the concurrent setting that assumes the
protocol is run in a network concurrently with other, arbitrary protocols. There a count-
less examples of protocols where security does not remain intact when executed in the
concurrent setting [Lin03].

Protocols in the stand-alone setting may be analyzed using game-based approach, where
the security of a primitive is modelled as one or more games between a challenger and
the adversary, or using the simulation paradigm where a protocol emulates a trusted
third party (ideal functionality). [Can00] proved that the set of secure protocols in the
stand-alone setting is closed under a natural composition operation, namely, the so-
called subroutine substitution operation. This security framework is also known as se-
quential composability (e.g. [AL17]). To capture security of protocols in the concurrent
setting, the Universal Composability (UC) framework [Can01] is the method of choice.
Proving a protocol UC-secure is generally considered best-practice since the power of the
adversary resembles reality in a network with concurrent protocols but it also requires
a keen eye for designing the ideal functionality. UC secure protocols exist essentially for
any functionality in case of honest majority or with a trusted setup (fx CRS or public key
infrastructure (PKI)). Thus, achieving the same broad feasibility results as in the stand-
alone model. However, if no honest majority and no trusted setup is available there are
large classes of functionalities that simply cannot be UC-realized [CKL06].

2Fairness refers to the MPC property that either every party receives its output or no one does. Fairness is
impossible (in general) for protocols with dishonest majority in the malicious setting [Cle86].

3The assumption of broadcast is necessary due to the impossibility result of [FLM85].
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Many protocols (including the protocols behind the feasibility results above) assume
that each party in the MPC is able to provide input and obtain output from the computa-
tion. The client-server model [CDI05,DI06] refines the standard MPC model and separates
the parties into clients, that can provide input and obtain output, and servers, that are
responsible for the computation4. This allows for protocol analysis that depends only
on the number of computing servers e�ectively decoupling the clients from a�ecting
the communication complexity and security level of the protocol. One direct approach
of achieving security in the client/server model is to have clients share their inputs to
all servers (P1, ... , Pn), allowing the servers to compute the result using an appropriate
protocol ( [GMW87,BGW88,CCD88,RB89]) and send the result back to the clients. This ap-
proach, however, incurs a large overhead when the number of clients is small compared
to the number of servers. In fact, the communication complexity of such a protocol is at
least polynomial in n and is clearly infeasible to execute in large-scale networks where
the number of parties can reach thousands (or maybe millions).

One way to improve e�ciency in such large-scale networks is by forming random
sublinear-size server committees to do computation on behalf of the network. This idea
dates back to [Bra85]. Surprisingly, [GIOZ17] showed that even in the statistical setting it
is actually possible5 to tolerate semi-honest adaptive (see Section 1.3) corruption of up
to ≈ (1 −

√
0.5)n. In a nutshell, the protocol’s random coins and inputs induce a graph

of point-to-point communication channels between committee parties which in turn can
be traversed by the adversary to extend its corruption set. In [GIOZ17], this is modeled
as a probabilistic adversary that assigns to each subset of parties a probability that it
gets corrupted. Using this model, they prove that the bound is tight i.e. it is impossible
to tolerate t > (1 −

√
0.5)n in this setting. Their protocol relies on the use of indirec-

tion (so-called intermediaries) that ensures that the random parties are able to erase
their state before the adversary can meaningfully corrupt them. Interestingly, the same
asymptotic bound also crops up in the seminal work of [BGG+20] in the context of MPC
on permissionless blockchains. As we shall see next, this is no coincidence since many
consensus protocols perform the same kind of random sampling albeit weighted by the
stake in the system.

1.2 Permissionless Consensus

The literature on consensus is vast and dates back to the 1980s. The seminal work
of [PSL80] was aimed at designing algorithms to achieve interactive consistency6 (con-
sensus) in settings where faulty parties may display arbitrary behavior. Later, a colorful
metaphor by Lamport [LSP82] gave name to these Byzantine Fault Tolerant (BFT) algo-
rithms. Designing BFT algorithms has subsequently become a central topic in distributed
computing. The choice of communication model is central to the limitations in the
design-space of BFT algorithms. [PSL80] showed that achieving consensus in the syn-
chronous model is possible if and only if at most t < n/3 of the n parties are byzantine

4Note that a party can be both a client and server. A setting where all parties are both client and servers,
again, yields the standard MPC model

5Assuming erasures—the party’s ability to erase its past state (see Section 1.3).
6The first BFT algorithms were suggested for coordination of interacting processes in airplanes. Robert

Shostak suggested the phrase interactive consistency before BFT became the used label.
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but the algorithm must run in at least t+1 rounds [FL81,FLM86]. In the asynchronous set-
ting, a (deterministic) BFT algorithm that solves consensus (even for t = 1 crash-failure)
must run infinitely [FLP85]. This gave rise to the partial synchronous model of [DLS84]
that is a now popular sweet-spot between synchrony and asynchrony (e.g. [LAM98,CL02]).
Using signature-chains (PKI-assumption), [DS83] showed that consensus is possible with
honest majority (t < n/2) in the synchronous model but still subject to the lower-bound
of t + 1 rounds.

Until 2008, the consensus problem was only studied in the permissioned setting where
all involved parties are known to each other at the outset of the protocol execution. What
di�erentiate the most prominent blockchain protocol Bitcoin [Nak08] from the above is
that it operates in the permissionless setting, i.e. it is a protocol for establishing con-
sensus over an unknown set of parties that anyone can join. It is clear that classical
results for the permissioned setting will not carry over to the permissionless setting di-
rectly. As an example consider the lower bound of [DS83] that establishes a minium of
t + 1 rounds for solving consensus but if the number of faulty parties t is unbounded
then consensus is seemingly impossible. The unbounded set of parties also gives the
adversary the chance to gain disproportional large influence in the system by creating
large number of pseudonymous identities (sybil attack). Mechanisms for obtaining sybil
resistance, therefore, lies at the heart of any permissionless consensus algorithm. The
two most well-known categories of sybil resistance are proof-of-work (PoW) and proof-
of-stake (PoS). A key ingredient in a sybil resistance mechanism for a permissionless
network is that a party’s influence on the protocol execution is determined by its access
to some limited resource. In PoW, all parties (miners) engage in a lottery where each
party is selected proportional to its access to compute while in PoS each party is se-
lected to act with probability proportional to its stake in the system. Importantly, this is
very di�erent from regular cryptographic protocols where the all parties have the same
“power”.

Roughly, Bitcoin [Nak08] can be seen as an example of a PoW sybil resistance mecha-
nism combined with the longest-chain rule. This combination makes consensus possible
in the permissionless setting if more than half7 of the computing power is controlled
by honest nodes. Many frameworks [PSs17, GKL15] are dedicated to the analysis of this
combination and it remains the most prominent in the category of PoW. The other sybil
resistance mechanism in the permissionless setting is PoS which is, arguably, a much
more heterogenous category. Notable examples of PoS based on the longest-chain rule
is [DGKR18,DPS19] while other approaches have combined PoS with classic BFT-like pro-
tocols ( [GHM+17, YMR+19]).

PoS sybil resistance mechanisms come in di�erent shapes and forms where all allow a
party (or a set of parties) to identify as the leader for a given time slot. Arguably, the sim-
plest being weighted round robin or “follow the satoshi” that deterministically chooses a
single leader as a function of the publicly-accessible randomness. The downside of this
approach is that it does not provide any privacy for the leader and, thus, it can be sub-
ject to denial of service (DoS) attacks before it has carried out its protocol duties. Single
Secret Leader Election (SSLE) is an interesting new area of research [BEHG20,CFG22] that
addresses this specific concern. Still, the approach based on a verifiable random func-

7Note, neither PoW nor PoS consensus circumvent the [FLP85]-impossibility result since both rely on strong
setup assumptions.
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tion (VRF) ( [CM19, GHM+17, DGKR18]) remains the most well-understood sybil resistance
mechanism even if the protocol has to take into account the variance8 in the number of
selected leaders.

1.3 The Adaptive Setting

Earlier, in the outline of MPC and permissionless consensus protocols, we assumed that
the adversary chooses the set of corrupted parties at the outset of the protocol (static
adversary). This is clearly an unrealistic assumption. On the other hand, the last example
above illustrated that even single leader election becomes much harder when dealing
with an adaptive adversary that can mount DoS attacks (or even fully corrupt) parties dur-
ing the protocol execution. However, notice that in the case of a private sybil resistance
mechanism even an adaptive adversary cannot do better than randomly guessing.9

Algorand [CM19,GHM+17] popularized the private VRF-based leader election mechanism
(cryptographic sortition) that together with a specific BFT algorithm constitute a PoS con-
sensus protocol secure against an adaptive adversary. In fact, this consensus protocol
can withstand an even more powerful adversary that can corrupt every party in the pro-
tocol eventually but is subject to a corruption rate of t < n/3 in each round.10 This is
known as the mobile adversary [OY91] and it is strictly stronger than its adaptive coun-
terpart that may also adaptively corrupt a party at any given round but is stuck with
this decision until the end of the protocol execution. As such, the mobile adversary can
dynamically move between parties and this greatly limits the design-space of protocols
that can withstand it. The specific BFT algorithm of Algorand is called BA∗ and is a modi-
fication of the classic protocol of [FM88]. The resulting protocol has the property of being
player replaceable which means that a new set of parties (committee) can execute each
round of the protocol. Indeed, this property combined with the private leader election
are necessary if the protocol is to remain resilient towards a mobile adversary as a party
that plays a key role in multiple rounds are an easy target for the mobile adversary.

Ostrovsky and Yung [OY91] were not only considering the problem of designing resilient
(proactive) BFT algorithms but rather the harder problem of long-running MPC where the
protocol may carry secret state that must not fall in the hands of the adversary. In this
setting, an execution is divided in rounds that are grouped into epochs. The adversary
can “move” at the onset of every epoch by choosing a new set of parties to corrupt and
remains static for the remainder of the epoch. Former corrupted parties are “rebooted”
into a clean initial state (or, equivalently, update their internal state and securely erase
past state). In [OY91], it is proven that there exists a fully secure proactive MPC protocol
in the presence of an active mobile adversary with 1-round epochs but allowing only a
small constant fraction of corrupted parties. Subsequent works [HJKY95, ADN06, BELO15,

8The VRF-based approach can be parameterized for a single unique leader in expectation but each slot
may yield zero or multiple leaders. The underlying consensus protocol needs to cater to that variance.

9This is under the assumption that an adversary cannot withdraw a message upon corrupting the leader
and that the adversary generally is unable to “front-run” the leader. The latter issue can be partially
addressed by the use of VDFs [BBBF18].

10This is a simplification. Actually, [CM19] considers the amount of stake owned by honest parties should
be more than 2/3.
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ELL20] explored more e�cient protocols with other security guarantees under further
restrictions on the mobile adversary, but still fell short of 1-round epochs or achieving
the optimal corruption threshold (t < n/3) of [BGW88].

1.4 YOSO MPC

Departing from player replaceability and anonymous committees in permissionless set-
tings, the notion of You Only Speak Once (YOSO) MPC (introduced in [GHK+21]) takes
proactive security one step further, by having a freshly elected anonymous committee
of parties execute each round of the protocol. As an extra restriction, parties are only
allowed to send messages once (i.e. when they execute their role in the protocol). With
the introduction of the YOSO model, the authors explicitly distinguished between two
role-related aspects to solve. The first is the role assignment which deals with the send-
ing of messages to parties selected to perform future roles of a protocol while hiding
the identities of such parties. The other aspect is role execution which focuses on the
execution of the specific protocol that runs on top of the role assignment mechanism,
i.e., what messages are sent to which roles and what specification the protocol imple-
ments. In [GHK+21], the YOSO model was introduced for studying role execution between
abstract roles which can each speak only once. Later, these roles are mapped to physical
machines using role assignment. The work of [GHK+21] showed that given role assign-
ment in a synchronous model, any well-formed ideal functionality can be implemented in
the YOSO model with statistical security against malicious adaptive corruption of t < n/2
machines.

In the YOSO model, the fact that each round is executed by anonymous parties elected
at random makes the adversary inherently probabilistic. In particular, the threshold of
t < n/2 for secure YOSO MPC of [GHK+21] does not apply for constant n. Apart from not
allowing for worst-case corruption due to variance in sampling, the YOSO model relies
on a subtle but strong assumption, namely, that the ideal channels can reach a role in
an arbitrary future round. In [GHK+21], the authors also presented an e�cient, com-
putationally secure protocol based on [CDN01] and on-demand Beaver triple [Bea92a]
generation relying on a trusted setup. However, recent work [KRY22,BDO22] improved on
this state of a�airs by achieving G.O.D. in a constant number of rounds without relying
on this trusted setup.

Fluid MPC [CGG+21] is a variant of this model where role assignment is abstracted away
and where parties cannot access ideal channels to parties in an arbitrary later round.
Also, the model may be configured such that parties may act in more than one round
before being substituted. However, the results presented in [CGG+21] fall short of full se-
curity (they do not achieve G.O.D.). An interesting variation was shown in SCALES [AHKP22],
which allows for special clients who provide an input and receive an output to act in more
than one round (while server committees may only act once), focusing on protocols with
computational security.

7



Chapter 1 Background

1.5 Role Assignment

Cryptographic protocols traditionally rely on secure channels among parties whose iden-
tities are publicly known. However, while knowing parties’ identities makes it easy to
construct secure channels, it also makes it easy for an adaptive (or mobile) adversary to
corrupt parties as a protocol execution proceeds.

Role assignment was first introduced in [BGG+20] and further developed in [GHK+21].
This task consists of sending a message to an abstract role R at a given point in the
future. A role is just a bit-string describing an abstract role, such as R =“party number
j in round sl of the protocol Γ”. Behind the scenes, there is a mechanism that samples
the identity of a random party Pi and associates this machine to the role R. Such a
mechanism allows anyone to send a message m to R and have m arrive at Pi chosen at
some point in the future to act as R. A crucial point is: no one should know the identity
of Pi even though Pi learns that it is chosen to act as R.

The approaches proposed in [BGG+20, GHK+21, GHM+21] for realizing role assignment
all use an underlying Proof-of-Stake (PoS) blockchain (e.g. [GHM+17, DGKR18]). On a
blockchain, a concrete way to implement role assignment is to sample a fresh key pair
(skR, pkR) for a public key encryption scheme, post (R, pkR) on the blockchain and some-
how send skR to a random Pi without leaking the identity of this party to anyone. Once
(R, pkR) is known, every party has a target-anonymous channel to Pi and is able to en-
crypt under pkR and post the ciphertext on the blockchain. Notice that using time-lock
puzzles (or similar notions) is not su�cient for achieving this notion, since only the party
or parties elected for a role should receive a secret message encrypted for that role, while
time-lock puzzles allow any party to recover the message if they invest enough computing
time.

A shortcoming of the approaches of [BGG+20,GHK+21,GHM+21] is that, besides an under-
lying blockchain, they require an auxiliary committee to aid in generating (skR, pkR) and
selecting Pi . In the case of [BGG+20], the auxiliary committee performs cheap operations
but can adversarially influence the probability distribution with which Pi is chosen. In
the case of [GHK+21, GHM+21], the auxiliary committee cannot bias this probability dis-
tribution but must perform very expensive operations (using Mix-Nets or FHE; see also
Section 2.1). Moreover, these approaches have other caveats:

• they are incompatible with e�cient techniques for publicly proving that encrypted
secret shares are valid.

• they can only be used to select Pi to act as R according to a probability distribution
already known at the time the auxiliary committee outputs (R, pkR). Hence, they
only allow sending messages to future committees that have been recently elected.
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1.6 Extreme Resilience leading to Improved E�ciency

A natural side-e�ect of a protocol being resilient towards a powerful mobile adversary,
is that the same protocol can tolerate a high churn rate; any party may join the network,
execute a single round as a role in the protocol and then leave again. As such, YOSO MPC
epitomizes the permissionless character of large-scale networks such as blockchain en-
vironments. But these networks may have thousands or even millions of parties making
even the most e�cient adaptive MPC protocols prohibitively expensive to execute in
practice. Fortunately, the role assignment mechanism described above helps avoid the
quadratic dependency on network size N that arise in the communication complexity
of standard protocols. This is done by sampling small, anonymous committees of size
n � N to carry out the computation on behalf of a network. Provided that the size of
the sampled committee is large enough, this guarantees that even if the adversary may
corrupt Ω(N) parties, the honest/dishonest-distribution of committee members will stay
within the tolerated threshold with all but negligible probability. This makes the YOSO
model attractive, not only as a framework for analyzing extremely resilient MPC pro-
tocols, but also as a means to achieve MPC protocols with communication that scales
sub-linearly with the number of parties N and, thus, are e�cient both asymptotically
and in practice.
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Contributed Work

In this thesis we explore the emerging domain of large-scale MPC using ephemeral
servers. As discussed above, this field of research o�ers several new and interesting
open problems but at the same time the domain is rooted in a long history of research
in MPC and consensus protocols. In this section we first provide a brief overview of the
contributions and then progress to a more detailed treatment of each publication and
the corresponding related work.

Encryption to the Future In Encryption to the Future (Chapter 6) we establish a new
paradigm for sending secret messages to future (possibly anonymous) committees with
applications to role assignment. Existing protocols for role assignment [BGG+20,GHM+21,
GHK+21] su�er from sub-optimal corruption threshold, use of expensive operations or
generally rely on interaction with auxiliary committees. Moreover, other protocols that
use role assignment as an ideal resource often assume non black-box access to the
underlying encryption keys for authentication which strays from the attractive notion of
having access to a simple point-to-point channel to a future committee member. Finally,
the same ideal resource is parameterized with a future horizon which, roughly, decides
how long channels are “alive”. But the ephemeral nature of nodes in this setting induces
existing role assignment protocols to support only small future horizons even if allowing
for interaction with auxiliary committees.

Taking a step back from existing approaches, we define the primitive Encryption to the
Future (EtF) with the aim of obtaining non-interactive solutions to the role assignment
problem. We define security in the context of a PoS blockchain execution with an under-
lying lottery predicate selecting the receiving party. We distinguish between “near-future”
(encryption to the current winner—ECW) and “far-future” EtF depending on whether the
lottery is conducted wrt. known or unknown stake distribution, respectively. We improve
existing role assignment protocols by constructing ECW protocols without interaction us-
ing standard assumptions and show a general EtF protocol that support receivers in the
far future but with minimal use of auxiliary committees. We show that role assignment
can be realized using ECW and we define a central primitive for this; a corresponding
authentication mechanism we label Authentication from the Past (AfP).

YOLO YOSO In this work we focus on designing publicly verifiable secret sharing
schemes (PVSS) in the YOSO model [GHK+21]. At the heart of any PVSS is a mechanism
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that allows everybody to verify that shares have been correctly distributed—a share va-
lidity check. Standard e�cient PVSS protocols require that the identity of the receivers
of shares are known in order to check share validity which is clearly incompatible with
the YOSO model. Moreover, while existing PVSS protocols in the YOSO model do share
structured messages that must be verified, the underlying role assignment protocols do
not take advantage of this structure and protocols instead resolve to expensive generic
non-interative zero knowledge proof of encrypted shares validity.

In YOLO YOSO we construct two PVSS schemes: the first (HEPVSS) is a generic PVSS scheme
that achieves e�cient proofs of encrypted shares validity from any IND-CPA additively
homomorphic encryption scheme. The other DDH-based construction (DHPVSS) has a
highly optimized proof based on the so-called SCRAPE test [CD17] and incurs a com-
munication overhead of only 2 group elements. Both constructions also exhibit e�cient
proofs of correct decryption used when reconstructing the secret and can be extended to
additionally prove that the shared value is the one corresponding to a public ciphertext
(proof of resharing).

Apart from the e�ciency gains in regular PVSS protocols, we also bring these improve-
ments into the realm of the YOSO model. We do this by first introducing a new an simple
ECW scheme that improves on the existing schemes by having ciphertexts that are linear
in the number of receivers (not in the network size). The ECW scheme requires a setup
phase where a mixnet shu�es ephemeral encryption keys, however, the scheme has the
immediate downside of linking a encryption key to a party identity during authentica-
tion. Thus, the setup has to either support multiple authentications (re-usable) or rely
on a (pre-processed) set of shu�ed encryption keys. Finally, we instantiate the PVSS
constructions on our newly developed ECW scheme along with a resharing protocol al-
lowing for parties to e�ciently “keeping a secret alive”—a core component of YOSO MPC
protocols [BGG+20].

Layered MPC The seminal work of [OY91] introduced the concept of a mobile adver-
sary that is able to compromise all parties but is limited to to a threshold of parties at
any given time. The authors also put forth a protocol with full (perfect and G.O.D.) secu-
rity in the presence of such an adversary albeit tolerating only a small constant fraction
of corrupted parties at any given time instead of the optimal corruption threshold of
BGW [BGW88] (t < n/3). In this work we investigate the possibility of building MPC proto-
cols achieving full security against an adaptive rushing adversary while maintaining the
optimal corruption threshold of t < n/3.

Recent work on MPC with ephemeral committees investigate the concept of having a
freshly elected committee of parties execute each round of the protocol with the re-
striction that they can only speak once (when they execute their part in the protocol).
Protocols in the YOSO model [GHK+21] are generally considered secure against a mo-
bile adversary but the model relies on access to ideal target-anonymous channels and,
moreover, the random selection of parties results in a probabilistic adversary which is
incompatible with settings where n and t are constant. The model of Fluid MPC [CGG+21]
revolves around the same theme of outsourcing the computation to a set of ephemeral
committees and while the model does not dictate communication through ideal target-
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anonymous channels, the protocols are in the statistical setting and only enjoy security-
with-abort (not G.O.D.).

As a tool in our investigation, we define layered MPC which captures the most stringent
setting in the intersection of the mobile adversary and the YOSO models. We provide a
formalization of this model and show that layered MPC protocols can be analyzed within
well established frameworks such as the real/ideal world paradigm [Can00, Gol09] and
Universal Composability [Can01]. We show that a secure layered MPC protocol is also
secure against a maximally mobile adversary [OY91], that moves after every round. And
with the tool of layered MPC we answer in the a�rmative the main question of achieving
full security while maintaining optimal corruption threshold t < n/3 (see Section 2.3).
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2.1 Encryption to the Future—Chapter 6

In [CDK+22] (ASIACRYPT 2022) we investigate solutions to the role assignment problem
(see Section 1.5). Taking a step back from specific solutions to this problem, we strive
to obtain non-interactive solutions to encrypting to a future role with IND-CPA security
without the aid of an auxiliary committee. To this end, we introduce a new paradigm for
sending secret messages to future (possibly anonymous) unknown committees. At the
heart of this paradigm is a cryptographic primitive named Encryption to the Future (EtF).
We define this primitive in the context of a blockchain, which determines the passing of
time, and a lottery, that selects parties to receive a secret message at some point in the
future.

Using this paradigm we progress to address the main shortcomings of existing ap-
proaches to role assignment:

• Interaction with Auxiliary Committees: They require an auxiliary committee to aid
in generating ephemeral keys and selecting a machine to perform a role. In the case
of [BGG+20], the auxiliary committee performs cheap operations but can adversar-
ially influence the probability distribution with which a party is chosen for a given
role. In the case of [GHM+21], the auxiliary committee cannot bias this probability
distribution but must perform very expensive operations (Mix-Nets or FHE).

• Communication restricted to “Near-Future”: They can only be used to select a
party to act as a role according to a probability distribution already known at
the time the auxiliary committee outputs the ephemeral key pair. Hence, both
[BGG+20, GHM+21] only allow sending messages to future committees that have
been recently elected. We explicitly consider this weaker setting—where we want
to communicate with a “near-future” committee (i.e., whose distribution is known)—
and dub it “Encryption to the Current Winner1” (ECW).

We improve on solutions relying on interaction with an auxiliary committee and shed
light on the hardness of achieving a fully (“far-future”) non-interactive solution. We also
discuss how to extend our approach to IND-CCA2 security and how to allow winners of
a role to authenticate themselves when sending a message, achieving both goals using
standard assumptions.

Apart from defining this primitive and showing constructions based on previous works,
we propose constructions based on new insights and investigate limits of EtF in di�erent
scenarios. Our general construction for EtF works by lifting a weaker primitive, namely
encryption for the aforementioned “near-future” setting, or ECW. Before providing further
details, we summarize our contributions as follows:

Definition of EtF: A definition for the notion of Encryption to the Future (EtF) in terms of
an underlying blockchain and an associated lottery scheme that selects parties in
the future to receive messages for a role. We study the strength of EtF as a primitive
and prove that a non-interactive EtF scheme allowing for encryption towards parties

1The word “winner” here refers to the party who is selected to perform a role according to the underlying
lottery of the PoS blockchain (see remainder of introduction).
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selected at arbitrary points in the future implies a flavor of witness encryption for
NP over a blockchain (referred to as BWE).

Non-Interactive ECW: A novel construction of Encryption to the Current Winner (ECW),
i.e. EtF where the receiver of a message is determined by the current state of the
blockchain, which can be instantiated without interaction with auxiliary committees
from standard assumptions via a construction based on generic primitives.

EtF with minimal use of auxiliary committees: A transformation from ECW to EtF
through an auxiliary committee holding a small state, i.e., with communication com-
plexity independent of plaintext size |m| (in contrast to [BGG+20,GHK+21,GHM+21]
where a committee’s state grows with |m|).

Role Assignment from ECW: An application of ECW as a central primitive for realizing
role assignment in protocols that require it (e.g. [BGG+20,GHK+21,GHM+21]).

Our EtF notion arguably provides a useful abstraction for the problem of transferring
secret states to secret committees. Our ECW construction is the first primitive to realize
role assignment without the need for an auxiliary committee. Moreover, building on new
insights from our EtF notion and constructions, we show the first protocol for obtain-
ing role assignment with no constraints on when parties are chosen to act as the role.
While our protocol uses auxiliary committees, it improves on previous work by only re-
quiring a communication complexity independent of the plaintext length. We elaborate
on our results, discussing the intuition behind the notion of EtF, its constructions and its
fundamental limits.

Related Work

Type Scheme Communication Committee? Interaction?

ECW

CaBKaS [BGG+20] O(1) yes yes
RPIR [GHM+21] O(1) yes yes
cWE (MS-NISC) (Sec. 6.3.2) O(N) no no*
cWE (GC+OT) (Sec. 6.3.2) O(N) no no*

EtF
IBE (Sec. 6.6) O(1) yes yes
WEB [GKM+22] O(M) yes yes
Full-fledged WE O(1) no no

Table 2.1: The column “Committee?” indicates whether a committee is required. The column
“Communication” refers to the communication complexity in terms of the number of
all parties N , and the number of plaintexts (called deposited secrets in [GKM+22])
M of a given fixed length. We denote by an asterisk non-interactive solutions that
require sending a first reusable message during the initial step.

Encryption to the Current Winner (ECW). We recall that ECW is an easier setting than
EtF: both the stake distribution and the randomness extracted from the blockchain are
static and known at the time of encryption. This means that all of the parameters except
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the secret key of the lottery winner are available to the encryption algorithm. We now
survey works that solved this problem and compare them to our solutions:

• “Can a Blockchain Keep a Secret?" (CaBKaS) [BGG+20]. The work of [BGG+20]
addresses the setting where a dynamically changing committee (over a public
blockchain) maintains a secret. The main challenge in order for the committee to
securely reshare its secret can be summarized as: how to select a small committee
from a large population of parties so that everyone can send secure messages to
the committee members without knowing who they are? The solution of [BGG+20]
is to select the “secret-holding” committee by having another committee, a “nom-
inating committee”, that nominates members of the former (while the members of
the nominating committee are self-nominated). One can see the nominating com-
mittee as a tool providing the ECW functionality. A major caveat in such a solution,
however, is that to guarantee an honest majority in the committees, [BGG+20] can
only tolerate up to t ≈ 0.29n corrupted parties. This is because corrupted nomina-
tors can always select corrupted parties, whereas honest nominators may select
corrupted parties by chance. We can improve this through our non-interactive
ECW: we can remove the nominating committee and just let the current committee
ECW-encrypt their secret shares to the roles of the next committee.

• “Random-Index PIR” (RPIR) [GHM+21]. The constraint on corruption ratio
of [BGG+20] was subsequently solved in [GHM+21] via random-index private
information retrieval (RPIR). RPIR allows a client to retrieve a random index from
a database in such a way that the servers holding the database do not learn
what index was retrieved. The solution of [GHM+21] consists in running an RPIR
protocol with a database holding the public keys of all parties and having parties
in a committee execute the client using MPC, outputting re-randomized versions of
the public keys output by RPIR. While RPIR improves on [BGG+20] (not requiring a
nominating committee and tolerating up to 1/2 of corrupted parties), its construc-
tions are ine�cient, either based on Mix-Nets or Fully Homomorphic Encryption
(FHE). The construction based on Mix-Nets uses k shu�ers, where k is the security
parameter, and has an impractical communication complexity of O(nk2), where n is
the number of public keys that each shu�er broadcasts. The FHE-based construc-
tion gives a total communication complexity of O(k3) where O(k) is the length of
an FHE decryption share.

WE over commitments (cWE). Benhamouda and Lin [BL20] defined a type of witness
encryption, called “Witness Encryption for NIZK of Commitments”. In their setting, parties
first commit to their private inputs once and for all. Later, an encryptor can produce a
ciphertext so that any party with a committed input that satisfies the relation (specified
at encryption time) can decrypt. More accurately, who can decrypt is any party with a
NIZK showing that the committed input satisfies the relation. The authors construct this
primitive based on standard assumptions in asymmetric bilinear groups.

In our work, we generalize the encryption notion in [BL20], formalize it as cWE and finally
use it to construct ECW. While the original construction of [BL20] fits the definition of cWE,
we observe it is an overkill for our application. Specifically our setting does not require
NIZKs to be involved in encryption/decryption. We instead give more e�cient instanti-
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ations based on two-party Multi-Sender Non-Interactive Secure Computation (MS-NISC)
protocols and Oblivious Transfer plus Garbled Circuits.

Encryption to the Future (EtF). The general notion of EtF is significantly harder to realize
than ECW (as we show in Section 6.7). Below we discuss natural ideas to obtain EtF. They
can be seen as illustrating two extremes where our approach (Section 6.6) lies in the
middle.

• Non-Interactive: Using Witness Encryption [GGSW13]: One trivial approach to re-
alize EtF is to use full-fledged general Witness Encryption [GGSW13] (WE) for the
arithmetic relation R being the lottery predicate such that the party who holds
a winning secret key sk can decrypt the ciphertext. However, constructing a gen-
eral witness encryption scheme [GGSW13] which we can instantiate reliably is still
an open problem. Existing constructions rely on very strong assumptions such as
multilinear maps, indistinguishability obfuscation or other complexity theoretical
conjectures [BIOW20]. The challenges in applying this straightforward solution are
not surprising given our result showing that EtF implies a flavor of WE.

• Interactive: Multiple Committees and Continuous Executions of ECW: A simple way
to achieve an interactive version of EtF is to first encrypt secret shares of a mes-
sage towards members of a committee that then re-share their secrets towards
members of a future anonymous committee via an invocation of ECW (in our in-
stantiations or those in [BGG+20] and [GHM+21]). This is essentially the solution
proposed in CaBKaS [BGG+20] where committees interact in order to carry a se-
cret (on the blockchain) into the future. Notice that, for a fixed security parameter
and corruption ratio, the communication complexity of the protocol executed by
the committee in this solution depends on the plaintext message length. On the
other hand, for a fixed security parameter and corruption ratio, the communication
complexity of our committee-based transformation from ECW to EtF is constant.

Other works. Using blockchains in order to construct non-interactive primitives with
game-based security has been previously considered in [GG17]. Other approaches for
transferring secret state to future committees have been proposed in [GKM+22], although
anonymity is not a concern in this setting. On the other hand, using anonymity to over-
come adaptive corruption has been proposed in [GGJ+15], although this work considers
anonymous channels among a fixed set of parties.
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2.2 YOLO YOSO—Chapter 7

In [CDGK22] (ASIACRYPT 2022) we address the issue of constructing simple ECW schemes
amenable to e�cient publicly verifiable secret (re)sharing (PVSS) protocols. Our contri-
butions are summarized as follows:

Simple Encryption to Future (ECW): We construct a simple ECW scheme based on a
mixnet and an additively homomorphic public key encryption scheme. Our scheme
requires a setup phase where a mixnet is used but this setup can be either done
once and reused for multiple times (using our reusable AFP) or preprocessed so
that future encryptions can be done non-interactively. Our ECW ciphertexts have
size linear only in the number of parties who open them.

Reusable Private Authentication from the Past (AFP): We show how to reuse our ECW
setup even when a party performs multiple rounds of AFP, i.e. proving that it was
selected to decrypt a given ECW ciphertext. This scheme guarantees that the adver-
sary cannot predict which parties can decrypt future ECW ciphertexts while keeping
the setup constant size.

Generic E�cient PVSS: We construct a generic PVSS protocol with e�cient proofs of
encrypted shares validity from any IND-CPA additively homomorphic encryption
scheme with an e�cient proof of decryption correctness without any generic zero
knowledge proofs, which we call HEPVSS. This general result sheds new light on the
construction on e�cient PVSS schemes.

New PVSS with Minimal Overhead: Moreover, we introduce a new PVSS construction
named DHPVSS with constant-size proof of sharing correctness which, as far as
we know, is the first PVSS to achieve this. More precisely, the PVSS communicates
only the n encrypted shares (which are one group element each) and two field el-
ements for the proof. This may be of independent interest for other applications,
such as randomness beacons.

E�cient PVSS for Anonymous Committees based on ECW: We instantiate our PVSS con-
structions based on our ECW and AFP schemes along with a protocol for resharing
a secret towards a future random anonymous committee. This allows for parties to
keep a secret alive, which is a core component of YOSO MPC.

Related Work

Encryption to the Future: Although, the protocol of [CDK+22] is constructed from simple
tools like garbled circuits and oblivious transfer (after a setup phase), each encryption
still requires communication and computational complexities linear in the total number
of parties. The construction of [CDK+22] relies on a relaxation of Witness Encryption
called Witness Encryption over Commitments (cWE), where one can encrypt a message
towards the holder of an opening of a commitment to a valid witness of an NP relation.
More specifically, we are interested in the case of Encryption to the Current Winner (ECW),
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where the data needed to determine the party selected to perform a role is already in the
underlying blockchain (but still does not reveal who the party is). In order to realize ECW,
each party commits to a witness of a predicate showing they win a lottery for the current
parameter. A party encrypting towards a role simply encrypts the message towards the
party who has such a committed witness to winning the lottery for a current parameter. A
party who wins can decrypt the message encrypted towards the role using their witness.
They can perform Authentication from the Past (AfP) on a message by doing a signature
of knowledge on that message using their lottery winning witness.

The ETF constructions of [CDK+22] su�er from a major drawback: every encryption to-
wards an anonymously selected party has communication complexity O(nκ) where n is
the total number of parties and κ is the security parameter. Even if preprocessing is
allowed, these constructions still require the sender to publish n cWE ciphertexts or to
have the eligible receivers perform a round of anonymous broadcast that is only us-
able for a single encryption. On the other hand, the AfP constructions only have O(κ)
communication complexity.

PVSS Compatibility: A drawback in current role assignment [BGG+20,GHM+21,CDK+22]
is that they are not amenable to publicly verifiable secret (re)sharing. Both in YOSO
proactive secret sharing [BGG+20] and YOSO MPC [GHK+21], the committees executing
each round of the protocol do not simply send unstructured messages but shares of a
secret that must be verified. While this can be done via generic non-interactive zero
knowledge proofs of encrypted shares validity, such a solution incurs very high compu-
tational and communication costs.

Publicly Verifiable Secret Sharing (PVSS): An integral part of YOSO protocols is hav-
ing each committee perform PVSS towards the next committee. A PVSS scheme allows
for any party to check that an encrypted share vector is valid. A number of PVSS con-
structions are known [Sta96, FO98, Sch99, BT99, RV05, HV09] that di�erent techniques for
proving that a vector of encrypted shares are valid shares of a given secret. Recently,
the SCRAPE [CD17] and ALBATROSS [CD20] PVSS schemes have significantly improved on
the complexity of such schemes by making the share validity check and reconstructions
procedures cheaper than previous works. While these works are based on number the-
oretical assumptions, a recent work has shown how to e�ciently build PVSS from lattice
based assumptions [GHL21]. These works are not fit for the YOSO model because they
require the parties to know the identities (or rather the public keys) of the parties receiv-
ing the shares when checking share validity, precluding (re)sharing towards anonymous
parties. A key part of this work is that we explore the fact that the share validity check
of SCRAPE can be modified to work regardless of the public keys used to encrypt the
shares.
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2.3 Layered MPC—Chapter 8

In [DKI+23] (CRYPTO 2023) we investigate the feasibility of perfect full security against a
rushing adaptive adversary with optimal threshold (t < n/3). This question was originally
settled in BGW [BGW88] but, inspired by the mobile adversary of [OY91] and recent line of
work on MPC with dynamic committees [GHK+21,CGG+21,AHKP22], we ask again the same
question albeit in the more challenging setting of MPC with dynamic committees.

As a tool in this investigation, we define layered MPC which captures the most stringent
setting in the intersection of the mobile adversary and the YOSO models. In layered MPC,
parties communicate through a directed layered graph of d layers corresponding to each
protocol round. Each round is executed by a unique set of n parties sitting at a layer,
which is disjoint from all other sets of parties in other layers. Parties in one layer can
only receive messages from parties in the immediately previous layer and send messages
to the parties in the immediately next layer. We consider an active, adaptive, rushing
adversary that corrupts up to t out of n parties in each layer. We write (n, t, d)-layered
MPC as shorthand for a layered MPC protocol with d layers (i.e. rounds) of n parties out
of which t may be corrupted. We provide a formalization of this model and show that
layered MPC protocols can be analyzed within well established frameworks such as the
real/ideal world paradigm [Can00,Gol09] and Universal Composability [Can01].

Layered MPC is similar to maximally-Fluid MPC [CGG+21] with parties only executing one
round. We show that a secure layered MPC protocol is also secure against a maximally
mobile adversary [OY91], that moves after every round. In comparison to YOSO [GHK+21],
layered MPC imposes stronger restrictions on honest parties, who cannot receive a mes-
sage from a party in an arbitrary past committee or send a message to a party in an arbi-
trary future committee. Moreover, similar to Fluid MPC, the adversary is not restricted to
probabilistic corruptions but is limited to corrupting t out n parties in each layer, allowing
for threshold-optimal protocols.

Main Results. In Section 8.3 we construct basic primitives that help realize layered VSS
based on CNF2 (replicated) secret sharing. We present a nontrivial adaptation of a VSS
protocol of Gennaro et al. [GIKR01] to the layered setting. The main challenge is to elim-
inate the repeated interaction between the parties and the dealer, which is not possible
in the layered setting. While CNF-based protocols scale exponentially with n, they are
simpler than their Shamir-based counterparts that we will present next, and can have
e�ciency advantages for small values of n, especially when settling for computational
security.

Theorem 2.1 (CNF-Based Layered VSS). For any n, t such that t < n/3, and d ≥ 5, there
exists an (n, t, d)-layered MPC protocol realizing CNF-VSS. For d = O(1) and secrets of
length `, the protocol requires ` · 2O(n) bits of communication, counting both point-to-
point messages and broadcast. When settling for computational security with perfect
correctness and using a black-box PRG with seed length λ, there is a protocol with λ ·
2O(n) + O(n`) bits of communication.

2In CNF-based secret sharing, the secret is first split into
(
n
t

)
additive shares–a share rT for each set T ⊂ [n]

of size t–and party i receives all shares rT such that i 6∈ T .
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In Section 8.4 we build on the above VSS protocol to obtain a general layered MPC pro-
tocol based on CNF secret sharing. The protocol applies to layered arithmetic circuits,
in which each layer of the circuit only takes inputs from the previous layer. Every cir-
cuit of depth D can be converted to a layered circuit with D layers, incurring at most a
quadratic but typically (nearly) linear overhead to the circuit size. Building on a constant-
round protocol from [DI05], in Section 8.7 we describe how to amortize the overhead of
CNF secret sharing by settling for computational security.

Theorem 2.2 (CNF-Based Layered MPC). Let f be an n-party functionality computed by a
layered arithmetic circuit C over a finite ring, with D layers and M gates. Then, for any
t < n/3, there is an (n, t,O(D))-layered MPC protocol for f . The communication consists
of 2O(n) ·M ring elements. Alternatively, settling for computational security with perfect
correctness and using a black-box PRG with seed length λ, there is a (n, t,O(1))-layered
MPC protocol for a Boolean circuit (i.e., the ring isF2) with M gates with λ·2O(n)+O(n5 ·M)
bits of communication.

While the CNF-based protocols are relatively simple and have concrete e�ciency benefits
for small values of n, they do not yield a general feasibility result that scales polynomially
with n. In Section 8.5 we establish such a result using (the bivariate version of) Shamir’s
secret-sharing scheme.

Theorem 2.3 (E�cient Layered MPC). Let f be an n-party functionality computed by a
layered arithmetic circuit C over a finite field F, with D layers and M gates. Then, for
any t < n/3, there is a polynomial-time (n, t,O(D))-layered MPC protocol for f . More
concretely, the communication consists of M · O(n9) field elements.

Further, in Section 8.6, we present a computationally secure, e�cient layered protocol
that achieves G.O.D. against adversaries who can corrupt t < n/2 parties in each layer.

Theorem 2.4 (E�cient Layered MPC for t < n/2). Let f be an n-party functionality com-
puted by a layered arithmetic circuit C over a finite field F, with D levels and M gates.
Then, for any t < n/2, there is an (n, t,O(D))-layered MPC protocol for f assuming non-
interactive linearly-homomorphic equivocal commitments. The communication complex-
ity isM ·O(n9) field elements over the point-to-point channels andM ·O(n5) field elements
+ M · O(n10 · λ) bits over the broadcast channels, where λ is the security parameter.

Proactive MPC. The original concept of proactive MPC put forward by [OY91] considered
an adversary that has the ability to corrupt a fresh set of parties in every round of the pro-
tocol. We refer to such an adversary as maximally mobile. This notion is formally defined
in Definition 8.2, while protocols that can thwart such an adversary are called maximally
proactive. We show that a secure layered MPC protocol is a maximally proactively se-
cure protocol. We also remark on an alternate and stronger notion of maximal adversary
in Remark 8.2, against which perfectly secure VSS and MPC are impossible with the opti-
mal threshold of t < n/3 corruptions in each layer. This allows us to extend our security
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analysis from the layered to the proactive setting. Definitions 8.4 and 8.5 defines maxi-
mally Proactive Secret Sharing and MPC and we obtain the following threshold-optimal
result by combining Theorem 2.3 and Lemma 8.1.

Corollary 2.1 (Perfectly Secure Maximally Proactive MPC). Let f be an n-party functional-
ity computed by a layered circuit C over a field F, with D layers. Then, for t < n/3, there
is an e�cient maximally proactive MPC protocol computing f in r = O(D) rounds.

Secure Message Transmission and Broadcast. Sending a message to a party that acts
in an arbitrary future round is a recurring problem in settings such as layered MPC. In
YOSO [GHK+21] it is circumvented by assuming target-anonymous channels, an ideal re-
source that allows a party in round r to send a message to a party who is elected to
perform a certain role in round r ′ > r + 1 without learning its identity. We take steps to
obtain a similar primitive (although without anonymity guarantees) by relying only on the
parties in the layered graph to carry the message forward, despite our much more restric-
tive interaction pattern that precludes such communication. In Section 8.3.1.2 we provide
a thorough analysis of an important primitive in layered MPC called Future Messaging.
The functionality fFM is described in Section 8.3.1.2 and presented in Fig. 8.2. Future Mes-
saging takes as input a message m from a sender in L0 and, if the sender is honest, the
message m arrives at the recipient. In the context of layered MPC this primitive is close
to an instance of 1-way Secure Message Transmission (SMT) over a directed graph. We
show that it is possible to self-compose this primitive to carry a message from a sender
in L0 to a designated receiver in Ld for d > 1. The following theorem characterizes our
construction.

Theorem 2.5 (Restatement of Theorem 8.1). For any d > 0, any n and t where t < n/3,
and message domain M , there exists a protocol ΠFM that realizes fFM from L0 to Ld with
perfect t-security and communication complexity O(ndlog de log |M|).

Using the layered protocol for Shamir VSS and resharing, which we construct building
on Future Messaging, we can make the dependence of the communication cost of Future
Messaging on d linear. This is achieved by having the sender verifiably secret the message
using VSS and then reshare it repeatedly until reaching the layer previous to that of
the receiver, at which point the shareholders of the value can reveal the message to
the receiver by transferring all its shares. Communication cost of VSS and of resharing
across a constant number of layers is poly(λ)(n), making the communication of Future
Messaging linear in d .

The layered model allows for layer-to-layer broadcast: any party in La may broadcast
to parties in La+1. It turns out that this assumption is necessary, since we prove that
deterministic broadcast in the setting of layered MPC is possible only if t = 0. Our
analysis is presented in Section 8.8, where we cast the result of [Gar94] to the setting of
layered MPC and obtain the following result.

Theorem 2.6. Deterministic perfect Broadcast in the setting of layered MPC is possible i�
t = 0.
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This limitation can be overcome by the use of randomization. Several works achieve
broadcast in the honest-majority setting with overwhelming probability after a num-
ber of rounds that is linear in the security parameter, without setup tolerating t < n/3
corruptions [FM85], and with di�erent types of setup tolerating t < n/2 corruptions
[KK06, FG03, FLZL21,GGLZ22].

These protocols can be ported to the layered setting at the cost of decreasing the cor-
ruption threshold by a factor that is linear in the security parameter. This is done by
naively porting the protocol to the layered setting after ensuring that the parties ‘persist’
across all the layers by simply forwarding the view of each party to their counterpart in
the next layer. When the adversary corrupts t ′ parties in each layer, by the end of the
protocol, the adversary would corrupt at most t = t ′ · O(κ) parties executing di�erent
party roles, for security parameter κ. If the total number of corruptions that the original
protocol tolerates is bounded by t < n/3 (resp. t < n/2), we have that the ported proto-
col remains secure. Obtaining the optimal corruption threshold t ′ < n/3 without setup,
or t ′ < n/2 with setup, for broadcast is beyond the scope of this paper.

Related Work

Results for Maximally Proactive MPC with Dynamic Committees
Functionality Reference Level Security Complexity Threshold
Future Messaging Section 8.3.1.2 perfect full poly(λ)(n) t < n/3

VSS
[BGG+20] computational full poly(λ)(n) t < n/4∗

Section 8.4.2 perfect full 2O(n) t < n/3
Section 8.5 perfect full poly(λ)(n) t < n/3

MPC

[GHK+21] (YOSO) statistical full (w/setup†) poly(λ)(n) t < n/2∗

[CGG+21] (Fluid) statistical w/abort poly(λ)(n) t < n/2
[OY91] perfect full poly(λ)(n) t < n/d

Section 8.4.4 perfect full 2O(n) t < n/3
Section 8.5 perfect full poly(λ)(n) t < n/3
Section 8.6 computational full poly(λ)(n) t < n/2

Table 2.2: Protocols realizing primitives in the most extreme proactive set-
tings. (∗protocol security relies on the adversary only doing prob-
abilistic corruption, †assumes access to ideal target-anonymous
channels for future messaging)

Proactive Secret Sharing (PSS). PSS protocols aim at solving the problem that shares
learned by the adversary are compromised forever by resharing the secret periodically.
The static group setting where resharing is done among the same set of parties is consid-
ered in [HJKY95,CH01,ADN06,BELO15]. However, this is often insu�cient since it assumes a
world where a server never fails to the extend that it cannot recover again. The setting of
dynamic groups where resharing is done towards a di�erent (possibly disjoint) set of par-
ties is considered in [DJ97,WWW02,ELL20]. Finally, proactive techniques in asynchronous
settings have been treated in [CKLS02,SLL10].

22



Chapter 2 Contributed Work

Permissionless Networks. In the context of permissionless networks where parties
are allowed to join and leave as they wish, the dynamic group property has taken on
a new meaning. The notion of player replaceability (where the set of parties get re-
placed in every round) has previously been studied in the context of consensus primi-
tives [Mic17, CM19, PS17, BKLZL20]. The recent focus on this setting spurred new interest
in (dynamic) proactive techniques [MZW+19,GKM+22]. Particularly interesting, is the def-
inition of evolving committee secret sharing [BGG+20] that places the responsibility of
keeping a tolerable corruption threshold on the protocol designer.

Maximally PSS and MPC with Dynamic Committees. Recently, a number of
works [GHM+17, GHK+21, CGG+21, AHKP22] have considered extreme settings with dy-
namic committees, where each round of a protocol is executed by a new set of parties
considering maximally mobile (or even adaptive) adversaries. In YOSO [GHK+21], an ideal
mechanism guarantees that a set of anonymous parties is selected at random to execute
each round, e�ectively limiting the adversary to probabilistic corruptions. Hence, YOSO
is incompatible with settings where n and t are constant. Moreover, parties have access
to ideal target-anonymous channels allowing for communication to any party in the
future. Hence, results in the YOSO model do not directly translate to our setting even if
we settle for non-optimal corruption thresholds, as YOSO protocols may crucially rely
on the ability to send messages across many layers. For example, in the information
theoretical signature protocol of [GHK+21, Section 3.3], a cut-and-choose mechanism is
realized assuming that a sender can commit to a set of message authentication codes
(MACs) by sending them directly to a receiver, after which verifiers broadcast random
subsets of keys, which the receiver uses to check these MACs. The security of this tech-
nique crucially relies on the fact that using ideal target-anonymous channels guarantees
that the sender cannot changes the MACs sent to the user after the verifiers announce
the checking keys. This technique does not work in the layered MPC setting with our
weaker Future Messaging protocol, which does not commit a corrupted sender to the
messages it transmits to future layers.

Closest to layered MPC is Fluid MPC [CGG+21] in its most extreme configuration (fully
fluid), where parties can execute a single round of the protocol and immediately leave
but are not necessarily selected anonymously and at random. Curiously, one of the goals
of Fluid MPC is maintaining a small state complexity. In particular, the computation and
communication of each committee in Fluid MPC is independent of the size of the circuit.
While this is attractive, we do not make any such claims and we also only consider already
layered circuits3. Finally, a crucial di�erence is that the known protocols for Fluid MPC
only enjoy security-with-abort while we aim for full security.

While the use of an arbitrary interaction pattern in layered MPC is similar to [HIJ+16], our
focus is on a specific interaction pattern capturing extreme cases of MPC with dynamic
committees and a maximally mobile adversary.

3The inherent issue with state complexity originates from a common misconception (see fx [DEP21]) that
any general arithmetic circuit can be transformed into a layered circuit with same depth and only linear
overhead in width.
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Chapter 3

Organization

The remainder of this thesis is divided into three parts: Part II presents all the definitions
that underpin the work presented in the chapters ahead. Here, Chapter 4 discusses the
definitions related to permissionless blockchains that is used throughout the thesis and
Chapter 5 lists all the cryptographic primitives that are used in the publications. This part
of the thesis o�ers little discussion and can easily be skipped (and used as a reference
point) when going through the remainder of the thesis.

In Part III, each chapter represents a published paper. As such, the results presented in
these chapters completely overlap with the full versions available online. Only few minor
editorial changes have been made to enhance readability and to present the publications
in a coherent way.

Finally, in Part IV, we first discuss (Chapter 9) the thesis from a birds-eye perspective and
shed light on the motivation to pursue the problems in this area of research. We then
conclude by exploring a few directions for future work in Section 9.2.
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Preliminaries
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Chapter 4

Blockchain Fundamentals

4.1 Proof-of-Stake (PoS) Blockchains

In this work we rely on PoS-based blockchain protocols. In such a protocol, each par-
ticipant is associated with some stake in the system. A process called leader election
encapsulates a lottery mechanism that ensures (of all eligible parties) each party suc-
ceeds in generating the next block with probability proportional to its stake in the sys-
tem. In order to formally argue about executions of such protocols, we depart from the
framework presented in [GG17] which, in turn, builds on the analysis done in [GKL15]
and [PSs17]. We invite the reader to re-visit the abstraction used in [GG17]. We present a
summary of the framework in Section 4.2 and then continue with the main properties we
will use in the remainder of this work. Moreover, we note that in [GG17] it is proven that
there exist PoS blockchain protocols with the properties described below, e.g. Ouroboros
Praos [DGKR18].

4.2 Blockchain Protocol Execution.

Let the blockchain protocol ΓV = (UpdateStateV , GetRecords, Broadcast) be guarded by a
validity predicate V . The algorithms can be described as follows:

• UpdateState(1λ) → bst where bst is the local state of the blockchain along with
metadata.

• GetRecords(1λ, bst)→ B outputs the longest sequence B of valid blocks (wrt. V ).

• Broadcast(1λ,m) Broadcast the message m over the network to all parties executing
the blockchain protocol.

An execution of a blockchain protocol ΓV proceeds by participants running the algo-
rithm UpdateStateV to get the latest blockchain state, GetRecords to extract the ledger
data structure from a state and Broadcast to distribute messages which are added to the
blockchain if accepted by V . An execution is orchestrated by an environment Z which
classifies parties as either honest or corrupt. All honest parties executes ΓV (1λ) with
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empty local state bst and all corrupted parties are controlled by the adversary A who
also controls network including delivery of messages between all parties.

• In each round all honest parties receive a messagem fromZ and potentially receive
incoming network messages delivered by A. The honest parties may do computa-
tion, broadcast messages and/or update their local states.

• A is responsible for delivering all messages sent by honest parties to all other
parties. A cannot modify messages from honest parties but may delay and reorder
messages on the network.

• At any point Z can communicate with adversary A or use GetRecords to retrieve a
view of the local state of any party participating in the protocol.

The result is a random variable EXECΓV
(A,Z, 1λ) denoting the joint view of all par-

ties (i.e. all inputs, random coins and messages received) in the above execution.
Note that the joint view of all parties fully determines the execution. We define the
view of the adversary as viewA(EXECΓV

(A,Z, 1λ)) and the view of the party Pi as
viewPi

(EXECΓV
(A,Z, 1λ)). If it is clear from the context which execution the argument is

referring to, then we just write viewi . We assume that it is possible to take a snapshot
i.e. a view of the protocol after the first r rounds have been executed. We denote that by
viewr ← EXECΓV

r (A,Z, 1λ). Furthermore, we can resume the execution departing from
this view and continue until round r̃ resulting in the full view including round r̃ denoted
by viewr̃ ← EXECΓV

(viewr ,r̃)(A,Z, 1λ).

We let the function stakei = stake(B, i) take as input a local blockchain B and a party
Pi and output a number representing the stake of party Pi wrt. to blockchain B. Let the
sum of stake controlled by the adversary be stakeA(B), the total stake held by all parties
staketotal(B) and the adversaries relative stake is stake-ratioA(B). We also consider the
PoS-fraction u-stakefrac(B, `) as the amount of unique stake whose proof is provided in
the last ` mined blocks. More precisely, letM be the index i corresponding to miners Pi

of the last ` blocks in B then

u-stakefrac(B, `) =

∑
i∈M stake(B, i)

staketotal

A note on corruption. For simplicity in the above execution we restrict the environment
to only allow static corruption while the execution described in [PSs17] supports adaptive
corruption with erasures.

A note on admissible environments. [PSs17] specifies a set of restrictions on A and Z
such that only compliant executions are considered and argues that certain security
properties holds with overwhelming probability for these executions. An example of
such a restriction is that A should deliver network messages to honest parties within ∆
rounds.
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4.3 Blockchain Properties.

We recall that running a protocol ΓV with appropriate restrictions on A and Z will yield
certain compliant executions EXECΓV

(A,Z, 1λ) where some security properties will hold
with overwhelming probability. An array of prior works, including [GKL15,PSs17], have con-
verged towards a few security properties that characterizes blockchain protocols. These
include Common Prefix or Chain Consistency, Chain Quality and Chain Growth. From these
basic properties, a number of stronger properties were derived in [GG17]. Among them, is
the Distinguishable Forking property. We denote by Bd` the chain (sequence of blocks)
B where the last ` blocks have been removed and if ` ≥ |B| then Bd` = ε and we write
B1 � B2 if B1 is a prefix of B2.

Definition 4.1 (Common Prefix). Let κ ∈ N be the common prefix parameter. The chains
B1, B2 possessed by two honest parties P1 and P2 in slots sl1 < sl2 satisfy B

dκ
1 � B2.

Definition 4.2 (Chain Growth). Let τ ∈ (0, 1], s ∈ N and let B1, B2 be as above with the
additional restriction that sl1 + s ≤ sl2. Then len(B2)− len(B1) ≥ τs where τ is the speed
coe�cient.

Definition 4.3 (Chain Quality). Let µ ∈ (0, 1] and κ ∈ N. Consider any set of consecutive
blocks of length at least κ from an honest party’s chain B1. The ratio of adversarial
blocks in the set is 1− µ where µ is the quality coe�cient.

Stake Contribution Property. At a high level, the su�cient stake contribution property
states that after su�ciently many rounds, the total amount of proof-of-stake in mining
the ` most recent blocks is at least β fraction of the total stake in the system.

Definition 4.4 (Su�cient Stake Contribution). Let suf-stake-contr be the predicate such
that suf-stake-contr`(view,β) = 1 i� for any round r ≥ `, and any party i in view that is
honest at round r with blockchain B, we have u-stakefrac(B, `) > β. A blockchain protocol
Γ has (β(·), `0(·))-su�cient stake contribution property with adversary A in environment
Z , if there is a negligible function negl(·) such that for any λ ∈ N, ` ≥ `0, it holds that

Pr
[
suf-stake-contr`(view,β(λ)) = 1

∣∣∣ view← EXECΓ(A,Z, 1λ)
]
≥ 1− negl(λ)

Bounded Forking Property. Roughly speaking, the bounded forking property requires
that no e�cient adversary can create a su�ciently long fork so that its total amount of
proof of stake is higher than a certain threshold. In more detail, it states that for property
parameters α, `1, `2, the proof-of-stake fraction in the last `2 blocks in any adversarially
created fork of length at least `1 + `2 should not be more than α.

Definition 4.5 (Bounded Stake Forking). Let bd-stake-fork be the predicate such that
bd-stake-fork(`1,`2)(view,α) = 1 i� for any round r ≥ r̃ , and any pair of parties i , j in
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view such that i is honest at round r with blockchain B and j is corrupt in round r̃ with
blockchain B̃, if there exists `′ ≥ `1 + `2 such that B̃d`

′ � B and for all ˜̀< `′, B̃d
˜̀ 6� B,

then u-stakefrac(B̃, `′ − `1) ≤ α.
A blockchain protocol Γ has (α(·), `1(·), `2(·))-bounded stake forking property with ad-
versary A in environment Z , if there exists negligible functions negl(·) and δ(·) such that
for any λ ∈ N, ` ≥ `1(λ), ˜̀≥ `2(λ), it holds that

Pr
[
bd-stake-fork(`,˜̀)(view,α(λ) + δ(λ)) = 1

∣∣∣ view← EXECΓ(A,Z, 1λ)
]
≥ 1− negl(λ)

Definition 4.6 (Distinguishable Forking). A blockchain protocol Γ satisfies (α(·),β(·), `1(·), `2(·))-
distinguishable forking property with adversary A in environment Z , if there exists
negligible functions negl(·), δ(·) such that for every λ ∈ N, ` ≥ `1(λ), ˜̀≥ `2(λ) it holds
that

Pr

 α(λ) + δ(λ) < β(λ) ∧
suf-stake-contr

˜̀
(view,β(λ)) = 1 ∧

bd-stake-fork(`,˜̀)(view,α(λ) + δ(λ)) = 1

∣∣∣∣∣∣∣ view← EXECΓ(A,Z, 1λ)

 ≥ 1− negl(λ)

4.4 Blockchain Lotteries

4.4.1 Blockchain Structure.

A genesis block B0 = {(Sig.pk1, aux1, stake1), ... , (Sig.pkn, auxn, staken), aux} associates
each party Pi to a signature scheme public key Sig.pki , an amount of stake stakei and
auxiliary information auxi (i.e. any other relevant information required by the blockchain
protocol, such as verifiable random function public keys). A blockchain B relative to a
genesis block B0 is a sequence of blocks B1, ... ,Bn associated with a strictly increasing
sequence of slots sl1, ... , slm such that Bi = (slj ,H(Bi−1), d, aux)). Here, slj indicates the
time slot that Bi occupies, H(Bi−1) is a collision resistant hash of the previous block, d
is data and aux is auxiliary information required by the blockchain protocol (e.g. a proof
that the block is valid for slot slj ). Each party participating in the protocol has public iden-
tity Pi and most messages will be transactions of the following form: m = (Pi ,Pj , q, aux)
where Pi transfers q coins to Pj along with some optional, auxiliary information aux.

4.4.2 Blockchain Setup and Key Knowledge.

As in [DGKR18], we assume that the genesis block is generated by an initialization func-
tionality FINIT that registers all parties’ keys. Moreover, we assume that primitives spec-
ified in separate functionalities in [DGKR18] as incorporated into FINIT. FINIT is exe-
cuted by the environment Z as defined below and is parameterized by a stake distri-
bution associating each party Pi to an initial stake stakei . Upon being activated by Pi

for the first time, FINIT generates a signature key pair Sig.ski , Sig.pki , auxiliary informa-
tion auxi and a lottery witness skL,i , which will be defined as part of the lottery pred-
icate in Section 4.4.4, sending (Sig.ski , Sig.pki , auxi , skL,i , stakei ) to Pi as response. After
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all parties have activated FINIT, it responds to requests for a genesis block by provid-
ing B0 = {(Sig.pk1, aux1, stake1), ... , (Sig.pkn, auxn, staken), aux}, where aux is generated
according to the underlying blockchain consensus protocol.

Since FINIT generates keys for all parties, we capture the fact that even corrupted parties
have registered public keys and auxiliary information such that they know the corre-
sponding secret keys. Moreover, when our EtF constructions are used as part of more
complex protocols, a simulator executing the EtF and its underlying blockchain with the
adversary will be able to predict which ciphertexts can be decrypted by the adversary by
simulating FINIT and learning these keys. This fact will be important when arguing the
security of protocols that use our notion of EtF.

4.4.3 Evolving Blockchains.

In the coming chapters we will consider the concept of future in a blockchain context. In
particular we want to make sure that the initial chain B has “correctly” evolved into the
final chain B̃. Otherwise, the adversary can easily simulate a blockchain where it wins a
future lottery. Fortunately, the Distinguishable Forking property provides just that (see
Definition 4.6 and [GG17] for more details). A su�ciently long chain in an honest execution
can be distinguished from a fork generated by the adversary by looking at the combined
amount of stake proven in such a sequence of blocks. We encapsulate this property in
a predicate called evolved(·, ·). First, let ΓV = (UpdateStateV , GetRecords, Broadcast) be a
blockchain protocol with validity predicate V and where the (α,β, `1, `2)-distinguishable
forking property holds. And let B← GetRecords(1λ, st) and B̃← GetRecords(1λ, s̃t).

Definition 4.7 (Evolved Predicate). An evolved predicate is a polynomial time function
evolved that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}

It outputs 1 i� B = B̃ or the following holds (i) V (B) = V (B̃) = 1; (ii) B and B̃ are
consistent i.e. Bdκ � B̃ where κ is the common prefix parameter; (iii) Let `′ = |B̃| − |B|
then it holds that `′ ≥ `1 + `2 and u-stakefrac(B̃, `′ − `1) > β.

4.4.4 Blockchain Lotteries.

Earlier we mentioned the concept of leader election in PoS-based blockchain protocols.
In this kind of lottery any party can win the right to become a slot leader with a probability
proportional to its relative stake in the system. Usually, the lottery winner wins the right
to propose a new block for the chain, introduce new randomness to the system or become
a part of a committee that carries out some computation.
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Independent Lotteries. In some applications it is useful to conduct multiple indepen-
dent lotteries for the same slot sl. Therefore we associate each slot with a set of roles
R1, ... , Rn. Depending on the lottery mechanism, each pair (sl, Ri ) may yield zero, one or
multiple winners. Often, a party can locally compute if it, in fact, is the lottery winner for
a given role and the evaluation procedure may equip the party with a proof for others to
verify. The below definition details what it means for a party to win a lottery.

Definition 4.8 (Lottery Predicate). A lottery predicate is a polynomial time function lottery
that takes as input a blockchain B, a slot sl, a role R and a lottery witness skL,i and outputs
1 if and only if the party owning skL,i won the lottery for the role R in slot sl with respect
to the blockchain B.
Formally, we write

lottery(B, sl, R, skL,i ) ∈ {0, 1}

It is natural to establish the set of lottery winning keys WB,sl,R for parameters (B, sl, R).
This is the set of eligible keys satisfying the lottery predicate.
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Cryptographic Primitives

5.1 Secret Sharing

A central tool used for securely implementing basic primitives for layered MPC is secret
sharing. A (t, n)-secure secret sharing scheme takes a secret s as input and computes
n shares with the secrecy guarantee that any set of at most t shares reveal nothing
about s while any set of t + 1 correct shares can be used to e�ciently reconstruct the
secret. A robust secret sharing scheme additionally guarantees correct reconstruction
from n shares, even when an arbitrary set of t out of the n shares have been tampered.
Formally,

Definition 5.1 (Secret Sharing). A secret sharing scheme with secret domain S and share
domain U is a pair of algorithms (Sh, Rec) called the sharing algorithm and the recon-
struction algorithm, respectively.

• Sharing. Sh takes as input a secret s ∈ S and randomness ρ chosen uniformly from
some domain R and computes Sh(s, ρ) = (s1, ... , sn), where si ∈ U will be called the
ith share of the secret s . If ρ is clear from the context we just write Sh(s) = (s1, ... , sn).

• Reconstruction. Rec takes the set of all shares and computes Rec(s1, ... , sn) = ŝ .

The (t, n)-secret sharing scheme (Sh, Rec) should satisfy the following properties:

Correctness. For all ρ← R , and any s ∈ S , we have Rec(Sh(s, ρ)) = s .

t-security. For any s, s ′ ∈ S , and I ⊂ [n], |I | ≤ t ,{
{si}i∈I

∣∣ρ← R, Sh(s, ρ) = {si}i∈[n]

}
≡
{
{si}i∈I

∣∣ρ← R, Sh(s ′, ρ) = {si}i∈[n]

}
.

The scheme (Sh, Rec) is said to be robust against t corruptions if it additionally satisfies
the following reconstruction property:

t-robustness. For any ρ ← R , a secret s ∈ S , a set I ⊂ [n] of size at most t , and shares
ŝi ∈ U , for i ∈ I ,

Rec({si}i∈[n]\I , {ŝi}i∈I ) = s, where Sh(s, ρ) = (s1, ... , sn).
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We next define two commonly used, robust secret sharing schemes.

Definition 5.2 (Threshold CNF-Secret Sharing [ISN89]). Let t, n ∈ N and s be an element
in a ring L. Let T be an enumeration of all

( n
n−t
)

subsets of size n − t such that T =

{T ⊆ 2[n] : |T | = n − t} = {T1, ... ,Tk}. A threshold CNF-secret sharing scheme (Sh, Rec)
is defined as follows:

• Sharing. To share a secret s , first sample {rT}T∈T uniformly at random from L
subject to s =

∑
T∈T rT (i.e., obtain a k-out-of-k additive secret sharing of s). Let

si consist of all shares rT such that T ∈ T and i ∈ T . Then, Sh(s, ρ) = (s1, ... , sn).

• Robust Reconstruction. Let {si}i∈[n] be the set of input shares. For each i ∈ [n]

and T ∈ T such that i ∈ T , denote the additive share rT from si as r iT . For each
T ∈ T , choose the unique value r̂T such that |{i ∈ [n] : r iT = r̂T}| ≥ n − 2t . Then,
Rec({si}i∈[n]) =

∑
T∈T r̂T .

Definition 5.3 (Shamir Secret Sharing). For t, n such that t < n/3, a (t, n)-Shamir secret
sharing scheme (Sh, Rec) is defined using a finite field F such that |F| > n and distinct
non-zero field elements α1, ... ,αn ∈ F.

• Sharing. Given a secret s ∈ F, Sh samples c1, ... , ct uniformly and independently
from F and defines the polynomial p(x) = s +

∑t
i=1 cix

i . Then, Sh(s) = (s1, ... , sn),
where si = p(αi ).

• Robust Reconstruction. Let {ŝi}i∈[n] be the set of received shares. Rec finds a
polynomial p(x) of degree at most t such that |{i : p(αi ) 6= ŝi}| ≤ t . Then,
Rec({ŝi}i∈[n]) = p(0).

5.1.1 Shamir Secret Sharing on Groups of Order p

The well known degree-t Shamir scheme allows to split a secret s ∈ Zp in n shares (where
0 ≤ t < n < p) in such a way that any set of t + 1 shares give full information about the
secret s while any set of t give no information on s .

Here we will consider situations where the secret is an element S = sG of a group G
of order p with generator G , but the dealer does not know s (and hence cannot apply
the usual Shamir sharing using s as secret). On the other hand, it is enough that the
shares allow to reconstruct S and not s . We define Shamir secret sharing in a group of
order p as shown in Fig. 5.1 (Shamir secret sharing scheme over Zp is retrieved by setting
G = (Zp, +), G = 1). We denote by Zp[X ]≤t the set of polynomials in Zp[X ] of degree at
most t .
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Shamir sharing on a group of order p

Public parameters: Let pp = (G,G , p, t, n, {αi : i ∈ [0, n]}), where G is a group of prime
order p with generator G , 0 ≤ t < n < p are integers, and α0,α1, ... ,αn ∈ Zp are pairwise
distinct.

Algorithm 1: GShamir.Share(pp,S)

1: Input: S ∈ G
2: m(X )←$ {m(X ) ∈ Zp[X ]≤t :

m(α0) = 0}
3: Ai = S + m(αi ) · G , i ∈ [n]
4: return (A1, ... ,An)

Algorithm 2: GShamir.Rec(pp, I , {Ai}i∈I )

1: Input: I ⊆ [n], |I | = t + 1, {Ai}i∈I
2: ∀i ∈ I , λi ,I ←

∏
j∈I ,j 6=i

α0−αj

αi−αj

3: S ′ ←
∑

i∈I λi ,IAi

4: return S ′

Figure 5.1: Shamir secret sharing on a group G of order p

5.2 Commitment Schemes

We recall the syntax for a commitment scheme C = (Setup, Commit) below:

• Setup(1λ)→ ck outputs a commitment key. The commitment key ck defines a mes-
sage space Sm and a randomizer space Sr .

• Commit(ck, s; ρ)→ cm outputs a commitment given as input a message s ∈ Sm and
randomness ρ ∈ Sr .

We require a commitment scheme to satisfy the standard properties of binding and hid-
ing. It is binding if no e�cient adversary can come up with two pairs (s, ρ), (s′, ρ′) such
that s 6= s′ and Commit(ck, s; ρ) = Commit(ck, s′; ρ′) for ck← Setup(1λ). The scheme is hid-
ing if for any two s, s′ ∈ Sm, no e�cient adversary can distinguish between a commitment
of s and one of s′.

Extractability. In our construction of ECW from cWE (Section 6.4.1), we require our com-
mitments to satisfy an additional property which allows to extract message and ran-
domness of a commitment. In particular we assume that our setup outputs both a
commitment key and a trapdoor td and that there exists an algorithm Ext such that
Ext(td, cm) outputs (s, ρ) such that cm = Commit(ck, s; ρ). We remark we can generically
obtain this property by attaching to the commitment a NIZK argument of knowledge
that shows knowledge of opening, i.e., for the relation Ropn(cmi ; (s, ρ)) ⇐⇒ cmi =
Commit(ck, s; ρ).
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5.3 Oblivious Transfer.

A 2-round oblivious transfer (OT) protocol between a receiver R and a sender S consists
of three polynomial-time algorithms ΠOT = (ΠR

OT, ΠS
OT, ΠO

OT):

mR ← ΠR
OT(b; rR). In the first round, the receiver R on input b ∈ {0, 1} and random tape

rR ∈ {0, 1}poly(λ) generates the OT first message mR .

mS ← ΠS
OT(mR , (x0, x1); rS). In the second round, the sender S on input (x0, x1), where

x l ∈ {0, 1}poly(λ) for l ∈ {0, 1}, generates the second message mS using random
tape rS ∈ {0, 1}poly(λ).

x ← ΠO
OT(mS , b, rR). R computes the output x = ΠO

OT(mS , b, rR).

We require an OT protocol to securely implements the ideal functionality FOT given
in Fig. 5.2 in the presence of malicious adversaries.

Functionality for OT

Choose. On input (receive, sid, b) from R , where b ∈ {0, 1}, if no messages of the form
(receive, sid, b) is stored, store (receive, sid, b) and send (receive, sid) to S .

Transfer. On input (send, sid, x0, x1) from S , with x0, x1 ∈ {0, 1}k , if no messages of
the form (send, sid, x0, x1) is stored and a message of the form (receive, sid, b) is
present, send (sent, sid, xb) to R .

Figure 5.2: The ideal functionality FOT for oblivious transfer

5.4 Circuit-related Primitives

5.4.1 Layered Circuits

Definition 5.4 (Layered Arithmetic Circuits). Let F be a field and C : Fn → Fm be an
arithmetic circuit over F of size |C | = M with gates g1, ... , gM of the following types.

• Addition: Given input wire values x1, ... , xk ∈ F, the output of the gate is z =∑
i∈[k] xi .

• Multiplication-by-Constant: Given input wire value x ∈ F and a constant c ∈ F
associated with the gate, output the value z = c · x .

• Multiplication: Given input wire values x1 and x2 from F, the output wire value is
the product z = x1 · x2.

C is a layered arithmetic circuit if the gates can be partitioned into layers L0, ... , LD such
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that for every layer 1 ≤ i ≤ D and every gate g ∈ Li , all inputs to g are outputs of gates
in Li−1.

5.4.2 Garbled Circuits.

We recall the definition of garbling schemes formalized by Bellare et al. in [BHR12].

Definition 5.5 (Garbling Scheme). Let C = {Cλ}λ∈N be a polynomial-size circuit class.
A garbled circuit scheme GC for C consists of four polynomial-time algorithms GC = (
Garble, Encode, Eval, Decode):

(C, e, d)← Garble(1λ,C ): On input a boolean circuit C ∈ Cλ, outputs (C, e, d), where C is
a garbled circuit, e is encoding information, and d is decoding information.

X ← Encode(e, x): On input e and x , where x is a suitable input for C , outputs a garbled
input X .

Y = Eval(C,X ): On input (C,X ) as above, outputs a garbled output Y .

y ← Decode(d ,Y ): On input (d ,Y ) as above, outputs a plain output y .

For our construction, we are interested in garbling schemes with the following proper-
ties.

Correctness. For any security parameter λ ∈ N, for any circuit C ∈ Cλ, for (C, e, d) ←
Garble(1λ,C ), and for all suitable input x :

Decode(d , Eval(C, Encode(e, x))) = C (x)

Authenticity. For all circuits C : {0, 1}n → {0, 1}, inputs x ∈ {0, 1}n, where n = poly(λ),
and for all PPT adversaries A,

Pr

[
Ŷ 6= Eval(C,X ) ∧

Decode(d , Ŷ ) 6= ⊥
:

(C, e, d)← Garble(1λ,C )

X = Encode(e, x); Ŷ ← A(C , x , C,X )

]
≥ 1− negl(λ)

5.5 (Threshold) Identity Based Encryption

We recall the definition of an identity-based encryption (IBE) scheme [BF01].

5.5.1 IBE

An IBE scheme ΠIBE consists of the following algorithms:
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Setup(1λ). The setup algorithm takes as input a security parameter λ and returns a mas-
ter key msk together with some publicly known system parameters sp including a
master public key mpk, message spaceM and ciphertext space C. We assume that
all algorithms takes sp as input implicitly.

IDKeygen(msk, ID). The identity key-generation algorithm takes as input msk and an
identity ID ∈ {0, 1}∗, and returns a decryption key skID for ID.

Enc(ID,m). The encryption algorithm takes as input an identity string ID ∈ {0, 1}∗ and
m ∈M. It returns a ciphertext ct ∈ C.

Dec(ct, skID). The decryption algorithm takes as input ct ∈ C and a decryption key skID.
It returns m ∈M.

Correctness. An IBE scheme ΠIBE should satisfy the standard correctness property,
namely for skID ← IDKeygen(msk, ID) and for any m ∈M, we must have:

Dec(Enc(ID,m), skID) = m.

where (mpk, msk)← Setup(1λ)

Security. We use adaptive-identity security [BF01]. After the challenger runs the setup
algorithm, the adversary has access to an oracle Omsk that on input any id , returns
skid . A may query the oracle on arbitrary identities of its choice even before se-
lecting the messages m0,m1. More formally, we say that ΠIBE is secure if any PPT
adversary A has only negligibly greater than 1/2 probability of correctly guessing
the bit b in the following game:

1. The challenger runs Setup and outputs sp to A.

2. A may query the oracle Omsk that on any input id returns skid .

3. A outputs a target identity id∗ and two equal-size messages m0,m1 ∈M.

4. The challenger selects a random bit b and outputs c∗ ← Enc(id∗,mb) to A.

5. A may continue to query Omsk on any input id 6= id∗.

6. A outputs b′.

where Omsk(ID) outputs IDKeygen(msk, ID).

5.5.2 Threshold IBE.

A TIBE system consists of the following algorithms.

ΠTIBE.Setup(1λ, n, k)→ (sp, vk, ~msk) : It outputs some public system parameters sp (in-
cluding mpk), verification key vk, and vector of master secret key shares ~msk =
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(msk1, ... , mskn) for n with threshold k . We assume that all algorithms takes sp as
input implicitly.

ΠTIBE.ShareKG(i , mski , ID)→ θ = (i , θ̂) : It outputs a private key share θ = (i , θ̂) for ID
given a share of the master secret key.

ΠTIBE.ShareVerify(vk, ID, θ)→ 0/1 : It takes as input the verification key vk, an identity
ID, and a share of master secret key θ, and outputs 0 or 1.

ΠTIBE.Combine(vk, ID, ~θ)→ skID : It combines the shares ~θ = (θ1, ... , θk) to produce a
private key skID or ⊥.

ΠTIBE.Enc(ID,m)→ ct : It encrypts message m for identity ID and outputs a ciphertext
ct.

ΠTIBE.Dec(ID, skID, ct)→ m : It decrypts the ciphertext ct given a private key skID for iden-
tity ID.

Correctness. A TIBE scheme ΠTIBE should satisfy two correctness properties:

1. For any identity ID, if θ = ΠTIBE.ShareKG(i , mski , ID) for mski ∈ ~msk, then
ΠTIBE.ShareVerify(vk, ID, θ) = 1.

2. For any ID, if ~θ = {θ1, ... , θk} where θi = ΠTIBE.ShareKG(i , mski , ID), and skID =
ΠTIBE.Combine(vk, ID, ~θ), then for any m ∈ M and ct = ΠTIBE.Enc(ID,m) we
have ΠTIBE.Dec(ID, skID, ct) = m.

Structural Property: TIBE as IBE + Secret Sharing. We model threshold IBE in a modular
manner from IBE and assume it to have a certain structural property: that it can be de-
scribed as an IBE “lifted” through a homomorphic secret-sharing [BGI+18,BBH06,Nie03].
TIBE constructions can often be described as such. We assume this structural property to
later be able to construct proofs modularly, but we remark our our results do not depend
on it and they hold for an arbitrary TIBE.

5.5.3 Constructing TIBE from IBE and Homomorphic Secret Sharing.

Assume a secure IBE = (Setup, IDKeygen, Enc, Dec). We can transform it into a threshold
IBE using homomorphic secret sharing algorithms (Share, EvalShare, Combine). A homo-
morphic secret sharing scheme is a secret sharing scheme with an extra property: given
a shared secret, it allows to compute a share of a function of the secret on it. It has the
following syntax (which we specialize for the IBE setting):

• Share(msk, k , n)→ (msk1, ... , mskn) shares the secret.

• EvalShare(mski , f )→ yi obtains a share for f (msk) where f is a function.
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• Combine((yi )i∈T )→ y∗ where T is a set with size above threshold.

We assume all the algorithms above take as input the master public-key for sim-
plicity. The correctness of the homomorphic scheme requires that running yi ←
EvalShare(mski , f ) on mski output of Share and then running Combine on (a large enough
set of) the yi-s produces the same output as f (msk). We also require that Combine can
reconstruct msk from a large enough set of the mski-s.

The construction for threshold IBE is now straightforward:

• at setup time, we produce shares msk1, ... , mskn of the master secret key using the
Share algorithm on the master secret key output of Setup.

• encryption is syntactically and functionally the same in both cases.

• to produce a partial secret-key for a certain id, we just run
skID

i ← EvalShare(mski , IBE.IDKeygen(mpk, ·, ID)).

• for decryption, given enough shares for an ID ID, we run on them algorithm Combine
to obtain skID; we then simply run IBE.Dec.

Threshold IBE security. If the homomorphic secret sharing supports up to a threshold
k , then we obtain analogous properties for the threshold IBE construction. In particular
the threshold IBE satisfies the following simulation properties for any n and threshold k
supported by the homomorphic secret sharing scheme1.

Master secret-key share simulation. For any PPT adversary A there exists a simulator
Simmsk such that the following two distributions are indistinguishable.

{(mpk, (mski )i∈Scorr) :(mpk, msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski )i∈n ← Share(msk, n, k)} ≈
{(mpk, (mski )i∈Scorr) :(mpk, msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski )i∈Scorr ← Simmsk(mpk,Scorr, n, k)}

Key-generation simulation. For any PPT adversary there exists a simulator Simkg such
that the following two distributions are indistinguishable.

{(mpk, (skID
i )i∈[n]) :(mpk, msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski )i∈n ← Share(msk, n, k);

ID← A(mpk, (mski )i∈Scorr);

1The security of this type of construction is proven for example in [Nie03] to which we defer the reader for
details.
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skID
i ← EvalShare(mski , ID) for i ∈ [n]} ≈

{(mpk, (skID
i )i∈[n]) :(mpk, msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski )i∈n ← Share(msk, n, k);

ID← A(mpk, (mski )i∈Scorr);

(skID
i )i∈[n] ← Simkg(mpk, (mski )i∈Scorr , ID)}

Robustness of TIBE. We assume a robust threshold IBE scheme, where we can verify
that each of the ID-specific shares are authenticated, i.e. they have been produced by a
party with the related master secret key share. This property can be obtained by assuming
an underlying secret sharing scheme which is itself robust. This in turn can be obtained
by attaching a NIZK or a homomorphic signature to the share.

TIBE with Proactive Secret Sharing. We assume our TIBE to allow for the shares of the
master secret keys to be reshared among the committee members which evolve through
time. With this goal in mind we can consider a proactive secret sharing scheme which
includes a handover (each committee member can reshare its share) and reconstruction
stage (committee members in a new epoch can reconstruct their secret from the output
of the handover). We can directly extend a TIBE with such syntax. The resulting scheme
should provide the same simulation properties as the ones described above for the non
proactive case.

5.6 Smooth Projective Hash Function (SPHF)

Let Llpar be a NP language, parametrized by a language parameter lpar, and Rlpar ⊆
Xlpar be its corresponding relation. A Smooth projective hash functions (SPHFs, [CS02])
for Llpar is a cryptographic primitive with this property that given lpar and a statement
x, one can compute a hash of x in two di�erent ways: either by using a projection key
hp and (x, w) ∈ Rlpar as pH ← projhash(lpar; hp, x, w), or by using a hashing key hk and
x ∈ Xlpar as H← hash(lpar; hk, x).

Definition 5.6. A SPHF for {Llpar}lpar is a tuple of PPT algorithms
(setup, hashkg, projkg, hash, projhash), which are defined as follows:

setup(1λ): Takes in a security parameter λ and generates the global parameters p to-
gether with the language parameters lpar. We assume that all algorithms have
access to p.

hashkg(lpar): Takes in a language parameter lpar and outputs a hashing key hk.

projkg(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs a
projection key hp, possibly depending on x.
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hash(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs a hash
value H.

projhash(lpar; hp, x, w): Takes in a projection key hp, lpar, a statement x, and a witness
w for x ∈ Llpar and outputs a hash value pH.

A SPHF has to fulfill two properties:

Correctness. For all x ∈ Llpar and their corresponding witnesses w, we have that
hash(lpar; hk, x) = projhash(lpar; hp, x, w).

Smoothness. For any lpar and any x 6∈ Llpar, the hash value hash(lpar; hk, x) is indis-
tinguishable from a random element in the set of hash values.

5.7 Sigma-protocols

Going forward, we will require non-interactive zero knowledge arguments of knowledge
where most of our statements are instances of a general structure where we want to
prove knowledge of preimage of some element via a vector-space homomorphism f :
that is, let F be a finite field, W and X be F-vector spaces, and f : W → X be a vector
space homomorphism. Let

RPre = {(w , x) ∈ W ×X : x = f (w)}.

The standard (Schnorr-like) Σ-protocol ΠPre for this relation is as in Fig. 5.3.

5.7.1 Security of ΠPre

The Σ-protocol ΠPre is obviously complete. It has special soundness because given two
accepting transcripts (a, e, z), (a, e ′, z ′) with e 6= e ′, one can extract w as (e−e ′)−1(z−z ′).
It is therefore a proof of knowledge of w with soundness error 1/|F|. Finally it is honest-
verifier zero-knowledge: a simulator can produce a transcript that is indistinguishable
from a real one by choosing z uniformly at random in X , and e uniformly at random in
F, and then computing a = f (z)− e · x , which is uniformly random inW .
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Generic Σ-protocol ΠPre(w ; x , f )

Proof of knowledge of witness w for x with respect to the relation
RPre = {(w , x) ∈ W ×X : x = f (w)}.
Public parameters: Finite field F, vector spacesW,X over F, vector space homomorphism
f :W → X , x ∈ X .
Protocol:

1. The prover samples r ←$W , sends a = f (r) to the verifier.

2. The verifier samples e←$F, sends it to the sender.

3. The prover sends z ← r + e · w to the verifier.

4. The verifier accepts if z ∈ W and f (z) = a + e · x .

Figure 5.3: Generic Σ-protocol for knowledge of homomorphism-preimage

A non-interactive zero-knowledge (NIZK) proof of knowledge in the random oracle model
is obtained by applying the Fiat-Shamir transform (Fig. 5.4).

Generic non-interactive argument of knowledge ΠNI−Pre(w ; x , f )

Non-interactive argument of knowledge of witness for x for the relation RPre = {(w , x) ∈
W ×X : x = f (w)} in the random oracle model.
Public parameters: Finite field F, vector spacesW,X over F, vector space homomorphism
f :W → X , x ∈ X , random oracle H : {0, 1}∗ → F. Let pp = (F,W,X ,H).

Algorithm 3: ΠNI−Pre.Prove(w ; pp, x , f )

1: r ←$W
2: a← f (r), e ← H(x , a),

z ← r + e · w
3: return π ← (e, z)

Algorithm 4: ΠNI−Pre.Verify(pp, x , f ,π)

1: Parse π = (e, z)
2: return accept if and only if

z ∈ W and
e = H(x , f (z)− e · x)

Figure 5.4: Generic non-interactive argument of knowledge of homomorphism-preimage

5.7.2 Group Homomorphism Preimage, DL and DLEQ Knowledge Proofs

Some useful examples of homomorphism-preimage relations RPre are given by discrete
logarithm and discrete logarithm equality. Indeed, a cyclic group G of prime order p has a
vector space structure over the field Zp , and a group homomorphism f : G→ G′ between
groups of order p is also a Zp-vector homomorphism.2 Let G be a generator of G. Given
X ∈ G, a discrete logarithm DL proof of knowledge DL(w ;G ,X ) asserts knowledge of
w ∈ Zp with X = w · G (we denote this as w = DLG (X )). In the language above this is
provided by ΠNI−Pre(w ; (X ), fG ) with fG (w) = w ·G . This is the non-interactive version of
the well known Schnorr proof.

2This extends to direct products of groups of order p, i.e. W = G1 × · · · × Gm , X = G′1 × · · · × G′n and
f = (f1, ... , fm) :W → X where fi : Gi → X are all group homomorphisms.
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Similarly, let G , H be elements in G. Given X ,Y ∈ G the discrete logarithm equality
proof DLEQ(w ;G ,X ,H,Y ) is a non-interactive proof of knowledge of w ∈ Zp with w =
DLG (X ) = DLH(Y ), which can be obtained by using ΠNI−Pre(w ; (X ,Y ), f(G ,H)), where
fG ,H(w) := (w · G ,w · H).

5.8 Basic Notions on Public Key Encryption

In this section we introduce well-known concepts on public key encryption.

5.8.1 Definitions

Definition 5.7. A public key encryption scheme E consists of three polynomial time algo-
rithms (E .g , E .Enc, E .Dec) as follows:

• E .g(λ) is a probabilistic algorithm that outputs a pair (sk, pk) consisting of a secret
key and a public key.

• E .Encpk(M) is a probabilistic algorithm that takes as input a public key pk and a
plaintext message M in a plaintext message space P and outputs a ciphertexts
C in a ciphertext space C. In addition, by abuse of notation, we define the func-
tion E .Encpk(M; ρ) that specifies the result of E .Encpk(M) when randomness ρ (in a
randomness space R) is used.

• E .Decsk(C ) is a deterministic function that takes secret key sk, and a ciphertext
C ∈ C and outputs a plaintext message M ′ ∈ P.

and which satisfy that for every (pk, sk) output by E .g , and for every M ∈ P,

Pr[E .Decsk(E .Encpk(M))] = 1

The most well known notion of security for a public key encryption scheme is IND-CPA
security, which requires that the encryptions of two messages under any public key pk are
computationally indistinguishable without the knowledge of the corresponding sk. Here
we consider the notion of `-multi-key IND-CPA security. This requires that the encryp-
tions of two vectors of messages of the same length, where each coordinate is encrypted
under a public key pki , are indistinguishable. The notions are equivalent as long as ` is
polynomial in the security parameter.

Definition 5.8. A public key encryption scheme E satisfies `-multi-key IND-CPA security if
for any PPT adversary B, there exists a negliglible function µ(λ) such that∣∣∣Pr

[
Game`-IND-CPA,0

B,E (λ) = 1
]
− Pr

[
Game`-IND-CPA,1

B,E (λ) = 1
]∣∣∣ ≤ µ(λ)
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Algorithm 5: Game`-IND-CPA,b
B,E (λ)

1: ∀i ∈ [`] (pki , ski )← E .KeyGen(pp, i)

2: (m
(0)
1 , ... ,m

(0)
` ), (m

(1)
1 , ... ,m

(1)
` ) ∈ P` ← B(pp, {pki : i ∈

[`]})
3: ∀i ∈ [`], ci ← Encpki (m

(b)
i )

4: b′ ← B({ci : i ∈ [`]})
5: return b′

The case ` = 1 is the usual IND-CPA definition and for ` = poly(λ) a standard hybrid
argument shows that a scheme is `-multi-key IND-CPA if and only if it is IND-CPA.

5.8.2 El Gamal Public Key Encryption Scheme

We consider the well known El Gamal scheme, where the plaintext space isP = G, a cyclic
group of order p generated by G , the randomness space is R = Zp and the ciphertext
space is C = G2. The scheme E is given by

• E .g(λ): Selects sk ∈ Zp uniformly at random, sets pk = sk · G , outputs (sk, pk).

• E .Encpk(M) where M ∈ G, selects ρ ∈ Zp uniformly at random, outputs C = (ρ ·
G ,M + ρ · pk) (as explained before we denote C = E .Encpk(M; ρ)).

• E .Decsk(C ), where C = (C1,C2) ∈ G2, outputs Decsk(C ) = C2 − sk · C1.

The El Gamal encryption scheme is well known to be IND-CPA secure under the DDH
assumption.

5.8.3 Zp-linear Homomorphic Encryption

We now define encryption schemes with certain homomorphic properties, that allow
for simple proofs of plaintext knowledge. These properties are attained by El Gamal
encryption scheme (described in Section 5.8.2).

Definition 5.9 (Zp-linearly homomorphic encryption scheme). Let E = (E .g , E .Enc, E .Dec)
be a public key encryption scheme and let p be a prime number. We say E is Zp-linearly
homomorphic (Zp-LHE) if the plaintext space (P,�P), randomness space (R,�R), ci-
phertext space (C,�C) each have a Zp-vector space structure and for all public keys pk
output by E .g , E .Encpk : P × R → C is a Zp-vector space homomorphism, i.e. for all
m1,m2 ∈ C, ρ1, ρ2 ∈ R,

E .Encpk(m1; ρ1)�C E .Encpk(m2; ρ2) = E .Encpk(m1 �P m2; ρ1 �R ρ2).
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Remark 5.1. Zp-linear homomorphic encryption schemes have simple (non-interactive)
proofs of plaintext (and randomness) knowledge, given by Fig. 5.4. More conceretely,
with notation as in that Figure, we take W = P × R, X = C and the proof
ΠNI−Pre((m, ρ); c , E .Encpk) for the relation REnc = {((m, ρ), c) ∈ W × X : c =
E .Encpk(m; ρ)}.

5.8.4 Proofs of Decryption Correctness

We will also need proofs of decryption correctness, where of course the prover wants to
keep their secret key hidden, i.e. proofs for the relation

RE,Dec = {(sk; (pk,m, c)) : (pk, sk) is a valid key-pair for E and m = E .Decsk(c)}

If the prover knows the randomness under which the message was encrypted, the prov-
ing algorithm E .ProveDec(sk; (pk,m, c)) can simply output that randomness π ∈ R; the
verification E .VerifyDec(pk,m, c ,π) accepts if Encpk(m;π) = c .

Unfortunately El Gamal encryption scheme does not allow a decryptor to retrieve the
randomness under which a message has been encrypted. Instead, a proof of correctness
of decryption for El Gamal can be constructed from the following property of this scheme,
which we call Zp-linear decryption.

Definition 5.10. Let E = (g , Enc, Dec) be a Zp-linearly homomorphic encryption scheme
and denote PK and SK the sets of public and secret keys respectively. E has Zp-linear
decryption if:

• PK and SK are Zp-vector spaces.

• There exists a Zp-linear homomorphism F : SK → PK such that pk = F (sk) for all
(pk, sk) outputted by g .

• For all c ∈ C, the function Dc(sk) := Decsk(c) is Zp-linear in sk, i.e. for all sk1, sk2 ∈
SK, it holds that Dc(sk1 �SK sk2) = Dc(sk1)�P Dc(sk2).

In this case we have the algorithms (E .ProveDec, E .VerifyDec) that constitute a NIZK proof
for RE,Dec :

Algorithm 6: E .ProveDec(sk, (pk,m, c))

1: W ← SK,X ← PK ×P× C,
2: pp ← (Zp,W,X ,H)
3: w ← sk, x ← (pk,m),

f (·)← (F (·),Dc(·))
4: return

ΠNI−Pre.Prove(w ; pp, x , f )

Algorithm 7: E .VerifyDec(pk,m, c ,π)

1: W ← SK,X ← PK ×P× C
2: pp ← (Zp,W,X ,H)
3: x ← (pk,m),

f (·)← (F (·),Dc(·))
4: return

ΠNI−Pre.Verify(pp, x , f )
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The El Gamal decryption function as usually described is not linear but a�ne, but we can
easily fix this by e.g. defining sk∗ = (sk∗1, sk∗2) = (1, sk) ∈ Z2

p and letting Decsk∗(C1,C2) :=
C2 · sk∗1 − C1 · sk∗2. Then DC (sk∗) is clearly a Zp-linear function.

5.9 The SCRAPE Test

In SCRAPE [CD17], a technique for checking correctness of Shamir sharing in publicly
verifiable secret sharing was introduced. Letting aside the details on how the technique
works there, we are interested in the following fact, which in turn comes from well known
results in coding theory 3.

Theorem 5.1 (SCRAPE dual-code test). Let 1 ≤ t < n be integers. Let p be a prime number
with p ≥ n. Let α1, ... ,αn be pairwise di�erent points in Zp . Define the coe�cients vi =∏

j∈[n]\{i}(αi − αj)
−1. Let

C = {(m(α1), ... ,m(αn)) : m(X ) ∈ Zp[X ]≤t}.

Then, for every vector (σ1, ... ,σn) in Zn
p :

(σ1, ... ,σn) ∈ C ⇔
n∑

i=1

vi ·m∗(αi ) · σi = 0, ∀m∗ ∈ Zp[X ]≤n−t−1.

5.10 Mix Networks (Mixnets)

We use mixnets to anonymize a set of public encryption keys, each generated (with their
corresponding secret keys) by a party in the system. Let P be the set of all parties gen-
erating these keys. We will assume such a mixnet and that the output is subsequently
written to a blockchain. The output is a set of shu�ed keys pkAnon,j : j ∈ [n], for which
each party knows the index that corresponds to their own public key, but nothing else
about the permutation. Denote this permutation ψ : P → [n], i.e. party Pi knows j = ψ(i)
and the corresponding key-pair.
We will use the fact that a party can encrypt a message under the public key pkAnon,j . It is
clear that party Pψ−1(j) can decrypt the message, while the rest of the parties (even the
sender) remain oblivious about the identity of the receiver. Notice that this setup can be
instantiated via a verifiable mixnet (e.g. [BKRS18]).

3Specifically from the fact that the dual of a Reed-Solomon code is a generalized Reed-Solomon code of a
certain form.

46



Part III

Publications

47



Chapter 6

Encryption to the Future [CDK+22]

6.1 Overview

Encryption to the Future (EtF)—Section 6.2. As in previous works [BGG+20, GHK+21,
GHM+21], an EtF scheme is defined with respect to an underlying PoS blockchain. We
naturally use core features of the PoS setting to define what “future” means. The vast
majority of PoS blockchains (e.g. [DGKR18]) associates a slot number to each block and
uses a lottery for selecting parties to generate blocks according to a stake distribution
(i.e. the probability a party is selected is proportional to the stake the party controls).
Thus, in EtF, we let a message be encrypted towards a party that is selected by the un-
derlying blockchain’s lottery scheme at a given future slot. We can generalize this and let
the lottery select parties for multiple roles associated to each slot (so that committees
consisting of multiple parties can be elected at a single point in time). We note that the
goal of defining EtF with respect to an underlying blockchain is to construct it without
having to assume very strong primitives such as (extractable) witness encryption for NP1.
Moreover, it is necessary to provide a non-interactive EtF scheme with a means to pub-
licly verify whether a given party has won the lottery to perform a certain role. Since
this lottery predicate’s output must hold for all parties, we need a consensus mecha-
nism that allows for all parties to agree on lottery parameters/outputs while allowing
for third parties to verify this result. An important point of our EtF definition is that it
does not impose any constraints on the underlying blockchain’s lottery scheme (e.g. it is
not required to be anonymous) or on the slot when a party is supposed to be chosen to
receive a message sent to a given role (i.e. party selection for a given role may happen
w.r.t. a future stake distribution).

Relation to “Blockchain Witness Encryption” (BWE)—Section 6.7. In order to study how
hard it is to realize EtF, we show that EtF implies a version of witness encryption [GGSW13]
over a blockchain (similar to that of [GKM+22] but without relying on committees). The
crux of the proof: if we can encrypt a message towards a role assigned to a party only at
an arbitrary point in the future, then we can easily construct a witness encryption scheme
exploiting EtF and a smart contract on the EtF’s underlying blockchain. We also prove the
opposite direction (BWE implies EtF), showing that the notions are similar from a feasi-
bility standpoint. This shows another crucial point: to implement non-interactive EtF, we

1While one might define EtF in more general settings, namely without a blockchain, it is unclear how to
obtain interesting instantiations, that is from standard primitives.
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would plausibly need strong assumptions (e.g., full-blown WE). This follows by observing
that existing constructions of WE over blockchains (e.g., [GKM+22]) are interactive in the
sense that they rely on a committee that holds all encrypted messages in secret shared
form and periodically re-share them. On the other hand, in the interactive setting, we
show a construction of EtF with improved communication complexity that is independent
from the size (or amount) of EtF encrypted messages: the committee only needs to hold
an IBE master secret key (secret shared) and compute secret keys for specific identities.
We note that the goal of constructing BWE from EtF is not to provide a concrete instan-
tiation based on existing blockchains but rather to provide evidence that EtF is hard to
construct from standard assumptions. The underlying blockchain protocol and lottery we
use are standard Proof-of-Stake based blockchains with a VRF-based lottery and smart
contracts. The only non-realistic assumption we make is that the stake is distributed in
arbitrarily (i.e. it is all locked inside one smart contract) which is an assumption on how
the blockchain is operated rather than on how it is constructed or why it is secure.

Encryption to the Current Winner (ECW)—Section 6.2. By the previous result we know
that, unless we turn to strong assumptions, we may not construct a fully non-interactive
EtF (i.e., without auxiliary committees); therefore, we look for e�cient ways to construct
EtF under standard assumptions while minimizing interaction. As a first step towards such
a construction, we define the notion of Encryption to a Current Winner (ECW), which is a
restricted version of EtF where messages can only be encrypted towards parties selected
for a role whose lottery parameters are available for the current slot, the one in which
we encrypt (this is as in previous constructions [BGG+20,GHK+21,GHM+21]). Unrestricted
EtF, on the other hand, allows for encrypting a message toward lottery winners that will
be determined at any arbitrary point in the future, including parties who only join the
protocol execution far in the future (after the ciphertext has been generated).

Constructing ECW (non-interactively)—Section 6.4. We show that it is possible to con-
struct a fully non-interactive ECW scheme from standard assumptions. Our construc-
tion relies on a milder flavor of witness encryption, which we call Witness Encryption
over Commitments (cWE) and define it in Section 6.3. This primitive is significantly more
restricted than full-fledged WE (see also discussion in Remark 6.2), but still powerful
enough: we show in Section 6.4.1 that ECW can be constructed in a black-box manner from
cWE, which in turn can be constructed from oblivious transfer and garbled circuits (Sec-
tion 6.9). This construction improves over the previous results [BGG+20,GHK+21,GHM+21]
since it does not rely on auxiliary committees.

Instantiating YOSO MPC using ECW—Section 6.5. The notion of ECW is more restricted
than EtF, but it can still be useful in applications. We show how to use it as a building
block for the YOSO MPC protocol of [GHK+21]. Here, each of the rounds in an MPC protocol
is executed by a di�erent committee. This same committee will simultaneously transfer
its secret state to the next (near-future) committee, which in turn remains anonymous
until it transfers its own secret state to the next committee, and so on. This setting clearly
matches what ECW o�ers as a primitive, but it also introduces a few more requirements:
1. ECW ciphertexts must be non-malleable, i.e. we need an IND-CCA secure ECW scheme;
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2. Only one party is selected for each role; 3. A party is selected for a role at random with
probability proportional to its relative stake on the underlying PoS blockchain; 4. Parties
selected for roles remain anonymous until they choose to reveal themselves; 5. A party
selected for a role must be able to authenticate messages on behalf of the role, i.e. pub-
licly proving that it was selected for a certain role and that it is the author of a message.
We show that all of these properties can be obtained departing from an IND-CPA secure
ECW scheme instantiated over a natural PoS blockchain (e.g. [DGKR18]). First, we observe
that VRF-based lottery schemes implemented in many PoS blockchains are su�cient to
achieve properties 2, 3 and 4. We then observe that natural block authentication mech-
anisms used in such PoS blockchains can be used to obtain property 5. Finally, we show
that standard techniques can be used to obtain an IND-CCA secure ECW scheme from an
IND-CPA secure ECW scheme.

Constructing EtF from ECW (interactively)—Section 6.6. Since we argued the implausi-
bility of constructing EtF non-interactively from standard assumptions, we study how to
transform an ECW scheme into an unrestricted EtF scheme when given access to an aux-
iliary committee but with “low communication” (and still from standard assumptions).
We explain what we mean by “low communication” by an example of its opposite: in pre-
vious works ( [BGG+20, GHK+21, GHM+21]) successive committees were required to store
and reshare secret shares of every message to be sent to a party selected in the future.
That is, their communication complexity grows both with the number and the amount
and length of the encrypted messages. In contrast, our solution has communication
complexity independent of the plaintext length. How our transformation from ECW to
EtF works: we associate each role in the future to a unique identity of an Identity Based
Encryption scheme (IBE); to encrypt a message towards a role we apply the encryption
of the IBE scheme. When, at any point in the future, a party for that role is selected, a
committee generates and delivers the corresponding secret key for that role/identity. To
realize the latter step, we apply YOSO MPC instantiated from ECW as shown in Section 6.5.
In contrast to previous schemes, our auxiliary committee only needs to hold shares of
the IBE’s master secret key and so it performs communication/computation dependent
on the security parameter but not on the length/amount of messages encrypted to the
future.

EtF + ECW

tIBE

cWE

BWE msNISC GC OT

+

Figure 6.1: Dependency diagram for primitives in this work. Legend: primitives wrapped in cir-
cles are introduced in this work; A→ B : “We can construct B from A”; A 99K B : “A is
a special case of B”.
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6.2 Modelling EtF

In this section, we present a model for encryption to the future winner of a lottery. In or-
der to argue about a notion of future, we use the blocks of an underlying blockchain
ledger and their relative positions in the chain to specify points in time. Intuitively,
our notion allows for creating ciphertexts that can only be decrypted by a party that
is selected to perform a certain role R at a future slot sl according to a lottery scheme
associated with a blockchain protocol. The winner of the lottery at a point in the fu-
ture with respect to a blockchain state B̃ is determined by the lottery predicate de-
fined in Section 4.2, i.e. the winner is the holder of a lottery secret key sk such that
lottery(B̃, sl, R, sk) = 1. However, notice that the winner might only be determined by a
blockchain state produced in the future as a result of the blockchain protocol execution.
This makes it necessary for the ciphertext to encode an initial state B of the blockchain
that allows for verifying that a future state B̃ (presented at the time of decryption) has
indeed been produced as a result of correct protocol execution. This requirement is cap-
tured by the evolving blockchain predicate defined in Section 4.2, i.e. evolved(B, B̃) = 1
i� B̃ is obtained as a future state of executing the blockchain protocol departing from
B.

Definition 6.1 (Encryption to the Future). A pair of PPT algorithms E = (Enc, Dec) in the
the context of a blockchain ΓV is an EtF-scheme with evolved predicate evolved and a
lottery predicate lottery. The algorithms work as follows.

Encryption. ct← Enc(B, sl, R,m) takes as input an initial blockchain B, a slot sl, a role R
and a message m. It outputs a ciphertext ct - an encryption to the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a ciphertext ct
and a secret key sk and outputs the original message m or ⊥.

An EtF must satisfy the following properties:

Correctness. An EtF-scheme is said to be correct if for honest parties i and j , there exists
a negligible function µ such that for all sk, sl, R,m:∣∣∣∣∣∣∣∣∣∣

Pr


view← EXECΓ(A,Z, 1λ)
B = GetRecords(viewi )

B̃ = GetRecords(viewj)
ct← Enc(B, sl, R,m)

evolved(B, B̃) = 1

:
lottery(B̃, sl, R, sk) = 0

∨ Dec(B̃, ct, sk) = m

− 1

∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

Security. We establish a game between a challenger C and an adversary A. In Section
4.2 we describe how A and Z execute a blockchain protocol. In addition, we now
let the adversary interact with the challenger in a game GameIND-CPA

Γ,A,Z,E described in
Algorithm 8. The game can be summarized as follows:

1. A executes the blockchain protocol Γ together with Z and at some round r
chooses a blockchain B, a role R for the slot sl and two messages m0 and m1

and sends it all to C.
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2. C chooses a random bit b and encrypts the message mb with the parameters
it received and sends ct to A.

3. A continues to execute the blockchain until some round r̃ where the
blockchain B̃ is obtained and A outputs a bit b′.

If the adversary is a lottery winner for the challenge role R in slot sl, the game
outputs a random bit. If the adversary is not a lottery winner for the challenge role
R in slot sl, the game outputs b ⊕ b′. The reason for outputting a random guess in
the game when the challenge role is corrupted is as follows. Normally the output of
the IND-CPA game is b⊕b′ and we require it to be 1 with probability 1/2. This models
that the guess b′ is independent of b. This, of course, cannot be the case when the
challenge role is corrupted. We therefore output a random guess in these cases.
After this, any bias of the output away from 1/2 still comes from b′ being dependent
on b.

Algorithm 8: GameIND-CPA
Γ,A,Z,E

1: viewr ← EXECΓ
r (A,Z, 1λ) . A executes Γ with Z until round r

2: (B, sl, R,m0,m1)← A(viewr
A) . A outputs challenge parameters

3: b←$ {0, 1}
4: ct← Enc(B, sl, R,mb)
5: st← A(viewr

A, ct) . A receives challenge ct
6: viewr̃ ← EXECΓ

(viewr ,r̃)(A,Z, 1λ) . Execute from viewr until round r̃

7: (B̃, b′)← A(viewr̃
A, st)

8: if evolved(B, B̃) = 1 then . B̃ is a valid evolution of B
9: if skAL,j /∈ WB̃,sl,R then . A does not win role R

10: return b ⊕ b′

11: end if
12: end if
13: return b̂←$ {0, 1}

Definition 6.2 (IND-CPA Secure EtF). An EtF-scheme E = (Enc, Dec) in the context of a
blockchain protocol Γ executed by PPT machines A and Z is said to be IND-CPA secure
if, for any A and Z , there exists a negligible function µ such that for λ ∈ N:∣∣∣2 · Pr

[
GameIND-CPA

Γ,A,Z,E = 1
]
− 1
∣∣∣ ≤ µ(λ)

Remark 6.1 (On the requirement of Proof-of-Stake for EtF). The EtF notion requires the
guarantee that an honest chain should be verifiable without interaction with the net-
work (i.e. verified by the EtF ciphertext). While this is possible for Proof-of-Stake (PoS)
blockchains, in a Proof-of-Work (PoW) blockchain the adversary can always simulate a
chain where it generates all blocks. In general we require a blockchain in order to model
time (via block height) for EtF.
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6.2.1 ECW as a Special Case of EtF

In this section we focus on a special class of EtF. We call schemes in this class ECW
schemes. ECW is particularly interesting since the underlying lottery is always conducted
with respect to the current blockchain state. This has the following consequences

1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.

2. The winner of role R in slot sl is already defined in B.

It is easy to see that this kind of EtF scheme is simpler to realize since there is no need for
checking if the blockchain has “correctly” evolved. Furthermore, all lottery parameters
like stake distribution and randomness extracted from the blockchain are static. Thus,
an adversary has no way to move stake between accounts in order to increase its chance
of winning the lottery.
Note that, when using an ECW scheme, the lottery winner is already decided at encryption
time. In other words, there is no delay and the moment a ciphertext is produced the
receiver is chosen.

6.3 Witness Encryption over Commitments (cWE)

Here, we describe witness encryption over commitments that is a relaxed notion of wit-
ness encryption. In witness encryption parties encrypt to a public input for some NP
statement. In cWE we have two phases: first parties provide a (honestly generated) com-
mitment cm of their private input s. Later, anybody can encrypt to a public input for an
NP statement which also guarantees correct opening of the commitment. Importantly,
in applications, the first message in our model can be reused for many di�erent invoca-
tions.

Remark 6.2 (Comparing cWE and WE). We observe that cWE is weaker than standard
WE because of its deterministic flavor. In standard WE we encrypt without having any
“pointer” to an alleged witness, but in cWE it requires the witness to be implicitly known
at encryption time through the commitment (to which it is bound). That is why—as for the
weak flavors of witness encryption in [BL20]—we believe it would be misleading to just
talk about WE. This is true in particular since we show cWE can be constructed from stan-
dard assumptions such as oblivious transfer and garbled circuits (Section 6.9.2), whereas
constructions of WE from standard assumptions are still an open problem or require
strong primitives like indistinguishability obfuscation. Finally we stress a di�erence with
the trivial “interactive” WE proposed in [GGSW13] (Section 1.3): cWE is still non-interactive
after producing a once-and-for-all reusable commitment.
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6.3.1 Definition

The type of relations we consider are of the following form: a statement x = (cm,C , y)
and a witness w = (s, ρ) are in the relation (i.e., (x, w) ∈ R) i� “cm commits to some secret
value s using randomness ρ, and C (s) = y”. Here, C is a circuit in some circuit class C
and y is the expected output of the function.

Formally, we define witness encryption over commitments as follows:

Definition 6.3 (Witness encryption over commitments). Let C = (Setup, Commit) be a
non-interactive commitment scheme. A cWE-scheme for witness encryption over com-
mitments with circuit class C and commitment scheme C consists of a pair of algorithms
ΠcWE = (Enc, Dec):

Encryption phase. ct ← Enc(ck, x,m) on input a commitment key ck, a statement x =
(cm,C , y) such that C ∈ C, and a message m ∈ {0, 1}∗, generates a ciphertext ct.

Decryption phase. m/⊥ ← Dec(ck, ct, w) on input a commitment key ck, a ciphertext ct,
and a witness w, returns a message m or ⊥.

A cWE should satisfy correctness and semantic security as defined below.

(Perfect) Correctness. An honest prover with a statement x = (cm,C , y) and witness
w = (s, ρ) such that cm = Commit(ck, s; ρ) and C (s) = y can always decrypt with
overwhelming probability. More precisely, a cWE with circuit class C and commit-
ment scheme C has perfect correctness if for all λ ∈ N, C ∈ C, ck ∈ Range(C.Setup),
s ∈ Sm, randomness ρ ∈ Sr , commitment cm← C.Commit(ck, s; ρ), and bit message
m ∈ {0, 1}∗, it holds that

Pr
[
ct← Enc(ck, (cm,C ,C (s)),m);m′ ← Dec(ck, ct, (s, ρ)) : m = m′

]
= 1

(Weak) Semantic Security. Intuitively, encrypting with respect to a false statement (with
honest commitment) produces indistinguishable ciphertexts. Formally, there exists
a negligible function µ such that for all λ ∈ N, all auxiliary strings aux and all PPT
adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣

2 · Pr


ck← C.Setup(1λ)

(st, s, ρ,C , y ,m0,m1)← A(ck, aux)

cm← C.Commit(ck, s; ρ); b←$ {0, 1}
ct← Enc(ck, (cm,C , y),mb)

ct := ⊥ if C (s) = y , C 6∈ C or |m0| 6= |m1|

: A(st, ct) = b

− 1

∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

Later, to show the construction of ECW from cWE, we need a stronger notion of semantic
security where the adversary additionally gets to see ciphertexts of the challenge mes-
sage under true statements with unknown to A witnesses. We formalize this property
in Section 6.11.1 and show that weak semantic security together with hiding of the com-
mitment imply strong semantic security.
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6.3.2 Constructions of cWE

From Multi-Sender 2P-NISC [AMPR14]. A cWE scheme can be constructed from protocols
for Multi-Sender (reusable) Non-Interactive Secure Computation (MS-NISC) [AMPR14]. In
such protocols, there is a receiver R with input x who first broadcasts an encoding of its
input, and then later every sender Si with input yi can send a single message to R that
conveys only f (x , yi ). This is done while preserving privacy of inputs and correctness of
output.

In Section 6.9.1 we provide a detailed explanation of how to construct cWE using MS-NISC
as in [AMPR14]. We here state the main points of the construction.
Let f be the function that on input y = (x, k) and x = w outputs k if and only if (x, w) ∈ R.
This will be the underlying function for the MS-NISC protocol. We then obtain a cWE
scheme over the relation R in the following way:

1. First, the receiver commits to its witness w by providing an encoding of it as its first
message in the MS-NISC protocol.

2. Secondly, to encrypt m under statement x, a sender samples a key k of size |m| and
provides an encoding of (x, k) as the second message in the MS-NISC protocol and
sends the ciphertext ct = m ⊕ k to the receiver.

3. Finally, the receiver obtains the key as the output of f (x = w, y = (x, k)) = k i� w is
a valid witness for the statement x encoded in the second message. And it decrypts
the ciphertext m = ct⊕ k .

We observe that the above construction actually yields a stronger notion of cWE where
the statement x is private which is not a requirement in our setting. This asymmetry
between sender and receiver privacy was also observed by others [JKO13] and it opens
the door for e�cient constructions using oblivious transfer (OT) and privacy-free garbled
circuits as described in [ZRE15]. More details on the more e�cient construction of cWE
using OT and garbled circuits are provided in Section 6.9.2.

6.4 Construction of ECW

Here we show a novel construction of ECW from cWE. We then show alternative construc-
tions through instantiations from previous work.

6.4.1 ECW from cWE

In this section we realize the notion of ECW from cWE. We define our scheme with re-
spect to a set of parties P = {P1, ... ,Pn} executing a blockchain protocol Γ as described
in Section 4.2, i.e. each party Pi has access to the blockchain ledger and is associated
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to a tuple (Sig.pki , auxi , sti ) registered in the genesis block for which it has correspond-
ing secret keys (Sig.ski , skL,i ). Our construction uses as a main building block a witness
encryption scheme over commitments ΠcWE = (EnccWE, DeccWE); we assume the com-
mitments to be extractable. The class of circuits C of ΠcWE includes the lottery predicate
lottery(B, sl, R, skL,i ). We let each party publish an initial commitment of its witness. This
way we can do without any interaction for encryption/decryption through a one-time
setup where parties publish the commitments over which all following encryptions are
done. We construct our ECW scheme ΠECW as follows:

System Parameters: We assume that a commitment key Setup(1λ)→ ck is contained in
the genesis block B0 of the underlying blockchain.

Setup Phase: All parties Pi ∈ P proceed as follows:

1. Compute a commitment cmi ← Commit(ck, skL,i ; ρi ) to skL,i using randomness ρi .
We abuse the notation and define Pi ’s secret key as skL,i ||ρi .

2. Compute a signature σi ← SigSig.ski (cmi ).

3. Publish (cmi ,σi ) on the blockchain by executing Broadcast(1λ, (cmi ,σi )).

Encryption Enc(B, sl, R,m): Construct a circuit C that encodes the predicate
lottery(B, sl, R, skL,i ), where B, sl and R are hardcoded and skL,i is the witness. Let
PSetup be the set of parties with non-zero relative stake and a valid setup message
(cmi ,σi ) published in the common prefix Bdκ (if Pi has published more than one
valid (cmi ,σi ), only the latest one is considered). For every Pi ∈ PSetup , compute
cti ← EnccWE(ck, xi = (cmi ,C , 1),m). Output ct =

(
B, sl, R, {cti}Pi∈PSetup

)
.

Decryption Dec(B, ct, sk): Given sk := skL,i ||ρi such that cmi = Commit(ck, skL,i ; ρi )
and lottery(B, sl, R, skL,i ) = 1 for parameters B, sl, R from ct, output m ←
DeccWE(ck, cti , (skL,i , ρi )). Otherwise, output ⊥.

Theorem 6.1. Let C = (Setup, Commit) be a non-interactive extractable commitment
scheme and ΠcWE = (EnccWE, DeccWE) be a strong semantically secure cWE over C for a
circuit class C encoding the lottery predicate lottery(B, sl, R, skL,i ) as defined in Section 6.3.
Let Γ be a blockchain protocol as defined in Section 4.2. ΠECW is an IND-CPA-secure ECW
scheme as per Definition 6.2.

The proof is provided in Section 6.11.2.

6.4.2 Other Instantiations

ECW from target anonymous channels [GHM+21, BGG+20]. As mentioned before, an-
other approach to construct ECW can be based on a recent line of work that aims
to design secure-MPC protocols where parties should remain anonymous until they
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speak [GHM+21, BGG+20, GHK+21]. The baseline of these results is to establish a com-
munication channel to random parties, while preserving their anonymity. It is quite clear
that such anonymous channels can be used to realize our definition of ECW for the un-
derlying lottery predicate that defines to whom the anonymous channel is established.
Namely, to encrypt m to a role R at a slot sl with respect to a blockchain state B, create a
target anonymous channel to (R, sl) over B by using the above approaches and sendm via
this channel. Depending on the lottery predicate that specifies which random party the
channel is created for, a recipient with the secret key who wins this lottery can retrieve m.
To include some concrete examples, the work of Benhamouda et al. [BGG+20] proposed
the idea of using a “nomination” process, where a nominating committee chooses a num-
ber of random parties P , look up their public keys, and publish a re-randomization of
their key. This allows everyone to send messages to P while keeping their anonymity. The
work of [GHM+21] answered this question di�erently by delegating the nomination task
to the previous committees without requiring a nominating committee. That is, the pre-
vious committee runs a secure-MPC protocol to choose a random subset of public keys,
and broadcasts the rerandomization of the keys. To have a MPC protocol that scales well
with the total number of parties, they define a new flavour of private information retrieval
(PIR) called random-index PIR (or RPIR) and show how each committee—playing the role
of the RPIR client—can select the next committee with the complexity only proportional
to the size of the committee. There are two constructions of RPIR proposed in [GHM+21],
one based on Mix-Nets and the other based on FHE. Since the purpose of the construc-
tions described is to establish a target-anonymous channel to a random party, one can
consider them as examples of a stronger notion of ECW with anonymity and a specific
lottery predicate that selects a single random party from the entire population as the
winner.

ECW from [DS15]. Derler and Slamanig [DS15] (DS) constructed a variant of WE for a re-
stricted class of algebraic languages. In particular, a user can conduct a Groth-Sahai (GS)
proof for the satisfiability of some pairing-product equations (PPEs). Such a proof con-
tains commitments to the witness using randomness only known by this user. The proof
can be used by anyone to encrypt a message resulting in a ciphertext which can only
be decrypted by knowing this randomness. More formally, they consider a type of WE
associated with a proof system Π = (Setup, Prove, Verify) consisting of two rounds. In the
first round, a recipient computes and broadcasts π ← Prove(crs, x, w). Later, a user can
verify the proof and encrypt a message m under (x,π) if Verify(crs, x,π) = 1. We note
that the proof π does not betray the user conducting the proof and therefore it can use
an anonymous broadcast channel to communicate the proof to the encrypting party in
order to obtain anonymous ECW. Moreover, although GS proofs may look to support only
a restricted class of statements based on PPEs, they are expressive enough to cover all
the statements arising in pairing-based cryptography. This indicates the applicability of
this construction for any VRF-based lottery where the VRF is algebraic and encodable
as a set of PPEs. Further details are provided in Section 6.8. This interactive ECW just
described yields an improvement in communication complexity at the cost of having an
extra round of interaction.

From Signatures of Knowledge. Besides the above instantiations, we point out a (poten-
tially more ine�cient) abstract construction from zero-knowledge signatures of knowl-
edge (SoK) [CL06] (roughly, a non-malleable non-interactive zero-knowledge proof). This
is similar in spirit to the previous instantiation and can be seen as a generalization. As-
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sume each party has a (potentially ephemeral) public key. At the time the lottery winner
has been decided, the winners can post a SoK showing knowledge of the secret key cor-
responding to their pk and that their key is a winner of the lottery. To encrypt, one would
first verify the SoK and then encrypt with respect to the corresponding public key.

6.5 YOSO Multiparty Computation from ECW

In this section we show how ECW can be used as the crucial ingredient in setting up a
YOSO MPC. So far we have only focused on IND-CPA secure ECW, which falls short of role
assignment in the sense of [GHK+21]. In general role assignment requires the following
properties which are not provided by ECW (or EtF):

1. Multiple parties must be able to send messages to the same role (in most applica-
tions this requires IND-CCA).

2. Parties must authenticate messages on behalf of a role they executed in the past
(authentication from the past)

3. A party assigned to a given role must stay covert until the role is executed.

We will define a number of properties needed for EtF to realize applications such as role
assignment. We start by looking at CCA security for an EtF scheme. We then introduce the
notion of Authentication from the Past (AfP) and definition of unforgeability and privacy
guarantees. Finally, we introduce the notion of YOSO-friendly blockchains that have in-
built lotteries with properties that are needed to conduct YOSO MPC and corresponding
EtF and AfP schemes.

6.5.1 IND-CCA EtF

In this section we define what it means for an EtF to be IND-CCA secure. This security
property is useful in many applications where more encryptions are done towards the
same slot and role. As in the definition of IND-CPA, we establish a game between a
challenger C and an adversary A. We introduce a decryption oracle, OEtF, which on
input ct returns the decryption of ciphertext. Furthermore, the OEtF maintains a list of
ciphertext queries QEtF. Algorithm 9 shows the details of the game.

Definition 6.4 (IND-CCA2 Secure EtF). Formally, an EtF-scheme E is said to be IND-CCA2
secure in the context of a blockchain protocol Γ executed by PPT machines A and Z if
there exists a negligible function µ such that for λ ∈ N:∣∣∣2 · Pr

[
GameIND-CCA2

Γ,A,Z,E = 1
]
− 1
∣∣∣ ≤ µ(λ)

To add IND-CCA2 security to an IND-CPA secure EtF scheme (as defined in Definition 6.2)
we can use standard transformations such as [FO99,Sah99]. In the transformation based
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Algorithm 9: GameIND-CCA2
Γ,A,Z,E

1: viewr ← EXECΓ
r (AOEtF ,Z, 1λ) . A executes Γ with Z until round r

2: (B, sl, R,m0,m1)← AOEtF(viewr
A) . A outputs challenge parameters

3: b←$ {0, 1}
4: ct← Enc(B, sl, R,mb)
5: st← AOEtF(viewr

A, ct) . A receives challenge ct
6: viewr̃ ← EXECΓ

(viewr ,r̃)(AOEtF ,Z, 1λ) . Execute from viewr until round r̃

7: (B̃, b′)← AOEtF(viewr̃
A, st)

8: if evolved(B, B̃) = 1 then . B̃ is a valid evolution of B
9: if skAL,j /∈ WB̃,R,sl ∧ ct /∈ QEtF then . A does not win role R

10: return b ⊕ b′

11: end if
12: end if
13: return g ←$ {0, 1}

on [Sah99] we could add to the setup of the blockchain a CRS for a simulation-sound
extractable NIZK. When encrypting m to a role R the sender will send along a proof of
knowledge of the plaintext m. We get the challenge ciphertext from the IND-CPA game
and use the ZK property to simulate the NIZK proof. We can use the extraction trapdoor
of the proof system to simulate the CCA decryption oracles by simulation soundness.
When the IND-CCA2 adversary makes a guess, we make the same guess. The details of
the construction and proof follow using standard techniques and are omitted. On the
other hand, the popular transformation of [FO99] allows for simulating CCA decryption
oracles by observing the adversary’s queries to a random oracle, which should not be an
issue since an EtF scheme is likely already running on top of a blockchain which is secure
in the random oracle model. We leave the construction of concretely e�cient IND-CCA2
EtF as future work.

6.5.2 Authentication from the Past (AfP)

When the winner of a role R1 sends a message m to a future role R2 then it is typically
also needed that R2 can be sure that the message m came from a party P which, in-
deed, won the role R1. Most PoS blockchains deployed in practice have a lottery where
a certificate can be released proving that P won the role R1. In order to formalize this
concept, we introduce an AfP scheme with a corresponding EUF-CMA game representing
the authentication property.

Definition 6.5 (Authentication from the Past). A pair of PPT algorithms U = (Sign, Verify)
is a scheme for authenticating messages as a winner of a lottery in the past in the context
of blockchain Γ with lottery predicate lottery.

Authenticate. σ ← AfP.Sign(B, sl, R, sk,m) takes as input a blockchain B, a slot sl, a role
R, a secret key sk, and a message m. It outputs a signature σ that authenticates the
message m.
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Verify. {0, 1} ← AfP.Verify(B̃, sl, R,σ,m) uses the blockchain B̃ to ensure that σ is a sig-
nature on m produced by the secret key winning the lottery for slot sl and role R.

Furthermore, an AfP-scheme has the following properties:

Correctness. An AfP-scheme is said to be correct if for honest parties i and j , there exists
a negligible function µ such that for all sk, sl, R,m:∣∣∣∣∣∣∣∣Pr


view← EXECΓ(A,Z, 1λ)
B = GetRecords(viewi )

B̃ = GetRecords(viewj)
σ ← AfP.Sign(B, sl, R, sk,m)

:

lottery(B, sl, R, sk) = 0

∨ lottery(B̃, sl, R, sk) = 0

∨ AfP.Verify(B̃, sl, R,σ,m) = 1

− 1

∣∣∣∣∣∣∣∣ ≤ µ(λ)

In other words, an AfP on a message from an honest party with a view of the
blockchain B can attest to the fact that the sender won the role R in slot sl. If
another party, with blockchain B̃ agrees, then the verification algorithm will output
1.

Security. We here describe the game detailed in Algorithm 10 representing the security
of an AfP scheme. The algorithm represents a standard EUF-CMA game where the
adversary has access to a signing oracleOAfP which it can query with a slot sl, a role
R and a message mi and obtain AfP signatures σi = AfP.Sign(B, sl, R, skj ,mi ) where
skj ∈ WB,sl,R i.e. lottery(B, sl, R, skj) = 1. The oracle maintains the list of queries
QAfP.
Formally, an AfP-scheme U is said to be EUF-CMA secure in the context of a
blockchain protocol Γ executed by PPT machines A and Z if there exists a neg-
ligible function µ such that for λ ∈ N:

Pr
[
GameEUF-CMA

Γ,A,Z,U = 1
]
≤ µ(λ)

Algorithm 10: GameEUF-CMA
Γ,A,Z,U

1: view← EXECΓ(A,Z, 1λ) . A executes Γ with Z
2: (B, sl, R,m′,σ′)← AOAfP(viewA)
3: if (m′ ∈ QAfP) ∨ (skAL,j ∈ WB,sl,R) then . AOAfP won or queried illegal m′
4: return 0
5: end if
6: viewr̃ ← EXECΓ

(viewr ,r̃)(A,Z, 1λ) . Execute from viewr until round r̃

7: B̃← GetRecords(viewr̃
i )

8: if evolved(B, B̃) = 1 then
9: if AfP.Verify(B, sl, R,σ′,m′) = 1 then . A successfully forged an AfP

10: return 1
11: end if
12: end if
13: return 0
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6.5.2.1 General AfP.

In general we can add authentication to a message as follows. Recall that Pi wins R if
lottery(B, sl, R, skL,i ) = 1. Here, R(x = (B, sl, R), w) = lottery(x, w) is an NP relation where
all parties know x but only the winner knows a witness w such that R(x, w) = 1. We can
therefore use a signature of knowledge (SoK) [CL06] to sign m under the knowledge of
skL,i such that lottery(B, sl, R, skL,i ) = 1. This will attest that the message m was sent by
a winner of the lottery for R. In Section 6.12.1, we show more e�cient construction of AfP
by exploring the structure of PoS-based blockchains with VRF lotteries.

6.5.3 AfP Privacy

Just EUF-CMA security is not su�cient for an AfP mechanism to be YOSO friendly. It must
also preserve the privacy guarantees of the lottery predicate, guaranteeing that the ad-
versary does not gain any undue advantage in predicting when a party is selected to
perform a role after it uses AfP to authenticate a message. To appreciate this fact, we
consider the case where instead of creating a signature of knowledge of skL,i on message
m we simply use a regular EUF-CMA secure signature scheme to sign the message con-
catenated with skL,i , revealing the signature public key, the resulting signature and skL,i

itself as a means of authentication. By definition, this will still constitute an existentially
unforgeable AfP but will also reveal whether the party who owns skL,i is the winner when
future lotteries are conducted. The specific privacy property we seek is that an adver-
sary, observing AfP tags from honest parties, cannot use this information to enhance its
chances in predicting the winners of lotteries for roles for which an AfP tag has not been
published. On the other hand, the identity of a party who won the lottery for a given role
is not kept private when it publishes an AfP tag on behalf of this role, which is not an
issue in a YOSO-setting since corruption after-the-fact is futile. Specifically, we allow an
AfP tag to be linked to the identity of the party who generated it. Note, that this kind of
privacy is di�erent from notions like k-anonymity since the success of the adversary in
guessing lottery winners with high accuracy depends on the stake distribution. The stake
distribution is public in most PoS-settings and, thus, a privacy definition must take into
account this inherent leakage.

Definition 6.6 (AfP Privacy.). An AfP scheme U with corresponding lottery predicate lottery
is private if a PPT adversary A is unable to distinguish between the scenarios defined
in Algorithm 11 and Algorithm 12 with more than negligible probability in the security
parameter.

Scenario 0 (b = 0). In this scenario (Algorithm 11), A is first running the blockchain Γ
together with the environment Z . At round r , A is allowed to interact with the oracle
OAfP (see Definition 6.5). The adversary then continues the execution until round r̃
where it outputs a bit b′.

Scenario 1 (b = 1). This scenario (Algorithm 12) is identical to scenario 0 but instead of
interacting with OAfP, the adversary interacts with a simulator Sim.
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Algorithm 11: b = 0

1: viewr ← EXECΓ
r (A,Z, 1λ)

2: AOAfP(viewr
A)

3: viewr̃ ← EXECΓ
(viewr ,r̃)(A,Z, 1λ)

4: return b′ ← AOAfP(viewr̃
A)

Algorithm 12: b = 1

1: viewr ← EXECΓ
r (A,Z, 1λ)

2: ASim(viewr
A)

3: viewr̃ ← EXECΓ
(viewr ,r̃)(A,Z, 1λ)

4: return b′ ← ASim(viewr̃
A)

We let GameAfP-PRIV
Γ,A,Z,U denote the game where a coin-flip decides whether the adversary

is executed in scenario 0 or scenario 1. We say that the adversary wins the game (i.e.
GameAfP-PRIV

Γ,A,Z,U = 1) i� b′ = b. Finally, an AfP scheme U is called private in the context
of the blockchain Γ executed together with environment Z if the following holds for a
negligible function µ.

∣∣∣2 · Pr
[
GameAfP-PRIV

Γ,A,Z,U = 1
]
− 1
∣∣∣ ≤ µ(λ)

6.5.4 Round and Committee Based YOSO Protocols

Having IND-CCA2 ECW and an EUF-CMA secure and Private AfP, we can establish a round-
based YOSO model, where there is a number of rounds r = 1, 2, ... and where for each
round there are n roles Rr ,i . We call the role Rr ,i “party i in round r”. We fix a round length
L and associate role Rr ,i to slot sl = L · r . This L has to be long enough that in each round
the parties executing the roles can decrypt ciphertexts sent to them, execute the steps
of the role, compute encryptions to the roles in the next round and post these to the
blockchain in time for these to be available to the committee of round r + 1 before slot
(r +1) ·L. Picking such an L depends crucially on the underlying blockchain and network,
and we will here simply assume that it can be done for the blockchain at hand.

Using this setup, the roles Rr ,i of round r can use ECW and AfP with the aforementioned
properties to send secret authenticated messages to the roles Rr+1,i in round r + 1. They
find their ciphertexts on the blockchain before slot r ·L, decrypt using ECW, compute their
outgoing messages, encrypt using ECW, authenticate using AfP, and post the ciphertexts
and AfP tags on the blockchain.

6.5.4.1 Honest Majority.

In round based YOSO MPC it is critical that we can assume some fraction of honesty in
each committee Rr ,1, ... , Rr ,n. We discuss here assumptions needed on the lottery for this
to hold and how to guarantee it. Assume an adversary that can corrupt parties identified
by sk and a lottery assigning parties to roles Rr ,i . We map the corruption status of parties
to roles as follows:
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1. If a role Rr ,i is won by a corrupted party or by several parties, call the role Malicious.
Even if Rr ,i is won by two honest parties, they will both execute the role and send
outgoing messages, which might violate security.

2. If a role Rr ,i is won by exactly one honest party, call it Honest.

3. If a role Rr ,i is not won by any party, call it Crashed. These roles will not be executed
and are therefore equivalent to a crashed party.

Note that because we assume corrupted parties know their lottery witness skL,i in our
model, we can, in poly-time, extract those witnesses and compute the corruption status
of roles. This will be crucial in our reductions. Imagine that a role could be won by an
honest party but also by a corrupted party which stays completely silent but decrypts
messages sent to the role. If we are not aware of the corrupted party winning the role,
we might send a simulated ciphertext to the apparently honest role. The corrupted party
also having won the role would be able to detect this. Since any role won by an hon-
est party could also be corrupted by a silent malicious party, simulation would become
impossible.

In order to realize YOSO MPC, we will need committees where a majority of the roles are
honest according to the description above. We capture this requirement in the definition
below and argue how it can be achieved in Section 6.12.2.

Definition 6.7 (Honest Committee Friendly). We call a blockchain Γ honest committee
friendly if there exist n and H and T such that H > T s.t. we can define a sequence of
roles Rr ,i for r = 1, ... , poly(λ) and i = 1, ... , n for a slot slr and that for all r it holds that
except with negligible probability there are at least H honest roles in Rr ,1, ... , Rr ,n and at
most T malicious roles. Furthermore, if an honest party executing Rr ,1, ... , Rr ,n sends a
message at slr , it is guaranteed to appear on the blockchain before slot slr+1.

We are now ready to capture the above discussion using a definition.

Definition 6.8 (YOSO Friendly Blockchain). Let Γ be a blockchain with a lottery predicate
lottery(B, slr , Rr ,i , skL,i ) and let E = (Enc, Dec) and U = (Sign, Verify) be an EtF and AfP for
lottery(B, slr , Rr ,i , skL,i ), respectively. We call (Γ, E ,U) YOSO MPC friendly if the following
holds:

1. E is an IND-CCA2 secure EtF (Definition 6.4).

2. U is a secure and private AfP (Definition 6.5 and Definition 6.6).

3. Γ is honest committee friendly (Definition 6.7).

We will later assume a YOSO friendly blockchain, and we argued above that the existence
of a YOSO friendly blockchain is a plausible assumption without having given formal
proofs of this. It is interesting future work to prove that a concrete blockchain is a YOSO
friendly blockchain in a given communication model. We omit this as our focus is on
constructing flavours of EtF.
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6.6 Construction of EtF from ECW and Threshold-IBE

The key intuition about our construction is as follows: we use IBE to encrypt messages
to an arbitrary future (R, slfut) pair. When the winners of the role in slot slfut are assigned,
we let them obtain an ID-specific key for (R, slfut) from the IBE key-generation algorithm
using ECW as a channel. Notice that this key-generation happens in the present while
the encryption could have happened at any earlier time. We generate the key for (R, slfut)
in a threshold manner by assuming that, throughout the blockchain execution, a set of
committee members each holds a share of the master secret key mski .

6.6.1 Construction

We now describe our construction. We assume an encryption to the current winner
ΠECW = (EncECW, DecECW) and a threshold IBE scheme ΠTIBE. In the setup stage we
assume a dealer acting honestly by which we can assign master secret key shares of the
TIBE.

Parameters: We assume that the genesis block B0 of the underlying blockchain contains
all the parameters for ΠECW.

Setup Phase: Parties run the setup stage for the ΠECW. The dealer produces (mpk, ~msk =
(msk1, ... , mskn)) from TIBE setup with threshold k . Then it chooses n random parties
and gives a distinct mski to each. All learn mpk.

Blockchain Execution: The blockchain execution we assume is as in Section 6.2. We
additionally require that party i holding a master secret key share mski broadcasts
ctsk,i

(sl,R) ← EncECW(B, sl, R, ski(sl,R)), whenever the winner of role R in slot sl is defined in
the blockchain B, where ski(sl,R) ← ΠTIBE.IDKeygen(mski , (sl, R)).

Encryption Enc(B, sl, R,m): Each party generates cti ← ΠTIBE.Enc(mpk, ID = (sl, R),m).
Output ct = (B, sl, R, {cti}Pi

).

Decryption Dec(B, ct, sk): Party i outputs ⊥ if it does not have skL,i such that
lottery(B, sl, R, skL,i ) = 1 for parameters B, sl, R from ct. Otherwise, it retrieves
enough (above threshold) valid ciphertexts ctsk,j

(sl,R) from the current state of the
blockchain and decrypts each through ΠECW obtaining skj(sl,R). It then computes
sk(sl,R) ← ΠTIBE.Combine(mpk, (skj(sl,R))j). It finally outputs m← ΠTIBE.Dec(sk(sl,R), ct).

Resharing. We can ensure that the master secret key is proactively reshared by mod-
ifying each party so that mski-s are reshared and reconstructed in the evolution of the
blockchain.
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Correctness. Correctness of the construction follows from the correctness of the un-
derlying IBE and the fact that a winning role will be able to decrypt the id-specific key by
the correctness of the ECW scheme.

6.6.2 Security and Proof Intuition

In the following we assume some of the extensions discussed in Section 6.5.

Theorem 6.2 (informal). Let ΓV be a YOSO MPC friendly blockchain, ΠTIBE be a robust
secure threshold IBE as in Section 5.5.2 with threshold n/2, and ΠECW a secure IND-CCA2
ECW. The construction in Section 6.6.1 is a secure EtF.

We describe our proof in Section 6.10. At the high level we show security in two steps.
We first show the security of our construction for a simplified non-threshold setting with
a standard IBE instead of a threshold one with key-sharing. In other words we do not
temporarily consider the real case where there is a committee of parties holding a share
of the master secret key, but we assume the execution uses a “key provider” oracle hold-
ing the master secret key of the IBE scheme. In particular, we define the behavior of
oracle Ok-provider

msk as follows: given in input a blockchain B and a slot sl (such that the
latest slot of B is sl), it broadcasts a ciphertext for the winner2 of the slot computed as
ctsk

sl ← EncECW(B, sl, R, sksl) where sksl ← IBE.Keygen(msk, (sl, R)).

As a second step in the proof we show that, in the threshold-setting (where the master
secret key is actually shared), one can obtain an adversary with a comparable advantage
in the threshold-setting from an adversary in the non-threshold setting. Intuitively, we
can do this because of the low amount of stake the adversary is controlling and the
security of threshold-IBE.

Finally, our proof considers the case of an adversary with static corruptions, but we point
out it can be straightforwardly compiled to a full round and committee YOSO setting as
described in Section 6.5.

6.7 Blockchain WE versus EtF

In this section we show that an account-based PoS blockchain with su�ciently expressive
smart contracts and an EtF scheme for this blockchain implies a notion of witness en-
cryption on blockchains, and vice versa. The construction of EtF from BWE is completely
straightforward and natural: encrypt to the witness which is the secret key winning the
lottery. The construction of BWE from EtF is also straightforward but slightly contrived: it
requires that we can restrict the lottery such that only some accounts can win a given role
and that the decryptor has access to a constant fraction of the stake on the blockchain

2This is actually a vector, one for each winner in the slot. For clarity of discussion we just consider the case
for one winner. The general case follows straightforwardly.
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and are willing to bind them for the decryption operation. The reason why we still prove
the result is that it establishes a connection at the feasibility level. For su�ciently expres-
sive blockchains the techniques allowing to construct EtF and BWE are the same. To get
EtF from simpler techniques than those we need for BWE we need to do it in the context
of very simple blockchains. In addition, the techniques allowing to get EtF without getting
BWE should be such that they prevent the blockchain from having an expressive smart
contract layer added. This seems like a very small loophole, so we believe that the result
shows that there is essentially no assumptions or techniques which allow to construct
EtF which do not also allow to construct BWE. Since BWE superficially looks stronger than
EtF the equivalence helps better justify the strong assumptions for constructing EtF.

Definition 6.9 (Blockchain Witness Encryption). Consider PPT algorithms (Gen, Enc, Dec)
in the context of a blockchain ΓV is an BWE-scheme with evolved predicate evolved and
a lottery predicate lottery working as follows:

Setup. (pv, td) ← Gen() generates a public value pv and an extraction trapdoor td. Ini-
tially pv is put on B.

Encryption. ct← Enc(B,W ,m) takes as input a blockchain B, including the public value,
a PPT function W , the witness recogniser, and a message m. It outputs a ciphertext
ct, a blockchain witness encryption.

Decryption. m/⊥ ← Dec(B̃, ct, w) in input a blockchain state B̃, including the a public
value pv, a ciphertext ct a witness w, it outputs a message m or ⊥.

Correctness. An BWE-scheme is correct if for honest parties i and j , PPT function W , and
witness w such that W (w) = 1 the following holds with overwhelming probability: if
party i runs ct← Enc(B,W ,m) and party j starts running Dec(B̃, ct, w) in B̃ evolved
from B, then eventually Dec(B̃, ct, w) outputs m.

Security. We establish a game between a challenger C and an adversary A. In section
4.2 we described how A and Z execute a blockchain protocol. In addition, we now
let the adversary interact with the challenger in a game GameIND-CPA

Γ,A,Z,E which can be
summarized as follows.

1. (pv, td)← Gen() and put pv on the blockchain.

2. A executes the blockchain protocol Γ together with Z and at some round r
chooses a blockchain B, a function W and two messages m0 and m1 and sends
it all to C.

3. C chooses a random bit b and encrypts the message mb with the parameters
it received and sends ct to A.

4. A continues to execute the blockchain until some round r̃ where the
blockchain B̃ is obtained and the A outputs a bit b′.

The adversary wins the game if it succeeds in guessing b with probability notably
greater than one half without W (Extract(td, B̃, ct,W )) = 1.
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6.7.0.1 EtF from BWE.

We first show the trivial direction of getting EtF from BWE. Let ΠBWE =
(GenBWE, EncBWE, DecBWE) be an BWE scheme. Recall that one wins the lottery if
lottery(B, sl, R, sk) = 1. We construct a EtF scheme. To encrypt, let W be the function
W (w) = lottery(B, sl, R, w) and output EncBWE(B,W ,m). If winning the lottery for (sl, R)
then let w be the secret key winning the lottery and output Dec(B̃, ct, w). The proof is
straightforward.

6.7.0.2 BWE from EtF.

We now show how to construct BWE from EtF. Let (EncEtF, DecEtF) be an EtF scheme.
Assume a blockchain with Turing complete smart contracts which can be programmed
to send, receive, and reject stake. Assume furthermore that if a constant fraction of the
stake is moved to an account then within a polynomial number of slots it will begin
winning the lottery with constant probability.

We assume that the contract C of an account is hardcoded into the account when created
and cannot be changed. We also need to assume that the blockchain reaches all slot
numbers such that there is an independent chance to win at all slot numbers. We also
need that only polynomially many slot numbers are reached in polynomial time. We
need that the lottery can be filtered such that only certain accounts can win a given role.
We need that the filtering can depend on the smart contract put on the account when
the account was created.

The construction needs a notion of labelled simulation-sound NIZK proof of knowledge.
For such a scheme there is a label connected to a proof and a proof of instance x and
label L cannot be mauled into a proof of instance x and label L′ 6= L. This can generically
be constructed from an unlabelled scheme simply by letting the label be part of the
instance. Let pv of the BWE scheme be the CRS of the NIZK and let td be the extraction
trapdoor of the BWE scheme.

To encrypt proceed as follows.

1. Create a fresh account vk with a smart contract E and with no stake on it. Pro-
gram E with W hard-coded and such that E is willing to receive calls of the form
(Transfer,π, f ,F ) from any other smart contract D . If D has f stake available and
π is a proof of knowledge of w such that W (w) = 1 and with label F , then accept a
transfer of f stake from D and send them to F .

2. Let filter be the filter which only accepts accounts which have no stake initially and
which have smart contracts C of the form that it will only accept stake from the
account vk created by the encryptor above.

3. Use EncEtF to encrypt to roles E at slots 2i + j for i = 1, ... ,κ and j = 1, ... ,κ. Use
the filter filter.
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To decrypt create a new account F with a contract accepted by filter. Then use w to
transfer stake to F via E . Note that F is allowed to win the lotteries used in the EtF
encryptions. No matter when the decryption is performed, the slots of the blockchain
will eventually reach the next slot of the form 2i as at most polynomially many slots
were reached already. After this comes κ slots in a row to which the encryptor encrypted
using EtF. Each of these is won with a constant probability. Therefore the probability of
not decrypting is negligible.

6.8 ECW from [DS15]

While general constructions of witness encryption (WE) [GGH13a, GGH+13b, GLW14] are
impractical, Derler and Slamanig [DS15] puts forward a notion inspired by the standard
definition of WE, but weakened by having one extra round. A standard WE scheme con-
sists of two algorithms Enc and Dec (ignoring the setup phase), wherein a user, in a single
flow, can encrypt a message m under a specific statement x and produce a ciphertext ct.
A recipient of ct is then able to recover the message if they know a witness w which certi-
fies the truth of x. The weakened variant of WE in [DS15] is associated with a proof system
Π = (Setup, Prove, Verify) and consists of two rounds: in the first round, a recipient com-
putes and broadcasts π ← Prove(crs, x, w). Later, a user can verify the proof and encrypts
a message m under (x,π) if Verify(crs, x,π) = 1.

In this section, we show how to realize ECW from [DS15] and provide additional details
on their constructions for the sake of completeness.

6.8.0.1 ECW with respect to Groth-Sahai NIZK Proofs.

Groth-Sahai (GS) proofs work by using dual-mode commitments that are homomorphic
with respect to group operations and consist of two setup algorithms. If the commitment
parameters are generated by the first algorithm, one obtains perfectly binding commit-
ments. In contrast, the second algorithm generates the parameters in a way that leads
to perfectly hiding commitments. The GS protocol aims at convincing a verifier that a set
of equations are satisfied by the values inside the commitments. The prover gives to the
verifier a proof containing commitments to the witness together with some additional
group elements. Given such a proof and based on the linearity of GS commitments, one
can encrypt a message with respect to the commitments used within the proof using a
smooth projective hash function (SPHF) for linear languages (see Section 5.6).

Let us give more details. The commitment parameters in the perfectly binding mode 3

are group elements [U1], [U2], [U3] ∈ G3 ×G3 ×G3 defined as follows:

[U1] = ([τ1], [0], [1]) ; [U2] = ([0], [τ2], [1])

[U3] = τ3 · [U1] + τ4 · [U2] = ([τ1τ3], [τ2τ4], [τ3 + τ4])

3Here we only focus on the perfectly binding mode. All the explanations can also be applied to the perfectly
hiding mode in a straightforward manner.
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where τ1, τ2, τ3, τ4←$Zq . Setting these parameters, a commitment to a message m ∈ G
is by choosing r1, r2, r3←$Zq and computing

cmm = ([0], [0], [m]) + r1U1 + r2U2 + r3U3

= ([τ1(r1 + τ3r3)], [τ2(r2 + τ4r3)], [m + r1 + r2 + r3(τ3 + τ4)]).

Now let lpar = ([U1], [U2], [U3]) and define

Llpar = {([m], cmm)|∃(r1, r2, r3) ∈ Z3
q : cmm = ([0], [0], [m]) + r1U1 + r2U2 + r3U3}

It is not hard to see that Llpar is a linear language and therefore a SPHF for it can be
constructed as follows:

setup(1λ): Run the bilinear group generation algorithm and let p be the bilinear group
description. Also, set the language parameters lpar = ([U1], [U2], [U3]) as defined
above.

hashkg(lpar): Choose α1,α2,α3←$Z3
q and return hk = (α1,α2,α3).

projkg(lpar; hk, x): Parse lpar as ([U1], [U2], [U3]) and hk as (α1,α2,α3). Return hp =
(γ1, γ2, γ3) ∈ G3, where

γ1 = α1[τ1] + [α3]; γ2 = α2[τ2] + [α3]

γ3 = α1[τ1τ3] + α2[τ2τ4] + α3[τ3 + τ4]

hash(lpar; hk, x): Parse the statement x as ([m], cmm = ([u], [v ], [e])), and hk as
(α1,α2,α3). Return H computed as H = [u] · α1 + [v ] · α2 + ([e] − [m]) · α3.

projhash(lpar; hp, x, w): Parse hp as (γ1, γ2, γ3) and w as (r1, r2, r3). Return pH computed
as pH = γ1r1 + γ2r2 + γ3r3.

We refer the reader to [DS15] for the security proof of the above SPHF.

Equipped with this construction, one can now construct an ECW by encoding the lottery
statement into vectors of commitments satisfying pairing-product equations (PPEs). In
more details, the construction works as follows. All receivers who have skL,i such that
lottery(B, sl, R, skL,i ) = 1 publish a GS proof πi that they have such secret key skL,i . The
encrypting party encodes the lottery predicate into a set of pairing-product equations
(PPEs) and encrypts the message under each of these GS proofs using the SPHF scheme
described above. We note that this construction can be used for any type of algebraic
lottery that can be represented as a set of pairing product equation (e.g., algebraic VRF-
based lotteries). Moreover, while this can be seen as a weaker variant of ECW where the
(claimed) winners are required to send a proof of winning the lottery in advance and thus
requires an extra round of communication, it results in a construction with significant
improvement on the ciphertext size published by the encrypting party, i.e., only linear in
the number of winners receiving the message.
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6.9 Constructions of cWE

6.9.1 cWE from MS-NISC

Two-Party Non-Interactive Secure Computation (2P-NISC) is a type of protocol where a
sender S (with input y ) and a receiver R (with input x) want to jointly compute a function
f (x , y). In this setting, R first publishes a first message. Then, any sender S holding an
input y can send a message to the receiver revealing only f (x , y) to R . As usual in secure
computation, the protocol must provide privacy of the inputs and correctness of the
output.

Afshar et al. [AMPR14] introduced another flavour of NISC called Multi-Sender NISC (MS-
NISC) where the first message can be reused to run secure computation with many dif-
ferent senders. That is, R , with input x , publishes a first message as before, but now any
party who wants to participate in secure computation with R can send back a message to
S who can then output the result of the computation. The ideal functionality of MS-NISC
as presented in [AMPR14] is depicted in Fig. 6.2.

MS-NISC Functionality

Assume f (⊥, ·) = f (·,⊥) = ⊥.

• Initialize a list, L, of pairs of strings.

• Upon receiving a message (input, x) from R , store x and continue.
1. Upon receiving message (input, y) from Si , insert the pair (Si , y) into

L. If R is corrupted send (Si , f (x , y)) to the adversary. Otherwise, send
(messageReceived,Si ) to R .

2. Upon receiving a message getOutputs from R , send {(Si , f (x , y))}(Si ,y)∈L to R .

Figure 6.2: MS-NISC Functionality FMS-NISC

In Fig. 6.3, we show how to construct cWE by having black-box access to FMS-NISC. The
main idea is that a party acts as a receiver and sends the first message in MS-NISC con-
taining its witness w in order to provide a “commitment” to that witness. Later on, any
other party can use this “commitment” to create a cWE ciphertext by sending an en-
cryption of the message and acting as the sender of the MS-NISC to provide a second
message that allows for evaluating a function f (w, y) that outputs a decryption key i� the
witness w satisfies a given relation.

Note that the ideal functionalities used in the construction are stated for clarity and is
not compatible with our game-based notion of security for cWE. By assuming a concrete
secure realization of the above functionalities, one can argue about security using the
corresponding simulator and use that to extract witnesses from commitments and make
the proof go through.
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Construction of cWE based on MS-NISC

Initialization: Initialize FMS-NISC by instantiating a list L of pairs of strings.

Commit: R proceeds as follows:
• Commits to its witness w by calling FMS-NISC on input (input, w).

Encryption: S proceeds as follows:
• Generates a key k of length |m| and encrypts the message m as ct← k ⊕m.
• Calls FMS-NISC on input (x, k) and sends ct directly to R .

Decryption: R receives (messageReceived,S) from FMS-NISC and ct from S and pro-
ceeds as follows:

• Calls FMS-NISC on input getOutputs.
• Upon receiving k from FMS-NISC, outputs m← k ⊕ ct.

Figure 6.3: Construction of cWE based on MS-NISC

6.9.2 cWE using Garbled Circuits and Oblivious Transfer

Instead of relying on the full MS-NISC functionality in a black-box way, we now do a
careful analysis resulting in a protocol which uses only the properties of MS-NISC needed
to obtain a protocol that satisfies the definition of cWE.

We observe that the correctness property in the definition of cWE only requires that a
correctly generated ciphertext can be decrypted by the decryption algorithm. Thus, we
expect the second message of MS-NISC functionality to be generated correctly. In par-
ticular, when looking into the internals of the protocol in [AMPR14], we observe that we
can construct cWE from a MS-NISC protocol without the precautions against a malicious
sender S . However, we still want to make sure that we preserve authenticity of the un-
derlying garbled circuit scheme. This property guarantees that no garbled output can
be constructed di�erent from what is dictated by the function and its inputs. In other
words, the only thing a malicious receiver can do with the garbled circuit is to evaluate
it on the committed input. Finally, we observe that privacy of input is not a requirement
for the sender. Thus, we can consider variants of garbled circuit schemes without privacy
guarantees.

Privacy-free Garbled Circuits. One of the most e�cient GC schemes in terms of com-
munication is the scheme by [ZRE15] based on a technique called half-gates. Using their
technique in the privacy-free setting results in garbled circuits containing one ciphertext
for each AND gate and no ciphertexts for XOR gates.

cWE from privacy-free GC and OT. We conclude this section by presenting an e�cient
construction of cWE using only a privacy-free garbled circuit and oblivious transfer. To
this end, let us first recall some required definitions.
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Let GC = (Garble, Encode, Eval, Decode, Verify) be a garbled circuit with correctness and
authenticity, and ΠOT = (ΠR

OT, ΠS
OT, ΠO

OT) be an oblivious transfer protocol that realizes
FOT. We consider two parties E and D that respectively play the role of the encryptor and
the decryptor in an execution of the cWE scheme. The construction of ΠcWE = (Enc, Dec)
with commitment ΠR

OT for circuit class C is given in Fig. 6.4.

CWE from OT and GC

Primitives: A correct and authentic garbling scheme GC = (Garble, Encode, Eval, Decode),
and a 2-round OT ΠOT = (ΠR

OT, ΠS
OT, ΠO

OT).
Commit: D with secret s ∈ {0, 1}n plays the role of the receiver in n instances of ΠOT and
computes (cm, w) as follows:

• Select ρRj ←$ {0, 1}λ, and compute mR
j ← ΠR

OT(sj ; ρ
R
j ) for j ∈ [n].

• Define cm = {mR
j }j∈[n], and w = (s, {ρRj }j∈[n]). Note that w can be seen as an opening

of cm.

Common inputs: A security parameter λ, a circuit C ∈ C, a commitment key ck, and a
statement x = (cm,C , y).
Encryption.: E plays the role of the sender in n instances of ΠOT and computes a ciphertext
ct = (ct1, ct2) as follows:

1. Let Cx be a circuit that realizes the following relation R on x: R(x =

(cm,C , y), (s,~d)) = 1 i� (s,~d) opens cm and C (s) = y . Compute (C, e, d) ←
Garble(1λ,Cx), where e := {k0

j , k1
j }j∈[n], and d := (k0, k1) ∈ {0, 1}2|m|.

2. For j ∈ [n], select ρSj ←$ {0, 1}λ, and compute mS
j = ΠS

OT(k0
j , k1

j ,mR
j ; ρSj ).

3. Compute ct1 = k1 ⊕m and ct2 = (C, {mS
j }j∈[n]).

4. Send ct = (ct1, ct2) to D.

Decryption: Given ct = (ct1, ct2) and w = (s, {ρRj }j∈[n]), D proceeds as follows:

1. Parse ct2 as (C, {mS
j }j∈[n]).

2. Execute k
sj
j = ΠO

OT(mS
j , sj , ρ

R
j ) for j ∈ [n], and Y = Eval(C, {ksj

j }j∈[n]).

3. Compute m = Y ⊕ ct1.

Figure 6.4: cWE based on GC and OT

Theorem 6.3. Let C be a class of circuits. Let ΠOT be an OT protocol that realizes FOT and
GC be a correct and authentic garbling scheme. The cWE scheme ΠcWE for C in Fig. 6.4 is
correct and semantically secure as defined in Definition 6.3.

Proof. (Correctness). Follows directly from the correctness property of the ΠOT and GC.
(Semantic Security). Assume thatA is a PPT adversary against semantic security of ΠcWE

such that, for adversarially chosen values (s, ρ,C , y ,m0,m1), given an encryption of mb

under statement x = (cm,C , y), where cm = Commit(s; ρ) and y 6= C (s), A can guess the
bit b with non-negligible advantage. We first observe that by the construction of ΠcWE, A
can guess b correctly only by distinguishing the correct label k1 from random. Informally,
given that C (s) 6= y , there are only two possible cases in whichA can distinguish k1 from
random: either by the ability to gain knowledge about invalid labels k

1−sj
j that do not

correspond to A’s committed value, or by the ability to gain knowledge about k1 directly.
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We show that a successful adversary in the first case can be used to break the sender
security of ΠOT whereas a successful adversary in the second case can be exploited to
break the the authenticity of GC.

In order to formally prove semantic security, we first define the experiment ExpSS-b
A,λ in Al-

gorithm 13. We define b′ as the output of ExpSS-b
A,λ . Note that ExpSS-b

A,λ corresponds to the

Algorithm 13: ExpSS-b
A,λ

1: (st, s, ρ,C , y ,m0,m1)← A(1λ)
2: ρ = ρ1|| ... ||ρn; cm = {mR

j }j∈[n], where mR
j ← ΠR

OT(sj ; ρj) ∀j ∈ [n].
3: x := (cm,C , y); (C, e, d)← Garble(1λ,Cx) where e := {k0

j , k1
j }j∈[n], and d := (k0, k1).

4: ρSj ←$ {0, 1}λ; mS
j = ΠS

OT(k0
j , k1

j ,mR
j ; ρSj ) (∀j ∈ [n]).

5: ct1 = k1 ⊕mb and ct2 = (C, {mS
j }j∈[n]); ct := (ct1, ct2).

6: ct := ⊥ if C (s) = y or C 6∈ C or |m0| 6= |m1|
7: b′ ← A(st, ct)

semantic security experiment of ΠcWE in Definition 6.3, except that b is fixed.

To prove the theorem, let us assume by contradiction that there is an adversary A that
breaks the semantic security of ΠcWE. That is, for a non-negligible function ε, we have∣∣∣Pr[1← ExpSS-0

A,λ ]− Pr[1← ExpSS-1
A,λ ]

∣∣∣ ≥ ε(λ)

We now use a standard hybrid argument and define several games, where the first is
ExpSS-0

A,λ , the last is ExpSS-1
A,λ , and the intermediate hybrids are defined as follows:

Hybrid 0 is defined as ExpSS-0
A,λ .

Hybrid 1 is the same as Hybrid 0, except that the messages {mS
j }j∈[n] are computed by

the OT simulator i.e., as {mS
j }j∈[n] ← Sim(1λ, {mR

j }j∈[n]).

Hybrid 2 is the same as Hybrid 1, except that ct1 is defined as ct1 := k1 ⊕m1.

Hybrid 3 is defined as ExpSS-1
A,λ .

By assumption, A must distinguish some pair of adjacent intermediate hybrids. That is,
for some i ∈ {0, 1, 2}, we must have∣∣∣Pr[1← Hybridi

A,λ − Pr[1← Hybridi+1
A,λ]

∣∣∣ ≥ 1

3
ε(λ)

We now analyze all three cases:

• i = 0. Notice that the only di�erence between Hybrid 0 and Hybrid 1 is that in
the former, the sender’s message {mS

j }j∈[n] is computed by a real sender (World 0),
whereas in the latter, it is computed by the simulator (World 1). Assuming thatA can
distinguish hybrids 0 and 1, we construct an adversary B against sender security
of ΠOT that distinguishes the two worlds with the same probability. B works as
follows:
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1. B invokes A(1λ) and obtains (s, ρ,C , y ,m0,m1).

2. If |m0| 6= |m1| or C (s) = y , B aborts; otherwise, it parses ρ = ρ1|| ... ||ρn and
defines cm = {mR

j }j∈[n], where mR
j ← ΠR

OT(sj ; ρj) for j ∈ [n]. Let x = (cm,C , y).
As an environment controlling the OT execution, B provides the input of sender
and receiver to the OT challenger as follows:

– computes a garbling of circuit Cx (as defined in Fig. 6.4) by (C, e, d) ←
Garble(1λ,Cx) and sends the input keys to the OT challenger as the
sender’s input.

– sends s to the OT challenger as the receiver’s choice bits.

3. The OT challenger computes the sender’s message {mS
j }j∈[n] either by invoking

a real sender (World 0), or by invoking the simulator (World 1), and sends it to
B.

4. B parses d = (k0, k1), and forwards ct := (ct1, ct2) to the cWE adversary A,
where ct1 = k1 ⊕m0 and ct2 = (C, {mS

j }j∈[n]).

It is clear that B has the same advantage in breaking sender security of ΠOT as A
in distinguishing the two hybrids.

• i = 1. The only di�erence in Hybrid 1 and Hybrid 2 is in how we generate ct1 (that
is ct1 := k1 ⊕ mi−1 in Hybrid i). To argue indistinguishability of the two hybrids, it
su�ces to show that k1 is indistinguishable from random. To achieve this, we ob-
serve that because in both hybrids, the sender’s message {mS

j }j∈[n] is computed by
the simulator i.e., as {mS

j }j∈[n] ← Sim(1λ, {mR
j }j∈[n]), A cannot distinguish k1 from

random by the ability of knowing invalid labels. Thus, the only way A can distin-
guish k1 from random should be by directly forging an output key k1 for the garbled
circuit C. It is therefore straightforward to use a successful adversary that distin-
guishes the two hybrids with non-negligible advantage to break the authenticity of
the underlying garbling scheme.

• i = 2. This is handled identically to i = 0, except that in this case ct1 := k1 ⊕ m1

encrypts m1 instead of m0.

We conclude the proof by this observation that in any of the three cases, we reach a con-
tradiction and thus our assumption of the existence of A against the semantic security
of ΠcWE cannot be true.

Remark 6.3. The commitment scheme in ΠcWE is the receiver’s algorithm of ΠOT and
therefore by UC-security of ΠOT, it satisfies both extractability and hiding property. Us-
ing Lemma 6.1 and weak semantic security shown in Theorem 6.3, one can then conclude
that ΠcWE also achieves strong semantic security.
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6.10 Proof of Security for Our EtF Construction

Here we prove security of Theorem 6.2. Recall we proceed in two steps: first we consider
an idealized case where there is no threshold committee; we then show we can prove
security of our threshold construction from this setting.

CCA and resharing. Our proof below ignores decryption oracles for the IBE scheme and
considers the case where the master secret key is shared only at the beginning (instead
of at each slot). We observe these can be accounted for with additional hybrids in our
proof below in a straightforward manner.

6.10.1 The non-threshold case.

The simplified setting we will now show security for is in Fig. 6.5.

Non-threshold EtF

The non-threshold setting we consider is the same as that in Section 6.6.1 with the following excep-
tions:

• At the beginning of the run of the blockchain, there is no sharing of the master secret key of
the IBE scheme.

• We let the honest parties run exactly as in the other construction, with the exception that
they validate and messages related to the shares of the master secret keys, as well as of the
secret keys for specific slots.

• We change the way we encapsulate the secret-key for a certain slot. While in Section 6.6.1
we require committee members to each broadcast a ciphertext containing a share of the
secret-key for slot sl, here we instead replace that stage with the execution of the following
oracle Ok-provider

msk .

Ok-provider
msk (B, sl) :

– sksl ← IBE.Keygen(msk, (sl, R))

– ctsk
sl ← EncECW(B, sl, R, sksl)

– Broadcast ctsk
sl

Figure 6.5: Hybrid non-threshold setting for proof of security

A point on the view of the adversary: we recall that, at any given point in time, a valid
blockchain execution contains ciphertexts ctsk

sl , encrypting slot-specific secret keys for the
winner of the slot sl in the chain. In the non-threshold setting, they correspond to the
output of the key-provider oracle (in the actual construction, there are more ciphertexts,
each containing a share of the key).

Now assume an adversaryAno-thresh
EtF for the EtF security experiment controlling at most an

α fraction of the stake with non-negligible success probability in the EtF security exper-
iment. We first to construct an adversary AIBE for IBE security using Ano-thresh

EtF . Adversary
AIBE works as follows:
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• On receiving the IBE public parameters from the IBE challenger, it injects into
blockchain genesis block the IBE’s master public. The adversary Ano-thresh

EtF declares
a corrupted set of parties Scorr and then AIBE runs an execution of the blockchain
with Ano-thresh

EtF where AIBE simulates the honest parties. In this execution AIBE acts
as key-provider oracle, which it emulates as follows. We distinguish two cases de-
pending on whether the winner of the slot is a corrupted party or an honest one4.
On query (B, sl):

– if a corrupted party has won the role for slot sl (i.e. winners(B, sl, R)∩Scorr 6= ∅)
then invoke the IBE challenger oracle on identity sl obtaining sksl and broad-
cast ctsk

sl ← EncECW(B, sl, R, sksl).

– if a corrupted party has not won the role for slot sl then broadcast the en-
cryption of a dummy plaintext ctsk

sl ← EncECW(B, sl, R,~0) where ~0 is a string of
zeros of the appropriate length.

The intuitive reason for separating the two cases is that we want to query the same
slots that Ano-thresh

EtF wins and no more. In particular we do not want to query the
challenge slot sl∗ (defined next). Notice, in fact, that only the slots for which the
adversary has a corrupted winner will be asked to the IBE key-generation oracle. At
the end of this stage, Ano-thresh

EtF will return (B, sl∗, R,m0,m1) and AIBE will forward
((sl∗, R),m0,m1) to the IBE challenger.

• After receiving a ciphertext ct∗ from the IBE challenger,AIBE forwards it toAno-thresh
EtF .

ThenAIBE simulates the execution of the blockchain as described above. At the end
of the execution Ano-thresh

EtF outputs a guessing bit b∗ which AIBE forwards to the IBE
challenger.

We claim that the advantage of AIBE in the IBE experiment is negligibly close to that of
Ano-thresh

EtF in the EtF non-threshold experiment (the one without threshold sharing). With
that goal in mind, we first show that the inputs we feed to Ano-thresh

EtF and the blockchain
execution emulated by AIBE is indistinguishable from that in the EtF experiment. Notice
that the only di�erence in the distributions is in the ciphertexts for the non-corrupted
winners. If we could distinguish between the two cases, then we could break security of
the ECW scheme. Therefore the views of Ano-thresh

EtF in the two cases is indistinguishable.
Finally, we lower-bound the success probability of AIBE. Intuitively, we can observe that
two adversaries return the same experiment bit. The only aspect that could impairAIBE’s
success probability compared toAno-thresh

EtF ’s is the possibility of having asked the IBE key-
generation oracle for the challenge slot sl∗. We observe this does not a�ect the success
probability of AIBE. Formal details are in Section 6.10.3.

6.10.2 Security of threshold construction from non-threshold case.

The argument above had a simplified setting where we abstracted out all the threshold
aspects of the protocol. This includes the committee holding shares of the master secret
key and dealing shares of the slot-specific secret key. We now prove security for the

4Notice that we can check this for both types of parties as discussed in Section 4.4.2.
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actual threshold scenario (Section 6.6.1) building an adversary for our actual (threshold)
construction using the adversary for the non-threshold construction (Fig. 6.5).

The threshold adversary Athresh
EtF needs to emulate the setting for the other adversary

where there is a single ciphertexts containing the slot-specific secret key (instead of sev-
eral containing their shares). It works as follows. First, it corrupts the same parties as
Ano-thresh

EtF and executes a blockchain as Ano-thresh
EtF does and broadcasting the same mes-

sages it does, with one exception which we now describe. The views of two adversaries
(threshold vs non-threshold) di�er in only one respect—and so do the two respective
blockchains executions. The view of the threshold execution contains ciphertexts of
this type for each winning slot sl (we use bracket notation for shares for readability):((

cthon
sl [j ]

)
j 6∈Scorr

,
(
ctcor

sl [j ]
)
j∈Scorr

)
These contain the shares for the slot-specific slot sl.

The view for the non-threshold execution instead contains a single ciphertext with slot-
specific secret key. For a honest slot not corrupted by the adversary, we denote it by ĉt

hon
sl ,

otherwise we denote it by ĉt
cor
sl . During the blockchain execution Ano-thresh

EtF will expect to
see some ciphertext (ĉt

hon
sl /ĉt

cor
sl ) whenever a slot is won, which corresponds to a query of

Ok-provider
msk . The threshold adversary Athresh

EtF can emulate this as follows. For every query
to Ok-provider

msk :

• if the slot is won by a honest party, then broadcast ĉt
hon
sl ← EncECW(B, sl,~0) for a

vector of zeros of the appropriate length.

• if the slot is won by a corrupted party, then its view will contain
(
ctcor

sl [j ]
)
j∈[n]

. It can
then decrypt them, combine the obtained shares into a slot key sksl and broadcast
ĉt

cor
sl ← EncECW(B, sl, sksl)

After receiving challenge messages from Ano-thresh
EtF , adversary Athresh

EtF simply forwards
them to its challenger, then continues the execution as above. Finally it outputs the
same output guess as Ano-thresh

EtF .

We now claim that a successful non-threshold adversaryAno-thresh
EtF for the construction in

Fig . 6.5 would allowAthresh
EtF to have a similar advantage (up to negligible additive factors).

We proceed by a standard hybrid argument. We define the first hybrid H0 as the output
of running the Athresh

EtF adversary as just described. The “terminal” hybrid H6 is defined as
the output of running theAno-thresh

EtF adversary. The intermediate hybrids are as follows.

• H1: like H0 except that we change one step in how Athresh
EtF emulates Ok-provider

msk .
Specifically, for the case of the honest parties, we now run (skID

i )i∈[n] ←
Simkg(mpk, (mski )i∈Scorr , sl) to simulate the shares of the honest parties. This
simulator exists by key-generation simulation of the threshold IBE scheme. We can
then combine all shares to obtain a slot-specific key, encrypt it through ECW and
then broadcast the encryption ĉt

hon
sl . We have that H0 ≈ H1 because of the security

of ECW, since otherwise we would be able to distinguish encryptions of zeros from
encryptions of the (combination of) the simulated slot-specific key shares.

• H2: as previous item but now, instead of the actual secret shares, we give Athresh
EtF

produced by Simmsk, the simulator from master secret key shares simulation of the
threshold IBE scheme. H1 ≈ H2 follows by the same property.
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• H3: like the previous hybrid, but now we replace the blockchain execution from H2

with one where we do not use the shares to produce ĉt
hon
sl and ĉt

cor
sl . Instead we

move to a blockchain execution as in Fig. 6.5 with the di�erence that Ok-provider
msk has

a master secret key computed as follows. Let msk be the master secret key ob-
tained by combining the (simulated) shares mski . Then we just run Ok-provider

msk with
this master secret key every time we need to provide a ciphertext for a new winning
slot. We have H2 ≈ H3 by definition of Ok-provider

msk , by correctness of the underlying
homomorphic secret sharing scheme and the simulation of key-generation evalu-
ations of IBE.

• H4: as before but we now define msk not as the combination of the shares, but as
the output of Simmsk on the master public key and the corruption set. H3 ≈ H4

follows by simulation of the master secret-key property of the threshold IBE.

• H5: Like previous item but now we do not use the key-generation simulator and
instead apply the key-generation of the IBE before providing a ciphertext. H4 ≈ H5

again follows by the key-generation simulation of the threshold IBE scheme. Also
this is the same as H6 by construction.

6.10.3 Bounding the Advantage of AIBE in Proof of Theorem 6.2

Here we formally claim that the advantage of AIBE in the IBE experiment is negligibly
close to that of Ano-thresh

EtF in the EtF non-threshold experiment:

Pr [WinIBE] ≥Pr [¬QryClgSlot ∧ WinEtFHyb]

= (1− Pr [QryClgSlot |WinEtFHyb]) · Pr [WinEtFHyb]

≈ (1− Pr [Scorr ∩ winners(sl∗) 6= ∅ |WinEtFHyb]) · Pr [WinEtFHyb]

= Pr [WinEtFHyb]

Above the QryClgSlot is the event where AIBE queries the challenge slot in the IBE ex-
periment; WinIBE is the event where AIBE wins in the IBE experiment; WinEtFHyb is the
event whereAno-thresh

EtF wins in the EtF experiment against the non-threshold hybrid model
(Fig. 6.5). The first inequality follows by construction of AIBE. The following ones follow
from elementary probability theory and from observing that AIBE could query the chal-
lenge slot only if that was among the corrupted set (but this does not occur condition
on the success of Ano-thresh

EtF by the definition of EtF security).
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6.11 Further Proofs and Formal Details

6.11.1 Strong Semantic Security of cWE

Informally, this property states that encrypting a message m with respect to a false state-
ment x = (cm,C , y) produces indistinguishable ciphertexts to an adversaryA who knows
the commitment opening, even if A gets to see encryptions of m under other (possibly
true) statements xi = (cmi ,C , y) but with unknown commitment opening. Formally, there
exists a negligible function µ such that for all λ ∈ N, all auxiliary strings aux and all PPT
adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 · Pr



ck← C.Setup(1λ)

(st, s, ρ,C , y ,m0,m1)← AOcom(·)(ck, aux)

cm← C.Commit(ck, s; ρ); b←$ {0, 1}
ct← Enc(ck, x = (cm,C , y),mb)

∀cmi ∈ Q : cti ← Enc(ck, xi = (cmi ,C , y),mb)

ct := {ct} ∪ {cti}i∈[|Q|]

ct := ⊥ if C (s) = y or C 6∈ C

: A(st, ct) = b


− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

where Ocom(·) is a commitment oracle parametrized by ck and defined as follows: on
input si , computes and returns cmi ← C.Commit(ck, si ; ρi ) for some randomness ρi , and
stores cmi in Q.

Lemma 6.1. Let C = (Setup, Commit) be a non-interactive commitment scheme. Let ΠcWE

be a witness encryption over commitments for some circuit class C over commitment
scheme C. If ΠcWE has weak semantic security, and C has hiding property, then ΠcWE has
strong semantic security.

Proof. Assume A is a PPT adversary against strong semantic security. We construct an
e�cient adversary B that breaks weak semantic security of ΠcWE with non-negligible
advantage.

First, B runs A with the commitment key ck received from the challenger. B then sim-
ulates the oracle Ocom for A in the natural way. Namely, for any input si , it outputs
cmi ← C.Commit(ck, si ; ρi ) for some randomness ρi ∈ Sr , and stores cmi in Q. Upon re-
ceiving a tuple (st, s, ρ,C , y ,m0,m1) fromA, B forwards the tuple to the challenger. Upon
receiving the challenge ciphertext ct (for the encryption of mb) from the challenger, B
generates a ciphertext cti for each commitment cmi ∈ Q. To do so, B selects c←$ {0, 1}
and computes cti ← Enc(ck, (cmi ,C , y),mc) for any cmi ∈ Q. Next, B checks whether
C (s) 6= y , and if so forwards ct := {ct} ∪ {cti}i∈[|Q|] to A. Otherwise, B outputs a random
guess b′←$ {0, 1} for the bit b. Finally, upon receiving a guess b′ from A, B forwards b′

to the challenger. It is easy to see that if c = b, then B is perfectly simulating strong
semantic security game for A.

To prove the lemma, we define |Q| + 2 hybrid distributions such that the first hybrid
corresponds to the strong semantic security and the last hybrid corresponds to the above
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game simulated by B. We conclude the proof by showing that an adversary with non-
negligible advantage in the first hybrid implies the existence of an e�cient adversary
with non-negligible advantage in the last hybrid.

Hybrid 0. This is the strong semantic security game. Namely,

1. The adversary A receives the commitment key ck, where ck← C.Setup(1λ).

2. A adaptively makes commitment queries for messages si , and for each receives
cmi ← C.Commit(ck, si ; ρi ).

3. After some number of queries listed in Q, A outputs a tuple (st, s, ρ,C , y ,m0,m1)
for which C (s) 6= y . The challenger samples a random bit b←$ {0, 1}, generates
encryptions of mb via ct← Enc(ck, (cm,C , y),mb), and cti ← Enc(ck, (cmi ,C , y),mb)
for all cmi ∈ Q, and sends ct := {ct} ∪ {cti}i∈[|Q|] to A as the challenge ciphertext.

4. Eventually, A outputs a guess b′ for the bit b.

Hybrids k = 1, ... , |Q|. Same as the previous hybrid, except the first k ciphertexts
{cti}i∈[k] are computed with respect to cmi being a commitment of s. Namely,

1. Identical to Hybrid 0.

2. Identical to Hybrid 0.

3. The challenger samples a random bit b←$ {0, 1}, generates encryptions of mb via
ct← Enc(ck, (cm,C , y),mb), and cti ← Enc(ck, (cmi ,C , y),mb) (i = 1, ... , |Q|) com-
puted as before, except in the first k ciphertexts {cti}i∈[k], the commitment cmi is
computed as cmi ← C.Commit(ck, s; ρi ) for some randomness ρi ∈ Sr .

4. Identical to Hybrid 0.

Hybrid k = |Q| + 1. Same as the previous hybrid, except the ciphertexts {cti}i∈[|Q|] are
encryptions of mc for a uniformly random c←$ {0, 1}. Namely,

1. Identical to Hybrid |Q|.

2. Identical to Hybrid |Q|.

3. The challenger samples random bits b←$ {0, 1} and c←$ {0, 1}, and generates
encryptions of mb and mc respectively via ct← Enc(ck, (cm,C , y),mb), and cti ←
Enc(ck, (cmi ,C , y),mc) (i = 1, ... , |Q|).

4. Identical to Hybrid |Q|.

For k = 0, ... , |Q| + 1, denote by advi the advantage of A in guessing the bit b in Hybrid
i . It is easy to see that for any 0 ≤ i < |Q|, we have |advi − advi+1| ≤ µ(λ)(λ), where
µ(λ)(λ) is some negligible function. This is because the distributions Di and Di+1 re-
spectively defined by the hybrids i and i + 1 only di�er in their (i + 1)-th ciphertext,
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which is the encryption of mb under a commitment of si+1 for Di and encryption of mb

under a commitment of s for Di+1. Thus, the di�erence |advi − advi+1| is exactly equal to
the adversary’s advantage in the hiding experiment. By the hiding property of the com-
mitment scheme, it thus follows that this di�erence is negligible.
Furthermore, observe that in the last hybrid, c = b with probability 1/2 and hence we
have that with probability at least 1/2, the two distributions D|Q| and D|Q|+1 are identi-
cal. This, together with the fact that D0 and D|Q| have a negligible di�erence imply that
having an e�cient adversary with non-negligible advantage ε against hybrid 0 results in
a non-negligible advantage ε/2 against hybrid |Q| + 1. This completes the proof of the
lemma.

6.11.2 Proof of Theorem 6.1

Theorem 6.4 (Theorem 6.1 (restated)). Let C = (Setup, Commit) be a non-interactive ex-
tractable commitment scheme and ΠcWE = (EnccWE, DeccWE) be a strong semantically
secure witness encryption scheme over C for a circuit class C encoding the lottery pred-
icate lottery(B, sl, R, skL,i ) as defined in Section 6.3. Let Γ be a blockchain protocol as
defined in Section 4.2. ΠECW is an IND-CPA-secure ECW scheme as per Definition 6.2.

Proof. Assume by contradiction that there exists an adversary AECW with non-negligible
advantage in GameIND-CPA

Γ,A,Z,E in the ECW setting as described in Section 6.2.1. We construct
an adversary AcWE with black-box access to AECW that has non-negligible advantage in
breaking strong semantic security of ΠcWE as defined above. We assume (w.l.o.g.) that
AECW only corrupts one party Pa

5. AcWE proceeds as follows:

1. Upon receiving the commitment key ck from the challenge, AcWE proceeds as fol-
lows:

a) AcWE acts as the environmentZ orchestrating the execution of the blockchain
protocol Γ towards AECW, placing the commitment key ck in the genesis block.
AcWE acts exactly as Z in GameIND-CPA

Γ,A,Z,E .

b) AcWE simulates honest parties Ph executing the setup phase and publishing a
valid (cmh,σh) on the blockchain. To simulate cmh for each honest party,AcWE

calls the oracle Ocom on some random input skL,h and sets cmh to be Ocom’s
output.

c) At some point,AECW outputs challenge parameters B, sl, R,m0,m1 from its view
of the blockchain. AcWE constructs a circuit C that encodes the predicate
lottery(B, sl, R, skL,i ), where B, sl and R are hardcoded and skL,i is the witness.

d) Finally, if there exists a valid setup message (cma,σa) published in the com-
mon prefix Bdκ by Pa (i.e. the corrupted party Pa is in PSetup), AcWE extracts
skL,a, ρa from cma using the extractability of the commitment scheme C and

5In reality there will be more than one corrupted party; the main argument underlying our proof holds
regardless.
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outputs (st, skL,a, ρa,C , 1,m0,m1) to the challenger. Otherwise, AcWE outputs
(st, skL,k , ρk ,C , 1,m0,m1) to the challenger, where skL,k , ρk are chosen at ran-
dom and such that C (skL,k) 6= 1.

2. Upon receiving ciphertexts ct = {ct} ∪ {cth}Ph∈PSetup
from the challenger, if Pa ∈

PSetup , then ct = cta was computed w.r.t. Pa’s commitment cma and cth computed
w.r.t. the honest party’s commitment cmh. Otherwise, if only honest parties are
in PSetup , AcWE forwards the ECW ciphertexts ct = {cth}Ph∈PSetup

to AECW. AcWE

continues the execution of Γ with AECW from the round where it stopped when
AECW outputted challenge parameters B, sl, R,m0,m1.

3. Upon receiving a guess b′ from AECW, AcWE forwards b′ to the challenger.

First, notice that AECW has the same access to the underlying blockchain protocol Γ (and
to the system parameters in the genesis block) as in GameIND-CPA

Γ,A,Z,E . In caseAECW provided a
valid setup message, it receives ct containing a cWE ciphertext cta generated with respect
to its commitment cma and the circuit encoding the lottery predicate lottery(B, sl, R, skL,i ),
where B, sl and R provided by AECW are hardwired. Moreover, ct contains ciphertexts cth
for each cmh, encrypting the same mb as in cta. Hence, ct is distributed exactly as in
GameIND-CPA

Γ,A,Z,E . If AECW has non-negligible advantage in GameIND-CPA
Γ,A,Z,E , it is able to distin-

guish whether cta contains m0 or m1 with non-negligible advantage even though it does
not have skL,a and cma ← Commit(ck, skL,a; ρa) such that lottery(B, sl, R, skL,a) = 1, i.e.
it does not have skL,a such that C (skL,a) = 1. This means that, by forwarding guess
b′ from AECW, AcWE in the cWE semantic security game has the same advantage as
AECW in GameIND-CPA

Γ,A,Z,E . In case it did not provide a valid setup message, AECW only sees
ct = {cth}Ph∈PSetup

with cth being an encryption of mb with respect to the commitments
cmh for which it does not know the opening. Hence, ct is again distributed exactly as in
GameIND-CPA

Γ,A,Z,E with probability 1. In this case, by an analogous argument as before, the
advantage of the adversary AcWE must be the same as the advantage of the adversary
AECW in GameIND-CPA

Γ,A,Z,E .

Since we assume thatAECW has a non-negligible advantage, AcWE will also obtain a non-
negligible advantage and thus break the cWE scheme we assume is secure. Hence, ΠECW

is an IND-CPA-secure ECW scheme.

6.12 Further Details on YOSO MPC

6.12.1 More E�cient AfP based on VRF

6.12.1.1 VRF-based Lottery.

This section introduces a specific lottery mechanism which will be the underlying lottery
predicate for the AfP described in the next section. The backbone of the lottery is a VRF
scheme VRF as described in [DGKR18]. This VRF has the properties of simulatability and
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unpredictability under malicious key generation which will become useful when arguing
about security of the AfP. The VRF scheme is a tuple (VRF.Gen, VRF.Prove, VRF.Verify)
where VRF.Gen(1κ) outputs a pair of keys (VRF.pk, VRF.sk). The VRF.Prove takes as
input a value x and outputs a pair (y ,π) ← VRF.ProveVRF.sk(x) which is the output
value y and the correctness certificate π. The verification is then done by evaluating
VRF.VerifyVRF.pk(x , y ,π) which outputs 1 i� π attests to the correctness of y as the output
of the VRF evaluated on x with key VRF.sk.
We recall the blockchain setup described in Section 4.4.2 where each party Pi is repre-
sented by a pair (Sig.ski , skL,i ) associated with public data (Sig.pki , auxi , stakei ). Let auxi
contain a VRF public key VRF.pki as described above and let the lottery secret key be
skL,i = (Sig.pki , VRF.ski ).
Finally, we introduce a function param(B, sl). This function outputs a tuple
({Sig.pki , VRF.pki , stakei}i∈[n], η,φ) associated with the specific blockchain B and slot
sl. Beyond obtaining the public information (Sig.pki , VRF.pki , stakei ) the function also
returns a nonce, η, as well as a public function φ(·) which on input stakei computes the
threshold for winning the lottery.
The lottery predicate based on the VRF is described in Algorithm 14.

Algorithm 14: lotteryVRF(B, sl, R, skL,j)

1: ({Sig.pki , VRF.pki , stakei}i∈[n], η,φ)← param(B, sl)
2: (Sig.pkj , VRF.skj)← skL,j

3: (y ,π)← VRF.Proveskj (sl||R||η)
4: if y < φ(stakej) then
5: if VRF.Verifypkj

(sl||R||η, y ,π) = then
6: return 1
7: end if
8: end if
9: return 0

6.12.1.2 VRF-based AfP

With the VRF-based lottery lotteryVRF in place, we are now ready to introduce the VRF-
based AfP. We first note that our general approach of applying a SoK for the knowledge
of a secret key still applies. However, using the structure of the lottery, and in particular
the VRF, allows for a much more e�cient AfP which has applications in most PoS settings
as well.
The AfP scheme uses a NIZKPoK which has a setup executed as a part of the blockchain
setup such that the CRS is in the genesis block. The algorithms for the scheme are
π ← NIZKPoK.Prove(crs, x, w) and {0, 1} ← NIZKPoK.Verify(crs, x,π).

The VRF-based AfP protocol ΠAfP is described below.

Authenticate. σ ← ΠAfP.Sign(B, sl, S, skL,j ,m) To authenticate a message, m, a party
first checks that lotteryVRF(B, sl, S, skL,j) = 1. It then obtains the output and cer-
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tificate (y ,πVRF) ← VRF.ProveVRF.skj (sl||R||η). Finally, it produces πNIZKPoK ←
NIZKPoK.Prove{σSig | Sig.VerifySig.pkj

(σSig,m) = 1} which is a NIZK-PoK of a sig-
nature produced under Sig.skj .
It then outputs a tuple σAfP ← (Sig.pkj , y ,πVRF,πNIZKPoK)

Verify. {0, 1} ← ΠAfP.Verify(B̃, sl, S,σ,m) To verify an AfP tag the verifier obtains parame-
ters from the blockchain ({Sig.pki , VRF.pki , stakei}i∈[n], η,φ)← param(B, sl). It then
parses the tag as σAfP ← (Sig.pkj , y ,πVRF,πNIZKPoK) and gets the VRF verification
key VRF.pkj for the party that the AfP points to. It then checks the following

1. Makes sure that VRF.VerifyVRF.pkj
(sl||R||η, y ,πVRF) = 1 i.e. the VRF output was

correctly generated under lottery key of party Pj .

2. Checks that NIZKPoK.Verify(πNIZKPoK, (Sig.pkj ,m)) = 1 which verifies the proof
of signature knowledge.

3. And y < φ(stakej) which makes sure that the lottery was conducted correctly
with the stake of Pj .

If all checks go through, the algorithm outputs 1. Otherwise, it outputs 0.

Theorem 6.5. Let VRF be the VRF scheme described in [DGKR18] with a secure NIZK-
PoK scheme NIZKPoK. The protocol ΠAfP (described above) running in the context of a
blockchain protocol Γ with underlying lottery lotteryVRF (Algorithm 14) is an AfP scheme
according to Definition 6.5.

Proof. (Sketch) Assume that an adversary A obtains a non-negligible advantage in
GameEUF-CMA

Γ,A,Z,U . In other words, A is able to forge an AfP tag with noticeable probabil-
ity. We claim that such an adversary can do at least one of three things:

1. It can forge a signature under Sig.ski , thus violating the EUf-CMA security of the
signature scheme.

2. It can produce a convincing proof πNIZKPoK of knowledge of a signature produced
with a signature secret key where the corresponding lottery secret key did not win
the lottery. Since we assume that only Pi knows the pair (Sig.ski , skL,i ), such a
convincing proof must violate the soundness of the NIZKPoK scheme.

3. It can forge a VRF certificate such that the VRF.Verify algorithm accepts a certificate
πVRF under a di�erent y ′ 6= y when evaluated with the VRF public key VRF.pk of
the adversary and thus convinces the authenticator. This violates the simulator of
the simulatable VRF introduced in [DGKR18].

Since we assume that NIZKPoK is a secure NIZK-PoK scheme and VRF a secure scheme
based on the functionality in [DGKR18], we conclude that ΠAfP is secure with respect
to Definition 6.5.
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6.12.1.3 AfP Privacy.

This simple AfP mechanism for a VRF-based lottery predicate does not only satisfy the
existential unforgeability definition of an AfP. It has AfP privacy.

Theorem 6.6. The AfP protocol ΠAfP described above with underlying lottery predicate
lotteryVRF running in the context of blockchain Γ has AfP privacy.

Proof (Sketch).
We use the notation D0 and D1 for the distribution of outputs when the adversary is put
in scenario 0 and scenario 1, respectively. Our aim is to show the existence of a simulator
such that D0 and D1 are computational indistinguishable.
We introduce 4 hybrids {Hi}i=1,...,4 where H1 = D0 and H4 = D1.

H2 This hybrid is identical to H1 but we use the simulator of the NIZKPoK scheme to
simulate the proof of signature knowledge that convinces. Due to the security of
the NIZKPoK scheme H2 and H1 are indistinguishable to the PPT adversary A.

H3 The di�erence from H2 is that instead of invoking the VRF scheme VRF we are using
the simulatability of the construction to output valid proofs.

H4 This hybrid does not need access to any lottery winning secret keys and thus can
be completely simulated by Sim. It is still necessary to observe the distribution of
the stake to correctly simulate the output of the oracle OAfP.

Assume that an adversary can distinguish D0 and D1 with non-negligible probability ρ.
It implies that there exists an i ∈ {1, 2, 3} such that Hi and Hi+1 can be distinguished
with non-negligible probability at least ρ/3. This contradicts the indistinguishability of
hybrids. Thus, we conclude that the distributionsD0 andD1 are computationally indistin-
guishable due to the simulator Sim obtained through the sequence of hybrids above.

6.12.2 Extended Lotteries

So far the probability of winning a role can depend on the slot sl, the role R, and the
lottery witness skL,i . The dependence can be arbitrarily complex. We sometimes need to
assume that the lottery shows some level of structure to be able to ensure that a given
set of roles has enough honest machines winning them.

6.12.2.1 Smooth Lotteries.

First we define that a lottery has individual winning probabilities if for a given sl
and a given account sk there exist a probability p such that it holds for all R that
Pr[lottery(B, sl, R, skL,i ) = 1] ≈ p. This is the case for most PoS lotteries as the proba-
bility of winning depends only on the stake that skL,i has in a given slot.
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We will also need to assume independence of winning events. It is useless for the sake
of using, e.g., the law of large numbers if in a given slot either all honest parties win a
role or none win a role. We typically needed that except with negligible probability some
large enough fraction wins roles.

We require that for all sl and all (Ri , skL,i ) and (Rj , skL,j) 6= (R, skL,i it holds that
Pr[lottery(B, sl, Ri , skL,i ) = 1 | lottery(B, sl, Rj , skL,j)] ≈ Pr[lottery(B, sl, Ri , skL,i ) = 1]. We
extend this to n-independence where the probability of an account winning a role does
not depend on the outcome of n − 1 other lotteries in the same slot.

We call a lottery with individual winning probabilities and n-independence an n-smooth
lottery. For an n-smooth lottery we can compute the probability that a set of up to n
roles are won by honest parties directly from the individual winning probabilities of the
slot.

6.12.2.2 Hardness Adjustment.

We will sometimes need to assume that the hardness of the lottery can be adjusted.
This can in principle be captured in the current formalism lottery(B, sl, R, skL,i ) as we
could have some roles be harder to win. This would however ruin individual winning
probabilities so we prefer an explicit notation for it. We assume a new parameter hard ∈
[0, 1] which can be used to control hardness of the lottery. For simplicity assume that
hard ∈ [0, 1]. We require that

Pr[∃sk (lottery(B, sl, R, skL,i , hard) = 1)] ≈ hard .

A more realistic model would have to assume that the probability can be controlled to
be in some interval, e.g., [hard/2, 2hard], but nothing essential is lost in assuming the
simplistic model in this work where the focus is on EtF and not intricacies of the lotteries
themselves. Scaling of hardness is typically easy to construct as most PoS lotteries give
each party a pseudo-random number and say that the party won if the number is below
some threshold. One can use hard to adjust the threshold. We assume that adjusting the
hardness maintains n-smoothness.

6.12.2.3 Filtering.

Another possible extension is having an extra parameter filter which is a PPT predicate fil-
tering the lottery. Given an account skL,i we assume it can be computed in PPT from the in-
formation on B and the public parameters pkL,i associated to skL,i . In particular, filter does
not need skL,i to be e�ciently computable. We require that filter(B, skL,i ) outputs > or ⊥.
We require from the lottery that if filter(B, skL,i ) = ⊥ then lottery(B, sl, R, skL,i , filter) = 0. If
filter(B, skL,i ) = >, then we require that lottery(B, sl, R, skL,i , filter) = lottery(B, sl, R, skL,i ).
Since the filter can be computed in PPT given the blockchain it is typically trivial to aug-
ment existing lotteries with a filter. We can simply let the lottery predicate include a
check of the filter. We could again capture this in the existing formalism simply by let-
ting lottery(B, sl, R, skL,i ) ignore the filtered winners, but this would again ruin individual
winning probabilities of the underlying mechanism.
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6.12.2.4 Honest Majority.

When realizing YOSO MPC, we must show that a lottery selects parties for roles in such
a way that achieve honest majority among roles, according to the corruption statuses
defined in Section 6.5.4. For simplicity of the discussion we assume an n-smooth lottery,
where we can control the hardness. Assume that we set the hardness such that a given
role is won with probability φ. It is easy to see that when we have n-smoothness then if
there is probability φ that a role is won, then there is about probability φ2 that it is won
twice, giving a Malicious role. Clearly there is probability 1− φ that it is not won, giving
a Crashed role. The expression φ2 + 1−φ has a minimum of 75%, so 75% of all roles will
be malicious or crashed even if we start with perfect honesty. We can therefore never
expect to get honest majority. The trick is to design protocols which can tolerate many
crashed parties as long as there are more honest parties than corrupted parties among
the non-crashed parties.

Assume a lottery where a unique winner is honest with probability 1
2 + ε. In that case

the probability that a role is won by a single honest winner is φ( 1
2 + ε). The probability

that the role is won more than once is about φ/(1− φ) by an application of a geometric
series. The probability that it is won by a single corrupted party is φ( 1

2 − ε). To have more
honest parties than corrupted parties in expectation we therefore need that φ( 1

2 + ε) >
φ/(1− φ) + φ( 1

2 − ε), which solves to φ > 1− 2ε. By picking φ = 1− 2ε + δ for a positive
constant we get that the expected number of honest parties is h = φ( 1

2 +ε)n and that the
expected number of corrupted parties is t = (φ/(1−φ) +φ( 1

2 − ε))n and that h− t > 2γn
for a positive constant γ.

By setting H = h − γn and using a Cherno� bound and n-smoothness we can pick n
large enough to ensure that there are more than H honest parties except with negligible
probability. By setting T = t + γn and picking n large enough we can similarly ensure
that there are less that T corrupted parties except with negligible probability. Note that
H > T . Hence, we can satisfy Definition 6.7 of Section 6.5.4.
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7.1 Overview

In this section we highlight the main technical components of our contributions. We
remark that our main goal is providing simple constructions that yield e�cient instanti-
ations of PVSS towards anonymous committees along with e�cient AfP schemes allowing
parties to prove they received shares sent to a given role.

Encryption to the Future We introduce a simple ECW protocol where each party chooses
a key pair in the system and then a mixnet is used to anonymize them. We can then
define a simple lottery predicate that selects one of these keys. The winner of the lottery
can trivially know that they have won this lottery. By combining this with an IND-CPA
encryption scheme that encrypts a message under that key, we can obtain IND-CPA ECW.
Using a homomorphic encryption scheme we can also encrypt to multiple lottery winners
and prove that the same message is received by all of them.

Authentication from the Past

The Easy Way: An easy way of obtaining reusable ECW setup is to repeat the lottery setup
and obtain multiple anonymized keys for each party. Then, any party can use a new
anonymized public key for each AFP tag. This ensures that the AFP scheme can be exe-
cuted a bounded number times before lottery winners can be linked to specific public
keys in the setup and ciphertexts starts betraying their receivers.

The Reusable Way: In Section 7.9, we show that a party can prove membership in a given
committee without needing to reveal its role in this committee. This is done by signing
a message with a ring signature [RST01] where the secret key corresponds to a public
key in the committee. These signatures hide the identity of the party. Moreover, we
require the signature to be linkable [LWW04], so that no two parties can claim the same
secret key. Using this and an anonymous channel, we can construct an AfP that can be
used multiple times without linking a party Pi to its setup public key. More interestingly,
we also present a protocol that leverages the presence of a dealer (which could be a
party that encrypted the message to that committee) to reduce the size of these proofs
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of membership to constant (for the parties making the claims). This uses Camenisch-
Lysyanskaya signatures [CL04], where the dealer signs the public keys of the committee,
and the parties can then “complete” one of these signatures without revealing which
one. We introduce a simple linkable version of these signatures.

PVSS We introduce two constructions for PVSS. The first, HEPVSS, is based on a generic
encryption scheme which enjoys certain linearity properties with respect to encryption
and decryption, and has the advantage that the security of the PVSS can be based on
IND-CPA security of the scheme. The homomorphic properties of the scheme allow for
simple proofs of sharing correctness and reconstruction. While we are only aware of El
Gamal scheme satisfying the notion of the homomorphic properties we need, we hope
that a relaxed version of this abstraction allows to capture other encryption schemes
with homomorphic properties such as latticed-based assumptions or Paillier in future
work. In our second scheme DHPVSS, we introduce the idea of providing the dealer with
an additional key pair for share distribution. This idea is powerful in combination with a
technique used in SCRAPE to prove that encrypted shares lie on a polynomial of the right
degree. The novelty is that, while in SCRAPE this needed an additional discrete logarithm
equality (DLEQ) proof for each share, our new scheme requires a single DLEQ proof. This
reduces the sharing correctness proof to only 2 Zp-elements while each encrypted shares
is still one group element.

We also introduce PVSS resharing protocols for both constructions, where a committee,
among which a secret is PVSSed, can create shares of the same secret for the next com-
mittee, in a publicly verifiable way.

PVSS Towards Anonymous Committees Finally, we show that we can replace standard
encryption and authentication in our PVSS protocols by ECW and AFP and thereby obtain
PVSS toward anonymous committees.

7.2 ECW based on Zp-Linearly Homomorphic Encryption

This section presents an ECW protocol based on a Zp-linearly homomorphic encryption
scheme described in Section 5.8.3 and a mixnet (Section 5.10). Together with the ECW, we
introduce an AfP scheme - a mechanism that allows a committee member to authenticate
messages. The two schemes will be the backbone of the anonymous PVSS presented
in Section 7.5. Before presenting the actual ECW and AfP protocols, we introduce the
underlying lottery predicate that will be the cornerstone in our two schemes.

7.2.1 Lottery Predicate

We assume a running blockchain as described Section 4.2 and a function param that has
access to the blockchain state. During the setup, each party samples an encryption key
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pair (skE,i , pkE,i ) and inputs pkE,i to the mixnet (Section 5.10). The output of the mixnet is
a tuple {(j , pkAnon,j) : j ∈ [n]} which is written on the blockchain and accessible to every
party through param function. The function param takes as input the blockchain B and
the slot sl and outputs a tuple ({(j , pkAnon,j)}j∈[n], η) ← param(B, sl). Here, (j , pkAnon,j) is
equal to (ψ(i), pkE,i ) for the permutation ψ defined by the mixnet. Finally, η is the public
randomness from the blockchain corresponding to B and sl. Note, that only the owner
of skE,i knows j such that pkAnon,j = pkE,i . Let H : {0, 1}∗ → [n] be a hash function that
outputs a number that points to a specific index in the list of public keys. The lottery
predicate lottery is detailed below.

Algorithm 15: lottery(B, sl, R, skL,i )

1: ({(j , pkAnon,j)}j∈[n], η)← param(B, sl)
2: (pkE,i , skE,i )← skL,i

3: k ← H(sl||R||η)
4: return 1 iff pkE,i = pkAnon,k

It is easy to see that the lottery described above associates a single party (from the set
of eligible parties) with the role R. Furthermore, the party can locally check if it won
the lottery by checking that the output of the hash function points to its own public key
in the permuted set. Crucially, the party winning the lottery can stay covert since no
other party can link the winning lottery key to the owner of the corresponding secret key.
These properties will be useful when we want to encrypt shares towards an anonymous
committee.

7.2.2 ECW Protocol

This section introduces a ECW protocol (Fig. 7.1) based on the lottery predicate presented
in Section 7.2.1. We note that ECW is just a restricted version of EtF where the lottery is
conducted wrt. the current blockchain B and slot sl. Thus, all definitions in Section 6.1
applies to ECW schemes too.
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ECW Protocol

Public parameters: A prime p, a Zp-linearly homomorphic encryption scheme E =
(E .g , E .Enc, E .Dec) with notation as in Section 5.8.3 and a lottery as described in Section
7.2.1.
Set-up:

1. Every party runs E .g() obtaining a key pair (skE,i , pkE,i ).

2. Each party inputs pkE,i to the mixnet. The output of the mixnet is a tuple
{(j , pkAnon,j) : j ∈ [n]} which is written on the blockchain and accessible to every
party when using the param function.

Encryption protocol: Input (B, sl, R) and m ∈ P.

1. Run param(B, sl) and obtain ({(l , pkAnon,l)}l∈[n], η).

2. Obtain random index by k ← H(sl||R||η).

3. Choose ρ in R and set c = E .EncpkAnon,k
(m, ρ).

4. Sender outputs c .

Decryption protocol: Input for party i is B, skL,i and c .

1. Checks that lottery(B, sl, R, skL,i ) = 1.

2. Outputs m = E .DecskAnon,i
(c).

Figure 7.1: ECW Protocol

Theorem 7.1 (IND-CPA ECW). Let E be an IND-CPA secure Zp-linearly homomorphic en-
cryption scheme. The construction in Fig. 7.1 with lottery predicate as in Section 7.2.1 is an
IND-CPA secure ECW (as in Definition 6.2).

(See proof sketch in Section 7.6)

7.2.3 AfP Protocol

In this section we present our protocol for AfP (Definition 6.5). It is described in Fig. 7.2 and
is based on a Signature of Knowledge (SoK) [CL06]. A SoK scheme is a pair of algorithms
(SoK.sign, SoK.verify) and is defined in context of a relation R . We consider statements
of the form x = (B, sl, R) and witnesses w = sk. We say that R(x = (B, sl, R),w = sk) = 1
i� lottery(B, sl, R, sk) = 1. A signature is produced by running σ ← SoK.sign(x ,w ,m). And
it can be verified by checking that the output of SoK.verify(x ,σ,m) is 1. Our AfP uses
the SoK to sign m under the knowledge of skL,i such that lottery(B, sl, R, skL,i ) = 1. This
will exactly attest that the message m was sent by the winner of the lottery for R. An
instantiation of this AfP protocol could use DL proofs (Section 5.7).
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AfP Protocol

Public parameters and Set-up as described in Fig. 7.1 plus additional setup for the SoK
scheme SoK = (SoK.sign, SoK.verify).
Authentication protocol: Input for party i is (B, sl, R) and m ∈ P.

1. Checks that lottery(B, sl, R, skL,i ) = 1.

2. Constructs an SoK on the message m of knowledge of skL,i such that
lottery(B, sl, R, skL,i ) = 1 resulting in σSoK ← SoK.sign((B, sl, R), skL,i ).

3. Sender outputs σ ← σSoK.

Verification protocol: Input is (B, sl, R,σ,m)

1. Parses σ as the SoK signature σSoK.

2. Verifies that σSoK is a valid SoK on the message m proving knowledge of skL,i . I.e. it
runs b ← SoK.verify((B, sl, R),σSoK,m).

3. Verifier outputs b.

Figure 7.2: AfP Protocol

Theorem 7.2 (EUF-CMA AfP). Let E be an IND-CPA secure and Zp-linearly homomorphic
encryption scheme and let SoK be a simulatable and extractable SoK scheme. The con-
struction in Fig. 7.2 with lottery predicate as in Section 7.2.1 is EUF-CMA AfP as defined in
Definition 6.5.

(See proof sketch in Section 7.6)

7.2.3.1 AfP Privacy

The privacy property of an AfP scheme says that no adversary can distinguish between
interacting with an AfP oracle OAfP and a simulator S during a blockchain execution.
Intuitively, this provides the guarantee that observing other AfP tags does not enhance
an adversary’s chance of guessing future lottery winners.

Theorem 7.3 (AfP Privacy). Assume E , lottery and SoK scheme as in Theorem 7.5. The
construction in Fig. 7.2 has AfP privacy as in Definition 6.6.

(See proof sketch in Section 7.6). An AfP based on the setup presented in Fig. 7.1 will not
provide a good foundation for YOSO-MPC or even just a proactive secret sharing scheme.
The reason is, that as soon as a party Pi publishes an AfP tag, any other party can verify
that Pi won the lottery and, thus, link the identity of Pi to the public key pkAnon,ψ(i) from
the output of the mixnet. This will ruin the setup for this party when future lotteries are
conducted. More importantly, a powerful adversary is able to identify any subsequent
ECW ciphertexts towards this party and can design its corruption strategy accordingly.
What we want is a new ephemeral public key pkAnon,ψ(i) for each party and for each slot
sl in the blockchain execution where an AfP is produced. Note that a new lottery setup is
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necessary for each slot sl even though di�erent parties are producing AfP tags in di�er-
ent slots. The reason is that observing any AfP tag, inadvertently, skews the probability
distribution and helps the adversary in guessing future lottery winner.
A simple way to solve the above issue is to repeat the lottery setup and obtain multiple
vectors of the format {(j , pkAnon,j) : j ∈ [n]}. Then, any party can use a new anonymized
public key for each AfP tag. We describe this property as bounded AfP privacy. Bounded
AfP privacy ensures that the AfP scheme can be executed a bounded number times be-
fore lottery winners can be linked to specific public keys in the setup and ECW ciphertexts
starts betraying their receivers. Note that the idea of generating multiple lottery setups
in batches (preprocessing) can result in more e�cient protocols. But it has the downside
that, while using the preprocessed public keys, the number of parties in the system is
static.
In Section 7.5 we look at how to use the ECW and AfP in an anonymous PVSS protocol
where we want encrypt towards multiple parties. In such a setting we can use linkable
ring signatures (Section 7.9) to prove membership in a committee without directly reveal-
ing our public key in the setup.

7.2.4 AfP with Reusable Setup

In Section 7.9, we describe an e�cient NIZK that allows for a party Pi to prove knowledge
of a lottery secret key skL,i such that lottery(B, sl, Rj , skL,i ) = 1 for Rj ∈ {R1, ... , Rn}without
revealing Rj . Using this NIZK and an anonymous channel, we can construct an AfP that
can be used multiple times without linking a party Pi to its setup public key. In order
to generate an AfP on message m on behalf of role R in slot sl, Pi with skL,i such that
lottery(B, sl, R, skL,i ) = 1 first generates a NIZK π proving knowledge of skL,i such that
lottery(B, sl, Rj , skL,i ) = 1 for Rj ∈ {R1, ... , Rn}. Now Pi generates an SoK σ on the message
m of knowledge of a valid proof π for the aforementioned statement. Pi publishes σ
through an anonymous channel, avoiding its identity to be linked to the set {R1, ... , Rn}.
The security and privacy guarantees for this AfP follow in a straightforward way from our
previous analysis. While using this construction has a clear extra cost in relation to our
simple AfP, we show in Section 7.9.2 how to e�ciently perform such a reusable setup AfP
on a set of ciphertexts, which is useful for our resharing application.

7.3 Publicly Verifiable Secret Sharing

7.3.1 Model

We define a publicly verifiable secret sharing (PVSS) scheme with t privacy and t + 1-
reconstruction, based on the models provided in [Sch99, RV05, HV09, CD17]. The goal is
for a dealer to share a secret S ∈ G to a set of n parties P = {P1, · · · ,Pn}, so that t + 1
shares will be needed to reconstruct the secret and no information will be revealed from
t shares. We require public verifiability for correctness of sharing by the dealer, and for
reconstruction of the secret by a set of t+1 parties. Due to this requirement, the protocol
is entirely carried out using a public ledger.
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We provide the syntax below. A modification we introduce with respect to the usual model
is that we include asymmetric key pairs for dealers and an additional initial round where
the parties can broadcast an ephemeral public key. This will allow for more e�cient
constructions as we will see in Section 7.3.3.

Setup

• Setup(1λ) outputs public parameters pp

• DKeyGen(pp), performed by the dealer, outputs a key pair (pkD , skD)

• KeyGen(pp, idi ), performed by i-th share receiver, outputs a key-pair (pki , ski )

• VerifyKey(pp, id , pk), performed by a public verifier, outputs 0/1 (as a verdict
on whether pk is valid)

Distribution

• Dist(pp, pkD , skD , {pki : i ∈ [n]}, S) performed by the dealer, and where S ∈ G
is a secret, outputs encrypted shares Ci : i ∈ [n] and a proof PfSh of sharing
correctness.

Verification

• Verify(pp, pkD , {(pki ,Ci ) : i ∈ [n]}, PfSh) performed by the public verifier out-
puts 0/1 (as a verdict on whether the sharing is valid)

Reconstruction

• DecShare(pp, pkD , pki , ski ,Ci ), performed by a share receiver, outputs a de-
crypted share Ai and a proof PfDeci of correct decryption.

• VerifyDec(pp, pkD ,Ci ,Ai , PfDeci ) outputs 0/1 (as a verdict on whether Ai is a
valid decryption of Ci )

• Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t + 1 outputs a secret S . We will
only apply this algorithm to inputs where T is of size t + 1 and such that all
Ai have passed the verification check.

We let PKD and PK contain all key pairs output by DKeyGen and KeyGen respectively.
For non–deterministic algorithms we sometimes explicitly reference the randomness r
input. For example, Dist(pp, pkD , skD , {pki : i ∈ [n]}, S ; r). One of our constructions will
not require pkD , skD and consequently DKeyGen. In that case we omit these arguments
from the inputs to the other algorithms.

We require a PVSS to satisfy correctness, verifiability and IND1-secrecy.

Definition 7.1 (Correctness). A PVSS satisfies correctness if for each secret S ∈ G and for
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any set of identifiers {idi : i ∈ [n]}

Pr



pp ← Setup(1λ, t, n);
(pkD , skD)← DKeyGen(pp);

∀i ∈ [n] (pki , ski )← KeyGen(pp, idi );
({Ci : i ∈ [n]}, PfSh)←

Dist(pp, pkD , skD , {pki : i ∈ [n]}, S);
∀i ∈ [n] (Ai , PfDeci )←

DecShare(pp, pkD , pki , ski ,Ci );
S ′ ← Rec(pp, {Ai : i ∈ [n]});

:

∀i ∈ [n]VerifyKey(pp, idi , pki ) = 1
∧Verify(pp, pkD ,
{(pki ,Ci ) : i ∈ [n]}, PfSh) = 1
∧∀i ∈ [n]VerifyDec(pp, pkD ,
pki ,Ci ,Ai , PfDeci ) = 1
∧S ′ = S


= 1.

Verifiability The verifiability requirement ensures that an adversary must honestly fol-
low the protocol. This means that it can be verified that parties honestly generate their
ephemeral public keys (key generation), the dealer outputs encrypted shares for a se-
cret (distribution), and that the parties honestly decrypt their shares in reconstruction
(decryption).

Definition 7.2 (Verifiability of Key Generation). A PVSS satisfies verifiability of key gener-
ation if there exists a negligible function µ(λ)such that∣∣∣∣Pr

[
pp ← Setup(1λ, t, n);

(pkD , id , pk)← A(pp);
:

VerifyKey(pp, id , pk) = 1
∧@sk s.t. (sk, pk) ∈ PK

]∣∣∣∣ ≤ µ(λ).

Definition 7.3 (Verifiability of Distribution). A PVSS satisfies verifiability of distribution if
there exists a negligible function µ(λ)such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr


pp ← Setup(1λ, t, n);

(pkD , {(pki ,Ci ) : i ∈ [n]}, PfSh)
← A(pp);

:

Verify(pp, pkD , {(pki ,Ci ) : i ∈ [n]}, PfSh)
= 1
∧@S , skD , r s.t.
((skD , pkD) ∈ PKD∧
Dist(pp, pkD , skD , t, {pki : i ∈ [n]}, S ; r)
= ({Ci : i ∈ [n]}, ·))



∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ).

Definition 7.4 (Verifiability of Decryption). A PVSS satisfies verifiability of decryption if
there exists a negligible function µ(λ)such that∣∣∣∣∣∣Pr

 pp ← Setup(1λ, t, n);
(pkD , pk,C ,A, PfDec)← A(pp);

:
VerifyDec(pp, pkD , pk,C ,A, PfDec) = 1
∧@(sk, r) s.t.((sk, pk) ∈ PK∧
DecShare(pp, pkD , pk, sk,C ; r) = (A, ·))

∣∣∣∣∣∣
≤ µ(λ).
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Indistinguishability of Secrets (IND-1 Secrecy) We now present the IND-1 Secrecy def-
inition from [CD17]. We have modified this definition to fit the adjusted syntax because
Dist can no longer be performed by the adversary (as it takes skD as input). We now
provide a DIST oracle that will return the outputs of the Dist algorithm. To capture that
the public keys of the parties should be ephemeral, we do not allow the public keys of
parties that are used in the challenge to be input to this oracle. We therefore allow the
adversary to output an extra n − k keys.

Algorithm 16: Gameind-secrecy,b
A,PVSS

1: procedure DIST((U , S ′))
2: if U * [n + 1, k] or |U| 6= n then
3: return ⊥
4: end if
5: ({C ′i : i ∈ [n]}, PfSh)← Dist(pp, pkD , skD , t, n, {pki : i ∈ U}, S ′)
6: return ({C ′i : i ∈ [n]}, PfSh)
7: end procedure
8: procedure Gameind-secrecy,b

A,PVSS (λ)
9: pp ← Setup(1λ, t, n), (pkD , skD)← DKeyGen(pp)

10: ∀i ∈ [n − t] (pki , ski )← KeyGen(pp, i)
11: ({pki : i ∈ [n − t + 1, n]}, {pki : i ∈ [n + 1, k]})← A(pp, pkD , {pki : i ∈ [n − t]})
12: if ∃i ∈ [n − t + 1, k] such that VerifyKey(pp, i , pki ) = 0 then
13: return 0
14: end if
15: S0, S1←$G, ({Ci : i ∈ [n]}, PfSh)← Dist(pp, pkD , skD , t, {pki : i ∈ [n]}, S0)
16: b′ ← ADIST(Sb, {Ci : i ∈ [n]}, PfSh)
17: return b′

18: end procedure

Definition 7.5 (IND-1 Secrecy). A PVSS satisfies indistinguishability of secrets if, for any
PPT adversary A, there exists a negligible function µ(λ)such that∣∣∣Pr

[
Gameind-secrecy,0

A,PVSS (λ) = 1
]
− Pr

[
Gameind-secrecy,1

A,PVSS (λ) = 1
]∣∣∣ ≤ µ(λ).

7.3.2 HEPVSS: Generic PVSS from Zp-LHE Scheme

We present in Fig. 7.3 our construction for a PVSS scheme HEPVSS based on a Zp-LHE
scheme with proof of correct decryption. This construction does not require the dealer
to hold a key pair or parties to prove honest generation of keys and therefore we remove
this from the syntax. Moreover, because the dealer does not have a key pair, here we do
not require the public keys pki to be ephemeral.

The construction is relatively straightforward: the dealer construct the (group) Shamir
sharing of the secret, and encrypts the shares using the Zp-LHE scheme, resulting in
cyphertexts Ci . The sharing correctness proof needs to assert, not only that each Ci is
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individually a correct encryption, but also that the underlying plaintext messages are
evaluations of a polynomial of degree at most t . Here we use the fact that the set of
polynomials of degree at most t is a vector space, and the map that sends a polynomial
to its evaluation in some point is linear, so we can capture the above statement in terms
of knowledge of preimage of a certain linear map.

Algorithms for HEPVSS

HEPVSS.Setup(1λ, t, n):
1: (G,G , p, E)←$G(1λ). Choose pairwise distinct α0,α1, · · ·αn ∈ Zp

2: return pp = (G,G , p, t, n, {αi : i ∈ [0, n]}, E)

HEPVSS.KeyGen(pp, id):
1: return (sk, pk)←$ E .g(1λ)

HEPVSS.Dist(pp, {pki : i ∈ [n]},S):
1: Parse pp as (G,G , p, n, {αi : i ∈ [0, n]}, E) := (ppSh, E)
2: ({Ai : i ∈ [n]},m(X ))← GShamir(ppSh,S)
3: for i ∈ [n] do
4: ρi ←$R, Ci ← E .Encpki

(Ai , ρi )
5: end for
6: W ← G× Zp[X ]≤t ×Rn, X ← {0} × Cn, ppπ ← (Zp,W,X ,H)
7: w ← (S ,m(X ), ρ1, ... , ρn), x ← (0,C1, ... ,Cn)
8: Let f given by
9: f (w) := (m(α0), E .Encpk1

(S + m(α1) · G ; ρ1), ... , E .Encpkn
(S + m(αn) · G ; ρn))

10: PfSh ← ΠNI−Pre.Prove(w ; ppπ, x , f )
11: return ({Ci : i ∈ [n]}, PfSh)

HEPVSS.Verify(pp, {(pki ,Ci ) : i ∈ [n]}, PfSh):
1: return ΠNI−Pre.Verify(ppπ, x , f , PfSh), withW,X , ppπ, x , f as in HEPVSS.Dist

HEPVSS.DecShare(pp, pk, sk,C ):
1: A← Decsk(C ), PfDec ← E .ProveDec(A,C , pk)
2: return (A, PfDec)

HEPVSS.VerifyDec(pp, pki ,Ai ,Ci , PfDeci ):
1: return E .VerifyDec(Ai ,Ci , pki , PfDeci )

HEPVSS.Rec(pp, {Ai : i ∈ T }):
1: return GShamir.Rec(pp, {Ai : i ∈ T })

Figure 7.3: Algorithms for Public Verifiable Secret Sharing Scheme HEPVSS

7.3.2.1 Security

We prove that HEPVSS satisfies correctness, indistinguishability of secrets and verifia-
bility in Section 7.7.1.
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7.3.3 DHPVSS: A PVSS with Constant-Size Sharing Correctness Proof

We now give an optimized construction of a PVSS with a proof of sharing correctness
consisting of just two field elements. The PVSS scheme, which we call DHPVSS, has
IND1-secrecy under the DDH assumption.

We explain the idea of the construction next: Let Ai = ai ·G be (purportedly) group Shamir
shares for a secret S ∈ G. A SCRAPE check (Theorem 5.1) consists on the verification∑n

i=1 vi ·m∗(αi ) · ai
?
= 0, or alternatively

n∑
i=1

vi ·m∗(αi ) · Ai
?
= O,

for O the identity element of G. Here vi are fixed coe�cients dependent on the αi and
m∗(X ) is sampled uniformly at random from Zp[X ]≤n−t−1. If it is not true that all ai are
of the form m(αi ) for some polynomial m(X ) ∈ Zp[X ]≤t , then the check succeeds with
probability at most 1/p.

In [CD17], the encrypted shares were Ci = ai · pki . Because these are in di�erent bases
the check above cannot be directly applied on the Ci , and then the strategy consisted
on sending additional elements ai · H (for some group generator H), proving that the
underlying ai ’s are the same, and carrying out the check on these ai ·H . All this introduces
overhead which is linear in n.

Instead, in DHPVSS, the dealer has a key-pair (skD , pkD), with pkD = skD ·G , and encrypts
Ai as Ci = Ai + skD · Ei , where Ei = ski · G is an ephemeral public key of the i-th party.
Note that skD · Ei can be seen as a shared Di�e-Hellman key between dealer and the
i-th party or, alternatively, Ci can be seen as an El-Gamal encryption of Ai under Ei with
randomness skD .

The advantage is that now
∑n

i=1 vi ·m∗(αi ) · Ai
?
= O is equivalent to

n∑
i=1

vi ·m∗(αi ) · Ci
?
= skD ·

(
n∑

i=1

vi ·m∗(αi ) · Ei

)
,

which is one single DLEQ proof DLEQ(skD ;G , pkD ,U,V ) for publicly computable

U =
n∑

i=1

vi ·m∗(αi ) · Ei , V =
n∑

i=1

vi ·m∗(αi ) · Ci .

One detail is that, as opposed to the PVSS in [CD17] (where m∗(X ) was locally sampled
by the verifier), the prover needs to know m∗(X ) so this is sampled via a random oracle.
The algorithms can be found in Fig. 7.4 and Fig. 7.5.
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Algorithms for PVSS scheme DHPVSS, Setup and Distribution

DHPVSS.Setup(1λ, t, n):
1: (G,G , p)←$G(1λ). Choose pairwise distinct α0,α1, · · ·αn ∈ Zp

2: ∀i ∈ [n] vi ←
∏

j∈[n]\{i}(αi − αj)
−1

3: return pp = (G,G , p, t, n,α0, {(αi , vi ) : i ∈ [n]})
DHPVSS.DKeyGen(pp):

1: skD ←$Z∗p, pkD ← skD · G
2: return (pkD , skD)

DHPVSS.KeyGen(pp, id):
1: sk←$Z∗p,E ← sk · G , Ω← DL(sk;G ,E , id), pk← (E , Ω)
2: return (pk, sk)

DHPVSS.VerifyKey(pp, id , pk):
1: parse pk as (E , Ω)
2: return accept i� Ω is valid w.r.t G ,E , id

DHPVSS.Dist(pp, pkD , skD , {pki : i ∈ [n]},S):
1: parse pki as (Ei , Ωi ), pp as (G,G , p, t, n,α0, {(αi , vi ) : i ∈ [n]})
2: ppSh ← (G,G , p, t, n, {αi : i ∈ [0, n]})
3: ({Ai}i∈[n],m(X ))← GShamir.Share(ppSh,S)
4: ∀i ∈ [n],Ci ← skD · Ei + Ai

5: m∗ ← H(pkD , {(pki ,Ci ) : i ∈ [n]})
6: V ←

∑n
i=1 vi ·m∗(αi ) · Ci ,U ←

∑n
i=1 vi ·m∗(αi ) · Ei

7: PfSh ← DLEQ(skD ;G , pkD ,U,V )
8: return ({Ci : i ∈ [n]}, PfSh)

Figure 7.4: Algorithms for PVSS scheme DHPVSS, Setup and Distribution

Algorithms for PVSS scheme DHPVSS, Verification and Reconstruction

DHPVSS.Verify(pp, pkD , {(pki ,Ci ) : i ∈ [n]}, PfSh):
1: parse pki as (Ei , Ωi ), pp as (G,G , p, t, n, {(αi , vi ) : i ∈ [n]})
2: m∗ ← H(pkD , {(pki ,Ci ) : i ∈ [n]})
3: V ←

∑n
i=1 vim

∗(αi ) · Ci ,U ←
∑n

i=1 vim
∗(αi ) · Ei

4: return accept i� PfSh is valid w.r.t G , pkD ,U,V

DHPVSS.DecShare(pp, pkD , pk, sk,C ):
1: parse pk as (E , Ω)
2: A′ ← C − sk · pkD
3: PfDec ← DLEQ(sk;G ,E , pkD ,C − A′)
4: return (A′, PfDec)

DHPVSS.VerifyDec(pp, pkD , pki ,Ci ,Ai , PfDeci ):
1: parse pki as (Ei , Ωi )
2: return accept i� PfDeci is valid w.r.t G ,Ei , pkD ,Ci − Ai

DHPVSS.Rec(pp, {Ai : i ∈ T }):
1: return GShamir.Rec(pp, {Ai : i ∈ T })

Figure 7.5: Algorithms for PVSS scheme DHPVSS, Verification and Reconstruction
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7.3.3.1 Security

We prove that DHPVSS satisfies correctness, indistinguishability of secrets and verifia-
bility in Section 7.7.2.

7.3.3.2 Communication Complexity Comparison.

The communication complexity of DHPVSS.Dist is (n + 2) log p bits. In contrast,
HEPVSS.Dist instantiated with El Gamal is of (3n + 3) log p bits. Secret distribution in
SCRAPE [CD17] requires (3n+ 1) log p bits, which was reduced to (n+ t + 2) log p bits in AL-
BATROSS [CD20]. Therefore DHPVSS.Dist obtains an additive saving of t log p bits with re-
spect to the best previous alternative. The communication of both DHPVSS.DecShare and
HEPVSS.DecShare is 3 log p bits. The share decryption complexities in [CD17] and [CD20]
are similar to ours. See Section 7.8 for more details.

7.4 PVSS Resharing

In this section we introduce protocols that allow a committee Cr of size nr, among which
a secret has been PVSSed with an underlying tr-threshold Shamir scheme, to create a
PVSS of the same secret for the next committee Cr+1 of size nr+1 and with threshold tr+1.
By design, the protocols will keep the secret hidden from any adversary corrupting at
most tr parties from Cr and tr+1 from Cr+1, and will be correct as long as there are tr + 1
honest parties in Cr. In particular, this can be used by a party R to transmit a message
to a committee in the future, by keeping this secret being reshared among successive
committees and setting the last Shamir threshold to be 0.

Suppose for now that the secret sharing scheme were for secrets over Zp . Each party in
Cr would hold σ` = mr(α`) where mr is the sharing polynomial for that round, of degree
tr. A subcommittee Lr of tr + 1 parties in Cr can then reshare the secret by PVSSing their
shares among Cr+1 with Shamir scheme of degree tr +1. The parties in Cr+1 then compute
the sum of the received shares weighted by coe�cients

λ`,Lr :=
∏

j∈Lr,j 6=`

α0 − αj

α` − αj

Indeed, if we denote [σ`] the vector of shares sent by P` in Lr, then∑
`∈Lr

λ`,Lr [σ`] =
∑
`∈Lr

λ`,Lr [m(α`)] = [
∑
`∈Lr

λ`,Lrm(α`)] = [m(α0)]

In our situation, each party Rr,i in Cr has instead a group element as share, and needs to
PVSS it among Cr+1 using the algorithm Dist from previous section. However, the proof in
Dist only guarantees that the distributed shares are consistent with some secret. Here we
require in addition that this secret is the shared that the party has received previously.
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To be more precise, in round r, each party Rr,i in committee Cr has Ar,i as share and in
addition the encryption Cr,i = E .Encpkr,i

(Ar,i ) of Ar,i is public. Rr,i now needs to create
shares of Ar,i for the committee Cr+1. Let Ai→j be the share that will be sent to Rr+1,j .
This will be encrypted as Ci→j = E .Encpkr+1,j

(Ai→j) and Rr,i must prove that Ci→j are
encryptions of a correct sharing whose secret is indeed the plaintext of Cr,i .

When a subset Lr of Cr of tr + 1 parties have correctly reshared, each Rr+1,j sets
Ar+1,j =

∑
`∈Lr

λ`,LrA`→j as their share and everyone sets Cr+1,j =
∑

`∈Lr
λ`,LrC`→j as

the corresponding public ciphertext for that share.

7.4.1 Resharing for HEPVSS

In the case of HEPVSS, the additional proof that the reshared value is the one corre-
sponding to the public ciphertext can be integrated easily in HEPVSS.Dist if the encryp-
tion scheme has Zp-linear decryption.

Let pk[n] denote the set {pki : i ∈ [n]}. Similarly C[n] denote a set of ciphertexts {Ci : i ∈
[n]} and ρ[n] denote a set of elements from the randomness space {ρi : i ∈ [n]}. Recall
DC (sk) := Decsk(C ). Define the relation

RReshare ={(m(X ), sk, ρ[n]); (pk, pk[n],C ,C[n]) :

F (sk) = pk,m(β0) = 0, Encpki (m(βi ) · G + DC (sk); ρi ) = Ci for i ∈ [n]}

We therefore define the resharing proof in Fig. 7.6. The protocol for PVSS resharing is then
constructed as in Fig. 7.7.

Proof HEPVSS.Reshare of correct resharing of encrypted secret

HEPVSS.Reshare.Prove((m(X ), sk, ρ[n]); (pp, pk, pk[n],C ,C[n])):
1: parse pp = (G,G , p, t, n, {βi : i ∈ [n]})
2: W ← Zp[X ]≤t × SK ×Rn,X ← PK × Cn,
3: pp′ ← (Zp,W,X ,H), w ← (m(X ), sk, ρ1, ... , ρn), x ← (0, pk,C1, ... ,Cn),
4: Set fC given by fC (w) := (m(β0),F (sk), Encpk1 (A1; ρ1), ... , Encpk1 (An; ρn))
5: where Ai = m(βi ) · G + DC (sk)
6: return ΠNI−Pre.Prove(w ; pp′, x , fC )

HEPVSS.Reshare.Verify(pp, pk, pk[n],C ,C[n],π):
1: SetW,X , pp′, x , fC , as in Reshare.Prove
2: return ΠNI−Pre.Verify(pp′, x , fC ,π)

Figure 7.6: Proof system HEPVSS.Reshare for correct resharing of encrypted secret
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Protocol for HEPVSS PVSS resharing

Participants: Disjoint committees Cr = {Pr,1, ... ,Pr,nr} and Cr+1 = {Pr+1,1, ... ,Pr+1,nr+1}.

Public information: A group G of prime order p, with generator G . A homomorphic en-
cryption scheme E with Zp-linear decryption, with plaintext space G. Public keys pkj ,i
for that encryption scheme corresponding to parties Rj ,i above (j = r, r + 1, 1 ≤ i ≤ nr),
where Rj ,i knows the corresponding secret key skj ,i ; thresholds tr, tr+1. Evaluation points
(α0,α1, ... ,αnr ), (β0,β1, ... ,βnr+1 ).
Input: Public ciphertexts Cr,i , where it is guaranteed that Cr,i = Encpkr,i

(Ar,i ) such that
Ar,i = fr(αi ) · G for some polynomial fr of degree ≤ tr.

Output: A public output (Cr+1,1, ... ,Cr+1,nr+1 ) and a proof π that, for all k = 1, ... , nr+1,
Cr+1,k = Encpkr+1,i

(Ar+1,k) such that Ar+1,k = fr+1(βk) ·G for some polynomial fr+1 of degree
≤ tr+1 and fr+1(β0) = fr(α0).

Protocol:

1. Let ppr+1 = (G,G , p, tr+1, nr+1, {βi : i ∈ [0, n]}).

2. Resharing: For i = 1, ..., nr, Pr,i does the following
a) Compute Ar,i = Decskr,i (Cr,i ).
b) For i = 1, ..., nr, Pr,i computes

({Ai→j : j ∈ [nr+1]},m(X ))← GShamir.Share(ppr+1,Ar,i )

c) Sample ρi→j ∈ R for j ∈ [nr+1] and let ρi→[nr+1] = {ρi→j : j ∈ [nr+1]}
d) Compute Ci→j = Encpkj

(Ai→j ; ρi→j) for j ∈ [nr+1].
e) Compute

πi ← HEPVSS.Reshare.Prove (m(X ), sk, ρi→[nr+1]; pp, pkr,i ,
{pkr+1,j : j ∈ [nr+1]},Cr,i , {Ci→j : j ∈ [nr+1]})

f) Output {Ci→j : j ∈ Cr+1},πi
3. Reconstruction of next share encryptions: each party in P locally constructs the

encryptions of the shares for the following round as follows:
a) Define L containing the first t + 1 indices i for which the following accepts:

HEPVSS.Reshare.Verify( pp, pkr,i , {pkr+1,j : j ∈ [nr+1]},Cr,i ,
{Ci→j : j ∈ [nr+1]},πi )

b) For j ∈ [nr+1], set Cr+1,j =
∑
`∈L λ`,LC`→j

a

c) Output {(Cr+1,j : j ∈ [nr+1]}, (πr,`)`∈L).
aHere

∑
refers to the summatory with respect to the homomorphic operation on ciphertexts �C

Figure 7.7: Protocol for HEPVSS resharing
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7.4.2 Resharing for DHPVSS

In the case of DHPVSS, the situation is slightly more complicated due to the fact that the
encryption of shares involves a key from the dealer. Here there are di�erent dealers, i.e.
the final share of each party in Cr+1 is a linear combination of shares sent by the parties
in Lr. Thanks to the fact that the encryption is also a linear operation with respect to the
public key of the sender, we can define a public key for committee Lr. Indeed, if we call
pkD`

the public key of Pr,` when acting as sender, then pkD,Lr
:=
∑

`∈Lr
λ`,Lr · pkD`

. Then
we want to make sure that the output encryption for Pr+1,j is

Cr+1,j = skr+1,j · pkD,Lr
+
∑
`∈Lr

λ`,LrA`→j .

At the beginning of the resharing, each party Pr,i in committee Cr has as share Ar,i =
Cr,i − ski · pkD,Lr−1

where ski is the secret key for decrypting shares, and needs to create
shares Ai→j of Ar,i and encrypt them using the public keys pk[nr+1] = {pkj : j ∈ [nr+1]}
of the parties of the next round and its own secret key skDi

(i.e. this party will create
C[nr+1] = {Ci→j : j ∈ [nr+1]} with Ci→j = skDi

· pkj + Ai→j ) and prove their validity. In
conclusion we need a proof for the following relation

RDHPVSS,Reshare ={(m(X ), ski , skDi
); (pp, pki , pkDi

, pkD,Lr−1
, pk[nr+1],Cr,i ,C[nr+1]) :

pki = ski · G , pkDi
= skDi

· G , m(X ) ∈ Zp[X ]≤t , m(β0) = 0,

and ∀j ∈ [nr+1], Ci→j = skDi
· pkj + Ai→j ,

where Ai→j = (Cr,i − ski · pkD,Lr−1
) + m(βj) · G}

However, we also want to use the SCRAPE technique to reduce the size of the witness
and hence of the proof. Note that if we set

Uj = Ci→j − skDi
· pkj − Cr,i + ski · pkD,Lr−1

for all j ∈ [nr+1] and U0 = O , we want to make sure that for all j ∈ [0, nr+1], Uj = m(βj) ·G
for a polynomial of degree ≤ t (in addition to the conditions pki = ski · G and
pkDi

= skDi
· G ).

For j ∈ [0, n], let
v ′j =

∏
k∈[0,n]\{j}

(βj − βk)−1.

Observe these are not exactly the same coe�cients as in the description of DHPVSS in
Section 7.3.3 because they include the evaluation point β0. By Theorem 5.1, we want to
prove

∑n
j=0 v

′
i ·m∗(βj) · Uj = O , for a random polynomial m∗ of degree n − t .

Observe
∑n

j=0 v
′
j ·m∗(βj) · Uj = U ′ − skDi

· V ′ + ski ·W ′ for publicly computable

U ′ :=
n∑

j=1

v ′j ·m∗(βj) · (Ci→j−Cr,i ), V ′ :=
n∑

j=1

v ′j ·m∗(βj) ·pkj , W
′ :=

n∑
j=1

v ′j ·m∗(βj) ·pkD,Lr−1
,
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and therefore Pr,i needs a proof of knowledge for

R ′DHPVSS,Reshare,m∗ ={(ski , skDi
); (pki , pkDi

,U ′,V ′,W ′) :

pki = ski · G , pkDi
= skDi

· G , U ′ = skDi
· V ′ − ski ·W ′}

where we remark that now the witness only contains two elements but on the other hand
the relation depends on a polynomial m∗(X ) that has been sampled uniformly at random
among polynomials of degree at most n− t . This leads to the protocol for PVSS resharing
in Fig. 7.8.
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Protocol for DHPVSS resharing

Participants: Cr = {Pr,1, ... ,Pr,nr} and Cr+1 = {Pr+1,1, ... ,Pr+1,nr+1}.

Public information: A group G of prime order p, with generator G . “Sender” key
pairs (skDi , pkDi

= skDi · G ) for every party Rr,i ∈ Cr, a “sender committee” public key
pkD,Lr−1

, and “receiver” key pairs (skr ,i , pkr ,i = skr ,i · G ) for Rr ,i , where r = r, r + 1,
and 1 ≤ i ≤ nr ; thresholds tr, tr+1. Evaluation points (α0,α1, ... ,αnr ), (β0,β1, ... ,βnr+1 ).
Random oracles H : {0, 1}∗ → Zp[X ]≤n−t , H′ : {0, 1}∗ → Zp . Let W ← Z2

p , X ← G3, and
ppπ ← (Zp,W,X ,H′).

Input: Public ciphertexts Cr,i = skr,i · pkD,Lr−1
+ Ar,i such that Ar,i = hr(αi ) · G for some

polynomial hr of degree ≤ tr.

Output: A public key pkD,Lr
for a subset Lr of Cr, of size tr + 1. Public output ciphertexts

(Cr+1,1, ... ,Cr+1,nr+1 ) and a proof π that, for all j = 1, ... , nr+1, Cr+1,j = skr+1,jpkD,Lr
+ Ar+1,j

such that Ar+1,j = hr+1(βj) · G for some polynomial hr+1 of degree ≤ tr+1 and
hr+1(β0) = hr(α0).

Protocol:

1. Let ppSh,r+1 = (G,G , p, tr+1, nr+1, {βj : j ∈ [0, nr+1]}).

2. Resharing: For i = 1, ..., nr, Pr,i does the following:
a) Ar,i ← Cr,i − skr,i · pkD,Lr−1

.
b) ({Ai→j : j ∈ [nr+1]},mi (X ))← GShamir.Share(ppSh,r+1,Ar,i ).
c) For j ∈ [nr+1], Ci→j ← skDi · pkr+1,j + Ai→j .
d) m∗i (X )← H({Cr,i : i ∈ [nr]}, pkD,Lr−1

).
e) U ′i ←

∑n
j=1 v

′
j ·m∗i (βj) · (Ci→j − Cr,i ), V ′i ←

∑n
j=1 v

′
j ·m∗i (βj) · pkr+1,j ,

W ′i ← (
∑n

j=1 v
′
j ·m∗i (βj)) · pkD,Lr−1

.
f) πr,i ← ΠNI−Pre.Prove((skr,i , skDi ); ppπ, (pkr,i , pkDi

,U ′i ), fi ),
where fi (skr,i , skDi ) := (skr,i · G , skDi · G , skDi · V ′i − skr,i ·W ′i ).

g) Output {Ci→j : j ∈ [nr+1]},πr,i .

3. Reconstruction of next share encryptions: each party in P locally constructs the
encryptions of the shares for the following round as follows:

a) For each i ∈ Cr:
i. Compute U ′i and fi as above (from public information and Pr,i ’s output
{Ci→j : j ∈ [nr+1]}).

ii. Compute ΠNI−Pre.Verify(ppπ, (pkr,i , pkDi
,U ′i ), fi ,πr,i ).

b) Define Lr the set of t + 1 first indices for which the above proofs accept.
c) For j ∈ [nr+1], Cr+1,j ←

∑
`∈Lr

λ`,L · C`→j .
d) pkD,Lr

←
∑
`∈Lr

λ`,Lr · pkD`
.

e) Output ({Cr+1,j : j ∈ [nr+1]}, (πr,`)`∈Lr , pkD,Lr
).

Figure 7.8: Protocol for DHPVSS resharing
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7.5 Anonymous PVSS via ECW and AfP

In this section, we show how to construct PVSS (and re-sharing) for anonymous commit-
tees by instantiating our previous PVSS constructions using our ECW and AfP schemes.
We start by showing how our previous protocols can be adapted to work with ECW and AfP
instead of standard encryption and authentication. We then show how the optimizations
in the DDH based constructions via the SCRAPE trick carry over to our anonymous setting
if we instantiate our ECW and AfP schemes from similar assumptions. The protocols we
construct in this section work in the YOSO model supporting up to t < n/2 corrupted par-
ties and can be used as e�cient building blocks for the protocols of [BGG+20,GHK+21].

In the previous sections, we have constructed both a PVSS scheme (Section 7.3.2) and a
PVSS re-sharing scheme (Section 7.4.1) based onZp-linear encryption schemes (as defined
in Section 5.8.3). Despite being e�cient, these constructions are not fit for the YOSO
model because they require the dealer to know the public keys of the parties who will
receive shares, consequently revealing their identities. In order to solve this issue, we
show that these protocols can also be instantiated with the ECW scheme of Section 7.2
even though they were designed to be instantiated with a Zp-linear encryption scheme.
The core idea is that our ECW preserves all the properties of the underlying Zp-linear
encryption scheme while adding the ability to encrypt towards a role rather than towards
a party who owns a public key.

7.5.1 Constructing HEPVSS with ECW

We modify HEPVSS to use our ECW scheme E = (Enc, Dec) for lottery predicate
lottery(B, sl, R, skL,i ) from Section 7.2 instead of a Zp-linear encryption scheme. Departing
from the HEPVSS algorithms described in Fig. 7.3, we make the following modifications:

• Communication: All messages are posted to the underlying blockchain ledger used
by the ECW scheme E .

• HEPVSS.Setup(1λ): Besides the original setup parameters, we assume that n dis-
tinct role identifiers R1, ... , Rn are available and that an underlying blockchain pro-
tocol Γ is executed.

• HEPVSS.KeyGen(pp, id): Instead of publishing pki , each party Pi provides pki as
input to the mixnet assumed as setup for lottery(B, sl, R, skL,i ) and associated ECW
scheme E . The mixnet output {(j , pkAnon,j)}j∈[n] is assumed to be available on the
underlying blockchain and accessible as

({(j , pkAnon,j)}j∈[n], η)← param(B, sl).

Party Pi sets skL,i ← (pkE,i , skE,i ).

• HEPVSS.Dist(pp, {pki : i ∈ [n]},S): Instead of computing Ci ← E .Encpki (Ai , ρi ),
the dealer computes Ci ← Enc(B, sl, Ri ,Ai ) using randomness ρi . Notice
that this is equivalent to computing Ci ← E .EncpkAnon,j

(Ai , ρi ) for a j such that
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lottery(B, sl, Ri , skL,j) = 1. Hence, PfSh can still be computed via the same pro-
cedure. The dealer publishes

({Ci : i ∈ [n]}, {pkAnon,j : i ∈ [n]}, PfSh).

Notice that the public key pkAnon,j used to generate each Ci is publicly known due
to the structure of the lottery scheme.

• HEPVSS.Verify(pp, {(pki ,Ci ) : i ∈ [n]}, PfSh): No modification is needed, since ({Ci :
i ∈ [n]}, {pkAnon,j : i ∈ [n]}, PfSh) has the same structure as in the original protocol.

• HEPVSS.DecShare(pp, pkj , skL,j ,Ci ): Party Pj checks that its lottery witness skL,j is
such that lottery(B, sl, Ri , skL,j) = 1 and, if yes, computes Ai ← Dec(B̃,Ci , skL,j).
Proof PfDec is generated as in the original protocol. Notice that this procedure is
also equivalent to generating an AfP PfDec ← AfP.Sign(B̃, sl, Ri , skL,j ,Ai ).

• HEPVSS.VerifyDec(pp, pki ,Ai ,Ci , PfDeci ): Proof PfDec is checked as in the original
protocol. Notice that this procedure is also equivalent to generating an AfP {0, 1} ←
AfP.Ver(B̃, sl, Ri , PfDec,Ai ).

• HEPVSS.Rec(pp, {Ai : i ∈ T }: No modification is needed.

Due to the properties of the ECW scheme and the underlying lottery scheme, shares
are encrypted towards parties randomly chosen to perform each role Ri whose identity
remains unknown during the share distribution and verification phases. In case a recon-
struction happens, parties executing each role reveal themselves by proving correctness
of decrypted shares, which constitutes an AfP since it involved proving knowledge of skL,j

such that lottery(B, sl, Ri , skL,j) = 1.

7.5.2 Constructing Resharing for HEPVSS with ECW

In the context of resharing, the parties selected to execute roles R1, ... , Rn in slot slr
wish to publicly verifiable reshare the secret whose shares they received towards roles
R′1, ... , R′n′ in a future slot slr+1. In practice, this means that the resharing information
will be received by a new randomly selected set of anonymous parties performing these
roles in the future. Once again we explore the fact that our ECW inherits the properties
of the underlying Zp-linear encryption scheme to modify the resharing protocol of Fig. 7.7
to work with ECW.

We show how to modify the description of Fig. 7.7 to obtain an ECW based resharing
protocol:

• Participants: Parties executing roles R1, ... , Rn in slot slr and parties executing roles
R′1, ... , R′n′ in slot slr+1.

• Input: Public (i.e. published in the underlying blockchain) ECW ciphertexts Ci ←
Enc(B, slr, Ri ,Atr,i ) such that Ar,i = fr(αi ) · G for some polynomial fr of degree ≤ tr.
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• Output: ECW ciphertexts Ci ← Enc(B, slr+1, R′i ,Ar,i ) published in the underlying
blockchain such that Ar+1,k = fr+1(βk)·G for some polynomial fr+1 of degree≤ tr+1

and fr+1(β0) = fr(α0).

• Protocol:

– Encryption/Decryption: When decrypting ciphertexts using key ski for i ∈ [nr],
ECW decrypt using skL,j such that lottery(B, slr, Ri , skL,j) = 1. When encrypting
a message under public key pkj for j ∈ [nr+1], ECW encrypt towards role R′j in
slot slr+1 using randomness ρr+1,,j : Cj ← Enc(B, slr+1, Rr+1,j ,A). Notice that
this is equivalent to computing Cj ← E .EncpkAnon,r+1,j

(A, ρr+1,j) for a j such that
lottery(B, slr+1, Rj , skL,j) = 1.

– Proof HEPVSS.Reshare.Verify(pp, pkr,i , {pkr+1,j}j∈[nr+1],Cr,i , {Ci→j}j∈[nr+1],πi ):
Notice that the structure of the ECW ciphertexts is compatible with this proof,
so that it can be generated as in the original protocol. Analogously, this proof
can also be verified as in the original protocol. Moreover, notice that it also
acts as an AfP for ciphertexts {Ci→j : j ∈ [nr+1]} on behalf of role Ri of slot slr,
since it requires knowledge of a skL,j such that lottery(B, sl, Ri , skL,j) = 1.

As in the PVSS with ECW protocol, due to the properties of the ECW scheme and the
underlying lottery scheme, resharing information is encrypted towards parties randomly
chosen to perform each role Rr+1,j whose identity remains unknown until they act (e.g.
by reconstructing the secret).

7.5.3 E�cient DDH-based Instantiation via DHPVSS

The most e�cient instantiations of our techniques are obtained when using a variant of
the El Gamal encryption scheme together with the SCRAPE share validity check. In order
to enjoy the e�ciency improvement, we show that our ECW is also compatible with these
optimizations.

• Setup and Lottery Predicate: We use the same setup, i.e. we assume the parties
have access to an ideal mixnet and input their public keys Ei so that the output
of a tuple {(j ,EAnon,j) : j ∈ [n]} which is written on the blockchain and accessible
to every party through param function. The lottery predicate works the same way,
having parties check whether EAnon,k = Ei for k ← H(sl||R||η) in order to determine
if they have been selected for role R in slot sl. Moreover, every party publishes on
the underlying blockchain a public key pkD,i for which they know the corresponding
secret key skD,i , which they will use when encrypting.

• Encryption: As in our original ECW a party Pi encrypting m towards role R in slot sl
starts by running param(B, sl) to obtain ({(l ,EAnon,l)}l∈[n], η) and determine EAnon,k

such that k ← H(sl||R||η). Pi publishes ciphertext Ci ,k ← m + skD,i · Ek reveal-
ing indices i , k . Notice that this ciphertext has exactly the same structure as the
ciphertexts used in DHPVSS.
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• Decryption: To decrypt a ciphertext Ci ,k for role R in slot sl, Pj checks that its
skL,j is such that lottery(B, sl, R, skL,j) = 1. If yes, it obtains the sender’s public
key pkD,i from the blockchain and computes m ← Ci ,k − skj · pkD,i . Notice that
a proof of correct decryption can be done exactly as in DHPVSS and that such a
proof constitutes an AfP of m on behalf of role R in slot sl, since it requires proving
knowledge of skL,j s.t. lottery(B, sl, R, skL,j) = 1.

Using this slight modification of our ECW, we can instantiate DHPVSS (Figs. 7.4 and 7.5) and
its resharing protocol (Fig. 7.7). The ciphertexts output by ECW have the same structure
as those used in DHPVSS, so the e�cient proofs of encrypted (re)share validity can be
performed exactly in the same way.

Privacy and Resharing: Notice, however, that since the dealer’s identity must be known
when decrypting ciphertexts, using these optimized techniques for resharing will be
problematic, since it requires linking a party Pi to its key skD,i and revealing its iden-
tity. In order to solve this issue, we can resort to a similar setup used for the regular keys
Ei , i.e. we can allow parties access to an ideal mixnet that is used to create a shu�ed set
of keys {(j , skD,Anon,j) : j ∈ [n]}. Now a sender can include the index to its key skD,Anon,j

in the ciphertext in order to allow for decryption. As it is the case with our simple AfP
technique, this would require setting up multiple such vectors, which can potentially be
solved by techniques similar to those we describe in Section 7.9. We leave a concrete
description of such a construction for future works.

7.6 Proofs for ECW

In this section we list the proofs related to theorems stated in Section 7.2. We re-state
the theorems for convenience.

Theorem 7.4 (IND-CPA ECW). Let E be an IND-CPA secure Zp-linearly homomorphic en-
cryption scheme. The construction in Fig. 7.1 with lottery predicate as in Section 7.2.1 is an
IND-CPA secure ECW (as in Definition 6.2).

Proof (Sketch). An adversary with a noticable advantage in GameIND-CPA
Γ,A,Z,E described in

Definition 6.2 can distinguish between ECW encryptions of two di�erent messages with-
out winning the lottery for that specific sl and R. This adversary can, in turn, distinguish
between corresponding encryptions from the underlying Zp-linearly homomorphic en-
cryption scheme E , which contradicts IND-CPA security of E . Thus, the protocol in Fig. 7.1
yields an IND-CPA secure ECW.
IND-CCA security for the ECW scheme can be obtained by using standard transformations
( [FO99,Sah99]) as argued in [CDK+22].

Theorem 7.5 (EUF-CMA AfP). Let E be an IND-CPA secure and Zp-linearly homomorphic
encryption scheme and let SoK be a simulatable and extractable SoK scheme. The con-
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struction in Fig. 7.2 with lottery predicate as in Section 7.2.1 is EUF-CMA AfP as defined in
Definition 6.5.

Proof (Sketch). We argue that an adversary who forges a signature (AfP tag) on a mes-
sage m is able to construct a valid SoK on a message without knowing the witness.
More precisely, assume that the adversary can make the verifier output b = 1 on input
(B, sl, R,σ,m) while not having won the lottery for parameters (B, sl, R). The underlying
SoK σSoK must be a convincing SoK on m such that SoK.verify((B, sl, R),σSoK,m) = 1.
Thus, the adversary has successfully created a SoK signature where the verification
algorithm accepts but without the adversary knowing a witness. This breaks existential
unforgeability of the SoK scheme contradicting our assumption.1

Theorem 7.6 (AfP Privacy). Assume E , lottery and SoK scheme as in 7.5. The construction
in Fig. 7.2 has AfP privacy as in Definition 6.6.

Proof (Sketch). We construct a simulator S for the game GameID-PRIV
Γ,A,Z,U ,E as follows. When S

gets a request for given tuple (B, sl, R,m) it forwards the request to the simulator for the
SoK scheme. The SoK simulator can forge a signature and, in particular, it can simulate an
SoK on m without knowing the lottery winning secret key. Then, S obtains the response
of the SoK simulator forwards it to the adversary. We claim that any adversary who can
successfully distinguish between interacting with the simulator S and the oracle OAfP in
GameID-PRIV

Γ,A,Z,U ,E breaks the simulatability of the SoK scheme.

7.7 Other Security Proofs

7.7.1 Correctness and Security of HEPVSS

Lemma 7.1 (Correctness of HEPVSS). If E is correct then construction HEPVSS satisfies
correctness.

Proof. Recall correctness means in this case that if keys (pki , ski ) have been created hon-
estly with HEPVSS.KeyGen, a secret S ∈ G has been distributed according to HEPVSS.Dist
resulting in encrypted shares Ci and a proof PfSh, these shares Ci have been correctly
decrypted resulting in A′i and proofs PfDeci , and a secret S ′ is reconstructed from these
A′i , then the verification of PfSh and the PfDeci accept and S ′ = S .

Note that by definition of GShamir, the dealer creates Ai = S +m(αi ) ·G for a polynomial
m(X ) of degree at most t with m(α0) = 0 and Ci = E .Enc(Ai , ρi ). PfSh asserts precisely
this. Clearly f as defined in the proof is a linear map and ΠNI−Pre is correct, so PfSh

will be accepted. By correctness of E , the decrypted A′i will equal Ai . By correctness of

1In fact, forging a signature in the EUF-CMA game of SoK reduces to either breaking the corresponding
simulatability or the extractability of the SoK scheme (see [CL06])
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E .ProveDec the proofs PfDeci are accepted. By definition of the reconstruction in GShamir
outputs S when applied to any subset Ai , i ∈ T where T is of size t + 1.

Theorem 7.7 (IND-1 Secrecy). If E is IND-CPA then construction HEPVSS for a PVSS satisfies
indistinguishability of secrets

Proof. Let A be an adversary that can win the IND-1 Secrecy Game for HEPVSS with
non-negligible advantage ε. Note that as a dealer secret key is not needed to perform
HEPVSS.Dist, we do not need to consider the DIST oracle. We construct an adversary B
that uses toA to break (n−t)-multi-key IND-CPA security, which is equivalent to IND-CPA
security (see Section 5.8).

Firstly, B passes the keys pki , i ∈ [n − t] to A and observes its constructed pki , i ∈
[n − t + 1, n]. Then B chooses random polynomials m(0), and m(1) of degree at most t
under the restriction that m(0)(αi ) = m(1)(αi ) for i in [n − t + 1, n]. 2

B sets S0 = m(0)(α0) ·G , S1 = m(1)(α0) ·G , A(0)
i = m(αi ) ·G , A(1)

i = m(α′i ) ·G for i ∈ [n] and
sends message vectors m(j) = (A

(j)
1 ,A

(j)
2 , ... ,A

(j)
n−t) for j ∈ {0, 1} to the IND-CPA challenger,

and receives (C1, ...,Cn−t) in return where Ci = Encpki (A
(b)
i ).

Now B computes Ci = Enc(m(0)(αi ) · G ) for i ∈ [n − t + 1, n] and note that for these
values of i , m(0)(αi ) = m(1)(αi ) so Ci = Enc(m(1)(αi ) · G ) too. Finally given Ci , i ∈ [n], B
constructs a simulated proof PfSh

∗. Now B sends Ci , i = 1, ... , n, and PfSh
∗ to A as well

as the candidate secret S0. B then outputs the same guess as A.

It is clear thatA receives from B encrypted shares of S0 (if the challenger’s bit is b = 0) or
S1 (if b = 1) distributed identically as in the protocol: indeed the ciphertexts C1, ... ,Cn−t
are the encryptions of either the set {A(0)

i }i∈[n−t] or {A(1)
i }i∈[n−t] of the first n− t shares

constructed by B for the secrets, and the last t ciphertexts created by B are encryptions
of A(0)

i = A
(1)
i , i ∈ [n − t + 1, n]. Finally PfSh

∗ is computationally indistinguishable from a
real proof of correct sharing by the zero knowledge property of the proof. Therefore the
guessing advantage of B for the multi-key IND-CPA game is the same as that of A.

Lemma 7.2 (Verifiability of HEPVSS). Construction HEPVSS for a publicly verifiable secret
sharing scheme satisfies verifiability.

Proof. Verifiability of Key Generation. Our construction clearly satisfies verifiability of
key generation because public keys simply consist of one group element, and so it is
easy to verify public keys are correctly formed.

Verifiability of Distribution. Our construction satisfies verifiability of distribution because
if HEPVSS.Verify(pp, {(pki ,Ci ) : i ∈ [n]}, PfSh) = 1 then PfSh is a valid proof of witness
w = (S ,m(X ), ρ1, ... , ρn) such that m(α0) = 0, for all i ∈ [n] Ci = E .Encpki (S+m(αi )·G , ρi )

2Which can be done by choosing first m(0)(X ) and then taking m(1)(X ) = m(0)(X ) + γ ·
∏n

i=n−t+1(X − αi )
for uniformly random γ.
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and m has degree ≤ t . Therefore, clearly HEPVSS.Dist on input pp, {pki : i ∈ [n]},S and
with randomness m(X ), ρ1, ... , ρn will output {Ci : i ∈ [n]}.

Verifiability of Decryption. Our construction clearly satisfies verifiability of decryption
because if

HEPVSS.VerifyDec(pp, pk,A,C , PfDec) = 1

then PfDec is a valid proof of witness sk such that A = Decsk(C ) and sk is the secret key
corresponding to pk. Therefore, DecShare(pp, pk, sk,C ) = (A, ·) for any randomness input
to this algorithm.

7.7.2 Correctness and Security of DHPVSS

Lemma 7.3 (Correctness of DHPVSS). Our construction DHPVSS for a publicly verifiable
secret sharing scheme satisfies correctness.

Proof. Consider a set of encrypted shares {Ci : i ∈ [n]} and a proof PfSh output
by DHPVSS.Dist with respect to parameters pp = (G,G , p, {αi , vi : i ∈ [n]}) output
by DHPVSS.Setup, a secret S ∈ G, a public and secret key (pkD , skD) generated by
DHPVSS.DKeyGen, and a set of public keys {pki : i ∈ [n]} = {(Ei = ski · G , Ωi ) : i ∈ [n]}
generated by DHPVSS.KeyGen with respect to {idi : i ∈ [n]}.

Clearly for all i ∈ [n], VerifyKey(pp, idi , pki ) = 1, as because of the correctness of the
proofs of discrete logarithms, Ωi will be valid.

For all i ∈ [n], DecShare(pp, pkD , pki , ski ,Ci ) outputs Ai = Ci − ski · pkD and PfDeci . Then,
by definition of correctness, DHPVSS is correct if

DHPVSS.Verify(pp, pkD , {(pki ,Ci ) : i ∈ [n]}, PfSh) = 1,

for all i ∈ [n]
VerifyDec(pp, pkD , pki ,Ci ,Ai , PfDeci ) = 1,

and finally DHPVSS.Rec outputs the secret S .

Consider the proof PfSh where

V =
n∑

i=1

vi f
∗(αi ) · Ci , U =

n∑
i=1

vi f
∗(αi ) · Ei ,

where f ∗ = H(pkD , {(pki ,Ci ) : i ∈ [n]}) and ∀i ∈ [n]

vi =
∏

j∈[n]\{i}

(αi − αj)
−1.

By assumption, the proofs of discrete logarithm equality are correct. As Ci = skD ·Ei +Ai

where Ai = S + m(αi ) · G for polynomial m of degree ≤ t such that m(α0) = 0, then

V =
n∑

i=1

vi f
∗(αi ) · Ci = skD

n∑
i=1

vi f
∗(αi ) · Ei +

n∑
i=1

vi f
∗(αi ) · (S + m(αi ) · G )
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= skD · U +
n∑

i=1

vi f
∗(αi )(S + m(αi ) · G ).

As m is a polynomial of degree t such that m(α0) = 0 and due to Theorem 5.1, V = skD ·U .
As pkD = skD · G , then the proof PfSh will be valid. Therefore, algorithm DHPVSS.Verify
returns 1.

We consider now PfDeci . By assumption, the proofs of discrete logarithm equality are
correct. Because Ci − Ai = ski · pkD and Ei = ski · G , then the proof PfDeci will be valid.
Therefore, ∀i ∈ [n] algorithm DHPVSS.VerifyDec returns 1.

Finally, clearly DHPVSS.Rec will output GShamir.Rec(pp, {Ai : i ∈ T }) which in turn
equals S since Ai are all correct.

Lemma 7.4 (IND-1 Secrecy of DHPVSS). Our construction DHPVSS for a publicly verifi-
able secret sharing scheme satisfies indistinguishability of secrets if the DDH assumption
holds.

Proof. Suppose there is an adversary A such that

Pr
[
Gameind-secrecy,0

A,PVSS (λ) = 1
]
− Pr

[
Gameind-secrecy,1

A,PVSS (λ) = 1
]

= ε,

where ε is non-negligible, then we can construct B that distinguishes DDH tuples with
non-negligible probability. We give the detailed description of B in Algorithm 17, and
then explain how B works.

We now explain why, when a DDH tuple is input to B, the view ofA, when j = 1 and b̃ = 1,
is as in the real experiment when b = 1 and the view of A, when j = n − t and b̃ = 0, is
as in the real experiment when b = 0. Note that b̃ and j are the values randomly chosen
by B.

G and pkD are set to be X1,X2 respectively and so are distributed correctly. All Ei for
i ∈ [n − t] are chosen identically to the experiment,except for Ej which is X3 a random
element of G and so distributed correctly. We can simulate the proof Ωj due to the zero
knowledge property of the proof of discrete logarithms. When computing the encrypted
shares, although the secret key skD is not known to B, we can instead use ski such that
ski · G = Ei for all i ∈ [n]. We have that skD · Ei = ski · pkD . In the case of corrupted
parties, although we do not know these ski values, we can extract them from the proofs
of knowledge Ωi . In the case of the jth honest party, although again we do not know
skj , as a DDH tuple is input, then X4 = skD · Ej where skD · G = pkD . The proof PfSh can
be simulated without knowledge of skD , due to the zero knowledge property. The oracle
DIST can be simulated without knowledge of skD in the same way. The ski values that
were extracted from the public keys Ei can be used to generate {C ′i : i ∈ [n]}. The proof
PfSh can again be simulated.

For all corrupted parties, it does not matter whether the polynomial f or f ′ is used to
generate their encrypted share, because they have the same outputs on input αi where
i ∈ [n − t + 1, n]. When j = 1, and b̃ = 1, the polynomial f ′ is used to generate all of
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Algorithm 17: B

1: procedure DIST((U , S ′))
2:
3: if U * [n + 1, k] or |U| 6= n then return ⊥
4: end if
5: Let {(αi , vi ) : i ∈ U} be the set {(αi , vi ) : i ∈ [n]}
6: ({A′i}i∈[n],m

′(X ))← GShamir.Share((G,G , p, t, n, {αi : i ∈ U}),S ′)
7: ∀i ∈ U C ′i ← ski · pkD + A′i
8: f ∗ ← H(pkD , {(pki ,C

′
i ) : i ∈ U})

9: V ←
∑

i∈U vi f
∗(αi ) · C ′i

10: U ←
∑

i∈U vi f
∗(αi ) · Ei

11: Simulate proof PfSh for G , pkD ,U,V
12: return ({C ′i : i ∈ [n]}, PfSh)
13: end procedure

14: procedure B(G, p,X1,X2,X3,X4)
15: b̃←$ {0, 1}, j ←$ [1, n − t]
16: G ← X1, x0, x1←$Zp,S0 ← x0 · G , S1 ← x1 · G
17: Choose pairwise distinct α1 ∈ Zp, · · ·αn ∈ Zp

18: ∀i ∈ [n] vi ←
∏

j∈[n]\{i}(αi − αj)
−1

19: Randomly sample degree t polynomials f , f ′ ∈ Zp[X ] with f (0) = x0, f ′(0) = x1,
and f (αi ) = f ′(αi ) for i ∈ [n − t + 1, n]

20: pp ← (G,G , p, {(αi , vi ) : i ∈ [n]}); pkD ← X2

21: Ej ← X3; simulate the proof Ωj for G , Ej , j ; pkj ← (Ej , Ωj)
22: ∀i ∈ [n − t]\{j} ski ←$Zp,Ei ← ski · G , Ωi ← DL(ski ;G ,Ei , i); pki ← (Ei , Ωi )
23: (({pki = (Ei , Ωi ) : i ∈ [n − t + 1, k]})← A(pp, pkD , {pki : i ∈ [n − t]})
24: ∀i ∈ [n − t + 1, k] extract ski from Ωi

25: ∀i ∈ [1, j − 1] Ci ← ski · pkD + f (αi ) · G
26: ∀i ∈ [j + 1, n − t] Ci ← ski · pkD + f ′(αi ) · G
27: ∀i ∈ [n − t + 1, n] Ci ← ski · pkD + f (αi ) · G
28:
29: if b̃ = 0 then Cj ← X4 + f (αj) · G
30: end if
31:
32: if b̃ = 1 then Cj ← X4 + f ′(αj) · G
33: end if
34: f ∗ ← H(pkD , {(pki ,Ci ) : i ∈ [n]})
35: V ←

∑n
i=1 vi f

∗(αi ) · Ci ,U ←
∑n

i=1 vi f
∗(αi ) · Ei

36: Simulate proof PfSh for G , pkD ,U,V
37: b′ ← ADIST(S0, {Ci : i ∈ [n]}, PfSh)
38:
39: if b′ = b̃ then return 1
40: else return 0
41: end if
42: end procedure
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the encrypted shares for the honest parties. Therefore, the adversary is input S0 and
a correctly distributed sharing for S1 and so the view is identically distributed to when
b = 1. When j = n−t and b̃ = 0, the polynomial f is used to generate all of the encrypted
shares for the honest parties. The adversary is input S0 and a correctly distributed sharing
for S0 and so the view to A is identically distributed to when b = 0.

Let Wj ,d be respectively the event that A outputs d when j is chosen at the beginning
and a DDH tuple is input to B. Where ε is the advantage of A defined above which is
non–negligible, we have that

|Pr
[
Wn−t,1|b̃ = 0

]
− Pr

[
W1,1|b̃ = 1

]
| = ε.

Note that for j∗ = 1, ... , n − t − 1, the view of the adversary when j = j∗ + 1 and b̃ =
1 and the view of the adversary when j = j∗ and b̃ = 0 is identically distributed so
Pr
[
Wj∗+1,1|b̃ = 1

]
= Pr

[
Wj∗,1|b̃ = 0)

]
. Then

|Pr
[
Wn−t,1|b̃ = 0

]
− Pr

[
W1,1|b̃ = 1

]
| =∣∣∣∣∣∣

n−t∑
j=1

(
Pr
[
Wj ,1|b̃ = 0

]
− Pr

[
Wj ,1|b̃ = 1

])∣∣∣∣∣∣ .

When a DDH tuple is input to B, the probability B outputs 1 is∑n−t
j=1 1/2 Pr

[
Wj ,1|b̃ = 1

]
+ 1/2(1− Pr

[
Wj ,1|b̃ = 0

]
)

n − t

= 1/2 +

∑n−t
j=1 Pr

[
Wj ,1|b̃ = 1

]
− Pr

[
Wj ,1|b̃ = 0

]
)

2(n − t)
.

Now consider the probability that B outputs 1 when a random tuple was input to B.
Because X4 is now a uniform and independent variable, all inputs to B are independant
of b̃. Therefore, B outputs 1 with probability 1/2.

As |
∑n−t

j=1 Pr[Wj ,1|b̃=1]−Pr[Wj ,1|b̃=0])
2(n−t) | = ε

2(n−t) , which is non-negligible, then B has a non-
negligible advantage in distinguishing DDH tuples.

Lemma 7.5 (Verifiability). Our construction DHPVSS for a publicly verifiable secret shar-
ing scheme satisfies verifiability if the hash function H is a random oracle.

Proof. Verifiability of Key Generation. Our construction clearly satisfies verifiability of
key generation because if VerifyKey(pp, id , pk = (E , Ω)) = 1 then Ω is a valid proof of
knowledge of the discrete logarithm for E . Therefore, sk such that E = sk · G can be
extracted from Ω.
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Verifiability of Distribution. Our construction satisfies verifiability of distribution because
if

Verify(pp, pkD , {(pki = (Ei , Ωi ),Ci ) : i ∈ [n]}, PfSh) = 1

then PfSh is a valid proof for the fact that the discrete logarithm of pkD with respect to
G , is the same as that of V with respect to U , where

V =
n∑

i=1

vim
∗(αi ) · Ci , U =

n∑
i=1

vim
∗(αi ) · Ei

and
m∗ = H(pkD , {(pki ,Ci ) : i ∈ [n]}), vi =

∏
j∈[n]\{i}

(αi − αj)
−1 ∀i ∈ [n].

Therefore, skD such that pkD = skD · G and V = skD · U can be extracted from PfSh. As
V = skD · U , then

n∑
i=1

vi ·m∗(αi ) · (Ci − skD · Ei ) = 0.

Let Φ denote the event

(C1 − skD · E1, · · · ,Cn − skD · En) 6= (f (α1) · G , · · · , f (αn) · G )

for every polynomial f of degree ≤ t . Say r queries were made to the random oracle by
the adversary. For event Φ to have occurred, some pkD , {(pki ,Ci ) : i ∈ [n]}) was submit-
ted to the random oracle and some polynomial m∗ of degree ≤ n − t − 1 was returned
such that

∑n
i=1 vim

∗(αi ) · (Ci − skD · Ei ) = 0. As E1, · · ·En are included in the input to the
hash function and skD is defined by the input to the hash function, the probability of
this is at most r/p, due to Theorem 5.1. Now assume Φ did not happen. Then there has
to be a polymonial f satisfying the conditions above. Then, letting S = f (α0) · G , and
({Ci : i ∈ [n]}, ·) = DHPVSS.Dist(pp, pkD , skD , {pki : i ∈ [n]},S) where the randomness
r is the one that makes GShamir.Share select polynomial m(X ) = f (X ) − S 3. Therefore,
clearly a correctly formed skD , S and randomness for Dist exist.

Verifiability of Decryption. Our construction clearly satisfies verifiability of decryption
because if VerifyDec(pp, pkD , pk = (E , Ω),C ,A′, PfDec) = 1 then PfDec is a valid proof of
knowledge of discrete logarithm equality for G ,E , pkD ,C − A′. Therefore, sk such that
E = sk·G and C−A′ = sk·pkD can be extracted from PfDec. Therefore A′ = C−sk·pkD , and
so DecShare(pp, pkD , pk, sk,C ) = (A′, ·) for any randomness input to this algorithm.

7.8 Communication Complexity of PVSS

First note that any ΠNI−Pre communicates an element inW and one in Zp .

3recall that GShamir.Share constructs the shares as Ai = S +m(αi )G for m of degree ≤ t with m(α0) = 0;
the above selection of m satisfies the conditions and yields Ai = f (αi )
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Communication Complexity of HEPVSS. The communication of the algorithm
HEPVSS.Dist consists of n ciphertexts in C (the encryptions if the shares) and a proof
PfSh, which is a ΠNI−Pre proof whereW = G× Zp[X ]≤t ×Rn. When El Gamal encryption
is used as E , since R = Zp , C = G2 this amounts to a total of (n + t + 2) elements of Zp

and 2n + 1 in G which is roughly 4 equivalent to a total of (3n + t + 3) log p bits.

On the other hand HEPVSS.DecShare communicates a decrypted message in G and the
proof PfDec where W = SK. In the case where we use El Gamal, the latter is 1 element
in G5 and a challenge in Zp . Hence the communication is roughly 3 log p bits.

Communication Complexity of DHPVSS. DHPVSS.Dist has smaller ciphertexts (1 group
element each) and a smaller proof PfSh consisting only of 2 elements in Zp . Hence
the communication is in total roughly (n + 2) log p bits, which is 3 ∼ 3.5× less than
HEPVSS.Dist (depending on t).

We remark that this is quite close to the minimum possible, at least if one uses an
information-theoretical secret sharing scheme, where the public communication is made
through encryption of the shares, as we do. Indeed, well known bounds imply that, in
this case, the total joint size of the shares must be n times the secret, therefore n log p
bits in our situation.

The communication of DHPVSS.DecShare is as in HEPVSS.DecShare, hence it communi-
cates 3 log p bits.

Comparison with SCRAPE and ALBATROSS. In SCRAPE and ALBATROSS, the encrypted
shares of a secret S = m(α0)G are given by Ci = m(αi )pki (where again pki = skiG ).
SCRAPE requires the dealer to commit to m(αi ) in a common base H by publishing
Mi = m(αi )H (n additional group elements), so that the SCRAPE trick can be used on the
Mi ’s. Moreover the dealer needs to post non-interactive DLEQ(m(αi ), pki ,Ci ,H,Mi ) for
all i , which amounts to n+1 new Zp-elements. In total this means (3n+1) log p bits for the
whole distribution. Instead ALBATROSS uses a standard homomorphic preimage proof of
knowledge of the m(X ) underlying Ci . That is the dealer posts ΠNI−Pre(m(X ), {Ci}i=1,n, f )
with f (m(X )) = m(αi ) · pki . This requires t + 2 Zp-elements, and so the communication
complexity of the distribution phase is of (n + t + 2) log p bits. Therefore, our DHPVSS
scheme is the most communication e�cient of all these alternatives.

Communication Complexity of Resharing. Resharing a secret among a committee of nr+1

parties requires, per party that is resharing their share, (3nr+1 + tr+1 + 3) log p bits, i.e.
the same communication as to execute HEPVSS.Dist among the same set of parties. This
means that we need a total communication of (tr + 1)(3nr+1 + tr+1 + 3) log p bits in order
for Cr to reshare a secret to Cr+1.

4In practice, describing an element of an elliptic-curve group of order p requires slightly more information
5While it is true that, in order to force linearity of decryption, we have artificially set sk∗ = (1, sk), and hence

the keys are technically in G2, it is very easy to see that one only needs to send information related to
the second coordinate.
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The same happens with DHPVSS: the communication complexity per party who is re-
sharing is (nr+1 + 2) log p bits, which is the same as for distributing a share in the first
place. This means Cr needs to communicate in total tr(nr+1 + 2) log p bits to reshare a
secret to Cr+1.

7.9 Zero Knowledge Proofs of Membership to an Anonymous
Committee

When encryption towards a committeeR is used as part of a protocol, identities Pi such
that ψ(i) ∈ R will typically need to act upon having received an encrypted message. This
will reveal the fact that they are a receiver.

In this section we present strategies that allow Pi to prove that it belongs to the receiver
set, ψ(i) ∈ R, without revealing anything else about ψ(i).

At first, it could appear that having Pi prove knowledge of a message received by R
is enough, but note this is not the case when there are collusions between corrupted
parties in R and others outside. In general, we want to avoid that a set of t colluding
parties of which only t ′ < t belong toR can claim that t ′+ 1 or more of them are inR.

We present two solutions for the problem above. The first solution (Section 7.9.1) is generic
but less e�cient: each party inR signs a message using a linkable ring signature [LWW04].
Ring signatures [RST01] guarantee that the signer belongs to a given set of parties without
revealing their identity within that set. Linkability ensures that, despite this anonymity,
two signatures using the same key can be linked. This means colluding parties cannot
use the same secret key to claim that both belong to R, when only one of them does.

However, linkable rings signatures become larger as the size of the committee grows. In
Section 7.9.2, we present an optimized solution where we leverage the fact that, in our
situation, there is already a sender broadcasting ciphertexts, and we can use this party
to send auxiliary information that allows to reduce the amount of communication by
each receiver to be constant-size (while the information sent by the sender is still linear
in the size of the receiver committee). Our solution is based on a linkable version of
Camenisch-Lysyanskaya signatures.

7.9.1 Generic Proofs of Membership based on Linkable Ring Signatures

Ring signatures, also called sometimes Spontaneous Anonymous Group signatures, are
signature schemes in which each member of a universe of parties has a secret key, and
can use that key to sign a message on behalf of any subset of that universe to which it
belongs, in such a way that the signature does not reveal which of the parties in that
subset has signed.

Ring signatures can be constructed as non-interactive zero knowledge proofs of knowl-
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edge of a secret key corresponding to a set of public keys (which is in turn an OR state-
ment), via a Fiat-Shamir transformation where the message is included as an argument
to the random oracle. In fact it is this proof of knowledge what we really need in our
problem, but we present the solution in terms of ring signatures because the notion of
linkability is commonly used in this context. A linkable ring signature is one that guar-
antees that if two signatures (even of di�erent messages) for the same set of users are
produced using the same secret key, this fact is detected, even though the identity of the
signer is kept anonymous.

Definition 7.6 (Linkable Ring Signature). A Linkable Ring Signature scheme for a set [n]
is given by the following tuple of algorithms:

• KeyGen(n, 1λ): Outputs n key pairs (pki , ski )i∈[n].

• LinkSig(ski ,m,R): Takes a secret key, a message m, and a set R ⊆ [n], outputs a
signature σ.

• LinkVer({pki}i∈R,m,σ,R): Takes a set R ⊆ [n], a set of associated public keys pki ,
i ∈ R, a message m and a signature σ and outputs accept or reject.

• Link((m,σ,R), (m′,σ′,R′)): Takes two tuples consisting of a message, a signature
and a subset of [n] and outputs a bit b (meant to represent whether these two
signatures have been created with the same secret key).

In addition, these algorithm must satisfy the following properties: for all messages
m,m0,m1, all sets R,R0,R1 ⊆ [n], all (pki , ski )i∈[n] output by KeyGen(n, 1λ) and any
sk, sk(0), sk(1) ∈ (ski )i∈[n]

Pr[LinkVer({pki}i∈R,m,σ,R) = accept)| σ = LinkSig(ski ,m,R) ∧ i ∈ R] = 1

Pr[Link((m0,σ0,R0), (m1,σ1,R1)) = 1| σb = LinkSig(sk,mb,Rb), b ∈ {0, 1}] = 1

Pr[Link((m0,σ0,R0), (m1,σ1,R1)) = 1| σb = LinkSig(sk(b),mb,Rb), b ∈ {0, 1}

∧ sk(0) 6= sk(1)] = 0

The first equation ensures that a signature σ of a message m is always accepted by a
verifier that takes as additional input a set R and the public keys corresponding to that
set, if the signature has been created with a secret key belonging to R. The second and
third equations guarantee that two signatures of two possibly di�erent messages (and
with respect to possibly di�erent sets) will be linked if and only if they have been created
with the same key.

Typically several security properties are required from linkable ring signatures, which we
describe informally. These are based on the model in [BDH+19].

• Linkability This requirement ensures that signatures from the same secret key will
always be linked. In the security game, the adversary must output k public keys for
corrupted parties, and k + 1 valid signatures, each on a message and a ring. They

119



Chapter 7 YOLO YOSO [CDGK22]

win if all rings are subsets of the set of the k corrupted public keys, and none of the
signatures are linked. The requirement is that the adversary wins with negligible
probability

• Linkable Anonymity While linkable ring signatures are publicly linkable, a signature
still should not be able to be traced to the signer’s public key. In the game, the
adversary is given access to an oracle to create honest users and receive their
public keys. The adversary returns two honest users (their challenged users), as
well as a set of the adversary’s own corrupted public keys. They are then given
access to an oracle, where they can submit a challenged user, a message and a ring
that must contain the public keys of both challenged users. The challenger returns
a signature signed with the secret key of one of the users and the adversary must
guess the signer correctly to win. The adversary must have negligible advantage in
guessing correctly.

• Non–Frameability This requirement ensures that an adversary cannot frame an
honest user by forging a signature which links to this user’s signature. In the game
we give the adversary access to oracles to create honest users, obtain their signa-
tures and corrupt them. The adversary must output a valid signature that was not
output by the signing oracle. They then must output another valid signature that
was output by the signing oracle for an honest user that has not been corrupted.
For the adversary to win, the two signatures must be valid and linked. This should
happen with negligible probability.

Note that linkability implies the usual existential unforgeability security property, in the
sense that, if the adversary knows no secret key skj , j ∈ R (i.e. |C ∩ R| = 0) then the
adversary cannot create a valid signature for R.

Linkable ring signatures almost automatically gives a solution to our problem. Each party
includes a public key pkLinkSig,i for a linkable signature in the public key to be shu�ed. To
prove membership to R, Pi signs a message with pkLinkSig,i and publishes the message
and signature. This signature can be verified by any public verifier. The security properties
of the linkable signature guarantee both that the proof only reveals membership to R
but nothing else, and that if two identities use the same secret key to claim membership
to R, this is detected by any public verifier.

One (easily fixable) caveat is that the properties above do not prevent replay attacks,
where an adversary attempts to copy an honest party’s signature and claim it as theirs,
or at least invalidate the honest party’s signature. We fix this by including the public
identity of the signer as a part of the message signed. We describe the construction in
Fig. 7.9.
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Proof of membership to an anonymous committee

Set-up:
A list of anonymized public keys {(j , pkAnon,j) : j ∈ [n]} where pkAnon,j contains a public key
pkLinkSig,j for a linkable signature scheme.
For the sake of notation simplicity, let pkj := pkLinkSig,j , skj := skLinkSig,j in this Figure.
Moreover, given R ⊆ [n], let PKR = {pkj : j ∈ R}.

Proof:
Input: A subset R ⊆ [n], a session identifier ssid, the key skj known to Pi .

1. Set m = H(Pi ||ssid) and output σ = LinkSig(pkj ,m,R).

Verification:
Input: Public verifier has input R,PKR, ssid, and a list of pairs (Pi ,σi ), i ∈ I for a subset
I ⊆ P .

1. Let mi = H(Pi ||ssid) for i ∈ I

2. Compute the set I ′ ⊆ I of all i in I such that LinkVer(PKR,mi ,σi ,R) = accept.

3. For all i1, i2 ∈ I ′, i1 6= i2, if Link((mi1 ,σi1 ,R), (mi2 ,σi2 ,R)) = 1 then remove i1, i2 from
I ′. Continue until there are no such index pairs.

4. Output the remaining set I ′ as the set of accepted membership claims.

Figure 7.9: Proof of membership verification

We require that if a set I of users have all generated proofs of membership to an anony-
mous committee honestly, then verification will pass. This is clearly true, due to the
correctness of linkable ring signatures. We require three security requirements for our
proof of membership to an anonymous committee:

• Unforgeability This requirement ensures that proofs of membership from the same
party in an anonymous committee can be linked. In the game, the adversary has
corrupted t parties in a anonymous committee R of size R . They can see proofs
of membership from honest parties and must output t + 1 proofs of memberships
on the corrupted identities, i.e. for IDi such that i has been corrupted. They win if
these proofs of memberships pass verification.

Clearly this is true for our construction in Fig. 7.9, due to the linkability requirement
for linkable ring signatures. We now provide a proof sketch. We show that given
an adversary that can win in the unforgeability game for proofs of membership
to an anonymous committee, we can win in the linkability game for linkable ring
signatures. The adversary in our unforgeability game provides us with t public
keys corresponding to corrupted users and we generate ourselves R − t secret/
public keypairs corresponding to honest users. We can then honestly generate R−t
proofs of membership on behalf of honest users to provide to the adversary. They
return t + 1 proofs of membership on behalf of corrupted users. In the linkability
game we output all R public keys of all honest and corrupted members of the
anonymous committee, and all R+1 proofs of memberships on behalf of corrupted
and honest members of the anonymous committee. As all proofs of membership
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pass verification, we have output R + 1 valid ring signatures that are all unlinked.
Therefore, we have broken the linkability of linkable ring signatures.

• Anonymity Although a proof of membership of an anonymous committee reveals
that the prover is a member of R, we need to ensure that it does not reveal which
member of R . In the game, the adversary chooses two honest users in R and has
corrupted all other users. They then receive a proof of membership on behalf of
one of the honest users, and must guess which user correctly to win.

Clearly this is true for our construction in Fig. 7.9, due to the linkable anonymity
requirement for linkable ring signatures. We now provide a proof sketch. We show
that given an adversary that can win in the anonymity game for proofs of mem-
bership to an anonymous committee, we can win in the linkable anonymity game
for linkable ring signatures. We first of all create two honest users in the linkable
anonymity game. We can set the public keys of the two honest users, chosen by the
adversary in the anonymity game for proofs of membership, to be these two public
keys. We then submit to the challenge oracle one of these honest users, along with
a ring containing all public keys in the anonymous committee and a message set to
be H(ID, ssid). We return the resulting ring signature as our proof of membership
in the anonymity game, and finally return the resulting bit b output by the adver-
sary. If the adversary wins in the anonymity game, we clearly win in the linkable
anonymity game, which is a contradiction.

• Non–Frameability This requirement ensures that an adversary cannot frame an
honest user by forging a proof of membership which links to this user’s proof of
membership, therefore implying unfairly that they cheated. In the game, we give
the adversary access to the public keys of honest users, and oracles to obtain their
proofs of membership. The adversary must output a proof of membership that was
not output by the oracle. They then must output another proof of membership
that was output by the signing oracle for an honest user. For the adversary to win,
the two signatures must not pass verification together, but should pass verification
individually.

Clearly this is true for our construction in Fig. 7.9, due to the non–frameability re-
quirement for linkable ring signatures. We now provide a proof sketch. We show
that given an adversary that can win in the non–frameability game for proofs of
membership to an anonymous committee, we can win in the non–frameability game
for linkable ring signatures. We will provide the adversary in the non–frameability
game for proofs of membership with the public keys of honest users, using the cor-
responding oracle in the non–frameability game for linkable ring signatures. When
the adversary in the non–frameability game for proofs of membership attempts to
obtain the proofs of memberships for honest users, we will use the signing oracle in
the non–frameability game for linkable ring signatures. The adversary in the non–
frameability game for proofs of membership will output two proofs of membership
that individually pass verification, but fail together: one output from the signing or-
acle for an honest user and one that was not output by the signing oracle. We can
then output these two proofs of membership in the linkable ring signature game.
They will both be valid and linked signatures, so we will win in the non-frameability
game for linkable ring signatures.
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7.9.2 E�cient Instantiation using Camenisch-Lysyanskaya Signatures

In this section, we propose a solution where the size of a membership proof is constant
(independent from the size of R). For this we leverage the fact that the sender can send
auxiliary information together with the ciphertexts. Our strategy is based on a “linkable
version” of a signature scheme by Camenisch-Lysyanskaya.

We focus on one version of the Camenisch-Lysyanskaya signatures which has been used
for anonymous credentials and where we want to construct a signature of a group ele-
ment sG ∈ G. A crucial feature of this proof is that it can be divided in two parts: the first
part uses the signing key and does not require knowledge of s and outputs σ; meanwhile,
the second part is a proof of knowledge of s and does not require to know the secret
signing key.

This means that the two parts of the proof can be carried out by two di�erent parties.
Moreover the signature has a second important property: if the owner of the signature
key has carried out the first part of the signing for di�erent siG , with outputs σi , then the
second part of the signature (the proof of knowledge) does not reveal which σi is being
completed.

Our strategy is then the following. The sender carries out the first part of the CL signature
of each of the public keys of the parties in R, thereby creating messages σi . Now, be-
cause of what we mentioned above, any receiver can prove the knowledge of the discrete
logarithm of one of these secret keys, without revealing which.

As before, this has the problem that, if a party IDi in R is colluding with other parties
outside the set, then they could all use the secret key known by IDi and claim to be
in R. In order to prevent that we turn the signature into a linkable one by including
another generator H in the common reference string, and having each receiver publish
Ij = skAnon,jH . We extend the proof of knowledge of skAnon,j into one that ensures skAnon,j

is the same as the discrete log of Ij in base H . Since Ij is deterministically computed from
H and skAnon,j , a verifier can easily check if two parties have claimed the same key.

Camenisch-Lysyanskaya Signatures

The precise signature we will use is the one called Signature A in [CL04], but with the
di�erence that while that paper assumed a type I bilinear pairing (which would not allow
for using the DDH assumption), we will replace it by a Type III bilinear pairing as has been
done in other works such as [CDL16,GNQT20].

We recall this signature scheme: Let G1,G2 (with additive notation) and GT (with mul-
tiplicative notation) be groups of prime order p. Let G1 be generated by G1 and G2 be
generated by G2. The signing secret key is of the form skCL = (x , y) ∈ Z2

p and the public
key pkCL = (X ,Y ) = (xG2, yG2) in G2

2.

The signature scheme can be used to either sign messages m ∈ Zp or M = mG1 ∈ G1.
We are interested in the latter case. As mentioned above, this case can be separated in
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two algorithms, where CL.Sig1 uses M and skCL but does not require knowledge of m,
and CL.Sig2 is applied to the output of CL.Sig1 and requires knowledge of m, but not of
the secret key. These protocols are defined in Fig. 7.10.

Camenisch-Lysyanskaya signature

Setup: Groups (G1, +), (G2, +), (GT , ·) of order p with generators G1,G2 for G1, G2 respec-
tively, bilinear pairing e : G1 ×G2 → GT . A random oracle H : {0, 1}∗ → Zp .
Parties and keys: A sender has a CL keypair (skCL = (x , y) ∈ Z2

p, pkCL = (X ,Y )) where
X = xG2, Y = yG2.
CL.Sig1

skCL
(M):

1: parse (x , y)← skCL

2: a←$Zp , A← aG1 ∈ G1

3: B ← yA, C ← xA + axyM

4: return σ1 ← (A,B,C ) .
Note that if we call M = mG ,
then C = xA + axyM = (x +
mxy)A.

CL.Sig2(m,σ1):
1: Parse σ1 as (A,B,C )
2: r , r ′←$Z∗p
3: Ã← r ′A, B̃ ← r ′B , Ĉ ← rr ′C
4: zA ← e(Ã,X ), zB ← e(B̃,X ), zC ← e(Ĉ ,G2)
5: ρ← r−1

6: W → Z2
p , X ← GT , ppπ ← (Zp,W,X ,H)

7: π ← ΠNI−Pre.Prove((ρ,m); ppπ, zA, f(zB ,zC ))

8: where f(zB ,zC )(ρ,m) = z−mB zρC . .
This proves knowledge of ρ and
m such that z−mB zρC = zA.

9: return σ2 ← (Ã, B̃, Ĉ ,π)

Ver2(PK,σ2):
1: Parse σ2 ← (Ã, B̃, Ĉ ,π)
2: Compute zA, zB , zC as in CL.Sig2 above.
3: return accept i� e(Ã,Y ) = e(B̃,G2) and ΠNI−Pre.Verify(ppπ, zA, f(zB ,zC )) accepts.

Figure 7.10: Camenisch-Lysyanskaya signature

A crucial point is that the verification step depends only on the output of CL.Sig2. More-
over, given (M1,σ1

1), ... , (Mn,σ1
n) where Mi = miG1 and σ1

i = CL.Sig1
(x ,y)(Mi ), the signa-

ture CL.Sig2(mi ,σ
1
i ) gives no information about i

This means that, once CL.Sig1 has been carried out on the messages Mi , the second step
of the signature can be seen as a ring signature scheme of sorts: if we interpret (mi ,Mi )
as a secret key/public key pair belonging to the i-th party in a given set of parties, as
it will be our case, then by executing CL.Sig2 on the output of CL.Sig1

(x ,y)(Mi ) the i-th
party is creating a signature (for an “empty” message) that guarantees this party belongs
to the set, without revealing their identitity.
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Adding linkability

To ensure linkability in the scenario we just described, namely that any verifier can detect
when CL.Sig2 has been applied twice on the same input, we do the following:

First, as part of the setup we fix H , a generator of group G1, as part of the set up. Then
CL.LinkSig2(m,σ1) works as follows:

Algorithm 18: CL.LinkSig2(m,σ1)

1: I ← mH
2: Compute (Ã, B̃, Ĉ ,π′) as in CL.Sig2(m,σ1) except now
3: π′ ← ΠNI−Pre((ρ,m); ppπ, (zA, I ), f ′(zB ,zC ,H)),
4: where f ′(zB ,zC ,H)(ρ,m) := (z−mB zρC ,mH).
5: and ppπ = (Zp,W,X ′,H) where X ′ = GT ×G1

6: return σ2 ← (Ã, B̃, Ĉ , I ,π′)

Now I depends deterministically on m and public information, and therefore a verifier
can detect if the same m is used twice, as it will yield the same I .

Final instantiation

Our final instantiation, described formally in Fig. 7.11 is as follows: The sender will en-
crypt the message with the El Gamal encryption scheme under the anonymous public
keys in R and include a proof of correctness of encryption. Moreover, the sender will
compute σ1

j = CL.Sig1
skCL

(pkAnon,j) for j ∈ R, where skCL is the secret key for the sender.
Finally, we observe that in the description of CL signatures above there is no guarantee
that σ1

j has been computed correctly until Ver2 is executed, so we need the sender to
additionally prove that σ1

j is indeed computed correctly from CL.Sig1(pkAnon,j). To claim
membership to R, and therefore ownership of some skAnon,j , a party can then compute
σ2 = CL.Sig2(skAnon,j ,σ

1
j ). As in the generic construction, to avoid replay attacks we add

the public identity of the prover in the argument of the Fiat-Shamir random oracle for
the proof of knowledge π.
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Encryption to an anonymous committee via CL signatures

Setup: Groups (G1, +), (G2, +), (GT , ·) of order p. Generators G1,H for G1, generator G2

for G2, bilinear pairing e : G1 ×G2 → GT .

Parties and keys: A sender has a CL keypair (skCL = (x , y) ∈ Z2
p, pkCL = (X ,Y )) where

X = xG2, Y = yG2.
In addition, there is a set P of potential receivers. In the setup phase, every party chooses
a keypair (sk, pk) where sk ∈ Zp , pk = skG1 ∈ G1 and then inputs it to a mix-net, resulting
in a public list {(j , pkAnon,j) : j ∈ [n]}.

EncAMC.Enc(M, skCL;R, (pkAnon,j)j∈R) where M ∈ G1,R ⊆ [n]:
1: ∀j ∈ R, rj ←$Zp

2: ∀j ∈ R, cj ← E .EncpkAnon,j
(M; rj)

3: πEC ← E .ProveEnc(M, (rj)j∈R; (cj)j∈R),
4: ∀j ∈ R, σ1

j ← CL.Sig1
skCL

(pkAnon,j) with randomness aj ∈ Zp

5: πCLSC ← CLSC.Prove(x , y , (aj)j∈R;X ,Y , (pkAnon,j)j∈R, (σ1
j )j∈R),

6: as in Fig. 7.12 below (this proves that σ1
j are correct CLSC signatures)

7: return ((cj ,σ
1
j )j∈R,πEC,πCLSC)

EncAMC.Ver((cj ,σ
1
j )j∈R,πEC,πCLSC):

1: return accept i�
2: both E .VerifyEnc((cj)j∈R,πEC) and CLSC.Verify((σ1

j )j∈R,πCLSC) accept.
EncAMC.Claim(skAnon,j ; (σ1

j )j∈R):

1: return σ2 ← CL.LinkSig2(skAnon,j ,σ
1
j )

EncAMC.ClaimVer({(σ2
i )i∈I}, pkCL):

1: Receive as input a set (σ2
i )i∈I of verification claims

2: For all i ∈ I , parse σ2
i = (Ãi , B̃i , Ĉi , Ii ,π

′
i ).

3: for each I ∈ GT such that there are more than one i ∈ I with Ii = I do
4: Let II the set of such i .
5: if there is exactly one i in II such that Ver2(pkCL,σ2

i ) accepts then
6: Accept this claim and reject all other claims from parties in II
7: else
8: Reject all membership claims from parties in II
9: end if

10: end for
11: for each I such that there is one i ∈ I with Ii = I do
12: Accept the claim if and only if Ver2(pkCL,σ2

i ) accepts
13: end for

Figure 7.11: Encryption to a committee with anonymous membership claim
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Proof of Camenisch-Lysyanskaya signature correctness

Proof for relation

RCLSC = {((x , y , (aj)j∈R); (X ,Y , (pkj)j∈R, (σ1
j )j∈R)) :

σ1
j = (aj · G1, aj · y · G1, aj · x · G1 + aj · x · y · pkAnon,j),

X = x · G1,
Y = y · G1}

CLSC.Prove(x , y , (aj)j∈R;X ,Y , (pkj)j∈R, (σ1
j )j∈R):

Let H : {0, 1}∗ → Zp random oracle.
1: for j in R do
2: parse σ1

j ← (σ1
j1,σ1

j2,σ1
j3).

3: bj ← ajy , cj ← ajx , dj ← ajxy . .
Introducing these new variables
“linearizes” the problem

4: end for
5: W ← Z4|R|

p , X ← G6|R|
1 , pp ← (Zp,W,X ,H)

6: return πCLSC ← ΠNI−Pre.Prove(w ; pp, x , f ) where
7: w = (aj , bj , cj , dj)j∈R
8: x = (σ1

j1,σ1
j2,σ1

j3,O,O,O)j∈R
9: f (w) := (ajG1, bjG1, cjG1 + djpkj , ajYD − bjG1, ajX − cjG1, cjY − djG1)j∈R

10: (Note that, for each j ∈ R, the first 3 conditions in f check the target statement us-
ing the introduced variables, while the three last ensure these variables are correctly
defined)

CLSC.Verify(X ,Y , (pkj)j∈R, (σ1
j )j∈R,πCLSC):

1: return ΠNI−Pre.Verify(x , f ,πCLSC) where x , f are defined from the σ1
j as above.

Figure 7.12: Proof of Camenisch-Lysyanskaya Signature Correctness CLSC

The correctness of the EncAMC scheme is satisifed, due to the correctness of the
Camenisch-Lysyanskaya signatures. Clearly the prooofs πEC and πCLSC guarantee that
the sender has behaved honestly. We again require three security requirements for our
proof of membership to an anonymous committee as defined previously:

• Unforgeability Clearly this is true for our construction in Fig. 7.11, due to the LRSW
assumption [LRSW99], which ensures the security of Camenisch-Lysyanskaya signa-
tures. We now provide a proof sketch. For an adversary to have output k + 1 proofs
of memberships that pass verification and that were not honestly generated, after
having corrupted t of the public keys, they must have returned t+1 signatures that
are valid according to Ver2, containing elements I1, · · · It+1 with for all (i , j) ∈ [t + 1]
Ii 6= Ij . Say ∃i ∈ [t + 1] such that Ii = skH , where sk is the secret key of an hon-
est user. Then we can build an adversary that can break the discrete logarithm, by
extracting sk due to the proof of knowledge property. Say ∃i ∈ [k + 1] such that
Ii = skH , where sk is not the secret key of any user (corrupt or honest). Then we
can build an adversary that can break the unforgeability of CL signatures, because
the adversary has forged a signature on a new message skG . Now it is not possible
for all I1, · · · , It+1 to be distinct, as there are only t corrupted users, and so we have
a contradiction.

• Anonymity Clearly this is true for our construction in Fig. 7.11, due to the DDH as-
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sumption. We now provide a proof sketch. We show that given an adversary that
can win in the anonymity game for proofs of membership to an anonymous com-
mittee, we can distinguish DDH tuples. We are input X1,X2,X3,X4 ∈ G4

1. In setup
we set G = X1, H = X2. We choose bit b←$ {0, 1} and set the public key of the
bth honest user to be X3. We then generate a proof of membership as follows. We
set I = X4, and choose Ã, B̃ , C̃ as normal based on the signature σ1 = (A,B,C )
of the bth honest user. We then simulate the attached proof, which is possible to
the zero knowledge property. If the adversary guesses correctly, we output 1, and
otherwise we output 0. If a DDH tuple is input, then the inputs to the adversary in
the proof of membership game are distributed correctly and we output 1 with the
same probability that the adversary is successful. If a DDH tuple is not input, then
the inputs to the adversary are independent of b, and we output 1 with probability
1/2.

• Non–Frameability Clearly this is true for our construction in Fig. 7.11, due to the
non–frameability requirement for linkable ring signatures. We now provide a proof
sketch. We show that given an adversary that can win in the non–frameability game
for proofs of membership to an anonymous committee, we can break the discrete
logarithm assumption. We are input X1,X2 ∈ G2

1. In setup we set G = X1, H = aG ,
where a←$Zp . When the adversary in the non–frameability game for proofs of
membership attempts to create an honest user, we will behave normally, except
for one honest user i∗ where we will set pk = X2. When the adversary queries
the oracle for proofs of memberships for this user i∗, we will set I = apk, which is
distributed correctly, generate Ã, B̃ and C̃ as normal for σ1 = (A,B,C ) and simulate
the proof, which is possible due to the zero knowledge property. The adversary in
the non–frameability game for proofs of membership will output two proofs of
membership that individually pass verification, but fail together: one generated
honestly by the oracle and one that was not output by the oracle. Assume that the
proof of membership output from the oracle, was that of the honest user i∗, which
occurs with probability 1/k , where k is the number of honest users. Then for both
signatures output I = aX2. We can then extract the discrete logarithm of I base H
from the attached proof, due to the proof of knowledge property, which will provide
the discrete logarithm of X2 base X1.
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8.1 Overview

The goal of this paper is to build a layered MPC protocol that takes inputs from a set of
clients in the input layer and securely delivers a function of the inputs to a set of output
clients in a later layer. For t < n/3, we present two layered protocols for general MPC
with t-security: a simple but ine�cient construction based on CNF secret sharing and a
more complex but e�cient construction based on Shamir secret sharing.

Owing to a highly restrictive communication pattern and the presence of a very powerful
adversary, implementing layered MPC with optimal corruption threshold presents several
interesting challenges. The most apparent is the complete prohibition of interaction, as
parties executing the protocol do not persist. We emulate a limited kind of interaction by
having a party who wants to speak a second time hide all possible messages it may want
to convey in a future layer and selectively reveal the appropriate message to the next
layer. In such cases, it is imperative to the security of the party that only the appropriate
message is revealed while the other messages are e�ectively destroyed. Interestingly,
realizing this limited form of interaction takes us a long way in implementing layered
MPC. This leads us to the first primitive we construct in this presentation:

Future Messaging. Future messaging allows a party (sender) to securely send a message
to another party (receiver) situated in a later layer. To send a message two layers down,
the sender can secret share the message onto the next layer using any t-secure secret
sharing scheme; parties in the next layer can then forward these shares to the receiver
who can recover the message by robust reconstruction of the received shares. We extend
this intuition to allow a sender to securely send a message to a designated receiver in
any future layer. This protocol is non-commiting; hence, a corrupt sender can choose the
message to deliver to the receiver based on the adversary’s view until the layer in which
the receiver is situated. E�ectively, future messaging allows rushing till the receiver’s
layer! Future messaging allows a sender to distribute a secret sharing of a value onto a
future layer; parties in this layer can disclose this value to a receiver (or broadcast it to
all parties) in the next layer based on a unanimous decision (potentially depending on
computation that was carried out in an intermediate layer). In this manner, we emulate
the aforementioned (limited) interaction by the sender.
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MPC using CNF Shares. Equipped with a protocol for future messaging, we set out to
build a layered protocol for verifiable secret sharing (VSS). We will then follow the stan-
dard approach for secure function evaluation, where a layered arithmetic circuit com-
puting the function is evaluated by progressively and securely computing secret shares
of the value on the output wire of each gate using the secret shares of the values on the
input wires, finally revealing the values on the output wires of the circuit to the output
clients.

Verifiable CNF secret sharing. To achieve verifiable CNF secret sharing, it su�ces to im-
plement a seemingly simpler primitive, namely future multicast, which allows a dealer
to securely send a message to a designated subset of receivers in a later output layer
with the guarantee that all receivers get the same message even if the sender is corrupt.
Verifiable CNF secret sharing is achieved by having the dealer split the secret into

(n
t

)
additive shares (a share rT for each n− t sized set T ⊂ [n]) and multicast rT to all output
clients in T .

While implementing multicast, we encounter many challenges inherent to layered MPC.
When realizing multicast, the sender sends the same message to a (sub)set of parties
in the next layer, who raise a complaint if they receive distinct messages, in which case
the sender publicly discloses the message. Clearly, this sequence of interactions is non-
trivial to realize in a layered network, where the sender cannot speak a second time and
the parties in a layer cannot communicate with each other. Hence, we use a weak notion
of secure addition (See Section 8.3.2) to allow the receiving parties to securely reveal the
di�erence between the values they received to all parties two layers down. If the di�er-
ence is non-zero for any pair of values, the layer that learns this di�erence collectively
decides to disclose the sender’s message using the trick we previously outlined.

Having implemented verifiable CNF secret sharing, we proceed to secure computation
of arithmetic gates. Since the secret sharing is linear, addition and multiplication-by-
constant gates can be computed by local processing, which leaves us with the secure
computation of the multiplication gate that takes the secret shares of two values and
computes a secret sharing of their product.

Multiplication. Our layered protocol for multiplication is built by porting the classic pro-
tocol for secure multiplication in the standard (non-layered) setting. In this process, we
face all the challenges we encountered while realizing future multicast. Suppose a value
is secret shared on a layer and is also required in another layer. Naively replicating the
same share in the later layer is insecure since the adversary can reconstruct the secret
by corrupting t parties in each of these layers and obtaining 2t shares. We get around
this problem with a simple trick that avoids using a full-fledged protocol for resharing
CNF shares.

We realize secure computation by evaluating a layered arithmetic circuit using the proto-
cols we constructed so far. To properly process the layered circuit, we rely on the invariant
that the secret shares of the values on all the input wires to any layer of the circuit are si-
multaneously available on the same layer of the layered network. However, secret shares
of the output of a linear gate (addition or multiplication-by-constant) can be computed
locally while those of a multiplication gate using our protocol consume several layers. To
keep the invariant, we need the outputs of the linear gates to be available on the output

130



Chapter 8 Layered MPC [DKI+23]

layer of multiplication. Once again, the shares of the outputs cannot be naively secret
shared. Instead, we attach a multiplication gate to the output wire of linear gate that
takes identity as the other input; this ensures that the shares of the values on all output
wires are available simultaneously on the same layer.

Composability of layered protocols. We use simpler layered protocols as subroutines for
building more complex ones. For example, the multiplication protocol uses a protocol
for verifiable secret sharing (among others) as a subroutine. Hence, it is necessary that
the concurrent execution of layered protocols preserve their security guarantees under
concurrent composition. We refrain from first proving UC security of our building blocks
and then using modular composition theorems since such an analysis will be cumber-
some over a synchronous layered graph. Instead, we prove the security of our protocols
by constructing simulators and carefully arguing their security. We establish game based
properties of layered protocols that are preserved when they are used as subroutines
and prove the security using hybrid arguments that exploit these properties. Finally, a
few of our constructions make exclusively sequential (non-concurrent) calls to subrou-
tines that have been proven to be standalone secure; in such instances, we use the
sequential composition theorem of Canetti [Can00] to argue security (see the security
proofs for future messaging and secure function evaluation protocols).

E�cient MPC using Shamir Secret Sharing. We build layered protocols whose commu-
nication complexity scales polynomially with the number of parties per layer. This is
achieved by porting the cannonical secure function evaluation protocol using Shamir
secret shares into the layered model. To achieve this, we first develop a layered protocol
for verifiable Shamir secret sharing.

Verifiable Shamir secret sharing. We “port” the classic protocol for VSS in the standard
setting to the layered setting using the tools we developed in the previous sections along
the way to tackle the usual challenges faced in the process. At the end of this process, the
parties in the layer right after the input layer hold the purported shares of the dealer’s
secret and parties 5 layers down publicly hold the updates to the purported shares such
that, they together form a valid secret sharing. The parties cannot transfer these shares
to the shareholders in the output layer without causing duplication. To get around this,
the dealer secret shares coe�cients of a random degree-t polynomial they wish to use
for Shamir secret sharing; the evaluation of the polynomial at distinct points is computed
using linear operations and securely delivered to the shareholders in the output layer.
This ensures privacy of the secret when the dealer is honest.

Equipped with a layered protocol for Shamir VSS, we use known techniques to realize
resharing which allows a layer holding valid shares of a value to securely deliver fresh
shares of the same value to a later layer. Using VSS and resharing, porting protocols
for secure multiplication and then secure function evaluation into the layered setting
is relatively straightforward. We depart form the protocol for general MPC provided in
[CDN15]. The protocol uses a form of reinforced secret sharing where the shares of a
secret are further secret shared among the shareholders, which is straightforward to
implement using VSS and resharing.
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8.2 Layered MPC

A layered MPC protocol can be viewed as a special case of standard MPC with a general
adversary structure, specialized in the following way: (1) the interaction pattern is defined
by a layered graph; (2) the adversary can corrupt at most t parties in each layer. This is
illustrated in Fig. 8.1 and formalized below.

Definition 8.1 (Layered MPC). Let n, t, d be positive integers. An (n, t, d)-layered proto-
col is a synchronous protocol Π over secure point-to-point channels and a broadcast
channel, with the following special features.

• Parties. There are N = n(d + 1) parties partitioned into d + 1 layers Li , 0 ≤ i ≤ d ,
where |Li | = n. Parties in the first layer L0 and the last layer Ld are referred to as
input clients and output clients, respectively.

• Interaction pattern. The interaction consists of d rounds, where in round i parties
in Li−1 may send messages to parties in Li over secure point-to-point channels.
By default, we additionally allow each party in Li−1 to send a broadcast message
to all parties in Li .

• Functionalities. We consider functionalities f that take inputs from input clients
and deliver outputs to output clients.

• Adversaries. We consider adversaries who may corrupt any number of input and
output clients, and additionally corrupt t parties in each intermediate layer Li ,
0 < i < d . We consider active, rushing, adaptive1 adversaries.

We say that a protocol Π is a layered MPC protocol for f if it realizes f in the standard
sense of (standalone) secure MPC with general adversary structures [Can00,Gol09,HM00].
We require perfect full security (with guaranteed output delivery).

Remark 8.1 (Generalized layered MPC). The above definition is meant to give the sim-
plest formalization of the core problem we study. It can be naturally extended to allow a
di�erent number of parties ni and a di�erent corruption threshold ti in each layer (our
main feasibility result extends to the case where ti < ni/3), and to allow inputs and out-
puts from parties in intermediate layers. Our strict notion of perfect full security can also
be relaxed in the natural ways. In some cases, we will present e�ciency improvements
that achieve computational (full) security with perfect correctness, meaning that the ef-
fect of a computationally unbounded adversary on the outputs of honest parties can be
perfectly simulated.

The need for ideal broadcast: In Section 8.8 we show that broadcast for layered MPC
is impossible if t > 0. Hence, we must assume ideal broadcast.

1In the coming sections our security analysis is with respect to non-adaptive adversaries for simplicity. In
Section 8.2.2 we justify this leap appealing to the work of [CDD+04].
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Figure 8.1: Layered MPC computing function f with n = 4

8.2.1 Security in Layered MPC Implies Proactive Security

The original definition of a Mobile Adversary [OY91] gives the adversary t pebbles at the
outset of the protocol. It can then place the pebbles freely at the beginning of every round
among the parties involved where a pebble represents fully corrupting a party. If a pebble
is removed from a party, at the beginning of next time period the party will “reboot” into
a pre-specified state and its random tape will be renewed. As such, this pebble game
represents the race between corruption and recovery and results in a system where a
bound is given on the number of corrupted parties which holds in each time period,
but in each period the set of corrupted parties can change. We now define the mobile
adversary and the execution of a protocol in the context of a mobile adversary.

Definition 8.2 (Mobile Adversary). A (t, ρ)-mobile adversary, with corruption threshold t
and roaming speed (mobility) ρ, is an adversary that can corrupt at most t parties in each
time period where a time period consists of ρ rounds. If ρ = 1, we say that the adversary
has maximal roaming speed or is a maximally mobile t-adversary.

Definition 8.3 (Maximally Proactive Security). Let r be the round number and Tr the set of
at most t parties that is corrupted in round r . In each round the parties can communicate
using pairwise secure point-to-point channels or broadcast. An execution of a protocol
Π with R rounds of communication in the presence of a maximally mobile t-adversary
proceeds as follows.

(0) All parties receive inputs. Adversary chooses an initial set T0 of t parties to corrupt.

(1) Initialize a round counter r = 1.

(2) Parties send messages of round r (including to themselves), and honest parties
update their state.

(3) Adversary chooses a new set Tr of t parties to corrupt.
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(4) Parties receive messages of round r .

(5) If r < R , increment r and go to step (2). Otherwise, honest parties compute an
output from messages received in round R .

A protocol that is secure when executed in the presence of a maximally mobile t-adversary
is called maximally proactive.

Remark 8.2 (Maximal Mobility with Rushing). We note that a stronger notion of maxi-
mally mobile adversary is conceivable; one who corrupts at most t parties in each round
but rushes in each round. An execution of a protocol in the presence of such an adver-
sary proceeds as described in Definition 8.3 with one notable di�erence: in step (2), the
adversary receives the messages in round r sent by all honest parties to every party in
Tr−1, and then chooses the messages sent by each party in Tr−1 in round r to all parties.
In this setting, in each round r , the adversary e�ectively learns the messages received by
parties in Tr−1 ∪ Tr , but actively corrupts only parties in Tr−1. Thus, achieving security
in the presence of such and adversary is at least as hard as achieving security against a
standard (non-mobile) mixed adversary that corrupts t parties actively and t additional
parties passively. Fitzi, Hirt and Maurer showed in [FHM98] that, in this setting, VSS and
MPC is feasible if and only if, respectively, t < n/4 and t < n/5. Whether these thresholds
carry over to maximally proactive setting with rushing for VSS and MPC is left as an open
problem.

We wish to characterize the relationship between layered and maximally proactive secu-
rity. Intuitively it is clear, that each layer in the context of layered MPC represents a new
round in a maximally proactive protocol and the maximally mobile adversary corrupts a
(possibly) new set of parties in every round. In Lemma 8.1 we capture this intuition in a
more formal way. Of course, a necessary assumption is the protocol’s ability to include
special erasure instructions whereby parties remove sensitive data from the their local
state.

Lemma 8.1 (Layered and Maximally Proactive Security). Secure layered MPC implies se-
cure maximally proactive MPC under the assumption of secure erasures.

Proof. Let Π be an (n, t, d)-layered protocol for computing the functionality f with N =
n(d + 1) parties partitioned into layers L0, ... ,Ld (Definition 8.1). And let Amobile be a
maximally mobile t-adversary (Definition 8.2). We prove the implication by constructing
a simulator S that perfectly emulates Amobile, e�ectively reducing security for maximally
proactive MPC to security for layered MPC.

First, we argue that the interaction pattern induced by layered MPC is equivalent to that of
the virtual model (transmission graph) of maximally proactive MPC. Consider the parties
P0

1 , ... ,Pd
n computing Π and assume a maximally proactive setting with n parties labeled

as Q1, ... , Qn. Due to the assumption of secure erasure, we can associate a virtual party
Qr

i with each round 0 ≤ r < d . Unless, Qi is corrupted in both round r − 1 and r , the
party Qr−1

i shares no state with Qr
i apart from the messages received over broadcast or

secure point-to-point channels. Similarly, from the definition of layered MPC P r
i shares
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no state with P r−1
i unless both are corrupted. Finally, we observe that the interaction

pattern between parties P0
1 , ... ,Pd

n is equivalent to the interaction pattern induced by
the virtual model connecting the virtual parties Q0

1, ... , Qd
n .

We now sketch the simulator S . Let Alayered be the following (n, t, d)-layered MPC adver-
sary during an execution of protocol Π. Alayered runs Amobile internally and sets r = 0
before the first round starts. Then, Alayered does the following, for each 0 ≤ r ≤ d :
(1) it receives from Amobile a set of parties to corrupt Tr = {Qr

0, ... , Qr
t} (2) it corrupts

corresponding parties {P r
0 , ... ,P r

t } in the execution of Π. (3) it returns the state of the
corrupted parties in round r to Amobile.

Since Π is a protocol for layered MPC there exists a simulator Slayered for Alayered which
we will use to construct our final simulator S . S runs Slayered internally in the following
way for each round 0 ≤ r ≤ d . (1) S receives from Slayered a request to corrupt parties
{P r

0 , ... ,P r
t }. (2) S sends to the functionality a request to corrupt Tr = {Qr

0, ... , Qr
t}.

(3) S provides the state of the parties from the functionality to Slayered. Finally, S outputs
whatever Slayered outputs.

We note that while Lemma 8.1 characterizes a strong relation between the layered MPC
model and security in the presence of a maximally mobile adversary, the existing lit-
erature generally considers proactive security against a slower-moving adversary. In
[ADN06, BELO15, MZW+19, ELL20], the protocol time-line is split into phases where each
protocol round belongs to exactly one phase and between each pair of consecutive
phases a refresh protocol is run to ensure re-randomization and redistribution of the
secret. Typically, the adversary can then adaptively corrupt at most t parties between
the start of one refresh until the end of the next, e�ectively, halving the mobile ad-
versary’s corruption budget during the run of a refresh protocol. Finally, the assumed
mobility of the adversary often, somehow conveniently, aligns with the round complexity
of computing a single layer of the layered circuit.

We do not make such assumptions about the maximally mobile adversary and, as such,
designing secure protocols for maximally proactive MPC is significantly more challeng-
ing.

Definition 8.4 (Maximally Proactive MPC). If Π is a protocol that securely (with erasures)
computes any functionality f while executing in the presence of a maximally mobile ad-
versary. Then, Π is a protocol for maximally proactive MPC.

A protocol for maximally proactive secret sharing is an instance of maximally proactive
MPC that allows a dealer to share a secret s among a group of n parties such that the
secret remains secure against a maximally mobile adversary and allows the final share-
holder set of n parties to open the secret. A refresh protocol prevents the adversary from
discovering and destroying the secrets.

Definition 8.5 (Maximally Proactive Secret Sharing). A maximally proactive secret sharing
protocol is a set of instances of maximally proactive MPC, each associated with a phase
and executing algorithms of a robust secret sharing scheme S . The initial phase is the
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Share phase, then a sequence of Refresh phases are executed, and finally the Open phase.
Each phase is described below.

• Share. The instance of maximally proactive MPC for the Share phase has a des-
ignated input client PD (the dealer) giving secret s as input and output clients
P1, ... ,Pn receiving shares s1, ... , sn as output. In this phase, the maximally proac-
tive MPC instance executes the Sh algorithm of the robust secret sharing scheme
on input s to obtain s1, ... , sn.

• Refresh. In the refresh phase maximally proactive MPC takes as input shares s1, ... , sn
from the parties P1, ... ,Pn and outputs new and independent shares ŝ1, ... , ŝn to the
same parties such that if Rec({si}i∈[n]) = s , then Rec({ŝi}i∈[n]) = s . That is, the MPC
executes Sh(Rec({si}i∈[n])) of S under fresh randomness and securely distributes
the resulting shares to P1, ... ,Pn.

• Open. The final phase involves all n parties broadcasting their shares. Then, all
honest parties run the reconstruction algorithm Rec of the underlying scheme S
on the set of shares.

8.2.2 Adaptivity and Composability in Layered MPC

Let Πg be a layered protocol realizing functionality g with standalone t-security, and let
Πf be another layered protocol in which Πg is used as a subroutine to implement g .
Suppose the layers where g is computed using Πg do not execute any other protocol in
parallel; i.e., only a single invocation of Πg is made in such layers. Then, to prove the
security of Πf , it is su�cient to show that Πf is t-secure in the so called g-hybrid model,
where the calls to the sub routine Πg is replaced with calls to the functionality g itself.
This allows for a modular construction and analysis of protocols.

Formally, the g-hybrid model involves a communication protocol as well as calls to func-
tionality g . Suppose l is the designated output layer of g . In a protocol Πf in g-hybrid
model, parties in layer i − 1 can send their inputs to functionality g in round i . The func-
tionality will deliver the output of g to receivers in the output layer l in round l which
may be used by the parties in executing Πf .

The following proposition adapts the sequential composability theorem of [Can00] to the
layered setting. The proposition holds simply because a layered protocol with d layers
and n parties per layer is essentially a nd party protocol with communication between a
pair of adjacent layers in every round.

Proposition 8.1 (Sequential Composability for layered protocols). Suppose a (n, t, d)-
layered protocol Θ implements a functionality g with perfect standalone t-security
[Can00, Gol09]. Suppose a layered protocol Π with input layer L0 and output layer
L′d , d ′ > d invokes Θ as a subroutine from La to La+d , where 0 ≤ a < a + d ≤ d ′. Π
making subroutine calls to Θ is t-secure if it is t-secure in the g-hybrid model.
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Universal Composability. As discussed in Definition 8.1, we are interested in realizing
functionalities f that take input from the input clients in layer L0 by default and deliver
outputs to the output clients in the last layer (layer Ld ) of a layered network. We develop
a protocol for computing general functionalities in the stand-alone model showing per-
fect security by means of a straight-line black-box simulator and, thus, we can invoke
Theorem 1.2 in [KLR10] and argue that the protocol is, in fact, secure under the definition
of universal composability2.

On Adaptive Adversaries. In Definition 8.1, we define layered MPC in the presence of
a rushing and adaptive adversary. Clearly, this extra power for the adversary sepa-
rates layered MPC from maximally proactive MPC and shows that layered MPC is strictly
stronger. Looking forward, we will, however, only analyze the layered protocols with re-
spect to static (and rushing) adversaries. To argue adaptive security, we need to be able
to simulate even when the real world adversary corrupts a party midway through the
protocol. [CDD+04] showed an exotic example of a perfectly secure protocol with static
security against malicious adversaries but without adaptive security. Fortunately, all our
protocols are based on linear secret sharing which makes extending our analysis to lay-
ered ( and adaptive) MPC significantly easier.

As an example, consider a simulator’s job when a set of parties C is already corrupted
during a protocol execution and a new party Pi has just been added to this set. First, the
simulator needs to construct a complete view (including the input) of the honestPi that is
consistent with all messages exchanged with the ideal functionality and communication
with parties in C. Secondly, the simulator’s state needs to be “extended” with this new
information. Concretely, the state should be as if Pi has been corrupted from the start of
the protocol but behaved honestly until this point. In our protocols for perfect layered
MPC, we let the simulator handle this challenge using conditional sampling. Since parties
in C will only hold shares of a linear secret sharing scheme, even if the newly corrupted
Pi is the dealer of such shares we can simulate the randomness used in the sharing
algorithm. This is feasible since as long as the shares of n − t honest parties are fixing
the secret, the simulator is free to change the randomness to be consistent with the
shares of parties in C. Finally we note that when referring to computationally secure
(PRG-based) protocols, we either need to settle for non-adaptive security or implement
the PRG in the random oracle model.

8.3 Basic Primitives

We introduce the basic primitives Future Messaging (fFM) and Multiparty Addition (fAdd)
that that serve as building blocks for later constructions. In the layered model, Future
Messaging is a primitive which allows an input client S to securely send a message m

2While we can meaningfully argue that the final protocol for computing general functionalities is UC-secure,
we do not treat individual components of this protocol in a UC manner. This would require a significant
modelling e�ort of communication and synchronization for layered MPC and would be counterproductive
in our e�ort to present layered MPC as a simple special case of secure MPC as in [Can00,Gol09].
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to an output client R in a later layer. Multiparty Addition allows a subset of parties in a
layer to broadcast the sum of their inputs to all parties in a later layer.

8.3.1 Future Messaging

Future Messaging emulates a secure channel between a sender S and a receiver R in a
future layer. As such, the primitive is similar3 to Secure Message Transmission (SMT) over
the specific directed and layered network where intermediate nodes may take part in
the protocol and not merely forward messages from adjacent nodes. The functionality is
formalized in Fig. 8.2.

Future Messaging functionality fFM

Public parameters: Sender S ∈ L0, receiver R ∈ Ld for d > 0 and
message domain M .

Secret inputs: S has input m ∈ M .

fFM receives m from S, and delivers m to R.

Figure 8.2: Future Messaging functionality fFM

8.3.1.1 Parallel Composition.

Functionality fFM delivers a message from a sender to a receiver in a later layer Ld .
However, when our protocol implementing fFM is composed in parallel, the resulting
functionality is not the natural parallel composition of fFM which takes the input from
each sender to each receiver and delivers them.

In fact, this functionality is impossible to realize even in the trivial case of messaging
from one layer to the very next using the provided secure communication link. As an
example, suppose communication from S1 ∈ L0 to R1 ∈ L1 and from S2 ∈ L0 to R2 ∈ L1

are composed in parallel. Now, a rushing adversary corrupting S1 and R2 can collect the
message from S2 to R2 and set this as the message from S1 to R1. Interestingly, this
limitation persists when parallely composing our protocol for realizing fFM from L0 to
Ld (even for d > 1) with t-security for t < n/3. See Remark 8.4 in Section 8.9 for more
details.

We capture the functionality realized by parallel execution of our future messaging pro-
tocol using a corruption aware functionality in Figure 8.3.

3The instance of Future Messaging with honest sender in L0 and honest receiver in L2 is equivalent to
perfect 1-way SMT.
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Corruption-aware parallel Future Messaging functionality f nFM

Public parameters: Senders S1, ... , Sn ∈ L0, receivers R1, ... , Rn ∈ Ld

where d > 0. The domain Mi ,j of message from Si to Rj .
Secret inputs: Each Si wants to send each Rj a message m(i ,j) ∈ Mi ,j .
Additional input to functionality: Set of corrupted parties I0 ⊆ L0

and corrupted receivers Id ⊆ Ld .

1. For each honest Si /∈ I0 and each Rj ∈ Ld , f nFM receives message m(i ,j) from Si to Rj .

2. For each honest Si /∈ I0 and corrupt Rj ∈ Id , f nFM forwards m(i ,j) to the (ideal)
adversary.

3. For each corrupt Si ∈ I0 and each Rj ∈ Ld , f nFM receives from the (ideal) adversary
the message m(i ,j) that Si wants to send to Rj .

4. For each Si ∈ L0 and Rj ∈ Ld , f nFM sends m(i ,j) to Rj as message from Si .

Figure 8.3: Corruption-aware parallel Future Messaging functionality f nFM

8.3.1.2 A Protocol for Future Messaging.

Realizing Future Messaging from a sender in L0 to a receiver in L1 is trivial since there is
a secure communication link between any such pair.

A (n, t, 2)-layered protocol for Future Messaging from a sender in L0 to a receiver in L2

can be achieved as follows. Sender S ∈ L0 shares the message m among the parties
in L1 using a t-secure robust secret sharing scheme. The parties in L1 forward their
shares to the receiver R ∈ L2 who uses the reconstruction algorithm on the received
shares to recover the message. By t-security of the secret sharing scheme, an adversary
corrupting at most t parties in L1 learns nothing about the message. However, since the
secret sharing scheme is t-robust, R correctly reconstructs m even if at most t corrupt
parties send incorrect shares.

This idea can be generalized to construct Future Messaging from L0 to Ld for any d > 2
using the secure (n, t, `)-layered protocol for Future Messaging from L0 to L` and then
fromL` toLd . Here, ` is any number such that 0 < ` < d ; specifically, we can take ` =

⌊
d
2

⌋
.

This is achieved as follows. The sender S ∈ L0 produces shares (s1, ... , sn) of its message
m, and sends the share si to the i-th party (P`i ) in L` using Future Messaging from L0 to
L`. Each party in level ` forwards its share to the receiver using Future Messaging from
L` to Ld .

This protocol can be executed in parallel, for each sender in L0 and receiver in Ld , in
order to realize the corruption aware (parallel) functionality f nFM (Figure 8.3) from L0 to
Ld using f nFM from L0 to L` and from L` to Ld . The protocol is formally described in Figure
8.4.
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Πn
FM, an (n, t, d)-layered protocol realizing f nFM

Public parameters: Senders S1, ... , Sn ∈ L0, receivers R1, ... , Rn ∈ Ld

where d > 1.
Secret inputs: Each Si wants to send m(i ,j) ∈ M to a each receiver Rj .
Resources: f nFM (with message domain Mn) from L0 to L` and L` to Ld .

1. Each Si , i ∈ [n] samples (s(i ,j),1, ... , s(i ,j),n)← Sh(m(i ,j)) for each j ∈ [n].

2. For k ∈ [n], Si sets the message to P`k ∈ L` in f nFM from L0 to L` to
(
s(i ,1),k , ... , s(i ,n),k

)
.

3. Each party P`k : k ∈ [n] receives (ŝ(i ,1),k , ... , ŝ(i ,n),k) from Si , i ∈ [n] (delivered by f nFM).

4. P`k , k ∈ [n] sets the message to Rj ∈ Ld in f nFM from L` to Ld to (ŝ(1,j),k , ... , ŝ(n,j),k).

5. Each receiver Rj : j ∈ [n] computes the message from Si : i ∈ [n] as
Rec(ŝ(i ,j),1, ... , ŝ(i ,j),n).

Figure 8.4: Layered protocol Πn
FM

Lemma 8.2 (Layered protocol for f nFM). Let (Sh, Rec) be a robust (t, n) secret-sharing
scheme Definition 5.1, the (n, t, d)-layered protocol in Figure 8.4 realizes the functionality
f nFM in Figure 8.3 with perfect security for t < n/3.

We formally describe the simulator and provide a formal proof in Section 8.9.2.

Going forward, we will focus on the (non-parallel) Future Messaging functionality fFM

(Fig. 8.2) from a designated sender in a layer to a designated receiver in a later layer. This
is, indeed, a special case of f nFM (n = 1) and a protocol was outlined informally in the
beginning of this section.

Theorem 8.1. For any d > 0, and message domain M , there exists an (n, t, d)-layered
protocol ΠFM that realizes fFM from a sender in L0 to a receiver in Ld with communication
complexity O(ndlog de log |M|).

Proof. For d = 1, there is a trivial protocol that realizes fFM in which the sender sends
the message (from a domain M) directly to the receiver using the provided secure com-
munication link. The communication complexity of realizing this is simply log |M|.

Suppose d > 1 and ` =
⌊
d
2

⌋
. Consider protocols Π and Π′ that realize functionalities f nFM

from L0 to L` and from L` to Ld , respectively for message domain Mn. In the protocol in
Figure 8.4, the f nFM from L0 to L` and f nFM from L` to Ld are called, sequentially. Hence,
by the sequential modular composition theorem for layered protocols in Proposition 8.1,
the protocol obtained by replacing these oracle calls with subroutine calls to Π and Π′,
is secure against any layered adversary that corrupts at most t parties in layers 1 to `−1
and `+1 to d−1 in addition to corrupting at most t parties in layer `. The communication
complexity of the resulting protocol is the sum of communication complexity of Π and
Π′. The statement of the theorem is obtained by recursion using this observation and
the existence of the trivial protocol for realizing fFM from L0 to L1.
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Corollary 8.1. Suppose ΠFM is a (n, t, d)-layered protocol realizing fFM from a sender
S ∈ L0 to a receiver R ∈ Ld . The following statements hold when ΠFM is executed in the
presence of any adversary A described in Definition 8.1:

(a) If S is honest, R correctly recovers the input of S at the end of ΠFM.

(b) When S and R are honest, and for any pair of inputs m,m′ ∈ M ,

ADVRΠFM,A(m) ≡ ADVRΠFM,A(m′).

8.3.2 Multiparty Addition

The Multiparty Addition functionality fAdd takes inputs from a set of input clients and de-
livers the sum of the inputs to all output clients in L2. However, fAdd allows the adversary
to choose the inputs of corrupt input clients after learning the sum of the inputs of the
honest clients. Hence, if at least one party with input to fAdd is corrupt, the adversary can
choose the value that fAdd outputs. Note that, this necessarily makes fAdd a corruption
aware functionality. The functionality is formally defined in Fig. 8.5 and can be realized
by an (n, t, 2)-layered protocol as outlined below.

Multiparty Addition functionality fAdd

Public parameters: Input clients S ⊆ L0, output clients L2, input
domain is some finite group G.

Secret inputs: Each Si ∈ S has input xi ∈ G.
Additional input: Set of corrupt input clients I ⊆ S .

1. fAdd receives input xi from each honest Si ∈ S .

2. If I 6= ∅, fAdd leaks the sum of the inputs of honest Si to the (ideal) adversary and
receives a value y ∈ G from the adversary.

3. To all output clients in L2, fAdd delivers y if I 6= ∅ and
∑

i :Si∈S xi otherwise.

Figure 8.5: Multiparty Addition functionality fAdd

Each party in Si ∈ S secret shares its input xi to the parties in next layer using a t-robust
linear secret sharing scheme. Parties in L1 broadcasts the sum of their respective shares
for each of the inputs. Each party in L2 recovers the output by running the reconstruc-
tion algorithm on the received sum of shares. A formal description of the protocol is
presented in Fig. 8.6.
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ΠAdd, an (n, t, 2)-layered protocol for fAdd

Public parameters: Input clients P0
i , i ∈ S , output clients L2, input

domain is some finite group G.
Robust (n, t) secret-sharing scheme (Sh, Rec) with secret domain M .

Secret inputs: Each Si ∈ S has input xi ∈ G.

1. Each P0
i , i ∈ S samples (xi ,1, ... , xi ,n)← Sh(xi ), and sends xi ,j to P1

j for each j ∈ [n].

2. Each P1
j , j ∈ [n] broadcasts yj =

∑
i∈S xi ,j to L2.

3. Each party outputs Rec(y1, ... , yj). We use a reconstruction function that outputs a
valid element of G even when y1, ... , yn is not a valid secret sharing with at most t
corruptions.

Figure 8.6: Layered protocol ΠAdd

Clearly, all honest parties output the same value at the end of the protocol, irrespective
of the number of corruption in S . If all parties in S are honest, each party in L2 receives
a share of

∑
Si∈S xi for each party in L1. Although corrupt parties in L1 can potentially

send invalid shares, by t-robustness of the secret sharing scheme all honest parties in
L2 correctly reconstruct the sum of the inputs. Finally, the adversary who corrupts a
non-empty set of parties in L2 only learns the sum of the shares of the honest parties’
inputs. Since the secret sharing scheme is linear, this would only reveal the sum of the
honest parties’ inputs.

The following lemma formally states the game based security guarantees of any (n, t, d)-
layered protocol realizing Multiparty Addition as per above.

Lemma 8.3. The following statements hold when an (n, t, d)-layered protocol realizing
fAdd is executed in the presence of any adversary A described in Definition 8.1:

1. All honest clients output the same value at the end of ΠAdd. If all input clients are
honest, this value coincides with the sum of the inputs.

2. The view of A only reveals the sum of the inputs of the honest parties.

8.4 Layered MPC based on CNF Secret Sharing

In this section, we start by building a protocol for Future Multicast based on primitives
from Section 8.3. The protocol is then used in a simple way to obtain VSS using CNF-
shares. We will build on this VSS protocol in order to realize secure multiplication and,
finally, a protocol for layered MPC for any function.
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8.4.1 Future Multicast

Future Multicast fFMcast allows a sender S to send a secret to a set of receivers R located
in a later layer. It guarantees that all honest receivers output the same value even if
the sender is corrupt; if the sender is honest, this value coincides with the sender’s
input. Finally, if all receivers (and the sender) are honest, the secret remains hidden
from the adversary. This primitive will be the backbone of our layered VSS protocol.
Standard (Secure) Multicast is often described as the simplest non-trivial example of
secure computation. Also, in layered MPC, Future Multicast generalizes Future Messaging
and Future Broadcast4 but is substantially harder to realize. The functionality is described
in Fig. 8.7.

Future Multicast functionality fFMcast

Public parameters: Sender S ∈ L0, receiving set of parties R ⊆ Ld , d ≥ 5,
message domain M .

Secret inputs: S has input m ∈ M .

fFM receives m from S, and delivers m to all parties in R .

Figure 8.7: Future Multicast functionality fFMcast

8.4.1.1 A protocol for Future Multicast.

As a first step towards realizing fFMcast, we construct a protocol that achieves a weaker
notion of Future Multicast. In this protocol, sender S in layer L0 sends a share to a set
of intermediaries UT = {P1

i : i ∈ T} ⊂ L1, in the next layer, who communicate it to
the receivers R ⊆ L5. The protocol for weak Future Multicast provides the following
guarantees which are formally stated in Lemma 8.4.

1. (Agreement). If a majority of the intermediaries are honest, all honest receivers
output the same value at the end of the protocol even if S is corrupt; if the sender
is honest, this value coincides with the sender’s input.

2. (Security). If the sender, all the intermediaries in UT and all the receivers are hon-
est, a layered adversary does not learn the sender’s secret.

Observe that, when t < n/3, each subset UT of n−t parties inL1 contains a strict minority
of corrupt parties. Furthermore, there is at least one such set that contains only honest
parties. Given these observations, realizing fFMcast from the weaker notion is straight
forward: For each set UT ⊂ L1 of n − t parties, S sends rT to the receivers using parties
in UT as intermediaries, where rT for all possible T , form an additive secret sharing of
the sender’s secret. When the sender is honest and each set of intermediaries has an
honest majority, by (1), all rT reach the receivers correctly. Furthermore, for one set of
intermediaries UT∗ , by (2), rT∗ remains hidden from the adversary. Thus, receivers can

4Here, we refer to the primitive in the setting of layered MPC that ensures termination, validity and agree-
ment among all parties located in some layer d > 1. Not Future Broadcast as defined in [GHK+21].
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compute the sum of rT for distinct sets T to obtain the secret, which will remain hidden
from the layered adversary if all receivers are honest. Finally, by (1), the outputs of all
honest receivers are consistent even if the sender is corrupt.

Weak Future Multicast. With the aid of a set of intermediaries UT = {P1
i : i ∈ T} ⊂ L1,

weak Future Multicast can be achieved as follows: S sends the message rT to every party
in UT . In addition, S distributes a robust secret sharing of rT among the parties in L3

using Future Messaging. Every pair of intermediaries broadcasts the di�erence between
the values they received to all parties in L3 using a protocol for the fAdd functionality.
Additionally, each intermediary distributes a secret sharing of the value they received
among the parties in L4. If the di�erence comes out non-zero for any pair, the parties
in L3 e�ectively reveals rT to all parties in L4 by broadcasting the shares of rT that S
distributed. Parties in L4 then forwards (using layer-to-layer broadcast) rT to all the
receivers in R . By robustness of the secret sharing scheme, parties in L4 recover rT if
it was secret shared properly by the sender; moreover, even if S sent invalid shares, all
honest parties recover the same value. Hence, receivers recover rT from this because
at most t < n/3 parties in L4 are corrupt. If the di�erence is zero for every pair of
intermediaries, each party in L4 reveals the share sent to them by every intermediary to
all the receiver in R . Using these shares, each receiver reconstructs the value that was
shared by each intermediary. If the di�erence was zero for every pair of intermediaries,
then all honest intermediaries must have received the same value from S (which is rT if
S is honest). Hence, a majority of the values recovered by every receiver coincides with
this value. This ensures (1). If S and all intermediaries are honest, rT is not revealed to
parties in L4, and, hence, is disclosed only to the receivers ensuring (2).

An (n, t, 5)-layered protocol for Future Multicast ΠFMcast is formally described in Fig. 8.8.
Importantly, it includes the sub-protocol for weak Future Multicast Πweak-FMcast. We iden-
tify two important properties of ΠFMcast that will be used going forward. The properties
are stated in Lemma 8.4 and a formal proof is provided in Section 8.10.1.

Lemma 8.4. For any T ∈ T , the following properties hold for any weak future multicast
protocol with UT as intermediaries when executed in the presence of any adversary A:

(a) There exists r̂ such that all honest receivers in R output r̂ at the end of the protocol.
Furthermore, if S is honest, r̂ = r .

(b) If S, and all intermediaries and receivers are honest, for any r , r ′ ∈ M ,

ADVRΠ,A(r) ≡ ADVRΠ,A(r ′).

Theorem 8.2. There is a secure (n, t, 5)-layered protocol realizing future multicast with
input client S and output clients in R .

Proof. Let Πweak-FMcast be a protocol realizing weak future multicast. By statement (a) in
Lemma 8.4, for every set of intermediaries {P1

i : i ∈ T}, there exists r̂T such that all
honest receivers in R output r̂T at the end of Πweak-FMcast. Furthermore, if S is honest,
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r̂T = rT , for each T ∈ T . Hence, at the end of the future multicast protocol, say ΠFMcast,
the outputs of all receivers are the same and coincides with the input of an honest S.

It remains to show that if the sender and all receivers are honest, A does not learn the
sender’s input. We sketch the intuition: Consider T ∗ ∈ T such that the parties UT∗ are
all honest; such a set exists because there are at most t corruptions in each layer. By
statement (b) in Lemma 8.4, view of A interacting with Πweak-FMcast with intermediaries in
UT∗ is independent of the input rT∗ of S. But then, the view of A in the entire protocol
ΠFMcast does not depend on m since (rT ,T ∈ T ) is an additive secret sharing of m. We
formally prove security of ΠFMcast by demonstrating a simulator S in Section 8.10.2.
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ΠFMcast, an (n, t, 5)-layered protocol for fFMcast

Public parameters: Sender S ∈ L0, receivers R ⊆ Ld , where d = 5,
A (t, n) robust linear secret sharing scheme (Sh, Rec).

Definitions: T = {T ⊂ [n] : |T | = n − t} (Definition 5.2).
Secret inputs: S has input m ∈ M .
Subroutines: Protocol ΠFM realizing fFM and ΠAdd realizing fAdd.

1. S samples {rT}T∈T uniformly at random conditioned on m =
∑

T∈T rT . For each
T ∈ T , execute protocol Πweak-FMcast (described below) with UT = {P1

i : i ∈ T} as
intermediaries and rT as input from S.

2. For each T ∈ T , suppose r̂T is the output of receiverP5
i ∈ R at the end of Πweak-FMcast

with UT as intermediaries. P5
i outputs m̂ =

∑
T∈T r̂T .

Sub-protocol: Πweak-FMcast with public input UT and r as input from S.

(i). Layer 0:
1. S sends r to parties in UT ⊂ L1 over the secure channel.
2. S samples (r1, ... , rn)← Sh(r). For k ∈ [n], S sends rk to P3

k using ΠFM.

(ii). Layer 1:
1. Denote the value received by P1

j ∈ UT by r j . For each j , j ′ ∈ T such that j < j ′,
execute ΠAdd to compute r j − r j

′ and broadcast the result to L3.
2. Each intermediary P1

j ∈ UT samples (r j1, ... , r jn) ← Sh(r j) and sends r ji to P4
i , i ∈ [n]

using ΠFM.

(iii). Layer 3:
1. Each party P3

k , k ∈ [n] recovers r̂k as the output of ΠFM (see step (i).2). P3
k broadcasts

a complaint and r̂k to all parties in L4 if r j − r j
′ 6= 0 (output of ΠAdd) for some j , j ′.

(iv). Layer 4:
1. If at least n − t parties in L3 broadcasted a complaint, each P4

i , i ∈ [n] computes
r̂ = Rec(r̂1, ... , r̂n). P4

i forwards the complaint to all receivers in R and sends r̂ to all
receivers.

2. Else, P4
i recovers r̂ ji as the output of ΠFM (see step (ii).2) with P1

j as sender (with
message r ji ) and sends it to all receivers.

(v). Layer 5:
1. If at least n − t parties in L4 reported a complaint, each P5

i ∈ R outputs the unique
value that is sent by at least n − t parties in L4.

2. Else, P5
i recovers r̂ j = Rec(r̂ j1, ... , r̂ jn), where r̂ ji was sent by P4

i and outputs the unique
value r̂ such that r̂ = r̂ j for at least n − 2t distinct values of j ∈ T .

Figure 8.8: Layered protocol ΠFMcast
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L1 L2 L3 L4 L5subtract
reveal r if
∃j : r j 6= r j

′
P5
i ∈ R

recovers r̂

ΠFM from S of rk to P3
k

ΠFM from P1
j ∈ UT of r ji to P4

i

ΠAdd of r j − r j
′ to L3

Figure 8.9: Execution flow of protocol Πweak-FMcast

8.4.2 Verifiable Secret Sharing

Using future multicast presented in Section 8.4.1, realizing verifiable secret sharing (VSS)
is relatively straight-forward. The sender distributes the additive shares of the secret to
each set of receivers using Future Multicast. The protocol in Figure 8.10 realizes VSS from
a dealer in L0 to shareholders in L5.

ΠVSS, an (n, t, 5)-layered protocol for fVSS

Public parameters: Sender S ∈ L0, shareholders L5.
Definitions: Let T = {T ⊂ [n] : |T | = n − t}.
Secret inputs: S has input m ∈ M .
Subroutines: Protocol ΠFMcast realizing fFMcast functionality.

Layer L0:
1. S samples (rT )T∈T as additive secret sharing of m.
2. For each T ∈ T , execute ΠFMcast with S as sender with input rT and {P5

i : i ∈ T} as
receivers.

Layer L5:
1. Each party P5

i , i ∈ [n] recovers rT as the output of ΠFMcast with S as sender if i ∈ T .
P5
i outputs (rT )i∈T as its share.

Figure 8.10: Layered protocol ΠVSS

The protocol described in Figure 8.10 is a (n, t, 5)-layered protocol realizing VSS. This fol-
lows from the definition of Future Multicast. The following theorem proves a stronger
result: Suppose n protocols are executed in parallel with P0

i as dealer and L5 as share-
holders for each i ∈ [n], then we achieve a parallel (n, t, 5)-layered protocol for VSS
functionality for t < n/3. The parallel VSS fuctionality is formally described below.
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Parallel VSS functionality fparallel-VSS

Public parameters: Senders S1, ... , Sn ∈ L0, shareholders R1, ... , Rn ∈ L5.
The domain M of secrets.

Definitions: Let T = {T ⊂ [n] : |T | = n − t}.

1. Each Si , i ∈ [n] sends (r iT )T∈T to the functionality.

2. For each i ∈ [n] and T ∈ T , functionality sends (i ,T , r iT ) to {P5
j : j ∈ T}.

Figure 8.11: Parallel VSS functionality fparallel-VSS

Theorem 8.3. The protocol in Figure 8.10 executed in parallel realizes fparallel-VSS with per-
fect t-security for t < n/3 by consuming 5 layers, and by communicating

(n
t

)3 ·O(n2) field
elements over the point-to-point channels and over the broadcast channels for each
secret.

Proof. The VSS protocol is essentially several multicast protocols executed in parallel.
The security of the construction follows from the security of the multicast protocol, once
we ensure that the adversary cannot correlate the shares of the corrupt parties with those
of the honest parties across parallel executions of multicast protocols. The simulator for
multicast extracts the input of a corrupt sender in L0 from the view of the honest parties
in the protocol up to L4. This allows the simulator we build for parallel VSS to extract the
shares of the corrupt dealers after simulating the protocol till L4 and provide them to
fparallel-VSS. Whereas, a multicast from an honest sender to a set of receivers, potentially
containing corrupt receivers, does not reveal the sent message to the corrupt parties
until L4. Hence, the adversary chooses shares for corrupt parties before getting to see
the shares chosen by the honest parties. This guarantees that the adversary cannot
correlate the shares of the corrupted parties with the shares of the honest parties. We
show a simulator and full proof in Section 8.10.3.

8.4.2.1 Addition and multiplication-by-constant for CNF shares.

The CNF secret sharing scheme is linear; hence, parties holding valid CNF shares of a
value s can locally transform it into a valid secret sharing of αs when α is a publicly
known constant. In detail, let si be the share of s held by party i . Then, there exist
(δT )T∈T such that

∑
T∈T δT = s , and si = (δT )T :i∈T for each i ∈ [n]. Then s ′1, ... , s ′n

such that s ′i = (αδT )T :i∈T is a CNF secret sharing of αs . Additionally, suppose a value r is
secret shared as (r1, ... , rn) where ri = (γT )T :i∈T for each i ∈ [n], and

∑
T∈T γT = r . Then,

s ′′1 , ... , s ′′n such that s ′′i = (δT + γT )T :i∈T is a CNF secret sharing of r + s . In conclusion,
addition and multiplication by constant of CNF shares can be computed locally.
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8.4.3 Multiplication

The multiplication functionality fMult (presented in Fig. 8.12) takes valid CNF secret shares
of two values r and s and computes fresh CNF secret shares of rs . This functionality
requires that the input clients hold valid CNF secret sharing of the individual values to
be multiplied, and that at most t input clients are corrupt. In contrast, by default, a
layered adversary is allowed to corrupt arbitrarily many input and output clients.

Implementing fMult. Suppose r1, ... , rn and s1, ... , sn are CNF secret shares of two values r
and s , respectively. Recall that, when T = {T1, ... ,TN} = {T ⊂ [n] : |T | = n−t}, for each
i ∈ [n], ri = (γj)j :i∈Tj

and si = (λj)j :i∈Tj
, where

∑N
i=1 γj = r and

∑N
i=1 λj = s . To compute

a secret sharing of rs , it su�ces to compute the secret sharing of γiλj for every i , j ∈ [N];
secret shares of rs can be computed as the sum of these secret shares, which can be
obtained by local computations. This follows from the fact that, rs =

∑N
i=1

∑N
j=1 γiλj .

The main challenge in implementing multiplication is in obtaining correct secret shares
of γiλj , for all i , j ∈ [N]. In the non-layered setting, classic protocols tackle this by having
all parties who have access to γi and λj secret share their product. The parties then
compute the di�erence between the values shared as purported product γiλj by securely
computing their di�erences. If all di�erences come out to be 0, since at least one of the
parties secret sharing the product is honest, all the remaining parties must also have
correctly shared the secret. Hence, one of these CNF-shares can be taken as a valid
secret sharing of λiγj . Whenever the di�erence is non-zero, both γi and λj are publicly
revealed, and a trivial secret sharing of γiλj is taken instead of the ones submitted by
the parties. Finally, these shares are ‘added’ together to get a secret sharing of rs .

Multiplication functionality fMult

Public parameters: Input layer L0, output layer L7.
Secret inputs: Each P0

i , i ∈ [n] receives (ri , si ), where (ri )i∈[n] and (si )i∈[n]

are valid CNF secret sharing of r and s , respectively.

1. Each party P0
i , i ∈ [n] sends (ri , si ) to fMult, who reconstructs r from (ri )i∈[n] and s

from (si )i∈[n]. This is possible since at most t parties are corrupt and CNF secret
sharing is t robust.

2. fMult samples (u1, ... , un) as a fresh CNF secret sharing of rs . For each i ∈ [n], fMult

delivers ui to P7
i , i ∈ [n] in the output layer.

Figure 8.12: Multiplication functionality fMult

The above protocol is clearly correct. The security of the protocol follows from the fact
that, whenever all the parties submitting shares of γiλj for some i , j are honest, the pro-
tocol never reaches the public reveal phase. A formal description of the protocol in the
standard setting as constructed in [Mau06] is provided in Section 8.10.4. Our multiplica-
tion protocol is a porting of the above protocol to the layered setting. In the process, we
face two main challenges.
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Firstly, when the public check of equality between purported shares of γj · λj ′ provided
by a pair of parties fails in step 2, γj and λj ′ need to be revealed by every party (in the
input layer) with access to these values. This is tackled exactly as in the Future Multicast
protocol. Using Future Messaging, all parties in the input layer secret share each γi and
λi they hold to the layer where the equality check is made; the parties in this layer then
selectively reveal the additive shares for which any of the equality checks fails.

The second challenge is less straightforward to handle. If the protocol is naively ported
to the layered model, VSS of γj · λj ′ will be available in two di�erent layers: once in the
layer that initiates the equality check, and then again in the final layer that computes
the VSS of r · t as the sum of VSS of γj · λj ′ for all j , j ′ ∈ [N]. But then, the adversary can
corrupt t parties in both these layers, and recover γj ·λj ′ for each (j , j ′). This is overcome
as follows: For each j , j ′, consider the special party whose share of γj · λj ′ will be chosen
in the final addition (if the all equality checks for γj · λj ′ succeeds). This party samples
(δk)k∈[N] as additive secret shares of γjλj ′ , and verifiable secret share each δk instead of
directly secret sharing γj · λj ′ . The equality check is now carried out to check if

∑
k δk

shared by the special party equals the value shared by every other party. Finally, parties
in the output layer receive a VSS of γj ·λj ′ in which the ith share is (δk)k:i∈Tk

. This avoids
reuse of the same VSS in two layers. The protocol is presented in Fig. 8.13.
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ΠMult, an (n, t, 7)-layered protocol for realizing fMult

Public parameters: Input layer L0, output layer L7. A (t, n) robust
perfectly secure secret sharing scheme (Sh, Rec)

Inputs: Party P0
i , i ∈ [n] has inputs (ri , si ), where (ri )i∈[n] and (si )i∈[n] are

CNF secret shares of r and s , respectively.
Definitions: Let T = {T1, ... ,TN} = {T ⊂ [n] : |T | = n − t}.

For each i ∈ [n], si = (γj : i ∈ Tj , j ∈ [N])
and ri = (λj : i ∈ Tj , j ∈ [N]), where

∑
j∈[N] γj = r and

∑
j∈[N] λj = s .

Subroutines: Protocols ΠFM, ΠVSS.

1. For each j , j ′ ∈ [N], concurrently execute protocol Πj ,j′ (described below).

2. For each j , j ′ ∈ [N], let (δj ,j
′

k )k:i∈Tk
be the output of party P7

i , i ∈ [n] at the end of
Πj ,j′ . Then, P7

i stores (δk)k:i∈Tk
as their shares of rs , where δk =

∑
j ,j′∈[N] δ

j ,j′

k .

Sub-Protocol: Πj ,j′ for j , j ′ ∈ [N]

Notations: Let I = Tj ∩ Tj′ ; i.e., P0
i has both γj and λj′ if and only if

i ∈ I . Fix i∗ ∈ I . To avoid redundancy, denote γj by γ and λj′ by λ.

(i). Layer L0:
1. P0

i∗ samples δ1, ... , δN as additive secret shares of γλ. For each k ∈ [N], execute ΠVSS

with P0
i∗ as dealer with input δk and L5 as shareholders. For each i ∈ I , i 6= i∗, execute

ΠVSS with P0
i as dealer with input γλ and L5 as shareholders.

2. Each P0
i , i ∈ Tj samples (γ i ,1, ... , γ i ,n) ← Sh(γ). For each k ∈ [n], execute ΠFM with

P0
i as sender with input γ i ,k and P6

k as receiver.
3. Similarly, Each P0

i , i ∈ Tj′ samples (λi ,1, ... ,λi ,n) ← Sh(λ). For each k ∈ [n], execute
ΠFM with P0

i as sender with input λi ,k and P6
k as receiver.

(ii). Layer L5:
1. For each i ∈ I , i 6= i∗, we will denote the value verifiably secret shared by P0

i in step
(i).1 by (γλ)(i). If P0

i is honest, (γδ)(i) = γλ. Parties in L5 locally compute that shares
of (γλ)(i) −

∑N
l=1 δl and broadcast the shares of the sum to L6.

2. For each k ∈ [N], P5
l , l ∈ [n] reveals their share of δk to each party P7

i , i ∈ Tk using
Future Messaging ΠFM.

(iii). Layer L6:
1. Each P6

k , k ∈ [n] recovers γ i ,k as the output of ΠFM with P0
i , i ∈ Tj as sender and P6

k

as receiver initiated in step (i).2. Similarly, P6
k recovers λi ,k as the output of ΠFM with

P0
i , i ∈ Tj′ as sender and P6

k as receiver initiated in step (i).3.
2. If there exists i 6= i∗ such that (γλ)(i)−

∑N
l=1 δl 6= 0, then P6

k sends a complaint along
with (γ i ,k)i∈Tj and (λi ,k)i∈Tj′ to all parties in the next layer.

(iv). Layer L7:
1. If at least n− t complaints are received, P7

l , l ∈ [n] recovers γ i = Rec(γ i ,1, ... , γ i ,n) for
each i ∈ Tj , and recovers λi = Rec(λi ,1, ... ,λi ,n) for each i ∈ Tj′ . Set γ as the unique
value such that γ = γ i for at least n− 2t distinct i ∈ Tj ; similarly, set λ as the unique
value such that λ = λi for at least n − 2t distinct i ∈ Tj′ . Finally, P7

l sets the share
(rs)j ,j

′

l to be the trivial sharing of γλ; i.e., (rs)j ,j
′

l = (δk)k:l∈Tk
, where δk = γλ , if k = 1

and δk = 0 otherwise.
2. If less than t complaints were received, each party P7

i , i ∈ [n] recovers the CNF share
of δk (for each k such that i ∈ Tk ) sent by P5

l , l ∈ [n] using ΠFM in step (ii).2. Using
these shares, P7

i recovers δk and sets the share (rs)j ,j
′

i to be (δk)k:i∈Tk
.

Figure 8.13: Layered protocol ΠMult

151



Chapter 8 Layered MPC [DKI+23]

We first establish properties of the subroutine Πj ,j ′ that computes CNF shares of γj · λj ′
for each j , j ′ ∈ [N]. in the lemma below, proven in Section 8.10.5.

Lemma 8.5. For any j , j ′ ∈ [N], the following properties hold for Πj ,j ′ when executed in
the presence of an adversary A:

(a) There exists (δk)k∈[N] such that
∑N

k=1 δk = λjγj ′ , and each honest party P7
i , i ∈ [N]

outputs (δk)k:i∈Tk
at the end of Πj ,j ′ .

(b) Suppose parties P0
i , i ∈ H are honest, then for any a, b, a′, b′,

ADVRΠj ,j′ ,A(γj = a,λj ′ = b) ≡ ADVRΠj ,j′ ,A(γj = a′,λj ′ = b′).

By statement (a) in Lemma 8.5, for each j , j ′ ∈ [N], parties in the output layer correctly
receive a CNF secret sharing of γjλj ′ . Hence, the output of the parties at the end of the
protocol is a CNF secret sharing of

∑N
j=1

∑N
j ′=1 γjλj ′ = rs . By statement (b) in Lemma 8.5,

if λj ′ or γj is not known to the adversary, the output of Πj ,j ′ does not reveal γjλj ′ . This
ensures that the protocol is secure. The following theorem formally proves the security
of the protocol.

Theorem 8.4. The protocol ΠMult (described in Fig. 8.13) is an (n, t, 7)-layered protocol
realizing fMult, for t < n/3.

Proof. We prove the security by constructing a simulator S . In each layer Ll , 0 ≤ l ≤ 7, let
P l
i , i ∈ Cl , where Cl ⊂ [n], be the set of corrupt parties. For each corrupt party P0

i , i ∈ Cl ,
S receives (γk)k:i∈Tk

and (λk)k:i∈Tk
from the environment. S chooses γk arbitrarily for

each k such that γk is not provided by the functionality. The simulator then emulates
all the honest parties and interacts with the adversary. For this, S is required to set the
input to the honest parties in L0 (these are the only parties with inputs). For each i /∈ C0,
S sets the shares of r and s of honest emulated party P0

i to be (γk)k:i∈Tk
and (λk)k:i∈Tk

,
respectively.

For each pair j , j ′ such that γj and λj ′ are known to some corrupt party, i.e., both C0 ∩ Tj

and C0∩Tj ′ are non-empty, the execution of Πj ,j ′ is identical in both the simulation and a
real execution. Furthermore, by statement (a) in Lemma 8.5, in each such Πj ,j ′ , all honest
parties in L7 output valid CNF shares of γjλj ′ . The view of the adversary in the protocol
and in the simulation di�er only in that the view in each Πj ,j ′ such that Tj ∩C0 or Tj ′ ∩C0

is empty. However, by statement (b) in Lemma 8.5, the view of the adversary is identically
distributed irrespective of the value of γj and λj ′ . That these properties hold even when
Πj ,j ′ is executed in parallel for each j , j ′ can be argued using a hybrid argument along the
lines of our previous proofs. This concludes the proof.

Executing the above protocol in parallel realizes a parallel multiplication functionality.
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8.4.4 Realizing MPC from Layered Multiplication and Addition

In this section, we construct a secure (n, t, d)-layered protocol for computing any given
function f by evaluating an layered arithmetic circuit computing the function. Suppose
each party P0

i , i ∈ [n] in the input layer has xi ∈ F as input, and each party in the
output layer (specified later) wants to compute f (x1, ... , xn). The secure computation of
f proceeds in three phases: an input sharing phase, a circuit evaluation phase and an
output reconstruction phase.

In the input sharing phase, each input client verifiably CNF secret shares their input.
In the circuit evaluation phase, the layered protocol traverses the layered circuit that
evaluates f and evaluates every gate in the circuit. Evaluating a gate amounts to securely
computing a CNF secret sharing of the value on the output wire of each gate using the CNF
secret sharing of the values on its input wires. Finally, in the output reconstruction phase,
the secret sharing of the value on the output wire is revealed to the output clients.

We elaborate on the circuit emulation phase below. Let C be a layered arithmetic circuit
over a field F with D layers that computes f . At the end of the input phase, the values on
the input wires of all gates in layer one of C are simultaneously made available on the
same layer of the protocol graph. In the circuit evaluation phase, the protocol keeps the
invariant that, if a layer i ∈ [D] of C is processed, then the values on all the output wires
from layer i of C are simultaneously available of a specific layer of the protocol graph.
The protocol can then process all gates in layer i + 1 of C preserving the invariant.

Recall that every gate in C is either a multiplication-by-constant gate, an addition gate
or a multiplication gate. Given a CNF secret sharing of the value on the input wire(s) of a
multiplication-by-constant gate or an addition gate, a secret sharing of the value on the
output wire can be computed by locally processing the share. That is, the value on the
output wire of the gate is available on the same layer (of the protocol graph) on which the
values on the input wires have been secret shared. However, for a multiplication gate,
computing a CNF secret sharing of the product of the values on the input wires using
a t-secure protocol for multiplication consumes 7 layers. This poses a challenge when
ensuring the invariant that the values on the output wires of all gates in a layer (of C ) are
made available on the same layer of the protocol graph. We get around this obstacle as
follows: for a multiplication-by-constant or an addition gate G , after locally computing
the secret sharing of the value on the output wire, we further compute a multiplication
gate with value on the output wire of G as one input and the other input value being
fixed to one (identity). This is achieved by using a trivial secret sharing of one as the
other input and executing the layered protocol for multiplication which consumes d = 7
layers. Hence, we ensure the invariant we require.
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A layered protocol computing any n-ary function f

Public parameters: A layered arithmetic circuit C over F with D levels that computes f .
Output layer is d = 7D + 6.

Secret inputs: Each input client P0
i , i ∈ [n] has input xi .

Outputs: Each output client receives f (x1, ... , xn).
Subroutines: Protocols ΠVSS, and ΠMult realizing functionalities fVSS, and fMult,

respectively.

Input sharing phase:
1. For each i ∈ [n], execute in parallel ΠVSS with P0

i as dealer with input xi and
L5 as shareholders.

Circuit evaluation phase:
Invariant: For 1 ≤ i ≤ D , parties in L5+7(i−1) hold verifiable secret shares of the

values on the input wires of any gate in layer i of C . The parties in L5+7(i−1)

process any gate Gj in layer i of C as follows.
(i). Gi is a multiplication-by-constant or addition gate:

1. Parties in L5+7(i−1) locally compute the CNF secret shares of the value on
the output wire of Gj using CNF secret shares of the value(s) of the input
wires of Gj .

2. Securely compute the product of the value on the output wire of Gj and
one. This is achieved as follows: Execute ΠMult with L5+7(i−1) as input layer
and L5+7i as output layer. Parties in L5+7(i−1) use the CNF secret sharing
of the value on the output wire of Gj and a trivial CNF secret sharing of 1
as inputs to the computation.

(ii). Gi is a multiplication gate:
1. Execute ΠMult with L5+7(i−1) as input layer as L5+7i as output layer. Here,

each party in L5+7(i−1) uses their respective CNF shares of the input wires
as inputs. Each party in L5+7(i−1) receives CNF shares of the product of
these values at the end of ΠMult.

Output reconstruction phase:
1. The parties in L5+7D reveal the CNF shares of value on the output wire of the

output gate to every output client in the next layer.
2. Each output client in L6+7D recovers the value from the CNF shares.

Figure 8.14: Layered protocol computing any function f

Theorem 8.5. Let f be an n-party functionality computed by a layered arithmetic circuit
C over a finite field F and gates partitioned into layers L1, ... , LD . Then, for any t < n/3,
the protocol in Fig. 8.14 is an (n, t, 6 + 7D)-layered MPC protocol for f .

Proof. We argue the security of the protocol in (f nVSS, f nMult)-hybrid model and appeal to
sequential composition to prove security of the entire protocol. This is possible since
the protocol essentially uses execution of (parallel) ΠVSS from L0 to L5, and then only
parallel invocations of ΠMult from L5+7(i−1) to L5+7(i) for each 1 ≤ i ≤ D . Thus, the
protocol amounts to sequential invocations of secure protocols implementing parallel
VSS, addition and multiplication functionalities.
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Consider the protocol in (f nVSS, f nMult)-hybrid model obtained from the protocol in Fig. 8.14
by replacing executions of VSS and multiplication with f nVSS and f nMult, respectively. First,
all inputs are CNF secret shared to L5. The protocol ensures that the value on the output
wire of every gate is freshly and randomly secret shared before being consumed by gates
in the next layer of the circuit. Thus, for each 1 ≤ i ≤ D , parties in layer 5 + 7(i − 1) hold
fresh CNF shares of the values on the input wires of gates G ∈ Li . Proceeding in this
manner, it can be seen that the parties in layer 5 + 7D hold the value on the output
wire of the circuit. The parties in L6+7D recover this value by reconstructing the shares
provided by the parties in the previous layer.

8.5 E�cient Layered MPC

In this section, we present an e�cient implementation of perfectly t-secure layered MPC
when t < n/3. To achieve this, we first build verifiable Shamir secret sharing. As in our
previous implementation of MPC, the only non-trivial step in developing a protocol for
general MPC after implementing VSS is that of achieving perfectly secure multiplication
of two values that are secret shared. We build the multiplication protocol by porting
a multiplication protocol of [CDN15, CDM00] from the standard setting to the layered
setting. We present the formal constructions and proofs of their security in later sections.
The security of the protocols is argued along the lines of our previous constructions,
albeit, with slightly more complex proofs.

8.5.1 Verifiable Shamir Secret Sharing

In this section, we implement verifiable Shamir secret sharing in the layered setting with
perfect t-security for t < n/3. This is realized by porting a protocol from the standard
setting to the layered setting. We mostly face the same set of challenges that we en-
countered while implementing future multicast in the previous section. Recall that (t, n)-
Shamir secret sharing of a secret s in a field F involves sampling a random polynomial
q(x) of degree at most t under the constraint q(0) = s and setting the ith share to be
q(i). We consider an equivalent functionality fShamirVSS that allows a dealer to distribute
the evaluation of a degree (at most) t polynomial on distinct non-zero points. A formal
description of the parallel fShamirVSS functionality is given in Fig. 8.15.

Parallel fShamirVSS functionality for sharing polynomials of degree at most t .

Public parameters: Dealers S1, ... , Sn ∈ L0, shareholders P6
1 , ... ,P6

n . A finite field F of size
more than n.

1. fShamirVSS receives coe�cients ci ,l ∈ F for 0 ≤ l ≤ t from each Si , i ∈ [n]. fShamirVSS

ignores any extra values sent by Si and sets missing values as 0.

2. For each i ∈ [n], define polynomial qi (x) = ci ,tx
t + ... + ci ,1x + ci ,0, and send qi (j) to

each P6
j , j ∈ [n].

Figure 8.15: Parallel functionality fShamirVSS
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Implementing fShamirVSS. The layered protocol realizing fShamirVSS is provided in Fig. 8.16.
We sketch the outline and the intuition behind its construction.

The classic protocol for Shamir VSS in the standard setting proceeds as follows. Suppose
the dealer wants to share a secret s from a field F such that |F| > n with t-security for
t < n/3. The dealer samples a random bi-variate polynomial S(x , y) of degree at most t in
both the variables such that S(0, 0) = s , and transfers fi (x) = S(x , i) and gi (y) = S(i , y)
to party Pi . If the polynomials were appropriately sampled, fi (j) = S(i , j) = gj(i) for
every i , j . Each pair of parties Pi ,Pj check if fi (j) = gj(i) and fj(i) = gi (j); Pi raises a
complaint by broadcasting (i , j , fi (j), gi (j) if this check fails for Pj . The dealer addresses
every valid complaint–a complaint of the form (i , j , u, v) such that u 6= fi (j) or v 6= gi (j)–
and broadcasts (fi , gi ); otherwise, the dealer dismisses that complaint. This is followed
by parties casting votes to accept or disqualify the dealer. Pi votes to accept the dealer if
all the following conditions are met: dealer addressed one of every inconsistent mutual
complaint–i.e., a pair of complaints (i , j , u, v) and (j , i , u′, v ′) such that u 6= u′ or v 6= v ′;
Pi itself did not issue a complaint; and for each broadcasted (fj , gj), fi (j) = gj(i) and
gi (j) = fj(i). If the dealer receives less than n − t votes, it is declared to be corrupt.
Otherwise, each Pi updates (fi , gi ) if it was broadcasted by the dealer and sets fi (0) as
their share.

Using selective reveal in future messaging and checking equality using fAdd as done in
future multicast, we can port the above protocol into the layered setting. The protocol
obtained in this manner is used as sub-protocol Π in our final construction in Fig. 8.16.
Interestingly, this construction by itself is not a layered protocol for verifiable secret
sharing. However, Π guarantees the following: Let H1 ⊆ [n] such that P1

i is honest i�
i ∈ H1; parties in L5 hold a secret sharing of a value ŝi such that, all such ŝi (there are
at least n − t of them) define a valid secret sharing of a value ŝ . Further, if the dealer is
honest, ŝ = s and ŝi is the same as the value that the dealer transferred to P1

i . This is
formally stated in Lemma 8.6.

Lemma 8.6. The following properties hold for an execution of Π in the presence of a
layered adversary A:

(a) Let G ⊆ [n] such that P1
i is honest if and only if i ∈ H1. There exist polynomials

ĝ(x) and ĝi (x), i ∈ H1, each of degree at most t , such that ĝi (0) = ĝ(i) and αk
i

output by each honest party P5
k coincides with ĝi (k). Furthermore, if S is honest,

ĝ(x) = F (x , 0).

(b) If S is honest, for any r , r ′ ∈ F,

ADVRΠ,A(r) ≡ ADVRΠ,A(r ′).
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An (n, t, 6)-layered protocol for realizing fShamirVSS.

Public parameters: Dealer S ∈ L0, shareholders P6
1 , ... ,P6

n ∈ L6. A finite
field F, |F| > n. A (t, n)-Shamir secret sharing scheme (Sh, Rec).

Secret inputs: Dealer holds a polynomial q(x) = ctx
t + ... + c1x + c0 of

degree at most t over F.
Subroutines: Protocol ΠFM realizing fFM functionality and ΠAdd realizing

fAdd functionality.

1. For each 0 ≤ l ≤ t , concurrently execute protocol Π (described below) with ci as
input of S.

2. Each P5
k , k ∈ [n] stores the output at the end of execution l of Π as (αk

l ,i )i∈[n] for each
0 ≤ l ≤ t . To each P6

j , j ∈ [n], P5
i sends γki ,j =

∑t
l=0 α

k
l ,i j

l for each i ∈ [n].

3. Each P6
j reconstructs γi ,j = Rec(γ1

i ,j , ... , γni ,j) for each i ∈ [n]. Finally, P6
j outputs

γj = Rec(γ1,j , ... , γn,j).

Sub-Protocol: Π with S as dealer with input s .

(i). Layer 0.
1. S samples a random bivariate polynomial F (x , y) of degree at most t in both vari-

ables conditioned on F (0, 0) = s . Let fi (x) = F (x , i) and gi (y) = F (i , y) for each
i ∈ [n]. S privately sends (fi , gi ) to P1

i .
2. For each i , j ∈ [n], S samples (F 1(i , j), ... ,F n(i , j)) ← Sh(F (i , j)). For each k ∈ [n], S

sends F k(i , j) to P4
k using future messaging (ΠFM).

3. For each i ∈ [n], let fi (x) =
∑t

l=0 αi ,lx
l and gi (x) =

∑t
l=0 βi ,ly

l . S samples
(α1

i ,l , ... ,αn
i ,l) ← Sh(αi ,l), and (β1

i ,l , ... ,βn
i ,l) ← Sh(βi ,l) for each 0 ≤ l ≤ t . For each

i , k ∈ [n] and 0 ≤ l ≤ t , S sends αk
i ,l and βk

i ,l to P5
k using future messaging.

(ii). Layer 1.
1. For each i , j ∈ [n], execute ΠAdd to compute fi (j)−gj(i) and gi (j)− fj(i) and broadcast

the results to L3.
2. P1

i samples (f 1
i (j), ... , f ni (j))← Sh(fi (j)), (g1

i (j), ... , gn
i (j))← Sh(gi (j)) for each j ∈ [n],

and sends both f ki (j) and gk
i (j) to P3

k and to P4
k using future messaging.

3. P1
i samples (g1

i (0), ... , gn
i (0)) ← Sh(gi (0)) and sends gk

i (0) to P5
k using future mes-

saging.

(iii). Layer 3.
1. Each P3

k , k ∈ [n] recovers
a) F k(i , j) as the output of future messaging initiated in step (i). 2. for each i , j ∈ [n].
b) For each j ∈ [n], P3

k recovers f ki (j) and gk
i (j) as the output of future messaging

initiated in step (ii).2 by P1
i , i ∈ [n].

2. Using the output of ΠAdd, P3
k computes and broadcasts the set

S = {{i , j} : fi (j)− gj(i) 6= 0 or fj(i)− gi (j) 6= 0},

and F k(i , j),F k(j , i), f ki (j), gk
i (j), f ki (j) and gk

i (j) for each {i , j} ∈ S .

(iv). Layer 4.
1. For each {i , j} ∈ S and l ∈ [n], F l(i , j) was broadcasted by P3

l , l ∈ [n]. Each
P4
k , k ∈ [n] recovers F (i , j) = Rec(F 1(i , j), ... ,F n(i , j)). Similarly, P4

k recovers F (j , i),
fi (j), gi (j), fj(i), gj(i).
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2. Each P3
k recovers αk

i ,l and βk
i ,l for each 0 ≤ l ≤ t as the output of future messaging

initiated in step (i).3. with S as sender. P3
k also recovers f ki (j) and gk

i (j) for each
j ∈ [n] as the output of future messaging initiated in step (ii).2 with P1

i as sender.
3. Define B = {i ∈ [n] : ∃j , {i , j} ∈ S and (F (i , j) 6= gi (j) or F (j , i) 6= fi (j))}. For each

i ∈ B ,
a) P4

k broadcasts αk
i ,l and βk

i ,l for each 0 ≤ l ≤ k .
b) P4

k broadcasts f kj (i) and gk
j (i) for each j ∈ [n].

(v). Layer 5.
1. For each i ∈ B and 0 ≤ l ≤ t , each P5

k recovers αi ,l = Rec(α1
i ,l , ... ,αn

i ,l) and βi ,l =

Rec(β1
i ,l , ... ,βn

i ,l). Let f̂i (x) =
∑t

l=1 αi ,lx
l and ĝi (y) =

∑t
l=1 βi ,ly

l .
2. For each i ∈ B and j ∈ [n], each P5

k recovers fj(i) = Rec(f 1
j (i), ... , f nj (i)) and gj(i) =

Rec(g1
j (i), ... , gn

j (i)).

3. Define set B ′ = {j ∈ [n] : ∃i ∈ B, fj(i) 6= ĝi (j) or gj(i) 6= f̂i (j)}.
a) If |B ∪B ′| ≥ t , dealer is disqualified. Each P5

k outputs (αk
i )i∈[n], where αk

i = 0 for
all i ∈ [n].

b) Otherwise, for each i ∈ [n]\B , P5
k recovers gk

i (0) as the output of future messag-
ing initiated in step (ii).3, and outputs (αk

i )i∈[n] such that αk
i = gk

i (0) if i ∈ [n]\B
and ĝi (0) otherwise.

Figure 8.16: Layered protocol for realizing fShamirVSS

Using Π as a subroutine, verifiable secret sharing is achieved as follows (described
in Fig. 8.16). Let q(x) = c0 + c1x + ... ctx

t be the polynomial that the dealer wants to
secret share. For each 0 ≤ l ≤ t , dealer S executes Π with ci as its input. When P5

i , i ∈ H5

are the set of honest parties in L5. By Lemma 8.6, for each 0 ≤ l ≤ t , there exist poly-
nomials ĝl(x) and {ĝl ,i (x)}i∈H1 of degree at most t such that, ĝl ,i (0) = ĝl(i), and for all
k ∈ H5 and l ∈ H1, Pk

5 holds αk
l ,i = ĝl ,i (k). Since |H5| ≥ n − t , each P6

j , j ∈ [n] recovers

γi ,j = Rec(α1
l ,j , ... ,αn

l ,j) =
t∑

l=0

ĝl(i)j
l ,∀i ∈ H1

Hence,

γj = Rec(γ1,j , ... , γn,j) =
t∑

l=0

ĝl(0)j l

Defining q̂(x) = ĝl(0)x l , we conclude that each P6
j receives q̂(j) as required in verifiable

Shamir secret sharing. When S is honest, by Lemma 8.6 (a), ĝl(0) = cl for each 0 ≤ l ≤ t .
Hence, q̂(x) = q(x).

We next argue that, when S is honest, the view of the adversary is identical irrespective
of the value of q(0). Assume that the guarantee in Lemma 8.6 (b) is preserved when Π
is executed concurrently as in the protocol. Then, the view of the adversary till L5 are
identically distributed in the protocol irrespective of the values of (cl)0≤l≤t . Hence, the
view of the adversary in the protocol only reveals q(i) for i ∈ C6, where P6

i , i ∈ C6 are the
set of corrupt parties in L6.
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To formally argue the security of the protocol, we can build a simulator along the line
of Theorem 8.2. Recall that, in the proof of Theorem 8.2, we used a hybrid argument
to e�ectively extend the game based security guarantee of the weak multicast protocol
Πweak-FMcast as stated in Lemma 8.4 (b) to parallel invocations as used in the protocol
in Fig. 8.8. A similar argument can be used here.

In Fig. 8.16, the polynomial secret shared in L6 is exclusively determined by αk
l ,i , for i ∈ [n]

and 0 ≤ l ≤ t stored by the honest parties P5
k . In other words, the dealer is committed to

polynomial ĝl(x), 0 ≤ l ≤ t (as described in Lemma 8.6) when all the honest parties in L5

finish receiving messages from their predecessors. Furthermore, by Lemma 8.6, when S is
honest, view of the layered adversary is identically distributed irrespective of input of S
in each invocation of Π. This ensures that, when the protocol for verifiable secret sharing
is executed in parallel, the polynomial being secret shared by a corrupt dealer cannot be
correlated with that shared by an honest dealer. In the following theorem, we state this
stronger result: when n verifiable secret sharing protocols are executed in parallel with
P0
i , i ∈ [n] as dealer and L6 as shareholders, we realize a parallel VSS functionality with

t-security. The parallel VSS functionality fShamirVSS is formally described below.

Theorem 8.6. The protocol described in [?] executed in parallel realizes fShamirVSS with
perfect t-security for t < n/3 by consuming 6 layers, and by communicating O(n6) field
elements over the point-to-point channels and O(n4) field elements over the broadcast
channels for each secret.

Employing the layered protocol for VSS, we proceed to port the protocol for secure com-
putation in [CDN15] to the layered setting. An important functionality we use extensively
for this transformation is resharing, which allows parties in La with (a valid) secret shar-
ing of a secret s to “handover” the secret to parties in Lb , for any b > a, by providing a
fresh secret sharing of s . Using parallel invocation of VSS, realizing resharing is straight
forward: secret shares of uniformly random secrets cl , 1 ≤ l ≤ t are made available on
the input layer. Then, the secret s is reshared by distributing f (i) to shareholder i in
the output layer; here f (x) = s +

∑t
l=1 clx

l . Distributing secret shares of a uniformly
random secret is achieved by having t + 1 parties in a previous layer secret share ran-
dom secrets and the parties locally computing the shares of their sum (See functionality
in Fig. 8.22 and its implementation in Fig. 8.23). The resharing functionality is formally
defined in Fig. 8.24, and it is implemented as outlined above in Fig. 8.25.

8.5.2 Multiplication

The main challenge in realizing general MPC is securely implementing a multiplication
protocol that computes a secret sharing of the product of two values using their shares.
Following the outline of the MPC implementation in [CDN15], we first realize a simpler
primitive, namely multiplication with helper, where the input clients hold secret sharing
of a pair of values, and a special input client called the helper holds both values. This
primitive allows the helper to verifiably secret share of the product of these values onto
the output clients. The helper will be disqualified if the value secret shared is not the
product.
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8.5.2.1 Implementing multiplication with helper.

We realize this functionality by porting a modified version of the implementation of the
same in standard setting as presented in [CDN15]. The protocol in the standard setting
works as follows: When α,β are the values to be multiplied, helper samples polynomials
f (x) and g(x) of degree at most t conditioned on f (0) = α and g(0) = β. It then computes
h(x) = f (x)g(x); clearly, h(0) = αβ. It then verifiably secret shares (αl)l∈[t], (βl)l∈[t] and
(γl)0≤l≤2t , where

f (x) = α +
t∑

l=1

αlx
l g(x) = β +

t∑
l=1

βlx
l h(x) =

2t∑
l=0

γlx
l

The parties now enter a verification phase in which f (i), g(i) and h(i) are revealed to Pi

for each i ∈ [n]. Pi is to verify if f (i)g(i) = h(i) and raise a complaint otherwise. For
each complaint, f (i), g(i) and h(i) are publicly revealed; parties unanimously disqualify
the helper if any of the complaint is valid. If all complaints turn out to be bogus, then
h(x) is verified to be f (x)g(x) and γ = αβ. The parties now store the secret shares of γ
as the shares of the product.

Our layered protocol follows the same logic with one notable di�erence. The helper in
L0 secret shares the coe�cients of f (x), g(x) and h(x) to L6 using the VSS protocol, with
the exception of α and β. Recall that α and β are secret shared on L0; it is imperative to
the correctness of the protocol that the secret shares of α and β provided to L6 are valid.
But, this can be easily ensured by having α and β in L0 reshared to L6. In the standard
setting, this is realized by “transferring” the secret sharing of α and β to the helper;
resharing ensures the same guarantees. By taking appropriate linear combinations of
the coe�cients of the polynomials, parties in L6 then reveal f (i), g(i) and h(i) to each
P7
i , i ∈ [n]. Each P7

i raises a complaint if f (i)g(i) 6= h(i) to L8. For each i ∈ [n] with
a complaint, parties in L8 selectively reveal f (i), g(i) and h(i) to all parties in L9. This
is achieved by the trick we used in VSS as well as multicast and multiplication in the
previous section. Finally, γ secret shared by the helper onto L6 is reshared to L9 and is
used as the secret sharing of αβ if the parties in L8 has not (unanimously) disqualified
the helper.

When the helper is honest, throughout the protocol, the adversary only sees at most t
shares of α,β, the evaluation of f , g and h on at most t points, and at most t shares of
a sharing and resharing of γ. This ensures that the view of the adversary is identically
distributed irrespective of the values of α and β. A corrupt helper is disqualified by the
parties in L8 if and only if h(x) 6= f (x)g(x). As we observed while analyzing the protocol
for VSS, the sender commits to these coe�cients byL5 as part of the VSS protocol. Hence,
when this protocol is executed in parallel, a corrupt helper is unable to correlate the
event of their getting disqualified with the secret sharing of the product achieved in
another parallel execution with an honest helper. Thus, the protocol remains secure
under parallel composition. The protocol is formally described in Fig. 8.29.

Theorem 8.7. There is a layered protocol that realizes multiplication with helper func-
tionality with perfect t-security for t < n/3.
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8.5.2.2 Multiplication.

We proceed to the main primitive required to implement MPC–secure processing of the
multiplication gate. Suppose two values α,β are Shamir secret shared using polynomials
f (x) and g(x). Since f (x)g(x) is a polynomial of degree at most 2t , given f (i)g(i) for at
least 2t + 1 distinct i ∈ [n], there exists a linear transformation that computes f (0)g(0) =
αβ. For each i ∈ [n], suppose we execute the multiplication with helper protocol from
the previous section to verifiably secret shares the product f (i)g(i) with the help of
the party holding f (i) and g(i). The protocol guarantees that the secret sharing of the
product is accepted (and the helper is not disqualified) whenever the helper adheres to
the protocol; whereas, if the helper secret shares a value other than the product then
the helper is disqualified. Since at least n − t parties are corrupt, we obtain the correct
secret sharing of f (i)g(i) for n − t ≥ 2t + 1 distinct values of i , which can be locally
transformed using the aforementioned linear transformation to obtain a secret sharing
of αβ.

The above proposal has a clear flaw: to multiply f (i) and g(i) held by a helper, both these
values need to be secret shared in the same layer. Hence, we need each f (i) and g(i) to
be further secret shared onto the input layer. We refer to the ‘data structure’ where each
share of a value is further verifiably secret shared as reinforced secret sharing (formally
described in Fig. 8.27). The multiplication functionality takes reinforced secret shares of
two values as input; to promote sequential processing of multiplication, we also ensure
that the output of the functionality is a reinforced secret sharing of the product of the
input values.

Multiplication functionality

Public parameters: Output layer L10.
Input: Reinforced secret sharing of two values a, b;

i.e., [[a, f (x), (fi (x))i∈[n])]]0 and [[b, g(x), (gi (x))i∈[n])]]0.

1. Input clients reveal shares 〈a, f (x)〉0 and 〈b, g(x)〉0 to the functionality who
reconstructs a, b.

2. Functionality distributes a reinforced secret sharing of ab onto the output clients.
That is, it distributes 〈ab, h(x)〉10, where h(x) is a random polynomial of degree at
most t such that h(0) = ab; for each i ∈ [n], it distributes 〈h(i), hi (x)〉b , where hi (x)
is a random polynomial of degree at most t such that hi (0) = h(i).

Figure 8.17: Multiplication functionality

Implementing multiplication. The protocol takes valid reinforced secret sharing of two
values as input. It then proceeds as outlined above by appropriately executing the multi-
plication with helper protocols and then linearly combining the evaluations on the prod-
uct polynomial to obtain a Shamir secret sharing of the product of the inputs. It remains
to convert the Shamir secret sharing to a reinforced secret sharing of the product; this is
realized by executing a protocol for reinforced resharing implemented in Figure 8.27. The
protocol for secure multiplication is formally presented in Figure 8.18.
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A t-secure protocol for multiplication

Public parameters: Output layer Ld .
Input: [[α, f (x), (fi (x))i∈[n])]]0 and [[β, g(x), (gi (x))i∈[n])]]0.
Subroutines: Πmulth and Πrreshare implementing multiplication with helper and reinforced
resharing, respectively.
Setup: Random secret shares in appropriate layers as required to execute multiplication

with helper and reinforced resharing.

(i). Product computation
1. For each i ∈ [n], execute Πmulth for multiplication with P0

i as helper to share
f (i)g(i) onto L9. The inputs to the protocol are 〈f (i), fi (x)〉0 and 〈f (i), fi (x)〉0.
Additionally, the helper holds f (i) and g(i), the shares of P0

i in 〈α, f (x)〉0 and
〈β, g(x)〉0, respectively.

2. Let G ⊆ [n] such that, for each i ∈ G , at the end Πmulth with P0
i as helper, the

parties stored 〈f (i)g(i), hi (x)〉9 as a valid secret sharing of f (i)g(i) (instead of
disqualifying the helper). There exist scalars (ri )i∈G such that∑

i∈G ri f (i)g(i) = f (0)g(0) = αβ. Define

〈αβ, h(x)〉9 = 〈
∑
i∈G

ri f (i)g(i),
∑
i∈G

rihi (x)〉9 =
∑
i∈G

ri 〈f (i)g(i), hi (x)〉9

(ii). Reinforced resharing of the product
1. Execute the t-secure protocol for reinforced resharing with 〈αβ, h(x)〉9 as

input from L9 and L10 as the output layer, and random secret shares
distributed onto L9 as setup. That is, execute
[[αβ, h′(x), ((h′i )(x))i∈[n]]]10 ← 〈αβ, h(x)〉9.

2. The parties in L4 store their respective shares of [[αβ, h′(x), ((h′i )(x))i∈[n]]]10.

Figure 8.18: A t-secure protocol for multiplication

The protocol inherits security from the security of protocols implementing (parallel) mul-
tiplication with helper and reinforced resharing since the protocol exclusively uses these
protocols in parallel. Indeed, the protocol remains secure under parallel composition
because both the subroutines remain secure under parallel composition.

Theorem 8.8. There is a layered protocol that realizes multiplication functionality with
perfect t-security for t < n/3.

8.5.3 MPC

In this section, we construct an e�cient t-secure protocol for securely computing any
given function f by evaluating a layered arithmetic circuit C computing the function.
Suppose each party P0

i , i ∈ [n] in the input layer has zi ∈ F as input, and each party in
the output layer (specified later) wants to compute f (z1, ... , zn). Similar to our CNF secret
sharing based construction, the secure computation of f proceeds in three phases: an
input sharing phase, a circuit evaluation phase and an output reconstruction phase.
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In the input sharing phase, each input client secret shares their input using reinforced
secret sharing. In the circuit evaluation phase, the protocol keeps the invariant that, if a
layer i of C is processed, then the values on all the output wires outgoing from layer i of C
are simultaneously available of a specific layer of the protocol graph. Given a reinforced
secret sharing of the value on the input wire(s) of a multiplication-by-constant gate or
an addition gate, a secret sharing of the value on the output wire can be computed
by locally processing the share. However, for a multiplication gate, computing a Shamir
secret sharing of the product of the values on the input wires using a t-secure protocol for
multiplication consumes 10 layers. Hence, we once again face the challenge of ensuring
the invariant that the values on the output wires of all gates in a layer (of C ) are made
available on the same layer of the protocol graph. We get around this obstacle the same
way we did in our previous construction: for a multiplication-by-constant or an addition
gate G , after locally computing the reinforced secret sharing of the value on the output
wire, we further compute a multiplication gate with value on the output wire of G as one
output and the other value being fixed to one. This is achieved by taking a trivial secret
sharing of one as the other input and executing the t-secure protocol for multiplication
which consumes 10 layers. In this manner, we preserve the invariant we require. The
protocol is formally described in Fig. 8.19.

In the protocol for secure computation of f , we will use the protocol for multiplication
presented in Fig. 8.18 and the protocol for reinforced resharing presented in Fig. 8.27.
Both these subroutines use several random secret sharing and random secret sharing
with various owners as setup. We generate the setup needed to execute these protocols
using the random secret sharing protocol presented in Fig. 8.23. We will argue that the
protocol remains secure when the setup is computed in parallel.

Theorem 8.9. Let f be an n-party functionality computed by a layered arithmetic circuit
C over a finite field F, with D levels and M gates. Then, for any t < n/3, there is an
(n, t, 8+10D)-layered MPC protocol for f in which the communication consists ofM ·O(n9)
field elements over the point-to-point channels and M · O(n7) field elements over the
broadcast channels.
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E�cient layered protocol for computing a function f

Public parameters: A layered arithmetic circuit C over F with D levels that computes the
desired function f . Output layer 10D + 7.

Secret inputs: Each input client P0
i , i ∈ [n] has input zi .

Subroutines: protocols implementing VSS (Figure 8.16), random secret sharing (Figure
8.23),

reinforced resharing (Figure 8.27) and multiplication (Figure 8.18).

Input sharing stage:
1. For each i ∈ [n], execute verifiable secret sharing with P0

i as dealer with input
zi and L7 as shareholders to distribute 〈zi , pi (x)〉6.

2. For each i ∈ [n], execute reinforced resharing protocol from L6 to L7 to realize
[[zi , fi (x), (fi ,j(x))j∈[n]]]7 ← 〈zi , pi (x)〉6.

Circuit evaluation stage:
Invariant: For 1 ≤ i ≤ D , parties in L7+10(i−1) hold reinforced secret shares of the

values on the input wires of any gate in layer i of C . The parties in L7+10(i−1)

process any gate Gj in layer i of C as follows:
(i). Gj is a multiplication-by-constant or addition gate:

1. Parties in L7+10(i−1) locally compute the reinforced secret sharing
[[oj , gj(x), (gj ,k)k∈[n]]]7+10(i−1) of the value on Gj ’s output wire.

2. Securely compute the product of value on the output wire of Gj with iden-
tity. This is achieved as follows: Execute the t-secure protocol for multipli-
cation in withL7+10(i−1) as input layer andL7+10i as output layer. Parties in
L7+10(i−1) use [[oj , gj(x), (gj ,k)k∈[n]]]7+10(i−1) and a trivial reinforced secret
share of 1 given by [[1, 1(x), (1(x))i∈[n]]]7+10(i−1) as inputs to the compu-
tation. Here, 1(x) is the constant polynomial that evaluates to 1 on every
point.

(iii). Gi is a multiplication gate:
1. Execute the protocol for multiplication with L7+10(i−1) input layer and
L7+10i as output layer. Parties in L7+10(i−1) use the reinforced secret
shares of the values on the input wires as inputs for this computation.

Output reconstruction phase:
1. The parties in L7+10D reveal the reinforced secret shares of the output wire of

C to every output client in the next layer.
2. Each output client in L8+10D recovers the value on the output wire from the

reinforced secret shares.

Implementing setup:
1. Subroutines for reinforced resharing and for multiplication used setup at var-

ious levels. In order to obtain random secret sharing on La, execute the t-
secure protocol in Figure 8.23. This protocol uses verifiable secret sharing to
be invoked by parties Pa−7

i , i ∈ [t + 1]. But, random secret sharing is invoked
for the first time in L7.

Figure 8.19: E�cient layered protocol for computing a function f
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8.6 Computational E�cient Layered MPC for t < n/2

We introduce a computationally-secure layered MPC protocol with guaranteed output
delivery, based on (non-interactive) equivocal linearly homomorphic commitments. We
give a high-level overview and defer details to [DGLZ23].

Future Messaging. The primitive is achieved similarly as its perfectly-secure counter-
part, but to tolerate t < n/2 corruptions, we cannot rely on plain error correction. Instead,
parties broadcast commitments to (coe�cients of) the polynomials used to share their
values to the future layers. Every time a party wishes to re-share an intermediate value,
they re-use the commitment to the constant coe�cient, thereby ensuring that the proper
value is being re-shared.

Distributed Commitments. This primitive (also referred to as weak secret sharing
[GIKR01]) allows a dealer D ∈ Lc to commit to a value s towards a future layer Lc ′ ,
and later open the original value towards another further layer Lc ′′ . If D is honest, the
opened value is s , and no information about s is revealed before the opening phase.
Moreover, even if D is corrupted, the commit phase uniquely determines value s ′, such
that the opening phase can only output s ′ or ⊥.

The dealer D ∈ Lc samples random degree-t polynomials f (x), r(x), such that f (0) = s ,
computes a commitment to each coe�cient in f using the coe�cients in r as random-
ness and broadcasts these commitments to the future layers. The dealer then sends the
evaluation points (s(i), r(i)) using future messaging to party Pc ′

i . To reconstruct, layer
Lc ′ broadcast these pairs to the future layers, and each party Pc ′′

i ∈ Lc ′′ checks for each
received pair whether it is consistent with the corresponding commitment. If there are
more than t consistent pairs, interpolate a degree-t polynomial f ′(x) and output f ′(0).
Otherwise, output ⊥.

Remark 8.3. We can achieve a distributed commitment that allows to commit to the same
value towards separate layers Lc ′ and Lc ′′ , such that even if Pc

d is corrupted, there exists
a unique value s ′ such that the value that is opened by either layer is s ′ or ⊥: let the
dealer Pc

d execute the above protocol towards layers Lc ′ and Lc ′′ with polynomials f (x)
and f ′(x) such that f (0) = s = f ′(0), but using the same commitment for the constant
coe�cient.

Verifiable Secret Sharing. For VSS, the dealer D ∈ Lc with input s , samples random
degree-t polynomial f (x) with f (0) = s , and (duplicate) commits to each coe�cient of
f towards layers Lc1 and Lc ′ using the distributed commitment. This results in a matrix
M = [cmi ,j ]0≤i ,j≤t of public commitments, where cmi ,j is a commitment to the j-th coe�-
cient of the polynomial used to share fi : by linearity of the commitment, parties implicitly
hold commitments to each evaluation f (i). Using future messaging, the dealer D sends
si = f (i) and its opening information to Pc1

i . Party Pc1
i can check that the received infor-

mation is consistent with the published commitments, and broadcast to future layers a
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complaint if the check does not succeed. If the check succeeds, Pc1
i commits to si towards

layer Lc ′ ; to ensure that Pc1
i commits to the value they received from Pd

c , the party uses
the commitment to the constant term that is implicit from the published commitments
in M. If a complaint was raised by Pc1

i , parties in layer Lc ′ publicly open si (and if the
opened value is ⊥, the dealer is disqualified). To reconstruct: for each index i corre-
sponding to a party that did not complain, parties jointly reconstruct si . The final layer
Lc ′′ then uses any t + 1 reconstructed shares to interpolate the secret. Moreover, as in
Remark 2, by having both D and parties in layer Lc1 duplicate distribute commitments of
si for all i ∈ [1, n] towards layers Lc ′ and Lc̃ for some c̃ ≥ c ′, one guarantees that if D is
not disqualified, then both Lc ′ and Lc̃ hold sharings of the same value.

2-Level Verifiable Secret Sharing. To simplify the description of the MPC protocol, it is
helpful that each party holds as part of their state a Shamir share of each wire value. For
that, we modify the VSS as follows: the dealer D uses the above duplicate VSS to distribute
shares of coe�cients of f towards layers Lc1 and Lc ′ , where f (x) is a random degree-
t polynomial with f (0) = s . Then, each party in Lc1 (privately) reconstructs towards
party Pc ′

i the value si = f (i). Notice that layer Lc ′ also holds sharings of all values f (j)
for j ∈ [1, n] thanks to linearity of our VSS. This version of VSS can also be similarly
duplicated.

Circuit Evaluation. Input parties use 2-level VSS to distribute their inputs towards a
future layer. For each computation gate we maintain the invariant that layer Lc holds
sharings (resulting from the 2-level VSS) of the input wire values x and y , and some
future layer Lc ′ for c ′ ≥ c + 6 holds a sharing of the output wire value z . Addition
gates are processed locally, exploiting the linearity of 2-level-VSS. Multiplication gates
are processed by adapting a well-known protocol of Cramer et al. [CDD+99]: each party
Pc
i ∈ Lc holds (as part of their 2-level VSS states to x and y ) Shamir shares xi and yi of

each value, and computes a 2-level VSS for xi , yi (but using the already known sharing
to the constant coe�cient of the used polynomial) and a fresh 2-level VSS for zi = xi · yi
towards a future layer. Finally, each party carries out a distributed multiplication proof
(adapted from [CDD+99]) to prove that indeed zi = xi · yi : if this proof fails, parties jointly
reconstruct (and adopt a standard sharing of) xi and yi to continue the computation.

Theorem 8.10. Let f be an n-party functionality computed by a layered arithmetic circuit
C over a finite field F, with D levels and M gates. Then, for any t < n/2, there is an
(n, t, 4+6D)-layered MPC protocol for f assuming non-interactive linearly-homomorphic
equivocal commitments. The communication complexity is M ·O(n9) field elements over
the point-to-point channels and M · O(n5) field elements + M · O(n10 · λ) bits over the
broadcast channels, where λ is the security parameter.

8.7 E�cient CNF-based MPC with Computational Security

We can use standard techniques to improve the e�ciency of our constructions if the
security guarantee is relaxed from perfect to computational while maintaining perfect

166



Chapter 8 Layered MPC [DKI+23]

correctness but achieving only static security. Verifiably secret sharing N distinct values
using the scheme we presented in Figure 8.16 requires communicating N · O(n6) field
elements in total. We show a simple scheme that realizes secret sharing of random
secrets with a preprocessing cost of 2O(n) bits but uses no communication for subsequent
sharing of unlimited random secrets.

Let f be a pseudorandom function that takes a λ bit long seed. When T = {T ⊂ [n] :
|T | = n−t}, the dealer uses future multicast to transfer a λ-bit seed sT to parties (P6

i )i∈T .
This requires 2O(n) · λ communication in total. Next, to sample the secret share of the
ith random secret ri , each party computes δT = fsT (i) for each T : i ∈ T and stores
(δT )T :i∈T as their CNF share. The dealer knows ri since it has access to (sT )T∈T , so it can
broadcast a single value si − ri to L6 using 4n+ 1 broadcasts, allowing the parties obtain
shares of an arbitrary value si from their shares of ri . In this protocol, a computationally
bounded adversary only learns s − r , which is independent of s . Even when the dealer
is corrupt, since r is correctly secret shared, the shares held by the parties remain valid
at the end of this transformation. Asymptotically, this protocol making black-box use of
a PRG uses O(`) bits of communication per secret.

Theorem 8.11. There exists a (n, t, 5)-layered protocol with computational t-security
against a static malicious adversary and perfect t-correctness making black-box use
of a PRG with seed length λ, that verifiable secret shares ` bits with λ · 2O(n) + O(n`) bits
of communication.

We now obtain an asymptotically e�cient layered protocol for general secure computa-
tion with computational t-security and perfect correctness for t < n/3. In our construc-
tion of Figure 8.19, the O(n3) invocations of VSS per gate dominate the communication
cost. We tweak this protocol by realizing Shamir secret sharing by first distributing CNF
shares using the VSS protocol of Theorem 8.11 and applying share conversion [CDI05] to
obtain Shamir secret shares. The resulting protocol computes each gate using O(n5) bits
of amortized communication.

Theorem 8.12. Let f be an n-party functionality computed by a layered arithmetic circuit
C over a finite field, with D levels and M gates. Then, for any t < n/3, there is an
(n, t,O(D))-layered MPC protocol for f with computational t-security against a static
malicious adversary and perfect correctness making black-box use PRG with seed length
λ, and using λ · 2O(n) + O(n5 ·M) bits of communication.

Given a Boolean circuit C computing a function f , a constant depth arithmetic circuit
with O(c) gates over a field of characteristic 2 that computes a garbled circuit of C can
be constructed as in [DI05]. Using the protocol constructed in the above theorem to
evaluate this circuit, we get the following result:

Corollary 8.2. Let f be an n-party functionality computed by a Boolean circuit C with
M gates. Then, for any t < n/3, there is an (n, t,O(1))-layered MPC protocol for f with
computational t-security against a static malicious adversary and perfect correctness
making black-box use PRG with seed length λ, and using λ · 2O(n) + O(n5 · M) bits of
communication.
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8.8 Layered Broadcast

The definition of layered MPC (Definition 8.1) assumes layer-to-layer broadcast. This turns
out to be a necessary since deterministic broadcast is impossible in the layered setting
even if only considering a fail-stop adversary. [Gar94] also explored the relation between
an adversarial mobility and the ability to reach agreement in his work on Byzantine Agree-
ment with Mobile Faults (MBA). They identified a mobile fault setting MF( t

n−1 , ρ) param-
eterized by the adversarial threshold t of all n parties and “roaming speed” ρ. Indeed,
the setting of MF(·, 1) (full “roaming speed”) is enough to render BA impossible. We now
cast the result of [Gar94] in the setting of layered MPC.

Theorem 8.13. Deterministic perfect broadcast for layered MPC is possible i� t = 0.

The proof sketch below follows the technique of [FL81]. They use equivalence classes of
executions to argue the lower bound of t+1 on the round complexity of unauthenticated
broadcast. This was later extended to the authenticated setting in the seminal work
of [DS83].

Proof Sketch. Assume the existence of a protocol Π for broadcast over a layered graph
consuming d layers i.e. with output being obtained in layer d+1 and assume for simplicity
that n = 4. Furthermore, we assume that a faulty party merely drops a subset of its
outgoing messages and will otherwise follow the protocol.

The idea is to build a chain of “equivalent” executions where each execution has at most
one faulty party in each layer and where (1) the first execution in the chain has 0 as the
unique decision value (2) the last execution has 1 as the unique decision value (3) any
two consecutive executions in the chain are indistinguishable to some honest party in
the last layer.

Let the initial execution be the case where everyone are honest and the dealer has input
0. We say that a party is “muted” if it has no outgoing messages. Switching the input of
a muted party has no e�ect on protocol execution. The crux of the proof is to show a
sequence of equivalent executions that mutes a party in S0 and flips its input to 1 and
then un-mutes it without violating requirement (3).

8.9 Basic Primitives

8.9.1 Details omitted from Section 8.3.1.2

We continue the discussion on parallel composition of fFM from Section 8.3.1.2 in the
remark below.
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Remark 8.4. When our protocol implementing fFM is composed in parallel, the resulting
functionality is not the natural parallel composition of fFM which takes the input from
each sender to each receiver and delivers them. In fact, this functionality is impossible
to realize even in the trivial case of messaging from one layer to the very next using
the provided secure communication link. As an example, suppose communication from
S1 ∈ L0 to R1 ∈ L1 and from S2 ∈ L0 to R2 ∈ L1 are composed in parallel. Now, a rushing
adversary corrupting S1 and R2 can collect the message from S2 to R2 and set this as the
message from S1 to R1. Interestingly, this limitation persists when parallely composing
our protocol for realizing fFM from L0 to Ld (even for d > 1) with t-security for t < n/3.
Interestingly, this limitation persists when parallely composing our protocol for realizing
fFM from L0 to Ld (even for d > 1) with t-security for t < n/3. We demonstrate this for
d = 2. In this case, the future messaging protocol proceeds as follows: The sender in L0

secret shares the message among the parties in L1 using a (t, n)-robust secret sharing
scheme. Parties forward the shares they received from the sender to the receiver in L2

who reconstructs the secret from the shares. Since at least n − t shares are forwarded
unchanged by the honest parties in L1 the receiver correctly recovers the message; this
follows from the secret sharing scheme being t-robust. However, a corrupt sender can
distribute invalid shares to parties in L1. This allows the corrupt parties (colluding with
the sender) to divulge shares that (together with shares forwarded by the honest parties)
reconstruct to a value of their choosing, which they could decide on after collecting the
views of corrupt parties in the next layer by rushing.

8.9.2 Proving Lemma 8.2

Lemma 8.2 (Layered protocol for f nFM). Let (Sh, Rec) be a robust (t, n) secret-sharing
scheme Definition 5.1, the (n, t, d)-layered protocol in Figure 8.4 realizes the functionality
f nFM in Figure 8.3 with perfect security for t < n/3.

Proof. We prove the security of the protocol by presenting a simulator S which, given
oracle access to f nFM from L0 to Ld , simulates the view of the adversary interacting with
the protocol in Figure 8.4.

The simulator S works in two phases: In the first phase, S emulates f nFM from L0 to
L`. Suppose the adversary corrupts I = {P`k , k ∈ I} ⊂ L`. In the protocol, as leakage
from f nFM from L0 to L`, the adversary expects (s(i ,j),k)k∈I among the shares (s(i ,j),k)k∈[n]

sampled according to Sh(m(i ,j)) for each sender Si and receiver Rj . These messages are
simulated (without knowing m(i ,j)) by sampling them according to Sh(m) for an arbitrary
member of M . On receiving this leakage, the adversary sends all messages that each
corrupt Si intends to send over f nFM from L0 to L`. The simulator now has all the values
needed to simulate the output of f nFM from L0 to L` to all corrupt parties.

In the second phase, simulator emulates f nFM from L` to Ld . For this, it first invokes f nFM

from L0 to Ld to receive the message m(i ,j) from every honest Si to every corrupt Rj . The
adversary expects (s(i ,j),k)k∈I received during f nFM from L0 to L` in the first phase of the
simulation, and (s(i ,j),k)k /∈I it will receive in this phase to be jointly distributed accord-
ing to Sh(m(i ,j)). Recall that, S sampled (si ,j),k)k∈I according to Sh(m) in the previous
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phase. But, since |I | ≤ t , the simulator can patch (s(i ,j),k)k /∈I such that (s(i ,j),k)k∈[n] is dis-
tributed according to Sh(m(i ,j)); this follows from t-privacy of (Sh, Rec). After resampling
(s(i ,j),k)k /∈I , the simulator can safely provide the leakage from f nFM from L` to Ld . At this
point, the adversary reveals the set of all messages that each corrupt P`k intends to send
over f nFM from L` to Ld .

The simulator now holds all the messages that are needed to compute the messages
from every corrupt sender to every receiver (corrupt or honest). Hence, it can extract the
appropriate inputs that the corrupt parties need to input to f nFM from L0 to Ld . It remains
to argue that, for any honest Si and honest Rj , the output of Rj in the protocol coincides
with the input of Si . This follows from t-robustness of (Sh, Rec) since each s(i ,j),k sent by
Si via an honest P`k (there are at least n − t of them) correctly reaches Rj .

Formally, consider any layered adversary A that non-adaptively corrupts a set of parties
I ⊂ L` such that |I| ≤ t and interacts with parties executing Πn

FM. We will show that, for
any input m(i ,j) ∈ M, i , j ∈ [n],

EXECf nFM,S,I(m(i ,j), i , j ∈ [n]) ≡ EXECΠn
FM,A,I(m(i ,j), i , j ∈ [n]). (8.1)

Here, we used the notation from [Can00] to denote the joint distribution of the honest
parties’ outputs and the output of the adversary. When input to Π is (x1, ... , xn), the
random variable EXECΠ,A,I(m′1, ... ,m′n) is the vector

EXECΠ,A,I(m′1, ... ,m′n) = (ADVRΠ,A,I(m′1, ... ,m′n),

EXECΠ,A,I(m′1, ... ,m′n)1,

...

EXECΠ,A,I(m′1, ... ,m′n)n )

where ADVRΠ,A,I(m′1, ... ,m′n) is the output of A, and, EXECΠ,A,P(x1, ... , xn)i is the output
of party Pd

i for each i ∈ [n] at the end of the interaction between Π invoked with input
(x1, ... , xn) and A.

Simulator S works as follows:
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Simulator S for the protocol in Figure 8.4

Public parameters: Senders S1, ... , Sn ∈ L0, receivers R1, ... , Rn ∈ Ld

where d > 0.
Additional inputs to the simulator: Set of corrupt parties I , and

oracle access to adversary A.

1. Emulating f nFM from L0 to L`.
a) For each honest Si , S samples (s(i ,j),1, ... , s(i ,j),n) according to Sh(m) for every

Rj , j ∈ [n]. Here, m is an arbitrary member of M . For each corrupt P`k , S leaks
(s(i ,1),k , ... , s(i ,n),k) to A as message that Si intends to send to P`k over f nFM.

b) For each corrupt Si and each P`k , S receives (s(i ,1),k , ... , s(i ,n),k) from A as the
message that Si intends to send to party P`k over f nFM.

c) Finally, for each corrupt P`k , S delivers (s(i ,1),k , ... , s(i ,n),k) to A as message from
Si , i ∈ [n] to P`k over f nFM.

2. Emulating f nFM from L` to Ld .
a) For each honest Si and corrupt Rj , S receives the message m(i ,j) that Si intends

to send to Rj as leakage from f nFM from L0 to Ld .
b) Let I ⊂ [n] such that P`k is corrupt if and only if k ∈ I . For each honest Si and

corrupt Rj , resample (s(i ,j),k))k /∈I such that (s(i ,j),k))k∈[n] is distributed according
to Sh(m(i ,j)). Such a “patching” is possible by t-privacy of (Sh, Rec).

c) For each honest P`k and corrupt Rj , S delivers (s(1,j),k , ... , s(n,j),k) to A as mes-
sage that P`k intends to send to Rj over f nFM.

d) For each corrupt P`k , S receives (s(1,j),k , ... , s(n,j),k) from A as message P`k in-
tends to send to each Rj , j ∈ [n] over f nFM. S updates the values of each s(i ,j),k

that was changed in this step.
e) For each P`k ∈ L` and corrupt Rj , S delivers (s(1,j),k , ... , s(n,j),k) as message from
Pc
k to Rj over f nFM.

3. For each corrupt Si , compute m(i ,j) = Rec(s(i ,j),1, ... , s(i ,j),n) as the message for Rj .
Simulator sends m(i ,j) to f nFM (from L0 to Ld ) as the message Si intends to send to
Rj . Finally, S outputs whatever A outputs.

Figure 8.20: Simulator S

We now argue that S satisfies Eq. (8.1). We separately analyze the outputs of honest
parties and view of the adversary in both scenarios.

In the protocol, an honest Rj outputs Rec(ŝ(i ,j),1, ... , ŝ(i ,j),n) as the message from a sender
Si . In the simulation, output of Rj is the input of an honest Si , but if Si is corrupt, it is
Rec(ŝ(i ,j),1, ... , ŝ(i ,j),n) (as chosen by S). In both scenarios, ŝ(i ,j),k coincides with s(i ,j),k sent
by Si to P`k over f nFM from L0 to L` if P`k is honest, and with ŝ(i ,j),k sent by P`k to Rj over f nFM

from L` to Ld if P`k is corrupt. This directly implies that the output of Rj in both scenarios
coincide when Si is corrupt. When Si is honest, (s(i ,j),1, ... , s(i ,j),n) are shares of its input
and ŝ(i ,j),k coincides with s(i ,j),k for at least n − t distinct values of k (since there are at
most t corrupt parties in L`). Hence, by the robustness of the secret sharing scheme, the
output of Rj coincides with the input of an honest Si .

The view of A consists of the messages sent by corrupt parties in L0, messages sent and
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received by corrupt parties inL` and the messages received by corrupt parties inLd . Note
that, in step 3.(a). of the simulation, (s(i ,j),1, ... , s(i ,j),n) is sampled according to Sh(m(i ,j))
for any honest Si and corrupt Rj . Using this observation, and inspecting the protocol
and its simulation, we conclude that the view accumulated by A in both scenarios di�er
only in the joint distribution of messages sent by each honest Si to corrupt parties in
L` which they are expected to forward to honest receivers. Formally, the di�erence is in
the generation of the joint distribution of (s(i ,j),k) for triples (i , j , k) such that Si , Rj are
honest and P`k is honest. In the protocol, honest Si samples (s(i ,j),1, ... , s(i ,j), n) according
to Sh(m(i ,j)) for (honest) Rj and sends s(i ,j),k to the corrupt party P`k . Whereas, in the
simulation, for each honest Si and honest Rj , S samples (s(i ,j),1, ... , s(i ,j), n) according to
Sh(m) (for some arbitrary m) and sends s(i ,j),k to the corrupt party P`k . But, there are at
most t corrupt parties in L`. Since the secret sharing scheme is t-robust, any set of t
shares is identically distributed irrespective of the secret. Hence, we conclude that the
distribution of the view of A (jointly, with outputs of honest parties) coincide in both
scenarios, concluding the proof.

8.10 Layered MPC based on CNF Secret Sharing

8.10.1 Proof of Lemma 8.4

Lemma 8.4. For any T ∈ T , the following properties hold for any weak future multicast
protocol with UT as intermediaries when executed in the presence of any adversary A:

(a) There exists r̂ such that all honest receivers in R output r̂ at the end of the protocol.
Furthermore, if S is honest, r̂ = r .

(b) If S, and all intermediaries and receivers are honest, for any r , r ′ ∈ M ,

ADVRΠ,A(r) ≡ ADVRΠ,A(r ′).

Proof. By Lemma 8.3:(1), every honest party in L3 computes the same output at the end
of ΠAdd. Hence, all (n− t or more) honest parties broadcasts a complaint (or refrain from
doing so) in unison. In the former case, all receivers get r̂ = Rec(r̂1, ... , r̂n) from each
honest party in L4 and output the unique value sent by at least n − t parties. Thus, all
honest receivers output r̂ . When S is honest, by Corollary 8.1:(1), in every ΠFM initiated in
step (i).2 of Πweak-FMcast from S to P3

i , the output r̂i coincides with sender’s input ri . Hence,
each P4

j , j ∈ [n] receives r̂i = ri from each honest P3
i in the previous level. Consequently,

r̂ = Rec(r1, ... , rn) = r by t-robustness of the secret sharing scheme. Thus, (a) holds in
this case.

Suppose all honest parties in L3 refrain from registering complaints. Each receiver in R
gets (r̂ ji , j ∈ [n]) from every honest P4

i and computes the output according to step (v).2.
By Corollary 8.1:(1), in each ΠFM (initiated in step (ii).2) from an honest sender P1

j to an
honest receiver P4

i , the output r̂ ji coincides with the input r ji . Hence, by t-robustness of
secret sharing, all honest receivers correctly recover Rec(r̂ j1, ... , r̂ jn) = r j for each honest

172



Chapter 8 Layered MPC [DKI+23]

P1
j . Furthermore, if every honest party in layer 3 refrains from registering a complaint,

then the output of ΠAdd computing r j−r j
′ must have been zero for every pair j , j ′ ∈ T . By

Lemma 8.3:(1), this specifically implies that r j and r j
′ are identical for any pair of honest

parties P1
j and P1

j ′ . Thus, there exists r ′ such that r j = r ′ for all honest P1
j . Finally, when S

is honest, r ′ coincides with r , the input of S. Since the set of n−2t or more honest parties
forms a majority of the intermediaries, all honest receivers output r ′. This concludes the
proof of (a).

Before proving (b), we informally argue that the sender’s secret is not leaked when in-
termediaries and receivers are honest. Assume that the statements about security of
ΠFM and ΠAdd in Corollary 8.1 and Lemma 8.3 hold even when they are composed as in
Πweak-FMcast. Since r j = r for every intermediary P1

j , r j − r j
′

= 0 for every pair j , j ′. Con-
sequently, every honest party in L3 refrain from broadcasting a complaint. Hence, the
view of A interacting with Πweak-FMcast with honest sender, intermediaries and receivers
consists of the shares of r sent to the corrupt parties in L3 by S using ΠFM in step (i).2,
and the shares of r j(= r) sent to corrupt parties in L4 by P1

j using ΠFM initiated in step
(ii).2. But, since the secret sharing scheme is t-secure, these shares do not reveal any
information about r to the adversary. Thus, r remains private from the adversary.

We proceed to formally prove Lemma 8.4:(b) using a hybrid argument. Fix r , r ′ ∈ M where
r 6= r ′. Let Θ (resp. Θ′) be the protocol Πweak-FMcast with UT = {P1

i : i ∈ T} as intermedi-
aries and r (resp. r ′) as input of S as described in Figure 8.8. We progressively transform
Θ to obtain Θ′ and argue that the adversary’s view is identically distributed across each
of these transformations, proving (b).

Transformation Θ → Θ1. Suppose w.l.o.g. suppose P3
i is honest if i ∈ [k], where

k ≥ n − t . Consider a sequence of protocols (Θ0,i )0≤i≤k , where Θ0,0 is identical to Θ.
For i ≥ 1, Θ0,i is obtained by replacing (r1, ... , rn) in step (i).2 with (r ′1, ... , r ′i , ri+1, ... , rn),
where (r ′1, ... , r ′k , rk+1, ... , rn) is distributed according to Sh(r ′). Note that (r ′1, ... , r ′k) can
be sampled in this manner since the secret sharing scheme is t-secure and k ≥ n − t .
Finally, define Θ1 = Θ0,k . Notice that, in Θ1, S sends a secret sharing of r ′ in step (i).2.
The following claim su�ces to prove that

ADVRΘ,A(⊥) ≡ ADVRΘ1,A(⊥). (8.2)

Here the argument is ⊥ because neither protocols take any inputs.

Claim 8.1. For any 1 ≤ ` ≤ k ,

ADVRΘ0,`−1,A(⊥) ≡ ADVRΘ0,`,A(⊥).

The only di�erence between Θ0,`−1 and Θ0,` is that the sender’s input in the instance
` of ΠFM from S to P3

` is r` in the former and r ′` in the latter. Since the sender and all
intermediaries are honest, as we previously observed, all honest parties inL3 refrain from
broadcasting a complaint and, more importantly, refrain from broadcasting the output
of ΠFM from S initiated in step (i).2. We will show that, if Eq. (8.2) does not hold, then
Corollary 8.1:(2) is not satisfied for ΠFM from S to P3

` ; a contradiction.
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Adversary A′ with auxiliary input {ri , i ∈ [n]}, {r ′i , i ∈ [k]} non-adaptively corrupting the
same set of parties that A corrupted in L1 and L2 interacts with an execution of ΠFM

from honest S to honest P3
i as follows:

• Let Ii ⊂ Li , 0 ≤ i ≤ 5 be the set of parties corrupted by A. A′ generates dummy
corrupt parties Ii = {P i

j : P i
j ∈ Ii , i ∈ {0, 3, 4, 5}} and initialize their random tapes.

• A′ hands over the control of corrupt parties Ii , i = 1, 2 and dummy corrupt parties
Ii , i ∈ {0, 3, 4, 5} to A which it internally invokes. A′ also generates dummy honest
parties Hi = Li \ Ii for each 0 ≤ i ≤ 5.

• Using the values of ri , r ′i , A′ emulates dummy honest parties Hi for each 0 ≤ i ≤ 5
executing Θ0,`−1 and interacts withA. However, it does not emulate the instance of
ΠFM from S to P3

` initiated in step (i).2. of Θ0,`−1. Instead, A′ interacts with the real
execution of ΠFM in parallel, and forwards the messages from (and to) the honest
parties in the real execution to (and from) the corrupt parties I1 ∪ I2 who A′ has
handed over to A. We stress that the output of real P3

` at the end of the execution
ΠFM from S to P3

` is not needed by A′ for this emulation. This is because, in Θ0,`−1

all honest parties, specifically P3
` , refrains from revealing the output of ΠFM from S

(from step (i).2).

• At the end of Θ0,`−1, A′ outputs whatever A outputs.

In the instance of ΠFM from S to P3
` in step (i).2, if the input S is r`, the above interaction

is identical to the interaction with parties executing Θ0,`−1 for adversary A corrupting
Ii , 0 ≤ i ≤ 5. This can be verified as follows: In the former, all instructions in Θ0,`−1

except the ones that are part of ΠFM from S to P3
` are carried out by dummy honest

parties and corrupt parties controlled by A. Whereas, in the latter, they carried out by
the real honest parties and corrupt parties controlled by A. But, A′ emulates all the
dummy parties honestly using freshly chosen randomness in the former case just as the
honest parties will in the latter case. Thus,

ADVRΠFM,A′(r`) ≡ ADVRΘ0,`−1,A(⊥).

As previously observed, Θ0,`−1 and Θ0,` di�er only in the input of the sender in ΠFM from
S to P3

` . Hence, in the instance of ΠFM from S to P3
` in step (i).2, if the input S is r ′`, the

above interaction is identical to the interaction with parties executing Θ0,` for adversary
A corrupting Ii , 0 ≤ i ≤ 5. Thus,

ADVRΠFM,A′(r
′
`) ≡ ADVRΘ0,`,A(⊥).

But, since S and P3
` are honest, by Corollary 8.1,

ADVRΠS,A′(m
′
j) ≡ ADVRΠj ,A(⊥).

This concludes the proof of the claim.

Transformation Θ1 → Θ2. We construct Θ2 from Θ1 by setting r j = r ′ (instead of r j = r )
for each party P1

j in step (ii).1. Intuitively, since all intermediaries are honest, parties in
L3 only learn r j − r j

′ , and hence the view of A will be identical in both cases. To formally
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prove this, we again consider a sequence of hybrids which progressively transforms Θ1 to
Θ2. In every new hybrid, we change the inputs used by a new pair of honest partiesP1

j ,P1
j ′

(j < j ′) to ΠAdd for computing r j − r j
′ (in step (i).1) from r j = r ,−r j = −r , respectively, to

r j = r ′,−r j = −r ′. Clearly, the final protocol in this sequence is exactly Θ2. The di�erence
between any pair of consecutive hybrids is the replacement of the inputs of a specific
pair of honest parties P1

j ,P1
j ′ (j < j ′) to ΠAdd from r j = r ,−r j = −r , respectively, to

r j = r ′,−r j = −r ′. We argue that the view ofA remains identically distributed across any
pair of consecutive hybrids by appealing to Lemma 8.3 using the same line of arguments
as in the above claim. We thus obtain,

ADVRΘ1,A(⊥) ≡ ADVRΘ2,A(⊥). (8.3)

Transformation Θ2 → Θ3. To obtain Θ3 from Θ2, for each i ∈ T , we replace (r i1, ... , r in)
in step (ii).2 with (s i1, ... , s in), where (s i1, ... , s in) is distributed according to Sh(r ′) and r ij = s ij
for each j such that P4

j ∈ L4 is corrupt. This is possible since the secret sharing scheme
is t-secure and there are at most t corrupt parties in L4. Arguing that the adversary’s
view remains the same across this transformation is similar to arguing the same for
transformation from Θ0 to Θ1. We thus obtain,

ADVRΘ2,A(⊥) ≡ ADVRΘ3,A(⊥). (8.4)

Θ3 can be transformed to Θ′ by replacing r with r ′ in step (i).1. Note that this does not
make any di�erence to the step (ii), which has already been modified to replace r with
r ′. Thus, from Eqs. (8.2) to (8.4), we conclude that

ADVRΘ,A(⊥) ≡ ADVRΘ′,A(⊥).

This proves (b) concluding the proof.

8.10.2 Constructing S for Theorem 8.2

Theorem 8.2. There is a secure (n, t, 5)-layered protocol realizing future multicast with
input client S and output clients in R .

Proof. When S is corrupt, S emulates the honest parties according to the instructions in
ΠFMcast and interact with the adversary. Observe that none of the honest parties have
inputs since S is the only party with input. For each T ∈ T , S extracts an input rT of S
in Πweak-FMcast with intermediaries UT as described below: We observed in the proof of
statement (a) of Lemma 8.4 that, at the end of Πweak-FMcast, all receivers output r̂ com-
puted in step (iv).1 of the protocol if all the honest parties in L3 broadcasted a complaint,
and otherwise–i.e., if no honest party in L3 broadcasted a complaint–all receivers output
the unique value that was received by all honest intermediaries. Hence, if all emulated
honest parties in L3 broadcasted a complaint, S chooses rT to be r̂ (computed by em-
ulated honest parties), and otherwise it choose rT as the unique value received by all
emulated honest intermediaries. Finally, it sends

∑
T∈T rT to fFMcast as the input of S.

Security follows from statement (a) in Lemma 8.4.
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Next, suppose S is honest. In this case, S emulates all the honest parties and interacts
with A. For this, S sets the input of S to an arbitrary fixed message m∗ ∈ M . Since the
output of all honest receivers coincides with the input of the sender, it su�ces to show
that the output of A is identically distributed while interacting with ΠFMcast or with S .

Let T ∗ ∈ T such that UT∗ = {P1
i : i ∈ T ∗} are honest. The shares (rT ,T ∈ T \{T ∗}) used

in the simulation is identically distributed as (rT ,T ∈ T \ {T ∗}) used in ΠFMcast. This
is because, in step 1 of ΠFMcast, (rT ,T ∈ T ) is chosen to be an additive secret sharing
of the input of S. Hence, for each T ∈ T \ {T ∗}, execution of Πweak-FMcast with UT as
intermediaries in the presence of A is identical in both the simulation and in ΠFMcast.
However, in Πweak-FMcast with UT∗ as intermediaries, the input of S is m∗−

∑
T∈T \{T∗} rT

in the former and m −
∑

T∈T \{T∗} rT in the latter.

If all the receivers are honest, by statement (b) of Lemma 8.4, the view of the adversary in
Πweak-FMcast with UT∗ as intermediaries is identical in both the simulation and in ΠFMcast,
proving security.

However, when there are corrupt parties in R , the view of A additionally contains the
view of the corrupt receivers. The view of corrupt receivers in Πweak-FMcast with UT∗ as
intermediaries needs to be made consistent with rT∗ = m−

∑
T∈T \{T∗} rT even though S

chose rT∗ = m∗−
∑

T∈T \{T∗} rT in the simulation. To ensure this, S tweaks the messages
from the emulated honest parties inL4 to the corrupt receivers in R as follows: S receives
the input m of S from fFMcast. In Πweak-FMcast, for each intermediary P1

i ∈ UT∗ , S samples
(r̂ i1, ... , r̂ in) according to distribution Sh(m −

∑
T∈T \{T∗} rT ) conditioned on r̂ ij = r ij for

each j such that P4
j in L4 is corrupt. This is possible since the secret sharing scheme is

t-secure and there are at most t corrupt parties in each layer. In step (iv).2 (note that
parties choose this step since all intermediaries and S are honest as observed in the
proof of Lemma 8.4), each emulated honest party sends r̂ ij instead of r ij . This ensures
that the view of corrupt receivers in Πweak-FMcast with UT∗ as intermediaries is consistent
with the input of S. This concludes the proof.

8.10.3 Constructing S for Theorem 8.3

Theorem 8.3. The protocol in Figure 8.10 executed in parallel realizes fparallel-VSS with per-
fect t-security for t < n/3 by consuming 5 layers, and by communicating

(n
t

)3 ·O(n2) field
elements over the point-to-point channels and over the broadcast channels for each
secret.

Proof. We now formally describe the simulator. The parallel VSS protocol with P0
i as

dealer consists of |T | parallel multicast protocols. For T ∈ T , dealer multicasts r iT to
receivers P5

j , j ∈ T . The simulator emulates all the honest parties in each of these multi-
cast protocols and interacts with the adversary. For this, each honest dealer (the honest
dealers are the only honest parties with input) are initialized with uniformly random in-
puts for every multicast in which they act as sender. For each corrupt dealer P0

i , the
simulator extracts r̂ iT as the input in the multicast from P0

i to receivers P5
j , j ∈ T for

each T ∈ T . The simulator then sets (r̂ iT )T∈T as the input of corrupt P0
i to fparallel-VSS.
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We now argue that the view of the adversary is identically distributed when interacting
with the simulator and with honest parties executing the protocol for parallel VSS. Sup-
pose P5

j , j ∈ T ∗ are honest (such T ∗ exists since the adversary corrupts at most t parties
in each layer) and let T ∗ = T \{T ∗}. For any honest dealerP0

i and any input to the dealer,
the additive share r iT∗ of the input is sent only to honest receivers. Since the additive
shares (r iT )T∈T ∗ are uniformly distributed, the only di�erence between the real proto-
col and the simulation is that honest P0

i with input m uses r iT∗ = m −
∑

T∈T ∗ r
i
T in the

real execution, whereas it uses r iT∗ = m∗ −
∑

T∈T ∗ r
i
T in the simulation, where m∗ is the

arbitrary input that the simulator assigns to P0
i . Thus, security amounts to showing that

the view of the adversary is identically distributed in the multicast protocol with honest
sender and receivers irrespective of sender’s input, which follows from Theorem 8.2:(b).
Note that, this can be shown to hold for several parallel executions of multicasts using a
hybrid argument in which the inputs in the multicast protocols are progressively changed
one at a time to move from one set of inputs to a di�erent set of inputs to the senders
in the parallel multicasts. Finally, it needs to be shown that the extracted inputs for the
corrupt parties are independent of the shares chosen by the honest parties in VSS. This
follows from the fact that the view of corrupt parties in L0, ... ,L4 does not reveal the
message that an honest sender multicasts to corrupt receivers and shown in the proof
of Theorem 8.2.

8.10.4 Details omitted from Section 8.4.3

A t-secure protocol for multiplication in the standard setting

Inputs: Party Pi , i ∈ [n] has inputs (ri , si ), where (ri )i∈[n] and (si )i∈[n] are
CNF secret shares of r and s , respectively.

Definitions: Let T = {T1, ... ,TN} = {T ⊂ [n] : |T | = n − t}.
For each i ∈ [n], si = (γj : i ∈ Tj , j ∈ [N])
and ri = (λj : i ∈ Tj , j ∈ [N]), where

∑
j∈[N] γj = r and

∑
j∈[N] λj = s .

1. Party Pi , i ∈ [n] verifiably shares γj · λj′ for each (j , j ′) such that Pi has both γj and
λj′ . Party Pi has γj (resp. λj ) if i ∈ Tj .

2. For each (j , j ′) ∈ [N]× [N], let Pi , i ∈ I be the set of parties that secret shared γj ·λj′ .
Fix i∗ ∈ I ; for all i ∈ I , i 6= i∗, publicly check if VSS of γj · λj′ provided Pi∗ and Pi are
equal. This amounts to securely computing the di�erences between the values CNF
shared by both parties. If true, take the VSS provided by Pi∗ as the secret sharing
of γj · λj′ . Otherwise, disclose γj and λj′ by having all parties reveal γj and λj′ . The
secret sharing of γj · λj′ is trivially computed from γj · λj′ .

3. Each party computes its share of r · s as the sum of their respective shares of γj ·λj′
for all j , j ′ ∈ [N]× [N].

Figure 8.21: A t-secure protocol for multiplication

8.10.5 Proof of Lemma 8.5

Lemma 8.5. For any j , j ′ ∈ [N], the following properties hold for Πj ,j ′ when executed in
the presence of an adversary A:
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(a) There exists (δk)k∈[N] such that
∑N

k=1 δk = λjγj ′ , and each honest party P7
i , i ∈ [N]

outputs (δk)k:i∈Tk
at the end of Πj ,j ′ .

(b) Suppose parties P0
i , i ∈ H are honest, then for any a, b, a′, b′,

ADVRΠj ,j′ ,A(γj = a,λj ′ = b) ≡ ADVRΠj ,j′ ,A(γj = a′,λj ′ = b′).

Proof. By the linearity of CNF secret sharing, and its t-robustness, all honest parties in
L6 obtain the same value for

∑
l∈[N] δl − (γλ)i for each i 6= i∗. Hence, all (n − t or more)

honest parties broadcasts a complaint (or refrain from doing so) in unison. In the former
case, all honest parties in L7 recover γ = γj and λ = λj ′ . This can be seen as follows:
all parties in L7 receive (γ i ,k)i∈Tj

and (λi ,k)i∈Tj′ from each party in P6
k , k ∈ [n]. Since

there are at most t corrupt parties in L6, by t robustness of (Sh, Rec), γ i computed as
Rec(γ i ,1, ... , γ i ,n) coincides with γ for each i such that P0

i is honest. Since there are at
least n − 2t(> t) honest parties among P0

i , i ∈ Tj , all honest parties correctly recover
γ. Similarly, all honest parties recover λ. But then, all honest parties choose δk = γλ if
k = 1 and δk = 0 otherwise. Thus, (a) holds in this case.

When all honest parties in L6 refrain from registering complaints, we will show that∑N
l=1 δl = γλ. Furthermore, each party P7

i in the output layer correctly recover δk for
each k such that i ∈ Tk . These two observations directly imply (a). We justify the first
observation as follows: since |I | = |Tj ∩ Tj ′ | ≥ t + 1, there exists î ∈ I such that party
P0
î

is honest, and hence correctly carries out VSS. Thus, depending on the value of î ,
either

∑N
l=1 δl = γλ (when î = i∗) or (λγ)î = γλ (when î 6= i∗). In either case, we get∑N

l=1 δl = γλ, since all honest parties in L6 refrain from registering complaints only if,

N∑
l=1

δl − (λγ)i = 0,∀i ∈ I , i 6= i∗.

For each k such that i ∈ Tk , party P7
i , i ∈ [n] correctly receives a CNF share of δk from

each honestP5
j via Future Messaging (see step (ii).2). P7

i can correctly reconstruct δk from
these shares; this follows from CNF VSS being t-robust and the number of corruption is
L5 being at most t . This concludes the proof of (a).

Before proving (b), we informally argue that Πj ,j ′ does not leak γ and λ when P0
i is honest

for each i ∈ I . Observe that, when parties P0
i for all i ∈ I are honest, irrespective of the

value of γ and λ,
N∑
l=1

δl − (λγ)i = 0,∀i ∈ I , i 6= i∗.

Hence, each honest party P6
k refrains from broadcasting a complaint, or broadcasting

(γ i ,k)i∈Tj
and (λi ,k)i∈Tj′ . Assume that the statements about security of ΠFM and ΠVSS

hold even when they are composed as in Πj ,j ′ . Then, the view of A interacting with Πj ,j ′

consists of

1. The shares of λ and γ sent to the corrupt parties in L6 by parties P0
i , i ∈ Tj and

P0
i , i ∈ Tj ′ using Future Messaging in step (i).2 and (i).3, respectively.
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2. Let P7
i , i ∈ C7 be the corrupt parties in L7. Each corrupt party P7

i receives CNF
shares of δk for each k such that i ∈ Tk from parties in L5 via Future Messaging
initiated in step (ii).2. From this, A can recover δk for each k ∈ [N] \ {k∗}, where k∗

such that Tk∗ ⊆ [n]\C7. There exists such a k∗ ∈ [N] since |C7| ≤ t and {T1, ... ,TN}
consists of all subsets of [n] of size n − t .

3. View of corrupt parties in L6 during the secure computation of
∑N

l=1 δl − (λγ)i for
each i ∈ I , i 6= i∗.

Here (1) does not reveal γ and λ since (Sh, Rec) is a t-secure secret sharing scheme and
there are at most t corrupt parties in L6. Since δ1, ... , δN are sampled to be additive secret
shares of γλ, (δ)k∈[N]\{k∗} revealed to adversary in (2) are uniformly random irrespective
of the value of γλ. Finally, since each P0

i , i ∈ I , i 6= I ∗ provides a fresh VSS of γλ to L5

and
∑N

l=1 δi = γλ, irrespective of the value of γλ and (δk)k∈[N]\{k∗}, the view of parties
in L6 during secure computation of

∑N
l=1 δi − (λγ)i is distributed like the CNF VSS of

0, independently, for each i ∈ I \ {i∗}. Thus, the view of the adversary is identically
distributed irrespective of the value of γ and λ, proving (b).

We proceed to formally proving (b) using a hybrid argument. Fix a, b, a′, b′. Let P7
i , i ∈ C7

be the corrupt parties in L7 and let k∗ ∈ [N] such that Tk∗ ∩C7 = ∅. Let Θ be the protocol
obtained from Πj ,j ′ when (γ,λ) is set to (a, b) in every step of the protocol. Let Θ′ be the
protocol obtained from Πj ,j ′ when (γ,λ) is set to (a′, b′) in every step of the protocol. We
progressively transform Θ to obtain Θ′ and argue that the adversary’s view is identically
distributed across each of these transformations, proving (b).

Transformation Θ → Θ1. Θ1 is obtained from Θ by setting γ to a and λ to b in steps
(i).2 and (i).3, respectively. As we already observed, since P0

i is honest for each i ∈ I , each
honest party Pa+6

k refrains from broadcasting a complaint, or broadcasting (γ i ,k)i∈Tj
and

(λi ,k)i∈Tj′ . Hence, the view of the adversary in Θ and Θ1 are identical; this uses the same
line of argument used for the transformation from Θ to Θ1 in the proof of Lemma 8.4.

Transformation Θ1 → Θ′. Θ′ is obtained from Θ1 by making the following replace-
ments in step (i).1: P0

i∗ verifiably secret shares δk∗ − (ab) + (a′b′) instead of δk∗ (δk for
k 6= k∗ remain unchanged); for each i ∈ I , i 6= i∗, P0

i verifiably secret shares (a′b′) in-
stead of (ab). Since (δk)k∈[N]\{k∗} along with δk∗ − (ab) + (a′b′) forms an additive secret
sharing of (a′b′), Θ′ is Πj ,j ′ with (γ,λ) set to (a′, b′). By inspecting the protocol, appealing
to security of ΠVSS and ΠFM, it is easy to see that the view of A is identically distributed.
This proves (b) concluding the proof.
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8.11 Layered MPC based on Shamir Secret Sharing

8.11.1 Details omitted from Section 8.5.1

8.11.1.1 Proof of Lemma 8.6

Lemma 8.6. The following properties hold for an execution of Π in the presence of a
layered adversary A:

(a) Let G ⊆ [n] such that P1
i is honest if and only if i ∈ H1. There exist polynomials

ĝ(x) and ĝi (x), i ∈ H1, each of degree at most t , such that ĝi (0) = ĝ(i) and αk
i

output by each honest party P5
k coincides with ĝi (k). Furthermore, if S is honest,

ĝ(x) = F (x , 0).

(b) If S is honest, for any r , r ′ ∈ F,

ADVRΠ,A(r) ≡ ADVRΠ,A(r ′).

Proof. Suppose S is honest. Then, all the polynomials received by parties in L1 are con-
sistent; i.e, fi (j) = gj(i) for all i , j ∈ [n]. For any {i , j} ∈ S , by the correctness of future
messaging, F (i , j) = gi (j) and F (j , i) = fi (j), whenever P1

i is honest. Thus, if i ∈ B (de-
fined in (iv).3), then P1

i is necessarily corrupt. Hence, revealing fi (x) and gi (x) for i ∈ B ,
provide no information to the adversary in addition to what it learned in L1. By correct-
ness of future messaging, for each i ∈ B , ĝi (x) and f̂i (x) recovered in step (v).1 coincide
with fi (x) and gi (x), respectively. Hence, for any honest P1

j , by correctness of future mes-
saging, f̂i (j) = gj(i) and ĝi (j) = fj(i). In conclusion, i ∈ B ′ ∪ B only if P1

i is corrupt. Thus,
|B ∪ B ′| ≤ t and, hence, the dealer is not disqualified. Finally, by correctness of future
messaging, for each i ∈ H1, gk

i is a valid Shamir secret share of gi (0) whenever P5
k is

honest, and gi (0) = F (i , 0) for all i ∈ H1. This proves (a) when S is honest.

Suppose S is corrupt. In step (v).3, if |B∪B ′| > t , then (a) holds with q(x) and gi (x), i ∈ H1

as zero polynomials. When |B ∪B ′| ≤ t , there exist at least t + 1 distinct i ∈ H1 such that
i /∈ B ∪ B ′.

Define H1\(B∪B ′) = H ′1. Let i , j ∈ H ′1. If fi (j) 6= gj(i) or gi (j) 6= fj(i), by correctness of ΠAdd,
{i , j} ∈ S . Furthermore, the purported F (i , j) recovered in step (iv).1 does not coincide
with fi (j) or with gj(i) if fi (j) 6= gj(i). A similar condition holds when gi (j) 6= fj(i). Hence,
in this case, {i , j} ∩ B 6= ∅; a contradiction. Hence, for every i , j ∈ H ′1, the polynomials
received by P1

i and P1
j are pairwise consistent. Additionally, since H ′1 ∩ B ′ = ∅, for every

i ∈ B , f̂i and ĝi recovered in step (v).1 satisfy f̂i (j) = gj(i) and ĝi (j) = fj(i) for all j ∈ H ′1.
Given these observations, the following claim implies that there exists a unique bivariate
polynomial F̂ (x , y) with degree at most t in both variables such that, for every i ∈ H ′1,
fi (x) = F̂ (x , i) and gi (y) = F̂ (i , y). This claim is proved in [AL17, Claim 5.3].

Claim 8.2. Let fi (x), gi (y) be polynomials of degree at most t for each i ∈ [m], where
m > t . Let αk , k ∈ [m] be distinct non-zero elements in F. If for all i , j ∈ [m], it holds
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that fi (αj) = gj(αi ), then there exists a unique bivariate polynomial F (x , y) with degree
at most t in both variables such that fi (x) = F (x ,αi ) and gi (x) = F (αi , y) for all i ∈ [m].

Finally, we need to argue that if i ∈ H1 ∩ (B ∪B ′), then also fi (x) and gi (x) are consistent
with F̂ (x , y). Suppose i ∈ H1 ∩ (B ∪ B ′) such that fi (x) 6= F̂ (x , i). Since fi (x) is of degree
at most t , there are at most t distinct j ∈ H ′1 such that fi (j) = F̂ (j , i) = gj(i). In other
words, there exists j ∈ H ′1 such that fi (j) 6= gj(i). Then {i , j} ∈ S ; but since j /∈ B ,
necessarily, i ∈ B . But then, it must be the case that f̂i and ĝi broadcasted in step (v).1
are compatible with fj(x), gj(x) for each j ∈ H ′1, otherwise, we get a contradiction. At
this point, we conclude that ĝi (0) = F (i , 0) for all i ∈ H1. Furthermore, by correctness of
future messaging, for each i ∈ H1, gk

i (0) is a Shamir share of ĝi (0) whenever P5
k is honest.

This proves (a).

We sketch the intuition behind (b). As previously observed, fi (x) and gi (x) are never
revealed if P1

i is honest. Hence, given the security of ΠAdd and ΠFM, the adversary only
learns the values of F (x , y) on the polynomials that were revealed to corrupt parties in
L1. A formal proof of (b) can be obtained by following a similar line of argument as in
proving Lemma 8.4 (b). We leave this to the reader.

8.11.2 Random secret sharing, resharing and reinforced secret sharing

Notation. In the sequel, we will use the following notations to denote secret sharing
and their manipulations.

1. Let s ∈ F and let f (x) be a polynomial of degree at most t such that f (0) = s .
Suppose s has been secret shared on layer a using f (x); i.e., each Pa

i , i ∈ [n] gets
si = f (i). We denote this “state” by 〈s, f (x)〉a.

2. We will denote the local addition of shares 〈a, f (x)〉a and 〈b, g(x)〉a by parties in
La by 〈a, f (x)〉a + 〈b, g(x)〉a. By linearity of Shamir secret sharing, that 〈a, f (x)〉a +
〈b, g(x)〉a = 〈a + b, g(x) + f (x)〉a.

3. Similarly, the local multiplication of shares 〈a, f (x)〉a by a constant α ∈ F is denoted
by α〈a, f (x)〉a. Once again, by linearity, α〈a, f (x)〉a = 〈αa,αf (x)〉a.

4. La, holding shares 〈s, f (x)〉a, can privately reveal the secret s to a designated Pb
i for

b > a by securely communicating all the shares to the party. If b > a+1, this can be
realized using future messaging. Pb

i can correctly recover s since the secret sharing
is t-robust and future messaging with honest sender can be correctly recovered.
We denote this process by (a)Pb

i
⇐ 〈a, f (x)〉.

5. La, holding 〈s, f (x)〉a, can reveal s to all parties in layer b > a by communicating
all the shares to each Pb

i , i ∈ [n]. If b > a + 1, this can again be realized using
future messaging to ensure that parties in layer c , for a < c < b, do not learn s . For
the same reason as above, all parties in Lb will correctly recover s . We denote this
process by (s)b ⇐ 〈s, f (x)〉a.
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In this section, we use verifiable secret sharing to implement several useful primitives
that we will use extensively in the secure implementation of secure multiplication and
MPC. We will develop shorthand notations of the kind defined above for each primitive
we define in this section, to facilitate cleaner and shorter representation of these steps
in the later protocols.

8.11.2.1 Random secret sharing.

We introduce random secret sharing, in which a random secret is secret shared onto
an output layer. This amounts to sampling a polynomial of degree at most t uniformly
at random, independent of the view of the adversary, and distributing its shares onto
the output layer. This primitive will function as a building block in implement the more
complex functionalities we build in this section.

Random secret sharing functionality

Public parameters: No input layer, output layer Ld , d ≥ 6.
Notation: We will denote this functionality by 〈s, f (x)〉d ← $

Functionality samples s ← F, and cl ← F for each 1 ≤ l ≤ t . Let f (x) = s +
∑t

l=1 clx
l . The

functionality delivers f (i) to Pd
i for each i ∈ [n]; i.e., distributes 〈s, f (x)〉d

Figure 8.22: Random secret sharing functionality

Implementing random secret sharing. Using verifiable secret sharing, implementing
this protocol is straight forward: We can take assistance from t+1 parties (from a previous
layer) to verifiably secret share a random secret each onto the output layer. The parties
take the sum of these shares as the sampled share. Since at least one amongst t + 1
of the parties who supplied shares is honest, and parallel VSS is secure, the sum of
these shares is guaranteed to be random independent of adversary’s view. Given that
our VSS protocol consumes 6 layers, random secret sharing with output layer d requires
the parties in d − 6 to supply random secrets. Hence, our resharing protocol works only
when the output layer is L6 or later. This does not pose a limitation since random secret
sharing is always used in L6 or later in all our implementations.
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A t-secure protocol for random secret sharing

Public parameters: Output layer Ld for d ≥ 6.
Subroutines: A t-secure protocol ΠShamirVSS that implements fShamirVSS.

1. For each i ∈ [t + 1],
a) Pd−6

i samples si ← F and ci ,l ← F for each 0 ≤ l ≤ t , and defines
fi (x) = si +

∑t
l=1 ci ,lx

l .
b) Execute ΠShamirVSS with Pd−6

i as dealer to verifiably secret share si using fi (x)
onto Ld .

2. Parties in Ld store 〈
∑t+1

i=1 si ,
∑t+1

i=1 fi (x)〉d =
∑t+1

i=1 〈si , fi (x)〉d .

Figure 8.23: A t-secure protocol for random secret sharing

The security of the protocol follows from the above discussion. In fact, the security of
parallel invocations of the VSS protocol implies that parallel invocations of random secret
sharing remain secure as well.

Theorem 8.14. Protocol in Figure 8.23 realizes random secret sharing functionality in Fig-
ure 8.22 with perfect t-security for t < n/3.

All the protocols we construct in the sequel use random secret shares in various ways. For
simplicity, we will construct and analyze them assuming that the random secret shares
are available as setup. To realize random secret sharing onto a layer using the protocol
in Figure 8.23, VSS protocols need to be invoked with dealers situated 6 layers above the
layer that requires the setup. For now, we overlook this fact and adhere to our conven-
tion of having the input client in L0 with random secret shares as setup made available
whenever necessary. This is done to keep the descriptions simple; furthermore, all such
protocols are constructed in order to be used as subroutines in the main protocol which
implements e�cient layered MPC for general function computation given in Figure 8.19.
In our final construction, we replace the setup with concurrent protocols securely the
setup and argue the security of the ensemble.

8.11.2.2 Resharing.

Going forward, in many protocols, we encounter scenarios where a value that has been
verifiably secret shared in a layer needs to be replicated in a later layer. Naively du-
plicating the same secret sharing by sending the shares to the later layer using future
messaging is clearly not secure. The adversary can corrupt t parties each in both the
layers and learn 2t shares of the secret, breaking security. The later layer needs to nec-
essarily receive a fresh resharing of the same value. The resharing functionality allows
parties in La with (a valid) secret sharing of a secret s to “handover” the secret to parties
in Lb , for any b > a, by providing a fresh secret sharing of s . The following functionality
requires that the input clients hold a valid Shamir secret sharing, and that at most t
input clients are corrupt.
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Resharing functionality

Public parameters: Output layer Ld for any d ≥ 1.
Secret inputs: 〈s, f (x)〉0.
Notation: 〈s, f ′(x)〉d ← 〈s, f (x)〉0.

1. Input clients reveal 〈s, f (x)〉0 to the functionality who reconstructs s . The
reconstruction is correct since at most t parties in L0 are corrupt.

2. Functionality samples cl ← F, 1 ≤ l ≤ t , defines f ′(x) = s +
∑t

i=1 cl , and distributes
〈s, f ′(x)〉d .

Figure 8.24: Resharing functionality

Implementing resharing. For implementing resharing, we use a setup in which t ran-
dom secrets are secret shared onto the input clients. The protocol works as follows:

A t-secure implementation of resharing

Public parameters: Output layer d ≥ 1.
Secret inputs: 〈s, f (x)〉0.
Setup: 〈αl , fl(x)〉0 ← $ for 1 ≤ l ≤ t .
Output: 〈s, f ′(x)〉d , where f ′(x) = s +

∑t
l=1 αlx

l .

1. For each i ∈ [n], execute

(s +
t∑

l=1

i lαl)Pd
i
⇐ 〈s, f (x)〉0 +

t∑
l=1

i l〈αl , fl(x)〉0

Recall that this involves the following steps:
a) For each j ∈ [n], let sj = f (j) be the share of s held by P0

j . For each 1 ≤ l ≤ t ,
let αl ,j = fl(j) be the share of αl held by P0

j . Then, P0
j sends sj +

∑t
l=1 i

lαl ,j to
Pd
i using future messaging.

b) For each j ∈ [n], Pd
i recovers s ′i ,j as the output of future messaging with P0

j as
sender. Pd

i stores Rec(s ′i ,1, ... , s ′i ,n) as their share of s .
Whenever P0

j is honest, si ,j = g(i), where g(x) = f (x) +
∑t

l=1 i
l fl(x). Since at

most t parties are corrupt, P0
j correctly recovers si = g(0) = f ′(i), where

f ′(x) = s +
∑t

l=1 αlx
l .

2. Each Pd
i stores si = s +

∑t
l=1 i

lαl as their (re)share of s .

Figure 8.25: A t-secure implementation of resharing

The correctness of the above protocol is clear from the description. Since 〈αl , fl(x)〉0 ← $
for 1 ≤ l ≤ t are randomly sampled, by linearity of Shamir secret sharing and security of
future messaging, the shares received by corrupt output clients are identically distributed
irrespective of s and f (x). Hence, the view of an adversary can be simulated even if it
knows s, f (x). Observe that, assuming the setup, the protocol necessarily implies par-
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allel future messaging. Since our future messaging protocol is secure when executed in
parallel, the resharing protocol also remains secure under parallel composition.

Theorem 8.15. Protocol in Figure 8.25 realizes the resharing functionality in Figure 8.24
with perfect t-security for t < n/3.

8.11.2.3 Reinforced secret sharing.

We next define an enhanced form of Shamir secret sharing that we will refer to as rein-
forced secret sharing. This notion is defined in [CDN15] as verifiable secret sharing, which
we defined in di�erently. We will use reinforced secret shares for securely processing the
gates during the circuit evaluation phase of our MPC protocol.

Definition 8.6. A (t, n)-reinforced secret sharing of s ∈ F consists of the following (n+ 1)
distinct Shamir secret shares:

1. Sample a polynomial f (x) of degree at most t uniformly at random under the con-
straint f (0) = s .

2. For each i ∈ [n], sample a polynomial fi (x) of degree at most t uniformly at random
under the constraint fi (0) = f (i).

3. Distribute shares 〈s, f (x)〉 and 〈f (i), fi (x)〉.

Reconstruction amounts to applying the reconstruction algorithm for Shamir secret shar-
ing on shares 〈s, f (x)〉.

We will denote a reinforced secret sharing of a secret s using f (x), (fi (x))i∈[n], as defined
above, by [[s, f (x), (fi (x))i∈[n]]].

In our constructions, we build a reinforced secret sharing of a secret from a valid Shamir
secret sharing of the same. This notion is formalized by the reinforced resharing func-
tionality described below. The functionality requires that the input clients hold a valid
Shamir secret sharing, and that at most t input clients are corrupt.
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Reinforced resharing functionality

Public parameters: Output layer Ld for any d ≥ 1.
Secret inputs: 〈s, f (x)〉0.
Notation: [[s, f ′(x), (f ′i (x))i∈[n]]]d ← 〈s, f (x)〉0.

1. Input clients (L0) reveal 〈s, f (x)〉0 to the functionality who recovers s . The
reconstruction is correct since at most t parties are corrupt.

2. Functionality samples a random polynomial f ′(x) of degree at most t conditioned
on f ′(0) = s ; for each i ∈ [n], it samples a random polynomial f ′i (x) of degree at
most t conditioned on f ′i (0) = f ′(i).

3. Functionality distributes 〈s, f ′(x)〉d , and 〈f ′(i), f ′i (x)〉d for each i ∈ [n].

Figure 8.26: Reinforced resharing functionality

Implementing reinforced resharing. Our protocol works as follows: First, the secret s is
reshared to the output clients. This involves sampling secret shares of random secrets αl

for each 1 ≤ l ≤ t and delivering si = f (i) to output client i , where f (x) = s +
∑t

l=1 αlx
l .

This is realized exactly as in our implementation of resharing (Figure 8.25). Observe that
the input clients possess a secret sharing of si for each i as well, indeed, si was revealed
to output client i by revealing the shares of si . But then, each si can be reshared onto
the output layer using the resharing protocol. This achieves reinforced resharing of s .
The security of the construction follows directly from the security of resharing. Similar
to the resharing protocol, reinforced resharing only uses parallel invocations of future
messaging protocol; hence, it remains secure under parallel composition.

A t-secure implementation of reinforced resharing

Public parameters: Output layer d ≥ 1.
Secret inputs: 〈s, f (x)〉0.
Setup: 〈αl , gl(x)〉0 ← $ for 1 ≤ l ≤ t and 〈αi ,l , gi ,l(x)〉0 ← $ for i ∈ [n] and 1 ≤ l ≤ t .
Subroutines: A t-secure protocol Πreshare that implements the resharing functionality.
Output: [[s, f ′(x), (f ′i (x))i∈[n]]]d .

1. For each i ∈ [n], define

〈si , g ′i (x)〉0 = 〈s, f (x)〉0 +
t∑

l=1

i l〈αl , gl(x)〉0.

Here, f ′(x) = s +
∑t

l=1 αlx
l and si = f ′(i) for all i ∈ [n].

2. For each i ∈ [n], execute (si )Pd
i
⇐ 〈si , g ′i (x)〉0 (See Figure 8.24 step 1).

3. For each i ∈ [n], reshare 〈si , g ′i (x)〉0 using Πreshare using 〈αi ,l , gi ,l(x)〉0 for 1 ≤ l ≤ t as
setup. For each i ∈ [n], this achieves

〈si , f ′i (x)〉d ← 〈si , g ′i (x)〉0, where f ′i (x) = f ′(i) + αi ,1x
1 + ... + .αi ,tx

t .

4. Parties in Ld store [[s, f ′(x), (f ′i (x))i∈[n]]]d .

Figure 8.27: A t-secure implementation of reinforced resharing

186



Chapter 8 Layered MPC [DKI+23]

Theorem 8.16. Protocol in Figure 8.25 realizes the reinforced resharing functionality in
Figure 8.24 with perfect t-security for t < n/3.

8.11.3 Details omitted from Section 8.5.2

We define the functionality for multiplication with helper in Figure 8.28.

Multiplication with helper functionality

Public parameters: Helper is P0
1 and output layer L9.

Input: 〈α, f0(x)〉0, 〈β, g0(x)〉0; helper P0
1 holds α,β.

1. Input clients (L0) reveal the shares of α and β to the functionality, who
reconstructs α,β. Additionally, P0

1 sends γ to the functionality.

2. If γ = αβ, functionality distributes a secret sharing of γ onto L3; i.e., 〈αβ, h(x)〉9,
where h(x) is a random polynomial of degree at most t conditioned on h(0) = αβ.
Otherwise, functionality delivers ⊥ to all parties.

Figure 8.28: Multiplication with helper functionality

The protocol for multiplication with helper is formally described in Figure 8.29.
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t-securely realizing multiplication with helper

Public parameters: Input layer L0, helper P0
1 , output layer L8.

Inputs: 〈α, f0(x)〉0, 〈β, g0(x)〉0; helper P0
1 holds α,β.

Subroutines: ΠShamirVSS and ΠReshare implementing verifiable secret sharing and
resharing functionality.
Setup: Su�ciently many random secret shares in L0 and L6 required to execute
resharing.

1. P0
1 samples αl ← F, βl ← F for each 1 ≤ l ≤ t . Define f (x) = α +

∑t
l=1 αlx

l and
g(x) = β +

∑t
l=1 βlx

l . Let f (x)g(x) =
∑2t

l=0 γlx
l . Use ΠShamirVSS with P0

1 as dealer
and L6 as shareholders, to distribute shares

〈αl , fl(x)〉6,∀1 ≤ l ≤ t 〈βl , gl(x)〉6,∀1 ≤ l ≤ t 〈γl , hl(x)〉6,∀0 ≤ l ≤ 2t

Finally, execute ΠReshare to realize

〈α, f ′0 (x)〉6 ← 〈α, f0(x)〉0 〈β, g ′0(x)〉6 ← 〈β, g0(x)〉0

2. For each i ∈ [n], reveal the following linear combinations of shares to P7
i :

(f̂ (i))P7
i
⇐ 〈α, f ′0 (x)〉6 + i〈α1, f1(x)〉6 + ... + i t〈αt , ft(x)〉6

(ĝ(i))P7
i
⇐ 〈β, g ′0(x)〉6 + i〈β1, g1(x)〉6 + ... + i t〈αt , ft(x)〉6

(ĥ(i))P7
i
⇐ 〈γ0, h′0(x)〉6 + i〈γ1, h1(x)〉6 + ... + i2t〈γ2t , ht(x)〉6

Here, f̂ (x) = α +
∑t

l=1 αlx
l , ĝ(x) = β +

∑t
l=1 βlx

l and ĥ(x) =
∑2t

l=0 γlx
l . Further,

execute ΠReshare to realize 〈γ0, h(x)〉9 ← 〈γ0, h0〉6.

3. Each P7
i , i ∈ [n] checks if f̂ (i)ĝ(i) = ĥ(i). Otherwise, broadcast a complaint.

4. For each i ∈ [n], if P7
i registered a complaint, execute public reveal as follows:

(f̂ (i))9 ⇐ 〈α, f ′0 (x)〉6 + i〈α1, f1(x)〉6 + ... + i t〈αt , ft(x)〉6
(ĝ(i))9 ⇐ 〈β, g ′0(x)〉6 + i〈β1, g1(x)〉6 + ... + i t〈αt , ft(x)〉6

(ĥ(i))9 ⇐ 〈γ0, h′0(x)〉6 + i〈γ1, h1(x)〉6 + ... + i2t〈γ2t , ht(x)〉6

Note that, f̂ (i), ĝ(i) and ĥ(i) are to be revealed only for i ∈ [n] with a registered
complaint. Since the complaints are available in L8, this can be achieved by having
each P6

i secret share their share of f̂ (i) and so on, onto L8 and then having L8

selectively reveal these shares to P9
i only for i ∈ [n] with a complaint.

5. For each i ∈ [n] with a complaint, all parties inL9 check if f̂ (i)ĝ(i) = ĥ(i) If the equal-
ity check succeeds for all complaints, then the parties store 〈γ0, h(x)〉9 as shares of
αβ.

Figure 8.29: t-securely realizing multiplication with helper
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Chapter 9

Conclusion

9.1 Discussion

This thesis explores a broad spectrum of problems but all are within the area of research
of MPC with dynamic groups. Inspired by the elegant separation of concerns suggested in
[GHK+21], we believe that (as in the standard model) one should be able to decouple the
actual protocol from the infrastructure it is built on. This thesis reflects that. Encryption
to the Future is an attempt to improve on the underlying infrastructure in this domain
not only by suggesting more e�cient (non-interactive) protocols but also by putting the
focus on the bare-bone piece of infrastructure that is needed to communicate in this
setting—much like point-to-point channels play an important role in existing standard
MPC.

The seminal work of [BGG+20] was arguably the first to (re-)open this area of research
and showed a simple protocol for a “blockchain to keep a secret”. This work allowed
a randomly selected committee to share the secret to the next committee while each
committee member speaks only once. However, the proof of correct re-sharing—that
the shares are valid and that they correspond to public ciphertext that holds an earlier
share—was taken care of by use of expensive generic NIZKs. Despite the popularity of
this line of research, no follow-up work addressed this ine�ciency even when it took on
new importance with the advent of YOSO MPC where re-sharing is even more ubiquitous.
YOLO YOSO is the first work to address this issue by proposing highly optimized proof of
correct resharing which is compatible with the existing communication infrastructure.

The last contribution, Layered MPC, sprung out of a need to unite the research of MPC with
dynamic groups with the existing literature on proactive MPC. Moreover, we discovered
that the problem of perfect MPC with G.O.D. and optimal corruption threshold remained
open in both areas of research. We observed that non of the existing models on MPC
with dynamic groups supported our investigation i.e. protocols in these models did not
exhibit the necessary implications for the proactive model. The design of Layered MPC is
an attempt to distill the essence of MPC with dynamic groups but can be relaxed in ways
that mimics other models [CGG+21,GHK+21,AHKP22]. Layered MPC supports the recurring
theme in this thesis of decoupling protocols and underlying infrastructure. The model
assumes secure point-to-point (and broadcast) channels between nodes forming a lay-
ered communication network. Since the model is really just standard MPC with restricted
interaction pattern, protocols in this model can be analyzed within well-established se-
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curity frameworks such as UC. Finally, it has interesting implications for a much older
area of cryptographic research, namely, proactive MPC [OY91].

Permissionless blockchains have given new life to the research area of MPC with dynamic
groups. Earlier, the main motivation was resilience towards a powerful adversary but now
the dynamism also enables support for a high churn rate among nodes and allows for
even a small resource commitment from a node to contribute to the overall computation.
As a testament to this fact one need only to observe the number of new models that,
within the last few years, have been designed to support this area of research; Fluid
MPC [CGG+21], YOSO MPC [GHK+21], SCALES [AHKP22] and now Layered MPC [DKI+23]. Why
is it so hard to agree on a model for this area? One reason might be that the research on
permissionless blockchains is itself in active development so all the models above are
basically built on shifting sand. Another factor could be that modelling is just incredibly
challenging and that it might take decades to converge toward a coherent model that
suit most protocol designers. After all, this is what happened with the standard model
of cryptography [GL91,Bea92b,MR92,Can00,Can01].

9.2 Future Work

Below, we o�er a list of future work and interesting areas to explore in the realm of MPC
with dynamic committees.

• Statistical Layered MPC: In the work on layered MPC we propose a protocol for per-
fect security with G.O.D. and tolerated corruption threshold of t < n/3. Moreover, we
sketch a protocol that achieve computational security (relying only on homomor-
phic commitments) with tolerated corruption threshold of t < n/2. What remains
for a full characterization of feasibility in Layered MPC is protocol that captures the
feasibility in the statistical setting. Interestingly, one of the first protocols in the
YOSO model [GHK+21] proved secure in the statistical setting. However, this proto-
col are not directly “portable” to the layered MPC setting due to absence of ideal
target-anonymous channels to arbitrary future committee members. It is interest-
ing to revisit this problem of statistical Layered MPC and investigate the possibility
of achieving security in an honest majority setting.

• The power of Encryption to the Future: Due to the probabilistic nature of role
assignment in YOSO MPC no protocol can obtain optimal threshold with constant
t and n (even assuming large committee sizes). In the e�ort of transforming exist-
ing secure YOSO MPC protocols to secure Layered MPC protocols, it became clear
that this is not the only thing that separates the two models. The ability to send
messages to committee members (and have the sender being committed to this
message) in a larger future horizon is another big di�erentiator. From the work on
EtF we already have an idea about the strong assumptions necessary to construct
the primitive that support “far-future” EtF. However, this was only studied at the
level of the primitive and not in the context of protocols using EtF. It is interesting
to explore and quantify the power that ideal channels to (far)-future committee
members provide to protocols that use them.
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• Forward Secure Encryption to the Future: In the YOSO model it is assumed that
when a party has spoken on behalf of its role, it will then never speak again. But
even in a blockchain setting nodes may stay around for longer periods of time and
want to contribute in more than just a single round. This idea is also supported by
the work of Fluid MPC setting which allows parties to commit to more than a single
round. The communication in these models (including EtF) is constructed by allow-
ing ciphertexts to be posted on a PoS blockchain ledger. However, this introduces
a grave issue pertaining to forward security: If a party is corrupted at some point in
the future, the adversary can readily access and decrypt all ciphertexts for which
this party was elected as receiver in the past (including all of those in the future). It
is interesting to research the possibility of leader election using key-evolving VRFs
and let that define the specific lottery predicate in the EtF construction. Potentially,
this could provide a useful combination of EtF with key-evolving properties.

• Unification of dynamic Models: Apart from the usual suspects of models of MPC
based on dynamic committees [CGG+21, GHK+21] and corresponding derivative
models [AHKP22,BBG+21,DGLZ23,BEP23,RS22], there is a large unexplored territory of
interesting models that also favours dynamism in protocols [DER21,GBO+23,GPS19]
but captures the dynamic properties in a slightly di�erent way. It would be interest-
ing (albeit ambitious) and beneficial to this area of research to take steps to unify
all of these models focusing on dynamism.
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