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With the recent boom in machine learning (ML), people are interacting with a growing
number of ML-advised products in many aspects of their everyday life. However,
the underlying logic in the decision-making process of ML systems generally lacks
transparency. This becomes an issue when the ultimate decision is made by the end
user and the output of the ML tool disagrees with the user’s belief system. Such
disagreements, combined with incomprehensible ML reasoning, cause difficulties in
human-AI interaction (HAII). One domain in which such predicaments often occur
is the choice coordination of mixed-marketing plans (MMPs). ML methods like prob-
abilistic graphical models (PGMs) can be used to optimize a MMP’s effect on the key
performance indicator (KPI) of a company, but the optimized MMPs appear synthetic
to marketing employees, who are therefore reluctant to adopt these recommenda-
tions. This thesis aims to mitigate such gaps between ML and user in the context of
marketing planning and HAII. The contributions of this thesis are: a) An approach
to combine PGMs and neural networks (NNs) through approximation. This combina-
tion enables rapid feedback from the AI-recommender system to the user. By exten-
sion, this affords additional human-AI feedback loops before reaching user fatigue.
In turn, this provides the users with a better understanding of the AI behavior. b)
The introduction of the NN-based game iNNk to be used as a case study for HAII.
This study gives empirical insights on how humans and NNs perceive and classify
the same data differently. These differences cause game-breaking player strategies
to emerge. c) A simple method to ease identified limitations of the NN in iNNk.
These limitations were discovered by observing HAII with non-expert users playing
the game. d) A stepping stone toward ultimately combining the previous insights to
augment the AI-recommender system used for marketing planning. This stepping
stone is a method to modify the HAII flow in marketing planning by enforcing diver-
sity. This diversification opens new possibilities, as it allows marketing employees
to develop an improved mental model of the recommender system. In addition, it
allows for better adaptation of user preferences in complex, high-dimensional opti-
mization tasks.
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Resumé
Gennem de seneste år er der sket et boom inden for computerbaseret mønstergen-
kendelse – også kendt som maskinlæring. Som et resultat heraf forekommer der i
stigende grad interaktion mellem mennesker og maskinlæringalgoritmer. En gene-
rel udfordring ved disse algoritmer er dog, den menneskelige bruger oplever en
mangel på gennemsigtighed i algoritmens bagvedliggende logik. Da maskinlærin-
galgoritmen skal rådgive en eller flere brugere i et felt med høj kompleksitet, kan
den manglende transparens udgøre et problem, såfremt brugerens egen erfaring
modstrider algoritmens rådgivning. I det tilfælde, at brugerens egen erfaring mod-
strider den givne rådgivning, bliver den manglende transparens i maskinlæringsal-
goritmens beslutningsproces et problem. Et felt, hvori sådanne uoverensstemmelser
mellem menneske og maskinlæring forekommer, er tilrettelæggelse af marketings-
planer. Maskinlæringmetoder, såsom probabilistic graphical models (PGM)1, kan be-
nyttes til at optimere denne tilrettelægning, således at marketingsplanen påvirker
virksomhedens nøgletal mest muligt. Disse automatisk tilrettelagte marketingspla-
ner forekommer ofte kunstige over for de ansatte, der står for markedsføringen.
Brugerne af maskinlæringalgoritmen er derfor tilbageholdende ved at benytte sig
af de autogenererede planer. Denne afhandling søger at adressere sådanne forstå-
elseskløfter mellem menneske og maskinlæring i en marketingkontekst. Afhand-
lingens bidrag spænder over fire dele: a) En metode til at kombinere PGM med
neurale netværk (NN) gennem en approksimation. Denne approksimation mulig-
gør hurtig feedback fra maskinlæring til menneske. I forlængelse heraf muliggøres
en mere effektiv modning af brugerens mentale model af maskinlæringsalgoritmen,
da flere menneske-maskine-menneske iterationer kan foretages inden for den sam-
me tidsramme. b) Introduktion af spillet iNNk, der bygger på brug af et NN. Dette
spil benyttes som et casestudie af menneske-maskinlæring interaktion. Dette studie
frembringer empirisk indsigt i, hvordan mennesker opfatter og klassificerer de sam-
me data anderledes end et NN. Disse forskelle foranlediger spillerne til at udvikle
strategier, der ophæver spillets balance. c) En simpel metode til at afhjælpe iden-
tificerede begrænsninger i iNNks NN. Disse begrænsninger bliver afdækket ved at
observere ikke-eksperter interagere med det NN. d) Et springbræt mod målet med at
kombinere de nævnte erfaringer til at forbedre rådgivningssystemer baseret på ma-
skinlæring i en marketingkontekst. Dette springbræt er en metode, der modificerer
interaktionsprocessen ved at gennemtvinge diversificering. Dette åbner nye døre,
da det giver marketingsansatte muligheden for at udvikle bedre mentale modeller
ud fra disse rådgivningssystemer. Ydermere tillader metoden bedre mulighed for at
imødekomme de ansattes præferencer mht. udformning af marketingsplaner.

1Der findes endnu ikke en veletableret dansk term for dette koncept, derfor benyttes den engelske.
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2.1 An illustration of a simplistic feed-forward NN. The plates are col-
ored to reflect the different types of layers. The input, hidden, and
output layers are all densely connected in this setup. Being densely
connected means all the units (white circles) in a layer are connected
to any other units in the preceding layer – except for the input layer.
However, units are isolated from all other units within the same layer,
as no intra-layer connections exist. Each connection between two
units has an associated weight and is indicated by a black line. If
this line connects node i and j, then its weight is denoted Wi,j. Fur-
ther, each layer is affiliated with a curly bracket and a variable. These
variables are vectors that highlight the output of each layer as data
flows through the model from input to output in accordance with the
composite function g(x). Each unit i in a trainable layer l also has an
associated bias scalar b(l)

i indicated by dashed line. The use of a bias is
inspired by linear transformations and is required for fitting datasets
not passing through origo. Each unit in the network is indicated by a
white circle encapsulating a function. This is the activation function
related to each unit. In this case, the input and output layers use a
simple identity function, whereas the hidden layers apply the tanh
function. This function is applied on the aggregated, weighted input
to the unit, including the bias. The output of each layer is denoted as
x, u(1), u(2), and y, respectively . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 The transition from data, to Bayesian model (BM), to NN. The col-
ored dots indicate a sample from the corresponding distribution. First,
the data is sampled. Then, the Bayesian model (BM) is fitted, and M
samples from the posterior distribution are taken. Finally, the NN is
trained such that for a given observation, the output of the NN corre-
sponds to a prediction by the Bayesian model (BM) using each of the M
posterior samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.2 Prediction time (top), mean squared error (MSE) on the testing dataset
(bottom left), and the ultimate size of the training dataset (bottom
right), shown as a function of model complexity J. The lines indi-
cate the mean of each experiment, which is repeated five times. The
shades are the 90% confidence interval bands, and the markers show
the values of J for which experiments were conducted. The predic-
tion time on the testing dataset using the Bayesian model (BM) versus
the NN is shown in the top figure. This figure illustrates the linear
relation between the model complexity and the prediction time using
the Bayesian model (BM) while being constant for the NN. The bottom
left figure shows the mean squared error (MSE) of the NN calculated
on the testing dataset. The bottom right figure shows how the size of
the training dataset increases nonlinearly with the complexity of the
Bayesian model (BM) to be approximated. Here, the dotted line indi-
cates the lowest possible size of the training dataset, as each experi-
ment starts with 10 000 examples and passes at least 10 active learning
(AL) iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Calibration plot showing the correlation between the uncertainty
of the NN, σ, and its prediction’s root mean squared error on newly
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data purely based on the uncertainty estimate of the data points. . . . 41

4.1 The steps for obtaining an optimized MMP based on historical data.
The ordinary approach involves only step A) and B) through the use
of a Bayesian model (BM). Our proposed method includes two addi-
tional steps, C) and D). These obtain a NN approximated to the Bayesian
model (BM). The NN is then used for step B) as a surrogate. In turn,
performing step B) becomes up to 65× faster than using the Bayesian
model (BM) with only a 0.46% loss in KPI on average. Hence, the MMP
deriving from the proposed method is almost identical to that of the
ordinary approach. The « constraints » are set forth by the market-
ing employee querying for an optimized MMP. An example of such a
constraint could be the minimum spending on TV commercials on a
specific day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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4.2 The customized NN architecture used. The figure shows how a sin-
gle observation, x(i), is processed by the NN. First, the input data is
transformed by the customized first layer. This layer resembles the sat-
uration component of the BM. Next, the data is processed by a set
of fully connected hidden layers. Further, date encoding is provided
to make the NN seasonally aware like the BM is. The final output
for a single observation is a vector of predicted KPIs – one element
for each posterior sample taken from the BM’s posterior distribution.
Each output y(i)

m is an approximation of the BM’s expectation over
the posterior predictive distribution conditioned on a particular sam-
ple, E [Y | X, θm]. The mean of this vector is then an approximation
of E [Y | X] from (2.20). This approach avoids the need to evaluate
the expensive double integral from (2.20) through this approximation.
For this reason, the input optimization step in Figure 4.1 gains a sig-
nificant speed improvement. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 The illustrative MMP domain. The figure shows the KPI as a func-
tion of each predictor. For measuring the KPI for increasing values of
x1 we set x2 = 0, and vice versa. . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 The KPI-landscape for optimizing a simple MMP. The curvatures
indicate KPI. The warmer the color, the higher the KPI. The solid line
is where the ∑ x = b, where b is some budget. The circle indicates
the optimal solution along this line that maximizes the KPI. The blue
crosses indicate the solution generated by the NN for the related budget. 54

4.5 The relative difference in expected KPI between the two methods.
The KPI of the MMP generated using the NN versus that of the BM
(orange line). The difference is calculated using the BM. The left y-axis
indicates the relative difference in KPI, and the right y-axis indicates
the relative difference in spend (blue line). The dashed lines indicate
the mean of each metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 From left to right, we display Neat Race [211] categorized as NN-Specific,
iNNk [287] categorized as NN-Specific, and Blitzkrieg 3 [207] catego-
rized as NN-Limited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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6.1 left: A screenshot of the Sketcher’s interface. In the white canvas, the
Sketcher draws to communicate the secret code word, indicated above
the canvas (cat). The NN’s guess and its confidence are on the upper
right corner. Right: A screenshot of the Guesser’s interface. Guessers
can type in their guess at the bottom. . . . . . . . . . . . . . . . . . . . . 72
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6.2 Examples of the three adversarial player strategy sketches used for
retraining: Rebus Puzzle (left), Distraction (center), and Dotted Line
(right). For the example of the Rebus Puzzle strategy, the code word
is “Keyboard.” The Sketcher decided to divide this into two separate
sketches, one of a key and one of a wooden board. An example of
the Distraction strategy is a drawing for the code word “Piano.” Us-
ing this strategy, the Sketcher added straight lines to stump the NN.
The superimposed sketch of a piano is otherwise unchanged. Finally,
for the Dotted Line strategy, the example shown is for the code word
“Moustache.” Here, the Sketcher only modified the line style. . . . . . 76

6.3 An overview of the ensemble training procedure. Before training
a model, its state requires initialization. For this, transfer learning
is used. A red arrow indicates the initialization of a model’s state.
The state of the model at the arrow’s end is initialized to the state of
the model at the origin of the arrow. Each model is assigned its own,
distinct dataset and is specialized in that particular set. All models are
trained using logistic regression for the classification of stroke data to
one of 345 classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Making predictions with the ensemble. To make predictions, each
ensemble member is queried for a prediction based on the same ob-
servation. The set of model predictions needs to be combined into a
single prediction to compute the final, class-wise probabilities. . . . . . 81

7.1 A uniform manifold approximation and projection for dimension re-
duction (UMAP) of optimized MMPs. A set of highly diverse MMPs
is obtained using constraints on the optimization procedure. While
many MMPs perform well, they differ significantly in spending pattern.100



xvii

7.2 A 1:1 comparison between two generated MMPs. As the MMPs are
31× 106 matrices, an extensive comparison of each feature is infea-
sible. Instead, the figure visualizes patterns in spending at a chan-
nel level over the full 31-day period. Each bar chart illustrates this
spending for four chosen channels: Print, Television, Digital Display,
and Social. MMP1 is the MMP marked in Figure 7.1b with a spend-
ing constraint on the channel named Print. Likewise, MMP2 is the
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Chapter 1

Introduction

Human decision-making is a convoluted and latent cognitive process [22], the pur-
pose of which is to narrow down choices in a given situation [20]. If the selection is
based on rational reasoning, the decision is the outcome of an intelligent deliberation
to maximize the likelihood of achieving a desired goal [239].

Modern artificial intelligence (AI) and machine learning (ML) technologies can be
used to replace human involvement in several decision-making processes [132]. Ex-
amples of such fully automated, data-driven decision-making processes can be found
in domains like music recommendation [223], bot detection [256], and risk manage-
ment [40].

However, not all domains are suited for a fully automated decision. Instead, the
AI and human collaborate on the decision-making in a human-AI interaction (HAII)
setup [15]. These hybrid structures occur in domains where the two parties com-
plement each other to maximize speed and accuracy. Examples of such setups are
crowdsourcing [146], speech transcription [89], and disease diagnosis [17, 291].

In such HAIIs, the AI and human work as a team to solve a task better than ei-
ther party can alone. The human considers a recommendation from the AI before
making the ultimate decision. In such human-AI teaming, it is the task of the hu-
man to recognize situations in which the AI cannot be trusted and take a different
action [15].

Another example of an AI-advised human decision-making setup is marketing
planning [46, 273]. In this example, one or more marketing employees receives an
optimized marketing plan recommended by a ML model. Each marketing plan is
a compound of many synergistic decisions for each day it covers [221]. These are
decisions like where, what, and how many advertisements to run [310].

Blackwood Seven (BW7) (the company partner of this industrial PhD) is a com-
pany that has specialized in AI for marketing planning. It is a business-to-business
Software as a Service company that has successfully applied Bayesian optimization
to marketing planning. BW7 has built a Bayesian probabilistic network that is tai-
lored to each customer’s individual business. This allows BW7 to capture the dif-
ferent drivers of each customer’s sales, e.g., pricing, media, promotion, distribution,
macroeconomic factors, etc. On top of this model sits a media optimization engine
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that can generate optimally profitable media plans for each customer. The profit up-
lift created by BW7’s AI engine is estimated to be 50-300%. Even though these plans
are potentially very effective, they are hard to adopt for their customers because the
generated plans lack a resemblance to plans traditionally made by humans1. Even
the most optimal AI solutions do not have commercial value if the customer cannot relate to
why the algorithm came up with them.

Humans not being able to relate to why an AI came up with a certain solution
is a symptom of a broader issue with AI systems. For instance, whenever a neural
network (NN) classifies an image, a human is able to visually verify the output of
the NN, in this case whether the NN’s prediction is correct or not. However, under-
standing why the NN came up with that particular classification is far more difficult.
If two humans disagree, the two parties are able to engage in a discussion on their
differing perspectives to reach a common understanding. Such dialogues are not
possible when one of the parties is an AI, and in effect, this can cause the human to
distrust the AI.

Cognitive psychology research has found that whenever humans interact and
use a system, they do so with a conceptualization of that system’s capabilities [208].
This conceptualized view is an ever-evolving mental model that the user has of the
system. This mental model is iteratively updated through the course of numerous
interactions with the system. These models provide the user with explanations for
why the system, in this case an AI, makes certain decisions [162], but it also tells
the user when not to trust the AI [15], i.e., the user learns the error boundary of
the AI [14]. Notably, Kulesza et al. [162] found that users with a more accurate
mental model of an AI system are more likely to perceive the HAII satisfactorily.
Furthermore, accurate mental models lead to AI output more closely aligned with
user intentions [162].

If the marketing employees using BW7’s platform are to adopt and appreciate
the ML-generated marketing plans, improvements to the mental models of the em-
ployees are required.

However, in addition to the marketing employees’ mental model of BW7’s ML
tool, these employees also have their own sophisticated mental models on the mar-
keting landscape and what characterizes a good spending pattern. After all, they are
educated employees with years of experience. The two mental models might give
rise to conflicts in one or more ways.

A way to minimize these discrepancies is for the ML tool to consider and in-
corporate the preferences of these employees. However, formalizing user prefer-
ences and incorporating these into AI models is tricky. Such preferences need to be
condensed into an objective function suitable for an AI and whose optimum is the
solution of interest [252]. Even just verbally describing preferences can be difficult
– especially if these preferences stem from intuition. One example is putting into
words why one prefers a particular painting over another [302].

1Source: Michael Green, former Chief AI Officer at Blackwood Seven
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Given said challenges with HAII and marketing planning, one might question
whether an AI-advised decision setup is even the right approach. For example, web
analytics tools like Google Analytics2 neatly report data collected from marketing
campaigns running on various websites. These detailed insights involve tracking
who is responding to the ads, where they came from, what parts of the website have
the users’ attention, etc. This is with the goal of adding transparency to which ad-
vertisements seem to work well and which are ill spent. However, the collected data
consist of over 400 metrics [191]. This dimensionality makes the data overwhelming.
Manually determining an advertisement’s effect based on all information captured
in such a dataset is infeasible. As a result, one is left with one of two options: either
neglect the complexity of the domain and utilize only simplified, aggregated num-
bers that are "easy to understand," or abandon such tools and rely on gut feelings
and intuition for planning marketing campaigns [191].

The dimensionality of the collected dataset is not the only reason for being hes-
itant when considering whether to use such web analytic tools as a basis for mar-
keting planning. These tools only cover online advertisements, whereas more tra-
ditional marketing approaches such as newspapers, TV, and radio are advertising
formats left out. Yet these still have a significant impact – especially on establishing
brand awareness [244].

Additionally, it has been shown that a silo-based marketing strategy focusing
only on a single platform can yield diminishing returns. Because of this, one should
have a compound marketing strategy that enables synergies across advertising plat-
forms, new as well as old. Such a diversification of advertising formats can influence
consumer behavior throughout all stages of the purchasing process [79, 126].

Optimizing the spending of advertisements on traditional marketing formats,
however, is also challenging. One of the reasons for this challenge is imprecision.
Audience targeting is imprecise because of the scattergun effect of traditional mar-
keting formats. For example, all viewers of a specific TV channel are exposed to the
same advertisement, regardless of its relevance to the individual viewer. In contrast,
most online-based marketing cherry-picks the users exposed to a specific advertise-
ment by comparing each user’s profile with the advertisement’s target-profile.

Another imprecision of traditional marketing lies in the dataset collected for sub-
sequent performance evaluation. Such datasets contain a significant amount of noise
from various sources, such as stochastic consumer, competitor, and macroeconomic
trends. The ever-changing world makes it difficult to make intelligent decisions
based on such a noisy and sparse dataset.

For these reasons, a data-efficient ML tool like that of BW7 is indeed justified.
Their ML engine can handle all marketing formats as well as the noisy, sparse dataset
from traditional marketing formats. However, for their customers to accept the gen-
erated marketing plans, the HAII with this AI-advised system calls for improve-
ments. Such improvements should enhance the degree to which preferences and

2analytics.google.com

https://analytics.google.com
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intuition of an arbitrary marketing employee can be addressed in such a setup. In
effect, this will reduce the distance between human and AI and, in turn, increase the
effectiveness with which the customers can work with, accept, and understand the
AI-driven media planning.

To alleviate this gap, this thesis presents a method for combining Bayesian models
(BMs) (namely, probabilistic graphical models (PGMs)) and NNs [175]. The purpose
of the approach is to increase the speed of risk-minimized predictions with a PGM.
Since many real-world PGMs (like those created by BW7) consist of several recurrent
components and have no closed-form solution, making risk-minimized predictions
can be computationally heavy. The experiments show that for such predictions, even
a simple, synthetic Bayesian regression model scales significantly worse than the
proposed method as the number of predictors in the model increases. Moreover,
the proposed approximation method using a NN yields only a negligible loss in
accuracy. This highlights the general applicability of the method introduced.

In addition to these insights, this thesis tailors this method to a Bayesian mar-
keting mixture model (MMM) [174]. This Bayesian MMM is a PGM introduced as a
real-world case study based on the AI-infused system created by BW7. A key find-
ing is that the approach can generate optimized mixed-marketing plans (MMPs) more
than a full order of magnitude faster than the traditional method. In effect, by using
this method, the customers of BW7 obtain feedback from the AI-system much faster
than previously possible.

Getting rapid feedback from the AI is important, but the generated MMPs are
effectively exhibiting the same patterns as before. Hence, the method does not ad-
dress the issue with users not being able to relate to these solutions. For that to be
rectified, the HAII will have to be improved by other means. Historically, games
have often been the driver and testbed for novel AI developments [122, 125, 144]
and have an inherent focus on end-user experience [188]. This thesis explores what
NN-based games can tell about designing HAII by evaluating such games on a set
of preexisting guidelines for HAII [319]. An insight of this work is how player-AI
interaction (HAII in games) is an approach that can expand the discussion around
productivity-based AI applications, like that of BW7. One of the interesting findings
is that failures and imperfections of the AI can be used positively by encouraging
players to fix and improve them.

Based on these findings, the game iNNk was developed to further study how
teams of humans interact and perceive the capabilities of a NN. This game was
developed in collaboration with user experience (UX) researchers at Drexel Univer-
sity. The game provided some key insights into the players’ mental models of the
NN’s capabilities as play progressed in a NN-player-NN feedback-loop. The itera-
tive feedback between players and NN increased their understanding of the capabil-
ities and limitations of the NN. The research led to the discovery that the identified
limitations of the NN can effectively be mitigated using simple ML techniques and
just a few samples [176].
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In essence, the limitations of the NN identified by the players were a result of
humans and NN perceiving the same data differently. This disparity is comparable
to the issue faced by BW7, with customers not being able to relate to the optimized
MMP as they see the marketing landscape differently.

With the insights from above in mind, an improved human-machine collabo-
ration setup for marketing planning is presented. This setup is a stepping-stone
to combining the power of AI with human intuition to create MMPs that are both
effective and relatable. The setup uncovers the existence of more than one good so-
lution candidate in the high-dimensional optimization problem of marketing plan-
ning. Disclosing a diversified collection of good solutions to a marketing employee
increases the likelihood of accommodating the employee’s preferences.

In summary, the contribution of this thesis is threefold: 1) Increasing the speed
at which marketing employees can acquire feedback from a marketing model. This,
in turn, facilitates further experimentation with the model as optimizations become
inexpensive. 2) Examining how teams of users interact and engage with an AI –
in this case, a NN. This includes the mental model users develop of the NN and
mitigating flaws in the NN identified using the users’ mental models. 3) Enabling
improved human-AI decision collaboration. This is achieved by exploration of the
search space at which the AI operate. The exploration allows the users to pick the
most appealing option. This is in contrast to the current situation at BW7, in which
the users are only given the single best solution in the search space. The ability to
choose among a set of good candidate solutions allows for better accommodation of
arbitrary user inclinations and preferences based on intuition.

1.1 Thesis Structure

This work is structured in five parts. The first part provides the contextual frame
and motivation for this thesis and an overview of its composition.

The second part encapsulates the first two research projects conducted in this
work. The topic of this part is combining NNs and BMs to get the best of both
worlds. This part combines the two approaches in order to speed up the generation
of optimized marketing plans. This combination allows for an improved feedback
loop from AI to the user and, by extension, increases the number of feasible experi-
ments to be executed using the model in a marketing setup.

The third part has human-AI interaction at its core. The part highlights chal-
lenges with human-AI interaction and how easily NNs can be misled. The part
introduces an online multiplayer game with a NN at its core. The game was created
as part of this work to function as a testbed for human-AI interaction and how the
two parties perceive the same data.

Part four combines and utilizes the insights from parts two and three. The meth-
ods in this part are based on an exploration for diversity rather than directly encod-
ing user preferences in the AI. This approach allows one to choose the optimized
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marketing plan that best suits one’s preferences, instead of being stuck with a single
optimized solution, as is currently the method of BW7.

The last part, part five, summarizes the key findings in this work and potential
future directions for the research. The thesis ends with a few takeaway messages
and a conclusion based on the achieved experimental results.

This thesis utilizes a wide range of existing ML methods and tools. Some of
these tools are only used in a limited number of chapters, whereas others are used
repeatedly. Methods reused at a later stage of this work are not reintroduced. For
clarity, Table 1.1 is an index of the methods applied, which chapter initially presents
them, and which chapters revisit them later.

TABLE 1.1: An index of existing methods and concepts applied in
this work. The methods are only introduced once but are reused
and revisited several times. This table provides an overview of these
methods, when they are first introduced, and which chapters subse-
quently utilize these.

Method
Introduced
in chapter

Also applied
in chapter(s)

Bayesian models 2 3, 4, 7, 8

Bayes’ Risk 2 3, 4

Marketing plans and marketing modeling 2 4, 7, 8

Optimization of marketing plans 2 4, 7, 8

Neural networks 2 3, 4, 5, 6, 7, 8

Active learning 3 -

Mental models 5 6, 7, 8

Neural networks in games 5 6

Neural networks and adversarial attacks 6 8

Ensembles 6 -

Transfer learning 6 -

Exploring for quality diversity 7 8

1.2 Notation

Notation: x is a scalar value. x is a column vector. xi is the scalar at row i of the
column vector x. X is a matrix. Xi,j is the scalar at the ith row and jth column of the X
matrix. Declarations of vectors or matrices are sometimes accompanied by subscript
uppercase Roman letters to denote the dimensionality of the declared variable, e.g.,
XI×J is a matrix with I rows and J columns. This is only used for clarity in certain
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contexts. Uppercase Roman letters like X are random variables. ·̃ is a prediction. ·
is the mean. ⊤ denotes the transpose of a vector or matrix such that x = [i, j]⊤ is the
column vector with the scalars x1 = i and x2 = j. Similarly, to represent repeated
operations, the following notation is used: x = [i]⊤i=1,...,I . This results in a column
vector of dimension I with the scalars N+

1 . Where N+
1 is all the natural, positive

numbers. Likewise, RN is the N-dimensional real space.

1.3 Published Work

In this thesis, four papers and one extended abstract are included, as listed below.
Four of these were published at a conference, and the remaining journal paper is still
under review.

Paper 1 Mathias Löwe, Per Lunnemann, and Sebastian Risi. “Rapid Risk Mini-
mization with Bayesian Models Through Deep Learning Approximation”. In: 2021
International Joint Conference on Neural Networks (IJCNN). 2021, pp. 1–8. DOI: 10.110
9/IJCNN52387.2021.9534258 [175]

Paper 2 Mathias Löwe, Per Lunnemann Hansen, and Sebastian Risi. “Combining
Deep Learning and Bayesian Models for Swift Generation of Mix-Marketing Plans”.
Submitted for peer review at the Elsevier Journal Intelligent Systems with Applica-
tions. 2021 [174]

Paper 3 Jichen Zhu, Jennifer Villareale, Nithesh Javvaji, S. Risi, Mathias Löwe,
Rush Weigelt, and C. Harteveld. “Player-AI Interaction: What Neural Network
Games Reveal About AI as Play”. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems (2021) [319]

Paper 4 Mathias Löwe, Jennifer Villareale, Evan Freed, Aleksanteri Sladek, Jichen
Zhu, and Sebastian Risi. “Dealing with Adversarial Player Strategies in the Neural
Network Game INNk through Ensemble Learning”. In: The 16th International Confer-
ence on the Foundations of Digital Games (FDG) 2021. FDG’21. Montreal, QC, Canada:
Association for Computing Machinery, 2021. ISBN: 9781450384223. DOI: 10.1145/3
472538.3472540. URL: https://doi.org/10.1145/3472538.34725403 [176]

Extended abstract Jennifer Villareale, Ana V. Acosta-Ruiz, Samuel Adam Arcaro,
Thomas Fox, Evan Freed, Robert C. Gray, Mathias Löwe, Panote Nuchprayoon,
Aleksanteri Sladek, Rush Weigelt, Yifu Li, Sebastian Risi, and Jichen Zhu. “INNk:
A Multi-Player Game to Deceive a Neural Network”. In: Extended Abstracts of the
2020 Annual Symposium on Computer-Human Interaction in Play. New York, NY, USA:

3Winner of a best paper award at FDG’21.

https://doi.org/10.1109/IJCNN52387.2021.9534258
https://doi.org/10.1109/IJCNN52387.2021.9534258
https://doi.org/10.1145/3472538.3472540
https://doi.org/10.1145/3472538.3472540
https://doi.org/10.1145/3472538.3472540
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Association for Computing Machinery, 2020, pp. 33–37. ISBN: 9781450375870. URL:
https://doi.org/10.1145/3383668.3419858 [287]

https://doi.org/10.1145/3383668.3419858
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Chapter 2

Background

This chapter describes various methods and theories applied in this work. While
some of the concepts presented here are described in detail, this chapter is not an
extensive introduction to ML, NNs, Bayes’ risk, or MMMs. The scope of this chapter
is to provide a short introduction of the applied methods and furnish sources with
additional information. As NNs are at the core of every experiment conducted in
this work, these are introduced first in Section 2.1. This section describes a feed-
forward NN, how the parameters of the network are adjusted, and several different
layer types. The section ends with a discussion on the capabilities and limitations of
this method. Next, section 2.2 is a brief introduction of BMs along with some of their
(dis)advantages. After that follows an introduction of Bayes risk in Section 2.3. This
section introduces the concept of making predictions with a model that minimizes
the expected risk. Finally, this chapter concludes with the introduction of Bayesian
MMMs and how to use these for optimizing MMPs. Chapters 3 and 4 both build
extensively on the theory as presented in Sections 2.2 and 2.3. Further, to fully grasp
the domain at hand in Chapter 4, an understanding of the concepts of MMMs as
introduced in Section 2.4 is required.

2.1 Neural Networks

(Artificial) NNs are a ML technique notably different from that of BMs and PGMs.
They consist of a network of units.

2.1.1 Feed-Forward Neural Networks

Feed-forward NNs are widely used as a network architecture. In such an architec-
ture, information is propagated through a set of layers L. Here, each layer l ∈ L can
be considered a function g(l). The output of the whole network is then the composite
function g(x) = (g(3) ◦ g(2) ◦ g(1))(x) for a network with three layers and some ob-
servation x. The “correct” output of each intermediate function, and, by extension,
the layer, is unknown and therefore named a hidden layer. Only the output of the
last layer g(3) can be directly compared to g∗(x), where g∗ is the underlying function
to be approximated by the NN [99]. Figure 2.1 visualizes an example of one such NN
architecture. The example illustrated on this figure contains an input layer, two hid-
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b(1) b(2) b(3)

x

u(1) u(2)

y

FIGURE 2.1: An illustration of a simplistic feed-forward NN. The
plates are colored to reflect the different types of layers. The input,
hidden, and output layers are all densely connected in this setup. Be-
ing densely connected means all the units (white circles) in a layer are
connected to any other units in the preceding layer – except for the
input layer. However, units are isolated from all other units within
the same layer, as no intra-layer connections exist. Each connection
between two units has an associated weight and is indicated by a
black line. If this line connects node i and j, then its weight is de-
noted Wi,j. Further, each layer is affiliated with a curly bracket and
a variable. These variables are vectors that highlight the output of
each layer as data flows through the model from input to output in
accordance with the composite function g(x). Each unit i in a train-
able layer l also has an associated bias scalar b(l)

i indicated by dashed
line. The use of a bias is inspired by linear transformations and is re-
quired for fitting datasets not passing through origo. Each unit in the
network is indicated by a white circle encapsulating a function. This
is the activation function related to each unit. In this case, the input
and output layers use a simple identity function, whereas the hidden
layers apply the tanh function. This function is applied on the aggre-
gated, weighted input to the unit, including the bias. The output of
each layer is denoted as x, u(1), u(2), and y, respectively

den layers, and an output layer. The input layer is the only non-trainable layer, as it is
not associated with any adjustable (free) parameters. The layer simply passes an ob-
servation to the weights of the first hidden layer. The hidden and output layers can
be represented as functions mapping x ∈ R3 → u(1) ∈ R5, u(1) ∈ R5 → u(2) ∈ R5,
and u(2) ∈ R5 → y ∈ R2, respectively. Each layer consists of a set of units, some-
times also referred to as neurons, nodes, or perceptrons. Every unit is associated
with an activation function. This activation function is plotted within the corre-
sponding unit in Figure 2.1. In this example, the units of the input and output layer
simply use the identity function. The hidden units, on the other hand, apply the
hyperbolic tangent function (tanh).

The dense layers are connected to each other with weights, depicted with solid
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black lines. No intra-layer connections exist between units; therefore, units within
the same layer are isolated from each other. Let W(l)

I×J denote the matrix mapping

layer l − 1 and l with I and J units, respectively. The scalar W(l)
ij scales the informa-

tion from unit i to j and is one of the several free parameters to be inferred during
training. The vector of free parameters is denoted ϕ. In addition to the inter-layer
weighting of information, each unit i in a trainable layer l has an associated bias
scalar, b(l)

i . The biases are also free parameters and thus part of ϕ. With the defini-
tion of the layers, their parameters, and activation functions in place, one can define
the function computing the output of each layer. As an example, let us define g(2),
i.e., the output of the second hidden layer. The output of this layer denoted u(2) is
then given by

a(2) = W(2)⊤g(1)ϕ (x) + b(2)

u(2) = g(2)ϕ (x) = tanh
(

a(2)
) (2.1)

The input to the unit, a(2), is simply an affine transformation of the output of the
preceding layer. This is a simple linear model with the transformation controlled
through ϕ. The biases b can be viewed as units in the network with a constant ac-
tivation function of one and an associated weight to be trained [25]. This allows
for less cluttered notation and the term is therefore omitted in the equations going
forward. To go beyond a linear regression model, the activation function is essen-
tial. This function adds the flexibility needed to go beyond linear models [99]. In
this example, a tanh function was used, but several other functions can be applied
instead, such as Binary Step, Sigmoid, ReLU, and Leaky ReLU. Regardless of the
activation function used, for the transformation to be useful, it is essential that the
parameters ϕ have a suitable value. The adjustment of these parameters is the topic
of the following section.

2.1.2 Training Neural Networks

The purpose of the training procedure of the NN is to adjust ϕ such that the adjust-
ments minimize the loss. Hence, the objective is to identify ϕ∗ = arg minϕ L(gϕ(X), g∗(X))
where X is the full dataset. To achieve such goal, an iterative process computes the
gradient of the parameters with respect to the loss [25, 30]. Let ϕt be the free param-
eters at step t, and J(x, ϕ) := L

(
gϕ (x) , g∗ (x)

)
ϕ+ = ϕ− η

1
N

N

∑
n=1
∇ϕJ (Xn, ϕ) (2.2)

where N is the size of the dataset and η is the learning rate [59, 99]. This is a hy-
perparameter defining the magnitude of the modification to the parameters based on
the computed gradients ∇ϕ. Setting η correctly is of significant importance for the
training process. There are several approaches one can take in setting the value of η.
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The simplest way is using a fixed positive value [181], whereas other strategies use
either a cyclic pattern [258] or an adaptive approach based on the gradients [72, 92].

The loss landscape is typically nonlinear, even for many trivial problems. The
reason the gradients can still be used to identify a minimum lies in having a differ-
entiable function. By recomputing the gradients after each update to ϕ, the opti-
mization will carefully follow the curvature of the slope – even in case of a nonlinear
loss landscape [265]. Smaller steps (i.e., learning rate) yield a trajectory that follows
said curvature more closely toward a minimum, but at the cost of computational
resources.

In (2.2) each parameter in ϕ is adjusted through the gradients. The gradients
is a vector of partial derivatives with respect to the loss, one entry for each free
parameter. Let E = J (Xn, ϕ) be the error of the network’s prediction. To improve
the value of a single parameter of the network, e.g., the connection between unit j
and k in layer l, the change to the error with respect to said weight is needed

∇
W(l)

jk
E =

∂E

∂W(l)
jk

(2.3)

Since ∂E/∂W(l)
jk is not directly available, the chain use of calculus is applied [25, 246].

In brief, the chain rule of calculus enables the calculation of (partial) derivatives
of variables in composite functions. The rule states that if the composite function
h(x) = (g ◦ r)(x) then h′(x) = (g′ ◦ r)r′(x) [265]. Using this rule, one can propagate
derivatives from the output layer back to the input layer [59]. Applying this rule to
∇

W(l)
jk

E gives

∂E

∂W(l)
jk

=
∂E

∂a(l)k

∂a(l)k

∂W(l)
jk

(2.4)

Further,
∂a(l)k

∂W(l)
jk

=
∂

∂W(l)
jk

[
∑
j′

W(l)
j′k u(l−1)

j′

]
= u(l−1)

j (2.5)

That is, modifying the weight between unit j and k changes the input to unit k at
a rate proportional to the output of unit j. Finally, the first term on the right-hand
side of (2.4) is the error with respect to the input to unit k. To obtain this partial
derivative, the chain rule of calculus is applied again [25]

∂E

∂a(l)k

=
∂E

∂u(l)
k

∂u(l)
k

∂a(l)k

(2.6)

Here, the second term is simply the partial derivative of the activation function. The
first term is the error with respect to the output of unit k in layer l. If this unit is
part of a hidden layer, a change to this unit will affect all subsequent layers g(l

′)

with l′ > l. Errors from g(l
′) are propagated backwards to the previous layers. Thus,
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∂E/∂u(l)
k is equivalent to the sum over all the partial derivatives of the error with

respect to each unit receiving a signal from u(l)
k in a forward pass [59]. These partial

derivatives are then weighted by the connection between the two units as such:

∂E

∂u(l)
k

= ∑
i

∂E

∂a(l+1)
i

∂a(l+1)
i

∂u(l)
k

= ∑
i

∂E

∂a(l+1)
i

W(l+1)
ki

(2.7)

To see the recursive nature of this formula, let δ
(l)
k := ∂E/∂a(l)k . Then, one can ap-

ply (2.7) to (2.6) and compute this partial derivative as

δ
(l)
k := ∂E/∂a(l)k =

∂E

∂u(l)
k

∂u(l)
k

∂a(l)k

=
∂u(l)

k

∂a(l)k
∑

i

∂E

∂a(l+1)
i

W(l+1)
ki

= h′(l)
(

a(l)k

)
∑

i
δ
(l+1)
i W(l+1)

ki

(2.8)

Here, h′(l) is the derivative of the activation function used in layer l. This recursive
definition is applied until reaching the output layer. ∂E/∂u(l)

k for a unit in the output
layer is simply applying the derivative of the chosen loss function evaluated using
the output of the NN [246].

Applying (2.2) to update W(l)
jk based on a single observation gives

W+(l)
jk = W(l)

jk − η∇
W(l)

jk
E

= W(l)
jk − η

∂E

∂u(l)
k

∂u(l)
k

∂a(l)k

∂a(l)k

∂W(l)
jk

= W(l)
jk − η ∑

i

(
δ
(l+1)
i W(l+1)

ki

)
h′(l)

(
a(l)k

)
u(l−1)

j

= W(l)
jk − ηδ

(l)
k u(l−1)

j

(2.9)

The backpropagation algorithm [245, 246] is extensively used for training networks.
Backpropagation uses (2.9) in an intelligent manner by keeping track of the interme-
diate results in each computation. First, backpropagation performs a forward pass
of an observation through the composite function g. During the forward pass, it
records the output of each unit for later use. Next, it applies (2.4) going backwards
from output to input layer.

Up until this point, the discussion on NNs has centered around simple feed-
forward NNs consisting solely of dense layers. In the following sections, two more
sophisticated NN layers are introduced: convolutional and long short-term memory
(LSTM) layers.
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2.1.3 Convolutional layers

In 1998, LeCun et al. [167] presented the convolutional network LeNet-5. The au-
thors demonstrated the capabilities of LeNet-5 on a visual classification task. The
network consists of a set of specialized layers which process an observation before
it reaches the traditional, densely connected, feed forward layers. Two of these spe-
cialized layers are convolutional layers. This type of layer has proven successful due
to its composition and extensive use of weight sharing between intra-layer connec-
tions. Sharing weights significantly reduces the number of parameters to be fitted in
the convolutional layer. As a result, LeNet-5 consists of only 60 000 trainable param-
eters despite having 345 308 connections. Each unit in the output of a convolutional
layer is not fully connected to the input as in a dense layer; instead, such a unit is
only locally connected to the input layer. This local connectivity gives each output
unit a limited receptive field of the input. The way the weight sharing is composed
is through the usage of filters. In case of a two-dimensional input, each filter is also
two-dimensional and has a set of associated weights that are free parameters. The
filter is then convolved over the input data and produces an output that is referred
to as a feature map [303]. The shared weights make the feature maps equivariant
under translation – that is, shifting the input to the convolutional layer shifts the
output equivalently [99]. This property significantly increased the robustness and
generalization of LeNet-5. LeNet-5 is even relatively invariant to other transitions of
the input, such as rotation [166, 167].

The original idea of local connections and receptive fields is strongly inspired by
studies of the visual cortex of mammals from the early 1960’s [130]. These receptive
fields serve the function of being feature extractors. Stacking several convolutional
layers makes the NN learn a hierarchical representation of features [73]. One motiva-
tional factor for replicating these receptive fields in an artificial NN is that the mere
presence of a feature in an image is more important than the exact location of the fea-
ture in the observation. When trained for an image classification task, it is common
for the convolutional layer to respond strongly to certain features such as edges, cor-
ners, and color conjunctions [156, 312]. Such features indicate either separation or
connectivity. To detect these features, the same pattern is searched for throughout
the entire input. Using the same weights for identifying these features eases the op-
timization task and improves generalization. In effect, convolutional layers assist
the NN in learning a higher-level representation of the observations [171].

2.1.4 Recurrent layers

In contrast to traditional, dense layers as introduced in 2.1.1 and convolutional lay-
ers from 2.1.3, recurrent layers in NNs use persistent states. These states allow the
layer to store and reuse information across observations. Persisting information al-
lows for contextualized processing of subsequent data. This is of significant impor-
tance for sequence-to-sequence modeling such as natural language processing (NLP)
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applications [106]. In such setups, the context is crucial for understanding the in-
herent meaning of natural language. Further, this design allows for processing data
of arbitrary length, as the layer processes a potentially infinite stream of data in a
sequential manner – each time updating its persistent (hidden) state.

Taking the most simplistic vanilla recurrent layer, it computes three vectors given
an observation x(t) at timestep t [74]

a(t) = b(a) + W(x)x(t) + W(h)h(t−1)

h(t) = tanh
(

a(t)
)

y(t) = b(y) + W(y)h(t)

(2.10)

a(t) is a combination of the observation at t and the previous hidden layer. a(t)

is an intermediate variable used as input for the nonlinearity that results in the next
hidden state of the layer, h(t). In this example, the nonlinearity used is the tanh. y(t)

is an affine transformation of the updated hidden state. Depending on the applica-
tion, this affine transformation could be processed by a nonlinearity like Softmax in
case the output should parameterize a probability distribution. W(x), W(h), and W(y)

are all weight matrices whose elements are to be inferred. The dimensions of these
matrices are defined based on the size of the input, hidden state, and output. Like-
wise, b(a) and b(y) are two bias vectors also to be inferred. Thus, the processing of
information is in many ways similar to that of the vanilla dense layers as exemplified
in (2.1).

One of the most prominent issues with such recurrent layers is having either
exploding or vanishing gradients [18, 216]. This phenomenon happens as the back-
propagation algorithm is propagating gradients backward through time. Each timestep
of backpropagation involves matrix multiplication. This is an expensive procedure
that results in exponentially growing or decaying gradients. Exploding gradients
make the learning process highly unstable, as it will cause extreme changes to the
parameters when using (2.2) to update the weights. Similarly, vanishing gradients
can render the training process computationally infeasible, as the change to the pa-
rameters is nearly nonexistent [18, 216].

A more sophisticated recurrent layer architecture is long short-term memory (LSTM).
This layer type is based on gates. The output of a gate is an H-dimensional vector
v ∈ [0, 1]H. The purpose of a gate is to repeat (vi = 1), remove (vi = 0), or reduce
(vi < 1 ∧ vi > 0) data passing through it [169]. The LSTM layer contains three dif-
ferent gates, each serving a different purpose. These gates are forget (f), input (i), and
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output (o). The computational steps of these gates are

f = σ
(

b( f ) + W( f )x(t) + U( f )h(t−1)
)

i = σ
(

b(i) + W(i)x(t) + U(i)h(t−1)
)

o = σ
(

b(o) + W(o)x(t) + U(o)h(t−1)
) (2.11)

As can be seen in (2.11), all gates work in the same fashion, as they all apply the same
nonlinearity on an affine transformation based on an observation x(t) ∈ RD and the
previous output of the layer h(t−1). The nonlinearity is chosen such that the output
is within the range [0, 1]. However, each gate has its own set of free parameters
for the affine transformation, namely b(·) ∈ RH, W(·) ∈ RH×D, and U(·) ∈ RH×H.
Therefore, each gate can be seen as an individual mini feed-forward NN taking two
separate inputs [99].

The role of the input gate is to prevent polluting the cell state with irrelevant infor-
mation [120]. The cell state (denoted c) is another distinctive factor of LSTMs com-
pared to vanilla recurrent layers. This state is intended for internal purposes only
and serves the role of carrying an internal state of information from one timestep to
the next. It is therefore noteworthy that the three gates from (2.11) do not observe
this state, but instead take the previous output into consideration.

The role of the forget gate (introduced by Gers et al. [94]) is to prune obsolete
information from this cell state as to make space for new information. This enables
the LSTM to reset its own state and eases the learning of continuous tasks [108]
Finally, the output gate controls how much of the cell state is to be revealed to “the
public.” The output of the LSTM layer and the cell state is computed as follows:

c̃(t) = tanh
(

b + Wx(t) + Uh(t−1)
)

c(t) = f⊙ c(t−1) + i⊙ c̃(t)

h(t) = o⊙ tanh
(

c(t)
) (2.12)

where⊙ is the Hadamard product, i.e., element-wise multiplication. c̃(t) is the vector
of candidate values to be written to the new cell state in the case that the input gate
passes the information through it. The nonlinearity used for c̃(t) is the tanh such
that c̃(t) ∈ [−1, 1]H. This nonlinearity allows for negative associations such that
it is possible to decrease values in the cell state. Likewise, the updated cell state
c(t) potentially contains values >1. Therefore, this state is passed through the tanh
nonlinearity when computing the final output of the layer. This aids stabilizing the
behavior of the layer.

The architecture of the layer is engineered such that it addresses the aforemen-
tioned issues with exponentially exploding or vanishing gradients in vanilla recur-
rent layers [154]. Despite the seemingly complex nature, the LSTM layer has proven
successful in a wide range of different applications [43, 107, 120, 247].
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2.1.5 Universal Approximators

It has been shown that NNs can approximate any continuous function g∗ given ap-
propriate network structure [54]. For this reason, NNs are universal approxima-
tors [99, 124, 260]. Further, NNs are model-free, meaning that one does not carefully
handcraft a mathematical model of how one believes the observed data came to be.
The internal operation of a NN is heavily reliant on mathematical operations, but,
it is the task of the NN to identify the relation between input and output by itself
through adjustment of its free parameters. This flexibility makes for a powerful tool
when the input/output relation is unknown.

Notwithstanding the immense flexibility of this tool, it requires a substantial
amount of training data. It is not uncommon to have NNs with millions of free
parameters trained on several gigabytes of data. In addition, due to the structural
complexity, entangled nature, and large number of free parameters in NNs, they
are typically hard to interpret. The general lack of interpretability of some “black-
box” ML methods like NNs has led to the field of eXplainable AI (XAI) to address
issues such as making ML decisions transparent and explainable [249]. Despite the
large structure of NNs, their feed-forward architecture makes them exceptionally
computationally efficient. This is a result of the utilization of optimized matrix mul-
tiplication executed on GPUs.

This concludes the introduction of NNs, their basics, and the method’s strengths
and weaknesses. In the following, a completely different ML approach is introduced.

2.2 Bayesian Models

Model based ML like PGMs is becoming an increasingly popular tool. PGMs are
handcrafted models describing the process of how the observed data arose. To learn
the parameters of these models, Bayesian inference can be applied through the use of
Bayes’ theorem (2.13)

p (θ | D) = p (D | θ) p (θ)
p (D) (2.13)

Throughout this work, we will refer to such constructs as Bayesian models (BMs).
BMs are generative, meaning it is possible to generate synthetic data through sam-
pling [59]. Unlike many other ML approaches, BMs are data-efficient and have inte-
grated uncertainty handling. In order to fit BMs, the objective is to infer a probability
distribution over the free parameters (θ) of the model given some observed dataset,
D. This distribution is expressed as p (θ | D) and is referred to as the posterior distri-
bution. The posterior distribution expresses our belief of θ after observing some data
and maps each possible value of θ to a probability.

In (2.13), p (D) is called the evidence, as it is the probability of obtaining the ob-
served dataset. As it only works as a normalizing constant such that p (θ | D) sums
to 1, it is typically neglected, and (2.13) is simplified to
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p (θ | D) ∝ p (D | θ) p (θ) (2.14)

p (θ) is the prior distribution. It defines our belief of θ before seeing any data and
is set by the model architect after a thorough examination of the domain. Setting
prior belief on θ has fostered some discussion in the scientific community, raising
the concern that results should be purely objective and not influenced by one’s be-
lief system [25, 160, 181, 243]. While it is true that one should aim for objective
results, “you cannot do inference without making assumptions” ([181]). Assump-
tions permeate all ML models; the priors in a BM are simply more explicit and thus
more open for discussion.

Finally, p (D | θ) is the likelihood function. It maps the likelihood of getting
our observed dataset, given a value of θ. Altering the posterior distribution over
θ changes the likelihood of the observed data.

PGMs allow one to 1) specify prior beliefs on the parameters to be inferred, 2)
explicitly model interactions between features, and 3) make decisions on how these
features should affect the predictive distribution [91, 160]. This requires a thorough
understanding of the data and domain at hand, which can be difficult, if not impossi-
ble, in some cases. On the other hand, this construct results in data-efficient models,
capable of fitting even on very sparse datasets [50, 99]. The use of prior, likelihood,
and posterior distribution results in a strong, consistent method for handling uncer-
tainty throughout all aspects of the model. This is a result of the extensive use of
marginalization over these distributions.

2.3 Bayes’ Risk

Having an inferred posterior distribution, we often want to use it for making pre-
dictions on new data. Assume we can obtain pairs of data samples (x, y) from some
unknown joint probability distribution, p (X, Y), and intend to predict y. Let ỹ de-
note the model’s prediction. Basic decision theory establishes how to choose ỹ such
that it minimizes the expected loss E [L (ỹ, y)], which is risk minimization [25, 59].

To do so, first, we need to quantify how “wrong” any prediction is with respect
to the correct value. Throughout this paper, we are interested in regression problems
and will assume a Euclidean loss function. Let L (ỹ, y) = (ỹ− y)2. Our goal is to
choose ỹ as to minimize the expected loss, hence to find arg minỹ E [L (ỹ, y)]. This
expectation is simply a weighted average over all the possible values for Y multi-
plied with the conditional probability of that value for Y:

E [L (ỹ, y) | X] =
∫

Y
L (ỹ, y) p (Y | X) dy

=
∫

Y
(ỹ− y)2 p (Y | X) dy

(2.15)
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As we are interested in knowing what the optimal value of ỹ is, we take the partial
derivative of ỹ. This will inform us how our prediction affects our expected loss:

∂E [L (ỹ, y) | X]

∂ỹ
= 2

∫
Y
(ỹ− y) p (Y | X) dy

= 2
(

ỹ−
∫

Y
yp (Y | X)

)
dy

= 2 (ỹ−E [Y | X])

(2.16)

As we aim to minimize the loss, we set the partial derivative to 0, and solve for ỹ

2 (ỹ−E [Y | X]) = 0

2ỹ− 2E [Y | X] = 0

2ỹ = 2E [Y | X]

ỹ = E [Y | X]

(2.17)

Hence, the optimal prediction is the conditional expectation of the underlying
data distribution. An oracle predicting ỹ = E [Y | X], would still incur some error
due to the stochasticity of the data generation process. This error is sometimes called
Bayes’ risk or Bayes’ error [99, 240]. Without access to an oracle, the ground true
data distribution for most interesting problems is unknown, and we cannot compute
the conditional expectation directly. Instead, one can use the posterior distribution
p (θ | D) to find E

[
Ỹ | X

]
and use this as a surrogate for the ground true expected

conditional. E
[
Ỹ | X

]
is given by

E
[
Ỹ | X

]
=
∫

Ỹ
ỹp
(

Ỹ | X
)

dỹ (2.18)

Identifying this expectation thus requires marginalization over the full posterior
distribution

p
(

Ỹ | D, X
)
=
∫

Θ
p
(

Ỹ | θ, X
)

p (θ | D) (2.19)

It is this marginalization that makes BMs significantly different from most other
ML methods [298]. The marginalization used here involves iterating over all possi-
ble values of θ, then, for each such value, computing the probability density function
over Ỹ conditioned on X and that particular setting for θ, and weighing the distri-
bution with the model’s belief that θ should take that value (using the posterior).
The result is the posterior predictive distribution. From this distribution, we can find ỹ
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using (2.18) and the rules of integration:

E
[
Ỹ | X

]
=
∫

Ỹ
ỹp
(

Ỹ | X
)

dỹ

=
∫

Ỹ
ỹ
∫

Θ
p
(

Ỹ | X, θ
)

p (θ | D) dθ dỹ

=
∫

Ỹ

∫
Θ

ỹp
(

Ỹ | X, θ
)

p (θ | D) dθ dỹ

=
∫

Θ

∫
Ỹ

ỹp
(

Ỹ | X, θ
)

p (θ | D) dỹ dθ

=
∫

Θ

∫
Ỹ

ỹp
(

Ỹ | X, θ
)

dỹ p (θ | D) dθ

=
∫

Θ
E
[
Ỹ | X, θ

]
p (θ | D) dθ

(2.20)

The result is the integral over the posterior distribution with an inner expectation
for Ỹ. Integrating out the posterior distribution is in most cases computationally in-
tractable. Nevertheless, it is this marginalization that makes BMs better equipped to
account for the various sources of uncertainty. Further, it makes the predictions more
robust and less prone to be overly confident – especially for small datasets. To make
a single prediction, one needs to evaluate the double integral from (2.20). These in-
tegrals can be computed analytically for some simple BMs, meaning the expectation
can be computed with a finite number of mathematical operations. However, as BMs
grow increasingly complex, these analytical solutions are rare. As an approximation,
one could ignore the full distribution over the posterior and simply use a point esti-
mate of the posterior, this point being the one with the highest probability, θMAP [99].
This would constitute a maximum a posteriori (MAP) estimate. With uninformative
priors, this would even be the maximum likelihood estimate (MLE) [181]. This estimate
will not reflect the model’s uncertainty and is not a prediction that minimizes risk.
Further, using θMAP instead of marginalizing over the posterior can lead to more
extreme predictions [181, 189].

2.3.1 Monte Carlo Simulation

Luckily, one can do better than MLE and MAP. One can obtain an estimate of (2.20)
through the simple Monte Carlo (MC) estimator [157, 159, 227]:

θ = [θm ∼ p (θ | D)]⊤m=1,...,M

ỹ ≈ 1
M

M

∑
m=1

E
[
Ỹ | X, θm

]
,

(2.21)

where M is the number of MC samples. Equation (2.21) can be calculated in parallel
across CPU cores as each simulation runs independently of the other. Despite MC
simulation being a simple, efficient, and fairly accurate approximation, the degree
of parallelism is limited to the number of CPU cores available, and consequently
insufficient in time-sensitive domains with the need for a high level of accuracy, i.e.,
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more posterior samples used for prediction. For the most simplistic BMs, this is not
a computational burden and involves only a few matrix operations. However, as the
complexity of the model increases, so does the cost of making predictions. This is
particularly the case for BMs requiring some form of recursion.

The “error” in this estimator is given by σ(Ỹ)/
√

M, and thus, to halve this error,
M should be increased by a factor of four [32]. Minimizing the error in this estimator
is the goal, but it comes at an ever-increasing computational cost each time this error
is to be halved.

2.4 Marketing Plans and Marketing Modeling

With PGMs and Bayes’ risk in mind, next follows an introduction of a real-world
optimization problem for which such ML tools can be used. Namely, the planning
of optimized MMPs. This problem will serve as the domain at hand for which a
BM is created for modeling marketing effect. A MMP outlines how a company in-
tends to run commercials for an upcoming period. It establishes various commercial
properties in great detail. These are properties such as when to execute each com-
mercial, which product to advertise, and what platform to use. Careful planning of
MMPs is needed, as commercials are generally expensive to run. It is easy to waste
large quantities of money on commercial campaigns that are executed sub-optimally.
One can view the whole planning process as an optimization problem. The objec-
tive is to optimize a utility function while obeying the budget and potentially other
constraints set forth by a company’s circumstances. Such constraints include, for in-
stance, a minimum daily spend on a specific TV channel or a maximum total spend
on online marketing. The utility function is typically measuring some key perfor-
mance indicator (KPI) of interest, which can vary but is often net profit, daily clicks,
or new subscribers.

The media landscape has changed rapidly with the introduction of the fourth
industrial revolution. With the advance of online advertisements in unprecedented
formats, this optimization problem has become tremendously convoluted. The in-
creasing complexity happens as a result of advancements in customizing the four
Ps (product, price, promotion, and place [221, 310]) at an unprecedented granular
level. The endowment to pinpoint advertisements to specific demographic groups
increases the likelihood of displaying relevant commercials and lessens inefficient
ones. While it is reasonable to assume most companies have a decent idea of who
their target audience is, it is far more difficult to account for the efficiency of individ-
ual campaigns targeted towards that audience. Is a 20-second TV commercial twice
as good as a 10-second one? Should the commercial promote product A or B? At
what time of day should the commercial run? Which TV channel? How does the TV
commercial influence the effect of the other commercials? The number of decisions
one needs to make when compiling these MMPs grows exponentially by introducing
new insertions and even more granular configurations of each commercial.
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These new possibilities for granular decisions are accompanied by tracking tech-
nologies such as Urchin traffic monitor (UTM) parameters and cookies. When com-
bined, accurate customer targeting and tracking is achieved as a powerful asset en-
abling new data-mining and ML possibilities. Recent research in the field of ML for
marketing [52, 56, 63, 97, 220], builds on these developments and therefore has di-
rect, Internet-based marketing at its core. Here, the focus is on targeting high-value
customers [56], addressing customer churn [52, 63], customer prospecting [220], or
increasing advertisement personalization [97]. This preexisting work builds on a
wide array of ML techniques ranging from genetic algorithms [195] to transfer learn-
ing [212] and specialized data-driven algorithms [97].

To measure the effect of online marketing, data processing tools such as multi-
touch attribution models (MTAMs) [253, 313] can be used. These are also built on
online tracking mechanics like UTM parameters and cookies. MTAMs aim to add a
degree of transparency by mapping the user journey from initial ad exposure to con-
version and assigning credit to each step of the journey. With the worldwide trend of
increasingly strict privacy legislation, the future of Multi-Touch Attribution is filled
with uncertainty. Further, MTAMs have difficulties accounting for many influen-
tial parameters such as competitor activities, offline commercials, brand impact, and
seasonal effect. For instance, a MTAM cannot answer whether there is a synergy
effect of running TV commercials with in-store promotions [75, 133]. Consequently,
MTAMs and online advertisement in general will not provide a complete picture of
the effect of marketing campaigns and cannot account for non-media events.

Another privacy-friendly approach is through the use of MMMs based on econo-
metric regression [273]. The technique is well established in the field and has roots
dating back to the 1960s and 1970s [16, 46, 109, 140, 273]. The simplest example of
such a model is the linear regression model:

yt = α + βat + εt (2.22)

where at is the total amount spent on advertisements (aggregated across insertions)
at timestep t, α and β are parameters to be inferred, εt is stochastic noise, and yt is
a KPI, e.g., sales [273]. In such an elementary setup, the prediction KPI is a sum of
the current spending on advertisements. To infer the free parameters (θ = (α, β))
of such a model, one can, for instance, apply linear regression using ordinary least
squares (OLS) to get a MLE. The MLE of these parameters is the single, most prob-
able value. Real-world data, however, usually has multiple sources of uncertainty.
Generally, one can classify a source of uncertainty into one of two categories. The
first category is aleatory uncertainty and comes from the Latin word “alea,” which
can be translated as “the roll of dice.” Aleatory uncertainty is the internal random-
ness of phenomena [61]. The second category is epistemic. The second category is the
uncertainty caused by the lack of knowledge, meaning that we are only uncertain
of an outcome due to the lack of information [61, 321]. For instance, we might be
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uncertain about a company’s sales due to only having aggregated data. Changes to
the model from (2.22) could also reduce our epistemic uncertainty if these changes
better reflect the real world. Creating a suitable model for a specific problem first
and foremost requires a deep understanding of the domain and data.

Modeling a company’s KPI given its historical data on direct and indirect mar-
keting is challenging. The information on indirect marketing such as newspaper
and radio advertisements is sparse, aggregated, and noisy compared to the online
tracking technology counterpart. This lack of clean, large, disaggregate datasets,
combined with large amounts of aleatory and epistemic uncertainty, makes for a
delicate exercise to obtain accurate models. For instance, an observed customer pat-
tern might be caused by an unmonitored event not reflected in the dataset due to the
lack of offline tracking technologies.

When doing OLS on (2.22), one is trying to identify the single most probable set
of values used to generate the observed data. It is bold to assume that only a single
set of values is, in fact, correct. Instead, one should find a distribution over probable
values for the parameters of a model to reflect the stochasticity in the underlying
data generation process. The distribution should reflect the degree of belief that
each possible assignment on these parameters is correct. To infer such distributions,
one can use Bayes’ theorem and BM as introduced in Section 2.2. In the following,
we will introduce a well-known Bayesian MMM [170, 272, 273].

2.4.1 Bayesian Models for Mixture Marketing Plans

Businesses like Nepa Sweden AB1, Blackwood Seven2 and Adobe Experience Cloud3

are founded on the premise of using BMs for modeling marketing. BMs are favorable
for this type of domain, as the datasets are typically small compared to the number
of predictors and free parameters of the model. Further, the significant amount of
uncertainty (of both types) in this domain makes a MLE of the model parameters, θ,
insufficient. There is aleatory uncertainty in consumer behavior and epistemic un-
certainty due to the complexity of the field – removing all epistemic uncertainty is
unrealistic. There will always be effects in the real world not captured by the model.
Because of these domain-specific properties, BMs are suitable as they can capture
the aleatory uncertainty.

Existing research has identified seven essential patterns of response that influ-
ence the effectiveness of advertising. These are current, carryover, shape, dynamic,
content, and media effect [272, 273]. For more details on each of these effects, we
will refer to [170, 272, 273]. This work is the foundation of the following MMM:

1https://nepa.com
2blackwoodseven.com
3adobe.com/experience-cloud

nepa.com
www.blackwoodseven.com
www.adobe.com/experience-cloud.html
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Rt (X) ∼ N
(

β0 + βcoeff

J

∑
j=1

At (X) , σ2

)

At (X) =


St βeffecttanh

(
Xt

βsat

)
+ λ At−1 (X) , if t > 0

Ainc, otherwise

(2.23)

This is an auto-regressive (AR) model with a Koyck lag (AR(1)). It works at a disag-
gregate level, as it models each of the J insertions’ marketing effect at timestep t. The
objective is to accurately predict a company’s KPI given a marketing spend. A list of
each variable involved is provided in Table 2.1, along with a short explanation and
dimensionality. βeffect, βsat, and λ are all J dimensional vectors, as they are mapped
to each of the J insertions. The model uses the hyperbolic tangent to incorporate the
shape effect. This function determines when increasing marketing spend no-longer
affects the KPI. This is called saturation. The point of saturation is controlled through
the scaling parameter βsat.

βsat is needed, as some insertions saturate at a faster rate than others. βeffect

controls each insertion’s general effect on the KPI. λ controls the carryover effect of
spending on marketing in the past, as spending in the past typically has a decaying
effect on the future KPI. The model uses different carryover coefficients for each in-
sertion to reflect that some have a higher long-term effect than others. Finally, the
season influences the effect of marketing. The seasonal effect operates at different
levels: time of day, week, month, and year. This effect is less dominant in some do-
mains but is generally substantial. For instance, previous research has shown drastic
changes in consumer behavior due to the seasonal effect for certain consumer-based
companies [229]. The seasonal effect is controlled through St in this model.

As presented in (2.23), the model is simply a result of existing research, and we
will not go into further details of the model and the underlying mathematical imple-
mentation, as it is not part of the core research of this work. Indeed, more sophisti-
cated models could be considered that would allow for more complex phenomena
like competitor effects or product price. Nonetheless, despite the simplicity of the
model presented here, it can accurately predict the KPI for real-world companies
and is thus sufficient for the purpose of this research [170].

2.4.2 Optimizing Mixture Marketing Plans

As described in Section 2.4, the planning process of a MMP can be viewed as an
optimization process. Having a BM able to predict a company’s KPI given a MMP,
one can optimize the input to the BM to maximize the KPI. This optimization can,
for instance, be done using stochastic gradient descent (SGD). In such a setting, the
input to the model is free parameters, and the posterior distribution is kept fixed.
Each step of SGD requires computing the KPI using the BM. This involves making a
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TABLE 2.1: Explanation of variables for the model over marketing
effect as presented in (2.23).

Symbol Explanation Dimensionality

Rt A time-dependent function returning the total mar-
keting effect from day 0 to t

Scalar

At A time-dependent function returning the marketing
effect for each insertion from day 0 to t

J dim. vector

Ainc Initial effect Scalar

β0 Intercept Scalar

βcoeff Overall marketing effect Scalar

St Seasonal effect Scalar

βeffect The marketing effect J dim. vector

βsat The saturation point J dim. vector

λ The carryover effect J dim. vector

X A MMP withinsertion spend T × J matrix

point-estimate prediction for Ỹ as in (2.20) – often through the use of MC simulation
as in (2.21). With algorithms such as SGD, typically thousands of iterations and
hence predictions are required before it converges to an optimum.

2.5 Chapter Summary

In this chapter, several ML concepts have been introduced. Although these con-
cepts might seem fairly unrelated, the following chapters will apply these in various
combinations. To get an overview of which concepts are applied in what chapters,
Table 1.1 can be of assistance. In Chapter 3, we will present a method circumventing
the need for the numerous time-consuming evaluations of (2.21) using the BM. In
Chapter 4, we will expand on this method for swift generation of optimized MMPs,
and demonstrate the method’s appealing properties.
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Chapter 3

Rapid Risk Minimization of
Bayesian Models through Deep
Learning

There are two computational issues with BMs 1) obtaining the posterior distribution
over the free parameters, and 2) making predictions using the posterior predictive
distribution as shown in Section 2.3. With the rise of sophisticated techniques for
posterior inference like variational inference (VI) [27, 143, 289] and Markov chain Monte
Carlo [192], BMs have gained an increasing level of popularity over the past decades.
In contrast to the former computational issue, the latter has gained little attention in
academic research. This chapter builds on NNs as presented in Section 2.1 and takes
the best of BMs and NNs to address the computationally expensive predictions with
BMs through approximation. This chapter first brings an introduction to NNs. Fol-
lowing is a section on some preexisting combinations of the two ML methods (PGMs
and NNs) and with what purpose the combination was invented. Next follows a de-
scription of the actual method proposed in this work along with an analysis on the
reduction in computational complexity gained by using this method. The method
involves two algorithms used to minimize the computational burden of the approx-
imation. These algorithms are tested on a regular Bayesian regression model and
evaluated on the precision of the approximation and reduction in measured wall-
clock time.

3.1 Bayesian Models versus Neural Networks

The toolbox of ML is ever-growing and contains a wide spectrum of tools. Each new
tool has its advantages and drawbacks. This is especially true when comparing BMs
and NNs.

As discussed in Section 2.3, marginalization is what distinguishes the Bayesian
method from other ML tools like NNs [298]. In fact, the Bayesian framework has
been a source of inspiration for many advances in the work with NNs, as it is inher-
ently founded on probability theory [24, 105, 117, 183, 201, 203, 218, 277, 298, 299].
Bishop [24] performed a thorough walkthrough of some of these adopted concepts,
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including model comparison, hyperparameter optimization, active learning (AL), en-
semble methods, and ℓ2 regularization [24, 25, 182].

It would seem that NNs have little to contribute to Bayesian methods, as they
possess several unattractive properties compared to BMs. First and foremost, the
inferred MLE of the free parameters of a NN is far more difficult to reason about and
interpret compared to a PGM due to the entangled structure of NNs. Secondly, the
number of free parameters of a NN is often several orders of magnitude higher than
most BMs. For instance, GPT-3 uses 175 billion parameters [37]. Such a large number
of free parameters gives them a high model capacity. A model with a high capacity
is flexible, but dependent on large quantities of training data to prevent overfitting.
The Vapnik-Chervonenkis dimension can be used to obtain an upper bound on the
generalization loss of a model given its effective capacity and the size of the training
dataset [284]. As the capacity of the model increases, the required size of the training
dataset increases as well to maintain the same generalization performance [25, 99,
261]. NNs with millions of free parameters are, as a result, depending on much
larger training datasets than that of BMs. In spite of that, one of their main assets
is their extreme flexibility as they are model-free universal approximators [99, 124,
260]. This is appealing when it is infeasible to create a PGM for domains in which the
underlying data-generation process is unknown. Finally, despite having far more
free parameters, their extended use of matrix multiplication, execution on TPUs,
and lack of marginalization make them very fast compared to BMs.

3.1.1 Bayesian Models and Neural Networks as Companions

With the aforementioned strengths and weaknesses in mind, the two ML approaches
seem to complement each other nicely. In fact, numerous approaches for such a com-
bination have already been proposed for overcoming various research challenges.
In general, the application of NNs in these approaches is done with the purpose
of utilizing either their predictive speed or approximation flexibility. For instance,
recent development applies the Bayesian probabilistic framework and one or more
NNs in a compound for doing VI of complex distributions. Examples of such ap-
proaches are generative models like variational autoencoders [151] and normalizing
flows [213, 234]. The latter can be used for approximating the posterior distribution
of a Bayesian NN [173].

For such generative models, the posterior distribution and parameters of the NN
are optimized jointly and thus tightly coupled. The composition leverages the flexi-
bility of NNs and the principled probabilistic framework to infer distributions over
data.

Another method of combining Bayesian methods and NNs is fitting a NN to the
posterior distribution of a BM. In this setup, the posterior distribution of the BM
is first inferred, and only afterward is the NN introduced. This is done with the
purpose of leveraging the predictive speed of the NN.
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A preexisting example of this method is presented by Jia et al. [138]. In this case,
the NN learns to perform inference on the free parameter in the BM (θ) given some
observations.

In the work of Pavone et al. [217], another approach was taken to approximate a
NN to a BM. In this research, they used the domain of particle physics and sampled
a target t ∼ p(T) using a joint prior distribution over the target variables. Then,
I samples of data points x = [xi ∼ p(X | T = t)]⊤i=1,...,I served as I input examples
to the NN. The NN gained robustness and learned the uncertainty of the model
through the data sampling process. The NN itself, however, predicted a single MLE
for target t and thus had no way to represent the posterior predictive distribution in
its output. The results show how using a NN for predictions rather than a BM can
reduce the prediction time from over four hours to a matter of milliseconds. This
demonstrates the potential benefits of using such setups [217].

3.2 The Best of Both Worlds for Risk Minimized Predictions

As mentioned at the beginning of this chapter, the ambition for this work is alleviat-
ing the time-demanding iterations over the full posterior predictive distribution of a
BM for risk minimized predictions. This section presents the proposed method and
algorithms for achieving this.

The method yields an approximation using a NN. When fitted, the NN is a func-
tion of the observation space and predicts an approximation to the full posterior pre-
dictive distribution of the BM conditioned on the same observation. In Section 3.6,
we show how our method allows for such predictions faster than standard methods
for BMs with many predictors. This happens due to the architecture as presented in
Figure 3.1. The output of the NN is a point-wise for θ estimate of the BM’s mean posterior
predictive distribution. This approximation is obtained in a single feed-forward pass of
the NN. Having access to the posterior predictive is beneficial for subsequent eval-
uation of the model, as it provides more detailed information about the predictions.
This distribution can, for instance, be used for quantifying the model’s uncertainty
in the prediction.

Assuming only limited data was obtained and preprocessed for inferring the
posterior distribution of the BM, this dataset is insufficient for training the NN. This
issue is resolved by using the BM to generate a dataset of arbitrary size for the NN.
Having a set of posterior samples from the BM, one can simply generate synthetic
input data and pass it through the BM. This data needs to be evaluated on the BM
multiple times, one time for each posterior sample used. The result is a discrete
approximation of the mean of the posterior predictive distribution. It is important
to note that the NN has no notion of the actual posterior samples of the BM. These
are latent in the dataset generated for training the NN. In effect, this approach is
fundamentally different from that of Jia et al. [138], as our NN has no notion of the
parameters of the BM, it is simply latent in the dataset. In this way, our method
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FIGURE 3.1: The transition from data, to BM, to NN. The colored
dots indicate a sample from the corresponding distribution. First, the
data is sampled. Then, the BM is fitted, and M samples from the pos-
terior distribution are taken. Finally, the NN is trained such that for a
given observation, the output of the NN corresponds to a prediction
by the BM using each of the M posterior samples.

preserves the benefits from the BM but also gains the speed improvement from the
NN.

Formally, we let gϕ : x ⊂ RJ → ỹ ⊂ RM be our approximation of the model (i.e.,
our NN), where ϕ are the free parameters of the NN. For inferring ϕ, we apply the
loss function SmoothL1(y, ỹ), with y = [ym = E [Y | x, θm]]

⊤
m=1,...,M. θ is a vector of

size M with θ ∼ p(θ | DBM) sampled prior to data generation and afterwards kept
fixed1. For computing the expectations, the posterior predictive, p (Y | X, θ), from
the BM is used. Finally, SmoothL1 is the Smooth L1-loss, a combination of L1-loss
and L2-loss [233].

The core algorithm contains three steps: 1) Let θ be a vector of M posterior sam-
ples taken from p

(
θ | DBM), 2) sample the training dataset,DNN, using Algorithm 1,

and 3) fit gϕ toDNN. The sampling algorithm is outlined in Algorithm 1. Here,⊙ de-
notes the Hadamard product. We randomly dropout with probability 1− τ for each
of the J sampled values in vector x. This is done as a generalization technique to
assist the NN recognizing invariants in the underlying model. This is similar to ran-
domly removing pixels for an image recognition task, only in our case, the predicted

1A note on notation: As the predictions of the BM now become the ground true values to be approx-
imated by the NN, the output of the BM is now denoted y and the output of the NN as ỹ. Likewise, to
distinguish the datasets used for inferring θ and ϕ, we accompany each dataset with a superscript for
clarity.
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Algorithm 1: Algorithm for the data sampling process for fitting the NN to
a BM for risk minimization.

Input : I, p (X), τ, θ
Output: DNN

1 DNN ← ∅
2 for i← 0 to I by 1 do

3 ρ←
[

ρj ∼ Bern (τ)
]⊤

j=1,...,J

4 x ∼ p (X)
5 x← x⊙ ρ // Dropout

6 y← [ym ← E [Y | X = x, θm]]
⊤
m=1,...,M

7 DNN ← DNN ∪ {(x, y)}
8 end

value, y, is changed with respect to the alteration of x.

3.3 Computational Complexity

Generating data and fitting a NN to a BM is a computationally more time-consuming
task compared to doing a MC simulation for a single prediction. If each BM predic-
tion with MC has complexityO(m), with m being the number of samples, then mak-
ing n predictions has complexity O (nm). As the number of predictions increases,
the processing time increases linearly. In contrast, generating a dataset DNN and
doing n predictions has complexity O (κm + n) with κ being the number of dataset
samples required for training the NN. When n ≥ κm/(m− 1), our method has the
lowest overall complexity. One might wonder if this is a real use case, as κ, is usually
in the thousands. Some optimization problems and domains, however, are depen-
dent on solving the conditional expectation, E [Y | X], a vast amount of times for
varying input. Moreover, for a real-time application, once trained, the NN will pro-
vide better response times and thus improve user experience.

Having a fitted NN and m > 1, using the NN allows for risk minimized pre-
dictions with a lower complexity for a single observation compared to the BM. This
makes our method appealing in some time-sensitive domains. These are domains
with surplus time when fitting the BM, but at some point later require accurate pre-
dictions quickly for new input. Examples of such domains could be stock market
trading or autonomous vehicles: both needing rapid, correct reactions to new obser-
vations, but having surplus time when the stock market is closed or research is being
conducted. Further, our method is beneficial when the rate of new data incoming surpasses
the time it takes to evaluate (2.21) using the BM. Examples include particle physics and
big data applications with a high data velocity.

Some software frameworks such as Jax [33] enable executing BMs on the GPU
rather than the CPU. This provides some gain in speed. However, the computational
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complexity analysis remains the same, as the same sequence of statements needs to
be computed for the BM.

3.4 Active Learning

As the computational complexity of using our method depends on κ (the size of
the training set), minimizing κ increases the computational benefit of our proposed
method. Thus, we apply AL as an extension of the regular training algorithm to
maximize the computational benefit. The approach is outlined in Algorithm 2 and
works by iteratively expanding the training dataset for the NN. This is done through
modifications to the data sampling distribution, p (X), from which new data is gen-
erated. The iterative, data-augmented approach helps to minimize the computa-
tional burden of evaluating the BM. During the first iteration, a uniform distribution
is used for generating the initial dataset of size IInit. Subsequently, this distribu-
tion is changed to a categorical distribution with probabilities reflecting the NN’s
predictive uncertainty on entries from a large, unlabeled, uniformly sampled dataset
Xuncert.. From this categorical distribution, IAL entries are sampled with replacement.
These are then labeled using the BM and added to the training dataset for the next
round.

The aforementioned uncertainty is measured through the use of dropout. For
each example xuncert. ∈ Xuncert., we measure the NN’s predictive uncertainty. This
is done by performing K feed-forward passes through the network for xuncert. with
dropout enabled, such that the predictions, Ỹuncert., are a M × K matrix. To reduce
this matrix to a single value reflecting uncertainty on xuncert., we take the standard
deviation over K to obtain a vector of M standard deviations, for which we calculate
the mean:

σxuncert. =
1
M

M

∑
m=1

σ
(

Ỹuncert.
m

)
(3.1)

The larger standard deviation means a higher uncertainty and, as a result, a larger
sampling probability from the categorical distribution. This operation is performed
over each instance in the unlabeled dataset, and the resulting set of σ values is trans-
formed using Softmax to be used as probabilities.

Finally, we apply early stopping (ES) [225] at two levels. We will refer to these
as intra- and inter-ES. Intra-ES regulates when to stop fitting the NN on DNN, while
inter-ES determines when to stop the AL iterations. When inter-ES chooses to stop,
it restores the state of the NN to the best-performing one. Both ESs are using the
same fixed validation dataset to ascertain the performance of the NN.
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Algorithm 2: Active Learning algorithm.

Input : τ, p
(
θ | DBM), patience

Output: g
1 stopper← EarlyStopping(patience)
2 X ∼ U (0J , 1J)
3 g← initialize NN

4 θ←
[
θm ∼ p

(
θ | DBM)]⊤

m=1,...,M
5 DNN ← Algorithm 1(IInit, p (X), τ, θ)
6 do
7 g← (re)train g on DNN

8 σ ← MeasureUncertainty (g)
9 π ← Softmax (σ)

10 X ∼ Cat (π)
11 DNN ← DNN ∪ Algorithm 1(IAL, p (X), τ, θ)
12 while stopper.should continue (g)

3.5 Experiments

For the experiments in this chapter, we assume a Bayesian regression model, fθ : x ⊂
RJ → y ⊂ R, where x is a single example. The model is as follows

α ∼ N (1.5, IJ) ; β ∼ N (0.5, 0.25IJ)

σ2 ∼ N (0, 1) ; γ ∼ N (0, 0.5)

f (x) = γ +
J

∑
j=1

βjψ
(
xjαj

)
; Y ∼ N

(
f (x) , σ2) (3.2)

with IJ being the identity matrix with rank J. The idea behind this model is that
the output is the sum of a linear transformation of each feature that is altered by
some function, ψ. This function is domain-dependent, and could be

√
, sin, log,

sigmoid, or the like. α, β and σ are J-dimensional column vectors and represent the
parameters of the BM that needs to be inferred. The BM outlined above does not
directly resemble any real-world model. Nonetheless, one can easily imagine such
a setup for modeling periodic data as the sum of sine functions, with each feature
having a different phase. Another example could be a model for diagnosing the risk
of having a particular disease. Here, x could be a patient’s blood test results, β the
impact of each examined property, ψ the sigmoid function to saturate the influence
of each property, and α a scaling factor.

Next, we are interested in using the model for predictions over the full posterior
on new data. We will assume no closed-form solution of the posterior predictive
distribution. Thus, for doing predictions with the BM, we will apply MC-sampling,
as in (2.21), and assume a sufficient posterior fit to the observed data DBM.

For predictions using this model, each of the m ∈ {1, . . . , M} posterior samples



38 Chapter 3. Rapid Risk Minimization of BMs through DL

of α, β, and γ needs to be used. The computational complexity of (3.2) is linearly de-
pendent on J. Thus, making predictions over the full posterior becomes increasingly
computationally heavy as the number of features grows. One could imagine other
terms that reflect more complex effects such as synergies across features to take place
in the model. A synergy effect between all features would transform the linearly growing
complexity into an exponential one.

In contrast to the complexity growth of the BM for increasingly complex tasks,
the same growth is not necessarily present for NNs. Using the property of NNs
being universal approximators, adding more complexity to the BM does not neces-
sarily require a larger NN as long as its capacity is not fully utilized. Even using a
single hidden layer in the NN, with enough width, it remains a universal approx-
imator [206]. Consequently, in the extreme case, the NN approximation provides
extremely fast predictions, as it will only involve two matrix multiplications, two
addition terms, and an activation function.

To examine this, our experiments will focus on approximating the BM from (3.2)
with a NN. We will vary the computational complexity of the model through J and
evaluate the NN’s fit to the BM. The main motivational factor for introducing a NN
as an approximation of a BM is the gain of speed when making multiple predictions.
To quantify this, we measure the runtime for making predictions on the whole test-
ing dataset using M posterior samples. We will refer to this runtime as prediction
time. Our results will focus on the prediction time as a function of model complexity,
and the required size of the training dataset.

Throughout all experiments, we use a simple, feed-forward NN with a single
hidden, dense, layer with a width of 5000. We use dropout [262] with a rate of 0.5,
and batch normalization [12] after the hidden layer. We let IInit = 10 000, IAL = 1000,
τ = 0.8, and M = 2000. We keep M fixed for all experiments and instead vary
J, but one could make similar experiments for an increasing number of posterior
samples. For training the NN, we use a learning rate of 3× 10−4, and set the pa-
tience to 10 and 20 for inter- and intra-ES, respectively. The validation and test-
ing dataset each contain 50 000 examples. The experiments are executed on an In-
tel Core i7-6700K with 48GB ram and a NVIDIA GeForce RTX 2080TI GPU. We
use PyMC3 [248] version 3.9.3 for Bayesian inference with the No-U-Turn Sampler
[121] using 2000 warmup steps and 2000 samples. DBM = {XBM, YBM} contains
N = 5000 examples with XBM being sampled from a standard Gaussian distribution,
and YBM =

[
YBM

n = f
(
XBM

n
)]⊤

n=1,...,N from (3.2) with the ground-true values pre-
sampled using γ̂ ∼ U (−0.5, 0.5), α̂ ∼ U (0.3 · 1J , 3.0 · 1J), and β̂ ∼ U (0.1 · 1J , 1J).

3.6 Results

In Figure 3.2, one can see the prediction time on the testing set for increasing model
complexities, the corresponding mean squared error (MSE), and the size of the train-
ing dataset used for fitting the NN. When measuring the prediction time of the BMs,
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the operation is run in parallel using all cores of the CPU when iterating over the
M posterior samples. This is done using a pool of threads. All calculations make
use of the Numpy library with vectorized operations to obtain the best possible per-
formance. The PyMC3 framework also provides a method for making predictions
using vectorized computations. However, this does not make use of parallelization
and therefore yields a worse prediction time than those we have reported here using
both vectorized operations and concurrency.
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FIGURE 3.2: Prediction time (top), MSE on the testing dataset (bot-
tom left), and the ultimate size of the training dataset (bottom
right), shown as a function of model complexity J. The lines indi-
cate the mean of each experiment, which is repeated five times. The
shades are the 90% confidence interval bands, and the markers show
the values of J for which experiments were conducted. The predic-
tion time on the testing dataset using the BM versus the NN is shown
in the top figure. This figure illustrates the linear relation between the
model complexity and the prediction time using the BM while being
constant for the NN. The bottom left figure shows the MSE of the NN
calculated on the testing dataset. The bottom right figure shows how
the size of the training dataset increases nonlinearly with the com-
plexity of the BM to be approximated. Here, the dotted line indicates
the lowest possible size of the training dataset, as each experiment
starts with 10 000 examples and passes at least 10 AL iterations.

Measuring runtimes on modern computers is generally an error-prone task, and
therefore, we repeated each experiment five times. From the figure, the linear re-
lationship between complexity and prediction time using the BM is clear, while it
remains constant for the NN. As complexity increases, we see a small decreasing ten-
dency in the MSE. The MSEs is for all experiments considered low, spanning from



40 Chapter 3. Rapid Risk Minimization of BMs through DL

4.3× 10−5 to 2.1× 10−4. The results indicate a negative correlation between the MSE
and model complexity. We find this somewhat surprising, as it seems intuitive that
more complex models would be harder for the NN to approximate. We interpret
this phenomenon as a result of the central limit theorem [224], as the normalized
distribution over YNN shrinks to a normal, making it easier for the NN.

3.6.1 Active Learning and the Size of the Training Dataset

To examine the strength of the correlation between the NN’s uncertainty and the
predictive error on the Xuncert. dataset, a calibration plot is shown in Figure 3.3. This
figure shows the NN’s uncertainty (calculated using (3.1)) as a function of the aver-
age root mean squared error, µRMSE. This average is taken over the K×M predictions.
The figure shows the correlation for an experiment with complexity J = 5. Although
the correlation is not equally strong for all examples, it shows a general tendency. If
the correlation were not present, the data newly added to the training dataset would
provide little to no improvement on the validation dataset. If that were the case, the
ES algorithm would terminate the training process as soon as the iteration counter
reached the patience threshold. This level is indicated by the dotted line in Fig-
ure 3.2. The line illustrates the smallest possible size of the training dataset (20 000)
when using the hyperparameters IInit = 10 000, IAL = 1000, and an inter-ES patience
of 10.

3.7 Discussion

The use of dropout as a measure of uncertainty assumes a correlation between the
standard deviation over the K predictions and the actual ground true error. [279]
showed that such a correlation exists for a range of different problems for which
ỹ ⊂ R. In our domain presented here, we have increased complexity, as ỹ ⊂ RM

with M ≫ 1. In (3.1), we take the mean over M to obtain a single scalar reflecting
the NN’s joint uncertainty over all predicted values. Whether this is sufficient sum-
mary statistics for the use of AL is unsettled, and an area for future research. One
could potentially simplify the method by making the NN predict E

[
Ỹ | X

]
instead.

Such a change would mean M = 1 and only require an alteration to the generation
of DNN by performing the averaging step in (2.21) when computing YNN using the
BM. We argue that one might as well do the MC simulation step on the output of the
NN rather than when generating the training data for the NN. The MC simulation
involves a summation operation, and thus information to the NN is lost. Therefore,
we argue that the training task of the NN simply becomes easier. Further, having a
discrete approximation of the posterior predictive distribution allows one to recover
the uncertainty of the BM in a way the summation function would make irrecover-
able.

The BM presented in (3.2) is relatively simplistic. More complex effects such as
synergies across features or an autoregressive component can significantly increase
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FIGURE 3.3: Calibration plot showing the correlation between the
uncertainty of the NN, σ, and its prediction’s root mean squared er-
ror on newly sampled data, µRMSE. The correlation allows for sam-
pling additional data purely based on the uncertainty estimate of the
data points.

the prediction time of a BM. Future research should extend the BM with such effects
and evaluate the NN’s ability to approximate such constructs, as these leave room
for even larger speed-gains over the BM.

A drawback of our method is the assumption that the BM is fixed. Changes to the
BM’s construct or posterior distribution would require a refit of the NN. Depending
on the magnitude of the change in the BM, one might achieve good results by us-
ing transfer learning [99, 276], by transferring the state of the original NN to fit the
updated BM.

3.8 Chapter Summary

This chapter builds on the theory from Chapter 2. Specifically, Chapter 2 discussed
the computationally heavy risk minimized predictions with BMs. This issue serves
as the motivation for the method proposed in this chapter. As the proposed method
uses NNs, this chapter began with an introduction to the general concept of NNs.
Then, building on this concept, a formal introduction to the proposed method was
given in Section 3.2. Using this method, the NN predicts a vector of point-wise
estimations of the BM’s posterior predictive distribution E

[
Ỹ | X, θ

]
. The fitted NN

becomes a function of the same observational space as the BM, and the output is
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an approximation of the BM’s posterior predictive distribution conditioned on the
same observation.

The method was tested on a Bayesian regression model. The experiments dis-
closed the appealing properties of the method as it enables computationally cheap
risk minimized predictions and scales better as a function of domain complexity.

These results indicate how the approach can be useful in domains with a need for
fast, precise, risk minimized predictions. An example of such a setting is an appli-
cation with a high data-velocity, i.e., when data arrives faster than one can generate
predictions with the BM.

Despite the impressive gain in speed with a negligible loss in prediction accu-
racy, the results presented in this chapter are based on an artificially constructed
regression model.

To further justify the approach, the following chapter applies the method in a
real-world setting within the field of marketing.
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FIGURE 4.1: The steps for obtaining an optimized MMP based on
historical data. The ordinary approach involves only step A) and B)
through the use of a BM. Our proposed method includes two addi-
tional steps, C) and D). These obtain a NN approximated to the BM.
The NN is then used for step B) as a surrogate. In turn, performing
step B) becomes up to 65× faster than using the BM with only a 0.46%
loss in KPI on average. Hence, the MMP deriving from the proposed
method is almost identical to that of the ordinary approach. The «
constraints » are set forth by the marketing employee querying for
an optimized MMP. An example of such a constraint could be the
minimum spending on TV commercials on a specific day.

The previous chapter discussed two computationally heavy operations with Bayesian
models: inferring the posterior distribution and conducting risk minimized predic-
tions. The chapter focused on the latter and proposed a method for alleviating the
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computational burden using an approximation with NNs and AL. So far, the appli-
cation of the method has been purely academic but has suggested intriguing gains
in speed compared to standard methods. This chapter contains a proposition for
extending the approach in order to apply the method in a real-world setting with
the purpose of generating optimized MMPs. Thus, the chapter relies heavily on
concepts introduced in Section 2.4 and 2.4.2.

Unlike the previous experiments, which used a fabricated BM, this chapter ap-
plies the generic method to marketing and demonstrates how it can be used for input
optimization to obtain KPI-optimized MMPs. The overall purpose is to bypass the need
for thousands of time-demanding risk minimized predictions with the BM when using SGD
to optimize a MMP.

Results from the previous experiments indicate that the proposed method can
be used for such risk minimized predictions using an approximated NN instead
of the BM with a negligible loss in prediction accuracy on the testing dataset. How-
ever, there is a significant difference between making predictions on a testing dataset
sampled from the same distribution as the training data and performing input opti-
mization. Having a good performance on such a testing dataset does not guarantee
that the optimized input is in fact optimal. The input optimization can drift into ar-
eas of the search space in which the NN is not fitted correctly. Such areas can occur
when the data sampling distribution does not uniformly cover all parts of the search
space, which can be challenging to accomplish.

Samples from out-of-distribution areas can lead to suboptimal predictions by the
NN, and are closely related to the concept of adversarial attacks. Adversarial at-
tacks are an ongoing field of research in the ML community and will be discussed in
greater detail in part III. In short, adversarial attacks trick a NN to make highly con-
fident incorrect predictions on generated, malicious, out-of-distribution examples.

As one cannot know beforehand on which areas of the search space the NN will
have to make predictions during the input optimization, the generated MMPs will
depend on how well the NN generalizes. Thus, it is of high importance that the NN
learn the underlying properties of the BM and invariants.

This chapter will be using a Bayesian MMM, as presented in (2.23) and repeated
below for ease of access:

Rt (X) ∼ N
(

β0 + βcoeff

J

∑
j=1

At (X) , σ2

)

At (X) =


St βeffecttanh

(
Xt

βsat

)
+ λ At−1 (X) , if t > 0

Ainc, otherwise

(4.1)

This model is more complex than the Bayesian regression model from Chapter 3,
as it is an AR(1) model with a seasonal component. The increased model and domain
complexity requires some modifications to the NN and data generation process from
the previous chapter, this being the subject of Section 4.1 and 4.2, respectively. After
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this, a domain-dependent loss function is introduced in Section 4.3. This loss func-
tion is used for the input optimization procedure. To visualize the domain at hand, a
low-dimensional experiment is carried out in Section 4.4.1. Here, an artificial setup
with only two insertions is carefully designed as a proof-of-concept. This setup is
used to visualize the properties of the task and the loss landscape of the input op-
timization, and to evaluate the solution vector of the input optimization using the
NN versus the ground true for a set of budgetary constraints.

Section 4.4.2 highlights the potential of the method being applied in this part of
the work. The experiments in that section are a result of applying the method in an
industrial setting with >100 insertions. The generated MMPs are compared to ones
used in the industry. These results stress the real-world potential of the approach
which yields high-performing MMPs that are generated more than a full order of
magnitude faster than through traditional methods. This raises new possibilities
for the optimization process itself, as it now becomes feasible to generate numerous
optimized MMPs that differ in their solution. Figure 4.1 visualizes the method’s
change in the workflow when generating optimized MMPs. Once the NN has been
trained, the new steps allow for much faster generation of MMPs.

4.1 Data Generation

Company data on past marketing spending and KPI is often sparse. The historical
data is, in the cases considered here, disaggregated only to a daily level. Further,
information dating back several years does not reflect the current marketing situa-
tion of a company; new insertions arise, the line of products changes, the competitor
landscape is ever more dynamic, etc. The dynamic scenery quickly renders the his-
torical data obsolete. Therefore, it is often the case that only the past few years of
data are applicable, leaving only ≈ 730 datapoints for a high-dimensional setting.
While this can be enough to watchfully infer the posterior distribution of a BM, this
is not sufficient for training and testing a NN.

Instead, the approach taken here is an extension of the data generation process
presented in Algorithm 1 (p. 35) to sample synthetic data for training the NN. First,
a pre-sampled set of θ is created by sampling from the fitted posterior of a BM θ =

[θm ∼ p (θ | D)]⊤m=1,...,M. Next, an observation x is sampled unconditionally. Finally,
the BM is used to make a set of predictions conditioned on the sampled observation.
These predictions are generated by using the posterior predictive distribution of the
BM y = [ym = E [Y | θm, X = x]]⊤m=1,...,M. In this way, the NN approximates a point-
wise for θ posterior predictive distribution of the original BM conditioned on an
arbitrary observation. List 4.1 outlines the steps involved in the data generation
process for sampling a single observation. In the list, T indicates the end date of the
period of interest. 0T×J denotes a T× J matrix of zeros. X̂ is the historical spend data.
ej is the standard basis column vector. F−1 is the inverse cumulative distribution
function over X̂ej, i.e., the historical spending on insertion j. ⊙ is the Hadamard
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LIST 4.1: The list of steps involved for generating a single example in
the dataset.

Step 1. X← 0T×J Initialize spending to 0

Step 2. x(max) ←
[

F−1
X̂ej

(1)
]⊤

j=1,...,J
Obtain upper bound spend for each
insertion

Step 3. ρ←
[
ρj ∼ Bern (τ)

]⊤
j=1,...,J

Sample spending dropout with
probability τ

Step 4. t ∼ Mult (p = 1T/T) Sample spending date uniformly
from day 0 to T

Step 5. Xt ←
[
xj ∼ U

(
0, x(max)

j

)]⊤
j=1,...,J

Sample spending and update row t
of X

Step 6. Xt ← ρ⊙ Xt Dropout spending

Step 7. y←
[

ym =
∞
∑

i=1
Ri (X)

]⊤
m=1,...,M

Compute BM output

product. Finally, Ri is used from (2.23) and is evaluated using the specific posterior
sample θm.

X in the list of sampling steps is a sparse matrix with only row t being nonzero.
In effect, y will only reflect the total marketing effect for spends on a single day.
For this reason, only the vector xt is taking part in the collected dataset. The data
sampling process in List 4.1 is repeated I times to collect an entire dataset. Let
DNN = {(x(1), y(1)), (x(2), y(2)), . . . , (x(I), y(I))} denote the full dataset with I obser-
vations used for fitting and evaluating the NN.

To keep the training process efficient, the input to the NN is still a matrix XK×J ,
with K being the batch size. The output of the NN denoted ỸK×M is the predicted
marketing effect for each of the K examples and M posterior samples. The prediction
for each example k ∈ K is computed independently of the other examples. Thus, XK×J

will contain data for dates approximately uniformly distributed over the examined
period [0, T].

One might question why the NN does not contain a recurrent component like
the original model being approximated from (2.23). Having a recurrent NN like
LSTM would seemingly be more beneficial for this application. To see why this
is unnecessary, let X be a matrix with some spending at day t. The effect of the
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particular spending at day t, namely xt, will have an immediate effect of

Effectimm = Rt (X)− Rt
(
X′
)

= St βeffecttanh (Xt/βsat)
(4.2)

where X′ differs from X only in row t with X′t = 0J . In addition to Effectimm, Xt

will also affect the future KPI through carryover. Assuming | λ |< 1 (the carryover
effect), this future effect of spend Xt will decrease exponentially. The total effect of
Xt is the immediate effect plus all future effects

Effecttotal =
∞

∑
i=1

Ri (X)− Ri
(
X′
)

= 0 + · · ·+ 0︸ ︷︷ ︸
i<t

+

Stβeffecttanh (Xt/βsat)︸ ︷︷ ︸
i=t

+

λ (Stβeffecttanh (Xt/βsat) + λ(. . . ))︸ ︷︷ ︸
i>t

= Effectimmλ0 + Effectimmλ1 . . . Effectimmλ∞

=
∞

∑
i=1

Effectimmλi

(4.3)

This is a sum of a geometric series and thus can be rewritten to Effecttotal = Effectimm/(1−
λ). This is a significant result, as the infinite sum requiring a recurrent model is re-
duced to a closed-form solution for which no recurrent component is needed. In-
stead, the carryover effect of Xt is latent in the corresponding y to be predicted by
the NN. For similar reasons, the infinite sum in step seven of the enumerated data
generation process above has a closed-form solution.

It could be argued that this model is too simplistic, as the total effect of a spend at
day t is invariant to previous spends leading up to t. For instance, it could be argued
that the effect of Google Advertisements at day t becomes affected by the number of
related TV commercials at day t− 1. Similarly, the carryover effect is also invariant
to whatever other marketing spend used that day. This property results from the
underlying model in (2.23) and a simplification of the real world. An improved
model could have a time-dependent synergy in the total effect.

4.1.1 Learning the Correct Attribution

From the model in (4.1), the marketing effect of insertion j does not alter the market-
ing effect of insertion ̸= j as there is no synergy effect present. The NN will have to
learn that the effect of spending on insertion j is invariant to all other spends. In the
real world, one could imagine a synergy effect between one or more insertions, and
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improvements to the model could incorporate such an effect. Nonetheless, in this
simple model, there is no such effect.

Due to the nature of a NN, it needs to learn the correct attribution for all values
and combinations of x; hence, large quantities of data are needed. As each entry in
the dataset needs labeling using the BM, collecting data is a time-consuming process
despite the data being synthetic. The “dropout” effect of the data generation process
helps the NN learn the invariant properties of the domain by randomly assigning a
predictor to the value zero.

The dropout component also alleviates another issue with the approximation.
Namely, when the marketing effect of an insertion is small, e.g., a local newspaper,
the effect is easily overshadowed by insertions with substantial spending and effect.
Without the random removal of spend on insertions, the NN will be biased toward
attributing all effect to the insertions with a substantial effect. Such a bias can be
vital for the subsequent input optimization, as the NN will underestimate the effect
of insertions with a less sizable effect. The dropout ensures that the training dataset
contains examples with and without spending on the insertions with substantial
influence on the KPI.

The rate at which this dropout occurs is a new hyperparameter introduced, τ.
Setting τ too high removes the effect of dropout and makes it more challenging to
learn the invariants.

On the other hand, setting τ too low removes most predictors in the dataset,
making the NN biased towards instances with primary zeros. Such bias will, in
effect, make the NN underestimate the effect of marketing plans with a large budget.
One should aim for a sweet spot in-between, for which the data generation remains
as efficient as possible while still demonstrating, to a sufficient extent, the invariants
of the domain.

Appendix A contains visualized empirical results for different settings of τ and
its effect on the fitted NN when predicting the KPI for two distinct predictors.

4.2 Replicating Parts of the BM in the Architecture of the NN

The hyperbolic tangent function taking part in the BM as seen in (4.1) is a key com-
ponent to model saturation in consumer response. It is important to identify the
saturation point at which additional marketing spending does not lead to an in-
crease in KPI. To assist the otherwise model-free NN in identifying this property,
it can easily and efficiently be replicated in the NN architecture. For doing so, a
specially designed first layer is created. The layer and NN architecture is shown in
Figure 4.2. Here, one can see a specially designed first layer. This layer’s design uti-
lizes the domain-specific knowledge possessed by the underlying model. Namely,
the BM applies scaling followed by a hyperbolic tangent function to account for sat-
uration. This effect can be modeled directly in the first layer of the NN, as shown in
the figure. As NNs are universal approximators, one might obtain a similar fit to the
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FIGURE 4.2: The customized NN architecture used. The figure
shows how a single observation, x(i), is processed by the NN. First,
the input data is transformed by the customized first layer. This layer
resembles the saturation component of the BM. Next, the data is pro-
cessed by a set of fully connected hidden layers. Further, date en-
coding is provided to make the NN seasonally aware like the BM is.
The final output for a single observation is a vector of predicted KPIs
– one element for each posterior sample taken from the BM’s poste-
rior distribution. Each output y(i)

m is an approximation of the BM’s
expectation over the posterior predictive distribution conditioned on
a particular sample, E [Y | X, θm]. The mean of this vector is then
an approximation of E [Y | X] from (2.20). This approach avoids the
need to evaluate the expensive double integral from (2.20) through
this approximation. For this reason, the input optimization step in
Figure 4.1 gains a significant speed improvement.

dataset using a NN without the domain-dependent first layer. However, one could
argue that using the knowledge one has about model-specific details is beneficial, as
it eases the approximation.

4.2.1 Making the NN Seasonally Aware

From the model in (4.1), the seasonal effect, S, plays an essential role in scaling the
marketing effect of a spend at timestep t. Without S, the marketing effect of a com-
mercial will be constant throughout the week, month, and year. In order to make
the NN time-aware, a date encoding is provided as additional input to the NN, as
shown in Figure 4.2. This encoding is concatenated to the spend data after the first
layer has processed the spend. Date information can be encoded in several different
ways suitable for NNs. The specific encoding is typically domain dependent, and
section 4.4.3 elaborates on the encoding chosen for one of the experiments in this
chapter.
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4.3 The Loss Function for Optimizing a Mix-Marketing Plan

Having a NN fitted usingDNN, this can now be used to generate an optimized MMP.
To do so, let XT×J be a MMP spanning T days, covering J different insertions. The
predicted KPI for this MMP is also a matrix, YT×M, one for each day and each poste-
rior sample in θM. It requires a careful, continuous adjustment to the weight between
optimizing the KPI and conforming to a prefixed budget, B. The following function
is used to compute the loss for SGD to perform the input optimization

LP =
T

∑
t=1

1
M

M

∑
m=1

Yt,m

LB =

(
B−

T

∑
t=1

J

∑
j=1

Xt,j

)2

L = πLB − (1− π)LP

(4.4)

Here, B is the fixed budget set by the user. π balances the weight between the two
loss terms. π is dynamically tuned to anneal the budget loss until the budget has
converged. Starting with a low value for π and slowly increasing it allows for the
optimization to find an initially well-performing MMP without too much regard
to the budget constraint. Slowly increasing π forces the optimization to eventually
converge to a MMP which satisfies the budget constraint while attempting to uphold
a high KPI.

4.4 Experiments

This chapter will conduct experiments in two different settings: an illustrative, low-
dimensional example and an industry-level setting.

4.4.1 An Illustrative Example

The first example is a constructed, illustrative example with only two insertions.
This experiment serves as a low-dimensional, proof-of-concept example that is easy
to visualize. In this domain, the BM does not use a carry-over effect, nor does it have
a temporal component. It is simply defined as

α ∼ NHalf (12/2, I2)

β ∼ NHalf (12, 2I2)

σ2 ∼ Gamma (0, 1)

fα,β(x) = α1tanh
(

x1

β1

)
+ α2tanh

(
x2

β2

)
Y ∼ N

(
fα,β(x), σ2)

(4.5)



4.4. Experiments 51

where 1 denotes a column vector of ones, I is the identity matrix, and NHalf is the
bounded normal distribution to prevent negative values as we assume a marketing
campaign can never harm the KPI. We choose the ground true parameters such that(

β̂1 < β̂2

)
∧ ( α̂1 < α̂2 ) (4.6)

This decision on the ground true parameters is to have two predictors that saturate
at different levels, as illustrated in Figure 4.3. The figure shows that insertion x1

saturates much faster than x2, but it cannot yield the same level of KPI at a maximum
level.
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FIGURE 4.3: The illustrative MMP domain. The figure shows the
KPI as a function of each predictor. For measuring the KPI for in-
creasing values of x1 we set x2 = 0, and vice versa.

The task for the NN is to approximate the transition function x ∈ R+
2 → y ∈ R+

M

where y =
[
ym = fαm,βm

(x)
]⊤

m∈1,...,M and (αm, βm) ∈ θ. Once the NN has been fitted
to a subset of DNN constituting the training dataset, the input optimization proce-
dure is conducted on a set of different constraints. The results obtained here will not
only demonstrate the overall method, but also shed light on potential discrepancies
between the ground true solution and the solution obtained from the NN using the
input optimization.

4.4.2 An Industry-level Example

The second experiment is performed on a large, industry-level, BM. This BM is used
for generating optimized MMPs for a domain with ≈ 100 insertions. The model is
AR(1) as presented in (2.23), for which the parameters are inferred using RStan [263]
and No-U-Turn Sampler [121] based on an anonymous company’s data. Thus, our
results are directly applicable in a real-world setting to convert the company’s data
to value.
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We compare the optimized MMPs generated using the BM versus the approxi-
mated NN. To extensively test the robustness of the NN, we generate multiple MMPs
spanning a month with different budgetary constraints. Finally, we compare the
computational time it takes to generate a MMP using the original BM to that of the
NN.

4.4.3 Experimental Settings

The dataset on which the NN is trained consists of 100 000 and 10 000 000 examples
for the illustrative and industrial experiments, respectively. This data is generated
using the steps from List 4.1 with τ = 0.8. Both datasets are split using a 10%
validation and testing set. Min-Max scaling is applied as a preprocessing step to
standardize the predictors to the range [0, 1].

The NN, as illustrated in Figure 4.2, consists of the customized layer as de-
scribed in section 4.2, followed by multiple hidden, fully connected, feed-forward
layers. For the illustrative experiment, these hidden layers have sizes 500 and 200.
The industry-level experiment uses a slightly more extensive network with layers of
sizes 5000, 1000, and 200, respectively. Batch normalization [134] and dropout [119]
is applied after each of the hidden layers to regularize and stabilize the network.
Finally, these layers use the Leaky Relu activation function [180] and He initializa-
tion [116] on the weights.

In contrast, the customized first layer uses the tanh activation function. When
initializing the training procedure, the weights of this layer are initialized such that
wj ∼ U (0.1, 0.9). This range is chosen such that Xi,j/wj stays within the non-flat
regions of the tanh function to prevent ∂L/∂wj ≈ 0. Further, after each iteration of
back-propagation, any weight wj < 0 is clamped to 10−4 since it is assumed a spend
can never harm the KPI.

The Adam optimizer [139] is used both for training and input optimization. The
learning rate (LR) is set to 10−4 during training. The input optimization generally
requires larger changes to the parameters than the training procedure. Therefore,
the LR is increased to 10−3 for this action. In order to prevent overfitting the NN,
ES [26, 99] with a patience of 40 is employed to trigger termination of the training
process. In contrast, the input optimization is simply run for 5000 iterations. In this
setting, the batch size is determined by the length of the desired MMP, T, whereas a
batch size of 256 is used during training.

Finally, for the illustrative experiment, the ground true parameters are set as
follows: α̂1 = 0.5, α̂2 = 0.9, β̂1 = 1, β̂2 = 4, and σ̂ = 0.1. These settings were used
for generating the training data needed to fit the posterior distribution of the BM.

Date-Encoding

In ML, there are different approaches one can take to encode time such that the
representation is suitable for a NN to process. To make the NN temporal-aware,
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the date-encoding used in for the industrial experiment operates at three different
scales; weekly, monthly, and yearly. The weekly scale uses a one-hot encoding (OHE),
the monthly scale uses a linear encoding, and finally, the yearly scale uses a cyclic
encoding. OHE is used to model the day of the week because, in this domain, Mon-
day is not necessarily more closely related to Sunday than Thursday is. The OHE
does not scale well and increases the risk of overfitting by the NN. For this reason,
OHE is only applied on a weekly scale. To encode the day of the month, a simple
linear encoding is designed. This encoding is chosen because days at the beginning
of the month are closer related than days towards the end of the month and vice
versa. Finally, to represent various seasons of the year, a cyclical temporal encoding
with a period of ϕ = 365 is used. This is such that [sin(2πt/ϕ), cos(2πt/ϕ)]⊤ is a
two-dimensional encoding of day t for the time of year. A limitation of our applied
encoding scheme is the fact that it does not reflect changes across years. The im-
pact of a MMPs can indeed change over the years, and an extension of our approach
should take this into account. Yet, as our generated MMPs are only placed within
the same year for which the training data is generated, this limitation is not an issue
in this application. Future research could apply Time2Vec [149], which introduces
inferable parameters as part of the date-encoding process.

4.5 Results

To assess the performance of our approach and the accuracy of the approximation,
the input optimization was repeated for a range of budgets using the NN. For each
experiment, the loss/gain in KPI is compared to a reference point. Afterward, we
evaluate the elapsed wall-clock time when optimizing a MMP for the industry-level
experiment, as gaining speed is the primary motivator behind the proposed method.

4.5.1 KPI Loss and Budget Deviations

For each experiment, the input optimization was carried out on a set of budgetary
constraints B by setting B = b in (4.4) ∀b ∈ B. Using the NN, this repeated process
yields a set of optimized inputs, denotedMNN. Subsequently, the budget deviation
and potential change in KPI were measured by comparing m to a reference point
∀m ∈ MNN.

For the illustrative experiment, this reference point is the ground true solution
that strictly satisfies the budget constraint. For the industry-level experiment, the
same reference point is not accessible, as the ground true parameters are unknown
for this real-world, high-dimensional example. Instead, the reference points are in
the setMBM. This is a set of MMPs obtained using the same optimization process as
withMNN, but using the BM and its full posterior distribution instead.
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Illustrative Experiment

Taking the illustrative example from section 4.4.1, let B = {1/2, 1, 2, 4, 6}. Fig-
ure 4.4 visualizes the KPI landscape (LP from (4.4)), with the curvature indicating
the KPI calculated using the posterior of the BM.
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FIGURE 4.4: The KPI-landscape for optimizing a simple MMP. The
curvatures indicate KPI. The warmer the color, the higher the KPI.
The solid line is where the ∑ x = b, where b is some budget. The
circle indicates the optimal solution along this line that maximizes
the KPI. The blue crosses indicate the solution generated by the NN
for the related budget.

All possible combinations of x1 and x2 are computed such that ∑ x = b for each
b ∈ B. These combinations are shown as a solid line in the figure, one for each bud-
get. The white circle on each line indicates the optimal solution for the corresponding
budget, this being our reference point. In the figure, each blue cross represents an
element inMNN.

As the elements inMNN are a result of the loss function and SGD, in some cases,
these deviate slightly from the corresponding reference point. This discrepancy is
due to the weighting between complying with the budget and maximizing the KPI.
For instance, in the case of b = 1/2, the budget deviation is pronounced, and the
solution in MNN yields a higher KPI than the ground true, as LB does not form
too tight of a bound on the spend. In addition, for b = 6, the loss landscape of L
is a plateau for a wide range of solutions. As a result, despite the relatively large
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euclidean distance between the solution in MNN and the ground truth, the loss in
KPI and budget deviation is≪ 1% when comparing the two.

To illustrate this plateau, the zoomed section of the figure is a snippet of the loss
landscape. The curvatures show the loss function L with b = 6 and indicate the
flat plateau in the center. This plateau is shifted marginally toward the upper right
corner as the gain in KPI pushes toward an increase in spending. In this simplistic
setting, we let π = 1/2 in (4.4) to equally weight the two terms in the loss function.

Industry-level Experiment

Next, we assess the performance of our approach in the high-dimensional, industry-
level example.

For this experiment, the set of budgetary constraints B is computed relative to
the historical daily spend of the particular company X̂. The intuition behind this set
of budgets is to cover both relatively low and high bounds. Let

d =

[
dt =

J

∑
j=1

X̂t,j

]⊤
∀t=1,...,T′

B =
{n

4
TF−1

d (.75) : n ∈N+
1 ∧ n ≤ 16

} (4.7)

where d is a vector of daily total spends based on the company’s historical data for
a period of T′ days. F−1 denotes the inverse cumulative distribution function over
d, and T is the number of days the optimized MMPs should span – in this case, a
period of one month. In effect, the result is a set of budget constraints B spanning
from .25× to 4× a typical budget for a particular company. Thus,MNN andMBM

each consist of 16 MMPs, one for each b ∈ B.
An element-wise comparison of MNN and MBM is shown in Figure 4.5. Here,

the horizontal axis indicates the budget scale used, i.e., n/4. The blue line indicates
the total spend of MNN relative to MBM in percent, denoted ∆B%. Similarly, the
orange line indicates the predicted KPI ofMNN relative toMBM in percent, denoted
∆KPI%. ∆KPI% is computed using the BM. The dotted lines indicate the mean of the
corresponding metric as indicated by the color. As indicated by the figure, ∆KPI%
lies in the range [−1.7; 2.1] with a mean of ∆KPI% = −0.46%, i.e., an average loss of
0.46% in KPI using our method. When the predicted KPI ofMNN surpasses that of
MBM, it is caused by a well-performing MMP combined with a higher total spend.
As with the illustrative experiment, the total spend of an optimized input surpasses
the allocated budget in some cases. Forcing the generated MMPs to comply strictly
with the budget can be done by adjusting π in (4.4). Having too strict a budget vio-
lation penalty in the loss function prevents the SGD process from reallocating spend
sufficiently and thus yields sub-optimal solutions. For this reason, it was decided
not to further increase the impact of LB on L. On average, the budget deviation of
MNN was ∆B% = 0.43%.
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FIGURE 4.5: The relative difference in expected KPI between the
two methods. The KPI of the MMP generated using the NN versus
that of the BM (orange line). The difference is calculated using the
BM. The left y-axis indicates the relative difference in KPI, and the
right y-axis indicates the relative difference in spend (blue line). The
dashed lines indicate the mean of each metric.

4.5.2 Optimization Times

Speed improvements being the key reason for the proposed method, the wall-clock
time elapsed when generating a MMP using the NN versus the BM is evaluated
next. This measurement is repeated for three different configurations. These config-
urations differ only in the length of the period of the MMP to be optimized. The first
spans only a single week, the next one month, and the last a full quarter. In Table 4.1,
one can see the measured timings.

TABLE 4.1: A comparison of the time it takes to generate an opti-
mized MMP using the BM versus the NN. The experiment is done
for three different periods. The results show how the NN generates
optimized MMPs more than one magnitude faster than the BM. In ad-
dition, the results suggest how this method scales better as the period
spanned by the MMP increases.

MMP Period Input Optimization Time (S)

NN BM

Week 1.2× 101 6.2× 102

Month 1.2× 101 6.6× 102

Quarter 1.4× 101 9.2× 102

From the table, the significant difference in the elapsed wall-clock time is clear.
On average, the NN provides MMPs ≈ 5.7× 101 times faster compared to the BM.
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Further, while there is a clear correlation between the elapsed time and the length of
the period for the BM, this correlation is weaker for the NN.

These significant improvements in elapsed wall-clock time, combined with the
high-quality solutions as demonstrated in Figure 4.5, render the task of optimizing
a MMP a cheap operation that can be repeated quickly for various periods and con-
straints.

For reproducibility, it should be noted that the experiments are run on two sep-
arate machines. The BM is executed on a compelling Amazon m5.12xlarge instance
with a 48-core processor and 192 GiB of RAM, whereas the NN experiments are ex-
ecuted on a less potent Intel Core i7-6700K processor with 4 cores, 48 GiB of RAM,
and an Nvidia Geforce RTX 2080 Ti. Even if the experiments were executed on the
same machine, the computations would still occur on two separate computational
units, the NN running on the GPU and the BM on the CPU. Thus, we did not further
pursue executing the experiments on the same instance.

4.6 Discussion

With the significant improvements in elapsed wall-clock time for the input optimiza-
tion as reported in Table 4.1, one might wonder what causes our method to outper-
form the original so significantly. The answer lies mainly in the construction of the
BM itself. Despite the extensive use of matrix multiplication in the BM, some op-
erations cannot be done without recursion. For the BM to estimate the total effect
of a marketing plan spanning T days, it needs to sum the total marketing effect of
each day. In (4.3), we showed how the Effecttotal of a spend at a single day is an
infinite sum over the future effect but can be reduced to the sum of a geometric se-
ries with a finite solution. However, this computation will have to be carried out
∀t ∈ 1, . . . , T, each t requiring a complete iteration over the BM for all M posterior
samples. As long as T does not exceed the number of CPU cores, this can be run
fully concurrently, which is why the elapsed time for a MMP spanning one week is
virtually identical to one spanning a whole month due to the 48-core processor. The
same limitation is not present for the NN due to the architecture of the NN and the
electronic design of a GPU.

Finally, it is important to note that our approach is not limited to the specific
BM from (4.1) but is generalizable to other BMs. For instance, introducing a syn-
ergy effect in (4.1) would require changes to the BM, while the NN would remain
unchanged.

Accelerating the generation of optimized MMPs allows for novel applications.
Now it becomes computationally feasible to generate thousands of optimized MMPs
in a computationally efficient manner. For instance, one could generate MMPs for a
range of various budget constraints. These constraints could be either on an aggre-
gate level or on individual insertions applying to one or more days. Next, having
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found an appealing configuration, the user can either use the MMP directly or run
the optimization using the BM with the identified desirable settings.

In addition, in a high-dimensional domain such as the real-world, industrial
setup as described in section 4.4.2, there is potentially more than a single high-
performing MMP for the same budget and period. With the gain in speed, explo-
rative algorithms like MAP-Elites [286] can be used to find quality diversity – a set
of competent, different solutions to the same problem.

4.7 Chapter Summary

In this chapter, the general approach from Chapter 3 was extended to fit the do-
main of mixed marketing. The experiments indicate the approach allows for rapid
generation of optimized MMPs. The method was tested on two experiments: a low-
dimensional illustrative example and a high-dimensional, real-world, industry-level
BM fitted on real company data. Each experiment was evaluated on a wide range of
constraints of the input optimization. The resulting solution vectors exhibited only
minor deviations in terms of budget violation and expected KPI compared to those
obtained with the BM. These results indicate a robust method that gives consistently
well-performing solutions. Further, for the industry-level experiment, our method
yields MMPs up to 65× faster than using the BM alone and scales better for MMPs
spanning longer periods of time.
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Part III

Exploring Human-AI Interaction
through Games
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Chapter 5

Human-AI Interaction in Games

In the previous chapter we build the foundation for addressing a key challenge with
human-AI systems like that of BW7. The challenge at hand was the speed at which
the AI can generate candidate solutions for the human to evaluate. The chapter
concluded with a significant speedup in the generation of optimized MMPs using a
NN.

These MMPs were generated based on an approximation to an industry-grade
BM used by BW7. The quality of the generated MMPs was measured against the
BM itself. This measurement exposes the accuracy of the approximation and, by
extension, the durability of the proposed method as a whole.

If the approximation is good, the two models will agree on the expected KPI for
an arbitrary MMP and generate the same MMP for a given budget. That is, they will
have the same mapping from marketing plan to KPI. The results showed that the
BM’s predicted KPI of the MMPs generated with the NN was on par with that of the
MMPs created by the BM. In effect, these solutions comprise the same tendencies
and spending structures. Hence, using the NN as a proxy yields MMPs that are
essentially identical to those generated with the BM – but composed much faster.

As mentioned in the introduction, another key challenge with human-AI systems
is the human not being able to relate to the candidate solutions of the AI. This is also
the case for the AI-generated MMPs created by BW7’s BM. The AI-generated plans
look nothing like the plans manually composed by the employees. Since the MMPs
generated with the NN and BM are similar, the method from the previous chap-
ters does not address this, and therefore, the gap between human and AI solutions
remains.

A possible reason for this gap lies in the mental models the marketing employ-
ees have developed of the marketing landscape. The introduction already touched
upon the concept of mental models. In summary, a mental model is a dynamic, inter-
nal representation a human develops when engaging with an external reality [162].
This internal representation provides cause-effect relationships for the user and is
employed during decision-making when interacting with external systems [142].
These models have their roots in cognitive research that has established that they
are developed over time through learning and interactions with a system [208]. The
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models are inherently dynamic, inconsistent, and incomplete conceptualized repre-
sentations [142]. Hence, it is unreasonable to expect marketing employees to have a
fully accurate mental model of the marketing landscape.

Another apparent reason for this human-AI gap is the simple explanation that
the AI models are incorrect and that research should strive to improve these. While
this claim is likely correct, it is unrealistic to have a completely accurate model of
how a marketing campaign affects a company’s KPI [31] just as it is unrealistic with
a mental model. In fact, research has found that solely pushing for improved AI
accuracy can hurt the collaborative human-AI team performance [15].

Instead, improvements to the human-AI team performance could lie in better
mental models of the error boundary of the AI. An accurate model of the error
boundary provides the user with insights on when not to trust the AI recommen-
dation [14]. Since these models are evolved through interactions with the system,
additional human-AI-human iterations are required.

Liu and Heer [172] found that latencies as small as 500 ms from user input to
model output significantly decrease the user’s interaction and exploration with data
processing tools. The achieved 65× speedup of the ML tool as presented in the pre-
vious chapter is still far from providing real-time feedback. It still takes significantly
longer than the 500 ms threshold studied by Liu and Heer [172] to generate opti-
mized MMPs. That said, the reduced ML latency provides a more seamless HAII ex-
perience and increases the likelihood of maintaining the user’s attention for longer
periods of time [205]. In effect, users are more likely to reiterate experiments with
the ML tool. This, in turn, helps the users develop mature mental models of the ML
algorithm.

Delay in the human-AI-human feedback loop is not the only challenge with
HAII. There is a growing recognition that compared to traditional interactive sys-
tems, AI-infused products impose additional challenges (e.g., technical barrier, low
interpretability) to the current UX design process [71]. Furthermore, new interdisci-
plinary research areas have emerged around topics such as XAI [23, 230, 275, 318],
ethics & fairness [38, 71, 123], and ML as a design material for UX [304, 305].

To shed light on how BW7’s platform can improve other aspects of the HAII
than latency, one could conduct user studies on how the platform is used in practice.
However, there are several unappealing challenges to this. First, BW7 has a limited
user base. Relatively few marketing employees engage with the platform on a daily
basis. In addition, these users are already heavily experienced with the platform.
Consequently, studies on how their mental model develops from scratch would not
be possible. Once a mental model is built, it has proven surprisingly difficult to
modify it – even when given evidence of an incorrect model [162, 280]. For these
reasons, uninitiated users are required.

Acquiring new customers, and thus new users to the platform, is an ongoing
task carried out by BW7. However, the onboarding process takes a substantial
amount of time, since each customer has to share confidential data with BW7 to
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get a customized BM created. Further, adding one or two new customers to BW7
is not enough to provide a substantial user base. Finally, two marketing employees
who work in different domains, have differing educational backgrounds, or are ge-
ographically distant are likely to have substantial differences in their mental models
of the marketing landscape. This further complicates such a study and calls for a
large user base to identify trends.

Therefore, to understand how the HAII with BW7’s platform can be improved,
other applications of HAII are studied instead. Thus, this part has HAII at its core
and aims to improve our understanding of how teams of people engage and collab-
orate to develop mental models of a user-facing ML system.

5.1 Why Games?

In AI research, there is an extended history of using games as a rich domain to moti-
vate algorithmic advancements. Salient examples include Chess in the era of “Good
Old Fashioned AI” (GOFAI) [42], Go [257], classic Atari video games [196], and even
the popular AAA game StarCraft [209, 288]. The advances in game AI in turn opened
new design spaces of player experience in research [185, 187, 282, 308, 317] as well
as commercially released games and game engines (e.g., Versu [76], Left4Dead [283]
and Civilization VI [84]).

However, with few exceptions, games have only recently started to be used as a
serious domain for HAII research. For instance, Gomme and Bartle [98] used strat-
egy games to study players’ expectations for what they consider to be a worthy AI-
controlled opponent. Along those lines, several researchers proposed using games
and playful experiences to help designers and users learn AI [81, 200, 219].

Most existing work has focused on high-level metaphors (often referred to as
“design patterns”) of how players and designers can interact with AI. For instance,
Treanor et al. [278] derived nine patterns based on what players do: AI as role-model,
trainee, editable, co-creator, adversary, villain, or spectacle, and whether AI is visible
or guided. Cook et al. [49] further examined design patterns in procedural content
generation (PCG)-based games and derived different AI design patterns. In the con-
text of assisting the game development process, Riedl and Zook [235] proposed that
AI plays the role of actor, designer, and producer. While the above work provides a
critical starting point for our work, they are “meant to be a tool for thinking about
creating AI-based games, rather than serve as a comprehensive taxonomy of meth-
ods” [278]. Finally, Guzdial et al. [112] used the taxonomy of friend, collaborator,
student, and manager to describe the different interaction metaphors for how game
designers interact with an AI-based game level editor. The following builds on this
tradition of using human-human interaction as metaphors to structure the interac-
tion between humans and AI.

In addition, there is a significant body of work in games research to under-
stand player experience [2, 60, 62, 178, 202]. For example, the game engagement
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questionnaire [36] is a widely used instrument for measuring player engagement,
although recently it has been approached with increasing criticism [165]. Other no-
table frameworks include game involvement [41], game usability [62], and design
heuristics [178]. While these frameworks are useful to improve the general player
experience, they do not have sufficient focus on the interaction between players and
AI to guide the HAII design of games.

5.2 Player-AI Interaction in Games

The following proposes the first set of guidelines to design and evaluate player-AI
interaction. The insights presented here led to our paper “Player-AI Interaction:
What Neural Network Games Reveal About AI as Play” [320]. While not being the
main part of this work, the key findings are summarized here.

These results lead to the new construct of player-AI interaction to highlight how
people interact with AI in the context of play, especially through computer games.

To provide an overview of existing work in this area, our paper conducted the
first systematic review of player-AI interaction in the scope of Neural Network games –
computer games in which players interact with a NN as part of the core gameplay.

NN-based games were chosen for three key reasons. First, given the wide adop-
tion of AI in games, it was necessary to constrain the focus to NNs instead of all
types of AI. Second, the advancements to the AI-infused system of BW7 as proposed
in Part II are based on NNs; therefore, it is natural to study HAII with such tools.
Third, NN-based games provide insights into some of the most pressing open prob-
lems in HAII. For example, NNs are notorious among UX designers because of NNs’
low interpretability of the underlying process and the frequent unpredictability of
their outcomes. Studying NN games can thus provide valuable information on how
UX designers have to work with these challenges.

5.2.1 A Systematic Review of Player-AI Interaction

The systematic review started out by identifying existing NN-based games satisfy-
ing a set of inclusion criteria.

The main criteria was to include computer games wherein players can interact
with a NN as part of the core gameplay (i.e., gameplay loop). Here, the definition
of core gameplay as “the set of actions the player iterates on the most while playing
the game [and which] should directly influence the outcomes of the game” ([110])
was used. Work with no clear win condition and no clear feedback on how player
interaction with the AI impacts the game was excluded, as these games lack the
basic elements for meaningful player-AI interaction. Notice that sandbox games
with clear feedback to player interaction are included [11, 104, 115, 254, 290]. For the
same reason, games where the NN did not interact with players were also excluded
(e.g., ML agents that can automatically play games [259]). Finally, digitized versions
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of traditional board/card games were excluded (e.g., Chess, Go, Poker) to focus on
computer games. Future research is needed for investigating player-AI interaction
in traditional games.

Based on these criteria, a dataset with 38 games was collected. These games were
identified after searching at two popular web gaming portals – Steam and itch.io –
and a widely used game AI book, Artificial intelligence and games [306].

After careful evaluation of these games, a framework to classify these games
was developed. This framework has three components at its core: a key technical
characteristic of the NN, interaction metaphors, and the visibility of the NN in the
user interface (UI). Each component is elaborated in the next section.

Characteristics of NN

From the technical point of view, the collected dataset coveres a wide range of vari-
eties. A key technical feature is associated with different gameplay characteristics –
namely, whether the player-AI interaction can modify the behavior of the NN itself.
This led to the term online and offline learning games being used as part of the frame-
work for classification. In online learning games, the network is (further) trained
as the player interacts with it. Therefore, these games can adapt to individual play-
ers’ actions in real-time. Offline learning games, on the other hand, are shipped
with fixed NNs and are not adaptive in the same way. However, offline learning
games have the advantage of handling more complex user input, such as natural
language [83, 103, 290].

Interaction Metaphors

Critical AI studies revealed the importance of metaphors to AI [4, 186, 316]. Our
analysis found four interaction metaphors that provide familiar structures for play-
ers to interact with the AI: NN as Apprentice, Competitor, Designer, and Teammate.
This finding is consistent with recent work in the game design literature. Based
on their expert knowledge and intuition, game developers discuss how interac-
tion metaphors (often referred to as “design patterns”) have been used in game
design [49, 278] and in game production [235]. The analysis summarized here ex-
tends the existing literature by conducting the first empirical work that uses deep
qualitative analysis to analyze the interaction metaphors.

The largest portion of NN games (34%) adopt what this work calls Neural Net-
work as Apprentice. In these games, the player interacts with the NN as its mentor,
and the focus of the gameplay is how the player changes the NN over time. The player’s
mentoring of the NN can be achieved by providing direct feedback to the NN’s
behaviors [11, 104, 155]. For example, in Creatures, the player provides positive feed-
back (petting) when the NN-controlled creature displays desirable behavior (e.g., eat
when hungry) and punishes it (slapping) for the opposite. A second way the player
can mentor the NN is by configuring the right training setting for it [39, 83, 150, 222].
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The gameplay afforded by this interaction metaphor focuses on getting the player to
train the NN.

Another interaction metaphor used by the collected NN games is Neural Net-
work as Competitor. The key characteristic of this group, consisting of 26% of the
games, is that player-AI interaction is adversarial. For example, in Supreme Comman-
der 2 [228], the player fights an NN through their respective army platoons. As the
player customizes their army, the NN weighs the player’s unit composition against
its own and makes tactical battle decisions, such as how its army will respond, which
enemy to target first, and when to retreat. The NN can exploit players who are over-
reliant on a single strategy and counter the player in order to create an evolving
challenge [13, 86, 87, 198, 207, 228, 267]. In these games, the NN counters the player
during gameplay, thus encouraging them to adapt and try new strategies. A key
distinction in this category is that the NN learns the player’s actions to create a more
difficult challenge for the player to overcome.

For 21% of the games, the interaction metaphor Neural Network as Teammate
was used. Neural Network as a Teammate happens if the interaction between the
player and the NN is structured like those between colleagues. In these games, the
player and the NN work together toward a shared goal. For example, in Evolution
[66], players and the NN create a stick-figure-like creature together. Players assem-
ble the creature by placing bones, muscles, and joints in different ways. The NN
takes the player’s creation and improves it through evolving it over many itera-
tions. This interaction creates a collaborative cycle between the player and the NN.
A unique characteristic of this interaction metaphor is that the player and the NN
have complementary skills. Both are needed to complete the game objective.

The final 19% of the games used the Neural Network as Designer metaphor. In
these games, the NN acts as a creator and the player as its client. The NN gener-
ates new content [168, 290] or customizes content based on the preferences of the
player [115, 237], usually determined passively through players frequently interact-
ing with a particular game element. For example, in Petalz [237], players arrange
and nurture a balcony of flowers, which are generated by an NN. The NN generates
each flower (shape and color) based on the player’s selection of flowers to breed
or cross-pollinate. The NN extends the game’s playability by creating flowers that
match the preferences of the player. Notice that compared to NN as Teammate, the
player here generally has less well-defined goals to accomplish with the NN.

Visibility of Neural Network in Core User Interface

A significant number of games (26%) foregrounded the existence of the NN through
what this work calls NN-Specific UI. These UIs highlight the presence of the NN
during core gameplay through linguistic features (e.g., using the term “neural net-
work” [21, 67, 285, 287]). For instance, How to Train your Snake describes each NN-
controlled snake as “...hooked up to a Neural Network” [21]. Some games use visual
features (e.g., visualizing the underling NN [21, 39, 211, 285, 287]). In iNNk (Middle,
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FIGURE 5.1: From left to right, we display Neat Race [211] categorized
as NN-Specific, iNNk [287] categorized as NN-Specific, and Blitzkrieg
3 [207] categorized as NN-Limited.

Figure 5.1), the word “neural network” is prominently featured in the core game UI
along with the NN’s confidence meter. More interesting, some games visualize the
parameters of the NN training algorithm to make the training process playable. For
example, in Neat Race [211] (Left, Figure 5.1), the game visualizes the NN’s internal
structure (bottom left of the screenshot) and displays its parameters as sliders (top
right).

The majority of the collected games (40%) used NN-Limited UI. These games
acknowledge the presence of the NN in the game, but only through non-essential
UI, such as using technical terminology in tutorials [104, 266, 290], menus outside
the core gameplay loop [67, 150, 168, 267], or explicitly referring to the NN only
in title screens [103, 290]. For instance, Blitzkrieg 3 [207] is a WWII strategy game
where players build and command a variety of units to defeat the opposing NN-
controlled enemy. The game’s opening screen (Right, Figure 5.1) personifies the NN
as an evil-looking person with the text “Meet Boris, a neural-network AI you can
fight against...”

Finally, 34% of the games used NN-Agnostic UI, which does not reference the
NN. By masking the NN, these games maintain the narrative immersion of the game
worlds without revealing the algorithms used to build them.

5.2.2 Key findings

An interesting insight is that the strongest designs for making NNs more inter-
pretable come from simulation games where the player can tweak different training
parameters. In these cases, even though the names of the parameters are sometimes
too technical for players without an AI background, the behavioral change feedback
given by the NN through different iterations of trial-and-error gameplay helps the
player develop intuition. In other words, most games in our dataset manage to re-
frame the difficulties of interacting with an NN as a puzzle and thus make it more
engaging.

This finding is in accordance with the introduction of mental models from the be-
ginning of this chapter. As the players mature their mental model of the AI through
iterative interaction, they gain a better understanding of the complex system. This
is in spite of the players not having a theoretically founded technical understanding
of the different training parameters that are tweakable.
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Figure 5.2 visualizes the result of applying the above definitions to classify each
of the 38 studied games. In the figure, each black circle indicates a game. The raw
data of each classified game can be found in Table B.1, located in Appendix B. As in-
dicated by the figure, the games are distributed fairly non-uniformly. Instead, there
are clusters of popular applications for NNs in games for player-AI interaction. For
example, the most popular combination (6 games) is having a NN as an apprentice
combined with an online learning NN and a NN-Specific UI. Meanwhile, there are
several underexplored areas within this framework. Some combinations contain no
games at all, while others are represented by only a single instance. One explana-
tion for this clustering is the possibility that some combinations of NN, games, and
player-AI interaction are easier to make function than others.

To infer what NN games can tell us about HAII, we used the human-AI design
guidelines proposed by Amershi et al. [8]. It is the most recent and comprehensive
manner in which the design for HAII is documented thus far by the human-computer
interaction (HCI) community. These guidelines were applied to the dataset with the
38 identified NN-based games. In summary, our study ([320]) led to the proposition
of the following design considerations:

Use flow to structure the learning curve of human-AI interaction. For many users,
interaction with AI can be overwhelming, especially when they encounter unex-
pected output from the algorithm. One important lesson from our study is that the
concept of flow [55], widely used to balance game difficulty and player engagement
over time, can be useful in designing HAII. The use of flow can be helpful in struc-
turing how to gradually expose users to different AI features (see also [53]).

Incorporate enhanced discovery-based learning. Many games in our analysis, es-
pecially simulation games, offer discovery-based learning [7] with mixed success.
Since players come with different background knowledge and needs, explicit in-
struction for AI is challenging to design. Discovery-based learning offers players
the opportunity to play around with the NN at their own pace and observe the
consequences of their actions on the NN and the game world. However, most NN
games in our dataset offered very little scaffold, making it difficult for players with-
out a technical background to succeed. We suggest that UX designers use enhanced
discovery-based learning and provide feedback, worked examples, scaffolding, and
elicited explanations to further assist their users.

Extend the invitation to play. Finally, for researchers and designers interested in
exploring new forms of HAII, we believe offering users an invitation to play can
unleash their imagination and empower them to explore new ways to interact with
even the same technology. As we can see from Hey Robot!, the magic circle of play
turns the smart speaker user from the seeker of information to the provider. The
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FIGURE 5.2: Distribution of the 38 NN games categorized by interac-
tion metaphor, online/offline learning, and UI visibility. Each black
dot represents one NN game.

voice assistant’s inability to understand user command/intent is transformed from
failure to perform to the source of fun.

5.3 Chapter Summary

This chapter has studied player-NN interaction in games. The results and insights
gained here are a summary of our findings in the paper “Player-AI Interaction: What
Neural Network Games Reveal About AI as Play” [320]. The contributions of this
chapter are threefold: 1) a framework for classifying various forms of player-NN
interaction settings in games, 2) an overview of existing games and how these are
distributed based on this framework, and 3) some key design considerations to bear
in mind when designing such NN-based games. These considerations can be taken
into account for other HAII applications outside the field of games as well.

Next, we will present a NN-based game developed as part of this work. This
game will serve as a case study for player-AI interaction that will probe how emerg-
ing mental models can alter the intended dynamics of the player-AI interaction. Sec-
tion 6.8 will complete the circle by highlighting how these key insights can inspire
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augmentations to the HAII experience of BW7’s platform. These insights will con-
stitute the base for the general approach taken in Part IV.
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Chapter 6

Case Study: iNNk – A Multi-Player
Game to Deceive a Neural Network

The previous chapter developed a framework for classifying NN-based games. The
development of said framework revealed underexplored areas in the design space
of Player-NN interactions. One explanation for these underexplored areas is the
possibility that these areas represent constellations that are more difficult to make
function properly. One such constellation is having an offline learning NN as a com-
petitor with a NN-Specific UI (see Chapter 5). Figure 5.2 discloses that only a single
game has these properties. That game is iNNk, which came to life as part of this
work. INNk has some novel characteristics allowing for unique player-NN interac-
tions.

This chapter first introduces the game and its mechanics. After presenting the
fundamentals of the game, a summary of the main strategies the players developed
during playtesting is given. These insights reveal that player strategies were devel-
oped that broke the balance of the game. Therefore, subsequent to the introduction
of the game is the concept of adversarial strategies on NNs and possible defense
mechanisms. These defense mechanisms are tested out in iNNK to measure their
effect on addressing human-generated adversarial examples and thus regaining a
balanced gameplay.

The general motivation for this part is to study NNs through games in order
to guide improvements to the HAII in BW7’s platform. Therefore, to see how the
contributions of this part can guide such enhancements, the chapter concludes by
revisiting the HAII of BW7’s AI-infused system. This revisit discloses some surpris-
ing similarities between BW7’s platform and the player-NN interaction in iNNk.

6.1 iNNk

iNNK1 is a web-based multiplayer drawing game in which two or more people play
together to deceive a NN. To win the game, the players need to successfully com-
municate a secret code word to each other through drawings without it being deci-
phered by the NN. Each game is composed of five short rounds, allowing players to

1Currently hosted on this page: innk.gaims.dev:3167

https://innk.gaims.dev:3167/
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experiment with different drawing strategies. Whoever (i.e., humans or the NN) has
the most points at the end of the five rounds wins the match. For the human players
to be successful, they must develop drawing strategies that can only be interpreted
by their human teammates and not the NN.

Players are assigned one of the two roles during the game: the Sketcher and the
Guesser (Figure 6.1). The Sketcher is tasked with drawing something based on the

FIGURE 6.1: left: A screenshot of the Sketcher’s interface. In the white
canvas, the Sketcher draws to communicate the secret code word, in-
dicated above the canvas (cat). The NN’s guess and its confidence
are on the upper right corner. Right: A screenshot of the Guesser’s
interface. Guessers can type in their guess at the bottom.

code word assigned by the game. The goal is to draw the code word in such a way
that the human Guesser may be able to accurately interpret the code word before
the NN. In general, if the Sketcher draws something that is prototypical, it would
be straightforward to other human players. But, it will also be easy for the NN to
guess.

The Guessers are tasked with entering their guess of the code word based on the
Sketcher’s drawing before the NN guesses correctly. The NN always plays the role
of a Guesser, and its goal is to decipher correctly first. While there is no penalty for
wrong guesses, the human Guessers must be mindful of their guesses. As described
below in section 6.1.3, the NN takes into account all previous attempts at the code
word. Human Guessers’ wrong guesses will increase the NN’s chance for correct
interpretation.

The game is structured around five 30-second rounds. If either the human team
(consisting of one Sketcher and at least one Guesser) or the NN guesses the code
word correctly within 30 seconds, the respective side wins the round. Otherwise, the
round ends in a draw. Whichever team gets the most points at the end of round five
wins the match. A duration of 30 seconds was chosen because it provides enough
time for players to draw (or interpret) the code word while being quick enough to
encourage frequent moments of surprise and failure. Ultimately, this was intended
to provoke explorations of different drawing strategies and encourage the players to
think creatively about how to defeat the AI.

iNNk’s intended audience is the general public, especially players who are inter-
ested in NNs. As a multiplayer game, the game is intended to be played in a group
setting, with players encouraged to discuss between each round and collaboratively
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develop different strategies. It should be acknowledged that the design currently
does not account for the possibility for players to “cheat” by directly telling each
other the code word outside the game. This design decision was made partly fol-
lowing the convention of similar multiplayer games such as Pictionary [241], Cranium
[297], and Charades [193]. These games assume that players are more incentivized to
have a good game than to win too easily. In addition, it is desirable to encourage
players to co-develop creative strategies to defeat the AI. Leaving their communica-
tion channel open might be a good way to accomplish this goal.

6.1.1 Highlighting the NN’s Presence

Many existing NN-based games obscure the existence of the NN. NNs are often seen
as an underlying tool that the player only interacts with indirectly. For example, in
the game Black & White [294], players directly interact with the Creature without the
knowledge that it is controlled by an NN.

Since the conceptual goal of iNNk is to encourage people to go from passive
users of NNs to active and creative challengers, a design decision was made to high-
light the NN’s presence as is. Rather than using a more abstract metaphor, the NN
is represented as a NN non-player character (NPC) opponent. The NPC was specif-
ically designed to look like a characterized computer system. The character is also
explicitly called “Neural Network” in the core UI and exposes its confidence value
to further emphasize the functional aspects of the system. The confidence value of
the NN is displayed as a percentage under the NPC character, which can be seen
in the top right image of Figure 6.1, to draw players’ attention to how certain the
NN is in their current guess. When the NN becomes more certain, the character’s
screen color changes, and the confidence value increases. This provides players with
a visual indication of when the NN may correctly guess the code word. From the
Sketcher’s perspective, knowing which line significantly increased the NN’s confi-
dence will help them build a better mental model of how the technology works and
thus how to subvert it.

However, the underlining data processing conducted by the NN is still kept hid-
den from the user. This was decided to maintain a light, intuitive interaction from
the user’s perspective. In general, visualizing the decision process and providing
meaningful insights to the latent intermediate matrix operations of a NN is a prob-
lem still being researched and a main subject in the XAI field [249].

6.1.2 Balancing the Game with an Ink Meter

An Ink Meter is also included as a game mechanic. The Ink Meter can be seen on the
bottom of the left image in Figure 6.1. The purpose of the Ink Meter is to limit the
amount a Sketcher can draw during the round.

The depletion of ink as the Sketcher draws defines a maximum length that drawn
strokes can cumulatively cover across the canvas. As different drawings require
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different amounts of ink to be adequately represented (e.g., the “line” code word
can be sufficiently represented with much less ink than the “car” code word), this
maximum length is defined separately for each drawing. The Quick, Draw! [102]
dataset was used to calculate an average distance that each category of drawings
covers to determine Ink Meter values for iNNk’s drawings.

6.1.3 Neural Network Setup

The NN of the game is based on a tutorial by Tensorflow [274]. The architecture
leverages a wide range of layers, namely, convolutional, recurrent, and dense. First,
a series of three 1-dimensional convolutional layers maps the input into [48, 64, 96]
feature maps using kernel sizes [5, 5, 3]. The first convolutional layer takes three in-
put channels due to the nature of the data (as described in the next section). After
each layer, dropout [262] and batch normalization [136] are applied to regularize
the network. The feature maps are then consumed by the recurrent (LSTM) lay-
ers. These layers are responsible for memorizing features across time. Three bi-
directional LSTM layers were used [120], each with a hidden state of size 256. Each
LSTM layer is followed by a dropout layer. Finally, a dense, fully connected layer
computes a class-wise list of classification likelihoods. This layer takes an input vec-
tor with a cardinality of 512 due to the bi-directional LSTM layers. The output of the
NN is a vector of logits. These are modified using the Softmax function to convert
them into probabilities over the 345 distinct classes.

The loss computed during training is the cross entropy between the NN predic-
tion and the ground true label.

To determine when to terminate the training procedure, early stopping [226] was
applied with a patience of 20. Further, a LR of 3× 10−4 and a batch size of 256 were
used. The Adam optimizer was used for gradient descent [152], a dropout [262] rate
of 0.3 for all dropout layers, and Xavier initialization [96] for the free parameters of
the baseline model. Finally, gradient clipping was used to prevent exploding gra-
dients of the recurrent model [99] with a maximum ℓ2-norm of 1. The experiments
were executed on a machine with an Intel Core i7-5820K CPU, with 64GB of RAM
and an NVIDIA GP102 TITAN X GPU.

Once trained, the model starts to make predictions (i.e., internal guesses) from
the moment the Sketcher makes the first stroke on the canvas. The label associated
with the highest predicted confidence constitutes the guess of the NN. The NN con-
tinues to generate guesses; however, these are only presented to the player when
above a certain confidence value. Previous, incorrect guesses by both the NN and
the human players are used to mask the output of the NN by removing these cate-
gories before rendering the guess of the NN. In this way, the NN is able to participate
in a way that mimics the other human Guessers.
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6.1.4 The “Quick, Draw!’ Dataset

The NN was trained on hand-labeled sketch data from a canvas similar to the one
used in iNNk itself. This sketch data is from Google’s publicly available Quick Draw!
[102, 113] dataset and includes 50 million drawings across 345 categories (i.e., 345
supported secret code words) of example sketches. When training the NN, 10%
of this dataset was used as a validation dataset and 20% as a testing dataset. The
sketches in this dataset are human-made digital drawings represented as temporally
ordered sequences of strokes that make up the drawing. Each stroke in this sequence
is a continuous curve. The curve starts when the Sketcher’s drawing tool (such as a
computer mouse) is activated and ends when the drawing tool is deactivated. This
curve is represented as a sample of temporally ordered 2-dimensional point coor-
dinates along the curve. In addition to the recording of the sketch, the dataset also
contains metadata for each sketch. The most relevant metadata for training the NN
was the label of what each sketch depicts. The “simplified” version of this dataset
(provided by Lab [164]) was used in the training process, in which the sketches had
been preprocessed by centering and scaling them into a 256× 256 space. The strokes
were also simplified with the Ramer-Douglas-Peucker algorithm [232]. Finally, a min-
max normalization of the stroke data was conducted as the last step of the data
preprocessing. In addition to the temporally ordered 2-D coordinates, the NN also
receives a binary signal indicating when a stroke is ended.

6.1.5 Creating Moments of Surprise and Failure

Many game designers use repeated failure to encourage players to rethink their
gameplay strategies [145]. Through failure, players can reflect on their current ac-
tions [145], self-correct, and use these experiences to become better in the game [10,
90].

INNk is an attempt to create a playful experience through the game design,
where human players are encouraged to become more active and creative chal-
lengers against a NN. Through moments of surprise and failure, iNNk intends to
provoke explorations of different drawing strategies and encourage the players to
think creatively about how to defy the AI.

These moments are supported through the game structure (i.e., timed rounds)
and the NN’s confidence meter (i.e., NN confidence value) to facilitate player re-
flection and new drawing strategies. A moment of surprise in iNNk might be to
“wow” players with the strengths of the NN’s image recognition. For example, in
most cases, the NN is exceptionally good at guessing the code word from a limited
or incomplete drawing. This strength is intended to surprise and defeat the human
players to trigger player reflection on how they may draw the code word differently
for the next round.

The confidence meter provides a visual reference for players to use when per-
forming a strategy. For example, if a player tries to mislead the NN by drawing
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extra lines before they begin to draw the code word, they can see this strategy take
effect on the NN’s confidence meter by the percentage decrease. As a result, players
are able to link their gameplay (i.e., drawing and guesses) to what decreases the con-
fidence value. The visualization of this value in the interface is intended to provide
players with another source of visual feedback, in addition to winning or losing the
round, on what strategies may impact the NN’s certainty.

6.2 Observed Player Strategies

Based on playtesting, it was observed that three different adversarial strategies were
commonly developed (Figure 6.2). These strategies would consistently stump the
NN while the drawing was still easily decipherable by the human Guessers – thus
breaking the balance of the game. The three strategies are not exhaustive, and a more
thorough user study will likely reveal many more strategies.

FIGURE 6.2: Examples of the three adversarial player strategy
sketches used for retraining: Rebus Puzzle (left), Distraction (cen-
ter), and Dotted Line (right). For the example of the Rebus Puzzle
strategy, the code word is “Keyboard.” The Sketcher decided to di-
vide this into two separate sketches, one of a key and one of a wooden
board. An example of the Distraction strategy is a drawing for the
code word “Piano.” Using this strategy, the Sketcher added straight
lines to stump the NN. The superimposed sketch of a piano is oth-
erwise unchanged. Finally, for the Dotted Line strategy, the example
shown is for the code word “Moustache.” Here, the Sketcher only
modified the line style.

The first strategy involves the Sketcher drawing the code word in a sequential set
of images (i.e., as a rebus). The Sketcher was given the code word “eyeglasses” and
sketched two separate images, an eye and a pair of drinking glasses, in an attempt to
stump the NN. The second strategy involves adding visual noise or other shapes in
addition to the drawing of the code word. In this case, the player would crosshatch
or draw extra lines to mislead the NN. The players added these extra lines at the be-
ginning of the round. Adding them later would allow the NN to classify the drawing
correctly before adding the distraction lines. The third strategy includes drawing the
code word using a different stylistic technique (here, using a dotted line instead of a
solid line).

Based on these three observed adversarial player strategies, the game designers
manually drew around 100 sketches for each one (105 for Distraction, 93 for Dot-
ted, and 66 for Rebus). This process was followed to create a clean dataset of each
strategy with a sufficient size while minimizing labeling cost. For the Distraction
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strategy, this was as simple as adding arbitrarily placed lines on some part of the
drawing canvas at the beginning of the sketch. It was similarly straightforward to
generate data for the Dotted Line strategy by drawing while releasing the mouse pe-
riodically. The Rebus Puzzle strategy presented some issues, as not all of the classes
in our dataset lend themselves to this approach. For example, as seen in Figure 6.2,
the class “keyboard” can be broken into a key and a board of wood, which a human
player may understand while the NN cannot. However, if the class chosen by the
game is “dog,” the word cannot be broken down using this strategy at all. This re-
sulted in a sparser dataset with a less diverse set of classes for training a model on
this strategy.

Next, the objective is to consider a method for dealing with emerging player
strategies and defending against such adversarial examples in NNs.

6.3 Fooling Neural Networks

Fooling a NNs is not an uncommon endeavor. Adversarial attacks against NNs
are an established field of research in the ML community. Research has repeatedly
shown how NNs are easily misled, and has demonstrated how to trigger NNs to
make incorrect predictions with high confidence [6, 101, 197, 204]. For instance,
the concept of generative adversarial networks like StyleGAN3 [147] is founded on its
ability to trick a NN to believe an artificially generated image is real [100]. This
problem has led to the creation of many interesting artifacts, from inferring missing
information [309] to the generation of completely new instances [35, 231]. Despite
these seemingly innocent applications, the technique can also be used as an attack
with severe consequences. An example is the modification of traffic signs such that
a NN would misclassify a “Stop” sign as a “Speed Limit” sign [77]. To fool a NN, a
common approach is using gradient descent to generate adversarial examples [100,
101, 163]. Others use evolutionary algorithms [131, 269] or human-generated data [77].

Recently, a new research area has emerged to counter these adversarial methods
and provide alternative defensive solutions [111, 214, 242, 293]. This work has ig-
nited an arms race in the field, with continuous developments for both attack and
defense mechanisms. Despite the numerous defense methods developed, they fo-
cus on computer-generated data to strengthen the robustness of the NN. However,
what seems to have gained little attention thus far is developing defense mecha-
nisms against adversarial attacks using human-generated data and making the NN
adapt to such datasets.

6.4 Dealing with Adversarial Strategies

Section 6.2 discussed three emerging drawing strategies that have been shown to
overexploit the NN to an extent where players would always win regardless of the
object being drawn.
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To regain a balanced gameplay experience, the aim is to decrease the model’s bias
on the adversarial strategies while maintaining the best possible performance on the
original dataset. The most straightforward approach would be to simply append
these new instances to the existing dataset and continue the training process with
this augmented dataset. This approach, however, might not yield the best player
adaptation, as discussed next.

In case the model’s capacity is already fully used, reducing bias on the adver-
sarial examples would result in reduced performance on the original dataset. This
happens because the adversarial examples are out-of-distribution samples, meaning
each developed player strategy can potentially result in sketches looking substan-
tially different from the ones in the original training dataset. Hence, the function the
NN needs to fit, capturing both the original data and the out-of-distribution sam-
ples, is more complex [99]. Without additional model capacity, the NN will have to
“forget” some of the learned rules that applied to the original dataset, to learn rules
applicable to the out-of-distribution data.

If the model’s capacity is not fully utilized, the NN could learn the features of the
new dataset without losing performance on the old. However, for the case studied
in this chapter, the labeled dataset of an adversarial strategy is heavily underrepre-
sented compared to the original training data. The sparsity of such collected datasets
raises some difficulties, as it would be easier for the NN to neglect this small frac-
tion of outliers than to reduce the bias on these. Therefore, it is unlikely for such an
approach to result in a NN capable of accurately recognizing and accounting for the
emerged player strategies.

Instead, inspired by ensemble methods and transfer learning, a combination with an
ensemble of model specialists is proposed. These concepts are introduced next.

6.4.1 An Ensemble of Networks

There are several approaches to defend against adversarial attacks [111, 214, 242,
293]. One approach is the use of ensemble methods. For instance, Abbasi and Gagné [1]
used a confusion matrix to choose the training dataset for fitting an ensemble of NN
specialists. In general, ensemble methods have been shown to yield more robust
models [114]. The baseline approach to ensemble methods involves having a set
of ensemble members (weak learners) that, when combined, perform better than
individual members alone [210]. This approach assumes the ensemble members are
accurate and diverse [64, 114]. The ensemble approach can also leverage different
types of weak learners and have proven successful with NNs [114].

Alternate approaches to ensemble methods have a considerable variation in cur-
rent literature [34, 80, 215, 300]. Some methods, like boosting [80], train each ensem-
ble member sequentially. Each weights the importance of each entry in the training
dataset by the previous model’s loss in that example – a higher loss gives a higher
priority. Boosting decreases the ensemble’s bias by focusing on ill-performing parts
of the dataset. However, this also increases the risk of overfitting. Other ensemble
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methods, like bagging, have proven less prone to overfitting as they decrease the
variance of the predictions. They are also effective with unstable learners due to
the smoothing effect of model averaging [64, 315]. To achieve a generalization im-
provement with bagging, diversity among the ensemble members is essential. This
diversity results in a lower error correlation, as the ensemble members are less likely
to make the same mistake on the same data [99].

6.4.2 Transfer Learning

Training robust, supervised ML models from the ground up usually requires a large
and labeled dataset. If one does not have access to such a dataset, one can utilize
the ML technique called transfer learning. This technique leverages the finding that
using a fitted model on one dataset might serve as a good starting point for train-
ing a new model on a similar dataset [307]. Transfer learning is of particular use in
domains with sparsely labeled datasets to help prevent overfitting [271, 314]. Fur-
ther, it allows for utilizing fewer resources to acquire a model for a new task by
adjusting the capabilities of an existing model [281]. Transfer learning has proven
successful across a wide range of ML problems, from NLP [28, 129, 199] to image
recognition [58, 88, 255].

6.4.3 Method

To address the emerging adversarial player strategies in iNNk, we created an ensem-
ble of NNs. The NN structure as detailed in section 6.1.3 is reused for all ensemble
members. Initially, a model is fitted to the original, non-adversarial dataset. This
will be refereed to as the baseline model.

A key challenge to addressing the observed player strategies was the lack of
examples. On average, the collected datasets with labeled, adversarial drawings
contain 88 examples. Training such large NNs on datasets of this size can easily lead
to severe overfitting. However, since the collected examples of the player strategies
are of a similar nature to the original dataset, transfer learning is used to circumvent
this challenge and minimize the cost of adapting to each adversarial strategy.

The training process is initialized by transferring the state of the baseline NN to a
new NN model. This NN is then trained independently of the other NNs on its desig-
nated adversarial dataset. This training phase uses the same set of hyperparameters
as that of the baseline model listed in section 6.1.3.

Due to the small datasets containing the user strategies, we used a testing and
validation dataset of 10% for this method.

This training process is repeated for each collected adversarial dataset such that
a set of specialists is obtained. An overview of the training procedure is shown in
Figure 6.3.

After the training phase, all models are combined into an ensemble, as illustrated
in Figure 6.4. To make predictions with the ensemble, each member is queried for
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Quick, Draw!
Dataset

Class Predictions
{0.15, 0.5, 0.35}

Class Predictions
{0.2, 0.5, 0.3}

Class Predictions
{0.0, 0.4, 0.1}

Class Predictions
{0.3, 0.3, 0.4}

Distraction
Dataset

Dotted Line
Dataset

Rebus Puzzle
Dataset

Logistic
Regression

Baseline
Model

Logistic
Regression

Distraction
Model

Logistic
Regression

Dotted Line
Model

Logistic
Regression

Rebus Puzzle
Model

FIGURE 6.3: An overview of the ensemble training procedure. Be-
fore training a model, its state requires initialization. For this, transfer
learning is used. A red arrow indicates the initialization of a model’s
state. The state of the model at the arrow’s end is initialized to the
state of the model at the origin of the arrow. Each model is assigned
its own, distinct dataset and is specialized in that particular set. All
models are trained using logistic regression for the classification of
stroke data to one of 345 classes.

a prediction given the same observation. The resulting set of predictions needs to
be combined into a single vector of class-wise probabilities. While any combinatoric
method can be applied, plain model averaging was employed in these experiments.

6.5 Results

To test the performance of our proposed ensemble model with transfer learning, we
evaluated each ensemble member and the ensemble itself on each dataset. Fitting
the baseline model took ≈ 22 days, while fitting each ensemble specialist took <1
minute. The main objective is to maintain consistent performance across all datasets
without losing performance on the original, non-adversarial “Quick, Draw!” dataset.
Maintaining a good performance on the original dataset is of high importance in or-
der to preserve an entertaining gameplay experience for players with non-adversarial
strategies. The results are outlined in Table 6.1 and are averaged over three repeated
experiments.
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FIGURE 6.4: Making predictions with the ensemble. To make pre-
dictions, each ensemble member is queried for a prediction based on
the same observation. The set of model predictions needs to be com-
bined into a single prediction to compute the final, class-wise proba-
bilities.
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Table 6.1: Performance on the various datasets for each model on a set of performance metrics.

Quick,
Draw!

Distrac-
tion

Dotted Rebus
Quick,
Draw!

Distrac-
tion

Dotted Rebus
Quick,
Draw!

Distrac-
tion

Dotted Rebus

Baseline
Model

83.52% 0.00% 0.00% 0.00% 96.20% 20.00% 0.00% 0.00% 0.62 5.22 7.52 6.97

Distraction
Model

80.51% 70.00% 0.00% 16.67% 95.35% 86.67% 25.92% 16.67% 0.74 1.82 5.39 11.46

Dotted
Model

77.80% 10.00% 70.37% 0.00% 94.33% 30.00% 88.89% 16.67% 0.84 6.00 1.69 7.50

Rebus
Model

79.32% 13.33% 7.41% 11.11% 95.05% 50.00% 14.81% 44.44% 0.77 4.45 5.76 4.28

Ensemble
Model

82.59% 50.00% 0.00% 16.67% 95.98% 70.00% 44.29% 33.33% 0.65 2.51 4.42 4.98

Neural
Network

Dataset

Top-1 Accuracy Top-5 Accuracy Cross entropy



6.6. Discussion 83

We evaluated each model on each dataset on three performance metrics: Top-1
Accuracy, Top-5 Accuracy, and Cross entropy loss. With the small testing dataset
from each of the adversarial strategies at hand, the cross entropy loss is the better
performance metric since accuracy is not a smooth measure. A decrease in cross
entropy is often correlated with increased accuracy, but this is not always the case.
With small datasets, minor modifications to a single prediction can yield high vari-
ations in the measurement accuracy. We included the accuracy metrics simply be-
cause these are more intuitive, but the cross entropy better describes discrepancies
in the model’s output distribution and the ground true target distribution. A higher
cross entropy can indicate a less confident prediction or indicate a confident, incor-
rect prediction. Finally, one should be careful comparing cross entropy loss across
tasks, and the reported cross entropy losses should only be compared to other mod-
els on the same dataset. An example of considerable discrepancies between the cross
entropy loss and the Top-1 Accuracy is the Distraction model’s performance on the
Rebus dataset. In this case, the model obtains a 16.67% Top-1 Accuracy, which is
higher than the Rebus model (on average), but with a stunning 11.46 cross entropy
loss compared to the 4.28 of the Rebus model.

As shown in the table, each ensemble member performs the best on the dataset
for which it is a specialist (the diagonal marked in bold). Yet, when used as stand-
alone, each ensemble member generally does not perform well on the other datasets
and suffer a loss of at least three percentage point on the “Quick, Draw!’ dataset
compared to the Top-1 Accuracy of the baseline model. The worst-case is the Dotted
specialist with a performance loss of over five percentage points on the original task.

Further, it is clear from the table that the baseline model performs inadequately
across all adversarial datasets. The only model performing consistently across all
presented datasets is the ensemble model. While it suffers a performance loss on
the Dotted dataset compared to the Dotted specialist, its cross entropy loss for this
dataset is still highly improved over any other model. This is another example of
disparities between the cross entropy loss and the Top-1 Accuracy. The Top-1 Accu-
racy suggests the ensemble model has made no improvement on the Dotted dataset.
Yet, significant improvements are seen in the cross entropy, and these are reflected in
the Top-5 Accuracy as well. Overall, the ensemble makes significant improvements
on all adversarial datasets with a minimal loss in performance on the “Quick, Draw!’
dataset across all performance metrics.

6.6 Discussion

The Dotted model’s loss on the original dataset could indicate that the parameters of
the model need substantial adjustments for improving performance on the Dotted
dataset. One explanation could be the low-level feature maps in the first convolu-
tional layers, which typically work as edge and curve detectors. These might trans-
fer poorly from the “Quick, Draw!’ to the Dotted dataset, as an edge in the Dotted
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dataset no longer indicates separation but is most often part of a continuous line.
The motivation behind reporting the Top-5 Accuracy as a performance metric is

due to the nature of the game iNNk. Here, an incorrect guess gets blacklisted, and
neither players nor NN are allowed to make this prediction again. Technically, this
happens by setting the NN’s predicted logits to−∞ for these blacklisted classes. For
instance, when the class with the highest probability is blacklisted, the NN would
predict its perceived second most likely class. This is to prevent the repeating of
incorrect guesses. To prevent exhausting the list of whitelisted classes, the NN is
only queried for a prediction every 2.5 seconds. For this reason, having the correct
class among the Top-5 predictions is important for the gameplay, as the four incor-
rect guesses would be blacklisted within 10 seconds at worst. One could argue that
not having a perfect Top-1 accuracy score even improves the gameplay experience,
as an oracle-like NN might discourage players from playing the game. From the
results in Table 6.1, it is clear that the proposed ensemble model gains significant
improvements for all datasets on Top-5 Accuracy.

An inherent limitation in our approach on how to prepare for adversarial player
strategies is that to identify one, it must have a recognizable pattern that the NN can
be trained on. Therefore, our approach will not work on strategies developed when
players communicate outside of the game to achieve the correct answer. This infor-
mation cannot be made available to the NN, meaning there is no way to compensate
for this type of strategy. Other strategies may involve inside knowledge within the
player group, which would also be challenging and most likely not particularly use-
ful to train the NN on.

Additionally, the proposed process of identifying and collecting examples of
player strategies is limited in terms of scalability. For instance, our work identified
player strategies through human observations and analyses. However, identifying
strategies on a much larger scale or using a more complex game with this process
may not be as easily executed. To address these limitations, one could investigate an
automation of these processes.

Finally, each time a NN is added as a member of the ensemble, it prolongs the
time it takes to make predictions. Making predictions with the ensemble can be run
in parallel on separate GPUs. In practice, however, there is a limit to the scalability
of the method and hence the number of addressable, distinct player strategies.

6.7 Future Work

This chapter has looked at three quite different player strategies that stump the
baseline NN. Given that there could exist a large number of player strategies that
dynamically emerge over the game’s life cycle, it would be beneficial to automate
the process of discovering new player strategies and the retraining of the NN. This
would lead to a more dynamic experience of the game evolving over time and also
reduce the amount of work in achieving this. Therefore, one could explore methods



6.8. The Player-AI Framework, iNNk, and BW7 85

for automating the player strategy discovery process using clustering ML methods,
for example.

Given the substantial amount of manual labor in generating a dataset reflecting a
player strategy by hand, one could also explore automating this process using gen-
erative methods. Finally, further fine-tuning on our proposed ensemble could be
carried out – for example, by experimenting with different model prediction aggre-
gation (voting) methods.

An additional point of investigation could be to assess the impact of batch nor-
malization. Recent studies suggest the use of batch normalization can increase a
NN’s vulnerability to adversarial attacks [19, 82]. While more analysis is needed on
this subject, future work could explore whether the baseline model applied in this
research could benefit from abandoning the use of batch normalization in the model
architecture. While such modification potentially increases model robustness, it will
also remove the benefits from applying batch normalization – faster model conver-
gence being one of them [135]. This could lead to an unacceptable increased cost in
model training, as the current model already takes >3 weeks to fit.

6.8 The Player-AI Framework, iNNk, and BW7

Circling back to the AI-infused platform of BW7, this platform is not a game that
novice users can download. It is not even a NN-based tool unless BW7 incorporates
the proposed method from Chapter 4 in their production pipeline.

Nevertheless, applying the player-AI interaction framework introduced in Chap-
ter 5 to this AI platform can still be useful. In principle, the framework can be applied
on an arbitrary AI system to identify relevant games utilizing a similar form of HAII.
These identified games can then reveal promising avenues for improving the HAII
experience of the original system.

To apply the framework on BW7’s AI platform, we first determine the visibility
of the AI. The AI tool is purchased by companies who want an AI-advised MMP.
The onboarding process for new customers consists of a non-negligible amount of
prior instruction and guidance before working with the tool. The acquisition of new
users and the marketing of BW7’s product is centered around their AI capabilities.
BW7’s website2 can be used as an example of just how AI-centered their marketing
actually is. This page mentions “AI” more than 10 times3.

In addition, BW7 introduces some overall ML properties used in their setup to
aid recently acquired customers’ understanding of the AI. In effect, classifying the UI
as NN-Specific is deemed the best fit to this setup (as per definition of the framework
presented in Chapter 5). This judgment is not because the UI directly mentions the
use of a ML-model, but because of the circumstantial context provided to the user.

2blackwoodseven.com
3Website visited: 23rd of November, 2021

https://www.blackwoodseven.com
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Next, the interaction metaphor used in the system is to be determined. The users
of BW7’s tool are teams of marketing employees. During the HAII, each team seeks
an agreement on a MMP generated by the AI for an upcoming period of time. These
employees engage with the AI in order to get an optimized output that ideally suits
their preferences. Thus, the interaction metaphor applied is “Neural Network” as a
Teammate.

Last is the characteristics of the AI-system. The AI-models created by BW7 are
updated occasionally as new data arrives. Yet, during the HAII sessions, the AI
remains static. Therefore, it is an “offline learning” AI since its behavior does not
change continuously in response to user input.

As a result, the AI system of BW7 is an offline learning, teammate AI employed in
a NN-Specific context. Looking at the results from Figure 5.2, the cell corresponding
to those characteristics contains no entries, as none of the studied games exhibit this
type of player-NN interaction.

In contrast, iNNk is an offline learning, competitor AI employed in a NN-Specific
context and therefore placed at the diametrical opposite end of the figure from the
cell representing the characteristics for BW7’s platform. Yet the only difference be-
tween the two is in the interaction metaphor.

This difference in interaction metaphors is more delicate in the context of HAII
than one might think. When a NN is employed as a teammate, the human(s) must
develop a mental model of the NN in order to anticipate its actions to maximize the
benefit of the co-operation. The same is true when a NN is employed as a competitor,
in which case the human(s) uses the developed mental model to hinder the NN
instead of enabling it. It can be said that for both interaction metaphors, the player(s)
uses the mental model to trigger a desired output of the NN.

Consequently, insights to HAII and UX design in iNNk are transferable to the
context of BW7. Observing players in iNNk suggested just how efficiently the itera-
tive feedback loop can improve mental models even though the underlying decision
process of the NN remains opaque to the players.

Based on these insights, the next chapter has HAII in the context of BW7’s plat-
form at the center and proposes a stepping stone toward a seamless HAII.

6.9 Chapter Summary

This chapter started out by introducing the NN-based game iNNk. INNk was mo-
tivated by the player-AI interaction framework developed in Chapter 5, which re-
vealed several underexplored areas in the field of player-NN interaction. INNk was
used as a case study for studying novel player-NN interactions. Studying these in-
teractions indicated that such setups can transform players from passive users into
creative and reflective thinkers, a crucial step toward a more mature relationship
with AI. These insights can be directly transferred to augment the HAII experience
with BW7’s platform.
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The study conducted in this chapter also highlights how fragile otherwise high-
performing NNs can be to out-of-distribution examples. This fragility rendered the
player-NN interaction less balanced, as the emergent drawing strategies would con-
sistently stump the NN.

The chapter continued by introducing an approach to adapt a NN to combat
these adversarial player strategies in order to regain balanced gameplay. This ap-
proach combines transfer learning and ensemble methods to strengthen the classifier
based on sparse datasets. We evaluated the performance of our approach using three
different performance measures on the testing datasets. As a result, we found that
each model dedicated to a strategy lost performance on the baseline dataset, while
the baseline model was ineffective on all player strategies. We found our ensem-
ble approach to provide the best, most consistent performance across all datasets,
with <1% loss on Top-1 Accuracy on the original dataset compared to the baseline
model. Since our method is effective and efficient to set up, despite our ensemble
of models being trained on a very limited amount of data, it can be used by others
to create more competent NNs in their own domains. Lastly, we present potential
ways to develop this method further that include automating the process and build-
ing more sophisticated ensembles, which would result in more accessible and more
interesting use cases for NNs in games.
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Chapter 7

Pursuing Explainable Diversity in
the Context of Mixed Marketing
Plans using a Unified Concept

The previous part looked at player-NN interaction in games. Studies of players in-
teracting with the NN in the game iNNk stressed how differently humans and NNs
classify the same data. In the course of the interactive sessions, the users developed
a mental model of the NN. As the model grew accurate, these users successfully
identified and applied exploits to fool the NN. The repeated player-NN interaction
played a key role in these achievements.

This chapter aims to serve key facilities for future research to achieve the same
effect in the context of BW7’s platform, only in this case, the NN is not a competitor.
An efficient maturation of mental models will ease the process of introducing new
users to the platform.

As hinted in the introduction of this work, users of BW7’s platform often have a
hard time relating to the marketing decisions of the AI1. Improving the user’s mental
model of BW7’s AI system does not render the generated MMP more relatable. The
improvements will only refine the user’s perceived error boundary of the AI. It is
still the user who makes the ultimate decision on whether to follow the proposed
MMP.

Psychology research can provide hints as to what might alter the user’s ultimate
decision in this setting. Such research has found several interesting properties of the
(ir)rational human decision-making process [141]. One of these findings is the status
quo bias. When given a set of new alternative options, Zeckhauser and Samuelson
[311] found a strong bias in decision-makers sticking with status quo. Hence, if the
generated MMP heavily contradicts the experience of a marketing employee, that
person is unlikely to follow the advised MMP, and instead take the status quo option:
manual planning.

1Here, relating means that the user can justify the rationale behind the decisions and that the MMP
made from these decisions conform to the user’s experience of what constitutes a good MMP. In short,
it should be XAI [68]
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Incorporating past experience of a person in a ML optimization, however, is non-
trivial. To do so, these experiences have to be condensed into an objective function
that is suitable for a ML optimization and whose optimum is the solution of inter-
est [252].

Rather than composing such an objective function, this chapter takes a different
approach based on diversity.

Throughout the remainder of this work, we will refer to a user’s experience as a
user preference, since experience can be considered a latent form of preference and
to prevent confusion with the term user experience (UX) as used in the field of UI
design.

When using the method described in Chapter 4 for generating MMPs, the opti-
mization outputs only a single solution candidate for a given setting. If the search
space contains two or more local optima with near-identical performance and bud-
get, the optimization yields only the best of the two options – assuming the opti-
mization acts as intended, that is.

With the complexity of the marketing landscape in mind, the existence of two
or more high-performing MMPs is not improbable. If one of these MMPs is more
harmonious with the user’s preferences than the others, that solution is paramount.
It is paramount because the marketing employee is more likely to abandon the status
quo and appreciate that solution candidate.

This solution candidate might not be located at the global optimum of the search
space. However, it is still the result of a data-driven optimization process for mar-
keting, and therefore, likely a better solution than status quo with manual planning.

This chapter proposes a method for exploring the marketing landscape within
the optimization. The method traverses the search space and collects various iden-
tified local optima as solution candidates. The idea being that one of these solution
candidates is closer to the preferences of an arbitrary marketing employee. This ap-
proach is only feasible due to the gain in speed and accuracy achieved in Part II
through approximation. Otherwise, thoroughly traversing the search space would
be outside the time frame of marketing planning.

The scope of this chapter is limited to how such an exploration can be conduced.
Thus, it does not dive further into the UX considerations for such a system with
multiple solutions for the same problem.

This chapter is structured as follows: First, a discussion on different approaches
one can take for exploring this search space is given. This leads to the approach
taken in this chapter, based on a concept appreciable by both human and AI. This
concept provides structure to the repeated traversing of the search space for both
parties. It is a highly domain-specific concept based on groupings of insertions and
constraints.

The approach also introduces the algorithm used for modifying the loss function
for the input-optimization procedure based on the introduced constraints. Next, the
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full setup that utilizes the aforementioned components is presented. The approach
is then tested on the industrial setting from Chapter 4.

Finally, the chapter will conclude with a discussion on the obtained results and
potential future applications for this approach.

7.1 Quality Diversity Search Methods

The introduction of this chapter motivated the gathering of a set of candidate so-
lutions for the same marketing optimization task. This collection can be used as a
mean to accommodate user preferences. The question is then how to traverse the
search space of the ML optimization to acquire such candidate solutions.

Various different approaches could be taken for such a task. A simple method
could be to store the state of each point traversed during gradient descent. Effec-
tively, one could obtain thousands of solution candidates with such an approach
with no additional cost to the optimization. This idea is inspired by Huang et al.
[128], in which the authors take snapshots during training to collect an ensemble of
NNs for free. However, there is no guarantee that such an approach will thoroughly
cover all local minima of the search space.

Instead, the approach taken in this chapter is inspired by diversity-seeking population-
based evolutionary algorithms, as detailed below.

An example of such a diversity-seeking algorithm is multi-dimensional archive of
phenotypic elites (MAP-Elites) [57]. In short, MAP-Elites collects a set of diverse so-
lution candidates to solve a particular problem. Each solution candidate is assigned
to a niche bin in a behavioral space based on its characteristics. The best solution
candidate of each niche bin is part of the “elite.” An example of this method’s suc-
cessful application is robots that can adapt when faced with a malfunctioning part
like a leg [57].

Diversity-seeking algorithms like MAP-Elites generate a vast number of solution
candidates [57, 238]. For example, for the damage-recovering robot, 40 million so-
lution candidates were created over a period of two weeks with MAP-Elites [57].
These results are somewhat discouraging for the case of BW7. Even with the gain in
speed from Chapter 4, generating 40 million MMPs spanning one month will take
>15 years.

Aside from the computational cost, user fatigue is a salient issue with HCI in
general. User fatigue occurs when the user of a platform generally loses interest. At
this point, the user becomes less consistent in the choices made [251] and tends to
apply a satisficion strategy – picking the first reasonable option [158].

A literature review of research conducted in interactive evolutionary computation
can provide guidelines in terms of how many MMPs it is feasible to present an end
user of BW7’s platform before they experience fatigue. Semet [251] found that user
fatigue occurs after just 20-25 human-AI feedback-loops.
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This chapter does not dive into details on how the UX design could be con-
structed for the method presented later. Yet, it is important to keep in mind the real-
ity in which the method has to function. Due to the risk of user fatigue, the MMPs
supplied to the user should be chosen with care. Also, the timeframe in which the
marketing planning happens is quite limited – this also served as the motivation for
Part II. For both reasons, the exploration of the marketing landscape when creating
diverse MMPs should be fairly efficient.

Another example of diversity-seeking algorithms is novelty search (NS) [238]. NS
manages a population of solution candidates. Each member of the population is
given a fitness score based on its novelty. The members with the highest fitness,
and thus the most novel behavior, are randomly combined and mutated in the hope
of getting even more novelty in the population [236]. Hence, this method pushes
members toward unexplored areas simply through a scoring function. An example
of such a scoring function is simply the Euclidean distance to the k nearest neighbors
(KNNs) in the behavioral space [238]. The higher the distance, the more novel the
behavior.

Inspired by these algorithms, how could such an approach be adapted to the
marketing domain? Both NS and MAP-Elites construct a behavior space to reward
diverse/novel solutions. Rewarding diversity in the context of marketing planning
could be done in a similar manner. Let us first recapitulate the loss function used
for generating optimized MMPs. This loss function was introduced in (4.4) from
section 4.3 and is repeated in (7.1) for convenience.

LP =
T

∑
t=1

1
M

M

∑
m=1

Yt,m

LB =

(
B−

T

∑
t=1

J

∑
j=1

Xt,j

)2

L = πLB − (1− π)LP

(7.1)

This loss is a trade-off between increasing the gain in KPI, i.e., LP, and penalizing
for deviating from a predefined total budget LB.

To reward diversity in the optimization process, a diversity scoring function
needs to be added to (7.1). This function should alter the loss landscape by decreas-
ing2 the loss in areas not covered by any MMP created in previous optimizations.

Such a reward function should be carefully balanced with the two other terms
in the loss function, LP and LB. In case one term overshadows the others, it will
dominate the direction of the optimization. If balanced correctly, however, repeated
iterations of the MMP optimization should yield a set of candidate solutions that
covers all local minima in the loss landscape.

Leaning on existing work with NS [238], one could use a Euclidean distance
function to the KNNs as a measure of diversity in MMPs. There is a few issues with

2Assuming gradient descent.
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such an approach, though. First and foremost, for the industrial setup introduced in
Chapter 4, a MMP spanning one month is a 31× 106 dimensional matrix. With such
high-dimensional optimization problems, a Euclidean distance and KNN approach
performs poorly due to the curse of dimensionality [3, 65].

Another distance metric like cosine similarity could be used instead. In that way,
two MMPs with the same spending pattern but with different magnitudes would be
measured as being identical.

However, there is a fundamental issue with the approach. There is nothing to
prevent the optimizer from highly increasing or decreasing the spend on a specific
insertion at a specific day while leaving all other dimensions unaffected. This is a
simple way for the optimization to obtain an improved diversity score while suffer-
ing only a limited loss in KPI.

From a human perspective, such a seemingly unpredictable fluctuation in spend-
ing pattern at a single day and insertion is hard for the user to justify. The intended
diversity effect will appear as nothing but an error by the AI – an outlier. As a re-
sult, the unexpected behavior violates the user’s mental model and thus hurts the
human-AI team performance rather than improves it.

Instead, the members of the collection with optimized MMPs should express di-
versity through trends in spending patterns easily recognizable and distinguishable
by the users. In other words, the diversity should ultimately be explainable, as with
XAI in general.

Therefore, this chapter takes an approach besides pushing away from existing
solutions. Instead, the approach pulls the optimizer into unexplored regions. Much
like the considered pushing approach, the pulling is done by adding a new term to
the loss function in (7.1). However, this term alters the loss landscape in a funda-
mentally different way than a pushing term would. The new term guides gradient
descent into areas based on a grouping of insertions. This grouping is based on an
established concept in marketing and is thus interpretable by humans. Further, it
aids the AI in generating diverse MMPs with more consistent trends that are easily
identifiable by the end user when compared with other MMPs. This grouping of
insertions is explained next.

7.2 Approach

The approach taken in this chapter builds on the concept of channels to unify humans
and AI. Channels work at a level of abstraction meaningful to marketing employees
and easily implementable in the AI. Next, we define the concept of channels in a
marketing context.

7.2.1 Channels

As detailed in section 2.4, a MMP lays out a company’s spending on marketing over
the set of all possible insertions and a given time period. An insertion is, for instance,
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a specific newspaper or TV channel. The industrial setting introduced in section 4.4.2
is the only domain studied in this chapter. This domain allowed marketing spending
on a total of 106 distinct insertions. However, many of these insertions are of similar
format. For instance, one can gather all newspaper and journal insertions in a single
collection named “Print,” as they collectively make up the total spending on paid
advertisements in a printed format. This grouping can be done for all insertions and
provide a higher level of abstraction when portraying a MMP to marketing employ-
ees. Throughout the remainder of this work, such a collection of insertions will be
referred to as a channel. The number and type of channels present depends on the
marketing domain at hand. In our case, there is a total of nine different channels as
outlined and described in Table 7.1. This usage of channels in relation to marketing
differs a bit from the commonly accepted meaning of the term [184, 295, 296]. In the
widespread usage of the term, a marketing channel is defined as

[...] the set of people, organizations, and activities that work together
to transfer goods (products and services) from the point of origin to the
point of consumption ([296]).

This definition encapsulates a wide range of activities spanning from blog posts and
live chat to search engine optimization and digital advertising. This work, however,
has paid advertising at its core, and concentrate on optimizing these advertisements
with respect to the four P’s (see section 2.4). Due to this restriction, the term “chan-
nel” in relation to marketing is, in this work, a bit more narrowly used. Marketing
channels not based on paid advertisement are disregarded. An example of such a
disregarded marketing channel is influencer marketing. Instead, a detailed set of
paid marketing channels are used (Table 7.1). The concept of channels as used in
this work is more formally defined in the following, and is given in the form of
propositional logic.

Let I = {i (1), i (2), . . . , i (J)} be the set of all J insertions and F (c) be one of the
C = 9 channels. F (c) is a set of insertions such that

C⋃
c=1

F (c) = I ∧
C⋂

c=1

F (c) = ∅ ∧ ∄F (c) = ∅

Further, let F(i (j), i (j′)) be the predicate that insertion i (j) and i (j′) are of the same
advertising format, then any two insertions {i (j), i (j′)} ∈ F (c) satisfy this predicate.

With these quantifiers at hand, the next section utilizes these to obtain diversity
in a set of optimized MMPs.

7.2.2 Placing Constraints on Channel Spend

As motivated in section 7.1, the general approach is to pull the optimization into
unexplored areas. This is done by setting spending requirements on a specific chan-
nel through modifications to the loss function. Applying various constraints to the
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TABLE 7.1: A table with the nine different types of channels for this
particular domain. Each listed channel is accompanied with a de-
scriptive text and examples of insertions it contains.

Channel Name Description
Number of
insertions

Cinema Insertions such as movie theaters showing adver-
tisements before movies.

2

Digital Display Insertions with online advertisement as a format.
Examples are advertisements on third-party web-
pages such as eb.dk and bbc.com.

18

Out of Home Insertions for which the advertisements are dis-
played in a public area, for instance at train sta-
tions.

7

Print Insertions with printed advertisements in a for-
mat such as physical newspapers.

37

Radio Radio channels with an option for running com-
mercials. Each insertion is a specific radio chan-
nel.

2

Search Search-related insertions, such as advertisements
shown based on a Google search result.

2

Social Media Digital advertisements shown on social media
platforms like Facebook and Snapchat.

23

TV Traditional TV commercials. Each insertion is a
specific TV channel.

6

Video Includes insertions that show an online video
commercial before some content, e.g., a Youtube
video.

9

optimization enforces diversity in the output. For this method to be applicable in a
real-world scenario, it is vital that the input optimization process is a cheap opera-
tion, as it is repeated numerous times. For this reason, the method is heavily reliant
on the results achieved in Chapter 3 and 4.

Consider again (7.1). One can reuse the concept of penalizing for deviating from
the total budget to construct constraints at a lower level. An example of such a
low-level constraint is minimum/maximum spending on a specific channel or even
insertion. Such a constraint can be further detailed to cover only a subset of the
period spanned by the MMP.

To do so, let LB be redefined using Algorithm 3. In brief, the algorithm modifies
the loss used for generating MMPs based on the spending constraints in use. This
is needed to ensure the resulting MMP adheres to all constraints. In the algorithm,
c is a constraint and a member of the set of constraints C. An example of such a
constraint is the total budget for the MMP. Unlike a minimum/maximum spending

https://www.eb.dk
https://www.bbc.com
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constraint, the total budget constraint is a fixed constraint, meaning it penalizes for
going either below or above the specified amount. In contrast, a minimum constraint
penalizes only for going below the bound. Line three in the algorithm is almost
identical to LB in (7.1), only now it involves an additional operation. This opera-
tion is to ensure that the computed loss only considers the spending on the days
and insertions the constraint is set to cover. For this reason, each constraint has an
associated mask – a matrix M(c) to filter out spending unattached to the constraint.
In addition, B(c) indicates the prespecified spending bound related to constraint c.
Complying with various constraints through modifications of the loss function for

Algorithm 3: Algorithm for computing LB given a set of spending con-
straints C

Input : A set of spending constraints C, a MMP X
Output: The budget loss LB

1 LB ← 0
2 for c ∈ C do

3 ℓc ←
(

B(c) −
T

∑
t=1

J

∑
j=1

M(c)
t,j Xt,j

)2

4 if c is a Minimum Constraint and ℓc < 0 then // Constraint
satisfied

5 ℓc ← 0
6 else if c is a Maximum Constraint and ℓc > 0 then // Constraint

satisfied
7 ℓc ← 0
8 end
9 LB ← LB + ℓc

10 end
11 return LB

an optimization procedure is in itself not a novel endeavor [127, 148, 161, 301]. In
fact, such constraints were also depicted as part of the original procedure outlined
in Figure 4.1. Marketing employees currently using the platform developed by BW7
use these constraints to ensure circumstantial conditions are being met, such as uti-
lizing prepaid TV commercial slots.

7.2.3 Using Constraints as an Enabler for Diversity

Our method considers each of the nine available channels in turn. For each chan-
nel, the input optimization process is executed with a spending constraint3 on that
particular channel. This process is repeated E(max) times for said channel. Each time
the process is repeated, the amount of spend required to minimize the loss related
to the spending constraint increases by a factor of B(total)/E(max). Here, total is a fixed
constraint used to penalize deviations from the total allocated budget for the MMP.

3Can be either a minimum and maximum constraint.
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Using this method, C from Algorithm 3 contains two constraints, C = {total, diversity}.
Since the constraint total covers all days and insertions involved in the generated
MMP, let M(total) = 1T×J . In contrast, the mask for the arbitrary constraint named
diversity is constructed as

M(diversity) =

M(diversity)
t,j =

1, if j ∈ F (diversity)

0, otherwise


∀t∈1,...,T ∪ j∈1,...,J

(7.2)

where F (diversity) denotes the channel related to constraint diversity. The last mod-
ification to the loss function from (7.1) is related to the scaling variable π. π is, as
before, slowly annealed. Since there is now more than a single constraint to be satis-
fied, π is annealed until a maximum of 1% violation occurs over all constraints in C.
Here, 1% is relative to B(c) for each constraint under consideration.

7.3 Experiments

The NN fitted to the industrial domain, as described in Chapter 4, is reused for the
experiments presented next. The industrial domain used here allows for spending
on J = 106 different insertions distributed across nine channels. For these experi-
ments, let T = 31 and B(total) = TF−1

d (.75), similar to (4.7). That is, the total spending
constraint B(total) is set such that it corresponds to the 75th quantile of the particular
company’s historical spending for a marketing period of 31 days. These experi-
ments use a minimum spending constraint as a driver for diversity. For each of the
nine channels, an optimized MMP is generated E(max) = 100 times – each iteration
increases the bound B(diversity) for the minimum spending constraint on the channel
at hand. As thus, the final result is a set of 900 MMPs, each MMP is a 31× 106 matrix.

7.4 Results

For the set of MMPs to provide any value, an overview of the generated MMPs
is called for. This overview should allow one to easily identify MMPs that signifi-
cantly differ in their spending pattern and those that are more closely related. Fur-
thermore, the overview should shed light on which of these are particularly high
performing MMPs, if any. Such an overview would considerably aid the pursuit for
quality diversity in marketing plans. To do so, a dimensionality-reducing technique
is used, namely, uniform manifold approximation and projection for dimension reduction
(UMAP) [190]. Each MMP is reduced to a single point in a 2-dimensional vector
space defined by the UMAP. Figure 7.1 visualizes said UMAP in two plots. On
the left figure, a heatmap indicates each MMP’s predicted KPI. This KPI is measured
using the ground true BM, and is relative to the MMP generated by the BM without
any such minimum spending constraint. As the heatmap indicates, several MMPs
suffer only a small loss in KPI compared to the ground true. To further examine how
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(A) A dimensionality-reduced 2D map of di-
verse MMPs (top). The dimensionality re-
duction is done using UMAP based on a
dataset consisting of optimized MMP. In this
dataset, each MMP is obtained using a mini-
mum spending constraint on a specific chan-
nel. In the figure, each marker represents such
a MMP. The color indicates the loss in KPI
compared to the unconstrained MMP gener-
ated using the BM. These losses are computed
using the BM and thus serve as ground true la-
bels. The bottom figure depicts the same KPI
losses as a histogram. While some of the gen-
erated MMPs suffer from significant losses in
KPI, the largest bin, with over 150 MMPs, per-
forms quite adequately (< 2% loss). As the
amount of spending needed to satisfy the con-
straint increases, the optimization procedure
gets increasingly tied to the specific channel,
regardless of the channel’s performance. For
this reason, one can see significant drops in
some of the MMPs’ KPIs.

(B) The same 2-dimensional manifold as
in 7.1a. In this figure, however, each marker is
colored according to the spending constraint’s
designated channel. I.e., if a MMP was gener-
ated while employing a minimum spending
constraint on “Print”, the marker is colored
accordingly. Similarly, each coordinate in the
vector space is colored by using a SVM. The
SVM predicts the channel on which a mini-
mum spending constraint is needed to obtain
an optimized MMP that corresponds to said
coordinate in the UMAP manifold. The white
diamond at the center is the MMP obtained
using no spending constraint. While the SVM
segments the plane aptly, it suffers difficulties
around the cluster containing the white dia-
mond. This cluster contains MMPs generated
with spending constraints on a wide variety
of channels. When the amount of spending
needed to satisfy the minimum spending con-
straint is sufficiently low, the resulting solu-
tion vector is largely unaffected by it. The
cluster around the white diamond is the result
of this property.

FIGURE 7.1: A UMAP of optimized MMPs. A set of highly diverse
MMPs is obtained using constraints on the optimization procedure.
While many MMPs perform well, they differ significantly in spending
pattern.

many of the MMPs that perform adequately, a histogram is shown at the bottom of
Figure 7.1a. On the histogram, one can see the 900 MMPs distributed among 50 bins.
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Although some of these MMPs suffer significant losses in KPI, out of the 900 gen-
erated MMPs, > 150 perform on par with the ground true (< 2% loss in predicted
KPI).

Most of the MMPs in Figure 7.1a are situated in bands. To assess the meaning
of these bands and, in effect, the local and global structure of the UMAP, a support
vector machine (SVM) [29, 51] is employed. This SVM is fitted to the UMAP embed-
ding of each MMP. Given such an embedding, the SVM makes a prediction in the
shape of a channel, namely F̃ (diversity). F̃ (diversity) is a prediction of the ground true
F (diversity), i.e., the channel on which the diversity constraint was enforced when the
MMP represented by the embedding was generated. Once fitted, the SVM is queried
for a prediction for each coordinate in the UMAP.

Figure 7.1b visualizes these predictions by the SVM. Here, each coordinate is
colored in accordance with F̃ (diversity). In addition, each of the 900 MMPs is indicated
by a circle. Each circle is colored according to the corresponding MMP’s F (diversity);
hence, these are the ground true labels. Two of the 900 circles are brought forward
and marked with an “X”. This is done to pinpoint two MMPs that are later examined
and compared in greater detail. Figure 7.1b also contains a white diamond. This
diamond represents the MMP obtained using the NN and no minimum spending
constraint on any channel. Likewise, the black asterisk on the figure represents the
MMP generated by the BM – also without a minimum spending constraint on any
channel.

Figure 7.1 indicates a wide range of high-performing MMPs that are far apart
in the UMAP vector-space. How much these MMPs actually differ requires further
examination. Figure 7.2 inspects two such MMPs in greater detail. The figure is a
1:1 comparison between the two MMPs (MMP1 and MMP2) marked with an “X” in
Figure 7.1b. MMP1 and MMP2 both perform well with a loss in KPI compared to
the point-of-reference (POR) of 2%. Here, the POR is the MMP generated by the BM
without any spending constraint. The figure shows how MMP1 consistently spends
more on Print than the two other MMPs.

The large quantity of high-performing MMPs as indicated by the histogram in
Figure 7.1a could be caused by an ineffectual spending constraint caused by a neg-
ligible B(diversity) spending bound. Figure 7.3 sheds light on how the predicted KPI
changes as this bound increases. The dotted line on the figure visualizes the 2% loss
in predicted KPI. Each circle on the figure represents the same MMPs as those visual-
ized in the UMAPs in Figure 7.1. From Figure 7.3, it is clear that putting a constraint
on Radio immediately causes a drop in performance. This performance declines
steadily as the bound increases relative to the total budget (the x-axis). On the other
hand, it turns out one can place significant spending requirements on channels like
Television and Digital Display without suffering a noteworthy loss in performance.
In fact, one can place almost 40% of the total budget on either of these channels be-
fore saturating the insertions and experiencing loss. In comparison, the POR MMP
dedicates only 22% and 28% of the total budget to these channels, respectively.
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FIGURE 7.2: A 1:1 comparison between two generated MMPs. As
the MMPs are 31× 106 matrices, an extensive comparison of each fea-
ture is infeasible. Instead, the figure visualizes patterns in spending at
a channel level over the full 31-day period. Each bar chart illustrates
this spending for four chosen channels: Print, Television, Digital Dis-
play, and Social. MMP1 is the MMP marked in Figure 7.1b with a
spending constraint on the channel named Print. Likewise, MMP2 is
the highlighted MMP with a spending constraint on Television on the
same figure. For comparison, POR is the point of reference. This is
the MMP generated by the BM and corresponds to the black asterisk
from Figure 7.1b. MMP1 and MMP2 are both high-performing MMPs
with a loss in KPI compared to POR of 2%. As expected, MMP1 has a
clear tendency to spend more on Print than both the POR and MMP2.
Moreover, the increased spending on Print reflects the seasonal ef-
fect. Since MMP1 spends more on printed advertisements than POR
and MMP2, it will necessarily have to decrease spending on other
channels in order to comply with the same total budget as the other
MMPs. Clearly, the channel Television is one such channel for which
MMP1 has decreased spending compared to both POR and MMP2.
In contrast, the optimization procedure decided on the same spend-
ing pattern on Digital Display and Social for MMP1 as the other two
MMPs. The same properties hold for MMP2 but with an increase on
Television instead.
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FIGURE 7.3: The predicted KPI as the minimum spending con-
straint increases its bound on a channel. The circles represent the
same MMPs as in the UMAPs from Figure 7.1. Each time the opti-
mization is repeated with a minimum spending constraint on a chan-
nel, the bound B(diversity) is increased relative to the fixed total budget
B(total). Eventually, the increased bound leads to a saturation of all in-
sertions covered by the constraint’s channel. In turn, the optimization
reduces the spending on other insertions in order to comply with the
total budget. This eventually leads to a decline in the BM’s predicted
KPI for the resulting MMP. The dotted line indicates the 2% KPI loss
relative to the BM’s generated MMP for the same total budget but
without any minimum spending constraint. The two circles marked
with an “X” indicates the same MMPs as those marked in Figure 7.1b
and visualized in Figure 7.2.
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7.5 Discussion

As stated in Section 7.1, the pursuit of user-preference-based MMPs is, in this work,
addressed by exploring a set of high-quality, diverse MMPs. This set of MMPs
should efficiently cover the solution space and exhibit diversity through consistent
trends to provide transparency to the user. As was shown in Figure 7.1a, the method
proposed in this chapter does indeed achieve a large set of MMPs. ≈ 1/6 of the 900
MMPs perform on par with the default MMP obtained using the BM and no con-
straint on spending. Hence, a large set of high-quality solutions has been obtained
using this approach. Figure 7.3 visualizes which of these MMPs are performing well,
i.e., on which channel was the constraint set and with what bound relative to the to-
tal budget B(diversity)/B(total). The figure shows how the spending on some channels
(e.g., Television) can be pushed toward much larger spending than the default, un-
constrained solution without notable losses. In contrast, increasing the spending on
other channels (e.g., Radio) instantly yields MMPs with declining KPI. These cur-
vatures indicate that some channels allow for a broader spectrum of spending that
permits a high degree of diversity, whereas others are more limited in options before
declining in performance.

This leaves the question of whether these high-performing MMPs exhibit diver-
sity with clear, identifiable trends. In Figure 7.1b, the segmentation of the plane
into clusters of channels is clear. This segmentation indicates a high degree of local
structure in UMAP. This signifies that two MMPs generated with a spending con-
straint on the same channel exhibit in same overall tendencies in spending. While
two such MMPs express the same spending tendencies, they do not have the ex-
act same embedding in the UMAP. This is caused by differences in their solution
matrix. Despite the two having a minimum spending constraint on the same chan-
nel, the bound at which the constraint is satisfied, B(diversity), differs. UMAP’s ability
to correctly identify and place any two MMPs with the same F (diversity) in the same
cluster is significant. It aids the interpretability and opportunities within the field of
HAII.

The clustering of MMPs is, however, not consistent in all areas of the UMAP.
In Figure 7.1b, it is evident that the middle cluster containing the white diamond
is “incorrectly” classified by the SVM. This cluster contains MMPs with all cate-
gories of F (diversity). In Figure 7.1a, one can see that this cluster contains exclusively
high-performing MMPs. The reason for the vibrant cluster lies in the annealing of
B(diversity). In the first iteration of a channel, B(diversity) is set quite low (B(total)/E). In
case the loss landscape of LP is shaped such that the unconstrained solution ma-
trix contains spending at F (diversity) equal to or exceeding B(total)/E, the solution is
invariant to the diversity constraint. For this reason, the results of the first couple of
iterations are potentially unaffected by the minimum spending constraint. Hence,
some of the MMPs are largely indistinguishable.

Next, the global structure of the UMAP is examined. The global structure of
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a dimensionality-reduced dataset is about relatedness between clusters and inter-
cluster distances. Two MMPs located in separate clusters of the UMAP should indi-
cate structural differences in the two underlying matrices. Yet Euclidean distances
in the global structure of a manifold can be misleading, and UMAP does not guar-
antee to preserve inter-cluster distances correctly [292]. Kobak and Linderman [153]
argues UMAP is still largely reliant on the specific initialization used and thus hyper-
parameter dependent. For this reason, one should exercise caution when drawing
conclusions based on such distances between clusters without further investigation.

Even when two such MMPs differ significantly and are located in distinct clusters
in the manifold with large inter-cluster Euclidean distances, these differences must
be transparent to marketing employees. Therefore, to shed light on how these MMPs
actually differ, the spending patterns of three MMPs (MMP1, MMP2, and POR) are
examined in greater detail in Figure 7.2. The two clusters in which MMP1 and MMP2
belong have a large Euclidean distance in the 2-dimensional manifold. In addition,
both MMPs have a high predicted KPI. Figure 7.2 clearly indicates the structural
differences in the trends of the three MMPs. For instance, MMP1 consistently spends
more on “Print” than the two other MMPs.

Despite these structural differences between MMP1, MMP2, and POR, the MMPs
also have a lot in common. For instance, their spending pattern on the two channels
“Digital Display” and “Social” is largely identical. Similarly, they all have strong
correlations in their spending. On days for which the POR places a relatively high
spend, MMP1 and MMP2 also place a relatively high spend. This is a property of the
seasonal effect as introduced in section 2.4. The seasonal effect describes how good
a day is to run advertisements on. The MMPs shown in Figure 7.2 all strictly adhere
to this seasonal effect, as they are striving to optimize for KPI. Hence, obtaining
high-quality solutions with respect to predicted KPI adds limitations to the possible
diversity in spending patterns. For this reason, a marketing employee disapproving
of the underlying model’s seasonal effect will have limited options with this setup.

7.6 Future Work

The results from Figure 7.1 and 7.2 demonstrate the existence of high-performing
MMPs with explainable differences in their spending trends. The newly acquired
ability to create a set of high-quality, diverse MMPs enables novel research oppor-
tunities and applications. Future research could involve user studies to examine
how marketing employees perceive and interact with this set of diverse MMPs. For
instance, one could study whether these employees would pick the default, un-
constrained MMP solution as their preferable option, or instead one of the diverse
MMPs obtained from the method introduced in this chapter. From a commercial
point of view, one can easily construct a UI allowing such marketing employees to
interact with the generated UMAP from Figure 7.1. This UI could, for instance, pro-
vide a quick comparison between MMPs in the UMAP, similar to Figure 7.2.
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The experiments presented in this chapter used a minimum spending constraint
on a channel level to obtain diversity. One could easily replace this constraint with
another, more sophisticated version. An example could be a “clustering” constraint,
restricting the spending to occur only in bursts. Such a constraint could be applied
to various extents, similar to the bound associated with the minimum spending con-
straint. Another example of such a sophisticated constraint could be to penalize
variance in the spend on each channel. Such a constraint would be biased toward
less volatility in the resulting MMPs. One could even apply a combination of sev-
eral different types of constraints to obtain even more diversity in the set of MMPs.
Such modifications to the diversity constraint could increase variety in the set of
generated MMPs and thus accommodate even more types of user preferences.

Lastly, one could consider other groupings of insertions than the channel-based
approach taken in this work. Such a change would require only a modification of
the proposition F(i (j), i (j′)) that was used in Section 7.2.1 to define the grouping into
channels based on advertising format. Another such grouping could, for instance,
be online versus offline insertions or a region-based grouping, just to name a few
possibilities.

7.7 Chapter Summary

This chapter started by motivating the need to pursue diversity as a method to ac-
commodate the latent preferences of marketing employees using BW7’s AI-infused
platform.

Instead of simply maximizing a distance metric between the set of solution can-
didates, a different idea based on pulling was proposed. At the core of this idea was
setting constraints based on groupings of insertions, namely channels. This group-
ing was based on a conceptualization familiar to marketing employees. Moreover,
the concept was easily implementable as an extension to the preexisting loss func-
tion.

The setup enabled the optimization to efficiently generate a set of high-quality,
diverse MMPs. Several of these differing MMPs obtained a performance on par with
the default MMP that was generated without pursuing diversity.

The MMPs generated were clustered using UMAP, which clearly separated the
MMPs. These clusters reflected the channel on which the spending restriction was
imposed during the optimization of the MMPs.

It was also demonstrated that setting a minimum spending requirement on some
channels immediately resulted in a KPI drop, even with a relatively weak bound.
However, for other channels, the optimization managed to distribute large sums of
spend within the channel in a cost-efficient manner. This, in turn, provided a set of
diverse, high-quality solutions.
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Lastly, through visual inspection, three MMPs were examined to review how
these differences come to light and whether these MMPs exhibit diverse spending
trends from a human viewpoint.

The method and results presented in this chapter have been made possible based
on the findings in Chapter 3 and 4. These chapters laid the groundwork for approx-
imating a NN to a Bayesian MMM’s posterior predictive distribution. This, in turn,
can be used to accelerate the MMP optimization procedure. Without this gain in
speed, executing the optimization 900 times would be too time-consuming for the
method to be usable in the HAII setup considered here.
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Chapter 8

Outlook and Conclusive Remarks

This chapter begins by discussing open problems and potential future avenues for
exploration. This is followed by a conclusion based on the main results of this thesis.

8.1 Outlook and Open Questions

The future outlook and open questions discussed here are from both a research ori-
ented perspective and BW7’s perspective, i.e., how BW7 can utilize the provided
insights as a guide for future directions of their product.

8.1.1 Fragile Human-AI Interaction

Our work with iNNk stressed how fragile HAII can be. The adversarial attacks gen-
erated by the players did not require carefully constructed, peculiar data to fool an
otherwise high-performing NN. At the same time, the generated drawings were eas-
ily recognizable to a human. Our approach from section 6.4 alleviated this issue in
the context of iNNk for the identified adversarial player strategies. However, it em-
phasizes how difficult HAII can be, as users might behave in a creative, unexpected
manner.

Addressing adversarial attacks is an ongoing field of research, but most work is
looking at auto-generated attack methods. We invite researchers to focus on human
generated adversarial attacks methods, and how these might affect HAII. Such re-
search could provide helpful guidelines for researchers and companies aiming for
valuable HAII.

8.1.2 Towards Augmented Human-AI Teaming

Closely related to the HAII in iNNk is human-AI teaming in AI-advised constella-
tions. In this case, the human and AI work together. In such setups, the success
of the collaboration depends on whether the user has an accurate understanding of
the AI’s error boundary or not. This accuracy can be reinforced if the AI-decision
making is transparent and explainable.
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Genuinely explainable AI-advised decision-making is a budding, interdisciplinary
subject [118]. Which, when achieved, can aid the human in determining whether to
follow the AI-advised decision or not.

One of the most fundamental challenges in HAII occurs when human and AI
disagree on a decision. Neither party is able to efficiently communicate their under-
lying reasoning to the other. In contrast, two humans disagreeing on a decision can
engage in a discussion to present each party’s point-of-view.

XAI seeks to address such issues through interpretable AI-driven decisions. How-
ever, it is still unclear at what point AI-advised decisions are sufficiently explained,
and in what format such explanations should be given [70, 118].

A popular approach in XAI is the use of decision trees [177, 179]. Such trees are
based on simple rules easy to visualize. Thus, one gets the impression of trans-
parency in the decision-making. However, such decision trees only answer the
question of how a decision is made, not why the decision is made in that particu-
lar way [69].

This thesis takes a different approach to augment the human-AI teaming expe-
rience and performance. The goal is not the provide condensed explanations of the
underlying reason behind an AI-decision. Instead, the aims to adapt to user prefer-
ences through a set of high quality diverse solutions.

The approach successfully applied in this work was only possible due to the
domain-dependent concept of which marketing employees are familiar, and eas-
ily implementable in the AI. Future research could investigate other approaches to
adapt to user preferences in the context of marketing. One approach could be to
leverage a user’s historical data.

8.1.3 Design Considerations for Blackwood Seven

In Chapter 5, we identified three design considerations for NNs in games:
1) Use flow to structure the learning curve of HAII. This design consideration

could be incorporated to BW7’s platform by introducing the users to successively
more sophisticated BMs. This could be done by first introducing the most simplistic
BM without advanced features such as carryover or seasonal effect (see Chapter 2.4).
This can aid users to improve their mental model of the AI, and gain intuitive un-
derstanding of how each component of the BM alters the generated MMP.

2) Incorporate enhanced discovery-based learning. The core of this design con-
sideration is to let players play around with the AI. Although the users of BW7’s
platform already interact with the BM, getting feedback from the model is time
consuming, thus limiting the number of interactive sessions before reaching user
fatigue [172]. Decreasing the time elapsed when the model processes data can im-
prove the HAII and, in turn, accelerate the onboarding process of new users to the
platform. Thus, future works should consider incorporating the method from Part II
in their production pipeline.
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3) Extend the invitation to play. Highlighting failures of the AI can help the users
identify the error boundary of the AI. Highlighting failures of BW7’s model could
be based on its predictions on historical data that was the most incorrect. This can
aid the development of the user’s mental model, as it visualizes at which points the
BM is incorrect.

8.2 Conclusion

This thesis explored human-AI interaction (HAII) and how one can augment the human-
AI collaboration in the context of marketing mix decisions. The introduction moti-
vated this research by taking a starting point in Blackwood Seven (BW7), the industrial
partner of this PhD project. The artificial intelligence (AI) developed by BW7 created
mixed-marketing plans (MMPs) to optimize other companies’ key performance indicator
(KPI). BW7 estimated that these MMPs created an uplift in KPI of 50-300% compared
to manual marketing planning.

The problem was, however, that marketing employees using BW7’s AI-infused
platform had a hard time relating to the AI’s decisions. The new, alternative, AI-
based, MMPs seemed too far from the users’ past experience of how a marketing
plan should look. This, in turn, caused status quo bias, inducing the users to neglect
or partially deviate from the AI-advice.

We argued that such challenges could be caused by contradictions between the
AI’s output and the marketing employees’ mental models of the marketing land-
scape.

A way to address these contradictions could be to take the employee using the
AI-system into consideration. One could incorporate that person’s preferences in
the AI-driven optimization. However, quantifying and incorporating preferences in
an AI-optimization can be challenging.

As a stepping stone, we started out by addressing a fundamental issue with
BW7’s platform. Namely, with the current setup, generating a MMP with BW7’s AI
was a time consuming task. BW7’s AI-system is build upon Bayesian models (BMs).
BW7’s BMs involve a large number of predictors and recursive components. These
properties were the root cause of the time consuming MMP generation. Every time
a MMP was generated with the BM, it required thousands of risk minimized predic-
tions to be used for gradient descent.

Consequently, to speedup the MMP generation, we first introduced a method to
approximate a BM with a neural network (NN). This approximation was conducted
by learning a point-wise approximation of the BM’s posterior predictive distribution
given an observation.

We found that making risk minimized predictions with this method scaled better
than a fabricated Bayesian regression model as the number of predictors grew large.
Our research also demonstrated that active learning (AL) can be applied to minimize
the size of the dataset needed to perform this approximation.
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Subsequently, the method was tested on BW7’s platform. With a few adjustments
to the setup, the posterior predictive distribution of the industry-grade BM was ap-
proximated. The NN was trained to predict the BM’s measured KPI when given a
MMP as input. The fast, accurate predictions, enabled the NN to generate optimized
MMPs up to 65× faster than the BM with a negligible loss in KPI. This application
showcased a real-world application of the proposed method.

With faster AI feedback, we were in a good position to study potential improve-
ments to the HAII of BW7’s system as a way to remedy the human-AI gap.

To identify prominent directions for such improvements, we explored NN-based
games. Games were studied since AI research has an extended history of using
games as a rich domain to motivate algorithmic advancements [196, 257, 288]. In
addition, there is a significant body of work in games research to understand user
experience [36, 62, 178].

Our research identified three design considerations: 1) Use flow to structure the
learning curve of HAII. 2) Incorporate enhanced discovery-based learning. 3) Ex-
tend the invitation to play.

Applying these design considerations to BW7’s setup led to a set of suggested
future avenues for their platform. These propositions were all heavily reliant on
getting faster AI feedback using our NN approximation to prevent user fatigue. In-
corporating these design considerations in BW7’s system can lead to improved user
experience (UX) design and ease the onboarding process of new users to BW7’s plat-
form.

This was followed by examining the game iNNk as a casestudy for player-NN
interaction. INNk was developed, as it has many similarities to the AI setup of
BW7. These similarities were identified through a framework for classifying the use
of NNs in games.

The casestudy highlighted how fragile HAII can be. As users interacted with the
NN, their mental model of the AI’s error boundary grew accurate, and they managed
to consistently stump the NN. Based on our findings, we presented a data-efficient
method to mend the NN in case the HAII becomes too unbalanced. However, the
essential issue remains: User and NN classifying the same data differently can easily
transpire.

This issue is in line with the users of BW7 not being able to relate to the AI gener-
ated MMPs. What the AI deems a good plan is by the human classified as irregular.
To remedy this situation, a search for quality diversity in the AI-generated MMPs
was sought for. This approach also functioned as a stepping stone towards incor-
porating user preferences in the marketing planning process. By seeking quality
diversity, we assumed the existence of more than one good solution for the same
marketing task. Exploring for quality diversity required repeated MMP generation
using the AI.

Part IV discussed various ways to achieve such quality diversity in the field of
marketing. The approach taken here was based on a level of abstraction meaningful
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to marketing employees and easily implementable in the AI optimization, namely
marketing channels. Using this concept, we applied spending constraints to the MMP
generation. This led to a set of diverse MMPs. From visual inspection, these differ-
ences between the generated MMPs were unfold. The visualizations showed con-
sistent differences in spending trends easily interpretable to humans. At the same
time, several of these diverse MMPs performed on par with the default MMP.

In this manner, we addressed the lack of user preferences in the AI optimiza-
tion indirectly through quality diversity. Future research can use this technique to
design the UX for such a system. Improvements to the UX design should trigger
improved human-AI engagement by presenting the user with this set of diverse,
high-performing solutions.
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Appendix A

Adjustment of the Data Sampling
Dropout-Rate

In this appendix, we will elaborate on some empirical results for determining the
best setting for a specific hyperparameter used for the experiments in Chapter 3 and
4 and, by extension, also in Chapter 7, namely the experiments with approximating
a NN to a BM.

The hyperparameter under loop was used to assist the NN in learning invariant
features in the examined domains. While there are several approaches to learning in-
variants, such as tangent propagation [25] and weight sharing [48], the experiments
conducted in this work do so through the data sampling process.

Common to all domains examined in the aforementioned chapters is that the ef-
fect of xj on y is invariant to x ̸=j. Inferring this invariance is particularly challenging
for predictors having a low effect on y.

Using the data sampling procedure as presented in Algorithm 1, we argue that
the use of setting xj = 0 with probability Bern (τ) helps in learning these invariants.

To show τ’s effect on the fitted NN, we choose two predictors, j and j′, from the
industry-grade Bayesian marketing mixture model (MMM) introduced in Chapter 4.
The predictor j has a low effect on y (i.e., a low marketing effect), thus making it
hard for the NN to single out this effect, while j′ has a relatively large impact on y.

Starting with predictor j, to determine the NN’s performance on the invariants
present in the domain with respect to this predictor, we are interested in the relative
effect xj has on the NN’s output.

Let

y =
1
M

M

∑
m=1

(
gϕ (x)− gϕ

(
x′
))

m

where g is the NN function with parameters ϕ and x′ = x except for x′j = 0, and set
x ̸=j to a constant, c.

Then, five NNs are fitted to a dataset with 100 000 entries. Each NN is trained on
a separate dataset. These datasets differ, as they are sampled using a distinct value
for τ, with τ ∈ {0.2, 0.4, 0.6, 0.8, 1}.
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To visually inspect how well each of the five NNs accounts for the invariances
in the domain for predictor j, we use the NN for predictions. These predictions are
carried out for xj ∈ {0, 1} and are repeated for each c ∈ {0, 0.5, 1}.

Since the NN has a temporal component, date encoding is needed for the NN
input. For simplicity, a single, random day was sampled for these experiments and
kept fixed throughout.

The result is shown at the top row of Figure A.1. These experiments are repeated
for predictor j′, which is illustrated in the bottom row of the figure.

Learning the invariant properties of this domain to perfection would result in
curves being identical across all values for c and all lying on the dashed black curve.
Performing well on this experiment is generally hard, as two of the chosen values for
c are at the extremes (0 and 1). These extremes were included because the subsequent
input optimization for MMP generation tends to push some of the predictors to such
extremes.

As can be seen in Figure A.1, disabling the "dropout" effect of the data sampling
procedure completely (i.e., τ = 1) performs worse compared to τ = 0.6 and τ = 0.8.
This is an observation carried out by comparing the predicted response curves to the
target (the black dotted line). In fact, for τ = 1.0 and c = 0, the NN has no perception
of the effect xj has on y. The same case holds for j′.

Likewise, setting τ too low biases the NNs to underestimate the predictors’ effect.
In addition, this renders the data sampling procedure inefficient, so the sampled data
become more sparse.

Based on these experiments, it was concluded that setting τ = 0.8 provides the
best performance across various cs when evaluating both j and j′. This value for τ

was therefore used in all subsequent experiments.
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FIGURE A.1: Experiments for determining the NNs’ inference on the
invariants in the domain. We show five trained NNs for various val-
ues of τ for predictor j with x ̸=j = c with c ∈ {0, 0.5, 1}. Predictor
j (top row) has a relatively weak impact on y, making it harder for
the NN to learn its effect. In contrast, predictor j′ (bottom row) has
a higher impact, also reflected on the y-axis. Across both predictors
and all values of c, the NN trained with τ = 0.8 yields the best overall
performance.
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Table B.1: Overview of the 38 NN games and the results of the analysis. (*Games without available playable versions.)

2D Walk
Evolution [194]

Indie Simulation No
Controls
creature
movement

Behaviors Offline Teammate NN-Specific

AI Dungeon
[290]

Indie Adventure No
Creates natural
language
responses

Behaviors Offline Designer NN-Limited

AIvolution
[266]

Indie Simulation Unknown
Controls
creature
movement

Behaviors Online Teammate NN-Limited

Audioin-Space*
[9]

Research Action Yes
Creates
weapon visuals
and audio

Content Online Designer NN-Agnostic

Black & White
[11]

AAA Role-play Yes
Creates
creature desires

Behaviors Online Apprentice NN-Agnostic

Blitzkrieg 3
[207]

AAA Strategy Unknown
Controls "Boris"
battle behavior

Behaviors Offline Competitor NN-Limited

BrainCrafter*
[222]

Research Puzzle No
Controls robot
movement

Behaviors Online Apprentice NN-Specific UI

Game Characteristics NN Characteristics Player-NN Framework Characteristics

Game Title Publisher Genre Multiple AIs? NN’s Role NN Output Learning
Interaction
Metaphor

UI

Continued on next page
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Table B.1: Overview of the 38 NN games and the results of the analysis. (*Games without available playable versions.) (Continued)

Colin McRae
Rally 2.0* [47]

AAA Sports Unknown
Controls the
car’s driving
performance

Behaviors Offline Competitor NN-Agnostic

Competitive
Snake [250]

Indie Puzzle No
Controls enemy
snake behavior

Behaviors Offline Competitor NN-Agnostic

Corral [254] Indie Simulation Unknown

Controls
chicken
movement and
preservation
skills

Behaviors Online Apprentice NN-Agnostic

Creatures [104] AAA Role-play Yes

Controls the
creature’s
sensor-motor
coordination

Behaviors Online Apprentice NN-Agnostic

Darwin’s
Avatar* [168]

Research Action No
Controls
creature
movement

Content Offline Designer NN-Limited

Game Characteristics NN Characteristics Player-NN Framework Characteristics

Game Title Publisher Genre Multiple AIs? NN’s Role NN Output Learning
Interaction
Metaphor

UI

Continued on next page
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Table B.1: Overview of the 38 NN games and the results of the analysis. (*Games without available playable versions.) (Continued)

Democracy 3
[85]

AAA Role-play Unknown

Creates
motivations
and desires of
the public

Behaviors Offline Designer NN-Agnostic

Dr. Derk’s
Mutant
Battlegrounds
[268]

Indie Simulation Unknown

Controls
creature
movement and
behavior

Behaviors Online Apprentice NN-Limited

Evo-
Commander*
[137]

Research Simulation No

Controls tank
movement and
shooting
behavior

Behaviors Online Apprentice NN-Specific

Evolution [66] Indie Simulation Unknown
Controls
creature
movement

Behaviors Online Teammate NN-Specific

Evolution for
Beginners [155]

Indie Simulation Unknown

Controls
creature
movement and
sensory input

Behaviors Online Apprentice NN-Limited

Game Characteristics NN Characteristics Player-NN Framework Characteristics

Game Title Publisher Genre Multiple AIs? NN’s Role NN Output Learning
Interaction
Metaphor

UI

Continued on next page



A
ppendix

B.
G

am
e

A
nalysis

Table
127

Table B.1: Overview of the 38 NN games and the results of the analysis. (*Games without available playable versions.) (Continued)

Football Evo
[39]

Indie Simulation No
Controls player
movement and
behavior

Behaviors Online Apprentice NN-Limited

Forza Car
Racing [95, 267,
270]

AAA Sports Unknown
Controls the
car’s driving
performance

Behaviors Online Competitor NN-Limited

GAR [115] Research Action Yes
Creates particle
weapons

Content Online Designer NN-Limited

Gridworld [67] Indie Simulation Unknown
Controls
creature
behavior

Behaviors Online Designer NN-Limited

Guess the Word
[5, 93]

Research Puzzle Yes
Creates natural
language
responses

Behaviors Offline Teammate NN-Limited

Hey Robot [83] Indie Puzzle No
Controls
language
processing

Behaviors Offline Teammate NN-Agnostic

Game Characteristics NN Characteristics Player-NN Framework Characteristics

Game Title Publisher Genre Multiple AIs? NN’s Role NN Output Learning
Interaction
Metaphor

UI

Continued on next page
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Table B.1: Overview of the 38 NN games and the results of the analysis. (*Games without available playable versions.) (Continued)

How to Train
Your Snake [21]

Indie Simulation No
Controls snake
movement

Behaviors Online Apprentice NN-Specific

Idle Machine
Learning Game
[285]

Indie Simulation No

Controls
performance of
the vehicle’s
movement

Behaviors Online Apprentice NN-Specific

iNNk [287] Research Puzzle No
Identifies
sketches drawn
by the player

Behaviors Offline Competitor NN-Specific

Machine
Learning
Arena* [78]

Research Simulation Unknown
Controls robot
behavior

Behaviors Online Teammate NN-Specific

MotoGP19
[198]

AAA Sports Unknown
Controls the
car’s driving
performance

Behaviors Offline Competitor NN-Agnostic

Neat Race [211] Indie Simulation No
Controls car
movement

Behaviors Online Apprentice NN-Specific

Game Characteristics NN Characteristics Player-NN Framework Characteristics

Game Title Publisher Genre Multiple AIs? NN’s Role NN Output Learning
Interaction
Metaphor

UI

Continued on next page
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Table B.1: Overview of the 38 NN games and the results of the analysis. (*Games without available playable versions.) (Continued)

NERO [150,
264]

Research Simulation No

Controls robot
movement and
shooting
behavior

Behaviors Online Apprentice NN-Specific

Oui Chef!! [44,
45]

Research Role-play No
Controls chef
behavior

Behaviors Online Apprentice NN-Agnostic

Petalz* [237] Research Simulation No Creates flowers Content Offline Designer NN-Agnostic

Quick, Draw!
[102]

Research Puzzle No
Identifies
sketches drawn
by the player

Behaviors Offline Teammate NN-Limited

Race for the
Galaxy [86]

AAA Strategy Unknown
Controls
opponent
behavior

Behaviors Offline Competitor NN-Limited

Roll for the
Galaxy [87]

AAA Strategy Unknown
Controls
opponent
behavior

Behaviors Offline Competitor NN-Limited

Game Characteristics NN Characteristics Player-NN Framework Characteristics

Game Title Publisher Genre Multiple AIs? NN’s Role NN Output Learning
Interaction
Metaphor

UI

Continued on next page
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Table B.1: Overview of the 38 NN games and the results of the analysis. (*Games without available playable versions.) (Continued)

Semantris [103] Research Puzzle No
Controls the
classification of
words

Behaviors Offline Teammate NN-Limited

Supreme
Commander 2
[228]

AAA Strategy Yes
Controls enemy
unit flight and
fight behavior

Behaviors Offline Competitor NN-Agnostic

The Abbattoir
Intergrade [13]

Indie Strategy Unknown
Controls enemy
unit offense
behavior

Behaviors Online Competitor NN-Agnostic

Game Characteristics NN Characteristics Player-NN Framework Characteristics

Game Title Publisher Genre Multiple AIs? NN’s Role NN Output Learning
Interaction
Metaphor

UI
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