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ABSTRACT

The goal of this thesis is to combine Cubical Type Theory (CTT) and modal
type theory towards obtaining a type theory suitable for the verification of pro-
grams relying on features such as recursion. For this purpose the main advantage
of CTT is that extensionality principles such as function extensionality can be
shown as theorems, and as such can be given computational content. Addition-
ally CTT supports the powerful univalence axiom as well as the highly useful
Higher Inductive Types (HITs). Another extension to type theory is that of
modalities which can be used to encode the primitives needed for programming
with and reasoning about recursion, staged computation, and information flow
control. Combining these two approaches offers the promise of a type theory
with the necessary amount of structure to encode e.g., reactive programs with
productivity guarantees and programs relying on control of information flow
between types with non-interference guarantees.

The thesis contains two papers. The first paper presents a type theory with
a family of Fitch-style later modalities indexed over an object of clocks, called
Clocked Cubical Type Theory (CCTT). Guarded recursion with multiple clocks
has been used in earlier work to encode coinductive types. The primary novelty
in this theory is induction under clocks for HITs. The encoding of coinductive
types requires functors which commute with clock quantification and a large
class of these can be produced by applying induction under clocks. One example
of interest is the finite powerset functor, which allows for the encoding of non-
deterministic processes. The theory is shown to be sound by the construction
of a presheaf model.

In the second paper a more general framework called Cubical Modal Type
Theory (MTT□) is presented. This extends the existing framework of Multi-
modal Type Theory (MTT) with the primitives of CTT. MTT is a modal type
theory indexed by a 2-category of modes which is flexible enough to encode
S4, cohesive type theory, and guarded recursion. The new MTT□ extends this
theory with the computationally well understood path types. The primary con-
tribution of the paper is a method for the quick production of models in the
style of Orton and Pitts. One of the technical challenges in achieving this is
the construction of composition structures on modal types, which requires the
cubical structure to be coherent with respect to the indexing 2-category.



RESUMÉ

Målet med denne afhandling er at kombinere Cubical Type Theory (CTT) med
modal type teori for at opn̊a en typeteori som egner sig til verifikationen af
programmer der benytter redskaber som rekursion. I den henseende er hoved-
fordelen ved CTT at ekstensionalitetsprincipper som funktionsekstensionalitet
kan bevises og dermed har gode beregningsmæssige egenskaber. Derudover un-
derstøtter CTT det kraftulde univalence princip samt det yderst værdifulde
højere induktive typer (HITs). En anden udviddelse af type teori er tilføjelsen
af modaliteter, som kan bruges til at indkode primitiver som er nødvendige for
at programmere med og ræsonnere om rekursion, staged computation og kontrol
af informationsstrøm. Kombinationen af disse paradigmer tilbyder løftet om en
typeteori med den nødvendige struktur til at indkode for eksempel reaktive pro-
grammer med produktivitetsgarantier og programmer som benytter kontrol af
informationsstrømme med ikke-inteferensgarantier.

Afhandlingen best̊ar af to artikler. Den første artikel præsenterer en typete-
ori med en familie af Fitch-agtige later modaliteter indekseret over et objekt af
ure, som er navngivet Clocked Cubical Type Theory (CCTT). Sikret rekursion
med flere ure er blevet brugt i tidligere arbejde til at indkode koinduktive typer.
Den primære nyskabelse i denne teori er induktion under ure for HITs. Indkod-
ningsresultatet for koinduktive typer har brug for funktorer som kommuterer
med kvantifikation over objektet af ure, og man kan producere en stor klasse af
disse ved brug af induktion under ure. Et specielt interessant eksempel p̊a en
s̊adan funktorer er den endelige potensmængde funktor, som muliggør indkod-
ningen af ikke-deterministiske processer. Teorien bliver bevist konsistent ved
konstruktionen af en presheaf model.

I den anden artikel præsenteres en mere generel struktur, nemlig Cubical
Multimodal Typeteori (MTT□). Dette er en udviddelse af den eksisterende teori
Multimodal Typeteori (MTT) med primitiverne fra CTT. MTT er en modal
typeteori indekseret af en 2-kategori af tilstande, som er general nok til at dække
over modal S4, kohæsiv typeteori, og sikret rekursion. Den nye MTT□ tilføjer
de beregningsmæssigt velforst̊aede stityper. Det primære bidrag i artiklen er en
metode til hurtigt at producere modeller i stil med Orton-Pitts metoden. En af
de teksniske udfordringer ved dette er konstruktionen af kompositionsstruktur
p̊a modal typer, som kræver at de strukturer som er importeret fra CTT spiller
fornuftigt sammen med den indekserende 2-kategori.
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1. INTRODUCTION

Type theory is a formalism that can be regarded both as an abstract program-
ming language and a mathematical logic. This duality of type theory is called
the Curry-Howard correspondence, and it allows one to leverage the power of
type theory as a logic to reason about programs written in type theory as a
programming language.

In programming language theory, type theory is thus deployed as a tool for
providing guarantees about programs in two forms. Programs written in type
theory come with certain safety guarantees depending on the language. For the
simply typed lambda-calculus this might mean basic type safety of the programs,
i.e., the property that a well typed program never gets stuck trying to apply a
function to input it is not defined on. In this thesis we focus on dependent type
theory à la Martin-Löf (MLTT) [37], which is able to confer positive guarantees.
Via Curry-Howard, simply typed languages correspond to propositional logic
and dependently typed languages correspond to predicate logic. With dependent
types we can thus take advantage of predicate logic in programming to verify
that a program adheres to a given specification1. Specifically, dependent types
allows us to attach various proof obligations to our types, ensuring, e.g., that a
function outputs not just any number, but a number with a specified property,
or to prevent buffer overflow and null pointer exceptions as in [58]. This is
where the full force of the Curry-Howard correspondence is leveraged, since the
language we write the specification in and the programming language coincide.

In mathematics, type theory can be viewed as a logic. There is a push for the
mathematics formalized in the traditional foundation of set theory to be recast
in type theory, in part because type theory is amenable to computer checking of
proofs via proof assistants. Concretely, various proof assistants such as Agda [43]
and Coq [53] can be used to check the well typedness of terms. Since in type
theory types are propositions and terms are proofs, proof assistants allow for the
mechanical checking of proof correctness, which is often difficult to do by hand.
Many different variants of type theory have models in set theoretic foundations,
and often they can be used as the internal language for some class of categories.
It is foundational to type theory that the simply typed lambda-calculus can be
used as the internal language for Cartesian closed categories [33] and that MLTT
can be used as an internal language for locally Cartesian closed categories [25].
Recent advances in homotopical type theories with synthetic descriptions of

1 From now on we mean dependent type theory when we say type theory unless otherwise
specified.



higher structure has continued this story in higher category theory [30, 50], with
the long term goal of this program being a reasonable definition of elementary
∞-topoi and a specification of their internal languages as a form of univalent
type theory [54].

This thesis is about two extensions to type theory, both of which have ramifi-
cations on either side of the correspondence. One extension is by type construc-
tors called modalities, which are used to add extra features to type theory. For
instance guarded recursion can be added via the ”later” modality [42], denoted
▷, or time-warps [24]. The modality ▷ is very well-studied: one variant of it has
been shown to be sufficient for encoding coinductive types [39] and another has
been shown to support reasoning about guarded recursive types up to bisimilar-
ity [40]. We note that guarded recursion lies at the heart of recursion in various
implementations. For instance modal FRP [32], the variants of RaTT [9], and
the implementation of Iris [29].

Other examples of extending type theory by modalities to add expressiv-
ity to it are the following: Staged computation can be represented via modal
S4 [21], using a variant of the split-context type theory of [45]. A particularly
bountiful collection of modalities are those based on Lawvere’s axiomatic cohe-
sion [34] which is an axiomatic approach to spaces based on a triple of adjoints.
These adjoints can be represented in type theory with modalities with a syntax
mirroring [45], and have been employed to connect results from synthetic ho-
motopy theory to topology as formulated in type theory [49] as well as in the
study of information flow control [31]. Crisp type theory is a minimal variant
of the cohesive setup and has been used in the study of models of cubical type
theory CTT [35]. It internalizes the global sections functor in the same way that
cohesive type theory internalizes the cohesion triple of adjoints, with the goal
of describing global operations.

The other extension is by cubical primitives originating from Cubical Type
Theory (CTT) [18, 5]. This type theory was first described as part of an effort to
model univalent type theory constructively and in a way that supplies computa-
tional content to the eponymous univalence axiom, and has since garnered much
interest. Univalent type theory or homotopy type theory (HoTT) adds the uni-
valence axiom as a way to obtain equalities between types, or, taking a slightly
different view, internalizing the fact that isomorphic types cannot be told apart
internally without extra axioms. In CTT equality is represented by functions
out of a primitive interval corresponding loosely to paths in topological spaces.
Partly due to this specific representation and partly due to results from HoTT it
is a powerful type theory for reasoning about equality. We expand on this point
and motivate it further in section 1.1.6. The long-term goal of studying cubical
modal type theory is to align the practicalities of system design and the desir-
able theoretical properties offered by the mathematically oriented type theory
tradition. Using modalities we add features needed for the desired expressivity
of the language in a principled way. The extensionality principles necessary for
efficient reasoning in type theory, e.g., function extensionality and univalence,
are obtained as theorems in cubical type theory, and moreover we shall see in
the second paper how one obtains an appropriate extensionality principle for
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modal types.
In section 1.1 we provide context for the thesis in a mostly non-technical

fashion. We discuss first the context of the work from the point of view of pro-
gramming language theory and then as a mathematical logic. The contributions
of each paper is discussed in section 1.2, with related work being discussed in
section 1.3, and a statement of contribution for each of the papers is available
in section 1.4. Chapter 2 contains the first paper as submitted to LICS ’22 and
chapter 3 contains the second paper as submitted to LMCS.

1.1 Background

1.1.1 Formal verification

To an ever increasing degree, software permeates every part of society. Most
of our interaction with governance is either assisted by software or completely
digital, our financial system exists mostly in the digital sphere, the factories
producing our food and medication relies on various control systems, and so
on. Failure of these systems results in everything from minor frustrations to
catastrophic losses, so it is important that the software is reliable. Verification
of software in general is the process of ensuring that the software behaves in
the intended manner and can be done in a number ways, either through testing
or some sort of static program analysis. Formal verification is the deployment
of formal methods to static program analysis with the goal of mathematically
proving that systems do not behave in unintended ways or that they implement
a precisely stated specification, bringing mathematical certainty to verification
of software. Type theory can be used as a tool for both of these. The exclusion
of unintended behavior is essentially a part of the metatheory of type theory:
statements like canonicity for instance ensures that programs with output type
N eventually produce a numeral, meaning that it terminates. The strength of the
guarantees we can give in this regard is inversely correlated to the expressivity
of the language, as Pierce writes in the introduction of [46]:

For example, research on typed lambda-calculi is usually concerned
with systems in which every well-typed computation is guaranteed
to terminate, whereas most programming languages sacrifice this
property for the sake of features like recursive function definitions.

In functional programming languages, general recursion in some form is needed
for the language to be Turing complete2. Adding it to the language is equivalent
to adding a fix-point operator, given by a function Y : (A → A) → A. Added
without any checks this operator allows for many pathological definitions, such
as programs depending on later unfoldings of themselves. To introduce recursion
to our type theory we must thus be careful to verify that the self-reference is
well-founded, since if it is not, the result is a program that will not terminate,

2 From now on we will mean general recursion when we say recursion, as opposed to struc-
tural or primitive recursion, unless otherwise specified.
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and indeed will not even be productive [19]. In section 1.1.2 we will see a
concrete argument for why the expressivity offered by recursion is necessary
and we will discuss various different approaches to the problem in detail in the
later sections.

The other mode of formal verification via type theory involves the Curry-
Howard correspondence directly. We can use the logic of type theory to write
specifications about our programs and pass proofs of needed properties around
in the code3. For instance, one might imagine an implementation of arrays where
trying to access an element of the array we have to provide the desired index
and a proof that this index is smaller than the length of the array. Conversely
we might imagine functions which output not just data, but also a proof that we
have some desired property. This could be a function for finding roots of a input
polynomial which outputs a list of real numbers as well as proofs that these are
indeed roots as desired. In both of these examples we require the expressiv-
ity offered by dependent types since we are in each case manipulating pairs of
numbers and proofs that these numbers satisfy certain properties. Composing
programs written in this style allows for a static check that they implement a
given specification, with the specification itself being written in type theory. Re-
turning to recursion, we mentioned that the unrestricted fixpoint combinator is
problematic in that it no longer excludes certain modes of unintended behavior.
In addition to this, it makes the logic inconsistent. Spelling the point out, an
unrestricted fixpoint operator would allow one to produce via the Curry-Howard
correspondence a proof of the false proposition in type theory, collapsing the
logic and thus the ability to write and check program specifications.

1.1.2 Reactive programming

Reactive programs are, as the name suggests, a class of programs with behavior
that is to some extent determined by outside input, with the typical case being
a two-way interaction with an environment. A simple example would be a piece
of software controlling an air conditioner. An air conditioner must cool the air
until the temperature falls below a certain point, a two-way interaction with
the physical temperature in a room. This point must be adjustable via user
input, an interaction with a user. While an air conditioner is rarely considered
critical, many critical systems are inherently reactive. Like air conditioners,
many such systems do not come with a predefined end state; they are designed
to run for indeterminate amounts of time. To accommodate this in type theory
we reason about these systems as manipulation of fundamentally infinite struc-
tures, such as an infinite stream of input temperatures as measured by the air
conditioner. Reactive programs are an obvious target for verification efforts for
two reasons. Firstly, an increasing number of critical systems such as financial
systems, healthcare systems, and systems for the automatic operation of, e.g.,
airplanes, cars, cooling systems for nuclear reactors, etc., rely on reactive pro-
grams. In addition to this, errors in reactive programs might require very long

3 often the concrete proofs are not actually passed around at runtime for efficiency reasons.
Deleting proofs from the runtime program in this way is known as erasure.
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runtimes to appear, making it hard to check correctness via testing. Thus they
are an obvious candidate target for formal verification.

Streams as a data structure falls under the broader category of coinductive
types. One can think of coinductive types in terms of coalgebraic structure
dually to how inductive types can be thought of as algebras for certain func-
tors. We can construct elements of inductive types from other elements of the
inductive type and some input according to its structure. Dually, we can de-
construct elements of a coinductive type into elements of the coinductive type
and some output data determined by the coinductive types structure. The basic
example of natural number streams is conceptually an infinite, ordered list of
natural numbers, and we denote the type by Str. It is the final coalgebra (or
greatest fixpoint) for the functor N×−, and so by Lambek’s theorem we have
an isomorphism Str ∼= N × Str. This isomorphism is the explanation for the
deconstruction procedure described above: a stream can be transferred along
this isomorphism, and composing with the projections we obtain either another
stream (the tail operation) or a natural number (the head operation). That Str
is a terminal coalgebra means that to obtain a map from A to Str for some A it
suffices to produce a map A→ N×A. For instance we can define the constant
stream of zeroes as a map 0 : 1 → Str by simply taking the map 1 → N which
picks out the number 0.

While terminal coalgebras come with a natural mapping-in property in the
semantics by virtue of being terminal, coinductive types are often specified via a
mapping-out property, e.g., the taking apart of a stream into a head and tail as
above. This means that once we are given, e.g., a stream we have a good handle
on what data can be extracted from it. On the other hand this gives no a priori
way to inhabit such types, since the implied constructor above concatenates
a natural number with an already defined stream. The way to get solve this
is general recursion, which we can add to type theory via a fixpoint operator,
but as discussed earlier this is not consistent. One approach to ensuring that
recursion does not result in pathological definitions is to verify syntactically
that the recursion follows a pattern known to produce well-founded recursion.
This approach is fairly inexpressive compared to the other approaches we will
consider. Concretely, the syntactic checks seen in implementations usually force
the recursive calls to appear directly under a constructor.

More sophisticated frameworks such as process theory needs more compli-
cated coinductive types. To produce a type theory that it well suited for both
programming with and reasoning about processes we need a sensible encoding
of processes. One way to do this is via finitely branching labelled transition
systems given as terminal coalgebras for Pfin(− × A) where Pfin(−) is the fi-
nite powerset and A is the type of labels [28]. That encodings such as this
are possible makes coalgebra a tool well-suited for working with infinite data
structures.
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1.1.3 Guarded recursion

Working with the input streams described as described in the previous section
in functional programming requires recursion. As discussed in section 1.1.1
type theory usually corresponds to functional languages which provide termi-
nation guarantees, but these evidently cannot be given for reactive programs
as described above. While termination guarantees are not possible we can ob-
tain a productivity guarantee, i.e., a guarantee that finite stages of the program
terminate in finite time. Both this and a promise of causality are present in
the guarded recursive systems employing the modality ▷, and more concretely
adding a fixpoint operator löb : (▷A → A) → A. This approach was pioneered
by Nakano [42]. While traditionally recursion was subject to various syntactic
checks, guarded recursion allows this to be handled as part of the type-checking.
Many different variants of guarded recursion have been conceived [6, 8, 11, 17]
and implemented [9, 29, 32, 56]. We think of the modality ▷ as an abstract step-
indexing, with ▷A being the type of elements in A available in the next time
step. Data available now, i.e., elements of A, will be available later, meaning
that we have a function next : A → ▷A. Since the input to löb is not an endo-
function, strictly speaking it provides a fixpoint to the composition with next.
As mentioned in the previous section, reactive programming with coinductive
types can be achieved through ▷ and löb. We start by describing the encod-
ing of guarded streams, and then give an account of coinduction via guarded
recursion.

We can encode streams with the later modality by ditching the strict ver-
sion of the type isomorphism described above in favor of the following: Strg ∼=
N× ▷Strg. The type Strg is a type of guarded streams, which break down into
a natural number n : N and a term s : ▷Strg, the latter of which is a guarded
stream available one time step from now. As for streams, we have head and
tail operations but now the tail is not given to us immediately. Formally, the
type of streams is itself defined by recursion over a type of type, i.e., the uni-
verse of type theory which we write U. It is the fixpoint of the map ▷U → U
given by mapping A to N × ▷A. Likewise we inhabit the type of streams by
using the fixpoint operator; for instance the constant zero stream is defined by
löb(λs. 0 :: s). While this type of guarded streams has its uses, it is too rigid
for some applications. Functions Strg → Strg are strictly causal, meaning that,
for instance, the stream operation picking out every other element cannot be
typed. Apart from this, certain relations (in particular weak bisimilarity [38] as
seen in [41]) are not causal, so this fragment of coinduction is inadequate.

In [6] a variant of guarded recursion was introduced with an indexed col-
lection of modalities, each with a fixpoint operator in the style above which
provides a solution to this issue. Instead of ▷ we have a collection of modalities
indexed over an object of clocks, Clk, with clocks being denoted κ, κ′, . . . and
the corresponding modalities being ▷κ, ▷κ

′
, and so on. In keeping with the intu-

ition that ▷ is supposed to internalize a concept of time-steps, we think of ▷κ as
representing time steps on a particular clock. Replaying the construction above
we define a type of guarded streams, Strκ, satisfying a coinduction principle

6



which induces an isomorphism Strκ ∼= N× ▷κ Strκ. This multiclocked version of
guarded recursion then adds a new type constructor which behaves like a func-
tion space from the object of clocks, with introduction and elimination given by
abstraction and application with the expected reductions. We denote this type
∀κ.A. We add to this the primitive force : ∀κ. ▷κA→ ∀κ.A, which is required to
be inverse to the functorial action of ∀κ on nextκ. Just as function spaces clock
quantification commutes with products, and so we get a string of isomorphisms
as follows:

∀κ.Strκ ∼= ∀κ. (N× ▷κStrκ)
∼= ∀κ.N× ∀κ. ▷κ Strκ

∼= ∀κ.N× ∀κ.Strκ

One wrinkle in the calculation above is the lingering clock quantification on the
natural number factor, for this to faithfully implement the coinductive stream
type we at least need ∀κ.N to be isomorphic to N. Types that satisfy this are
called clock irrelevant and some instances of guarded type theories with multiple
clocks take the property as an axiom for all types [13]. The collection of clock
irrelevant types is closed under the standard type formers of type theory, and
as such the primary problem to be solved in adding the axiom is the universes.

As mentioned earlier, we need coinduction to encode non-causal behavior and
predicates. Passing to the above encoding does, however leave the door open for
programming in a way that is guaranteed to be causal. We can introduce terms
of, e.g., the coinductive stream type by constructing a guarded stream and then
abstracting κ in it. This allows one to carefully isolate non-causal behavior and
retain the causality guarantee when needed.

1.1.4 Dependent right adjoints and multimodal type theory

Guarded recursion as described above is an instance of a more general class
of modalities, namely a dependent right adjoint [10]. The idea behind these
modalities is to have an action on contexts L in addition to the type operation
R. These are then essentially required to be adjoint, in some sense. Concretely,
they consist of rules as below and an as of yet unspecified elimination principle.

L(Γ) ⊢ A
Γ ⊢ R(A)

L(Γ) ⊢ a : A

Γ ⊢ modR(a) : R(A)

While the formation and introduction rules for a type as above are clear enough,
the elimination rule is a point of contention in the design of these systems. The
simplest choice would be to add a formal dual to the introduction rule, defining
an operation unmodR(−) which allows extraction of a term under a modR(−),
making the rule on the right in the above invertible. Modalities that follow
this schema, and variants of it designed to capture the same adjunction-style
relationship between L and R, are called Fitch-style modalities. Adding an
inverse to the operation modR(−) is similar to specifying function spaces with a
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λ and un-λ rule, and for similar reasons substitutions become problematic. We
cover now the proposed solutions that are relevant to the papers.

In [10] the elimination rule for modal types requires a weakening in the
conclusion, but the theory is augmented with a universal property for context
of the form L(Γ). Together this results in a theory in which the eliminator for
modal types commutes with all definable substitutions. The approach taken
in the first paper is similar to that of [10] and leans on prior work on clocked
type theory [8, 36] in taking this function space analogy as far as it can go and
working from there. Here, modµ(−) is treated as λ abstraction of a variable with
a restricted form of application as the elimination rule. In the context of guarded
recursion with multiple clocks in particular, these protovariables are called ticks,
and the type theories based on this approach are called multiple tick variants
of guarded recursion [8]. This approach is well-suited for the particular modal
type theory that is clocked type theory, but inherits the issue of dependent
right adjunctions regarding the semantics: the elimination rule is closed under
all definable substitutions, but it cannot be adequate with respect to the usual
presheaf models. A modified version of this approach is described in the first
paper, so we defer further discussion of this approach.

Another approach that exists in the literature is that of multimodal type
theory (MTT) [23], which has the major advantage that the elimination rule for
modal types is faithfully reproduced in the intended models. This is a fact we
leverage to reason in the internal MTT of certain structures in the second paper.
In MTT one allows for the abstraction of data available under a modality. More
concretely, the context extension rule allows for the extension of Γ by types
in context L(Γ). Modal types are then required to support modal induction,
which, following the general flavor of induction principles, can be approximated
as saying the to construct an inhabitant of some type motive C which depends
on R(A) it suffices to construct it for terms of the form modR(a). The exact
implementation of this is a form of let-binding which loosely matches the syntax
present in [45]. MTT is typically also augmented by a modal variant of the Π-
type allowing for the abstraction of the type assumptions which contexts can be
extended by. Apart from providing a solution to the problem of substitutions in
systems with Fitch-style modalities, a major advantage of MTT is the flexibility.
Instead of having a single modality as sketched above, MTT is indexed by a 2-
category M which we call a mode theory. The idea is that MTT consists of
a copy of MLTT for each mode (object of M) with a dependent adjunction
for each modality (morphism of M). Operations like next can be included as
2-morphisms in the mode theory, as it is essentially a transformation id → ▷.
Having a centralized infrastructure for defining modal type theories has the
advantage that many properties of modal type theories can be obtained by
invoking a general result for MTT. For instance any instantiation of MTT has
a model [23] and enjoys normalization [22]. Many modal type theories can be
captured in the MTT framework, for instance modal S4, cohesive type theory,
certain variants of guarded recursion, and a type theory for parametricity [23].
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1.1.5 Equality in type theory

As mentioned earlier, this thesis will largely work in and with CTT. To motivate
this choice we must first discuss equality in type theory more generally. In
all type theories there is a structural notion of equality, called definitional or
judgmental equality and one typically includes a notion of propositional or typal
equality. Judgmental equality is, as the name implies, a separate judgement of
type theory where typal equality is a (dependent) type. The typal equality is
thus the equality we have access to in type theory as a logic. For judgmental
equality, the point is to enshrine some chosen reduction rules into the structure
of type theory. The constraint it is placed under is that it should have enough
reductions to be helpful but not so many that the theory becomes trivial or, more
likely, difficult to work with. Typal equality on the other hand is, essentially by
definition, the least definable reflexive relation. It has an induction principle,
path induction, but for some types we have to reason about equalities in them
via extensionality principles. For now an extensionality principle is simply an
alternative way to show equality in a type, but later we will need a more precise
and stronger notion. The archetypical example is function extensionality, the
ability to show equality of functions by showing that they produce equal outputs
on equal inputs, or in other words that they have the same extensional behavior.
Such principles are usually included in judgmental equality by default.

Judgmental equality, being a structural concept, is allowed to have (silent)
structural consequences. The one most relevant to the discussion at hand is type
conversion:

A ≡ B a : A

a : B

It is a desirable property for a type theory to have a decidable procedure for
checking whether a particular term a has type A. This puts a cap on how
complicated we can make judgmental equality. Since the check that a : B needs
to be decidable and one way to show it for a : A is to show that A ≡ B it requires
that such proofs to not be overly abundant. It is similarly possible to define
a type conversion function from a inhabitant of the identity type between two
types using path induction, but this resulting function does not incur ambiguity
of typing.

A rule which could be added to type theory is the reflection rule, allowing one
to infer from the construction of a term in the identity type that the terms are
judgmentally equal. There are two good reasons to do this, with the first being
an easy way to obtain extensionality principles. Since these can be included at
will for judgmental equality, a system with the reflection rule which collapses
the two notions of equality can simply be required to include them. The second
reason to use reflection is an inherent cap on the complexity of the identity
type which can have at most one element (up to equality) with this rule. Both
of these make it quite a bit easier to work inside the type theory. We call
systems with the reflection rule extensional type theories and systems without
it intensional, or say that the systems have an extensional or intensional identity
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type respectively.
The reflection rule allows for type conversion along arbitrary proofs of equal-

ity, and the existence or non-existence of such proofs is not generally decidable.
While decidability of type checking is desirable, it could conceivably be dropped
for sufficient benefit; we will not go further along this line of reasoning here, in-
stead we simply exclude the reflection rule as a possibility. This leaves us in a
slightly awkward position of having to obtain extensionality principles such as
function extensionality from elsewhere and having to accept a somewhat com-
plicated identity type. The latter of these is useful in its own right, since a more
complex type allows for a more expressive system, but the former is a problem
we need to solve.

1.1.6 Cubical type theory

This thesis works in the paradigm of cubical type theory. There are many rea-
sons to work in this paradigm: the intensional identity type which we argued
in favor of in the preceding section, extensionality principles such as function
extensionality and univalence and the added expressivity from higher inductive
types (HITs). In addition to this, cubical type theory is well-studied, meaning
that the most critical metatheoretic questions are settled definitively, specifi-
cally canonicity [26] and normalization [51], and that models of CTT are well-
understood [18, 35, 44]. In contrast to, e.g., HoTT it does not allow one to
introduce non-canonical elements of other types via the univalence axiom.

CTT is a dependent type theory extended with an interval primitive I with
endpoints 0 and 1. We then define a path type given by functions out of this
abstract interval, and the intention is to use the type of such maps as an equal-
ity type in line with the intuition from HoTT. To be slightly more concrete,
equalities between a and b in A are maps from the interval into A which are
judgmentally equal to a at 0 and b at 1. It is a slogan of any logic that equality
is the least relation that is all three of reflexive, symmetric, and transitive and
type theory is no different. Showing that the path relation is reflexive is easy:
simply take the constant function. The other properties are more tricky and
require some combination of operations in the type and extra structure on the
interval. We will work with the most structured interval and the least power-
ful operations following [18]. This means concretely that we require that the
interval is a De Morgan algebra, and as such has connections ∧ and ∨ which
can be seen as abstract minimum and maximum operations respectively, as well
as a reversal. This reversal can be used to show that paths are symmetric. In
addition to this, we note that as described in section 3.2 of [18] connections can
be used to show that singletons are contractible.

To show that paths are transitive we need Kan operations, which are an
abstract, cubical version of the horn filling property for simplicial sets as in
the description of Kan fibrations. In the tradition of [18] this is bundled into
a single operation called composition. These operations allows one to extend
certain partial elements to total ones, namely those partial elements which are
(path) equal to an extensible element and are specified on a formula from the face
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lattice. The way to think about the face lattice is as a collection of subobjects
of geometric cubes, specifically those corresponding to a union of faces and
subfaces of a cube. These Kan operations can then be used to show transitivity
of the path relation (a proof is reproduced in section 2 of the first paper).
Moreover the Kan operations can be used to define transport, a special case of
composition where one is extending an empty partial element. Together with
the aforementioned contractibility of singletons this can be used to show that
the path type supports path induction, and so ticks the boxes one might expect
of an identity type.

While the path type cannot support a reflection rule in a sensible way, it does
introduce more judgmental equalities into the theory, some directly and some via
the supporting composition operation. Directly from the path type we get the
required reductions: a path from a to b evaluated at 0 must reduce judgmentally
to a. At the same time composition is meant to provide an extension of a partial
element and so must reduce judgmentally to the partial element it is extending
whenever restricted to a face formula on which the partial element is specified.
To ensure that these do not break decidability of type checking out of hand
these criteria must themselves be decidable. This puts some pressure on the
interval and face lattice, but syntactically it boils down to checking equality in
a free De Morgan algebra and inequality in a free distributive lattice, both of
which are decidable.

Finally, there was a promise of extensionality principles as theorems. An
extensionality principle is at its core simply a description of the identity type of
a certain type. More formally, we take extensionality principle for A to mean
an equality of type between the identity type of A and some other type4. As
mentioned earlier, CTT satisfies univalence, so in this theory we can obtain
extensionality principles from isomorphisms. The most straight-forward one is
perhaps function extensionality, the statement that an equality between func-
tions is an equality between the outputs of the functions at every possible input.
In extensional type theory this is derivable but in general it is not so for inten-
sional type theories. CTT validates function extensionality by way of a proof
that swaps the input order to a certain function.

The second important extensionality principle validated by CTT as a the-
orem is the univalence axiom. The proof of univalence is significantly more
complicated than the one line proof of function extensionality, but it neverthe-
less does not necessitate the addition of undecidable judgmental equalities. As
mentioned above, univalence is what enables us to derive extensionality prin-
ciples from, e.g., the type isomorphism indicated in the description function
extensionality above. In fact function extensionality can also be obtained di-
rectly from univalence, but the proof above is simpler and generalizes better to

4 In a different setting one might take extensionality principle to mean a principle for
inferring equality in a type. We make this stronger statement because we work in intensional
type theory which is proof relevant, or more specifically with a homotopical variant of type
theory where the (higher) identity types are themselves objects of interest. A slight weakening
that would be acceptable in this setting might be to require an equivalence of types instead,
but in a univalent context these are the same.
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modal types. In addition to this we obtain a slew of extensionality principles,
such as the one for Σ-types, coproducts, and many others, from univalence via
type equivalences.

Another important feature of CTT (or more generally any implementation
of HoTT) are the aforementioned HITs, which are covered in, e.g., chapter 6
of [54]. While inductive types will have constructor only for elements, HITs
have in addition constructors for the identity type as a built in quotienting
up to path. A simple example of the concept is the circle, an inductive type
with a single point and a freely added loop on that point. More generally we
might expect to be able to represent any finite (homotopy) colimit internally
with the syntax of HITs and we can as a special case construct quotients, which
have been challenging to represent internally in type theory. A large class of
modalities in type theory (although not the ones we will work with) can be
described with HITs as nullification of maps out of some indexing family [47]. A
particularly important example of such a modality is truncation, which nullifies
maps out of the sphere. The effect of this is to trivialize all higher paths. Types
with only trivial paths in dimension n and above are said to be of h-level n.
In particular 1-types are called h-sets and have no non-trivial paths. Apart
from this, HITs are a useful tool for representing free algebraic structure over a
type by freely adding both the operations and equalities as constructors. HITs
can be combined, and a particularly important such combination is the set
truncation of the free commutative monoid, i.e., the finite powerset functor. In
combination with recursion, the finite powerset functor can be used to encode
a type of finitely branching labelled transition systems. This structure is useful
for process theory, as we will discuss in more detail later.

1.1.7 Denotational semantics

Because model construction is a large part of both papers making up this thesis,
we discuss the payoff that one might hope to obtain from such work. Models are
useful in many respects but the two main ones are showing consistency of a given
type theory and gaining further insights about the theory via its semantics. At
a high level, denotational semantics is the process of ascribing mathematical
meaning to expressions in a programming language or logical theory [48]. More
concretely, this means that for some theory L we define a mathematical structure
M and an interpretation function J−K : Expr(L) M where Expr(L) is the
set of expressions in the theory L sometimes considered up to some form of
equivalence. If such a function enjoys soundness, the property that expressions
provable in L are true inM when we apply J−K to them, we call J−K a model
of L or say that L is a model of L

Models can be useful for many purposes, we highlight those particularly
interesting in the study of cubical modal type theory below. Firstly, it can be
used to show consistency of a theory. Let us consider in detail how to prove
dependent type theory consistent and what such a proof might buy us in terms
of formal verification. Consistency is the property that a theory cannot prove a
contradiction, and in particular for type theory it is the inability to derive the
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judgement 1 ⊢ t : 0 where 1 is the empty context and 0 is the empty type. One
can show that MLTT is consistent by constructing a model in the category of
sets. Here a term of the empty type would be interpreted as a map of sets from
the singleton set to the empty set, and no such map exists. Any proposition
can be proven in an inconsistent logic, so it has obvious value when we consider
type theory as a logic. In terms of formal verification, inconsistency only allows
one to retain the most basic guarantees, e.g., the fact that functions can never
be applied to input they are not defined on, but we lose all possibility of using
type theory as a logic for specifications.

In addition to the above, many other uses exists for denotational semantics.
The consistency discussion above is an important part of verifying that newly
added axioms lead to a sound theory, but this process is often a two-way street.
A recent high profile example is that of univalence. In around 2005, Voevodsky
produced a model of dependent type theory in Kan simplicial sets and observed
that this model satisfied the univalence axiom. The idea that one might be able
to produce models of intensional type theory with homotopically flavored iden-
tity types was present elsewhere [7], but the univalence axiom which crystalizes
this in the theory itself was extracted from a model. While the univalence axiom
indeed captures an important property of working with intensional type theory,
axioms do not generally have any computational meaning. This sparked a search
for models of univalence which deconstructs the axiom into more manageable
pieces than a monolithic property, resulting in the development of cubical type
theory.

Guarded recursion is also to some extent a result of extracting a theory
from a semantic construction. In [11] the topos of trees is shown to model
guarded recursion, and is then mined for insights into the theory by working
in its internal language. In particular it is used to establish the interaction
between ▷ and the propositional logic of type theory. The multiclocked variants
of guarded recursion include a clock synchronization substitution [12] which was
not included in the theory until a suitable model was found.

Another example of this is the recent advances in normalization by eval-
uation (NbE) in the form of synthetic Tait computability (STC) [1, 52]. The
method of STC starts with the observation that the internal language of a topos
obtained via Artin gluing admits a useful description in terms of the open and
close modalities [47]. One can then work in this language to obtain the NbE
result without an obligation to check naturality of the constructions involved, a
significant boon for the scalability of NbE. This construction has at this point
been used to obtain normalization for both MTT [22] and CTT [51], with the
MTT normalization proof obtained this way being significantly shorter than the
canonicity proof obtained with traditional methods.
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1.2 Contributions

1.2.1 Greatest HITs: Higher inductive types in coinductive definitions via
induction under clocks

The goal of the first paper is to define and prove sound an implementable
type theory expressive enough for reasoning about infinite structures both in
a guarded way and coinductively. As we have seen throughout the previous sec-
tions the former is achieved by cubical type theory, and the latter is achieved in
the variant of guarded recursion with multiple clocks. The contribution of the
first paper is the definition of Clocked Cubical Type Theory (CCTT), which is
a combination of the two theories, as well as the construction of a model of this
theory. The problems we face in the definition of this theory is how to retain the
good computational properties of cubical type theory and the operationalization
of axioms such as clock and tick irrelevance from clocked type theory [36] as well
as the extension of coinductive reasoning to include the expressivity of HITs. In
addition, the theory must support extensionality principles for the type formers
inherited from clocked type theory.

For CCTT to fulfill its stated purpose of being suitable for reasoning about
coinduction, we need the theory to have a supply of functors which commute
with clock quantification and clock irrelevant types. The reason for this was
discussed in section 1.1.3. We described an encoding of coinductive types for
reactive programming using guarded recursion. In the extensional case this
procedure is well understood and in §2 we extend this to a cubical setting.
The general formulation of the encoding result lets one produce final coalgebras
for functors F which commute with clock quantification, or, in other words, it
allows us to produce solutions to type equations X ≃ F (X) when the canonical
map F (∀κ.X)→ ∀κ. F (X) is an equivalence. We have already illustrated how
this works for the functor (−) × N in a type theory where the natural number
type N is clock irrelevant, but reactive programming is a broader subject than
stream operations. In particular, we can encode processes as finitely branching
labelled transition systems. To represent these in type theory we need the finite
powerset functor. This type former has traditionally been difficult to handle
because the construction includes quotients and it is handled in the cubical
setting using higher inductive types. For this particular encoding to work we
need the functor Pfin(− × A), where A is the type of labels, to commute with
clock quantification in CCTT.

This is achieved by adding a novel induction principle for HITs, induction
under clocks. This new induction principle allows one to structurally eliminate
out of ∀κ.H directly where H is a higher inductive type, and it is used to
show that many higher inductive type formers, including Pfin(−×A), commute
with clock quantification. More concretely, HITs support elimination principles
similar to those for inductive types allowing one to specify a map out of, e.g., the
propositional truncation of A by specifying it on in(a) and squash(x, y, i). These
definitions are subject to boundary constraints ensuring that the value of the
path constructor squash coheres with the recursively obtained value on x and y
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on the respective endpoints. Induction under clocks allows for this case analysis
under an abstracted clock, so that we can define a map ∀κ.∥A∥ by defining it
on λκ. in(a[κ]) and λκ. squash(x[κ], y[κ], i), with a boundary condition on the
second case as for the usual induction principle. Using induction under clocks
we define a map α as follows:

α : ∀κ.∥A∥ → ∥∀κ.A∥
α(λκ.in(a[κ])) = in(a)

α(λκ.squash(x[κ], y[κ], i)) = squash(α(x), α(y), i)

One can show that this map is inverse5 to the canonical map in the opposite
direction by separate applications of each of the induction principles available,
showing that propositional truncation commutes with clock quantification. As a
corollary we obtain the fact that clock irrelevant types are closed under proposi-
tional truncation, since for clock irrelevant A we have ∀κ.∥A∥ ≃ ∥∀κ.A∥ ≃ ∥A∥.
A similar line of argument is carried out in the paper for more examples, extend-
ing the pool of functors that commute with clock quantification by pushouts,
higher truncations, and the finite powerset functor. In addition we prove a
general theorem extending the closure of clock irrelevant types under higher
inductive types to all higher inductive types. This solves the stated problem
of obtaining a supply of functors and types which interact favorably with clock
quantification.

Now that we have provided a large class of functors commuting with clock
quantification and clock irrelevant types, we can leverage the encoding of coin-
ductive types to give a faithful, safe implementation of coinduction in type
theory. The coinductive types constructed via the encoding result presented in
the paper are conjectured to have an identity type coinciding with bisimilarity in
the spirit of [40], supported by a proof of this fact in the case of finitely branch-
ing labelled transition systems. In addition to this, and the usual trappings
of cubical type theory in the form of univalence and function extensionality,
CCTT supports two extensionality principles specific to clocked primitives. To
state the extensionality principle properly we must first explicate the ▷ opera-
tor: In this system the official syntax is ▷(α : κ).A, and we say that the tick
α on the clock κ is abstracted in the type A. We show in the paper that for
any x, y : ▷(α : κ).A we have an equivalence (and hence equality) of types
▷(α : κ).(x[α] =A[α] y[α]) ≃ x =▷(α:κ).A y. Furthermore, clock quantification
has an extensionality principle akin to function extensionality.

Obtaining functors which commute with clock quantification and clock ir-
relevant types via the principle of induction under clocks has the advantage
that it does not rule out an implementation of the theory. Clocked type theory
needs a second irrelevance priciple that we have only mentioned so far: tick
irrelevance. CCTT features an operationally motivated implementation of this
axiom which is again compatible with implementability. Had we assumed these
irrelevance principles as axioms, as is done in other version of the multiclocked

5 One could instead say quasi-inverse here, since it is only inverse up to a path.
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theory, no such implementation would be within reach. We conjecture that the
theory as given in the paper supports a decidable normalization procedure and
hence a decidable type checking algorithm. This conjecture is supported by the
normalization result for a core calculus of clocked type theory without identity
types [8].

The composition operation of cubical type theory is well-behaved in part
because it supports reductions to composition in constituent types. In CCTT
composition in ∀κ.A reduces to composition in A similarly to the reduction
given for Π-types, and composition in ▷κA supports a reduction to composition
in A under certain circumstances, with the reduction being extractible from
the construction in the model. That composition reduces in a sensible way is
another point for the implementability conjecture. The sum total of these parts
is a fully furnished type theory for programming with and reasoning about a
large class of coinductive types.

The theory is shown to be sound via the construction of a denotational model
in presheaves over the product of the cube category used for modelling cubical
type theory and the category of time objects used to model guarded recursion
with multiple clocks. The novelties of the model are the description of induction
under clocks and the composition structure for ▷κA. The higher inductive
types included in the theory are given by a schema adapted from [15], with the
semantics being a variant of what is described in [20] adapted to this extended
presheaf category. Applying a result from [13] characterizing the semantics of
clock quantification as a certain limit we then show that induction under clocks
is validated in the model. The composition structure for ▷κA is obtained by
making requirements on the left adjoint to ▷κ, in particular that it preserves
the interval and other cubical structure.

1.2.2 Unifying modal and multimodal type theory

In section 1.1.4 we pointed out the utility in having a single unified approach
to modal type theory in the form of the parameterized MTT. As both an in-
stance and extension of this program, we present in the second paper a cubical
variant of MTT, Cubical Multimodal Type Theory (MTT□). The motivation
for defining this type theory is much the same as for the first paper. There is
a tension between the expressivity of the theory as mediated by extensionality
principles and the implementability. Cubical type theory is an implementable
theory with a good supply of extensionality principles derived from either uni-
valence or directly. Thus one might hope that a combination of multimodal
type theory and cubical type theory offers an implementable type theory with
both the well-behaved equality types of cubical type theory and the flexibility of
modal constructions afforded by multimodal type theory. This should be sup-
ported by, in particular, a reduction rule for composition in modal types and an
extensionality principle for equality in modal types. While MTT is flexible, it
does not cover all axioms of, e.g., guarded recursion, where löb has to be added
separately. Therefore we need a method for constructing model of instantiations
of MTT□ for it to be a useful framework. Both of these problems are resolved
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in the paper. To be specific, recall that MTT consists of local copies of MLTT.
These will be swapped for local copies of CTT in MTT□. We can derive a modal
extensionality principle in the same vein as the one described the first paper,
this time for any modal type. In addition we can type a computation rule for
composition in modal types.

The primary challenge in the design of MTT□ is in specifying how the cu-
bical primitives in one mode should interact with those in other modes. The
machinery that makes the theory work is a collection of exchange operations
which mediate the interaction of the modalities with the cubical primitives.
The guiding principle is that the cubical judgments should not be affected by
the modalities. This principle is reified as two operations which each induce
a substitution, as well as inverses to these induced substitutions. These op-
erations and substitutions are given in fig. 3 of chapter 3. In the notation
of section 1.1.4, the operation allow one to access cubical data available in con-
text Γ when working in L(Γ), i.e., interval and face lattice terms.

To describe the contributions in detail we need to recall some notation from
CTT and MTT. In cubical type theory we have the interval primitive, which
is implemented with a context extension rule and a term construction. The
interval terms in context Γ are generated according to the following grammar:

(Abstract interval) r, s : I ::= i | 0 | 1 | 1− r | r ∨ s | r ∧ s
The terms constructed from this grammar are subject to the De Morgan

algebra equations. From MTT we need the context judgments and the modal
action on context. Contexts in MTT are annotated by a mode m : M, writ-
ten as Γ cx@m, and we can move a context from one mode to another via
the morphisms of M. Concretely, from µ : n → m and Γ cx@m we can ob-
tain Γ, {µ} cx@n. This context operation is required to be strictly 2-categorical,
meaning, for instance, that we have the following equality of contexts: Γ.{µ ◦ ν} =
Γ.{µ}.{ν} cx@m.

In MTT□ we extend the interval grammar with the an operation −µ, given
by the left rule below. From this rule we can construct a substitution Γ, i :
Im, {µ} ⊢ σµ : Γ, {µ}, j : In @m defined by extending the weakening substitu-
tion under {µ} by iµ. On the right in the below rules we have the introduction
for a substitution σµ, which we require to be inverse to σ. Both the operation
and the defined substitution are required to satisfy equalities making them lax
natural and strictly 2-functorial in µ respectively, just as the action on con-
texts is strictly 2-functorial. This is necessary to avoid ambiguity in exchange
operations, which would otherwise induce infinitely many a priori different en-
doisomorphisms on any context via exchanging along the identity any number
of times. The operation is furthermore required to commute with De Morgan
algebra connectives.

Γ ⊢ r : Im @m

Γ, {µ} ⊢ rµ : In @n Γ, {µ}, i : In ⊢ σµ : Γ, j : Im, {µ}@n

The face lattice restrictions on contexts are similarly required to commute with
{µ}, which is split into an operation as on the left above for the face lattice and
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a derivable substitution to which we add an inverse, with both added primitives
required to cohere with the 2-categorical structure of M as appropriate. To-
gether this data allows us to achieve our stated goals of obtaining a reduction
rule for modal composition and an extensionality principle for modal types. We
type a reduction rule for composition in ⟨µ | A⟩ to composition in A provided
that the input system to the composition is obtained by applying modµ(−) in
section 3.2 of the second paper. Additionally we derive a modal extensionality
principle. As for previous derivations of such extensionality principles we use
the explicit representation of equality given by the path type in this derivation.

Apart from giving a workable setup for the combination of modal and cubical
type theory, the primary contribution is a model construction, essentially ex-
tending the theory of Orton-Pitts style models to multimodal type theory. This
is shown to produce a large class of presheaf models covering many important
examples out of the box.

The syntax of MTT□ is given as a generalized algebraic theory, meaning in
particular that it comes equipped with a notion of model. This model definition
can be neatly packaged in the language of 2-categories, giving a sensible notion
of categorical model for MTT□. Just as directly modelling other type theories,
producing models according to this specification is mostly intractable. Our
contribution on the semantic side is a method for constructing models from
categorical data. Just as MTT□ can be thought of as a collection of copies
of CTT connected by modalities, so too will the models consist of models of
CTT at each mode connected by dependent adjunctions. We define cubical
cosmoi, fusing two concepts from earlier work. A cubical cosmos over M is a
pseudofunctor F :M → Cat such that each category F (m) can be given the
structure of a model of CTT and each F (µ) has a left adjoint which interacts
appropriately with the cubical structure. More concretely, each F (m) is an
elementary topos with a tiny interval and a face lattice subject to certain axioms
as in [44, 35] which is sufficient for it to furnish a local model of CTT. In
addition, the value of F on morphisms must be functors with lex left adjoints
which preserve the interval and face lattices up to chosen isomorphisms, with
the data of these isomorphisms assembling into a pseudonatural transformation.

Any cubical cosmos induces a model of MTT□, which is the main semantical
result of the second paper. The proof of this theorem combines a strictification
result to obtain a model of MTT, the LOPS-style approach to model the cubical
components of the theory, and direct calculations to model the exchange oper-
ations. To produce examples of cosmoi, it is shown that given a strict 2-functor
f :M→ Cat we obtain a cubical cosmos in the network of presheaf categories
PSh(f(m)×□), where □ is the De Morgan cube category, connected by either
precomposition by f(µ) × id or right Kan extension of these functors. In par-
ticular this is used to produce a model of a variant of guarded recursion with
a single clock and a modality which serves roughly the same purpose as clock
quantification in the multiclocked setting.

The result is a framework for defining modal type theories with a strong
justification in a model construction. This framework encapsulates both the
flexibility of modal reasoning present in MTT and the computationally well-
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behaved identity type of CTT. We further conjecture that the normalization
results based on STC for MTT [22] and CTT [51] can be combined so as to show
normalization for MTT□.

1.3 Related work

This section will cover the work that we built directly on in the papers that did
not find a home in the background section as well as some work that purports
to solve the same or similar problems.

Related variants of guarded recursion

The variant of guarded recursion presented in the first paper is a successor to
two other variants of guarded recursion, namely ticked cubical type theory [40]
and clocked type theory [8, 36]. These theories are the offshoot from guarded
recursion that uses named ticks in the later modality, ticks can then be ab-
stracted in the context and an associated elimination rule for ▷κ given by a
controlled form of function application. Ticked cubical type theory is a version
of this theory with a single clock in a cubical background theory with clocked
type theory being the version with multiple clocks.

On their own, each of these theories enjoy some, but not all, of the desirable
properties of clocked cubical type theory. Clocked type theory supports an
encoding result similar to the one presented in the first paper, allowing for
programming with and reasoning about coinduction. It does not, however,
support higher inductive types, and as such the encoding of finitely labelled
transition systems is not present in that theory. The presentation of clocked type
theory in [8] contained no identity types, but [36] updated the theory with an
extensional identity type adding some much needed expressivity. Unfortunately
the extensional identity type is not suited for implementation and reasoning
about equality in modal types. Ticked cubical type theory on the other hand
exists in a cubical setting, meaning that it does not have these defects. Here
the problem is in the expressivity of the recursion scheme. Because the theory
does not have multiple clocks and clock quantification it is limited to guarded
types that do not support true coinduction principles.

Another variant of guarded recursion related to this approach is the one
presented in the last section of the second paper. Here we operate with a
single later modality, but enhance the theory with a modality □ which behaves
similarly to clock quantification [17]. The crucial bit is the counterpoint to the
force primitive, an isomorphism □ ▷ A ≃ □A, which allows for an encoding
result in the style of clocked type theory. In terms of expressivity, the cubical
variant of this theory presented in the second paper is similar to clocked cubical
type theory; it lacks only the ability to represent nested coinductive types which
rarely appear in practice. While this theory might seem simpler to work with
on its face, the fact that clock quantification is represented as a function space
makes it simple to work with in type theory. In the context of cubical versions
of the theory, this means that clock quantification supported a composition
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structure and an extensionality principle, both obtained by the same arguments
as for Π-types and thus well understood from the beginning. There is no clearly
better theory between the two; one cannot present clocked type theory as an
instance of MTT without losing the simple description of clock quantification
and the □modality cannot be cast in terms of a function space to our knowledge.

Recall that the arguments for the desirability of coinduction rests on two dif-
ferent applications; firstly the definability of relations such as weak bisimilarity
and secondly on the non-causality of certain functions known to be productive,
e.g., the function returning every other element of some input stream. One
principled solution to the latter problem has been proposed in the form of time-
warps [24]. While ▷ is conceptualized as pushing data one time-step into the
future, time-warps allow for the representation of more general time operations.
One instance of time-warps allow for the definition that steps twice as fast
and applying this in the case of streams we can define the function described
above via this warp: the n’th output of the stream is allowed to depend on the
2n’th input! This allows for the typing of a wide array of functions not typable
without appealing to general coinduction in the systems described above. This
approach is able to keep track of not just whether some definition is produc-
tive, but also exactly how time flows in some defined stream, i.e., how it is
productive. Time-warps are a promising alternative guarded recursive variant
for further research.

Sized types

Sized types is a different paradigm for what amounts to abstract step indexing,
and has been deployed to ensure termination of structural recursion over induc-
tive types and productivity of coinductive programs [27]. The core idea is to
attach to each term of a type a size; for inductive types this size is a natural
number bounding from above the depth of the term. For coinductive types such
as streams, sizes can be used to track whether functions are unfolding or folding
a stream, promising a theory in which recursive depth is tracked systematically.

While sized types purports to solve similar problems to those solved by
guarded recursion, the theoretical foundations are quite dissimilar. Both ap-
proaches are integrated with dependent types, but the study of their seman-
tics have taken different approaches. As we have seen throughout this thesis,
guarded recursion is well-understood through the lens of denotational seman-
tics; sized types have primarily been investigated operationally. Dependent
sized types are type safe [3] and enjoy normalization via an NbE algorithm [4].
Furthermore they have been implemented in Agda [2], and this implementation
has been used to encode coinductive types. It is formally connected to guarded
recursion by an encoding of guarded recursion using sized types in Agda [55].
Unfortunately the current implementation of sized types is inconsistent because
of its use of the infinite size6. It also does not have a denotational semantics to
our knowledge.

6 This is due to an issue described at https://github.com/agda/agda/issues/2820
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Modalities in HoTT

A different conceptualization of modalities in type theory is that of certain
idempotent monads as developed in [47]. This work is relevant to the papers
both because they concern modalities and to the first in particular because
it offers a potential solution to the problem of clock irrelevant universes. The
starting point for that investigation is to notice that these modalities admit four
equivalent descriptions, each suitable for different proofs. In particular, a class of
idempotent monadic modalities are characterized which have the property that
the type Σ(A : U).isModal⃝(A) is itself modal with respect to the modality ⃝.
The modalities they consider include those given by nullification of an object,
and under certain circumstances such modalities allow for internal definition of
modal universes of modal types.

Clock irrelevance can be thought of as nullification of the clock object, al-
though it is not an object in the theory, the model describes it as one. Thus
one might hope that the above universe construction applies in this case. Un-
fortunately it does not satisfy the assumptions for this construction.

Cohesive type theory

Cohesive type theory is related to the present work for two reasons: firstly it is
representable as an instance of MTT with the mode theory spelled out in [14],
and secondly it is another instance of a modal type theory in which a modal
universe of modal types is constructed. It is helpful to keep the following picture
in mind, adapted from [49]:

Spaces

Sets

p∗⊣p! ⊣ p∗ ⊣ p!

In terms of the first point, cohesive type theory has been applied as a tool
for connecting theories with different axioms. In the above picture, we think
of spaces as having more structure and thus fewer admissible rules. There are
three recent examples of the mode of application for cohesive type theory. It
was conceived in the connection of a theory of topological types with a theory
of ”sets” to allow for the application of classical axioms such as the law of
excluded middle in a controlled fashion [49]. This allows one to connect results
from synthetic homotopy theory as derived in HoTT to the theory of topology
formalizable in HoTT, with the concrete application given by Shulman in [49]
the paper being a proof of Brouwer’s fixpoint theorem. While homotopy theory
has applications apart from those in topology, this connection is an important
addition to the topologists toolbox in HoTT.

Another application is that given by Kavvos in [31]. Here a flavor of cohesion
is set up to describe information flow, with the ”spaces” in the above picture
being sets with an equivalence relation, and the ”sets” being actual sets. The
total equivalence relation on a set amounts to a secret set, and the minimal
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relation amounts to a public set. Kavvos uses an adequate model of this to show
that the resulting calculus for information flow control satisfies the critical non-
interference property, meaning that public programs cannot distinguish elements
of secret sets. The theory as it is extensional, meaning that it is unsuitable for
implementation and the results in the second paper is a promising avenue for
implementation.

A final example is that of internal parametricity in cubical type theory [16].
Here a type theory with primitives for using parametricity to show ”free the-
orems” [57] and the by now familiar cubical primitives is defined and given a
model. In this theory many problematic proofs become manageable, with the
most striking example being their treatment of the smash product of types which
is a particularly complicated structure in theories with higher equalities. The
idea is that using these primitives will let us reason about the smash product
in cubical type theory, but a mathematician interested in this smash product
might reasonably point out that they are interested in the cubical smash prod-
uct, not the smash product in cubical type theory with extra primitives! Cavallo
endeavors to solve this using cohesion in his thesis [14]. In particular he defines
a variant of cohesive type theory where the spaces are parametric types and the
sets are regular cubical types. It is shown that the theorems obtained in the
parametric mode can be carried over to the ordinary cubical mode, thus com-
pleting the program of giving a scalable approach to working with structures
that incur many coherence obligations, e.g., the smash product. The model pro-
duced for this cohesive theory has some of the same challenges as those present
in the second paper, but the solution relies on the specifics of the situation and
thus does not scale to other settings where one might want to connect theories
with cohesion.

Finally, there is a possibility that one can construct clock irrelevant universes
of clock irrelevant types via the methods used to obtain a discrete universe of
discrete types in [49]. In cohesive type theory, discrete types can be conceptual-
ized as those types lacking certain structure. The setup that might be helpful for
producing clock irrelevant universes would have strictly clock irrelevant types
for sets and regular types for spaces. Semantically there does exist a model of
such a cohesive type theory, but it is not quite enough. The result we have
from [49] does not produce proper universes, and the gap has yet to be closed
in the proposed model for cohesive clock irrelevance.

1.4 Statement of contributions

• M. B. Kristensen, R. E. Møgelberg, A. Vezzosi, ”Greatest HITs: Higher in-
ductive types in coinductive definitions via induction under clocks”. Sub-
mitted for publication at LICS 2022.

I participated in the design of the theory defined in the paper, in particular
taking lead on the development and application of induction under clocks.
I contributed most of the denotational model given in the appendix to
the paper. I participated in writing all parts of the paper and wrote the
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section on induction under clocks and the section on semantics.

• F. L. Aagaard, M. B. Kristensen, D. Gratzer, L. Birkedal, ”Unifying modal
and multimodal type theory”. Submitted for publication at LMCS.

I participated in the design of the theory and the development of the
semantics. In particular I contributed the initial definitions and proofs
that lead to the notion of cubical cosmoi as models of MTT□, as well
as the derivation of the composition structure on modal types and the
reduction rule this operation satisfies. I participated in writing the paper,
taking lead on the section on MTT and CTT, with the sections on MTT□
and its semantics following the logical progression laid out in the initial
notes written be me.
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Abstract
We present Clocked Cubical Type Theory, the first type the-
ory combining multi-clocked guarded recursion with the
features of Cubical Type Theory. Guarded recursion is an
abstract form of step-indexing, which can be used for con-
struction of advanced programming language models. In its
multi-clocked version, it can also be used for coinductive
programming and reasoning, encoding productivity in types.
Combining this with Higher Inductive Types (HITs) this
extends to coinductive types that are traditionally hard to
represent in type theory, such as the type of finitely branch-
ing labelled transition systems.
Among our technical contributions is a new principle of

induction under clocks, providing computational contents
to one of the main axioms required for encoding coinduc-
tive types. This principle is verified using a denotational
semantics in a presheaf model.
ACM Reference Format:
Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and An-
drea Vezzosi. 2022. Greatest HITs: Higher inductive types in coin-
ductive definitions via induction under clocks. In Proceedings of
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1 Introduction
Homotopy type theory [49] is the extension of Martin-Löf
type theory [36] with the univalence axiom and higher in-
ductive types. It can be seen as a foundation for mathematics,
allowing for synthetic approaches to mathematics, as exem-
plified by synthetic homotopy theory, as well as more direct
formalisations of mathematics, closer to the traditional set-
theory based developments. Higher Inductive Types (HITs)
play a key role in both approaches: In synthetic homotopy
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theory these are used to described spaces such as the spheres
and the torus, and in the more direct formalisations, HITs
express free structures and quotients, both of which have
traditionally been hard to represent and use in type theory.
The kind of mathematics that is particularly important

to the LICS community often involves reasoning about re-
cursion, and in particular programming with and reasoning
about coinductive types. Doing this in type theory has his-
torically been difficult for a number of reasons. One is that
the definitions of the functors of interest in coalgebra often
involve constructions such as finite or countable powerset
(for modelling non-determinism), or quotients. All of these
are known to be representable as HITs [15, 26, 49]. Another
reason is that programming and reasoning about coinductive
types involves productivity checking, which in most proof
assistants is implemented as non-modular syntactic checks
that can lead to considerable overhead for programmers [24].
A third reason is that bisimilarity, which is the natural notion
of identity for coinductive types, rarely (at least provably)
coincides with the built-in identity types of type theory, and
so proofs cannot be transported along bisimilarity proofs.

Multi-clocked guarded recursion [6] allows for the produc-
tivity requirement for coinductive definitions to be encoded
in types. The key ingredient in this is a modal operator ⊲
(pronounced ‘later’) indexed by clocks 𝜅, encoding a no-
tion of time-steps in types. Guarded recursive types such as
Str𝜅 ≃ N× ⊲𝜅Str𝜅 are recursive types in which the recursion
variable occurs only under a ⊲. In the case of Str𝜅 the type
equivalence above states that the head of a guarded stream
is available now, but the tail only after a time step on clock 𝜅 .
Guarded streams can be defined using a fixed point operator
fix𝜅 of type (⊲𝜅𝐴 → 𝐴) → 𝐴. In the case of Str𝜅 the delay in
the domain of the input precisely captures the productivity
requirement for programming with streams. Guarded recur-
sive types can themselves be encoded as fixed points on a
universe. Using quantification over clocks, the coinductive
type of streams can be encoded as Str def= ∀𝜅.Str𝜅 .
Guarded recursion [42] can also be used as an abstract

approach to step-indexing techniques [4, 5]. In particular,
the type variables in guarded recursive types can also ap-
pear in negative positions, and so can be used to provide
models of untyped lambda calculus or solve the advanced
type equations needed for modelling higher-order store [10]
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and advanced notions separation logic [33]. A type theory
combining guarded recursion with homotopy type theory
will therefore provide a powerful framework, not just for
coinductive reasoning but also for reasoning about recursion
and advanced programming language features beyond the
reach of traditional domain theory.

1.1 Clocked Cubical Type Theory
This paper presents Clocked Cubical Type Theory (CCTT),
the first type theory to combine all the above mentioned
features: Multi-clocked guarded recursion, HITs and univa-
lence. Rather than basing this on the original formulation
of homotopy type theory we build on Cubical Type Theory
(CTT) [20], a variant of HoTT based on the cubical model of
type theory, and implemented in the Cubical Agda proof as-
sistant [53]. One reason for this choice is that the operational
properties of CTT as well as the concrete implementation
give hope for an implementation of our type theory. In fact
we have already extended the implementation of Guarded
Cubical Agda [52] to support most of the new constructions
of CCTT. Another is that the path types of CTT make for
a simple implementation of the extensionality principle for
the ⊲𝜅 modality [9].
CCTT extends CTT with the constructions of Clocked

Type Theory (CloTT) [7], a type theory for multi-clocked
guarded recursion. CloTT uses a Fitch-style approach to pro-
gramming with the ⊲ modality. This means that elements of
modal type are introduced by abstracting over tick variables
𝛼 : 𝜅 and eliminated by application to ticks. One benefit
of this is that let-expressions are avoided, and these do not
interact well with dependent types in general. For exam-
ple, one can define a dependently typed generalisation of
applicative action [37] operator of type

⊲𝜅 (∏ (𝑥 : 𝐴) .𝐵) → ∏ (𝑦 : ⊲𝜅𝐴) .⊲ (𝛼 :𝜅).𝐵 [𝑦 [𝛼]/𝑥] (1)

In this term the tick variable 𝛼 should be thought of as evi-
dence that time has passed, which is used in subterms like
𝑦 [𝛼] to access the element of type 𝐴 delivered by 𝑦 : ⊲𝜅𝐴
in the next time step. CloTT has a single tick constant ⋄
that can be used for a controlled elimination of ⊲. Bahr. et al.
[7] define a strongly normalising operational semantics for
CloTT, in which ⋄ unfolds fixed point operations. Since tick
variables 𝛼 can be substituted by ⋄, their identity is crucial
for normalisation. For reasoning in the type theory, however,
it is often necessary that 𝑦 [𝛼] does not depend on 𝛼 up to
path equality. This is referred to as the tick irrelevance axiom.

When adding such axioms to a univalent type theory one
should be take care to avoid introducing extra structure that
one will eventually need to reason about. Ideally, an axiom
like tick irrelevance should state that the type of ticks is
propositional, i.e., that any two elements can be identified,
any two paths between elements can be identified, and so on
for higher dimensions. In CCTT, there appears to be no such
way of formulating the axiom, because ticks do not form a

type. This paper shows how to obtain tick irrelevance by
enriching the language of ticks with paths tirr𝑢 𝑣 between
any pair of ticks 𝑢, 𝑣 . This has the additional benefit that it
allows for rules giving computational content to the axiom.

1.2 Induction under clocks
The encoding of coinductive streams from guarded streams
mentioned above generalises to an encoding of coinductive
solutions to type equations of the form 𝑋 ≃ 𝐹 (𝑋 ) for all
functors 𝐹 commuting with clock quantification in the sense
that the canonical map

𝐹 (∀𝜅.𝑋 ) → ∀𝜅.𝐹 (𝑋 ) (2)

is an equivalence of types. Note that this is a semantic condi-
tion, rather than themore standard grammars for coinductive
types. For this to be useful, one must have a large supply
of such functors, including functors formed using inductive
and higher inductive types. This property has previously
been obtained via axioms [6]. Here we formulate a principle
of induction under clocks, which gives computational content
to these axioms also in the case of higher inductive types.
Consider for example the finite powerset Pf which can

be defined as a HIT given by constructors for singletons,
union, equalities stating associativity, commutativity and
idempotency of union as well as an axiom forcing Pf (𝑋 )
to be a hset [26]. In this case induction under clocks states
that to inhabit a family over an element of type ∀𝜅.Pf (𝑋 )
it suffices to inductively describe the cases for elements of
the form 𝜆𝜅.con𝑖 (𝑝) for each constructor con𝑖 for Pf , i.e.,
for 𝜆𝜅.{𝑎}, 𝜆𝜅.𝑥 [𝜅] ∪ 𝑦 [𝜅] and for equality constructors
such as 𝜆𝜅.idem(𝑥 [𝜅], 𝑟 ), where idem implements idempo-
tency of union. In these cases, 𝑥,𝑦 are assumed to be of type
∀𝜅.Pf (𝑋 ). Using this, one can construct the map an inverse
to (2) for 𝐹 = Pf , and also prove that both compositions
are identities. As a consequence, the coinductive solution to
LTS ≃ Pf (𝐴×LTS) can be encoded as LTS def

= ∀𝜅.LTS𝜅 where
LTS𝜅 ≃ Pf (𝐴 × ⊲𝜅LTS𝜅) is a guarded recursive type. LTS is
the type of 𝐴-labelled finitely branching transition systems.
We moreover prove that path equality for this type coincides
with bisimilarity.

The results for LTS mentioned above hold for all types of
labels𝐴 that are clock-irrelevant, meaning that the map𝐴 →
∀𝜅.𝐴 is an equivalence for 𝜅 fresh. In previous type theories
for multi-clocked guarded recursion clock-irrelevance of all
types has been taken as an axiom. Most types are clock-
irrelevant, but ensuring this for universes require special
care both syntactically and semantically [12]. In this paper
we opt for a simpler solution, taking clock-irrelevance to
be a side condition to the correctness of the encoding of
coinductive types. Using the principle of induction under
clocks we show that HITs constructed using clock-irrelevant
types are themselves clock-irrelevant, an important step
towards reintroducing clock irrelevance as an axiom.
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1.3 Denotational semantics
Our type theory is justified by a denotational semantics in
the form of a presheaf model. This model combines previous
models of CTT [20, 43] and CloTT [35]. A key challenge
for the construction of this model is the definition of a com-
position structure on the operation modelling ⊲. We give a
general theorem for defining composition structures for de-
pendent right adjoints [19] which can be used to model other
type theories combining Fitch-style modal operators [16]
with Cubical Type Theory.

Overview of paper. The paper is organised as follows.
We start by recalling Cubical Type Theory in section 2, and
section 3 extends this to CCTT. The encoding of coinduc-
tive types using guarded recursion is recalled in section 4
which also details the example of labelled transition systems.
The syntax and semantics for HITs in CCTT is presented in
section 5, which also states the principle of induction under
clocks. The denotational semantics of Clocked Cubical Type
Theory is sketched in section 6. Finally, we discuss related
work in section 7, and conclude and discuss future work in
section 8. This submission is accompanied by an appendix
of omitted proofs for reviewers.

2 Cubical Type Theory
Cubical Type Theory [20] is an extension of Martin-Löf type
theory which gives a computational interpretation to exten-
sionality principles like function extensionality and univa-
lence. It does so by internalizing the notion from Homotopy
Type Theory that equalities are paths, by explicitly repre-
senting them as maps from an interval object. The interval,
I, is not a type but contexts can contain 𝑖 : I assumptions
and there is a judgement, Γ ⊢ 𝑟 : I which specifies that 𝑟 is
built according to this grammar

𝑟, 𝑠 ::= 0 | 1 | 𝑖 | 1 − 𝑟 | 𝑟 ∧ 𝑠 | 𝑟 ∨ 𝑠
where 𝑖 is taken from the assumptions in Γ. Equality of two
interval elements, Γ ⊢ 𝑟 ≡ 𝑠 : I corresponds to the laws of
De Morgan algebras. A good intuition is to think of I as the
real interval [0, 1] with 𝑟 ∧ 𝑠 and 𝑟 ∨ 𝑠 given by minimum
and maximum operations.

Given 𝑥,𝑦 : 𝐴, we write Path𝐴 (𝑥,𝑦) for the type of paths
between 𝑥 and 𝑦, which correspond to maps from I into 𝐴
which are equal to 𝑥 or 𝑦 when applied to the endpoints 0, 1
of the interval I.

Γ, 𝑖 : I ⊢ 𝑡 : 𝐴
Γ ⊢ 𝜆𝑖. 𝑡 : Path𝐴 (𝑡 [0/𝑖], 𝑡 [1/𝑖])

Γ ⊢ 𝑝 : Path𝐴 (𝑎0, 𝑎1) Γ ⊢ 𝑟 : I
Γ ⊢ 𝑝 𝑟 : 𝐴

We sometimes write =𝐴 or simply = as infix notation for path
equality, and use ≡ for judgemental equality. Path types sup-
port the 𝛽 and 𝜂 equalities familiar from function types, but

we also have that a path applied to 0 or 1 reduces according
to the endpoints specified in its type.
(𝜆𝑖. 𝑡) 𝑟 ≡ 𝑡 [𝑟/𝑖] 𝑝 ≡ (𝜆𝑖. 𝑝 𝑖) 𝑝 0 ≡ 𝑎0 𝑝 1 ≡ 𝑎1
The path witnessing reflexivity is defined as refl𝑥 def

= 𝜆𝑖. 𝑥 :
Path𝐴 (𝑥, 𝑥), given any 𝑥 : 𝐴. It is also straightforward to
provide a proof of function extensionality, as it is just a
matter of reordering arguments:

Γ ⊢ 𝑝 : Π(𝑥 : 𝐴). Path𝐵 (𝑓 𝑥, 𝑔 𝑥)
Γ ⊢ 𝜆𝑖. 𝜆𝑥 . 𝑝 𝑥 𝑖 : PathΠ (𝑥 :𝐴) .𝐵 (𝑓 , 𝑔)

Other constructions like transitivity, or more generally trans-
port along path, require a further primitive operation called
composition, which we now recall.

Define first the face lattice F, as the free distributive lattice
with generators (𝑖 = 0) and (𝑖 = 1), and satisfying the
equality (𝑖 = 0) ∧ (𝑖 = 1) = 0F. Explicitly, elements Γ ⊢ 𝜑 : F
are given by the following grammar, where 𝑖 ranges over the
interval variables from Γ:

𝜑,𝜓 ::= 0F | 1F | (𝑖 = 0) | (𝑖 = 1) | 𝜑 ∧𝜓 | 𝜑 ∨𝜓
Given Γ ⊢ 𝜑 : F we can form the restricted context Γ, 𝜑 .
Types and terms in context Γ, 𝜑 are called partial, matching
the intuition that they are only defined for elements of Γ
that satisfy the constraints specified by 𝜑 . For example while
a type 𝑖 : I ⊢ 𝐴 type corresponds to a whole line, a type
𝑖 : I, (𝑖 = 0) ∨ (𝑖 = 1) ⊢ 𝐵 type is merely two disconnected
points. Given a partial element Γ, 𝜑 ⊢ 𝑢 : 𝐴 we write Γ ⊢
𝑡 : 𝐴[𝜑 ↦→ 𝑢] to mean the conjunction of Γ ⊢ 𝑡 : 𝐴 and
Γ, 𝜑 ⊢ 𝑡 ≡ 𝑢 : 𝐴.
Composition is given by the following typing rule:

Γ ⊢ 𝜑 : F Γ, 𝑖 : I ⊢ 𝐴 type
Γ, 𝜑, 𝑖 : I ⊢ 𝑢 : 𝐴 Γ ⊢ 𝑢0 : 𝐴[0/𝑖] [𝜑 ↦→ 𝑢 [0/𝑖]]
Γ ⊢ comp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0 : 𝐴[1/𝑖] [𝜑 ↦→ 𝑢 [1/𝑖]]

the inputs 𝑢 and 𝑢0 represent the sides and the base of an
open box, while composition gives us the lid, i.e. the side
opposite to the base. The behaviour of composition is spec-
ified by 𝑢 whenever 𝜑 is satified, and otherwise depends
on the type 𝐴, consequently when we introduce new type
formers we will also give a corresponding equation for comp.
As an example we can prove transitivity for paths with the
following term:

Γ ⊢ 𝑝 : Path𝐴 (𝑥,𝑦) Γ ⊢ 𝑞 : Path𝐴 (𝑦, 𝑧)
Γ ⊢ 𝜆𝑖. comp𝑗 [𝑖 = 0 ↦→ 𝑥, 𝑖 = 1 ↦→ 𝑞 𝑗] (𝑝 𝑖) : Path𝐴 (𝑥, 𝑧)

The standalone syntax for partial elements is as a list of faces
and terms [𝜑1 𝑢1, . . . , 𝜑𝑛 𝑢𝑛], but we will write [∨𝑖𝜑1 ↦→
[𝜑1 𝑢1, . . . , 𝜑𝑛 𝑢𝑛]] as [𝜑1 ↦→ 𝑢1, . . . , 𝜑𝑛 ↦→ 𝑢𝑛]. We refer to
Cohen et al. [20] for more details on partial elements, compo-
sition, and the glueing construction. The latter is what allows
to derive the univalence principle as a theorem, by turning
a partial equivalence into a total one. Writing 𝐴 ≃ 𝐵 for the
type stating that 𝐴 and 𝐵 are equivalent [49], univalence
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states that the canonical map of type 𝐴 =U 𝐵 → 𝐴 ≃ 𝐵
is itself an equivalence for any types 𝐴, 𝐵 : U. We will use
univalence in the rest of the paper, but we will not need to
refer to a specific implementation, so we omit the details in
this brief overview.
From Homotopy Type Theory [49] we also recall the no-

tion of homotopy proposition which are types for which any
two elements are path equal, and homotopy set which are
types whose path type is a proposition. Given any type 𝐴 its
propositional truncation ∥𝐴∥0 is the least proposition that
admits a map from𝐴. It can be defined as an Higher Inductive
Type (HIT), which are inductive types defined by providing
generators for both the type itself and its path equality. An-
other example of a HIT is the finite powerset [26] of a type
𝐴, which has generators for the empty set ∅, singletons {−},
union ∪, and equations stating that properties like associativ-
ity and commutativity of ∪, and finally constructors forcing
the powerset to be a (homotopy) set. We will discuss HITs
in more detail in section 5.

3 Clocked Cubical Type Theory
CCTT extends CTT with the constructions of CloTT [7, 35],
a type theory with Nakano style guarded recursion, multiple
clocks and ticks. This means that the delay type operator
is associated with clocks: ⊲𝜅𝐴 is the type of data of type 𝐴
which is available in the next time step on clock 𝜅 . There are
no operations on clocks, they can only be assumed by placing
assumptions such as 𝜅 : clock in the context, and abstracted
to form elements of type ∀𝜅.𝐴. The status of clock is similar
to I in the sense that it is not a type, and so, e.g., clock →
clock is not a wellformed type. In some examples below
it is convenient to assume a single clock constant 𝜅0, and
this can be achieved by a precompilation adding this to the
context. Similarly to function types, path equality in ∀𝜅.𝐴
is equivalent to pointwise equality, and clock quantification
preserves truncation levels.
Ticks are evidence that time has passed on a given clock.

Tick assumptions in a context separate a judgement such as
Γ, 𝛼 : 𝜅, Γ′ ⊢ 𝑡 : 𝐴 into a part (Γ) of assumptions arriving
before the time tick 𝛼 on the clock 𝜅 and the rest of the
judgement that happens after. The introduction rule for ⊲ (𝛼 :
𝜅).𝐴 in Figure 1 can therefore be read as stating that if 𝑡
has type 𝐴 one time step after the assumptions in Γ, then
𝜆(𝛼 :𝜅).𝑡 is delayed data of type𝐴. Because terms can appear
in types, 𝛼 can appear in𝐴, and must therefore be mentioned
in the type of 𝜆(𝛼 :𝜅).𝑡 . In many cases, however, it does not,
and we will then write simply ⊲𝜅𝐴 for ⊲ (𝛼 :𝜅).𝐴.

Elimination for ⊲ (𝛼 :𝜅).𝐴 is by application to ticks. There
are two forms of ticks: simple ticks and forcing ticks. The
judgement for simple ticks Γ ⊢ 𝑢 : 𝜅 { Γ′ states that 𝑢
is a tick on the clock 𝜅 in context Γ with residual context
Γ′. The residual context consists of the assumptions that
were available before the tick 𝑢. In the case of a tick variable

𝛼 , these are the assumptions to the left of 𝛼 as well as the
timeless assumptions to the right of 𝛼 . Timeless assumptions
are interval and clock assumptions (𝑖 : I and𝜅 : clock) as well
as all faces, and TL(Γ) computes the timeless assumptions
of Γ. The assumption Γ′′ ⊑ Γ defined by the rule

Γ, TL(Γ′) ⊑ Γ, Γ′

allows for further trimming of the residual context. The term
𝑡 Γ′ [𝑢] applies 𝑡 to the simple tick 𝑢. The assumption that
𝑡 is well-typed in the residual context Γ′ should be read as
stating that it has the type ⊲ (𝛼 :𝜅).𝐴 before the tick𝑢, and can
therefore be opened after the tick 𝑢 to produce something of
type𝐴[𝑢/𝛼]. We will often omit the residual context Γ′ from
the term, writing simply 𝑡 [𝑢] for 𝑡 Γ′ [𝑢]. Different choices
of Γ′ give the same term up to judgemental equality.
As basic examples of programming with simple ticks we

mention the dependently typed generalisation of applicative
action (1) mentioned in the introduction, and the unit

𝜆𝑥 .𝜆(𝛼 :𝜅) .𝑥 : 𝐴 → ⊲𝜅𝐴 (3)
Note that this uses the rule for variables which allows these
to be introduced from anywhere in the context, also across
ticks. Some Fitch style modal type theories do not allow such
introductions [16, 19]. The timelessness of the interval is
needed to type the extensionality principle

Path⊲𝜅𝐴 (𝑥,𝑦) ≃ ⊲ (𝛼 :𝜅).Path𝐴 (𝑥 [𝛼], 𝑦 [𝛼])
where the left to right direction 𝜆𝑝.𝜆(𝛼 :𝜅).𝜆𝑖 .𝑝 𝑖 [𝛼] requires
𝑝 𝑖 [𝛼] to be welltyped in a context where 𝑖 occurs after 𝛼 .

3.1 Forcing ticks
Unrestricted elimination of ⊲ is unsound, since any type 𝐴
with a map ⊲𝜅𝐴 → 𝐴 can be inhabited using fixed points.
However, it is safe to eliminate ⊲𝜅 in contexts of the form
Γ, 𝜅 : clock, i.e., where no variables mention 𝜅 in their type.
To close such an elimination rule under substitutions, the
clock variable 𝜅 must be abstracted in the term.
Application to forcing ticks does exactly that: If 𝜅′ is a

clock in Γ then Γ ⊢ (𝜅′,⋄) { Γ is a forcing tick and so if
Γ, 𝜅 : clock ⊢ 𝑡 : ⊲(𝛼 : 𝜅).𝐴 then

Γ ⊢ (𝜅.𝑡) Γ [(𝜅′,⋄)] : 𝐴[(⋄ :𝜅′)/(𝛼 :𝜅)]
This construction binds 𝜅 in 𝑡 , and 𝐴[(⋄ :𝜅′)/(𝛼 :𝜅)] uses a
special simultaneous substitution of the pair (⋄, 𝜅′) for the
pair (𝛼,𝜅). In particular [(⋄ : 𝜅′)/(𝛼 : 𝜅)] commutes as ex-
pected with type and term formers, replacing each of 𝛼 and
𝜅 with ⋄ and 𝜅′ as intended, but it will also have to turn a
simple tick application like 𝑡 [𝛼] into a forcing tick appli-
cation (𝜅.𝑡) [(𝜅′,⋄)] to preserve typing. This substitution
operation was originally described by Mannaa et al. [35], see
Appendix A.2 for a description of substitution for our theory.

For example, forcing ticks can be used to define the force
operator of Atkey and McBride [6]

force
def
= 𝜆𝑥.𝜆𝜅.(𝜅.𝑥 [𝜅]) [(𝜅,⋄)] : ∀𝜅. ⊲𝜅 𝐴 → ∀𝜅.𝐴 (4)
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Context and type formation rules
Γ ⊢ 𝜅 ∉ Γ

Γ, 𝜅 : clock ⊢
Γ ⊢ 𝜅 : clock 𝛼 ∉ Γ

Γ, 𝛼 : 𝜅 ⊢
Γ, 𝛼 : 𝜅 ⊢ 𝐴 type
Γ ⊢ ⊲ (𝛼 :𝜅).𝐴 type

Γ, 𝜅 : clock ⊢ 𝐴 type
Γ ⊢ ∀𝜅.𝐴 type

Typing rules
Γ, 𝜅 : clock ⊢ 𝑡 : 𝐴
Γ ⊢ 𝜆𝜅.𝑡 : ∀𝜅.𝐴

Γ ⊢ 𝑡 : ∀𝜅.𝐴 Γ ⊢ 𝜅′ : clock
Γ ⊢ 𝑡 [𝜅′] : 𝐴[𝜅′/𝜅]

Γ, 𝛼 : 𝜅 ⊢ 𝑡 : 𝐴
Γ ⊢ 𝜆(𝛼 :𝜅).𝑡 : ⊲ (𝛼 :𝜅).𝐴

Γ ⊢ 𝑢 : 𝜅 { Γ′ Γ′ ⊢ 𝑡 : ⊲ (𝛼 :𝜅).𝐴
Γ ⊢ 𝑡 Γ′ [𝑢] : 𝐴[𝑢/𝛼]

Γ ⊢ (𝜅′, 𝑢) { Γ′ Γ′, 𝜅 : clock ⊢ 𝑡 : ⊲(𝛼 : 𝜅).𝐴
Γ ⊢ (𝜅.𝑡) Γ′ [(𝜅′, 𝑢)] : 𝐴[(𝑢 :𝜅′)/(𝛼 :𝜅)]

Γ ⊢ 𝑡 : ⊲𝜅𝐴 → 𝐴

Γ ⊢ dfix𝜅 𝑡 : ⊲𝜅𝐴

Γ ⊢ 𝑡 : ⊲𝜅𝐴 → 𝐴

Γ ⊢ pfix𝜅 𝑡 : ⊲ (𝛼 :𝜅).Path𝐴 ((dfix𝜅𝑡) [𝛼], 𝑡 (dfix𝜅𝑡))
Γ, 𝛼 : 𝜅 ⊢ 𝐴 : U
Γ ⊢ ⊲ (𝛼 :𝜅).𝐴 : U

Γ, 𝜅 : clock ⊢ 𝐴 : U
Γ ⊢ ∀𝜅.𝐴 : U

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑡 : 𝐵

𝜅 : clock ∈ Γ

Γ ⊢ 𝜅 : clock
𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴
Simple ticks

Γ′′ ⊑ Γ

Γ, 𝛼 : 𝜅, Γ′ ⊢ 𝛼 : 𝜅 { Γ′′, TL(Γ′)
Γ ⊢ 𝑢 : 𝜅 { Γ′ Γ ⊢ 𝑣 : 𝜅 { Γ′ Γ ⊢ 𝑟 : I

Γ ⊢ tirr(𝑢, 𝑣, 𝑟 ) : 𝜅 { Γ′

Forcing ticks
Γ′ ⊑ Γ Γ′ ⊢ 𝜅′ : clock

Γ ⊢ (𝜅′,⋄) { Γ′
Γ′′ ⊑ Γ

Γ, 𝛼 : 𝜅′, Γ′ ⊢ (𝜅′, 𝛼) { Γ′′, TL(Γ′)

Γ ⊢ (𝜅′, 𝑢) { Γ′ Γ ⊢ (𝜅′, 𝑣) { Γ′ Γ ⊢ 𝑟 : I
Γ ⊢ (𝜅′, tirr(𝑢, 𝑣, 𝑟 )) { Γ′

Timeless assumptions
TL(Γ, 𝑥 : 𝐴) = TL(Γ) TL(Γ, 𝛼 : 𝜅) = TL(Γ) TL(Γ, 𝑖 : I) = TL(Γ), 𝑖 : I

TL(Γ, 𝜅 : clock) = TL(Γ), 𝜅 : clock TL(Γ, 𝜑) = TL(Γ), 𝜑 TL(·) = ·

Figure 1. Selected typing rules for CCTT. The rules for ticks use the relation defined as Γ, TL(Γ′) ⊑ Γ, Γ′

Judgemental equalities on terms
𝑡 Γ [𝑢] ≡ 𝑡 Γ′ [𝑢] (𝜅.𝑡) Γ [(𝜅,𝑢)] ≡ (𝜅.𝑡) Γ′ [(𝜅,𝑢)] (𝜆𝜅.𝑡) [𝜅′] ≡ 𝑡 [𝜅′/𝜅]

𝜆𝜅.(𝑡 [𝜅]) ≡ 𝑡 (𝜆(𝛼 :𝜅).𝑡) [𝑢] ≡ 𝑡 [𝑢/𝛼] 𝜆(𝛼 :𝜅).(𝑡 [𝛼]) ≡ 𝑡
(𝜅.𝜆(𝛼 :𝜅).𝑡) [(𝜅′, 𝑢)] ≡ 𝑡 [(𝑢 :𝜅′)/(𝛼 :𝜅)] (𝜅.𝑡) [(𝜅′, 𝑢)] ≡ (𝑡 [𝜅′/𝜅]) [𝑢] (𝜅.dfix𝜅 𝑡) [(𝜅′,⋄)] ≡ 𝑡 (dfix𝜅 𝑡) [𝜅′/𝜅]

El (∀𝜅.𝐴) ≡ ∀𝜅.El (𝐴) (𝜅.pfix𝜅 𝑡) [(𝜅′,⋄)] 𝑟 ≡ 𝑡 (dfix𝜅 𝑡) [𝜅′/𝜅] El (⊲ (𝛼 :𝜅).𝐴) ≡ ⊲ (𝛼 :𝜅).El (𝐴)
Judgemental equalities on ticks

tirr(𝑢, 𝑣, 0) ≡ 𝑢 tirr(⋄,⋄, 𝑟 ) ≡ ⋄ tirr(𝑢, 𝑣, 1) ≡ 𝑣

Figure 2. Selected judgemental equality rules of CCTT. The three 𝜂 rules are subject to the standard conditions of 𝜅 and 𝛼 ,
respectively, not appearing in 𝑡 . As a consequence of the first two rules, the residual context is omitted for tick application in
the rules below. The 8th axiom listed assumes that ⋄ does not appear in 𝑢, so that 𝑢 can be considered a simple tick.
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which is used in the encoding of coinductive types. Replacing
the delayed substitution of 𝜅′ for 𝜅 in (𝜅.𝑡) Γ [(𝜅′,⋄)] gives
the elimination rule used by Bahr. et al. [7]. Here we opt for
an explicit substitution because it is easier to type check and
give semantics to, which is why Mannaa et al. [35] made a
similar choice. Bahr. et al. [7] designed their application rule
for ⋄ to obtain a normalisation result for their theory. We
expect that using the present rule, one can prove the same
property for CCTT.

3.2 Tick irrelevance
Since fixed points unfold when applied to ⋄, the identity
of ticks is crucial for the operational properties of Clocked
Type Theory, in particular for ensuring strong normalisation.
However, on the extensional level the identity of ticks is
irrelevant, as stated by the tick irrelevance axiom

tirr𝜅 : Π(𝑥 : ⊲𝜅𝐴).⊲ (𝛼 :𝜅).⊲ (𝛽 :𝜅).Path𝐴 (𝑥 [𝛼], 𝑥 [𝛽]) (5)

This can be inhabited in CCTT using the novel construction
tirr building a path between any pair of ticks by defining

tirr𝜅 (𝑡) def
= 𝜆(𝛼 :𝜅).𝜆(𝛽 :𝜅).𝜆𝑖 .𝑡 [tirr(𝛼, 𝛽, 𝑖)]

Similar axioms can be constructed for forcing tick appli-
cations. One important application of tirr is in showing
that force (4) is a type equivalence with inverse force−1 def

=
𝜆𝑥.𝜆𝜅.𝜆(𝛼 :𝜅).𝑥 [𝜅]: If 𝑥 : ∀𝜅. ⊲𝜅 𝐴, then

force−1 (force𝑥) ≡ 𝜆𝜅.𝜆(𝛼 :𝜅).(𝜅.𝑥 [𝜅]) [(𝜅,⋄)]
= 𝜆𝜅.𝜆(𝛼 :𝜅).(𝜅.𝑥 [𝜅]) [(𝜅, 𝛼)]
≡ 𝜆𝜅.𝜆(𝛼 :𝜅).𝑥 [𝜅] [𝛼] ≡ 𝑥

where the path equality is witnessed by

𝜆𝑖.𝜆𝜅.𝜆(𝛼 :𝜅).(𝜅.𝑥 [𝜅]) [(𝜅, tirr(⋄, 𝛼, 𝑖))] .
The ability of tirr to form a path between any two ticks

allows us to prove coherence laws between different uses
of tick irrelevance. For example we can construct fillers for
boxes whose boundary is given by tick applications as in the
lemma below.

Lemma 3.1. Let Γ′ ⊢ 𝑡 : ⊲ (𝛼 :𝜅).𝐴 and Γ, 𝑖0, . . . , 𝑖𝑛 : I, 𝜑 ⊢ 𝑢 :
𝜅 { Γ′ where 𝜑 =

∨
𝑘,𝑏 (𝑖𝑘 = 𝑏) for 𝑘 = 0, . . . , 𝑛 and 𝑏 = 0, 1.

Then we have Γ, 𝑖0, . . . , 𝑖𝑛 : I ⊢ 𝐵 [𝜑 ↦→ 𝐴[𝑢/𝛼]] type and a
term Γ, 𝑖0, . . . , 𝑖𝑛 : I ⊢ filler(𝑡,𝑢) : 𝐵 [𝜑 ↦→ 𝑡 [𝑢]].

For example, the lemma constructs a filler of the diagram
below, thus constructing a path from the composition of
tirr𝜅 (𝑡) [𝛼] [𝛽] and tirr𝜅 (𝑡) [𝛽] [𝛾] to tirr𝜅 (𝑡) [𝛼] [𝛾],

𝐴 𝐴

𝐴 𝐴

tirr𝜅 (𝑡 ) [𝛽 ] [𝛾 ]

tirr𝜅 (𝑡 ) [𝛼 ] [𝛽 ] tirr𝜅 (𝑡 ) [𝛼 ] [𝛾 ]
𝑡 [𝛼 ]

The rules for judgemental equality (Figure 2) include stan-
dard 𝛽 and 𝜂-rules for functions, clock abstraction and tick

abstraction. Note that there are two 𝛽 equalities for tick ap-
plication, one for each kind of ticks. There is also a rule
stating that if a forcing tick does not contain ⋄, application to
it reduces to application to a simple tick. One consequence
of this is that an 𝜂-rule for forcing tick application can be
derived as follows

𝜆(𝛼 :𝜅′).((𝜅.𝑡) [(𝛼,𝜅′)]) ≡ 𝜆(𝛼 :𝜅′).(𝑡 [𝜅′/𝜅] [𝛼]) ≡ 𝑡 [𝜅′/𝜅]
Although we do not prove canonicity for our type theory, we
set up equalities that we believe are necessary to compute
canonical forms in contexts of free clock and interval vari-
ables, but not free tick variables. For example, tirr(⋄,⋄, 𝑟 ) = ⋄
ensures that in a context with no tick variables all ticks are
equal to ⋄.

3.3 Fixed points
The operator dfix𝜅 : (⊲𝜅𝐴 → 𝐴) → ⊲𝜅𝐴 computes fixed
points of productive functions. Using this, one can construct
Nakano’s fixed point operator as

fix𝜅
def
= 𝜆𝑓 .𝑓 (dfix𝜅 𝑓 ) : (⊲𝜅𝐴 → 𝐴) → 𝐴 (6)

To ensure termination, fixed points do not unfold judge-
mentally, except when applied to ⋄. As in Guarded Cubical
Type Theory [9] we add a path pfix𝜅 between a fixed point
and its unfolding. Note that the right hand endpoint of pfix𝜅𝑡
is fix𝜅𝑡 and so,

fix𝜅𝑡 ≡ 𝑡 (𝜆(𝛼 :𝜅).dfix𝜅𝑡 [𝛼]) = 𝑡 (𝜆(𝛼 :𝜅).fix𝜅𝑡) (7)

With this we can prove that fixed points are unique, in fact
the following stronger statement is true.

Lemma 3.2. The type Σ(𝑥 : 𝐴).Path𝐴 (𝑥, 𝑓 (𝜆(𝛼 : 𝜅).𝑥)) is
contractible for every 𝑓 : ⊲𝜅𝐴 → 𝐴.

By lemma 3.2 the pair (dfix𝜅𝑡, pfix𝜅𝑡) is uniquely deter-
mined up to path, as it witnesses that dfix𝜅𝑡 is the fixed point
of 𝜆𝑥 .𝜆(_ :𝜅).𝑡 𝑥 . Moreover both dfix𝜅 and pfix𝜅 unfold when
applied to ⋄, which means they will not be stuck terms in a
context with no tick variables.
The principles above can be used to encode guarded re-

cursive types as fixed points on the universe. For example,
assuming codes for products and natural numbers, we define

Str𝜅 (N) def
= fix𝜅 (𝜆𝑋 .N×⊲ (𝛼 :𝜅).𝑋 [𝛼])

and then by (7) Str𝜅 (N) = N×⊲ (𝛼 :𝜅).Str𝜅 (N) so, defining
Str𝜅 (N) def

= El (Str𝜅 (N)) gives the type equivalence
Str𝜅 (N) ≃ N × ⊲𝜅Str𝜅 (N) (8)

Note that we do not assume the clock irrelevance axiom
Γ ⊢ 𝑡 : ∀𝜅.𝐴 𝜅 ∉ fc(𝐴)

Γ ⊢ cirr𝜅𝑡 : ∀𝜅′ .∀𝜅′′ .Path𝐴 (𝑡 [𝜅′], 𝑡 [𝜅′′]) (9)

often assumed in type theories with multi-clock guarded
recursion [7, 11]. Instead we will use the following definition.
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Definition 3.3. A type 𝐴 is clock-irrelevant if the canonical
map 𝐴 → ∀𝜅.𝐴 (for 𝜅 fresh) is an equivalence.

If 𝐴 is clock-irrelevant it satisfies axiom (9), and assuming
a clock constant the two statements are equivalent. Clock
irrelevance is needed for the correctness of encodings of
coinductive types. For example, using (8) one can prove
∀𝜅.Str𝜅 (N) ≃ (∀𝜅.N) × ∀𝜅.(⊲𝜅Str𝜅 (N)) ≃ N × ∀𝜅.Str𝜅 (N)
assumingN clock-irrelevant, and using that force is an equiv-
alence. In this paper, rather than assuming all types clock
irrelevant, we will prove clock-irrelevance for a large class
of types and use this to construct final coalgebras for a cor-
respondingly large class of functors.

4 Encoding coinductive types
In the previous section we saw that the type ∀𝜅.Str𝜅 (N)
satisfies the type equivalence expected of a type of streams.
In this section we prove that (assuming N clock-irrelevant)
this type also satisfies the universal property characterising
streams, as a special case of a more general property. In
Section 5 we will show that N is indeed clock-irrelevant (as
a special case of Theorem 5.4) as are a large collection of
inductive and higher inductive types.

Here we essentially adapt the final coalgebra construction
from Møgelberg [38]. Given a type 𝐼 consider the category1
𝐼 → U of 𝐼 -indexed types whose type of objects is 𝐼 → U
and whose morphisms from 𝑋 to 𝑌 is the type

𝑋 → 𝑌
def
= Π(𝑖 : 𝐼 ). El (𝑋 𝑖) → El (𝑌 𝑖)

An 𝐼 -indexed endofunctor is an endofunctor on 𝐼 → U.
Let 𝐹 be an 𝐼 -indexed endofunctor, an 𝐹 -coalgebra is a

pair (𝑋, 𝑓 ) such that 𝑋 : 𝐼 → U and 𝑓 : 𝑋 → 𝐹 𝑋 . We say
an 𝐹 -coalgebra (𝑌,𝑔) is final if for all coalgebras (𝑋, 𝑓 ) the
following type is contractible

Σ(ℎ : 𝑋 → 𝑌 ). 𝑔 ◦ ℎ = 𝐹 (ℎ) ◦ 𝑓
Using contractibility we address the fact that there can be
more than one proof of path equality, as is also done by
Ahrens et al. [3].

If 𝑋 : ∀𝜅. (𝐼 → U) write ∀𝜅.𝑋 for 𝜆(𝑖 : 𝐼 ).∀𝜅.(𝑋 [𝜅] 𝑖).
Definition 4.1. Say that an 𝐼 -indexed endofunctor 𝐹 com-
mutes with clock quantification if for all families𝑋 the canon-
ical map can𝐹 : 𝐹 (∀𝜅.𝑋 [𝜅]) → ∀𝜅. 𝐹 (𝑋 [𝜅]) is a pointwise
equivalence.

For example, if 𝐴 : U the constant functor to 𝐴 commutes
with clock quantification if and only if 𝐴 is clock-irrelevant.

Lemma 4.2. The collection of endofunctors commuting with
clock quantification is closed under composition, pointwise
product, pointwise Π, pointwise Σ over clock irrelevant types,
1Here we mean the naive internal notion where the type of arrows is not
necessarily truncated, but we also do not require higher coherences. Same
for functor below.

and pointwise universal quantification over clocks. If 𝐹 com-
mutes with clock quantification then the guarded recursive
type 𝑋 satisfying 𝑋 ≃ 𝐹 (⊲𝜅𝑋 ) is clock irrelevant. Any path
type of a clock irrelevant type is clock irrelevant.

The following theorem states that all such endofunctors
have final coalgebras. The idea of this originates with Atkey
and McBride [6], and our proof is an adaptation of the proof
by Møgelberg [38] of a similar statement in extensional type
theory. It refers to the endofunctor ⊲𝜅 , defined as the point-
wise extension of the functorU → Umapping𝐴 to ⊲ (𝛼 :𝜅).𝐴
for a fresh 𝛼 .

Theorem 4.3. Let 𝐹 be an 𝐼 -indexed endofunctor which com-
mutes with clock quantification, and let 𝜈𝜅 (𝐹 ) be the guarded
recursive type satisfying 𝜈𝜅 (𝐹 ) ≃ 𝐹 (⊲𝜅 (𝜈𝜅 (𝐹 )). Then 𝜈 (𝐹 ) def

=
∀𝜅.𝜈𝜅 (𝐹 ) has a final 𝐹 -coalgebra structure.
Example 4.4. In Section 5 we will prove that N is clock-
irrelevant, and hence the functor 𝐹 (𝑋 ) = N × 𝑋 commutes
with clock quantification. Theorem 4.3 then states correct-
ness of the encoding of streams as ∀𝜅.Str𝜅 (N).
Example 4.5. Consider the functor 𝐹 (𝑋 ) = Pf (𝐴 × 𝑋 ),
where Pf is the finite powerset functor defined as a HIT [26],
and 𝐴 is assumed to be a clock-irrelevant set. In Section 5
we will prove that Pf commutes with clock quantification,
which implies that 𝐹 does the same. Theorem 4.3 then gives
an encoding of the final coalgebra for 𝐹 . This type plays an
important role in automata theory as it describes the finitely
branching 𝐴-labelled transition systems. Let LTS𝜅 denote
fixed point for 𝐹 ◦ ⊲𝜅 , let LTS def

= ∀𝜅.LTS𝜅 be the coinductive
type and let ufld : LTS → Pf (𝐴×LTS) be the final coalgebra
structure.

Suppose now 𝑥,𝑦 : LTS and 𝑅 : LTS × LTS → U. Define
Bisim∀ (𝑅) (𝑥,𝑦) = Sim∀ (𝑅) (𝑥,𝑦) × Sim∀ (𝑅) (𝑦, 𝑥)

where Sim∀ (𝑅) (𝑥,𝑦) is
Π𝑥 ′, 𝑎.(𝑎, 𝑥 ′) ∈ ufld (𝑥) → ∃𝑦′ .((𝑎,𝑦′) ∈ ufld (𝑦)) × 𝑅(𝑥 ′, 𝑦′)
By Lemma 4.2, LTS is clock irrelevant, and an easy induction
on 𝑋 : Pf (𝐴 × LTS) shows that the predicate (𝑎, 𝑥 ′) ∈ 𝑋 is
clock irrelevant. In Section 5 we will prove that propositional
truncation commutes with clock quantification, and since
∃ in homotopy type theory is defined as the composition
of truncation and Σ [49], putting all this together shows
that Bisim∀ (−) defines a LTS × LTS-indexed endofunctor
commuting with clock quantification, and so Theorem 4.3
gives an encoding of bisimilarity as a coinductive type.

Møgelberg and Veltri [40] prove that path equality coin-
cides with bisimilarity for guarded recursive types. Using
their results we can prove the following.

Theorem 4.6. Two elements of the type LTS from Example 4.5
are bisimilar if and only if they are path equal. Since both these
are propositions, they are equivalent as types.
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⊢ · □
⊢ Ψ □

⊢ Ψ, 𝑖 : I □

Γ0 ⊢
Γ0 ⊢ · tel

Γ0 ⊢ Γ tel Γ0, Γ ⊢ 𝐴 type
Γ0 ⊢ Γ, 𝑥 : 𝐴 tel

Figure 3. Telescope judgements.

We leave it to future work to generalise these results to a
general statement about bisimilarity for coinductive types.

5 Higher Inductive Types
We now extend CCTT with higher inductive types, adapt-
ing a schema for these from Cavallo and Harper [13] to our
version of CTT. For simplicity we exclude indexed families,
but the schema is still general enough to cover examples like
spheres, pushouts, W-suspensions [46], (higher) truncations,
as well as finite and countable powersets. We first present
the schema and the introduction rules for HITs, then (subsec-
tion 5.2) we present our principle of induction under clocks,
which generalises the elimination rule for HITs.

5.1 Introduction and formation
The judgements of Figure 4 capture declarations of the form
dataH (𝛿 : Δ) where
...

ℓ𝑖 : (𝛾 : Γ) → (𝑥 : Ξ → H𝛿) → (𝑖 : Ψ) → H𝛿 [𝜑 ↦→ 𝑒]
...

which list constructors and their types for a new datatype
H, taking parameters in the telescope Δ. On top of the de-
clared constructors every HIT has an introduction form
for homogeneous composition, written hcomp𝑖H𝛿 [𝜑 ↦→ 𝑢] 𝑢0,
where 𝛿 is not allowed to depend on 𝑖 , as well as a transport
operation. Following Coquand et al. [21], the composition
structure for H is given by combining these two operations.
We refer to appendix A.5 for further details, but just recall
that from the homogeneous composition operator one can
derive a homogeneous filling operator hfill𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0 :
Path𝐴 (𝑢0, hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0) which provides a filler for
the box specified by 𝑢 and 𝑢0 and closed by homogeneous
composition [30].

A constructor for a HIT H is specified by a tuple
Δ;K ⊢ (Γ,Ξ,Ψ, 𝜑, 𝑒) constr whereK lists the previously de-
clared constructors. The telescope Γ lists the non-recursive
arguments, and each Ξ in Ξ is the arity for a recursive argu-
ment. Path constructors further take a non-empty telescope
of interval variables Ψ and have a boundary 𝑒 specified as
a partial element over the formula 𝜑 . The judgements for
telescopes are given in Figure 3. Note that these imply that
all of Δ, Γ, and Ξ only contain variables of proper types, i.e.,

Constructor declarations (presuppose · ⊢ Δ tel )
K = (ℓ1,𝐶1) . . . (ℓ𝑛,𝐶𝑛)

(∀𝑖) Δ; (ℓ1,𝐶1) . . . (ℓ𝑖−1,𝐶𝑖−1) ⊢ 𝐶𝑖 constr
Δ ⊢ K constrs

Δ ⊢ Γ tel (∀𝑘) Δ, Γ ⊢ Ξ𝑘 tel ⊢ Ψ □ Ψ ⊢ 𝜑 : F
𝛿 : Δ, Γ,Ξ → H𝛿,Ψ, 𝜑 ⊢K,H𝛿 𝑒 : H𝛿

𝑒 = [𝜑1 𝑀1 . . . 𝜑𝑚 𝑀𝑚] (∀𝑘) 𝑀𝑘 ∈ Bndr(K;Ξ → H𝛿)
Δ;K ⊢ (Γ;Ξ;Ψ;𝜑 ; 𝑒) constr

Grammar for boundary terms
𝑁,𝑀 ∈ Bndr(K;Θ) ::= 𝑥 𝑢

| conℓ (𝑡, 𝜆𝜉 . 𝑀, 𝑟 )
| hcomp𝑗H𝛿 [𝜑 ↦→ 𝑀] 𝑀0

Formation
Γ ⊢ 𝛿 : Δ

Γ ⊢ H𝛿 type
Introductions

(ℓ, (Γ;Ξ;Ψ;𝜑 ; 𝑒)) ∈ K Γ0 ⊢ 𝛿 : Δ
Γ0 ⊢ 𝑡 : Γ [𝛿] Γ0 ⊢ 𝑎 : Ξ[𝛿, 𝑡] → H𝛿 Γ0 ⊢ 𝑟 : Ψ

Γ0 ⊢ conℓ (𝑡, 𝑎, 𝑟 ) : H𝛿 [𝜑 [𝑟 ] ↦→ 𝑒 [𝑡, 𝑎, 𝑟 ]]

Γ ⊢ 𝛿 : Δ Γ ⊢ 𝜑 : F Γ ⊢ 𝑢0 : H𝛿 [𝜑 ↦→ 𝑢 [0/𝑖]]
Γ ⊢ hcomp𝑖H𝛿 [𝜑 ↦→ 𝑢] 𝑢0 : H𝛿 [𝜑 ↦→ 𝑢 [1/𝑖]]

Γ ⊢ 𝜑 : F Γ, 𝑖 : I ⊢ 𝛿 : Δ
Γ, 𝑖 : I, 𝜑 ⊢ 𝛿 ≡ 𝛿 [0] : Δ Γ ⊢ 𝑢0 : H𝛿 [0]

Γ ⊢ trans𝑖H𝛿 𝜑 𝑢0 : H𝛿 [1] [𝜑 ↦→ 𝑢0]

Figure 4. Schema for Higher Inductive Types, 𝛿 : Δ ⊢
H𝛿 type. In the typing of the boundary 𝑒 the subscript
K,H𝛿 indicates that this judgement can refer to the labels
from K and H𝛿 itself. The grammar for boundary terms
assumes 𝑥 ∈ Θ, that 𝑢, 𝑡 not mention variables in Θ and
that ℓ ∈ K. For further judgemental equalities for trans see
Appendix A.5.

no interval, face, clock or tick assumptions. Only the bound-
ary is allowed to refer to H and the previous constructors
fromK. We signify this by adding those as subscripts to the
typing judgement for 𝑒 . Cavallo and Harper require the com-
ponents𝑀 of the boundary to conform to a dedicated typing
judgement, which restricts their shape and makes it possible
to correctly specify the inputs to the dependent eliminator
for H. For conciseness we replicate those restrictions with a
grammar, Bndr(K,Θ), which specifies that a boundary term
must be built either from an applied recursive argument 𝑥 𝑢,
a previous constructor, or a use of hcomp. We also assume
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a code H𝛿 : U𝑖 whenever the types in all of the Γ and Ξ
telescopes inK have a code in U𝑖 as well.

Remark 1. Formally, boundary terms are a separate syn-
tactic entity which we silently include in ordinary terms. In
particular, they have a separate equality judgement which is
used when typing systems and compositions of boundary terms.
This equality is the congruence relation induced by reducing
compositions and constructors to their boundary terms. It is
likely that this equality can be proved to coincide with the one
induced by equality on terms. For details see appendix A.4.
This approach is similar to the one of Cavallo and Harper [13].

We now give some concrete examples. For readability we
write (ℓ, (Γ; (𝑥 : Ξ → H𝛿);Ψ; [𝜑1 ↦→ 𝑀1, . . . , 𝜑𝑛 ↦→ 𝑀𝑛]))
in place of (ℓ, (Γ,Ξ,Ψ,∨𝑖𝜑𝑖 , [𝜑1 ↦→ 𝑀1, . . . , 𝜑𝑛 ↦→ 𝑀𝑛])). We
also write ℓ rather than conℓ .

Example 5.1. Pushout. The context Δ contains the data of
a pushout, i.e., Δ def

= (𝐴𝐵𝐶 : U) (𝑓 : El (𝐶 → 𝐴)) (𝑔 : El (𝐶 →
𝐵)). The pushout has two point constructors, and a path,
none with recursive arguments.

• (inl, ((𝑎 : El𝐴); ·; ·; []))
• (inr, ((𝑏 : El𝐵), ·; ·; []))
•
(
push,

(
(𝑐 : El𝐶); ·; (𝑖 : I);

[
𝑖 = 0 ↦→ inl(𝑓 𝑐, ·, ·)
𝑖 = 1 ↦→ inr(𝑔 𝑐, ·, ·)

] ))
Sphere. We can encode the circle and higher spheres, S𝑛

for 𝑛 ≥ 1, as a point and an 𝑛-dimensional surface
• (base, (·; ·; ·; []))

• ©­«
surface, ©­«

·; ·; 𝑖 : I𝑛 ;

𝑖1 = 0 ∨ 𝑖1 = 1 ↦→ base(·; ·; ·)
. . .
𝑖𝑛 = 0 ∨ 𝑖𝑛 = 1 ↦→ base(·; ·; ·)


ª®¬
ª®¬

Propositional and Higher Truncation. Let Δdef
= (𝐴 : U),

and write propositional truncation as ∥𝐴∥0.
• (in, (El𝐴; ·; ·; []))
•
(
squash,

(
·; (𝑎0, 𝑎1 : ∥𝐴∥0); (𝑖 : I);

[
𝑖 = 0 ↦→ 𝑎0
𝑖 = 1 ↦→ 𝑎1

] ))
For higher truncations ∥𝐴∥𝑛 , where 𝑛 ≥ 0, we use the hub
and spoke construction [49, Sect. 7.3], as the schema does
not allow quantifying over paths of the HIT itself.2 Instead
of squash then we have the following two constructors:

• (hub, (·; (𝑓 : S𝑛+1 → ∥𝐴∥𝑛); ·; []))
• (spoke, ((𝑥 : S𝑛+1); (𝑓 : S𝑛+1 → ∥𝐴∥𝑛); (𝑖 : I); 𝑒))

where 𝑒 def
= [𝑖 = 0 ↦→ 𝑓 𝑥, 𝑖 = 1 ↦→ hub(·, 𝑓 , ·)].

Finite Powerset. The finite powerset Pf (𝐴) can also be
constructed within this schema, using constructions similar
to the ones above, including the hub and spoke constructors
to ensure that Pf (𝐴) is set truncated. We spell out the decla-
ration of the path constructor for commutativity of ∪ as we
will reference it later
2We believe the semantics would support doing so, but it would complicate
the schema.

•
(
comm,

(
·, (𝑋,𝑌 : Pf (𝐴)), (𝑖 : I),

[
𝑖 = 0 ↦→ 𝑋 ∪ 𝑌
𝑖 = 1 ↦→ 𝑌 ∪ 𝑋

] ))

5.2 Induction under clocks
We now present the principle of induction under clocks. This
is an elimination principle defining elements of dependent
families of the form Γ, ℎ : ∀𝜅.H (𝛿 [𝜅]) ⊢ 𝐷 type for a vector
of clock variables 𝜅 by defining its action on elements of
the form ℎ = 𝜆𝜅.conℓ (𝑡, 𝑎, 𝑟 ) in such a way that boundary
conditions are respected. In the case of an empty list of
clock variables, this principle specialises to the elimination
principle for HITs of Cavallo and Harper [13], which we
refer to as the usual elimination principle for 𝐻 .

Figure 5 presents the rule along with judgemental equali-
ties. The figure first defines the judgement Γ ⊢ E : K ⇀𝛿

𝐷 for an elimination list E, which contains the premises
necessary to handle the constructors in K. The case for
K, (ℓ, (Γ,Ξ,Ψ, 𝜑, 𝑒)) requires an elimination list of the form
E, 𝑢 whereE is an elimination list forK and𝑢 is an element
of the type family 𝐷 at an index built with conℓ . In partic-
ular 𝑢 is typed in a context extended with non-recursive
arguments 𝛾 , recursive arguments 𝑥 , interval variables 𝑖 for
the constructor conℓ (𝛾, 𝑥, 𝑖), and also induction hypotheses
𝑦 about the variables 𝑥 . The element 𝑢 also needs to suitably
match the boundary 𝑒 whenever𝜑 is satisfied. To express this
we transform 𝑒 : H𝛿 into L𝑒M𝛿

E,𝑦
, the corresponding element

of the family 𝐷 , built using the elimination listE to handle
the previous constructors, and the induction hypotheses 𝑦
to handle the recursive arguments 𝑥 . This transformation
satisfies the following typing principle, as can be verified by
induction on 𝑒 .

Lemma 5.2. Let 𝑒 = [𝜑0𝑀0, . . . , 𝜑𝑛𝑖 𝑀𝑛𝑖 ] be the boundary
condition for con𝑖 . Assume Γ ⊢ E : K<𝑖 ⇀𝛿 𝐷 ; then the
following typing holds:

Γ, 𝛾 : ∀𝜅.Γ𝑖 [𝛿 [𝜅]], 𝑥 : ∀𝜅.Ξ𝑖 [𝛿 [𝜅], 𝛾 [𝜅]] → H (𝛿 [𝜅]),
𝑦 : Π(𝜉 : ∀𝜅.Ξ[𝛿 [𝜅], 𝛾 [𝜅]]) .𝐷 [𝜆𝜅.𝑥 [𝜅] (𝜉 [𝜅])], 𝑖 : Ψ𝑖 , 𝜑𝑖 ⊢

L𝑒M𝛿
E,𝑥 ↦→𝑦 : 𝐷 [𝜆𝜅.con𝑖 (𝛾 [𝜅], 𝑥 [𝜅],𝑖)]

In the following examples we will see how instantiating
induction under clocks with 1 or 0 clocks respectively in-
duces equivalences which prove that many HITs commute
with clock abstraction. In particular, these examples verify
the results used in section 4.

Example 5.3. Spheres. In this case induction under clocks
unfolds to the principle

Γ, 𝑥 : ∀𝜅.S𝑛 ⊢ 𝐷 type Γ ⊢ 𝑢𝑏 : 𝐷 [𝜆𝜅.base] Γ ⊢ 𝑡 : ∀𝜅.S𝑛
Γ, 𝑖 : I𝑛 ⊢ 𝑢𝑠 : 𝐷 [𝜆𝜅.surface(𝑖)] [

∨
0≤𝑘<𝑛

(𝑖𝑘 = 0 ∨ 𝑖𝑘 = 1) ↦→ 𝑢𝑏]

Γ ⊢ (S𝑛) − elim𝐷 (𝑢𝑏, 𝑢𝑠 , 𝑡) : 𝐷 [𝑡]
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Elimination lists
Γ0 ⊢ 𝛿 : ∀𝜅.Δ Γ0, ℎ : ∀𝜅.H (𝛿 [𝜅]) ⊢ 𝐷 type

Γ0 ⊢ · : · ⇀𝛿 𝐷

Γ0 ⊢E : K ⇀𝛿 𝐷 Γ0, 𝛾 : ∀𝜅.Γ𝑖 [𝛿 [𝜅]], 𝑥 : (∀𝜅.Ξ𝑖 [𝛿 [𝜅], 𝛾 [𝜅]] → H (𝛿 [𝜅])), 𝑦 : Π(𝜉 : ∀𝜅.Ξ𝑖 [𝛿 [𝜅], 𝛾 [𝜅]]) .𝐷 [𝜆𝜅.𝑥 [𝜅]𝜉 [𝜅]],
𝑖 : Ψ ⊢ 𝑢 (𝛾, 𝑥,𝑦, 𝑖) : 𝐷 [𝜆𝜅.conℓ (𝛾 [𝜅], 𝑥 [𝜅], 𝑖)] [𝜑 ↦→ L𝑒M𝛿

E,𝑥 ↦→𝑦]
Γ0 ⊢E, 𝑢 : K, (ℓ, (Γ,Ξ,Ψ, 𝜑, 𝑒)) ⇀𝛿 𝐷

Boundary interpretation

L𝑒M𝛿
E,𝑥 ↦→𝑦 = L𝑒M𝛿

E,𝑥 ↦→𝑦,·
L[𝜑0 𝑀0, . . . , 𝜑𝑛 𝑀𝑛]M𝛿E,𝑥 ↦→𝑦,𝛾 = [𝜑0 L𝑀0M𝛿E,𝑥 ↦→𝑦,𝛾 , . . . , 𝜑𝑛 L𝑀𝑛M𝛿E,𝑥 ↦→𝑦,𝛾 ]

L𝑥 𝑗 𝑢M𝛿
E,𝑥 ↦→𝑦,𝛾 = 𝑦 𝑗 𝜆𝜅.𝑢 [𝛿 [𝜅], 𝛾 [𝜅], 𝑖, 𝛾 [𝜅]]

Lconℓ (𝑡ℓ , 𝜆𝜉 . 𝑀, 𝑟ℓ )M𝛿E,𝑥 ↦→𝑦,𝛾 =Eℓ [𝜆𝜅.𝑡ℓ [𝛿 [𝜅], 𝛾 [𝜅], 𝑖, 𝛾 [𝜅]], 𝑆, 𝑅, 𝑟ℓ ]
(𝑆𝑖 = 𝜆𝜅.𝜆𝜉𝑖 . 𝑀 [𝛿 [𝜅], 𝛾 [𝜅], 𝑥 [𝜅], 𝑖, 𝛾 [𝜅], 𝜉𝑖 ], 𝑅𝑖 = 𝜆𝜉𝑖 .L𝑀𝑖M𝛿E,𝑥 ↦→𝑦,(𝛾,𝜉𝑖 ) )

Lhcomp𝑗 [𝜓 ↦→ 𝑀]𝑀0M𝛿E,𝑥 ↦→𝑦,𝛾 = comp𝑗
𝐷 [𝑣 𝑗 ] [𝜓 ↦→ L𝑀M𝛿

E,𝑥 ↦→𝑦,(𝛾,𝑗 ) ] L𝑀0M𝛿E,𝑥 ↦→𝑦,𝛾

(𝑣 = hfill𝑗∀𝜅.H (𝛿 [𝜅 ] ) [𝜓 ↦→ 𝜆𝜅.𝑀 [𝛿 [𝜅], 𝛾 [𝜅], 𝑥 [𝜅], 𝑖, 𝛾 [𝜅], 𝑗]] (𝜆𝜅.𝑀0 [𝛿 [𝜅], 𝛾 [𝜅], 𝑥 [𝜅], 𝑖, 𝛾 [𝜅]]))
Induction under clocks

Γ ⊢ 𝛿 : ∀𝜅.Δ Γ, 𝑥 : ∀𝜅.H (𝛿 [𝜅]) ⊢ 𝐷 type Γ ⊢E : K ⇀𝛿 𝐷 Γ ⊢ 𝑢 : ∀𝜅.H (𝛿 [𝜅])
Γ ⊢ (𝐻 ) − elim𝐷 (E, 𝑢) : 𝐷 [𝑢]
Judgemental equalities

(𝐻 ) − elim𝐷 (E, 𝜆𝜅.conℓ (𝑡, 𝑎, 𝑟 )) ≡Eℓ [𝜆𝜅.𝑡, 𝜆𝜅.𝑎, 𝜆𝜉 . (𝐻 ) − elim𝐷 (E, 𝜆𝜅.𝑎(𝜉 [𝜅])), 𝑟 ]
(𝐻 ) − elim𝐷 (E, 𝜆𝜅.hcomp[𝜑 ↦→ 𝑢] 𝑢0) ≡ comp𝑖𝐷 [𝑣 𝑖 ] [𝜑 ↦→ (𝐻 ) − elim𝐷 (E, 𝜆𝜅.𝑢)] (𝐻 ) − elim𝐷 (E, 𝜆𝜅.𝑢0)

(𝑣 = hfill𝑖∀𝜅.H (𝛿 [𝜅 ] ) [𝜑 ↦→ 𝜆𝜅.𝑢] (𝜆𝜅.𝑢0))

Figure 5. The principle of induction under clocks. In the definition of the boundary interpretation the notationEℓ refers to
the component ofE for the label ℓ . Also the environment 𝛾 contains the extra assumptions introduced in the con and hcomp
cases: in the case of interval variables 𝑖 [𝜅] stands for just 𝑖 .

Using this, we define 𝛼 : ∀𝜅.S𝑛 → S𝑛 as follows

𝛼 (𝑡) def
= (S𝑛) − elimS𝑛 (base, 𝜆𝑖 . surface(𝑖), 𝑡)

We must verify the boundary condition which states that if a
component of 𝑖 is an endpoint then 𝑢𝑠 (𝑖) ≡ 𝑢𝑏 . This follows
from the boundary condition for surface.

Since 𝑠 ≡ (const 𝑠) [𝜅0] for all 𝑠 : S𝑛 , if 𝛼 as defined above
is a right inverse to const we will have produced an equiv-
alence S𝑛 → ∀𝜅. S𝑛 and shown the sphere to be clock ir-
relevant. We can achieve this with another application of
induction under a clock, inhabiting the type 𝑠 = const(𝛼 (𝑠)):

Γ ⊢refl : 𝜆𝜅. base = const(base)
Γ, 𝑖 : I𝑛 ⊢refl : 𝜆𝜅. surface(𝑖) = const(surface(𝑖))

The boundary condition in this case states that the second
case reduces to the first when 𝑖 contains an endpoint. This
follows from congruence of refl .

Propositional and Higher Truncation. To show that
propositional truncation commutes with clock quantification
we first define a map 𝛼 : ∀𝜅. ∥𝐴∥ → ∥∀𝜅.𝐴∥ by induction
under clocks as follows:

Γ, 𝑎 : ∀𝜅.𝐴 ⊢ in(𝑎) : ∥∀𝜅.𝐴∥
Γ, 𝑥0, 𝑥1 : ∀𝜅. ∥𝐴∥ , 𝑦0, 𝑦1 : ∥∀𝜅.𝐴∥ , 𝑖 : I ⊢
squash(𝑦0, 𝑦1, 𝑖) : ∥∀𝜅.𝐴∥ [(𝑖 = 0) ↦→ 𝑦0,(𝑖 = 1) ↦→ 𝑦1]
The above data defines a map 𝛼 satisfying

𝛼 (𝜆𝜅.in(𝑎 [𝜅])) = in(𝑎)
𝛼 (𝜆𝜅. squash(𝑥0 [𝜅], 𝑥1 [𝜅], 𝑟 ) = squash(𝛼 (𝑥0), 𝛼 (𝑥1), 𝑟 )

Let 𝛽 : ∥∀𝜅.𝐴∥ → ∀𝜅. ∥𝐴∥ be the canonical map. To show
that 𝛽 ◦ 𝛼 = id, it suffices by induction under clocks to show

𝛽 (𝛼 (𝜆𝜅.in(𝑎 [𝜅]))) = 𝜆𝜅.in(𝑎 [𝜅])
𝛽 (𝛼 (𝜆𝜅. squash(𝑥0 [𝜅], 𝑥1 [𝜅], 𝑟 )) = 𝜆𝜅.squash(𝑥0 [𝜅], 𝑥1 [𝜅], 𝑟 )
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In the latter case the left hand side reduces to
𝜆𝜅.squash(𝛽 (𝛼 (𝑥0)) [𝜅], 𝛽 (𝛼 (𝑥1)) [𝜅], 𝑟 )

and so the case follows by induction. Note that in both these
uses of induction under clocks, the boundary condition is
satisfied. For example, in the latter case, when 𝑟 = 0 the
term reduces to the proof of 𝛽 (𝛼 (𝑥0)) = 𝑥0 given by the
induction hypothesis. Showing that 𝛼 ◦ 𝛽 = id follows from
an application of the usual elimination principle.

For the higher truncationswe apply induction under clocks
again, starting by observing that we have terms as follows:

𝑎 : ∀𝜅.𝐴 ⊢in(𝑎) : ∥∀𝜅.𝐴∥𝑛
𝑥,𝑦 ⊢hub(𝑦 ◦ const) : ∥∀𝜅.𝐴∥𝑛

𝑠 : ∀𝜅. S𝑛+1, 𝑥,𝑦, 𝑖 : I ⊢spoke(𝑠 [𝜅0], 𝑦 ◦ const, 𝑖) : ∥∀𝜅.𝐴∥𝑛
where 𝑥 : ∀𝜅. (S𝑛+1 → ∥𝐴∥𝑛) and 𝑦 : (∀𝜅.S𝑛+1) → ∥∀𝜅.𝐴∥𝑛 .
For us to apply the principle, the third term would need to
reduce the second when 𝑖 = 1, which it does, and 𝑦 (𝑠) when
𝑖 = 0.When 𝑖 = 0 we have instead spoke(𝑠 [𝜅0], 𝑦◦const, 𝑖) =
𝑦 (𝜆𝜅. 𝑠 [𝜅0]). From the sphere example we know that S𝑛+1
is clock irrelevant, and hence we have a path 𝑝 : 𝜆𝜅. 𝑠 [𝜅0] =
𝑠 . This means that we can obtain the term needed for the
induction as

hcomp𝑗
[(𝑖 = 0) ↦→ 𝑦 (𝑝 𝑗)
(𝑖 = 1) ↦→ hub(𝑦◦const)

]
spoke(𝑠 [𝜅0], 𝑦◦const, 𝑖).

We defer the details of showing that this map is inverse to
the canonical one to the appendix.
Pushout. Using constructions similar to the examples

above, one can prove that pushouts commute with ∀𝜅 using
induction under clocks. More precisely, let 𝐴, 𝐵,𝐶 : ∀𝜅.U,
𝑓 : ∀𝜅.𝐶 [𝜅] → 𝐴 [𝜅], and 𝑔 : ∀𝜅.𝐶 [𝜅] → 𝐵 [𝜅]. Then the
canonical map
(∀𝜅.𝐴) ⊔(∀𝜅.𝐶 ) (∀𝜅. 𝐵) → ∀𝜅.((𝐴 [𝜅]) ⊔(𝐶 [𝜅 ] ) (𝐵 [𝜅]))

is an equivalence
Finite Powerset. A full account of the constructors for the

finite powerset is not enlightening, so we instead exemplify
the induction principle in the cases for singleton, union, and
idempotence constructors:
Γ, 𝑥 : ∀𝜅.𝐴 [𝜅] ⊢ 𝑢{−} : 𝐷 [𝜆𝜅.{𝑥 [𝜅]}]
Γ, 𝑥, 𝑥 ′ : ∀𝜅.Pf (𝐴 [𝜅]), 𝑦 : 𝐷 (𝑥), 𝑦′ : 𝐷 (𝑥 ′) ⊢

𝑢∪ (𝑥, 𝑥 ′, 𝑦,𝑦′) : 𝐷 (𝜆𝜅.𝑥 [𝜅] ∪ 𝑥 ′ [𝜅])
Γ, 𝑥 : ∀𝜅.Pf (𝐴 [𝜅]), 𝑦 : 𝐷 (𝑥), 𝑖 : I ⊢

𝑢idem (𝑥,𝑦, 𝑖) : 𝐷 (𝜆𝜅.idem(𝑥 [𝜅], 𝑖))
[ (𝑖 = 0) ↦→ 𝑢∪ (𝑥, 𝑥,𝑦,𝑦)
(𝑖 = 1) ↦→ 𝑦

]

In addition it will contain the hub and spoke constructors
derived from S1, towards obtaining a set type. Finally, this
principle shows that there is an equivalence Pf (∀𝜅.𝐴) ≃
∀𝜅.Pf (𝐴) as required for the encoding of labelled transition
systems. The concrete calculations are analogous to those
for the pushout or trunctation depending on the constructor.

As a step towards reintroducing clock-irrelevance as an
axiom, one would need to show that the collection of clock
irrelevant types is closed under HIT formation:

Theorem 5.4. Let 𝛿 : Δ ⊢ H𝛿 type be a higher inductive
type with constructors

con𝑖 : (𝛾 : Γ𝑖 [𝛿]) (𝑥 : Ξ𝑖 [𝛿,𝛾] → H𝛿) (𝑟 : Ψ𝑖 ) → H𝛿 [𝜑𝑖 ↦→ 𝑒𝑖 ]
Then H𝛿 is clock irrelevant if Γ𝑖 [𝛿] is clock irrelevant for all 𝑖 .
As a special case N is clock-irrelevant as needed for the

encoding of streams of N.

6 Denotational semantics
Previous work has defined a model of CTT in presheaves
over a cube category [20, 43] and a model of CloTT in covari-
ant presheaves over a category of time objectsT [35]. We
combine these by considering the category PSh(C ×T) of
covariant presheaves over C ×T, where C is the opposite
category of the usual choice of cube category. Let U be a
Hofmann-Streicher universe [29] in PSh(C ×T).

Following the approach of Licata et al. [34], we construct
the model using the internal type theory of PSh(C×T). We
must provide an interval object and a cofibration object, and
show that they satisfy certain axioms. As noted by Coquand
et al. [23] presheaves over the product of the cube category
with any small category admits a model of CTT. The interval
I and cofibration object F are taken to be the inclusion of
those from PSh(C).

Recall [43] that a CCHM fibration (𝐴, 𝛼) over a context Γ :
U is a family 𝐴 : Γ → U equipped with a fibration structure
𝛼 . The denotational semantics is given by the category with
families (CwF) [25] Fib constructed as follows: Contexts are
global elements of U, families are global CCHM fibrations,
and elements of (𝐴, 𝛼) are elements of 𝐴.

Tomodel HITswe followCoquand et al. [21]. The principle
of induction under clocks is justified semantically using that
∀𝜅.(−) can be modelled as an 𝜔op-limit [12] and that the
structure maps of this limit cannot change the outermost
constructor in HITs, allowing for an inductive proof.
To model a Fitch-style modality like ⊲ we must define a

dependent adjunction [19] on Fib. A dependent adjunction
consists of an endofunctor 𝐿 and an action on types 𝑅 such
that elements of 𝐿(Γ) ⊢ 𝐴 type correspond bijectively to
elements of Γ ⊢ 𝑅(𝐴) type. Most of this data is as defined
by Mannaa et al. [35], but to lift this to Fib we must define a
CCHM fibration on the right adjoint types. This can be done
using the following more general construction.

Definition 6.1. Let 𝐿 be an endofunctor on PSh(C ×T)
which preserves finite limits. We say that 𝐿 preserves the
interval if there is an isomorphism 𝐿(I) � I which preserves
endpoints. We say that 𝐿 preserves cofibrations if it maps
cofibrations to cofibrations and preserves pullbacks where
the vertical maps are cofibrations.
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Theorem 6.2. Let 𝐿 ⊣ 𝑅 be a dependent adjunction in the
internal type theory of PSh(C×T). If 𝐿 preserves cofibrations
and the interval one can define a dependent adjunction 𝐿′ ⊣ 𝑅′
on Fib such that the underlying type of 𝑅′ (𝐴, 𝛼) is 𝑅(𝐴).

7 Related work
Guarded Cubical Type Theory [9] combines Cubical Type
Theory with single-clocked guarded recursion. While this
case is useful for many purposes, it cannot be used to en-
code coinductive types. Møgelberg and Veltri [40] extend
Guarded Cubical Type Theory with ticks as in CloTT. They
give a model of this calculus including HITs, and show that
bisimilarity coincides with path equality for a large class of
guarded recursive types. This paper can be seen as an exten-
sion of that with multiple clocks, allowing for these results to
be lifted from guarded recursive types to coinductive types.
Note that modelling the multiclocked case is much more
complex than the single clock case. In particular, equipping
⊲ with a composition structure is much more challenging.
The extended language of ticks giving computation rules for
clock irrelevance presented here is also new.
The encoding of coinductive types using guarded recur-

sion was first described by Atkey and McBride [6] in the
simply typed setting. Since then a number of dependent
type theories have been developed for programming and
reasoning with these [17, 38], of which CloTT is the most
advanced. Bahr. et al. [7] prove syntactic properties of CloTT
including strong normalisation and canonicity, but only for
a pure calculus without identity or path types. The model
of CloTT constructed by Mannaa et al. [35] considers exten-
sional identity types, but no cubical features. Coinductive
types can also be encoded using a combination of guarded
recursion and a □-modality [18]. This approach has not been
studied in combination with CTT yet, and also appears to be
less flexible, e.g., it does not seem possible to define nested
coinductive types.

Sized types [32] is another approach to encoding produc-
tivity in types, by annotating (co)inductive types with sizes
indicating a bound on the size of the allowed elements. Specif-
ically, sized types reduce both termination and productivity
to (well-founded) induction on sizes. They have been exten-
sively studied from the syntactic perspective [1, 2, 45] but
are not well understood from the perspective of denotational
semantics. Our view is that sized types are closer to working
in the models of type theory, like the one provided here, and
guarded recursion is a more abstract, principled perspec-
tive. This is supported by the model of guarded recursion
in sized types constructed by Veltri and van der Weide [51].
To our knowledge sized types have never been used to solve
equations with negative occurrences, which is an important
application of guarded recursion.

The coincidence of bisimilarity and path equality for streams
as coinductive records has been proved in Cubical Agda [53],

and it is likely that the proof can be extended to general
M-types. Veltri [50] proves that bisimilarity implies path
equality for the final coalgebra for the Pf using sized types in
Cubical Agda. This coincidence should therefore be seen as
a feature of Cubical Type Theory, rather than guarded recur-
sion. On the other hand, when proving such results guarded
recursion is a powerful framework for ensuring productivity
of definitions, as illustrated by the examples in this paper.
The final coalgebra for the finite powerset functor can

be constructed in set theory as a limit of an 𝜔 + 𝜔-indexed
sequence [54]. This construction has been formalised in Cu-
bical Agda by Veltri [50] using the lesser limited principle of
omniscience, a weak choice principle. From this perspective
it is interesting that our model uses 𝜔-indexed step-indexing
only, and therefore LTS as constructed in section 4 is realised
in the model as an 𝜔-limit. This construction works because
of the formulation of Pf as a HIT and because the 𝜔-chain is
constructed externally, using judgemental equality. In par-
ticular, the counter example constructed in Proposition 5 of
[50] uses an 𝜔-chain of elements whose projections are only
equal up to path equality.

Multimodal dependent type theory [27] is a general frame-
work for dependent modal type theories parametrised over
mode theories. By instantiating this appropriately, one can
recover e.g., the basic modal framework needed for internal-
ising parametricity in type theory [8, 14], or for the combina-
tion of ⊲ and □ used for guarded recursion by Clouston et al.
[18]. Generalising this to multiple clocks seems to require a
notion of dependent mode theory, as for example, the modal
operators ⊲ depend on Clk.

8 Conclusion and future work
Wehave presented the type theory CCTT, and shown that the
principle of induction under clocks can be used to construct
a rich supply of functors for which coinductive types can
be encoded using guarded recursion. This allows for simple
programming with a wide range of coinductive types, includ-
ing ones constructed using higher inductive types. We have
seen by example how to prove coincidence of path equality
with bisimilarity for these types. We believe this type the-
ory is useful not just for coinductive reasoning, but also for
reasoning about advanced programming language features
using a form of synthetic guarded domain theory [39, 44]. In
fact, an earlier version of CCTT has already been used for a
semantic proof of applicative simulation being a congruence
for a lambda calculus with finite non-determinism [41].

We are currently developing a prototype implementation
of CCTT as an extension of Cubical Agda. The main thing
missing is the principle of induction under clocks. The proof
of Theorem 4.3 has been verified in this.

We would also like to prove canonicity for CCTT, building
on similar results for Cubical Type Theory [22, 31, 47] and
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Clocked Type Theory [7]. For Cubical Type Theory canonic-
ity is proved for terms in a context of only interval variables.
For CCTT, the context should be allowed to also contain
free clock variables in order for terms of type ∀𝜅.𝐻 (𝛿 [𝜅])
to reduce to a form in which the 𝛽-rule for induction under
clocks can be applied. On the other hand, we believe that it
should not be necessary to include free tick variables, and so
the only tick that needs to be considered in reductions is ⋄.
Our equational rules have been designed with this in mind.
Unlike this paper, other type theories for multi-clocked

guarded recursion [11, 35] take clock irrelevance (9) as an
axiom. This requires that universes be indexed by clock con-
texts, and the ⊲ modality be restricted to ⊲𝜅 : UΔ → UΔ

for 𝜅 ∈ Δ, because an unrestricted ⊲𝜅 breaks clock irrele-
vance [12]. Bizjak andMøgelberg [12] show how to construct
such universes of types that are clock-irrelevant in the sense
of the map 𝐴 → ∀𝜅.𝐴 being an isomorphism, rather than
an equivalence. Future work includes constructing larger
universes of types clock-irrelevant in the more liberal sense
used in this paper.
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A Appendix
A.1 Omitted proofs Section 3
Proof of Lemma 3.2. Given 𝑓 : ⊲𝜅𝐴 → 𝐴, let 𝑝 be the cor-
responding proof of (7), then as mentioned the center of
contraction for

Σ(𝑥 : 𝐴).Path𝐴 (𝑥, 𝑓 (𝜆(𝛼 :𝜅).𝑥))
will be the pair (fix𝜅 𝑓 , 𝑝). Then for any other such pair (ℎ, 𝑝ℎ)
we have to show (fix𝜅 𝑓 , 𝑝) = (ℎ, 𝑝ℎ), which is equivalent to

Σ(𝑞 : fix𝜅 𝑓 = ℎ). 𝑞∗𝑝 = 𝑝ℎ

We define 𝑞 by guarded recursion
fix𝜅 𝜆(𝑟 : ⊲𝜅 (fix𝜅 𝑓 = ℎ)) .(𝑝−1, 𝑝−1ℎ )∗ (ap𝑓 (𝜆𝑖.𝜆(𝛼 :𝜅).𝑟 [𝛼] 𝑖))
We then proceed to prove 𝑞∗𝑝 = 𝑝ℎ by first observing that it
is equivalent to

(𝑝, 𝑝ℎ)∗𝑞 = ap𝑓 (𝜆𝑖.𝜆(𝛼 :𝜅).𝑞 [𝛼] 𝑖)
so that by expanding 𝑞 by (7) on the left hand side and can-
celing the transports we obtain the right hand side and the
proof is concluded. □

Proof of Lemma 3.1. We have

Γ, 𝑖0, . . . , 𝑖𝑛 : I ⊢ 𝑢0 def
= 𝑢 [0/𝑖0] : 𝜅 { Γ′

and
Γ, 𝑖0, . . . , 𝑖𝑛 : I, 𝜑, 𝑗 : I ⊢ 𝑝 ( 𝑗) def

= tirr(𝑢0, 𝑢, 𝑗) : 𝜅 { Γ′

Define Γ, 𝑖0, . . . , 𝑖𝑛 : I, 𝑗 : I ⊢ 𝐶 type by
hfill𝑗 [𝜑 ↦→ 𝐴[𝑝 ( 𝑗)/𝛼]]𝐴[𝑢0/𝛼]

and then take 𝐵 def
= 𝐶 1. Then we define filler(𝑡,𝑢) as

hcomp𝑗𝐶 [𝜑 ↦→ 𝑡 [𝑝 ( 𝑗)]] (𝑡 [𝑢0])
□

A.2 Substitution for Tick Application
In figure 6 we present the formation rules for substitutions,
based on the ones from Mannaa et al. [35], and extended to
account for the new tick judgemnts and the contexts from
cubical type theory. In what follows we explain how to apply
a substitution to a tick application term.
Operation 1. Given Δ ⊢ 𝜎 : Γ and Γ ⊢ 𝑢 : 𝜅 { Γ′ we
define an operation residual(𝜎,𝑢) returning tuples of one of
two forms

• (Δ′, 𝜎 ′) such that Δ ⊢ 𝑢𝜎 : 𝜅𝜎 { Δ′ and Δ′ ⊢ 𝜎 ′ : Γ′,
and Δ ⊢ 𝜎 |Γ′ ≡ 𝜎 ′ : Γ′.

• (Δ′, 𝜅′′, 𝜎 ′) such that Δ ⊢ (𝜅𝜎,𝑢𝜎) { Δ′ and

Δ′, 𝜅′′ : clock ⊢ 𝜎 ′ : Γ′,
such that 𝜅𝜎 ′ = 𝜅′′ and Δ ⊢ 𝜎 |Γ′ ≡ 𝜎 ′ [𝜅𝜎/𝜅′′] : Γ′.

Construction. The tick 𝑢 contains tick variables 𝛼0 : 𝜅 . . . 𝛼𝑛 :
𝜅, here given in the order they appear in Γ, so in particular
we have Γ = Γ1, 𝛼0 : 𝜅, Γ2 and Γ′ ⊑ Γ1, TL(Γ2). Then let us
look at the restriction of 𝜎 to Γ1, 𝛼0 : 𝜅. We have two cases:

Substitutions
Γ ⊢

Γ ⊢ [] : ·
Γ ⊢ 𝜎 : Γ′ Γ ⊢ 𝑡 : 𝐴𝜎

Γ ⊢ (𝜎, 𝑡) : Γ′, 𝑥 : 𝐴

Γ ⊢ 𝜎 : Γ′ Γ ⊢ 𝜅′ : clock
Γ ⊢ (𝜎, 𝜅′) : Γ′, 𝜅 : clock

Γ ⊢ 𝜎 : Γ′ Γ ⊢ 𝑟 : I
Γ ⊢ (𝜎, 𝑟 ) : Γ′, 𝑖 : I

Γ ⊢ 𝜎 : Γ′ Γ′ ⊢ 𝜑 : F Γ ⊢ 𝜑𝜎 = 1F : F
Γ ⊢ 𝜎 : Γ′, 𝜑

Γ0 ⊢ 𝜎 : Γ′ Γ ⊢ 𝑢 : 𝜅𝜎 { Γ0

Γ ⊢ (𝜎,𝑢) : Γ′, 𝛼 : 𝜅

Γ0 ⊢ 𝜎 : Γ′ Γ ⊢ (𝜅′, 𝑣) { Γ0

Γ ⊢ 𝜎, (𝜅′, 𝑣) : Γ′, 𝜅 : clock, 𝛼 : 𝜅

Figure 6. Formation rules for substitutions.

(i) (𝜎1, 𝑣) with Δ′ ⊢ 𝜎1 : Γ1 and Δ0 ⊢ 𝑣 : 𝜅𝜎1 { Δ′ with
Δ0 ⊑ Δ.

(ii) (𝜎0, (𝜅′, 𝑣)) with Γ1 = Γ0, 𝜅 : clock, and Δ′ ⊢ 𝜎0 : Γ0,
and Δ0 ⊢ (𝜅′, 𝑣) { Δ′, with Δ0 ⊑ Δ.

In either case the tick 𝑣 lives in the context Δ0 ⊑ Δ because
other components of the substitution 𝜎 , e.g. for 𝛼1 . . . 𝛼𝑛 ,
might have shrinked the context so.
In case (i) we extend 𝜎1 to Δ′ ⊢ 𝜎 ′1 : Γ1, TL(Γ2) because

whenever we have one of Δ ⊢ 𝜅𝑖 : clock, or Δ ⊢ 𝑟 : I, or
Δ ⊢ 𝜑 ≡ 1F : F we also have the same in Δ′ ⊑ Δ. Finally we
take 𝜎 ′ to be 𝜎 ′1 |Γ′ , which agrees with 𝜎 |Γ′ by construction.
The constructed tuple will be (Δ′, 𝜎 ′).

In case (ii) we extend𝜎0 first toΔ′, 𝜅′′ ⊢ (𝜎0, 𝜅′′) : Γ0, 𝜅 : clock
then to a subsitution Δ′, 𝜅′′ ⊢ 𝜎 ′0 : Γ1, TL(Γ2) as above, fur-
thermore noting that TL(Γ2) does not depend on𝜅 . Finally we
take 𝜎 ′ to be 𝜎 ′0 |Γ′ . The substitution 𝜎 ′ [𝜅′/𝜅′′] then agrees
with 𝜎 |Γ′ by construction, and we also have 𝜅𝜎 ′ ≡ 𝜅′′. The
constructed tuple will be (Δ′, 𝜅′′, 𝜎 ′).

To show that we have the correct typing for𝑢𝜎 we observe
that Δ′ is smaller as a subcontext of Δ than the ones the
ticks 𝛼1𝜎 . . . 𝛼𝑛𝜎 target, so they can all be weakened to fit
the typing Δ ⊢ 𝛼𝑖𝜎 : 𝜅𝜎1 { Δ′. In case (i) then we are
done by extending this observation to 𝑣 . In case (ii) we can
further derive Δ ⊢ (𝜅𝜎1, 𝛼𝑖𝜎) { Δ′ which gives us what we
want. □

For Δ ⊢ 𝜎 : Γ, and Γ′ ⊢ 𝑡 : ⊲ (𝛼 :𝜅). 𝐴, and Γ ⊢ 𝑢 : 𝜅 { Γ′,
we have that substitution commutes with tick application in
the following way:

(𝑡 Γ′ [𝑢])𝜎 =

{
𝑡𝜎 ′ Δ′ [𝑢𝜎] if residual(𝜎,𝑢) = (Δ′, 𝜎 ′)
(𝜅′′ . 𝑡𝜎 ′) Δ′ [(𝜅𝜎,𝑢𝜎)] if residual(𝜎,𝑢) = (Δ′, 𝜅′′, 𝜎 ′)

We want to show that typing is preserved. For the first case,
we can assume Δ′ ⊢ 𝑡𝜎 ′ : ⊲ (𝛼 :𝜅𝜎 ′) .𝐴(𝜎 ′, 𝛼), so by the tick
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application rule we have Δ ⊢ 𝑡𝜎 ′ Δ′ [𝑢𝜎] : 𝐴(𝜎 ′, 𝛼) [𝑢𝜎/𝛼],
where the latter type is equal to𝐴[𝑢/𝛼]𝜎 as expected. For the
second case, we can assumeΔ′, 𝜅′′ ⊢ 𝑡𝜎 ′ : ⊲ (𝛼 :𝜅𝜎 ′).𝐴(𝜎 ′, 𝛼),
so by the forcing tick application rule we have

Δ ⊢ (𝜅′′ . 𝑡𝜎 ′) Δ′ [(𝜅𝜎,𝑢𝜎)] : 𝐴(𝜎 ′, 𝛼) [𝑢𝜎 : 𝜅𝜎/𝛼 : 𝜅′′],
where the latter type is equal to 𝐴[𝑢/𝛼]𝜎 as expected.

Operation 2. Given Δ ⊢ 𝜎 : Γ and Γ ⊢ (𝜅,𝑢) { Γ′ we define
an operation bresidual(𝜎, (𝜅,𝑢)) returning tuples of the form

• (Δ′, 𝜎 ′) such that Δ ⊢ (𝜅𝜎,𝑢𝜎) { Δ′ and Δ′ ⊢ 𝜎 ′ : Γ′,
and Δ ⊢ 𝜎 |Γ′ ≡ 𝜎 ′ : Γ′

Construction. Here the tick 𝑢 might not contain any tick
variables, in which case we take Δ′ to be Δ and 𝜎 ′ to be 𝜎 |Γ′ .
If 𝑢 does contain tick variables then we have cases (i) and (ii)
as in the construction of residual(−,−). We chose to use 𝜅
in the assumption Γ ⊢ (𝜅,𝑢) { Γ′ so that the names in the
cases would line up with the previous construction.
In case (i) we construct the tuple (Δ′, 𝜎 ′) as we did be-

fore, and the same reasoning extends to the well-typing of
Δ ⊢ (𝜅𝜎,𝑢𝜎) { Δ′.
In case (ii) let us recall that here Γ is of the form Γ0, 𝜅 :

clock, 𝛼0 : 𝜅, Γ2, with Γ′ ⊑ Γ0, 𝜅 : clock, TL(Γ2). We also have
Δ′ ⊢ (𝜎0, 𝜅′) : Γ0, 𝜅 : clock, which agrees with 𝜎 restricted
to the same context. As before we can extend (𝜎0, 𝜅′) to a
substitution for Γ0, 𝜅 : clock, TL(Γ2) by using the relevant
components of 𝜎 , and finally obtain the desired 𝜎 ′ by restric-
tion to Γ′. □

For Δ ⊢ 𝜎 : Γ, and Γ′, 𝜅 : clock ⊢ 𝑡 : ⊲ (𝛼 : 𝜅) .𝐴, and
Γ ⊢ (𝜅′, 𝑢) { Γ′, we have that substitution commutes with
forcing tick application in the following way:

((𝜅.𝑡) Γ′ [(𝜅′, 𝑢)])𝜎 = (𝜅. 𝑡 (𝜎 ′, 𝜅)) Δ′ [(𝜅′𝜎,𝑢𝜎)]
where bresidual(𝜎, (𝜅′, 𝑢)) = (Δ′, 𝜎 ′). We want to show that
typing is preserved. We can assume

Δ′, 𝜅 : clock ⊢ 𝑡 (𝜎 ′, 𝜅) : ⊲ (𝛼 :𝜅). 𝐴(𝜎 ′, 𝜅, 𝛼),
then by the forcing tick application rule we have

Δ ⊢ (𝜅. 𝑡 (𝜎 ′, 𝜅)) Δ′ [(𝜅′𝜎,𝑢𝜎)] : 𝐴(𝜎 ′, 𝜅, 𝛼) [𝑢𝜎 : 𝜅′𝜎/𝛼 : 𝜅],
where the latter type is equal to𝐴[𝑢 : 𝜅′/𝛼 : 𝜅]𝜎 as expected.

A.3 Omitted proofs Section 4
Proof of Lemma 4.2. The case of composition is clear, and
products follow from the fact that ∀𝜅.(𝐴 × 𝐵) ≃ (∀𝜅.𝐴) ×
(∀𝜅.𝐵). Likewise, the case of Π-types follows from the fact
that ∀𝜅.Π(𝑎 : 𝐴).𝐵 ≃ Π(𝑎 : 𝐴).∀𝜅.𝐵 which can be proved by
commuting two arguments. In the case of Σ, since ∀𝜅.(−)
behaves as a function space from a type of clocks, one can
prove

∀𝜅.Σ(𝑎 : 𝐴).𝐵(𝑎) ≃ Σ(𝑎 : ∀𝜅.𝐴).∀𝜅.𝐵(𝑎[𝜅])
≃ Σ(𝑎 : 𝐴).∀𝜅.𝐵(𝑎)

using the assumption that 𝐴 is clock invariant in the last
equivalence. The case for universal quantification over clocks
uses ∀𝜅.∀𝜅′ .𝐴 ≃ ∀𝜅′ .∀𝜅.𝐴.

In the case of guarded recursive types, first note that if 𝐹
commutes with clock quantification, so does ⊲𝜅𝐹 . This can
be proved using ∀𝜅′ . ⊲𝜅 𝐴 ≃ ⊲𝜅∀𝜅′ .𝐴, the left to right map of
which maps 𝑎 to

𝜆(𝛼 :𝜅).𝜆𝜅′ .𝑎[𝜅′] [𝛼]
for 𝛼 fresh. This map type checks because TL(𝜅′ : clock) =
𝜅′ : clock. Using this, we can prove by guarded recursion
that 𝑋 is clock irrelevant as follows

∀𝜅′ .𝑋 ≃ ∀𝜅′ .𝐹 (⊲𝜅𝑋 )
≃ 𝐹 (∀𝜅′ . ⊲𝜅 𝑋 )
≃ 𝐹 (⊲𝜅∀𝜅′ .𝑋 )
≃ 𝐹 (⊲𝜅𝑋 )

using the guarded recursion assumption in the last line.
In the case of path types, if 𝑥,𝑦 : 𝐴 then

∀𝜅.(Path𝐴 (𝑥,𝑦)) ≃ Path∀𝜅.𝐴 (𝜆𝜅.𝑥, 𝜆𝜅.𝑦)
≃ Path𝐴 (𝑥,𝑦)

The first of these equivalences simply swaps the clock and
interval argument, the second uses the assumption that 𝐴
is clock invariant, which means precisely that 𝜆𝑎.𝜆𝜅.𝑎 is an
equivalence, and so preserves path types. □

Example 4.5 uses the following lemma.

Lemma A.1. Let𝐴 be a clock irrelevant set and let 𝑋 : Pf (𝐴),
𝑎 : 𝐴. Then 𝑎 ∈ 𝑋 is clock irrelevant.

Proof. The proof is by induction on 𝑋 , which is valid since
statements of the form IsEquiv(𝑓 ) are propositions. If 𝑋 =
{𝑏} then 𝑎 ∈ 𝑋 is by definition Path𝐴 (𝑎, 𝑏), which is clock
irrelevant by Lemma 4.2. If 𝑋 = 𝑌 ∪ 𝑍 then 𝑎 ∈ 𝑋 is (𝑎 ∈
𝑌 ) × (𝑎 ∈ 𝑍 ) which is clock-irrelevant by induction and
Lemma 4.2. □

We now give a proof of Theorem 4.6. We will write

ufld𝜅 : LTS𝜅 → Pf (𝐴 × ⊲𝜅LTS𝜅)
for the equivalence associated with the guarded recursive
type LTS𝜅 . First note the following.

Lemma A.2. The following diagram commutes up to path
equality.

LTS Pf (𝐴 × LTS)

LTS𝜅 Pf (𝐴 × ⊲𝜅LTS𝜅)

ufld

ev𝜅 Pf (𝐴×𝑓 )
ufld𝜅

where ev𝜅
def
= 𝜆𝑥 .𝑥 [𝜅] and 𝑓 = 𝜆𝑥 .𝜆(𝛼 :𝜅).𝑥 [𝜅].
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Proof. The map ufld is defined to be the composition of the
following maps

∀𝜅.ufld𝜅 : ∀𝜅.LTS𝜅 → ∀𝜅.Pf (𝐴 × ⊲𝜅LTS𝜅)
𝜑 : ∀𝜅.Pf (𝐴 × ⊲𝜅LTS𝜅) → Pf (𝐴 × ∀𝜅. ⊲𝜅 LTS𝜅)

Pf (𝐴 × force) : Pf (𝐴 × ∀𝜅. ⊲𝜅 LTS𝜅) → Pf (𝐴 × ∀𝜅.LTS𝜅)
where ∀𝜅.ufld𝜅 (𝑥) = 𝜆𝜅.ufld𝜅 (𝑥 [𝜅]), 𝜑 is the witness that
Pf (𝐴 × (−)) commutes with clock quantification, and force :
∀𝜅. ⊲𝜅 LTS𝜅 → ∀𝜅.LTS𝜅 is the inverse to 𝜆𝑥 .𝜆(𝛼 :𝜅).𝑥 up to
path equality. By the latter, we get the following sequence
of path equalities

Pf (𝐴 × 𝑓 ) ◦ ufld = Pf (𝐴 × ev𝜅) ◦ 𝜑 ◦ ∀𝜅.ufld𝜅
= ev𝜅 ◦ ∀𝜅.ufld𝜅
= ufld𝜅 ◦ ev𝜅

as desired. □

Proof of Theorem 4.6. Møgelberg and Veltri [40] prove that
path equality coincides with bisimilarity for guarded re-
cursive types. Using their results we can prove that, given
𝑥,𝑦 : LTS

PathLTS (𝑥,𝑦) ≃ ∀𝜅.PathLTS𝜅 (𝑥 [𝜅], 𝑦 [𝜅])
≃ ∀𝜅.Bisim𝜅 (𝑥 [𝜅], 𝑦 [𝜅]) (10)

where the first equivalence uses functional extensionality
for universal quantification over clocks and the second is [40,
Corollary 5.4]. Here Bisim𝜅 (𝑥,𝑦) = Sim𝜅 (𝑥,𝑦) × Sim𝜅 (𝑦, 𝑥)
where
Sim𝜅 (𝑥,𝑦) ≃Π(𝑥 ′ : ⊲𝜅LTS𝜅 , 𝑎 : 𝐴).(𝑎, 𝑥 ′) ∈ ufld𝜅 (𝑥) →

∃𝑦′ : ⊲𝜅LTS𝜅 .(𝑎,𝑦′) ∈ ufld𝜅 (𝑦)×
⊲ (𝛼 :𝜅).Sim𝜅 (𝑥 ′ [𝛼], 𝑦′ [𝛼])

We must compare this to bisimilarity of 𝑥 and 𝑦 which is
defined as

∀𝜅.(Sim𝜅
∀ (𝑥,𝑦) × Sim𝜅

∀ (𝑦, 𝑥))
where

Sim𝜅
∀ (𝑥,𝑦) ≃Π(𝑥 ′ : LTS, 𝑎 : 𝐴) .(𝑎, 𝑥 ′) ∈ ufld (𝑥) →

∃𝑦′ : LTS.(𝑎,𝑦′) ∈ ufld (𝑦)×
⊲ (𝛼 :𝜅).Sim𝜅

∀ (𝑥 ′, 𝑦′)
By an easy guarded recursive argument one can show that
Sim𝜅

∀ is a reflexive relation, and from this it follows that path
equality implies bisimilarity. To prove the other implication
it suffices to show that

Π(𝑥,𝑦 : LTS).Sim𝜅
∀ (𝑥,𝑦) → Sim𝜅 (𝑥 [𝜅], 𝑦 [𝜅])

and this statement is proved by guarded recursion. So sup-
pose 𝑥,𝑦 : LTS and Sim𝜅

∀ (𝑥,𝑦). Suppose further that 𝑥 ′ :
⊲𝜅LTS𝜅 , 𝑎 : 𝐴 and (𝑎, 𝑥 ′) ∈ ufld𝜅 (𝑥 [𝜅]). By Lemma A.2 this
means that (𝑎, 𝑥 ′) ∈ Pf (𝐴 × 𝑓 ) (ufld (𝑥)) where 𝑓 = 𝜆𝑥.𝜆(𝛼 :
𝜅).𝑥 [𝜅]. By [40, Lemma 4.1] there then (merely, i.e. in the
sense of ∃) exists an 𝑥 ′′ : LTS such that 𝑥 ′ = 𝑓 (𝑥 ′′), i.e.,

𝑥 ′ = 𝜆(𝛼 :𝜅).(𝑥 ′′ [𝜅]) (11)

and (𝑎, 𝑥 ′′) ∈ ufld (𝑥). By the assumption that Sim𝜅
∀ (𝑥,𝑦)

there then merely exists a 𝑦′′ : LTS such that (𝑎,𝑦′′) ∈
ufld (𝑦) and

⊲ (𝛼 :𝜅).Sim𝜅
∀ (𝑥 ′′, 𝑦′′). (12)

Setting 𝑦′ = 𝑓 (𝑦′′) then, again by [40, Lemma 4.1] (𝑎,𝑦′) ∈
Pf (𝐴×𝑓 ) (ufld (𝑦)) and so by LemmaA.2, (𝑎,𝑦′) ∈ ufld𝜅 (𝑦 [𝜅]).
It remains to show that

⊲ (𝛼 :𝜅).Sim𝜅 (𝑥 ′ [𝛼], 𝑦′ [𝛼])
which reduces to

⊲ (𝛼 :𝜅).Sim𝜅 (𝑥 ′′ [𝜅], 𝑦′′ [𝜅])
using (11) and definition of 𝑦′. This follows by guarded re-
cursion from (12). □

We now give a proof of Theorem 4.3. It uses the following
lemma establishing the existence of a final 𝐹 ◦ ⊲𝜅-coalgebra
for any endofunctor 𝐹 .
Lemma A.3. Let 𝐹 be an 𝐼 -indexed endofunctor, then for all

𝜅, the type 𝜈𝜅 (𝐹 ) def
= fix𝜅 (𝜆𝑋 .𝐹 (⊲𝜅𝑋 )) : 𝐼 → U has a final

𝐹 ◦ ⊲𝜅 -coalgebra structure, i.e., there is a map out𝜅 : 𝜈𝜅 (𝐹 ) →
𝐹 (⊲𝜅 𝜈𝜅 (𝐹 )), such that for all maps 𝑓 : 𝑋 → 𝐹 (⊲𝜅 𝑋 ) the
following type is contractible

Σ(ℎ : 𝑋 → 𝜈𝜅 (𝐹 )) . out𝜅 ◦ ℎ = 𝐹 (⊲𝜅 (ℎ)) ◦ 𝑓
Proof. The map out𝜅 is given by the equivalence between a
fixpoint in the universe and its unfolding, so we also have an
inverse (out𝜅)−1. The functor ⊲𝜅 is locally contractible [10]
in the sense that the action on morphisms factors as a com-
position of two maps

(𝑋 → 𝑌 ) → ⊲𝜅 (𝑋 → 𝑌 ) → (⊲𝜅𝑋 → ⊲𝜅𝑌 )
and so also the mapping 𝜆ℎ.(out𝜅)−1 ◦ 𝐹 (⊲𝜅 (ℎ)) ◦ 𝑓 factors
as a composition

(𝑋 → 𝜈𝜅 (𝐹 )) → ⊲𝜅 (𝑋 → 𝜈𝜅 (𝐹 )) → (𝑋 → 𝜈𝜅 (𝐹 ))
Then by uniqueness of fixpoints we get the contractibility of

Σ(ℎ : 𝑋 → 𝜈𝜅 (𝐹 )). ℎ = (out𝜅)−1 ◦ 𝐹 (⊲𝜅 (ℎ)) ◦ 𝑓
which in turn is equivalent to our goal by postcomposition
with out𝜅 . □

Proof of Theorem 4.3. We define the coalgebra out : 𝜈 (𝐹 ) →
𝐹 𝜈 (𝐹 ) as 𝐹 (force) ◦ can−1𝐹 ◦ ∀𝜅 (out𝜅). Given any coalgebra
𝑓 : 𝑋 → 𝐹 𝑋 , we can extend it to 𝑓 𝜅 : 𝑋 → 𝐹 (⊲𝜅𝑋 ) for any
𝜅. Then by lemma A.3 we have that for any 𝜅 the type

Σ(ℎ : 𝑋 → 𝜈𝜅 (𝐹 )) . out𝜅 ◦ ℎ = 𝐹 (⊲𝜅 (ℎ)) ◦ 𝑓 𝜅
is contractible. By clock quantification preserving contractibil-
ity and commuting with Σ types we have that
Σ(ℎ : ∀𝜅. 𝑋 → 𝜈𝜅 (𝐹 )) .∀𝜅. (out𝜅) ◦ℎ [𝜅] = 𝐹 (⊲𝜅 (ℎ [𝜅])) ◦ 𝑓 𝜅
is also contractible. Then by ∀𝜅. 𝑋 → 𝜈𝜅 (𝐹 ) ≃ 𝑋 → 𝜈 (𝐹 )
and that (𝜆𝜅. 𝐹 (⊲𝜅 (ℎ [𝜅])) ◦ 𝑓 𝜅) = can𝐹 ◦ 𝐹 (force−1) ◦ 𝐹 (ℎ)
we obtain the desired result. More details on the calculations
can be found in [38]. □
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A.4 Omitted proofs section 5
The equational theory of boundary terms is given by ≡𝑏
defined in Figure 7. This theory is used in the typing of
boundary terms, when typing systems and homogenous
compositions. More precisely, the requirement is that for
a system of boundary conditions [𝜑1 𝑀1 . . . 𝜑𝑚 𝑀𝑚] to be
wellformed, it must be the case that𝜑𝑖∧𝜑 𝑗 implies𝑀𝑖 ≡𝑏 𝑀 𝑗 ,
for any 𝑖, 𝑗 . Similarly, for hcomp𝑗H𝛿 [𝜓 ↦→ 𝑀 ′]𝑀 ′

0 to be well
typed, we must have𝑀 ′ [0/ 𝑗] ≡𝑏 𝑀 ′

0.

Proof of Lemma 5.2. Throughout we assume that Γ ⊢ 𝛿 :
∀𝜅.Δ unless otherwise specified. Through an induction on
the structure of the boundary terms, we prove the following
more general typing:

Γ′, 𝛾 : ∀𝜅. Γ̂ [𝛿 [𝜅], 𝛾 [𝜅]] ⊢ L𝑀M𝛿
E,𝑥 ↦→𝑦,𝛾

: 𝐷 [𝜆𝜅.𝑀 [𝛾 [𝜅], 𝑥 [𝜅], 𝑖, 𝛾 [𝜅]]]
where Γ′ is defined as follows

Γ′def= Γ, 𝛾 : ∀𝜅.Γ𝑖 [𝛿 [𝜅]], 𝑥 : ∀𝜅.Ξ𝑖 [𝛿 [𝜅], 𝛾 [𝜅]] → H (𝛿 [𝜅]),
𝑦 : (𝜉 : ∀𝜅.Ξ[𝛿 [𝜅], 𝛾 [𝜅]]) → 𝐷 [𝜆𝜅.𝑥 [𝜅] (𝜉 [𝜅])], 𝑖 : Ψ𝑖 , 𝜑𝑖

and 𝑀 is assumed to be a boundary term of type H𝛿 in
context

𝛿 : Δ, 𝛾 : Γ𝑖 [𝛿], 𝑥 : Ξ𝑖 [𝛿,𝛾] → H𝛿, 𝑖 : Ψ𝑖 , 𝜑𝑖 , 𝛾 : Γ̂ [𝛿,𝛾]
The desired typing is then the case where Γ̂ above is empty,
since we have that 𝜑𝑘 implies that 𝜆𝜅.con𝑖 (. . .) reduces to
𝜆𝜅.𝑀𝑘 . The Γ̂ crops up because the interpretation of con-
structors adds a 𝜉 : ∀𝜅.Ξ[𝛿 [𝜅], 𝛾 [𝜅]] to the context while
the hcomp case adds an interval variable and a face restric-
tion to the context for the system of the composition. In
the very first step, unfolding the list of partial elements
adds a face restriction as well. Concretely we proceed as
follows in each case. Also, we write 𝜎 for the substitution
[𝛿 [𝜅]/𝛿,𝛾 [𝜅]/𝛾, 𝑥 [𝜅]/𝑥,𝛾 [𝜅]/𝛾] and 𝜏 for the same but with-
out the 𝑥 component.

• Assume𝑀 = 𝑥 𝑗 𝑢. From the typing assumptions on𝑀
we have that

𝛿 : Δ, 𝛾 : Γ𝑖 , 𝑥 : Ξ𝑖 [𝛿,𝛾] → H𝛿, 𝑖 : Ψ, 𝜑𝑖 , Γ̂ ⊢ 𝑢 : Ξ𝑖, 𝑗
Thismeans that 𝜉 = 𝜆𝜅.𝑢𝜏 has type∀𝜅.Ξ𝑖, 𝑗 [𝛿 [𝜅], 𝛾 [𝜅]],
which is exactly the input to 𝑦 𝑗 , so that 𝑦 𝑗 𝜉 has type
𝐷 [𝜆𝜅. 𝑥 [𝜅] (𝑢𝜏)], as desired.

• Assume𝑀 = con𝑗 (𝑡, 𝜆𝜉 .𝑀 ′, 𝑟 ). By inductive hypothe-
sis we have that

Γ′, 𝛾 : ∀𝜅. Γ̂ [𝛿 [𝜅], 𝛾 [𝜅]], 𝜉 : ∀𝜅.Ξ𝑗,𝑘 [𝛿 [𝜅], 𝑡𝜏]
⊢ L𝑀 ′

𝑘M𝛿E,𝑥 ↦→𝑦,(𝛾,𝜉 ) : 𝐷 [𝜆𝜅.𝑀 ′
𝑘𝜎]

This gives us the input necessary to applyE𝑗 . The 𝑡
family has a similar typing structure to 𝑢 in the previ-
ous example so we get 𝑡 ′ = 𝜆𝜅.𝑡𝜏 of type ∀𝜅.Γ𝑗 [𝛿 [𝜅]].

We obtain maps
𝑆𝑘 : ∀𝜅.Ξ𝑗,𝑘 [𝛿 [𝜅], 𝑡 ′ [𝜅]] → H (𝛿 [𝜅])
𝑆𝑘 = 𝜆𝜅.𝜆𝜉 .𝑀 ′

𝑘𝜎

directly from the typing assumptions and by inductive
hypothesis we obtain maps

𝑅𝑘 : (𝜉 : ∀𝜅.Ξ𝑗,𝑘 [𝛿 [𝜅], 𝑡 ′ [𝜅]]) → 𝐷 [𝜆𝜅.𝑆𝑘 [𝜅] (𝜉 [𝜅])]
𝑅𝑘 = 𝜆𝜉.L𝑀 ′

𝑘M𝛿E,𝑥 ↦→𝑦,(𝛾,𝜉 )
This means we have the required data to applyE𝑗 , and
by the definition of clock abstracted elimination lists
we have thatE𝑗 [𝑡 ′, 𝑆, 𝑅, 𝑟 ] inhabits 𝐷 over 𝜆𝜅.𝑀𝜎 .

• Assume 𝑀 = hcomp𝑗H𝛿 [𝜓 ↦→ 𝑀 ′]𝑀 ′
0. By inductive

hypothesis and the typing assumptions for the hcomp
to be well formed we have that L𝑀 ′

0M𝛿E,𝑥 ↦→𝑦,𝛾
inhab-

its 𝐷 over 𝜆𝜅.𝑀 ′
0𝜎 , and L𝑀 ′M𝛿

E,𝑥 ↦→𝑦,𝛾,𝑗
inhabits 𝐷 over

𝜆𝜅.𝑀 ′𝜎 in the context extended by 𝑗 : I and restricted
by𝜓 . The 𝑣 term provides a path between 𝜆𝜅.𝑀 ′

0𝜎 and
its composition with 𝜆𝜅.𝑀 ′𝜎 , which means that the
composition in 𝐷 [𝑣 𝑗] provides a term over 𝜆𝜅.𝑀𝜎 as
desired. Finally, for the composition to be well typed,
we must verify that

L𝑀 ′M𝛿
E,𝑥 ↦→𝑦,𝛾,𝑗 [0/ 𝑗] ≡ L𝑀 ′

0M𝛿E,𝑥 ↦→𝑦,𝛾

An easy induction shows that the left hand side equals
L𝑀 ′ [0/ 𝑗]M𝛿

E,𝑥 ↦→𝑦,𝛾
and since 𝑀 ′

0 ≡𝑏 𝑀 ′ [0/ 𝑗], this fol-
lows from Lemma A.4 below.

• Assume𝑀 = [𝜑0𝑀0, . . . , 𝜑𝑛𝑖 𝑀𝑛𝑖 ]. In this case we have
the following typing by inductive hypothesis:

Γ′, 𝜑𝑘 ⊢ L𝑀𝑘M𝛿E,𝑥 ↦→𝑦,𝛾 : 𝐷 [𝜆𝜅.𝑀𝑘𝜎]
Finally, in order to conclude that

[𝜑1 L𝑀1M𝛿E,𝑥 ↦→𝑦,𝛾 , . . . , 𝜑𝑛𝑖 L𝑀𝑛𝑖 M𝛿E,𝑥 ↦→𝑦,𝛾 ]
defines a system, and so a partial element of𝐷 [𝜆𝜅.𝑀𝜎],
we must show that on faces of the form 𝜑 𝑗 ∧ 𝜑𝑘 the
judgemental equality

L𝑀 𝑗 M𝛿E,𝑥 ↦→𝑦,𝛾 ≡ L𝑀𝑘M𝛿E,𝑥 ↦→𝑦,𝛾

holds. Since on this face𝑀 𝑗 ≡𝑏 𝑀𝑘 , this follows from
Lemma A.4 below. □

Lemma A.4. If Γ ⊢ 𝑀 ≡𝑏 𝑁 then Γ ⊢ L𝑀M𝛿
E,𝑥 ↦→𝑦,𝛾

≡
L𝑁 M𝛿

E,𝑥 ↦→𝑦,𝛾

Proof. The proof is by induction on the proof of 𝑀 ≡𝑏 𝑁 .
The interesting case is the reduction of a constructor to its
boundary, which requires showing that 𝜑𝑖 ≡ ⊤ implies

Lconℓ (𝑡, 𝜆𝜉 . 𝑀, 𝑟 )M𝛿E,𝑥 ↦→𝑦,𝛾 ≡ L𝑁𝑖 (𝑡, 𝜆𝜉 . 𝑀, 𝑟 )M𝛿E,𝑥 ↦→𝑦,𝛾 (13)

The left hand side of this equation is Eℓ [𝑡 ′, 𝑆, 𝑅, 𝑟 ], which
under the assumption that 𝜑𝑖 ≡ ⊤ equals

L𝑁𝑖M𝛿E,𝑥 ↦→𝑦,𝛾 [𝑡
′
, 𝑆, 𝑅, 𝑟/𝛾, 𝑥,𝑦, 𝑖]
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Rules for equality of boundary terms

Γ ⊢ 𝑢 ≡ 𝑣
Γ ⊢ 𝑥 𝑢 ≡𝑏 𝑥 𝑣

Γ ⊢ 𝑡 ≡ 𝑡 ′ Γ ⊢ 𝑟 ≡ 𝑟 ′ ∀𝑖 .(Γ, 𝜉𝑖 ⊢ 𝑀𝑖 ≡𝑏 𝑀 ′
𝑖 )

Γ ⊢ conℓ (𝑡, 𝜆𝜉 . 𝑀, 𝑟 ) ≡𝑏 conℓ (𝑡 ′, 𝜆𝜉 . 𝑀 ′, 𝑟 ′)

Γ, 𝑗, 𝜑 ⊢ 𝑀 ≡𝑏 𝑀 ′ Γ ⊢ 𝑀0 ≡𝑏 𝑀 ′
0

Γ ⊢ hcomp𝑗H𝛿 [𝜑 ↦→ 𝑀] 𝑀0 ≡𝑏 hcomp𝑗H𝛿 [𝜑 ↦→ 𝑀 ′] 𝑀 ′
0

𝑒ℓ = [𝜑1 𝑁1 . . . 𝜑𝑚 𝑁𝑚] Γ ⊢ 𝜑𝑖 ≡ ⊤
Γ ⊢ conℓ (𝑡, 𝜆𝜉 . 𝑀, 𝑟 ) ≡𝑏 𝑁𝑖 (𝑡, 𝜆𝜉 . 𝑀, 𝑟 )

Γ ⊢ 𝜑 ≡ ⊤
Γ ⊢ hcomp𝑗H𝛿 [𝜑 ↦→ 𝑀] 𝑀0 ≡𝑏 𝑀 [1/ 𝑗]

Substitution operation

(𝑥 𝑗 𝑢) (𝑡, 𝜆𝜉 . 𝑀, 𝑟 ) = 𝑀 𝑗 [𝑢 [𝑡, 𝑟 ]/𝜉 𝑗 ]
conℓ (𝑡 ′, 𝜆𝜉 ′ . 𝑀 ′, 𝑟 ′) (𝑡, 𝜆𝜉 . 𝑀, 𝑟 ) = conℓ (𝑡 ′ [𝑡, 𝑟 ], 𝜆𝜉 ′ . 𝑀 ′ (𝑡, 𝜆𝜉 . 𝑀, 𝑟, 𝜉 ′), 𝑟 ′ [𝑟 ])

(hcomp𝑗H𝛿 [𝜑 ↦→ 𝑁 ] 𝑁0) (𝑡, 𝜆𝜉 . 𝑀, 𝑟 ) = hcomp𝑗H𝛿 [𝜑 ↦→ (𝑁 (𝑡, 𝜆𝜉 . 𝑀, 𝑟, 𝑗))] (𝑁0 (𝑡, 𝜆𝜉 . 𝑀, 𝑟 ))

Figure 7. The equational theory of boundary terms is the least equivalence relation generated by the rules above. The rule for
reducing a constructor to its boundary uses the substitution also defined above.

It thus suffices to prove equality of the above with the right
hand side of (13). We omit the straight forward induction
proof of this substitution property. □

Details of higher truncation. Recall that we defined a map
𝛼 : ∀𝜅. ∥𝐴∥𝑛 → ∥∀𝜅.𝐴∥𝑛 . For 𝑓 : ∀𝜅. S𝑛+1 → ∥𝐴∥𝑛 we let
𝑓 ′ = 𝜆𝑠. 𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠)) and 𝑝𝑠 : 𝜆𝜅. 𝑠 [𝜅0] = 𝑠 is the path
extracted from clock irrelevance of S𝑛+1. Note that from the
definition of 𝛼 , we get the following reductions:

𝛼 (𝜆𝜅.in(𝑎 [𝜅])) ≡ in(𝑎)
𝛼 (𝜆𝜅.hub(𝑓 [𝜅])) ≡ hub(𝑓 ′)

𝛼 (𝜆𝜅. spoke(𝑠 [𝜅], 𝑓 [𝜅], 𝑖)) ≡
hcomp𝑗 [(𝑖 = 0) ↦→𝛼 (𝜆𝜅. (𝑓 [𝜅]) ((𝑝𝑠 𝑗) [𝜅])),

(𝑖 = 1) ↦→hub(𝑓 ′)]
spoke(𝑠 [𝜅0], 𝑓 ′, 𝑖)

For ease of reasoning, we write out the reductions for the
canonical map 𝛽 :

𝛽 (in(𝑎)) ≡ 𝜆𝜅.in(𝑎 [𝜅])
𝛽 (hub(𝑓 )) ≡ 𝜆𝜅.hub(𝜆𝑠. (𝛽 (𝑓 (𝑠))) [𝜅])

𝛽 (spoke(𝑠, 𝑓 , 𝑖)) ≡ 𝜆𝜅. spoke(𝑠, 𝜆𝑠. (𝛽 (𝑓 (𝑠))) [𝜅], 𝑖)

We show that the two maps are inverse to one another
by induction, leaving out the trivial first case. For hub we
reason as follows:

𝛼 (𝛽 (hub(𝑓 ))) ≡ 𝛼 (𝜆𝜅.hub(𝜆𝑠. (𝛽 (𝑓 (𝑠))) [𝜅]))
≡ hub(𝜆𝑠. 𝛼 (𝜆𝜅. (𝛽 (𝑓 (𝑠))) [𝜅]))
≡ hub(𝜆𝑠. 𝛼 (𝛽 (𝑓 (𝑠))))
= hub(𝜆𝑠. 𝑓 (𝑠))
≡ hub(𝑓 )

𝛽 (𝛼 (𝜆𝜅.hub(𝑓 [𝜅]))) ≡ 𝛽 (hub(𝜆𝑠. 𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠))))
≡ 𝜆𝜅′ . hub(𝜆𝑠. 𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠))) [𝜅′])
= 𝜆𝜅′ . hub(𝜆𝑠. (𝜆𝜅. (𝑓 [𝜅]) (𝑠)) [𝜅′])
≡ 𝜆𝜅. hub(𝜆𝑠. (𝑓 [𝜅]) (𝑠))
≡ 𝜆𝜅. hub(𝑓 [𝜅])

Note that the only non-judgemental equality is the induc-
tively justified cancellation of the compositions i.e., the path
𝑞 : 𝜆𝑠. 𝛼 (𝛽 (𝑓 (𝑠))) = 𝑓 and 𝑟 : 𝜆𝑠. 𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠))) =
𝜆𝑠. 𝜆𝜅. (𝑓 [𝜅]) (𝑠) under the hub constructor.
We now supply the first calculation for the spoke con-

structor:

𝛼 (𝛽 (spoke(𝑠, 𝑓 , 𝑖))) ≡ 𝛼 (𝜆𝜅. spoke(𝑠, 𝜆𝑠. (𝛽 (𝑓 (𝑠))) [𝜅], 𝑖))
≡ hcomp𝑗 [(𝑖 = 0) ↦→ 𝛼 (𝜆𝜅. (𝛽 (𝑓 ((𝑝const 𝑠 𝑗 [𝜅])))) [𝜅]),

(𝑖 = 1) ↦→ hub(𝜆𝑠. 𝛼 (𝜆𝜅. (𝛽 (𝑓 (𝑠))) [𝜅]))]
spoke(𝑠, 𝜆𝑠. 𝛼 (𝜆𝜅. (𝛽 (𝑓 (𝑠))) [𝜅]), 𝑖)
= spoke(𝑠, 𝜆𝑠. 𝛼 (𝜆𝜅. (𝛽 (𝑓 (𝑠))) [𝜅]), 𝑖)
≡ spoke(𝑠, 𝜆𝑠. 𝛼 (𝛽 (𝑓 (𝑠))), 𝑖)
= spoke(𝑠, 𝑓 , 𝑖)

For us to apply induction with the above path it would
need to reduce strictly to the recursive call at 𝑠 , 𝜆 𝑗 . 𝑞( 𝑗) (𝑠),



Conference’17, July 2017, Washington, DC, USA Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi

on 𝑖 = 0 and the hub case, 𝜆 𝑗 . hub(𝜆𝑠. 𝑞( 𝑗) (𝑠)), on 𝑖 = 1. This
is too tall an ask, but luckily it is sufficient for our purposes
that we can show such reductions up to a path. The path
used for the induction is then defined by an appropriate
composition as in the definition of the map 𝛼 .

The calculation above uses two non-trivial paths. The first
is the reduction of a composition to its base, which we note
restricts to 𝜆 𝑗 . 𝛼 (𝜆𝜅. (𝛽 (𝑓 ((𝑝const 𝑠 𝑗 [𝜅])))) [𝜅]) and reflex-
ivity on 𝑖 = 0 and 𝑖 = 1 respectively. The second is exactly an
application of 𝑞 from above to the function input, or more
concretely the path 𝜆 𝑗 .spoke(𝑠, 𝜆𝑠. 𝑞( 𝑗) (𝑠)), 𝑖). The reduc-
tions of spoke then mean that this reduces to exactly the
paths we are looking for. Since 𝑝const is given by clock irrele-
vance at a constant function it is path equal to reflexivity by
lemma A.7. Cancelling this path at 𝑖 = 0 and reflexivity at
𝑖 = 1 with a composition then yields the desired path.

𝛽 (𝛼 (𝜆𝜅. spoke(𝑠 [𝜅],𝑓 [𝜅], 𝑖)))
≡ 𝛽 (hcomp𝑗 [(𝑖 = 0) ↦→ 𝛼 (𝜆𝜅. (𝑓 [𝜅]) ((𝑝𝑠 𝑗) [𝜅])),

(𝑖 = 1) ↦→ hub(𝜆𝑠. 𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠))))]
spoke(𝑠 [𝜅0], 𝜆𝑠. 𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠))), 𝑖))

≡ hcomp𝑗 [(𝑖 = 0) ↦→𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) ((𝑝𝑠 𝑗) [𝜅]))),
(𝑖 = 1) ↦→𝛽 (hub(𝜆𝑠. 𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠)))))]
𝛽 (spoke(𝑠 [𝜅0], 𝜆𝑠. 𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠))), 𝑖)))

≡ hcomp𝑗 [(𝑖 = 0) ↦→𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) ((𝑝𝑠 𝑗) [𝜅]))),
(𝑖 = 1) ↦→𝜆𝜅′ . hub(𝜆𝑠. 𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠))) [𝜅′])]
𝜆𝜅′ .spoke(𝑠 [𝜅0], 𝜆𝑠. 𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠)))) [𝜅′], 𝑖)

= 𝜆𝜅′ .spoke(𝑠 [𝜅0], 𝜆𝑠. 𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠)))) [𝜅′], 𝑖)
= 𝜆𝜅′ .spoke(𝑠 [𝜅′], 𝜆𝑠. 𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) (𝑠)))) [𝜅′], 𝑖)
= 𝜆𝜅.spoke(𝑠 [𝜅], 𝑓 [𝜅], 𝑖)

This time the boundary obligation is that on 𝑖 = 0 the
above must reduce to 𝜆 𝑗 .𝜆𝜅. 𝑟 ( 𝑗) (𝑠 [𝜅]) [𝜅] and on 𝑖 = 1
it must reduce to 𝜆 𝑗 . 𝜆𝜅. hub(𝜆𝑠. 𝑟 ( 𝑗) (𝑠 [𝜅]) [𝜅]). The cal-
culation is a composition of three non-trivial paths. We
first reduce the composition to its base, which reduces to
reflexivity on 𝑖 = 1 and 𝜆 𝑗 . 𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) ((𝑝𝑠 𝑗) [𝜅])))
on 𝑖 = 0. The next path is again the path extracted from
clock irrelevance, this time the one that shows that 𝑠 [𝜅0] =
𝑠 [𝜅′], which is exactly the inverse application of clock irrel-
evance. This reduces to reflexivity on 𝑖 = 1 and the path
𝜆 𝑗 . 𝛽 (𝛼 (𝜆𝜅. (𝑓 [𝜅]) ((𝑝−1𝑠 𝑗) [𝜅]))) on 𝑖 = 0. At this point
the composite path has the shape refl ◦ 𝜆 𝑗 . 𝛽 (𝛼 (𝑝′ ( 𝑗)) ◦
𝜆 𝑗 . 𝛽 (𝛼 (𝑝′−1 ( 𝑗)) on 𝑖 = 0 and refl 3 on (𝑖 = 1), meaning that
it reduces to refl up to a path in either case. The last path is
then the inductively obtained path

𝜆 𝑗 . 𝜆𝜅.spoke(𝑠 [𝜅], 𝜆𝑠. 𝑟 ( 𝑗) (𝑠) [𝜅], 𝑖).
The desired reduction now again follows from an application
of the equalities governing the behavior of spoke.

Proving Theorem 5.4. We proceed by constructing a map
(ℎ : ∀𝜅.H𝛿) → ∀𝜅. ℎ [𝜅] = ℎ [𝜅0] .

To do this we first show a slightly modified induction under
clocks principle with constant 𝛿 and Γ(−) parameters. Using
this modified principle we construct the map in two stages:
first we provide a candidate case for each constructor and
secondly we show that the candidate terms satisfy the appro-
priate boundary condition up to path equality. The latter will
allow us to rectify the terms given by the former construc-
tions via a composition to obtain the input for the modified
principle, thus allowing us to define a map of the desired
type. The new induction principle needs a modified version
of the boundary condition, given by transporting the usual
one along the equivalence between the two, which means
that we need to, at each stage, cohere with the transport in
the earlier stages.
Before beginning the proof we need to introduce some

notation and prove a small lemma about the structure of HIT
constructors.

Lemma A.5. Let H𝛿 be a HIT with constructors taking input

𝛾0 : Γ0𝑖 [𝛿], 𝛾1 : Γ1𝑖 [𝛿], . . . , 𝑥 : Ξ0
𝑖 [𝛿,𝛾] → H𝛿, . . . and 𝑖 : Ψ𝑖

and boundary conditions 𝜑𝑖 ⊢ 𝑒𝑖 . Then there exists an equiva-
lent HIT H’𝛿 with constructors taking input of the form

𝛾 : Γ𝑖 [𝛿], 𝑥 : Ξ𝑖 [𝛿,𝛾] → H’𝛿 and 𝑖 : Ψ𝑖
with boundary conditions 𝜑𝑖 ⊢ 𝑒𝑖 where 𝜑𝑖 is of the form∨(𝑖 = 0) ∨ (𝑖 = 1) with 𝑖 ranging over all variables in Ψ.
We say that HITs satisfying these three criteria are of reduced
form.

Proof. Modifying the Γ and Ξ → H𝛿 input is trivial, simply
take Γ𝑖 [𝛿] to be an iterated Σ type consisting of the Γ 𝑗𝑖 and
Ξ𝑖 [𝛿,𝛾] def

= Ξ𝑗𝑖 [𝛿,𝛾] + Ξ𝑗𝑖 [𝛿,𝛾] + . . . . This procedure clearly
yields an equivalent HIT, so we make this assumption freely.
We achieve boundaries of the desired shape by adding

constructors to specify the full boundary, noting that
∨(𝑖 =

0) ∨ (𝑖 = 1) as above is the second largest element of the
face lattice specifying the entire boundary of a cube but not
the interior. We call it the total face relative to Ψ. Let con𝑖 be
a constructor of H𝛿 with boundary extent 𝜑𝑖 and interval
inputΨ𝑖 . We add a number of constructors toH’𝛿 recursively
in the following way: Write 𝜑𝑖 in disjunctive normal form.
For each 𝑗 ∈ Ψ𝑖 if ( 𝑗 = 0) and ( 𝑗 = 1) appear as disjuncts of
𝜑𝑖 we add con𝑖 as is. Say that ( 𝑗 = 0) is missing; we then add
a constructor con( 𝑗=0)

𝑖 with the same Γ and Ξ as con𝑖 . This
new constructor then has interval input Ψwith the 𝑗 variable
deleted. Now consider the face 𝜑𝑖 ∧ ( 𝑗 = 0). If this is the total
face relative to Ψ without 𝑗 , we define the boundary term of
con( 𝑗=0)

𝑖 to be the boundary of con𝑖 restricted to ( 𝑗 = 0) and
proceed with the next interval variable in Ψ. If it is not the
total face and is missing for instance 𝑘 ∈ Ψ, we repeat the
procedure, defining a new constructor con( 𝑗=0)∧(𝑘=0) )

𝑖 in the
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same way. Having recursively defined this new constructor,
we use it for the boundary at 𝑘 = 0.

It is immediate that we can define mutually inverse maps
betweenH𝛿 andH’𝛿 using their respective elimination prin-
ciples. □

The point of the modified boundary shape is that con-
structors with such boundaries exactly correspond to con-
structors for heterogeneous, iterated path types. This means
that for HITs of the above form we can treat the end result
(𝑖 : Ψ) → 𝐴[𝜑 ↦→ 𝑒] as a proper type, allowing it to appear
in e.g., Σ-types. We treat it as we would path types, introduc-
ing terms of them by abstraction and eliminating from them
by application. As for path types we can compose iterated
paths, and we record this fact in the following lemma:

Lemma A.6.
Γ ⊢ 𝑝 : Π(𝑖 : Ψ). 𝐴[𝜑 ↦→ 𝑢] Γ, (𝑖 : Ψ), 𝜑 ⊢ 𝑞 : 𝑢 = 𝑣

Γ ⊢ (𝑖 . 𝑞)∗ 𝑝 : Π(𝑖 : Ψ). 𝐴[𝜑 ↦→ 𝑣]

Proof. (𝑖 . 𝑞)∗ 𝑝 def
= 𝜆𝑖. hcomp𝑗 [𝜑 ↦→ 𝑞 𝑗] (𝑝 𝑖) □

We define the following types in context where 𝛿 : Δ, and
𝐷 a family over ∀𝜅.H𝛿 , where 𝑢<ℓ : E<ℓ (𝛿, 𝐷) as specified
below, and 𝛿 : ∀𝜅.Γℓ (𝛿):

Pℓ (𝛿, 𝐷,𝑢<ℓ , 𝛾)def=
Π(𝑥 : (∀𝜅.Ξℓ [𝛿,𝛾 [𝜅]] → H𝛿))
(𝑦 : Π(𝜉 : ∀𝜅.Ξℓ [𝛿,𝛾 [𝜅]]) .𝐷 [𝜆𝜅.𝑥 [𝜅] (𝜉 [𝜅])])
(𝑖 : Ψℓ ).
𝐷 [𝜆𝜅. conℓ (𝛾 [𝜅], 𝑥 [𝜅], 𝑖)] [𝜑ℓ ↦→ L𝑒ℓM𝛿𝑢<ℓ ,𝑥 ↦→𝑦]

Eℓ (𝛿, 𝐷,𝑢<ℓ ) def
= Π(𝛾 : ∀𝜅.Γℓ [𝛿]).Pℓ (𝛿, 𝐷,𝑢<ℓ , 𝛾)

E′
ℓ (𝛿, 𝐷,𝑢<ℓ )

def
= Π(𝛾 : Γℓ [𝛿]).Pℓ (𝛿, 𝐷,𝑢<ℓ , 𝜆_. 𝛾)

where
E(𝛿, 𝐷) = Σ(𝑢ℓ0 :Eℓ0 (𝛿)) . Σ(𝑢ℓ1 :Eℓ1 (𝛿,𝑢ℓ0 )) .

. . . Eℓ𝑛 (𝛿, (𝑢ℓ0 , 𝑢ℓ1 , . . . , 𝑢ℓ𝑛−1 ))
andE<ℓ (𝛿, 𝐷) is the prefix of the above iterated Σ types con-
taining fields only for the labels below ℓ . The above definition
is well-founded becauseEℓ (𝛿,−) only refers toEℓ ′ (𝛿,−) for
labels ℓ ′ < ℓ .

Lemma A.7. For each ℓ we have

cirrΓℓ : Π(𝛾 : ∀𝜅.Γℓ [𝛿]) . 𝜆_. 𝛾 [𝜅0] = 𝛾
cirr−cohΓℓ : Π(𝛾 : Γℓ [𝛿]). refl = cirrΓℓ (𝜆_. 𝛾)

Proof. From clock irrelevance of Γℓ we get a proof that the
constant map from Γℓ [𝛿] to ∀𝜅.Γℓ [𝛿] has a right inverse.
Moreover it has application to 𝜅0 as a left inverse with re-
flexivity as the proof. From this we obtain a proof that the
constant map is an half adjoint equivalence, from which we
can project cirrΓℓ and cirr−cohΓℓ . □

Lemma A.8. For each ℓ , 𝛿 and 𝑢<ℓ we have an equivalence
of types 𝑓ℓ :E′

ℓ (𝛿, 𝐷,𝑢<ℓ ) ≃Eℓ (𝛿, 𝐷,𝑢<ℓ ).
Proof. Wewill use cirrΓℓ to transportPℓ (𝛿, 𝐷,𝑢<ℓ , 𝜆_. 𝛾 [𝜅0])
toPℓ (𝛿, 𝐷,𝑢<ℓ , 𝛾). Concretely we define

𝑓ℓ (𝑢′) def
= 𝜆𝛾 . cirrΓℓ (𝛾)∗ (𝑢′ (𝛾 [𝜅0]))

□

We then defineE′ (𝛿, 𝐷) as the iterated sigma type

Σ(𝑢ℓ0 :E′
ℓ0 (𝛿, 𝐷)).Σ(𝑢ℓ1 :E′

ℓ1 (𝛿, 𝐷, 𝑓ℓ0 (𝑢ℓ0 )) .
. . .E′

ℓ𝑛 (𝛿, 𝐷, 𝑓 (𝑢<ℓ𝑛 )
where we wrote 𝑓 (𝑢<ℓ𝑛 ) in place of

𝑓ℓ0 (𝑢ℓ0 ), 𝑓ℓ1 (𝑢ℓ1 ), . . . , 𝑓ℓ𝑛−1 (𝑢ℓ𝑛−1 )
as we will do going forward. In fact the family 𝑓ℓ can be
collected into an equivalence of type E′ (𝛿, 𝐷) ≃ E(𝛿, 𝐷)
which also restricts to the < ℓ case.

Lemma A.9. Let 𝛿 : Δ, and ℎ : ∀𝜅.H (𝛿) ⊢ 𝐷 type and let
𝑡 : ∀𝜅.H𝛿 .

(a) Elimination under a single clock allows us to produce a

term of the type Elim(𝛿, 𝐷, 𝑡) def
= E(𝛿, 𝐷) → 𝐷 [𝑡].

(b) Clock elimination with constant Γℓ parameter allows

us to produce a term of the type Elimconst (𝛿, 𝐷, 𝑡) def
=

E′ (𝛿, 𝐷) → 𝐷 [𝑡]
Proof. Case (a) is direct from typing of elimination under
a single clock, case (b) follows by composing (a) with the
equivalence 𝑓 . □

In the following we will fix 𝐷 [𝑡] to be ∀𝜅.𝑡 [𝜅0] = 𝑡 [𝜅].
Lemma A.10. For each ℓ we can type 𝑏ℓ as shown:

Tℓ (𝛿) def
= Π(𝛾 : Γℓ [𝛿])

(𝑥 : ∀𝜅.Ξℓ [𝛿,𝛾] → H𝛿)
(𝑦 : Π(𝜉 : ∀𝜅.Ξℓ [𝛿,𝛾]) .𝐷 [𝜆𝜅.𝑥 [𝜅] (𝜉 [𝜅])]) .
(𝑖 : Ψℓ ).
𝐷 [𝜆𝜅. conℓ (𝛾, 𝑥 [𝜅], 𝑖)]

[𝜑ℓ ↦→ 𝜆𝜅. 𝜆 𝑗 . 𝑒ℓ [𝛾, 𝜆𝜉 . 𝑦 (𝜆_. 𝜉) [𝜅] 𝑗, 𝑖]]
𝛿 : Δ ⊢ 𝑏ℓdef=𝜆𝛾 𝑥 𝑦 𝑖 𝜅 𝑗 . conℓ (𝛾, 𝜆𝜉 . 𝑦 (𝜆_. 𝜉) [𝜅] 𝑗, 𝑖) : Tℓ (𝛿)
Proof. Follows directly by the typing rule for conℓ . □

Note thatTℓ (𝛿) differs fromE′
ℓ (𝛿, 𝐷,𝑢<𝑙 ) only in the bound-

ary of the final result. We bridge this gap with lemma A.11.

Lemma A.11. The terms defined in lemma A.10 satisfy the
boundary conditions of lemma A.9 (b) up to path equality, i.e.,
for each ℓ we have a term lemDℓ of type

𝜆𝜅. 𝜆 𝑗 . 𝑒ℓ [𝛾, 𝜆𝜉 . 𝑦 (𝜆_. 𝜉) [𝜅] 𝑗, 𝑖] = L𝑒ℓM𝜆_. 𝛿𝑣<ℓ ,𝑥 ↦→𝑦
[𝜆_. 𝛾]
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in the appropriate context, and where each 𝑣ℓ is defined as

𝑣ℓ :E(𝛿, 𝐷, 𝑣<ℓ )
𝑣ℓ

def
= 𝑓ℓ (𝑔ℓ (𝑏ℓ ))

𝑔ℓ :Tℓ (𝛿) →E′ (𝛿, 𝐷, 𝑣<𝑙 )
𝑔ℓ (𝑡)def=𝜆𝛾 .𝜆𝑥 .𝜆𝑦.(𝑖 .lemDℓ )∗ (𝑡 𝛾 𝑥 𝑦)

Proof. To arrive at the desired conclusion we need a gener-
alized version of the lemma which keeps track of how the
proof in each case coheres with the earlier stages. We prove
the following:

Ωℓ
def
= 𝛿 : Δ, 𝛾 : Γℓ , 𝑥 : ∀𝜅.Ξℓ → H𝛿,

𝑦 : Π(𝜉 : ∀𝜅.Ξℓ ).𝐷 [𝜆𝜅. 𝑥 [𝜅] (𝜉 [𝜅])],
𝑦𝐾 : Π(𝜉 : Ξℓ ).𝐷 [𝜆𝜅. 𝑥 [𝜅] 𝜉],
𝑦 : Π(𝜉 : Ξℓ ).𝑦𝐾 𝜉 = 𝑦 (𝜆_. 𝜉),
𝑖 : Ψℓ , 𝜑ℓ

Ωℓ , Γ̂ ⊢ lemDgℓ (𝑀)
: (𝜆𝜅. 𝜆 𝑗 . 𝑀 [𝜆𝜉 .𝑦𝐾 𝜉 [𝜅] 𝑗/𝑥])
= L𝑀M𝜆_. 𝛿

𝑣<ℓ ,𝑥 ↦→𝑦,𝛾
[𝜆_. 𝛾/𝛾, 𝜆_. 𝛾/𝛾]

lemDℓ is then defined as
lemDgℓ (𝑒ℓ ) [𝜆𝜉 .𝑦 (𝜆_.𝜉)/𝑦𝐾 , 𝜆𝜉 . refl/𝑦]

wewill write𝜎 for [𝜆𝜉 .𝑦𝐾 𝜉 [𝜅] 𝑗/𝑥] and𝜏 for [𝜆_. 𝛾/𝛾, 𝜆_. 𝛾/𝛾].
The extra𝑦𝐾 and𝑦 parameters providewhat to do for the case
𝑀 = 𝑥 𝑗 𝑢 where we will apply 𝑦 to 𝑢 to obtain the necessary
equality between the applications of 𝑦𝐾 and 𝑦. This allows
us to derive that lemDgℓ (−) commutes with substitution in
the following way,

lemDgℓ (𝑀 [𝑡, 𝜆𝜉 . 𝑀 ′, 𝑟 ]) ≡ lemDgℓ (𝑀) [𝑡, 𝑆, 𝑅, 𝑅𝐾 , 𝑅̃, 𝑟 ]
where

𝑆
def
= 𝜆𝜅.𝜆𝜉 . 𝑀 ′ [𝑥 [𝜅]/𝑥]

𝑅
def
= 𝜆𝜉 . L𝑀 ′M𝜆_. 𝛿

𝑣<ℓ ,𝑥 ↦→𝑦,(𝛾,𝜉 )𝜏

𝑅𝐾
def
= 𝜆𝜉.𝜆𝜅.𝜆 𝑗 . 𝑀 ′𝜎

𝑅̃
def
= 𝜆𝜉. lemDgℓ (𝑀 ′)

and moreover we have lemDgℓ ′ (𝑀) = lemDgℓ (𝑀) for ℓ ′ < ℓ ,
whenever 𝑀 only contains constructor nodes with labels
smaller than ℓ ′. We will use these properties for the con-
structor case of lemDgℓ (−).

Finally, we need to show that lemDgℓ (−) preserves judge-
mental equality in the sense that𝑀 ≡𝑏 𝑁 implies

lemDgℓ (𝑀) ≡ lemDgℓ (𝑁 )
This is needed to show that lemDgℓ (−) is well-defined in the
case of systems as in the proof of Lemma 5.2, and to define
lemDgℓ (−) in the case of homogeneous compositions.

We induct on the structure of𝑀 . In case𝑀 = 𝑥 𝑢, we need
to build a path between 𝜆𝜅. 𝜆 𝑗 . (𝑦𝐾 (𝑢)) [𝜅] 𝑗 and

𝑦 (𝜆𝜅.𝑢 [(𝜆_. 𝛾) [𝜅]/𝛾, (𝜆_. 𝛾) [𝜅]/𝛾]) .
The clock applications on the right hand side simplify, mak-
ing the body of the lambda abstraction constant in 𝜅 . The left
hand side 𝜂-contracts to 𝑦𝐾 𝑢, so we can conclude by setting
lemDgℓ (𝑥 𝑗 𝑢) equal to 𝑦 𝑢.
In the case 𝑀 = hcomp𝑗

′ [𝜓 ↦→ 𝑀 ′]𝑀 ′
0, we must build a

path between 𝜆𝜅. 𝜆 𝑗 . hcomp𝑗
′ [𝜓 ↦→ 𝑀 ′𝜎]𝑀 ′

0𝜎 and

comp𝑗
′
𝐷 [𝑣𝜏 𝑗 ′ ] [𝜓 ↦→ L𝑀 ′M𝜆_. 𝛿

𝑣<ℓ ,𝑥 ↦→𝑦,(𝛾,𝑗 ′ )𝜏] (L𝑀 ′
0M𝛿𝑣<ℓ ,𝑥 ↦→𝑦,𝛾𝜏).

Let 𝑝 be the path connecting

𝜆𝜅.𝜆 𝑗 .hcomp𝑗
′ [𝜓 ↦→ L𝑀 ′M𝜆_. 𝛿

𝑣<ℓ ,𝑥 ↦→𝑦,(𝛾,𝑗 ′ )𝜏 [𝜅] 𝑗]
(L𝑀 ′

0M𝛿𝑣<ℓ ,𝑥 ↦→𝑦,𝛾𝜏 [𝜅] 𝑗)
to the right hand side, obtained from the fact that both terms
fill the same open box.We let𝑞 be the path connecting the left
hand side to 𝑝 0, obtained by combining lemDgℓ (𝑀 ′) and
lemDgℓ (𝑀 ′

0) with hcomp𝑗
′ . Note that this is well-defined

because lemDgℓ (−) preserves judgemental equality. By tran-
sitivity we get 𝑞 · 𝑝 connecting the desired endpoints.
To prove that lemDgℓ (−) preserves judgemental equality,

we need that lemDgℓ (𝑀) when restricted by 𝜓 is strictly
equal to lemDgℓ (𝑀 ′). Fortunately that is already true for 𝑞,
while 𝑝 is a constant path under those conditions, so by the
right unit law we have path from 𝑞 · 𝑝 to lemDgℓ (𝑀 ′). Using
an hcomp with this latter path we define lemDgℓ (𝑀) so that
it satifies the strict equality.

In case𝑀 = conℓ ′ (𝑡, 𝜆𝜉 . 𝑀 ′, 𝑟 ), we need to build a path be-
tween 𝜆𝜅. 𝜆 𝑗 . conℓ ′ (𝑡, 𝜆𝜉 . 𝑀 ′𝜎, 𝑟 ) and 𝑣ℓ ′ (𝜆_. 𝑡, 𝑆, 𝑅, 𝑟 ) where
𝑆 = 𝜆𝜅.𝜆𝜉 . 𝑀 ′ [𝑥 [𝜅]/𝑥] and 𝑅 = 𝜆𝜉. L𝑀 ′M𝜆_. 𝛿

𝑣<ℓ ,𝑥 ↦→𝑦,(𝛾,𝜉 )𝜏 . We
will work right to left by expanding the right hand side defi-
nition. By definition we have 𝑣ℓ ′ = 𝑓ℓ ′ (𝑔ℓ ′ (𝑏ℓ ′ )), so 𝑣ℓ ′ (𝜆_. 𝑡)
is equal to cirrΓℓ ′ (𝜆_. 𝑡)∗ (𝑔ℓ ′ (𝑏ℓ ′ ) (𝑡)), so that by cirr−cohΓℓ (𝑡)
the right hand side is equal to𝑔ℓ ′ (𝑏ℓ ′ ) (𝑡, 𝑆, 𝑅, 𝑟 ), let us call this
path 𝑝1. Note that 𝑝1 will be a constant path when𝜑ℓ ′ [𝑟 ] = 1F
as it will collapse to an equality between the boundaries of
its endpoints, specified by their type. By definition we have
𝑔ℓ ′ (𝑏ℓ ′ ) (𝑡, 𝑆, 𝑅, 𝑟 ) equal to ((𝑖ℓ ′ .lemDℓ ′ [𝑡, 𝑆, 𝑅])∗ (𝑏ℓ ′ (𝑡, 𝑆, 𝑅))) (𝑟 ),
which is defined as an hcomp and so by filling it is equal
to the base of the composition 𝑏ℓ ′ (𝑡, 𝑆, 𝑅, 𝑟 ), let us call this
path 𝑝2. Note that when 𝜑ℓ ′ [𝑟 ] = 1F we will have 𝑝2 =
𝜆𝑖ℓ ′ . lemDℓ ′ [𝑡, 𝑆, 𝑅]. Finally 𝑏ℓ ′ (𝑡, 𝑆, 𝑅, 𝑟 ) is equal to

𝜆𝜅.𝜆 𝑗 . conℓ ′ (𝑡, 𝜆𝜉 . 𝑅 (𝜆_. 𝜉) [𝜅] 𝑗, 𝑟 ),
which is path equal to the left hand side by lemDgℓ (𝑀 ′) and
conℓ ′ itself, we call the resulting path 𝑝3. Note that when
𝜑ℓ ′ [𝑟 ] = 1F we will have 𝑝3 built from 𝑒ℓ ′ and lemDgℓ (𝑀 ′)
instead. By transitivity, 𝑝3 · 𝑝2 · 𝑝1 forms a path between the
left and right hand sides.
To preserve judgemental equality, when 𝜑ℓ ′ [𝑟 ] = 1F, the

path lemDgℓ (𝑀) must be equal to lemDgℓ (𝑒ℓ ′ [𝑡, 𝜆𝜉 . 𝑀 ′, 𝑟 ])
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which in turn is equal to lemDgℓ ′ (𝑒ℓ ′ ) [𝑡, 𝑆, 𝑅, 𝑅𝐾 , 𝑅̃, 𝑟 ] by the
commuting with substitution property, and where 𝑅𝐾 =
𝜆𝜉.𝜆𝜅.𝜆 𝑗 . 𝑀 ′𝜎 and 𝑅̃ is given by lemDgℓ (𝑀 ′). To build the
necessary path we first contract the singleton pair (𝑅𝐾 , 𝑅̃),
so that the only non-trivial path in the composition is 𝑝2,
which as we noted matches lemDℓ ′ , i.e.

lemDgℓ ′ (𝑒ℓ ′ ) [𝑡, 𝑆, 𝑅, 𝑅, 𝜉 . refl, 𝑟 ] .
Using this, we define lemDgℓ (𝑀) as an hcomp of the path
just defined and 𝑝3 · 𝑝2 · 𝑝1. □

Proof of Theorem 5.4. The 𝑣ℓ terms from lemma A.11 collec-
tively form a proof ofE(𝛿, 𝐷), so by lemma A.9 we conclude
Π(𝑡 : ∀𝜅.H𝛿).𝐷 [𝑡] ≡ Π(𝑡 : ∀𝜅.H𝛿).∀𝜅.𝑡 [𝜅0] = 𝑡 [𝜅], as
required. □

A.5 Composition Structure for Higher Inductive
Types (Sect. 5.1)

Following [21], for any HIT 𝛿 : Δ ⊢ H𝛿 type we define
its composition operation, comp, in terms of the trans and
hcomp operations, resulting in the following judgemental
equality rule
comp𝑖H𝛿 [𝜑 ↦→ 𝑢] 𝑢0 ≡ hcomp𝑖H𝛿 [1/𝑖 ] [𝜑 ↦→ 𝑣 (𝑖)] (trans𝑖H𝛿 𝜑 𝑢0)
where 𝑣 (𝑖) is trans𝑗H𝛿 [𝑖∨𝑗/𝑖 ] (𝜑 ∨ 𝑖 = 1) (𝑢 𝑖).

Furthermore we include judgemental equalities for trans
when applied to elements of the HIT built by homogeneous
composition or by constructors. In Section 3.4 of [21], the
authors describe how trans computes when applied to con-
structors specified by a signature of the form

c : (𝑥 : 𝐴(𝛿)) (𝑖 : I) → H𝛿 [𝜑 ↦→ 𝑒]
where 𝐴(𝛿) is a telescope including both non-recursive and
recursive arguments. They are able to treat both kinds of
arguments uniformly by working in a variation of cubical
type theory where trans and hcomp are the primitive opera-
tions for all types while comp is derived, so that they can use
trans𝑖

𝐴(𝛿 ) to transport all the arguments at once. We have
kept comp as the primitive in our type theory, but we can
reuse their description as long as we show how to trans-
port the arguments for the constructors in our schema, i.e.,
provide a replacement for trans𝑖

𝐴(𝛿 ) .
Given a constructor declaration (Γ,Ξ,Ψ, 𝜑, 𝑒) and 𝛿 : I→

Δ we have to define trans𝑖
Γ [𝛿 𝑖 ],ΘΞ[𝛿 𝑖 ],H (𝛿 𝑖 )

𝜓 (𝑡, 𝑎). The Γ [𝛿 𝑖]
part of the telescope can be dealt with using comp, as shown
in [21] by the definition of ctrans: a transport operation
derived from composition. We are left with having to define
trans𝑖ΘΞ[𝛿 𝑖,𝑡 [𝑖 ] ],H𝛿 𝑖

𝜓 (𝑡, 𝑎) where 𝑡 connects 𝑡 to the result of
transporting it. It is then sufficient to show how to transport
elements of 𝐶 (𝑖) := Ξ𝑘 [𝛿 𝑖, 𝑡 [𝑖]] → H𝛿 𝑖 for each Ξ𝑘 in Ξ.
Here we follow the recipe for transport in function types
[30], like so
trans𝑖𝐶 (𝑖 ) 𝜓 𝑎𝑘 = 𝜆𝜉 .trans𝑖H𝛿 𝑖 𝜓 (𝑎𝑘 (ctrans𝑖Ξ𝑘 [𝛿 (1−𝑖 ),𝑡 [1−𝑖 ] ] 𝜓 𝜉))

where we make use of the fact that 𝑎𝑘 (−) is a subtree of
con(𝑡, 𝑎, 𝑖) so it is well-founded to recursively transport. On
top of the above, the transport operation commutes with
homogeneous composition, as described in Sect. 3.2 of [21].

A.6 Detailed version of Section 6
The standardmodels of both Cubical Type Theory andClocked
Type Theory are based on presheaf categories. In this sec-
tion we recall these models and show how to model the
combined CCTT in a presheaf category over the product
of the categories used in the interpretations of Cubical and
Clocked Type Theory. One of the challenges in construct-
ing the model is to equip the types of Clocked Type Theory
(such as ⊲ (𝛼 :𝜅).𝐴) with composition structures as required
to model types in Cubical Type Theory.
In this paper, following the convention of Mannaa et al.

[35] (but breaking with the convention of Cohen et al. [20])
we will work with covariant presheaves. Recall that a co-
variant presheaf over a category C is a family of sets 𝑋 (𝑐)
indexed by objects of C together with a map mapping 𝑓 :
𝑐 → 𝑐′ in C and 𝑥 ∈ 𝑋 (𝑐) to 𝑓 · 𝑥 ∈ 𝑋 (𝑐′), respecting
identities and composition:

id𝑐 · 𝑥 = 𝑥 𝑔 · (𝑓 · 𝑥) = (𝑔𝑓 ) · 𝑥 (14)
We write PSh(C) for the category of covariant presheaves on
C. We recall the notion of Category with Family (CwF) [25]
a standard notion of model of dependent type theory.

Definition A.12. A category with family comprises:
1. A category C. We use Γ,Δ to range over objects of C
2. A functor Fam : Cop → Set. Elements 𝐴 ∈ Fam(Γ)

are referred to as families over Γ. If 𝜎 : Δ → Γ and
𝐴 ∈ Fam(Γ) we write 𝐴[𝜎] for Fam(𝜎) (𝐴)

3. A functor El associating to each Γ and each𝐴 ∈ Fam(Γ)
a set El(𝐴) of elements of 𝐴, and to each 𝜎 : Δ → Γ a
mapping (−)[𝜎] : El(𝐴) → El(𝐴[𝜎]).

4. A comprehension operation mapping a family 𝐴 over Γ
to an object Γ.𝐴 such that maps Δ → Γ.𝐴 correspond
bijectively to pair of maps 𝜎 : Δ → Γ and elements
𝑡 ∈ 𝐴[𝜎], naturally in Δ.

We often refer to a CwF simply by the name of the under-
lying category C. A CwF gives rise to a model of dependent
type theory [28] in which contexts are modelled as objects
of C, types as families and terms as elements. Recall that
any presheaf category is the underlying category of a CwF
where families over an object Γ are indexed families of sets
𝑋 (𝑐,𝛾) for𝛾 ∈ Γ(𝑐) with maps 𝑓 · (−) : 𝑋 (𝑐,𝛾) → 𝑋 (𝑐′, 𝑓 ·𝛾)
satisfying the equations (14), and elements are assignments
mapping each 𝛾 ∈ Γ(𝑐) to 𝑡 (𝛾) ∈ 𝑋 (𝑐,𝛾) such that 𝑡 (𝑓 · 𝛾) =
𝑓 · 𝑡 (𝛾).
We recall also the category

∫
Γ of elements for a covari-

ant presheaf Γ over a category C. This has as objects pairs
(𝑐,𝛾) where 𝛾 ∈ Γ(𝑐) and morphisms from (𝑐,𝛾) to (𝑐′, 𝛾 ′)
morphisms 𝑓 : 𝑐 → 𝑐′ such that 𝑓 ·𝛾 = 𝛾 ′. Note that a family
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over Γ is precisely the same as a presheaf over
∫
Γ. We will

also use the equivalence
PSh(C)/Γ ≃ PSh(

∫
Γ) (15)

which states that a slice of a presheaf category is itself a
presheaf category.

A.6.1 Modelling Cubical Type Theory. The standard
model of Cubical Type Theory [20] uses presheaves over the
category of cubes. Here, since we use covariant presheaves,
we will write C for the opposite of the category used by
Cohen et al. [20]. SoC has as objects finite sets 𝐼 , 𝐽 , 𝐾 and as
morphisms from 𝐼 to 𝐽 maps 𝑓 : 𝐼 → dM(𝐽 ) where dM(𝐽 ) is
the free de Morgan algebra on the set 𝐽 . Composition is the
standard Kleisli composition, using the fact that dM(−) is a
monad. From the model construction we recall in particular
the interval object I(𝐼 ) def

= dM(𝐼 ), representing the singleton
set, and the face lattice F, which at stage 𝐼 is the free dis-
tributive lattice generated by elements (𝑖 = 0) and (𝑖 = 1)
for each 𝑖 ∈ 𝐼 , and relations (𝑖 = 0) ∧ (𝑖 = 1) = ⊥F.
This model construction can be extended work for any

category of the form PSh(C × D). To do so we rely on the
Orton and Pitts’ axiomatisation of models of CTT [34, 43].
Rather than recalling these axioms, we recall the sufficient
conditions summarised by Coquand et al. [23] for a presheaf
topos to satisfy these axioms. These conditions are as follows.

• The interval object I is connected, and a bounded dis-
tributive algebra structure with distinct 0 and 1 ele-
ments. Exponentiation by I has a right adjoint.

• The canonical map from F to the subobject classi-
fier is a monomorphism, and the universal cofibra-
tion ⊤ : 1 → F is a levelwise decidable inclusion.
Monomorphisms that can be described as pullbacks of
the latter are referred to as cofibrations. The interval
endpoint inclusions 0, 1 : 1 → I must be cofibrations,
and cofibrations must be closed under finite union
(finite disjunction), composition (dependent conjunc-
tion), and universal quantification over I.

A cubical model is a presheaf category satisfying the axioms
above. In PSh(C × D), defining both objects as constant
on the D component, using the corresponding objects in
PSh(C)

I(𝐼 , 𝑑) def
= I(𝐼 ) F(𝐼 , 𝑑) def

= F(𝐼 )
make PSh(C × D) a cubical model, as also observed by Co-
quand et al. [23].

Given such a model, Orton and Pitts [43] express the struc-
ture sufficient to model CTT using the internal language of
the presheaf topos as an extensional type theory. We recall
here some definitions that will be relevant later. We assume
a 𝜔 + 1 long hierarchy of Grothendieck universes, leading
to a corresponding hierarchy of universes a la Russell U𝑖
in the internal language, each classifying presheaves of the
appropriate size.

Definition A.13. A CCHM fibration (𝐴, 𝛼) over a type Γ :
U𝜔 is a family 𝐴 : Γ → U𝜔 with a fibration structure 𝛼 :
isFib Γ𝐴 where

isFib Γ𝐴
def
= (𝑒 : {0, 1})(𝑝 : I→ Γ) → Comp 𝑒 (𝐴 ◦ 𝑝)

Comp 𝑒 𝐴
def
= (𝜑 : F) (𝑢 : [𝜑] → (𝑖 : I) → 𝐴 𝑖)

→ {𝑢0 : 𝐴𝑒 | 𝜑 ⇒ 𝑢 𝑒 = 𝑢0}
→ {𝑢1 : 𝐴𝑒 | 𝜑 ⇒ 𝑢 𝑒 = 𝑢1}

where 𝑒 sends 0 : I to 1 and vice versa.

NoticeComp 0𝐴 closely matches the signature of the com-
position operation from CTT.
We can then build the following Category with Families

of fibrant types, which we call Fib:
• A context Γ is a global element of U𝜔 .
• A family over Γ is a global CCHM fibration over Γ.
• An element 𝑡 of a family (𝐴, 𝛼) over Γ is a global ele-
ment of (𝛾 : Γ) → 𝐴𝛾 .

it then follows that Fib models the type formers of Cubical
Type Theory.

Remark 2. Cubical Type Theory as presented by Cohen et al.
[20] includes specific judgemental equalities for the composi-
tion operator comp𝑖𝐴 according to the shape of 𝐴, matching
the behaviour of the given fibration structures in their model.
The constructions by Orton and Pitts [43] do not necessarily
produce fibration structures that satisfy the same equalities.
One way to deal with this is to use alternative formulations of
these rules [30, 53]. Since these equalities are mainly relevant
for operational properties of CTT, we will ignore this issue in
this paper.

A.6.2 Modelling Clocked Cubical Type Theory. In the
previous section we saw how to model Cubical Type Theory
in any category of the form PSh(C × D). We now define
the category T of time objects and extend the model to a
model of CCTT in PSh(C ×T). The objects of T are pairs
(E;𝛿), where E is a finite set (to be though of as a set of
semantic clocks), and 𝛿 : E → N is a map associating to
each clock a finite amount of time steps that are left on that
clock. A morphism 𝜎 : (E;𝛿) → (E′;𝛿 ′) is a map 𝜎 : E →
E′ such that 𝛿 ′𝜎 ≤ 𝛿 in the pointwise order. This can be
understood as a generalisation of the topos of trees model
PSh(𝜔op) of guarded recursion [10], where the indexing
category is restricted to objects where the first component
E is a singleton. The category PSh(T) has previously been
used to model type theories with guarded recursion and
multiple clocks [12, 35], and (in a slight variation) Guarded
Computational Type Theory [48].
The category PSh(C × T) has an object of clocks Clk

defined as Clk(𝐼 , (E;𝛿)) = E. The can be used to model
assumptions of the form 𝜅 : clock in contexts, and the types
∀𝜅.𝐴 can be modelled as Π-types. To model ⊲, recall that this
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is a Fitch-style modal type operator and that these can be
modelled using dependent right adjoint types [19].

Definition A.14. Let C,D be CwFs and let L : C → D be
a functor between the underlying categories. A dependent
right adjoint to L is a mapping associating to a family 𝐴
over LΓ a family R𝐴 over Γ and a bijective correspondence
between elements of 𝐴 and elements of R𝐴, both natural in
Γ.

The naturality requirement for R means that if 𝛾 : Γ′ → Γ
and𝐴 is a family over LΓ, then (R𝐴) [𝜎] = R(𝐴[L𝜎]). Writing
(−) for both directions of the bijective correspondence on
elements, the naturality condition for this means that if 𝑡 is
an element of𝐴 over LΓ, then 𝑡 [𝛾] = 𝑡 [L𝛾], and similarly for
the opposite direction.
Given an endofunctor L on a CwF C as well as a depen-

dent right adjoint R to L, one can model a Fitch-style modal
operator by modelling extensions of contexts with ticks by
L and the modal operator by R. In the case of Clocked Type
Theory, the ticks, as well as the modal operators are indexed
over an object Clk in the model: Semantically, the hypothe-
sis Γ ⊢ 𝜅 : clock of the context extension rule for Γ, 𝛼 : 𝜅 ⊢
corresponds to an element of the slice category over Clk.
By (15) the slice category over Clk is itself a presheaf cate-
gory and therefore carries a natural CwF structure. In fact, if
𝜒 : Γ → Clk is an object in the slice category, then families
over 𝜒 in the slice category correspond bijectively to families
in PSh(C ×T) over Γ. Exploiting this, Mannaa et al. [35]
describe how to model ticks on clocks using a dependent
right adjoint ▶ to an endofunctor ◀ on the slice category
over Clk. In this model Γ, 𝛼 : 𝜅 ⊢ is interpreted as the domain
of ◀(JΓK, J𝜅K) and ⊲ (𝛼 :𝜅).𝐴 as the dependent right adjoint
▶ applied to J𝐴K. The bijective correspondence on elements
then models the bijective correspondence between terms
Γ, 𝛼 : 𝜅 ⊢ 𝑡 : 𝐴 and terms Γ ⊢ 𝑢 : ⊲ (𝛼 : 𝜅).𝐴 given by tick
abstraction and application. Tick weakening, which syntac-
tically corresponds to context projections Γ, 𝛼 : 𝜅 → Γ can
be modelled using a natural transformation from ◀ to the
identity.

A.6.3 Composition structure for dependent right ad-
joints. Before recalling the dependent right adjoint structure
on the slice category PSh(C × T)/Clk we now give gen-
eral conditions ensuring that dependent right adjoint types
carry composition structure. The conditions are all on the
left adjoint functor.

Definition A.15. Let C be a cubical model with interval
object I and let L : C → C be a finite product preserving
functor.

1. We say L preserves the interval if there is an isomor-
phism L(I) � I preserving endpoints, i.e., such that

the following commutes for 𝑒 = 0, 1.

1 I

L1 LI

𝑒

� �

L𝑒

2. We say L preserves cofibrations if L𝑖 : L𝐴 → L𝐵 is
a cofibration whenever 𝑖 : 𝐴 → 𝐵 is, and if the dia-
gram on the right below is a pullback whenever 𝑖 is a
cofibration and the diagram on the left is a pullback

𝐶 𝐴

𝐷 𝐵

𝑎

𝑗 𝑖

𝑏

L𝐶 L𝐴

L𝐷 L𝐵

L𝑎

L𝑗 L𝑖

L𝑏

The condition of preserving cofibrations corresponds to
giving an operation mapping cofibrations Γ ⊢ 𝜑 : F on Γ to
cofibrations LΓ ⊢ LF (𝜑) : F such that LΓ.[LF (𝜑)] � L(Γ.[𝜑])
as subobjects of LΓ and satisfying LF (𝜑 [𝜎]) = LF (𝜑) [L𝜎].
Here [𝜑] is the family classified by 𝜑 .

Theorem A.16. Let C be a cubical model, let L : C→ C be a
functor preserving finite products, the interval and cofibrations,
and let R be a dependent right adjoint to L. If a family 𝐴 over
LΓ carries a global composition structure, so does R𝐴 over Γ.
Moreover, this assignment is natural in Γ.

Note that this is a statement about global composition
structures in the model. The theorem can not be proved
in the internal logic of the topos, but can be proved in an
extension of this using crisp type theory, similarly to the
construction of universes for cubical type theory in crisp type
theory [34]. The reason is that the proof uses the bijective
correspondence of Definition A.14 which only applies to
global terms.
To prove Theorem A.16, we need the following lemma

giving an alternative description of the data of a composition
structure. The lemma uses standard CwF notation writing
p : Δ.𝐴 → Δ for the projection out of a comprehension
object, and (less standard) notation 𝜎.𝐴 : Δ.𝐴[𝜎] → Γ.𝐴 if
𝜎 : Δ → Γ for the functoriality of comprehension in the first
component defined in the language of CwFs as (𝜎p, q).
Lemma A.17. Let Γ be global element of U𝜔 and let 𝐴 : Γ →
U𝜔 . To give a composition structure on𝐴 corresponds to giving,
for each global element Δ of U𝜔 and map 𝜎 : Δ × I→ Γ, an
assignment expressed as the rule

Δ ⊢ 𝜑 : F Δ.I.[𝜑 [p]] ⊢ 𝑢 : 𝐴[𝜎p]
Δ ⊢ 𝑢𝑒 : 𝐴[𝜎 ◦ (id, 𝑒)] Δ.[𝜑] ⊢ 𝑢𝑒 [p] = 𝑢 [(idΔ, 𝑒) .[𝜑]]

Δ ⊢ 𝑐𝜎 𝜑 𝑢 𝑢𝑒 : 𝐴[𝜎 ◦ (id, 1 − 𝑒)]
for each 𝑒 ∈ {0, 1}, natural in Δ satisfying

Δ.[𝜑] ⊢ (𝑐𝜎 𝜑 𝑢 𝑢𝑒 ) [p] = 𝑢 [(id, 1 − 𝑒) .[𝜑]]
Proof. Given 𝑒 , to give the part of isFib corresponding to
𝑒 corresponds to giving 𝑝 : I → Γ ⊢ 𝑐 : Comp 𝑒 (𝐴 ◦ 𝑝)
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in the model. This in turn corresponds to an assignment
of morphisms 𝜏 : Δ → (I → Γ) to terms 𝛿 : Δ ⊢ 𝑐𝜏 :
Comp 𝑒 (𝐴 ◦ 𝜏 (𝛿)) natural in Δ. By uncurrying, the latter
corresponds to an assignment mapping 𝜎 : Δ × I → Γ to
𝛿 : Δ ⊢ 𝑐𝜎 : Comp 𝑒 (𝐴◦𝜎 (𝛿,−)), also natural inΔ. By further
uncurrying the arguments to the composition operator and
using similar naturality arguments in each case, we arrive at
the description in the lemma. □

Proof of Theorem A.16. By Lemma A.17 it suffices to give an
assignment mapping 𝜎 : Δ × I→ Γ to a rule

Δ ⊢ 𝜑 : F Δ.I.[𝜑 [p]] ⊢ 𝑢 : (R𝐴) [𝜎p]
Δ ⊢ 𝑢𝑒 : (R𝐴) [𝜎 ◦ (id, 𝑒)] Δ.[𝜑] ⊢ 𝑢𝑒 [p] = 𝑢 [(idΔ, 𝑒) .[𝜑]]

Δ ⊢ 𝑐R𝐴𝜎 𝜑 𝑢 𝑢𝑒 : (R𝐴) [𝜎 ◦ (id, 1 − 𝑒)]
natural inΔ and satisfying the equality of LemmaA.17. Using
(R𝐴) [𝜎p] = R(𝐴[L(𝜎p)]) the assumptions correspond to

L(Δ.I.[𝜑 [p]]) ⊢ 𝑢 : 𝐴[L(𝜎p)] LΔ ⊢ 𝑢𝑒 : 𝐴[L(𝜎 ◦ (id, 𝑒))]
satisfying

L(Δ.[𝜑]) ⊢ 𝑢𝑒 [Lp] = 𝑢 [L((idΔ, 𝑒) .[𝜑])] (16)

Since L preserves cofibrations, by the notation introduced
after Definition A.15, L(Δ.I.[𝜑 [p]] � L(Δ.I).[LF (𝜑 [p])] as
subobjects of L(Δ.I). For simplicity we will leave this isomor-
phism implicit. Moreover, since L preserves finite products
and the interval, there is an isomorphism 𝜉Δ : LΔ.I � L(Δ.I)
natural in Δ such that

LΔ

LΔ.I L(Δ.I)

(id,𝑒 ) L(id,𝑒 )

𝜉Δ

(17)

Then, since L(𝜎p) ◦ 𝜉Δ .[LF (𝜑 [p])] = L(𝜎) ◦ 𝜉Δ ◦ p
L(Δ).I.[LF (𝜑) [p]] ⊢ 𝑢 [𝜉Δ .[LF (𝜑 [p])]] : 𝐴[L(𝜎) ◦ 𝜉Δ] [p]

and by (17)

LΔ ⊢ 𝑢𝑒 : 𝐴[L(𝜎) ◦ 𝜉Δ] [(id, 𝑒)]
We can therefore apply the composition structure for 𝐴 as
in Lemma A.17 in the case of 𝐿(𝜎) ◦ 𝜉Δ : LΔ.I → LΓ, the
cofibration LΔ ⊢ LF (𝜑) : F, and the terms 𝑢 [𝜉Δ .[LF (𝜑 [p])]]
and 𝑢𝑒 , if only we can prove that

LΔ.[LF (𝜑)] ⊢ 𝑢𝑒 [p] = 𝑢 [𝜉Δ .[LF (𝜑 [p])]] [(idLΔ, 𝑒) .[LF (𝜑)]]
Up to the isomorphism LΔ.[LF (𝜑)] � L(Δ.[𝜑]) the context
projection p equals Lp, and so in context L(Δ.[𝜑]) the left
hand side reduces to 𝑢𝑒 [Lp]. The right hand side reduces
using (17) to

𝑢 [L(idΔ, 𝑒) .LF (𝜑)]
which up to the isomorphism LΔ.[LF (𝜑)] � L(Δ.[𝜑]) equals
𝑢 [L((idΔ, 𝑒) .[𝜑])], and so the required equality follows from
(16). The composition structure for 𝐴 therefore gives

LΔ ⊢ 𝑐𝐴𝐿 (𝜎 )◦𝜉Δ LF (𝜑) 𝑢 [. . . ] 𝑢𝑒 : 𝐴[𝐿(𝜎) ◦ 𝜉Δ ◦ (id, 1 − 𝑒)]

which, since𝐴[𝐿(𝜎) ◦𝜉Δ ◦ (id, 1 − 𝑒)] = 𝐴[𝐿(𝜎 ◦ (id, 1 − 𝑒))],
corresponds to a term

Δ ⊢ 𝑐R𝐴𝜎 𝜑 𝑢 𝑢𝑒 : (R𝐴) [𝜎 ◦ (id, 1 − 𝑒)]
To show the equality

Δ.𝜑 ⊢ (𝑐R𝐴𝜎 𝜑 𝑢 𝑢𝑒 ) [p] = 𝑢 [(id, 1 − 𝑒) .[𝜑]]
is equivalent to showing

L(Δ.𝜑) ⊢ (𝑐R𝐴𝜎 𝜑 𝑢 𝑢𝑒 ) [p] = 𝑢 [(id, 1 − 𝑒) .[𝜑]]
which up to the isomorphism L(Δ.𝜑) � LΔ.[LF (𝜑)] corre-
sponds to showing that the term

LΔ.LF (𝜑) ⊢ (𝑐𝐴𝐿 (𝜎 )◦𝜉Δ LF (𝜑) 𝑢 [𝜉Δ .[LF (𝜑 [p])]] 𝑢𝑒 ) [p] (18)

equals

LΔ.LF (𝜑) ⊢ 𝑢 [L((id, 1 − 𝑒)).[LF (𝜑)]] (19)

By the equality rule for the composition structure on 𝐴, (18)
equals

𝑢 [𝜉Δ .[LF (𝜑 [p])]] [(id, 1 − 𝑒) .[LF (𝜑)]]
which equals (19) by (17). □

A.6.4 The dependent right adjoint. We now recall the
structure of the dependent right adjoint in details. Mannaa
et al. [35] define this structure for PSh(T) but the construc-
tions carry over directly to PSh(C×T). The structure arises
as an extension of an endo-adjunction on the slice category
as in the following lemma slightly generalised from Clouston
et al. [19], to which we refer for details.

Lemma A.18. Let C and D be CwFs and let L : C → D
be a functor between the underlying categories with a right
adjoint R. Suppose R extends to families and elements as in the
following data

1. An operation mapping families𝐴 over Γ inD to families
RFam (𝐴) overRΓ satisfyingRFam (𝐴[𝛾]) = (RFam (𝐴)) [𝑅𝛾]

2. An operation mapping elements 𝑡 of𝐴 to elements REl (𝑡)
of RFam (𝐴) satisfying REl (𝑡 [𝛾]) = (REl (𝑡)) [𝑅𝛾].

Then L has a dependent right adjoint mapping families 𝐴 over
LΓ to R𝐴 = (RFam𝐴) [𝜂] where 𝜂 : Γ → RLΓ is the unit of the
adjunction.

The endoadjunction on the slice category is best described
by using the equivalent description of the slice category as
PSh(

∫
Clk). The right adjoint is the simplest to describe and

is similar to the functor ▶ on the topos-of-trees [10]:

▶ Γ(𝐼 , (E;𝛿), 𝜆) =
{
Γ(𝐼 , (E;𝛿 [𝜆 ↦→ 𝑛]), 𝜆) if 𝛿 (𝜆) = 𝑛+1
1 if 𝛿 (𝜆) = 0

Here 𝛿 [𝜆 ↦→ 𝑛] (𝜆) = 𝑛 and 𝛿 [𝜆 ↦→ 𝑛] (𝜆′) = 𝛿 (𝜆′) for
𝜆′ ≠ 𝜆 and 1 in the second clause is a singleton set. This lifts
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to families and elements in the sense of Lemma A.18, for
example, if 𝐴 is a family over Γ then

▶Fam (𝐴) (𝐼 , (E;𝛿), 𝜆) (𝛾) =
{
𝐴(𝛾) if 𝛿 (𝜆) = 𝑛+1
1 if 𝛿 (𝜆) = 0

The left adjoint can be concretely described as◀ Γ(𝐼 , (E;𝛿), 𝜆)
having as elements pairs (𝜎, 𝑥) such that (id𝐼 , 𝜎) : (𝐼 , (E′;𝛿 ′), 𝜆′) →
(𝐼 , (E;𝛿), 𝜆) with 𝛿 ′ (𝜆′) > 𝛿 (𝜆) and 𝑥 ∈ Γ(𝐼 , (E′;𝛿 ′), 𝜆′)
considered up to the equivalence relation ∼ generated by
(𝜎𝜏, 𝑥) ∼ (𝜎, (id, 𝜏) · 𝑥). We refer to Mannaa et al. [35] for
the details of the adjunction structure as well as an abstract
description of the left adjoint.

There is a natural transformation p◀ : ◀ → id defined as
p◀ (𝜎, 𝑥) = (id, 𝜎) · 𝑥 . This is used in our model to interpret
tick-weakening.

Theorem A.19. Let Γ be an object of PSh(C × T) and
𝜅 : Γ → Clk. Suppose𝐴 is a family over the domain of◀(Γ, 𝜅)
which carries a composition structure, then ▶𝐴 carries a com-
position structure as a family over Γ.

Lemma A.20. The category
∫
Clk for Clk considered an ob-

ject in PSh(T) has coproducts.
Proof. The coproduct of ((E;𝛿), 𝜆) and ((E′;𝛿 ′), 𝜆′) is the
object ((E′′;𝛿 ′′), 𝜆′′) where 𝜆′′ is fresh, E′′ is the disjoint
union ofE \ {𝜆} andE′ \ {𝜆′} and {𝜆′′} and 𝛿 ′′ agrees with 𝛿
onE \{𝜆}, with 𝛿 ′ onE′ \{𝜆′} and maps 𝜆′′ to the minimum
of 𝛿 (𝜆) and 𝛿 ′ (𝜆′). □

Proof of Theorem A.19. Recall that families and terms in the
CwF of the slice category PSh(

∫
Clk) over an object corre-

sponding to an element 𝜅 : Γ → Clk correspond bijectively
to families and elements of the CwF of PSh(C ×T) over Γ.
Since this correspondence also respects the interpretation
of the internal dependent type theory, it suffices to show
that ▶𝐴 carries a composition structure as expressed on the
slice category, when 𝐴 does. By Theorem A.16 this reduces
to showing that◀ preserves finite products, the interval and
cofibrations.

Each component◀ 1(𝐼 , (E;𝛿), 𝜆) of◀ 1 is easily seen to be
inhabited. If (𝜎,★) and (𝜏,★) are two elements of◀ 1(𝐼 , (E;𝛿), 𝜆),
then both of these are related under the equivalence relation
used in the definition of ◀ to ( [𝜎, 𝜏],★), where [𝜎, 𝜏] is the
copairing of 𝜎 and 𝜏 out of the coproduct of their domains,
which exists by Lemma A.20. So ◀ preserves the terminal
object.
Writing [(𝜎, (𝑥,𝑦))] for the equivalence class represented

by (𝜎, (𝑥,𝑦)), the map
◀(𝐴 × 𝐵) (𝐼 , (E;𝛿), 𝜆) → (◀𝐴 ×◀𝐵) (𝐼 , (E;𝛿), 𝜆)

maps [(𝜎, (𝑥,𝑦))] to ( [(𝜎, 𝑥)], [(𝜎,𝑦)]), and the inversemaps
( [(𝜎, 𝑥)], [(𝜏,𝑦)]) to [( [𝜎, 𝜏], (inl(𝑥), inr(𝑦)))].
For the interval, the map p◀ : ◀ I→ I, which (as decribed

in the main text) is defined as p◀ (𝜎, 𝑥) = (id, 𝜎) · 𝑥 has an
inverse which at (𝐼 , (E;𝛿), 𝜆) maps 𝑥 ∈ I(𝐼 ) to (𝜎, 𝑥) where

𝜎 : (E;𝛿 ′) → (E;𝛿) is tracked by the identity and 𝛿 ′ agrees
with 𝛿 everywhere except at 𝜆 where it is one higher. This
clearly preserves endpoints.

For cofibrations, we first show that ◀ preserves pullbacks
of cofibrations. Suppose that the diagram on the left below
is a pullback with 𝑖 and 𝑗 cofibrations.

𝐶 𝐴

𝐷 𝐵

𝑎

𝑗 𝑖

𝑏

◀𝐶 ◀𝐴

◀𝐷 ◀𝐵

◀𝑎

◀ 𝑗 ◀ 𝑖

◀𝑏

Wemust show that also the diagram in the right is a pullback.
Since F is constant in the time dimension, it follows, since 𝑖
is a fibration that any naturality square of the form

𝐴(𝐼 , (E;𝛿), 𝜆) 𝐴(𝐼 , (E′;𝛿 ′), 𝜆′)

𝐵(𝐼 , (E;𝛿), 𝜆) 𝐵(𝐼 , (E′;𝛿 ′), 𝜆′)

(id,𝜎 ) · (−)

𝑖 𝑖

(id,𝜎 ) · (−)

is a pullback. From this it follows that the square on the right
below is a pullback diagram.

◀𝐶 ◀𝐴 𝐴

◀𝐷 ◀𝐵 𝐵

◀𝑎

◀ 𝑗 ◀ 𝑖

p◀

𝑖

◀𝑏 p◀

By the pullback pasting diagram it therefore suffices to show
that the outer diagram is a pullback, which follows again by
the pullback pasting diagram applied to

◀𝐶 𝐶 𝐴

◀𝐷 𝐷 𝐵

p◀

◀ 𝑗 𝑗

𝑎

𝑖

p◀ 𝑏

and naturality of p◀.
Suppose now that 𝜒𝐴 : 𝐵 → F classifies the cofibration

𝑖 : 𝐴 → 𝐵. A similar argument to the one above for I shows
that p◀ : ◀F→ F is an isomorphism, which preserves truth.
Then p◀◦◀(𝜒𝐴) classifies◀ 𝑖 , so also◀ 𝑖 is a cofibration. □
A.6.5 Interpreting ticks and tick application. A simple
tick judgement Γ ⊢ 𝜅 : 𝑢 { Γ′ is interpreted as a map in
PSh(

∫
Clk) from Γ to ◀ Γ′. Here, for simplicity, we keep

the clock 𝜅 implicit. An element 𝑡 of the family ▶𝐴 over
Γ′ corresponds bijectively to an element 𝑡 of 𝐴 over ◀ Γ′,
which can then be reindexed along the tick 𝑢 to interpret
tick application. A forcing tick judgement Γ ⊢ (𝜅,𝑢) { Γ′

is interpreted as a map from Γ to ◀(Γ′ .Clk) in PSh(
∫
Clk),

where the domain is considered an element of the slice cate-
gory over Clk with map given by𝜅 , and Γ′ .Clk an object with
map given by the second projection. The assumption of the
rule for forcing tick application corresponds semantically to
an element of a family ▶𝐴 over an object Γ′ .Clk, which cor-
responds bijectively to an element of 𝐴 over◀(Γ′ .Clk). Tick
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application is then interpreted by reindexing this element
along the interpretation of the forcing tick.

To define the interpretation of ticks, say that family𝐴 over
an object Γ is timeless if the map

(◀(p), q[p◀]) : ◀(Γ.𝐴) → (◀ Γ).𝐴[p◀]
is an isomorphism.

Lemma A.21. The families I and Clk, as well as any cofibra-
tion, are timeless. As a consequence

◀(JΓ, TL(Γ′)K) � ◀(JΓK).JTL(Γ′)K
in PSh(

∫
Clk).

Proof. As noted in the proof of Theorem A.19, cofibrations𝐴
over Γ are constant in the time dimension in the sense that
for any 𝜎 : ((E;𝛿), 𝜆) → ((E′;𝛿 ′), 𝜆′) the map

(id, 𝜎) · (−) : 𝐴(𝛾) → 𝐴((id, 𝜎) · 𝛾)
is an isomorphism. This means that the inverse to the map
of the lemma can be defined to map the element ((𝜎,𝛾) , 𝑎) ∈
((◀ Γ).𝐴[p◀]) (𝐼 , (E;𝛿), 𝜆) to [(𝜎, (𝛾, 𝑎′))] ∈ ◀(Γ.𝐴) (𝐼 , (E;𝛿), 𝜆)
where 𝑎′ is the unique element such that (id𝐼 , 𝜎) · 𝑎′ = 𝑎. A
similar argument applies in the case of I.

In the case of Clk, first note that

◀(Γ.Clk) = ◀(Γ × Clk) � ◀ Γ ×◀Clk

since, as we saw in the proof of Theorem A.19, ◀ preserves
finite products. It thus suffices to show that Clk � ◀Clk.
In order to prove this, we first prove that any element in
◀(Clk) (𝐼 , (E;𝛿), 𝜆) can be represented on the form (id, 𝜅),
for id : ((E;𝛿 + 1), 𝜆) → ((E;𝛿), 𝜆) and 𝜅 ∈ E. Here 𝛿 + 1
is the composition of 𝛿 with the successor function. This
is true, because an element represented by (𝜎, 𝜅) where 𝜎 :
((E′;𝛿 ′), 𝜆′) → ((E;𝛿), 𝜆) and 𝜅 ∈ E′ is equivalent to the
element given by (𝜎, 𝜅) where 𝜎 now is considered a map
from ((E′;𝛿 ′ + 1), 𝜆′) to ((E;𝛿), 𝜆). This element is in turn
equivalent to (id, 𝜎 (𝜅)) as required. As a consequence, we
can define an inverse to p◀ to map 𝜅 ∈ Clk((E;𝛿), 𝜆) to
[(id, 𝜅)].
The last statement of the lemma now follows by induction

on Γ′. □

For Γ ⊢ 𝜅 : 𝑢 { Γ′, let 𝑛 be the number of ticks on
clock 𝜅 in Γ \Γ′. Then the interpretation of𝑢 factors through
◀𝑛 Γ′, and a tick assumption is interpreted as the appropriate
projection ◀𝑛 → ◀. Likewise if Γ ⊢ (𝜅,𝑢) { Γ′ let 𝑛 be the
number of ticks on 𝜅 in Γ \ Γ′, then the interpretation of 𝑢
factors through ◀𝑛 (Γ′ .Clk) with tick variables interpreted
as projections. The construction tirr is interpreted using the
following lemma.

Lemma A.22. For any 𝑛 ≥ 1 there exists a unique natural
transformation 𝛼 : ◀𝑛 → ◀ such that p◀ ◦ 𝛼 = p𝑛◀, and
a unique 𝛽 : ◀𝑛 (−.Clk) → ◀(−.Clk) commuting with the
projection to −.Clk.

In particular, this means that tirr is interpreted using con-
stant paths in our model. Before proving LemmaA.22 we first
give an alternative description of ◀𝑛 similar to the explicit
description for ◀ itself.

Lemma A.23. Let 𝑛 ≥ 0. Up to isomorphism, the functor ◀𝑛

maps Γ to the presheaf given at (𝐼 , (E;𝛿), 𝜆) by equivalence
classes of pairs (𝜎, 𝑥) such that (id𝐼 , 𝜎) : (𝐼 , (E′;𝛿 ′), 𝜆′) →
(𝐼 , (E;𝛿), 𝜆) with 𝛿 ′ (𝜆′) ≥ 𝛿 (𝜆) + 𝑛 and 𝑥 ∈ Γ(𝐼 , (E′;𝛿 ′), 𝜆′)
considered up to the equivalence relation∼ generated by (𝜎𝜏, 𝑥) ∼
(𝜎, (id, 𝜏) · 𝑥). The projection p◀ : ◀𝑛+1 → ◀𝑛 maps [(𝜎, 𝑥)]
to [(𝜎, 𝑥)].
We omit the routine proof of this, which is by induction

on 𝑛.

Proof of Lemma A.22. Suppose 𝛼 : ◀𝑛 → ◀ is such that
p◀ ◦ 𝛼 = p𝑛◀. We will show that 𝛼 ( [(𝜎, 𝑥)]) = ( [(𝜎, 𝑥)]) for
any [(𝜎, 𝑥)] ∈ (◀𝑛 Γ) (𝐼 , (E;𝛿), 𝜆).
First consider the case of a representable object

Γ = 𝑦 (𝐼 , (E′;𝛿 ′), 𝜆′), and an element of the form
( [(𝜎, id)]) ∈ ◀𝑛 (𝑦 (𝐼 , (E′;𝛿 ′), 𝜆′)) (𝐼 , (E;𝛿), 𝜆).

That is, (id𝐼 , 𝜎) : (𝐼 , (E′;𝛿 ′), 𝜆′) → (𝐼 , (E;𝛿), 𝜆) and𝛿 ′ (𝜆′) ≥
𝛿 (𝜆) + 𝑛 and id is the identity on (𝐼 , (E′;𝛿 ′), 𝜆′) which is an
element of 𝑦 (𝐼 , (E′;𝛿 ′), 𝜆′). Then 𝛼 ( [(𝜎, id)]) must be on
the form ( [(𝜏, 𝜌)]), and since p◀ ( [(𝜏, 𝜌)]) = (id𝐼 , 𝜏) ◦ 𝜌 and
p𝑛◀ ( [(𝜎, id)]) = (id𝐼 , 𝜎), the assumption implies (id𝐼 , 𝜏) ◦𝜌 =
(id𝐼 , 𝜎), and in particular that 𝜌 is on the form (id𝐼 , 𝜌 ′). There-
fore

𝛼 ( [(𝜎, id)]) = [(𝜏, (id𝐼 , 𝜌 ′))] = [(𝜏, (id𝐼 , 𝜌 ′) · id)]
= [(𝜏𝜌 ′, id)] = [(𝜎, id)]

Now, consider a general [(𝜎, 𝑥)] ∈ (◀𝑛 Γ) (𝐼 , (E;𝛿), 𝜆).
That is, (id, 𝜎) : (𝐼 , (E′;𝛿 ′), 𝜆′) → (𝐼 , (E;𝛿), 𝜆) and 𝛿 ′ (𝜆′) ≥
𝛿 (𝜆) + 𝑛 and 𝑥 ∈ Γ(𝐼 , (E′;𝛿 ′), 𝜆′). Let 𝛾 : 𝑦 (𝐼 , (E′;𝛿 ′), 𝜆′) →
Γ be the element corresponding to 𝑥 by the yoneda lemma,
i.e., 𝛾 (𝑓 , 𝜎) = (𝑓 , 𝜎) · 𝑥 . Then

𝛼 ( [(𝜎, 𝑥)]) = 𝛼 ( [(𝜎,𝛾 (id))])
= 𝛼 (◀𝑛 (𝛾) [(𝜎, id)])
= ◀(𝛾) (𝛼 ( [(𝜎, id)]))
= ◀(𝛾) ( [(𝜎, id)])
= [(𝜎, 𝑥)]

For the second statement of the theorem, recall that [35,
Proposition 7.1] states that p◀ : ◀(Γ.Clk) → Γ.Clk is an iso-
morphism. Therefore, also the projection p𝑛◀ : ◀𝑛 (Γ.Clk) →
Γ.Clk is an isomorphism, from which the statement fol-
lows. □

A.6.6 Semantics for HITs. We provide semantics for any
HIT definable in the schema with a direct generalization of
the method employed in [21]. To each HIT signature given
we associate a notion of algebra. An initial such algebra
is then constructed and shown to support the necessary
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structure to model the HIT. For this section we denote objects
of the time category by 𝑥, 𝑥 ′, . . . to avoid notational clashes.
Reflecting the syntax of higher inductive types, we will

work with homogeneous composition and transport sepa-
rately. The semantic counterpoint to hcomp is the notion of
a fibrancy structure. A fibrancy structure for a type global
type 𝐴 is an operation taking a face 𝜑 : F, an element 𝑢0 : 𝐴
and a partial path 𝑝 : 𝐴I defined on the extent 𝜑 and equal
to 𝑢0 at the endpoint 0 : I. It then produces an element
ℎ𝐴 (𝜑,𝑢0, 𝑢) : 𝐴 which is equal to 𝑢 (1) on extent 𝜑 .

Consider a list of constructors Δ ⊢ K constrs, consisting
of constructors (ℓ𝑖 , (Γ𝑖 ;Ξ𝑖 ;Ψ𝑖 ;𝜑𝑖 ; 𝑒𝑖 )) ∈ K for each 1 ≤ 𝑖 ≤ 𝑛,
and let Δ′ ⊢ 𝛿 : JΔK. A K, 𝛿-algebra is a presheaf 𝐴 ∈
PSh(C ×T)/Δ′ with a fibrancy structure ℎ𝐴, and for each
(ℓ𝑖 , (Γ𝑖 ;Ξ𝑖 ;Ψ𝑖 ;𝜑𝑖 ; 𝑒𝑖 )) semantic constructors 𝑐𝐴𝑖 . A semantic
constructor is a map 𝑐𝑖 : Π(𝛾 : JΓ𝑖K(𝛿)) .(JΞ𝑖K(𝛿,𝛾) → 𝐴) →
JΨK → 𝐴. Given such 𝑐𝐴𝑖 ’s, we can interpret the boundary
conditions given by the constructors, and the semantic con-
structors are subject to the boundary coherence conditions
generated by this interpretation.
As in the syntax, we define the semantic boundary in-

terpretation ∥−∥ by induction over the grammar for these
terms. We denote the list of constructors in K before the
𝑖’th constructor byK<𝑖 , and the list of semantic constructors
for these by 𝐶<𝑖 . The boundary coherence condition states
that 𝑐𝐴𝑖 (𝛾, 𝜃, 𝑖) = ∥𝑀𝑖, 𝑗 ∥𝐶<𝑖 (𝛾, 𝜃, 𝑖) when 𝜑𝑖, 𝑗 (𝑖), which is the
direct interpretation of [𝜑𝑖,0 ∥𝑀𝑖,0∥, . . . , 𝜑𝑖,𝑛 ∥𝑀𝑖,𝑛 ∥]. We de-
fine the boundary interpretation for the remaining grammar
as follows:

∥𝑥𝑖 (𝑢 (𝛾, 𝜃, 𝑖))∥𝐶<𝑖 = J𝜃𝑖Kid,J𝑢K

∥con𝑗 (𝑡, 𝜆𝜉 .𝑁 , 𝑖)∥𝐶<𝑖 = 𝑐
𝐴
𝑗 (J𝑡K, 𝜆𝜉 .∥𝑁 ∥𝐶<𝑖 , J𝑖K)

∥hcomp[𝜑 ↦→ 𝑢] 𝑢0∥𝐶<𝑖 = ℎ𝐴 (𝜑, ∥𝑢0∥𝐶<𝑖 , ∥𝑢∥𝐶<𝑖 )
Amorphism ofK, 𝛿-algebras 𝑓 : 𝐴 → 𝐵 is a natural transfor-
mation preserving all K, 𝛿-algebra structure up to equality.
For constructors this means that 𝑓 (𝑐𝐴𝑖 (𝛾, 𝜃, 𝑟 )) = 𝑐𝐵𝑖 (𝛾, 𝑓 ◦
𝜃, 𝑟 ).

We will now define a presheaf 𝐻𝑝𝑟𝑒 , and carve out the
initial K, 𝛿-algebra as a subpresheaf 𝐻 ⊂ 𝐻𝑝𝑟𝑒 following
the construction exemplified in [21]. Let 𝜌 ∈ JΔK(𝐼 , 𝑥). The
presheaf 𝐻𝑝𝑟𝑒 consists of formal constructor elements, and
formal solutions to composition problems. Concretely the
presheaf 𝐻𝑝𝑟𝑒 (𝐼 , 𝑥, 𝜌) will contain elements of two forms:
Firstly formal constructors 𝑐𝑜𝑛𝑖 (𝛾, 𝜃, 𝑟 ), where𝛾 ∈ JΓ𝑖K(𝐼 , 𝑥, 𝜌),
𝑟 ∈ JΨK(𝐼 , 𝑥, 𝜌), J𝜑𝑖K(𝐼 , 𝑟 ) ≠ 1F, and 𝜃 is a family indexed by
𝑓 : (𝐼 , 𝑥) → (𝐽 , 𝑥 ′) and an element 𝜉 ∈ JΞ𝑖, 𝑗 K(𝐽 , 𝑥 ′, 𝑓 ·𝜌, 𝑓 ·𝛾)
of elements of 𝐻𝑝𝑟𝑒 (𝐽 , 𝑥 ′, 𝑓 · 𝜌, 𝑓 · 𝛾). Secondly hcomp el-
ements of the form hcomp[𝜓 ↦→ 𝑢] 𝑢0 where 𝜓 ≠ 1 ∈
F(𝐼 ), 𝑢0 ∈ 𝐻𝑝𝑟𝑒 (𝐼 , 𝑥, 𝜌) and 𝑢 is a family indexed by pairs
of a map 𝑓 : 𝐼 → 𝐽 in C, such that 𝑓 · 𝜑 = 1F, and 𝑟 ∈ I(𝐽 )
of elements 𝑢𝑓 ,𝑟 ∈ 𝐻𝑝𝑟𝑒 (𝐽 , 𝑥, (𝑓 , id) · 𝜌). To define the action
of 𝐻𝑝𝑟𝑒 on morphisms, we first need to give interpretations
of boundary terms. While this is not formally the same case

as for general algebras, the interpretation follows the same
structure and so we leave out the definition here. We denote
this boundary interpretation in 𝐻𝑝𝑟𝑒 again by ∥−∥, owing to
the fact that when the definition is complete, the two will
coincide. Let 𝑔 : (𝐼 , 𝑥) → (𝐽 , 𝑥 ′). We define the action on
elements on 𝐻𝑝𝑟𝑒 as follows:

𝐻𝑝𝑟𝑒 (𝑔) (𝑐𝑜𝑛𝑖 (𝑡, 𝑎, 𝑟 )) :={
∥𝑀 (𝑔 · 𝑡, 𝑔.𝑎, 𝑔 · 𝑟 )∥𝐶 if 𝜑𝑖 (𝑔 · 𝑟 )
𝑐𝑜𝑛𝑖 (𝑔 · 𝑡, 𝑔.𝑎, 𝑔 · 𝑟 ) else

𝐻𝑝𝑟𝑒 (𝑔) (hcomp[𝜓 ↦→ 𝑢]𝑢0) :={
𝑢𝑔,1 if𝜓 (𝑔 · 𝑟 )
hcomp[𝑔 ·𝜓 ↦→ 𝑔.𝑢] (𝑔 · 𝑢0) else

Here 𝑔.𝑎 is given by (𝑔.𝑎)𝑖,𝑓 ,𝜉 = 𝑎𝑖,𝑓 𝑔,𝜉 , 𝑔.𝑢 is 𝑢 similarly
reindexed by the cubical component of 𝑔 and 𝐶 is list of
constructors 𝑐𝑜𝑛𝑖 on which the boundary interpretation is
based.

Nowwe carve out those elements where the families taken
as input are natural. This means that we include elements
𝑐𝑜𝑛𝑖 (𝛾, 𝜃, 𝑟 ) where each 𝜃 𝑓 ,𝜉 is in 𝐻 and 𝜃𝑔𝑓 ,𝑔·𝜉 = 𝑔 · 𝜃 𝑓 ,𝜉 .
Additionally, we include those hcomp[𝜓 ↦→ 𝑢] 𝑢0 elements
where 𝑢0 and each 𝑢𝑓 ,𝑟 is in 𝐻 , 𝑢𝑔𝑓 ,(𝑔,id) ·𝑟 = (𝑔, id) · 𝑢𝑓 ,𝑟 and
(𝑓 , id) · 𝑢0 = 𝑢𝑓 ,0 for suitable maps 𝑓 such that 𝑓 ·𝜓 = 1F.

Lemma A.24. The presheaf 𝐻 is the initial K, 𝛿-algebra for
each 𝛿 : Δ. As a consequence, it has a unique map to any
cubical type 𝐴 with the structure of a K, 𝛿-algebra.

Proof. Let 𝐴 be a K, 𝛿-algebra with fibrancy structure ℎ𝐴
and constructors semantic 𝑐𝑖 . We are tasked with producing
a natural transformation 𝑒 : 𝐻 → 𝐴, and we define 𝑒 (𝑢)
by induction on the structure of 𝑢: In the case where 𝑢 =
𝑐𝑜𝑛𝑖 (𝑡, 𝑎, 𝑟 ), we define 𝑒 (𝑢) := 𝑐𝑖 (𝑡, 𝑒 (𝑎), 𝑟 ), and in the case
𝑢 = hcomp[𝜑 ↦→ 𝑢]𝑢0 we define 𝑒 (𝑢) := ℎ𝐴 (𝜑, 𝑒 (𝑢), 𝑒 (𝑢0)).
In both cases, 𝑒 (𝑥) is 𝑒 applied levelwise to the family 𝑥 .
While making this definition, we have to verify naturality at
each stage, which follows in each case from the conditions
on the 𝑐𝑖 ’s or the computational behaviour of the fibrancy
structures. □

LemmaA.25. The presheaf𝐻 carries a composition structure.

The proof of this lemma uses the fact that Δ, Γ𝑖 and Ξ𝑖, 𝑗 all
carry transport structures. Given those we define a transport
structure on 𝐻 by initiality, following the syntactic descrip-
tion of the action of trans on constructors in Section A.5.
Combining this with the homogeneous composition struc-
ture we conclude the proof by Lemma 5 of [21].

Proposition A.26. The presheaf 𝐻 supports the dependent
elimination principle of H.

This follows from Lemma A.24 as in [21].
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In addition to Lemma A.25 and Proposition A.26, we need
to verify that 𝐻 supports the formation and introduction
rules, as well as the judgemental equalities These verifica-
tions are routine.

A.6.7 Verifying the principle of inductionunder clocks.
The principle of induction under clocks is verified in the
model by the following theorem:

Theorem A.27. Consider a HIT Δ ⊢ H type, a type family
Γ,∀𝜅.H (𝛿 [𝜅]) ⊢ 𝐷 type and a term Γ ⊢ 𝛿 : ∀𝜅.Δ. Suppose
that we semantically have an elimination list, i.e., for each
𝑖 we have a term 𝑢𝑖 : J𝐷 [𝜆𝜅.con𝑖 (𝛾 [𝜅], 𝑥 [𝜅],𝜓 )]K over the
contextt
Γ, 𝛾 : ∀𝜅.Γ𝑖 [𝛿 [𝜅]], 𝑥 : ∀𝜅.Ξ𝑖 [𝛿 [𝜅], 𝛾 [𝜅]] → H (𝛿 [𝜅]),
𝑦 : (∀𝜅.Ξ𝑖 [𝛿 [𝜅], 𝛾 [𝜅]]) → 𝐷 [𝜆𝜅.𝜆𝜉 .𝑥 [𝜅] 𝜉 [𝜅]],𝜓 : Ψ𝑖 ⊢

|
.

Then we can construct a term of J𝐷K over JΓ.∀𝜅.H (𝛿 [𝜅])K.
Proof. The semantics of clock quantification of 𝐴 is given by
the semantic Π over the clock object, ΠClk.J𝐴K. It is shown
in [12] this is equivalent at 𝐼 , 𝑥, 𝜌 to the limit

lim
𝑛

J𝐴K(𝐼 , 𝑥 + 𝜆𝑛, 𝜄 · 𝜌, 𝜆)

with structure maps given by the map tick𝜆 : (𝐼 , 𝑥 + 𝜆𝑛+1) →
(𝐼 , 𝑥 +𝜆𝑛). Here (E, 𝑓 ) +𝜆𝑛 = (E∪ {𝜆}, 𝑓 [𝜆 ↦→ 𝑛]). The map
tick𝜆 is given by the identity maps, so it can be viewed as
letting a single time step pass on the clock 𝜆. Nominally such
a family depends on the choice of fresh clock 𝜆, but of course
this dependence goes away since we have isomorphisms
𝑥 + 𝜆𝑛 � 𝑥 + 𝜆′𝑛 in the time category. Hence we will suppress
the change of 𝜆, as long as these are fresh meaning that the
environment variable is of the form 𝜄 · 𝜌 .
The action of morphisms on HIT’s in the model can only

change the constructor type by acting on the cube compo-
nent. As a consequence of this, the structure of elements in
J∀𝜅.H (𝛿 [𝜅])K are determined at each level by their structure
at 0.
It is sufficient to work with 𝑑 : J∀𝜅.ΔK(𝐼 , 𝑥), with the

proof for general Γ following by pulling back along the term
Γ ⊢ 𝑑 : ∀𝜅.Δ. We start by making explicit the data of the
assumed terms 𝑢𝑖 . The input to a 𝑢𝑖 is as follows:

(a) We have a family 𝑡 = (𝑡𝑛) ∈ J∀𝜅.Γ𝑖 [𝜅]K(𝐼 , 𝑥, 𝑑).
(b) For each 𝑗 we have a family

𝑎 = (𝑎 𝑗𝑛) ∈ J∀𝜅.Ξ𝑖, 𝑗 [𝛿 [𝜅], 𝛾 [𝜅]] → H (𝛿 [𝜅])K(𝐼 , 𝑥, 𝑑, 𝑡).
This can be further unfolded as follows: We have for
each 𝑛, 𝑓 : (𝐼 , 𝑥 + 𝜆𝑛) → (𝐽 , 𝑥 ′) and
𝑧 ∈ JΞ𝑖, 𝑗 [𝛿 [𝜅], 𝛾 [𝜅]]K(𝐽 , 𝑥 ′, 𝑓 · 𝑑𝑛, 𝑓 · 𝑡𝑛, 𝑓 (𝜆))
an element 𝑎 𝑗

𝑛,𝑓 ,𝑧
∈ JH (𝛿 [𝜅])K(𝐽 , 𝑥 ′, 𝑓 · 𝑑𝑛, 𝑓 (𝜆)).

(c) The next family is indexed by 𝑗 as above, a morphism
𝑔 : (𝐼 , 𝑥) → (𝐽 , 𝑥 ′) and a family
𝑧 := (𝑧𝑛) ∈ J∀𝜅.Ξ𝑖, 𝑗 [𝛿 [𝜅], 𝛾 [𝜅]]K(𝐽 , 𝑥 ′, 𝑔 · 𝑑,𝑔 · 𝑡).

Note here that this means we have a familyℎ := (ℎ𝑛) ∈
J∀𝜅.H (𝛿 [𝜅])K(𝐽 , 𝑥 ′, 𝑔 ·𝑑) given by ℎ𝑛 := 𝑎 𝑗

𝑛,𝑔+𝜆𝑛,𝑧𝑛 . We
then have an element 𝑏 𝑗𝑛,𝑧 ∈ J𝐷K(𝐽 , 𝑥 ′, 𝑔 · 𝑑,ℎ), and we
denote the family by 𝑏.

(d) An element 𝑟 ∈ Ψ𝑖 (𝐼 ).
When given this, we have an element

(con𝑖 (𝑡𝑛, 𝑎𝑛, 𝑟 ))𝑛 ∈ J∀𝜅.H (𝛿 [𝜅])K(𝐼 , 𝑥, 𝑑)
and we assume that we can inhabit 𝐷 over this element, i.e.,
that we have

𝑢𝑖 (𝑡, 𝑎, 𝑏, 𝑟 ) ∈ J𝐷K(𝐼 , 𝑥, 𝑑, (con𝑖 (𝑡𝑛, 𝑎𝑛, 𝑟 ))𝑛).
We need to inhabit J𝐷K at an arbitrary element

ℎ ∈ J∀𝜅.H (𝛿 [𝜅])K(𝐼 , 𝑥, 𝑑).
Observe that the structure of the familyℎ is completely deter-
mined by the structure of ℎ0. This holds because the family
is compatible with the tick maps, and these are trivial in the
cube component which means in particular that they cannot
change the outer constructor of an element of the HIT. This
means that we only have to inhabit it at families either of the
form (con𝑖 (𝑡𝑛, 𝑎𝑛, 𝑟 )) or of the form (hcomp[𝜑 ↦→ 𝑢𝑛] 𝑢𝑛0 ).
We can do this by induction on the structure, since it is the
same for each component of the family, and can therefore
assume that we can inhabit J𝐷K at structurally simpler fami-
lies. Explicitly, the induction is done on the structure of the
0 component in the family, so that the inductive hypothesis
says that whenever we have a family (ℎ′𝑛) such that ℎ′0 is
structurally simpler than ℎ0, we can inhabit J𝐷K over this
family. We denote the element over a family ℎ by 𝛼 (ℎ).

We consider first the case where we are given a family

(con𝑖 (𝑡𝑛, 𝑎𝑛, 𝑟 ))𝑛 ∈ J∀𝜅.H (𝛿 [𝜅])K(𝐼 , 𝑥, 𝑑).
Note that (𝑡𝑛) is forced to be compatible with tick maps
and that 𝑟 is constant. This means that we have (𝑡𝑛)𝑛 ∈
J∀𝜅.Γ𝑖 [𝛿 [𝜅]]K(𝐼 , 𝑥, 𝑑) and 𝑟 ∈ Ψ(𝐼 ), and we have the data
of (a) and (d). The implied typing of 𝑎 𝑗𝑛 is a family over 𝑓 :
(𝐼 , 𝑥+𝜆𝑛) → (𝐽 , 𝑥 ′) and 𝑧 ∈ JΞ𝑖, 𝑗 [𝛿 [𝜅], 𝛾 [𝜅]]K(𝐽 , 𝑥 ′, 𝑓 ·𝑑𝑛, 𝑓 ·
𝑡𝑛, 𝑓 (𝜆)) of elements 𝑎 𝑗

𝑛,𝑓 ,𝑧
∈ JH (𝛿 [𝜅])K(𝐽 , 𝑥 ′, 𝑓 · 𝑑𝑛, 𝑓 (𝜆)).

This is exactly the typing of (b), so we need only to construct
the family in (c). We need this to be a family over 𝑔 : (𝐼 , 𝑥) →
(𝐽 , 𝑥 ′) and 𝑧 := (𝑧𝑛) ∈ J∀𝜅.Ξ𝑖, 𝑗 [𝛿 [𝜅], 𝛾 [𝜅]]K(𝐽 , 𝑥 ′, 𝑔 ·𝑑,𝑔 · 𝑡).
Given this, we again define the family

ℎ := (ℎ𝑛) ∈ J∀𝜅.H (𝛿 [𝜅])K(𝐽 , 𝑥 ′, 𝑔 · 𝑑)
by ℎ𝑛 := 𝑎 𝑗

𝑛,𝑔+𝜆𝑛,𝑧𝑛 . Note that this family is compatible with
ticks, and hence we obtain 𝛼 ((ℎ𝑛)) 𝑖𝑛J𝐷K(𝐽 , 𝑥 ′, 𝑔 · 𝑑, ℎ) by
inductive hypothesis, since ℎ0 is given by a component of
the structurally simpler 𝑎. We define

𝛼 ((con𝑖 (𝑡𝑛, 𝑎𝑛, 𝑟 ))𝑛) = 𝑢𝑖 (𝑡, 𝑎, 𝛼 ((ℎ𝑛)), 𝑟 ).
Consider now the hcomp case. Since J𝐷K is a type, it car-

ries a composition structure. The strategy for inhabiting



Greatest HITs Conference’17, July 2017, Washington, DC, USA

J𝐷K will be to construct an appropriate composition prob-
lem and apply the inductive hypothesis. Consider a family
ℎ = (hcomp[𝜑 ↦→ 𝑢𝑛] 𝑢𝑛0 ) ∈ J∀𝜅.H (𝛿 [𝜅])K(𝐼 , 𝑥, 𝑑). Here
the implicit typing is as follows: For each 𝑛, we have for
each 𝑓 : 𝐼 → 𝐽 such that 𝑓 · 𝜑 = ⊤ and 𝑠 ∈ Ψ(𝐽 ) an
element 𝑢𝑛

𝑓 ,𝑠
∈ JH (𝛿 [𝜅])K(𝐽 , 𝑥 + 𝜆𝑛, 𝑓 · 𝑑𝑛, 𝜆) and an ele-

ment 𝑢𝑛0 ∈ JH (𝛿 [𝜅])K(𝐽 , 𝑥 + 𝜆𝑛, 𝑑𝑛, 𝜆). The 𝑢𝑛0 family has
the right shape for us to employ our induction hypothesis
to inhabit J𝐷K over it. Because the shape of 𝑓 and 𝑠 does
not depend on the time component, we also have for each
𝑓 a family in 𝑛 given by (𝑢𝑛

𝑓 ,𝑠
). All these families have 0

component structurally simpler, hence we can inhabit J𝐷K
over each of them by 𝛼 ((𝑢𝑛0 )) and 𝛼 ((𝑢𝑛𝑓 ,𝑖 )). We will write
𝛼 ((𝑢𝑛)) for the family given at 𝑓 , 𝑖 by 𝛼 ((𝑢𝑛

𝑓 ,𝑖
)). We can

then define 𝛼 (ℎ) = comp𝐷 [𝑣 ] [𝜑 ↦→ 𝛼 ((𝑢𝑛))] 𝛼 ((𝑢𝑛0 )) where
𝑣 = (hfillJH𝛿 [𝜅 ]K [𝜑 ↦→ 𝑢𝑛] 𝑢𝑛0 ).

It must be verified that 𝛼 is natural in morphisms of the
category while defining it. Both because we need 𝛼 to be
natural for the desired conclusion and because the recursive
calls used to define 𝛼 require it. Let 𝑓 : (𝐼 , 𝑥) → (𝐽 , 𝑥 ′).
Naturality means that 𝑓 · 𝛼 (ℎ) = 𝛼 (𝑓 · ℎ), which unfolds as
follows:

• Consider a family ℎ = (con𝑖 (𝑡𝑛, 𝑎𝑛, 𝑟 )). By definition
𝛼 (ℎ) = 𝑢𝑖 (𝑡, 𝑎, 𝑏, 𝑟 ) where 𝑏𝑔,𝑧 = 𝛼 ((𝑎 𝑗

𝑛,𝑔+𝜆𝑛,𝑧𝑛 )). If 𝑓
does not trigger a boundary condition for con𝑖 we
have

𝑓 · 𝛼 (ℎ) = 𝑢𝑖 (𝑓 · 𝑡, 𝑓 .𝑎, 𝑓 .𝑏, 𝑓 · 𝑟 ) and

(𝑓 · ℎ)𝑛 = con𝑖 ((𝑓 + 𝜆𝑛) · 𝑡𝑛, (𝑓 + 𝜆𝑛).𝑎𝑛, (𝑓 + 𝜆𝑛) · 𝑟 ).
Recall here that 𝑔.𝑎𝑛 is defined to be the family 𝑎𝑛 is
given by composing the map index with 𝑔 and acting
on the input index. Applying 𝛼 to this yields 𝑢𝑖 (((𝑓 +
𝜆𝑛) ·𝑡𝑛), ((𝑓 +𝜆𝑛).𝑎𝑛), 𝑏′, 𝑓 ·𝑟 ) where 𝑏′ is defined from
((𝑓 + 𝜆𝑛).𝑎𝑛) as above, i.e.,

𝑏′𝑔,𝑧 = 𝛼 ((((𝑓 + 𝜆𝑛).𝑎)𝑛,𝑔+𝜆𝑛,𝑧𝑛 )) .

By definition of the morphism action on a limit we
have ((𝑓 +𝜆𝑛) ·𝑡𝑛) = 𝑓 · (𝑡𝑛) and ((𝑓 +𝜆𝑛).𝑎𝑛) = 𝑓 .(𝑎𝑛).
The action of 𝑓 and 𝑓 +𝜆𝑛 are the same on 𝑟 , since they
have the same cubical component. It remains to argue
that 𝑓 .𝑏 coincides with the 𝑏′ defined from the family
𝑓 .𝑎, which already a part of the naturality of the 𝑢𝑖 ’s.
We check this componentwise for the family, so we
have to show that (𝑓 .𝑏)𝑔,𝑧 = 𝑏′𝑔,𝑧 . The left hand side is
by definition equal to 𝑏𝑔𝑓 ,𝑓 ·𝑧 = 𝛼 ((𝑎 𝑗𝑛,𝑔𝑓 +𝜆𝑛,(𝑓 +𝜆𝑛 ) ·𝑧𝑛 )),
while the right hand side is equal to𝛼 ((((𝑓 +𝜆𝑛).𝑎) 𝑗𝑔+𝜆𝑛,𝑧𝑛 )).
Unfolding the right hand sidewe get𝛼 (((𝑎) 𝑗(𝑔+𝜆𝑛 ) (𝑓 +𝜆𝑛 ),(𝑓 +𝜆𝑛 ) ·𝑧𝑛 )),
which is the same as the left hand side since (𝑔+𝜆𝑛) (𝑓 +
𝜆𝑛) = 𝑔𝑓 + 𝜆𝑛 .

If 𝑓 triggers a boundary condition of con𝑖 we have by
assumption that

𝑓 · 𝛼 (ℎ) = 𝑓 ·𝑢𝑖 (𝑡, 𝑎, 𝑏, 𝑟 ) = JL𝑒M𝛿
E,𝑥 ↦→𝑦K(𝑓 · 𝑡, 𝑓 · 𝑎, 𝑓 · 𝑏, 𝑓 · 𝑟 )

where 𝑒 is the boundary term of con𝑖 . On the other
hand, the structure ofH means that𝛼 (𝑓 ·ℎ) = 𝛼 ((∥𝑒 ∥((𝑓 +
𝜆𝑛) ·𝑡𝑛, (𝑓 +𝜆𝑛).𝑎𝑛, (𝑓 +𝜆𝑛) ·𝑟 )) where ∥𝑒 ∥ is the bound-
ary evaluation for H (𝛿 [𝜅]). Equality of these two can
be shown by induction on the structure of 𝑒 .

• Consider a family ℎ = (hcomp[𝜑 ↦→ 𝑢𝑛] 𝑢𝑛0 ). By def-
inition 𝛼 (ℎ) = comp𝐷 [𝑣 ] [𝜑 ↦→ 𝛼 ((𝑢𝑛))] 𝛼 ((𝑢𝑛0 )). If 𝑓
does not make 𝜑 true we have to verify that
𝑓 · comp𝐷 [𝑣 ] [𝜑 ↦→ 𝛼 ((𝑢𝑛))] 𝛼 ((𝑢𝑛0 )) = 𝛼 (𝑓 · ℎ).
We unfold the right hand side:
𝛼 (𝑓 · ℎ) =
==𝛼 ((hcomp[𝑓 · 𝜑 ↦→ (𝑓 + 𝜆𝑛).𝑢𝑛] (𝑓 + 𝜆𝑛) · 𝑢𝑛0 ))
= comp𝐷 [ 𝑓 ·𝑣 ] [𝑓 · 𝜑 ↦→ 𝛼 (((𝑓 + 𝜆𝑛).𝑢𝑛))]
====================𝛼 (((𝑓 + 𝜆𝑛) · 𝑢𝑛0 ))
= comp𝐷 [ 𝑓 ·𝑣 ] [𝑓 · 𝜑 ↦→ 𝑓 .𝛼 ((𝑢𝑛))] 𝑓 · 𝛼 ((𝑢𝑛0 ))
= 𝑓 · comp𝐷 [𝑣 ] [𝜑 ↦→ 𝛼 ((𝑢𝑛))] 𝛼 ((𝑢𝑛0 ))
The second to last step above follows by the inductive
hypothesis that 𝛼 is natural on simpler families, and
the last line is exactly the left hand side of the original
equation.
If 𝑓 makes 𝜑 true, both composition in 𝐷 and hcomp
reduce to appropriate components of the input, i.e., we
have 𝛼 (𝑓 ·ℎ) = 𝛼 ((𝑢𝑛(𝑓 +𝜆),1)) and 𝑓 ·𝛼 (ℎ) = 𝛼 ((𝑢𝑛))𝑓 ,1
for the right and left hand sides of the equality we are
trying to show. These agree by definition of 𝛼 ((𝑢𝑛))𝑓 ,1.

This means that 𝛼 assembles into a term of J𝐷K over
JΓ.∀𝜅.H (𝛿 [𝜅])K as desired. It is moreover clear from the
definition of 𝛼 that it will validate the computation rules of
the induction principle, since the value on constructor fami-
lies was given directly by the appropriate𝑢𝑖 and the value on
hcomp families was given by the appropriate composition
in 𝐷 . □



3. UNIFYING CUBICAL AND MULTIMODAL TYPE THEORY



UNIFYING CUBICAL AND MULTIMODAL TYPE THEORY

FREDERIK LERBJERG AAGAARD, MAGNUS BAUNSGAARD KRISTENSEN, DANIEL GRATZER,
AND LARS BIRKEDAL

a Aarhus University
e-mail address: aagaard@cs.au.dk

b IT University of Copenhagen
e-mail address: mbkr@itu.dk

c Aarhus University
e-mail address: gratzer@cs.au.dk

d Aarhus University
e-mail address: birkedal@cs.au.dk

Abstract. In this paper we combine the principled approach to programming with
modalities of multimodal type theory (MTT) with the computationally well-behaved
identity types of cubical type theory (CTT). The result—cubical modal type theory
(Cubical MTT)—has the desirable features of both systems. In fact, the whole is more
than the sum of its parts: Cubical MTT validates desirable extensionality principles for
modalities that MTT only supported through ad hoc means.

We investigate the semantics of Cubical MTT and provide an axiomatic approach to
producing models of Cubical MTT based on the internal language of topoi and use it to
construct presheaf models. Finally, we demonstrate the practicality and utility of this
axiomatic approach to models by constructing a model of (cubical) guarded recursion in a
cubical version of the topos of trees. We then use this model to justify an axiomatization of
Lob induction and thereby use Cubical MTT to smoothly reason about guarded recursion.

1. Introduction

Type theorists have produced a plethora of variants of type theory since the introduction
of Martin-Löf type theory (MLTT), each of which attempts to refine MLTT to enhance its
expressivity or convenience. Unfortunately, even extensions of type theory which appear
orthogonal cannot be carelessly combined and so expert attention is frequently necessary to
trust a type theory with the correct suite of extensions. We are particularly interested in two
families of extensions to MLTT: cubical type theories [CCHM18, ABC+21] and (Fitch-style)
modal type theories [Clo18, BCM+20, GKNB20].

Both of these lines of research aim to increase the expressivity of type theory, but along
different axes. Cubical type theory gives a higher-dimensional interpretation to the identity
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type and thereby obtains a more flexible notion of equality along with a computational
interpretation of univalent foundations [Uni13]. Meanwhile, modal dependent type theory
(MTT) extends MLTT with connectives which need not commute with substitution, allowing
for type theory to model phenomena such as guarded recursion, axiomatic cohesion, or
parametricity [BMSS12, Shu18, ND18].

While combining two complex type theories like this is not a task to be undertaken
frivolously, experience has shown that a principled mixture of these two type theories would
be useful. Indeed, modalities naturally appear in synthetic homotopy theory [Shu18] but
without an apparatus likeMTT, these extensions must be handled in an ad-hoc way, which can
easily disrupt the desirable properties of type theory. Moreover, cubical type theory’s version
of equality validates invaluable principles like function extensionality and a cubical variant
of MTT would thus eliminate the need to postulate such principles [BBC+19, KMV21].

Prior to discussing how MTT□ fuses these systems, we set the stage by introducing both
cubical type theory and multimodal type theory MTT separately.

Cubical type theory. Cubical type theory originates from the broader class of homotopy
type theories whose study was instigated by Voevodsky’s observation that the intensional
identity type could be realized as a (homotopical) path space [KL21]. This shift in perspective
justifies the inclusion of the univalence axiom which postulates an equivalence between
equalities between elements of a universe and equivalences of the denoted types. While
univalence has many pleasant consequences (function extensionality, effectivity of quotients,
etc.), the addition of such an axiom disrupts crucial properties of the type theory. In
particular, it is not possible to compute in such a theory. In order to rectify this issue,
cubical type theory was introduced and shown to simultaneously support computation and
validate the univalence axiom.

Cubical type theory extends MLTT with an interval object I along with a function
space—a path space—to hypothesize over it. Intuitively, I abstracts the interval [0, 1] and
this connection is enhanced by the addition of operations, e.g. 0, 1 : I. Accordingly, I→ A
classifies lines in A and by iterating we obtain squares, cubes, or arbitrary n-cubes in A.

While homotopy type theory recasts the identity type from MLTT as a path in a space,
cubical type theory begins with paths and forces them to behave like an identity type. We
therefore isolate a subtype PathA(a0, a1) of paths I→ A whose values at 0 and 1 are a0 and
a1. By further equipping A with Kan operations, PathA(a0, a1) becomes a new model for the
identity type. The Kan operations are subtle and complex but without them PathA(−,−) is
not even an equivalence relation. The flexibility afforded by these Kan operations, however,
allows cubical type theory to support a computational effective interpretation of univalence.

MTT and Fitch-style modal type theories. We now turn from cubical type theory
to modal type theory. Like cubical type theory, the motivations for modalities—a type
constructor which does not necessarily respect substitution—are semantic; many models of
type theory have further structure which does not directly commute with substitution, but
would still be useful to internalize. For instance, the global sections comonad of a presheaf
model is frequently essential for working internally to the model [CBGB15, LOPS18, Shu18],
but it almost never commutes with substitution.

Unfortunately, much of the convenience of MLTT hinges on the fact that all operators
do commute with substitution, so introducing a modality tends to disrupt nearly every
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property of importance. In order to cope with this contradiction, modal type theories like
MTT [GKNB20] have carefully isolated classes of modalities which can be safely incorporated
into type theory while preserving properties such as canonicity and normalization [Gra21].
In fact, MTT can be instantiated with an arbitrary collection of (weak) dependent right
adjoints [BCM+20]. The metatheory of MTT applies irrespective of the choice of mode theory,
and therefore MTT can be seen as a general modal type theory, suitable for instantiation
with a wide variety of different modalities to specialize the type theory to capture particular
models.

In practice, MTT is parameterized by a mode theory, a 2-category used to describe
the modalities in play. The objects of the mode theory correspond to individual copies of
MLTT linked together by the modalities, the morphisms of the mode theory. The 2-cells
of the mode theory induce natural transformations between modalities. For instance, in
order to model the global sections comonad we pick a mode theory with one mode m, one
modality µ, and a collection of 2-cells shaping this modality into a comonad, e.g., 2-cells
µ µ ◦ µ and µ idm subject to several equations. Upon instantiating MTT with this
mode theory we obtain a type theory with a comonad already known to satisfy many
important metatheorems.

Towards Cubical MTT. In [GKNB20], each mode of MTT contains a copy of MLTT.
Unfortunately, the type theory therefore inherits the well-known limitations of MLTT: the
identity type is difficult to work with, function extensionality is not satisfied. One can resolve
these issues by adding equality reflection to MTT, but this disrupts the decidability of type-
checking. Moreover, several modalities arise in the context of homotopy type theory [Shu18]
and adapting MTT to these models requires simply postulating univalence, thereby conferring
the same set of difficulties.

We introduce MTT□, a unification of Cubical type theory and MTT. To a first approxi-
mation, MTT□ replays the theory of MTT, after replacing MLTT with cubical type theory.
One thereby obtains a modal type theory with different modes—now copies of cubical type
theory—connected by arbitrary dependent right adjoints. Moreover, each mode now satisfies
univalence and function extensionality.

Beyond this, a computation rule for Kan operations in modal types is needed for
computation (and thus for normalization), but it is not immediately well-typed. Indeed,
a key challenge in combining MTT with CTT is exactly to capture sufficient interactions
between modal and cubical aspects for this rule to be well-typed, whilst not making greater
demands than the intended models can bear.

The switch from using MLTT to using CTT in MTT also improves modal types. For
instance, in [Gra21] special care is taken to include crisp induction in order to validate the
modal counterpart to function extensionality. While this addition preserves normalization
and canonicity, modal extensionality is independent of MTT. In MTT□, by contrast, the
corresponding principle is simply provable (Theorem 3.1).

We show that models of MTT□ can be assembled from certain models of cubical type
theory connected by right adjoints. In particular, given coherent functors fµ : Cn Cm
there is a model of MTT□ which realizes context categories as PShcSet(Cm) and modalities
as right Kan extension (fµ)∗. This ensures, for example, that despite the complexity of both
MTT and cubical type theory, it is easily shown that MTT□, appropriately instantiated,
models cubical guarded recursion [BBC+19, KMV21]. Indeed, we show that the cubical
underpinnings of MTT□ improve the presentation of guarded recursion in MTT [Gra21].
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The development of this theory of models also implies the soundness of MTT□. We
further conjecture, but do not prove, that the normalization results of [Gra21] for MTT and
[SA21] for cubical type theory can be appropriately combined into a normalization proof for
MTT□.

Contributions. We contribute MTT□, a synthesis of cubical type theory and MTT, and a
foundation for multimodal and higher-dimensional type theories. In section 2 we recapitulate
the basics of cubical type theory and MTT and in section 3 we present the definition of
MTT□ and further prove the aforementioned modal extensionality principle. Finally, in
section 4 we introduce the model theory of MTT□ and further show that cubical presheaves
and certain essential geometric morphisms assemble into models. We then apply this theory
to cubical guarded recursion in section 5 and explore the improved presentation of guarded
recursion.

2. Cubical and multimodal type theory

We now recall the essential details of cubical type theory [CCHM18] and MTT [GKNB21].
We focus mostly on the portions relevant for MTT□ and refer the reader to the existing
literature for a more thorough introduction. Readers familiar with both systems may safely
proceed to section 3.

2.1. Cubical type theory. CTT begins by extending MLTT with a primitive interval I
and algebraic structure to mimic the real interval [0, 1]. A term of type A which assumes
dimension variables i, j, k : I corresponds to n-cubes (lines, squares, cubes) in A. Concretely,
we add a new context formation rule Γ, i : I and a new syntactic class of dimension terms
Γ ⊢ r : I:

(Abstract interval) r, s : I ::= i | 0 | 1 | 1− r | r ∨ s | r ∧ s
We further identify dimension terms by the equations of De Morgan algebras.
Next, we add path types: a dependent product over the interval. The rules for this new

connective are given in Figure 1 and—just as with dependent products—path types enjoy β
and η rules stating e.g. (λi. p)(r) = p[r/i]. In addition to β and η, paths are equipped with
further equalities reducing them at endpoints, e.g., given p : PathA(a, b) then p(0) = a : A.

Out of the box, paths define a relation on types which is reflexive and symmetric and
which validates extensionality principles such as function extensionality. They are not,
however, transitive and it is this deficiency that leads to the Kan composition operation
which forms the backbone of CTT. Intuitively, this composition operation lets us complete
an open box (an n-cube missing certain faces) to an n-cube. In order to formalize this
geometric intuition we add the face lattice F, a class of propositions, which we use to codify
the open boxes to be filled. We therefore add another syntactic class Γ ⊢ ϕ : F:

(Face lattice) ϕ, ψ : F ::= ⊥ | ⊤ | (r = 0) | (r = 1) | ϕ ∨ ψ | ϕ ∧ ψ
Elements of F are identified by the equations of distributive lattices as well as the

additional equation (r = 0) ∧ (r = 1) = ⊥.
Elements ϕ : F are used to restrict a context by assuming them, denoted Γ, ϕ. This

allows us to locally force ϕ to hold so that, e.g., i : I, (i = 0) ⊢ i = 0 : I. We can take
advantage of an assumption ϕ in our context through systems. The rules for systems are
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Γ ⊢ a : A Γ ⊢ b : A
Γ ⊢ PathA(a, b)

Γ, i : I ⊢ p : A
Γ ⊢ λi. p : PathA(p(0), p(1))

Γ ⊢ r : I Γ ⊢ p : PathA(a, b)
Γ ⊢ p(r) : A

Γ, ϕi ⊢ ai : A Γ, ϕ0 ∧ ϕ1 ⊢ a0 = a1 : A

Γ, ϕ0 ∨ ϕ1 ⊢ { ϕ0 a0, ϕ1 a1 } : A Γ,⊥ ⊢ { } : A

Γ ⊢ ϕ : F Γ, i : I ⊢ A Γ, ϕ, i : I ⊢ u : A Γ ⊢ u0 : A[0/i] [ϕ 7→ u[0/i]]

Γ ⊢ compiA [ϕ 7→ u]u0 : A[1/i] [ϕ 7→ u[1/i]]

Figure 1: Selected rules from CTT

given in Figure 1; intuitively they state that to construct an element in Γ,
∨
i ϕi ⊢ u : A,

it suffices to construct elements Γ, ϕi ⊢ ui : A that agree on the overlap. An element
constructed through this amalgamation restricts appropriately e.g., Γ, ϕi ⊢ u = ui : A.

We are frequently concerned with the behavior of a term after some assumption ϕ—its
boundary—and therefore introduce notation for it. We write Γ ⊢ a : A [ϕ 7→ u] as shorthand
for (1) a being a term of A and (2) under the assumption ϕ, a = u : A. With this machinery,
we can now formulate the Kan composition rule, shown in Figure 1. This one principle is
sufficient to prove the properties we expect of identity types, including J (path induction).1

We review the proof that path equality is transitive to give the reader a sense of the
rule. Let A be a type that does not depend on any interval variables, and suppose a, b, c : A,
p : PathA(a, b), and q : PathA(b, c). We form three lines in A: The paths p and q as well
as the constant a line. Using these we form a system depending on i and j given by
{ (i = 0) a, (i = 1) q(j) }. The path p forms an extension of this system at j = 0, and so

we can form the path λi. compjA [(i = 0) 7→ a, (i = 1) 7→ q(j)] p(i), which will reduce to the
j = 1 part of our designed system, i.e., a at i = 0 and q(1) = c at i = 1, thus proving
transitivity. We think of the input data as an open box with bottom p and sides given by
the system; in this analogy the composition forms a lid completing the outer square.

a

a b

c

a

p(i)

q(j)

Remark 2.1. Given x, y : A, we write x ≡ y when there exists an element of PathA(x, y).

2.2. Multimodal type theory. To a first approximation, MTT is a collection of copies
of MLTT for each m ∈ M, connected by dependent adjunctions [BCM+20]. MTT is
parameterized by a mode theoryM [LS16], a strict 2-category. Each object m,n, o :M is
assigned to a distinct mode: a copy of MLTT complete with its own judgments (Γ cx@m,
Γ ⊢M : A@m, . . . ). Many of the rules of MTT (dependent sums, inductive types, etc.) are
mode-local and taken as-is from MLTT; the interesting features of MTT arise from allowing
modes to interact with each other.

1Unlike in MLTT, however, path induction reduces on reflexivity only up to a path.
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Γ, {µ} ⊢ A@n

Γ ⊢ ⟨µ | A⟩@m

Γ, {µ} ⊢ a : A@n

Γ ⊢ modµ(a) : ⟨µ | A⟩@m

Γ, {µ} ⊢ A@n

Γ, x : (µ | A) cx@m Γ, x : (µ | A), {µ} ⊢ x : A@n

µ : n→ m ν : o→ n Γ cx@m Γ.{µ}, {ν} ⊢ A@ o Γ, {µ} ⊢ a : ⟨ν | A⟩@n
Γ, x : (µ | ⟨ν | A⟩) ⊢ B@m Γ, y : (µ ◦ ν | A) ⊢ b : B[modν(y)/x] @m

Γ ⊢ letµ modν(y)← a in b : B[a/x] @m

Figure 2: Selected rules from MTT

Modes are connected to each other by modalities: a morphism µ : n m induces a
modality sending types A from mode n to types ⟨µ | A⟩ in mode m. The actual presentation
of modalities is necessarily complex because of dependence: given a type Γ ⊢ A@n, there
is no obvious choice of context in mode m for ⟨µ | A⟩. MTT resolves this tension in Fitch-
style [Clo18] and pairs each modality with an adjoint action on contexts. In particular, given
a modality µ : n m, we can obtain a new context Γ, {µ} cx@n from Γ cx@m. Further
rules turn −, {µ} into a functor between categories of contexts and substitutions at modes n
and m; intuitively a left adjoint to the modal type former ⟨µ | −⟩. See the introduction and
formation rules for ⟨µ | −⟩ recorded in Figure 2.

The elimination rule for ⟨µ | −⟩ is complex because we cannot ‘reverse’ the introduction
rules without violating the admissibility of substitution. Instead, MTT annotates each
variable in the context and replaces Γ, x : A with Γ, x : (µ | A). One can access a variable
annotated with µ if and only if it appears behind precisely −, {µ}. The elimination rule uses
these annotations to implement a modal induction principle and allows one to reduce the
process of constructing an element of B[a/x] for some Γ.{ν} ⊢ a : ⟨µ | A⟩@m to the case
B[modµ(y)/x] for some fresh y : (ν ◦ µ | A); see the precise rule in Figure 2.

Thus far we have not mentioned the (2-)categorical structure of M, but it is this
additional structure which allows us to control the behavior of modalities. In fact, the
operation sending a modality µ to −, {µ} is 2-functorial so that, e.g., Γ, {µ}, {ν} = Γ, {µ ◦ ν}.
This fact is reflected into types; the assignment µ 7→ ⟨− | −⟩ is essentially pseudo-functorial.
Consequently, a 2-cell α : µ ν in M induces a substitution Γ, {ν} ⊢ {α}Γ : Γ, {µ}@m
which in turn produces a collection of functions ⟨µ | −⟩ → ⟨ν | −⟩. By modifying the
equalities and 2-cells ofM, we can force ⟨µ | −⟩ to become, e.g., a comonad, a right adjoint,
etc.

MTT also extends dependent products to hypothesize over types annotated with modal-
ities other than id, i.e., to abstract over x : (µ | A) [GKNB21]. While these modal dependent
products are convenient, we refrain from discussing them here for simplicity.

3. MTT□

Cubical multimodal type theory (MTT□) enhances MTT with a better behaved identity
type and univalence by combining it with CTT. Like MTT, MTT□ is parameterised by a
mode theory, i.e., a 2-category of modes, modalities, and 2-cells. Whereas MTT has a copy
of MLTT at each mode, MTT□ has a copy of CTT. A guiding principle in the design of
MTT□ is that cubical and modal aspects should be orthogonal to each other. In particular,
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int/exc

Γ ⊢ r : Im@m

Γ, {µ} ⊢ rµ : In@n

face/exc

Γ ⊢ ϕ : Fm@m

Γ, {µ} ⊢ ϕµ : Fn@n

sb/exc-int

Γ, i : Im, {µ} ⊢ σµ : Γ, {µ}, i : In@m

sb/exc-face

Γ ⊢ ϕ : Fm@m

Γ, ϕ, {µ} ⊢ τµ : Γ, {µ}, ϕµ@m

sb/exc-int-inv

Γ, {µ}, i : In ⊢ σµ : Γ, i : Im, {µ}@n

sb/exc-face-inv

Γ ⊢ ϕ : Fm@m

Γ, {µ}, ϕµ ⊢ τµ : Γ, ϕ, {µ}@n

term-eq/comp-mod

Γ, i : Im, {µ} ⊢ A@n Γ ⊢ ϕ : Fm@m Γ, ϕ, i : Im, {µ} ⊢ u : A@n
Γ, {µ} ⊢ u0 : A[0/i] @n Γ, ϕ, {µ} ⊢ u[0/i] = u0 : A[0/i] @n

Γ ⊢ compi⟨µ|A⟩ [ϕ 7→ modµ(u)]modµ(u0) = modµ(compiA [ϕµ 7→ u[σµ ◦ τµ]]u0) : ⟨µ | A⟩[1/i] @m

Figure 3: Selected rules of MTT□, presupposing µ : n m and Γ cx@m.

the primitives of each system should interact as little as possible with primitives from the
other. To realize this, we add certain exchange principles in subsection 3.1 which are then
applied in subsection 3.2 to define composition for modal types.

We detail the novel aspects of MTT□ and refer to Appendix A for an exhaustive account.

3.1. Cubical exchange. The orthogonality principle of MTT□ dictates that the interval
should be minimally impacted by the action of a modality on the context. Accordingly,
we add exchange operations. Concretely, given a dimension term Γ ⊢ r : Im@m, we add
a new dimension term Γ, {µ} ⊢ rµ : In@n, see int/exc in Figure 3. We demand that this
operation is a morphism of De Morgan algebras and is lax natural, e.g. (r ∧ s)µ = rµ ∧ sµ
and rµ◦ν = (rµ)ν . Using this operation, it is possible to derive the exchange substitution
Γ, i : Im, {µ} ⊢ σµ : Γ, {µ}, i : In@m, see sb/exc-int. Finally, we add an inverse to this, see
sb/exc-int-inv, making Γ, i : Im, {µ} isomorphic to Γ, {µ}, i : In, once again in accordance
with the orthogonality principle.

The case is entirely symmetrical for elements of the face lattice and the corresponding
restricted contexts. Concretely, given a face Γ ⊢ ϕ : Fm@m, we add a new face Γ, {µ} ⊢
ϕµ : Fn@n, see face/exc. Similarly to before, we require this operation to be a morphism
of bounded lattices and be lax natural, but we further require that it matches with the
corresponding operation on the interval via the equation (r = 0)µ = (rµ = 0). Thus, −µ
commutes with everything but dimension variables, meaning that ϕµ is precisely −µ applied
to every dimension variable in ϕ. Just as before, we can derive a substitution, to which we add
an inverse, making Γ, ϕ, {µ} and Γ, {µ}, ϕµ isomorphic, see sb/exc-face and sb/exc-face-inv.

As we will see shortly, these rules are sufficient for composition in modal types, but
one may still wonder if there would be merit in the addition of inverses to rµ and ϕµ; after
all, this would be in line with our orthogonality principle. It turns out, however, that such
an addition would lead to a significant restriction of what models are valid, in particular,
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it would invalidate our model of guarded recursion in section 5, and we thus refrain from
making such an addition.

As mentioned, the exchange operations respect the 2-categorical structure of the mode
theory, and since the exchange substitutions are derived from the simpler exchange operations,
they inherit this property. We now record one such coherence explicitly for future use.
MTT□ inherits a weakening substitution from CTT: ↑ϕ: Γ, ϕ Γ. On may show that the
two canonical substitutions Γ, {µ}, ϕµ Γ, {µ} are equal. Explicitly, we equate the direct
restriction substitution ↑ϕµ to ↑ϕ .{µ} ◦ τµ.

3.2. Composition in modal types. Now we can tackle the problem of composition in
MTT□. Composition is, as the other cubical rules, added to the system locally and satisfies
the same computation rules familiar from CTT for standard type formers. Modal types will
support a computation principle similar to that of inductive types, allowing us to commute
modµ(−) with comp. Thus the status of composition in modal types is similar to that of
natural numbers, where composition is a formal operation that reduces on canonical forms,
as opposed to e.g. dependent sums.

The desired ‘reduction’ is term-eq/comp-mod. We take a moment to show that the
conclusion of this rule is well-typed and that the result has the expected boundary.

Inspecting the assumptions of this rule, we note that all but one are completely equiva-
lent to a composition problem in ⟨µ | A⟩ where the input terms are of form modµ(u) and
modµ(u0)—with the exception that the assumption u[0/i] = u0 is slightly stronger than
necessary—so it is clear that the left-hand side of this equality is well-typed. That the right-
hand side is well-typed is more subtle. We would like to show thatmodµ(compA [ϕµ 7→ u[σµ ◦ τµ]]u0)
is well-typed. Inspecting the rule for composition in Figure 1, we see that we must first
verify the following:

(1) Γ, {µ} ⊢ ϕµ : Fn@n
(2) Γ, {µ}, ϕµ, i : Im ⊢ u[σµ ◦ τµ] : A[σµ] @n
(3) Γ, {µ} ⊢ u0 : A[0/i] @n
(4) Γ, ϕ, {µ} ⊢ u[0/i] = u0 : A[0/i] @n

All of these are immediate results of the premises of term-eq/comp-mod. In particular,
item 4 is precisely the aforementioned stronger premise.

Assured that both sides of term-eq/comp-mod are well-typed, we show that that the
right-hand side of this equality satisfies the same boundary condition as the left-hand side,
i.e., that the right-hand side is equal to modµ(u)[1/i] under ϕ.

2

First, we observe that in context Γ, {µ}, ϕµ cx@n we have the following:

compA [ϕµ 7→ u[σµ ◦ τµ]]u0 = u[σµ ◦ τµ][1/i] = u[1/i][τµ]

Next, we recall that weakening by an assumption of the face lattice commutes with
face exchange. Given that the former is silent in our notation and the latter is not, this
leads to the somewhat odd equation Γ, ϕ ⊢ modµ(m) = modµ(m[τµ]) : ⟨µ | A⟩@m when
Γ, {µ} ⊢ m : A@m. Combining these two equations, we have the following in context Γ, ϕ:

modµ(compA [ϕµ 7→ u[σµ ◦ τµ]]u0) = modµ((compA [ϕµ 7→ u[σµ ◦ τµ]]u0)[τµ]) = modµ(u[1/i])

2This requirement is a further sanity check on the rule; without this equality the right-hand side would
not solve the same composition problem as the left and the equation would be highly suspect.
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3.3. Extensionality principles in MTT□. Function extensionality in MTT□ follows
directly from function extensionality in CTT, since the rules used in CTT are all available
mode-locally in MTT□. We will now prove modal extensionality, which cannot be proven in
MTT and cannot be stated in CTT:

Theorem 3.1. Given µ : n → m and a pair of terms Γ ⊢ a, b : A@n, where A is the
elements of some term of the universe, there is an equivalence modexta,b : ⟨µ | PathA(a, b)⟩ ≃
Path⟨µ|A⟩(modµ(a),modµ(b)).

Proof. We define the map modexta,b and show it to be an equivalence by constructing an
inverse. Fix Γ ⊢ m : ⟨µ | PathA(a, b)⟩@m and Γ ⊢ r : Im@m. We wish to construct
modexta,b(m)(r). By modal induction it suffices to consider the case where m = modµ(p)
for some Γ, {µ} ⊢ p : PathA(a, b)@n. Because p lives in a locked context whereas r
does not, we need an exchange operation. We form Γ, {µ} ⊢ rµ : In@n, and define
modexta,b(m)(r) = modµ(p(r

µ)). Towards verifying that we obtain an inverse using path
induction, note that for Γ, {µ} ⊢ c : A@n we have that

modextc,c(modµ(refl(c))) = refl(modµ(c)).

Next we define a map modext−1
a,b in the inverse direction.3 By based path induction

along with careful modal induction, it suffices to define only modext−1
a,a(refl(modµ(a))). In

this case we define modext−1
a,a(refl(modµ(a))) = modµ(refl(a)). Furthermore, by calculation:

modext−1
c,c (refl(modµ(c))) ≡ modµ(refl(c)).

Note that we obtain only a path rather than a judgmental equality because path induction
computes only up to a higher path in cubical type theory.

Lastly, we prove that these maps form an equivalence. Let Γ ⊢ m : ⟨µ | PathA(a, b)⟩@m.
We are to find a path between modext−1

a,b(modexta,b(m)) and m. It suffices to do so when

m = modµ(refl(c)) for some Γ, {µ} ⊢ c : A@n where we compute:

modext−1
c,c (modextc,c(m)) = modext−1

c,c (refl(modµ(c))) ≡ m.
For the reverse direction, let Γ ⊢ p : Path⟨µ|A⟩(modµ(a),modµ(b))@m. We need a path

between p and modexta,b(modext−1
a,b(p)). We again reduce to the case where p = refl(modµ(c))

and compute from there: modextc,c(modext−1
c,c (p)) ≡ modextc,c(modµ(refl(c))) = p.

4. Semantics of MTT□

Section 3 toured through MTT□ informally, but in fact, MTT□ can be presented as a
particular generalized algebraic theory [Car78]. This automatically gives rise to a category of
models—a variant of the standard categories with families [Dyb96]—with several desirable
properties such as the initiality of syntax. However, MTT□ is complex and the induced
definition of model is nearly intractable to manipulate, let alone construct.

We fracture the definition of model into more manageable pieces, making heavy use of the
natural models of MTT [Awo18, GKNB21]. In order to construct these models, we introduce
cubical MTT cosmoi. This is a more compact structure supplementing MTT cosmoi [Gra21]
with the ingredients necessary to internally construct a model of CTT [OP18, LOPS18]. In

3We will only need path induction and modal induction rather than path abstraction to define modext−1
a,b,

meaning that it can also be defined in MTT.
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practice, cosmoi are easier to obtain and suffice for the most important models e.g. those in
cubical presheaves.

4.1. Models of MTT□. We now present the definition of a model of MTT□ with mode
theory M. To begin with, we require a strict 2-functor J−K : Mcoop Cat, known as
the modal context structure. Intuitively, this 2-functor assigns each mode to a category of
contexts. From this viewpoint, the functor JµK : JmK JnK sends a morphism µ : n m to
the adjoint action −.{µ} contexts and the 2-cells JαK interpret the natural transformations
{α}. We now specify the remaining structure on top of this functor.

Mode-local structure. Each mode JmK should contain a complete model of CTT, and we
specify this in the language of natural models [Awo18] which provides a concise description
of the connectives of type theory.

As a model of CTT, JmK has an interval object Im : JmK. Just as in CTT, we require
that Im is a De Morgan algebra and that all products −× Im exist.

Next, we require a pair of presheaves T̃m, Tm : PSh(JmK) representing respectively
the collection of terms and types in a given context. Moreover, there is a projection map

τm : T̃m Tm which sends a term to its type. This universe is closed under dependent sums,
products, etc. Each mode also contains an interpretation of the face lattice Fm : PSh(JmK)
and face restriction which is used to specify the composition operations. While complex,
this piece of the model is unchanged from CTT so we omit further details.

Modal types. Next we turn to the modal aspect of a model: modal context extension and
modal types. Both of these structures are specified exactly as in MTT [GKNB21], with the
small caveat that we require an additional equality for composition operation on modal
types.

Cubical exchange. Finally, we must address the interaction of the functors JµK and
the intervals and face lattices. Mirroring the syntax, we require natural transformations
Iµ : y(Im) JµK∗y(In) that are pointwise morphisms of De Morgan algebras and that
assemble with y(Im) into a lax natural transformation. From this, we can define a morphism,
which we require to be have an inverse:

(JµKπ1, Iµ,Γ×Im(π2)) : JµK(Γ× Im) JµK(Γ)× In

The above is replayed for face lattices: We require natural transformations Fµ :
Fm JµK∗Fn that are pointwise morphisms of bounded lattices and that assemble with
Fm into a lax natural transformation. From this can be defined a canonical morphism
JµK(Γ.[ϕ]m) JµK.[Fµ,Γ(ϕ)]n, which we require has an inverse.

4.2. Cubical MTT cosmoi. Even after the repackaging of models detailed in subsection 4.1,
a model of MTT□ is still a complex object. There are two orthogonal aspects to this
complexity: (1) constructing the models of cubical type theory in each mode and (2)
constructing the network of modalities and their actions on contexts. Fortunately, there
already exists a technique to simplify (1); rather than construct a model of cubical type
theory directly, [OP18] and [LOPS18] have shown that any topos satisfying a handful
of axioms supports a model of cubical type theory. Moreover, (2) is partially addressed
in [Gra21] by the notion of an MTT cosmos which abstracts several of the difficulties of
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constructing a model of MTT. We now unify these two ideas to define cubical MTT cosmoi
and prove that they induce a model of MTT□.

MTT cosmoi. We will first recall the definition of MTT cosmoi and prove that they induce
models of MTT.

Definition 4.1. A cosmos is a pseudofunctor F :M Cat that takes objects to locally
cartesian closed categories and morphisms to right adjoints. We denote the left adjoint to
F (µ) by F!(µ).

A cosmos abstracts from the basic situation we encountered in subsection 4.1: a 2-functor
F picking out categories of contexts and the actions of modalities between them. In this
case, we were primarily concerned not with the category F (m), but with presheaves over
F (m). After all, it is the category of presheaves which hosts types and terms and where
we formulate structures like context extension. Careful inspection reveals that we only
require the locally Cartesian closed structure of PSh(F (m)) when formulating the rest of
the structure of a model, so it is natural to require only that each mode of a cosmos is locally
Cartesian closed. Indeed, on top of this skeleton we can transport more of the structure of a
model to cosmoi:

Definition 4.2. An extensional MTT cosmos is a cosmos F such that each mode is equipped

with a morphism τm : T̃m Tm representing inducing a universe closed under dependent
products, sums, booleans, and extensional identity types. We further require that each map
F (µ) : F (n) F (m) induce a dependent right adjoint [BCM+20].4

We have leveraged same intuition as natural models to regard Tm (respectively T̃m) as
the collection of types (resp. terms), but without any representability requirements (they
cannot be stated in LCCCs). Requiring closure of these universes under the connectives of
MTT then ensures that an MTT cosmos induces a model of MTT in the sense of [GKNB21].
Prior to proving this, however, we require the following standard category-theoretic fact:

Lemma 4.3. Let C be a 2-category and F : C Cat be a pseudofunctor such that each
F (f) is a right adjoint F!(f) ⊣ F (f) then the left adjoints extend to a pseudofunctor
F! : Ccoop Cat.

Theorem 4.4. An extensional MTT cosmos induces a model of extensional MTT with modal
context structure is pseudonaturally equivalent to the pseudofunctor of left adjoints induced
by Lemma 4.3. If the pseudofunctor of left adjoints is a strict 2-functor, it is equal to the
modal context structure.

Proof. Fix an extensional MTT cosmos F :M Cat. By Lemma 4.3, the left adjoints
F!(µ) assemble into a pseudofunctor F! :Mcoop Cat. We may strictify this functor to

get a strict 2-functor F̂! : Mcoop Cat and a pseudonatural equivalence of categories

α : F! F̂!. We claim that F̂! models extensional MTT.
For each mode m, we define the universe of types and terms as the Yoneda embedding of

the universe already present in F̂!(m): τ̂m = y(αm(τm)). Because F̂!(m) is finitely complete,
this is a representable natural transformation. Moreover, since both αm and y preserve
LCCC structure, this universe is closed under the types in the types cosmos: dependent

4These are essentially the same as modal types in MTT, further equipped with a syntactically ill-behaved
but semantically convenient elimination rule.
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right adjoints for each µ, dependent sums, products, booleans, and extensional identity types

etc. Thus by [GKNB21, Theorem 7.1] F̂! models extensional MTT.

Cubical cosmoi. AnMTT cosmos F interprets each mode as an LCCC F (m) because locally
Cartesian closed structure is sufficient to specify the connectives of MTT. Unfortunately, it
is not sufficient to apply the techniques of [OP18] and [LOPS18] and internally construct a
model of CTT. We therefore isolate the notion of a LOPS topos,5 containing precisely the
required structure. We further define cubical cosmoi as particularly well-behaved networks
of LOPS topoi.

Definition 4.5. A LOPS topos is an elementary topos E with a hierarchy of universes,
an object of cofibrations FE Ω and a tiny interval object IE subject to the Orton-Pitts
axioms.6

Theorem 4.6 [LOPS18]. There exists a model of CTT in every LOPS topos.

Consider a cosmos F :M Cat such that each F (m) is a LOPS topos. Theorem 4.6
then implies that each mode is a model of cubical type theory, but on its own this is
insufficient to conclude that F assembles into a model of MTT□; we must ensure that each
F (µ) properly preserves interval objects and face lattices. In order to isolate what further
properties we must impose on F , we briefly revisit how one interprets constructs in cubical
type theory such as systems and face restrictions in a LOPS topos.

Extending a context X : E by an interval variable is given product: X × IE . The
structure of this context extension and of dimension terms more generally follow directly
from the universal property of products along with the De Morgan algebra structure on IE ;
a dimension term in context X is realized by a morphism X IE . Similarly, an element of
the face lattice context X is interpreted by a morphism. X FE . Restricting a context by
such a face is given by pullback:7

{X | ϕ}

X

1

FE

⊤

ϕ

Returning to our original question, we can now isolate some of the additional structure
required by a cosmos valued in LOPS topoi to induce a model of MTT□. In particular,
a right adjoint between LOPS topoi will correctly model a dependent right adjoint which
appropriately respects cubical structure when its left adjoint satisfies the following conditions:

Definition 4.7. A morphism of LOPS topoi is a geometric morphism F! ⊣ F : E E ′ along
with an isomorphism of De Morgan algebras αF : F!(IE ′) ∼= IE and of bounded distributive
lattices βF : F!(FE ′) ∼= FE . The maps αF and βF are required to be compatible in the sense
that βF ◦ F!(− = 0) = (− = 0) ◦ αF .

5Named after the authors of [LOPS18]
6In fact, we make use of a slight strengthening of axioms presented by [OP18] in order to ensure that IE is

an internal De Morgan algebra rather than a connection algebra.
7We have used the familiar set-comprehension notation for restriction by a face. Because FE is a subobject

of Ω, this coincides with the standard interpretation of this notation in a topos.
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Remark 4.8. Whilst F (IE) is a De Morgan algebra, we make no assumption that it be
isomorphic to IE ′ . Doing so would correspond to adding an inverse to int/exc, but as
mentioned in subsection 3.1, this is not valid in the model of guarded recursion in section 5;
explicity, the right adjoint later does not preserve the interval. The case is the same for the
object of cofibrations.

We now have built up the machinery necessary to define the desired fusion of LOPS
topoi and MTT cosmoi:

Definition 4.9. A cubical MTT cosmos F : M Cat is an extensional MTT cosmos
satisfying the following additional restrictions:

• F (m) is a LOPS topos for each mode m,
• F (µ) is a morphism of LOPS topoi for each modality µ,
• The interval and face lattice isomorphisms are pseudonatural.

Theorem 4.10. Any cubical MTT cosmos F induces a model of MTT□ with modal con-
text structure pseudonaturally equivalent to the pseudofunctor of left adjoints induced by
Lemma 4.3. If the pseudofunctor of left adjoints is a strict 2-functor, it is equal to the modal
context structure.

Proof. A cubical MTT cosmos is in particular an extensional MTT cosmos, meaning that

all the rules from extensional MTT can be modelled with the strictified 2-functor F̂! by

Theorem 4.4. Equivalence preserves being a LOPS topos, and thus F̂!(m) ≃ F!(m) = F (m)
is a LOPS topos, implying we can model all the mode-local rules added from CTT (including
composition structures for all non-modal types) with Theorem 4.6. It thus remains to
construct the exchange principles and composition structures on modal types.

We claim that F̂! (or rather, the pseudofunctor of right adjoints F̂ induced by the dual
of Lemma 4.3) also has the cubical components of being a cubical MTT cosmoi. We have

already argued that F̂ (m) is a LOPS topos since it is equivalent to F (m), the fact the
naturality squares of these equivalences commute up to natural isomorphism is enough to

show that F̂ (µ) is a morphism of LOPS topoi, and the pseudonatural coherence of the
isomorphisms is preserved since the equivalences cohere pseudonaturally.

As a consequence of this, we have at each mode m :M a De Morgan algebra and a

bounded distributive lattice I
F̂ (m)

,F
F̂ (m)

: F̂ (m) and for each modality µ : n m coherent

structure-preserving isomorphisms α
F̂ (µ)

: F̂!(µ)(IF̂ (m)
) ∼= I

F̂ (n)
and β

F̂ (µ)
: F̂!(µ)(FF̂ (m)

) ∼=
F
F̂ (n)

.

To define the interval exchange operation, take a dimension term r : Γ I
F̂ (m)

, and

define Iµ,Γ(r) as the composite:

F̂!(µ)(Γ) F̂!(µ)(IF̂ (m)
) I

F̂ (n)

F̂!(µ)(r) α
F̂ (µ)

The naturality of Iµ follows from the functoriality of F̂!(µ), and they cohere lax naturally
since the isomorphisms cohere. To see that it defines morphisms of De Morgan algebras,
consider the concretely the case of ∧. Preservation is then the commutativity of the following
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diagram:

F̂!(µ)(Γ) F̂!(µ)(IF̂ (m)
× I

F̂ (m)
) F̂!(µ)(IF̂ (m)

) I
F̂ (n)

F̂!(µ)(IF̂ (m)
)× F̂!(µ)(IF̂ (m)

) I
F̂ (n)
× I

F̂ (n)

F̂!(µ)((r, s)) F̂!(µ)(∧) α
F̂ (µ)

(F̂!(µ)(r), F̂!(µ)(s)) (F̂!(µ)(π1), F̂!(µ)(π2))

α
F̂ (µ)
× α

F̂ (µ)

∧

The right rectangle commutes since the α
F̂ (µ)

preserves ∧, and the left triangle commutes

by the uniqueness of morphisms to products. Preservation of the other connectives follow
similarly.

The final thing to verify for intervals is that the uniquely determined dashed arrow in
the following diagram has an inverse:

F̂!(µ)(Γ× I
F̂ (m)

) F̂!(µ)(IF̂ (m)
) I

F̂ (n)

F̂!(µ)(Γ) F̂!(µ)(Γ)× I
F̂ (n)

F̂!(µ)(π2)
α
F̂ (µ)

F̂!(µ)(π1)

π1

π2

This follows from α
F̂ (µ)

being invertible and F̂!(µ) preserving finite limits.

Replaying these arguments for the face lattices completes the construction of the exchange
principles.

Lastly, we will construct the compositions structures on modal types. For this, we note
that the model of extensional MTT obtained from Theorem 4.4 supports an inverse operation
to modµ(−) such that every element of a modal type is of the form modµ(a). Therefore, the
equation term-eq/comp-mod can be taken as-is to fully define a composition structure.

4.3. Cubical presheaves. The intended model of cubical type theory is a variant on the
standard presheaf mode with types interpreted as a variant of Kan cubical sets [CCHM18]—
particular presheaves on the cube category □ realized as the Lawvere theory of De Morgan
algebras. One immediate benefit of the internal construction of a model of CTT is to generalize
this result from cubical sets to presheaves valued in cubical sets [OP18]. Meanwhile, networks
of presheaf categories connected by the essential geometric morphisms induced by functors
between base categories are known to induce models of MTT [GKNB21, Section 8]. In fact,
a consequence of Theorem 4.10 is that these two results can be essentially combined, thereby
giving rise to the most important models of MTT□.

Proposition 4.11. Let C and D be small categories, let F : C D be a functor, and write
F ∗, F!, and F∗ for precomposition respectively left and right Kan extensions of F × id□.

(1) The presheaf categories PSh(C ×□) and PSh(D ×□) are LOPS topoi.
(2) The adjunction F ∗ ⊣ F∗ induces a morphism of LOPS topoi.
(3) If F! is lex the adjunction F! ⊣ F ∗ induces a morphism of LOPS topoi.

Before proving the above proposition we recall some standard lemmas.
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Lemma 4.12. Let C and D be small categories and F : C D a functor. Left Kan extension
of functors sending X : C Set to F!(X) : D Set is lex iff (F ↓ d) is filtered for each
d : D. We note that this implies in particular that (F ↓ d) is connected.

Proof. Fix a finite diagram of functors X : I [C,Set]. We can identify F!(limX)(d) with
the colimit of the diagram (F ↓ d) C Set sending f : F (c) d to (limX)(c). By
assumption, this is a filtered colimit and thus it commutes with finite limits. Since limits
are computed pointwise in [C,Set], we may identify (limX)(c) = limiXi(c) and compute:

F!(limX)(d) = colim(c,f):(F↓d) limi:I Xi(c)

= limi:I colim(c,f):(F↓d)Xi(c)

= limi:I F!(Xi)(d)

Lemma 4.13. Let F : C D and F ′ : C′ D′. Then (F × F ′ ↓ (d, d′)) is equivalent to
(F ↓ d)× (F ′ ↓ d′) for each d : D and d′ : D′.

Lemma 4.14. Consider a diagram F : A×B C where B has a terminal object b1. Then
the colimit of F (a, b) over A×B is isomorphic to the colimit of F (a, b1) over A, naturally
in A.

We can now prove proposition 4.11:

Proof. Note first that PSh(C ×□) = [(C ×□)op,Set] ∼= [Cop, cSet] = PShcSet(C). Letting
I,F : cSet be the interval respectively face lattice from [CCHM18, Section 8.1], we define
IC(c, I) = I(I) and FC(c, I) = I(I) for c : C and I : □.

For (1) these topoi satisfy the Orton-Pitts axioms as noted in [CRS21]. To see that the
intervals defined above are tiny we proceed as follows: Using the Yoneda lemma along with
the fact that I is naturally isomorphic to [−, {i}]□ shows that y(c, I) × I ∼= y(c, I + {i}),
and we thus calculate:

XI(c, I) ∼= [y(c, I), XI]

∼= [y(c, I)× I, X]

∼= [y(c, I + {i}), X]

∼= X(c, I + {i})
∼= (idC × (−+ {i}))∗(X)(c, I)

The above is natural in X, and thus exponentiation by I is (naturally isomorphic to) the
precomposition functor (idC × (−+ {i}))∗. As this functor has a right adjoint, we have
shown that I is tiny.

We write πC , πD the projections C ×□ □ and D ×□ □ respectively. For the
second (respectively third) requirement we show the following:

• F ∗ (resp. F!) preserves finite limits.
• ι : F ∗ ◦ π∗D ∼= π∗C (F! ◦ π∗C ∼= π∗D)
• This isomorphism is an isomorphism of De Morgan algebras at I and of distributive lattices
at F.

The remaining conditions of a morphism of LOPS topoi follow automatically from the
naturality α (resp. β).

For the first item, we note that F ∗ preserves all limits since it is a right adjoint, and
that F! preserves finite limits by assumption.
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Next, the desired isomorphism F ∗(π∗D(X)) ∼= π∗C(X) can be taken to be the identity,
justified by the following computation:

F ∗(π∗D(X))(c, I) = π∗D(X)(F (c), I) = X(I) = π∗C(X)(c, I)

It is clear that this isomorphism preserves the De Morgan algebra structure when X = I
and the distributive lattice structure when X = F.

It remains to consider these conditions for F!. We construct F!(π
∗
C(X)) ∼= π∗D(X) as the

composite of a string of natural isomorphisms:

F!(π
∗
C(X))(d, I) ∼= colim((c,I′), ):(F×id↓(d,I)) π

∗
C(X)(c, I ′)

= colim((c,I′), ):(F×id↓(d,I))X(I ′)
∼= colim((c, ),(I′, )):(F↓d)×(id↓I)X(I ′) lemma 4.13

∼= colim(c, ):(F↓d)X(I) lemma 4.14

∼= X(I)

= π∗D(X)(d, I)

In the above calculation, the fourth isomorphism is obtained by observing that colim(c, ):(F↓d)X(I)
is a constant diagram over (F ↓ d); because F! is lex lemma 4.12 ensures that (id□×F ↓ (d, I))
is connected, and hence so is (F ↓ d). The isomorphism then follows from the observation
that colimits of constant, connected diagrams are isomorphic to the value of the diagram.

We must argue that this is an isomorphism of De Morgan algebras when X = I and of
distributive lattices whenX = F. Chasing an element through this string of isomorphisms, we
send an element of the colimit in((c,I′),(f,g))(x) to X(g)(x). One can verify that this preserves
the relevant structure when X is appropriately specialized. We illustrate the simple case of
interval endpoints: The 0 endpoint of F!(IC) at (d, I) is given by in(f0,id)(0 : I(I)) where f0
is an arbitrary object of the (necessarily non-empty) category (F ↓ d). It is clear that this
pair is mapped to 0 : ID(d, I) via the morphisms above.

We can package all of the above results into the following:

Theorem 4.15. Let f :M Cat be a strict 2-functor, write F ∗(µ), F!(µ), and F∗(µ) for
the precomposition, left Kan extension, and right Kan extension respectively of f(µ)× id□,
and write F ∗, F!, and F∗ for the induced pseudofunctors.

• The network of morphisms of LOPS topoi given by the adjunctions F ∗(µ) ⊣ F∗(µ) induces
a model of MTT□ overM with modal context structure equal to F ∗.
• The network of morphisms of LOPS topoi given by the adjunctions F!(µ) ⊣ F ∗(µ) induces
a model of MTT□ overMcoop with modal context structure pseudonaturally equivalent to
F! if each F!(µ) is lex.

Proof. By Theorem 4.10, it is sufficient to show that F∗ (respectively F ∗) is a cubical MTT
cosmos. By Proposition 4.11, each PSh(f(m)×□) is a LOPS topos, and each adjunction
F ∗(µ) ⊣ F∗(µ) (respectively F!(µ) ⊣ F ∗(µ)) is a morphism of LOPS topoi, and we thus need
only verify that the interval and face lattice isomorphisms cohere pseudonaturally.

Consider first the case of the adjunctions F ∗(µ) ⊣ F∗(µ). In this case, each interval
(respectiely face lattice) isomorphism is the identity, and thus since the left adjoints form a
strict 2-functor, the interval objects (respectively face lattice objects) form a strict 2-natural
transformation, which in particular is also a pseudonatural transformation.
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Consider next the case of the adjunctions F!(µ) ⊣ F ∗(µ). To prove pseudonaturality, we
need to prove coherence with identity, composition, and 2-cells. The proofs are similar, and
we illustrate them with the identity case. Since F!(µ) is a pseudofunctor, there is a natural
isomorphism F!(1m) ∼= idPSh(f(m)×□). We must prove that at the interval (respectively face
lattice) object, this is the same isomorphism as the one constructed in Proposition 4.11.

The isomorphism in the proof of Proposition 4.11, F!(µ)(π
∗
Cm(X))(d, I) ∼= π∗f(m)(X)(d, I),

may be specified as follows: It is uniquely defined by its value upon precomposition with
the components of the colimit colim((c,I′), ):(f(µ)×id↓(d,I)) π

∗
f(m)(X)(c, I ′), and this value is for

each c : f(m), I ′ : □, and (g, ι) : (d, I) (f(µ)(c), I ′) equal to

X(ι) : π∗f(m)(X)(c, I ′) = X(I ′) X(I) = π∗f(n)(X)(d, I).

The isomorphism F!(1m) ∼= id is constructed from the fact that both F!(1m) and id are
left adjoints to F ∗(1m) = idPSh(f(m)×□). Concretely, it is the counit:

ϵ1m : F!(1m) = F!(1m) ◦ F ∗(1m) idPSh(f(m)×□)

Precomposing with the components of the colimit colim((c,I′), ):(f(µ)×id↓(d,I)) π
∗
f(m)(X)(c, I ′),

we get X(ι) as before, which shows that the two isomorphisms are the same, and thus the
identity condition for pseudonaturality is satisfied.

5. Proving and programming with guarded recursion

We now turn from theory to practice8 and consider guarded MTT□. We briefly recall
guarded recursion. The core idea of guarded recursion [Nak00] is to use a modality �
(pronounced ‘later’) to isolate recursively produced data to prevent its use until work is done,
thereby ensuring productivity. This modality is equipped with operations making it into an
applicative functor [MP08] which satisfies Löb induction, a powerful guarded fixed-point
principle:

next : A �A (⊛) : �(A→ B) ((�A)→ (�B)) lob : (�A→ A) A

In particular, lob allows us to define an element of A recursively but because the
recursively computed data is available only as �A, the usual problems with fixed-points are
avoided. We consider a variant of guarded recursion which further includes an idempotent
comonad 2 along with an equivalence 2�A ≃ A. This last property ensures that guarded
type theory can construct coinductive types through Löb induction [CBGB15].

To encode guarded recursion in MTT□, we instantiate the theory with a particular mode
theory and extend it with a pair of axioms. As a result, we obtain a highly workable guarded
type theory supporting the relevant modalities and operations. Similar work was done for
extensional MTT in [GKNB21, Section 9]; here we show that the improved notion of equality
in MTT□ results in an improved experience.

Concretely, we work in the mode theoryMg, a poset-enriched category which is concisely
defined by Figure 4. Using the substitutions induced by 2-cells, we define:

�A = ⟨ℓ | A[{1 ≤ ℓ}]⟩ next(x) = modℓ(A[{1 ≤ ℓ}])
While ⊛ is likewise definable, lob cannot be definedMTT□ and must be axiomitized (Figure 5).
In order to justify its inclusion, we provide a model of MTT□ overMg with Löb induction.

8Or at least, slightly more practice-adjacent theory!
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t sℓ

δ

γ
δ ◦ γ ≤ 1 1 = γ ◦ δ

1 ≤ ℓ γ = γ ◦ ℓ

Figure 4: Mg: a mode theory for guarded recursion. Reproduced from fig. 11 of [GKNB21]

Γ cx@ t Γ ⊢ A@ t

Γ ⊢ lob : (�A→ A)→ A@ t

Γ cx@ t Γ ⊢ A@ t Γ ⊢M : �A→ A@ t

Γ ⊢ lob(M) =M(next(lob(M))) : A@ t

Figure 5: The rules of Löb induction.

5.1. Soundness of Löb induction in MTT□. Letting ω be the poset category for the first
infinite ordinal and 1 the terminal category, we define the strict 2-functor f :Mg Cat by

f(t) = ω f(s) = 1 f(δ)(∗) = 0 f(ℓ)(n) = n+ 1 f(γ)(n) = ∗
From this, we define the pseudofunctor F :Mg Cat by F (m) = PSh(f(m) × □) and

F (µ) = (f(µ)× id□)∗, which by Theorem 4.15 induces a model of MTT□ F̂ . This model is

almost the same as the model defined in [GKNB21, Section 9.2], but F̂ uses cSet-valued
presheaves. Since the cubical and modal aspects of MTT□ are orthogonal, considerations

in the Set-based model that do not involve identity types carry over to F̂ . In particular,

because Löb induction holds in the Set-based model, it also holds in F̂ .9

5.2. Programming with guarded MTT□. To see that MTT□ can not merely replicate
but also improve on work done in MTT, we now show that Löb induction not only gives a
fixpoint but a unique one. In [GKNB20, Theorem 9.5] this is proven for extensional MTT
(by introducing equality reflection), but because of modal extensionality, we can now prove
it with nothing but MTT□ and Löb induction. Similarly, the results from [GKNB21, Section
9.4] about guarded and coinductive streams in guarded MTT may also be proven in guarded
MTT□ without equality reflection.

Theorem 5.1. lob(M) is the unique guarded fixpoint of M : �El(A) El(A), i.e.

(A : U)(x : El(A))→ PathEl(A)(M(next(x)), x)→ PathEl(A)(lob(M), x)

Proof. Supposing A : U, we intend to use Löb induction to find a term of

(x : El(A))→ PathEl(A)(M(next(x)), x)→ PathEl(A)(lob(M), x)

To this end, given terms f : �((x : El(A))→ PathEl(A)(M(next(x)), x)→ PathEl(A)(lob(M), x)),
x : El(A), and p : PathEl(A)(M(next(x)), x), we must define a term of PathEl(A)(lob(M), x).
We can construct the term

f ⊛ next(x)⊛ next(p) : �PathEl(A)(lob(M), x).

By Theorem 3.1, this gives a term of Path
�El(A)(next(lob(M)), next(x)). Using that function

application preserves paths and that lob(M) is a guarded fix point we then obtain the paths

lob(M) ≡M(next(lobM)) ≡M(next(x)) ≡ x.
9This can also be verified by hand as is done in [BBC+19].
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6. Related work

MTT□ builds upon two distinct strands of work: cubical and modal type theories. Even
though both of these lines of research are ongoing, several proposals have already been made
which combine elements of both.

Modal homotopy type theory. Several version of homotopy type theory extended with
modalities have been proposed [Shu18, RFL21]. These type theories aim to increase the
expressivity of HoTT and allow it to better capture some aspects of homotopy theory. Unlike
MTT□, however, these theories tend to be specialized to various modal situations. They
build in the structure of one specific modality and are hand-crafted to have manageable
syntax for that situation. In contrast, MTT□ follows MTT and works for a class of modalities,
and provides usable syntax in each case. Moreover, prior type theories in this tradition
expand “book HoTT” [Uni13] and therefore do not enjoy the good computational properties
we conjecture for MTT□.

Modal cubical type theory. In order to extend cubical type theory with an internal
notion of parametricity, Cavallo [Cav21, Part IV] has proposed a variant of (cartesian) cubical
type theory extended with connectives and a handful of modalities to capture parametricity.
Like MTT□, this cohesive parametric cubical type theory combines cubical type theory with
Fitch-style modalities. While morally the system is a specialization of MTT□ to a cohesive
collection of modalities, Cavallo takes advantage of several specifics of the intended model
to add various equations to the theory.

Separately, another Fitch-style type theory, clocked type theory, has been extended to a
cubical basis [KMV21]. This theory is used to present guarded recursion, similarly to section 5.
Unlike guarded MTT□, guarded clocked type theory includes several specialized axioms, a
more sophisticated collection of guarded modalities, and an account of the interaction of
HITs with parts of the modal machinery.

The extra equations and properties of the modalities in both systems prevent MTT□
from directly recovering either parametric cubical type theory or clocked cubical type theory.
The core aspects of both, however, are similar to MTT□ and we believe that MTT□ gives a
means of systematically generalizing these calculi to other modal situations.

7. Conclusions

We contribute MTT□, a general modal type theory based on cubical type theory and MTT.
The system can be instantiated to a number of modal situations while still maintaining
computationally effective interpretations of univalence and function extensionality.

While in this work we have introduced the theory and characterized a class of models
for it, in the future we hope to investigate further metatheoretic properties of the system.
In particular, both MTT and cubical type theory enjoy normalization [Gra21, SA21], and
we conjecture that these proofs can be combined and generalized to apply to MTT□. The
introduction of cubical cosmoi takes the first step in this direction: cosmoi are a crucial
ingredient of the proof of normalization for MTT. In a separate direction, we hope to
investigate the behavior of more of the mode-local structure of cubical type theory such as
higher inductive types and other novelties of cubical type theories.
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Appendix A. Rules of MTT□

We here present the official syntax and rules of MTT□. For the sake of brevity, we omit
a number the rules, especially those lifted from MTT or CTT; in particular, we omit the
following:

• The rules for dependent sums, booleans, universes.
• The equations stating that the interval is a De Morgan algebra.
• The equations stating that (−)µ for interval terms is a morphism of De Morgan algebras.
• The equations stating that that face lattice is a bounded distributive lattice,
• The equations stating that (−)µ for faces is a morphism of bounded lattices,
• Miscellaneous equations commuting substitutions past term formers or governing the
composition of substitutions.

At the end there is a section on derived definitions some of which we will use throughout
to ease notation.

Context formation.
cx/emp

1 cx@m

cx/lock

µ : n m Γ cx@m

Γ.{µ} cx@n

cx/ext-type

µ : n m Γ cx@m Γ.{µ} ⊢ A@n

Γ.(µ | A) cx@m

cx/ext-int

Γ cx@m

Γ.Im cx@m

cx/face-res

Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.[ϕ] cx@m
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Context equality.

cx-eq/comp-lock

µ : n m ν : o n Γ cx@m

Γ.{µ ◦ ν} = Γ.{µ}.{ν} cx@ o

cx-eq/id-lock

Γ cx@m

Γ.{1} = Γ cx@m

Substitution formation.

sb/comp

Γ,∆,Ξ cx@m Γ ⊢ δ : ∆@m ∆ ⊢ ξ : Ξ@m

Γ ⊢ ξ ◦ δ : Ξ@m

sb/id

Γ cx@m

Γ ⊢ id : Γ@m

sb/emp

Γ cx@m

Γ ⊢ ! : 1@m

sb/weak-type

µ : n m Γ cx@m Γ.{µ} ⊢ A@n

Γ.(µ | A) ⊢ ↑ : Γ@m

sb/weak-int

Γ cx@m

Γ.Im ⊢↑i: Γ@m

sb/weak-res

Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.[ϕ] ⊢↑ϕ: Γ@m

sb/lock

µ : n m Γ,∆ cx@m Γ ⊢ δ : ∆@m

Γ.{µ} ⊢ δ.{µ} : ∆.{µ}@n

sb/key

µ, ν : n m α : ν µ Γ cx@m

Γ.{µ} ⊢ {α}Γ : Γ.{ν}@n

sb/ext-type

µ : n m
Γ,∆ cx@m Γ ⊢ δ : ∆@m ∆.{µ} ⊢ A@n Γ.{µ} ⊢ a : A[δ.{µ}] @n

Γ ⊢ δ.a : ∆.(µ | A)@m

sb/ext-int

Γ,∆ cx@m Γ ⊢ δ : ∆@m Γ ⊢ r : Im@m

Γ ⊢ δ.r : ∆.Im@m

sb/face-res

Γ,∆ cx@m Γ ⊢ δ : ∆@m ∆ ⊢ ϕ : Fm@m Γ ⊢ ϕ[δ] = ⊤ : Fm@m

Γ ⊢ δ.[ϕ] : ∆.[ϕ] @m

sb/exc-int-inv

µ : n m Γ cx@m

Γ.{µ}.In ⊢ σµ : Γ.Im.{µ}@n

sb/exc-face-inv

µ : n m Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.{µ}.[ϕµ] ⊢ τµ : Γ.[ϕ].{µ}@n
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Substitution equality.

sb-eq/comp-lock

µ : n m ν : o n Γ,∆ cx@m Γ ⊢ δ : ∆@m

Γ.{µ ◦ ν} ⊢ δ.{µ ◦ ν} = δ.{µ}.{ν} : ∆.{µ ◦ ν}@ o

sb-eq/id-lock

Γ,∆ cx@m Γ ⊢ δ : ∆@m

Γ ⊢ δ.{1} = δ : ∆@m

sb-eq/lock-comp

µ : n m Γ,∆,Ξ cx@m Γ ⊢ δ : ∆@m ∆ ⊢ ξ : Ξ@m

Γ.{µ} ⊢ (ξ ◦ δ).{µ} = ξ.{µ} ◦ δ.{µ} : Ξ.{µ}@n

sb-eq/lock-id

µ : n m Γ cx@m

Γ.{µ} ⊢ id.{µ} = id : Γ.{µ}@n

sb-eq/id-key

µ : n m Γ cx@m

Γ.{µ} ⊢ {1µ}Γ = id : Γ.{µ}@n

sb-eq/nat-key

µ, ν : n m α : ν µ Γ,∆ cx@m Γ ⊢ δ : ∆@m

Γ.{µ} ⊢ {α}∆ ◦ δ.{µ} = δ.{ν} ◦ {α}Γ : ∆.{ν}@n

sb-eq/comp-key

µ, ν, ρ : n m α : ν µ β : ρ ν Γ cx@m

Γ.{µ} ⊢ {α ◦ β}Γ = {α}Γ ◦ {β}Γ : Γ.{ρ}@n

sb-eq/whisk-key

µ0, µ1 : n m ν0, ν1 : o n α : µ1 µ0 β : ν1 ν0 Γ cx@m

Γ.{µ0 ◦ ν0} ⊢ {α⋆β}Γ = {α}Γ.{ν1} ◦ {β}Γ.{µ0} : Γ.{µ1 ◦ ν1}@ o

sb-eq/ext-type-beta

Γ,∆ cx@m Γ ⊢ δ : ∆@m ∆.{µ} ⊢ A@n Γ.{µ} ⊢ a : A[δ.{µ}] @n

Γ ⊢ ↑ ◦ δ.a = δ : ∆@m

sb-eq/ext-type-eta

Γ,∆ cx@m ∆.{µ} ⊢ A@n Γ ⊢ δ : ∆.(µ | A)@m

Γ ⊢ δ = (↑ ◦ δ).v0[δ] : ∆.(µ | A)@m

sb-eq/ext-int-beta

Γ,∆ cx@m Γ ⊢ δ : ∆@m Γ ⊢ r : Im@m

Γ ⊢↑i ◦δ.r = δ : ∆@m

sb-eq/ext-int-eta

Γ,∆ cx@m Γ ⊢ δ : ∆.Im@m

Γ ⊢ δ = (↑i ◦δ).vi0[δ] : ∆.Im@m

sb-eq/exc-int-left-inv

µ : n m Γ cx@m

Γ.Im.{µ} ⊢ σµ ◦ σµ = id : Γ.Im.{µ}@n

sb-eq/exc-int-right-inv

µ : n m Γ cx@m

Γ.{µ}.Im ⊢ σµ ◦ σµ = id : Γ.{µ}.Im@n
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sb-eq/exc-face-left-inv

µ : n m Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.[ϕ].{µ} ⊢ τµ ◦ τµ = id : Γ.[ϕ].{µ}@n

sb-eq/exc-face-right-inv

µ : n m Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.{µ}.[ϕµ] ⊢ τµ ◦ τµ = id : Γ.{µ}.[ϕµ] @n

sb-eq/face-res-uniq

Γ,∆ cx@m ∆ ⊢ ϕ : Fm@m Γ ⊢ δ : Γ.[ϕ] @m

Γ ⊢ δ = (↑ϕ ◦δ).[ϕ] : Γ.[ϕ] @m

sb-eq/face-res-bin

Γ,∆ cx@m Γ ⊢ δ, ξ : ∆@m Γ ⊢ ϕ, ψ : Fm@m

Γ ⊢ ϕ ∨ ψ = ⊤ : Fm@m Γ.[ϕ] ⊢ δ◦ ↑ϕ= ξ◦ ↑ϕ: ∆@m Γ.[ψ] ⊢ δ◦ ↑ψ= ξ◦ ↑ψ: ∆@m

Γ ⊢ δ = ξ : ∆@m

sb-eq/face-res-null

Γ,∆ cx@m Γ ⊢ δ, ξ : ∆@m Γ ⊢ ⊥ = ⊤ : Fm@m

Γ ⊢ δ = ξ : ∆@m

Interval formation.

int/join

Γ cx@m Γ ⊢ r, s : Im@m

Γ ⊢ r ∨ s : Im@m

int/meet

Γ cx@m Γ ⊢ r, s : Im@m

Γ ⊢ r ∧ s : Im@m

int/bot

Γ cx@m

Γ ⊢ 0 : Im@m

int/top

Γ cx@m

Γ ⊢ 1 : Im@m

int/inv

Γ cx@m Γ ⊢ r : Im@m

Γ ⊢ (1− r) : Im@m

int/exc

µ : n m Γ cx@m Γ ⊢ r : Im@m

Γ.{µ} ⊢ rµ : In@n

int/var

Γ cx@m

Γ.Im ⊢ vi0 : Im@m

int/sb

Γ,∆ cx@m Γ ⊢ δ : ∆@m ∆ ⊢ r : Im@m

Γ ⊢ r[δ] : Im@m
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Interval equality.

int-eq/ext-int-beta

Γ,∆ cx@m Γ ⊢ δ : ∆@m Γ ⊢ r : Im@m

Γ ⊢ vi0[δ.r] = r : Im@m

int-eq/res-eq

Γ cx@m Γ ⊢ r : Im@m

Γ.[(r = 0)] ⊢ r[↑(r=0)] = 0 : Im@m

int-eq/exc-comp

µ : n m ν : o n Γ cx@m Γ ⊢ r : Im@m

Γ.{µ}.{ν} ⊢ rµ◦ν = (rµ)ν : Io@ o

int-eq/exc-id

Γ cx@m Γ ⊢ r : Im@m

Γ ⊢ r1 = r : Im@m

int-eq/exc-key

µ, ν : n m α : ν µ Γ cx@m Γ ⊢ r : Im@m

Γ.{µ} ⊢ rν [{α}Γ] = rµ : In@n

inte-eq/exc-sub

ν : n m Γ,∆ cx@m Γ ⊢ δ : ∆@m Γ ⊢ r : Im@m

Γ.{µ} ⊢ rµ[δ.{µ}] = r[δ]µ : In@n

int-eq/face-res-bin

Γ cx@m Γ ⊢ r, s : Im@m Γ ⊢ ϕ, ψ : Fm@m Γ ⊢ ϕ ∨ ψ = ⊤ : Fm@m

Γ.[ϕ] ⊢ r[↑ϕ] = s[↑ϕ] : Im@m Γ.[ψ] ⊢ r[↑ψ] = s[↑ψ] : Im@m

Γ ⊢ r = s : Im@m

int-eq/face-res-null

Γ cx@m Γ ⊢ r, s : Im@m Γ ⊢ ⊥ = ⊤ : Fm@m

Γ ⊢ r = s : Im@m

Face formation.

face/eq

Γ cx@m Γ ⊢ r : Im@m

Γ ⊢ (r = 0) : Fm@m

face/join

Γ cx@m Γ ⊢ ϕ, ψ : Fm@m

Γ ⊢ ϕ ∨ ψ : Fm@m

face/meet

Γ cx@m Γ ⊢ ϕ, ψ : Fm@m

Γ ⊢ ϕ ∧ ψ : Fm@m

face/bot

Γ cx@m

Γ ⊢ ⊥ : Fm@m

face/top

Γ cx@m

Γ ⊢ ⊤ : Fm@m

face/exc

µ : n m Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.{µ} ⊢ ϕµ : Fn@n

face/sb

Γ,∆ cx@m Γ ⊢ δ : ∆@m ∆ ⊢ ϕ : Fm@m

Γ ⊢ ϕ[δ] : Fm@m
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Face equality.

face-eq/non-contr

Γ cx@m Γ ⊢ r : Im@m

Γ ⊢ (r = 0) ∧ ((1− r) = 0) = ⊥ : Fm@m

face-eq/exc-comp

µ : n m ν : o n Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.{µ}.{ν} ⊢ ϕµ◦ν = (ϕµ)ν : Fo@ o

face-eq/exc-id

Γ cx@m Γ ⊢ ϕ : Fm@m

Γ ⊢ ϕ1 = ϕ : Fm@m

face-eq/exc-key

µ, ν : n m α : ν µ Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.{µ} ⊢ ϕν [{α}Γ] = ϕµ : In@n

face-eq/exc-eq

µ : n m Γ cx@m Γ ⊢ r : Im@m

Γ ⊢ (r = 0)µ = (rµ = 0) : Fn@n

face-eq/exc-sub

µ : n m Γ,∆ cx@m Γ ⊢ δ : ∆@m Γ ⊢ ϕ : Fm@m

Γ.{µ} ⊢ ϕµ[δ.{µ}] = ϕ[δ]µ : Fn@n

face-eq/res-eq-top

Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.[ϕ] ⊢ ϕ[↑ϕ] = ⊤ : Fm@m

face-eq/eq-zero

Γ cx@m

Γ ⊢ (0 = 0) = ⊤ : Fm@m

face-eq/face-res-bin

Γ cx@m Γ ⊢ ϕ, ψ, χ0, χ1 : Fm@m Γ ⊢ ϕ ∨ ψ = ⊤ : Fm@m

Γ.[ϕ] ⊢ χ0[↑ϕ] = χ1[↑ϕ] : Fm@m Γ.[ψ] ⊢ χ0[↑ψ] = χ1[↑ψ] : Fm@m

Γ ⊢ χ0 = χ1 : Fm@m

face-eq/face-res-null

Γ cx@m Γ ⊢ χ0, χ1 : Fm@m Γ ⊢ ⊥ = ⊤ : Fm@m

Γ ⊢ χ0 = χ1 : Fm@m

Type formation.

type/pi

µ : n m Γ cx@m Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m

Γ ⊢ (µ | A)→ B@m

type/path

Γ cx@m Γ.Im ⊢ A@m Γ ⊢ a : A[id.0]@m Γ ⊢ b : A[id.1]@m

Γ ⊢ PathA(a, b)@m
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type/mod

µ : n m Γ cx@m Γ.{µ} ⊢ A@n

Γ ⊢ ⟨µ | A⟩@m

type/sys

Γ cx@m Γ ⊢ ϕ, ψ : Fm@m Γ ⊢ ϕ ∨ ψ = ⊤ : Fm@m

Γ.[ϕ] ⊢ A@m Γ.[ψ] ⊢ B@m Γ.[ϕ ∧ ψ] ⊢ A[↑ϕ∧ψ .[ϕ]] = B[↑ϕ∧ψ .[ψ]] @m

Γ ⊢ { ϕ A,ψ B }@m

type/sb

Γ,∆ cx@m Γ ⊢ δ : ∆@m ∆ ⊢ A@m

Γ ⊢ A[δ] @m

Type equality.

type-eq/sys-top

Γ cx@m

Γ ⊢ ϕ : Fm@m Γ.[⊤] ⊢ A@m Γ.[ϕ] ⊢ B@m Γ.[ϕ] ⊢ A[↑ϕ .[⊤]] = B@m

Γ ⊢ { ⊤ A, ϕ B } = A[id.[⊤]] @m

type-eq/face-res-bin

Γ cx@m Γ ⊢ ϕ, ψ : Fm@m Γ ⊢ ϕ ∨ ψ = ⊤ : Fm@m

Γ ⊢ A,B@m Γ.[ϕ] ⊢ A[↑ϕ] = B[↑ϕ] @m Γ.[ψ] ⊢ A[↑ψ] = B[↑ψ] @m

Γ ⊢ A = B@m

type-eq/face-res-null

Γ cx@m Γ ⊢ ⊥ = ⊤ : Fm@m Γ ⊢ A,B@m

Γ ⊢ A = B@m

Term formation.

term/pi-lam

µ : n m
Γ cx@m Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m Γ.(µ | A) ⊢ b : B@m

Γ ⊢ λ(b) : (µ | A)→ B@m

term/pi-app

µ : n m Γ cx@m
Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m Γ ⊢ f : (µ | A)→ B@m Γ.{µ} ⊢ a : A@n

Γ ⊢ f(a) : B[id.a] @m

term/path-abs

Γ cx@m Γ.Im ⊢ A@m Γ.Im ⊢ a : A@m

Γ ⊢ λ(a) : PathA(a[id.0], a[id.1])@m
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term/path-app

Γ cx@m Γ.Im ⊢ A@m
Γ ⊢ a : A[id.0]@m Γ ⊢ b : A[id.1]@m Γ ⊢ p : PathA(a, b)@m Γ ⊢ r : Im@m

Γ ⊢ p(r) : A[id.r] @m

term/mod-mod

µ : n m Γ cx@m Γ.{µ} ⊢ A@n Γ.{µ} ⊢ a : A@n

Γ ⊢ modµ(a) : ⟨µ | A⟩@m

term/mod-let

µ : n m ν : o n Γ cx@m Γ.{µ}.{ν} ⊢ A@ o Γ.{µ} ⊢ a : ⟨ν | A⟩@n
Γ.(µ | ⟨ν | A⟩) ⊢ B@m Γ.(µ ◦ ν | A) ⊢ b : B[↑.modν(v0)]@m

Γ ⊢ letµ modν( )← a in b : B[id.a] @m

term/sys-bin

Γ cx@m

Γ ⊢ A@m Γ ⊢ ϕ, ψ : Fm@m Γ ⊢ ϕ ∨ ψ = ⊤ : Fm@m Γ.[ϕ] ⊢ a : A[↑ϕ] @m

Γ.[ψ] ⊢ b : A[↑ψ] @m Γ.[ϕ ∧ ψ] ⊢ a[↑ϕ∧ψ .[ϕ]] = b[↑ϕ∧ψ .[ψ]] : A[↑ϕ∧ψ] @m

Γ ⊢ { ϕ a, ψ b } : A@m

term/sys-null

Γ cx@m Γ ⊢ A@m Γ ⊢ ⊥ = ⊤ : Fm@m

Γ ⊢ { } : A@m

term/comp

Γ cx@m Γ.Im ⊢ A@m Γ ⊢ ϕ : Fm@m Γ.[ϕ].Im ⊢ u : A[↑ϕ .Im] @m

Γ ⊢ u0 : A[id.0]@m Γ.[ϕ] ⊢ u[id.0] = u0[↑ϕ] : A[↑ϕ.0]@m

Γ ⊢ comp [ϕ 7→ u]u0 : A[id.1]@m

term/var

µ : n m Γ cx@m Γ.{µ} ⊢ A@n

Γ.(µ | A).{µ} ⊢ v0 : A[↑.{µ}] @n

term/sb

Γ,∆ cx@m Γ ⊢ δ : ∆@m ∆ ⊢ a : A@m

Γ ⊢ a[δ] : A[δ] @m

Term equality.
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term-eq/pi-beta

µ : n m Γ cx@m
Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m Γ.{µ} ⊢ a : A@n Γ.(µ | A) ⊢ b : B@m

Γ ⊢ λ(b)(a) = b[id.a] : B[id.a] @m

term-eq/pi-eta

µ : n m
Γ cx@m Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m Γ ⊢ f : (µ | A)→ B@m

Γ ⊢ f = λ(f [↑](v0)) : (µ | A)→ B@m

term-eq/path-beta

Γ cx@m Γ.Im ⊢ A@m Γ.Im ⊢ a : A@m Γ ⊢ r : Im@m

Γ ⊢ λ(a)(r) = a[id.r] : A[id.r] @m

term-eq/path-eta

Γ cx@m Γ.Im ⊢ A@m
Γ ⊢ a0 : A[id.0]@m Γ ⊢ a1 : A[id.1]@m Γ ⊢ p : PathA(a0, a1)@m

Γ ⊢ p = λ(p[↑i](vi0)) : PathA(a0, a1)@m

term-eq/mod-beta

µ : n m ν : o n Γ cx@m Γ.{µ}.{ν} ⊢ A@ o Γ.(µ | ⟨ν | A⟩) ⊢ B@m
Γ.{µ}.{ν} ⊢ a : A@ o Γ.(µ ◦ ν | A) ⊢ b : B[↑.modν(v0)]@m

Γ ⊢ letµ modν( )← modν(a) in b = b[id.a] : B[id.modν(a)]@m

term-eq/ext-type-beta

Γ,∆ cx@m Γ ⊢ δ : ∆@m ∆.{µ} ⊢ A@n Γ.{µ} ⊢ a : A[δ.{µ}] @n

Γ.{µ} ⊢ v0[δ.a.{µ}] = a : A[δ.{µ}] @m

term-eq/sys-top

Γ cx@m Γ ⊢ A@m Γ ⊢ ϕ : Fm@m

Γ.[⊤] ⊢ a : A[↑⊤] @m Γ.[ϕ] ⊢ b : A[↑ϕ] @m Γ.[ϕ] ⊢ a[↑ϕ .[⊤]] = b : A@m

Γ ⊢ { ⊤ a, ϕ b } = a[id.[⊤]] : A@m

term-eq/comp-face

Γ cx@m Γ.Im ⊢ A@m Γ ⊢ ϕ : Fm@m Γ.[ϕ].Im ⊢ u : A[↑ϕ .Im] @m

Γ ⊢ u0 : A[id.0]@m Γ.[ϕ] ⊢ u[id.0] = u0[↑ϕ] : A[↑ϕ.0]@m Γ ⊢ ϕ = ⊤ : Fm@m

Γ ⊢ comp [ϕ 7→ u]u0 = u[id.[ϕ].1] : A[id.1]@m

term-eq/comp-mod

Γ cx@m µ : n m

Γ.Im.{µ} ⊢ A@n Γ ⊢ ϕ : Fm@m Γ.[ϕ].Im.{µ} ⊢ u : A[↑ϕ .Im.{µ}] @n

Γ.{µ} ⊢ u0 : A[id.0.{µ}] @n Γ.[ϕ].{µ} ⊢ u[id.0.{µ}] = u0[↑ϕ .{µ}] : A[↑ϕ.0.{µ}] @n

Γ ⊢ modµ(comp [ϕµ 7→ u[σµ ◦ τµ]]u0) = comp [ϕ 7→ modµ(u)]modµ(u0) : ⟨µ | A⟩[id.1]@m
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term-eq/comp-pi

Γ cx@m µ : n m

Γ.Im ⊢ (µ | A)→ B@m Γ ⊢ ϕ : Fm@m Γ.[ϕ].Im ⊢ f : ((µ | A)→ B)[↑ϕ .Im] @m

Γ ⊢ f0 : ((µ | A)→ B)[id.0]@m Γ.[ϕ] ⊢ f [id.0] = f0[↑ϕ] : ((µ | A)→ B)[↑ϕ.0]@m

Γ.{µ} ⊢ a1 : A[id.1.{µ}] @m w := (hfilli [ ] a1[σµ])[σ
µ] : A[i/1− i] v := w(1− i) : A

Γ ⊢ (comp [ϕ 7→ f ] f0)(a1) = comp [ϕ 7→ f(v[↑ϕ.↑i.{µ}])] f0(v[id.0.{µ}]) : B[id.1]@m

term-eq/face-res-bin

Γ cx@m Γ ⊢ ϕ, ψ : Fm@m Γ ⊢ ϕ ∨ ψ = ⊤ : Fm@m Γ ⊢ A@m

Γ ⊢ a, b : A@m Γ.[ϕ] ⊢ a[↑ϕ] = b[↑ϕ] : A[↑ϕ] @m Γ.[ψ] ⊢ a[↑ψ] = b[↑ψ] : A[↑ψ] @m

Γ ⊢ a = b : A@m

term-eq/face-res-null

Γ cx@m Γ ⊢ ⊥ = ⊤ : Fm@m Γ ⊢ A@m Γ ⊢ a, b : A@m

Γ ⊢ a = b : A@m

Derived Definitions.
sb/plus-int

Γ,∆ cx@m Γ ⊢ δ : ∆@m

Γ.Im ⊢ δ.Im := (δ◦ ↑i).vi0 : ∆.Im@m

sb/exc-int

µ : n m Γ cx@m

Γ.Im.{µ} ⊢ σµ := ↑i .{µ}.vµ0 : Γ.{µ}.In@m

sb/exc-face

µ : n m Γ cx@m Γ ⊢ ϕ : Fm@m

Γ.[ϕ].{µ} ⊢ τµ :=↑ϕ .{µ}.[ϕµ] : Γ.{µ}.[ϕµ] @m

Appendix B. Models of MTT□

Definition B.1. A modal context structure on a mode theory M is a strict 2-functor
J−K :Mcoop Cat such that for each mode m :M, JmK has a terminal object.

Definition B.2. A modal natural model on a modal context structure consists of

• for each mode m :M, a presheaf Tm : PSh(JmK),
• for each mode m :M, a presheaf T̃m : PSh(JmK),
• for each mode m :M, a natural transformation τm : T̃m Tm,
such that

• for any modesm,n :M and each modality µ : n m, it holds that JµK∗τn : JµK∗T̃n JµK∗Tn
is a representable natural transformation.

The type formers are the same as those in [GKNB21, Section 5.2] and [Awo18] except
for identity types which we do not have and path types which will come later.

Definition B.3. A modal interval structure on a modal context structure consists of

• for each mode m :M, a De Morgan algebra Im : JmK,
• for any modes m,n :M and each modality µ : n m, a natural transformation of De
Morgan algebras Iµ : y(Im) JµK∗y(In),

such that
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• the preshaves y(Im) and morphisms Iµ assemble into a lax natural transformation
J−K Setop : Mcoop Cat, where Setop : Mcoop Cat is the functor constantly
equal to Setop,
• for each mode m :M and context Γ : JmK, the product Γ× Im exists,
• for any modes m,n :M, each modality µ : n m, and each context Γ : JmK, the uniquely
determined dashed arrow in the following diagram has an inverse:

Γ

Γ× Im

JµKΓ

JµK(Γ× Im)

JµKΓ× In

In

ImΓ× Im

π1 JµKπ1

π2

Iµ,Γ×Im(π2)

π1

π2
JµK

Iµ,Γ×Im

Definition B.4. A modal face structure on a modal interval structure consists of

• a lax natural transformation F : J−K Setop :Mcoop Cat, where Setop :Mcoop Cat
is the functor constantly equal to Setop,
• for each mode m :M, a natural transformation Eq0m : y(Im) Fmop,

such that

• F factors through BDisLatop, the functor constantly equal to the opposite of the category
of bounded distributive lattices,
• for each mode m :M, each context Γ : JmK, and each interval term r : Γ Im, it holds
that Fµ,Γ(Eq0m,Γ(r)) = Eq0n,JµK(Γ)(Iµ,Γ(r)),
• for each mode m :M and each context Γ : JmK, it holds that Eq0m,Γ(0) = ⊤, where 0 is
from Im being a De Morgan algebra, and ⊤ is from Fm(Γ) being a bounded lattice,
• for each mode m :M, each context Γ : JmK, and each interval term r : Γ Im, it holds
that Eq0m,Γ(r) ∧ Eq0m,Γ((1− r)) = ⊥, where (1− r) is from Im being a De Morgan algebra,
and ∧ and ⊥ are from Fm(Γ) being a bounded lattice.

Definition B.5. A modal restriction structure on a modal face structure consists of

• for each mode m :M, each context Γ : JmK, and each face ϕ : y(Γ) Fm, a choice of
pullback of the form:

Fmy(Γ)

1y(Γ.[ϕ]m)

⊤

ϕ

y(↑ϕm,Γ)

such that

• for all modes m,n :M, each modality µ : n m, each context Γ : JmK, and each face
ϕ : y(Γ) Fm, the uniquely determined dashed arrow in the following diagram has an
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inverse:

Fny(JµKΓ)

1y(JµKΓ.[Fµ,Γ(ϕ)]n)

⊤

Fµ,Γ(ϕ)

y(↑Fµ,Γ(ϕ)

n,JµKΓ )

y(JµK(Γ.[ϕ]m))

y(JµK ↑ϕm,Γ)

Here, the commutativity of the outer square follows from the following calculation:

Fµ,Γ(ϕ) ◦ y(JµK ↑ϕm,Γ) = Fn(JµK ↑ϕm,Γ)(Fµ,Γ(ϕ))
= ((Fn ◦ JµK)(↑ϕm,Γ) ◦ Fµ,Γ)(ϕ)
= (Fµ,Γ.[ϕ]m ◦ Fm(↑

ϕ
m,Γ))(ϕ)

= Fµ,Γ.[ϕ]m(y(↑
ϕ
m,Γ) ◦ ϕ)

= Fµ,Γ.[ϕ]m(⊤)
= ⊤.

Remark B.6. For each mode m :M, each context Γ : JmK, and any faces ϕ, ψ : y(Γ) Fm
with ϕ ≤ ψ, consider the following diagram:

Fmy(Γ)

1y(Γ.[ψ]m)

⊤

ψ

y(↑ψm,Γ)

y(Γ.[ϕ]m)

y(↑ϕm,Γ)

ϕ

We can calculate

ψ ◦ y(↑ϕm,Γ) = Fm(↑ϕm,Γ)(ψ)
≥ Fm(↑ϕm,Γ)(ϕ)
= ϕ ◦ y(↑ϕm,Γ)
= ⊤,

and thus ψ◦y(↑ϕm,Γ) = ⊤, implying the outer square commutates, and we thus get a canonical

morphism Γ.[ϕ]m Γ.[ψ]m.

Definition B.7. A modal face sturcture and a modal natural model (both on the same
modal context sturcture) has systems if
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• for each mode m : M, each context Γ : JmK, any faces ϕ, ψ : Fm(Γ), each presheaf
X : PSh(JmK), and each commuting diagram

y(Γ.[ϕ ∧ ψ]m) y(Γ.[ψ]m)

y(Γ.[ϕ]m) y(Γ.[ϕ ∨ ψ]m)

X

where the arrows in the inner square are the canonical morphisms following from ϕ∧ψ ≤ ϕ,
ϕ ∧ ψ ≤ ψ, ϕ ≤ ϕ ∨ ψ, and ψ ≤ ϕ ∨ ψ, if X is representable or Fm there exists at most
one morphism y(Γ.[ϕ ∨ ψ]m) X such that the diagram commutes, and if X is Tm or

T̃m there exists exactly one such morphism,
• for each mode m :M, each context Γ : JmK, and each presheaf X : PSh(JmK), if X is
representable, Fm, or Tm there exists at most one morphism y(Γ.[⊥]m) X, and if X is

T̃m there exists exactly one such morphism.

Definition B.8. A path structure on modal interval structure and a modal natural model
(both on the same modal context structure) is a direct translation of the rules for path types,
and we will thus not give the details.

Definition B.9. A composition structure on modal restriction structure is a direct transla-
tion of the rules for composition, and we will thus not give the details.
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