
Designing Tools for the Invisible Art of

Game Feel

Mads Johansen
IT University of Copenhagen

Denmark

March 2022

A dissertation submitted in compliance with

the requirements for the degree

Doctor of Philosophy

at the Creative AI Lab,

Center for Computer Games Research,

Digital Design Department

Main Supervisor Second Supervisor

Assoc. Prof. Martin Pichlmair Prof. Sebastian Risi

Center for Computer Games Research Center for Computer Games Research

Digital Design Department Digital Design Department

IT University of Copenhagen IT University of Copenhagen

ii

page intentionally left blank

Acknowledgements

I would like to thank the people who made this project possible. A Ph.D. is not created in

a vacuum; family, friends and colleagues have contributed their time, knowledge and questions

to make this project a reality.

First, I would like to thank my main supervisor Martin Pichlmair for his support, guidance

and patience with me and my work. I have traveled many winding paths over these past three

years, and your guidance, insights and discussions have been invaluable over the years. Without

your support, I surely would not have managed to streamline my work to fit in an academic

context by tuning my creative output toward concrete tasks and juicing up the papers we

published together. I also want to thank my second supervisor Sebastian Risi for his dedication

to keeping my research on track with clear goals and academic conciseness. I have enjoyed the

benefit of your knowledge about the academic environment in our field and the vast amounts

of research carried out within creative computing.

Second, I want to thank Mike Cook for our collaboration and discussions throughout my

Ph.D. Although circumstances did not allow me to do a physical stay abroad, I thoroughly

enjoyed my virtual stay abroad. I also want to thank you and the research group Knives and

Paintbrushes, which continues to provide inspiration and feedback about any and all projects

I work on.

I would like to thank my colleagues in the Center for Computer Games Research for in-

teresting discussions about the implications of my work in larger perspectives. I also want to

thank both the Creative AI Lab and the Robotics, Evolution and Art Lab for the practice

presentations you endured and the project discussions that followed. I would also like to thank

the Game AI group at the Queen Mary University of London for the discussions during my

virtual visit.

I want to thank the participants in our user studies, without whom we could not have

conducted our research. I also want to express my gratitude to the WUDT community for

support, feedback, motivation and honest discussions.

Additionally, I would like to thank my family and loved ones who have supported me with

work-life balance, amazing questions and the flexibility that allowed me to complete this Ph.D.

I would also like to thank Joleen Blom for being a great roommate and colleague, for great

discussions about all things game related and for o↵ering great insights into the humanities

side of game research. I also want to thank Djordje Grbic and Miguel Gonzalez Duque for

our Amager hangouts that were invaluable before and especially during the pandemic. For

iii

iv ACKNOWLEDGEMENTS

troll hunts and shut-up-and-write sessions I would like to thank Mille Edith Nielsen and Nina

Stausholm. I would also like to thank Lukasz Paczkowski for game nights and industry insights.

Finally, I would like to thank the people who have shown me kindness and patiently listened

to me talking about my work, my motivation and terrible jokes over the years.

Abstract

Over the past decade the related terms and concepts of game feel, juice, polish, oil and

feedback have become more common among game developers. Although books, blog posts, and

videos on the subject exist, the terms are still vague, and practitioners do not fully agree on

what each concept entails.

This thesis presents a study of game feel design and how design tools can support game

developers in designing game feel. The project touches many subject areas and resides in the

intersection between game feel design and mixed-initiative tools.

The overarching problem addressed is how can design tools support game feel design? This

project was motivated by curiosity about game feel, a lack of focus on the topic within game

generation research, and missing tools for prototyping game feedback, also known as juice.

The aim is to provide tools that speed up juice prototyping and help novice game developers

understand the process.

This thesis combines practice-based research methods and user testing to explore the topic

and solutions to address the above questions. The author draws on practical game design ex-

perience and methods and knowledge from research through design, evolutionary algorithms,

procedural content generation, and human–computer interaction to explore the subject. Re-

search questions with practical implications are posed, with knowledge acquired over five years

as a professional game developer. Experiments and software are designed to evaluate those

questions through practice-based design research methods.

This thesis consists of five research publications, bound together by an introduction. The

presented research examines game feel from various perspectives, including psychology, human–

computer interaction, and game design. It explores game generation, AI evaluation frameworks,

and building mixed-initiative tools for game developers. The tools are evaluated through qual-

itative user testing, focusing on functionality.

The practical result of this Ph.D. is the development and release of several open-source

frameworks and tools. The tools were developed and described to conduct experiments, inspire

others to explore the topic, and support future research.

v

vi ABSTRACT

The three main practical contributions of this thesis are:

1) The release of the open-source UnityVGDL, an adaptation of the GVGAI framework in

Unity.

2) A survey and collection of the current state of the art in game feel design, with our

attempt at solidifying subjects for individual design tasks, their verbs, and actions.

3) Introducing the unexplored topic of game feel to the mixed-initiative and automated

game design research community through several publications, in addition to the release

and description of the open-source tool Squeezer. Squeezer is a mixed-initiative juice

prototyping design tool that has been evaluated through two rounds of user testing and

has been integrated into an automated game design system.

The projects presented in this thesis seek to inspire game developers and game researchers

alike to take advantage of the tools and knowledge in their games and frameworks. Squeezer has

been open-sourced to allow anyone to incorporate, modify or expand the project. Additionally,

full access to the source code allows other developers to analyze and understand how to build

new and perhaps better tools for similar purposes.

This thesis sheds light on new areas for mixed-initiative, creative computing, and automated

game design research by describing, presenting, and evaluating the tools and the approaches

used to create them. The thesis and the related open-source projects are a body of work with

the potential to contribute to research, game design practices, and learning environments.

Resumé

I det seneste årti er de relatered udtryk og koncepter game feel, juice, polish, oil and feedback

blevet mere gængse blandt spiludviklere. Selvom der b̊ade findes bøger, blogs og videoer om

disse emner, er der ikke konsensus om hvad de enkelte udtryk og koncepter dækker over blandt

udviklere.

Denne afhandling afdækker en udforskning af game feel og hvordan man kan designe værktøjer

der assisterer spiludviklere i processen med at designe game feel. Projektet bevæger sig ind p̊a

mange forskellige omr̊ader, men befinder sig i overlappet mellem game feel design og mixed-

initiative værktøjer.

Det overordnede problem som adresseres er hvordan kan design værktøjer assistere med

game feel design? Dette projekt er motiveret af nysgerrighed omkring game feel, et manglende

fokus p̊a omr̊adet inden for spil genererings forskning og manglende værktøjer til designing

af feedback, ogs̊a kendt som juice, i prototype-fasen af spiludvikling. Målet med projektet er

at tilgængeliggøre værktøjer der kan lette prototype-fasen og hjælpe nye spiludviklere med at

forst̊a processen.

Gennem brug af praktikbaserede design forskningsmetoder opsættes eksperimenter og soft-

ware løsninger til at evaluerer de ovenst̊aende spørgsmål. Forfatteren udnytter praktisk spilud-

viklingserfaring samt metoder og viden fra research through design, evolutionary algorithms,

procedural content generation og human-computer interaction til at udforske emnet. Med viden

opn̊aet gennem fem år som professionel spiludvikler stilles forskningsspørgsmål med praktiske

opgaver for øje. Ved at kombinere praktik baseret forskningsmetoder med brugerundersøgelser,

udforsker og adressere denne afhandling de ovenst̊aende emner ved at lave og teste forskellige

løsninger.

Denne afhandling best̊ar af fem forskningspublikationer, bundet sammen af en introduktion.

Den præsenterede forskning undersøger game feel fra forskellige perspektiver inklusiv psykologi,

human-computer interaction og spildesign. Den udforsker spil generering, evalueringsværktøjer

til kunstig intelligens og at bygge mixed-initiative værktøjer til spiludviklere. Værktøjerne er

evalueret gennem kvalitative brugerundersøgelser, med et fokus p̊a funktionalitet.

De praktiske resultater af denne PhD er udviklingen og udgivelsen af flere open-source

værktøjer. Udviklet og beskrevet for at kunne udfører eksperimenter, inspirere andre til ud-

forskning af emnet og tillade fremtidig forskning baseret p̊a disse projekter.

vii

viii RESUMÉ

De tre største forskningsbidrag i denne afhandling er:

1) Udgivelsen af open-source værktøjet UnityVGDL, en adaptering af GVGAI frameworket

i Unity.

2) En undersøgelse og samling af moderne game feel design, og et forsøg p̊a at sammenkoble

emner med individuelle design opgaver, samt deres verber og handlinger.

3) Udgivelsen og beskrivelsen af open-source værktøjet Squeezer, et mixed-initiative juice

prototype design værktøj. Squeezer er blevet evalueret gennem to runder af brugerun-

dersøgelser, integreret i et automatiseret spiludviklingssystem, hvilket har åbnet det hidtil

uudforskede game feel emne til forskningsomr̊adet inden for automatiseret spiludvikling.

Projekterne præsenteret i denne afhandling forsøger at inspirere b̊ade spiludviklere og spil-

forskere, til at drage nytte af værktøjer og viden i deres egne spil og forskning. Squeezer er

tilgængeligt open-source, for at tillader enhver at integrere, ændre eller udvide projektet. Desu-

den tillader fuld adgang til kildekoden at andre udviklere kan analysere og forst̊a hvordan de

kan bygge nye og eventuelt bedre værktøjer til lignende formål.

Ved at beskrive, præsentere og evaluere værktøjerne, samt de tilgange brugt til at skabe dem,

belyser denne afhandling nye forskningsomr̊ader indenfor mixed-initiative, creative computing

og automatiseret spiludvikling. Den resulterende afhandling og de relaterede open-source pro-

jekter udgøre derfor et værk med et potentiale til at bidrage ikke bare til forskning, men ogs̊a

til spiludvikling og spilundervisning.

Contents

Acknowledgements iii

Abstract v

Resumé vii

1 Introduction 1

1.1 Research Questions . 4

1.2 List of Papers . 6

1.3 List of Open-Source Projects . 7

1.4 Contributions & Outline . 8

2 Background 11

2.1 Practiced-Based Design Research . 11

2.2 Game Development . 13

2.3 Procedural Content Generation . 14

2.4 Evolutionary Algorithms . 15

2.4.1 Interactive Evolution . 16

2.5 Computational Creativity . 16

2.6 Mixed-Initiative Tools . 18

2.6.1 Mixed-Initiative Tools for Game Development 19

3 Designing Game Feel 21

3.1 What is Game Feel? . 22

3.2 From Flow to Feel . 23

3.3 Juice the Feel Amplifier . 24

3.4 Three Design Domains . 25

3.5 Discussion and Future Work . 26

4 Supporting Game Feel Design 30

4.1 Game Description Frameworks . 31

4.1.1 Video Game Description Language . 32

4.1.2 Extending VGDL with Game Feel Elements 35

ix

x CONTENTS

4.1.3 Implementation Options . 38

4.1.4 UnityVGDL . 39

4.1.5 Building Unity prototypes from VGDL 40

4.1.6 Handling VGDL Interactions in Unity Prototypes 40

4.1.7 A Generalizable Pattern Appears . 41

4.1.8 Discussion . 41

4.2 Squeezer . 42

4.2.1 Interactive Description Design . 42

4.2.2 Architecture . 44

4.2.3 Executing the Descriptions . 46

4.2.4 Designing the Setup Procedure . 48

4.2.5 Visualising the E↵ect Sequence . 50

4.2.6 Discussion . 52

4.3 Automated Game Design Systems . 53

4.3.1 Automated Game Design . 53

4.3.2 AGD Approach . 54

4.3.3 Squeezer Integration . 55

4.3.4 Juicy Challenges . 55

4.3.5 Discussion . 56

4.4 Discussion . 57

5 A New Game Design Process 60

5.1 Designing for Playful Exploration and Prototyping 62

5.2 Visual Sequence Design . 65

5.2.1 User test . 65

5.3 Sequence Generation . 68

5.3.1 Guiding the Sequence Generation . 70

5.3.2 Reflecting on Sequence Generation . 73

5.4 Interactive Evolution . 73

5.4.1 User Test . 75

5.5 Discussion . 77

5.5.1 Automated Game Design . 80

6 Designing Game Feel with Squeezer 81

6.1 Game Feel Design Reflections . 82

6.2 Reflecting on Squeezer . 84

6.3 Results from the AGD experiments . 86

6.4 Discussion . 93

CONTENTS xi

7 Discussion 97

7.1 Reviewing Contributions . 98

7.1.1 Game Feel Design . 98

7.1.2 Supporting Game Feel Design . 99

7.1.3 A Playful Design Process . 102

7.1.4 Game Feel Design with Squeezer . 104

7.1.5 Reviewing Research Questions . 105

7.2 Future Work . 107

7.2.1 Practice-Based Game Design Research 107

7.2.2 Squeezer . 108

7.2.3 More Game Design Topics to Explore . 110

7.2.4 Automated Game Design . 111

7.2.5 Juice as Sense Replacement . 111

7.2.6 Exploring How Juice Impacts AI Performance 112

8 References 113

9 Publications 133

9.1 Video game description language environment for Unity machine learning agents 133

9.2 Squeezer - A tool for designing juicy e↵ects . 142

9.3 Squeezer - A mixed-initiative tool for designing juice e↵ects 148

9.4 Designing game feel. A survey. 160

9.5 Challenges in generating juice e↵ects for automatically designed games 176

xii CONTENTS

Chapter 1

Introduction

Since the earliest graphical computer interfaces, computer-aided design (CAD) [207] has

been a stable research field within human–computer interaction (HCI) research. Sutherland’s

early CAD system Sketchpad [207] was a system that leveraged computers to aid designers in

ways that answered some “What if...?” questions from pen and paper design. Questions like

“What if, instead of having to erase a line and redraw it, I could just move the endpoint?” and

the logical follow-up questions, “What if, when we move that point, any other connected points

also followed it?” or “What if instead of carefully drawing two lines exactly perpendicular, we

could constrain them to be exactly perpendicular always?” Sutherland launched a completely

new way of using computers with the Sketchpad system, showing people the potential of a

collaboration between humans and computers and pioneering early HCI research.

Focusing on past achievements like Sutherland’s Sketchpad and logic-based programming

languages such as Prolog1, Bret Victor imagines an alternative “future of programming” [228].

Victor questions how software design is conducted today, reminding us that interacting with

computers was a very di↵erent task in the not-so-distant past. It involved directly manipulating

data, specifying constraints and goals, and letting the computer figure out how to do it. Victor’s

research and demonstrations focus on dynamic alternatives to data visualization [226, 225] and

using the computer as a new visual art medium [227]. The ideas presented have been around

for a very long time. However, Victor proposes bringing them back and changing modern

interaction schemes to a more designer-friendly variety based on direct manipulation and instant

previews. Designing software programs, for instance, is a largely asynchronous task alternating

between “blindly” manipulating symbols and evaluating the resulting program. Some languages

or interactive development environments (IDE) provide live “previews” of the graphical user

interface (GUI), but very few provide the option for editing the application while it is running.

Although some IDEs provide intelligent programming suggestions or smart visual programming

representations, the task is still inherently disconnected from the result. Victor argues that

designing with computers does not necessarily mean providing the computer with the exact

instructions for doing the task. Instead, a user should be able to directly visualize data, design

programs, or build games without worrying about how the computer does it. Instead of sole

1https://en.wikipedia.org/wiki/Prolog

1

2 CHAPTER 1. INTRODUCTION

responsibility resting on the user, the system carries the responsibility of accomplishing the

result the user specifies.

In mixed-initiative research, which this thesis is concerned with, splits the responsibility or

“initiative” in this manner. Mixed-initiative tools assist their users by taking responsibility for

specific sub-tasks, providing suggestions, or taking turns alongside the user when manipulating

an artifact. Like much modern software, mixed-initiative tools can be viewed as CAD systems.

However, by sharing responsibilities in the creative process, they bring back that “magic” feeling

computer-aided design had in the early days. Many mixed-initiative tools employ procedural

content generation (PCG) systems to provide their input. PCG systems have existed since the

early days of computing and have been a staple in game development for almost as long. PCG,

as the name implies, generates content based on procedures. These procedures and any data

they might use act as constraints and parameters to produce the generated output. In a sense,

the PCG system acts as a CAD tool generating a range of artifacts based on constraints the

designer adds, removes, or adjusts. The cycle of generation and adjustment continues until

the generator provides the desired output. Where most CAD tools rely on the users for the

creative part of the process, and PCG systems rely on the computer for the creative part of

the process, mixed-initiative systems allow both the computer and users to assist in parts of

the creative process. The tool Danesh [45] attaches to and adjusts the parameters of a PCG

system to achieve certain meta goals, moving the design exploration responsibility away from

the user, essentially building a mixed-initiative interface for PCG systems. On the game-design-

practitioner side, there are mixed-initiative tools like SFXR [154] and direct manipulation tools

like Doodle Studio 95! [161] and Flickgame [121]. Mixed-initiative research has resulted in tools

that generate artifacts ranging from textures, 3D-models, and levels, to sounds, music and even

game rules. Examples of such systems like Tanagra, Sentient Sketchbook and Maestro Genesis

[193, 128, 86] have been designed for various purposes related to game development. Some

systems even generate or assist in generating entire games, such as Game-o-Matic, Interactive

Game-Design Assistant and ANGELINA [221, 139, 39, 40].

Most of these tools are concerned with generating specific artifacts common to games.

However, there is more to games than their assets; there is an a↵ective side to games that

is often neglected or overlooked by “non-practitioners.” Designing the a↵ective moment-to-

moment interactions in a game is called game feel design. Game feel design is often overlooked

because it is almost invisible to the player when it works as intended. Good game feel design

essentially makes every interaction feel intuitive, natural, or gritty so that the player forgets to

notice the details and instead becomes immersed in the experience. Designing game feel takes

many iterations and experience with coalescing all the details that make the experience coherent.

Game feel design is a detail-oriented endeavor, one aspect of which is called “juicing”. In the

talk entitled “Loving Your Player With Juicy Feedback,” Hunicke [88] describes it: juiciness

can be applied to abstract forms and elements and it is a way of embodying arbitrarily defined

objects and giving them some aliveness, some qua, some thing, some tenderness. As the title

of the talk also suggests, the art of game feel is pouring love into minute details of a game to

3

ensure it feels just right. Juice is there to give objects and the world life, becoming invisible to

and accepted by the player as the reality of the game. Another seemingly invisible aspect of

game feel is designing support for the player through streamlining it. The goal of streamlining

is to make rough edges of the game disappear to provide a smooth player experience. Most of

the time, the player does not want to realize how much the game is supporting them. ’If you

do this right, then the player won’t suspect a thing,” says Pulver [160]. Disc Room’s designer

Nijman explains that their use of Coyote Time ”has a bunch of good side e↵ects that make it

seem like the game knows your intentions” [231]. As we described in [155], solving problems

so the player can remain blissfully unaware by interpreting their intentions and helping them

along the way is the reason why excellent game feel design remains almost invisible.

This Ph.D. project has been a journey to discover how to design tools for game feel design.

Tools that support the game feel design process while developing game prototypes.

The research methodology of this project is based on prior experience as a game developer

and akin to practice-based design research [223, 163]. Software is the explored “material” much

like in software studies [67]. The process is rooted in experimentation, formulating questions,

and exploring them through an iterative development process. Primarily focused on improving

the learning curve for novice game designers and tools that allow experienced users faster

iteration and prototyping in real working environments (e.g., o↵-the-shelf game engines and

fantasy consoles). Exploring game feel through software development using real-world practices

and academic knowledge. The resulting tools and prototypes act as both showcase and learning

examples. The practical usage of the tools has provided feedback for the tool design process

throughout the project.

In practice-led design research, the research’s frame of a project is called the “program”. In

this case, the program is defined by the main research question: How can design tools support

game feel design? This places the research in the overlap between game feel design and mixed-

initiative tools. The main research question is divided into more precise questions for which

“experiments” are designed. Experiments in this project consist of an iterative development

process followed by a test phase. From each experiment, two layers of results are derived.

First, the resulting software is described and released, allowing others to reuse the approach

or the resulting software. Second, the test results, indicating how well the software performed

its task and whether the approach is feasible for further research. The experiments and their

results then yield new research questions to be investigated through new experiments. Lastly,

the dissertation appears as a collection of experiments and their results, how they fit into the

overarching program and how the Ph.D. project addressed the main research question.

The contributions of this dissertation and an outline of how each chapter addresses the

research questions (see Section 1.1) can be found in Section 1.4.

4 CHAPTER 1. INTRODUCTION

1.1 Research Questions

The main research question of this dissertation can be summarized as:

How can design tools support game feel design?

This question is derived from the larger question, “How can the computer assist in the

game design process?” A question others have wrestled with through the exploration of how to

make tools that support, suggest, and take part in various aspects of the game design process

[194, 192, 126]. These questions are themselves part of the even larger quest in computer-aided

design research asking “How can the computer assist in the design process?” [131]

Others have also explored moving past the idea of the computer assisting humans directly

in the process, instead focusing on “How can the computer design certain aspects of games?”

[203, 111] or “How can the computer create games without human assistance?” [41, 79]. The

research revolving around questions like these often leads to new techniques and analytical

challenges in game design. In this dissertation, exploring procedural content generation and

automated game design is part of uncovering how tools can support the process of game feel

design.

The main research question only addresses game feel design instead of all (game) design

processes. Besides limiting the scope to game feel design, the focus is on supporting the game

feel design process through tools. This subtle shift in focus moves the goal from the computer

assisting in the game design process to providing essential support in the design process with

the computer.

However, the question remains too big to be answered in full within the limits of a single

Ph.D. project.

To understand how design tools can support the game feel design process and begin answer-

ing the main question. The main question needed to be divided into a set of narrower questions

that could be tackled in this dissertation:

• RQ1 “What is game feel design?”

• RQ2 “How can game feel design support get implemented in existing workflows?”

• RQ3 “What is the impact of design tools on the game feel design process?”

• RQ4 “How does the addition of game feel design tools alter the qualities of games?”

1.1. RESEARCH QUESTIONS 5

This dissertation investigates the process of game feel design and how adding tools to sup-

port it changes both the process and the resulting games. What game feel design is (RQ1)

is explored through a survey [155]. Reconciling more than a decade’s worth of game design

research, industry terms, and practices, with research from several other fields like psychology

and human-computer interaction stretching back much further in time. The remaining ques-

tions are tackled through the creation and adaptation of software prototypes. Squeezer is the

central piece, a design tool that allows designers to explore game feel design. Through several

user tests, Squeezer serves to answer both what the impact of design tools is on the game

feel design process (RQ3) and how they alter the qualities of games built with them (RQ4).

While the implications of adding design tools to the design process are at the core of what the

impact of design tools is (RQ3), several approaches to providing support in the design process

are explored through di↵erent interfaces as well as through generative and algorithmic means.

The full set of tool design explorations in various prototypes throughout this project serve as

examples of potential answers to how game feel design support can get implemented in existing

workflows (RQ2). This project focuses on providing support during design exploration related

to game feel design. Though design explorations can be approached from various angles, it

happens most commonly as part of the prototyping phase of game development. Both com-

mon and generative approaches to game prototyping are explored in the context of potential

implementations of game feel design support in existing workflows (RQ2).

While it is hard to claim that the questions above have been answered fully, this dissertation

forms a foundation for further exploration of game feel within the research areas of game

design, procedural content generation, mixed-initiative design tools, computational creativity,

and computational intelligence. Highlighting both solutions and challenges related to making

design tools that support the game feel design process.

6 CHAPTER 1. INTRODUCTION

1.2 List of Papers

The papers are available in Chapter 9 Publications.

Paper 1

M. Johansen, M. Pichlmair and S. Risi, “Video game description language environment for

Unity machine learning agents” in 2019 IEEE Conference on Games (CoG), 2019, pp. 1–8,

DOI: https://doi.org/10.1109/CIG.2019.8848072

Paper 2

M. Johansen, M. Pichlmair, and S Risi, “Squeezer - A tool for designing juicy e↵ects” in Ex-

tended Abstracts of the 2020 Annual Symposium on Computer-Human Interaction in Play (CHI

PLAY ’20). Association for Computing Machinery, New York, NY, USA, 2020, 282–286.

DOI: https://doi.org/10.1145/3383668.3419862

Paper 3

M. Johansen, M. Pichlmair, and S. Risi, “Squeezer - A mixed-initiative tool for designing juice

e↵ects” in The 16th International Conference on the Foundations of Digital Games (FDG) 2021

(FDG’21), August 3–6, 2021, Montreal, QC, Canada. ACM, New York, NY, USA, 11 pages.

DOI: https://doi.org/10.1145/3472538.3472575

Paper 4

M. Pichlmair and M. Johansen, “Designing game feel. A survey.” in IEEE Transactions on

Games, 2021,

DOI: https://doi.org/10.1109/TG.2021.3072241

Paper 5

M. Johansen and M. Cook. 2021, “Challenges in generating juice e↵ects for automatically de-

signed games” in The 17th AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment (AIIDE-21), 2021.

Best Student Paper Nominee at AIIDE 2021

1.3. LIST OF OPEN-SOURCE PROJECTS 7

1.3 List of Open-Source Projects

In addition to this dissertation and the included papers, the source code for several projects

and experiments is freely available online. Releasing frameworks and projects has been a big

part of this Ph.D. project. They are providing researchers and practitioners interested in

continuing, extending, or learning from the source code with the option to do so. For instance,

UnityVGDL provides a starting point for anyone wishing to work with VGDL in Unity. While

VGDL has been explored in many di↵erent projects and papers [175, 176, 152, 150, 151, 113],

the topic of game feel design [155] is relatively new. The availability of a project like Squeezer

allows researchers to continue work on exploring interface design, algorithmic assistance, and

new generative approaches to game feel design tools. Squeezer is primarily concerned with

event signification through juice e↵ect generation and design. Making Squeezer freely available

to practitioners for prototyping juice e↵ects increases the chances that it will be used, adapted,

and improved upon by others.

Additionally, Squeezer is an excellent way for novice designers to learn event signification

through the playful exploration of juice e↵ects. Lastly, two experiments with particle e↵ect

generation and a lightweight version of Squeezer for the fantasy console Pico-82 are also included

here. The two experiments represent future research opportunities and attempt to generalize

ideas included in Squeezer to platforms beyond Unity.

Project Status and links below:

• UnityVGDL

- Available at: https://github.com/pyjamads/UnityVGDL

- Run VGDL games in Unity

- Machine learning support using ML-agents [101, 100]

• Squeezer

- Available at: https://github.com/pyjamads/Squeezer

- E↵ect sequence designer and generator for prototyping juice e↵ects in Unity.

- Proof-of-concept interactive evolution mode

- Novelty search for interactive evolution using tree-edit distance (experimental)

- API for e↵ect generation and design (used for automated game design system [93])

- Squeezer passed Artifact Evaluation at AIIDE 2021 in connection with [93]

• Fantasy Console Experiments (Pico-8)

- Squeezer for Pico-8, available at: https://pyjamads.itch.io/squeezer-pico8

- Procedural Particle Pu↵s, available at: https://pyjamads.itch.io/pcg-pu↵s-pico8

2Available at https://www.lexalo✏e.com/pico-8.php

8 CHAPTER 1. INTRODUCTION

1.4 Contributions & Outline

The following outline is based on a collection of results, contributions, and partial answers

to the research questions posed in Section 1.1. The curious reader should be warned that this

section contains spoilers and provides an overview of the rest of the dissertation.

Chapter 2 presents related work and background knowledge, including various technolo-

gies, theories, and practices at work in this project. The chapter is neither part of the contri-

butions or answers, but it provides a necessary foundation for understanding the rest of the

dissertation.

Chapter 3 explores state of the art within game feel design, addressing the first research

question: “What is game feel design?” (RQ1)

The results and contributions in the chapter are the identification and classification of a long

list of design elements commonly associated with designing game feel. Additionally, game feel

design is subdivided into three domains, each with a respective goal and a described polishing

task. Polishing in this circumstance refers to adjusting the game to exactly match the expe-

rience intended by the designer. The three design domains related to the feeling of moment-

to-moment interaction are Physicality, Amplification and Support. Each domain contains a

polishing task, namely tuning, juicing and streamlining. The feeling of moment-to-moment

interactions can be adjusted by tuning the physicality, juicing the amplification, and streamlin-

ing the support. Each domain and design element is described and situated within game design

and connected to related research fields. The survey [155] gathers resources from practitioners

and academia in an area that has seen little research in the decade since the original release of

Swink’s book on Game Feel [214].

Chapter 4 looks at the di↵erent game development workflows touched upon during this

Ph.D. and describes possible ways to implement game feel support in them. These descrip-

tions partially answer the second research question: “How can game feel design support get

implemented in existing workflows?” (RQ2)

The chapter explores the implementation of game feel design support in three existing

workflows. First, a section related to game generation using description languages and in

particular the video game description language (VGDL) [125, 175]. Second, a section describing

how a generalizable game development pattern lead to the implementation of Squeezer [95, 94].

Third, a section describing potential approaches to, and the process of, integrating Squeezer

into an automated game design (AGD) system [93].

For game description languages, three potential solutions for implementing game feel sup-

port are identified and described. The particular game description language explored is VGDL[175,

125, 152, 113, 150, 151]. The first solution is language modifications based on unpublished

experiments with VGDL descriptions during the development of UnityVGDL [96], exploring

potential ways of building game feel support into the framework. The solution requires adding

1.4. CONTRIBUTIONS & OUTLINE 9

a library of juice e↵ects (amplification), more tuneable player classes (physicality), and making

collision handling more adjustable (support). The second solution is to expand descriptions to

include options that allow a third-party library to handle the execution in conjunction with

the game execution. The final proposed solution is to generate entire game prototypes from

the VGDL descriptions in a game engine like Unity. This approach allows a game designer to

quickly explore rule and level changes while maintaining the ability to improve the aesthetics

and feel of the game in an external engine. This approach of testing the initial design and gen-

erating game prototypes using a description language has even been used in the development

of commercial games3.

Most importantly, this section paved the way for generalizing the approach used in VGDL to

designing juice e↵ects. In VGDL, reacting to objects’ interactions (read: collisions) is used for

executing “e↵ects”. VGDL “e↵ects” are the game mechanics and rules that interactions trigger.

As juice e↵ects are concerned with the amplification of game events and game events primarily

happen during interactions between objects (or as a result of player input). Additionally, the

language modification experiments (using a nested tree structure) showed a powerful concept

for sequence design, later used as the basis for visual sequence design in Squeezer.

The contributions concerning Squeezer in Chapter 4, is the description of the implementation

of an interactive sequence design system, methods for executing said sequences, and a method

for algorithmic generation of e↵ect sequences. Additionally, the chapter describes methods for

shortening the iteration loops, allowing designers to explore the design space more e↵ectively.

Short iteration loops and real-time previews are an attempt to “stop drawing dead fish” [227]

during juice design. However, the immediate contribution is making Squeezer available open-

source as a reference for other researchers and developers.

Lastly, the chapter shows how the approaches to integrating game feel design into an auto-

mated game design (AGD) system are similar to those available for other game generation sys-

tems (e.g., VGDL)—specifically providing the implementation details for integrating Squeezer

into an AGD system. Additional contributions include identifying and describing challenges

related to adding game feel design into AGD systems and outlining fascinating problems that

require future research and computational creativity solutions.

Chapter 5 explores how using Squeezer impacts the game feel design process in order to

answer the third research question: “What is the impact of design tools on the game feel design

process?” (RQ3)

The chapter begins by outlining current approaches to game feel design and describing

the design philosophy behind Squeezer. The outlined approaches are compared to the results

from user studies performed in the two Squeezer papers [95, 94]. At the same time, Squeezer

is evaluated against the design philosophy and how well it allows for playful exploration and

design of juice e↵ects.

3Presented by Alan Hazelden at Game Developers Conference 2016 in the Tech Toolbox panel.

https://www.gdcvault.com/play/1023377/Tech

10 CHAPTER 1. INTRODUCTION

The chapter’s contributions are primarily based on user studies, indicating that Squeezer’s

visual sequence design represents an excellent approach to designing juicy e↵ects. Squeezer is

a tool the participants claim to be interested in using during prototyping and game jams. The

user studies indicate that designers with less experience designing juice engage with interactive

evolution longer. The experiment is based on a simple implementation of interactive evolution

and might indicate that interactive evolution needs to provide more variation and diverse exam-

ples to keep experienced designers interested. Additionally, the chapter describes the potential

benefits of sequence generation as an evaluation first approach to juice design. In this approach,

the designer generates an e↵ect sequence and evaluates how well it fits the interaction. The

approach contrasts with the typical approach where the designer has to envision the juice e↵ect

and then create it using an asynchronous process, usually through code or visual scripting. The

chapter argues that the evaluation first approach side-steps the issue of the designer staring at

a “blank page” when they lack inspiration.

Chapter 6 explores the impact of adding support for game feel design into the game design

process in order to explore the fourth research question: “How does the addition of game feel

design tools alter the qualities of games?” (RQ4)

The section begins by reiterating the purpose of game feel design, and especially the pur-

pose of juice. Then followed by a reflection on how the test participants would use Squeezer

and their focus and interest while working with the tool. Then it is wrapped up by a deeper

analysis of the qualitative results from adding Squeezer to an AGD system and allowing users

to play di↵erent variations of those games with di↵erent e↵ects [93]. The results appear in line

with those found by Kao [105] in a similar study. They are indicating that adding juice e↵ects

to games (even when those e↵ects are randomly generated) will at the very least not hurt the

perception of the game, as long as they are not too extreme. This study exposes the potential

advantages of adding juice e↵ects or game feel design support to AGD systems and other game

description and generation frameworks such as VGDL. In the study, the generated e↵ect se-

quences were tailored towards the general event type but lacked alignment with the interaction

they were meant to amplify. The alignment of the e↵ect sequences with the interaction and

the overall aesthetics of the game is also one of the core challenges identified in Chapter 4 for

adding game feel support to AGD systems.

Chapter 7 reviews the contributions extensively with respect to the research questions.

Lastly, the chapter ends with a discussion of potential future research on topics related to this

dissertation.

I seldom end up where I wanted to go, but almost always end up where I need to be.4

4From “The Long Dark Tea-Time of the Soul” by Douglas Adams, 1988

Chapter 2

Background

This chapter outlines relevant work and background knowledge for the research conducted in

this project. The first section presents practice-based design research, a research methodology

that inspired how this project was conducted. Especially evident in Chapter 4 that is concerned

with the practical implementation experiments that have led to most of the publications cre-

ated for this dissertation. The second section presents the subject of game development, which

is the primary focus of this dissertation. Chapter 3 acts as an extension of the game develop-

ment background outlining the primary focus of this dissertation. The sections following game

development are procedural content generation and evolutionary algorithms. These sections

present generative approaches that have been applied and explored through user testing (see

Chapter 5). A section on computational creativity follows these two sections, as it has been

influential both to this project and to the topic of automated game design (explored throughout

the dissertation, but more prominent in Chapter 6). Lastly, related work on mixed-initiative

tools is outlined, in general, and in relation to game development.

2.1 Practiced-Based Design Research

Practice-based design research [223] aims to study materials or practices through designing

artifacts, methods, frameworks, and tools. Practice-led research is shaped by the design practice

which informs it. Design theory is inherently temporal, incremental, and derived from ever-

changing examples and practices. Redström [163] describes how to derive design theory from

practices and how design theory of this kind is temporal. Two main types of design theory arise

from practice-led design research, methods, and practical evaluations. The methods are often

accompanied by reflection on the practice and the results, leading to practice-oriented insights

valuable for “non-practitioners”. One such example is the design of a chair in Redström’s

book, which in practitioner reflections becomes designing the act of sitting or designing an

object intended for the act of sitting. This reflection allows the practitioner to play around

with the idea of how the act of sitting can be done di↵erently, resulting in chair designs that

were radically di↵erent from the norm (seen in Figure 2.1). By describing the process, intent,

and creation of the chair, the design practitioner contributes a new method for designing chairs.

11

12 CHAPTER 2. BACKGROUND

Additionally, performing evaluations of the chair might reveal certain benefits that increase the

value of the design and might incentivize others to follow a similar design path.

Figure 2.1: Illustration from patent no. US 4328991 A for a ”sitting device” by Hans C.

Mengshoel and Peter Opsvik, 1982.

Both Redström, Vaughan, and Brandt et al. [17] describe the notion of a “Program” within

which design research is conducted. This program is based on a central research question that

makes up the frame of the project. Research projects explore the program through experi-

ments based on sub-question. The descriptions of experiment, method, and results become the

knowledge produced by and pushing the boundaries of the program. Design research is tempo-

ral because the program boundaries are moving both in terms of contemporary methods and

materials and because other designers push the boundaries of what is possible and accepted.

2.2. GAME DEVELOPMENT 13

2.2 Game Development

Videogames have existed for more than six decades. They began as simple vector drawings

on an oscilloscope, in Tennis for Two1. They have since been developed for almost every

conceivable and sometimes inconceivable device on the planet. Today game development is a

multifaceted endeavor involving many di↵erent and sometimes opposing disciplines to create a

wide variety of interactive experiences. Disciplines spanning various art forms, di↵erent types of

engineering, several facets of design in addition to business and project management. Whether

your approach is analytical [177] or playful [71], or you just believe play matters [183] and

people have a need to play, games begin with ideas. Testing is a big requirement for success

from the first ideas until release and beyond. Testing takes many forms in game development,

but the primary way is making prototypes. As Fullerton [71] puts it prototyping lies at the

heart of good game design. Prototyping is the creation of a working model of your idea that

allows you to test its feasibility and make improvements to it. Game prototypes while playable,

usually include only a rough approximation of the artwork, sound and features. They are much

like sketches whose purpose is to allow you to focus on a small set of the game’s mechanics or

features and see how they function.

Prototypes allow designers to expand the scope of their idea to figure out the best solutions

throughout development. Game development often goes through several phases of expanding

ideas and narrowing down through testing (An example of this flow can be seen in Figure 2.2).

Prototypes let designers explore possible options, but they need to be cheap and quick to make,

wasting as little time as possible building and testing them because most will be discarded.

Sketching out prototypes allows designers to think more clearly and openly about their ideas

and create abundant ideas without worrying about their quality [76]. They are meant to verify

idea feasibility or show the potential of an idea, but prototypes can also be used to document

the development process.

Figure 2.2: A common flow of a game development process, with alternating phases of design

exploration and culling based on testing.

1https://en.wikipedia.org/wiki/Tennis for Two

14 CHAPTER 2. BACKGROUND

Prototypes can be created in many di↵erent ways, depending on the aspect they are meant

to test. Early on, developers may use pen and paper to test game mechanics, but as the game

idea grows more complex and gets further in development, often new ideas need to be tested

in the context of the game. This is where prototyping tools come into play. Prototyping tools

ideally allow many ideas to be created and tested in the game context. Prototyping tools

support designers in exploring the design space [129], expanding possibilities before evaluation

narrows it down again. Examples include generating sound samples with SFXR [154], designing

shaders through Shader Forge 2 or drawing quick sprites with animations in Doodle Studio 95!
3 [161]. Often tools are selected, and workflows are built around them to maintain fast iteration

times and ease the development process.

2.3 Procedural Content Generation

Procedural content generation (PCG) is the generation of a variety of di↵erent artifacts

by applying a specified procedure. The generated artifacts can serve as “content” in various

contexts, ranging from rug weaving patterns to the entire written lineage of a single dwarf in

Dwarf Fortress4. PCG has been used in games for a long time, and the algorithms have been

used to generate content for many di↵erent purposes [181, 182]. In games, PCG systems have

often a↵orded the replay-ability and surprising elements that keep players engaged and coming

back again and again. PCG systems replace a content design task with a system design and an

evaluation task. As Emily Short5 says PCG isn’t a substitute for designing content. It’s a way

of designing content — one that is often at least as labor-intensive as other ways, and that also

demands a strong capacity for abstraction and the ability to characterize one’s aesthetic goals.

PCG systems are sometimes viewed as a magic bullet. However, they just transform a

design task into a di↵erent kind that might be easier to understand and create for some people.

Generating assets using a PCG system can also make a game world seem more natural, as

people are used to minor variations in almost all materials they experience. People experience

slight imperfections in almost anything they interact with due to wear and tear, production

defects, or natural variations. Elements like rocks, trees, or clouds all exhibit these natural

variations. The human brain is very good at recognizing patterns, and if a game repeats a

texture or element too many times, most people would notice it and find it uncanny6. The idea

behind using PCG is often to replace manual labor in creating large enough amounts of assets

to avoid the issue of repeating patterns.

PCG systems are often implemented either dynamically as part of the shader code7 or to

2https://acegikmo.com/shaderforge/
3https://fernandoramallo.itch.io/doodle-studio-95
4A notoriously deep simulation game, with a rich history for a generated “living” world,

https://www.bay12games.com/dwarves/ see also https://www.moma.org/collection/works/164920
5https://emshort.blog/2016/09/21/bowls-of-oatmeal-and-text-generation/
6Similar to the Uncanny Valley https://en.wikipedia.org/wiki/Uncanny valley
7A shader is the piece of software the graphics processing unit performs to determine the color of pixels

2.4. EVOLUTIONARY ALGORITHMS 15

generate a variety of assets. However, as stated earlier, assets or artifacts generated by a

PCG system can be many di↵erent things. Similar to issues with textures repeating patterns,

patterns of textual output have to be obfuscated enough that the player cannot discern which

parts are generated and which are authored by designers. When using PCG systems to generate

content, the amount of content is proportional to the design space and the granularity of the

parameters used in the generation. However, while using floating-point numbers versus integers

to define, for instance, a color value would allow the PCG system to generate almost infinitely

more colors, the actual generated artifacts might still look incredibly similar8. With that in

mind, creating a PCG system means defining an obfuscated design task with parameters that

can create meaningful variations. One strength of PCG systems is that if used in a way where

the asset is only encountered once, when one particular asset is bad or surprising, with enough

content, it does not take away from the whole experience.

With the explosion of machine learning (ML) research in the past decade, it is no surprise

that PCG and ML have been explored and coined as PCGML [206]. An area that has also been

explored as part of Khalifa’s dissertation on general procedural level generation [111]. Similarly,

generative adversarial networks (GANs) [49] have become synonymous with machine learning-

based PCG. One example uses GANs for PCG in puzzle games [83] adjusting the generation

through parameterized condition vectors.

One way to get around the issue of less optimal content is to search the design space

using search-based PCG algorithms [219, 218]. Instead of the PCG system generating content

directly, search-based approaches (such as evolutionary algorithms) search the content space

using evaluation functions to guide the search toward good solutions e↵ectively.

2.4 Evolutionary Algorithms

Evolutionary algorithms (EA) [59] are algorithms that search a solution space using an

approach derived from biological natural selection. EA optimizes a population of individuals

by allowing those who score highest in a fitness evaluation to repopulate the next generation and

remove the rest. Each individual contains genetic material known as the genotype9 which can be

used to create the phenotype10 that is evaluated with a fitness function. The individuals with the

highest fitness scores are then selected, and their genotype is either copied, mutated, or crossed

with other individuals in the population to create new individuals. Mutation and crossover

create new individuals that retain elements of the previous best individuals. Sometimes that

leads to individuals who perform poorly and sometimes individuals that perform better than

previous generations. By repeating the process of removing individuals who perform poorly

and generating o↵spring based on the best performing individuals, EA is incredibly e↵ective at

displayed on a screen https://en.wikipedia.org/wiki/Shader
8This leads to the “10000 bowls of oatmeal” problem https://galaxykate0.tumblr.com/post/139774965871/so-

you-want-to-build-a-generator
9The genetic material of the individuals which will be used to create o↵spring.

10The instructions, agent behavior or artifact that will be evaluated.

16 CHAPTER 2. BACKGROUND

searching a space of possibilities. With each generation of the population, the average fitness

improves, and for tasks that can be solved, the evolution usually stops when a “good enough”

solution is found. One pitfall in task evaluation is that some tasks may have local optima in

their solution space, meaning sub-optimal solutions exist (such as taking the right exit in a

roundabout but going around it multiple times). To avoid this and find the global solution

optima, the mutations have to be large enough that a single individual can escape the local

optimum and find a better search space outside the local optimum.

2.4.1 Interactive Evolution

Interactive evolution [185] covers implementations of evolutionary algorithms with the fit-

ness function fully or partially replaced by an outside agent (usually a human being), selecting

the individuals that are used for populating the next generation. The most common way im-

plementation can be seen in systems like Picbreeder11 [179] or Endless Forms12 [32], where a

user is presented with a side-by-side list of artifacts to choose from. The user then selects

one or more artifacts for the algorithm to seed the repopulating of the next generation. Inter-

active evolution implementations sometimes run a few generations internally or apply quality

diversity algorithms [159] in order to get appropriate amounts of change between displayed

generations. Getting appropriate amounts of change is done to avoid user fatigue13, resulting

in users abandoning the process too quickly. In systems like Picbreeder and Endless Forms,

the initial populations displayed will feature artifacts selected and created by other users. Pre-

selection continues the overarching design exploration of the search space across multiple user

sessions. Similar to how machine learning has entered the procedural content generation space

with PCGML [206] and GANs [83] interactive evolution is being combined with machine learn-

ing. One example is combining interactive evolution with latent space exploration of generative

adversarial networks (GANs) [178].

2.5 Computational Creativity

In 2012 Colton and Wiggins [36] introduced their definition of the field of computational

creativity (CC). Stating that it is the philosophy, science, and engineering of computational

systems which, by taking on particular responsibilities, exhibit behaviors that unbiased observers

would deem to be creative. The thing that defines the field is its interest in the processes involved

in making systems appear creative, not just the output of the systems and how creative they

might be. One example of this focus can be found in the earlier computational creativity theory

(CCT) by Colton et al. [35]. CCT was an attempt to describe the assumptions and theories of

software development on how creative acts can be implemented.

11See https://picbreeder.org/
12See http://endlessforms.com/
13User fatigue is a common issue in interactive evolution, where users become bored or frustrated with the

process.

2.5. COMPUTATIONAL CREATIVITY 17

Notable examples of CC research include projects like “The Painting Fool” [34, 37], and

Cook’s dissertation on cooperative co-evolution [41], that included the automated game designer

ANGELINA [39, 40].

However, computational creativity research has been around for decades, and early work

was inspired by Margaret Boden’s work on defining creativity [16, 15, 13, 14]. Boden was also

inspired by early work in AI-based generative systems. Boden describes the creative mind and

three types of creativity [16], but lends from AI research [14] to provide examples that explain

some of her points. Through her three types of creativity, Boden compared human creativity to

computer creativity and posed the question: “can computers truly be creative?” While Boden

was primarily interested in what made computers appear creative, Ritchie [166] presented ideas

for attributing creativity to computer programs.

Boden notes that there are two types of creative ideas [13] p-creative and h-creative ideas.

P-creative ideas are new to the person (or system) who makes them. H-creative ideas are new

historically, and no one else has had them before. While h-creative ideas are the most valuable

on a larger scale to the person making them, they are no di↵erent from p-creative ideas.

Boden describes the three types of creativity a person (or system) can have: combinatorial,

exploratory, and transformational. The three types of creativity form a sort of hierarchy.

Combinatorial refers to combining known ideas and concepts to form new ideas. Exploratory

refers to ideas formed by exploring conceptual spaces, coming up with new ideas by applying

a known style of thinking, and exploring the possibility space through it. Transformational

refers to transforming the conceptual space in some way that allows new combinations that

were previously impossible to occur, forming previously unthinkable ideas. Transformational

creativity can include exploratory and combinatorial creativity as well. Exploratory creativity

can include combinatorial creativity. Combinatorial creativity, however, combines other known

concepts and ideas and none of the other forms of creativity.

While Boden’s work is not a part of CC research, her ideas have been explored and discussed

in the context of CC [147]. Understandably, Boden’s dimensions of creativity [15] and types of

creativity [16] are interesting to CC research, as both combinatorial and exploratory creativity

play into strengths of computer programs. As stated earlier, CC research is interested in the

creative process itself, and pioneers like Ritchie [166] have put forward ideas for evaluating that

process in computer programs. Colton discussed the creativity versus the perceived creativity

of computational systems [33]. Jordanous dedicated an entire dissertation to the subject of

evaluating computational creativity [99] and Lamb et al. performed an interdisciplinary study

of computational creativity evaluation [117].

The field has grown a great deal over the past decade [65] following the growth in machine

learning, but also heavily featuring evolutionary computation techniques. Computational cre-

ativity research takes on many forms, but one area that combines well with it is mixed-initiative

research, where humans and machines share the “burden” of creativity. The primary confer-

ence on computational creativity, the International Conference on Computational Creativity

18 CHAPTER 2. BACKGROUND

(ICCC)14, has also explicitly called for co-creative systems, in which two or more agents work to-

gether (e.g., several AI systems collaborating or AI and human collaboration). The conference

also showcases an “exhibition of creative artifacts created using computational means, either

primarily or as support for a human creator,” further indicating this mixed creative ownership

idea. Even early on, Boden recognized the potential of this collaboration, exemplified by this

quote from the opening introduction for her book [16].

The answer to our opening question, then, is that there are many intriguing relations between

creativity and computers. Computers can come up with new ideas, and help people to do so.

Both their failures and their successes help us think more clearly about our own creative powers.

Among other areas, computational creativity research has spilled into research for games,

where Liapis et al. [127] describe games as the “killer app” for computational creativity research.

They argue that game development encompasses a large variety of artistic and creative tasks

and, as such, provides the perfect platform for computational creativity research. Video games’

subjective and complex nature puts an even stronger focus on CC research into co-creative and

collaborative systems.

2.6 Mixed-Initiative Tools

Figure 2.3: The spectrum of agency and initiative distribution in creative interfaces [55]

In the late 90s, Novick and Sutton asked the question “What is Mixed-Initiative Inter-

action?” [144] distinguishing between interactions with pure initiative and mixed-initiative,

building on research from the past decade [132]. Mixed-initiative interaction means two or

more parties take turns leading the “conversation” or process. This type of exchange is com-

mon when people work together to solve various tasks. Mixed-initiative tools thus strive to

allow two or more agents, where at least one is a computer system, taking turns to drive the

process forward. However, Mixed-initiative agency is a scale (see Figure 2.3), ranging between

purely user initiative and purely system “initiative” (after an initial prompt). Any tool where

the user and system alternate driving the process forward exhibits mixed-initiative interaction.

The definition of tool influences which systems are Mixed-Initiative Tools and the amount of

initiative taken by system and user may vary depending on the task and implementation. In

14See https://computationalcreativity.net/iccc21/

2.6. MIXED-INITIATIVE TOOLS 19

[233] Yannakakis et al. argue that mixed-initiative tools can foster a beneficial co-creativity,

by alternating initiative in a creative process, both user and system take part in the creation

and continually “inspire” each other15.

2.6.1 Mixed-Initiative Tools for Game Development

Creative mixed-initiative tools have been researched in various media. In 2014 Liapis et al.

[127] pointed out that games are a medium filled with opportunities for computational creativ-

ity and building mixed-initiative co-creativity tools for game development [233] have several

attractive benefits. These benefits include wider exploration of design spaces, ideation, and

improved iteration. Several of these tools have been created, such as Tanagra [193], Ropossom

[180], Sentient Sketchbook [128, 233] all focused on level design with di↵erent levels of game

specificity. Where Ropossum is targeting the game “Cut the Rope”16 specifically, Tanagra

targets the infinite runner genre, with a focus on the rhythm the player has to tap. Sentient

Sketchbook assists in designing 2D-level sketches that it can generate for multiple di↵erent game

types. Level and puzzle design has had the most attention in this field, combining various PCG

forms with di↵erent user interaction methods, like interactive evolution, goal specification, and

other forms of constraint setting.

Projects like Danesh [45] provide a sort of mixed-initiative interface for the meta-design of

PCG systems. Danesh analyses the output of a system and allows the user to define constraints

or criteria they want the output to meet. Danesh then adjusts the parameters of the PCG

system, attempting to meet the constraints while providing visual feedback about the progress.

While the approach could be used on any PCG system, the demonstrations, like much of the

mixed-initiative research on games, are mainly based on optimizing level generators.

Newer projects like Lode Encoder [10], or Baba is Y’all[27] combine game simulators and

mixed-initiative level generation into online tools, where you can both design and playtest your

levels. These tools also allow users to play and redesign each other’s levels, making them

platforms for co-creative development.

While some projects include other aspects of game design than pure level generation, the

tools are still heavily centered around generating levels like SuSketch [136] a sort of spiritual

successor to Sentient Sketchbook. SuSketch uses machine learning agents that play a multi-

player first-person shooter level to generate gameplay predictions and suggest alternative level

designs. In SuSketch, the collaboration between human and machine fills multiple roles. On

one side, the AI agents are used as playtesters in a game simulation, and on the other, the

application provides design suggestions and analysis similar to a game designer.

It is obviously hard to separate game mechanics like jumping and movement from level

design, which can be seen in projects like Mechanic Maker [171], which builds on Morai Maker

[78] (a mixed-initiative AI-driven level editor), to automatically co-create game mechanics for

platforming levels. Similarly, Cicero [133] is built as a mixed-initiative interface for game design,

15A curated overview of the breadth of tools available on http://mici.codingconduct.cc
16https://www.cuttherope.net

20 CHAPTER 2. BACKGROUND

based on GVGAI [152, 113, 150, 151] and VGDL [125, 175, 176]. Cicero builds the game

using VGDL game descriptions and assists both in designing game and levels. To enhance the

design experience, Cicero also provides statistics and context to the otherwise purely text-based

representations in GVGAI or VGDL.

Expanding AI assistance to more areas of game design is one of the goals for future mixed-

initiative research that is often argued and is also supported by results indicating that assisting

designers is a worthwhile cause [134].

Chapter 3

Designing Game Feel

In cases of major discrepancy it’s always reality that’s got it wrong. This was the gist of the

notice. It said “The Guide is definitive. Reality is frequently inaccurate.”1

Related Papers

Pichlmair and Johansen, Designing game feel. A survey.

This chapter addresses the research question “what is game feel design?” (RQ1)

In the strive to support the game feel design process through tools, there is a need to

establish a language around the task and determining the state of the art within the design

area. This Chapter coalesces the nebulous term game feel into three design domains and their

purpose. Establishing and presenting a foundation for discussing and analysing aspects of game

design through a collection of state of the art design elements within game feel design.

To answer what game feel design is (RQ1) we conducted a survey of the relatively new term

game feel. Exploring its roots, stretching back far beyond its origin in the late 2000s [215, 214],

into several related research fields beyond games and game design. Collecting design knowledge

from from practitioners as well as academia and relating it to the act of designing game feel.

1From “The Hitchhikers Guide to the Galaxy” by Douglas Adams, 1979

21

22 CHAPTER 3. DESIGNING GAME FEEL

3.1 What is Game Feel?

We began [155] with the definitions put forth in Swink’s book Game Feel: A designers guide

to virtual sensation [214], and from those, we explored and expanded the subject with refer-

ences from several fields beyond game design, such as psychology, human–computer interaction

and other aspects of design research. Swink defines “game feel” as a specific type of embodied

experience reachable when the Venn diagram of real-time interaction, spacial simulation and

what he calls “polish” is su�ciently well designed that the player experiences the actions of the

player character as their own actions. Swink expands his definition, noting that great feeling

games convey five kinds of experiences:

• The aesthetic sensation of control

• The pleasure of learning, practising and mastering a skill

• Extension of the senses

• Extension of identity

• Interaction with a unique physical reality within the game

Swink’s “Game Feel” is a specific form of game feel that designers may strive to achieve

in certain situations and is also inherently defined as “good” game feel. However, game feel

design is not limited to games that do not contain real-time interaction or spacial simulation.

For instance, Doug Wilson [230] points this out and distinguishes between “Game Feel” and

“game feel,” with the former focusing on what makes games feel good in the setting described

by Swink, and the latter being any feeling a game communicates. The vocabulary for game

feel arises both from how the player perceives it and from the designer’s intentions. Journalist

and game designer Tim Rogers coined the term “friction” in an exhaustive article [168] on how

games feel from a player perspective. Interestingly, when Anthropy & Clark [4] defined their

“game design vocabulary,” they approach friction from the designer’s perspective and call it

designing the “resistance.” Resistance then defines the amount of friction experienced by the

player as the feeling of inertia working against the player in the game. Game feel can also

be linked with the reflections of practitioners to aesthetic theories of games [58]. Larsen [118]

even attempts to define an “aesthetics of action,” building on knowledge presented by Swink

[214] and Nijman [140] to determine which components of a game contribute to “thrilling

experiences.” Lastly, Yang [232] expands game feel to include metaphorical aspects of game

objects and their connection to the player. By building on queer theory, he connects the feel

of games to political aspects to communicate the diversity of the gameplay experience with

diverse players. These expansions all provide game developers with a richer set of design tools

and lenses [177] with which to view and design how a game feels.

In our survey, we concern ourselves mainly with the haptic and visual aspects of game feel,

aware that other aspects such as narrative content, sound, music, and art can influence how a

game feels. We provide points of entry for other aspects, where they exist, such as designing

3.2. FROM FLOW TO FEEL 23

the feel of the story of a game [229]. However, we mainly focus on the moment-to-moment

interactivity [115, 188, 215], microinteractions [170], and the interactions with the core loops

[184] and their design. More broadly than Swink’s precise but narrow definition of game feel,

we looked at game feel as the a↵ective aspect of real-time interactivity.

3.2 From Flow to Feel

We first looked at how the physicality of interactivity has been studied by presenting an

overview of the history, context and state of the art of the understanding of game feel and

how to design it. We based this on research in the field and publications by practitioners,

capturing both conceptual and practical knowledge. Years before Swink wrote “Game Feel”

in 2009, research on the connection between emotions and gameplay was often linked to flow

theory [50], which presented the results of a global research project about experiences that are

“so gratifying that people are willing to do it for its own sake, with little concern for what they

will get out of it, even when it is di�cult or dangerous.” The study found tasks that elicit flow

fulfill eight criteria:

1. a task that can be completed;

2. the ability to concentrate on the task;

3. that concentration is possible because the task has clear goals;

4. that concentration is possible because the task provides immediate feedback;

5. the ability to exercise a sense of control over actions;

6. a deep but e↵ortless involvement that removes awareness of the frustrations of everyday

life;

7. concern for self disappears, but sense of self emerges stronger afterwards; and

8. the sense of the duration of time is altered.

Sweetser and Wyeth [213] connected flow theory to games, and Juul [103] criticizes the

theory’s relevance when describing enjoyable challenges in games. Ciccoricoo [30] discusses

flow in relation to Mirror’s Edge [56], contrasting the game’s fluidity of movement with the

feminist concept of fluidity. Chen [28] famously based not only his graduation thesis but also

three successful games released by his studio, That Game Company, on his understanding of

the concept.

24 CHAPTER 3. DESIGNING GAME FEEL

3.3 Juice the Feel Amplifier

We argue that of the eight elements that allow for a flow experience [50], game feel is a↵ected

by the clarity of the goals (3.), how the feedback is provided (4.) and the correlation between

input and action (5.). Game feel is focused on the role of interactivity in the process rather than

the dynamics of immersion from flow theory. A concept that often appears when discussing the

interactivity and its intensity is “juice.” Juice amplifies the interactivity by providing excessive

amounts of feedback in relation to player input [104]. We note that the goal of juice is to

make actions feel significant. It is superfluous from a strictly mechanical perspective but turns

interacting with the system into a more pleasurable experience. However, there is an adequacy

to juice [105], in that adding too many e↵ects on the screen can make it di�cult to learn which

aspects of interactivity have mechanical importance [57] while adding too few can make the

game feel dull. However, because games are a diverse medium, games that are almost purely

made of juice exist; they are referred to as “toys” or “autotelic experiences” [183]. These toys

present playful experiences based on the feedback amplified by juice.

The overarching goal of applying juiciness is to enhance the feedback when interacting with

game objects. In the hope of determining the correct amount of juice in video games, Hicks

et al. [84] presented a framework for analyzing juiciness in games, building on Juul’s [104,

102], Schell’s [177] and Deterding’s [54] work on juice in video games. However, juice can also

exist as a spectacle for the audience watching the game, in addition to the player’s experience.

Rogers [168] hints at that, explaining that once the player knows the mechanics intricately,

they can ignore the little juicy details that initially draw them in and provides feedback about

the interaction initially. While this might seem to make the feedback irrelevant later on, Gage

[69] describes how having a “readable” game can draw people in. Gage notes that if a game is

appealing at multiple levels of “subway legibility,” the audience—whether invited or a casual

passerby—can get a deeper understanding of the game as they focus in on more and more

details. In the era of streaming services like Twitch 2, developers have a higher and higher

incentive to appeal to spectators, not just within e-sports [25] where the spectator and player

interfaces have diverged to accommodate commentators, spectators and players 3.

Coming back to juice, Hunicke [88] says, “juiciness can be applied to abstract forms and

elements, and it is a way of embodying arbitrarily defined objects and giving them some alive-

ness, some qua, some thing, some tenderness.” This is strikingly similar to the term ”polishing”

used by Swink [214], Larsen [118] and Fullerton [68], who describes the act of polishing as “the

impression of physicality created by layering of reactive motion, proactive motion, sounds, and

e↵ects, and the synergy between those layers.” Fullerton views polish as giving physicality to

inanimate objects to render them more tangible, similar to Hunicke’s reasoning for juiciness.

In game development practice, many things use the term “polish,” like fixing timings in voice

2https://twitch.tv/
3Examples are MOBA games like DOTA2 https://www.dota2.com or League of Legends

https://www.leagueoflegends.com, RTS games like StarCraft https://starcraft2.com, and FPS games like

Counter-Strike https://blog.counter-strike.net

3.4. THREE DESIGN DOMAINS 25

cues or fixing bugs in the code [201]. Juiciness and polish are linked in the sense that all

juicy elements are polished at some point, but polish is seen mostly as an aesthetic task that

stops short of changing the basic rules of the game, the narrative or the core loops. While the

intentionality behind Hunicke’s and Fullerton’s comments is apparent, the comments are not

very descriptive. However, Lisa Brown’s assertion that “you’re not juicing your game – you’re

actually picking a feeling that your game should communicate and juicing that feeling” [18],

makes the intent of juicing more clear.

3.4 Three Design Domains

After looking at the theory, we turned to game feel design elements in practice, gathering

blogposts, conference talks and online discussions about various design elements. Some game

designers discussed approaches to game feel in general, in podcasts [208, 209, 210, 211] and

video analysis [19, 20, 31]. We also gathered material breaking down specific aspects of game

feel, and we began forming an overview4 of the various design elements in game feel design (see

Table. 3.2).

We broke down the design elements into five categories: Movement and Actions, Event

Signification, Time Manipulation, Persistence and Scene Framing. Each category is subdivided

into several di↵erent established concepts, and the references where they are explained or

more info is available. An example is coyote time, which is named after the coyote in the

Road Runner cartoons, as it often finds itself suspended in mid-air for a period of time after

running o↵ of a cli↵. Coyote time provides the player a grace period after they move o↵ a

platform or ledge where they can still jump. The time is usually somewhere around 100–

200 ms (though some designers define it through pixel distance [172] or through a framecount

[160]), to o↵set the average human reaction time. In addition to these categories, we also

broke down game feel design into three design domains and their purpose (see Table. 3.1).

These three domains are Physicality, which is the foundation Swink’s [214] entire Game Feel

4We do not claim this is a complete overview, but it serves nicely as an initial overview.

Design Domain Physicality Amplification Support

Domain Description The physical simulation.
Intensification of

experience.
Enabling the player.

Polishing Task Tuning Juicing Streamlining

Task Description

Setting parameters to

specify the behaviour of

objects.

Adding feedback to

emphasise, clarify and

amplify.

Acting on player intent by

interpreting the input in

context of the gameplay

situation.

Table 3.1: Game Feel Design Domains and their associated Polishing Tasks

26 CHAPTER 3. DESIGNING GAME FEEL

concept rests upon. It is the design of the experienced physicality of the system. The second

domain is Amplification, which serves two purposes: it empowers the player and communicates

the importance of events. This is what Jonasson and Purho show in their “Juice it or Lose

it” talk [98]. The third domain is Support; this domain covers techniques for assisting the

player in performing their intended actions. This domain can lean towards accessibility [70]

and the minute details Doucent discusses in his blog post “Oil it or Spoil it” [57] (a response to

“Juice it or Lose it”). In his book, Swink [214] states that the real-time control in a simulated

space needs to be amplified by polish. We argue that each of these three design domains has

its own polishing task. We call these Tuning the Physicality, Juicing the Amplification and

Streamlining the Support. In Table. 3.2, we have noted which design domains each design

element belongs to. Our point here is to show how every task and domain is significant and

important to various aspects of a game and how they all influence the feel of the game.

We also note that our survey, while extensive, is a launching point for several deep dives

into certain aspects, design elements and design domains.

3.5 Discussion and Future Work

In this survey, we drew together every angle we could find related to game feel design. We

had some initial ideas about just how extensive the research on this topic was. However, we also

knew it was scattered in many di↵erent fields and had many di↵erent names depending on the

perspective of those fields. Games are a medium that pulls together many di↵erent disciplines,

and only partial segments of game feel design are explored in each of those disciplines. With

this paper, we highlight knowledge that could easily be missed when thinking about game feel

design and its many origins (see Figure 3.1).

As alluded to earlier, this survey is meant to serve as a general introduction to the current

state of the art within game feel design. By defining three design domains and identifying

common design elements, the answer to “what is game feel design” (RQ1) emerges as tuning

the physicality, juicing the amplifications and streamlining the support. These three polishing

tasks can be applied in order to push the game experience as close to the design vision as

possible.

Some of the design elements we identified in this survey may overlap. Freeze frames and

bullet time (see Table. 3.2) are good examples; both fall under time manipulation, and although

they both o↵er support, they each have di↵erent a↵ordances [142] and are useful in di↵erent

circumstances. Future research into these types of overlaps could reveal more design elements

or clarify their use further.

We intentionally moved quickly past certain aspects that a↵ect the overall feelings perceived

by the player as they play the game, such as narrative, setting, aesthetics, rules, music and

sound e↵ects. Future research into these aspects may o↵er additional design elements that fall

under the design domains of physicality, amplification and support. Additionally, some of these

aspects contain their own design domains and polishing tasks that are worth pursuing in future

3.5. DISCUSSION AND FUTURE WORK 27

research. For example rules might fall under the design domain of game mechanics, in charge

of making the systems interactive and with the polishing task “Balancing” attempting to keep

the interactions between dynamic systems from degenerating.

Figure 3.1: A slide from our presentation at the Conference on Games 2021, showing the many

topics and contexts from which we collected data used in our paper [155].

With the “what” (RQ1) addressed and an understanding of game feel design established,

two things become clear. First, the feel of a game is not hinged on a single design element,

but rather on a collection of elements influencing the moment-to-moment interaction at any

given time. Second, while some design elements of game feel design can be applied relatively

superficially without impacting game logic (like screen shake and one-shot particle e↵ects),

many design elements are deeply entangled with the physics and core logic of games. The

more entangled a design element is, the harder it becomes to support that element through

generalized tools. Instead these aspects need specialized tools to deal with the exact aspect in

isolation, or customized tools for the specific game. This applies to design elements like basic

movement, coyote time and assisted aiming. Aspects such as these are deeply dependent on

the game goals and mechanics: is the game 2D or 3D? is the gameworld continuous or turn-

/grid-based? does the dangerous elements (in the case of coyote time) move in one or multiple

dimensions?

This leads to an insight: the more generalised the game feel design support needs to be, the

more it will have to rely on relatively superficial elements. While that is not ideal, the elements

that cover most ground in all three game feel design domains are related to event signification,

and these are almost all relatively superficial aspects relying heavily on audio-visual feedback.

The event signification elements are central to communicating both the state and events more

28 CHAPTER 3. DESIGNING GAME FEEL

clearly to the player, as well as signifying relationships and repercussions of certain events.

They are at the core of the amplification domain allowing the game to communicate information

“between the line”, and part of what gives the game some aliveness, some qua, some thing, some

tenderness [88]. As such while tuning the physicality and streamlining the support, provides

the feel of the material properties and friction of the game. The amplification provides the

language the game uses to convey both the material and immaterial properties the game might

have. In the following chapters the emphasis rests on (but not limited to) design elements

related to event signification and it remains as future work to create and research tools for the

remaining aspects of game feel design.

3.5. DISCUSSION AND FUTURE WORK 29

Design Element

P
h
y
si
ca

li
ty

A
m
p
li
fi
ca

ti
o
n

S
u
p
p
o
rt

Key References

Movement and Actions

Basic Movement • [51, 143, 156, 62, 157, 38, 205]

Gravity • [62, 122, 2]

Terminal Velocity • [62]

Coyote Time • [173, 224]

Invincibility Frames • [189, 137, 187]

Corner Correction • [72, 57]

Collision Shapes • • [231]

Button Caching • [62]

Spring-locked Modes • [162, 97, 4]

Assisted Aiming • [57, 108, 236]

Event Signification

Screen Shake • • • [140, 98, 149, 186]

Knock-back & Recoil • • [140, 6]

One-shot Particle E↵ects • • [164, 91, 120, 130, 98, 167, 222]

Cooldown Visualisation • [47, 77, 114, 5]

Ragdoll Physics • • • [92, 214]

Colour Flashing • [153, 106, 140]

Impact Markers • • [199, 196]

Hit Stop • • [52, 90, 196, 20]

Audio Feedback • • • [9, 66, 138]

Haptic Feedback • • • [146, 196]

Time Manipulation

Freeze Frames • • [196]

Slow Motion • • [196]

Bullet Time • • [169, 158]

Instant Replays • • [196]

Persistence

Trails • [164, 9, 145]

Decals & Debris • [11, 9]

Follow-Through • [217]

Fluid Interfaces • • [107, 73, 26]

Idle Animations • [3, 48, 217]

Scene Framing

Highlighting • [110, 109, 135]

Dynamic Camera • • [29, 80, 81, 82, 23, 234, 153]

Table 3.2: Game feel design elements overview.

Chapter 4

Supporting Game Feel Design

We are stuck with technology when what we really want is just stu↵ that works.1

Related Papers

Johansen, Pichlmair, and Risi, Video game description language environment for Unity

machine learning agents

Johansen, Pichlmair, and Risi, Squeezer - A tool for designing juicy e↵ects

Johansen, Pichlmair, and Risi, Squeezer - A mixed-initiative tool for designing juice e↵ects

Johansen and Cook, Challenges in generating juice e↵ects for automatically designed games

This chapter describes various e↵orts carried out during this thesis in an attempt to answer

“how can game feel design support get implemented in existing workflows?” (RQ2)

Before asking how support can be implemented in existing workflows, it is interesting to

reflect on where this need is coming from. Chapter 5 describes standard practices for designing

game feel today. However, it is interesting to think about the lack of inherent game feel design

support in many frameworks and game engines before getting to that. While some engines

provide fundamental support for a few core e↵ects (often play sound and make simple particles)

or provide general ways of implementing it (e.g., through code), developers often use external or

custom code and tools. Big engines like Unity provide several di↵erent systems to make juice

e↵ects, but they are often disconnected and require expert knowledge to wield proficiently.

Game feel design is an essential part of designing a game. However, prototyping and game

generation frameworks often lack support for making the moment-to-moment interaction feel

just right. Getting this part of the interaction right is something that experienced designers

will often focus on early in the development process—allowing it to become a foundation to

build everything else around. Often called the core loop or the main interactions, they are

the tiny interactions the player repeatedly does throughout the game. These interactions need

1From “The Salmon of Doubt” by Douglas Adams, 2002

30

4.1. GAME DESCRIPTION FRAMEWORKS 31

to elicit proper responses aligned with the gameplay to provide the player with the intended

experience. If a game has a lot of mouse clicking (e.g., a point-and-click adventure or a digital

card game), the designer has to make sure that clicking provides a satisfying response. However,

most game creation systems require both knowledge and proficiency before it is even possible

to experiment with di↵erent response designs.

This chapter outlines experimentation with adding support for game feel design into three

di↵erent workflows. The experiments were stepping stones in a practice-based design research

sense, each informing the next. The “program” or frame of reference for the experiments is

defined by the goal of discovering how game feel design support can get implemented in existing

workflows (RQ2). The program and di↵erent research directions explored in this chapter have

been the driving force behind the research in this Ph.D. project. The experiments in the first

section are defined by the question, “how can game description languages become better at

supporting game feel design?” The second section takes ideas from the design experiments

with the video game description language (VGDL). It is based on the underlying question,

“how can we leverage game description structures to build support tools for game feel design?”

The third section builds on the second through the question, “how can tools for game feel

design get implemented in an automated game design system?”

Each section discusses the unique challenges of adding game feel design support within each

existing workflow. The entire chapter is wrapped up with a discussion of how each experi-

ment contributed to answering how game feel design support can get implemented in existing

workflows (RQ2).

4.1 Game Description Frameworks

The question “how can game description languages become better at supporting game feel

design?” Formed after surveying existing mixed-initiative and generative game tools early in

the project. The survey was initially performed to discover how much game feel design had been

explored through tools. While many projects o↵ered new and insightful ways of interacting and

supporting game designers [55], the focus often revolved around game development aspects such

as level design, game mechanics (rules and goals of the game), and sound or music generation.

The design of aesthetics and perception of the game remained largely unexplored within this

branch of research.

The overall focus of this Ph.D. project is design exploration and, in particular, prototyping

within the subject of game feel design. Two projects inspired the first experimental direction.

The first one being the Video Game Description Language (VGDL) [175, 125, 152, 113, 150,

151] a framework for generating and playing the described games. The concise nature of VGDL

descriptions makes them easy to understand, and their ability to generate relatively complex

games makes them an interesting starting point for design research. The second project is the

sound e↵ect tool SFXR [154] for its generative properties allowing novice game designers or

game jammers with limited time to create sound e↵ects there are “good enough” quickly. How

32 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

SXFR influenced the development is described more in the next section on building generalized

tools for a game engine, as well as in Chapter 5 concerning sequence generation.

Combining the idea of design exploration with VGDL to support game feel design led to

the question, “how can game description languages become better at supporting game feel de-

sign?” The experiments in this section are based on a hypothesis that can be summarized as:

It is possible to describe and execute event-based feedback (event signification), similarly to how

VGDL describes and executes event-based game logic.2

Answering how game feel design support can be implemented (RQ2) in game description

languages (GDLs) is done through two distinct avenues. The first is based on transcribing e↵ect

descriptions in industry talks such as “Juice it or lose it” [98] and “The Art of Screenshake”

[140], to derive an initial event signification ontology. The second part was the experiments

to determine the viability of combining event-based feedback with a GDL. VGDL was selected

as the primary platform for the second part of the exploration based on prior knowledge and

source code available at the time.

It bears mentioning here that VGDL is just one among many game description languages

that could have been selected for this project. Frameworks like Puzzlescript3 by Stephen Lavelle

or Ludi/Ludii [22, 21, 200] could also have formed the basis of this exploration. However,

Puzzlescript descriptions become verbose very quickly4. While Ludii has later been opened

to the public, it was not available when these frameworks were explored. Ludii also has a

strong focus on board games, and while the platform might benefit from adding more game feel

elements, this project lends itself better to the arcade-style action games of VGDL.

4.1.1 Video Game Description Language

The Video Game Description Language (VGDL) described by parts of the game AI research

community [125], implemented initially in Python by Tom Schaul [175, 176] and later adapted

to Java for the general video game AI competition (GVGAI) by Perez-Liebana et al. [152, 113,

150, 151].

2It was later extended to include generation of feedback by taking inspiration from SFXR.
3https://puzzlescipt.net
4A fact the author experienced by implementing the game “BABA IS YOU” in Puzzlescript

https://pyjamads.itch.io/baba-is-you-demake/ while considering the language.

4.1. GAME DESCRIPTION FRAMEWORKS 33

VGDL was designed to be part of the grand challenge of general video game AI [125], and

it was intended to be a stepping stone toward a so-called general artificial intelligence. VGDL

is based on real-time interaction, and its goal is to be able to specify 2D arcade games, such as

those found on the Atari 2600.5 VGDL specifications are separated into five sections6:

• Sprite Set

• Interaction Set

• Termination Set

• Level Mapping

• Levels

Figure 4.1 shows an example of a VGDL game specification. Sprites set defines the objects

used by VGDL, including their behavior and properties. Interaction set defines what happens

when sprites overlap. Termination set determine when the game is over. Level mapping con-

nects the sprite names to ASCII characters. Last, levels in VGDL are defined in separate files.

The game does not automatically serve the next level when a level ends. Instead, each level

is treated as an individual game, passing the result to the overarching system. While VGDL

was created for AI testing, it allows human players to play the games, a feature used mainly

for familiarization and testing game rules.

To condense the descriptions and simplify input handling, VGDL uses an “ontology” of

predefined classes that define sprite behavior types, interaction types (also called “e↵ects”),

and termination types. Sprite behavior types handle input and movement for objects. It is

important to note that the player input classes are meant to handle only one player character

on screen at a time. Interaction and termination types are similarly based on predefined actions

or conditions. Predefined actions and conditions make the descriptions very concise, at the cost

of expressiveness. It is possible to adjust the behavior of sprites, interactions, and terminations

by adding parameters in the specification, but they still rely on predefined logic.

VGDL loads a set of rules and instantiates a level from a separate file. Separate files for

rules and levels make sense for game AI testing, as the system can load levels in any order or use

di↵erent rules for the same level. However, it also means that creating an overarching experience

across multiple levels or screens is not possible with the current VGDL implementations. Any

sense of progression beyond collecting wins, losses, or scores has to be controlled by another

system.

The GVGAI version of VGDL does allow sound e↵ects to be played by some interactions,

which is a curiosity, as the sound feedback is imperceptible to the AI agents. In addition to

sounds, the GVGAI framework also allows small animations and has a system for automatic tile

5The Atari 2600 games have also been used for machine learning in the Arcade Learning Environment (ALE)

[8].
6In VGDL, levels are defined in files separate from the game description.

34 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

BasicGame

Spr i t eS e t

ho l e > Immovable c o l o r=DARKBLUE

avatar > MovingAvatar

box > Pass ive

LevelMapping

0 > ho le

1 > box

In t e r a c t i o nS e t

avatar wa l l > stepBack #stop at wa l l

box avatar > bounceForward #push box

box wal l > undoAll #wal l s tops box

box box > undoAll #box stops box

box ho le > k i l l S p r i t e #dest roy box

TerminationSet

Spr i teCounter stype=box l im i t=0 win=True

Figure 4.1: Game description for a simple Sokoban game in VGDL. Objects defined in the

SpriteSet can be used to define interactions, terminations, and level mapping. The VGDL

E↵ects such as stepBack have notes like “#stop at wall” to explain what they do when the two

object types collide. The game is won by pushing boxes into holes until no boxes are left.

wwwwwwwwwwwww

w w w

w 1 w

w A 1 w 0ww

www w1 wwwww

w w 0 w

w 1 ww

w ww

wwwwwwwwwwwww

Figure 4.2: VGDL Sokoban level description. ’A’ denotes the Avatar (controlled by player),

’w’ denotes walls, ’1’ denotes boxes and ’0’ denotes holes.

4.1. GAME DESCRIPTION FRAMEWORKS 35

Figure 4.3: Visualizations of VGDL Sokoban: left PyVGDL, right GVGAI

placement. With all of the above in mind, VGDL could be a fantastic prototyping tool for game

designers because of its very condensed and human-readable descriptions. However, it would

need modifications to allow proper level progression and potentially data persistence between

levels. Additionally, adding more game feel elements like better player controllers and visual

feedback would allow the games to communicate actions through event signification better.

4.1.2 Extending VGDL with Game Feel Elements

In order to answer how game feel design can be supported (RQ2) through GDLs, we first

identify what type of extensions would be interesting to make. Based on the earlier hypothesis,

an unpublished experiment was defined. The hypothesis states that it is possible to describe

game feel elements for event signification like VGDL describes interaction e↵ects. This exper-

iment required two steps. The first was the transcription of every event and accompanying

e↵ect demonstrated in the two talks “Juice it or lose it” [98] and “The Art of Screenshake”

[140]. The second step was to explore how these e↵ects could be described and parameterized

similar to other interactions in VGDL.

The transcription of the two talks provided around 10-15 types of e↵ects, ranging from

screenshake and particle explosions to color changes and sounds. In Table 3.2, most of them

belong under event signification. Although the transcriptions have not been published or used

directly, they did contribute a lot to the list of game feel design elements seen in Table 3.2 in

Chapter 3.

“Juice it or lose it” also provides an excellent test case for the descriptions, as the example

game used in the demonstration already existed among the VGDL game example. The game

is a Breakout clone, and it features a single screen with destructible blocks, walls, a ball, and

a paddle controlled by the player.

It took several iterations to include the additional e↵ects and features in the altered de-

scriptions. An example of the imaginary extension of VGDL can be seen in Figure 4.4. The

example describes the interaction and event signification to be executed when the ball and a

block in Breakout collide. This example features the two primary examples of format changes

36 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

in “VGDL+”7, one is defining multiple e↵ects for a single interaction, the second is the “Other”

feature, which changes the target from ball to block for the same interaction. This nesting re-

moves two issues, the need to specify the interaction multiple times and any potential confusion

about the execution order of the e↵ects. For instance, the description in Figure 4.5 contains

two interactions for the ball and block collision. The first definition specifies that when a block

gets hit by a ball, it should be destroyed. However, the second definition states that when the

ball hits a block, it should bounce o↵ it. If executed in the order the interactions are defined,

the block would be destroyed, and the ball would never bounce. In reality, VGDL executes

them in reverse order, allowing the ball to bounce before the block is destroyed. In VGDL+,

the order would be determined by the list of within a single interaction. Additionally, the Other

feature allows a designer to inject when e↵ects are executed on the opposite target.

Looking back to Figure 4.4 we see that the basic “bounceDirection” (which changes the ball’s

trajectory) remains in place in this description. However, the bounce impact is emphasized by

screenshake, sound e↵ects, color changes, size changes. In addition to that, instead of simply

destroying the block, the block is transformed, and a nested list of e↵ects is executed on the

transformed object, making it fall o↵ the screen while rotating, scaling down, and changing

color. Though VGDL+ has never been implemented, description experiments like those in

Figure 4.4 make it easy to get an overview of the resulting interaction e↵ects. Just like the

description of Breakout in Figure 4.5, it makes it easy to understand the rules and mechanics

involved (once you know what building blocks like “bounceDirection” do).

Figure 4.4: Sample description for the imaginary extension of VGDL, here noted as “VGDL+.”

It describes the interaction between ball and block in breakout, with the juice e↵ects presented

in “Juice it or Lose it” [98].

7More feature ideas and format changes were explored to provide better design choices related to prototyping

richer game experiences. However, those remain out of scope in this context.

4.1. GAME DESCRIPTION FRAMEWORKS 37

From the experiments with VGDL+, we can see that it is indeed possible to describe specific

game feel elements related to interaction events. As discussed in Chapter 3, the amplification

domain of game feel design (also known as juicing) often involves multiple layers of e↵ects when

emphasizing game events. The extended VGDL+ format shows that with minor modifications

to the format, VGDL could attach multiple e↵ects to a single interaction event. Besides listing

multiple e↵ects, another critical feature in VGDL+ is delaying e↵ects a certain period after

the interaction occurred. Delays are essential to adjust each e↵ect’s relative timing, so all

animations, sounds, and particle e↵ects complement each other perfectly. Additionally, the

concept of waiting for other events to finish (seen after the “transformTo” e↵ect in Figure 4.4)

builds a foundation for the tree structure used in Squeezer (see Section 4.2).

In a more general sense, the structure allows event signification e↵ects to be listed in an

easily readable format, like the rest of VGDL. Nested lists of e↵ects can be used to describe

sequences of e↵ects that occur simultaneously, sequentially, or both.

Comparing the size of the extended interaction description in Figure 4.4, to the description

of the entire interaction set in Figure 4.5. It becomes clear that the game descriptions would

grow significantly in size with this amount of granularity in the feedback e↵ects. One way to

counteract that would be implementing overarching concepts like “impact” as an e↵ect type that

executes a set of juice e↵ects like scaling, color-changing, screenshake, and sounds. However,

keeping an extended format allows every e↵ect to be easily understood and linked to a collision

event. The granularity of the ontology of e↵ects determines the designer’s freedom and ability

to fine-tune, juice, and streamline the game feel.

I n t e r a c t i o nS e t

b a l l S t a r t b lock wa l l > transformToAll stype=ba l l S t a r t stypeTo=ba l l

b lock b a l l > k i l l S p r i t e scoreChange=2

ba l l avatar > bounceDirect ion

b a l l wa l l > wallBounce

avatar wa l l > wal lStop

b a l l EOS > subt rac tHea l thPo int s stype=avatar va lue=1

ba l l EOS > transformTo stype=ba l lLo s t

b a l l b lock > wallBounce

Figure 4.5: The entire InteractionSet for the basic Breakout game in the VGDL library.

The experiment shows is that there is a tradeo↵ between designer expressiveness and descrip-

tion conciseness. The granularity of the e↵ect ontology impacts the designer’s expressiveness.

The more granular, the more expressiveness, but the less concise the descriptions become. Be-

sides the granularity, the nesting and sequencing options play a crucial role in supporting game

38 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

feel design. Without this nesting, it can be hard to tell the order of operations when an in-

teraction is specified multiple times. Sequencing e↵ects through delays and nesting allows the

designer to layer multiple e↵ects to emphasize the event how they want.

The exploration of VGDL+ shows one possible way to support game feel design (RQ2) in

game description languages. This experiment only covers event signification on a single game

description. A more comprehensive range of games and design elements should be used in

future explorations of game feel support for game description languages.

4.1.3 Implementation Options

The hypothesis also includes the possibility of executing event signification e↵ects based on

interaction events. These e↵ects require a few things not present in current VGDL implemen-

tations. The first is the ability to execute e↵ects over a duration, updating them a little at a

time. While the GVGAI framework does allow sound e↵ects, they are handled through a “fire

and forget” system. The only e↵ect close to working in this way in GVGAI is the “Flicker”,

which creates an object for a few frames before removing it again. Manipulating objects over

time by changing their color to white and back, or altering their size or position for a split

second, is vital to emphasize events like getting hit by a projectile. Manipulating the passage

of the game time itself, using freeze frames or bullet time is a common way to allow the player

to soak up the event. The VGDL implementations also lack the concept of a camera, which

means an e↵ect like screenshake would have to move all the elements in the game world around

to achieve the same e↵ect as moving the camera. Screenshake comes from film, where shaking

the camera simulates the e↵ect of shock waves from explosions or the movement of driving a

car.

Two reasonable options for implementing event signification support are extending a previ-

ous implementation of VGDL or building game prototypes based on VGDL descriptions for a

workflow that already supports it.

Extending the General Video Game AI Framework

Through working with the GVGAI framework, during the development of UnityVGDL [96]

and through the VGDL language modification experiments, a few things became clear. The

GVGAI framework is heavily optimized towards forward planning (also known as search-based

AI). Interaction e↵ects are never updated after execution. Updates are tick-based, meaning

they are indi↵erent to the actual time that passes between each update. Lastly, the rendering

system is built to handle simple sprite rendering.

These features make GVGAI a highly e�cient system for game AI research, but they make

implementing non-trivial time-based audio-visual e↵ects harder. Making certain e↵ects possible

would require the rendering system to be adjusted, but more importantly, many visual e↵ects

are executed over a duration. Executing e↵ects is complicated (and potentially inconsistent)

in a tick-based update system. But even worse in VGDL, updates are tied to “Sprites” (game

4.1. GAME DESCRIPTION FRAMEWORKS 39

objects), and e↵ects are only executed upon interactions. In order to execute and adjust juice

e↵ects over a duration, the system would need to handle them separately from other e↵ects.

Lastly, to support time manipulation e↵ects, such as freeze frames or bullet time, the system

would need to handle updates at alternative time scales.

While it would be possible to make these changes to GVGAI, it is likely infeasible to alter

the framework that much. Part of the motivation behind UnityVGDL was moving VGDL into

a modern game engine and moving away from the competition framework in GVGAI. The other

option of extending an existing VGDL implementation would be the original VGDL [175, 176]

implementation in PyGame 8. Unfortunately, the PyGame implementation of VGDL has not

been updated for a long time and is missing the newer ontology elements available in GVGAI.

All-in-all, this makes both GVGAI and PyVGDL relatively unattractive as a foundation for

supporting game feel design in game generation frameworks.

Using a Game Engine

One alternative to extending and modifying the GVGAI framework to support various visual

e↵ects is to move the VGDL core into a fully functioning game engine, where these types of

visual e↵ects are easy to add. Similarly, in 2016 game developer Alan Hazelden presented

a talk9 about his workflow, prototyping Puzzlescript games and importing them into Unity.

In Unity, the objects could be re-skinned, decorated and the game feel could be adjusted to

match the gameplay (see Figure 4.6 for an example). In the talk, Hazelden describes how he

uses the Puzzlescript interpreter in Unity to import game logic and levels. Embedding the

Puzzlescript game in Unity allows Hazelden to quickly try out new mechanics and levels by

modifying the underlying descriptions. Puzzlescript and VGDL have many similarities in their

description languages, and Hazelden’s workflow demonstrates that interpreting descriptions in

Unity has some elegant design advantages. Figure 4.6 shows a Puzzlescript game jam prototype

by Hazelden, on which the mobile game Cosmic Express [61] is based.

4.1.4 UnityVGDL

UnityVGDL developed as a starting point for working with VGDL in Unity [96]. Uni-

tyVGDL directly implements the GVGAI core in Unity and C#. Making it possible to interpret

and run VGDL games in Unity, as well as using the newly created MLAgents framework [101,

100] within Unity for game testing and playing. In [96] we compared MLAgents to machine

learning and planning agents in GVGAI [220]. We also believe that in the spirit of general

video game playing AI, the GVGAI competition could be extended with a transfer learning

track, where an agent is trained to play a VGDL game in GVGAI while getting tested on a

di↵erent interpretation (such as UnityVGDL).

8see https://www.pygame.org/
9Presented at Game Developers Conference 2016 in the Tech Toolbox panel.

https://www.gdcvault.com/play/1023377/Tech

40 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

Figure 4.6: Left Train Brain game jam prototype. Right the mobile game Cosmic Express by

Cosmic Engineers [61]

4.1.5 Building Unity prototypes from VGDL

The secondary purpose of UnityVGDL was to build Unity prototypes. An unfinished ver-

sion of the workflow was created by Luis Fernando Laris Pardo (an MSc student at the IT

University of Copenhagen). Pardo managed to generate Unity prototypes from VGDL descrip-

tions, attaching scripts to game objects and using the collision system to drive the interactions

between otherwise self-contained objects. Later we tested adding juice e↵ects to the generated

games10 using an early version of Squeezer (see Section 4.2).

4.1.6 Handling VGDL Interactions in Unity Prototypes

To determine the object types and the interactions to apply when collisions happen. The

game objects were tagged with the VGDL sprite type, using the Tag system in Unity. In Unity,

this approach to event handling is a commonly recurring pattern for game prototypes, as it is

convenient and straightforward to use.

Unfortunately, the approach used to build the prototypes was a bit messy as it relied on the

same interaction classes translated from GVGAI to UnityVGDL. Using the interaction classes

directly created a ton of friction in the implementation. The VGDL game system drives all game

logic from a central location, and the objects in the Unity prototypes were using a decentralized

script system. With that in mind, a VGDL interpreter in Unity would benefit from custom

implementations of the entire ontology. Such a reimplementation could potentially also benefit

the game feel of the generated VGDL games. Implementation details and additional adjustable

parameters could support designers by allowing them to adjust objects and interactions more

meaningfully.

10An example of VGDL Sokoban with simple juice e↵ects can be found here:

https://github.com/pyjamads/Squeezer/blob/master/Showcase/misc/tinysokoban.gif

4.1. GAME DESCRIPTION FRAMEWORKS 41

4.1.7 A Generalizable Pattern Appears

While the prototype generation experiment was less successful, the analysis of how to handle

VGDL interactions for the generated Unity prototypes led to a realization. The generated

prototypes used the collision and tag system to determine which interactions should occur when

a collision happened. This recurring pattern in Unity prototypes presented an opportunity for

bypassing the game generation process entirely and skipping right into supporting game feel

design in Unity. By taking advantage of this typical pattern, a tool could listen for interactions

and apply juice e↵ects to the objects involved.

4.1.8 Discussion

This section discussed how VGDL descriptions could be altered to include specific game feel

elements. It also touched upon ways to execute this type of interaction feedback in GVGAI

and how UnityVGDL was used as a stepping stone to build VGDL games in Unity. Most im-

portantly, a generalizable pattern for detecting interactions in Unity was found. This pattern

moved the work on extending workflows with game feel support into the next phase. Namely,

making a tool for combining the power of e↵ect sequence descriptions from the VGDL+ exper-

iments with detecting specific interactions in Unity prototypes.

42 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

4.2 Squeezer

Squeezer[95, 94] is arguably the most developed and user-friendly project in this thesis, and

it is revisited in Chapter 5 and Chapter 6. Squeezer is a tool for designing juice e↵ects in Unity.

Initially based on the generalizable approach of reacting to collisions based on object tags in

Unity. This approach of detecting and providing feedback to events based on descriptions in a

format similar to VGDL, attempts to answer how to implement support for game feel design

(RQ2) on a much broader level. Exploring how to support game feel design in Unity prototypes,

including ones generated from VGDL descriptions.

This section describes the structure of Squeezer, how it combines ideas explored in relation

to VGDL. How interactive descriptions and sequencing of e↵ects lie at the core of the tool.

This section also describes the di↵erent ways in which the very practical task of integrating

Squeezer into game prototypes has been designed. The ways in which description visualisation

plays a big role in working with the tool, and how the tool supports the iterative design process.

Lastly, the actual detection and execution system is described, explaining how game feel design

tools can be implemented without the need for big changes in the game implementation itself.

Figure 4.7: A juice squeezer by UrbanBar

4.2.1 Interactive Description Design

The initial inspiration for Squeezer came from working on UnityVGDL and adding juice

e↵ects to VGDL descriptions, as described in the previous section. This work clearly indicated

that a general system for taking advantage of a recurring pattern in Unity games and use it

to apply juice e↵ects, was possible. Splitting the juice descriptions from VGDL and applying

them to a much broader range of Unity projects.

4.2. SQUEEZER 43

Experienced game development professionals like the author, know that designing and im-

plementing juice e↵ects is a time-consuming task. Juice e↵ects apply to many aspects of games,

and each aspect is usually needs to be implemented as a separate system. Combining the most

common aspects in a single tool would allow a designer to save a lot of implementation time

while designing and testing e↵ects. Squeezer is targeted at the prototyping phase, because

creative exploration happens mainly in that phase and because performance requirements are

usually lower at that stage11.

One downside of writing descriptions like VGDL in basic text files, is the limited amount of

support a basic text editor provides in the design process. The designer has to make sure the

file format and syntax is implemented correctly. Further the designer has to know the ontology

by heart, including the parameters of each sprite, interaction and termination type, to avoid

looking up details constantly. By making Squeezer GUI based, the juice descriptions could

become an interactive design tool. Allowing the designer to select from lists of options, and

showing options and parameters for each type of e↵ect in the ontology.

Early on, Squeezer was called “GameFeelDescriptions,” because of its roots in description

languages. However, the descriptions mainly cover the amplification aspect of game feel de-

scribed in [155]. This design task is called juicing, which is why the project was given a more

fitting name for a juicing tool (see Figure 4.7).

While the underlying data structure will be discussed later in this section, the goal of

the GUI was to present an interactive version of the earlier juice descriptions in VGDL+

(see Figure 4.4). Although the VGDL descriptions lacked support while designing them, the

resulting descriptions are very concise and easy to comprehend. Because designing game feel

is a complex task involving many di↵erent moving parts, keeping the representation as concise

as possible is key. However, each e↵ect has multiple parameters that the designer might want

to adjust. Showing every parameter for each e↵ect at once counteracts the conciseness of the

description. Squeezer avoids that by collapsing each element in the descriptions, hiding their

parameters until the designer needs to adjust it (see Figure 4.8 for an example). This combines

the power of concise descriptions with the ability to view each parameter and its options, when

an element is expanded. The amount of parameters was kept as low as possible to allow as

much expressiveness as possible while maintaining the ease of use.

A core part of juicing your game is layering multiple e↵ects on top of each other. The specific

game feel arises from adjusting the timing and intensity of each e↵ect. While the intensity is

handled through the adjustment of e↵ect parameters, the timing needs to be adjusted relatively

between the e↵ects. This is usually handled by setting delays for each e↵ect, from the occurrence

of a game event, until the e↵ect is executed. In Squeezer the task of sequencing e↵ects, is

handled through nesting and delays. Nesting an e↵ect below another e↵ect in the description

(see the indented e↵ects in Figure 4.8), implies the e↵ect will be delayed until the previous e↵ect

is complete. Besides the nesting individual e↵ects at the same indentation, can be delayed

independently as well. This nesting gives the designer visual representation of the sequence

11Lower performance requirements allows greater focus dedicated to expanding functionality instead.

44 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

they are building. Additionally, each e↵ect also notes its duration or duration range when

randomization is enabled, to assist with sequencing.

In Squeezer reordering and copying e↵ects is handled through dragging and dropping them

on other e↵ects. Additionally, the context menu allows explicit copying allowing a designer to

copy e↵ects (including their sub-trees) between di↵erent descriptions in a project.

Though designing the e↵ect sequences is the main design task. The descriptions like the

VGDL descriptions also describe two other aspects. The first is defining which objects should

be used for detecting the event to set o↵ the e↵ects. This is done through specifying a tag,

a component type or through a list of objects. The tag and component types can be used to

dynamically detect if the object is created at runtime. This is useful for game elements that are

created as the game is played. The second part of the descriptions define which events trigger

the e↵ect sequences. Each description only listens to the defined set of objects, but multiple

triggers can be defined for those objects. The e↵ect sequences are usually executed using the

object that detected the event as the target (either using the object or its location). However,

it is also possible to define a di↵erent set of objects as the target using the e↵ect groups.

To recap the descriptions in Squeezer, each description targets a set of detector objects,

defines which events to detect, defines the objects to target in case of an event and lastly

defines the e↵ect sequences to execute on those targets (see Figure 4.8. The descriptions are

kept collapsed in a format similar to VGDL, to make them more comprehensible. Each element

in the description can be expanded to display all of its parameters and options.

The e↵ects available in Squeezer were initially based on the analysis [95] of “Juice it or

Lose it” [98] and “The Art of Screenshake” [140]. This set of e↵ects has later been expanded

with more advanced particle e↵ects as well as e↵ects for additional sequencing options (such as

delaying, branching and looping groups of e↵ects). The ontology contains 25 di↵erent e↵ects.

However, Squeezer uses reflection to look up e↵ects and show them in the GUI, which makes

it highly extensible.

4.2.2 Architecture

Getting from conceptual descriptions of e↵ects to executing e↵ect sequences in a game

prototype, the underlying system in Squeezer needs to handle updating high numbers of e↵ects

simultaneously. From practical experience, the author knew tweening [149] systems are often

for implementing juice e↵ects.

The core of Squeezer is based on modern tweening systems, which are used in many games

and are a fairly standard component in game engines. The term tween is derived from a

task called “in-betweening,” where junior artists would draw images between two key-frames

created by senior artists. This term was later carried over to computer graphics [165] and

animation systems [149]. An example of tweening is scaling an object to twice the size in half

a second. Tweens can make changes linearly (fixed step-size per frame), or they can use easing

4.2. SQUEEZER 45

functions12 (variable step-sizes, allowing speeding up and slowing down changes over time).

Easing functions were popularized in tweening systems by Robert Penner [149]. Tweening

systems are often used for creating simple juice e↵ects in games, so they serve as a great

foundation for creating a juicing tool. This type of system has a centralized class in charge of

controlling and updating active tweens and a set of tweens that manipulate values.

While some tweening systems allow sequencing e↵ects one after another, some juice e↵ect

sequences require scheduling e↵ects both sequentially and in parallel at the same time. Consider

an explosion: several e↵ects go o↵ initially, such as sound, a shock wave, and a flash of light.

Afterward, some smoke and embers might appear, and each of those e↵ects might fade and

change color simultaneously. The embers might even flicker a little as they disappear. These

e↵ects must be sequenced correctly and applied to the correct targets. These requirements mean

the Squeezer core is e↵ectively an extended tweening system for a domain-specific purpose.

There are three basic types of e↵ects in Squeezer: one-shot e↵ects, durational e↵ects, and

spawning e↵ects. These three are complemented by a set of sequence control “e↵ects,” designed

to modify the execution flow of e↵ect sequences. One-shot e↵ects are commonly used to play

sound e↵ects, activate or destroy objects, and trigger custom game events. Durational e↵ects

consist primarily of simple tween e↵ects (with the ability to change various aspects of game

objects). However, they also have other standard juice e↵ects such as color changes, shake

e↵ects (used for both objects and screen shake), and specialized e↵ects like the squash-and-

stretch e↵ect, which is used to amplify the impact of events [217]. The spawning e↵ects consist

primarily of custom particle e↵ects in Squeezer, but they also include a simple copy target

e↵ect. The copy target e↵ect can create trails behind objects or emphasize where objects have

impacted. Squeezer’s particle e↵ects use full game objects instead of usual particle systems

that run highly optimized simulations. The benefit of using full game objects is that Squeezer

can treat them like any other object it manipulates. This trick means that any e↵ect a designer

can apply to a game object with Squeezer can be applied to a particle it creates. Using full

game objects is a powerful feature, and it creates much less confusion for novice game designers

because they can manipulate particles just like other game objects.13

The review of juice e↵ects for VGDL+ provided a list of both common e↵ects and the

events that trigger them. Initially, we built Squeezer to handle only collisions (similar to

VGDL interactions). After the review, however, it was clear we needed a few more triggers, for

instance: starting the game; creating an object; when an object moves or changes direction;

when objects are destroyed or disabled; when the game sends custom events or when a value

changes on a game script. Any such event could be amplified using juice e↵ects. To detect

these di↵erent events, we created trigger scripts attached to objects defined by the descriptions.

Trigger scripts are scripts that get attached to the defined objects and react to state changes

or interactions the object experiences. They leverage Unity’s component-based architecture to

12See examples of easing functions at https://easings.net/
13The fact that particles are not full game objects often confuses novice game designers, especially when

particles start flying through other objects, due to simulation limitations.

46 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

capture the events and then call the Squeezer e↵ect execution system to execute the attached

e↵ect sequence.

4.2.3 Executing the Descriptions

Squeezer does not rely on building e↵ects in Unity sub-systems. Not relying on other sys-

tems makes designing with Squeezer fast without requiring expert knowledge about Unity. We

wanted Squeezer to be as non-invasive as possible, so it would be easy to add and remove.

This requirement means that the descriptions handle adding and removing trigger scripts au-

tomatically. The descriptions are the links between the game and the designer user interface

(UI). Through the descriptions, the designer defines and attaches triggers and specifies groups

of e↵ect sequences (and their targets) and the e↵ect sequences and their parameters. Each

description attaches its triggers to a collection of objects, usually defined as objects with a

specific tag.

The descriptions have a hierarchy called the E↵ect Tree (seen at the top of Figure 4.8).

At the first level (at the top), the triggers are defined, and under them is a list of e↵ect

groups. E↵ect groups are used to control the target of the e↵ect sequence, which is mostly the

object that triggered the e↵ect. However, they can also target other game objects, allowing

events on one object to trigger e↵ects on other objects. Each e↵ect group contains a single

multilayered e↵ect sequence. E↵ects are indented like in VGDL descriptions, creating a tree

structure indicating when e↵ects are executed. Figure 4.8 describes an explosion e↵ect which

can be seen in Figure 4.9. The description also shows that it is attaching a single trigger to

anything with the tag “ball” (noted next to the Trigger List in Figure 4.8). The trigger is

a collision trigger, and it reacts to anything (symbolized by a *) when a collision is detected.

Beneath that, we see the e↵ect group, which defines the target as “Self,” which means the ball

itself.

The descriptions are fully serializable to and from JSON.14 This allows designers to transfer

them between projects and game scenes as needed. Though the JSON serialization describes

the objects accurately, the descriptions are relatively opaque. Creating a serializer for a custom

format like VGDL or the visual sequences in the Squeezer UI would make them more accessible.

In the Squeezer UI, the e↵ects can be expanded and collapsed to view and edit details. The

expanded view can be seen in step three in Figure 4.10. Adding e↵ects to a sequence can be

achieved by pressing the “+” button or right-clicking and selecting add e↵ect. The “+” button

and context menus function similarly for the triggers and e↵ect groups. On the left side of each

e↵ect, a checkbox controls whether the item is disabled or not, allowing the designer to control

which parts of the e↵ect sequence are executed (helpful, for example, when a sequence contains

multiple particle e↵ects). The “mutate” button and sequence generator will be explained further

in Chapter 5.

14For the JavaScript object notation, see https://www.json.org/

4.2. SQUEEZER 47

Figure 4.8: The description of an explosion e↵ect sequence. Underlines added externally to

associate descriptions and visuals with the animation seen in Figure 4.9.

48 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

Figure 4.9: The “synthesized” e↵ect shown at 5fps by executing the description in Figure 4.8.

The big white square is the breakout ball (i.e., not part of the e↵ect). There are three visible

parts of the e↵ect sequence in the description (the “Camera Shake” is not visible here). The

first is the “Positional Flash” (white underline in Figure 4.8). It shows up as a white circle

in the first three frames, scaling up and fading out. After the scale-up finishes, a blue flash

(blue underline in Figure 4.8) appears and fades out. The second part of the sequence is the

“Particle Pu↵” (yellow underline in Figure 4.8). It controls the slowly expanding yellow circles,

each spawning a quick black flash (black underline in Figure 4.8). The combination of particles

and flashes creates the illusion of smoky dust as the circles expand and fade away. The third

part of the sequence is the “Particle Pu↵” (gray underline in Figure 4.8). It simulates debris

being flung in all directions with small, fast-moving gray boxes.

4.2.4 Designing the Setup Procedure

Squeezer is a tool designed to be dropped into a Unity project. Unfortunately, it requires

some amount of setup to get started. However, supporting game feel design also includes sup-

porting the designer while setting up the system. It seems relevant to point out the importance

of ease-of-use when implementing tools that support the designer (RQ2). Just as game feel de-

sign includes streamlining (see Chapter 3), the task of designing support for the player, building

tools requires streamlining the user experience. The benefits of using the tool need to outweigh

the perceived friction of use. In Squeezer, the base setup is relatively simple, requiring only the

creation of an empty object and adding the description script to it to get started. However,

setting the detector objects and defining the triggers can be confusing at first.

In the first iteration of Squeezer [95], an experimental feature called the step-through mode

was added. Step-through mode is based on ideas from the Klik’n’Play15 feature of the same

name. Initially, step-through mode seemed like a great idea, pausing the game upon any event

and asking the designer to design an e↵ect sequence for the event before moving on. Step-

through mode was meant to remove the need to manually set up descriptions, allowing the

designer to focus on designing the e↵ect sequences. However, designing on the fly does not

properly allow iterating the design as game feel design requires. Instead, step-through mode

was replaced by a setup wizard, allowing a designer to set up all the potential events they

would like to handle, either one by one or all at once. The setup wizard can be used at any

point if new objects and events need to be set up (a process that experienced designers can do

manually). Figure 4.10 shows the workflow of adding Squeezer into a new game project and

beginning the design process.

15Klik’n’Play by Clickteam https://knpforschools.webs.com/

4.2. SQUEEZER 49

Figure 4.10: Squeezer Workflow. Step (1): Take a game prototype and set up the Squeezer

event triggers using the setup window. Step (2): Add some color and generate or manually add

initial e↵ect sequences. Step (3): Explore, mutate or design parameters of individual e↵ects

until they suit the game mechanics. Repeat steps (2-3) until the e↵ect sequence is done, then

go back to step (1) to add new triggers and start again.

50 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

Besides the setup wizard and UI interface, Squeezer provides an API for defining and exe-

cuting e↵ect sequences through code. This approach allows programmers to integrate, design,

and execute e↵ect sequences exactly where they want in code.

4.2.5 Visualising the E↵ect Sequence

The interactive description system in Squeezer allows designers to change descriptions easily.

However, it is an asynchronous task without the ability to view the e↵ect executed in real-time.

Initially, Squeezer relied on the game running to bring the descriptions to life. However, relying

on the game running creates a cumbersome and semi asynchronous workflow. The workflow

required designers to pause the game to alter e↵ect sequences and trigger the same event after

resuming play.

Shortening the iteration loop of the game feel design process has been explored throughout

the project. Aiming to build tools with reactive and as direct manipulation as possible like

Victor calls for [227]. Several experiments and features have been implemented to streamline

the design workflow further. One of these features was the step-through mode. Step-through

mode functioned as a setup utility and a method for designing on the fly. However, the step-

through mode still required the designer to play the game unless they implemented an AI agent

to play the game for them. While it allowed the designer to design e↵ect sequences and see

them in the game immediately, it can still be problematic to trigger sparse or hard to achieve

events. Though designing on the fly reduces the waiting when entering Playmode16, associated

with the usual asynchronous design process, pausing and playing to trigger the events still cause

considerable agitation.

Editmode Previews

Editmode previews were developed for the e↵ects in Squeezers descriptions as an alternative

to only displaying e↵ects at runtime. Each description can enable or disable previewing the

e↵ect sequences. The preview can be displayed directly in the scene (in the context of the

targeted object), or it can be executed in a separate preview scene with a copy of the original

description target. The preview scene executes the e↵ect sequence related to that object in

an otherwise empty scene. When previewing is active, the e↵ect sequence can be triggered

manually or executed automatically at an interval of choice. Preview mode is an excellent

tool for designing e↵ects, allowing the designer to see any changes they make immediately.

It shortens the iteration loop as much as the temporal nature of e↵ect sequences allow (i.e.,

the duration of the e↵ect sequence). Preview mode removes the asynchronous step of entering

Playmode and the need for navigating the game to trigger the event. In addition, preview

mode does not su↵er from making changes in play mode; a common mistake even seasoned

16Playmode is the mode Unity enters as you hit the play button, in contrast, Editmode is when the game is

not running.

4.2. SQUEEZER 51

developers make17. Although with Squeezer, it is possible to save changes made in Playmode

by enabling it on the description.

Unfortunately, the previews were developed after testing Squeezer with experts. However,

preliminary experimentation when building demos and demonstrating Squeezer indicates that

the workflow is much easier and faster—allowing the designer to explore a broader range of

parameters and e↵ect sequences in the same amount of time.

Editor visualizations

Another feature that supports the designer while using Squeezer is editor visualizations.

Editor visualizations show duration, color shifts (a gradient underlining the e↵ect), and particle

count next to the names of the e↵ects to mitigate some of that behavior. In the first round of

testing, users would open and close e↵ect details to find the e↵ect they were looking for among

the collapsed elements. Sometimes simply to check the duration, colors, and other essential

parameters.

The editor visualizations make it easier to distinguish the elements of an e↵ect sequence.

The visualizations allow users to navigate the collapsed e↵ect sequences more quickly, especially

when the same e↵ect is used multiple times in a sequence. A few examples can be seen in

Figure 5.3 where the color e↵ects are underlined by the color changes they make to objects.

The particle pu↵ e↵ect has a particle count noted in curly brackets, and all e↵ects note their

duration in hard brackets.

17https://twitter.com/McFunkypants/status/1448363198046818308

52 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

4.2.6 Discussion

This section covered how Squeezer is designed to reduce iteration time and improve the

juice design process. It describes one possible way of addressing the question of how game feel

design can be implemented in existing workflows (RQ2). Specifically how a third-party tool

can support game feel design within a game engine like Unity. Chapter 5 will focus on the

process of juicing games with Squeezer and cover the results from two sets of expert user tests

in [95, 94].

A core part of the experimentation in this chapter related to the reduction of iteration time

to increase the e�ciency of game feel design exploration. Squeezer reduces iteration time in

several significant ways.

1. Squeezer removes the need (while prototyping) for implementing each e↵ect system man-

ually.

2. Squeezer simplifies the event detection and triggering of e↵ects.

3. Squeezer allows designing with concise and comprehensible interactive descriptions, pre-

senting all available parameters and options (initialized with reasonable randomized de-

fault values).

4. Squeezer allows real-time design iteration through Editmode previews removes the need

for playing the game while evaluating the e↵ect sequence.

Briefly described in the intro of Chapter 5, there are alternative ways to implement juice and

game feel within Unity. It is worth mentioning MMFeedbacks [63, 64] in that regard. MM-

Feedbacks18 is built on ideas similar to Squeezer, drawing upon similar references and industry

experience. MMFeedbacks addresses the question of how to implement support for game feel

design (RQ2) in a slightly di↵erent way than Squeezer. While Squeezer is mostly self-contained,

MMFeedbacks relies on several Unity sub-systems to perform various e↵ects. A technical artist

developed MMFeedbacks, and while it makes designing and activating juice sequences simple,

it relies on expert knowledge of the underlying sub-systems to create many of the actual e↵ects.

Squeezer and MMFeedbacks share many basic support elements, but they are di↵erentiated by

Squeezers Editmode previews and design support features like sequence generation and inter-

active evolution. In addition, sequences built-in MMFeedbacks are structured in a single list,

with timing adjusted for each e↵ect as needed. The descriptions, including event detection and

triggering, also allow Squeezer to be less invasive. The main di↵erence is that MMFeedbacks

is designed as a production tool, and Squeezer is designed as a creative prototyping tool.

18Recently rebranded into FEEL: https://feel.moremountains.com

4.3. AUTOMATED GAME DESIGN SYSTEMS 53

4.3 Automated Game Design Systems

The third game creation workflow explored in this chapter is an automated approach, where

a piece of software generates new games with little to no interference by human designers. It

is interesting to explore how game feel design support can get implemented for an automated

system (RQ2). The previous two sections have focused on implementing support for game feel

design with human designers in mind. This section explores game feel design support for AI or

algorithmic designers.

4.3.1 Automated Game Design

Automated game design (AGD) is a relatively young sub-field of computational creativity

and game AI research. AGD research is concerned with building AI systems that either design

and develop games independently or take part in a larger game development process. Until

recently, AGD research has been focused primarily on rules, goals, and systems, which biases

the research towards certain kinds of games, and certain kinds of evaluations, as noted in [46].

Commonly, this results in AI systems capable of generating games, such as ANGELINA [39,

40, 44], the Game-o-Matic [139], Ludii [200], or Gemini [204].

While AGD research stretches back to the early 1990s [148], where the author generated

chess variants, the bulk of AGD research has taken place since 2010, with systems like Ludi19

[22], a system which designed abstract board games. Ludi games were designed to be played

with physical game sets.

Around the same time as Ludi was designing board games, videogame-based AGD systems

like ANGELINA 1 or the Game-o-Matic were created. ANGELINA 1 focused purely on ruleset

generation with little or no consideration for aesthetics. The Game-o-Matic did allow users

to apply visual themes based on natural language processing of input prompts connected to a

corpus of game art [139]. In all of these cases, the aesthetic responsibility of the AGD system

is to choose assets for individual game elements. No attempt is made to emphasize or model

any aspect of the game experience through aural or visual feedback e↵ects. One noteworthy

exception is ANGELINA 3 system did venture into the area of aesthetics [44] by dynamically

finding visual assets and triggering sound e↵ects in accordance with specific game actions.

There are AGD systems that produce games with excessive amounts of positive player

feedback (also known as juice [104], see also Chapter 3). However, these rely almost exclusively

on the system designers adding juice to the AGD system’s templates. Variations Forever is the

best example of this, a juicy and engaging game that redesigns its rules using constraint-based

programming [191]. In the AGD system, Smith and Mateas added juice to the templates, so

even if the AGD system could not control it, the resulting games benefit from it.

As part of this Ph.D. project, I enjoyed a virtual stay abroad20 collaborating with Mike

Cook at the Queen Mary University of London (QMUL) – Game AI research group. Cook is

19Ludi is the predecessor to the Ludii game system [200].
20Due to the Covid-19 pandemic, travel and attendance at the university were, unfortunately, not possible.

54 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

a leading researcher within automated game design (AGD) [43]. This collaboration presented

an opportunity to address how game feel design support can get implemented (RQ2) in the

context of automated game design.

The ANGELINA [39, 40] AGD systems created by Cook et al. have touched lightly upon

the aesthetics of the generated games [46]. However, most AGD systems completely ignore

designing how the games feel, with notable exceptions like Variations Forever [191]. In an

attempt to rectify this lack of game feel focus in AGD research, our collaboration resulted in

combining Squeezer with an AGD system and generating juice e↵ects as part of the automated

game design process [93].

4.3.2 AGD Approach

The AGD used in the project [93] is an unreleased system called Puck. Puck is the spiritual

successor to ANGELINA [39, 40] and similar in nature to the introductory Bluecap 21 that

was designed as part of an AGD tutorial22 at the 2020 Conference on Games23. Puck is built

using principles Cook presented earlier about software engineering for automated game design

[42]. In this paper, Cook investigated how to engineer AGD systems in a way that would allow

the system to take part in a game development process alongside human developers24. This

approach pulls AGD in a di↵erent direction than most PCG systems, where the focus is to

complete tasks as fast as possible. By considering the AGD system a collaborator in the game

design process, the system is encouraged to spend as much time as it needs to evaluate and

propose changes to the game. The implications for an AGD system are that it has to be split

into various phases. Each phase can be revisited at di↵erent stages of the development process

as many times as is needed.

In Puck, that functionality is implemented as design modes, each with a di↵erent purpose

in the process, such as generating rules, selecting assets, evaluating gameplay, and designing

look and feel. These modes each have di↵erent tasks and additional sub-goals. The modes

follow a progression, but should the gameplay evaluation meet some obstacles; the system

could go back and change or regenerate rules, which in turn requires the reevaluation of every

subsequent task. The system is currently run in di↵erent modes that are triggered manually25.

Each mode will result in the generation, alteration, or addition of files in a game folder. Using

this approach, one or more instances of Puck and human developers can work on the game files

simultaneously.

Like many other AGD systems, Puck relies on specifying its games in a game description

language. As discussed in Section 4.1, there are two main options for adding game feel design

21https://github.com/possibilityspace/bluecap
22https://www.youtube.com/watch?v=dZv-vRrnHDA
23https://ieee-cog.org/2020/
24Human designers can alter the persisted game files when Puck is not working on them. The fact that

Puck persists games through files means that with a few changes, it could become a collaborative co-creative

mixed-initiative system [233].
25This is one of the reasons it has yet to be released.

4.3. AUTOMATED GAME DESIGN SYSTEMS 55

support when using a game description language. The first is to extend the description language

with the design elements needed and extend the generator or interpreter to handle the design

elements. The second option is to use a separate tool like Squeezer for designing, saving, and

executing the e↵ects. In this experiment, the latter approach was used.

4.3.3 Squeezer Integration

A new mode called “designing juice e↵ects” was added to Puck for integrating Squeezer.

In this mode, Puck uses Squeezer to generate a set of e↵ects based on the game events used

by the game it is designing. While this initial integration is relatively simple, the mode is

designed to interpret data from play logs. Puck can record logs using observations from the

game evaluations it performs. These observation logs can then be analyzed in other modes to

adjust game balancing, generate heat maps, or count events.

To accommodate the needs in Pucks juicing mode, the Squeezer API needed a few tweaks

for saving and loading e↵ect sequences in a third-party setup. Puck uses this to save the e↵ect

descriptions alongside the game descriptions, tying each file to a specific event in the game

descriptions. Then when playing the game, Puck loads e↵ect descriptions and triggers them

through Squeezers API for queuing and executing e↵ects.

Like a human designer would need to adapt their workflow to using new tools, an automated

designer also needs to adapt. When running the games, Puck initially visualized them purely

by rendering the state of the game after each player interaction occurred. However, this type

of visualization only barely works for the turn-based games Puck currently designs. Seeing

where the pieces end up after each turn obscures the game mechanics and quickly becomes

confusing, with complex rules in play. To avoid this and allow visual e↵ects (and sounds) to

be meaningfully executed, the visualizer in Puck was changed. Instead of executing a complete

turn and then showing the final state, the new visualizer is driven by the same game events

that make up the game descriptions. This event-driven visualization allows intermediate steps

to be shown, and using either e↵ect descriptions from Squeezer or basic tween e↵ects; each step

can be animated.

4.3.4 Juicy Challenges

The main challenge of designing game feel in an AGD system is evaluating the result. Unlike

game balance, rules, and objectives, evaluating how a game feels is an open question. Knowing

this evaluation task would be needed in an AGD implementation, Cook assisted with a series

of unpublished experiments for e↵ect sequence analysis and comparison. Cook has previously

used expressive range analysis (ERA) [202, 116] in Danesh [45] to analyse the output of PCG

systems. However, the preliminary results from using ERA and a few other techniques did

not even yield good results for comparing di↵erent sets of e↵ects, let alone evaluating the feel.

While evaluation remains an open task, it presents an exciting new challenge for AGD research.

The benefit of the design mode approach used to build Puck [42] is that it can work as a

56 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

collaborative system, where humans can participate in the process (a sort of human-machine

collaborative game design). This approach means Puck could mark games ready for human

evaluation and wait for a human collaborator to finish the task before working on the game

again. Interestingly this process resembles a production line, where despite a considerable focus

on automation, humans remain in parts of the process.

4.3.5 Discussion

This section describes the integration of Squeezer into an automated game design process.

Presenting one possible way that game feel design support can get implemented (RQ2) in an

AGD system. Showing di↵erent potential options for integrating game feel design in AGDs, as

well as the implementation method used in this project [93]. In the project, Puck delegates the

responsibility for game feel design to Squeezer while remaining in control of the overarching

AGD process. The approach is made possible by the Squeezer API for saving, loading, and

executing e↵ect descriptions. Additionally, the task of designing the e↵ect sequences is handled

by Squeezer and is made possible by the e↵ect sequence generator, discussed in Chapter 5.

4.4. DISCUSSION 57

4.4 Discussion

This chapter described di↵erent approaches and prototypes created in an attempt to answer:

“how can game feel design support get implemented in existing workflows?” (RQ2) For game

description languages like VGDL, there are multiple ways to add game feel, depending on

the outcome or goal. Suppose the goal is creating a prototyping or game creation tool that

supports game feel design. The descriptions would need to be altered to accommodate building

e↵ect sequences. The underlying game system needs to execute durational e↵ects, even if

they are only activated based on collision or timer events. While VGDL could potentially

serve as a platform for prototyping games, the entire ontology would have to be re-written

to accommodate human players better (streamlining the support). An alternative is making

a game description interpreter that translates a GDL game description to an engine-specific

prototype. Examples of such an interpreter are the student project extending UnityVGDL and

the Puzzlescript importer for Unity used by Alan Hazelden. An interpreter like this does not

directly add game feel support. However, the interpreter is free to alter the feel of any elements it

generates to make the elements more juicy, streamlined, or provide more tweakable parameters

to the generated elements. The real power of generating games in this manner comes from

leveraging the entire game engine tool ecosystem. These ecosystems are built around engines

like Unreal or Unity to support developers with di↵erent aspects of game making. Additionally,

tools like Squeezer can add juice e↵ects to the generated games.

That leads us to the second workflow using Squeezer. Squeezer combines the power of

concise descriptions like VGDL with common patterns for detecting events in game prototypes.

Building on this event-driven foundation, Squeezer can be attached to most Unity prototypes,

allowing designers to explore, generate and design game feel by amplifying events with juicy

e↵ects. The next chapter will dive into more details on the impact of tools that support the

game feel design process and designing game feel with Squeezer. While Squeezer is a tool that

can be added to Unity, this chapter also looked at how the support is integrated into a project

workflow (RQ2). This chapter explored two semi-automated approaches to setting up Squeezer,

which was later discarded called step-through mode. The other is more akin to a setup wizard

used in software installations.

Step-through mode was the first step in a series of experiments to shorten the iteration

loop while designing the e↵ects, attempting to “Stop drawing dead fish” [227] and moving the

design loop closer to real-time iteration. Using the serialization system built for saving changes

in step-through mode, the second attempt at shortening this loop was to save any changes

made to the e↵ect sequences at run time. While this approach worked, the designer would

either have to control the game while designing or create an AI to play for them. Moreover,

even with an AI playing the game, sometimes the events the designer is designing for only

happen sporadically. It is still possible to design while playing by setting the description to

save any changes made in Playmode.

Preview mode, the newest experiment in shortening the iteration loop, allows the designer

to execute the e↵ect without starting the game. Preview mode allows the designer to execute

58 CHAPTER 4. SUPPORTING GAME FEEL DESIGN

their e↵ect sequence in the current scene or a separate preview scene. The e↵ects can be

executed either on-demand or triggered automatically at a specified interval. Unfortunately,

this feature was made after our last user test, but the author has used it to design several

Squeezer presentations. While this is a biased statement, the lower iteration time and immediate

preview make designing e↵ect sequences more fun and way faster. It removes the delay from

playing the game until the event occurs, making design iterations very quick. Condensed

interactive descriptions, visualizations of specific parameters, and preview modes support the

iterative design task. Nesting e↵ects and interaction models like drag-and-drop streamlines the

sequencing process. Lowering friction by providing support to the developer removes barriers

the user does not care about, similarly to how streamlining the game feel can smooth out the

player experience.

The last workflow explored in this thesis is automated game design (AGD), specifically the

unpublished framework “Puck”. Puck uses its system to execute and render the games instead

of generating a fully playable game prototype in the game engine (Unity in this case). Puck

was extended in order to answer the question of how to implement game feel design (RQ2)

into the AGD process and how adding juice would change the perception of games generated.

Chapter 6 discusses the actual implications of adding juice to the prototypes and the results

from the playtest performed [93]. This chapter discussed how the process had to be altered,

concerning how it was executing and rendering the generated games.

Answering how game feel design support can be implemented (RQ2) in ADG systems hap-

pen to overlap heavily with the suggested solutions to implementing game feel in GDLs. One

way is for the execution engine and game descriptions to allow the descriptions and execution of

game feel elements directly. Another way is generating a game prototype in an engine, similar

to the VGDL and Puzzlescript approaches described earlier. The approach described in this

chapter is a middle ground between the other two. Puck uses Squeezer to generate and save

e↵ect sequences tied to certain predefined events, and upon game execution, it will ask Squeezer

to execute the saved e↵ect sequences. In a sense, this represents one answer to how game feel

support can be implemented (RQ2) by showing that AGD processes can delegate responsibility

for both describing and executing game feel elements to a tool like Squeezer. Generating games

with the support of a third-party tool like Squeezer instead of implementing game feel directly

in the system itself. In [93] we only allowed Puck to use the generator for generating e↵ect

sequences and applying them to predefined events in the system. However, this approach could

just as easily allow an AGD system to design e↵ect sequences through Squeezer’s API, as well

as define the events that trigger the e↵ects. Allowing an AGD like Puck to define the events

that trigger e↵ects would make it capable of reacting correctly to more complex events beyond

spawning, destroying, and moving game pieces.

To summarize the game feel design implementation approaches discussed in this chapter.

There are two main options for game description frameworks like VGDL; one is to extend the

framework to allow game feel design and polishing directly in the descriptions. The second one

is to use the description-based system as a stepping stone by generating game prototypes in an

4.4. DISCUSSION 59

external game engine like Unity, which leads to the workflow of using a game engine to build a

game. In the next chapter, we will return to the many di↵erent approaches in this workflow. The

implementation shown in this chapter explores how to implement a custom tool (Squeezer) with

support for game feel design and how that tool fits into a typical game development workflow.

Extending ideas from description languages like VGDL, the Squeezer implementation shows

one way of supporting game feel design by allowing the designer to see live previews of e↵ect

sequences while manipulating interactive descriptions. Lastly, the implementation of game

feel design support in an automated game design workflow shows how a hybrid approach can

be used by leveraging Squeezer. It is shown that AGD systems can potentially rely on third-

party tools to implement the game feel design directly. An AGD system can leverage Squeezer’s

descriptions and sequence generation (see Section 5.3) for designing juice e↵ects, and at runtime,

Squeezer can execute the e↵ects based on specific game events.

Chapter 5

A New Game Design Process

A common mistake that people make when trying to design something completely foolproof

is to underestimate the ingenuity of complete fools.1

Related Papers

Johansen, Pichlmair, and Risi, Squeezer - A tool for designing juicy e↵ects

Johansen, Pichlmair, and Risi, Squeezer - A mixed-initiative tool for designing juice e↵ects

Johansen and Cook, Challenges in generating juice e↵ects for automatically designed games

This chapter is focused on the experience of working with design tools (mainly Squeezer)

for designing game feel. The larger question explored in this chapter is “what is the impact of

design tools on the game feel design process?” (RQ3)

To answer this question, we first need to explain the most common approach to game

feel design. Drawing on the authors experience both from teaching and developing games,

descriptions by practitioners [195, 98, 140, 18, 57]. As well as the data from the Squeezer user

test surveys, the most common approaches are:

• Inexperienced designer approaches: Make rules, levels, and assets (often not in-

cluding sounds and music). Then once everything is working, attempt to make it “fun”

by adding event significations through common juice e↵ects like particles, screenshake,

and sound e↵ects. This approach often su↵ers from various elements feeling flat and

uninteresting. Additionally, often utilizing systems and built-in tools without the required

experience, resulting in generic feel and e↵ects2.

The “Unity”3 approach: Use Unity and the most standard e↵ect tools (e.g.

the particle system, Cinemachine, built-in scripts, VFXGraphs, post-processing e↵ects,

1From “Mostly Harmless” by Douglas Adams, 1992
2It is common for developers to be able to tell which generic tools have been used to create games by other

developers. Less experienced developers often end up making more generic-looking games.
3Note that this is not unique to Unity and applies to many other game engines as well.

60

61

Shader Graph). Unity’s particle system, post-processing e↵ects, and built-in scripts often

deliver a relatively generic game experience without custom assets and lots of tuning.

More experienced developers know how to break out of the generic look and feel, either

by manipulating the tools or using more advanced tools from the Asset Store. However,

games created with Asset Store tools can also lose their uniqueness as they gain popular-

ity and become the defacto standard. Popularity like this usually happens when a tool

has a very narrow focus or the default settings (if static) are “good enough” for many

di↵erent game types. The same is true for built-in systems like the post-processing e↵ects,

VFXGraphs, and the simple default control scripts available in Unity.

The “find it on the internet” approach: Find various elements or tutorials

created by experts online. This approach is often used by developers when they need to

learn how to do something or get going quickly. The issue is that the reasoning behind

the implementations might not be clearly described, which can make them hard to adjust

with good results. Like popular tools, games developed by following popular guides and

using popular game assets can also result in generic feeling games. However, sometimes

the source code for commercial games is released for others to dissect and learn from.

An example is the release of the source code for games such as Doom or Quake4 or the

Celeste character controller 5. These resources can lead to design discussions and new

solutions developed by the game development community.

• Experienced designer approaches: Make your game step by step. Add the miss-

ing components when certain aspects feel flat or are missing support, amplification, or

physicality. Mostly achieved by implementing small tricks that the designer has learned

improves the game experience. This approach often requires custom code or homemade

tools that fit the style of the game, as well as a lot of game design experience.

The “Tweening” approach: Many developers use tweening systems [165, 119] to

achieve a large portion of simple animations and juice e↵ects. This approach provides

the designer with a highly optimized system for executing all sorts of parameter changes

over time. It has a wide range of applications from animation, over time, manipulation

to delaying game events or executing side-e↵ects in several stages.

The “Visual Tools” approach: Some developers will use visual sequencing tools

like the Timeline in Unity or MMFeedbacks [63, 64]. This approach can trigger game

events, manipulate exposed object parameters and execute animations, similarly to the

tweening system approach. The di↵erence is that the design task includes a visualized

sequence of actions (or e↵ects). However, this approach still relies on expert knowledge

with the underlying systems like the particle system, VFXGraphs or Cinemachine.

The “Do It Yourself” (DIY) approach: Very experienced developers sometimes

4https://github.com/id-Software
5https://github.com/NoelFB/Celeste also discussed on Game Maker’s Toolkit:

https://www.youtube.com/watch?v=yorTG9at90g

62 CHAPTER 5. A NEW GAME DESIGN PROCESS

prefer custom code implementations of features to tailor the experience precisely to the

game they are making. This approach is also the most common when developers develop

proprietary game engines, though parts of the implemented systems often have similar

characteristics to tweening systems.

The rest of this chapter is divided into five sections. First, the design intent behind Squeezer

is explained. Squeezer is intended as a prototyping tool, allowing designers to playfully explore

the possibilities when adding audio-visual e↵ects to their prototypes. Second, the impact of vi-

sual sequencing and design without the need to implement sub-systems is analyzed through the

results of the first user study of Squeezer in [95]. Third, the question “how can e↵ect sequences

be generated through algorithmic means?” and “how does sequence generation impact the design

process?” is examined through results of the second user test of Squeezer in [94] and the au-

thor’s experiences. Fourth, the impact of adding mixed-initiative exploration is also examined

through the second user test [94]. The user test results and the author’s personal experience

indicate the impact tools can have on the design process. Lastly, the chapter is concluded by

discussing the implications of introducing a tool like Squeezer. In terms of altering the design

process for automated game design (AGD) systems and prototyping game feel. As well as how

an introduction and focus on the importance of game feel design in an academic context could

lead to better collaboration, understanding, and insight for researchers and practitioners.

5.1 Designing for Playful Exploration and Prototyping

The Squeezer user interface (UI) draws inspiration from multiple sources to build an interface

suited for playful exploration and prototyping. The following section will dive deeper into each

area. However, it is worth noting the influences for this discussion and how the Squeezer UI

attempts to inspire playful design exploration as a prototyping tool. Squeezer benefits from

having a playful UI, allowing users the immediate pleasure of exploring and designing visual

e↵ects in real-time. As described in Section 4.2, the core representation of e↵ect sequences is

the interactive visual sequences. The visual sequence designer is heavily inspired by VGDL

descriptions or rather the language modification experiments to support game feel design (see

Figure 4.4). Real-time previews are inspired by projects like Doodle Studio 95! [161] and “Stop

Drawing Dead Fish” [227]. The e↵ect sequence generator is inspired by SFXR [154], expanding

the idea of sound e↵ect generation from categories into larger e↵ect sequences. Lastly, while

the interactive evolution interface is not based on any particular system, the interface displays

various artifacts the user can select. Other interactive evolution interfaces like Picbreeder [179]

present an overview of the artifacts to choose from. However, due to the temporal nature of

e↵ect sequences (and potentially overlapping sound e↵ects), the interactive evolution interface

in Squeezer only shows a single set of e↵ects at a time.

The primary objective of Squeezer is to remove the need (while prototyping) for building

the inner workings of an audio-visual feedback system and providing the designer with the

5.1. DESIGNING FOR PLAYFUL EXPLORATION AND PROTOTYPING 63

ability to playfully explore the internal complexity of mixing multiple sub-systems in order to

gain creative insights into the resulting audio-visual feedback.

In order to foster multiple types of creativity, [16] and lateral thinking [53] several strategies

were employed and iterated on while building the Squeezer UI. The VGDL style descriptions

and e↵ects ontology form a set of constraints for the design exploration. Constraints can

improve creative thinking [1] and allow clever combinatorial ideas [16] to arise. Additionally,

the Squeezer UI is inspired by the idea of immediate feedback6, both emphasized by Victor [227]

and noted by Hobye [85] concerning design and playful exploration interfaces. Squeezer employs

several strategies outlined by Hobye in “Designing For Homo Explorens: Open Social Play in

Performative Frames” [85] to build a playful design interface. Hobye argues that the playful

nature of humans [87, 183] can be leveraged when designing interfaces for design exploration.

The ideas tie in well with Boden’s exploratory creativity [16] and the idea of prototyping. While

the ideas that originate from this type of design exploration might only be p-creative [13], and

not necessarily h-creative. The intended outcome of the e↵ect sequence prototyping process is

finding the best solution for the “feeling” the designer is attempting to juice [18].

Hobye [85] outlines six design insights for enhancing playful exploration through internal

complexity. Many of these insights align very well with Victor’s interface ideas [227, 225] and

Boden’s types of creativity [16]. Below each design insight is listed, along with an explanation

of how Squeezer accomplishes it.

Insight 1: Create an interaction space to explore through nonlinear algorithms

Squeezer’s main interface, the interactive descriptions, functions as the primary interaction

space for user interactions. Building sequences of complex behaviors that can interact and

influence the underlying objects in nonlinear ways is one of the core strengths of Squeezers

interface. Squeezer also allows the designer to create nonlinear designs through the nested

e↵ect sequences. The tree structure makes it possible to generate particles that explode in

more particles when they disappear or are randomly assigned di↵erent sub-branches during

execution (allowing multiple colors of particles or di↵erent variations of e↵ects).

Insight 2: Create a ‘sweet spot’ between predictability and chaos

Beyond the complex and sometimes unpredictable interactions that the interactive descriptions

allow, sequence generation in Squeezer introduces chaotic variations. Squeezer generates se-

quences by mutating an e↵ect sequence recipe (see Section 5.3). The mutations are severe

enough to create variation and interesting combinations but light enough to remain relatively

recognizable within certain categories. The variation allows Squeezer to “surprise” the design-

ers with uncommon combinations that are akin to Boden’s combinatorial creativity [16]. The

creative combinations, in turn, may lead to transformational ideas in the designer, as they eval-

uate the e↵ects within the context of their game events. A sort of inspirational chaos, partially

provided by Squeezer as it executes designed or generated e↵ect sequences in di↵erent game

contexts.

6Though the e↵ect previews have gone through several design iterations as noted in Section 4.2.

64 CHAPTER 5. A NEW GAME DESIGN PROCESS

Insight 3: Create a multilayered interaction space while keeping tight coupling

The description UI in Squeezer creates an overview of the interaction and the audio-visual

feedback created for that interaction. The interface provides a clear overview of the e↵ect se-

quences with only the most critical information shown. In the literal sense, the e↵ect sequences

in Squeezer are multilayered by design, and this is used as delaying e↵ects flexibly until the end

of another e↵ect. However, in a true sense, the details of each e↵ect can be found by expanding

individual elements of the sequence and exposing an additional layer of adjustable information.

Besides the e↵ects themselves, the descriptions in Squeezer also describe which game objects

will trigger the sequences and the specific conditions that trigger those sequences.

Insight 4: Create multiple interactive modes

Squeezer has multiple interactive modes ranging from coding API and visual sequence design

to sequence generation and interactive evolution. They each have di↵erent a↵ordances [142],

and designers can use them separately or in combination, depending on their purpose (e.g.,

learning the tool or exploring the design space).

Insight 5: Create interfaces that guide the interaction

As a domain-specific tool, Squeezer is designed for assisting designers in the process of getting

juice e↵ects into their games. The interactive evolution interface or the sequence generation

assists the designer with exploring the e↵ect design space in di↵erent ways. Sequence generation

can be used to get something showing almost immediately, dropping the designer straight into

a design iteration loop. On top of that, the interactive sequence design is based on an ontology

of carefully curated e↵ects. Each e↵ect is annotated with short descriptions and tooltips to

explain how the interface functions and how each parameter alters the e↵ect. The setup wizard

helps set up the descriptions to trigger under the right conditions. Likewise, every parameter

in the e↵ects will be randomly set within reasonable ranges, though most parameters can be

adjusted outside these ranges if the designer wants to.

Insight 6: Create exploration with rich real-time feedback

Squeezers preview mode allows generating or designing an e↵ect sequence while previewing it

in real-time. Providing real-time feedback is a key point in Victor’s talks [227, 225]. Real-time

visual feedback enables transformational creativity [16] and lateral thinking [53] by allowing

designers to test unusual combinations and ideas that might a↵ect gameplay in unexpected

ways. While the exploration of the design space through combinations of known e↵ects enables

the other two types of creativity Boden describes [16].

5.2. VISUAL SEQUENCE DESIGN 65

5.2 Visual Sequence Design

As described in the previous chapter, Squeezer is designed around the idea of having inter-

active descriptions. The interactive descriptions empower the designer by combining concise

and comprehensible descriptions with the power of layering information and guiding the design

process (see Figure 4.8). Squeezer further removes the need to implement these systems man-

ually by providing the system to execute the descriptions based on the specified interactions.

Moving the designers focus away from writing lines of code and keep it on the task of design-

ing visual aspects, thinking about layering e↵ects and how that impacts the experience. This

shift allows designers to focus on iteratively testing ideas, making changes in intuitive ways,

and seeing the outcome in real-time. Thus a designer using Squeezer can establish the broad

strokes of the abstract game feel communication between player and game. By sketching the

audio-visual feedback to communicate the game’s rules, intent, and actions.

Squeezer is a domain-specific tool focused mainly on the essential aspects when designing

audio-visual feedback. Though some e↵ects could arguably be used for other types of event

handling in Unity, and the tweening system built into Squeezer could be used for many purposes

in games, the domain requirements limit their general flexibility. Selecting how e↵ects are

implemented, which parameters to expose, and their range of options determine how expressive

the e↵ects are and how comprehensible they appear. Building common design patterns into

e↵ects and how they are presented eases the learning and design process.

For instance, slight alterations (pitch shifting) are a common trick in sound e↵ects to make

footstep sounds appear more organic. A similar approach can be applied by mutating or

randomizing specific parameters of e↵ect sequences. Timing variations is a common trick to

make e↵ect sequences seem more natural. In Squeezer, e↵ects can be randomly delayed, and

durational e↵ects can be executed with a random duration (set through e↵ect parameters).

5.2.1 User test

Evaluating how well Squeezer accomplishes the task of visual e↵ect sequencing and the po-

tential impact it might have. A qualitative user study was conducted to validate functionality

and discover flaws lurking in the design. The test was conducted with four users with between

four and fourteen years of experience with game development. The initial findings were pub-

lished as a work in progress at CHI:PLAY 2020 [95] The article discusses how participants

found the tool interesting and fun to work with, some of the issues discovered during the test,

and how they envisioned using a tool like Squeezer.

The user test was set up as an open-ended exploration of the tool. After introducing the tool,

the users were asked to add whichever e↵ects they saw fit to a simple Breakout clone. They

were allowed to ask questions about the interface and clarifications regarding e↵ect names7.

The users would either use step-through mode or manually add e↵ects in the editor and then

7At this point, the UI was still very rough, and it lacked many usability features such as tooltips and

drag-and-drop.

66 CHAPTER 5. A NEW GAME DESIGN PROCESS

play the game to view their designs in action. After working with Squeezer for 30-60 minutes,

the users filled out a survey about their experience.

In their feedback, they found the tool novel and engaging, and they noted that, with an

improved UI, there would be various uses for it. These included teaching and game jamming.

They also noted how much easier it was to add e↵ects that would have otherwise taken them

a significant amount of time to implement. The survey asked participants about their general

experience with game development, their experience adding audio-visual e↵ects to games, how

they would usually go about adding e↵ects into their games, and questions related to their

experience working with Squeezer. In [95] the answers to two of the survey questions are

emphasized, and the rest is quickly summarized for brevity. For the question “Would you

like to use this type of tool for prototyping in the future? If not, what would we

have to change to make the tool useful for you?” all four participants said yes, and

three specifically mentioned using it for game jams. Additionally, one participant who also

teaches game design mentioned “[...] I would also definitely give this to my students when

talking about game feel and juice. I think letting them play with these e↵ects would be a nice,

time-e�cient way of getting to experiment with juice and exploring how it changes game feel.”.

Another participant said “[...] I could also see it being useful as a communication tool on

teams, using the tool to quickly demonstrate various intents.”. These participants are game

development experts, and they both describe uses for Squeezer (beyond game jams) as a visual

and interactive aid in their work. The answers are interesting regarding the impact design tools

that support the game feel design can have on the process itself (RQ3). Communicating ideas

to others e↵ectively is a big part of both game development and teaching. Saving time when

conveying points by sketching out intentions with a tool like Squeezer would undoubtedly alter

the process itself for collaborative groups.

As a side note, only one of the four participants in the test used step-through mode; they

found it a bit confusing to understand the context when the game paused itself, and they,

unfortunately, overlooked the randomly generated “recommendations” at the bottom of the

screen. While not directly related to the visual sequencing, these participants did not see any

potential value in using step-through mode, and the one person that used it did not find it

helpful. Additionally, step-through mode did not facilitate design iteration led to the decision

to remove it in favor of a more straightforward editor-based setup. This result exemplifies

how seemingly good ideas can appear more valuable and impact the design process less than

expected. This impact is significant to note concerning how design tools can impact the game

feel design process (RQ3).

When asked about features they felt were missing during the test, one participant mentioned

reordering the e↵ects in the list. It was technically possible to remove and add e↵ects from the

list to accomplish the reordering at the time. However, to ease this process, a drag-and-drop

system was added and the ability to copy and paste e↵ects between di↵erent e↵ect sequences.

The reordering does not change the actual execution of the e↵ect sequence unless an e↵ect is

moved to a di↵erent layer (attached to be executed when another e↵ect completes). Another

5.2. VISUAL SEQUENCE DESIGN 67

participant mentioned the need to modify particle e↵ects more accurately based on parameters

from the interaction. During the first test, only one particle e↵ect was available, namely the

shatter e↵ect, which creates several copies of the object (or a list of prefabs) and applies a force

based on the interaction (in this case, a collision). To accommodate this concern, Squeezer

has since gotten two additional “explosion” e↵ects that allow more control over the particles.

Additionally, the parameters passed from interactions to the e↵ects have been changed, allowing

designers to further control parameters based on the interaction parameters.

The participants also noted which features they found most useful. One participant noted

that “Screen shake, shatter, trail, and color changes were easy and powerful to apply. It felt like

it would save me a significant amount of work if I were prototyping, and, e.g., at a game jam,

this would be useful to throw in some nice e↵ects quickly. [...]”. Another is that the e↵ects

that spawned other objects could become very powerful with a few more parameters. One

participant answered “The sound e↵ect, it just added life.” As the sound e↵ects in Squeezer

uses a version of SFXR [154] adapted to Unity, it only confirms that SFXR is an excellent

tool for adding sound e↵ects. However, summing up those statements, they cover many of the

e↵ects available with Squeezer. Combined with the answers about missing features, it suggests

that Squeezer’s e↵ects seem to cover the design needs for audio-visual e↵ects adequately.

As part of the survey, the participants needed to evaluate the descriptions and the indi-

vidual elements they are made of. While some participants found it straightforward enough

to understand the hierarchy and elements of a description, others found they were hard to

read. Certain elements blended together, making it confusing to understand at first for some

participants. The UI concerns and issues in both the first and the second user test have been

iterated upon for clarity and better separation of the elements that make up a description: the

interaction targets, the interaction triggers, the e↵ect groups (where to apply the e↵ects) and

the e↵ect sequences themselves.

When asked how they would usually add e↵ects to games, all four participants mentioned

writing code (or reusing old scripts). Some also use animation tools like the animator in Unity or

tweening libraries. While writing or reusing small scripts for this task is how most experienced

game developers design audio-visual e↵ects in their games, the know-how is based on experience

and largely hidden to novice game developers. With tools that present common e↵ects and their

parameters like Squeezer, not only does this information become visible to novice designers, but

it becomes an easy way for experienced designers to quickly design something without needing

to reacquaint themselves with old code. Additionally, the visual presentation of e↵ect sequences

allows designers to focus on and experiment with the design instead of making sure the code

works or looking up how to implement something. This more straightforward workflow ties

back to their answers related to whether they would like to use a tool like Squeezer. From

the responses, it seems Squeezer would be useful in a prototyping context (like a game jam)

when exploring the e↵ect design for a game. However, it could also help teach novice designers

about audio-visual e↵ects or improve communication between di↵erent team members to convey

specific intents and ideas.

68 CHAPTER 5. A NEW GAME DESIGN PROCESS

Figure 5.1: The Moog modular synthesizer “system 55”.

Revisiting the larger question in this chapter “what is the impact of design tools on the

game feel design process?” (RQ3) The Squeezer user testing suggests that the impact of visual

sequence design shifts the main focus away from “how to implement and orchestrate the e↵ects”

towards the design problem of “composing the right e↵ect sequence”. The shift allows designers

to focus on the communicated feeling. As Lisa Brown says, “you’re not juicing your game –

you’re actually picking a feeling that your game should communicate and juicing that feeling”

[18]. Further, providing a tool built for the game feel design process, that process becomes

more transparent to novice designers, making it useful for teaching.

5.3 Sequence Generation

The initial version of Squeezer gave designers a tool for juice design. A visual e↵ect sequenc-

ing tool with many di↵erent e↵ects to choose from and combine to produce the desired game

feel. As noted in [95] Squeezer can be viewed as a juice e↵ect synthesizer. Squeezer is similar

to modular synthesizers (see Figure 5.18), where modules can be connected in many di↵erent

ways to generate sound. Each module in these synthesizers modifies the electric signal in some

way, just like e↵ects in Squeezer modifies the final audio-visual result in some way.

The main research question of this thesis asks how can design tools support game feel

design? Following the line of investigation related to providing more support, this section

8See also https://www.moogmusic.com/news/return-moog-modular

5.3. SEQUENCE GENERATION 69

Figure 5.2: The SFXR user interface with category buttons on the left, adjustable parameters

in the center and exporting options on the right.

explores the question “how can e↵ect sequences be generated through algorithmic means?” as

well as “how does sequence generation impact the design process?”

The sequence generation in Squeezer is inspired by the simple yet powerful approach in

SFXR [154] and its purpose, as described by the author Tomas “DrPetter” Petterson:

Its original purpose was to provide a simple means of getting basic sound e↵ects into a game

for those people who were working hard to get their entries done within the 48 hours and didn’t

have time to spend looking for suitable ways of doing this. The idea was that they could just hit

a few buttons in this application and get some largely randomized e↵ects that were custom in

the sense that the user could accept/reject each proposed sound.

The approach is based on a synthesizer with a series of buttons to randomize parameters

resulting in a wide range of sound e↵ects. Seen in Figure 5.2 there are eight “category” buttons

(including “randomize”), that each randomly adjusts parameters within certain preset ranges.

Each category generates a sound e↵ect with distinct characteristics, such as “jump” generating

what can best be described as the sound of a jump curve. Petterson achieved this by identifying

parameters common to each category and providing acceptable ranges for those.

70 CHAPTER 5. A NEW GAME DESIGN PROCESS

The purpose of adopting this approach in Squeezer is similar to the purpose described by

Petterson, providing a simple means of getting basic e↵ect sequences into a game. Interestingly

Petterson also notes:

Anyone else in the same situation (need some basic sound e↵ects, don’t really care about

top quality, have no idea where to get them) should find it pretty useful, if nothing else then

just as placeholder sounds to kill the silence until final content has been produced.

The sentiment of using placeholder sounds to kill the metaphorical silence is interesting in

the larger context of adding juice e↵ects to a game. Squeezer can be used (if nothing else) to

create placeholder e↵ects that remove the emptiness until final content has been produced.

Besides providing people with a way to generate placeholder sound e↵ects for their games,

SFXR also allows them to tinker with the generated parameters. This tinkering opportunity

provides a playful platform for exploring and understanding how each parameter a↵ects the

generated sound. The categories provide a frame of reference for exploring what can otherwise

be a daunting possibility space. Designing is a learning experience, and exploring the design

space allows a designer to discover how elements interact. O↵ering support for guiding novice

designers through design space exploration is one way of o↵ering support for a design task.

Through an e↵ect sequence generator, designers can explore the possibilities of specific areas

in the game feel design space. In addition, using a sequence generator allows novice designers

to learn which elements make up well-known types of e↵ects such as “jump”, “impact” or

“explosion”.

5.3.1 Guiding the Sequence Generation

In order to understand the impact of sequence generation, it is relevant first to answer

the question “how can e↵ect sequences be generated through algorithmic means?” As with all

procedural content generation, there are many ways to achieve the goal. In the case of Squeezer,

the descriptions including e↵ect sequences already define the shape of the output. A hierarchy

of e↵ects must be generated, preferably a sensible one. Because Squeezer allows e↵ects to be

nested (delayed until the former e↵ect finishes), randomly generating a tree of e↵ects is as easy

as selecting a random e↵ect in the hierarchy (or nothing, i.e., the top layer) and adding another

e↵ect to it. The number of e↵ects added can be adjusted, and the tree structure can be flatter

or deeper depending on the probability of selecting an e↵ect from the hierarchy or nothing.

While generating random sequences of e↵ects could inspire adventurous designers during

brainstorming. Generating sequences that conform to specific categories would let designers

search for sequences that match their needs more easily. Drawing inspiration from SFXR [154],

categories like “explosion”, “impact” or “jump” can be dissected into the base elements that

occur in a standard e↵ect sequence of that kind. In SFXR, the synthesizer has over twenty pa-

rameters that control how the generated sound wave is created, and the synthesizer maintains

a preset for each parameter for each category. Some parameter values are fixed, while others

5.3. SEQUENCE GENERATION 71

are randomized within a specific range. This way, the “explosion” button can generate random

sounds with a quick initial burst of low frequencies that slowly die o↵ to maintain a rumbling

sound. Similarly, Squeezer maintains a preset hierarchy for each category; an example of this

hierarchy can be seen below:

Explos ion example

− Sound E f f e c t : Explos ion

− Screen Shake : Duration=0.05−0.1

− Po s i t i o n a l Flash : Sphere shape , Duration=0.05−0.2

− Sca l e to Zero

− Pa r t i c l e Puf f : Sphere shape , Count=10−50

− Fade to black : Duration=0.5−2.0

− Destroy

− Sca l e to Random

Opt iona l ly f o r b ig exp l o s i on a l s o add deb r i s and f u l l s c r e e n f l a s h :

− Fu l l s c r e en Flash : White , Duration=0.01−0.05

− Pa r t i c l e Puf f : Square shape , Count=5−10

− Fade to black : Duration=0.1−0.5

− Destroy

Generating the same explosion sequence every time might be helpful when a designer knows

the sequence they want is similar to the “recipe”. However, as a tool for exploring di↵erent

options, that is not very helpful. Instead, Squeezer randomizes the generated e↵ect sequences

in two di↵erent ways.

First, every e↵ect has randomly initialized parameters within some predefined ranges. Sec-

ond, the generated e↵ect sequence is mutated. The mutation algorithm steps through the e↵ect

sequence, and for each e↵ect, it has a chance to remove the e↵ect and add a new nested e↵ect.

Additionally, the mutation algorithm also slightly mutates the e↵ect parameters (which can

cause them to move outside the predefined “reasonable” ranges). Combining these two features

creates e↵ect sequences that align with the original recipes but can diverge in many di↵erent

ways.

72 CHAPTER 5. A NEW GAME DESIGN PROCESS

Aside from the presets and initial randomization in each e↵ect. The sequence generator

takes a category and intensity value. These values are used to build a base sequence with sev-

eral e↵ects nested to create the desired intensity and type (like an explosion with more or less

“bells and whistles” e↵ects). The sequence generator then runs the base sequence through the

mutation system, creating additional variety. The generated e↵ect sequences are still mostly

interpretable as the intended category. However, as with SFXR, the output is not always in

line with the designer’s wishes. Luckily, there are several ways to deal with this issue:

1) The designer can generate a new sequence based on the same settings.

2) The designer can mutate the whole sequence to explore the local search space.

3) The designer can lock parts of the e↵ect sequence, so the mutations cannot modify them.

4) The designer can manually tweak the values of individual e↵ects in the sequence.

Each e↵ect group has an expandable “generator” menu to accommodate these options.

Figure 5.3 shows the generator interface with the expanded generator menu and four locked

e↵ects. Locked e↵ects are una↵ected by mutation and regeneration. Regeneration is used

to generate a new sequence; the generator avoids changing the locked e↵ects and will avoid

generating additional e↵ects of the same type. For example, a locked sound e↵ect makes the

generator avoid additional sound e↵ects when regenerating. This locking allows the designer

to keep core parts of a generated e↵ect and regenerate the rest.

Figure 5.3: The e↵ect tree generator interface featuring a drop-down menu for selecting a

category and a slider for determining intensity. The mutate and regenerate buttons respect

locked parts of the e↵ect tree.

5.4. INTERACTIVE EVOLUTION 73

5.3.2 Reflecting on Sequence Generation

With the introduction of sequence generation, it becomes interesting to ask, “how sequence

generation impacts the game feel design process?” (RQ3)

While visual sequence design allows the user to quickly create an e↵ect sequence and eval-

uate it using previews or running the game, a designer still has to build the sequence before

evaluation and iteration can begin. Sequence generation makes it easy to get into an evaluation

and iteration loop quickly. It can be beneficial for exploring the design space and di↵erent

combinations of e↵ects. The generated sequences are based on recipes. A designer can learn

how each e↵ect influences the final result by generating and testing multiple variations or dis-

abling di↵erent parts of the sequence. Even novice designers can quickly evaluate a generated

sequence and decide if they want to regenerate, mutate, keep parts or tweak the parameters

manually.

The sequence generation has only been evaluated indirectly through the interactive evolution

interface (discussed in the next section) and automated game design. From personal experience,

the author can say that sequence generation can jump-start the juice design process. It will

also, at times, generate sequences with surprising “side-e↵ects”. These side-e↵ects can cause

unexpected changes to game mechanics that can inspire new ideas and changes in the core

gameplay. A side-e↵ect example the author has seen is the discs in the DISC ROOM [24] demo

“scaling up” after hitting a wall. Larger discs are much harder to avoid, making the game more

hectic. This side-e↵ect could easily be turned into a new enemy type in DISC ROOM. In that

light, the generated sequences can foster creativity, not just for juice design but also for the

overarching game design.

5.4 Interactive Evolution

Building on sequence generation and mutation and to allow further exploration of the design

space of generated e↵ect sequences and matching it to gameplay, an interactive evolution [185,

179, 235, 60] interface was built for Squeezer [94]. We wanted to explore the possibilities of co-

creativity [233] in Squeezer with a mixed-initiative [144] approach. In this setup, computers and

humans collaborate to explore the design space to take advantage of their individual strengths.

While the computer can quickly generate many artifacts, audio-visual artifacts (with temporal

aspects) are hard to evaluate procedurally. Interactive evolution replaces computer evaluation

in an evolutionary algorithm with human evaluation. The designer guides the design exploration

by selecting the most suitable or pleasing artifacts. The computer then generates a new batch

of artifacts based on the designer’s choices, and the evaluation process starts over. This cycle

continues until the generated artifact is good enough for the designer’s needs.

For Squeezer, we hypothesized that allowing users to explore the design space through

interactive evolution would be a good way to learn what the tool can do. We also envisioned

that it would be a gentle introduction to various e↵ects for people who are new to the idea of

designing juice e↵ects. With the ability to generate and explore e↵ect sequences, novice juice

74 CHAPTER 5. A NEW GAME DESIGN PROCESS

designers could build confidence before looking at the descriptions and tweaking parameters

manually.

The e↵ect sequence generator in Squeezer provides an excellent foundation for building an

interactive evolution interface. The mutation system allows interactive local search of e↵ect

sequences through mutating and previewing them in the editor. However, while previewing

e↵ect sequences is fantastic for iterating on a design, the sequence generator UI only accom-

modates a single sequence at a time. Further, the e↵ect sequences also need to be evaluated in

the full context of a game and its interactions. The interactive evolution interface is designed

to accommodate multiple sequences and full context evaluations while playing the game. This

interface allows the designer to manually or automatically switch between di↵erent sets of ef-

fects to evaluate the game feel of each set. While it can be hard to play a game and design

the juice e↵ects simultaneously, playing a game and evaluating how well e↵ect sequences fit the

interactions is a much simpler task.

Interactive evolution interfaces usually display multiple artifacts side by side (e.g., Picbreeder

[179]). This type of interface allows the user to get a quick overview of the underlying pop-

ulation. However, playing every artifact at once becomes overwhelming quickly for temporal

artifacts such as sound or juice e↵ects (which can include sound). Instead, such systems must

allow users to select the artifacts they would like to evaluate and “play” them separately. In

addition, juice e↵ects are hard to evaluate in a vacuum. Ideally, they are shown in a game

context. However, that means reloading the game scene with the correct context to create a

“clean slate” for evaluating individual e↵ect sequences. Squeezer contains a set of demo scenes

(both 2D and 3D versions, an example is shown in Figure 5.4) for this purpose. Each scene is

automated and displays a conceptual interaction for triggering e↵ects (such as an object jump-

ing, shooting, or landing). These scenes provide a clean stage with simple, repeatable events,

where a designer can focus on getting feedback for a specific interaction correctly. Another

option is to use real game scenes, which provide the full context, but that can be messy and

might need the designer to provide player input.

The interactive evolution in Squeezer is relatively simple, generating a set of eight di↵erent

e↵ect sequences for the selected trigger event. The interface (seen in Figure 5.4) cycles through

each of the e↵ect sequences automatically, resetting the scene before showing the following

individual. The time between switching individuals can be adjusted and even paused if the

user wants to examine a specific e↵ect sequence more closely. When ready, the user can select

one of the eight e↵ect sequences as the seed for the next generation of individuals. A new

generation is created by copying the selected individual eight times and mutating each one

some amount. In the future, it would be interesting to implement more advanced versions of

interactive evolution with larger populations, multiple generations of change, and displaying

a diverse set of individuals based on their novelty. The goal of the initial experiment with

interactive evolution was to provide a proof of concept for a mixed-initiative approach to juice

design. To assess whether interactive evolution would be the correct direction and how well the

interface would work for this exploration.

5.4. INTERACTIVE EVOLUTION 75

Figure 5.4: The run-time interactive evolution interface, seen here showcasing an explosion

e↵ect triggered upon object collision in a 3D scene.

5.4.1 User Test

We evaluated the new interface and the improvements to Squeezer through another qualita-

tive user study in [94]. Once again, selecting users with a wide range of game design experiences.

Our initial test found that novice users were excited by adding and removing e↵ects to sequences

[95]. We wanted to confirm our initial findings with this second round of user tests and test

the e↵ect exploration through the interactive evolution interface.

Five experts with no prior experience with the tool were invited to evaluate Squeezer. They

had between two and fifteen years of experience making and designing games, and they had used

several techniques to implement juice e↵ects. The user test was conducted through a virtual

meeting, with the users running the tool on their own computers while video conferencing with

the author. Following the one-two hour sessions, the participants filled out a survey answering

questions about their experience, usual approach to game feel design, and experience working

with Squeezer. The user test was split into two parts, an open-ended exploration using the

interactive evolution interface to design e↵ects for a game prototype (DISC ROOM [24]). The

goal was to get the users familiarized with the tool and its e↵ects and determine if and when

user fatigue would set in. User fatigue is a common issue in interactive evolution interfaces, as

users become tired of evaluating artifacts. In some systems like Picbreeder [179], the artifact

evolution is shared among all users, allowing multiple users to build o↵ of each other’s work. In

Squeezer, the designers evaluate e↵ect sequences while playing the game, potentially altering

the onset of user fatigue. We expected that the experts would explore the evolution relatively

quickly while getting familiar with the e↵ects.

76 CHAPTER 5. A NEW GAME DESIGN PROCESS

Following the first test phase, when our participants expressed the desire to accurately

tweak the e↵ects or guide the exploration. They were presented with the editor UI for manually

tweaking and mutating the e↵ect sequence and the option to lock parts of the sequence. One

surprising takeaway from these tests is that the mutation locking system provided a way to

shape the exploration in the interactive evolution. Because the locking system is based on a

hidden data field on the e↵ects themselves, the locks are transferred from selected artifacts

to their “o↵spring” in the interactive evolution. This transfer lets designers shape or limit

the exploration to certain parts of the e↵ect sequence. In addition, the designers can lock

e↵ects that are nearly good enough and tweak values manually, then evolve the rest of the

e↵ect sequence. The granularity that Squeezer provides on the mixed-initiative spectrum (see

the spectrum of agency diagram in Figure 2.3) allows designers of varying confidence levels

to explore the design space with as much support as they wish. Reaching almost from full

PCG to fully manual designing, Squeezer can accommodate a wide range of needs to help

users find the proper e↵ect sequence for a game prototype. Our participants found Squeezer’s

potential as a mixed-initiative tool for designing juice e↵ects very promising. Some expressed

interest in using it for learning, teaching, and prototyping e↵ects. One participant found it

“chaotic, but also playful.” It pushed them out of their comfort zone while helping them to

“explore a possibility space too large to contain” in their head. [94]. Playful exploration has

been part of the goal for Squeezer since the beginning, and these preliminary user tests indicate

that it has been somewhat successful. We also observed how less-experienced participants

in our user tests tended to use the interactive evolution longer than the more-experienced

designers. Additionally, while using the standard UI, less-experienced designers would explore

the design space more often by using the generator and tweaking the descriptions. More-

seasoned participants would rely on manually exploring the combinations and possibilities of

various e↵ects.

Our user test showed us that displaying e↵ects one at a time was not the perfect interface

for an interactive evolution. While the interface worked, it required much explanation, and it

was somewhat confusing to work with. More experienced users would quickly note that the

evolution was going too slow for their liking, and they would love to tweak elements themselves.

The shorter evolution sessions indicate that the presented artifacts require greater diversity or

better options for guiding the process than simply selecting the best individual.

A few participants noted that while Squeezer seemed well suited for game jams and small

prototypes. They had concerns concerning moving from the prototype e↵ects generated by

Squeezer to the e↵ects of a finalized game. As Squeezer currently targets the prototyping

phase, the current e↵ects lack both performance and how much they can be adapted to the

aesthetic of a game. However, Squeezer is extensible enough that production quality e↵ects

could potentially be implemented. These production quality e↵ects could easily rely on more

heavily optimized sub-systems in Unity (or other game engines) to perform the heavy lifting

while leaving only the sequence design to Squeezer. One tester who usually relies on writing

5.5. DISCUSSION 77

code requested an API to trigger an e↵ect sequence from code9.

I think I would prefer a more lightweight version that just let’s me explore e↵ects that I

trigger manually (since I’ll be writing C code for everything).

I’d love a Squeezer.Trigger(“ExplosionA”), where ExplosionA is a preset that I can save/load-

/evolve/inspect/...

I don’t think I would want Squeezer to be in charge of the event triggering, but I understand it’s

use for more visual design

From the comment it is clear that they still think the option to generate, mutate, evolve,

and edit the sequence manually through the UI, is valuable and important for other develop-

ers. To summarize the preliminary answers to how interactive evolution impacts the game feel

design process (RQ3):

• The test indicates that interactive evolution can surprise and even inspire designers to

try new things.

• Interactive evolution seems to appeal more towards less experience designers, allowing

them to spend more time exploring the e↵ects and their impact.

• Without significant diversity in the presented e↵ect sequences and meaningful ways to

impact the direction interactive evolution quickly looses the interest of more experienced

designers.

• To make further claims about the impact of interactive evolution the interface has to be

improved.

5.5 Discussion

Looking back at the main research question how can design tools support game feel

design? This chapter answers the question “what is the impact of design tools on the game

feel design process” (RQ3) concerning Squeezer.

It is hard to claim that the impact of design tools in general on the game feel design

process (RQ3) has been described in this chapter. However, it has provided initial insights into

designing support and how it a↵ects the game feel design process. There is still a lot to be

done, primarily related to generating and evaluating game feel. While preliminary testing of the

impact of mixed-initiative support has been done through evaluating an interactive evolution

interface [94]. More research is needed to explore new algorithmic approaches and possibly

discover other ways of providing assistance or support.

9Although this was not presented as an option during the second user test, Squeezer can serialize (save) and

deserialize (load) e↵ect sequences from files. These serialized e↵ect sequences can then be loaded and executed

through the API. Serializing e↵ect sequences provides additional opportunities for sharing and collaboration

between multiple projects and designers, as well as using a code-based approach.

78 CHAPTER 5. A NEW GAME DESIGN PROCESS

Like game feel design is meant to invoke certain feelings and elicit certain responses and

moods. There is also intent behind other types of software; in this case, game development

is the overarching purpose. However, as discussed in the first section, the intent behind the

prototyping tools explored in this thesis is playful exploration. The interface invokes elements of

a design philosophy to inspire playful exploration and spark creativity in the users. Squeezer is

meant to provide a playful exploration first approach to juice design, where traditional methods

require more asynchronous actions (writing code and designing without immediate feedback).

Supporting designers in the creative process with a tool that allows playful exploration of the

design space by employing strategies identified to excite the playful human [85]. Many of these

traits are shared by design tools like Doodle Studio 95! [161] or SFXR [154], and is what Victor

calls for when urging developers to “Stop drawing dead fish” [227]. Victor calls for the design

tools to provide direct manipulation and strive to present the designer with as much immediate

feedback as possible.

Squeezer allows designers to explore how di↵erent e↵ect sequences a↵ect their games before

thinking about how to implement systems that can execute them. Visual sequence design

combined with an interactive description “language” provides the means to explore potential

combinations of available e↵ect types and visualize their output (through preview mode or

running the game) without prior knowledge about designing juice e↵ects. Immediate feedback

is provided by previews of the designed e↵ect sequence when rapid iteration is required.

Building sequences manually still takes time, and it requires either learning or knowing

which general e↵ect types go together to create the right e↵ect sequence for the game event.

Sequence generation supports novice designers while learning by creating reasonable variations

of common structures for specific categories of events. At the same time, experienced designers

can use sequence generation and mutation to get started or explore niche variations of e↵ects

quickly.

Interactive evolution of e↵ects was tested in Squeezer in order to provide further support for

novice designers and designers who are looking for inspiration. Limited user testing indicates

that novice designers enjoy the heavy-handed guidance provided by interactive evolution more

than experienced designers. While experienced designers find it neat, they more quickly wanted

to manipulate the generated and mutated e↵ect sequences directly. However, the participants

did indicate that interactive evolution created options they did not expect. When the presented

options that di↵er from the ideas the designer is exploring, they can sometimes reveal new and

unexplored game ideas. Without a system like interactive evolution, or the sequence mutation

system, designers might never find or try these alternative possibilities.

Tools for supporting a more open and playful approach allow better creative exploration of

game feel design. They allow novice designers to engage with the subject more easily. Moreover,

tools that support a design-first approach allow designers to stay in the creative mindset without

concern for the underlying systems.

Besides the features explored in our user testing, Squeezer allows designers to save and load

the e↵ect sequences. Building a library of e↵ect sequences can impact how a designer approaches

5.5. DISCUSSION 79

game feel design. Such a library could be used as suitable placeholders for common patterns

they use or as a starting point they tweak to fit a specific game. A library of e↵ects could

replace the sequence generator for some designers. At the same time, they could still create

some variation by mutating the loaded sequences manually after they are loaded. Designers

could also share their designs with others using Squeezer or build a collective database of juice

e↵ects. A database would be great for novice designers to choose from and to learn the art of

game feel design. A database of e↵ects could also provide an interesting base for building game

feel design support through machine learning and recommender systems.

Summarizing the answers found concerning the question “what is the impact of design tools

on the game feel design process” (RQ3):

• Indicated through testing of the visual sequencing in Squeezer’s interactive description

UI. Playful design interfaces beneficially impact the engagement and exploration of the

possibility space.

• Designers appreciate the interface providing an easy way for designers to explore a set of

juice e↵ects and their impact on games. Allowing them to focus on the design exploration

rather than on the implementation details of the underlying system.

• Though sequence generation has seen little direct testing, the generator can surprise and

delight users. For example, in the interactive evolution, the generator provides the initial

set of e↵ect sequences, which surprised and intrigued the test participants more than

once.

• Sequence generation can impact automated game design by providing the foundation for

adding juice e↵ects to the generated games.

• Interactive evolution can support less experienced designers in familiarizing themselves

with the possibilities a tool provides.

• Diversifying the set of e↵ect sequences shown in interactive evolution may provide more

meaningful exploration, especially for experienced designers who otherwise quickly lose

interest.

• Multiple interaction modes allow tools to support di↵erent designer workflows. By pro-

viding a flexible mixed-initiative interface, designers can settle on the exact amount of

support they need in their work.

The full impact of design tools on the game feel design process is hard to discern. However,

through the testing of Squeezer, it seems the impact is a positive one. With a better focus

on design exploration and the potential to discover new and exciting combinations and game

mechanics.

80 CHAPTER 5. A NEW GAME DESIGN PROCESS

5.5.1 Automated Game Design

Having multiple di↵erent interaction modes allows di↵erent users, including AI agents, to

use Squeezer. Interestingly, the API for saving, loading, and triggering e↵ects through code

that one of the test participants from [94] requested formed an excellent starting point for

integrating with AGD systems.

Just like human users need to adapt to using new tools, AGD systems need to be adapted

to use new tools. Apart from adding a juice design mode into the system, the whole visualizer

had to be rebuilt to accommodate running e↵ects between actual game turns. The integration

between Squeezer and the AGD system relied on determining the most basic events used (e.g.,

spawn piece, destroy piece or move piece). The system had no way of performing lookups for

color palettes, mood boards, or other design tools human designers would use. So the AGD

could not adjust the colors or intensity of the e↵ects to suit the game’s properties; instead, it

would match sequence generation categories to these event types. Besides this, games generated

by Puck could easily use the destroy and spawn events to change a board piece into another

piece, and the current implementation would not capture this context. Instead, such a “change

piece” event would execute both the e↵ects associated with the destroy and the spawn events,

which could quickly become confusing. An AGD trying to add juice e↵ects to a game needs

to adjust e↵ects based on their context. That context is based on color palettes, aesthetics,

and the game’s atmosphere. The more significant implication is that “meta” events such as

“change piece” or even more complicated combinations (e.g., scoring a board state and adding

points to the scoreboard) need to be used as context for the designed e↵ects.

Supporting game feel design in an AGD system requires a way to analyze e↵ects in relation

to their game context. Additionally, comparing multiple e↵ect sequences to each other and

evaluating which one is most appropriate is equally important, and both remain open questions

for future research.

One suggestion we propose is to perform A/B testing10 online, using human player prefer-

ences, to select the correct e↵ect sequences. For instance, either by asking human co-authors

to evaluate the e↵ects or by creating online polls for people to vote on the most suited e↵ects.

The following chapter will discuss “how the addition of game feel design tools alters the qual-

ities of games” (RQ4) by exploring how designing e↵ects using Squeezer changes the resulting

games. The main results for that discussion stem from testing games generated by Puck using

Squeezer in the AGD process. But also include examples and experiences by the author and

participants in the expert user tests of Squeezer.

10See https://en.wikipedia.org/wiki/A/B testing

Chapter 6

Designing Game Feel with Squeezer

If you really want to understand something, the best way is to try and explain it to someone

else.1

Related Papers

Johansen, Pichlmair, and Risi, Squeezer - A tool for designing juicy e↵ects

Johansen, Pichlmair, and Risi, Squeezer - A mixed-initiative tool for designing juice e↵ects

Johansen and Cook, Challenges in generating juice e↵ects for automatically designed games

This chapter focuses on “how the addition of game feel design tools alter the qualities of

games?” (RQ4) Reiterating first and foremost the goal and intent behind adding juice to

games. As well as on surveys from Kao [105] and Hicks et al. [84], on the influence of game

feel.

The results presented in this chapter are based on adding juice to games in an AGD process

[93]. This chapter presents the numerical ratings of games with basic tweening animations,

games with generated e↵ects, and human-designed prototype e↵ects. As well as a broad stroke

analysis of the comments the participants provided with their ratings. These comments were

not published as part of the original paper [93] due to page limitations. Additionally, the

chapter reflects on the use of Squeezer by the author and test participants in the two user tests

outlined in [95, 94].

Finally, the chapter discusses the potential impact of game feel design tools for future game

development. How game feel design tools could alter automated game design and game AI

research. Both in terms of the games produced and, more importantly, in terms of the interest

in the field.

1From “Dirk Gently’s Holistic Detective Agency” by Douglas Adams, 1987

81

82 CHAPTER 6. DESIGNING GAME FEEL WITH SQUEEZER

6.1 Game Feel Design Reflections

As discussed in Chapter 3, the goal of juice is to amplify game events, providing excessive

amounts of feedback to the player in order to convey the significance, value, and e↵ect of the

interaction. An example could be hitting an enemy in Samurai Gunn [216] (see Figure 6.1). A

hit momentarily freezes the game, highlights (horizontally or vertically) the rows/columns where

the event happened, and causes a white flash to appear over the hit character. Additionally,

red particles are splattered in the same direction as the impact after the game resumes. Freeze

frames and blacking out the rest of the screen to highlight the hit guide the player’s vision to

notice the event. Additionally, splattering red particles over the nearby area conveys the game

history and signify where players fought.

Juiciness, however, does not just convey the action and significance of the game; it also

provides the player with “[...] an immediate, pleasurable experience.” as Hunicke says [88].

Providing feedback for every little thing happening in the game, player provoked or otherwise,

makes the game feel richer and more alive. Hicks et al. [84] says “Juicy design refers to the

idea that large amounts of audiovisual feedback contribute to a positive player experience.” In

their article exploring “how exactly feedback needs to be constructed to be perceived as juicy”, by

surveying 17 developers, creating an analysis framework, and applying it to two commercials

(arguably juicy) games. The framework created by Hicks et al. attempts to make designing

juiciness more actionable for designers and academics. They highlight some of the potential

properties resulting from adding juice to a game. For example, do the mechanics of the game

translate into expected feedback? Does the game directly respond to the physical input of

a button? Are the reactions to action exaggerated to detail state change? The questions

are meant to provide actionable design points that could potentially lead to “better game

feel”. Hicks et al. highlight several interesting points from their survey, including “Juice

should be used to direct the players attention, not divide it.” Indicating that juicy feedback

can become overwhelming if improperly applied. This leads us directly to Kao’s work [105],

where Kao surveyed over three thousand participants to determine how the amount of juice

influences the game experience. Tracking both playtime and actions and asking a small set

of participants to rate how well e↵ects fit the actions. Kao found that both no e↵ects and

extreme juice e↵ects led to lower playtime and that “Juiciness has a significant impact on

player experience. Specifically, both the No Juiciness and the Extreme Juiciness conditions

thwarted player experience as compared to Medium Juiciness and High Juiciness.”.

The fact that extreme amounts of feedback lead to less player engagement indicates that it

functions as a friction [168] the player has to fight. Extreme juiciness then becomes part of the

resistance [4] the game provides, instead of supporting [57] the player in their understanding of

the game.

On the other hand, adding juiciness in moderate amounts leads to higher engagement,

longer playtime, and players interacting more with the game’s systems. As Juul describes it:

“Juiciness does not simply communicate information or make the game easier to use, but it

also gives the player an immediate, pleasurable experience.” [102] Kao interestingly only notes

6.1. GAME FEEL DESIGN REFLECTIONS 83

An intense battle between two characters, where the one on the right is about to be hit by the

blue bullet.

The same battle a split second later, after the character on the right has been hit. Everything

but the “row” with the action on has been blacked out.

Figure 6.1: Samurai Gunn

84 CHAPTER 6. DESIGNING GAME FEEL WITH SQUEEZER

the detrimental e↵ects of no or extreme juiciness. Another way of looking at the results would

be to state that moderate amounts of juiciness remove one type of friction [168] from the game.

Lower friction allows players to explore the game experience further and allows games to live

up to their full potential more easily.

6.2 Reflecting on Squeezer

Reflecting more directly on how Squeezer alters the qualities of games (RQ4)? As discussed

in the previous section, juiciness in moderate amounts allows games to live up to their full

potential. As such, it could be inferred that game feel design tools like Squeezer allow games

to live up to their full potential more easily, as they make designing juiciness easier. Tools

like Squeezer makes it easier to explore many types of juicy feedback, letting designers more

easily evaluate if the amount of juice is adequate. Having a tool that makes it easy to apply

e↵ects in any part of a game increases the designer’s chance to explore the design space further.

Without tools that make designing e↵ects easy, they will sometimes be overlooked or ignored

due to time constraints. As such, without tools for game feel design, the game feel might su↵er

involuntarily as a consequence.

All through the development and testing of Squeezer, the descriptions and the underlying

sequence generator have surprised and intrigued users. Similarly, the interactive evolution

has surprised both the author and our test users by suddenly adding e↵ects that influence

gameplay. While Squeezer was never meant to change the mechanics of a game, sometimes

emergent features can be revealed through the exploration of e↵ects. Accidentally designing

new game mechanics when experimenting with juice e↵ects is a wonderful side e↵ect of using

Squeezer. This type of design exploration helps designers illuminate parts of the design space

during the prototyping phase. Knowing more of the design space allows designers to decide more

e↵ectively which parts of the design need to be cut and which need to be kept. Prototyping is all

about testing di↵erent approaches, ideas, and solutions. Many juice e↵ects are closely related to

game-altering mechanics or features; with a juice design tool like Squeezer, it is more likely for

these to be explored as “happy accidents”. However, they might not be as easily discovered in

traditional workflows, as the designer is less likely to stumble upon them during development.

These properties allow Squeezer to be part of the more extensive design exploration, impacting

the mechanics and the feedback and appearance of a game. Encouraging lateral thinking [53],

not just by experimenting with various combinations of feedback e↵ects, but also leading to

exploration of new game design ideas.

6.2. REFLECTING ON SQUEEZER 85

Examples of areas where juice e↵ects and mechanics closely overlap:

• Adjusting the size of objects is a common juice e↵ect.

Goal: indicate various physical reactions, build anticipation, follow-through or signify

a weight change.

Side-e↵ect: if the size is not returned to the original quickly, it can cause objects to

be interpreted as more or less threatening (if the collider or hitbox grows with the object,

they might even alter collision detection). For instance, the discs in the DISC ROOM [24]

demo growing to double size makes them a lot more challenging to dodge. This influences

gameplay and, as such, can be explored by the designer as a potential enemy type.

• Blinking by making the object alternate between transparent and opaque.

Goal: Showing an object was hit or is invulnerable.

Side-e↵ect: Making things such as enemies or the player character entirely invisible

for short periods can make control more challenging. If the duration of invisibility is too

long, it can become hard to control the player character or dodge potential enemies while

they are invisible. Similar e↵ects can happen with localized or fullscreen flashes of color

that indicate impacts or damage. Fullscreen flashes could also simulate lights going out

in a horror game.

• Slowing time down for a split second.

Goal: Short bursts of slow-motion functions like freeze frames allowing the user to

perceive what happened.

Side-e↵ect: Slowing time down for extended periods works more like bullet-time,

making the game less challenging or allowing the player more time to deal with a challenge.

• Adding physics simulation (ragdoll) to units or characters that are unconscious or dead.

Goal: A common juice e↵ect for making objects more interesting after they stop

interacting normally.

Side-e↵ect: Adding it to a player or non-player object while they are being controlled

can lead to new unintended challenges. For example, in our early user test, a user added

this to blocks in Breakout, so they would start falling when hit instead of being destroyed

immediately. The falling blocks added a surprising additional challenge to the game, as

they would still interact with the ball while falling. A designer might look at that and

add a new block type into their game that has to be hit twice and begins falling after the

first hit.

Flexible and versatile game design tools allow designer expressivity. The more “happy

accidents” a tool like Squeezer brings into the design process, whether from co-creative support

mechanics or because some elements are closely related and easy to explore, the more valuable it

86 CHAPTER 6. DESIGNING GAME FEEL WITH SQUEEZER

becomes while prototyping. Not only does Squeezer allow designers to more easily explore and

find the right type of juice e↵ects for their game, but it also allows them to laterally explore

di↵erent game mechanics and ideas closely related to these types of e↵ects. The examples

listed above are just a few examples of how Squeezer can influence game mechanics and design

exploration.

6.3 Results from the AGD experiments

To explore how games created with an AGD system are altered by adding juice design into

the process. We can look to the results from [93], where we added juice design into an AGD

system and created a user study to verify how it performed.

The user test was designed to show if the perception was improved by adding e↵ects and

verify that generated e↵ects needed to be customized properly to be competitive with human

designs. We generated three sets of e↵ects for each game (Antitrust and SameGame) for the test.

Each participant was presented with three di↵erent versions of each game, one implemented

with a simple, flat, linear tweening animation, one selected randomly from the three generated

versions, and the last with a set of e↵ects generated and then adjusted by a human expert. We

hypothesized that the flat tweens would be rated lower than the generated e↵ect sets (because

they are more lively and exciting), and those, in turn, would rate lower than the versions we

created manually (because they would be more contextually appropriate). Hypothesizing that

even with the most basic implementation of e↵ect sequence generation using Squeezer, the

games would be rated better than games without e↵ects (and, in turn, also better than games

without animations), based on results from the work of Kao [105].

The AGD system, also known as Puck, generated the game we named Antitrust2. While

a manual description of SameGame3, was created in the file format understood by Puck. The

manual game implementation provided a familiar game archetype usually rich with juicy feed-

back for the user study of the generated e↵ects.

Participants would play three versions of each game and fill out a survey as they went along.

A website served the user test online, and through links on social media, 113 participants chose

to play and rate the games. In order to avoid play order bias, the website handled randomizing

the order and versions each participant saw.

A slightly lower number of participants filling out the survey for Antitrust (only 106 par-

ticipants) than SameGame (113 participants). We presumed this di↵erence was related to

the challenge and potential frustration of playing against the AI opponent. In Table. 6.1 we

collected the average scores of each game and performed a significance test. The scores are

grouped based on which generated e↵ects the participant was shown. We argue that although

these results do not establish significance, they can be interpreted to indicate that e↵ects do

2Naming the games is another task Puck has yet to tackle.
3A classic casual game where you destroy groups of three or more orthogonally connected pieces of the same

color.

6.3. RESULTS FROM THE AGD EXPERIMENTS 87

make people enjoy them more. We also see that the AGD system has di�culty competing with

a human designer without any alignment of the generated e↵ects.

SameGame Base Generated Expert

Gen1 4.11 ⇠ 4.06 ⇠ 4.49

Gen2 4.33 < 5.36 ⇠ 5.31

Gen3 4.17 < 5.23 ⇠ 5.63

Antitrust Base Generated Expert

Gen1 4.69 ⇠ 5.31 < 6.54

Gen2 3.95 ⇠ 3.39 < 5.08

Gen3 4.42 ⇠ 4.24 < 5.24

Table 6.1: Average ratings each build received. Ratings are grouped by which generated build

participants were shown, indicated by the row. Symbols between columns show significant

orderings or ⇠ for cases where significance could not be established..

Apart from the ratings in Table 6.1, the survey asked participants to fill out why they

selected the specific rating they chose. Comments in Table 6.2 and Table 6.3 have been selected

from the top-ranked comments for each game, based on a variation of TextRank [7]4, which

returns the most representative sentences from set of sentences. The summarization tool did

not have access to the ratings provided by the participants, and it is interesting to see the most

representative comments be spread out across low and high ratings. For the commentary, the

comments were grouped by game version, not accounting for presentation order or other games

seen. While in Table 6.1 the ratings for the base and expert versions were grouped and only

counted with the generated version they were shown beside.

For the singleplayer game (SameGame), we see from Table 6.1 that the base game is sig-

nificantly worse than the versions with e↵ects (both generated and designed) in two out of

three cases. From the survey comments (representational selection seen in Table 6.2), we see

that the slow tweening animations impacted the feeling of flow for the players. We also see

the participants felt the lack of sound detracting from the experience. The overall consensus

seemed that while this version was smooth and straightforward, it felt uninteresting to the

participants. When looking over the comments from the games with generated and designed

e↵ects, it appears there is an expectation for match-three games to provide excessive amounts

of positive feedback. This expectation is in line with what Juul & Begy note concerning game

feel in casual games [104].

While significance could not be established between the generated e↵ect sets and the de-

signed set, it is interesting to reflect upon the comments for each of them. The sounds in the

generated e↵ect sets got many comments, both because they existed and because they were

perceived as annoying or discordant. From the design perspective, these generated e↵ect sets

were never evaluated before the user test, and as such, they were incoherent with the game-

4Using the Gensim 3.6.0 summarization tool https://radimrehurek.com/gensim 3.8.3/summarization/summariser.html

88 CHAPTER 6. DESIGNING GAME FEEL WITH SQUEEZER

play. While the designed sound e↵ects got slightly better reviews, many participants noted a

mismatch between the high definition art style and the 8-bit sound e↵ects. Both the expert

design and the generated e↵ect sets got comments about the faster animation speeds and par-

ticle e↵ects, making the interactions more satisfying. However, the particle e↵ects were not

aligned with gameplay due to the lack of design evaluation for the generated e↵ect sets. Ac-

cording to participants, especially for one game (Generated 3), the particles grew slowly and

lingered too long on the screen. For another game (Generated 1), the pieces would blink in and

out while moving, irritating some participants. However, for all three generated games, some

participants would note that the personality and aesthetic themes did not fit the gameplay.

Though no significance could be established between generated and expert in any of the three

cases, it was interesting to see that the average rating of the expert design versus the second

generated game (Generated 2) favored the generated game. As the top comments also indicate,

many participants found that particular set of e↵ects playful, simple, and nice, though they

still found the sounds to be a bit o↵. The relative success could indicate that the generator

may have found a set of e↵ects that worked better for the game than the expert design.

The expert e↵ect design was built with specific constraints to make it comparable to the

other games. There were six di↵erent backgrounds and five di↵erent sets of pieces to choose

from. The combination of background and pieces for the generated games were selected via

dice rolls as the AGD system did not yet have an art style design mode. The expert was only

allowed a limited time to prototype e↵ects using Squeezer and selected a combination of pieces

and background that they felt would fit the best. The time limit was arbitrarily set to a single

day for creating e↵ect sets for both the singleplayer and multiplayer game. The low timelimit

was selected to avoid too much iteration by the expert because the AGD system did not have

any way to iterate on the generated e↵ects. According to the comments, the sound e↵ects and

particles created by the expert were more cohesive and in tune with the gameplay. However,

some participants still found the low-fidelity sound e↵ects to be a bit too sharp and irritating.

For the multiplayer game (Antitrust), Table 6.1 indicates that both the base and the gen-

erated versions do significantly worse than the designed version. From the survey comments

(representational selection seen in Table 6.3), we see that both a lack of e↵ects and exces-

sive e↵ects in many cases disagree with the participants. Unlike the casual singleplayer games,

where abundant amounts of positive feedback are commonplace, multiplayer board games (even

digital ones) usually provide more subtle feedback. Di↵erent expectations for the game type

could explain the ratings. Where the expert designer could more easily adjust the feedback,

the AGD system still generated explosion-like e↵ects for piece removal. From the comments

on the expert design, it appears that the background and pieces provided players with a sense

of familiarity, as many referenced the idea of a Go5 board. This familiar setting may have

provided a better context for the game than the base and the generated versions.

From the comments on the base version of the game, the slow tweening animations appear

5Go is a board game with roots dating back thousands of years, originating in Asia:

https://en.wikipedia.org/wiki/Go (game)

6.3. RESULTS FROM THE AGD EXPERIMENTS 89

SameGame - Base Rating

Background is ok. Pieces look a bit too flat: more shinny and pseudo-reflexes could possibly be better. Apart

from the aesthetics, the timings of the animations feel weird, slow, and clumsy - if I were [evaluating] that, it

would be a lower score still

5

The animations are painfully slow and impact the general game feel and the lack of sound gives no impact to

any action.

3

Clear colors, text boxes look a bit generic, I miss having sound e↵ects 6

Generic shapes; background of “field” didn’t mean anything; pieces moving slowly felt uncomfortable; no sound 4

The animation is attractively smooth, but also quite slow; on the one hand, this looks nice and makes it very

readable, but on the other it’s very ponderous and simple, and breaks up activity without holding a lot of

interest.

5

SameGame - Generated 1

Basic shapes, annoying sounds 3

This feels unified but simple: bright, flat colours, big clean shapes and a rounded, accessible font all point in

the same aesthetic direction. [...]

5

[...] I liked how it presents layers of feedback by making large plays that a↵ect more of the pieces even more

aurally distinct, even if it sounds kind of alien and odd.

5

I like the simple style but the colour of some of the pieces were similar to the background making it harder to

play. [...]

7

The faster animations and particles indicating interactions make the game more satisfying, but the discordant

sound e↵ects are deeply irritating and makes enjoyment impossible.

1

SameGame - Generated 2

Sound is a bit annoying, visuals look playful and simple, pieces and background are partially consistent. 7

[...] The sound e↵ect and visual e↵ects of the pieces collapsing and then moving make it very appealing. Color

and shape being di↵erent for [every] piece group is also appealing.

10

The flat style and sound e↵ects were cute, and the explosion sound e↵ects and particles were nice. [...] 8

The visuals are more cohesive than the first game, but I like them less, and sounds are a bit strange. 6

Faster tweening, and sound e↵ects, makes game more exciting. 6

SameGame - Generated 3

Weird grey dots after things are deleted. The sound e↵ects are a bit annoying. 5

The squealing sound was funny but slightly high-pitched in my opinion, especially if you hear it several times

because a lot of pieces have to group up together

8

[Has] a nice little plop e↵ect for the drop, I like how the separate pieces scoot over next to one another 5

The assets feel like they belong in di↵erent games. The e↵ects feel slow and glitchy, like the explosion black

dots, and the smoke cubes growing and staying too long. [...]

3

Sounds and animations are too much, but their speed feels good. 4

SameGame - Expert

[...] the tiles didn’t feel like they fit with the sci-fi background, and the 8-bit/sfxr style samples felt out of

place with the crips HD artstyle.

3

The e↵ects and movement were better (still not great) but the background didn’t fit the gems at all. 6

Pieces look better than in the other game. Animation on pieces blowing and sounds are a plus. Pieces clumping

speed no longer feel awkward with the sound e↵ects. I miss some animated feedback on the standing pieces,

or when hovering over them.

9

Background was too visually noisy and the sound e↵ects were sharp and irritating 2

[More] cohesive “industrial” theme; e↵ects when groups disappear; sound; but almost too busy & distracting 6

Table 6.2: SameGame - Selected representative comments for the question “Why did you select this rating?

(Optional)” for each version of the singleplayer game. The right column is the rating (1-10) the user provided

with their answer. Note that games were presented in random order. Some comments have been abbreviated

and marked with [...], and spelling mistakes have been fixed and marked like [this].

90 CHAPTER 6. DESIGNING GAME FEEL WITH SQUEEZER

to have worked reasonably well; however, many participants found the lack of sound and other

e↵ects a bit jarring. Multiple participants found it unengaging, dull, and lacking “a bit of

punch”. Interestingly, these comments seem to be the opposites of the reasons for adding

juice e↵ects to a game, which is to make the game feel more exciting, alive, and with amplified

actions. Another observation, which the multiplayer survey shares with the singleplayer survey,

is that people distinctly notice e↵ects when missing. One participant in the singleplayer survey

explained how they had to go back to check the other versions for e↵ects they suddenly felt were

missing. This feeling of missing e↵ects speaks to the “invisible” nature of game feel design and

juice e↵ects. These e↵ect types feel like they belong, even when they appear a bit jarring. When

participants point out that it feels dull or lacks punch, they speak for a desire for excitement

and amplification of events. From Table 6.1 we see that, on average, the singleplayer base game

was rated lower than the multiplayer base game. There could be many explanations for the

lower score. However, a reasonable assumption would be that multiplayer games, especially

boardgame-like games, are not expected to provide the same abundance of positive feedback as

the singleplayer match three-like game. Additionally, part of the game feel and friction when

playing multiplayer games is provided by the challenge of interacting with the other player(s).

Because the players all interact with the game world, they require less feedback from the game

itself to acquire a sense of progress and friction.

The comments for the generated games highlight some interesting points. Participants

noted that the background and pieces did not match satisfyingly for all the generated versions.

Interestingly for one game (Generated 1), one participant notes that they cannot imagine a

person looking at it without having ideas for how to improve it. As the AGD system created

the generated games, no person had indeed looked at them. However, that version was, on

average, rated higher than the other two. While many comments noted the mismatch between

background and pieces, some also stated that they enjoyed the destruction e↵ects when losing

pieces. Specifically, they noted that the sound e↵ect matched the awful feeling when losing

a piece quite well. For another version (Generated 3), one participant noted that it looked

like a prototype made by a programmer where the aesthetics had been considered. Another

participant notes that it looks like an early prototype, referring to the look of the particle

e↵ects. For the last of the three generated versions (Generated 2), participants noted that it

would generate large lingering clouds when placing pieces. They found this e↵ect obscured the

opponent’s actions, and with the addition of a flashing e↵ect when pieces were destroyed, many

participants found this version annoying and distracting. Harsh e↵ects like these being annoying

is similar to the findings by Kao [105] when participants were presented with “extreme” e↵ects;

it tended to make them less engaged. With the multiplayer games, the ratings (see Table 6.1)

were on average worse for two of the three generated versions compared to the base version.

The lower scores could indicate that AGD systems need to account for the number of players

when adding juice e↵ects for games. However, the general dislike of the combinations of visuals

(background and pieces) in the generated games could also have influenced the games’ ratings.

For the designed version of the multiplayer game, participants commented that they enjoyed

6.3. RESULTS FROM THE AGD EXPERIMENTS 91

the visual coherence and the visual e↵ects. However, they also noted a mismatch between the

peaceful visual setting and the sound e↵ects. While the designer had toned these sound e↵ects

down by adjusting various parameters in the synthesizer and lowering the volume of the e↵ects,

they still had a crunchy quality to them that participants found unfitting for the game. Some

participants even found that the game was a little too peaceful and said it might benefit from

music or animations of unobtrusive elements. These are great suggestions and indicate that

when building games, AGD systems could benefit from a design mode focused on entertainment

value and the game’s presentation. Considering the time player spends waiting between taking

actions and providing actions or visuals that can entertain the player in the meantime. One

such example is the interactive board elements, and ground tapping animation in Hearthstone

[12]. These elements have no impact on the game state but provide the player with something

to do while waiting for their turn or pondering their next action.

The survey intentionally only asked for a rating and a reason for the rating, intending to

have participants describe their feelings towards each prototype. Each participant was also

allowed to play each version multiple times, comparing back and forth between versions. Some

participants would rate every game very low (1-3), while others would rate them high (6-10),

alongside participants playing the same games and giving scores in the entire range. The survey

was meant to spark interest and provide a starting point for thinking about and designing game

feel in AGD systems. Many avenues need to be explored beyond adding generated juice e↵ects

to the games based on a selected set of events. Like evaluating where game interactions need

amplification, altered physicality, or have to provide player support, and deciding how the game

should be juiced, tuned, or streamlined [155] to achieve this. New evaluation methods have to

be created to check that the solution achieves the intended game feel and how coherent they

are with the overarching aesthetics of the game.

The expert designs were by no means perfect (personal opinion of the author and as indicated

by the survey comments). While the Squeezer generator can generate category-based e↵ect

sequences, they could easily be improved to provide more exciting variations. Additionally, the

number of categories could be increased to generate more specific e↵ect sequences, providing

both AGD systems and designers with choices more specific to their purpose.

Issues to be addressed in future user studies include comparing singleplayer or multiplayer

games independently. As it stands, the survey and comments indicate that generated e↵ects for

singleplayer games score higher than in multiplayer games. Expert designs are higher rated for

multiplayer experiences than singleplayer ones, which seems strange. It is also worth mentioning

that the AI di�culty was selected to give the human players a good chance of winning in Anti-

trust games. The di�culty adjustment was made to ensure participants would play all three

versions of the game without giving up due to frustration. However, seven fewer participants

completed the multiplayer survey than the singleplayer ones. However, it is unclear if that was

caused by frustration, boredom, fatigue from playing all the versions, or just a general bias

against multiplayer games. In any case, as the opponent(s) in multiplayer games provide a lot

of the friction the player experiences, the di�culty of these opponents can significantly a↵ect

92 CHAPTER 6. DESIGNING GAME FEEL WITH SQUEEZER

Antitrust - Base Rating

While the visuals communicate clearly and are not unpleasant, the lack of feedback and the slow animations makes the

game feel dull and unengaging.

1

The lack of sound is a bit jarring, but the smooth animations work very well for the game. 7

[No] sound, the piece-adding animation was slow, but at least it didn’t cause physical pain to play 4

I liked how it was super smooth, but after playing the first game the lack of sounds made me think it lacked a bit of punch 6

Utter aesthetic mismatch, no sound, slow basic size animations, no special visual e↵ects. 2

Antitrust - Generated 1

Graphics are great and cohesive, animations are a bit rough. No delay on [the AI] placing pieces looks bad. 7

Comic sans instructions, thematic disjoint between the space background image and the jewel play pieces. I just can’t

imagine that a person would look at elements of this and not have ideas for alterations.

4

Don’t like the sun/earth background, it clashes with the colour of the pieces. 5

The gems are also not very appealing to me, probably because I don’t think about them as typical pieces in a board game. 3

Flickering when placing was a bit unpleasant, but the “crunchy”/“hitty” sound and destructive visuals fit nicely with the

feeling that losing pieces is bad.

8

Antitrust - Generated 2

The e↵ects when placing a piece, and when 4 pieces are cleared were too large and distracting. 4

The clouds are quite noisy and get in the way of seeing what’s happening! The gems and space background are passable,

they’re just graphics. [...]

5

The sound e↵ects were sort of unpleasant to hear repeatedly, the gem clearing animation obscured the next opponent move,

and sometimes the previous gem placed would flash on placing the next one. Generally just a lack of polish.

4

The animation for disappearing is borderline nauseating, with an annoying flashing e↵ect, and it is slow. It feels overall

ugly and cheap.

1

[The] ”cloud” when placing a piece stays around way too long 6

Antitrust - Generated 3

I liked the crunchy sound e↵ects! I expected graphics in a lower resolution though, it sounded like an 8bit game who maybe

should have 8bit graphics

8

[The] placement particle e↵ect staying on too long made it look quite janky, the gemstone tiles didn’t really gel with the

planetary [background] to me

5

It looks like a prototype made by a programmer, not something where the aesthetic matters, but I don’t really care enough

about visuals to have a strong opinion

4

Game pieces look cheap, no connection to background. 2

The little shapes flying o↵ the pieces look old-fashioned, or like an early prototype, but in general i like the idea of the way

they move.

7

Antitrust - Expert

[...] As a result the lack of activity on the screen makes the game feel very empty, even though compared to the several of

the singleplayer puzzle games I played in the 1st section, it still has feedback like sound e↵ects, [...], e↵ects on tiles being

placed and cleared, I still somehow expected/would want more passive activity going on for a game of this pace, perhaps

music, or an unintrusive visual element that was animated.

4

The graphics worked well, with the background appearing to be a Japanese shrine and the black & white pieces recalling

a Go board, but the shrill electric-like sounds did not fit the otherwise peaceful aesthetic.

5

The visuals communicate clearly and have some thematic coherence [...], the faster animations, sound e↵ects and slight

visual e↵ects make interactions more satisfying.

2

[I] like the black and white pieces; matches the Asian-looking image (I’m thinking of Go). I like the immediacy of placing

tokens but what’s up with the audio? Doesn’t match.

5

Pieces and background are coherent, animation is nice and polished, sound e↵ect doesn’t fit with the theme and is not a

pleasant sound.

5

Table 6.3: Antitrust - Selected representative comments for the question “Why did you select this rating?

(Optional)” for each version of the multiplayer game. The right column is the rating (1-10) the user provided

with their answer. Note that games were presented in random order. Some comments have been abbreviated

and marked with [...], and spelling mistakes have been fixed and marked like [this].

6.4. DISCUSSION 93

the game feel. Future studies would also benefit from the games having the same or comparable

base aesthetics; the background and pieces being di↵erent for each game led to many comments

completely ignoring the visual e↵ects. Lastly, the inclusion of both a base and an expert design

and comparing three di↵erent versions of a game, unfortunately, obscured the results a bit.

Participants could be asked why they preferred one version over another to get more precise

indications in future studies.

In [93], we proposed, tested, and evaluated how even simple integration of juice e↵ects in

a game generation process can improve the generated games. Our tests indicate that e↵ects

should be considered when creating game generation systems. We argue that using more play

data, the e↵ect generation process could be shaped to more accurately determine when and

how e↵ects should happen and determine what they should look like (based on player colors,

event type, and frequency of the event).

Adding juice design to an AGD system breaks new waters within game generation by in-

troducing a new area of research, which we believe is essential. The importance is rooted in

two points. One point is showing both how easy it is to add e↵ects (using Squeezer) and how

e↵ects can improve the perception of games. The second point is improving the play experience

of generated games to draw more players’ and researchers’ attention to the artifacts and the

field. With more engaging and exciting play experiences, there is a better chance to catch the

interest of players and researchers who might not be aware of the field of AGD. The test results

did not confidently show that generating juice e↵ects is better for games. However, the fact

that no e↵ect games rated significantly lower than the same game with human-designed e↵ects

using Squeezer still points to future research potential.

6.4 Discussion

Without game feel design tools, AGD systems that want to include game feel design can

either only use pre-build snippets with nice game feel or possibly figure out a way to add game

feel objectives as part of the core goals. However, in all honesty, that last one becomes a game

feel design tool in and of itself, as it would need ways to adjust that part of the design based

on trying to reach the objectives.

With tools like Squeezer, AGD Systems can begin to engage with e↵ect design as a first

step in exploring game feel design. Moreover, while there are many challenges to overcome

in that space, adding e↵ects to generated games seems not to be detrimental. According to

some survey participants, the games become more exciting, engaging, and entertaining simply

because the interactions are emphasized. Game design has come a long way since its earliest

days, and players expect a certain level of feedback and attention to detail in games today

that current AGD systems have not yet reached. Maybe they will never reach the same level.

Instead, AGD systems need to be implemented with Human collaborators in mind unless the

games target AI agents who cannot say no to playing when they find them uninteresting.

How are games a↵ected by the addition of game feel design tools? The simple answer is that

94 CHAPTER 6. DESIGNING GAME FEEL WITH SQUEEZER

tools like Squeezer allow the designer to explore/sketch out e↵ects very early on in the process.

A common thing that happens when people make (or begin making) prototypes or game jam

games is that sound e↵ects are either entirely left out or added as an afterthought. When that

happens, the sounds can feel mismatched to the rest of the game. With game feel design tools

like Squeezer, it becomes so easy to add e↵ects early on that they become a part of the system.

Instead of amplifying certain game events with juicy e↵ects to make them more convincing, the

designer can add e↵ects that are “good enough” early on. By doing that, they get to experience

these e↵ects firsthand while designing levels, mechanics, challenges, and polishing other parts

of the design. Then, instead of adding e↵ects, juicing becomes the task of adjusting e↵ects that

are already there, polishing and designing them to provide the feeling they need to elicit to be

a part of the gameplay. In essence, using tools like Squeezer juice design more easily becomes

part of the design iterations. Although the initial e↵ects created with Squeezer will probably

be replaced at a later stage of development, they can increase the chance for a game to succeed

in conveying the experience the designer intended.

The earlier game feel design becomes part of the design iterations, the more attention the

designer will give it, and the more the player will feel that attention to detail shining through.

As Hunicke suggests, it is essential to be “Loving Your Player With Juicy Feedback” [88]. Or

as Nijman wraps up his presentation, “that’s pretty much all I have to say about game feel:

just fill your games with love and tiny details” [140]. Design tools allow designers to realize,

shape, and evaluate ideas. Game feel design tools highlight an aspect of game design that might

easily be overlooked. It is hard to say how games are changed by adding game feel design tools

into the process. From the Squeezer user tests in [95, 94] it seems that experienced designers

learn to shape and design game feel to elicit the experience they want the player to have. That

behavior indicates that these designers might have internalized the game feel design process.

However, even experienced designers know the importance of adding mockups, placeholders,

and sketches while building a game to evaluate the whole experience and better visualize the

design space.

Squeezer might only provide experts a stepping stone towards the game they envisioned.

However, the game is not always a clear vision for many designers (some experts included) and

can easily be susceptible to changes and new ideas throughout development. Squeezer allows

designers to quickly adjust and experiment with new ideas during development by providing

support for sketching and playful exploration of e↵ects. While it is hard to prove how a game is

impacted by using Squeezer, the added focus and ability to explore game feel has the potential

to bring more creative visions to fruition.

In future work, it would be interesting to perform large-scale A/B testing on generated and

human-designed e↵ect sets for a single game to test the performance of the e↵ect sequence

generator in Squeezer. Such a test could be used as a baseline to test generator improvements,

better categorization, or how well e↵ect sequences provide the essential parts of a specific

e↵ect category. These baselines could also be used to compare other PCG systems for e↵ect

generation. In such a test, the game juiciness framework created by Hicks et al. [84] could

6.4. DISCUSSION 95

serve as the base for surveying the subjective juiciness of individual e↵ect sets.

It is hard to claim that the question: “how does the addition of game feel design tools alter

the quality of games?” (RQ4) has been answered in full this chapter. However, through the

survey results from adding juice e↵ects to games produced by an AGD system and a general

discussion of adding juice e↵ects to games, potential and preliminary implications have been

noted. The AGD survey from [93] indicate that compared to a game with very basic e↵ects,

games with juice e↵ects do not perform worse than their juiceless counterparts. The e↵ect

sets generated by Squeezer for the AGD system, overall did not perform as well as the sets

designed by a human designer. Which indicates that there is a lot of potential future research

in this area, to both understand the context of game events, as well as designing e↵ects that

adhere to and amplify the contextual information correctly. Still the results are similar to those

obtained by Kao [105] by applying various intensities of juice e↵ects to an RPG game. Kao

discovered that both no e↵ects and extreme amounts of e↵ects led to lower play times (equated

to less engagement and interest). The base set of tween e↵ects in [93] is arguably still a set

of animation e↵ects, which may have increase the performance of the base game. Some of

the generated e↵ect sets could also be categorized as extreme juice e↵ects, like the obscuring

“clouds” participants would see in Antitrust (Generated 2), is an example of an e↵ect that was

too extreme for its purpose. The ratings did not significantly determine how well the generated

e↵ects performed compared to the base and expert games. The average rating values show the

base games score significantly lower in general than the expert juice e↵ects.

In addition, altering the perception of games by adding juice e↵ects can help engage players

in future user studies, even if the topic of the study is entirely di↵erent. As an example, trying

to gauge how well a game can maintain a “flow” [50] state by adjusting the di�culty to suit

the player, also known as Dynamic Di�culty Adjustment (DDA) [89]. The game will have to

also to provide ample amounts of immediate feedback (see Chapter 3, Section 3.2) to keep the

player from losing interest. Suppose juice e↵ects are left out of such a DDA study. In that

case, the results might wrongly indicate that the level of challenge was not correctly adjusted.

When, in fact, the player lacked proper immediate feedback to understand the game world and

feel a connection to the game. Not out of boredom, due to lack of challenge, but out of a lack

of connection to the game world.

Throughout the development of Squeezer, the goal was to build a tool that could assist in

the process of game feel design. While assistance has been explored through interactive e↵ect

sequence descriptions, e↵ect sequence generation, and interactive evolution. A future research

task remains to improve the design process, allowing designers and computers to cooperate

as increasingly equal co-creative partners. Finding ways to leverage algorithmic evaluation

processes or encourage lateral thinking, similarly to what Sentient Sketchbook [128] does for

level design.

Besides, it is hard to know how moving e↵ect design into focus will change the resulting

games. What happens if a designer adopts a juice or game feel first approach when designing

games? Would we get more toy-like games such as Townscaper [198]? Games where the interface

96 CHAPTER 6. DESIGNING GAME FEEL WITH SQUEEZER

is almost invisible and the interactions are so in focus that objectives are either self-imposed

or pushed far into the background. Would games feel as great as Super Mario 64 [141]? As

Rogers [168] writes “Friction was so important to Super Mario 64 that — so goes the legend —

early in its development, Shigeru Miyamoto asked for a ‘White Room’: a blank, empty stage in

which Mario would be terrifyingly alone. In this white void, Mario could run and jump endlessly

without fear of death . . . or any kind of goal whatsoever. The purpose of the White Room

was to allow the programmers to fine-tune the feeling of every little jump, exactly to the game

designers’ specifications.”

Chapter 7

Discussion

I may not have gone where I intended to go, but I think I have ended up where I needed to be.1

Showing an opportunity exists for building tools that assist designers in new ways during the

critical prototyping phase of game development. This dissertation has presented work outlining

a new sub-field of research within the field of computational creativity, contributing to the

mixed-initiative and game generation research fields. Squeezer represents the embodiment of

the presented research. Research that has been disseminated through related papers and talks

at academic and industry events throughout this project.

While it is too soon to tell what the more significant e↵ects of this Ph.D. project will be,

colleagues, peers, test participants, and reviewers have noted that the work is breaking new

ground. They have also expressed ideas for expanding learning opportunities and applying

game feel in their teaching and game development tinkering. The survey paper [155], which

functions as part of the background knowledge for this dissertation, provides a base for exploring

the current state of the art in-game feel design. A paper that would have been exciting and

extremely helpful to a certain young and inexperienced game developer beginning a career in

games over a decade ago. Squeezer [95, 94] both a tool for prototyping juice e↵ects in games

and a learning environment for people trying to understand juice implementation. It is an

open-source tool that allows other researchers and developers to build alternative interfaces,

add di↵erent types of assistance, or integrate it within their systems.

In Section 7.1 the research questions and related contributions are reviewed. Followed by

Section 7.2 discussing potential future research related to a wide variety of topics touched upon

in this Ph.D. project.

1From “The Long Dark Tea-Time of the Soul” by Douglas Adams, 1988

97

98 CHAPTER 7. DISCUSSION

7.1 Reviewing Contributions

The contributions of this project are based on the research questions, the experiments, and

their results. In the e↵ort to answer the main question how can design tools support game

feel design? I decided to break it down into four narrower questions:

• RQ1 “What is game feel design?”

• RQ2 “How can game feel design support get implemented in existing workflows?”

• RQ3 “What is the impact of design tools on the game feel design process?”

• RQ4 “How does the addition of game feel design tools alter the qualities of games?”

7.1.1 Game Feel Design

To contextualize the first research question “what is game feel design?” (RQ1) The primary

resource for the subject of game feel in the past decade has been Swink’s book “Game Feel: A

Designers Guide to Virtual Sensation” [214]. However, as the subtitle suggests, it is a guide to

(a specific type of) virtual sensation, and as pointed out by Wilson [230], “Game Feel” is not

the same as game feel. There is no single correct recipe for how a game should feel, but there

are many elements that influence how a game feels (for examples, see Table 3.2). Interestingly,

Swink has said that he had envisioned the book as a starting point for further exploration of

the subject. Because as time passed, people have explored the subject of game feel in many

directions, the concepts and vocabulary surrounding it have drifted similarly. Not least because

terms like juiciness [75, 102, 98] describe concepts partial to game feel design, without necessar-

ily relating to Swink’s “Game Feel”. In turn, the importance of juicing games was contested by

the need to focus on streamlining (or oiling) [57], as the most important means to adjust game

feel. Hicks et al. [84] attempted to coalesce the fluid concepts and ideas surrounding game feel

by asking professional game developers to describe it. They created a framework for designing

“good” game feel based on their questionnaire. While this approach certainly provided insights

into the scattered definitions and understanding of the subject. Unfortunately, it did not help

to streamline the vocabulary on the subject. In our survey [155] we instead attempt to create

a coherent overview on the subject of game feel design in order to create an umbrella term for

adjusting virtual physicality, juiciness, and player support in games. From Chapter 3 and [155]

the main contributions can be listed as:

• Provide a survey of the history and state of the art in Game Feel Design, linking it with

design and research in many other fields.

• Provide a list of design elements commonly used to adjust game feel and how each a↵ects

the game.

• Describe the three main design domains of game feel design and name the accompanying

polishing task.

7.1. REVIEWING CONTRIBUTIONS 99

Figure 7.1: A slide from the presentation of “Designing Game Feel. A Survey.” [155]. Pre-

senting the domains described in the paper, along side examples of other design domains that

influence game feel. Design domains which have been left for future research.

While the survey does not claim to provide all design elements linked to game feel, the list (see

Table 3.2) is a good starting point for diving into game feel design and common ways to polish

it. The identified design elements also have been linked to each of the three design domains of

game feel design (see Table 3.1). There are more design domains related to how a game feels

beside the moment-to-moment interactions, such as the overarching aesthetics, the narrative,

and the game mechanics and challenges (see also Figure 7.1). Importantly each design element

can also be linked to multiple polishing tasks in di↵erent design domains. For instance, e↵ects

like screen shake alter the perception of physicality, amplify the significance of the triggering

event, and too much of it can distract rather than support the player.

7.1.2 Supporting Game Feel Design

Game feel design (see Chapter 3) heavily influences the experience of interacting with the

game by shaping the perceived character and oomph of inputs and events. As discussed in

Chapter 4 very few game creation tools exist that o↵er support for the design of moment-to-

moment interaction. Often these tools lack ways to experiment with game feel design as a part

of the game design exploration. There is a tendency among novice game designers to “forget”

about sound as they are developing their first few projects, usually because the task seems too

daunting at a glance. It is not until they are presented with tools like SFXR [154] or the novel

100 CHAPTER 7. DISCUSSION

art of recording themselves making placeholder sounds that they start incorporating sound into

their design process.

Similarly, many game engines and game creation frameworks lack inherent ways of “sketch-

ing” out the sounds and other juice e↵ects while prototyping gameplay. Many newer engines,

including fantasy consoles (e.g., Pico-8), include ways of supporting sketching elements like

sprites, sound e↵ects, and even music. However, support for game feel design has yet to earn a

similar spot.

The lack of specific support for game feel design is what led to the question “how can game

feel design support get implemented in existing workflows?” (RQ2) To answer that question,

Chapter 4 describes experiments, hypotheses, and implementations of game feel design sup-

port in existing workflows. It covers implementation paths for game generation frameworks,

automated game design, and general workflows like game development with the Unity game

engine.

In particular, the chapter first shows three di↵erent potential solutions for implementing

game feel support in VGDL. Examples of language modifications are presented based on pre-

viously unpublished experiments conducted during the development of UnityVGDL [96]. The

modifications were meant to explore potential changes needed in VGDL, to be able to describe

most of the e↵ects presented by Jonasson & Purho [98] and Nijman [140]. Extending a lan-

guage like VGDL to accommodate game feel design would require structural changes. Changes

such as adding a set of juice e↵ects (for event amplification), making the player classes more

tune-able (for physicality adjustments), and making collision handling more adjustable (for

supporting player maneuverability). This solution shows a direct way to implement game feel

design support into a game generation framework like VGDL. Another more indirect potential

solution relies on generating game prototypes for a di↵erent game creation system and allowing

the designers to design game feel using another engine. The approach has previously been used

in commercial game development, using Unity prototyped generated from Puzzlescript2 imple-

mentations. The approach does not precisely add game feel design support to the description

language itself. However, with a suitable pipeline for generating and editing the game descrip-

tions and modifying them using an engine like Unity, it could be a compelling prototyping

combination.

The core takeaway from working with VGDL descriptions is the possibility of creating a

description-based system for juice e↵ects. The language modification experiments clarified that

most of the common e↵ects for amplifying events could relatively e�ciently be described and

executed based on simple interaction definitions. Additionally, it is shown that using a nested

tree structure, the descriptions also enabled easy sequencing of e↵ects, making the sequences

easier to understand conceptually at a glance.

Squeezer shows that it is possible to build on these ideas and implement an interactive

sequence design system, including definitions for interactions and events that trigger the ex-

2An online puzzle prototyping framework based on a description language, available at:

https://puzzlescript.net/

7.1. REVIEWING CONTRIBUTIONS 101

ecution of the designed sequences. More importantly, Squeezer provides the implementation

details to add design support to the juiciest part of the process. Allowing visual exploration of

e↵ect sequences and previewing them in real-time makes it easier to get started with designing.

Like Victor points out [227], designing with real-time previews allows designers to focus their

energy on designing and evaluating, as opposed to spending most of it on imagining the re-

sulting design. Chapter 4 describes various attempts and methods for shortening the iteration

loops intended to allow designers to explore the design space more e↵ectively.

As a third example, Chapter 4 shows how to implement support for game feel design in

an automated game design (AGD) system through the use of Squeezer [93]. The potential

approaches to implementing game feel design in an AGD system are often very similar to those

available for game generation systems like VGDL. The presented implementation shows how to

realize one such approach by using Squeezer as a procedural content generation system for juice

e↵ects. While the implementation approach is straightforward, it can add a new dimension to

AGD research. Like humans have to adapt to new tools, Squeezer and the AGD system Puck

show that AGD systems also have to adapt to new tools. Whether artificial or human, creative

agents are part of creative workflows, and introducing new tools into these workflows requires

both an appropriate tool and some adjustments from the agent. The AGD project presents

some of the adjustments needed to both Squeezer and Puck for the implementation to work.

Lastly, the chapter notes identified challenges and exciting problems requiring future research

within AGD and general computational creativity. The biggest one is the issue of evaluating

creative output, which has existed as long as the field of computational creativity itself, with

Boden identifying it in the 90s [16]. A way to deal with this challenge would be collaborative

game generation, where the AGD is designed to be part of a sort of “slow” design collaboration

as described by Cook [42]. Generating games in a format that allows designs to be evaluated

and altered externally by human designers. In this case, the AGD becomes a creative partner

with a skill-set that allows it to generate, balance, and evolve games while human collaborators

design the aesthetics.

While this set of environments does not cover every type of platform for game development,

they do cover a reasonably extensive portion of game development workflows. Strategies for

game generation (via description languages) and automated game design could extend to many

other frameworks. Implementation details of systems and e↵ects in Squeezer3, can be used

to implement similar systems for general workflows in other engines. Squeezer may also serve

as a template for game generation, and automated game design implementations of game feel

support. However, due to a lack of optimizations, the current Squeezer implementation is best

suited for the prototyping stage of game development. Other tools or implementations would

be needed for production quality and high performance. For example, implementing particle

e↵ects in shaders to run on the graphics processing unity (GPU) is a standard solution to

performance issues. Though the juice e↵ects implemented in Squeezer provide many ways of

amplifying event signification (see Table 3.2), Squeezer lacks good ways to explore streamlining

3Remember Squeezer is available online as an open-source repository.

102 CHAPTER 7. DISCUSSION

support and tuning physicality properly. Unfortunately, relying on triggering juice e↵ects based

on interactions and events focuses primarily on the amplification aspect of game feel. However,

like sound and sprite editors have become commonplace in newer game engines, future game

creation software may support the exploration of all three domains of game feel design.

7.1.3 A Playful Design Process

The intro of Chapter 5 describes the most common ways game designers currently go about

designing game feel. These standard approaches are described based on personal experience,

the answers from user surveys in [95, 94] and descriptions by other practitioners. The design

process is often handled through custom code, tweening systems, and sometimes animation

systems like the Unity timeline tool. Most of these approaches require expertise in knowing

which adjustments to make and how to make the system do it.

Chapter 5 focuses on the impact Squeezer has on the game feel design process, providing a

partial answer to the research question “what is the impact of design tools on the game feel design

process?” (RQ3) The design intent behind Squeezer contextualizes the answers by clarifying the

intended goal of creating a playful prototyping tool. Selecting the interaction requirements for

playful exploration of design ideas, proposed by Hobye [85]. These interaction requirements are

reinforced by design ideas proposed by Victor [227], as well as practical experience with using

tools like SFXR [154] and Doodle Studio 95! [161]. Following the description of the intent is

an investigation of the impact Squeezer has on the game feel design process. The investigation

is based on user testing and anecdotal evidence from creating and conducting these tests. As

well as the challenges and needs discovered while implementing Squeezer into an automated

game design system.

The contributions derived from Squeezer’s impact on the game feel design process can be

summarized in the following way.

Identifying that visual sequencing increases exploration and lowers iteration time by re-

moving direct coding requirements, allowing designers to focus on the design task rather than

abstract and asynchronous coding tasks during the prototyping phase. Squeezer is not the first

tool to do this, as approaches using tools like the Unity Timeline tool or MMFeedbacks [63, 64]

are very similar in this regard (similar to Squeezer, MMFeedbacks also provides an ontology of

e↵ects triggered by game events).

Visual sequencing makes it easy to design, assess, and experiment with combining di↵erent

ontology elements in new ways. Immediate e↵ect previews allow the iteration loop to shorten.

The lower time requirements make creative exploration more appealing, as changes are reflected

immediately and can be reverted just as quickly if they are uninteresting. Exploratory creativ-

ity [16] based on combining unusual elements can have unexpected results, leading to lateral

thinking [53] and transformational creativity [16]. Such as creative combinations fostering new

game mechanics or entirely di↵erent gameplay ideas. Several Squeezer test participants ex-

emplified this by attempting to or inadvertently altering the gameplay during their usage of

Squeezer and deciding to keep the changes because they enjoyed the altered game more. Visual

7.1. REVIEWING CONTRIBUTIONS 103

sequencing and previews could be taken even further, allowing the designers to adjust various

parameters directly in the game scene, using Gizmos and Handles4. Building and evaluating

these features would be relevant approaches for future work on game feel design tools.

Squeezer also shows how e↵ect sequences can be generated through algorithmic means and

that generating sequences can avoid designers getting stuck on a “blank canvas” by generating

a starting point. Having a starting point for exploring e↵ects allows the designer to evaluate if

an e↵ect fits an interaction instead of creating one from scratch. By regenerating or mutating

the e↵ect sequence, the designer can form an opinion about the required sequence and adjust it

accordingly. Squeezer’s approach, similar to SFXR, for generating categories of juice e↵ects (like

impact, explosion, or jump) allows the designer to guide the sequence generation in the general

direction they require. Though the list of categories Squeezer can generate sequences for is by

no means definitive or extensive enough, it serves as a good starting point for e↵ect sequence

generation. It is left to future research to explore new categories and improve generation for

current categories.

Our user tests with interactive evolution indicate that mixed-initiative interfaces can support

novice designers in playful exploration. Where experienced designers quickly wanted more

expressive freedom and the ability to adjust generated e↵ects manually, novice designers tended

to explore the interactive evolution for longer. The tests also show an opportunity for improving

algorithmic support in the game feel design process. One example expert designers requested

was guiding the exploration rather than only relying on the displayed variations in the evolution

process. Providing opportunities for designers to define overarching goals for the exploration

could be an exciting path for future interactive evolution research to explore. For example, by

providing the evolution process with directions (e.g., more or less of something) or targets for

crucial parameters like color, size, amount of movement, or particle counts.

Lastly, integrating Squeezer in an automated game design (AGD) system highlighted im-

plementation and evaluation challenges when adding juice design into the process. The ex-

periments [93] indicate that AGD systems need context-awareness both in terms of aesthetics

and mechanics of a game, in order to provide the correct type and amount of juice. How-

ever, through simple matching of large-scale events (e.g., creation, removal, movement of game

pieces) to Squeezer’s generator categories. It seems possible to create a set of placeholder e↵ects

that indicate the feedback needed for given events. User testing even indicates that it is better

than (or at least equal to) having no discernible juice e↵ects.

Similarly, designers can use Squeezer’s generated e↵ect sequence to determine which types

of e↵ects fit a particular interaction. The AGD user testing indicates that players are much

more expressive about games with e↵ects than games that lack e↵ects. It would appear that the

addition of juice e↵ects to a game opens the door to additional feedback on generated games,

as opposed to pure evaluation of rules and levels.

4Gizmos and Handles are Unity terms for UI and interaction tools that appear when specific objects are

selected. While the terms might be di↵erent, these types of direct manipulation tools exist in most 3D game

engines.

104 CHAPTER 7. DISCUSSION

It is hard to claim that this project has uncovered the full impact of design tools with game

feel design support. However, it seems clear that there are many opportunities for further

investigation of the subject, both in terms of visual representation and interface and mixed-

initiative systems with generative and supportive properties. On top of that, game feel design

is a brand new avenue for the field of automated game design to explore. With tools like

Squeezer, built into their description languages, or something completely new, it is exciting to

think about new goals for AGD systems, such as making interactions fun.

7.1.4 Game Feel Design with Squeezer

Chapter 6 attempts a direct and an indirect approach to answering the question “how does

the addition of game feel design tools alter the qualities of games?” (RQ4) First, rooting the

discussion of the impact of game feel design tools, in the elements described in Chapter 3,

particularly in the design domain of amplification. Then providing anecdotal examples of

observations from Squeezer user tests [95, 94], where users found novel gameplay mechanics by

exploring the design space with Squeezer. Second, indirectly by expanding upon the analysis

from [93] to answer the question “how does the addition of generated juice alter the qualities

of games?”

One of the contributions of Chapter 6 is rea�rming the results from a user study testing

di↵erent degrees of juice in an RPG game [105]. These results indicate that games without

juice (and with extreme juice e↵ects) are evaluated as worse than games with juice e↵ects in

them. Our results indicate that this might even extend as far as randomly generated e↵ects

being better than no e↵ects. This result increases the future research potential of game feel

design in AGD and other game generation systems.

Another contribution is identifying the benefit (or issue) that some common juice e↵ects

(when designed sub-optimally) can alter objects’ perceptions and properties. The altered per-

ception or properties can benefit lateral thinking and support design exploration, not just of

juice e↵ects but also entirely new game mechanics. This side-e↵ect could change how we view

e↵ect design tools, and the role of tools that support game feel design play. Developers often

exploit happy accidents and include unintended behavior as new game mechanics while devel-

oping games. A tool like Squeezer provides an opportunity to more directly explore the design

space of happy accidents where juice e↵ects and game mechanics collide and impact the game

in new and compelling ways.

Lastly, adding Juice design to AGD and game generation systems can lift the perception of

generated games. Five out of six game versions without e↵ects were rated significantly lower

than game versions with juice e↵ects. However, the test also shows that juice e↵ects may

need to be evaluated in the context of aesthetics and the games’ mechanics to increase ratings.

This need is indicated by the fact that the generated e↵ects were rated significantly higher

than their no-e↵ect counterparts in only two out of six game versions. While three out of six

versions with generated e↵ects were on average rated lower than their no-e↵ect counterpart,

they were not rated significantly lower. The numbers indicate that while it may not always

7.1. REVIEWING CONTRIBUTIONS 105

increase the perception of a game, the addition of generated juice e↵ects to generated games is

not significantly detrimental to the perception of those games.

It is, of course, hard to verify exactly how the addition of game feel design tools alter the

quality of games. However, it is possible to get an indication by comparing games with no or

extreme juice e↵ects to games with some juice e↵ects. Similarly, by evaluating the intentions

behind adding juice to games, it becomes clear that amplifying the game experience with juice is

an essential communication tool between designer and player. Like any other design discipline,

the design informs how the user interprets and interacts with the designed artifact. It alludes

to the importance of finding the design best suited for the designer’s purpose. In games, that

purpose is eliciting a specific experience for the player. As Lisa Brown puts it, “you’re not

juicing your game – you’re actually picking a feeling that your game should communicate and

juicing that feeling” [18]. However, while experienced designers may know or visualize precisely

how to juice a specific feeling, most design requires a bit of experimentation and iteration.

Tools can support this exploration by presenting attractive options, allowing combinations

of common design elements, and speeding up iteration times. With shorter iteration times,

designers can explore the design space more e�ciently and find the design that best fits the

intended experience and feeling.

7.1.5 Reviewing Research Questions

Reviewing the work in this dissertation would not be complete without looking at how well

the project managed to answer the main research question. So once again we can ask how can

design tools support game feel design?

In this project, the main research question was split into four sub-questions, each exploring

an aspect of the main research question. Chapter 3 reviewed state of the art within game feel

design, extensively answering the first research question “what is game feel design?” (RQ1)

This explains the topic of game feel design from the main research question and the design

intent and polishing tasks related to designing the moment-to-moment interactions in a game.

Chapter 4 described three di↵erent workflows for game development to answer the second sub-

question “how can game feel design support get implemented in existing workflows?” (RQ2)

Addressing the implementation aspects of supporting game feel design by describing theoretical

and practical examples of extending workflows. Identifying and presenting di↵erent approaches

to supporting game feel design opens the possibility for broader adoption of game feel design

tools in existing workflows. Chapter 5 answers the question “what is the impact of design

tools on the game feel design process?” (RQ3) By evaluating user testing, first-hand interface

evaluation, and comparing Squeezer to typical game feel design approaches, to understand the

impact of using a design tool like Squeezer. The evaluation highlights the potential support

design tools can provide to game feel design. Lastly, Chapter 6 reviews and analyses the impact

of adding juice design to an AGD system and reflects on Squeezer usage to answer the research

question “how does the addition of game feel design tools alter the qualities of games?” (RQ4)

106 CHAPTER 7. DISCUSSION

The results of adding juice to games generated by an AGD are in line with the conclusions of

similar studies with adding di↵erent amounts of juice to games. They indicate that adding some

juice e↵ects enhances the perceived game quality, over no e↵ects or extreme e↵ects. Tools like

Squeezer allow designers to explore the space of possibilities concerning juice e↵ects to a more

considerable degree, making it more likely they find the best-suited e↵ects to amplify events

most desirably. Additionally, Squeezer allows complex and unlikely combinations to be tested

quickly and easily. These combinations can inform designers about interesting game mechanics

that follow from experimentation with juice e↵ects.

This project has undoubtedly partially answered the main research question how can design

tools support game feel design? First, through a thorough description of game feel design and

its role in game design and relation to other subjects. Second, by highlighting potential ways to

support game feel designs in existing workflows and through the description, implementation,

and release of the juice design tool Squeezer. Third, by evaluating the impact of game feel design

tools like Squeezer on the design process. Finally, by reflecting on how tools supporting game

feel design alter the qualities of games and how juice e↵ects specifically impact the perception

of generated games.

While much ground has been covered in this project, the work has primarily outlined a new

and exciting research area in the space between game design, mixed-initiative and computa-

tional creativity.

Supporting game feel design through tools remains an open research area, and in the pursuit

of answering the questions in this project, many new ideas and questions have emerged. In

the following section, these ideas have been outlined and suggested as future research projects,

building on or related to the work presented in this dissertation.

7.2. FUTURE WORK 107

7.2 Future Work

This Ph.D. project has presented work on building and evaluating tools that support the

game feel design process. Along the way, questions and ideas emerged out of scope for this

thesis. However, it is worth presenting these related ideas and potential directions for future

research. This section will present several ideas both partially and closely related to the topic

of this thesis.

7.2.1 Practice-Based Game Design Research

In this project, I utilized a practice-led approach using software as the “material” to explore

the main research question how can design tools support game feel design? Combining

examples of common practices, widely used tools, and experience to explore a design process

and build tools from a designer’s point of view. This approach could be defined as “practice-

based game design research.” I believe this approach is essential in bridging the gap between

research and practice. Several researchers are exploring this way, but we lack clear definitions

and method descriptions. I am fortunate that reviewers and peers recognized that game feel

and juice were largely unexplored and important within mixed-initiative and computational

creativity research. However, without the ability to point towards a clearly defined method

and evaluation, other practice-led researchers might have a hard time explaining why their

research matters.

At its core, this project investigated an area of game design that has been underserved in

research—asking how the design process can be improved through technology while keeping

the designer in mind. This approach di↵ers from improving algorithms, strategies, and digital

assistants for well-researched problems like level design, game logic, and rules. Though it

is important for talented researchers to explore how software can assist with game design

[126]; How to improve the use of procedural content generation in game design through tools

[190]; How computational creativity can be improved through co-evolutionary strategies [41];

Or how to create general approaches to level generation [111]. I hope future experimental

design talent will view game design less as a set of optimization problems for finding new and

improved solutions to solve the most easily verifiable of these problems. Break out of these areas

and explore the wide range of intriguing design subjects that are harder to evaluate instead.

Discover why certain game design topics are less researched and how to support those topics.

View the topic from a designer’s perspective with a willingness to push boundaries through

experimental design. Suppose the work presented in this project inspires and allows just one

future experimental designer to research such a topic. In that case, it might just open a new

research area for others to explore and optimize. In a similar vein, I hope that the topic of

game feel design will be explored and optimized as extensively as level design and game rules

have in the past.

However, practice-based design research is a niche within design research, in which game

design research is also technically a niche. Practice-based game design research as an approach

108 CHAPTER 7. DISCUSSION

would be even more of a niche, and as such, it would require strong voices within the topic to

describe experimental methodologies that fit. In practice-based design research, the subject of

experimentation is often manipulating a material. However, within game design research, the

material is either the player’s mental model of the rules or, in the case of video games, it is

often the software governing those rules. Further, by extending these ideas into video game

design, the “material” is the software that designers use to design the experience the player

perceives in their mind. The definition and clarification of this research approach I leave for

future research.

7.2.2 Squeezer

Squeezer arose from a desire to make game prototyping tools include more options for game

feel design. It has already served to shine a light on the challenges of adding juice e↵ects in

automated game design systems [93]. Similarly, a system like Squeezer could be integrated into

systems like Ludii or VGDL (GVGAI), or entirely new prototyping frameworks, that build on

description language ideas and includes game feel design into those descriptions. An interesting

and unexplored topic in computational intelligence research is evaluating how a game feels to

play. While evaluation of games and game rules can be done using AI agents, most AI agents

do not complain if the game they play feels terrible. What would happen if AI agents had the

option to decide not to play a game5, or rate it based on the aesthetics of game feel?

Creating better interfaces and assistive options for Squeezer presents a new and exciting

field of research. Not only is there still much work left in making Squeezer more user-friendly,

but our work only scratched the surface of what is possible within interactive evolution. There

are several other PCG options to explore based on machine learning [112, 206] and GANs

[49, 83]. Three di↵erent design elements are outlined in our survey paper [155], and Squeezer

mainly focused on amplification and the polishing task of juicing the game. Expanding the tool

or creating new tools that tackle the polishing tasks of streamlining and tuning are interesting

areas for new research to explore.

Fantasy Consoles & Game Generators

From the early onset of this project, supporting design exploration of game feel design

has been a central idea. Design exploration that pushes the boundaries of games occurs most

frequently during prototyping, particularly during game jamming. Game jamming is mostly a

short-form version of getting from an idea to what is known as a “vertical slice”. A vertical slice

is a functional and relatively accurate representation of what a full game would look and feel like

to play. The vertical slice will usually contain a limited subset of the game’s potential content.

In particular, jam games often avoid implementing extensive platform integration, and the play

experience targets the ideal user (leaving out accessibility features, di�culty modes, and similar

options). In Chapter 4, the idea of extending a game description language like VGDL with

5Similar but not identical to the iconic scene from the movie Wargames (1993).

7.2. FUTURE WORK 109

support for game feel design was explored. The idea was to allow game feel design to exploration

through a description language, similar to how puzzle design can be explored using a description

language like Puzzlescript6. While this project did not lead to a game description language with

game feel support, Squeezer does present a visual description language for juice e↵ect design.

Providing game feel design support on platforms for design exploration, and game jams is a way

to get closer to this goal. Porting7 Squeezer to platforms that could potentially take advantage of

it and be used for game jamming and design explorations has much future potential. In relation

to this project a lightweight version of Squeezer8 was written in lua9 as a proof-of-concept for

the Pico-8 fantasy10. Pico-8 is often used as a platform for game prototypes and during game

jams because of the development speed and the fact that the console has a built-in editor

functionality for sprite, level, music, and sound e↵ect. However, like many other game engines

and frameworks, the system is missing tools for tweening animations and various other e↵ect

types. The pico-8 version of Squeezer allows coding, triggering, and executing e↵ect sequences

similar to the Unity version. The system’s many simplifications allow it to drive e↵ect sequences

more flexibly, allowing it to drive game mechanics and animations as well. However, there is no

user interface (UI) for editing e↵ects and, currently, no easy way to save, load, and share these

e↵ects among projects. The Pico-8 platform presents a great opportunity for exploring the best

implementations of such interfaces for supporting e↵ect design in a constrained format. The

Pico-8 interface is generally minimalist at only 128x128 pixels in 16 colors, with size limits to

code and assets. These requirements force the UI implementation to be concise and well thought

out and could very well feed into other versions of Squeezer and their UI design. The Lua code

for Squeezer (missing UI, generator, and interactive evolution) is only around 1000 code lines.

The short implementation makes it very manageable, showing researchers and practitioners

alike that e↵ect sequence tools can be implemented in their systems with reasonable e↵orts.

An open-source implementation of the Pico-8 Squeezer has been released, allowing hobbyists

and professionals to bring it into new projects and explore how they can use e↵ect prototyping

in their projects or explore new applications for this type of tool. However, this version of

Squeezer could also serve as a reference implementation for game generation frameworks in

future research.

Mixed-Initiative Tools

There is still much to explore by asking more questions in this area, such as “how can we

expand the use of mixed-initiative tools to more areas in game development?” Looking into the

many di↵erent roles, tasks, and responsibilities in game development, especially by gathering

insights from practitioners in the field. I drew on my own experience in game development for

these insights. However, others might find new areas by looking at ethnographic studies of game

6See examples on https://puzzlescript.net/
7Porting is the act of rewriting software to work in a new programming language or on a new platform.
8https://pyjamads.itch.io/squeezer-pico8/
9https://lua.org/

10https://www.lexalo✏e.com/pico-8.php

110 CHAPTER 7. DISCUSSION

companies or developers to build tools that assist developers in realizing, testing, and releasing

the games they want. The field is vast and connected to many other disciplines; as exemplified

by the tiny corner of game design we looked at in [155] (see also Figure 3.1). Thinking further

along these lines raises questions like “How can we assist game designers more through the

use of mixed-initiative tools?” and thinking about new technologies and workflows that could

improve the way we interact with mixed-initiative tools. We envision futures where AI agents

work simultaneously with human designers in the same online repository11 or directly on the

same computer.

Novelty Search and Tree Edit Distance

Improving the interactive evolution UI and algorithms built into Squeezer is another direc-

tion that could be interesting to explore. Evolutionary algorithms can still get stuck in local

optima even with dramatic mutations. To counteract this an experimental implementation of

novelty search [123, 124] is included in the Squeezer source code, with the purpose of providing

better quality diversity [159]. While it was not part of the user testing, preliminary experimen-

tation of combining a Tree Edit Distance12 algorithm and novelty search seemed to provide a

more diverse set of e↵ect sequences for the user to choose from. We then experimented with

using Tree Edit Distance as a novelty parameter, making the interactive evolution select only

the most novel o↵spring of a generated population to display for the user. We reasoned that a

diversified exploration of e↵ect sequences would be more interesting for the user. Unfortunately,

our initial implementation of novelty search was very slow, and we never had it tested by users.

It remains an item for future research.

7.2.3 More Game Design Topics to Explore

Many elements in game development have yet to get as much attention as level generation

and rule generation and could readily become topics for future research. Just by listing various

assets categories, there are certainly elements that remain unaddressed or relatively unex-

plored. Looking at the games themselves assets like textures, models, animations, skeletal-rigs,

sound e↵ects, music, shaders, game mechanics, code, rules/goals, controls, visual e↵ects, post-

processing e↵ects, game object types, camera controls, audio filters (and mixing), narrative

text and storylines come to mind. However, this only covers the games themselves; on top

of that, various assets for di↵erent storefronts are needed, such as trailers, screenshots, or im-

ages that explain the game and draw people in, description texts, app icons, di↵erent types of

promotional material for conferences and other marketing material.

11Repository refers to a project in a version control system, such as Git, Subversion or Mercurial.
12http://tree-edit-distance.dbresearch.uni-salzburg.at/

7.2. FUTURE WORK 111

7.2.4 Automated Game Design

Automated game design is an area where exploring di↵erent game expressions and how to

implement those are very important to move the generated games from technical or curious

prototypes into games that can challenge or push the status quo. Both implementation and

evaluation aspects of adding juice design into an AGD process have multiple open questions.

Implementation-wise, there are multiple questions about how and where juice design should

happen in the process. Is juice design a part of the primary game design process, or should it

be a separate process like in our paper [93]? What sort of data can we gather from AI agent

playtesting, and how can we use that data to improve the game mechanics and the game feel

of the generated games?

Furthermore, how do we best evaluate the generated e↵ects, and how well they match the

game mechanics? What algorithmic options are there for this type of evaluation, and how

well do they work? Should evaluation be left to playtesters, and how can we make AI agents

evaluate the coherence between game mechanics and e↵ects and evaluate the overall game feel?

Does this part of the process need to be automated, or can we make an AGD designer agent

that collaborates with human designers in a development process, as Cook suggests in [42]?

7.2.5 Juice as Sense Replacement

A new branch of research that we identified while writing our game feel survey [155] is the

idea that juice or design elements related to amplification can be viewed as sense replacements.

To build the intended game feel, Brown notes, “you’re not juicing your game - you’re actually

picking a feeling that your game should communicate and juicing that feeling” [18]. Likewise,

juice can amplify the physicality of a game, thereby replacing senses or experiences through the

available outputs. Most games are played on a flat-screen, using a keyboard, mouse, controller,

or touch input. Although controllers and touch devices can provide haptic feedback, the senses

engaged while playing games are usually limited to sight, hearing, and partially touch and

maybe spatial awareness, leaving additional signals such as smell, taste, temperature, pain,

balance, and more unaccounted for. Even virtual reality (VR) games only engage around

two to three additional senses and can easily confuse these (hence the tendency to feel sick

if a few things are o↵ in VR games). We believe that juice can supply some of this lacking

information to the brain. There is a broad consensus that brains have a remarkable ability to

adapt to novel stimuli in neuroscience [197]. An example is experiments using electrodes on

the tongues of participants with visual input, resulting in blind people being able to navigate

their surroundings [74]. In VR, altering the tracked motions of a virtual hand can change the

perceived weight of objects [174]. We believe that the reason the twelve principals of animation

[217] work so well is that they provide context the brain might otherwise have gathered through

senses other than sight. By amplifying certain visual, audible, or haptic aspects of games and

other media, the brain can contribute additional information about the world it perceives and

acts within. In the case of video games, if a designer wants something to feel more powerful,

112 CHAPTER 7. DISCUSSION

they could add some bass boost to the sound e↵ect [140], as Nijman anecdotally describes.

However, two (or more) of the primary senses that get replaced in games are smell and taste.

Smells will often be replaced visually by clouds or fumes coming o↵ an element in a game. While

taste is often replaced with textual descriptions, it can also be replaced by the gestures of other

characters in games. In that sense, taste is often perceived through a character experiencing

it, much like the principles of animation convey the illusion of life and the environment the

characters experience.

7.2.6 Exploring How Juice Impacts AI Performance

Game AI scholars and competition developers’ primary goal seems to be to create and

solve the most complex logic problems that can be explored with simplified game simulations.

Many frameworks for AI competitions severely lack juice e↵ects and event signification. Event

signification which is the primary goal of juice e↵ects, is the part of game feel concerned with

communicating the intended experience to the player. As juice e↵ects are meant to amplify

the game events to emphasize their importance, it stands to reason that AI algorithms able to

perceive such e↵ects could potentially benefit from them. Computer vision for AI algorithms is

often limited by downsampling the screen, and general algorithms’ audio perception is almost

unheard of (pun intended). It would certainly be interesting to figure out the impact of juice

e↵ects on AI learning. Juice e↵ects represent a kind of intrinsic reward for human players, and

so it could potentially be used as such in a reinforcement learning [212] system. Furthermore,

if such a system could learn to evaluate the intrinsic reward of juice e↵ects, it could also be

used in relation to automated game design for e↵ect evaluation.

Chapter 8

References

[1] Oguz A. Acar, Murat Tarakci, and Daan van Knippenberg. “Creativity and Innovation Under

Constraints: A Cross-Disciplinary Integrative Review”. In: Journal of Management 45.1 (Jan.

2019), pp. 96–121. issn: 0149-2063. doi: 10.1177/0149206318805832. url: https://doi.

org/10.1177/0149206318805832 (visited on 02/16/2022).

[2] Jeremy Alessi. Games Demystified: Super Mario Galaxy. https://www.gamasutra.com/view/

feature/131997/games_demystified_super_mario_.php. Accessed: 2020-10-06T12:46:42Z.

2008. url: https://www.gamasutra.com/view/feature/131997/games_demystified_

super_mario_.php (visited on 10/06/2020).

[3] Heather Alexander. The Quiet Importance Of Idle Animations. https://kotaku.com/the-

quiet- importance- of- idle- animations- 1834564079. Accessed: 2020-08-24T09:09:29Z.

2019. url: https://kotaku.com/the-quiet-importance-of-idle-animations-1834564079

(visited on 08/24/2020).

[4] Anna Anthropy and Naomi Clark. A Game Design Vocabulary: Exploring the Foundational

Principles behind Good Game Design. 1st. Addison-Wesley Professional, 2014. isbn: 0-321-

88692-5.

[5] Nick Babich. The UI/UX Design of Progress Indicator [Trends + Examples]. https : / /

usersnap.com/blog/progress-indicators/. Accessed: 2020-10-21T10:06:14Z. May 2019.

url: https://usersnap.com/blog/progress-indicators/ (visited on 10/21/2020).

[6] Cory Barlog. Why Kratos’ Axe Feels SO Powerful — Game Mechanics Explained. https:

//www.youtube.com/watch?v=zpr- EE2In1M&ab_channel=Polygon. Accessed: 2020-10-

06T13:00:20Z. May 2018. url: https://www.youtube.com/watch?v=zpr-EE2In1M&ab_

channel=Polygon (visited on 10/06/2020).

[7] Federico Barrios et al. “Variations of the Similarity Function of TextRank for Automated

Summarization”. In: arXiv:1602.03606 [cs] (Feb. 2016). arXiv: 1602.03606 [cs]. url: http:

//arxiv.org/abs/1602.03606 (visited on 01/05/2022).

[8] Marc G. Bellemare et al. “The Arcade Learning Environment: An Evaluation Platform for

General Agents”. In: Journal of Artificial Intelligence Research 47 (June 2013), pp. 253–279.

issn: 1076-9757. doi: 10.1613/jair.3912. arXiv: 1207.4708. url: http://arxiv.org/abs/

1207.4708 (visited on 03/24/2019).

113

https://doi.org/10.1177/0149206318805832
https://doi.org/10.1177/0149206318805832
https://doi.org/10.1177/0149206318805832
https://www.gamasutra.com/view/feature/131997/games_demystified_super_mario_.php
https://www.gamasutra.com/view/feature/131997/games_demystified_super_mario_.php
https://www.gamasutra.com/view/feature/131997/games_demystified_super_mario_.php
https://www.gamasutra.com/view/feature/131997/games_demystified_super_mario_.php
https://kotaku.com/the-quiet-importance-of-idle-animations-1834564079
https://kotaku.com/the-quiet-importance-of-idle-animations-1834564079
https://kotaku.com/the-quiet-importance-of-idle-animations-1834564079
https://usersnap.com/blog/progress-indicators/
https://usersnap.com/blog/progress-indicators/
https://usersnap.com/blog/progress-indicators/
https://www.youtube.com/watch?v=zpr-EE2In1M&ab_channel=Polygon
https://www.youtube.com/watch?v=zpr-EE2In1M&ab_channel=Polygon
https://www.youtube.com/watch?v=zpr-EE2In1M&ab_channel=Polygon
https://www.youtube.com/watch?v=zpr-EE2In1M&ab_channel=Polygon
https://arxiv.org/abs/1602.03606
http://arxiv.org/abs/1602.03606
http://arxiv.org/abs/1602.03606
https://doi.org/10.1613/jair.3912
https://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1207.4708

114 CHAPTER 8. REFERENCES

[9] Nicolae Berbece. Game Feel: Why Your Death Animation Sucks. https://www.gdcvault.com/

play/1022759/Game-Feel-Why-Your-Death. Accessed: 2020-05-11T08:18:32Z. San Francisco,

CA, 2015. url: https://www.gdcvault.com/play/1022759/Game-Feel-Why-Your-Death

(visited on 05/11/2020).

[10] Debosmita Bhaumik, Ahmed Khalifa, and Julian Togelius. “Lode Encoder: AI-constrained

Co-Creativity”. In: 2021 IEEE Conference on Games (CoG). Copenhagen, Denmark: IEEE,

Aug. 2021, pp. 01–08. isbn: 978-1-66543-886-5. doi: 10.1109/CoG52621.2021.9619009. url:

https://ieeexplore.ieee.org/document/9619009/ (visited on 02/16/2022).

[11] ken birdwell. The Cabal: Valve’s Design Process For Creating Half-Life. https : / / www .

gamasutra.com/view/feature/131815/the_cabal_valves_design_process_.php. Ac-

cessed: 2020-08-24T09:05:58Z. 1999. url: https://www.gamasutra.com/view/feature/

131815/the_cabal_valves_design_process_.php (visited on 08/24/2020).

[12] Blizzard Entertainment. Hearthstone. 2014.

[13] Margaret A. Boden. “Chapter 9 - Creativity”. In: Artificial Intelligence. Ed. by Margaret

A. Boden. Handbook of Perception and Cognition. San Diego: Academic Press, Jan. 1996,

pp. 267–291. isbn: 978-0-12-161964-0. doi: 10.1016/B978- 012161964- 0/50011- X. url:

https://www.sciencedirect.com/science/article/pii/B978012161964050011X (visited

on 02/17/2022).

[14] Margaret A. Boden. “Creativity and Artificial Intelligence”. In: Artificial Intelligence. Artificial

Intelligence 40 Years Later 103.1 (Aug. 1998), pp. 347–356. issn: 0004-3702. doi: 10.1016/

S0004-3702(98)00055-1. url: https://www.sciencedirect.com/science/article/pii/

S0004370298000551 (visited on 02/17/2022).

[15] Margaret A. Boden, ed. Dimensions of Creativity. Cambridge, MA, USA: A Bradford Book,

June 1994. isbn: 978-0-262-02368-9.

[16] Margaret A. Boden. The Creative Mind: Myths and Mechanisms. Second. London: Routledge,

Sept. 2003. isbn: 978-0-203-50852-7. doi: 10.4324/9780203508527.

[17] Eva Brandt et al. XLAB. Jan. 2011. isbn: 978-87-92016-24-9.

[18] Lisa Brown. The Nuance of Juice. https://www.youtube.com/watch?v=qtgWBUIOjK4.

Accessed: 2020-04-17T11:40:19Z. Vector, 2016. url: https://www.youtube.com/watch?v=

qtgWBUIOjK4 (visited on 04/17/2020).

[19] Mark Brown. Secrets of Game Feel and Juice. https://www.youtube.com/watch?v=216_

5nu4aVQ. Accessed: 2020-04-17T11:52:14Z. 2015. url: https://www.youtube.com/watch?v=

216_5nu4aVQ (visited on 04/17/2020).

[20] Mark Brown. Why Does Celeste Feel So Good to Play? — Game Maker’s Toolkit. https:

//www.youtube.com/watch?v=yorTG9at90g. Accessed: 2020-04-17T13:21:54Z. 2019. url:

https://www.youtube.com/watch?v=yorTG9at90g (visited on 04/17/2020).

[21] Cameron Browne. “A Class Grammar for General Games”. In: Computers and Games. Ed. by

Aske Plaat, Walter Kosters, and Jaap van den Herik. Lecture Notes in Computer Science.

Cham: Springer International Publishing, 2016, pp. 167–182. isbn: 978-3-319-50935-8. doi:

10.1007/978-3-319-50935-8_16.

https://www.gdcvault.com/play/1022759/Game-Feel-Why-Your-Death
https://www.gdcvault.com/play/1022759/Game-Feel-Why-Your-Death
https://www.gdcvault.com/play/1022759/Game-Feel-Why-Your-Death
https://doi.org/10.1109/CoG52621.2021.9619009
https://ieeexplore.ieee.org/document/9619009/
https://www.gamasutra.com/view/feature/131815/the_cabal_valves_design_process_.php
https://www.gamasutra.com/view/feature/131815/the_cabal_valves_design_process_.php
https://www.gamasutra.com/view/feature/131815/the_cabal_valves_design_process_.php
https://www.gamasutra.com/view/feature/131815/the_cabal_valves_design_process_.php
https://doi.org/10.1016/B978-012161964-0/50011-X
https://www.sciencedirect.com/science/article/pii/B978012161964050011X
https://doi.org/10.1016/S0004-3702(98)00055-1
https://doi.org/10.1016/S0004-3702(98)00055-1
https://www.sciencedirect.com/science/article/pii/S0004370298000551
https://www.sciencedirect.com/science/article/pii/S0004370298000551
https://doi.org/10.4324/9780203508527
https://www.youtube.com/watch?v=qtgWBUIOjK4
https://www.youtube.com/watch?v=qtgWBUIOjK4
https://www.youtube.com/watch?v=qtgWBUIOjK4
https://www.youtube.com/watch?v=216_5nu4aVQ
https://www.youtube.com/watch?v=216_5nu4aVQ
https://www.youtube.com/watch?v=216_5nu4aVQ
https://www.youtube.com/watch?v=216_5nu4aVQ
https://www.youtube.com/watch?v=yorTG9at90g
https://www.youtube.com/watch?v=yorTG9at90g
https://www.youtube.com/watch?v=yorTG9at90g
https://doi.org/10.1007/978-3-319-50935-8_16

115

[22] Cameron Browne and Frederic Maire. “Evolutionary Game Design”. In: IEEE Transactions

on Computational Intelligence and AI in Games 2.1 (Mar. 2010), pp. 1–16. issn: 1943-0698.

doi: 10.1109/TCIAIG.2010.2041928.

[23] Paolo Burelli. “Virtual Cinematography in Games: Investigating the Impact on Player Expe-

rience”. In: International Conference On The Foundations of Digital Games. Chania, Greece,

May 2013. doi: 10.13140/2.1.4643.1045.

[24] Kitty Calis et al. Disc Room. 2020.

[25] Christian Carlsson and Axel Pelling. “Designing Spectator Interfaces for Competitive Video

Games”. MA thesis. Gothenburg, Sweden: Chalmers University of Technology, 2015. url:

http://publications.lib.chalmers.se/records/fulltext/224247/224247.pdf.

[26] Bay-Wei Chang and David Ungar. “Animation: From Cartoons to the User Interface”. In:

Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology -

UIST ’93. Atlanta, Georgia, United States: ACM Press, 1993, pp. 45–55. isbn: 978-0-89791-

628-8. doi: 10.1145/168642.168647. url: http://portal.acm.org/citation.cfm?doid=

168642.168647 (visited on 05/11/2020).

[27] Megan Charity, Ahmed Khalifa, and Julian Togelius. “Baba Is Y’all: Collaborative Mixed-

Initiative Level Design”. In: 2020 IEEE Conference on Games (CoG). Osaka, Japan: IEEE,

Aug. 2020, pp. 542–549. isbn: 978-1-72814-533-4. doi: 10.1109/CoG47356.2020.9231807.

url: https://ieeexplore.ieee.org/document/9231807/ (visited on 02/16/2022).

[28] Jenova Chen. “Flow in Games (and Everything Else)”. In: Communications of the ACM 50.4

(Apr. 2007), p. 31. issn: 00010782. doi: 10.1145/1232743.1232769. url: http://portal.

acm.org/citation.cfm?doid=1232743.1232769 (visited on 09/17/2019).

[29] Marc Christie, Patrick Olivier, and Jean-Marie Normand. “Camera Control in Computer

Graphics”. In: Computer Graphics Forum 27.8 (Dec. 2008), pp. 2197–2218. issn: 01677055,

14678659. doi: 10.1111/j.1467-8659.2008.01181.x. url: http://doi.wiley.com/10.

1111/j.1467-8659.2008.01181.x (visited on 05/04/2020).

[30] David Ciccoricco. “Narrative, Cognition, and the Flow of Mirror’s Edge:” in: Games and

Culture (July 2012). doi: 10.1177/1555412012454223. url: https://journals.sagepub.

com/doi/10.1177/1555412012454223 (visited on 08/24/2020).

[31] Ryan Clark. The Clark Tank. 2019.

[32] Je↵ Clune et al. EndlessForms.Com - Design Objects with Evolution and 3D Print Them!

http://endlessforms.com/. Accessed: 2020-11-17T17:22:46Z. 2012. url: http://endlessforms.

com/ (visited on 11/17/2020).

[33] Simon Colton. “Creativity Versus the Perception of Creativity in Computational System”. In:

(2008), p. 7.

[34] Simon Colton. “The Painting Fool: Stories from Building an Automated Painter”. In: Comput-

ers and Creativity. Ed. by Jon McCormack and Mark d’Inverno. Berlin, Heidelberg: Springer,

2012, pp. 3–38. isbn: 978-3-642-31727-9. doi: 10.1007/978-3-642-31727-9_1. url: https:

//doi.org/10.1007/978-3-642-31727-9_1 (visited on 02/26/2022).

https://doi.org/10.1109/TCIAIG.2010.2041928
https://doi.org/10.13140/2.1.4643.1045
http://publications.lib.chalmers.se/records/fulltext/224247/224247.pdf
https://doi.org/10.1145/168642.168647
http://portal.acm.org/citation.cfm?doid=168642.168647
http://portal.acm.org/citation.cfm?doid=168642.168647
https://doi.org/10.1109/CoG47356.2020.9231807
https://ieeexplore.ieee.org/document/9231807/
https://doi.org/10.1145/1232743.1232769
http://portal.acm.org/citation.cfm?doid=1232743.1232769
http://portal.acm.org/citation.cfm?doid=1232743.1232769
https://doi.org/10.1111/j.1467-8659.2008.01181.x
http://doi.wiley.com/10.1111/j.1467-8659.2008.01181.x
http://doi.wiley.com/10.1111/j.1467-8659.2008.01181.x
https://doi.org/10.1177/1555412012454223
https://journals.sagepub.com/doi/10.1177/1555412012454223
https://journals.sagepub.com/doi/10.1177/1555412012454223
http://endlessforms.com/
http://endlessforms.com/
http://endlessforms.com/
https://doi.org/10.1007/978-3-642-31727-9_1
https://doi.org/10.1007/978-3-642-31727-9_1
https://doi.org/10.1007/978-3-642-31727-9_1

116 CHAPTER 8. REFERENCES

[35] Simon Colton, Alison Pease, and John Charnley. “Computational Creativity Theory: The

FACE and IDEA Descriptive Models”. In: Proceedings of the Second International Conference

on Computational Creativity. 2011, p. 6.

[36] Simon Colton and Geraint A Wiggins. “Computational Creativity: The Final Frontier?” In:

The Final Frontier (2012), p. 6.

[37] Simon Colton et al. The Painting Fool Sees! New Projects with the Automated Painter. July

2015.

[38] Jared Cone. It IS Rocket Science! The Physics of ’Rocket League’ Detailed. 2018. url: https:

//www.gdcvault.com/play/1025341/It-IS-Rocket-Science-The (visited on 10/06/2020).

[39] M. Cook, S. Colton, and J. Gow. “The ANGELINA Videogame Design System—Part I”. In:

IEEE Transactions on Computational Intelligence and AI in Games 9.2 (June 2017), pp. 192–

203. issn: 1943-068X. doi: 10.1109/TCIAIG.2016.2520256.

[40] M. Cook, S. Colton, and J. Gow. “The ANGELINA Videogame Design System—Part II”. In:

IEEE Transactions on Computational Intelligence and AI in Games 9.3 (Sept. 2017), pp. 254–

266. issn: 1943-068X. doi: 10.1109/TCIAIG.2016.2520305.

[41] Michael Cook. “Co-Operative Coevolution for Computational Creativity: A Case Study In

Videogame Design”. PhD thesis. 2015.

[42] Michael Cook. “Software Engineering For Automated Game Design”. In: 2020 IEEE Confer-

ence on Games (CoG). Aug. 2020, pp. 487–494. doi: 10.1109/CoG47356.2020.9231750.

[43] Michael Cook, Simon Colton, and Jeremy Gow. “Automating Game Design In Three Di-

mensions”. In: AISB Symposium on AI and Games. AISB, Apr. 2014, pp. 1–4. url: http:

//research.gold.ac.uk/id/eprint/17354/ (visited on 06/24/2021).

[44] Michael Cook, Simon Colton, and Alison Pease. “Aesthetic Considerations for Automated

Platformer Design”. In: (2012), p. 6.

[45] Michael Cook, Jeremy Gow, and Simon Colton. “Danesh: Helping Bridge The Gap Between

Procedural Generators And Their Output”. In: (2016), p. 16.

[46] Michael Cook and Gillian Smith. “Formalizing Non-Formalism: Breaking the Rules of Auto-

mated Game Design”. In: Proceedings of the 10th International Conference on the Foundations

of Digital Games (FDG 2015). FDG, 2015, p. 5.

[47] Cooldowns Can Be Used to Balance Games. https://game-design-snacks.fandom.com/

wiki/Cooldowns_can_be_used_to_balance_games. Accessed: 2020-10-21T10:03:10Z. url:

https://game-design-snacks.fandom.com/wiki/Cooldowns_can_be_used_to_balance_

games (visited on 10/21/2020).

[48] Joel Couture. What Makes a Great Idle Animation? Devs Share Their Favorites. /view /

news/318163/What_makes_a_great_idle_animation_Devs_share_their_favorites.php.

Accessed: 2020-08-24T09:13:58Z. 2018. url: /view/news/318163/What_makes_a_great_

idle_animation_Devs_share_their_favorites.php (visited on 08/24/2020).

https://www.gdcvault.com/play/1025341/It-IS-Rocket-Science-The
https://www.gdcvault.com/play/1025341/It-IS-Rocket-Science-The
https://doi.org/10.1109/TCIAIG.2016.2520256
https://doi.org/10.1109/TCIAIG.2016.2520305
https://doi.org/10.1109/CoG47356.2020.9231750
http://research.gold.ac.uk/id/eprint/17354/
http://research.gold.ac.uk/id/eprint/17354/
https://game-design-snacks.fandom.com/wiki/Cooldowns_can_be_used_to_balance_games
https://game-design-snacks.fandom.com/wiki/Cooldowns_can_be_used_to_balance_games
https://game-design-snacks.fandom.com/wiki/Cooldowns_can_be_used_to_balance_games
https://game-design-snacks.fandom.com/wiki/Cooldowns_can_be_used_to_balance_games

117

[49] Antonia Creswell et al. “Generative Adversarial Networks: An Overview”. In: IEEE Signal

Processing Magazine 35.1 (Jan. 2018), pp. 53–65. issn: 1558-0792. doi: 10.1109/MSP.2017.

2765202.

[50] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience. New York: Harper and

Row, 1990.

[51] Gustav Dahl and Martin Kraus. “Measuring How Game Feel Is Influenced by the Player

Avatar’s Acceleration and Deceleration: Using a 2D Platformer to Describe Players’ Percep-

tion of Controls in Videogames”. In: Proceedings of the 19th International Academic Mindtrek

Conference on - AcademicMindTrek ’15. Tampere, Finland: ACM Press, 2015, pp. 41–46. isbn:

978-1-4503-3948-3. doi: 10.1145/2818187.2818275. url: http://dl.acm.org/citation.

cfm?doid=2818187.2818275 (visited on 09/11/2019).

[52] Derek Daniels. Why Some Games Feel Better than Others - Part 3. Blog Post. Mar. 2007.

[53] Edward de Bono. “Lateral Thinking; Creativity Step by Step”. In: (1970).

[54] Sebastian Deterding. “The Lens of Intrinsic Skill Atoms: A Method for Gameful Design”. In:

Human–Computer Interaction 30.3-4 (May 2015), pp. 294–335. issn: 0737-0024. doi: 10.1080/

07370024.2014.993471. url: https://doi.org/10.1080/07370024.2014.993471 (visited

on 04/17/2020).

[55] Sebastian Deterding et al. “Mixed-Initiative Creative Interfaces”. In: Proceedings of the 2017

CHI Conference Extended Abstracts on Human Factors in Computing Systems. Denver Col-

orado USA: ACM, May 2017, pp. 628–635. isbn: 978-1-4503-4656-6. doi: 10.1145/3027063.

3027072. url: https://dl.acm.org/doi/10.1145/3027063.3027072 (visited on 10/16/2021).

[56] DICE. Mirror’s Edge. DICE. 2008.

[57] Lars Doucet. Oil It or Spoil It! https://www.fortressofdoors.com/oil-it-or-spoil-it/.

Accessed: 2019-10-27T12:44:44Z. Aug. 2016. url: https://www.fortressofdoors.com/oil-

it-or-spoil-it/ (visited on 10/27/2019).

[58] Marie Ehrndal. “A Holistic Approach to Designing for a Specific Aesthetic Experience in

Digital Games”. MA thesis. Malmö, Sweden: Malmö högskola, 2012. url: http://muep.mau.

se/handle/2043/13942 (visited on 04/17/2020).

[59] A. Eiben and Jim Smith. Introduction To Evolutionary Computing. Vol. 45. Jan. 2003. isbn:

978-3-642-07285-7. doi: 10.1007/978-3-662-05094-1.

[60] A. E. Eiben and J. E. Smith. “Interactive Evolutionary Algorithms”. In: Introduction to Evo-

lutionary Computing. Ed. by A.E. Eiben and J.E. Smith. Natural Computing Series. Berlin,

Heidelberg: Springer, 2015, pp. 215–222. isbn: 978-3-662-44874-8. doi: 10.1007/978-3-662-

44874- 8_14. url: https://doi.org/10.1007/978- 3- 662- 44874- 8_14 (visited on

10/19/2021).

[61] Cosmic Engineers. Cosmic Express. 2017. url: https://cosmicexpressgame.com/ (visited

on 10/18/2021).

https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1145/2818187.2818275
http://dl.acm.org/citation.cfm?doid=2818187.2818275
http://dl.acm.org/citation.cfm?doid=2818187.2818275
https://doi.org/10.1080/07370024.2014.993471
https://doi.org/10.1080/07370024.2014.993471
https://doi.org/10.1080/07370024.2014.993471
https://doi.org/10.1145/3027063.3027072
https://doi.org/10.1145/3027063.3027072
https://dl.acm.org/doi/10.1145/3027063.3027072
https://www.fortressofdoors.com/oil-it-or-spoil-it/
https://www.fortressofdoors.com/oil-it-or-spoil-it/
https://www.fortressofdoors.com/oil-it-or-spoil-it/
http://muep.mau.se/handle/2043/13942
http://muep.mau.se/handle/2043/13942
https://doi.org/10.1007/978-3-662-05094-1
https://doi.org/10.1007/978-3-662-44874-8_14
https://doi.org/10.1007/978-3-662-44874-8_14
https://doi.org/10.1007/978-3-662-44874-8_14
https://cosmicexpressgame.com/

118 CHAPTER 8. REFERENCES

[62] Martin Fasterholdt, Martin Pichlmair, and Christo↵er Holmg̊ard. “You Say Jump, I Say How

High? Operationalising the Game Feel of Jumping”. In: Proceedings of the First International

Joint Conference of DiGRA and FDG. Dundee, Scotland: Digital Games Research Association

and Society for the Advancement of the Science of Digital Games, 2016. isbn: ISSN 2342-9666.

url: http://www.digra.org/wp-content/uploads/digital-library/paper_248.pdf.

[63] Renaud Forestié. Best Practices for Fast Game Design in Unity. https://www.youtube.

com/watch?v=NU29QKag8a0. Accessed: 2020-04-17. Unite LA 2018, 2018. url: https://www.

youtube.com/watch?v=NU29QKag8a0 (visited on 04/17/2020).

[64] Renaud Forestié. How to Design with Feedback and Game Feel in Mind - Shake It ’til You

Make It. https://www.youtube.com/watch?v=yCKI9T3sSv0. Accessed: 2020-04-17. Unite

Copenhagen 2019, 2019. url: https://www.youtube.com/watch?v=yCKI9T3sSv0 (visited on

04/17/2020).

[65] Giorgio Franceschelli and Mirco Musolesi. “Creativity and Machine Learning: A Survey”. In:

arXiv:2104.02726 [cs] (Apr. 2021). arXiv: 2104.02726 [cs]. url: http://arxiv.org/abs/

2104.02726 (visited on 10/19/2021).

[66] Karmen Franinović, Karmen Franinovic, and Stefania Serafin. Sonic Interaction Design. MIT

Press, 2013. isbn: 978-0-262-01868-5.

[67] Matthew Fuller, ed. Software Studies: A Lexicon. Leonardo Books. Cambridge, Mass: MIT

Press, 2008. isbn: 978-0-262-06274-9.

[68] Tracy Fullerton. Game Design Workshop: A Playcentric Approach to Creating Innovative

Games. 3rd. A K Peters/CRC Press, Apr. 2014.

[69] Zach Gage. Building Games That Can Be Understood at a Glance. https://www.youtube.

com/watch?v=YISKcRDcDJg&ab_channel=GDC. Accessed: 2020-10-06T14:28:07Z. 2018. url:

https://www.youtube.com/watch?v=YISKcRDcDJg&ab_channel=GDC (visited on 10/06/2020).

[70] Game Accessibility Guidelines — A Straightforward Reference for Inclusive Game Design.

http://gameaccessibilityguidelines.com/. Accessed: 2020-10-21T09:57:56Z. url: http:

//gameaccessibilityguidelines.com/ (visited on 10/21/2020).

[71] “Game Design Workshop A Playcentric Approa - Tracy Fullerton - 2nd”. In: (Apr. 2015),

pp. 1–491.

[72] Troy Gilbert. Movement Mechanics. https://troygilbert.com/deconstructing-zelda/

movement-mechanics/. Accessed: 2020-04-17T13:52:31Z. 2012. url: https://troygilbert.

com/deconstructing-zelda/movement-mechanics/ (visited on 04/17/2020).

[73] Nathan Gitter. Building Fluid Interfaces. https://medium.com/@nathangitter/building-

fluid-interfaces-ios-swift-9732bb934bf5. Accessed: 2020-10-06T14:39:14Z. Aug. 2018.

url: https://medium.com/@nathangitter/building-fluid-interfaces-ios-swift-

9732bb934bf5 (visited on 10/06/2020).

[74] Patricia Grant et al. “The Functional Performance of the BrainPort V100 Device in Persons

Who Are Profoundly Blind”. In: Journal of Visual Impairment & Blindness 110.2 (Mar. 2016),

pp. 77–88. issn: 0145-482X. doi: 10.1177/0145482X1611000202. url: https://doi.org/10.

1177/0145482X1611000202 (visited on 09/23/2021).

http://www.digra.org/wp-content/uploads/digital-library/paper_248.pdf
https://www.youtube.com/watch?v=NU29QKag8a0
https://www.youtube.com/watch?v=NU29QKag8a0
https://www.youtube.com/watch?v=NU29QKag8a0
https://www.youtube.com/watch?v=NU29QKag8a0
https://www.youtube.com/watch?v=yCKI9T3sSv0
https://www.youtube.com/watch?v=yCKI9T3sSv0
https://arxiv.org/abs/2104.02726
http://arxiv.org/abs/2104.02726
http://arxiv.org/abs/2104.02726
https://www.youtube.com/watch?v=YISKcRDcDJg&ab_channel=GDC
https://www.youtube.com/watch?v=YISKcRDcDJg&ab_channel=GDC
https://www.youtube.com/watch?v=YISKcRDcDJg&ab_channel=GDC
http://gameaccessibilityguidelines.com/
http://gameaccessibilityguidelines.com/
http://gameaccessibilityguidelines.com/
https://troygilbert.com/deconstructing-zelda/movement-mechanics/
https://troygilbert.com/deconstructing-zelda/movement-mechanics/
https://troygilbert.com/deconstructing-zelda/movement-mechanics/
https://troygilbert.com/deconstructing-zelda/movement-mechanics/
https://medium.com/@nathangitter/building-fluid-interfaces-ios-swift-9732bb934bf5
https://medium.com/@nathangitter/building-fluid-interfaces-ios-swift-9732bb934bf5
https://medium.com/@nathangitter/building-fluid-interfaces-ios-swift-9732bb934bf5
https://medium.com/@nathangitter/building-fluid-interfaces-ios-swift-9732bb934bf5
https://doi.org/10.1177/0145482X1611000202
https://doi.org/10.1177/0145482X1611000202
https://doi.org/10.1177/0145482X1611000202

119

[75] Kyle Gray et al. How to Prototype a Game in Under 7 Days. https://www.gamasutra.com/

view/feature/130848/how_to_prototype_a_game_in_under_7_.php. Accessed: 2019-10-27.

2005. url: https://www.gamasutra.com/view/feature/130848/how_to_prototype_a_

game_in_under_7_.php (visited on 10/27/2019).

[76] Saul Greenberg et al. Sketching User Experiences: The Workbook. Elsevier, Nov. 2011. isbn:

978-0-12-381961-1.

[77] Jaime Griesemer. Design by Numbers: Cooldowns. https : / / rewardingplay . com / 2012 /

01/09/design-by-numbers-cooldowns/. Accessed: 2020-10-21T10:05:22Z. Jan. 2012. url:

https://rewardingplay.com/2012/01/09/design-by-numbers-cooldowns/ (visited on

10/21/2020).

[78] Matthew Guzdial et al. “Friend, Collaborator, Student, Manager: How Design of an AI-Driven

Game Level Editor A↵ects Creators”. In: Proceedings of the 2019 CHI Conference on Human

Factors in Computing Systems. Glasgow Scotland Uk: ACM, May 2019, pp. 1–13. isbn: 978-

1-4503-5970-2. doi: 10.1145/3290605.3300854. url: https://dl.acm.org/doi/10.1145/

3290605.3300854 (visited on 02/18/2022).

[79] Matthew James Guzdial. “Combinational Machine Learning Creativity”. PhD thesis. Georgia

Institute of Technology, July 2019. url: https://smartech.gatech.edu/bitstream/handle/

1853/61790/GUZDIAL- DISSERTATION- 2019.pdf?sequence=1&isAllowed=y (visited on

12/09/2021).

[80] Mark Haigh-Hutchinson. “Fundamentals of Real-Time Camera Design”. In:GDC’05 talk (2005),

p. 20.

[81] Mark Haigh-Hutchinson. Real Time Cameras: A Guide for Game Designers and Developers.

1 edition. San Francisco, Calif. : Oxford: CRC Press, Apr. 2009. isbn: 978-0-12-311634-5.

[82] Mark Haigh-Hutchinson. Real-Time Cameras - Navigation and Occlusion. https://www.

gamasutra.com/view/feature/132456/realtime_cameras__navigation_and_.php. Ac-

cessed: 2020-06-29T22:03:24Z. 2009. url: https://www.gamasutra.com/view/feature/

132456/realtime_cameras__navigation_and_.php (visited on 06/29/2020).

[83] Andreas Hald et al. “Procedural Content Generation of Puzzle Games Using Conditional Gen-

erative Adversarial Networks”. In: International Conference on the Foundations of Digital

Games. Bugibba Malta: ACM, Sept. 2020, pp. 1–9. isbn: 978-1-4503-8807-8. doi: 10.1145/

3402942.3409601. url: https://dl.acm.org/doi/10.1145/3402942.3409601 (visited on

10/19/2021).

[84] Kieran Hicks et al. “Good Game Feel: An Empirically Grounded Framework for Juicy Design”.

In: Proceedings of the 2018 DiGRA International Conference: The Game Is the Message. Di-

GRA, July 2018, p. 17. url: http://www.digra.org/wp- content/uploads/digital-

library/DIGRA_2018_Paper_35.pdf.

[85] Mads Hobye. “Designing for Homo Explorens: Open Social Play in Performative Frames”.

PhD thesis. Malmö, Sweden: Malmö University, 2014. isbn: 9789171045379.

https://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
https://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
https://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
https://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
https://rewardingplay.com/2012/01/09/design-by-numbers-cooldowns/
https://rewardingplay.com/2012/01/09/design-by-numbers-cooldowns/
https://rewardingplay.com/2012/01/09/design-by-numbers-cooldowns/
https://doi.org/10.1145/3290605.3300854
https://dl.acm.org/doi/10.1145/3290605.3300854
https://dl.acm.org/doi/10.1145/3290605.3300854
https://smartech.gatech.edu/bitstream/handle/1853/61790/GUZDIAL-DISSERTATION-2019.pdf?sequence=1&isAllowed=y
https://smartech.gatech.edu/bitstream/handle/1853/61790/GUZDIAL-DISSERTATION-2019.pdf?sequence=1&isAllowed=y
https://www.gamasutra.com/view/feature/132456/realtime_cameras__navigation_and_.php
https://www.gamasutra.com/view/feature/132456/realtime_cameras__navigation_and_.php
https://www.gamasutra.com/view/feature/132456/realtime_cameras__navigation_and_.php
https://www.gamasutra.com/view/feature/132456/realtime_cameras__navigation_and_.php
https://doi.org/10.1145/3402942.3409601
https://doi.org/10.1145/3402942.3409601
https://dl.acm.org/doi/10.1145/3402942.3409601
http://www.digra.org/wp-content/uploads/digital-library/DIGRA_2018_Paper_35.pdf
http://www.digra.org/wp-content/uploads/digital-library/DIGRA_2018_Paper_35.pdf

120 CHAPTER 8. REFERENCES

[86] Amy K. Hoover et al. “Generating a Complete Multipart Musical Composition from a Sin-

gle Monophonic Melody with Functional Sca↵olding”. In: ICCC. Vol. PROCEEDINGS OF

THE THIRD INTERNATIONAL CONFERENCE ON COMPUTATIONAL CREATIVITY.

Proceedings of the Third International Conference on Computational Creativity: ICCC, 2012,

pp. 111–119.

[87] Johan Huizinga. Homo Ludens: Proeve Fleener Bepaling van Het Spel-Element Der Cultuur.

1938.

[88] Robin Hunicke. Loving Your Player With Juicy Feedback. dConstruct 2009, 2009. url: http:

//2009.dconstruct.org/podcast/juicyfeedback (visited on 04/17/2020).

[89] Robin Hunicke. “The Case for Dynamic Di�culty Adjustment in Games”. In: Proceedings of

the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment

Technology - ACE ’05. Valencia, Spain: ACM Press, 2005, pp. 429–433. isbn: 978-1-59593-110-

8. doi: 10.1145/1178477.1178573. url: http://portal.acm.org/citation.cfm?doid=

1178477.1178573 (visited on 01/10/2022).

[90] Sonic Hurricane. Impact Freeze. https://sonichurricane.com/?p=1043. Forum Post. Jan.

2010. url: https://sonichurricane.com/?p=1043.

[91] Tommi Ilmonen and Janne Kontkanen. “The Second Order Particle System”. In: Journal of

WSCG 11.1 (2003). issn: 1213-6972.

[92] Thomas Jakobsen. “Advanced Character Physics”. In: In Proceedings of the Game Developers

Conference 2001. 2001, p. 19.

[93] Mads Johansen and Michael Cook. “Challenges in Generating Juice E↵ects For Automatically

Designed Games”. In: Proceedings of The 17th AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment. Online: AAAI Press, Oct. 2021, p. 8. url: https:

//sites.google.com/view/aiide2021/papers.

[94] Mads Johansen, Martin Pichlmair, and Sebastian Risi. “Squeezer - A Mixed-Initiative Tool

for Designing Juice E↵ects”. In: Proceedings of the Foundations of Digital Games Conference

(FDG 2021). Online, 2021, p. 11.

[95] Mads Johansen, Martin Pichlmair, and Sebastian Risi. “Squeezer - A Tool for Designing Juicy

E↵ects”. In: Extended Abstracts of the 2020 Annual Symposium on Computer-Human Inter-

action in Play. CHI PLAY ’20. New York, NY, USA: Association for Computing Machinery,

Nov. 2020, pp. 282–286. isbn: 978-1-4503-7587-0. doi: 10 . 1145/ 3383668 .3419862. url:

https://doi.org/10.1145/3383668.3419862 (visited on 11/03/2020).

[96] Mads Johansen, Martin Pichlmair, and Sebastian Risi. “Video Game Description Language En-

vironment for Unity Machine Learning Agents”. In: 2019 IEEE Conference on Games (CoG).

Vol. 2019 IEEE Conference on Games (CoG). IEEE, Aug. 2019, pp. 1–8. doi: 10.1109/CIG.

2019.8848072.

[97] J. Johnson and G. Engelbeck. “Modes Survey Results”. In: SIGCHI Bull. 20.4 (Apr. 1989),

pp. 38–50. issn: 0736-6906. doi: 10.1145/67243.67248. url: https://doi.org/10.1145/

67243.67248.

http://2009.dconstruct.org/podcast/juicyfeedback
http://2009.dconstruct.org/podcast/juicyfeedback
https://doi.org/10.1145/1178477.1178573
http://portal.acm.org/citation.cfm?doid=1178477.1178573
http://portal.acm.org/citation.cfm?doid=1178477.1178573
https://sonichurricane.com/?p=1043
https://sonichurricane.com/?p=1043
https://sites.google.com/view/aiide2021/papers
https://sites.google.com/view/aiide2021/papers
https://doi.org/10.1145/3383668.3419862
https://doi.org/10.1145/3383668.3419862
https://doi.org/10.1109/CIG.2019.8848072
https://doi.org/10.1109/CIG.2019.8848072
https://doi.org/10.1145/67243.67248
https://doi.org/10.1145/67243.67248
https://doi.org/10.1145/67243.67248

121

[98] Martin Jonasson and Petri Purho. Juice It or Lose It. https://www.youtube.com/watch?

v=Fy0aCDmgnxg. Accessed: 2019-02-27. Nordic Game Conference 2012, 2012. url: https:

//www.youtube.com/watch?v=Fy0aCDmgnxg (visited on 02/27/2019).

[99] Anna Jordanous. “Evaluating Computational Creativity: A Standardised Procedure for Eval-

uating Creative Systems and Its Application”. PhD thesis. University of Sussex, 2012. url:

http : / / sro . sussex . ac . uk / 44741 / 1 / Jordanous , _Anna _ Katerina . pdf (visited on

02/26/2022).

[100] Arthur Juliani et al. “Obstacle Tower: A Generalization Challenge in Vision, Control, and

Planning”. In: arXiv:1902.01378 [cs] (Feb. 2019). arXiv: 1902.01378 [cs]. url: http://

arxiv.org/abs/1902.01378 (visited on 02/11/2019).

[101] Arthur Juliani et al. “Unity: A General Platform for Intelligent Agents”. In: arXiv:1809.02627

[cs, stat] (Sept. 2018). arXiv: 1809.02627 [cs, stat]. url: http://arxiv.org/abs/1809.

02627 (visited on 01/07/2019).

[102] Jesper Juul. A Casual Revolution — The MIT Press. MIT Press, 2009. url: https : / /

mitpress.mit.edu/books/casual-revolution (visited on 04/17/2020).

[103] Jesper Juul. Half-Real: Video Games between Real Rules and Fictional Worlds. MIT Press,

2005. isbn: 978-0-262-28413-4.

[104] Jesper Juul and Jason Scott Begy. “Good Feedback for Bad Players? A Preliminary Study of

‘Juicy’ Interface Feedback”. In: Proceedings of First Joint FDG/DiGRA Conference. Vol. Pro-

ceedings of first joint FDG/DiGRA Conference. Dundee: DiGRA, 2016, p. 2. url: https:

//www.jesperjuul.net/text/juiciness.pdf.

[105] Dominic Kao. “The E↵ects of Juiciness in an Action RPG”. In: Entertainment Computing 34

(Feb. 2020), p. 100359. doi: 10.1016/j.entcom.2020.100359.

[106] Dominic Kao and D. Fox Harrell. “Exploring the Impact of Avatar Color on Game Expe-

rience in Educational Games”. In: Proceedings of the 2016 CHI Conference Extended Ab-

stracts on Human Factors in Computing Systems. CHI EA ’16. New York, NY, USA: Asso-

ciation for Computing Machinery, May 2016, pp. 1896–1905. isbn: 978-1-4503-4082-3. doi:

10.1145/2851581.2892281. url: https://doi.org/10.1145/2851581.2892281 (visited on

10/06/2020).

[107] Chan Karunamuni, Nathan de Vries, and Marcos Alonso. Designing Fluid Interfaces - WWDC

2018 - Videos. https://developer.apple.com/videos/play/wwdc2018/803/. Accessed:

2020-10-06T14:35:46Z. 2018. url: https://developer.apple.com/videos/play/wwdc2018/

803/ (visited on 10/06/2020).

[108] Fares Kayali and Peter Purgathofer. “Two Halves of Play-Simulation versus Abstraction and

Transformation in Sports Videogames Design”. In: Eludamos. Journal for Computer Game

Culture 2.1 (2008), pp. 105–127.

https://www.youtube.com/watch?v=Fy0aCDmgnxg
https://www.youtube.com/watch?v=Fy0aCDmgnxg
https://www.youtube.com/watch?v=Fy0aCDmgnxg
https://www.youtube.com/watch?v=Fy0aCDmgnxg
http://sro.sussex.ac.uk/44741/1/Jordanous,_Anna_Katerina.pdf
https://arxiv.org/abs/1902.01378
http://arxiv.org/abs/1902.01378
http://arxiv.org/abs/1902.01378
https://arxiv.org/abs/1809.02627
http://arxiv.org/abs/1809.02627
http://arxiv.org/abs/1809.02627
https://mitpress.mit.edu/books/casual-revolution
https://mitpress.mit.edu/books/casual-revolution
https://www.jesperjuul.net/text/juiciness.pdf
https://www.jesperjuul.net/text/juiciness.pdf
https://doi.org/10.1016/j.entcom.2020.100359
https://doi.org/10.1145/2851581.2892281
https://doi.org/10.1145/2851581.2892281
https://developer.apple.com/videos/play/wwdc2018/803/
https://developer.apple.com/videos/play/wwdc2018/803/
https://developer.apple.com/videos/play/wwdc2018/803/

122 CHAPTER 8. REFERENCES

[109] Itay Keren. Gamasutra: Itay Keren’s Blog - Scroll Back: The Theory and Practice of Cameras

in Side-Scrollers. https://gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll_

Back_The_Theory_and_Practice_of_Cameras_in_SideScrollers.php. Accessed: 2020-08-

05T12:23:00Z. 2015. url: https://gamasutra.com/blogs/ItayKeren/20150511/243083/

Scroll_Back_The_Theory_and_Practice_of_Cameras_in_SideScrollers.php (visited on

08/05/2020).

[110] Itay Keren. Scroll Back: The Theory and Practice of Cameras in Side-Scrollers. 2015. url:

https://www.gdcvault.com/play/1022243/Scroll-Back-The-Theory-and (visited on

04/17/2020).

[111] Ahmed Khalifa. “General Level Generation”. PhD thesis. 2020.

[112] Ahmed Khalifa and Magda Fayek. “Automatic Puzzle Level Generation: A General Approach

Using a Description Language”. In: (2015), p. 8.

[113] Ahmed Khalifa et al. “General Video Game Rule Generation”. In: 2017 IEEE Conference on

Computational Intelligence and Games (CIG). New York, NY, USA: IEEE, Aug. 2017, pp. 170–

177. isbn: 978-1-5386-3233-8. doi: 10.1109/CIG.2017.8080431. url: http://ieeexplore.

ieee.org/document/8080431/ (visited on 02/27/2019).

[114] David King. Principals of UI Design in the World of Warcraft. https://medium.com/@d.w.

king12/principals-of-ui-design-in-the-world-of-warcraft-19e1a33feb61. Accessed:

2020-10-09T20:10:02Z. Dec. 2019. url: https://medium.com/@d.w.king12/principals-

of-ui-design-in-the-world-of-warcraft-19e1a33feb61 (visited on 10/09/2020).

[115] Shringi Kumari, Sebastian Deterding, and Jonathan Freeman. “The Role of Uncertainty in

Moment-to-Moment Player Motivation: A Grounded Theory”. In: Proceedings of the Annual

Symposium on Computer-Human Interaction in Play - CHI PLAY ’19. Barcelona, Spain: ACM

Press, 2019, pp. 351–363. isbn: 978-1-4503-6688-5. doi: 10.1145/3311350.3347148. url:

http://dl.acm.org/citation.cfm?doid=3311350.3347148 (visited on 10/24/2019).

[116] Ben Kybartas, Clark Verbrugge, and Jonathan Lessard. “Expressive Range Analysis of a Pos-

sible Worlds Driven Emergent Narrative System”. In: Interactive Storytelling. Ed. by Re-

becca Rouse, Hartmut Koenitz, and Mads Haahr. Lecture Notes in Computer Science. Cham:

Springer International Publishing, 2018, pp. 473–477. isbn: 978-3-030-04028-4. doi: 10.1007/

978-3-030-04028-4_54.

[117] Carolyn Lamb, Daniel G. Brown, and Charles L. A. Clarke. “Evaluating Computational Cre-

ativity: An Interdisciplinary Tutorial”. In: ACM Computing Surveys 51.2 (Feb. 2018), 28:1–

28:34. issn: 0360-0300. doi: 10.1145/3167476. url: https://doi.org/10.1145/3167476

(visited on 02/17/2022).

[118] Lasse Juel Larsen. “Collision Thrills: Unpacking the Aesthetics of Action in Computer Games”.

In: Journal of Computer Games and Communication 1.1 (Apr. 2016), pp. 41–52. issn: 21481881.

doi: 10.15340/2148188111997. url: https://www.macroworldpub.com/makale_detay.

php?makale_id=92&dergi_id=55#.VyMdGz9NjaY (visited on 04/17/2020).

https://gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll_Back_The_Theory_and_Practice_of_Cameras_in_SideScrollers.php
https://gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll_Back_The_Theory_and_Practice_of_Cameras_in_SideScrollers.php
https://gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll_Back_The_Theory_and_Practice_of_Cameras_in_SideScrollers.php
https://gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll_Back_The_Theory_and_Practice_of_Cameras_in_SideScrollers.php
https://www.gdcvault.com/play/1022243/Scroll-Back-The-Theory-and
https://doi.org/10.1109/CIG.2017.8080431
http://ieeexplore.ieee.org/document/8080431/
http://ieeexplore.ieee.org/document/8080431/
https://medium.com/@d.w.king12/principals-of-ui-design-in-the-world-of-warcraft-19e1a33feb61
https://medium.com/@d.w.king12/principals-of-ui-design-in-the-world-of-warcraft-19e1a33feb61
https://medium.com/@d.w.king12/principals-of-ui-design-in-the-world-of-warcraft-19e1a33feb61
https://medium.com/@d.w.king12/principals-of-ui-design-in-the-world-of-warcraft-19e1a33feb61
https://doi.org/10.1145/3311350.3347148
http://dl.acm.org/citation.cfm?doid=3311350.3347148
https://doi.org/10.1007/978-3-030-04028-4_54
https://doi.org/10.1007/978-3-030-04028-4_54
https://doi.org/10.1145/3167476
https://doi.org/10.1145/3167476
https://doi.org/10.15340/2148188111997
https://www.macroworldpub.com/makale_detay.php?makale_id=92&dergi_id=55#.VyMdGz9NjaY
https://www.macroworldpub.com/makale_detay.php?makale_id=92&dergi_id=55#.VyMdGz9NjaY

123

[119] John Lasseter. “PRINCIPLES OF TRADITIONAL ANIMATION APPLIED TO 3D COM-

PUTER ANIMATION”. In: Computer Graphics, Volume 21, Number 4, July 1987 (1987),

p. 10.

[120] Lutz Latta. Building a Million-Particle System. https : / / www . gamasutra . com / view /

feature/130535/building_a_millionparticle_system.php. Accessed: 2020-10-06T12:53:43Z.

2004. url: https://www.gamasutra.com/view/feature/130535/building_a_millionparticle_

system.php (visited on 10/06/2020).

[121] Stephen Lavelle. Flickgame. 2015. url: https://www.flickgame.org/ (visited on 10/01/2021).

[122] Adam Lefky and Artem Gindin. Acceleration Due to Gravity: Super Mario Brothers. 2007.

[123] Joel Lehman and Kenneth O. Stanley. “Abandoning Objectives: Evolution Through the Search

for Novelty Alone”. In: Evolutionary Computation 19.2 (June 2011), pp. 189–223. issn: 1063-

6560, 1530-9304. doi: 10.1162/EVCO_a_00025. url: https://direct.mit.edu/evco/

article/19/2/189-223/1365 (visited on 09/15/2021).

[124] Joel Lehman and Kenneth O. Stanley. “Novelty Search and the Problem with Objectives”.

In: Genetic Programming Theory and Practice IX. Ed. by Rick Riolo, Ekaterina Vladislavleva,

and Jason H. Moore. Genetic and Evolutionary Computation. New York, NY: Springer, 2011,

pp. 37–56. isbn: 978-1-4614-1770-5. doi: 10.1007/978-1-4614-1770-5_3. url: https:

//doi.org/10.1007/978-1-4614-1770-5_3 (visited on 10/19/2021).

[125] John Levine et al. “General Video Game Playing”. In: Artificial and Computational Intelligence

in Games. Ed. by Simon M. Lucas et al. Vol. 6. Dagstuhl Follow-Ups. Dagstuhl, Germany:

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, pp. 77–83. isbn: 978-3-939897-62-0.

doi: 10.4230/DFU.Vol6.12191.77. url: http://drops.dagstuhl.de/opus/volltexte/

2013/4337.

[126] Antonios Liapis. “Searching for Sentient Design Tools for Game Development”. PhD thesis.

Copenhagen, Denmark: IT University of Copenhagen, 2014.

[127] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. “Computational Game Creativ-

ity”. In: ICCC. 2014, p. 8.

[128] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. “Sentient Sketchbook: Computer-

Aided Game Level Authoring”. In: Foundations of Digital Games. 2013, p. 8.

[129] Youn-Kyung Lim, Erik Stolterman, and Josh Tenenberg. “The Anatomy of Prototypes: Pro-

totypes as Filters, Prototypes as Manifestations of Design Ideas”. In: ACM Transactions on

Computer-Human Interaction 15.2 (July 2008), 7:1–7:27. issn: 1073-0516. doi: 10.1145/

1375761.1375762. url: https://doi.org/10.1145/1375761.1375762 (visited on 10/19/2021).

[130] Nathan Lovato. Squeezing More Juice out of Your Game Design! https://bit.ly/2GsjSex.

Accessed: 2019-10-27T12:44:31Z. Mar. 2015. url: https://bit.ly/2GsjSex (visited on

10/27/2019).

https://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php
https://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php
https://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php
https://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php
https://www.flickgame.org/
https://doi.org/10.1162/EVCO_a_00025
https://direct.mit.edu/evco/article/19/2/189-223/1365
https://direct.mit.edu/evco/article/19/2/189-223/1365
https://doi.org/10.1007/978-1-4614-1770-5_3
https://doi.org/10.1007/978-1-4614-1770-5_3
https://doi.org/10.1007/978-1-4614-1770-5_3
https://doi.org/10.4230/DFU.Vol6.12191.77
http://drops.dagstuhl.de/opus/volltexte/2013/4337
http://drops.dagstuhl.de/opus/volltexte/2013/4337
https://doi.org/10.1145/1375761.1375762
https://doi.org/10.1145/1375761.1375762
https://doi.org/10.1145/1375761.1375762
https://bit.ly/2GsjSex
https://bit.ly/2GsjSex

124 CHAPTER 8. REFERENCES

[131] Todd Lubart. “How Can Computers Be Partners in the Creative Process: Classification and

Commentary on the Special Issue”. In: International Journal of Human-Computer Studies

63.4-5 (Oct. 2005), pp. 365–369. issn: 10715819. doi: 10.1016/j.ijhcs.2005.04.002.

url: https://linkinghub.elsevier.com/retrieve/pii/S1071581905000418 (visited on

12/09/2021).

[132] Paul Lu↵ and David Frohlich. “CHAPTER 13 - MIXED INITIATIVE INTERACTION”.

In: Knowledge-Based Systems and Legal Applications. Ed. by T. J. M. Bench-capon. Vol. 36.

APIC. London: Academic Press, Jan. 1991, pp. 265–294. isbn: 978-0-12-086441-6. doi: 10.

1016/B978-0-12-086441-6.50021-0. url: https://www.sciencedirect.com/science/

article/pii/B9780120864416500210 (visited on 10/18/2021).

[133] Tiago Machado et al. “AI-Assisted Game Debugging with Cicero”. In: 2018 IEEE Congress

on Evolutionary Computation (CEC). Rio de Janeiro: IEEE, July 2018, pp. 1–8. isbn: 978-

1-5090-6017-7. doi: 10.1109/CEC.2018.8477829. url: https://ieeexplore.ieee.org/

document/8477829/ (visited on 04/11/2019).

[134] Tiago Machado et al. “Evaluation of a Recommender System for Assisting Novice Game De-

signers”. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment 15.1 (Oct. 2019), pp. 167–173. issn: 2334-0924. url: https://ojs.

aaai.org/index.php/AIIDE/article/view/5240 (visited on 03/01/2022).

[135] Ryan Meyer. ITSP Camera Explained. https://www.youtube.com/watch?v=aAKwZt3aXQM&

feature=emb_title&ab_channel=RyanMeyer. Accessed: 2020-10-06T12:58:22Z. May 2013.

url: https://www.youtube.com/watch?v=aAKwZt3aXQM&feature=emb_title&ab_channel=

RyanMeyer (visited on 10/06/2020).

[136] Panagiotis Migkotzidis and Antonios Liapis. “SuSketch: Surrogate Models of Gameplay as a

Design Assistant”. In: IEEE Transactions on Games (2021), pp. 1–1. issn: 2475-1510. doi:

10.1109/TG.2021.3068360.

[137] Rodolfo Mora-Zamora and Esteban Brenes-Villalobos. “Integrated Framework for Game De-

sign”. In: Proceedings of the IX Latin American Conference on Human Computer Interaction.

CLIHC ’19. New York, NY, USA: Association for Computing Machinery, Sept. 2019, pp. 1–6.

isbn: 978-1-4503-7679-2. doi: 10.1145/3358961.3358984. url: https://doi.org/10.1145/

3358961.3358984 (visited on 10/06/2020).

[138] Lennart E. Nacke et al. “Player-Game Interaction Through A↵ective Sound”. In: Game Sound

Technology and Player Interaction: Concepts and Developments. IGI Global, Jan. 2011. isbn:

978-1-61692-828-5. url: https://www.igi-global.com/gateway/chapter/46796 (visited on

08/06/2020).

[139] Mark J. Nelson and Michael Mateas. “An Interactive Game-Design Assistant”. In: Proceedings

of the 13th International Conference on Intelligent User Interfaces - IUI ’08. Gran Canaria,

Spain: ACM Press, 2008, p. 90. isbn: 978-1-59593-987-6. doi: 10.1145/1378773.1378786. url:

http://portal.acm.org/citation.cfm?doid=1378773.1378786 (visited on 09/05/2018).

[140] Jan Willem Nijman. The Art of Screenshake. https : / / www . youtube . com / watch ? v =

AJdEqssNZ-U. Accessed: 2021-04-22. Dec. 2013. url: https://www.youtube.com/watch?

v=AJdEqssNZ-U (visited on 04/22/2021).

https://doi.org/10.1016/j.ijhcs.2005.04.002
https://linkinghub.elsevier.com/retrieve/pii/S1071581905000418
https://doi.org/10.1016/B978-0-12-086441-6.50021-0
https://doi.org/10.1016/B978-0-12-086441-6.50021-0
https://www.sciencedirect.com/science/article/pii/B9780120864416500210
https://www.sciencedirect.com/science/article/pii/B9780120864416500210
https://doi.org/10.1109/CEC.2018.8477829
https://ieeexplore.ieee.org/document/8477829/
https://ieeexplore.ieee.org/document/8477829/
https://ojs.aaai.org/index.php/AIIDE/article/view/5240
https://ojs.aaai.org/index.php/AIIDE/article/view/5240
https://www.youtube.com/watch?v=aAKwZt3aXQM&feature=emb_title&ab_channel=RyanMeyer
https://www.youtube.com/watch?v=aAKwZt3aXQM&feature=emb_title&ab_channel=RyanMeyer
https://www.youtube.com/watch?v=aAKwZt3aXQM&feature=emb_title&ab_channel=RyanMeyer
https://www.youtube.com/watch?v=aAKwZt3aXQM&feature=emb_title&ab_channel=RyanMeyer
https://doi.org/10.1109/TG.2021.3068360
https://doi.org/10.1145/3358961.3358984
https://doi.org/10.1145/3358961.3358984
https://doi.org/10.1145/3358961.3358984
https://www.igi-global.com/gateway/chapter/46796
https://doi.org/10.1145/1378773.1378786
http://portal.acm.org/citation.cfm?doid=1378773.1378786
https://www.youtube.com/watch?v=AJdEqssNZ-U
https://www.youtube.com/watch?v=AJdEqssNZ-U
https://www.youtube.com/watch?v=AJdEqssNZ-U
https://www.youtube.com/watch?v=AJdEqssNZ-U

125

[141] Nintendo. Super Mario 64. 1996.

[142] Donald Norman. The Design Of Everyday Things. Basic Books, 1988.

[143] Aline Normoyle and Sophie Jörg. “Trade-O↵s between Responsiveness and Naturalness for

Player Characters”. In: Proceedings of the Seventh International Conference on Motion in

Games - MIG ’14. Playa Vista, California: ACM Press, 2014, pp. 61–70. isbn: 978-1-4503-

2623-0. doi: 10.1145/2668064.2668087. url: http://dl.acm.org/citation.cfm?doid=

2668064.2668087 (visited on 09/11/2019).

[144] David G Novick and Stephen Sutton. “What Is Mixed-Initiative Interaction?” In: (1997), p. 3.

[145] Christian Nutt. The Magic of TowerFall : Depth, Simplicity, Community. /view / news /

241970/The_magic_of_TowerFall_Depth_simplicity_community.php. Accessed: 2020-

05-15T10:28:22Z. 2015. url: /view / news / 241970 / The _ magic _ of _ TowerFall _ Depth _

simplicity_community.php (visited on 05/15/2020).

[146] Mauricio Orozco et al. “The Role of Haptics in Games”. In: Haptics Rendering and Applica-

tions. London, United Kingdom: IntechOpen, Jan. 2012, pp. 217–234. isbn: 978-953-307-897-7.

url: https://www.intechopen.com/books/haptics-rendering-and-applications/-the-

role-of-haptics-in-gaming-experience- (visited on 06/29/2020).

[147] Marcus Pearce. “Boden and Beyond: The Creative Mind and Its Reception in the Academic

Community.” In: (2010), p. 21.

[148] Barney Pell. “METAGAME: A New Challenge for Games and Learning”. In: Programming in

Artificial Intellegence: The Third Computer Olympiad. Ellis Horwood. Ellis Horwood Limited,

1992, pp. 237–251.

[149] Robert Penner. Robert Penner’s Programming Macromedia Flash MX. New York: McGraw-

Hill/Osborne, 2002. isbn: 978-0-07-222356-9.

[150] Diego Perez-Liebana et al. “General Video Game AI: A Multi-Track Framework for Evaluating

Agents, Games and Content Generation Algorithms”. In: arXiv:1802.10363 [cs] (Feb. 2018).

arXiv: 1802.10363 [cs]. url: http://arxiv.org/abs/1802.10363 (visited on 11/27/2018).

[151] Diego Perez-Liebana et al. “General Video Game AI: A Multitrack Framework for Evaluating

Agents, Games, and Content Generation Algorithms”. In: IEEE Transactions on Games 11.3

(Sept. 2019), pp. 195–214. issn: 2475-1510. doi: 10.1109/TG.2019.2901021.

[152] Diego Perez-Liebana et al. “The 2014 General Video Game Playing Competition”. In: IEEE

Transactions on Computational Intelligence and AI in Games 8.3 (Sept. 2016), pp. 229–243.

issn: 1943-068X, 1943-0698. doi: 10.1109/TCIAIG.2015.2402393. url: http://ieeexplore.

ieee.org/document/7038214/ (visited on 03/23/2019).

[153] Lee Perry. The Single Most Useful Advice I Can Give for Making Any Game Better.. Feedback.

https://gamasutra.com/blogs/LeePerry/20130506/191739/The_single_most_useful_

advice_I_can_give_for_making_any_game_better_feedback.php. Accessed: 2020-04-

17T11:48:27Z. 2013. url: https://gamasutra.com/blogs/LeePerry/20130506/191739/

The_single_most_useful_advice_I_can_give_for_making_any_game_better_feedback.

php (visited on 04/17/2020).

https://doi.org/10.1145/2668064.2668087
http://dl.acm.org/citation.cfm?doid=2668064.2668087
http://dl.acm.org/citation.cfm?doid=2668064.2668087
https://www.intechopen.com/books/haptics-rendering-and-applications/-the-role-of-haptics-in-gaming-experience-
https://www.intechopen.com/books/haptics-rendering-and-applications/-the-role-of-haptics-in-gaming-experience-
https://arxiv.org/abs/1802.10363
http://arxiv.org/abs/1802.10363
https://doi.org/10.1109/TG.2019.2901021
https://doi.org/10.1109/TCIAIG.2015.2402393
http://ieeexplore.ieee.org/document/7038214/
http://ieeexplore.ieee.org/document/7038214/
https://gamasutra.com/blogs/LeePerry/20130506/191739/The_single_most_useful_advice_I_can_give_for_making_any_game_better_feedback.php
https://gamasutra.com/blogs/LeePerry/20130506/191739/The_single_most_useful_advice_I_can_give_for_making_any_game_better_feedback.php
https://gamasutra.com/blogs/LeePerry/20130506/191739/The_single_most_useful_advice_I_can_give_for_making_any_game_better_feedback.php
https://gamasutra.com/blogs/LeePerry/20130506/191739/The_single_most_useful_advice_I_can_give_for_making_any_game_better_feedback.php
https://gamasutra.com/blogs/LeePerry/20130506/191739/The_single_most_useful_advice_I_can_give_for_making_any_game_better_feedback.php

126 CHAPTER 8. REFERENCES

[154] Tomas ’DrPetter’ Pettersson. SFXR. http://www.drpetter.se/project_sfxr.html. Ac-

cessed: 2020-07-11. 2007. url: http://www.drpetter.se/project_sfxr.html (visited on

07/11/2020).

[155] Martin Pichlmair and Mads Johansen. “Designing Game Feel. A Survey.” In: IEEE Transac-

tions on Games IEEE Transactions on Games (Early Access).IEEE Transactions on Games

(Early Access) (2021), pp. 1–20. issn: 2475-1510. doi: 10.1109/TG.2021.3072241.

[156] Yoann Pignole. Platformer Controls: How to Avoid Limpness and Rigidity Feelings. https://

www.gamasutra.com/blogs/YoannPignole/20140103/207987/Platformer_controls_how_

to_avoid_limpness_and_rigidity_feelings.php. Accessed: 2019-10-27T12:43:44Z. 2014.

url: https://www.gamasutra.com/blogs/YoannPignole/20140103/207987/Platformer_

controls_how_to_avoid_limpness_and_rigidity_feelings.php (visited on 10/27/2019).

[157] Kyle Pittman. Math for Game Programmers: Building a Better Jump. https://www.youtube.

com/watch?v=hG9SzQxaCm8&ab_channel=GDC. Accessed: 2020-10-06T12:40:54Z. 2016. url:

https://www.youtube.com/watch?v=hG9SzQxaCm8&ab_channel=GDC (visited on 10/06/2020).

[158] Will Porter. A Videogame History of Bullet-Time. https : / / www . gamesradar . com / a -

videogame-history-of-bullet-time/. Accessed: 2020-10-06T12:39:54Z. 2010. url: https:

//www.gamesradar.com/a-videogame-history-of-bullet-time/ (visited on 10/06/2020).

[159] Justin K. Pugh, L. B. Soros, and Kenneth O. Stanley. “An Extended Study of Quality Diversity

Algorithms”. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference

Companion. Denver Colorado USA: ACM, July 2016, pp. 19–20. isbn: 978-1-4503-4323-7. doi:

10.1145/2908961.2909000. url: https://dl.acm.org/doi/10.1145/2908961.2909000

(visited on 10/19/2021).

[160] Kyle Pulver. Platforming Ledge Forgiveness. http://kpulv.com/123/Platforming_Ledge_

Forgiveness/. Accessed: 2020-05-04T12:38:06Z. 2013. url: http://kpulv.com/123/Platforming_

Ledge_Forgiveness/ (visited on 05/04/2020).

[161] Fernando Ramallo. Doodle Studio 95! By Fer Ramallo. 2018. url: https://fernandoramallo.

itch.io/doodle-studio-95 (visited on 10/01/2021).

[162] Jef Raskin. The Humane Interface: New Directions for Designing Interactive Systems. New

York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000. isbn: 0-201-37937-6.

[163] Johan Redström. Making Design Theory. Ed. by Ken Friedman and Erik Stolterman. Design

Thinking, Design Theory. Cambridge, MA, USA: MIT Press, Sept. 2017. isbn: 978-0-262-

03665-8.

[164] William T Reeves. “Particle Systems A Technique for Modeling a Class of Fuzzy Objects”. In:

ACM Transactions on Graphics 2.2 (Apr. 1983), p. 17. doi: 10.1145/357318.357320. url:

https://www.lri.fr/~mbl/ENS/IG2/devoir2/files/docs/fuzzyParticles.pdf (visited

on 05/11/2020).

http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
https://doi.org/10.1109/TG.2021.3072241
https://www.gamasutra.com/blogs/YoannPignole/20140103/207987/Platformer_controls_how_to_avoid_limpness_and_rigidity_feelings.php
https://www.gamasutra.com/blogs/YoannPignole/20140103/207987/Platformer_controls_how_to_avoid_limpness_and_rigidity_feelings.php
https://www.gamasutra.com/blogs/YoannPignole/20140103/207987/Platformer_controls_how_to_avoid_limpness_and_rigidity_feelings.php
https://www.gamasutra.com/blogs/YoannPignole/20140103/207987/Platformer_controls_how_to_avoid_limpness_and_rigidity_feelings.php
https://www.gamasutra.com/blogs/YoannPignole/20140103/207987/Platformer_controls_how_to_avoid_limpness_and_rigidity_feelings.php
https://www.youtube.com/watch?v=hG9SzQxaCm8&ab_channel=GDC
https://www.youtube.com/watch?v=hG9SzQxaCm8&ab_channel=GDC
https://www.youtube.com/watch?v=hG9SzQxaCm8&ab_channel=GDC
https://www.gamesradar.com/a-videogame-history-of-bullet-time/
https://www.gamesradar.com/a-videogame-history-of-bullet-time/
https://www.gamesradar.com/a-videogame-history-of-bullet-time/
https://www.gamesradar.com/a-videogame-history-of-bullet-time/
https://doi.org/10.1145/2908961.2909000
https://dl.acm.org/doi/10.1145/2908961.2909000
http://kpulv.com/123/Platforming_Ledge_Forgiveness/
http://kpulv.com/123/Platforming_Ledge_Forgiveness/
http://kpulv.com/123/Platforming_Ledge_Forgiveness/
http://kpulv.com/123/Platforming_Ledge_Forgiveness/
https://fernandoramallo.itch.io/doodle-studio-95
https://fernandoramallo.itch.io/doodle-studio-95
https://doi.org/10.1145/357318.357320
https://www.lri.fr/~mbl/ENS/IG2/devoir2/files/docs/fuzzyParticles.pdf

127

[165] William T. Reeves. “Inbetweening for Computer Animation Utilizing Moving Point Con-

straints”. In: Proceedings of the 8th Annual Conference on Computer Graphics and Interactive

Techniques - SIGGRAPH ’81. Dallas, Texas, United States: ACM Press, 1981, pp. 263–269.

isbn: 978-0-89791-045-3. doi: 10.1145/800224.806814. url: http://portal.acm.org/

citation.cfm?doid=800224.806814 (visited on 05/04/2020).

[166] Graeme Ritchie. “Some Empirical Criteria for Attributing Creativity to a Computer Program”.

In: Minds and Machines 17.1 (Mar. 2007), pp. 67–99. issn: 1572-8641. doi: 10.1007/s11023-

007-9066-2. url: https://doi.org/10.1007/s11023-007-9066-2 (visited on 02/26/2022).

[167] Bill Rockenbeck. The inFAMOUS: Second Son Particle System Architecture. https://www.

gdcvault.com/play/1020367/The-inFAMOUS-Second-Son-Particle. Accessed: 2020-10-

06T12:23:34Z. 2014. url: https://www.gdcvault.com/play/1020367/The- inFAMOUS-

Second-Son-Particle (visited on 10/06/2020).

[168] Tim Rogers. In Praise of Sticky Friction. https://kotaku.com/in-praise-of-sticky-

friction-5558166. Accessed: 2021-04-22. June 2010. url: https://kotaku.com/in-praise-

of-sticky-friction-5558166 (visited on 04/22/2021).

[169] Michel Sabbagh. The Art of Designing Visceral and Engaging Bullet Time Gunplay. https:

//michelsabbagh.wordpress.com/2015/10/07/the- art- of- designing- visceral-

and-engaging-bullet-time-gunplay/. Accessed: 2020-04-17T14:21:12Z. Oct. 2015. url:

https://michelsabbagh.wordpress.com/2015/10/07/the-art-of-designing-visceral-

and-engaging-bullet-time-gunplay/ (visited on 04/17/2020).

[170] Dan Sa↵er. Microinteractions: Designing with Details. Reilly Media, Inc., 2013.

[171] Vardan Saini and Matthew Guzdial. “A Demonstration of Mechanic Maker: An AI for Me-

chanics Co-Creation”. In: Proceedings of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment 16.1 (Oct. 2020), pp. 325–327. issn: 2334-0924. url: https:

//ojs.aaai.org/index.php/AIIDE/article/view/7450 (visited on 02/18/2022).

[172] Adam Saltsman. Canabalt. 2009.

[173] Adam Saltsman. Tuning Canabalt. https://www.gamasutra.com/blogs/AdamSaltsman/

20100929/88155/Tuning_Canabalt.php. Accessed: 2019-10-27T12:43:59Z. 2010. url: https:

//www.gamasutra.com/blogs/AdamSaltsman/20100929/88155/Tuning_Canabalt.php

(visited on 10/27/2019).

[174] Majed Samad et al. “Pseudo-Haptic Weight: Changing the Perceived Weight of Virtual Ob-

jects By Manipulating Control-Display Ratio”. In: Proceedings of the 2019 CHI Conference

on Human Factors in Computing Systems. Glasgow Scotland Uk: ACM, May 2019, pp. 1–13.

isbn: 978-1-4503-5970-2. doi: 10.1145/3290605.3300550. url: https://dl.acm.org/doi/

10.1145/3290605.3300550 (visited on 09/23/2021).

[175] Tom Schaul. “A Video Game Description Language for Model-Based or Interactive Learning”.

In: 2013 IEEE Conference on Computational Inteligence in Games (CIG). Niagara Falls, ON,

Canada: IEEE, Aug. 2013, pp. 1–8. isbn: 978-1-4673-5311-3 978-1-4673-5308-3. doi: 10.1109/

CIG.2013.6633610. url: http://ieeexplore.ieee.org/document/6633610/ (visited on

04/25/2019).

https://doi.org/10.1145/800224.806814
http://portal.acm.org/citation.cfm?doid=800224.806814
http://portal.acm.org/citation.cfm?doid=800224.806814
https://doi.org/10.1007/s11023-007-9066-2
https://doi.org/10.1007/s11023-007-9066-2
https://doi.org/10.1007/s11023-007-9066-2
https://www.gdcvault.com/play/1020367/The-inFAMOUS-Second-Son-Particle
https://www.gdcvault.com/play/1020367/The-inFAMOUS-Second-Son-Particle
https://www.gdcvault.com/play/1020367/The-inFAMOUS-Second-Son-Particle
https://www.gdcvault.com/play/1020367/The-inFAMOUS-Second-Son-Particle
https://kotaku.com/in-praise-of-sticky-friction-5558166
https://kotaku.com/in-praise-of-sticky-friction-5558166
https://kotaku.com/in-praise-of-sticky-friction-5558166
https://kotaku.com/in-praise-of-sticky-friction-5558166
https://michelsabbagh.wordpress.com/2015/10/07/the-art-of-designing-visceral-and-engaging-bullet-time-gunplay/
https://michelsabbagh.wordpress.com/2015/10/07/the-art-of-designing-visceral-and-engaging-bullet-time-gunplay/
https://michelsabbagh.wordpress.com/2015/10/07/the-art-of-designing-visceral-and-engaging-bullet-time-gunplay/
https://michelsabbagh.wordpress.com/2015/10/07/the-art-of-designing-visceral-and-engaging-bullet-time-gunplay/
https://michelsabbagh.wordpress.com/2015/10/07/the-art-of-designing-visceral-and-engaging-bullet-time-gunplay/
https://ojs.aaai.org/index.php/AIIDE/article/view/7450
https://ojs.aaai.org/index.php/AIIDE/article/view/7450
https://www.gamasutra.com/blogs/AdamSaltsman/20100929/88155/Tuning_Canabalt.php
https://www.gamasutra.com/blogs/AdamSaltsman/20100929/88155/Tuning_Canabalt.php
https://www.gamasutra.com/blogs/AdamSaltsman/20100929/88155/Tuning_Canabalt.php
https://www.gamasutra.com/blogs/AdamSaltsman/20100929/88155/Tuning_Canabalt.php
https://doi.org/10.1145/3290605.3300550
https://dl.acm.org/doi/10.1145/3290605.3300550
https://dl.acm.org/doi/10.1145/3290605.3300550
https://doi.org/10.1109/CIG.2013.6633610
https://doi.org/10.1109/CIG.2013.6633610
http://ieeexplore.ieee.org/document/6633610/

128 CHAPTER 8. REFERENCES

[176] Tom Schaul. “An Extensible Description Language for Video Games”. In: IEEE Transactions

on Computational Intelligence and AI in Games 6.4 (Dec. 2014), pp. 325–331. issn: 1943-

068X, 1943-0698. doi: 10.1109/TCIAIG.2014.2352795. url: http://ieeexplore.ieee.

org/document/6884801/ (visited on 04/02/2019).

[177] Jesse Schell. The Art of Game Design: A Book of Lenses. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2008. isbn: 0-12-369496-5.

[178] Jacob Schrum et al. “Interactive Evolution and Exploration Within Latent Level-Design Space

of Generative Adversarial Networks”. In: arXiv:2004.00151 [cs] (Mar. 2020). arXiv: 2004.

00151 [cs]. url: http://arxiv.org/abs/2004.00151 (visited on 02/27/2022).

[179] Jimmy Secretan et al. “Picbreeder: Evolving Pictures Collaboratively Online”. In: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’08. Florence, Italy:

Association for Computing Machinery, Apr. 2008, pp. 1759–1768. isbn: 978-1-60558-011-1. doi:

10.1145/1357054.1357328. url: https://doi.org/10.1145/1357054.1357328 (visited on

07/13/2020).

[180] Noor Shaker, Mohammad Shaker, and Julian Togelius. “Ropossum: An Authoring Tool for

Designing, Optimizing and Solving Cut the Rope Levels”. In: (2013), p. 2.

[181] Noor Shaker, Julian Togelius, and Mark Nelson. Procedural Content Generation in Games.

USA: Springer, Oct. 2016. isbn: 978-3-319-42714-0. url: http://www.springer.com/gp/

book/9783319427140 (visited on 06/08/2021).

[182] Tanya X. Short and Tarn Adams. Procedural Storytelling in Game Design. Boca Raton, FL:

Taylor & Francis, 2019. isbn: 978-1-138-59530-9.

[183] Miguel Sicart. Play Matters. MIT Press, 2014.

[184] Miguel Angel Sicart. “Loops and Metagames: Understanding Game Design Structures”. In:

Proceedings of the 10th International Conference on the Foundations of Digital Games (FDG

2015), June 22-25, 2015, Pacific Grove, CA, USA. 2015. isbn: 978-0-9913982-4-9.

[185] Karl Sims. “Interactive Evolution of Dynamical Systems”. In: Toward a Practice of Au-

tonomous Systems: Proceedings of the First European Conference on Artificial Life. 1992.

[186] Andrey Sitnik and Ivan Solovev. Easing Functions Cheat Sheet. http://easings.net/. Ac-

cessed: 2020-05-04T12:25:58Z. Accessed: 2020-05-04 14:25:58. url: http://easings.net/

(visited on 05/04/2020).

[187] Kristin Siu, Eric Butler, and Alexander Zook. A Programming Model for Boss Encounters in

2D Action Games. Technical Report WS-16-22. Experimental AI in Games: Papers from the

AIIDE Workshop, 2016. url: https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/

view/14058.

[188] Seth Sivak. GAME 3400 Level Design - Moment Based Design. Technology. 2012. url: https:

//www.slideshare.net/sjsivak/game- 3400- level- design- moment- based- design

(visited on 06/29/2020).

[189] Smashpedia. Invincibility Frame. https://bit.ly/2JEPgrz. Accessed: 2020-10-06T12:50:44Z.

url: https://bit.ly/2JEPgrz (visited on 10/06/2020).

https://doi.org/10.1109/TCIAIG.2014.2352795
http://ieeexplore.ieee.org/document/6884801/
http://ieeexplore.ieee.org/document/6884801/
https://arxiv.org/abs/2004.00151
https://arxiv.org/abs/2004.00151
http://arxiv.org/abs/2004.00151
https://doi.org/10.1145/1357054.1357328
https://doi.org/10.1145/1357054.1357328
http://www.springer.com/gp/book/9783319427140
http://www.springer.com/gp/book/9783319427140
http://easings.net/
http://easings.net/
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14058
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14058
https://www.slideshare.net/sjsivak/game-3400-level-design-moment-based-design
https://www.slideshare.net/sjsivak/game-3400-level-design-moment-based-design
https://bit.ly/2JEPgrz
https://bit.ly/2JEPgrz

129

[190] AdamM Smith, Mark J Nelson, and Michael Mateas. “Computational Support for Play Testing

Game Sketches”. In: (2009), p. 6.

[191] Adam M. Smith and Michael Mateas. “Variations Forever: Flexibly Generating Rulesets from

a Sculptable Design Space of Mini-Games”. In: Proceedings of the 2010 IEEE Conference on

Computational Intelligence and Games. Copenhagen, Denmark: IEEE, Aug. 2010, pp. 273–

280. isbn: 978-1-4244-6295-7. doi: 10.1109/ITW.2010.5593343. url: http://ieeexplore.

ieee.org/document/5593343/ (visited on 10/18/2021).

[192] Adam Marshall Smith. “Mechanizing Exploratory Game Design”. PhD thesis. UC Santa Cruz,

2012. url: https://escholarship.org/uc/item/4600g227 (visited on 12/07/2021).

[193] Gillian Smith, JimWhitehead, and Michael Mateas. “Tanagra: A Mixed-Initiative Level Design

Tool”. In: Proceedings of the Fifth International Conference on the Foundations of Digital

Games. FDG ’10. New York, NY, USA: Association for Computing Machinery, June 2010,

pp. 209–216. isbn: 978-1-60558-937-4. doi: 10.1145/1822348.1822376. url: https://doi.

org/10.1145/1822348.1822376 (visited on 10/21/2020).

[194] Gillian Margaret Smith. “Expressive Design Tools: Procedural Content Generation for Game

Designers”. PhD thesis. UC Santa Cruz, 2012. url: https://escholarship.org/uc/item/

0fn558gq (visited on 12/07/2021).

[195] Jonatan Söderström. The Four-Hour Game Design by Cactus. https : / / www . gdcvault .

com/play/1243/(304)- The- Four- Hour- Game. Accessed: 2020-07-11. 2009. url: https:

//www.gdcvault.com/play/1243/(304)-The-Four-Hour-Game (visited on 07/11/2020).

[196] Jiesang Song. Improving the Combat 'Impact' Of Action Games. Apr. 2005.

[197] Larry Squire et al. Fundamental Neuroscience. Academic Press, Dec. 2012. isbn: 978-0-12-

385871-9.

[198] Oskar St̊alberg. Townscaper. Oskar St̊alberg. 2020.

[199] Jasper Stephenson. A UX Analysis of First-Person Shooter Damage Indicators. https://

medium.com/@jasper.stephenson/a-ux-analysis-of-first-person-shooter-damage-

indicators - 59ac9d41caf8. Accessed: 2020-10-06T12:49:09Z. Mar. 2018. url: https : / /

medium.com/@jasper.stephenson/a-ux-analysis-of-first-person-shooter-damage-

indicators-59ac9d41caf8 (visited on 10/06/2020).

[200] Matthew Stephenson et al. “An Overview of the Ludii General Game System”. In: 2019 IEEE

Conference on Games (CoG). Aug. 2019, pp. 1–2. doi: 10.1109/CIG.2019.8847949.

[201] Paul Suddaby. 5 Important Ways to Add Polish to Your Game. https://gamedevelopment.

tutsplus.com/articles/5-important-ways-to-add-polish-to-your-game--gamedev-

7642. Accessed: 2020-08-06T09:52:37Z. May 2013. url: https://gamedevelopment.tutsplus.

com/articles/5-important-ways-to-add-polish-to-your-game--gamedev-7642 (visited

on 08/06/2020).

[202] Adam Summerville. “Expanding Expressive Range: Evaluation Methodologies for Procedural

Content Generation”. In: (2018), p. 7.

[203] Adam Summerville. “Learning from Games for Generative Purposes”. PhD thesis. 2018.

https://doi.org/10.1109/ITW.2010.5593343
http://ieeexplore.ieee.org/document/5593343/
http://ieeexplore.ieee.org/document/5593343/
https://escholarship.org/uc/item/4600g227
https://doi.org/10.1145/1822348.1822376
https://doi.org/10.1145/1822348.1822376
https://doi.org/10.1145/1822348.1822376
https://escholarship.org/uc/item/0fn558gq
https://escholarship.org/uc/item/0fn558gq
https://www.gdcvault.com/play/1243/(304)-The-Four-Hour-Game
https://www.gdcvault.com/play/1243/(304)-The-Four-Hour-Game
https://www.gdcvault.com/play/1243/(304)-The-Four-Hour-Game
https://www.gdcvault.com/play/1243/(304)-The-Four-Hour-Game
https://medium.com/@jasper.stephenson/a-ux-analysis-of-first-person-shooter-damage-indicators-59ac9d41caf8
https://medium.com/@jasper.stephenson/a-ux-analysis-of-first-person-shooter-damage-indicators-59ac9d41caf8
https://medium.com/@jasper.stephenson/a-ux-analysis-of-first-person-shooter-damage-indicators-59ac9d41caf8
https://medium.com/@jasper.stephenson/a-ux-analysis-of-first-person-shooter-damage-indicators-59ac9d41caf8
https://medium.com/@jasper.stephenson/a-ux-analysis-of-first-person-shooter-damage-indicators-59ac9d41caf8
https://medium.com/@jasper.stephenson/a-ux-analysis-of-first-person-shooter-damage-indicators-59ac9d41caf8
https://doi.org/10.1109/CIG.2019.8847949
https://gamedevelopment.tutsplus.com/articles/5-important-ways-to-add-polish-to-your-game--gamedev-7642
https://gamedevelopment.tutsplus.com/articles/5-important-ways-to-add-polish-to-your-game--gamedev-7642
https://gamedevelopment.tutsplus.com/articles/5-important-ways-to-add-polish-to-your-game--gamedev-7642
https://gamedevelopment.tutsplus.com/articles/5-important-ways-to-add-polish-to-your-game--gamedev-7642
https://gamedevelopment.tutsplus.com/articles/5-important-ways-to-add-polish-to-your-game--gamedev-7642

130 CHAPTER 8. REFERENCES

[204] Adam Summerville et al. “Gemini: Bidirectional Generation and Analysis of Games via ASP”.

In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital En-

tertainment 14.1 (Sept. 2018), pp. 123–129. issn: 2334-0924. url: https://ojs.aaai.org/

index.php/AIIDE/article/view/13013 (visited on 07/29/2021).

[205] Adam Summerville et al. “Mechanics Automatically Recognized via Interactive Observation:

Jumping”. In: Proceedings of the 12th International Conference on the Foundations of Digi-

tal Games. New York, NY, USA: Association for Computing MachineryNew YorkNYUnited

States, 2017, pp. 1–10. isbn: 978-1-4503-5319-9.

[206] Adam Summerville et al. “Procedural Content Generation via Machine Learning (PCGML)”.

In: IEEE Transactions on Games 10.3 (Sept. 2018), pp. 257–270. issn: 2475-1510. doi: 10.

1109/TG.2018.2846639.

[207] Ivan E. Sutherland. “Sketchpad a Man-Machine Graphical Communication System”. In: SIM-

ULATION 2.5 (May 1964), R–3. issn: 0037-5497. doi: 10.1177/003754976400200514. url:

https://doi.org/10.1177/003754976400200514 (visited on 05/26/2021).

[208] Nick Suttner et al. Eggplant: The Secret Lives of Games (Formerly The Spelunky Showlike) 36:

Game Feel as Procrastination with Jan Willem Nijman. url: https://thespelunkyshowlike.

libsyn.com/36-game-feel-as-procrastination-with-jan-willem-nijman (visited on

08/06/2020).

[209] Nick Suttner et al. Eggplant: The Secret Lives of Games (Formerly The Spelunky Showlike)

38: The Rhythms and Layers of Ryan Clark. url: https://thespelunkyshowlike.libsyn.

com/38-the-rhythms-and-layers-of-ryan-clark (visited on 08/06/2020).

[210] Nick Suttner et al. Eggplant: The Secret Lives of Games (Formerly The Spelunky Showlike) 39:

The Tricks of the Toolkit with Mark Brown. url: https://thespelunkyshowlike.libsyn.

com/39-gmtk (visited on 08/06/2020).

[211] Nick Suttner et al. Eggplant: The Secret Lives of Games (Formerly The Spelunky Showlike)

42: The Secrets of Simplicity with Martin Jonasson. url: https://thespelunkyshowlike.

libsyn . com / 42 - the - secrets - of - simplicity - with - martin - jonasson (visited on

08/06/2020).

[212] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second

edition. Adaptive Computation and Machine Learning Series. Cambridge, MA: The MIT Press,

2018. isbn: 978-0-262-03924-6.

[213] Penelope Sweetser and Peta Wyeth. “GameFlow: A Model for Evaluating Player Enjoyment

in Games”. In: Computers in Entertainment 3.3 (July 2005), p. 3. doi: 10.1145/1077246.

1077253. url: https://doi.org/10.1145/1077246.1077253 (visited on 08/24/2020).

[214] Steve Swink. Game Feel. Morgan Kaufmann, 2009. isbn: 0-12-374328-1.

[215] Steve Swink. Game Feel: The Secret Ingredient. https : / / www . gamasutra . com / view /

feature/130734/game_feel_the_secret_ingredient.php?print=1. Accessed: 2020-04-

17T11:52:32Z. 2007. url: https://www.gamasutra.com/view/feature/130734/game_feel_

the_secret_ingredient.php?print=1 (visited on 04/17/2020).

[216] Teknopants. Samurai Gunn. 2013.

https://ojs.aaai.org/index.php/AIIDE/article/view/13013
https://ojs.aaai.org/index.php/AIIDE/article/view/13013
https://doi.org/10.1109/TG.2018.2846639
https://doi.org/10.1109/TG.2018.2846639
https://doi.org/10.1177/003754976400200514
https://doi.org/10.1177/003754976400200514
https://thespelunkyshowlike.libsyn.com/36-game-feel-as-procrastination-with-jan-willem-nijman
https://thespelunkyshowlike.libsyn.com/36-game-feel-as-procrastination-with-jan-willem-nijman
https://thespelunkyshowlike.libsyn.com/38-the-rhythms-and-layers-of-ryan-clark
https://thespelunkyshowlike.libsyn.com/38-the-rhythms-and-layers-of-ryan-clark
https://thespelunkyshowlike.libsyn.com/39-gmtk
https://thespelunkyshowlike.libsyn.com/39-gmtk
https://thespelunkyshowlike.libsyn.com/42-the-secrets-of-simplicity-with-martin-jonasson
https://thespelunkyshowlike.libsyn.com/42-the-secrets-of-simplicity-with-martin-jonasson
https://doi.org/10.1145/1077246.1077253
https://doi.org/10.1145/1077246.1077253
https://doi.org/10.1145/1077246.1077253
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1

131

[217] Frank Thomas and Ollie Johnston. The Illusion of Life: Disney Animation. New York: Abbeville

Press, 1981. isbn: 0-89659-233-2.

[218] Julian Togelius and Noor Shaker. “The Search-Based Approach”. In: Procedural Content Gen-

eration in Games. Cham: Springer International Publishing, 2016, pp. 17–30. isbn: 978-3-319-

42714-0 978-3-319-42716-4. doi: 10.1007/978- 3- 319- 42716- 4_2. url: http://link.

springer.com/10.1007/978-3-319-42716-4_2 (visited on 10/22/2018).

[219] Julian Togelius et al. “Search-Based Procedural Content Generation”. In: Applications of Evo-

lutionary Computation. Ed. by David Hutchison et al. Vol. 6024. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 141–150. isbn: 978-3-642-12238-5 978-3-642-12239-2. doi: 10.

1007/978-3-642-12239-2_15. url: http://link.springer.com/10.1007/978-3-642-

12239-2_15 (visited on 10/19/2021).

[220] Ruben Rodriguez Torrado et al. “Deep Reinforcement Learning for General Video Game AI”.

In: arXiv:1806.02448 [cs, stat] (June 2018). arXiv: 1806.02448 [cs, stat]. url: http:

//arxiv.org/abs/1806.02448 (visited on 02/12/2019).

[221] Mike Treanor et al. “Game-O-Matic: Generating Videogames That Represent Ideas”. In: Pro-

ceedings of the The Third Workshop on Procedural Content Generation in Games. PCG’12.

New York, NY, USA: Association for Computing Machinery, May 2012, pp. 1–8. isbn: 978-1-

4503-1447-3. doi: 10.1145/2538528.2538537. url: https://doi.org/10.1145/2538528.

2538537 (visited on 09/17/2021).

[222] Matt Vainio. The Visual E↵ects of inFAMOUS: Second Son. https://www.youtube.com/

watch?v=o2yFxPY2b1o&ab_channel=GDC. Accessed: 2020-10-06T12:25:29Z. 2014. url: https:

//www.youtube.com/watch?v=o2yFxPY2b1o&ab_channel=GDC (visited on 10/06/2020).

[223] Laurene Vaughan. Practice-Based Design Research. Bloomsbury Publishing, Jan. 2017. isbn:

978-1-4742-6782-3.

[224] Mark Venturelli. Game Feel Tips I: The Ghost Jump. https://gamasutra.com/blogs/

MarkVenturelli / 20140810 / 223001 / Game _ Feel _ Tips _ I _ The _ Ghost _ Jump . php. Ac-

cessed: 2020-04-17T13:45:33Z. 2014. url: https://gamasutra.com/blogs/MarkVenturelli/

20140810/223001/Game_Feel_Tips_I_The_Ghost_Jump.php (visited on 04/17/2020).

[225] Bret Victor. Drawing Dynamic Visualizations. Stanford HCI seminar, Feb. 2013. url: https:

//vimeo.com/66085662 (visited on 09/30/2021).

[226] Bret Victor. Media for Thinking the Unthinkable. MIT Media Lab, Apr. 2013. url: http:

//worrydream.com/MediaForThinkingTheUnthinkable/ (visited on 09/30/2021).

[227] Bret Victor. Stop Drawing Dead Fish. SF SIGGRAPH, Nov. 2012. url: https://vimeo.com/

64895205 (visited on 09/30/2021).

[228] Bret Victor. The Future of Programming. DBX conference, July 2013. url: http://worrydream.

com/dbx/ (visited on 09/30/2021).

[229] Kurt Vonnegut. The Shapes of Stories. https://www.youtube.com/watch?v=oP3c1h8v2ZQ.

Accessed: 2020-06-29T16:38:20Z. 1985. url: https://www.youtube.com/watch?v=oP3c1h8v2ZQ

(visited on 06/29/2020).

https://doi.org/10.1007/978-3-319-42716-4_2
http://link.springer.com/10.1007/978-3-319-42716-4_2
http://link.springer.com/10.1007/978-3-319-42716-4_2
https://doi.org/10.1007/978-3-642-12239-2_15
https://doi.org/10.1007/978-3-642-12239-2_15
http://link.springer.com/10.1007/978-3-642-12239-2_15
http://link.springer.com/10.1007/978-3-642-12239-2_15
https://arxiv.org/abs/1806.02448
http://arxiv.org/abs/1806.02448
http://arxiv.org/abs/1806.02448
https://doi.org/10.1145/2538528.2538537
https://doi.org/10.1145/2538528.2538537
https://doi.org/10.1145/2538528.2538537
https://www.youtube.com/watch?v=o2yFxPY2b1o&ab_channel=GDC
https://www.youtube.com/watch?v=o2yFxPY2b1o&ab_channel=GDC
https://www.youtube.com/watch?v=o2yFxPY2b1o&ab_channel=GDC
https://www.youtube.com/watch?v=o2yFxPY2b1o&ab_channel=GDC
https://gamasutra.com/blogs/MarkVenturelli/20140810/223001/Game_Feel_Tips_I_The_Ghost_Jump.php
https://gamasutra.com/blogs/MarkVenturelli/20140810/223001/Game_Feel_Tips_I_The_Ghost_Jump.php
https://gamasutra.com/blogs/MarkVenturelli/20140810/223001/Game_Feel_Tips_I_The_Ghost_Jump.php
https://gamasutra.com/blogs/MarkVenturelli/20140810/223001/Game_Feel_Tips_I_The_Ghost_Jump.php
https://vimeo.com/66085662
https://vimeo.com/66085662
http://worrydream.com/MediaForThinkingTheUnthinkable/
http://worrydream.com/MediaForThinkingTheUnthinkable/
https://vimeo.com/64895205
https://vimeo.com/64895205
http://worrydream.com/dbx/
http://worrydream.com/dbx/
https://www.youtube.com/watch?v=oP3c1h8v2ZQ
https://www.youtube.com/watch?v=oP3c1h8v2ZQ

132 CHAPTER 8. REFERENCES

[230] Douglas Wilson. A Tale of Two Jousts: Multimedia, Game Feel, and Imagination. https:

//www.youtube.com/watch?v=hpdcek4hLA8. Accessed: 2020-04-17T10:37:46Z. 2016. url:

https://www.youtube.com/watch?v=hpdcek4hLA8 (visited on 04/17/2020).

[231] Alex Wiltshire. How Hitboxes Work. https://www.pcgamer.com/how-hitboxes-work/. Ac-

cessed: 2020-08-24T09:04:16Z. Aug. 2020. url: https://www.pcgamer.com/how-hitboxes-

work/ (visited on 08/24/2020).

[232] Robert Yang. Queering Game Feel. QGCon 2018 - Google Slides, 2018. url: tinyurl.com/

QueeringGameFeel (visited on 04/17/2020).

[233] Georgios N Yannakakis, Antonios Liapis, and Constantine Alexopoulos. “Mixed-Initiative Co-

Creativity”. In: Foundations of Digital Games 2014. Proceedings of the 9th International Con-

ference on the Foundations of Digital Games: Society for the Advancement of the Science of

Digital Games, 2014, p. 8. isbn: 978-0-9913982-2-5.

[234] Georgios N. Yannakakis, Héctor P. Mart́ınez, and Arnav Jhala. “Towards A↵ective Camera

Control in Games”. In: User Modeling and User-Adapted Interaction 20.4 (Oct. 2010), pp. 313–

340. issn: 0924-1868, 1573-1391. doi: 10.1007/s11257-010-9078-0. url: http://link.

springer.com/10.1007/s11257-010-9078-0 (visited on 06/29/2020).

[235] Du-Mim Yoon and Kyung-Joong Kim. “Interactive Evolution of 3D Models Based on Direct

Manipulation for Video Games”. In: Procedia Computer Science 24 (2013), pp. 137–142. issn:

18770509. doi: 10.1016/j.procs.2013.10.036. url: https://linkinghub.elsevier.com/

retrieve/pii/S1877050913011782 (visited on 01/28/2020).

[236] Chris Zimmerman. Reading the Player’s Mind Through His Thumbs: Inferring Player Intent

Through Controller Input. https://www.gdcvault.com/play/1012339/Reading- the-

Player-s-Mind. Accessed: 2020-10-06T12:20:45Z. 2010. url: https://www.gdcvault.com/

play/1012339/Reading-the-Player-s-Mind (visited on 10/06/2020).

https://www.youtube.com/watch?v=hpdcek4hLA8
https://www.youtube.com/watch?v=hpdcek4hLA8
https://www.youtube.com/watch?v=hpdcek4hLA8
https://www.pcgamer.com/how-hitboxes-work/
https://www.pcgamer.com/how-hitboxes-work/
https://www.pcgamer.com/how-hitboxes-work/
tinyurl.com/QueeringGameFeel
tinyurl.com/QueeringGameFeel
https://doi.org/10.1007/s11257-010-9078-0
http://link.springer.com/10.1007/s11257-010-9078-0
http://link.springer.com/10.1007/s11257-010-9078-0
https://doi.org/10.1016/j.procs.2013.10.036
https://linkinghub.elsevier.com/retrieve/pii/S1877050913011782
https://linkinghub.elsevier.com/retrieve/pii/S1877050913011782
https://www.gdcvault.com/play/1012339/Reading-the-Player-s-Mind
https://www.gdcvault.com/play/1012339/Reading-the-Player-s-Mind
https://www.gdcvault.com/play/1012339/Reading-the-Player-s-Mind
https://www.gdcvault.com/play/1012339/Reading-the-Player-s-Mind

Chapter 9

Publications

9.1 Video game description language environment for

Unity machine learning agents

133

Video Game Description Language Environment for
Unity Machine Learning Agents

Mads Johansen
IT University of Copenhagen

Copenhagen, Denmark
madj@itu.dk

Martin Pichlmair
IT University of Copenhagen

Copenhagen, Denmark
mpic@itu.dk

Sebastian Risi
IT University of Copenhagen

Copenhagen, Denmark
sebr@itu.dk

Abstract—This paper introduces UnityVGDL, a port of the
Video Game Description Language (VGDL) to the widely used
Unity game engine. Our framework is based on the General Video
Game AI (GVGAI) competition framework and implements its
core ontology, including a forward model. It integrates the Unity
Machine Learning Agents (ML-Agents) toolkit with VGDL to
train and run agents in VGDL-described games. We compare
baseline learning results between GVGAI and UnityVGDL across
four different games and conclude that the Unity port is com-
parable to the GVGAI framework. UnityVGDL is available at:
https://github.com/pyjamads/UnityVGDL

I. INTRODUCTION

In 2018 Juliani et al. [1] introduced a new toolkit for
Machine Learning Agents (ML-Agents) within the Unity game
engine. Unity is a widely used game engine with extensive
functionality and flexibility to create games and simulation
environments. The ML-Agents toolkit provides an easy way
to integrate reinforcement learning agents, imitation learning
agents and scripted agents into the environments created with
Unity. The ML-Agents toolkit implements a custom python
pipeline for training agents, as well as the OpenAI Gym
interface [2].

Juliani et al. attribute the recent significant advances in deep
reinforcement learning to the existence of rapid development
environments such as the Arcade Learning Environment (ALE)
[3], VizDoom [4] and Mujoco [5]. With a large set of games,
ALE provided the base for a breakthrough in control-from-
pixels called the Deep Q-Network by Mnih et al. [6] and games
have been used extensively to test recent machine learning
advances [7], [8]. However, while new environments such as
the Obstacle Tower continue to be added to the ML-Agents
toolkit [9], it only provides a small set of testing environments
when compared to ALE.

One neglected field with significant potential to produce
advances in AI research is that of General Video Game Playing
(GVGP) proposed by Levine et al. [10]. GVGP aims to
extend the challenge of playing many different games with
the same algorithm, to playing many different games with the
same agents. Levine et al. also envisaged “the development
of a Video Game Description Language (VGDL) as a way
of concisely specifying video games” [10]. The vision was a
VGDL capable of describing 2D arcade style games like the
Atari games found in ALE. The authors argue for hosting

competitions in GVGP by challenging AI agents to play
previously unseen games.

In 2014 Tom Schaul created an extensible version of VGDL
[11] along with a framework for computational intelligence
research [12]. Later Perez-Liebana et al. [13] built on VGDL
to create the General Video Game AI (GVGAI) framework
and ran the GVGAI Competition based on GVGP.

The GVGAI framework contains a large number of different
games and game sets. These VGDL games are a mixture of
arcade games like those in ALE and interesting computational
intelligence challenges. The games vary in goals and types
of interactions. Some are imitations of games that exist else-
where, like Aliens1, Frogs2 or Lemmings3. Other games were
designed as machine learning challenges, like Wait for break-
fast (a simple game where you wait to be served breakfast) or
the classic T-maze problem for testing reinforcement learning
memorization [14]. The GVGAI competition has been running
since 2014 and the list of games has been growing steadily
ever since.

UnityVGDL expands the VGDL family from Python and
Java to Unity and C#. UnityVGDL brings the GVGAI VGDL
ontology to Unity and adds support for training agents with
the ML-Agents toolkit. By combining those, ML-Agents can
benefit from the corpus of games provided by UnityVGDL.
Because UnityVGDL uses the GVGAI VGDL ontology, it
allows GVGAI VGDL games to be interpreted and viewed
in the Unity Editor and compiled as executables.

By integrating Unity and ML-Agents in UnityVGDL, we
expose VGDL to a wider audience of potential machine
learning researchers. At the same time we introduce VGDL to
a wider audience of game creators. To validate the UnityVGDL
framework we train reinforcement learning agents and demon-
strate that their performance is comparable to GVGAI agents.

The UnityVGDL framework is available on GitHub4 under
the Apache open source license. The repository has instruc-
tions on how to set up ML-Agents, and include the same set of
assets as GVGAI, available for AI research and competitions.

Fig. 1. Visualizations of VGDL Sokoban: left PyVGDL, right GVGAI

II. RELATED WORK

A. Video Game Description Language (VGDL)
PyVGDL is the formalized version of VGDL created by

Tom Schaul, focused on describing a wide variety of 2D arcade
games. Descriptions are split into two parts. The first is the
game description (objects, rules, goals, level mapping). The
second is the level description. PyVGDL needs one of each
to interpret and run a working game. The game description
consists of four sets:

• The SpriteSet contains definitions of all objects (in-
cluding look and behavior) in the game.

• The LevelMapping describes the mapping between
characters in the level description and objects in the
SpriteSet.

• The InteractionSet defines all interaction effects
that happen when two objects collide.

• The TerminiationSet describes when the level ends.
PyVGDL generates playable versions from VGDL game

and level descriptions using the Pygame library. An example
of a running game can be seen in the left visualization
in Fig. 1. PyVGDL features 21 example games based on
grid physics and six games based on continuous physics.
They are meant to show the diversity of games describable
in PyVGDL. Imitations of Mario, Zelda, Sokoban, Aliens,
Frogger, and Pong are featured, along with the T-maze and
traveling salesman problem. PyVGDL also has the option of
rendering a first-person perspective of games. An extended
Backus-Naur Form description of the full PyVGDL grammar
is in [12]. The framework is available on Github5. The game
shown in Fig. 1 is a simple Sokoban game defined in VGDL;
level description and game description can be seen in Fig. 2
and Fig. 3, respectively.

B. General Video Game AI (GVGAI)
Perez-Liebana et al. [13] launched the General Video Game

AI Competition in 2014, introducing a Java implementa-
tion of the VGDL ontology of PyVGDL called the GVGAI
framework. The GVGAI framework also added Sprite assets,
improving the visual appearance of the VGDL games as seen
on the right in Fig. 1. The framework contains sprite assets

1Space Invaders (Taito, 1978)
2Frogger (Konami, 1981)
3Lemmings (DMA Design, 1991)
4https://github.com/pyjamads/UnityVGDL
5https://github.com/schaul/py-vgdl

wwwwwwwwwwwww
w w w
w 1 w
w A 1 w 0ww
www w1 wwwww
w w 0 w
w 1 ww
w ww
wwwwwwwwwwwww

Fig. 2. Simple Sokoban level description. ’A’ denotes the Avatar (controlled
by player), ’w’ denotes walls, ’1’ denotes boxes and ’0’ denotes holes.

BasicGame
S p r i t e S e t

h o l e > Immovable c o l o r =DARKBLUE
a v a t a r > MovingAvatar
box > P a s s i v e

LevelMapping
0 > h o l e
1 > box

I n t e r a c t i o n S e t
a v a t a r w a l l > s t e p B a c k # s t o p a t w a l l
box a v a t a r > bounceForward # push box
box w a l l > undoAl l # w a l l s t o p s box
box box > undoAl l # box s t o p s box
box h o l e > k i l l S p r i t e # d e s t r o y box

T e r m i n a t i o n S e t
S p r i t e C o u n t e r s t y p e =box l i m i t =0 win=True

Fig. 3. Game description for a simple Sokoban game. Objects defined in
the SpriteSet can be used to define interactions, terminations and level
mapping. The VGDL Effects such as stepBack have comments ’#stop at
wall’ to explain what they do when the two object types collide. The game
is won by pushing boxes into holes, until no boxes are left.

licensed by Oryx Design Lab, that are free to use for research
and competition6. The sprite assets help to communicate the
essence of the game to users and make the games more
visually appealing. Alongside the GVGAI competition several
research projects7 have been conducted, extending the VGDL
capabilities [16], [17] as well as the list of implemented
games. The number of implementations of agent types has
been growing too, see [13], [18], [19]. The GVGAI framework
comes with several different simple, heuristic and planning
agents [18], a few based on macro actions [17] and learning
agents [19]. It also features functionality to replay recorded
agent actions.

The GVGAI framework contains VGDL descriptions for
121 single player games, 49 two-player games, and 11
continuous physics games. Unlike PyVGDL a first person
rendering option is not available in the GVGAI framework.

6Early versions of GVGAI used Open License assets by http://kenney.nl as
can be seen in [15]

7http://gvgai.net/papers.php

The competition has changed a lot over the years [20]. The
2018 competition featured four tracks: Single Player, Two-
Player, Level Generation and Rule Generation. The Single
Player and Two-Player tracks are for playing the games. Level
Generation aims to generate levels based on a VGDL game
description. Rule Generation is a competition to generate game
descriptions based on a VGDL level description. The overall
structure of the game descriptions is similar in PyVGDL and
GVGAI. Yet, there are minor differences between their respec-
tive ontology implementations — mostly regarding names and
availability of specific Sprite and Effect types (i.e. WalkAvater
vs. WalkerAvatar). A description of the VGDL Language
and GVGAI ontology can be found online8 in the GVGAI
documentation.

In 2018 Torrado et al. [19] added the OpenAI Gym [2]
interface to GVGAI. The OpenAI Gym interface was created
to streamline the many different ways reinforcement learning
systems interact with environments. The interface makes it
much easier to compare and recreate the results of different al-
gorithms across different environments. OpenAI also provides
a set of baseline algorithms that can be used for comparison.
Torrado et al. planned to compare their results with the results
of Mihn et al. [6] using DQN on ALE [3]. However, the scores
in the VGDL descriptions have not been modeled after the
Atari games; as such the scores between VGDL and Atari
games are not directly comparable. Instead, they decided to
compare three of OpenAI’s baseline reinforcement learning
implementations with the state of the art planning agents on a
selection of eight VGDL games from the GVGAI framework.
The results presented by Torrado et al. will be discussed and
compared in later sections.

C. Unity Machine Learning Agents (ML-Agents)
The ML-Agents toolkit allows developers to easily integrate

machine learning agents in their games and provides AI
researchers with an easily customizable platform to experiment
with. The framework defines three different brain types: player
brain, heuristic brain (i.e. scripted behavior), and learning
brains. These brains control agents in the environment. In
the ML-Agents toolkit Juliani et al. [1] chose to implement
a baseline reinforcement learning (RL) [21] algorithm based
on Proximal-Policy Optimization (PPO) [22].

Additionally for heuristic and RL agents, the ML-Agents
toolkit provides an imitation learning agent. This agent gives
developers the ability to teach their agents by example. It
allows them to draft the kind of behaviors they would like
to see in their game with relatively short training periods.
Imitation learning can often work as a better reference than a
random baseline agent when developing new algorithms.

III. VGDL IN UNITY

This paper introduces a Unity framework called Uni-
tyVGDL. The framework combines the GVGAI VGDL ontol-
ogy with the ML-Agents toolkit inside Unity. The following
section explains how the framework is structured.

8https://github.com/GAIGResearch/GVGAI/wiki/VGDL-Language

A. Architecture
The Unity scenes are structured around the C# VGDL im-

plementation with the outer most layer being the ML-Agents
framework as depicted in Fig. 4. The VGDLAcademy manages
which VGDL game environment to load. The VGDLAgent
controls the player avatar. The agent uses the VGDLRunner
to parse and run the VGDL game passed from the academy.
The runner parses the game and level descriptions from the
Resources folder, and instantiates the VGDLGame which in
turn instantiates all VGDL sprites, effects, and terminations
from the description. The VGDL game updates can be driven
by the academy or by regular Unity updates. For learning
purposes, letting the academy control updates guarantees
the games are updated correctly even when running many
instances in parallel. The VGDLRunner can also drive the
visualization by calling the VGDLRenderer. The renderer
renders the VGDL game world either to a Render Texture9 or
directly to the back buffer. When dealing with learning agents,
the current VGDL ML-Agents implementation only supports
visual observations. This means the game is rendered to a
Render Texture and then passed as input to the VGDLAgent.
The C# VGDL implementation in UnityVGDL is based on
the GVGAI ontology and its JavaVGDL engine, with a few
modifications.

The GVGAI ontology allows UnityVGDL to interpret and
play games from the GVGAI backlog of games, however,
a few things have been changed under the hood, mainly in
regards to lookup tables.
VGDLSprite, VGDLEffect and VGDLTermination

class lookup tables were replaced with C# Reflection, for in-
creased extensibility, more closely resembling that in PyVGDL
[11]. Further, JavaVGDL implements a type registration and
lookup system for the user-defined objects in VGDL. This type
registration system converts object names (the stype) to a
unique integer. UnityVGDL stores the object names directly
as keys in C# dictionaries. During development, this direct
lookup avoided a layer of abstraction in the code. Since the
abstraction also serves as an optimization in the JavaVGDL
engine it could become useful again if the forward model
needs optimization.

B. UnityVGDL Scenes
The UnityVGDL Testing scene hierarchy seen in Fig. 5

contains a VGDLAcademy, a single VGDLRunner and
VGDLAgent. This scene is set up to run a single game with ei-
ther human, heuristic, or learning brains controlling the VGDL
avatar. The scene can be used directly in the editor to load
and play a VGDL description with a player brain, to evaluate
a trained learning brain play or to build and run a heuristic
brain. Additionally, UnityVGDL has several different scenes
with learning setups for one, two, four, or eight game instances
in parallel. These scenes contain a single VGDLAcademy,
the adequate number of VGDL instances (VGDLRunner and
VGDLAgent) and a corresponding number of UI elements for

9https://docs.unity3d.com/Manual/class-RenderTexture.html

Game &
Level

Description in
VGDL

VGDL Game

UnityVGDL Scene

C# VGDL Implementation

VGDLSprite
VGDLSprite

VGDLSprite
VGDL Sprite

VGDL Effect

VGDL
Termination

VGDL ParserVGDL Runner

VGDL Renderer

Backbuffer / UI

ML-Agents

VGDL Academy

ML-Agents
ML-Agents
VGDL Agent

ML-Agents Framework

Render Texture

Fig. 4. UnityVGDL Scene Structure

Fig. 5. UnityVGDL Testing scene running one game in the Unity editor

displaying multiple games side by side. The learning scenes
can be compiled to executables for faster execution. The four
instance version can be seen training on Wait for Breakfast
in Fig. 6. Displaying multiple instances at once allows an
observer to follow the ongoing training process. The training
instances are each rendered in the resolution the agents need
(84⇥84 pixels by default).

ML-Agents handles learning brains in two ways, either
training a brain with the python backend or using a previously
trained brain with the TensorFlow sharp plugin10. To train a
learning brain to play a VGDL game, one of the learning
scenes has to be edited to load the correct game. Then either
a build is compiled or the editor can be used directly as
the learning environment. The python ml-agents process is
launched to start training. This process will automatically
either connect to the editor or launch the executable, based
on command line parameters. The default maximum learning
steps are set to 50k. After reaching 50k steps the learning

10More information about ML-Agents training is available under “docu-
mentation“ on https://github.com/Unity-Technologies/ml-agents/

Fig. 6. The generated executable from UnityVGDL of the game Wait for
Breakfast, rendering four simultaneous game instances. Each game instance
renders an 84⇥84 pixel view of the game world, that the agents get as their
visual observation.

stops, and the model is saved. ML-Agents reports progress
every 2000 steps to a TensorBoard11 summery while training.

C. Controlling VGDL Avatars
UnityVGDL does not include the GVGAI competition

framework. The ML-Agents framework can replace some
of the wrapping functionality that GVGAI provides. The
three different brain types in ML-Agents can be used in
UnityVGDL, to define how avatars (i.e. player controlled
sprites) in VGDL games are controlled. The player brain
enables human players to control the avatar, the heuristic
brain allows scripted behavior (i.e. random agents or plan-
ning agents) and lastly the learning brain for reinforcement
or imitation learning. UnityVGDL implements a forward
model to allow planning algorithms like Monte Carlo Tree
Search as a VGDLDecision for the heuristic brain. The
VGDLDecision class is an extension to the ML-Agents
Decision class with the VGDL forward model. The cur-
rent UnityVGDL ML-Agents integration only handles visual
observations as input to the learning brains. With advances in
deep reinforcement learning [7], learning games from pixels
is very common. UnityVGDL does not implement general
vector observation due to the many variations in VGDL games.
VGDL games vary in size, number of objects and object
types. Because the ML-Agents vector input space has to be
fixed, capturing every possible VGDL variation was left to
future work. Learning brains and VGDLAgents would have
to be customized to individual games, to accommodate vector
observations without a general approach.

D. New Environments for ML-Agents
Juliani et al. [1] suggested using their ML-Agents toolkit to

make Unity a simulation platform for learning environments.
UnityVGDL is one such environment, extending the available
ML-Agents environments with the backlog of VGDL games
created for the GVGAI framework. UnityVGDL also allows

11https://www.tensorflow.org/guide/summaries and tensorboard

researchers to define new games by using and extending the
available VGDL ontology. New VGDL games simple have to
be added to the resources folder in the project, after which
they can be run or used for training with one of the scenes
available in UnityVGDL. Extending the ontology can be
achieved by inheriting from VGDLSprite, VGDLEffect or
VGDLTermination or any of their sub-classes. Extensions
will be available immediately because UnityVGDL uses C#
reflection to look up the ontology.

IV. EXPERIMENTS

To validate the UnityVGDL implementation, a selection
of games should be compared between the UnityVGDL and
JavaVGDL framework. The recent baseline learning results on
GVGAI [19] presented a unique opportunity for comparing
results on different games. This section outlines the games
selected for comparison between UnityVGDL and GVGAI.

A. VGDL Games
Torrado et al. [19] selected eight games with the following

consideration in mind:
”We tried to get an even distribution across the
range going from games that are easy for planning
agents, like Aliens, to very difficult, like Superman.
The game difficulties are based on the analysis by
Bontrager et al. [18].”

Out of the eight games tested by Torrado et al. four games
showed good learning behaviors: Aliens, Boulder Dash, Wait
for Breakfast and Zelda. We describe these four games in more
detail, which are also the games we choose for our learning
test of UnityVGDL:

• Aliens: In Aliens the player uses a spaceship at the
bottom of the screen to shoot at attacking aliens moving
across the screen and dropping bombs. Based on the Atari
game of the same name.

• Boulder Dash12: In Boulder Dash, the player digs tunnels
to collect diamonds while avoiding enemies and falling
rocks. Based on the Atari game of the same name.

• Wait for Breakfast: Game about waiting to be served
breakfast, with the simple goal of waiting next to the
correct table until the waiter comes by and serves the
player. Mostly an interesting ML challenge.

• Zelda: Loose interpretation of Zelda or the Atari game
Adventure with kill-able enemies and keys, that need to
be picked up, before the level can be completed.

Torrado et al. compare their RL results to those of planning
agents and of a random agent. By using the same games our
results are directly comparable to theirs.

We added a max step limit per episode of 1,500 to ensure
training episodes end. Aliens has a natural ending before
that limit and Wait for Breakfast has a built-in time limit
of 1,500 steps. However Boulder Dash and Zelda both need
to be reset to avoid getting stuck. The experiments were all

12The game description in UnityVGDL has been modified from the GVGAI
implementation by adding a reward for exiting the level.

run using compiled executables on a high-end MacBook Pro
2018 laptop for one million steps. The game scene in each
executable is set up with one or eight game instances running
simultaneously13, each with a separate agent and the same
Learning-Brain attached. The brains use visual observations
of 84⇥84⇥3 (width⇥height⇥RGB). Their action space is
discrete with six options [NIL, UP, DOWN, LEFT, RIGHT,
USE]. We provided no action masking, which means the agent
had to learn to ignore [UP, DOWN] in Aliens and [USE]
in Wait for Breakfast. Fig. 6 shows a learning scene with
four parallel game instances and their low-resolution visual
observation, built as an executable by Unity.

B. ML-Agents Training Parameters
We used the default ML-Agents hyperparameter settings as

a comparison between Proximal-Policy Optimization (PPO)
[22] and the GVGAI Gym results by Torrado et al. [19]. The
parameters with default values and the recommended ranges14

noted in [brackets] listed below:
• Gamma: 0.99 [0.8 - 0.995]
• Lambda: 0.95 [0.9 - 0.95]
• Batch Size: 1024 [512 - 5120]
• Buffer Size: 10240 [2048 - 409600]
• Number of Epochs: 3 [3 - 10]
• Learning Rate: 3.0e-4 [1e-5 - 1e-3]
• Time Horizon: 64 [32 - 2048]
• Max Steps: 1.0e6* [5e5 - 1e7]
• Beta: 5.0e-3 [1e-4 - 1e-2]
• Epsilon: 0.2 [0.1 - 0.3]
• Normalize: false [true/false]
• Number of Layers: 2 [1 - 3]
• Hidden Units: 128 [32 - 512]

One exception noted with an asterisk (*) in the list above is
the Max Steps setting, which was increased to one million,
making it comparable with the GVGAI Gym learning results.
Each game was evaluated using both a one instance and an
eight instance scene, noted as PPO (1) and PPO (8) in the
results section.

V. RESULTS

ML-Agents allows agents to train either directly in the Unity
editor, or using the faster option of a compiled executable.
The speed of the training is dependent on the number of
rules and size of the VGDL game. As an example training
with eight game instances of Zelda, took around an hour per
100,000 steps on a high end 2018 MacBook Pro. No multi-
threading was implemented for the game instances inside
Unity. Fig. 7 shows the learning progress on each of the
four games with one and with eight game instances running
in parallel for one million steps. Running eight instances in
parallel consistently performs better than a single instance for
two reasons. First, more instances lead to more exploration

13Only six of them visualized in the build, the last two are rendered off-
screen.

14https://github.com/Unity-Technologies/ml-agents/blob/master/docs/
Training-PPO.md

(a) Aliens (b) Boulder Dash (c) Wait for Breakfast (d) Zelda

Fig. 7. Shows the training progression on the four games using ML-Agents in the UnityVGDL environment. Mean cumulative training reward across eight
game instances PPO (8) orange, and one instance PPO (1) blue. The x-axis denotes steps. Note that rewards and the y-axis are different for each game. The
lines are smoothed by 90% of the previous value, and the transparent outlines behind them are the actual means. The results clearly show learning progress
across all four games, in line with the baselines from [19].

TABLE I
SCORE COMPARISON

GVGAI Gym Learning ML-Agents Learning
Games Random Agent Best Planning Agent DQN PDDQN A2C PPO (1) PPO (8)
Aliens 52 80.4 75 74 77 49.25 (40%) 71.35 (70%)

Boulder Dash 1.4 16.4 2.5 5 15.5 5.05 (0%) 15.95 (0%)
Wait for Breakfast 0 1 1 1 1 0 (0%) 1 (100%)

Zelda -0.3* 7.6 4.2 4.2 6 1.4 (0%) 6.3 (0%)

Table I shows the results from [19] compared to final ML-Agents PPO scores averaged score over 20 runs with max step limit set to 1,500. Win-rates shown
in parenthesise, i.e. percentage of runs in which the termination objective resulting in a win. Number of instances for PPO denoted in parenthesis.

during training. Secondly, in ML-agents steps are counted by
the academy (the focal point for training agents in a game
scene), which means the experience count is multiplied by the
game instance count.

It is clear from the results that running a single instance with
the default parameters is inferior to most other approaches.
Preliminary experiments with a variation of tuned parameters
have shown potential for better learning. We recommend tun-
ing the hyperparameters or increasing the number of parallel
training instances to achieve good results. Running learning on
four games is not enough to determine how good the default
PPO is compared to other algorithms, but these are baseline
results, that give an indication of what is possible using ML-
Agents with UnityVGDL.

A. Comparing with GVGAI Gym Results

The learning results of DQN, PDDQN, and A2C using
GVGAI Gym should be directly comparable to the results of
ML-Agents PPO if the framework is implemented correctly.
Although the interpretation of VGDL is not guaranteed to
be the same, the UnityVGDL interpretation should match
JavaVGDL. The results are not meant to show that one
algorithm or framework is superior to the other, but that
the baseline results of UnityVGDL are comparable to those
found by Torrado et al. The four games were selected exactly
because agents can learn to play them well with the baseline
algorithms. Finding vast discrepancies between the learning
results would indicate an implementation issue or limitation
in either framework.

Table I shows the results from Torrado et al. [19] for a

random agent15, the best planning agent score, GVGAI Gym
Learning agents and the UnityVGDL ML-Agents score. The
final ML-Agents scores were captured for each trained brain
by averaging the score of 20 runs of each game with a max
step limit of 1,500. Win rates, i.e. the percentage of the 20
runs in which the termination condition resulting in a win, are
also shown. It is interesting to note here that no agent managed
to achieve a win in neither Zelda nor Boulder Dash. The win
condition in these games depend on specific actions, which
makes them harder to reach. Like having the key in Zelda, or
having gathered exactly ten diamonds in Boulder Dash, prior
to reaching the door in either. The baseline GVGAI Gym and
ML-agents results are very similar across all games (Table I).
Just like the single instance DQN and PDDQN perform worse
than A2C, single instance PPO performs worse than eight
instance PPO.

VI. DISCUSSION

This paper introduced a new framework that combines the
GVGAI VGDL ontology with ML-Agents in Unity. The com-
parison between learning results in UnityVGDL and GVGAI
indicates that there are no major discrepancies between the
two. As expected the learning results on the selected games
were good, but many harder challenges exist in VGDL games.
The learning agents have yet to train on more than a single
level of a single game for the baseline results.

The hyperparameter values are meant to be adjusted when
using ML-Agents, but the default values were kept except the
number of max steps, which was adjusted for comparison with

15The score of -5.2 reported by Torrado et al. [19] for a random agent on
Zelda must be an error, as Zelda never yields a score below -1.0. A new
evaluation was made by averaging the score over 25 runs in GVGAI. The
updated score has been marked in the table with an asterisk (*).

GVGAI Gym [19]. The default values provided in the ML-
Agents framework have been created to provide the best re-
sults when learning from vector observations with continuous
action spaces. The UnityVGDL implementation differs in both
respects, as it only uses visual observations and has a discrete
action space.

Hyperparameter tuning could provide even better learning
conditions. Similarly, the imposed limit of 1,500 steps per
agent episode was chosen because Wait for Breakfast has a
built-in limit of 1,500 steps. During training, the agents would
often perform some initial actions and then go wait in a corner
for the episode to end. A lower step limit would most likely
result in faster real-time training with similar results. Avatars
in the GVGAI ontology can limit available actions, e.g. in
Aliens the FlakAvatar actions are LEFT, RIGHT and USE.
Action masking can be beneficial to limit the state-action
space, when learning or planning. However, action masking
was not implemented and therefore the neural networks had to
learn that some actions did not have any effect on the game. It
is unclear whether Torrado et al. removed unavailable actions
from the action space of their learning agents. We plan to add
action masking to UnityVGDL, which should require minimal
changes but could improve learning speed in games with fewer
available actions.

A. Adaptations

To maintain compatibility to JavaVGDL, UnityVGDL has
inherited parts of the GVGAI framework. Large parts of the
GVGAI framework are related to the actual competitions and
not part of the VGDL core, so they have not been ported.
Some support functionality has been added and made slightly
more flexible, like parsing colors and names of fields and
classes. UnityVGDL does not use a type lookup system. In-
stead, classes and fields are looked up using .NET Reflection.
Reflection makes it easy to add new effects, sprite types and
termination conditions by simply inheriting from another class
in the ontology. Another significant change is the usage of
stypes directly instead of using a registry index, which
initially eased implementation. This change could become a
performance bottleneck that has to be addressed in the future.
UnityVGDL implements a forward model, but it is currently
unused, except for relaying game state information to the ML-
Agents (for step reward calculation). The VGDLPlayer player
interface from JavaVGDL has been kept, albeit it creates a less
than elegant implementation of the ML-Agents Agent class; it
will most likely be changed in the future.

B. Limitations

Not all sprite types and effects have yet been ported from
JavaVGDL to UnityVGDL. The porting process is relatively
painless as Java and C# are very similar and most functionality
in VGDLGame has kept their names in the porting process. In
grid-based games path planning has yet to be implemented.
Two-player games are only partially implemented, and will
not currently work. Continuous physics games have been
consciously left as future work. The VGDL implementation

should also allow vector observations for VGDL agents as an
alternative to visual observations. GVGAI supports using an
observation grid containing sprite ids for each square on the
grid. A similar approach could be used for vector observations
in ML-Agents.

VII. FUTURE WORK

A. Missing Features
The relatively small task of porting the remaining class

functionality in the ontology remains. All ontology classes
are instantiated with the correct data and registered by the
parser in VGDLGame. Functionality for some rarely used types
still needs to be ported from JavaVGDL. For now, the main
focus has been on getting the core functionality working and
testing it on a small but diverse set of games. For sprites,
the general functionality for sprite animations and auto-tiling
(automatically choosing sprite from a list based on level map)
has not been implemented, and collisions are less optimized
than in JavaVGDL. As mentioned earlier, vector observations
have also been left for future work.

B. Utilizing the Unity Engine
While a port of the grid-based VGDL engine of JavaVGDL

is sufficient for grid physics games, continuous physics games
would profit from being translated into native Unity scene
hierarchies of game objects that interact with each other
based on the VGDL description. This will require the inter-
pretation and custom implementation of generalized VGDL
MonoBehaviours16 that can be attached to the game objects
based on the VGDL description. Creating a custom implemen-
tation of the physics types from VGDL would create a new
interesting challenge for transfer learning research.

Generating a custom Unity scene from a VGDL description
would also enable Unity game developers to use VGDL to
prototype game ideas. Extending the use of VGDL beyond
the scope of computational intelligence research would benefit
both game developers and researchers. Developers would
benefit from a highly abstract description language for creating
game prototypes and researchers could gain access to more
complex games. A community website like Puzzlescript.net
and an extensible ontology could become a rich resource for
data and knowledge exchange.

C. New Opportunities through ML-Agents
There are several different avenues to explore using Uni-

tyVGDL’s ML-Agents setup. The ML-Agents toolkit contains
an easy-to-use implementation of a curiosity module, a mem-
ory module, and imitation learning. Curiosity has shown good
results on games with sparse rewards [23]. VGDL games
such as Zelda and Boulder Dash, for which the learning
agents did not achieve the win-condition might benefit from
curiosity. The memory module is a recurrent neural network
(LSTM [14]), which allows agents to use knowledge from
previous states when evaluating new states. Agents might

16https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

use this capability to figure out when they collected enough
diamonds in Boulder Dash to head to the exit. Lastly, imitation
learning can be used to mimic behavior, and could in the future
be used as a starting point for reinforcement learning agents.
The combination of these capabilities makes UnityVGDL and
ML-Agents an appealing playground for research.

D. Procedural Content Generation with UnityVGDL

In GVGAI VGDL has been used extensively for procedu-
ral content generation (PCG) competitions [20]. Both level
generation from known game rules and rule generation from
known levels have been a part of the competition for several
years. Outside of competitions, agents trained in procedurally
generated environments [24], instead of only a particular one,
have shown better generalization abilities in various different
domains and also have a lower chance of overfitting [25]–[27].
Using UnityVGDL for procedural content generation is thus
an excited future possibility.

VIII. CONCLUSION

The UnityVGDL framework opens new possibilities for
competitions in General Video Game Playing [10], research,
and general game development. UnityVGDL turns VGDL into
a prototyping tool for game developers and a research tool. We
would like to encourage the community to help complete and
expand the UnityVGDL framework.

ACKNOWLEDGEMENTS

We would like to thank Niels Justesen, Miguel Gonzlez and
Djordje Grbic for fruitful discussions and insightful comments
on the framework presented in this paper.

REFERENCES

[1] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter
Henry, Marwan Mattar, and Danny Lange. Unity: A General Platform
for Intelligent Agents. arXiv:1809.02627 [cs, stat], September 2018.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym.
arXiv:1606.01540 [cs], June 2016.

[3] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
The Arcade Learning Environment: An Evaluation Platform for General
Agents. Journal of Artificial Intelligence Research, 47:253–279, June
2013.

[4] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaśkowski. ViZDoom: A Doom-based AI Research Platform
for Visual Reinforcement Learning. arXiv:1605.02097 [cs], May 2016.

[5] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics
engine for model-based control. In 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 5026–5033, Vilamoura-
Algarve, Portugal, October 2012. IEEE.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533,
February 2015.

[7] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi.
Deep learning for video game playing. IEEE Transactions on Games,
2019.

[8] Sebastian Risi and Julian Togelius. Neuroevolution in games: State
of the art and open challenges. IEEE Transactions on Computational
Intelligence and AI in Games, 9(1):25–41, 2015.

[9] Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper,
Hunter Henry, Adam Crespi, Julian Togelius, and Danny Lange. Obsta-
cle Tower: A Generalization Challenge in Vision, Control, and Planning.
arXiv:1902.01378 [cs], February 2019.

[10] John Levine, Clare Congdon, Marc Ebner, Graham Kendall, Simon Lu-
cas, Risto Miikkulainen, Tom Schaul, and Tommy Thompson. General
Video Game Playing. Dagstuhl-Followups, 6:77, November 2013.

[11] Tom Schaul. An Extensible Description Language for Video Games.
IEEE Transactions on Computational Intelligence and AI in Games,
6(4):325–331, December 2014.

[12] Tom Schaul. A video game description language for model-based
or interactive learning. In 2013 IEEE Conference on Computational
Inteligence in Games (CIG), pages 1–8, Niagara Falls, ON, Canada,
August 2013. IEEE.

[13] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom
Schaul, Simon M. Lucas, Adrien Couetoux, Jerry Lee, Chong-U Lim,
and Tommy Thompson. The 2014 General Video Game Playing
Competition. IEEE Transactions on Computational Intelligence and AI
in Games, 8(3):229–243, September 2016.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Comput., 9(8):1735–1780, November 1997.

[15] Diego Perez, Spyridon Samothrakis, and Simon Lucas. Knowledge-
based fast evolutionary MCTS for general video game playing. In 2014
IEEE Conference on Computational Intelligence and Games, pages 1–8,
Dortmund, Germany, August 2014. IEEE.

[16] Raluca D. Gaina, Adrien Couetoux, Dennis J. N. J. Soemers, Mark H. M.
Winands, Tom Vodopivec, Florian Kirchgesner, Jialin Liu, Simon M.
Lucas, and Diego Perez-Liebana. The 2016 Two-Player GVGAI Com-
petition. IEEE Transactions on Games, 10(2):209–220, June 2018.

[17] D. Perez-Liebana, M. Stephenson, R. D. Gaina, J. Renz, and S. M.
Lucas. Introducing Real World Physics and Macro-Actions to General
Video Game AI. In 2017 IEEE Conference on Computational Intelli-
gence and Games (CIG), pages 248–255, August 2017.

[18] Philip Bontrager, Ahmed Khalifa, Andre Mendes, and Julian Togelius.
Matching Games and Algorithms for General Video Game Playing.
In Twelfth Artificial Intelligence and Interactive Digital Entertainment
Conference, September 2016.

[19] Ruben Rodriguez Torrado, Philip Bontrager, Julian Togelius, Jialin Liu,
and Diego Perez-Liebana. Deep Reinforcement Learning for General
Video Game AI. arXiv:1806.02448 [cs, stat], June 2018.

[20] Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D. Gaina,
Julian Togelius, and Simon M. Lucas. General Video Game AI: A Multi-
Track Framework for Evaluating Agents, Games and Content Generation
Algorithms. arXiv:1802.10363 [cs], February 2018.

[21] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Adaptive Computation and Machine Learning Series. The
MIT Press, Cambridge, MA, second edition edition, 2018.

[22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. arXiv:1707.06347
[cs], July 2017.

[23] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Dar-
rell. Curiosity-driven Exploration by Self-supervised Prediction.
arXiv:1705.05363 [cs, stat], May 2017.

[24] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and
Cameron Browne. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational Intelligence
and AI in Games, 3(3):172–186, 2011.

[25] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed
Khalifa, Julian Togelius, and Sebastian Risi. Illuminating generalization
in deep reinforcement learning through procedural level generation.
NeurIPS 2018 Workshop on Deep Reinforcement Learning, 2018.

[26] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John
Schulman. Quantifying generalization in reinforcement learning. arXiv
preprint arXiv:1812.02341, 2018.

[27] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A
study on overfitting in deep reinforcement learning. arXiv preprint
arXiv:1804.06893, 2018.

142 CHAPTER 9. PUBLICATIONS

9.2 Squeezer - A tool for designing juicy e↵ects

Squeezer - A Tool for Designing Juicy E�ects
Mads Johansen

IT University of Copenhagen
Copenhagen, Denmark

madj@itu.dk

Martin Pichlmair
IT University of Copenhagen

Copenhagen, Denmark
mpic@itu.dk

Sebastian Risi
IT University of Copenhagen

Copenhagen, Denmark
sebr@itu.dk

ABSTRACT
This paper introduces Squeezer, a tool for designing juicy e�ects in
the Unity game engine. Drawing upon inspiration from sound e�ect
synthesizers and description languages, Squeezer can "synthesize"
common types of juice e�ects, by combining simple e�ects into
e�ect sequences. These e�ect sequences can be edited and executed
even while playing the game in the editor, lowering iteration times
and easing the exploration of e�ects. We make a preliminary usabil-
ity test to verify the functionality and scope of the tool. Squeezer is
available at: https://github.com/pyjamads/Squeezer

CCS CONCEPTS
•Applied computing!Computer games; •Human-centered
computing ! Graphical user interfaces; Usability testing.

KEYWORDS
Game Development; Game Design; Juice E�ects; Interaction Feed-
back; Toolkit; Prototyping; Generator

1 INTRODUCTION
In this work, we present a tool for assisting game designers in apply-
ing common juice e�ects to game prototypes. Designing prototypes
is a very common practice in game design. Their purpose is to ex-
plore a design space or to communicate a game mechanic. Squeezer
seeks to enrich prototypes with Game Feel [25] by adding juice [13].
We aim to create a way for designers to quickly �nd or generate
e�ect sequences that are “good enough” for their prototyping needs.
This kind of tool that is not currently available.

Squeezer can generate various juice e�ects to quickly and e�-
ciently �nd e�ect sequences that can serve as "good enough" in
the prototyping stage of game development. The goal of proto-
typing is always to verify or communicate concepts and ideas; in
prototyping, the faster the design is revealed to fail or succeed, the
better. As the preliminary user study suggests, Squeezer can help
to quickly determine which kinds of juice e�ects detract from and
which enhance certain features in a game prototype.

To guarantee practical application and good test cases, we choose
to develop the tool in the widely used Unity1 game engine. Unity
lets users quickly develop and integrate custom tools to extend
their editor. Those tools can even be sold commercially via the
Unity Asset Store2. Users are used to adding extra libraries to their
projects to extend the functionality of the game engine and its
editor. By developing Squeezer for Unity, we increase the real-
world application probability and the number of available expert
users.

1https://unity.com/
2https://assetstore.unity.com/

The three main parts of Squeezer are (1) trigger setup, (2) ef-
fect sequencing, and (3) e�ect execution. E�ects are triggered by
a simple event system that ties into the prototype’s code. E�ects
are sequenced by structuring them into a tree and using relative
time o�sets (delays). The execution of e�ects is managed by a
simple Tweening [3] system that schedules e�ects and continu-
ously updates ongoing e�ects after they are triggered. The word
tween comes from "in betweening" [21], which comes from cartoon
animation, where a senior would draw keyframes of animation
sequences, and juniors would then �ll in the timelines between
those keyframes. A tweening system interpolates over a duration
between a beginning and end value (also known as keyframes).
The interpolation can be linear or eased in and/or out using easing
curves3.

Importantly, Squeezer is more than a tweening system: the de-
scriptions allow runtime manipulation and fast iteration on ideas.
Additionally, with the export and import of full or partial descrip-
tions, users can easily create a library of e�ect sequences and apply
themwidely in or between projects. Squeezer also includes complex
e�ects such as the SFXR audio synth e�ect and the spawner e�ects
which create objects and build initial e�ects sequences for their
o�spring, allowing users to alter them easily.

This paper has two contributions. The �rst one is the introduc-
tion of Squeezer, a new tool for exploring juice e�ects during game
prototyping. It combines structure and ontology ideas from the
Video Game Description Language (VGDL) [17] with Unity editor
integration for quick iterations. The second contribution is the idea
of a juice e�ect "synthesizer", combining modular sequencing and
presets to generate complex e�ect sequences, based on categories
similar to those used in SFXR [20].

2 BACKGROUND
Around a decade ago, the concept of game feel and juiciness gained
traction after being discussed mostly for prototyping [9] in the
indie game community. Juice is a game design term for abundant
feedback that ampli�es interactions related to input and other in-
game events [10, 15]. It is super�uous from a strictly mechanical
perspective but makes interacting with the systemmore pleasurable.
Juice helps sell the illusion that the game world has real properties,
just like exaggeration in cartoons create the illusion of life [26].
Hunicke [11] says "Juiciness can be applied to abstract forms and
elements and it is a way of embodying arbitrarily de�ned objects and
giving them some aliveness, some qua, some thing, some tenderness."

The term ’Game Feel’ was coined by Swink, who �rst wrote
an article [24] and later a book on ’Game Feel’ [25]. One part of
designing of game feel Swink calls ’polish’, which is also seen
in other academic contexts [8, 16] described as the impression of

3see examples on http://easings.net/

physicality created by layering of reactive motion, proactive motion,
sounds, and e�ects, and the synergy between those layers. Which has
a remarkable resemblance to Hunicke’s description of ’juiciness’.

Both game feel and juiciness have been widely discussed in the
game development community, leading to developers like Jonasson
& Purho [13] as well as Nijman [18] to talk about juice and game
feel from their respective points of view. Swink’s book and the talks
by Jonasson & Purho and Nijman are still the primary sources for
introducing the concepts of game feel and juiciness. Although all
three had excellent demos available when they were released, these
resources have unfortunately since deteriorated or disappeared.
However, more recent projects such as MMFeedbacks [7] and Game
Maker’s Toolkit [1, 2] continue the work on this topic.

With MMFeedbacks, Forestié has created an expert tool for
adding juiciness to Unity games. However, MMFeedbacks handles
triggering, delaying, and sequencing e�ects, but subsidizes design-
ing some e�ects to various subsystems in Unity. For instance, the
user still needs to understand the Unity particle system and create
the e�ect they want with that system. This design choice makes
sense for MMFeedbacks as an expert tool because the Unity subsys-
tems (Particle system, Cinemachine, Timeline, Animator, and more)
are powerful for their speci�c purposes. However, an inexperienced
user or a designer who is sketching out part of a game, might not
have the skill or the time to use MMFeedbacks meaningfully in this
context.

On the other hand, the sound e�ect tool SFXR [20] has long been
used heavily for prototyping and game jamming purposes [9], to
lift the appeal of a prototype with "good enough" placeholder sound
e�ects. Pettersson originally developed SFXR in 2007 for game jam
participants, to

...provide a simple means of getting basic sound e�ects
into a game for those people who were working hard to
get their entries done within the 48 hours...

SFXR is a procedural content generator (PCG) and a synthesizer. It is
operated simply by selecting a category of sound e�ect, and pressing
the category button repeatedly until the user hears a desirable sound
e�ect. Apart from the main sound generation, the user can also
manually tune each of the more than twenty di�erent parameters,
or mutate all parameters a small amount by the click of another
button. The categories read as follows [Coin/Pickup, Laser/Shoot,
Explosion, Power-up, Hit/Hurt, Jump, Blip/Select]. The categories
act as presets, explicitly setting some parameters, limiting others to
preset ranges, and randomizing the rest. The sounds generated by
SFXR can then be inserted as placeholders until a game or prototype
is mature enough to get a sound designer involved or a sound pack
implemented. For a game designer, applying placeholders can often
reveal which e�ects and mechanics they can lean into or should
steer clear o�. Thus to create a sound e�ect that works with their
particular game, designers might have to generate 10-20 di�erent
sound e�ects to �nd a suitable one. Similarly, �nding suitable e�ects
for the remaining aspects of feedback for a game prototype requires
a lot of trial and error. The tool proposed here makes trial and error
faster and simpler by allowing the designer to test e�ect sequences
triggered by events in the game, similarly to MMFeedbacks, but
with a stronger sense of proceduralism for generating common
types of e�ect sequences.

3 IMPLEMENTATION
A simple breakout clone provided a point of reference and informed
the development of Squeezer. Fig. 1 shows the basic game and setup
window in the top left. After setting up the triggers the top right
shows the game with a bit of color and an initial generated e�ect
sequence for block destruction. The bottom left shows the foldout
menu for editing parameters of a color tween e�ect. And along
the bottom towards the right you can see various e�ects executed
over a single play session. In the juiced versions Squeezer is adding,
e�ects such as ball trail, impact squashing, sound e�ects, block
shattering, explosions, color changes, simple starting animations,
and time dilation e�ects. Fig. 1 shows a potential work�ow for
Squeezer, but designers usually work iteratively, repeating step one
to three for each class of objects.

One consideration made early on, was to implement a simple
tweening system, for scheduling and executing e�ects. The reason
for doing this was not to rely too heavily on Unity features, to allow
the open-source community to adapt the code to other engines
more easily. The class structure used within Squeezer, is almost
entirely pure C# classes without Unity dependencies except for
Random, and Unity speci�c e�ect logic.

3.1 Analysis
The initial problem of triggering e�ects based on events or inter-
actions has been solved many times in the past. One solution is
a hierarchical description approach, including an ontology, such
as PyVGDL, JavaVGDL, and UnityVGDL [12, 19, 22]. These VGDL
frameworks execute entire games based on this structure and ef-
fectively hide complexity in the descriptions with the provided
ontology. However, e�ect sequences for juice e�ects additionally
require scheduling, both sequentially and simultaneously, which
adds the need for more complex nesting of e�ects.

Apart from the structure of descriptions, analyzing which events
commonly trigger juice e�ects is needed. As well as what the kinds
of e�ects most frequently used are, how they get applied and where.
By reviewing industry talks [13, 18], we identi�ed an initial set
of triggers, those are: OnStart, triggered when creating an ob-
ject/when the game starts. OnCollision, triggered when a colli-
sion occurs. OnMove, triggered while moving or changing move-
ment state. OnRotate, triggered when the object rotates in some
way.OnDestroy, triggered when destroying an object.OnDisable,
triggered when an object becomes disabled (a common way of "de-
stroying" objects, without invoking garbage collection in Unity).
OnCustomEvent, triggered when the system receives a custom
event (e.g., Shoot, Jump or when some e�ect terminates like FadeIn-
Complete).

We also identi�ed a few di�erent groups of e�ects. Sound e�ects,
color e�ects, particle and trail e�ects, transform e�ects (translate,
rotate, scale), time dilation e�ects, �ashing e�ects (full-screen or
localized), wiggle (a combination of several transform e�ects) and
shake (quick random translations) e�ects. However, common for
all e�ects is that they can be delayed, can be applied to various
targets, can be sequenced (scheduled in relation to other e�ects),
and can be independent of in-game time. Apart from those common
properties, feedback e�ects tend to be durational, most common are
tween e�ects. Tweening [21] moves a value, between a start and

Figure 1: Step (1) take a game prototype and setup the Squeezer event triggers using the setup window. Step (2) add some color
and generate or manually add initial e�ect sequences. Step (3) explore or design parameters of individual e�ects until they
suit the game mechanics.

end value, using an easing function. The simplest easing function is
linear interpolation, but to simulate acceleration and deceleration
when starting and stopping easing curves such as a sine wave or an
exponential function can be used instead. Another class of e�ects
is the ones that spawn additional objects in the game instead of
manipulating objects that already exist. Trails and other particle
e�ects that generate objects will contain an additional list of e�ects
administered to their o�spring. The four types of e�ects are One
shot (can be delayed), Durational, Tween, and Spawner e�ects. Lastly,
we look at the relationship between the trigger and the a�ected
objects. The most common target is the object that detected the
event itself. However, other targets include: objects of a certain
type or with a certain tag, the other object in a collision, speci�c
objects (e.g., the camera) and editor values (e.g., time scale).

3.2 Implementation details
Based on the analysis above and working with a hierarchical ap-
proach, broken down from root to leaf, Squeezer’s functionality
is as follows: Description, in charge of attaching triggers to ac-
tual game objects in the game, contains a list of Triggers. Trigger,
managing which events cause e�ects to occur, selected from the
seven identi�ed trigger types, contains a list of e�ect groups. E�ect
Group, determines which game objects the e�ects will be executed
and contains a list of e�ects. E�ect, includes functionality to ex-
ecute the e�ect itself, and contains a list of e�ects to apply on
completion (spawner e�ects also contain a list of e�ects to run on
any generated objects).

Squeezer addresses two user interaction aspects apart from the
descriptions. One is a setup window, easing the process of setting
up the descriptions initially. The second is shorter iteration cycles,
by allowing persistent editing while playing. To facilitate editing
while playing, Squeezer has a Step-Through Mode feature inspired

by the Klik’n’Play4 feature of the same name. This mode pauses
the game automatically when collisions or other selected events
occur, allowing users to add or modify e�ects as the game plays
out. Step-Through Mode also includes a random e�ect sequence
generator called "Assist Me", which generates a random set of up to
�ve e�ects. The randomness was intended as a proof of concept, for
more advanced generation features later on. However, the feature
generated a surprising amount of exciting combinations during
development.

A few built-in e�ects, like TrailE�ect and ShatterE�ect, combine
their spawning logic with other e�ects such as color-changing and
destruction. However, you can create very complex e�ects, with the
building blocks in Squeezer. Imagine a vehicle exploding. First, we
could add a positional �ash and a sound e�ect and then "shatter" the
object. This debris could then �y o�, and after a while, they explode,
making a small positional �ash and sound. The initial explosion
could also be extended, by adding several �ashes, scale them in/out
to simulate smoke and shaking the camera.

3.3 Secondary analysis
After the initial implementation of a random e�ect sequence gener-
ator, the need arose to consider implementing categories of gener-
ated e�ects. Using SFXR’s seven di�erent categories as a starting
point, we found the following initial set of categories: Pick-up, De-
stroy/Explode, Jump, Shoot, Hit/Hurt, Interact/Use, Projectile move
and Player move. The only additions being Player and Projectile
move for continuous triggers, which have no counterpart in SFXR.

4 USER TEST
We conducted a preliminary user test divided into three parts; a
brie�ng 15 minutes, the user test 30-60 minutes, and lastly, the
participants answered a set of 15 questions about their experience.

4Klik’n’Play by Clickteam https://knpforschools.webs.com/

The brie�ng included how to set up and interact with Squeezer and
introduce the breakout clone we provided as an example game. The
participants were �rst shown a version that showcased most of the
available e�ects, and then for the actual test, they were provided a
completely juice free version of the game. The participants were told
to spend 30-60 minutes adding any e�ects they saw �t, exploring
the possibilities of Squeezer. During this part of the test, their usage
was recorded anonymously, and any bugs and user experience
issues encountered were logged by the authors. The participants
had the option of asking for clari�cation on anything and which
e�ects to use to achieve speci�c ideas.

5 RESULTS
A video and gif showcase of Squeezer and the breakout example
game is available in the repository5.

5.1 Preliminary Qualitative User tests
We tested Squeezer with four users ranging between two and ten
years of experience using Unity. Out of the four participants, only
one had recently been in charge of implementing game e�ects.
When prompted on how they would usually mock-up juice e�ects
in games, they all replied they would make small scripts or use
the Unity Animator for simple things, and use a Tweening library
for more complicated e�ects. Each participant found novel e�ect
combinations that resulted in a very di�erent look and feel for the
same basic breakout clone. All four users claimed they would love
to use this kind of tool for testing out ideas or during game jams.
One participant, who also teaches game design to students said:

I would also de�nitely give this to my students when
talking about game feel and juice. I think letting them
play with these e�ects would be a nice, time-e�cient
way of getting to experiment with juice and exploring
how it changes game feel.

And another said:
I would be interested in using this in small experiments
and at game jams. I could also see it being useful as a
communication tool on teams, using the tool to quickly
demonstrate various intents.

5.2 Participant usage
One participant decided to manipulate gameplay elements. They
added a resource management layer to the breakout game by modi-
fying the size of the paddle, making it smaller when it moved, and
larger again as the ball hit blocks. These modi�cations of the game-
play made the player ration their paddle movements. Three out
of the four users decided to go for many of the elements touched
upon by Jonasson & Purho [13], such as adding screen shake, sound
e�ects, block destruction by shattering and scaling various objects
up/down due to interactions. One participant tried to make a color-
changing e�ect repeat inde�nitely. However, due to a limitation
in the Tweening e�ects, the blocks stopped changing their color
after �ve seconds. Another participant got around this limitation
by tying the color-changing to the OnMove event of the paddle,
which essentially restarted the e�ect whenever it would end.

5https://github.com/pyjamads/Squeezer/tree/master/Showcase

We asked the participants, ’Which features and e�ects did you
�nd most useful?’ one participant noted:

Screen shake, shatter, trail, and color changes were easy
and powerful to apply. It felt like it would save me a
signi�cant amount of work if I were prototyping and
e.g., at a game jam, this would be useful to throw in
some nice e�ects quickly.

while another said:

The sound e�ect, it just added life.

6 FUTUREWORK
The current Squeezer prototype is just a �rst step towards a more
powerful tool for designing juicy e�ects. We plan to continue ex-
ploring how to best present the e�ect sequences and other user
experience elements with the aid of more user testing:

• Adding more powerful generator options that can add e�ect
sequences based on selected categories is an important next
step. The current "assist me" feature is the �rst step, but
unfortunately, our user study participants did not get to use
it due to the current interface.

• For more straightforward sequencing, we will explore a time-
line visualization, and a way to preview the e�ect.

• Squeezer can collect anonymous usage data. We will explore
improvements to automatically create categories and e�ect
sequences based on usage data from our user tests.

• We will be looking towards interactive evolution and ex-
pressive range analysis, exploring approaches similar to
Picbreeder [23] and Danesh [6] but applied to e�ect se-
quences.

• Another aspect we would like to explore is automated game
design [4, 5], and how to use code to provide additional
context to a system generating e�ects for a prototype.

7 CONCLUSION
While still a work in progress, Squeezer is a promising juice "syn-
thesizer" that can create a wide range of di�erent e�ect sequences
by combining more than twenty di�erent e�ects. Our initial user
test con�rmed that there is an interest and a place for a tool that
simpli�es creating juice e�ects, both as a tool for learning, game
jamming, and ideation [14].

REFERENCES
[1] Mark Brown. 2015. Secrets of Game Feel and Juice.
[2] Mark Brown. 2019. Why Does Celeste Feel So Good to Play? | Game Maker’s

Toolkit.
[3] N. Burtnyk and M. Wein. 1971. Computer-Generated Key-Frame Animation.

Journal of the SMPTE 80, 3 (March 1971), 149–153. https://doi.org/10.5594/J07698
[4] Michael Cook. 2017. A Vision For Continuous Automated Game Design.

arXiv:1707.09661 [cs] (July 2017). arXiv:1707.09661 [cs]
[5] Michael Cook. 2020. Software Engineering For Automated Game Design.

arXiv:2004.01770 [cs] (April 2020). arXiv:2004.01770 [cs]
[6] Michael Cook, Jeremy Gow, and Simon Colton. 2016. Danesh: Helping Bridge

The Gap Between Procedural Generators And Their Output. (2016), 16.
[7] Renaud Forestié. 2019. How to Design with Feedback and Game Feel in Mind -

Shake It ’til You Make It.
[8] Tracy Fullerton. 2014. Game Design Workshop: A Playcentric Approach to Creating

Innovative Games (3rd ed.). A K Peters/CRC Press.
[9] Kyle Gray, Kyle Gabler, Shalin Shodhan, and Matt Kunic. 2005. How to Prototype

a Game in Under 7 Days.

[10] Kieran Hicks, Patrick Dickinson, Juicy Holopainen, and Kathrin Gerling. 2018.
Good Game Feel: An Empirically Grounded Framework for Juicy Design. (2018),
17.

[11] Robin Hunicke. 2009. Loving Your Player With Juicy Feedback.
[12] Mads Johansen, Martin Pichlmair, and Sebastian Risi. 2019. Video Game Descrip-

tion Language Environment for Unity Machine Learning Agents. In 2019 IEEE
Conference on Games (CoG). 1–8. https://doi.org/10.1109/CIG.2019.8848072

[13] Martin Jonasson and Petri Purho. 2012. Juice It or Lose It. (2012).
[14] Ben Jonson. 2005. Design Ideation: The Conceptual Sketch in the Digital Age.

Design Studies 26, 6 (Nov. 2005), 613–624. https://doi.org/10.1016/j.destud.2005.
03.001

[15] Jesper Juul and Jason Scott Begy. 2016. Good Feedback for Bad Players? A
Preliminary Study of ‘Juicy’ Interface Feedback. In Proceedings of First Joint
FDG/DiGRA Conference. Dundee, 2.

[16] Lasse Juel Larsen. 2016. Collision Thrills: Unpacking the Aesthetics of Action in
Computer Games. Journal of Computer Games and Communication 1, 1 (April
2016), 41–52. https://doi.org/10.15340/2148188111997

[17] John Levine, Clare Bates Congdon, Marc Ebner, Simon M Lucas, Risto Miikku-
lainen, Tom Schaul, and Tommy Thompson. 2013. General Video Game Playing.
(2013), 7.

[18] Jan Willem Nijman. 2013. The Art of Screenshake.

[19] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Si-
mon M. Lucas, Adrien Couetoux, Jerry Lee, Chong-U Lim, and Tommy Thomp-
son. 2016. The 2014 General Video Game Playing Competition. IEEE Transac-
tions on Computational Intelligence and AI in Games 8, 3 (Sept. 2016), 229–243.
https://doi.org/10.1109/TCIAIG.2015.2402393

[20] Tomas ’DrPetter’ Pettersson. 2007. SFXR.
http://www.drpetter.se/project_sfxr.html.

[21] William T. Reeves. 1981. Inbetweening for Computer Animation UtilizingMoving
Point Constraints. In Proceedings of the 8th Annual Conference on Computer
Graphics and Interactive Techniques - SIGGRAPH ’81. ACM Press, Dallas, Texas,
United States, 263–269. https://doi.org/10.1145/800224.806814

[22] Tom Schaul. 2013. A Video Game Description Language for Model-Based or
Interactive Learning. In 2013 IEEE Conference on Computational Inteligence in
Games (CIG). IEEE, Niagara Falls, ON, Canada, 1–8. https://doi.org/10.1109/CIG.
2013.6633610

[23] Jimmy Secretan, Nicholas Beato, David B. D Ambrosio, Adelein Rodriguez, Adam
Campbell, and Kenneth O. Stanley. 2008. Picbreeder: Evolving Pictures Collab-
oratively Online. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’08). Association for Computing Machinery, Florence,
Italy, 1759–1768. https://doi.org/10.1145/1357054.1357328

[24] Steve Swink. 2007. Game Feel: The Secret Ingredient.
[25] Steve Swink. 2009. Game Feel. Morgan Kaufmann.
[26] Frank Thomas and Ollie Johnston. 1981. The Illusion of Life: Disney Animation.

Abbeville Press, New York.

148 CHAPTER 9. PUBLICATIONS

9.3 Squeezer - A mixed-initiative tool for designing juice

e↵ects

Squeezer - A Mixed-Initiative Tool for Designing Juice E�ects
Mads Johansen

madj@itu.dk
Center for Computer Games Research

IT University of Copenhagen
Denmark

Martin Pichlmair
mpic@itu.dk

Center for Computer Games Research
IT University of Copenhagen

Denmark

Sebastian Risi
sebr@itu.dk

Center for Computer Games Research
IT University of Copenhagen

Denmark

ABSTRACT
This paper presents a Mixed-Initiative version of Squeezer, a tool
for designing juice e�ects in the Unity game engine. Drawing upon
sound synthesizers and game description languages, Squeezer can
synthesize common types of juice e�ects by combining simple
building blocks into sequences. Additionally, Squeezer o�ers e�ect
generation based on prede�ned recipes as well as an interface
for interactively evolving e�ect sequences. We conducted a user
study with �ve experts to verify the functionality and interest
among game designers. By applying generative and evolutionary
strategies to juice e�ect design, Squeezer allows game designers
and researchers using games in their work to explore adding juice
e�ects to their games and frameworks.

Squeezer is available at: https://github.com/pyjamads/Squeezer

CCS CONCEPTS
•Applied computing!Computer games; •Human-centered
computing ! Graphical user interfaces; Usability testing.

KEYWORDS
Game Development, Game Design, Juice E�ects, Interaction Feed-
back, Toolkit, Prototyping, Generator, Interactive Evolution, Mixed-
Initiative

1 INTRODUCTION
Game designers regularly create prototypes as part of their practice.
Their purpose is to explore a design space, communicate game
mechanics, and collect player feedback on game mechanics. While
prototypes often require little to no juice – a game design term for
visual and audible feedback and e�ects, see [24] – to verify if a rule
or mechanic works, there are many cases where they depend on
placeholder e�ects to provide enough feedback to make a game
mechanic understandable by the player. In all cases, prototypes
should be fast to make, which can be supported by tools.

Squeezer [18] assist game designers in prototyping by enhancing
game feel [32] through simplifying the process of adding juice [19].
Squeezer can generate and link various juice e�ects to sequences.
This way, designers can quickly and e�ciently create rich feedback
during the prototyping stage of game development.

In this paper, we expand upon the preliminary version of Squeezer
by implementing category-based e�ect tree generation, mutation
of e�ect trees, and adding an interface for the interactive evolution
of e�ects. Interactive evolutionary computation [33] or interactive
evolution builds on an AI-assisted creation loop. An interactive
evolution system presents di�erent artifacts to the user, who se-
lects the artifacts they prefer among the selection. The system then
generates a new set of artifacts through crossover and mutation.

This next generation of artifacts is subsequently presented to the
user, and so on. In practice, the user plays the part of the �tness
function in the evolutionary process.

In our experiment, we explore if adding interactive evolution to
Squeezer is bene�cial for assisting designers in the exploration and
design of e�ects for their game prototypes. Interactive evolution
has been used to generate sonic and visual artifacts before, in tools
such as Picbreeder [28], Endless Forms [7], MaestroGenesis [15],
DrawCompileEvolve [36], ZzSsprite [9], or more recently in combi-
nation with deep generative methods [2]. It has not been applied
to game feel design. In this paper, we present the results of testing
two assumptions about the introduction of interactive evolution to
Squeezer:

• Adding interactive evolution makes it easier for new users
to get acquainted with Squeezer. It provides an alternative
introduction to the possibilities of Squeezer1 by letting users
explore e�ect sequences interactively, based on examples, as
opposed to manually testing individual e�ects one by one
or familiarisation through documentation or code.

• Interactive evolution assists users in exploring the design
space and in discovering new ideas for e�ects.

In summary, we show how generative and evolutionary strate-
gies can assist designers and even surprise them by revealing un-
explored areas of the design space when applied to juice e�ect
design.

2 BACKGROUND
2.1 Game feel and Juice
Juice is the game design term for abundant feedback that ampli-
�es interactions related to input and in-game events. The concept
has gained a lot of traction over the last decade. Originally mostly
discussed in the indie game community [19, 21], and in relation
to prototyping [12], juice is nowadays being examined by a host
of researchers [14, 20, 24]. Juice is super�uous from a strictly me-
chanical perspective but makes interacting with the system more
pleasurable. Juice helps to sell the illusion that the game world has
realistic properties, just as exaggeration in cartoons creates the
illusion of life [34]. Hunicke states that “Juiciness can be applied to
abstract forms and elements and it is a way of embodying arbitrarily
de�ned objects and giving them some aliveness, some qua, some thing,
some tenderness.” [16]

Juice is but one facet of ‘Game Feel’, a term that encompasses
di�erent kinds of polish of interaction design in games, a concept we
reviewed thoroughly in [24]. The term itself was coined by Swink,
who �rst wrote an article [31], and later a book [32] about this

1Further supported by a small suite of demo scenes, with e�ects already implemented,
that new users can poke and prod at.

Johansen, et al.

Figure 1: The e�ect tree generator interface featuring a drop-downmenu for selecting a category and a slider for determining
the intensity. The mutate and regenerate buttons respect locked parts of the e�ect tree.

topic. Fullerton describes polishing as “the impression of physicality
created by layering of reactive motion, proactive motion, sounds, and
e�ects, and the synergy between those layers” [11], an observation
remarkably in line with Hunicke’s description of ‘juiciness’.

Both game feel, and juiciness have been widely discussed in the
game development community [24, 30]. Developers like Jonasson &
Purho [19] as well as Nijman [21] examine juice and game feel from
their respective points of view, o�ering insights into how crucial
this aspect of game design is to practitioners. Swink’s book, and the
talks by Jonasson & Purho and Nijman, are the primary sources for
introducing the concepts of game feel and juiciness. Although all
three had excellent demos available when they were released, these
resources have unfortunately since deteriorated or disappeared.

New projects, such as MMFeedbacks2 [10] and Game Maker’s
Toolkit [3, 4], continue to o�er practical and analytical tools for
designing game feel. MMFeedbacks is an expert tool for adding
juiciness to Unity games. MMFeedbacks handles triggering, delay-
ing, and sequencing e�ects yet subsidizes designing some of them
to various existing subsystems in Unity. For instance, the user still
needs to understand the Unity particle system and create the desired
e�ect with that system before integrating it into MMFeedbacks.
This design choice makes sense for MMFeedbacks as an expert tool
because the Unity subsystems (e.g., Particle system, Cinemachine,
Timeline, and Animator) are well suited for their speci�c purposes.
However, an inexperienced user or a designer sketching out part of
a game might not have the skills or the time to use MMFeedbacks
meaningfully.

2.2 Procedural Content Generation
Procedural Content Generation (PCG) is a collection of methods to
automate content generation for games [29]. Instead of manually
designing game elements, PCG systems implement design rules for
their automatic creation. PCG can be found in a wide variety of
areas of asset production. Hendrikx et al. [13] map the �eld in their

2https://feedbacks.moremountains.com/

survey paper and provide an overview of common applications.
Modern game engines like Unity support some procedural content
generation systems out of the box (for example, terrain generation),
but most PCG systems have to be either acquired or custom-built for
each game. It is important to note that there are run-time and design
time (o�ine) applications of procedural content generation. Often
resource-intensive algorithms are run at design time. If curation is a
part of the design process, the system also needs to be run at design
time. An example of a tool working like this is SFXR, a sound e�ect
tool [23].

SFXR has been used for a long time to lift the appeal of prototypes
and game jam games [12] via “good enough” placeholder sound
e�ects. Pettersson originally developed SFXR in 2007 for game jam
participants to “provide a simple means of getting basic sound e�ects
into a game for those people who were working hard to get their entries
done within the 48 hours.” [23]

SFXR is a procedural content generator also known as a syn-
thesizer. It is operated simply by clicking a button with a category
name and pressing it repeatedly until the user hears a desirable
sound e�ect. Apart from the sound generation, the user can also
manually tune each of the more than twenty di�erent parameters or
mutate all parameters. The categories read as follows: [Coin/Pickup,
Laser/Shoot, Explosion, Power-up, Hit/Hurt, Jump, Blip/Select, Ran-
dom]. The categories act as presets, explicitly setting some parame-
ters, limiting other parameters to speci�ed ranges, and randomizing
the rest. The sounds generated by SFXR can then be inserted as
placeholders in a game or prototype until it is mature enough to get
a sound designer involved or a sound pack integrated. For a game
designer, applying placeholders can often reveal which mechanics
they can build on and which they should remove. Designers often
have to generate and try out 10-20 di�erent versions to arrive at a
sound e�ect that works in a particular situation. An interface that
supports rapid iteration can thus speed up design signi�cantly.

Squeezer supports rapid iteration by combining generative prop-
erties like those exhibited by SFXR, the simplicity of e�ect design

Squeezer - A Mixed-Initiative Tool for Designing Juice E�ects

such as in Particle FX Designer3, and the universality of a feedback
system like MMFeedbacks. Additionally, mutation and interactive
evolution allow Squeezer to function as an e�ect sequence explo-
ration tool.

3 IMPLEMENTATION
Prototyping is the phase of game development where iteration
happens the fastest. The game modeled in the prototype is usually
small – a single game mechanic, rule, or interaction. Prototyping is
part of the exploration phase of design and is used to gain insights
into the design space. Squeezer supports this exploration with the
assistance of interactive evolution. This mechanism can be used
to narrow down the possible design solutions or to arrive at new
ideas. Squeezer has the power to surprise the user and lead them
to design inspiration.

To encourage practical application and get access to high-quality
test cases, Squeezer works with the widely used Unity4 game engine.
Unity lets users quickly develop and integrate custom tools to
extend their editor. These tools are also sold commercially via the
Unity Asset Store5. Users are accustomed to adding extra libraries
to their projects to extend the functionality of the game engine
and its editor. By developing Squeezer for Unity, we increase the
probability of real-world applications and the number of potential
users. However, the core functionality of Squeezer does not require
Unity, and the underlying open source project can be adapted to
other game engines.

3.1 Core Functionality
The three core elements of Squeezer are (1) triggering e�ects, (2)
e�ect sequencing, and (3) e�ect execution. E�ects are triggered by
a simple event system that ties into the prototype’s code or game
events. The section about integration describes how to achieve that.

E�ects are sequenced by structuring them into a tree and by
using relative time o�sets (delays) as seen in Fig. 3. Each node in
the tree will execute all child nodes upon completion. The tree is
displayed in its collapsed form, similar to the description language
VGDL [27], to increase readability and simplicity. E�ect nodes can
be expanded to view and adjust their properties. They can also
be mutated randomly to explore alternate variations of an e�ect
quickly.

The executor manages the execution of e�ects and is in charge
of scheduling and continuously updating active e�ects after they
are triggered. E�ects track their progress internally, letting the
executor know when they �nish and can be removed from active
e�ects. When an e�ect ends, it will clean up after itself and queue
all subsequent e�ects with the executor.

The executor is implemented like a simple tweening [5, 25]
system, designed to handle one-shot as well as durational e�ects.
Tweening systems are commonly used to drive simple animations
and e�ects within game projects. Most tweening system implemen-
tations leave the interpolation to the individual tween classes, like
Squeezers executor, which calls the active tweens on every update.

3https://codemanu.itch.io/particle-fx-designer
4https://unity.com/
5https://assetstore.unity.com/

Yet Squeezer is more than a tweening system: the e�ect sequence
descriptions allow run-timemanipulation and fast iteration on ideas.
The interactive evolution interface allows exploration of the range
of possible e�ects and combinations with very little knowledge of
how the system works. The more advanced Inspector UI (see Fig.
3 and 1) can be used manually or in conjunction with interactive
evolution, providing additional control and manual manipulation
of values. Additionally, with the export and import of full or partial
descriptions, users can easily create a library of e�ect sequences
and apply them widely in a project or between projects. Squeezer
also includes complex e�ects such as the SFXR6 [23] audio synth.

3.2 Integration
In addition to the core elements, Squeezer provides several layers
of user interfaces and code interfaces (Application Programming
Interfaces or APIs) that allow designers and game programmers
to integrate the tool exactly where and how they want. A setup
window to help setting up the framework (step one in Fig. 2), where
the user can select game objects or tags and the event triggers they
would like e�ects to respond to. The inspector interface, with its
simpli�ed tree view providing a simple visual interface to gener-
ate, mutate, add and remove elements from e�ect sequences (step
two in Fig. 2). As well as the expanded e�ect editor (step three
in Fig. 2) that can be used to modify e�ect parameters. For those
who prefer an API, Squeezer allows triggering and saving e�ect
sequences generated by the sequence generator with the shorthand
Squeezer.Trigger(...). This shorthand generates an e�ect sequence
based on a selected category and triggers it with the provided target,
position, optionally a direction, and handing back a reference to the
sequence for reuse later on. Programmers can also build and trigger
e�ects or sequences manually; examples of this can be found in the
sequence generator and several of the spawner e�ects (see Section
3.5).

3.3 Work�ow
Fig. 2 shows a potential work�ow for Squeezer, along with juice
iterations on a breakout clone. Step one shows the setup window
and basic game without e�ects. After setting up the triggers, step
two shows the game with a bit of color and an initial generated
e�ect sequence for block destruction. Step three shows the foldout
menu for editing parameters of the trail e�ect. On the right side
of step three, you can see a few iterations of the e�ects. Designers
work iteratively, going back and forth between steps two and three,
in addition to repeating steps one to three for every class of objects
and event triggers they need.

3.4 Demo Scenes
We created four demo scenes in 2D and 3D. The demo scenes trigger
e�ects on simple game objects when speci�c events occur. They
are named Timer, Move, Jump and Shoot according to the event
they demonstrate. All scenes either feature 2D objects and an or-
thographic camera or 3D objects and a rotating perspective camera.
In Fig. 5) you can see one of the 3D demo scenes in the middle of
executing an explosion e�ect.

6The Unity port of SFXR called usfxr: https://github.com/zeh/usfxr

Johansen, et al.

-70pt-

Squeezer - A Mixed-Initiative Tool for Designing Juice E�ects

Figure 3: The description for an Explosion e�ect sequence. Underlines added externally to associate descriptions and visuals with the
animation seen in Fig. 4.

Johansen, et al.

Figure 4: The "synthesized" e�ect shown at 5fps by executing the description in Fig. 3. The big white square is the breakout ball
(i.e. not part of the e�ect). There are three visible parts of the e�ect sequence in the description (the “Camera Shake” is not visible here). The
�rst is the “Positional Flash” (white underline in Fig. 3) which shows up as a white circle in the �rst three frames, scaling up and fading out.
After the scale up �nishes a blue �ash (blue underline in Fig. 3) appears and fades out. The second part of the sequence is the “Particle Pu�”
(yellow underline in Fig. 3) controlling the slowly expanding yellow circles, each will spawn a quick black �ash (black underline in Fig. 3),
giving the slight illusion of smoky dust as they expand and fade away. The third part of the sequence is the “Particle Pu�” (gray underline in
Fig. 3) simulating debris with the small fast moving gray boxes.

Figure 5: The run-time interactive evolution interface, seen here showcasing an explosion e�ect in a 3D scene.

Our original demo scene [18], a breakout clone, mainly consisted
of events triggered by collisions. These new scenes revealed issues
with trigger data as the initial version of Squeezer only passed
a single 3D vector. The particle e�ect called “ParticlePu�E�ect”
provided the perfect test case for the amount of control and data
neededwhen triggering events in the new demo scenes. The particle
pu� e�ect requires two parameters, a position, and a direction.
Without changing the data provided by the triggers, the e�ect
would only get a direction and would be forced to use the target
object’s position. However, both in the Jump and Shoot demo scenes,
triggering particles at the center of a game object would be incorrect.
For events such as collisions, the center of either colliding object
would also not be an accurate position to spawn an e�ect. While

technically feasible for a designer to add an invisible game object as
the trigger target7, allowing the system to pass a relative position
o�set removes the need to do that. Triggers can now provide e�ects
with “TriggerData” specifying both direction and position, allowing
the particle pu� e�ect to accurately execute at the location of the
impact between two objects. The particle pu� e�ect itself provides
a simple way to create a small cloud of particles, expanding in a
selected pattern.

The demo scenes provide an easy way to design and test e�ects
in isolation. However, a more realistic testing scenario presented
itself as the user study was about to begin. The developers of DISC

7This is indeed a well known “hack” designers exploit to implement position o�sets
visually in Unity

Squeezer - A Mixed-Initiative Tool for Designing Juice E�ects

ROOM [6] launched a game jam, where participants could create
their di�erent versions of the game. As part of this promotional
event, a tutorial video for a simple disc room prototype with ac-
companying source �les, sprites, and sound pack, was released8.
Squeezer includes this simple DISC ROOM prototype, re-created in
Unity with the sprite and sound assets.

3.5 Architecture
The initial problem of representing and triggering e�ects based on
events or interactions has been solved many times. One solution is
a hierarchical description approach, including an ontology. This ap-
proach is found in PyVGDL, JavaVGDL, and UnityVGDL [17, 22, 26].
VGDL frameworks execute entire games based on this structure and
e�ectively hide complexity in the descriptions with the provided
ontology. Both, Squeezer’s data structure and its textual representa-
tion of e�ect sequences use this hierarchical description approach.
Juice e�ect sequences require scheduling, both sequentially and
simultaneously, which complicates the nesting logic.

The data structure in Squeezer is hierarchical and simpli�es the
complexity of triggers and e�ects by o�ering classes for speci�c
purposes. Broken down from root to leaf, the data structure is as
follows (the hierarchy can be seen in Fig. 3, in a partial view of the
Description inspector):

• Description – in charge of attaching triggers to actual game
objects in the game, contains a list of Triggers (The outer
level containing the "E�ect Tree" in Fig. 3).

• Triggers – de�ne which events cause e�ects to occur. Se-
lected from seven prede�ned trigger types. Contains a list
of e�ect groups (In Fig. 3, only one trigger is attached to the
description, namely "On Collision Trigger").

• E�ect Groups – determine which game objects the e�ects
will be executed on and contain lists of e�ects (In Fig. 3 only
a default "Applies to Self" e�ect group has been added to the
collision trigger).

• E�ects – include functionality to execute the e�ects them-
selves and a list of e�ects to apply on completion. E�ects
that spawn objects, such as particle pu�, additionally contain
a list of e�ects to run on any generated objects. (In Fig. 3
we see four e�ects on the root level, two di�erent particle
pu�s, a positional �ash, and a camera shake. Each of those, in
turn, contain e�ects to be executed on either their "spawned"
o�spring or on their target as they complete).

E�ect trees represent sequences. E�ects on the same level – with
the same parent – will be queued simultaneously. Nested e�ects
execute after the parent has completed. In addition to this, a delay
can be added to e�ects, o�setting them from other e�ects on the
same level. Delays are handled internally by the e�ects themselves
and begin counting down as soon as the e�ects are triggered.

In [18] we selected e�ect triggering events by analysing industry
talks [19, 21]. This allowed us to identify an initial set of event
triggers:

• OnStart, triggered when creating an object/when the game
starts.

• OnCollision, triggered when a collision occurs.

8DISC ROOM JAM Tutorial, available at https://youtu.be/Dtt5X7twhxA

• OnMove, triggered while moving or changing movement
state.

• OnRotate, triggered when the object rotates in some way.
• OnDestroy, triggered when destroying an object.
• OnDisable, triggered when an object becomes disabled (a
commonway of "destroying" objects, without invoking garbage
collection in Unity)

• OnCustomEvent, triggered when the system receives a cus-
tom event (e.g., named custom events such as Shoot, Jump
or FadeInComplete)

Since a lot of games rely on Finite State Machines (FSMs) to
control game logic, we added a new trigger recently that is called
OnStateChanged. It is capable of tracking and activating based
on changes to speci�c script parameters (like FSM states), as well as
of checking simple conditions. The trigger detects when the value
of observed parameters changes (e.g., when the state of a character
changes from OnGround to Jumping or when the player’s speed
exceeds a speci�ed value). Reacting directly to changes in the game
state non-invasively can be an excellent alternative to adding code
for triggering custom events in multiple places.

Although triggers are part of the hierarchical data structure,
each trigger has an accompanying detection script attached to
game objects in the game. These detection scripts react to game
events and activate their associated e�ect groups. The e�ect groups
determine the targets of the e�ect sequences de�ned within them.
Usually, the e�ect groups only target the triggering object. Yet,
sometimes they can help make other game objects seem to respond
to speci�c events9.

The main groups of e�ects are; sound e�ects, color e�ects, par-
ticle and trail e�ects, transform e�ects (translate, rotate, scale),
time dilation e�ects, �ashing e�ects (full-screen or localized), shake
(quick random translations), and wiggle (rotational shake) e�ects.
However, common for all e�ects is that they can be delayed, applied
to various targets, sequenced (scheduled in relation to other e�ects),
and executed dependent or independent of in-game timescale. Apart
from those common properties, feedback e�ects tend to be dura-
tional. The most common are tween e�ects. The word tween comes
from "inbetweening" [25], which originated in cartoon animation,
where a senior would draw keyframes of animation sequences, and
juniors would then �ll in the timelines between those keyframes.
A tween interpolates between a beginning and end value over a
duration. The interpolation can be linear or eased in and out using
easing curves10. The easing functions simulate acceleration and de-
celeration when starting and stopping, based on various functions
like a sine wave or an exponential function. Another class of e�ects
is those that spawn additional objects in the game instead of manip-
ulating objects that already exist. Trails and other particle e�ects
that generate objects contain a separate list of e�ects executed on
their o�spring. The four types of e�ects are One shot, Durational,
Tween, and Spawner e�ects.

3.5.1 Extending Functionality. Squeezer is open source and can
easily be extended with custom e�ects. Those can be based on one

9This can be seen in the Squeezer showcase [available at:
https://github.com/pyjamads/Squeezer/tree/master/Showcase] when all blocks
in breakout react to the destruction of a single block
10see examples on http://easings.net/

Johansen, et al.

of four e�ect types – one shot, spawning, durational and tween –
depending on what is appropriate. Adding new e�ects to the system
is as easy as copying or inheriting other e�ects, changing the name
and performed logic, and saving the �le. Squeezer uses re�ection11
to show available e�ects. The inheritance structure and serialization
allow the system to display and execute the e�ects correctly.

Similarly, new triggers can be added. That process is slightly
more complicated, as the detection scripts need to be created and
the attaching logic has to be implemented as well.

It should be noted that spawning e�ects – Trail, Shatter, Copy
and Particle Pu� – all instantiate regular Unity game objects, which
makes them very versatile. The objects in question can be custom-
made for this purpose by the designer. Creating a large amount of
game objects in Unity is resource-intensive, so game performance
has to be monitored when e�ects spawn objects.

3.6 Content Categories
In [18] we identi�ed and proposed the idea of generating e�ect
sequences based on di�erent categories. We started out with SFXR’s
eight categories of e�ects (see above) but removed Blip/Select,
Coin/Pickup and Power-up. We limited the Squeezer categories
to a set of simple arcade game mechanics, that suited our test cases.
We added two new options: PlayerMove and ProjectileMove.Meant
for continuous triggers and have no counterpart in SFXR. Finally
we renamed some of them to make their use clearer. The set of
categories is a starting point for e�ect sequence generation, and we
expect this list to be expanded in the future. In the end we ended
up with the following content categories (SFXR name on the left,
Squeezer name on the right):

• Random �! Random
• Explosion �! Destroy/Explode
• Jump �! Jump
• Laser/Shoot �! Shoot
• Hit/Hurt �! Impact
• N/A �! Projectile Move
• N/A �! Player Move

Fig. 1 shows the generator interface, where the category and
intensity can be selected. The intensity value controls size, severity
and sound volume, on a scale between one and ten (where one is the
least intense). The intensity scale is split internally into four levels,
[1-3] is low intensity variations, [4-6] is medium intensity, [7-9] is
high intensity, and [10] is extreme intensity. The di�erent intensity
levels, have slightly altered e�ect sequences for some categories,
but otherwise scale parameters linearly.

3.7 Generation, Mutation and Evolution
We handcrafted base sequences for each category. These sequences
are the foundation of the generator. In the generator e�ects are
initialized with parameters randomized within prede�ned ranges.
This allows Squeezer to generate distinct e�ects with reasonable
initial values.

Additionally, the sequences themselves are mutated at initialisa-
tion by randomly adding and removing e�ects in the sequence. The
idea is that even signi�cant mutations maintain some traits from
11https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/concepts/re�ection

the base sequence of the speci�ed category. The logic for mutating
e�ect trees combines genetic programming’s [1] tree mutations
with e�ect parameter mutations. This means that when mutating
the e�ect sequence, a control parameter is used as a probability
measure for adding or removing e�ects to the tree. While mutating
each individual e�ect, the control parameter controls the probability
that a value changes and how much it should be adjusted.

However, Squeezer is a design tool, and that means having a
designer in the loop to determine �tness and guide the mutations
along. To assist in this process, the user interface o�ers a locking
mechanism12. Locked e�ects will not be mutated or removed while
the rest of the tree gets mutated. This allows designers to ‘freeze’
parts of the e�ect sequence they like while evolving the remaining
tree (one-armed bandit style). Designers can use this functionality
and repeatedly mutate selected parts of the e�ect tree, gradually
homing in on a �nal result.

3.8 User Interface
Squeezer o�ers interactive evolution through a run-time interface
as well as through an inspector interface that is integrated into the
engine’s editor. In both instances, the genotype is a tree structure of
e�ect class instances and the phenotype is the resulting sequence
of “synthesized” e�ects that appear in the game.

The run-time interface consists of four control areas, presented
as an overlay on top of the game view, as seen in Fig. 5. The top area
lists each individual in the population (default is eight), and which
one is currently selected. The left area lists the various triggers
available for evolution. Each trigger is evolved separately, in order
to avoid information overload. However, the last option on the list
does allow bold designers to evolve everything at once. The bottom
area contains buttons for starting over, saving the current individual,
evolving the current individual or re-rolling the evolution from the
previous stage. Both, saving and evolving, cause the current selected
individual to be bookmarked, so that a designer can return to any
step in the evolution they selected or saved at a later time13. The
�ow controls are found on the right side. These handle the timer
that automatically switches between di�erent individuals in the
population. The interface shows only one individual at a time, and
the game is reloaded when switching between them. Reloading
the game scene, functions as a “palate cleanser”, clearing out any
lingering settings, colors or game objects the previous individual
may have left behind. An individual can be skipped quickly, the
display time can be changed and the timer can be paused entirely,
allowing a designer to study the e�ects at the pace they see �t.

The inspector interface, that we integrated into the Unity editor,
enables mutation of each e�ect group or individual e�ects. It can be
used on its own or in combination with the run-time interface. In
the latter case, locked and disabled parts of the e�ect tree will get
copied to the next generation of individuals, guiding the evolution.
The inspector interface allows the mutation of individual e�ects
in the tree, and of entire e�ect groups. E�ects can be reordered,
deleted and copied between di�erent parts of the e�ect tree. E�ects

12The padlock icons in Fig. 1 indicate which elements are locked
13These bookmarked descriptions have to be loaded back individually and manually
through the inspector interface on the speci�c description game object. A work�ow
that should be improved in the future.

Squeezer - A Mixed-Initiative Tool for Designing Juice E�ects

in an e�ect group can be mutated and regenerated from a selected
category and with a speci�ed intensity.

4 USER TEST
We invited �ve experienced game designers, two identifying as
female and two identifying as male, to evaluate Squeezer. The par-
ticipants had between two and seventeen years of experience as
game designers.

The evaluation was carried out in a two phase process. We
recorded each video session and collected usage data (telemetry).
The two test phases were designed so the participants would �rst
test the interactive evolution interface, without being able to mod-
ify e�ects directly and later get full access. This way, they could
provide focused feedback of that part of the interface. In the second
phase, we allowed the participants to explore the e�ect manipula-
tion more thoroughly. Here, we were gathering their feedback on
the interplay between the interactive evolution interface and the
e�ect manipulation. Our test design was inspired by tutorial design,
where games often slowly increase the number and complexity of
the shown features to allow the user to learn. The two test phases
allow us to ask questions about the interface preferences among
the participants, and the pros and cons of each interface.

During the test, participants were asked to open the software for
the �rst time. Then theywere introduced to the concept and purpose
of Squeezer. They were guided to open the DISC ROOM demo scene,
and add the interactive evolution scene, to begin the test. We asked
them to evolve e�ects for the player character colliding with discs,
death animations, as well as e�ects for disc bouncing, using the
run-time interactive evolution interface. During the test they were
encouraged to provide feedback on the process, the interface, and
the generated e�ects while they worked. Once they had su�ciently
explored interactive evolution and either felt satis�ed or mentioned
they wanted to manipulate or tweak e�ects more directly, the test
proceeded to the second phase. In the second phase, they were
asked to pause the evolution and have a look at the Unity inspector
interface (see Fig. 3 and 1). From here they were instructed on how
the interface worked, and the interaction between the inspector
and run-time interactive evolution. They were allowed to mutate,
regenerate and change anything manually, through the inspector
interface, and they also had the option of resuming the evolution
using the run-time interface. After about an hour, they were asked
to provide immediate thoughts and feedback, to sent us their usage
data and �ll out a short questionnaire.

The survey asked them about their game design experience, and
experience with adding e�ects to games. Additionally they were
asked to provide feedback on interactive evolution as an introduc-
tion to Squeezer and e�ect generation, their thoughts on using
interactive evolution as part of the work�ow, and if they found it
satisfying and/or surprising to work with. Lastly, they were asked
if they would be interested in using a tool such as Squeezer in the
future, or what would need to be changed in order for them to use
it.

5 RESULTS
Given that we conducted expert interviews, we focused on individ-
ual statements and general agreements between the participants.

Additionally to the expert evaluation of the tool, the user test also
helped us to �nd bugs and usability issues. Since the user tests were
carried out over a few weeks, a few bug �xes and quality-of-life
improvements were added between the tests.

An example of this is the following: The �rst participant noted
that, while working with interactive evolution, they did not want to
change details of an e�ect manually. Rather, they wanted to change
the e�ect slightly in a random directly. They suggested the addition
of a mutate button for all e�ects in the e�ect tree, to allow for
the mutation of a single e�ect or sub-tree. Because the underlying
functionality was already in place, the button was added to the
inspector interface before the next test.

Several users expressed at times that they wanted to roll back
one generation and re-roll the current population. Some wanted to
completely start over because they ended up with e�ects they didn’t
like. To avoid the latter and support the former, buttons to re-roll,
restart and clear parts of the e�ects were added to the run-time
interface between the second and third participant.

5.1 Qualitative User survey
The qualitative survey included questions about the user’s pro�-
ciency in the area of game feel design. Four out of �ve participants
write custom code or use libraries such as DOTween14 for anima-
tions, and trigger the corresponding events themselves from code.
But only two of the �ve were using any tools currently. One uses
their own custom tools, the other one libraries like DOTween or
Unity’s Coroutines15.

Three of the �ve participants found interactive evolution was
bene�cial to getting started with Squeezer and helped them get a
perspective on the possibilities. One participant found it mostly
useful as a way to discover new ideas, while the last participant
found it “cool” but was missing some transparency in how the
evolution actually would change the e�ects.

When asked about their thoughts on using interactive evolution
in a tool like Squeezer, three of the participants said that they imag-
ined it would be good for new designers and developers without the
knowledge to “easily make cool looking stu� ” or just as a tutorial
for Squeezer. One participant found it “chaotic, but also playful”
pushing them out of their comfort zone, while helping them to
“explore a possibility space too large to contain” in their head.

Four of the participants found that the generated and evolved
e�ects surprised them, and led to unexpected but interesting results.
A few of the participants ran into bugs, that caused the exploration
to mostly generate certain kinds of e�ects, and noted that it felt like
the system mostly liked the color white and transparency e�ects.

Three of the �ve participants said they might use this in the
future for game jams and personal projects, and a fourth said it
might be useful for coming up with new ideas for e�ects. The last
participant relies more on triggering e�ects manually from code,
and suggested a more “lightweight” version of the API, would allow
them to bypass Squeezers trigger system, but agreed that Squeezer
should still have that capability as a visual design interface. One of
the participants did raise the concern that Squeezer would probably
not transfer well from the prototyping phase into production.

14http://dotween.demigiant.com/
15https://docs.unity3d.com/Manual/Coroutines.html

Johansen, et al.

5.2 Participant Usage
The authors noted that the depth of the evolution was at most
around ten steps. It usually took only two to four steps before
users felt either content or wanted to start over. This could either
be caused by the loose de�nition of the task they were asked to
perform or by the fact that users felt they had run into “dead ends”.

The sound e�ect synthesizer caused several participants to mute
the audio, because it kept generating oddly loud sounds. Squeezer
allows full control and visibility of all the mutated values, providing
users with insight into the changes the system is making [37]. One
participant noted that the inspector interface has quite a lot of
information. They proposed that adding icons and changing the
names of e�ects could improve the user interface.

Several participants were surprised by the e�ects generated dur-
ing evolution, and mentioned how those e�ects changed the game
mechanics in surprising ways. Mixed-initiative systems can provide
surprisingly creative insights when added to game artifacts [35]. To
one participant Squeezer felt like “an animation showreel for e�ects.”
and we took that as a compliment.

6 REFLECTION
In this paper we presented how adding interactive evolution to
Squeezer can assist game designers in exploring game feel design
[24] in game prototypes. The two interfaces for interactive evo-
lution in Squeezer each have merits of their own. They can be
functionally combined. However, the user experience of working
with it, is still far from optimal. Future research is needed to explore
ways of presenting a range of di�erent e�ect variations for inter-
active systems. Previously, we created a Breakout clone with an
AI playing the game [18], to allow for designing and testing at the
same time. However, adding arti�cial agents to any game requires a
lot of e�ort, and is thus a bad �t for the prototyping phase. While it
is currently possible to edit the e�ect sequences while the game is
running, this feature is not fully useful without a preview window.

While the e�ect tree generator supports generating e�ect se-
quences for a lot of opportunities in a game, several additional
cases were discovered while preparing for the user testing. Cat-
egories such as ‘Starting/Spawning’, with objects fading, sliding
or scaling into view, as well as options to distinguish between 2D
and 3D e�ects would be great additions. Adding these additional
categories and options would enhance the potential of applying
Squeezer in game development.

Similarly, creating variations of the underlying handcrafted trees
would allow an even more diverse set of generated trees to be cre-
ated. This would present more variation to designers when generat-
ing e�ects for a certain event. Additionally it might be interesting
to align variations across di�erent event types, by creating for in-
stance “Explosion type A”, which worked well with “Movement
trail A” or “Muzzle �ash A”.

Like with every prototyping tool, a potential pitfall of Squeezer
is that the designer can become too attached to the placeholder
e�ects. That they are locked into a particular path of exploration
and limited in their creativity. The value lies in quickly exploring
feasibility and examples of juice, and then being able to “start over”
using the lessons learned from the prototype. Squeezer does not
contain every possible e�ect, and it might even be missing some

critical e�ects for game types we overlooked. However, it provides
a good starting point for exploring and implementing e�ects early
in a game design process, when the �nal look and feel has yet to
be determined.

As one participant pointed out in their evaluation, Squeezer
could bene�t from streamlining the API for triggering e�ects di-
rectly from code. While this is already possible, with the current
Squeezer.Trigger(...) API, there are several ways to tie code and e�ect
descriptions together. An API that easily allows programmers to
trigger, cache, mutate and save e�ects based on categories and in-
tensity from code would open the evolutionary aspects of Squeezer
to programmers.

7 FUTUREWORK
Comparing this version of Squeezer to the initial version presented
and tested in [18], a lot has changed. The interface has been over-
hauled completely, many of the initial interaction design-concerns
have been addressed. The generator, interactive evolution, and the
mutation and locking system have been added. It is hard to compare
the two interfaces, because the user interface has been upgraded
with many small quality of life features. Yet, while we believe the
new version is a lot better than the initial version, further studies
of designers using Squeezer for their own projects, would highlight
more thoroughly the issues and qualities of Squeezer.

As we stated in [24], Automated Game Generation [8] could ben-
e�t from the addition of e�ects. However, it requires implementing
measure that make sure that e�ects are not conveying misleading
feedback. A way of analysing what message a player gleams from a
given e�ect sequence, and which e�ects �t generated gamemechan-
ics must be provided to add �tting feedback to generated games.
Similar to having categories align across di�erent events in a game,
verifying that all e�ects match the game-play of a generated game
consistently, requires further research.

8 CONCLUSION
This paper shows how generative and evolutionary strategies can
be applied in game design, speci�cally in the realm of juice and
feedback. It demonstrates how Squeezer, a tool for rapidly designing
juice e�ects, became a “synthesizer”, combining modular sequenc-
ing and presets to generate complex chains of e�ects. The tool can
help exploring the e�ect design space and it can also support de-
termining which kinds of juice e�ects enhance feedback of a game
prototype [18]. In order to further support this kind of exploration
and discovery of the design space of game feedback, we expanded
Squeezer with an interface for generation, mutation and interactive
evolution of e�ects.

To verify the quality of our implementation, we conducted a user
study with game designers who had no prior experience with the
software. The study indicated that Squeezer could be a great tool to
help designers discover and explore the possibilities of juice e�ects
and interesting gamemechanics. Additionally our test indicates that
interactive evolution could ease the process of learning, creating
and exploring juice e�ects with Squeezer.

Squeezer - A Mixed-Initiative Tool for Designing Juice E�ects

ACKNOWLEDGMENTS
We would like to thank the test participants for participating and
providing their feedback about working with Squeezer.

REFERENCES
[1] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin. 1998.

Genetic Programming: An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[2] Philip Bontrager, Wending Lin, Julian Togelius, and Sebastian Risi. 2018. Deep
Interactive Evolution. In Computational Intelligence in Music, Sound, Art and
Design, Antonios Liapis, Juan Jesús Romero Cardalda, and Anikó Ekárt (Eds.).
Vol. 10783. Springer International Publishing, Cham, 267–282. https://doi.org/
10.1007/978-3-319-77583-8_18

[3] Mark Brown. 2015. Secrets of Game Feel and Juice. https://www.youtube.
com/watch?v=216_5nu4aVQ. https://www.youtube.com/watch?v=216_5nu4aVQ
Accessed: 2020-04-17T11:52:14Z.

[4] Mark Brown. 2019. Why Does Celeste Feel So Good to Play? | Game Maker’s
Toolkit. https://www.youtube.com/watch?v=yorTG9at90g. https://www.
youtube.com/watch?v=yorTG9at90g Accessed: 2020-04-17T13:21:54Z.

[5] N. Burtnyk and M. Wein. 1971. Computer-Generated Key-Frame Animation.
Journal of the SMPTE 80, 3 (March 1971), 149–153. https://doi.org/10.5594/J07698

[6] Kitty Calis, Jan Willem Nijman, Terri Vellmann, and Adam Drucker. 2020. Disc
Room.

[7] Je� Clune, Jason Yosinski, Eugene Doan, Nabeel Samad, Sijie Liu, and Hod Lip-
son. 2012. EndlessForms.Com - Design Objects with Evolution and 3D Print
Them! http://endlessforms.com/. http://endlessforms.com/ Accessed: 2020-11-
17T17:22:46Z.

[8] Michael Cook, Simon Colton, and Jeremy Gow. 2014. Automating Game Design
In Three Dimensions. In AISB Symposium on AI and Games. AISB, 1–4. http:
//research.gold.ac.uk/id/eprint/17354/

[9] Frank Force. 2020. ZzSprite - Tiny Sprite Generator. https://killedbyapixel.
github.io/ZzSprite/. https://killedbyapixel.github.io/ZzSprite/ Accessed: 2020-
11-17T17:25:13Z.

[10] Renaud Forestié. 2019. How to Design with Feedback and Game Feel in Mind
- Shake It ’til You Make It. https://www.youtube.com/watch?v=yCKI9T3sSv0.
https://www.youtube.com/watch?v=yCKI9T3sSv0 Accessed: 2020-04-17.

[11] Tracy Fullerton. 2014. Game Design Workshop: A Playcentric Approach to Creating
Innovative Games (3rd ed.). A K Peters/CRC Press.

[12] Kyle Gray, Kyle Gabler, Shalin Shodhan, and Matt Kunic. 2005. How to Prototype
a Game in Under 7 Days. https://www.gamasutra.com/view/feature/130848/
how_to_prototype_a_game_in_under_7_.php. https://www.gamasutra.com/
view/feature/130848/how_to_prototype_a_game_in_under_7_.php Accessed:
2019-10-27.

[13] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.
2013. Procedural Content Generation for Games: A Survey. ACM Transactions
on Multimedia Computing Communications and Applications 9, 1, Article 1 (Feb.
2013), 22 pages. https://doi.org/10.1145/2422956.2422957

[14] Kieran Hicks, Patrick Dickinson, Juicy Holopainen, and Kathrin Gerling. 2018.
Good Game Feel: An Empirically Grounded Framework for Juicy Design. In
Proceedings of the 2018 DiGRA International Conference: The Game Is the Message.
DiGRA, 17. http://www.digra.org/wp-content/uploads/digital-library/DIGRA_
2018_Paper_35.pdf

[15] Amy K. Hoover, Paul A. Szerlip, Marie E. Norton, Trevor A. Brindle, Zachary
Merritt, and K. Stanley. 2012. Generating a Complete Multipart Musical Compo-
sition from a Single Monophonic Melody with Functional Sca�olding. In ICCC,
Vol. PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON
COMPUTATIONAL CREATIVITY. ICCC, Proceedings of the Third International
Conference on Computational Creativity, 111–119.

[16] Robin Hunicke. 2009. Loving Your Player With Juicy Feedback. http://2009.
dconstruct.org/podcast/juicyfeedback

[17] Mads Johansen, Martin Pichlmair, and Sebastian Risi. 2019. Video Game Descrip-
tion Language Environment for Unity Machine Learning Agents. In 2019 IEEE
Conference on Games (CoG), Vol. 2019 IEEE Conference on Games (CoG). IEEE,
1–8. https://doi.org/10.1109/CIG.2019.8848072

[18] Mads Johansen, Martin Pichlmair, and Sebastian Risi. 2020. Squeezer - A Tool for
Designing Juicy E�ects. In Extended Abstracts of the 2020 Annual Symposium on
Computer-Human Interaction in Play (CHI PLAY ’20). Association for Comput-
ing Machinery, New York, NY, USA, 282–286. https://doi.org/10.1145/3383668.
3419862

[19] Martin Jonasson and Petri Purho. 2012. Juice It or Lose It. https://www.
youtube.com/watch?v=Fy0aCDmgnxg. https://www.youtube.com/watch?v=
Fy0aCDmgnxg Accessed: 2019-02-27.

[20] Jesper Juul and Jason Scott Begy. 2016. Good Feedback for Bad Players? A
Preliminary Study of ‘Juicy’ Interface Feedback. In Proceedings of First Joint

FDG/DiGRA Conference, Vol. Proceedings of �rst joint FDG/DiGRA Conference.
DiGRA, Dundee, 2. https://www.jesperjuul.net/text/juiciness.pdf

[21] Jan Willem Nijman. 2013. The Art of Screenshake. https://www.youtube.com/
watch?v=AJdEqssNZ-U. https://www.youtube.com/watch?v=AJdEqssNZ-U
Accessed: 2021-04-22.

[22] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Si-
mon M. Lucas, Adrien Couetoux, Jerry Lee, Chong-U Lim, and Tommy Thomp-
son. 2016. The 2014 General Video Game Playing Competition. IEEE Transac-
tions on Computational Intelligence and AI in Games 8, 3 (Sept. 2016), 229–243.
https://doi.org/10.1109/TCIAIG.2015.2402393

[23] Tomas ’DrPetter’ Pettersson. 2007. SFXR. http://www.drpetter.se/project_sfxr.
html. http://www.drpetter.se/project_sfxr.html Accessed: 2020-07-11.

[24] Martin Pichlmair and Mads Johansen. 2021. Designing Game Feel. A Survey.
IEEE Transactions on Games IEEE Transactions on Games (Early Access), IEEE
Transactions on Games (Early Access) (2021), 1–20. https://doi.org/10.1109/TG.
2021.3072241

[25] William T. Reeves. 1981. Inbetweening for Computer Animation UtilizingMoving
Point Constraints. In Proceedings of the 8th Annual Conference on Computer
Graphics and Interactive Techniques - SIGGRAPH ’81. ACM Press, Dallas, Texas,
United States, 263–269. https://doi.org/10.1145/800224.806814

[26] Tom Schaul. 2013. A Video Game Description Language for Model-Based or
Interactive Learning. In 2013 IEEE Conference on Computational Inteligence in
Games (CIG). IEEE, Niagara Falls, ON, Canada, 1–8. https://doi.org/10.1109/CIG.
2013.6633610

[27] Tom Schaul. 2014. An Extensible Description Language for Video Games. IEEE
Transactions on Computational Intelligence and AI in Games 6, 4 (Dec. 2014),
325–331. https://doi.org/10.1109/TCIAIG.2014.2352795

[28] Jimmy Secretan, Nicholas Beato, David B. D Ambrosio, Adelein Rodriguez, Adam
Campbell, and Kenneth O. Stanley. 2008. Picbreeder: Evolving Pictures Collab-
oratively Online. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’08). Association for Computing Machinery, Florence,
Italy, 1759–1768. https://doi.org/10.1145/1357054.1357328

[29] Noor Shaker, Julian Togelius, and Mark Nelson. 2016. Procedural Content Genera-
tion in Games. Springer, USA. http://www.springer.com/gp/book/9783319427140

[30] Jiesang Song. 2005. Improving the Combat 'Impact' Of Action
Games.

[31] Steve Swink. 2007. Game Feel: The Secret Ingredient. https://www.gamasutra.
com/view/feature/130734/game_feel_the_secret_ingredient.php?print=1.
https://www.gamasutra.com/view/feature/130734/game_feel_the_secret_
ingredient.php?print=1 Accessed: 2020-04-17T11:52:32Z.

[32] Steve Swink. 2009. Game Feel. Morgan Kaufmann.
[33] H. Takagi. Sept./2001. Interactive Evolutionary Computation: Fusion of the Capa-

bilities of EC Optimization and Human Evaluation. Proc. IEEE 89, 9 (Sept./2001),
1275–1296. https://doi.org/10.1109/5.949485

[34] Frank Thomas and Ollie Johnston. 1981. The Illusion of Life: Disney Animation.
Abbeville Press, New York.

[35] Georgios N Yannakakis, Antonios Liapis, and Constantine Alexopoulos. 2014.
Mixed-Initiative Co-Creativity. In Foundations of Digital Games 2014. Society
for the Advancement of the Science of Digital Games, Proceedings of the 9th
International Conference on the Foundations of Digital Games, 8.

[36] Jinhong Zhang, Rasmus Taarnby, Antonios Liapis, and Sebastian Risi. 2015. Draw-
CompileEvolve: Sparking Interactive Evolutionary Art with Human Creations.
In Evolutionary and Biologically Inspired Music, Sound, Art and Design. Springer,
Cham, 261–273. https://doi.org/10.1007/978-3-319-16498-4_23

[37] Jichen Zhu, Antonios Liapis, Sebastian Risi, Rafael Bidarra, and G. Michael Young-
blood. 2018. Explainable AI for Designers: A Human-Centered Perspective on
Mixed-Initiative Co-Creation. In 2018 IEEE Conference on Computational Intelli-
gence and Games (CIG). IEEE, Maastricht, 1–8. https://doi.org/10.1109/CIG.2018.
8490433

160 CHAPTER 9. PUBLICATIONS

9.4 Designing game feel. A survey.

IEEE TRANSACTIONS ON GAMES 1

Designing Game Feel.
A Survey

Martin Pichlmair and Mads Johansen⇤

Abstract—Game feel design is the intentional design of the
affective impact of moment-to-moment interaction with games.
In this paper we survey academic research and publications by
practitioners to give a complete overview of the state of research
concerning this aspect of game design. We analysed over 200
sources and categorised their content according to design pur-
poses. This resulted in three different domains of intended player
experiences: physicality, amplification, and support. In these
domains, the act of polishing, which determines game feel, takes
the shape of tuning, juicing, and streamlining respectively. Tuning
the physicality of game objects creates cohesion, predictability,
and the resulting movement informs level design. Juicing is the
act of polishing amplification and it results in empowerment and
provides clarity of feedback. Streamlining allows a game to act on
the intention of the player, supporting the execution of actions in
the game. These three design intents are the main means through
which designers control minute details of interactivity and inform
the player’s reaction. The presented framework and its nuanced
vocabulary can lead to an understanding of game feel that is
shared between practitioners and researchers as highlighted in
the concluding future research section.

Index Terms—Game feel, game design, affect, juice, feedback.

I. DEFINING OUR SCOPE

THIS paper is a review of existing research about game
feel. It uses reflections of practitioners and research

publications for defining a more precise vocabulary to talk
about the design of how interacting with a game feels1. The
logical starting point for defining what “game feel” means is
the book of the same name by Steve Swink, who defines it as
“real-time control of virtual objects in a simulated space, with
interactions emphasised by polish” [1]. He further expands on
that definition by stating that great-feeling games convey five
kinds of experiences, namely:

• The aesthetic sensation of control
• The pleasure of learning, practising and mastering a skill
• Extension of the senses
• Extension of identity
• Interaction with a unique physical reality within the game
While Swink’s definition of game feel covers a wide range

of video games, it is too limited to encompass all kinds of
them. With the above list he excludes games without real-
time controls from possessing the quality of game feel. Wilson
[2] challenges this aspect of Swink’s book and extends the
notion of ‘aesthetic sensation of control’ by connecting game

Manuscript received November 12, 2020; revised March 10, 2021.
⇤The authors are with the Center for Computer Games Research,

Digital Design Department, IT University of Copenhagen, Copenhagen,
Denmark (e-mail: mpic@itu.dk and madj@itu.dk)

1It is important to stress that we only refer to game examples in order to
clarify design details but did not survey games.

feel with the cultural history of gestures. Wilson distinguishes
between ‘Game Feel’ and ‘game feel’, the first being the
positive feeling of control that Swink describes, the second
being any feeling a game communicates. Jesse Schell does
not mention the term ‘game feel’ in his book [3] at all. Yet
he writes that designers should consider how their game feels
in the context of required skills, learnability, and balance. The
journalist and game maker Rogers wrote an exhaustive article
[4] about what he calls ‘friction’, an alternative term for how
a game feels. Friction is the experience of the player pushing
against the boundaries of the system. It is the feeling of the
inertia of the design working against the user’s force. Friction
is often experienced by the player over a longer duration
than moment-to-moment interaction, as it extends over several
game elements. Friction can be the defining element of a
game, or just a part of the experience. Rogers’ monolithic
article is difficult to parse and, while detailed, does not go
deep into specific aspects of game feel. It mostly recounts
different feelings the author had during particular situations in
games, establishing a wide vocabulary for talking about the
aesthetic experience of playing. Similarly, Anthropy & Clark
[5] establish a ‘game design vocabulary’ in their book of the
same name. In it, they approach friction from the designer’s
perspective, and call it ‘resistance’. The resistance of the game
determines the experienced friction. It decides how the game
feels to the player.

Ehrndal [6] approaches the topic of game feel by linking
reflections of practitioners with aesthetic theories of games.
Larsen [7] starts from a similar point and attempts to define
an ‘aesthetics of action’. He builds on Swink [1] and Nijman
[8], both game developers more than researchers, in order to
analyse the components of a game that contribute to what
he calls a ‘thrilling experience’. Yang [9] on the other hand
expands the theory of game feel to include the metaphorical
aspects of game objects and their relations to players. Building
on queer theory, he includes political aspects of games in their
‘feel’ in order to communicate the diversity of the gameplay
experience over diverse players, and also in order to provide
game makers with a richer set of design tools.

While games are multi-sensory experiences, we are focusing
on the haptic and visual aspects of game feel in this article,
aware that narrative content, music, art, and many other aspects
of a game influence how it feels. Very similar techniques to the
ones described in this paper exist for example for designing
the feel of the story of a game [10], writing the voices of in-
game characters, balancing its rules, and tuning its atmosphere.
We will leave those aspects and the social interaction between
players to future research, while acknowledging that they are at
the core of a lot of games. Instead, this paper is concerned with

IEEE TRANSACTIONS ON GAMES 2

moment-to-moment interactivity [11]–[13], microinteractions
[14] and interactions with core loops [15] and their design.
Unlike Swink’s precise but narrow definition of ‘Game Feel’,
we will look at game feel more broadly as the affective aspect
of interactivity. Our focus, thereby, is on the player and the
design of their interaction with the game.

II. THE PHYSICALITY OF INTERACTIVITY

This survey paper gives an overview of the history, context,
and state of the art understanding of game feel and how to
design it. It is based on research in the field and publications by
practitioners in order to capture both conceptual and practical
knowledge. This chapter gives an overview of academic lines
of thinking that lead to an understanding of game feel.

A. From Flow to Feel
In the years before Swink wrote the book ‘Game Feel’

in 2009 [1], research about the link between emotions and
gameplay was most often connected to Csikszentmihalyi’s fa-
mous ‘Flow theory’, one of the results emerging from a global
research project about experiences that are “so gratifying that
people are willing to do it for its own sake, with little concern
for what they will get out of it, even when it is difficult or
dangerous” [16]. Tasks that allow for this quality of experience
feature the following eight elements:

1) a task that can be completed;
2) the ability to concentrate on the task;
3) that concentration is possible because the task has clear

goals;
4) that concentration is possible because the task provides

immediate feedback;
5) the ability to exercise a sense of control over actions;
6) a deep but effortless involvement that removes awareness

of the frustrations of everyday life;
7) concern for self disappears, but sense of self emerges

stronger afterwards; and
8) the sense of the duration of time is altered.
The concept of Flow has had an enormous influence on

the understanding of experiential qualities of games. Sweetser
& Wyeth [17] adapted Flow theory to games and Juul [18]
discusses and criticises the theory’s relevance for describing
enjoyable challenges in games. Both texts contain multiple
references to how games make a player feel, so it is natural to
think of them as stepping stones towards a closer examination
of game feel. Ciccoricco [19] links Flow to the gameplay
experience of Mirror’s Edge [20], a game that was sold on
its merits in fluidity of movement, and contrasts it with the
feminist concept of fluidity. Chen [21] famously not only based
his graduation thesis on Flow but also released three successful
commercial games based on his understanding of this concept
with That Game Company, a studio he co-founded; Flow [22],
Flower [23], and Journey [24].

Game feel is most strongly reliant on points three, four,
and five in the above list of criteria. Clarity of goals will
be discussed in the context of streamlining of the player
experience in Section IV-C. Immediate feedback is at the heart
of this paper and of the link between a game and how it feels.

The sense of control will be mentioned at various points, for
example in relation to the illusion of control and immersion.
While some of the other items in Csikszentmihalyi’s list apply
to games too, they do so in a more indirect way.

B. The Purpose of Juice

While Flow is very well suited for understanding the
dynamics of immersion, game feel is more focused on the
role that interactivity plays in this process. A design concept
often mentioned when talking about how interactivity can be
intensified is ‘juice’. Juice amplifies interactivity by provid-
ing excessive amounts of feedback in relation to user input
[25] (see also [26]). The goal of juice is to make actions
feel significant and the results can be measured [27]. It is
superfluous from a strictly mechanical perspective, but turns
interacting with the system into a more pleasurable experience.
Too much juice, though, makes it hard to learn what aspects of
interactivity have mechanical importance [28]. Decoding the
actual system behind the game becomes cumbersome when
the whole screen is filled with wobbling particle effects —
unless this is a conscious aesthetic choice and itself part of
the game’s mechanics.

At the same time, the diversity of the medium allows that
some games — we can call them ‘toys’ or ‘autotelic expe-
riences’ [29] — are almost purely made of juice. Interacting
with those toys is still playful and based on feedback amplified
by juice. Only through feedback can we learn (to play), and
all play is learning ([30]–[32], see also [33] and [34]). One
could even go so far as to argue that all cognition is rooted in
feedback from the real world that we actively engage with in
a process of interactive cognition (see [35], based on [36]).

Overall, the goal of the application of juiciness is to
enhance the feedback when interacting with game objects.
Kao [37] conducted a large-scale study on the amount of
juice appropriate for a specific gaming situation, concluding
that juice has to be applied adequately to the situation. In
their study, medium and high levels of juice outperformed
extreme levels and the absence of juice across the measures of
player experience, intrinsic motivation, play time, and in-game
performance. Hicks et al. [26] bridge industry knowledge and
academic analysis, building on Juul’s [25], [38], Schell’s [3]
and Deterding’s [39] work on juice in video games (see also
[40]). They present a framework for the analysis of “good
game feel” in games.

Sometimes juice exists not for the player but for the
audience watching the game. Rogers hints at that when he
says “The player knows where the hit range of the weapon
is. He doesn’t see the little juice-dance of the chain-daggers.”
[4]. Swink attributes a similar effect to ragdoll physics: “The
ragdoll raptors have ‘over the shoulder’ appeal. People walking
by someone playing the game often stop and want to know
more...” [1]. Gage [41] describes the upsides of having a
game that is readable from distance in their talk on ‘subway
legibility’. More specifically, there are elements of juiciness
that designers implement for the audience, especially for
streaming and e-Sports [42]. Some elements might also draw
in the player but become invisible to them over time.

IEEE TRANSACTIONS ON GAMES 3

Hunicke [43] remarks that “juiciness can be applied to
abstract forms and elements and it is a way of embodying ar-
bitrarily defined objects and giving them some aliveness, some
qua, some thing, some tenderness.” Interestingly, Swink [1],
Larsen [7] as well as Fullerton [44] use the term ‘polishing’
to describe something very similar to this. Fullerton describes
the act of polishing as “the impression of physicality created
by layering of reactive motion, proactive motion, sounds, and
effects, and the synergy between those layers” [44]. In other
words she sees polish as a means of giving physicality to
inanimate objects in order to render them more tangible, which
is remarkably similar to Hunicke’s reasoning for juiciness.
Practitioners call many things ‘polish’, e.g. fixing the timing of
voice cues, or fixing bugs in the code (see e.g. [45]). Polish
is linked to juiciness in that all juicy elements are polished
at some point, but it is seen as a mostly aesthetic endeavour
that stops short of changing the basic rules of a game, its
core narrative, or its principal game mechanics. In practice,
this separation is not always maintained and the connection
between juicing, polishing, designing, and the feelings elicited
by the feedback loop of interacting with a game is complex.

C. Juicing that Feeling
The intentionality of polishing and juicing apparent in Hu-

nicke’s and Fullerton’s comments is at the centre of Brown’s
assertion that “you’re not juicing your game — you’re actually
picking a feeling that your game should communicate and
juicing that feeling” [46]. Feelings are emotions, but it would
go too far to cover complex emotions like love, hate, and
guilt in this paper. The moment-to-moment interaction we are
concerned with is instrumental to the feelings that Baumeister
et al. [47] call ‘automatic affect’. Automatic affect is closely
linked to experience via feedback loops in that the affective
reaction to a stimulus has an effect on future experiences of
stimuli and those have an effect on the person experiencing
them and so on. Emotions are generally characterised by phys-
iological arousal, the quality of the experience, and valence,
which can be either positive or negative [47]. Game designers
are of course concerned with positive as well as negative
emotions, because stretches of sadness and near-frustrating
challenges provide the perfect breeding ground for happiness
and relief. It is important to note that humans are capable of
experiencing multiple and even conflicting emotions simulta-
neously [48]. Further, experiments in mood regulation have
shown that humans exhibit a ‘homeostatic mood management
mechanism’ [49]. After initial mood-congruent responses, we
spontaneously reverse and replace those by mood-incongruent
reactions. So, in addition to the feedback between the outside
world — including mediated experiences like video games —
and our emotional state, there is a feedback loop built into our
mood.

These affective feedback loops are central to how we
interact with the world, including the virtual world of video
games. The connection between emotion and cognition is a
vast research field and proponents of that field like Okon-
Singer et al. often speak of how central emotions are to
cognition [50]. The emotional aspect of design has been re-
flected by design thinkers like Löwgren, Kirkpatrick, Hodent,

and Karhulati. Löwgren provides a vocabulary for linking
aesthetics, design, and emotional responses [51], [52]. The
sensibility and precision he employs to talk about design
elements and design choices is valuable for better discussions
about game design. Kirkpatrick [53]–[55] and Karhulahti [56]
build an aesthetic theory of video games that encompasses
kinaesthetics as a foundational building block. Hodent [57]
successfully bridges the chasm between interaction design and
user experience design for games and accurately summarises
the links between Norman’s work [58] and video game design.
In general, User Experience (UX) Design is an area that is
concerned with the experiential aspects of interactivity within
the vast field of Human-Computer Interaction. Hassenzahl [59]
presents an in-depth study of the complex links between needs,
affect, and interactivity. Methods originating in UX design
have found their way into games [60]. Their main influence
is indirect. They inform the design and iteration process by
offering a portfolio of tools and techniques. For example,
Dan Saffer’s proposal of microinteractions [14] links to game
design in that the basic components of microinteractions are
triggers, rules, feedback, and loops (or modes) — all basic
building blocks of game design.

Playing is an embodied experience [61] that can be viewed
through the lens of phenomenology. Keogh [62] argues that
the phenomenology of play, rooted in the understanding of
embodiment by Merleau-Ponty [63], Bateson [64], and Weiss
[65], “must not start with the experience of the player’s body,
but with the experience through which the player’s amalgam
embodiment in and as part of the videogame performance
emerges.” [62]. Surman [66], Davnall [67], Putney [68] offer
three personal takes on three different games, echoing similar
struggles of coming to terms with the bodily experience of
playing games and the implications of the act of doing so.
Sudnow [69] can be regarded as the trailblazer of writing about
video games from a phenomenological standpoint.

In summary, game feel research is concerned with how
our minds and our bodies experience the emotions of playing
games. The question of how to design the emotional aspect of
the play experience has been at the centre of a lot of research
that connects design theory, psychology, phenomenology, phi-
losophy, and many more areas. The following section will go
into the building blocks designers use to intentionally elicit
emotions, when “juicing that feeling” [46].

III. GAME FEEL DESIGN ELEMENTS IN PRACTICE

Gameplay designers, of which some have a programming
background and some have a design background, have anal-
ysed their own practice in countless blog posts, podcast
episodes, conference presentations, and, sometimes, scholarly
publications. The majority of works concerned with topics of
game feel are descriptive in nature. They usually focus on
either a single game or a specific feature or set of features
that the designers have worked on. What can be learned from
these texts, more than anything, is that experienced gameplay
designers are very conscious about which aspects of their game
are relevant for shaping its feel.

Some practitioners talk about how to structure game de-
velopment processes around the design of game feel [70]–

IEEE TRANSACTIONS ON GAMES 4

[72]. Others focus on giving broad overviews of techniques
[8], [13], [73]–[75]. Podcasts and video series by experienced
practitioners such as Eggplant: The Secret Lives of Games
[76]–[79], The Clark Tank [80] and Game Maker’s Toolkit
[72], [81], frequently discuss game feel design as a part of
their coverage of game design topics.

Most practitioners focus on details and material aspects
of design instead of connections between their work and
the context they are working in. Noticeable exceptions are
Hodent [57], who links game feel to classical concepts of game
development like the ‘3Cs’ [82], User Experience Design, as
well as to Norman’s theories on emotional design [58] and
Song [83], who provides an excellent overview of how to
model the feeling of impact in action games. Turner [84] wrote
one of the few articles on how to influence game feel via
sound design, based on his own work in game audio. Ismail
[85] speaks about community development, explaining how
communities of makers establish more and more sophisticated
discourse about their practice over time. Yang [9], who has
been mentioned before, always connects his personal practice
to his academic research.

In general, the topics that these practical articles cover
cannot easily be isolated from each other. They all concern
feedback and how it relates to controls of a game. If the
game is regarded as a feedback system (following [86], [87]
and [88]), then game feel can be seen as a modulation of
said feedback system. Designing game feel is designing the
adequate feedback for eliciting a specific feeling or affective
reaction. The following chapters list different design elements
that determine the game feel, the feel of moment-to-moment
interaction. We cluster design elements into classes accord-
ing to the game’s discussed subsystem. Table I presents an
overview of the areas we’re looking at and lists the most
relevant examples mentioned. The table is not an exhaustive
overview of all aspects of game feel from a practitioner’s
perspective. It is a starting point for understanding the prac-
tices that are most relevant, or most discussed, in regard to
designing game feel.

A. Movement and Actions

The first category of design elements is concerned with
movement of the character and other objects and with what
happens if the character or an object collide. Controlling an
on-screen character means navigating the game world and
interacting with other characters and objects. Most writing on
this aspect of game feel is concerned with 2D games. Dahl
& Kraus [89] provide a good starting point for exploring this
topic. Normoyle and Jörg [90] look at the trade-off between
naturalness of movement and responsiveness of controls. Pig-
nole [91] describes 10 different aspects of how to design
controls that feel responsive. While purely grounded in his
own experience, these recommendations are easy to pick up
and adapt to any game with 2D character movement. In a more
extensive study, Fasterhold et al. [92] (see also [95]) provide an
overview of parameters for modelling running and jumping in
games. This paper also contains an extensive literature review
and insights into implementation details of various platformer

TABLE I
GAME FEEL DESIGN ELEMENTS OVERVIEW.

Design Element

Ph
ys

ic
al

ity

A
m

pl
ifi

ca
tio

n

Su
pp

or
t

Key References

Movement and Actions
Basic Movement • [89]–[95]
Gravity • [92], [96], [97]
Terminal Velocity • [92]
Coyote Time • [98], [99]
Invincibility Frames • [100]–[102]
Corner Correction • [28], [103]
Collision Shapes • • [104]
Button Caching • [92]
Spring-locked Modes • [5], [105], [106]
Assisted Aiming • [28], [107], [108]
Event Signification
Screen Shake • • • [8], [73], [109], [110]
Knock-back & Recoil • • [8], [111]
One-shot Particle Effects • • [73], [112]–[117]
Cooldown Visualisation • [118]–[121]
Ragdoll Physics • • • [1], [122]
Colour Flashing • [8], [71], [123]
Impact Markers • • [83], [124]
Hit Stop • • [81], [83], [125], [126]
Audio Feedback • • • [127]–[129]
Haptic Feedback • • • [83], [130]
Time Manipulation
Freeze Frames • • [83]
Slow Motion • • [83]
Bullet Time • • [131], [132]
Instant Replays • • [83]
Persistence
Trails • [112], [127], [133]
Decals & Debris • [127], [134]
Follow-Through • [135]
Fluid Interfaces • • [136]–[138]
Idle Animations • [135], [139], [140]
Scene Framing
Highlighting • [141]–[143]
Dynamic Camera • • [71], [144]–[149]

games. The authors’ model features 21 different parameters to
describe basic 2D movement. The key argument in this paper is
that movement parameters afford [150] level patterns. Mario’s
[151] jump curve, for example, excellently facilitates precision
descents thanks to featuring terminal velocity that makes future
positions easier to predict. Super Meat Boy [152], as another
example, abruptly interrupts a jump when the jump button
is released, which makes hazardous ceiling elements a viable
level design choice, since they can be avoided more easily
than if the jump would continue. This is shown in Fig. 1.

Hamaluik [153] used screen recordings to measure and
reconstruct all relevant parameters for Super Mario World
[153]. Game Makers’ Toolkit ([81], see also [154]) runs
a more informal analysis of the platformer Celeste [155].
Celeste’s player controller’s source code was published [156],

IEEE TRANSACTIONS ON GAMES 5

Fig. 1. Super Meat Boy allows the player to interrupt a jump, when the jump
button is released, to avoid ceiling elements. Image from [92]

allowing for even deeper analysis. Fiedler [157] provides
good starting points for implementing advanced controls and
simulations.

1) Basic Movement: This design element is concerned with
the most basic parameters defining the interactive movement
of an on-screen object, in most cases the player character.
The parameters in question are speed, acceleration, friction,
and breaking speed (see [89], [90] and [91]). If the player
can jump, the strength of the jump force as well as eventual
air friction come into play, too. In the case of 2D games,
Fasterhold et al. [92] list these and more parameters and
how they are related. Saltsman [98] covers movement in one
specific platformer, Canabalt [158], in greater detail. Pittman
[93] explains the mathematics behind jump mechanics. The
exact requirements for tuning the movement of a game is
often so deeply connected to the gameplay that it is hard
to generalise. An in-depth analysis of the car ball game
hybrid Rocket League [159] is presented by Cone [94] and
demonstrates how steering of a vehicle is tuned in similar
ways to platformer movement.

2) Gravity: The strength of gravity defines how much force
pushes an object towards the ground. Games rarely feature
earth-like gravity, opting for higher values instead, in order to
create a more controlled feeling. Fasterhold et al. [92] list the
strength of gravity for a number of platformer games. Earth has
a gravitational acceleration constant of 9.807 m/s2, whereas
Super Meat Boy, assuming that the character is 1 meter tall,
has a constant of 41 m/s2 and Super Mario Bros. even features
91.28 m/s2 [96]. Gravity is used as a sophisticated game
mechanic in Super Mario Galaxy [160], where the character
can jump from planet to planet and always aligns appropriately
with the surface of the cosmic body. Alessi [97] wrote up an
explanation and prototypical implementation of this gravity
system.

3) Terminal Velocity: The existence of terminal velocity
in a movement system means that a falling object does not
perpetually get faster. It stops to accelerate at a predefined
speed, the terminal velocity. As mentioned above, Mario’s
[151] jump curve [92] facilitates precision descends thanks
to terminal velocity. The additional predictability, that results
from the curve becoming a line, supports precision.

4) Coyote Time: The term ‘Coyote Time’ refers to a
movement system that allows a player to still instigate a jump
a short time span after running off a cliff2. It is perhaps the
most famous example of supporting the intent of the player. A
detailed account of its technical implementation in the minimal

2The name ‘Coyote Time’ is based on the coyote in the Road Runner series,
a character who possesses the power to only fall from a cliff after realising
he had been running on thin air for a while.

Fig. 2. Illustration of ‘Coyote Time’ in Canabalt [158], showing the extra
distance from the building where a jump is still accepted. Image from [98]

platforming game Canabalt [158] can be found in [98], shown
in Fig. 2. Coyote Time is sometimes called ‘Coyote Jump’ or
‘Ghost Jump’ [99]. A similar time-based accessibility feature
can be found in Disc Room [161], where hitboxes that kill the
player get activated only after a delay of up to 50 milliseconds.

5) Invincibility Frames: Short time spans where the player
character is invincible. They are a side-effect of player actions
like rolling, dodging, respawning, or attacking. SmashPedia
[100] lists 23 different cases of invincibility in Super Smash
Bros. Ultimate [162], a fighting game, alone. These moments
of invincibility are useful for normal players but essential to
competitive play and speedrunning. Mora-Zamora and Brenes-
Villalobos [101] describe invincibility frames as a tool for bal-
ancing risk and reward. Siu et al. [102] mention invincibility
frames as part of boss fights. The purpose for introducing a
few frames of invincibility is usually to support the player, to
give them a carefully measured amount of safety that allows
them to pull off even more spectacular actions than if they
were vulnerable all the time.

6) Corner Correction: Adjusting a character’s path if it
would otherwise get stuck in level geometry. This is a com-
mon convenience in games where walking is a large part of
gameplay. Gilbert [103] analyses how it is implemented in
The Legend of Zelda [163] and Doucet [28] offers a detailed
analysis of its implementation in Super Mario Bros. 3 [151].

7) Collision Shapes: Collision detection is the problem
of determining the intersections of ‘hitboxes’ (also called
‘colliders’) of arbitrary shapes and, sometimes, preventing the
interpenetration of these colliders to communicate that objects
have physical extents in the world. In the case of a 2D game,
collision shapes are usually either circles, triangles, or rectan-
gles. In 3D games, they are often spheres, boxes, or capsules.
The individual shapes and extents of hitboxes, as well as the
coherence between collision shapes and visible game elements,
determine how collisions between game elements feel to the
player [104].

8) Button Caching: A common player support function is
‘Jump Buffering’ [92], where the controller code buffers the
pressing of the jump button for a few frames and executes
the jump after the player has landed. Mario [164] caches the
button for 1-2 frames and Braid [165] for 0.23 seconds [92].

9) Spring-locked Modes: This is a user interface modality
that is actively maintained by the player by pressing and
holding a button. The object they are interacting with ‘switches
mode’ for the duration that the button is held. This form

IEEE TRANSACTIONS ON GAMES 6

of interaction is what Raskin [105] calls a ‘quasimode’ and
Johnson & Engelbeck [106] refer to as ‘spring-locked mode’.
It is often used in order to create anticipation. Games where
the player charges an action before unleashing it fall into this
category (e.g. Angry Birds [166], SSX Tricky [167], R-Type
[168]). Exiting the mode can have a specific effect like the
charged shot in R-Type (see [169]), or it just returns the player
to the previous mode, like in the case of Dark Souls [170]
where the player raises the shield by pushing a button and
lowers it by lifting their finger again. Drag and drop is another
example of a spring-locked mode that is common in game
interfaces.

Further, some games mirror the action of the player and the
action of the character. Jumping in the snowboarding game
SSX Tricky [167], for example, is charged by pressing a button
and holding it. The character jumps at the moment when
the button is released. This implementation creates a relation
between the game mechanic and the physical action of the
player [5] in that the bodily activity of the player releasing the
button is more similar to the action of the controlled character
than if the jump would be triggered by pressing the button.

10) Assisted Aiming: Some games help a player with the
precision required for aiming. Many shooter games support
assisted aiming (e.g. Gears of War [171]) and driving games
come with countless driving assistance settings3. These fea-
tures can be regarded as manifestations of what Doucet calls
‘oil’ [28], the measured exploitation of ‘illusion of control’,
as discussed by Kayali & Purgathofer [107]. An extensive
description of a particular case of assisted aiming for console
shooters can be found in Zimmerman [108].

B. Event Signification
This class of design elements signifies gameplay-relevant

events. Similar techniques are used when events are triggered
by the player and when they are triggered by the system. All
techniques listed in this section are only active for a limited
duration. It is usual to layer several effects depending on the
significance and kind of event being communicated.

1) Screen Shake: This effect, which is sometimes also
referred to as ‘camera shake’, shakes the camera (or the
world) in order to communicate a significant event —- often
an explosion, taking damage, or similar high-impact actions.
Nijman [8] and Jonasson & Purho [73] both mention screen
shake. Lerping and easing functions [109], [110] form the
technical basis of the implementation of dynamic cinematog-
raphy like screen shake. Instead of randomly moving the
camera, a carefully selected easing function in a semantically
significant direction, communicates more information about
what has happened, giving the designer more control over what
is communicated to the player.

2) Recoil: When the player character is slightly pushed
back, e.g. after firing a gun. Nijman [8] describes an imple-
mentation in detail, where the firing of a bullet shakes the
screen while also pushing the player character a few pixels

3DiRT 3 [172] features ABS, Dynamic Racing Line, Stability Control, Auto
Steer, Corner Braking and Throttle Management — very similar systems can
be found in real cars.

back, resulting in a side-effect with gameplay implications.
A more sophisticated way of achieving something similar is
to use inverse kinematics. God of War [173] uses inverse
kinematics to model the reaction of the body of the player
character when catching his axe [111]. Not only the arm but
the whole body of the character reacts.

3) One-shot Particles: Particle systems [112]–[114] are a
staple of juicy game design [73], [115]. Practitioners apply
them according to context and sophisticated examples feature
many layers of particles accompanied by other techniques
from this list, like screen shake and sound effects. Some
simple particle systems can be faked using textures (see
[8]). Rockenbeck [116] demonstrates a state-of-the-art particle
pipeline and explains how it was used in inFAMOUS: Second
Son [174]. Vainio [117] describes how this particular system
fits into the wider picture of a modern visual effect pipeline.

4) Cooldown Visualisation: Cooldown time is the time it
takes until an ability that was just triggered can be used again.
Its visualisation has to communicate how long the ability
is unavailable as well as the moment it becomes available
again. Cooldowns are mostly found in role-playing, where they
govern how often spells can be cast or a character ability can
be used, and in real-time strategy games, where they govern
how long it takes to e.g. research a technology. The duration
of the cooldown is usually communicated by greying out the
button that triggered an action and gradually revealing it again
over the cooldown time. A short overview can be found in
[118] and [119]. A detailed study of optimising the display of
cooldowns in a custom user interface can be found in [120].
Generally speaking, cooldown visualisations are a subset of
progress indicators (see also [121]).

5) Ragdoll Physics: Modelling a character using joints,
forces, and rigid bodies, instead of animations. Switching from
animation to ragdoll is a staple for communicating that a
character has died. Jakobsen [122] wrote about this design
element before the name ‘ragdoll’ became common. Swink
describes [1] how they used ragdoll physics in the game Off-
road Velociraptor Safari [175] [176]. He also lists a number
of games that derive their whole appeal from ragdoll physics.

6) Colour Flashing: This simple but effective technique
communicates state changes by overlaying an on-screen graph-
ical object or parts of the screen with a colour. Perry [71]
mentions several practical examples of how to indicate damage
or other state changes by e.g. flashing the object colour or
flashing the whole screen. A special case is flashing an on-
screen element that was destroyed before it gets removed
from the screen, a technique that creates persistence over
time, which is discussed in regards to several other design
elements further down this paper. Research indicates that
specific colour choices carry different meanings [123]. Nijman
[8] demonstrates flashing the enemy sprite white for a frame
or two in a 2D platformer to emphasise a hit.

7) Impact Markers: In the absence of a player character,
for example in first-person games, other visual elements have
to be used to indicate events. In action games, especially in
shooters, getting shot at is information of prime importance.
Stephenson [124] lists several different techniques for signi-
fying direction, kind, and strength of impact, illustrated by

IEEE TRANSACTIONS ON GAMES 7

game examples. Song [83] explains a number of different
elements, most of them covered in their own sections in this
overview, specifically for signifying impact. A blend of the
colour flashing mentioned above and impact marking is for
example achieved with impact lighting, where a light source
gets created on impact that illuminates the characters from the
point of impact [83].

8) Hit Stop: Animations pause for a brief moment on
impact. This effect, sometimes also called ‘Impact Freeze’,
is a staple in fighting and action games and maybe the
best researched phenomenon in the area of impact feedback
visualisations [83], [125], [126]. Brown [81] describes frame
freezes and their design purposes in Celeste [155]. Hit stops
are usually introduced in order to communicate feedback about
the severity of a hit, but can go further than that. Samurai
Gunn [177] features a subtle variation of impact freeze when
a character lands on a platform, ‘stunning’ it for a few frames
depending on the height it dropped from. Kratos’ axe in God
of War [173] freezes when it hits an enemy [111].

9) Audio Feedback: Acoustic channels of communication
are a very common way of layering information on top of the
graphical representation of a game. Additionally to supporting
immersion, audio can also communicate events that happen
off screen. Berbece [127] not only highlights the importance
of sound effects but also explains how to layer several in
order to create an easy to read soundscape. Audio feedback in
interaction design for games can be regarded as a specific
application of Sonic Interaction Design [128]. Nacke and
Grimshaw [129] present research on affective and aesthetic
impact of game sound. Overall, sound design is a huge part of
game development and offers a rich set of tools and techniques
(see e.g., [178], [179]) that are relevant in relation to game feel
but too general to cover in this paper.

10) Haptic Feedback: Haptic feedback, often called ‘force
feedback’ or simply ‘controller vibration’, is a standard func-
tionality of console controllers and built into most mobile
phones. It is often used for emphasis rather than as a critical
component to interactivity. Orozco et al. [130] provide a
complete overview of the history and significance of haptic
feedback for games. Most platform holders have clear guide-
lines about when to use haptic feedback, which means that
platform-exclusive titles often exploit these features more than
multi-platform games (see [83]).

C. Time Manipulation

While hitboxes and movement are spatial, the other dimen-
sion often exploited for game feel is time. Zagal and Mateas
[180] give a good overview of game time from an analytical
standpoint. The design intent of time manipulation is most
often to amplify the experience or to clarify the intensity or
direction of an impact. In this section, game time refers to the
time of the world simulated in the game whereas real time
refers to time in the real world.

All examples in this section have to do with slowing down
or pausing game time because games only rarely speed up time
to emphasise a moment. SSX Tricky [167] and Bubble Bobble

[181] are among the few examples of games that do so4. In
Drawkanoid [182], a brick destruction game, time speeds up
while the player is waiting for the ball to return from a brick’s
destruction. No research about speeding up time has been
found, so this chapter only covers the rest of the cases of time
manipulation. Also left out from this section are rhythm and
cadence of interactivity. While game designers are doubtlessly
aware of the importance of those two aspects to game feel,
there is not enough substantial writing to cover them.

1) Freeze Frames: The whole screen is frozen for a short
duration, often just a few frames. The difference to hit stops,
described above, is that those are a localised phenomenon
where one or more on-screen objects get paused, excluding
them from the temporal flow of the rest of the game, whereas
freeze frames technically halt the progression of game time.
Song [83] describes how some games pick the best frame of
an animation to freeze on and what gameplay implications
frame freezes have.

2) Slow Motion: Slowing down game time for a short dura-
tion. Whether applied to replays or to linear game time, slow
motion helps to communicate events that would otherwise
evolve too fast to be fully perceived by the player. A blend
of impact freeze and slow motion can be found in Holedown
[183]. The game does not fully freeze on impact, but slows
down time to a near halt for a few frames instead. The ability
to use slow motion to make an attack look more powerful is
mentioned in Song [83].

3) Bullet Time: Bullet time [131] is spring-locked slow
motion. It serves as a way to pull off more spectacular or
precise actions than the player could accomplish in real-time.
They empower the player, amplifying their actions. Porter
[132] gives an overview of the history of bullet time in movies
as well as games. Technically, bullet time is often eased in
and out and maintained for a certain amount of time. This can
be modelled using attack-decay-sustain-release ‘ADSR’ curves
(see [1] for details on their various applications).

Turn-based games like XCOM [184] pause time while the
player queues actions and subsequently advance it in order to
show the results of these actions. Fallout [185] slows down
time to a trickle in the V.A.T.S. mechanic, with very similar
results. This pattern of letting a user plan a move without time
pressure and then showing a lengthy and potentially intense
payoff in real time is quite similar to the temporal dynamics of
match-three games like Bejeweled [186]. This particular way
of manipulating game time could be regarded as an extreme
form of bullet time because it essentially fulfils the same
purpose and has the same structure.

4) Instant Replay: While replays are technically taking
control away from the player, and can as such be regarded
as orthogonal to gameplay, they serve a similar purpose to
juice insofar as they add clarity and weight to a gameplay
situation. Replays of actions that have just happened [83],
often slowed down, are usually triggered automatically. The
design aspects of this technique, that originally comes from
sports television, have not been researched in the context of

4A lot of strategy and puzzle games allow users to set the overall speed of
the game, which is not part of moment-to-moment interaction.

IEEE TRANSACTIONS ON GAMES 8

Fig. 3. An intense battle in Samurai Gunn [177], the history of motion and
battle encoded in the white sword path, the bullet trajectory, smoke particles
from where the gun was fired, as well as blood and gore traces all over the
level.

games. The fact that replays communicate pivotal moments of
gameplay means that replays might help players in identifying
moments of importance. Interestingly, both games mentioned
for their use of bullet time above, XCOM [184] and Fallout
[185], feature slowed down replays.

D. Persistence
Another aspect related to time is persistence, which could

also be called ‘temporal consistency’. Broadly speaking, this
cluster of techniques uses spatial representation to communi-
cate time-dependent information. The problem being solved is,
in the words of Bay-Wei and Ungar: “When the user cannot
visually track the changes occurring in the interface, the causal
connection between the old state of the screen and the new
state of the screen is not immediately clear.” [138].

From skid marks to particle trails, the purpose of the tech-
niques listed below is always to encode information about the
past in the currently displayed image. Even motion blur, which
is mentioned further down the list in III-E, not only prevents
temporal aliasing, but retains the history of movement as a
lingering after-image. Very often, the below design elements
are used in combination and additionally to other elements
that communicate the dynamics of the on-screen action. An
example of this can be seen in Fig. 3.

Temporal consistency also means a consistent frame rate.
While this article neither covers technical details nor how bugs
and implementation weaknesses affect game feel, it is impor-
tant to mention that frame rate and especially the duration of
the physics time step have a huge influence on how reactive
a game feels. Swink also stresses this when he maintains that
“real-time control relies on sustaining three time thresholds:
the impression of motion, perceived instantaneous response
and continuity of response” [1]. Fiedler [187] provides an
excellent introduction into how to implement a stable and
reliable feeling core game loop. Cone [94] describes in depth
how they solved countless challenges of running a stable

physical simulation of the fast moving cars and ball in Rocket
League [159].

Overall, temporal consistency techniques are employed in
order to allow the player to see either past events or quickly
happening events for a longer time. They can be implemented
so that world space is used as an interface layer by attaching
trails and particle effects to objects that would be invisible in
the real world [188]. The key role of these techniques, from
a design perspective, is to support the player.

1) Trails: Traces left behind a moving object. The most
prevalent example of temporal persistence in games is found in
particle systems [112] and trails. Particle systems that amplify
the result of player interaction extend the time that result is
visible on screen, creating a dynamic and, for a short while,
persistent representation of the player’s interaction history,
which could be seen as trails of a player interaction. Particle
systems that leave a trail in space as well as time allow the
reconstruction of the trajectory of movement of an object.
These techniques increase the readability of a scene for the
player as well as spectators [127], [133].

2) Decals & Debris: Decals and debris are stationary
traces left in the game world. Birdwell [134] mentions how
Valve used decals to acknowledge the actions of the player.
Berbece [127] explains a specific design case, where the player
character leaves a blotch of paint after being eliminated from
a match, in great detail. Destructible levels are a special case
of debris left by players that has physical implications and can
be regarded as in-game level design.

3) Follow-Through: Follow-through, the effect where a part
of an animated character or object keeps moving after the main
motion has stopped [135] is also a way of encoding the history
of the motion in subsequent frames. This time, the encoding
is not done as a non-diegetic overlay or abstraction, but as
movement of parts of the object in question.

4) Fluid Interfaces: Introduced by Apple in 2018 [136],
‘Fluid Interfaces’ aim at offering more natural interaction
forms based on aligning and understanding of intent with
physical simulation. They aim at maintaining smooth conti-
nuity whenever possible. Gitter [137] summarises the original
presentation and provides a number of code examples. Conti-
nuity comes from temporal persistence and spatial coherence,
for example when a user interface transition retains aspects
of the previous view, while transitioning to a new one [138].
In games, fluidity can be found in the moment when coins
that are earned at the end of a round fly into a virtual purse,
each with a short trail. Or when representations of pick-ups
linger on screen after being collected and then attach to the
character.

5) Idle Animations: Small loops of animation that play after
a while once the player stops interacting with their character —
when the player character enters the ‘idle’ state [139], [140].
They are superficial in relation to the core mechanics of the
game but nevertheless contribute to the overall experience of
a game. Idle animations are of course not triggered directly
by the player. On the contrary, they are triggered indirectly
by not interacting. Idle animations enhance the illusion of life
[135] of the character.

IEEE TRANSACTIONS ON GAMES 9

Fig. 4. Character camera-window in Rastan Saga [189], the camera only
moves when Rastan pushes against this window. Image from [142]

E. Scene Framing

In racing and flying games, there is a tight link between
the field of view, motion blur intensity, and speed. This
link defines how the game feels. In 2D games, a variety
of techniques are used to enable specific game mechanics,
support specific player behaviours, and give specific feedback
to players. Keren [141], [142] assembled a great overview of
these techniques. An example of a camera window can be seen
in Fig. 4. Eiserloh [190] describes the effects of the maths
behind camera controls on game feel.

1) Highlighting: Gameplay-relevant elements highlighted
on and off screen. A lot of games have sophisticated tech-
niques to direct the gaze of the player by gradually transi-
tioning the camera focus from the player character to a point
of interest. A good example of this is mentioned by Keren
[141], [142] and explained in further detail by Meyer [143]
on hand of his game Insanely Twisted Shadow Planet [191],
an exploration game.

2) Dynamic Camera: Articles by Christie et al. [144],
Haigh-Hutchinson [145]–[147], and Perry [71] provide good
starting points for game camera design. Burelli [148] and
Yannakakis et al. [149] examine affective reaction and camera
handling. Burelli concludes that interactivity is the key differ-
ence between film cinematography and game cinematography,
since his study “demonstrates how the impact on the player
experience is mediated by her interaction.“ [148]

F. Summary

This list of elements of game feel design is by no means
exhaustive. There are some obvious gaps stemming from how
we scoped the review, e.g. narrative design, sound design,
and user interface design. We hope that future researchers
will use this list as a starting point for further exploration
of the topic area. We are also aware that these techniques are
differently suitable depending on genre, hardware platform,
target group, and other factors of a game. Nevertheless, if
a game designer concerns themselves with the above design
elements and regards them as a collection of methods to draw
from, they will be supported in intentionally conveying a
chosen game feel.

IV. GAME FEEL

The classes of game feel design listed above are connected
and, just like Jonasson and Purho keep adding juice in their
talk [73], most moments of interacting with a game are shaped
by the presence of several layers of feedback. A good example
is the backstabbing attack in Dark Souls [170], an action role-
playing game. This attack sequence is triggered by sneaking
up to a foe from behind and attacking its back. If successful,
the camera locks in place, the enemy and the player character
get positioned in predetermined spots relative to each other,
and weapon-dependent animations and sounds are played. The
player is invincible for the duration of the sequence. The
design purpose of this feedback set is to give weight to the
effect of a single, but carefully prepared, button press. In
general, game designers are most concerned with the quality of
interactivity in the core loop [15] of a game, but that does not
mean that they do not employ a lot of the techniques presented
in this paper in all parts of a game.

In the following paragraphs we describe three design do-
mains and what polishing in these domains entails. The do-
mains are physicality, amplification, and support. Physicality
is the design domain describing the elements of the game that
are a physical simulation. Amplification is the design domain
concerned with intensifying the player experience. Support
is the design domain where techniques that help the player
to control the game are situated. Polishing means something
different in each domain and this diversification helps us to
talk about game feel design in a precise manner. Table II lists
the three domains and their associated polishing task.

A. Tuning of Physicality

The first design domain is the experience of physicality of
the system. Swink’s [1] whole concept of Game Feel rests on
this pillar. Designers shape the feel of the game by tuning
the parameters of the physical simulation [92]. Depending on
how much the game’s core loop relies on the joy of movement,
attention to detail can become extremely valuable [98]. Tuning
of physicality leads to finely calibrated movement parameters,
gravity, and collision shapes. The experience of control is
enhanced by additionally applying screen shake, recoil, and
knock-back. Appropriate audio design and haptic feedback
additionally communicate the physical dynamics of gameplay.
It is important to note that for the player, it often does not
matter whether physicality is simulated or faked. Tweening
[192], specifically with easing functions [109], [110], and
various other animation techniques [135], [193] can be used
to communicate the desired weight of an object. These can
be far easier to read as well as implement than a realistic
representation. Generally, tuning exploits our knowledge about
physicality in order to make interactivity more predictable.

B. Juicing of Amplification

The second design domain is amplification. It primarily
serves two purposes: first, it empowers the player. Second,
it communicates the importance of events. Empowerment can
take many shapes and forms. Bullet time, one of the most

IEEE TRANSACTIONS ON GAMES 10

TABLE II
GAME FEEL DESIGN DOMAINS AND THEIR ASSOCIATED POLISHING TASKS

Design Domain Physicality Amplification Support
Domain Description The physical simulation. Intensification of experience. Enabling the player.

Polishing Task Tuning Juicing Streamlining

Task Description Setting parameters to specify
the behaviour of objects.

Adding feedback to
emphasise, clarify and amplify.

Acting on player intent
by interpreting the input in

context of the gameplay situation.

iconic ways of amplifying player actions, empowers the player
to pull off more precise activities than they could if time
progressed linearly. At the same time it also signifies that
the player has the opportunity to have greater impact during
this time interval than during the rest of the game. Impact
freeze on the other hand is mostly used to signify a successful
interaction. Charging, which is based on spring-locking, is a
technique that balances the reward of empowerment — the
longer the player presses a button, the bigger the impact —
with risk [194].

Juicing the amplification means providing adequate feed-
back to player actions and creating coherence between dif-
ferent aspects of feedback. Audio, haptic feedback, particle
systems, and animation are the most important sources of
juice. Juiciness requires exact timing of particle emissions,
freeze frames, audio cues, perspective changes, and potentially
many more parts of the game. Juicing empowers the player by
structuring the reaction of the system to input in a way that
amplifies actions adequately for the intended game feel.

C. Streamlining of Support
The third design domain is support. It covers techniques

that help the player to execute a challenging action or just
provide convenience. Doucet [28] calls the polishing of sup-
port mechanics ‘oiling’, whereas we adopt the less slick term
‘streamlining’ that he also mentions in his article. Streamlining
prevents player frustration by making sure that the player
receives help where it supports the experience of the game.
Doucet lists a couple of examples of how games can be stream-
lined in order to support the player. The goal of streamlining is
to make rough edges of the game disappear, in order to provide
a smooth player experience. Most of the time, the player does
not want to realise how much the game is supporting them. “If
you do this right then the player wont suspect a thing” says
Pulver [195]. Disc Room’s [161] designer Nijman explains that
their use of Coyote Time “has a bunch of good side effects that
make it seem like the game knows your intentions.” [104]. A
large part of the 5400 lines of code that comprises the Celeste
character controller is dedicated to providing forgiveness for
the player (see [81] and [196] for an overview of a few of the
features implemented for this purpose). This results in controls
that are “working on the player’s intent rather than making a
precise simulation” [81]. A much more sophisticated approach
was presented by Zimmerman [108] when they describe the
selection mechanism for aiming targets when landing on the
ground as one-dimensional optimisation problem.

Elements that enhance temporal consistency offer a different
kind of support. Trails that follow projectiles are an example

of temporal feedback, since they help to determine the speed
and direction of the object by documenting its history. Often
particle systems in games have a similar role, and so do skid
marks or trails in simulated mud or water. They serve as a
visualisation of the past and as an externalisation of informa-
tion that the player would otherwise have to memorise. That
makes them a service for the player. Continuously displayed
game elements like status effects and idle animations similarly
lift the burden of remembering the state from the player’s
shoulders by showing it in the game instead.

The act of polishing player supporting game elements
is streamlining. Rather than explicitly informing the player
about changes in the game’s state, streamlining is making the
player’s experience adequately smooth. A good support system
is often invisible [107]. User Experience Design [197], [198]
can be used for this design area. A closely related cluster of
research concerns game accessibility. While User Experience
Design is concerned with setting up game development pro-
cesses that encompasses user research, the role of accessibility
is to widen the audience of games by providing guidelines
and tools that make games accessible to players with different
accessibility needs [199], [200].

D. Designing Game Feel
Game feel design is minute design work that evokes an af-

fective reaction in the player. The precise reaction is subjective
and highly dependent on context, inside and outside the game.
Streamlining, tuning, and even juicing are techniques that help
with consciously designing interactive challenges at the heart
of the player experience. Game feel is a shortcut for describing
how this experience feels. If game feel design is the act of fine-
tuning the relationship between expected and actual outcome
of an interactive process then it must be regarded central to
the game design process.

V. FUTURE RESEARCH

‘Game feel’ is a value-neutral expression. While game de-
signers and scholars are mostly concerned with what they refer
to as ‘good game feel’ (see e.g. [26]), the subjective nature
of game feel and the need for “good negative moments” [12]
call for a more holistic terminology. What makes a negative
moment “good” is a question for future research, especially
in terms of how game feel affects players psychologically. In
any case, those negative moments, if designed consciously,
are a valid aesthetic choice, given that “aesthetics describes
the desirable emotional responses evoked in the player, when
she interacts with the game system” [88]. Since game feel is

IEEE TRANSACTIONS ON GAMES 11

the experience of a game’s aesthetic — following Hunicke’s
use of that term — it spans visual elements, sound design, me-
chanics, as well as storytelling aspects. Continued exploration
of these different game elements and how they contribute
to game feel is a worthwhile research endeavour. Sound
design, encompassing both sound effects and music, stands
out as a field which demands further research. Isolating the
aspects that represent polish in different design domains would
also be very worthwhile, for example in narrative design,
physics simulation, and animation. Applying this research to
specific technological areas like virtual and augmented reality
could also prove worthwhile. Social aspects and historical
perspectives could also yield interesting results, especially if
linked to related areas of design beyond digital entertainment,
such as board games, physical play, sports, and other leisure
activities.

Historical trends and useful insights could be gleaned from
case studies that dig deep into various aspects of game feel
across genres and over time. Another interesting observation
we had while writing this paper is that game feel elements
often replace senses that are not part of the vocabulary of
the computer. For example, inertia, smell, and the balance of
your own body are not directly part of the game. The methods
described in this paper are often used as a substitute for them.

Another potential area for future research is game design
tools. Recent advances have led to tools for designing feedback
[74], [75] and generating it [201], [202]. AI agents and
algorithms to help designers analyse and adjust game difficulty
[203], [204] and the flow of game play and levels [205]–[207]
have been explored academically. Tools that support automatic
game design [208], [209] may also benefit from research
into feedback readability and assistance in creating the right
feedback. Systems that either partially or fully generate games
could benefit from being able to evaluate whether different
parts of a game fit together (see also [5]).

Research on the effect of feedback on the readability of a
game by an autonomous agent is sparse for now. Most of the
General Video Game Playing research [210]–[214] is powered
by the Video Game Description Language [210], [215], where
feedback is almost non-existent. If game feel can provide
support to human players, it might also be able to help AI
agents.

Designers often work on game feel in very intuitive ways,
and literature about game feel is very domain-specific. Most
written records are by practitioners who are discussing their
own projects. There are large areas that have not been reflected
upon. Some of these relate to unusual game mechanics,
for example, speeding up time. Others are of more general
relevance, for example the link between audio design and
game feel. The purpose of this paper is to give an overview of
existing research and techniques in order to make game feel
more accessible to game designers and researchers.

Ultimately, we hope this paper stimulates the creation of
more nuanced and reflective design processes, the development
of better design tools, and improved game design. If, as Keogh
[216] puts it, “Mechanics are the skeleton. ‘Polish’ or ‘feel’
or ‘juice’ is the meat.”, then a more precise vocabulary is a
step towards cooking up better games.

ACKNOWLEDGMENT

The authors would like to thank Sebastian Risi, Hans-
Joachim Backe, Dom Ford, Karin Ryding, Sı́lvia Fornós,
Christian Hviid Mortensen, Charlene Putney, Miruna Vozaru,
and Miguel Sicart for their support, feedback, proof reading,
and inspiration. We also want to thank Mike Cook, Martin
Jonasson, and Steve Swink for great discussions about game
feel. And finally the authors want to bow their heads to Petri
Purho and Jan Willem Nijman for having great (and ultimately
similar) ideas about game feel and continuously talking about
them.

REFERENCES

[1] S. Swink, Game Feel. Morgan Kaufmann, 2009.
[2] D. Wilson, “A Tale of Two Jousts: Multimedia, Game Feel, and

Imagination,” 2016. [Online]. Available: https://www.youtube.com/wa
tch?v=hpdcek4hLA8

[3] J. Schell, The Art of Game Design: A Book of Lenses. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[4] T. Rogers, “In Praise of Sticky Friction,” Jun. 2010. [Online].
Available: https://kotaku.com/in-praise-of-sticky-friction-5558166

[5] A. Anthropy and N. Clark, A Game Design Vocabulary: Exploring the
Foundational Principles behind Good Game Design, 1st ed. Addison-
Wesley Professional, 2014.

[6] M. Ehrndal, “A holistic approach to designing for a specific aesthetic
experience in digital games,” Master Thesis, Malmö högskola, Malmö,
Sweden, 2012. [Online]. Available: http://muep.mau.se/handle/2043/
13942

[7] L. J. Larsen, “Collision Thrills: Unpacking the Aesthetics of
Action in Computer Games,” Journal of Computer Games and
Communication, vol. 1, no. 1, pp. 41–52, Apr. 2016. [Online].
Available: https://www.macroworldpub.com/makale detay.php?makal
e id=92&dergi id=55#.VyMdGz9NjaY

[8] J. W. Nijman, “The art of screenshake,” Dec. 2013. [Online].
Available: https://www.youtube.com/watch?v=AJdEqssNZ-U

[9] Robert Yang, “Queer Futures in Game Feel,” Oct. 2018. [Online].
Available: https://www.blog.radiator.debacle.us/2018/10/queer-futures
-in-game-feel.html

[10] K. Vonnegut, “The Shapes of Stories,” 1985. [Online]. Available:
https://www.youtube.com/watch?v=oP3c1h8v2ZQ

[11] S. Kumari, S. Deterding, and J. Freeman, “The Role of Uncertainty
in Moment-to-Moment Player Motivation: A Grounded Theory,”
in Proceedings of the Annual Symposium on Computer-Human
Interaction in Play - CHI PLAY ’19. Barcelona, Spain: ACM Press,
2019, pp. 351–363. [Online]. Available: http://dl.acm.org/citation.cf
m?doid=3311350.3347148

[12] S. Sivak, “GAME 3400 Level Design - Moment Based Design,” 2012.
[Online]. Available: https://www.slideshare.net/sjsivak/game-3400-lev
el-design-moment-based-design

[13] S. Swink, “Game Feel: The Secret Ingredient,” 2007. [Online].
Available: https://www.gamasutra.com/view/feature/130734/game fee
l the secret ingredient.php?print=1

[14] D. Saffer, Microinteractions: Designing with Details. Reilly Media,
Inc., 2013.

[15] M. A. Sicart, “Loops and metagames: Understanding game design
structures,” in Proceedings of the 10th International Conference on the
Foundations of Digital Games (FDG 2015), June 22-25, 2015, Pacific
Grove, CA, USA., 2015.

[16] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.
New York: Harper and Row, 1990.

[17] P. Sweetser and P. Wyeth, “GameFlow: A model for evaluating player
enjoyment in games,” Computers in Entertainment, vol. 3, no. 3, p. 3,
Jul. 2005. [Online]. Available: https://doi.org/10.1145/1077246.1077
253

[18] J. Juul, Half-Real: Video Games between Real Rules and Fictional
Worlds. MIT Press, 2005.

[19] D. Ciccoricco, “Narrative, Cognition, and the Flow of Mirror’s
Edge:,” Games and Culture, Jul. 2012. [Online]. Available: https:
//journals.sagepub.com/doi/10.1177/1555412012454223

[20] DICE, “Mirror’s Edge,” DICE, 2008.

IEEE TRANSACTIONS ON GAMES 12

[21] J. Chen, “Flow in games (and everything else),” Communications
of the ACM, vol. 50, no. 4, p. 31, Apr. 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1232743.1232769

[22] That game company, “Flow,” That game company, 2006.
[23] ——, “Flower,” That game company, 2009.
[24] ——, “Journey,” That game company, 2012.
[25] J. Juul and J. S. Begy, “Good Feedback for bad Players? A preliminary

Study of ‘juicy’ Interface feedback,” in Proceedings of First Joint
FDG/DiGRA Conference, Dundee, 2016, p. 2. [Online]. Available:
https://www.jesperjuul.net/text/juiciness.pdf

[26] K. Hicks, P. Dickinson, J. Holopainen, and K. Gerling, “Good Game
Feel: An Empirically Grounded Framework for Juicy Design,” in
Proceedings of the 2018 DiGRA International Conference: The Game
Is the Message. DiGRA, Jul. 2018, p. 17. [Online]. Available:
http://www.digra.org/wp-content/uploads/digital-library/DIGRA 201
8 Paper 35.pdf

[27] K. Hicks, T. Pike, K. Gerling, O. Burman, G. Richardson, and
P. Dickinson, “Understanding the Effects of Gamification and Juiciness
on Players,” in Proceedings of the IEEE Conference on Games 2019.
London, United Kingdom: IEEE, Aug. 2019, p. 8.

[28] L. Doucet, “Oil it or Spoil it!” Aug. 2016. [Online]. Available:
https://www.fortressofdoors.com/oil-it-or-spoil-it/

[29] M. Sicart, Play Matters. MIT Press, 2014.
[30] J. P. Gee, Good Video Games+ Good Learning: Collected Essays on

Video Games, Learning, and Literacy. Peter Lang, 2007.
[31] R. Koster, A Theory of Fun for Game Design. Scottsdale, AZ:

Paraglyph Press, 2005.
[32] B. Sutton-Smith, The Ambiguity of Play, ser. The Ambiguity of Play.

Cambridge, MA, US: Harvard University Press, 1997.
[33] I. Iacovides, A. L. Cox, P. McAndrew, J. Aczel, and

E. Scanlon, “Game-Play Breakdowns and Breakthroughs:
Exploring the Relationship Between Action, Understanding,
and Involvement,” Human–Computer Interaction, vol. 30,
no. 3-4, pp. 202–231, May 2015. [Online]. Available:
http://www.tandfonline.com/doi/full/10.1080/07370024.2014.987347

[34] M. Pichlmair, “Designing for emotions: Arguments for an emphasis on
affect in design,” Ph.D. dissertation, Vienna University of Technology,
Vienna, Austria, 2004.

[35] H. Gedenryd, “How designers work - making sense of authentic
cognitive activities,” Lund University Cognitive Studies, vol. 75, pp.
1–123, 1998.

[36] J. Dewey, “The Quest for Certainty: A Study of the Relation of
Knowledge and Action,” The Journal of Philosophy, vol. 27, no. 1, pp.
14–25, 1930. [Online]. Available: https://www.pdcnet.org/pdc/bvdb.nsf/
purchase?openform&fp=jphil&id=jphil 1930 0027 0001 0014 0025

[37] D. Kao, “The Effects of Juiciness in an Action RPG,” Entertainment
Computing, vol. 34, p. 100359, Feb. 2020.

[38] J. Juul, A Casual Revolution — The MIT Press. MIT Press, 2009.
[Online]. Available: https://mitpress.mit.edu/books/casual-revolution

[39] S. Deterding, “The Lens of Intrinsic Skill Atoms: A Method
for Gameful Design,” Human–Computer Interaction, vol. 30,
no. 3-4, pp. 294–335, May 2015. [Online]. Available: https:
//doi.org/10.1080/07370024.2014.993471

[40] S. Atanasov, “Juiciness: Exploring and designing around experience of
feedback in video games,” Master Thesis, Malmö högskola, Malmö,
Sweden, 2013. [Online]. Available: http://muep.mau.se/handle/2043/
15692

[41] Z. Gage, “Building Games That Can Be Understood at a Glance,”
2018. [Online]. Available: https://www.youtube.com/watch?v=YISKc
RDcDJg&ab channel=GDC

[42] C. Carlsson and A. Pelling, “Designing Spectator Interfaces for
Competitive Video Games,” Master Thesis, Chalmers University
of Technology, Gothenburg, Sweden, 2015. [Online]. Available:
http://publications.lib.chalmers.se/records/fulltext/224247/224247.pdf

[43] R. Hunicke, “Loving Your Player With Juicy Feedback,” dConstruct
2009, 2009. [Online]. Available: http://2009.dconstruct.org/podcast/ju
icyfeedback

[44] T. Fullerton, Game Design Workshop: A Playcentric Approach to
Creating Innovative Games, 3rd ed. A K Peters/CRC Press, Apr.
2014.

[45] P. Suddaby, “5 Important Ways to Add Polish to Your Game,” May
2013. [Online]. Available: https://gamedevelopment.tutsplus.com/artic
les/5-important-ways-to-add-polish-to-your-game--gamedev-7642

[46] L. Brown, “The Nuance of Juice,” Vector, 2016. [Online]. Available:
https://www.youtube.com/watch?v=qtgWBUIOjK4

[47] R. F. Baumeister, K. D. Vohs, C. Nathan DeWall, and Liqing
Zhang, “How Emotion Shapes Behavior: Feedback, Anticipation, and
Reflection, Rather Than Direct Causation,” Personality and Social
Psychology Review, vol. 11, no. 2, pp. 167–203, May 2007. [Online].
Available: http://journals.sagepub.com/doi/10.1177/108886830730103
3

[48] J. T. Larsen, A. P. McGraw, and J. T. Cacioppo, “Can people
feel happy and sad at the same time?” Journal of Personality and
Social Psychology, no. 81(4), pp. 684–696, 2001. [Online]. Available:
https://doi.apa.org/record/2001-18605-010?doi=1

[49] J. P. Forgas and J. V. Ciarrochi, “On Managing Moods: Evidence for
the Role of Homeostatic Cognitive Strategies in Affect Regulation,”
Personality and Social Psychology Bulletin, vol. 28, no. 3, pp.
336–345, Mar. 2002. [Online]. Available: http://journals.sagepub.com
/doi/10.1177/0146167202286005

[50] H. Okon-Singer, T. Hendler, L. Pessoa, and A. J. Shackman,
“The neurobiology of emotion – cognition interactions: Fundamental
questions and strategies for future research,” Frontiers in Human
Neuroscience, vol. 9, Feb. 2015. [Online]. Available: http://journal.fr
ontiersin.org/Article/10.3389/fnhum.2015.00058/abstract

[51] J. Löwgren, “Pliability as an experiential quality: Exploring the aesthet-
ics of interaction design,” Artifact: Journal of Design Practice, vol. 1,
no. 2, pp. 85–95, 2007.

[52] ——, “Toward an articulation of interaction esthetics,” New Review of
Hypermedia and Multimedia, vol. 15, no. 2, pp. 129–146, Aug. 2009.
[Online]. Available: https://www.tandfonline.com/doi/full/10.1080/136
14560903117822

[53] G. Kirkpatrick, “Between Art and Gameness: Critical Theory and
Computer Game Aesthetics,” Thesis Eleven, vol. 89, no. 1, pp. 74–93,
May 2007. [Online]. Available: https://doi.org/10.1177/072551360707
6134

[54] ——, “Controller, Hand, Screen: Aesthetic Form in the Computer
Game,” Games and Culture, vol. 4, no. 2, pp. 127–143, Apr. 2009.
[Online]. Available: http://journals.sagepub.com/doi/10.1177/1555412
008325484

[55] ——, Aesthetic Theory and the Video Game. Manchester ; New York
: New York: Manchester University Press ; distributed in the United
States exclusively by Palgrave Macmillan, 2011.

[56] V.-M. Karhulahti, “A kinesthetic theory of videogames: Time-critical
challenge and aporetic rhematic,” Game Studies, vol. 13, no. 1, 2013.

[57] C. Hodent, “Skill-Building Series: Emotion in Game Design (A UX
Perspective),” 2020. [Online]. Available: https://www.gdcvault.com/p
lay/1026790/Skill-Building-Series-Emotion-in

[58] D. A. Norman, Emotional Design: Why We Love (or Hate) Everyday
Things. New York: Basic Books, 2005.

[59] M. Hassenzahl, S. Diefenbach, and A. Göritz, “Needs, affect, and inter-
active products–Facets of user experience,” Interacting with computers,
vol. 22, no. 5, pp. 353–362, 2010.

[60] S. Long, “What Is Games User Experience (UX) and How Does It
Help?” Oct. 17. [Online]. Available: https://www.gamasutra.com/blog
s/SebastianLong/20171002/306649/What Is Games User Experienc
e UX and How Does It Help.php

[61] K. Spiel and K. Gerling, “The surrogate body in play,” in Proceedings
of the Annual Symposium on Computer-Human Interaction in
Play, ser. CHI PLAY ’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 397–411. [Online]. Available:
https://doi.org/10.1145/3311350.3347189

[62] B. Keogh, A Play of Bodies: How We Perceive Videogames. Cam-
bridge, MA: MIT Press, 2018.

[63] M. Merleau-Ponty, Phenomenology of Perception. Routledge, 1982.
[64] G. Bateson, Steps to an Ecology of Mind: Collected Essays in An-

thropology, Psychiatry, Evolution, and Epistemology. University of
Chicago Press, 1972.

[65] G. Weiss, Body Images: Embodiment as Intercorporeality. New York:
Routledge, 1999.

[66] D. Surman, “Pleasure, spectacle and reward in Capcom’s Street Fighter
series David Surman,” Videogame, player, text, pp. 204–221, 2007.

[67] B. Davnall, “Dr Johnson’s Sore Toe: Touch, Naturalism and Kingdom
Hearts,” Sep. 2016. [Online]. Available: http://startswithafish.blogspot
.com/2016/09/dr-johnsons-sore-toe-touch-naturalism.html

[68] C. Putney, “Praise the Sun: On Yoga and Dark Souls,” May 2016.
[Online]. Available: http://alphachar.com/praisethesun

[69] D. Sudnow, Pilgrim in the Microworld. New York, N.Y: Warner
Books, 1983.

[70] K. Gray, K. Gabler, S. Shodhan, and M. Kunic, “How to
Prototype a Game in Under 7 Days,” 2005. [Online]. Available:

IEEE TRANSACTIONS ON GAMES 13

https://www.gamasutra.com/view/feature/130848/how to prototype a
game in under 7 .php

[71] L. Perry, “The single most useful advice I can give for making any
game better.. feedback,” 2013. [Online]. Available: https://gamasutra.
com/blogs/LeePerry/20130506/191739/The single most useful advic
e I can give for making any game better feedback.php

[72] M. Brown, “Secrets of Game Feel and Juice,” 2015. [Online].
Available: https://www.youtube.com/watch?v=216 5nu4aVQ

[73] M. Jonasson and P. Purho, “Juice it or lose it,” 2012. [Online].
Available: https://www.youtube.com/watch?v=Fy0aCDmgnxg

[74] R. Forestié, “Best Practices for fast game design in Unity,” Unite LA
2018, 2018. [Online]. Available: https://www.youtube.com/watch?v=N
U29QKag8a0

[75] ——, “How to design with feedback and game feel in mind - Shake it
’til you make it,” Unite Copenhagen 2019, 2019. [Online]. Available:
https://www.youtube.com/watch?v=yCKI9T3sSv0

[76] N. Suttner, A. Nealen, Z. Gage, and D. Wilson, “Eggplant: The
Secret Lives of Games (formerly The Spelunky Showlike) 42: The
Secrets of Simplicity with Martin Jonasson.” [Online]. Available:
https://thespelunkyshowlike.libsyn.com/42-the-secrets-of-simplicity-
with-martin-jonasson

[77] ——, “Eggplant: The Secret Lives of Games (formerly The Spelunky
Showlike) 39: The Tricks of the Toolkit with Mark Brown.” [Online].
Available: https://thespelunkyshowlike.libsyn.com/39-gmtk

[78] ——, “Eggplant: The Secret Lives of Games (formerly The Spelunky
Showlike) 38: The Rhythms and Layers of Ryan Clark.” [Online].
Available: https://thespelunkyshowlike.libsyn.com/38-the-rhythms-an
d-layers-of-ryan-clark

[79] ——, “Eggplant: The Secret Lives of Games (formerly The Spelunky
Showlike) 36: Game Feel as Procrastination with Jan Willem Nijman.”
[Online]. Available: https://thespelunkyshowlike.libsyn.com/36-game
-feel-as-procrastination-with-jan-willem-nijman

[80] R. Clark, “The Clark Tank,” 2019.
[81] M. Brown, “Why Does Celeste Feel So Good to Play? — Game

Maker’s Toolkit,” 2019. [Online]. Available: https://www.youtube.co
m/watch?v=yorTG9at90g

[82] C. McEntee, “Rayman Origins,” Game Developer Magazine - October
2012, pp. 26–31, 2012.

[83] J. Song, “Improving the Combat 'Impact' Of Action
Games,” Apr. 2005.

[84] J. Turner, “Oh My! That Sound Made the Game Feel Better!” 2015.
[Online]. Available: https://www.gdcvault.com/play/1022808/Oh-My-
That-Sound-Made

[85] R. Ismail, “Six stages of game dev community development,” 2015.
[Online]. Available: https://www.gamasutra.com/blogs/RamiIsmail/201
50504/242486/Six stages of game dev community development.php

[86] D. Cook, “What are game mechanics?” Oct. 2006. [Online]. Available:
https://lostgarden.home.blog/2006/10/24/what-are-game-mechanics/

[87] ——, “Loops and Arcs,” Apr. 2012. [Online]. Available: https:
//lostgarden.home.blog/2012/04/30/loops-and-arcs/

[88] R. Hunicke, M. LeBlanc, and R. Zubek, “MDA: A Formal Approach
to Game Design and Game Research,” in Proceedings of the AAAI
Workshop on Challenges in Game AI, vol. 4, May 2004, p. 1722.

[89] G. Dahl and M. Kraus, “Measuring how game feel is influenced
by the player avatar’s acceleration and deceleration: Using a
2D platformer to describe players’ perception of controls in
videogames,” in Proceedings of the 19th International Academic
Mindtrek Conference on - AcademicMindTrek ’15. Tampere,
Finland: ACM Press, 2015, pp. 41–46. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2818187.2818275

[90] A. Normoyle and S. Jörg, “Trade-offs between responsiveness and
naturalness for player characters,” in Proceedings of the Seventh
International Conference on Motion in Games - MIG ’14. Playa
Vista, California: ACM Press, 2014, pp. 61–70. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2668064.2668087

[91] Y. Pignole, “Platformer controls: How to avoid limpness and rigidity
feelings,” 2014. [Online]. Available: https://www.gamasutra.com/blog
s/YoannPignole/20140103/207987/Platformer controls how to avoid
limpness and rigidity feelings.php

[92] M. Fasterholdt, M. Pichlmair, and C. Holmgård, “You Say Jump,
I Say How High? Operationalising the Game Feel of Jumping,” in
Proceedings of the First International Joint Conference of DiGRA and
FDG. Dundee, Scotland: Digital Games Research Association and
Society for the Advancement of the Science of Digital Games, 2016.
[Online]. Available: http://www.digra.org/wp-content/uploads/digital-l
ibrary/paper 248.pdf

[93] K. Pittman, “Math for Game Programmers: Building a Better Jump,”
2016. [Online]. Available: https://www.youtube.com/watch?v=hG9Sz
QxaCm8&ab channel=GDC

[94] J. Cone, “It IS Rocket Science! The Physics of ’Rocket League’
Detailed,” 2018. [Online]. Available: https://www.gdcvault.com/play/
1025341/It-IS-Rocket-Science-The

[95] A. Summerville, J. Osborn, C. Holmgård, and D. W. Zhang, “Mechan-
ics Automatically Recognized via Interactive Observation: Jumping,” in
Proceedings of the 12th International Conference on the Foundations
of Digital Games. New York, NY, USA: Association for Computing
MachineryNew YorkNYUnited States, 2017, pp. 1–10.

[96] A. Lefky and A. Gindin, “Acceleration Due to Gravity: Super Mario
Brothers,” 2007.

[97] J. Alessi, “Games Demystified: Super Mario Galaxy,” 2008. [Online].
Available: https://www.gamasutra.com/view/feature/131997/games d
emystified super mario .php

[98] A. Saltsman, “Tuning Canabalt,” 2010. [Online]. Available: https:
//www.gamasutra.com/blogs/AdamSaltsman/20100929/88155/Tuning
Canabalt.php

[99] M. Venturelli, “Game Feel Tips I: The Ghost Jump,” 2014. [Online].
Available: https://gamasutra.com/blogs/MarkVenturelli/20140810/2230
01/Game Feel Tips I The Ghost Jump.php

[100] Smashpedia, “Invincibility frame.” [Online]. Available: https://bit.ly/2
JEPgrz

[101] R. Mora-Zamora and E. Brenes-Villalobos, “Integrated framework for
game design,” in Proceedings of the IX Latin American Conference
on Human Computer Interaction, ser. CLIHC ’19. New York, NY,
USA: Association for Computing Machinery, Sep. 2019, pp. 1–6.
[Online]. Available: https://doi.org/10.1145/3358961.3358984

[102] K. Siu, E. Butler, and A. Zook, “A programming model for boss
encounters in 2D action games,” Experimental AI in Games: Papers
from the AIIDE Workshop, Technical Report WS-16-22, 2016.
[Online]. Available: https://aaai.org/ocs/index.php/AIIDE/AIIDE16/p
aper/view/14058

[103] T. Gilbert, “Movement Mechanics,” 2012. [Online]. Available:
https://troygilbert.com/deconstructing-zelda/movement-mechanics/

[104] A. Wiltshire, “How hitboxes work,” Aug. 2020. [Online]. Available:
https://www.pcgamer.com/how-hitboxes-work/

[105] J. Raskin, The Humane Interface: New Directions for Designing
Interactive Systems. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 2000.

[106] J. Johnson and G. Engelbeck, “Modes Survey Results,” SIGCHI
Bull., vol. 20, no. 4, pp. 38–50, Apr. 1989. [Online]. Available:
https://doi.org/10.1145/67243.67248

[107] F. Kayali and P. Purgathofer, “Two halves of play-Simulation versus ab-
straction and transformation in sports videogames design,” Eludamos.
Journal for Computer Game Culture, vol. 2, no. 1, pp. 105–127, 2008.

[108] C. Zimmerman, “Reading the Player’s Mind Through His Thumbs:
Inferring Player Intent Through Controller Input,” 2010. [Online].
Available: https://www.gdcvault.com/play/1012339/Reading-the-Play
er-s-Mind

[109] R. Penner, Robert Penner’s Programming Macromedia Flash MX.
New York: McGraw-Hill/Osborne, 2002.

[110] A. Sitnik and I. Solovev, “Easing Functions Cheat Sheet,” Accessed:
2020-05-04 14:25:58. [Online]. Available: http://easings.net/

[111] C. Barlog, “Why Kratos’ Axe Feels SO Powerful — Game
Mechanics Explained,” May 2018. [Online]. Available: https:
//www.youtube.com/watch?v=zpr-EE2In1M&ab channel=Polygon

[112] W. T. Reeves, “Particle Systems A Technique for Modeling
a Class of Fuzzy Objects,” ACM Transactions on Graphics,
vol. 2, no. 2, p. 17, Apr. 1983. [Online]. Available: https:
//www.lri.fr/⇠mbl/ENS/IG2/devoir2/files/docs/fuzzyParticles.pdf

[113] T. Ilmonen and J. Kontkanen, “The Second Order Particle System,”
Journal of WSCG, vol. 11, no. 1, 2003.

[114] L. Latta, “Building a Million-Particle System,” 2004. [Online].
Available: https://www.gamasutra.com/view/feature/130535/building a
millionparticle system.php

[115] N. Lovato, “Squeezing more juice out of your game design!” Mar.
2015. [Online]. Available: https://bit.ly/2GsjSex

[116] B. Rockenbeck, “The inFAMOUS: Second Son Particle System
Architecture,” 2014. [Online]. Available: https://www.gdcvault.com/p
lay/1020367/The-inFAMOUS-Second-Son-Particle

[117] M. Vainio, “The Visual Effects of inFAMOUS: Second Son,” 2014.
[Online]. Available: https://www.youtube.com/watch?v=o2yFxPY2b1o
&ab channel=GDC

IEEE TRANSACTIONS ON GAMES 14

[118] “Cooldowns can be used to balance games.” [Online]. Available:
https://game-design-snacks.fandom.com/wiki/Cooldowns can be use
d to balance games

[119] J. Griesemer, “Design by Numbers: Cooldowns,” Jan. 2012. [Online].
Available: https://rewardingplay.com/2012/01/09/design-by-numbers-c
ooldowns/

[120] D. King, “Principals of UI Design in the World of Warcraft,” Dec.
2019. [Online]. Available: https://medium.com/@d.w.king12/principa
ls-of-ui-design-in-the-world-of-warcraft-19e1a33feb61

[121] N. Babich, “The UI/UX Design of Progress Indicator [Trends +
Examples],” May 2019. [Online]. Available: https://usersnap.com/blo
g/progress-indicators/

[122] T. Jakobsen, “Advanced character physics,” in In Proceedings of the
Game Developers Conference 2001, 2001, p. 19.

[123] D. Kao and D. F. Harrell, “Exploring the Impact of Avatar Color
on Game Experience in Educational Games,” in Proceedings of
the 2016 CHI Conference Extended Abstracts on Human Factors
in Computing Systems, ser. CHI EA ’16. New York, NY, USA:
Association for Computing Machinery, May 2016, pp. 1896–1905.
[Online]. Available: https://doi.org/10.1145/2851581.2892281

[124] J. Stephenson, “A UX Analysis of First-Person Shooter Damage
Indicators,” Mar. 2018. [Online]. Available: https://medium.com/@jas
per.stephenson/a-ux-analysis-of-first-person-shooter-damage-indicator
s-59ac9d41caf8

[125] D. Daniels, “Why some games feel better than others - part 3,” Mar.
2007.

[126] S. Hurricane, “Impact Freeze,” Jan. 2010.
[127] N. Berbece, “Game Feel: Why Your Death Animation Sucks,” San

Francisco, CA, 2015. [Online]. Available: https://www.gdcvault.com/p
lay/1022759/Game-Feel-Why-Your-Death

[128] K. Franinović, K. Franinovic, and S. Serafin, Sonic Interaction Design.
MIT Press, 2013.

[129] L. E. Nacke, M. Grimshaw, L. E. Nacke, and M. Grimshaw,
“Player-Game Interaction Through Affective Sound,” in Game Sound
Technology and Player Interaction: Concepts and Developments. IGI
Global, Jan. 2011. [Online]. Available: https://www.igi-global.com/g
ateway/chapter/46796

[130] M. Orozco, J. Silva, A. E. Saddik, and E. Petriu, “The Role of Haptics
in Games,” in Haptics Rendering and Applications. London, United
Kingdom: IntechOpen, Jan. 2012, pp. 217–234. [Online]. Available:
https://www.intechopen.com/books/haptics-rendering-and-application
s/-the-role-of-haptics-in-gaming-experience-

[131] M. Sabbagh, “The art of designing visceral and engaging Bullet Time
gunplay,” Oct. 2015. [Online]. Available: https://michelsabbagh.word
press.com/2015/10/07/the-art-of-designing-visceral-and-engaging-bull
et-time-gunplay/

[132] W. Porter, “A videogame history of bullet-time,” 2010. [Online].
Available: https://www.gamesradar.com/a-videogame-history-of-bullet
-time/

[133] C. Nutt, “The magic of TowerFall : Depth, simplicity, community,”
2015. [Online]. Available: /view/news/241970/The magic of Tower
Fall Depth simplicity community.php

[134] k. birdwell, “The Cabal: Valve’s Design Process For Creating
Half-Life,” 1999. [Online]. Available: https://www.gamasutra.com/vi
ew/feature/131815/the cabal valves design process .php

[135] F. Thomas and O. Johnston, The Illusion of Life: Disney Animation.
New York: Abbeville Press, 1981.

[136] C. Karunamuni, N. de Vries, and M. Alonso, “Designing Fluid
Interfaces - WWDC 2018 - Videos,” 2018. [Online]. Available:
https://developer.apple.com/videos/play/wwdc2018/803/

[137] N. Gitter, “Building Fluid Interfaces,” Aug. 2018. [Online]. Available:
https://medium.com/@nathangitter/building-fluid-interfaces-ios-swift-
9732bb934bf5

[138] B.-W. Chang and D. Ungar, “Animation: From cartoons to the user
interface,” in Proceedings of the 6th Annual ACM Symposium on User
Interface Software and Technology - UIST ’93. Atlanta, Georgia,
United States: ACM Press, 1993, pp. 45–55. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=168642.168647

[139] H. Alexander, “The Quiet Importance Of Idle Animations,” 2019.
[Online]. Available: https://kotaku.com/the-quiet-importance-of-idle-
animations-1834564079

[140] J. Couture, “What makes a great idle animation? Devs share their
favorites,” 2018. [Online]. Available: /view/news/318163/What makes
a great idle animation Devs share their favorites.php

[141] I. Keren, “Scroll Back: The Theory and Practice of Cameras in
Side-Scrollers,” 2015. [Online]. Available: https://www.gdcvault.com
/play/1022243/Scroll-Back-The-Theory-and

[142] ——, “Gamasutra: Itay Keren’s Blog - Scroll Back: The Theory and
Practice of Cameras in Side-Scrollers,” 2015. [Online]. Available:
https://gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll Bac
k The Theory and Practice of Cameras in SideScrollers.php

[143] R. Meyer, “ITSP Camera Explained,” May 2013. [Online]. Available:
https://www.youtube.com/watch?v=aAKwZt3aXQM&feature=emb tit
le&ab channel=RyanMeyer

[144] M. Christie, P. Olivier, and J.-M. Normand, “Camera Control
in Computer Graphics,” Computer Graphics Forum, vol. 27,
no. 8, pp. 2197–2218, Dec. 2008. [Online]. Available: http:
//doi.wiley.com/10.1111/j.1467-8659.2008.01181.x

[145] M. Haigh-Hutchinson, “Fundamentals of Real-Time Camera Design,”
GDC’05 talk, p. 20, 2005.

[146] ——, Real Time Cameras: A Guide for Game Designers and Devel-
opers, 1st ed. San Francisco, Calif. : Oxford: CRC Press, Apr. 2009.

[147] ——, “Real-Time Cameras - Navigation and Occlusion,” 2009.
[Online]. Available: https://www.gamasutra.com/view/feature/132456/
realtime cameras navigation and .php

[148] P. Burelli, “Virtual Cinematography in Games: Investigating the Impact
on Player Experience,” in International Conference On The Founda-
tions of Digital Games, Chania, Greece, May 2013.

[149] G. N. Yannakakis, H. P. Martı́nez, and A. Jhala, “Towards
affective camera control in games,” User Modeling and User-Adapted
Interaction, vol. 20, no. 4, pp. 313–340, Oct. 2010. [Online].
Available: http://link.springer.com/10.1007/s11257-010-9078-0

[150] D. Norman, The Design Of Everyday Things. Basic Books, 1988.
[151] Nintendo, “Super Mario Bros. 3,” Game [Nintendo Entertainment

System (NES)], 1988.
[152] Team Meat, “Super Meat Boy,” 2010. [Online]. Available: http:

//www.supermeatboy.com
[153] K. Hamaluik, “Super Mario World Physics,” Jul. 2012. [Online].

Available: http://blog.hamaluik.ca/posts/super-mario-world-physics/
[154] M. Thorson, “Level Design Workshop: Designing Celeste,” 2017.

[Online]. Available: https://www.youtube.com/watch?v=4RlpMhBKN
r0&feature=youtu.be

[155] Matt Makes Games, “Celeste,” 2018.
[156] N. Berry, “Celeste Player Controller Soruce Code,” 2018. [Online].

Available: https://github.com/NoelFB/Celeste
[157] G. Fiedler, “Integration Basics,” Jun. 2004. [Online]. Available:

http://127.0.0.1:1313/post/integration basics/
[158] A. Saltsman, “Canabalt,” 2009.
[159] Psyonix, “Rocket League,” 2015.
[160] Nintendo, “Super Mario Galaxy,” 2007.
[161] K. Calis, J. W. Nijman, T. Vellmann, and A. Drucker, “Disc Room,”

2020.
[162] Nintendo, “Super Smash Bros. Ultimate,” 2018.
[163] ——, “The Legend of Zelda,” 1986. [Online]. Available: https:

//en.wikipedia.org/w/index.php?title=The Legend of Zelda&oldid=9
49668668

[164] ——, “Super Mario Bros. 2,” Game [Nintendo Entertainment System
(NES)], 1988.

[165] Number None, “Braid,” 2008.
[166] Rovio Entertainment, “Angry Birds,” Game [iOS], 2009. [Online].

Available: www.angrybirds.com
[167] EA Sports BIG, “SSX Tricky,” Game [PlayStation 2], 2001.
[168] Irem Corporation, “R-Type,” Game [Arcade], 1987.
[169] M. Alldridge, “’R-Type’ - Irem. 1987,” Mar. 2014. [Online]. Available:

http://www.markalldridge.co.uk/r-type.html#
[170] From Software, “Dark Souls,” Game [PlayStation 3], 2009.
[171] Epic Games, “Gears of War,” Game [Xbox 360], 2006.
[172] Codemasters, “DiRT 3,” 2011.
[173] Ready At Dawn Studios, “God of War,” 2018.
[174] Sucker Punch Productions, “inFAMOUS: Second Son,” 2014.
[175] Flashbang Studios, “Off-road Velociraptor Safari,” 2008.
[176] Diction, “Velociraptor Massacre,” Apr. 2012. [Online]. Available:

https://www.youtube.com/watch?v=Uh7URFM8rxc&feature=youtu.b
e&ab channel=Diction

[177] Teknopants, “Samurai Gunn,” 2013.
[178] J. Deighan, “Sound Design for Video Games: A Primer,” Aug. 19.

[Online]. Available: https://www.gamasutra.com/blogs/JamesDeighan
/20190823/349296/Sound Design for Video Games A Primer.php

[179] A. Marks, The Complete Guide to Game Audio: For Composers, Mu-
sicians, Sound Designers, and Game Developers, 2nd ed. Burlington,
MA ; Oxford: Focal Press/Elsevier, 2009.

[180] J. P. Zagal and M. Mateas, “Time in Video Games: A Survey and
Analysis,” Simulation & Gaming, vol. 41, no. 6, pp. 844–868, Dec.
2010. [Online]. Available: https://doi.org/10.1177/1046878110375594

IEEE TRANSACTIONS ON GAMES 15

[181] Taito Corporation, “Bubble Bobble,” Game [Arcade], 1986.
[182] QCF Design, “Drawkaniod,” 2018. [Online]. Available: http://www.dr

awkanoid.com/
[183] grapefrukt games, “Holedown,” 2018. [Online]. Available: https:

//holedown.com/
[184] Firaxis Games, “XCOM: Enemy Unknown,” 2012.
[185] Bethesda Softworks LLC, “Fallout 3,” Game [PlayStation 3], 2008.
[186] PopCap Games, “Bejeweled,” 2001. [Online]. Available: https:

//www.ea.com/en-gb/games/bejeweled
[187] G. Fiedler, “Fix Your Timestep!” Jun. 2004. [Online]. Available:

http://127.0.0.1:1313/post/fix your timestep/
[188] I. Iacovides, A. Cox, R. Kennedy, P. Cairns, and C. Jennett, “Removing

the HUD: The Impact of Non-Diegetic Game Elements and Expertise
on Player Involvement,” in Proceedings of the 2015 Annual Symposium
on Computer-Human Interaction in Play - CHI PLAY ’15. London,
United Kingdom: ACM Press, 2015, pp. 13–22. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2793107.2793120

[189] Taito Corporation, “Rastan Saga,” 1987.
[190] S. Eiserloh, “Math for Game Programmers: Juicing Your Cameras

With Math,” 2016. [Online]. Available: https://www.gdcvault.com/pla
y/1023557/Math-for-Game-Programmers-Juicing

[191] Shadow Planet Productions, “Insanely Twisted Shadow Planet,” 2011.
[192] N. Burtnyk and M. Wein, “Computer-Generated Key-Frame Anima-

tion,” Journal of the SMPTE, vol. 80, no. 3, pp. 149–153, Mar. 1971.
[193] J. Lasseter, “PRINCIPLES OF TRADITIONAL ANIMATION AP-

PLIED TO 3D COMPUTER ANIMATION,” Computer Graphics,
Volume 21, Number 4, July 1987, p. 10, 1987.

[194] M. Pichlmair and F. Kayali, “Intentions, Expectations and the Player,”
2008. [Online]. Available: https://www.academia.edu/4989138/Intenti
ons Expectations and the Player

[195] K. Pulver, “Platforming Ledge Forgiveness,” 2013. [Online]. Available:
http://kpulv.com/123/Platforming Ledge Forgiveness/

[196] M. Thorson, “A short thread on a few Celeste game-feel things.”
[Online]. Available: https://twitter.com/MattThorson/status/123833857
4220546049

[197] R. Bernhaupt, W. Ijsselsteijn, F. F. Mueller, M. Tscheligi, and
D. Wixon, “Evaluating user experiences in games,” in Proceeding
of the Twenty-Sixth Annual CHI Conference Extended Abstracts
on Human Factors in Computing Systems - CHI ’08. Florence,
Italy: ACM Press, 2008, p. 3905. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1358628.1358953

[198] K. Isbister and N. Schaffer, Game Usability: Advice from the Experts
for Advancing the Player Experience. San Francisco, Calif. : Oxford:
Morgan Kaufmann ; Elsevier Science [distributor], 2008.

[199] T. Westin, I. Hamilton, M. Hinn, and R. van Tol, “Building a
Manifesto for Game Accessibility,” San Francisco, CA, USA, 2015.
[Online]. Available: https://www.gdcvault.com/play/1021849/Building
-a-Manifesto-for-Game

[200] “Game accessibility guidelines — A straightforward reference for
inclusive game design.” [Online]. Available: http://gameaccessibilityg
uidelines.com/

[201] M. Johansen, M. Pichlmair, and S. Risi, “Squeezer - A Tool
for Designing Juicy Effects,” in Extended Abstracts of the 2020
Annual Symposium on Computer-Human Interaction in Play,
ser. CHI PLAY ’20. New York, NY, USA: Association for
Computing Machinery, Nov. 2020, pp. 282–286. [Online]. Available:
https://doi.org/10.1145/3383668.3419862

[202] T. D. Pettersson, “SFXR,” 2007. [Online]. Available: http://www.drpe
tter.se/project sfxr.html

[203] A. Nealen, A. Isaksen, and D. Gopstein, “Exploring Game Space Using
Survival Analysis,” in Foundations of Digital Games, 2015.

[204] A. Isaksen, D. Gopstein, J. Togelius, and A. Nealen, “Exploring game
space of minimal action games via parameter tuning and survival
analysis,” IEEE Transactions on Games, vol. 10, no. 2, pp. 182–194,
2018.

[205] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proceedings of the Fifth International Conference
on the Foundations of Digital Games, ser. FDG ’10. New York, NY,
USA: Association for Computing Machinery, Jun. 2010, pp. 209–216.
[Online]. Available: https://doi.org/10.1145/1822348.1822376

[206] M. Guzdial, N. Liao, and M. Riedl, “Co-Creative Level Design
via Machine Learning,” arXiv:1809.09420 [cs], Sep. 2018. [Online].
Available: http://arxiv.org/abs/1809.09420

[207] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient Sketchbook:
Computer-Aided Game Level Authoring,” in Foundations of Digital
Games, 2013, p. 8.

[208] M. Cook, S. Colton, and J. Gow, “The ANGELINA Videogame Design
System—Part I,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 9, no. 2, pp. 192–203, Jun. 2017.

[209] ——, “The ANGELINA Videogame Design System—Part II,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 9,
no. 3, pp. 254–266, Sep. 2017.

[210] J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M. Lucas,
R. Miikkulainen, T. Schaul, and T. Thompson, “General video game
playing,” in Artificial and Computational Intelligence in Games,
ser. Dagstuhl Follow-Ups, S. M. Lucas, M. Mateas, M. Preuss,
P. Spronck, and J. Togelius, Eds. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, vol. 6, pp. 77–83.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2013/4337

[211] A. Khalifa, M. C. Green, D. Perez-Liebana, and J. Togelius,
“General video game rule generation,” in 2017 IEEE Conference
on Computational Intelligence and Games (CIG). New York,
NY, USA: IEEE, Aug. 2017, pp. 170–177. [Online]. Available:
http://ieeexplore.ieee.org/document/8080431/

[212] R. D. Gaina, A. Couetoux, D. J. N. J. Soemers, M. H. M.
Winands, T. Vodopivec, F. Kirchgesner, J. Liu, S. M. Lucas, and
D. Perez-Liebana, “The 2016 Two-Player GVGAI Competition,” IEEE
Transactions on Games, vol. 10, no. 2, pp. 209–220, Jun. 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/8100955/

[213] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius,
and S. M. Lucas, “General Video Game AI: A Multi-Track
Framework for Evaluating Agents, Games and Content Generation
Algorithms,” arXiv:1802.10363 [cs], Feb. 2018. [Online]. Available:
http://arxiv.org/abs/1802.10363

[214] M. Johansen, M. Pichlmair, and S. Risi, “Video Game Description
Language Environment for Unity Machine Learning Agents,” in 2019
IEEE Conference on Games (CoG), Aug. 2019, pp. 1–8.

[215] T. Schaul, “A video game description language for model-
based or interactive learning,” in 2013 IEEE Conference on
Computational Inteligence in Games (CIG). Niagara Falls, ON,
Canada: IEEE, Aug. 2013, pp. 1–8. [Online]. Available: http:
//ieeexplore.ieee.org/document/6633610/

[216] B. Keogh, “An Incomplete Game Feel Reader,” Mar. 2017. [Online].
Available: https://brkeogh.com/2017/03/31/an-incomplete-game-feel-r
eader/

Martin Pichlmair received a Dr. techn. from Vienna
University of Technology in 2007.
He is Associate Professor and Head of the Games
Programme at IT University of Copenhagen and co-
founder of the Vienna-based indie games studio Bro-
ken Rules. Martin is currently focusing his research
and practice on procedural and AI-assisted tools for
game making.

Mads Johansen recieved a MSc in Games from IT
University of Copenhagen in 2014.
He is a PhD Fellow at IT University of Copenhagen
and a co-founder of the former Copenhagen-based
game studio Glitchnap. Mads is researching mixed-
initiative game development tools, with a focus on
the prototyping phase of game development.

176 CHAPTER 9. PUBLICATIONS

9.5 Challenges in generating juice e↵ects for automati-

cally designed games

Challenges in Generating Juice Effects For Automatically Designed Games

Mads Johansen, 1 Michael Cook2

1IT University of Copenhagen
2Queen Mary University of London

madj@itu.dk, mike@possibilityspace.org

Abstract

Automated game design research is usually most concerned
with the mechanics and systems of a game, while aesthet-
ics and effects are left to a minimum, if they are considered
at all. In this project we integrate Squeezer, a tool for gen-
erating visual and audio effects (sometimes called juice) for
games, with Puck, an automated game designer. The result-
ing hybrid system can design games and then generate ap-
propriate sets of effects, making it the first automated game
design system that directly engages with ‘juiciness’ in design.
We support this work with a user study, measuring player re-
sponses to games with simple animations, effects automati-
cally designed and arranged by Puck, and effects designed
and arranged by an expert human designer. We then dissect
the engineering challenges presented by integrating the two
systems, and the new research questions raised by applying
juice through automated game design systems.

Introduction
“Good” videogames are more than just their rules and goals.
Modern game design focuses just as much on the minutiae of
how these rules and goals are expressed, interpreted and fed
back to the player as they interact with the game (Pichlmair
and Johansen 2021). Of course, a good set of rules and goals
is often vital for games to be solid, playable or challenging.
To truly keep a player engaged, however, the game’s pre-
sentation must also be equally fine-tuned and precise. This
is achieved through numerous subtle effects, such as adding
animations to a game to help the player understand the tran-
sitions between different game states; adding freeze frames,
screen flashes or sound effects to punctuate important mo-
ments; or adding feedback effects to help the player see the
game’s response to their action, whether positive or negative
(Anthropy and Clark 2014). When a game responds appro-
priately to player input, it becomes more satisfying to in-
teract with, mimicking tactile and other sensory experiences
we have with real-world objects (Norman 1988). In game
design parlance, this is often referred to as ‘juice’ (Jonasson
and Purho 2012).

Automated game design (AGD) is a relatively young sub-
field of game AI research concerned with building AI sys-
tems that can autonomously engage in designing and devel-
oping games. However, while modern game design has re-
fined the art of juice and it is now a part of everyday vocab-

(a) Falling pieces squash
and stretch as they descend.

(b) Clouds explode out of
pieces as they are destroyed.

Figure 1: Example of a generated effect in SameGame when
pieces are destroyed. This was part of a set used in our study.

ulary, AGD research has not yet tackled this topic and pri-
marily focuses on rules, goals and systems (Cook and Smith
2015). This not only misses out on a whole area of interest-
ing research questions and technical challenges in its own
right, but also limits the impact and quality of the games
they design since even an innovative and groundbreaking
game idea can fail to connect with players if it is presented
in a way that is flat, limp and lacking in feedback. Indeed,
many classic games rely on their juice to deliver their rule-
set effectively, which is why juice must not be considered
window-dressing for AGD research, but a first-class chal-
lenge for automated game designers to tackle.

In this paper, we combine Puck, an AGD system, with
Squeezer (Johansen, Pichlmair, and Risi 2020, 2021), a spe-
cialist tool for generating effects, thereby complementing
the rule/mechanics and goal generation with sets of juicy
feedback. We do this to make the game events look and
feel more significant, as well as adding feedback to input
events in order to let the player know the game acknowl-
edges their actions. This was a considerable engineering task
and revealed many new research questions, as well as pos-
ing complex technical problems that challenged our stan-
dard approach to AGD system design. To evaluate our work,
we conducted a user study with more than 100 players, in
which we compared three different sets of generated effects
(Figure 1 shows an example of a generated effect) against

a simple baseline game with basic ‘tweens’ (Reeves 1981)
and a set of effects hand-designed by the first author, an ex-
perienced designer. The designer created this hand-designed
effect set using Squeezer, utilising its user-facing GUI and
previewing options to design the effects. Our study shows
that getting AGD systems to generate effects can improve
the perception of their games, but that we still have a way to
go before we can outperform human experts. It raises sev-
eral other important questions about how we evaluate more
complex qualities of a game’s design, which has many im-
plications for the future of AGD research. Finally, we feel it
underlines how important it is to bring more practice-based
aspects of game design into AGD research and broaden the
field’s scope.

The remainder of this paper is as follows: in Background
we expand on the role of juice in game design, and the his-
tory of automated game design, as well as listing work re-
lated to this paper; in Integrating Squeezer With Puck we
describe the engineering process we went through and the
challenges we encountered; in Evaluation and Results we
report on the system’s output and our user study targeting
generated effects in games; in Future Work we outline how
future AGD systems can respond to and extend these ideas;
finally in Conclusions we summarise our work.

Background - Juice
The term juice first appeared around 2005 in a blogpost by
Gray et al. (Gray et al. 2005), where they describe it as

...our wet little term for constant and bountiful user
feedback. A juicy game element will bounce and wiggle
and squirt and make a little noise when you touch it. A
juicy game feels alive and responds to everything you
do – tons of cascading action and response for mini-
mal user input. It makes the player feel powerful and in
control of the world, and it coaches them through the
rules of the game by constantly letting them know on a
per-interaction basis how they are doing.

Several practitioners have explained how they go about
adding juice and other parts of the overarching topic of game
feel to games, such as Nijman (Nijman 2013), Söderström
(Söderström 2009) and perhaps most notably the ’Juice it
or Lose it’ talk by Jonasson and Purho (Jonasson and Purho
2012), presents the various elements that can take a game
from being a flat boring prototype to something that feels
fun, exciting and alive.

In an attempt to assist game developers during their
prototyping and game jam escapades, Petterson (Petters-
son 2007) created a small sound effect synthesizer called
SFXR. This open-source tool has taken many forms over the
years but remains a stable way to quickly generate place-
holder sound effects for game developers today. SFXR al-
lows users to generate sound effects from 8 different cat-
egories [Coin/Pickup, Laser/Shoot, Explosion, Power-up,
Hit/Hurt, Jump, Blip/Select, Random], which randomises
values within different parameter presets.

However, the juice design space encompasses not only
sound effects, but time dilation, shaking both screen and

objects, animating object parameters such as position, ro-
tation and size. Additionally, leaving trails or making clouds
of particles is a big part of signalling events using juice.
Pichlmair and Johansen (Pichlmair and Johansen 2021) sur-
veyed the most common elements that go into game feel de-
sign, which includes a more thorough list of juice effects.

Squeezer
Squeezer1 (Johansen, Pichlmair, and Risi 2020, 2021) is a
conceptual successor to SFXR, expanding the effect syn-
thesis from just sounds to many of the other juice effects
described in (Jonasson and Purho 2012). Squeezer even
includes a version of SFXR for sound effect generation.
Squeezer has a GUI that allows designers to build an ef-
fect sequence as a tree of cascading effects. Additionally,
Squeezer allows a designer to “synthesize” an effect se-
quence from a category selection, just like SFXR did before
it. Squeezer includes various types of simple particle effects,
flashes, time manipulation effects, shake effects, scaling, ro-
tating and translating effects, as well as both synthesising
sound effects and playing sound files. The simple particle
systems even allow effects to be added and designed for in-
dividual particles in the same effect sequence. Each effect
is designed to expose as simple a set of parameters as pos-
sible while still allowing the designer as much flexibility as
possible.

While SFXR also allows parameters to be tweaked by the
user, it can be hard to tell how each parameter influences the
generated sound. In Squeezer, parameters are related to indi-
vidual effects. It is easy to preview either the entire sequence
or a subset of the sequence through enabling/disabling parts
of the tree. The GUI also allows setting up events that trig-
ger the effect sequences in Squeezer, which in turn works a
lot like the similar juice tool MMFeedbacks (Forestié 2018,
2019). Besides, the GUI mode Squeezer contains an API for
generating, designing and executing effects.

Background - AGD
Automated Game Design (AGD) is the design and engineer-
ing of AI systems that can take on roles in the game design
process. This most often takes the form of AI systems that
generate games, such as ANGELINA (Cook, Colton, and
Gow 2017a,b; Cook, Colton, and Pease 2012), the Game-o-
Matic (Nelson and Mateas 2008), or Gemini (Summerville
et al. 2018). These systems typically focus on the generation
of game rules and mechanics, which biases AGD research
towards certain kinds of game, and certain kinds of evalua-
tion and goals, as noted in (Cook and Smith 2015).

Related Work
AGD research stretches back into the history of games re-
search, with a prominent early example being (Pell 1992) in
which the author generates chess variants. However, the bulk
of AGD research has taken place since around 2010, with
systems such as Ludi (Browne and Maire 2010) which was

1Squeezer is available at http://github.com/pyjamads/Squeezer
and the generator is described under Effect Sequence Generator in
the README.md

an AGD system that designed abstract board games. Since
Ludi designed games that were to be played with physical
game sets, the lack of juice makes some sense (although an
AGD system that considers the weight, feel, scale and shape
of pieces is an interesting consideration for the field).

Many videogame-based AGD systems emerged concur-
rently with Ludi or soon after. Some, like ANGELINA 1,
focused purely on ruleset generation with little or no con-
sideration for aesthetics. Others took different approaches;
for example, the Game-o-Matic allowed users to apply vi-
sual theming to games as a co-creative activity, while the
system described in (Nelson and Mateas 2007) uses natural
language processing to connect input prompts to an existing
corpus of game art. In all cases, the AGD system’s respon-
sibility only extends to choosing assets for individual game
elements. No attempt is made to add visual effects for em-
phasis or feedback, and juice or user experience is not mod-
elled in any other way.

Some AGD systems do produce juicy games. However,
this is almost exclusively due to the system’s designers
adding juice to the templates used by the AGD system.
The best example of this is Variations Forever which is a
juicy and engaging game that redesigns its rulesets using
constraint-based programming (Smith and Mateas 2010).
The system’s developers added the juice, so although the
AGD system does not control it, the resulting generated
games benefit from it. A possible exception can also be
found in ANGELINA 3, which dynamically sources sound
effects and includes them in game when triggered by certain
actions (Cook, Colton, and Pease 2012).

Puck
Pumuckl is an AGD system currently under development.
It uses an Entity-Component System to describe its games,
commonly used in popular game development tools such as
Unity. This allows Puck to be easily configured by adding,
removing and shaping the components it has available to de-
sign with, which makes the system useful both as an au-
tonomous research tool, as well as a co-creative tool guided
by a designer. The design of Puck draws inspiration from
the open-source AGD system Bluecap2, as well as recent re-
search into how AGD systems can be more tailored towards
industry applications (Cook 2020).

We are yet to publish a full report on Puck, but for the
purposes of this paper, the system represents a fairly ordi-
nary AGD system prior to its integration with Squeezer. It
generates candidate game designs using sets of components
and then plays those designs with AI agents to gather data
on the game. This data is then used to filter the games and
select promising games to extend, perform more playtest-
ing on, or release. Importantly, at the commencement of this
work, Puck’s game model was separated from any code re-
lating to interactivity or visualisation. This was to facilitate
simple testing of the games using AI agents without ren-
dering or user interaction. When presenting one of Puck’s
games for a human player, we use a separate visualiser that
can display the game state on the screen, and a game man-

2Available at https://github.com/possibilityspace/Bluecap

ager for handling input. Prior to the work described in this
paper, the visualiser was called after each player action, ren-
dering the current game state on the screen with no visual
effects or animation.

Integrating Squeezer With Puck
We aimed to augment Puck with the ability to generate a
set of effects for a given game and then load and execute
these effects in a standalone build of a generated game. We
intended to use Squeezer’s existing templates and categories
to help guide generation, connected with Puck’s internal sys-
tem with fixed game events that can reliably be listened for.
Nevertheless, this integration was more challenging than an-
ticipated and raised interesting engineering questions and
problems for Squeezer and Puck.

Generation and Storage
Puck operates by running several different processes in se-
quence to build and evaluate a game design, from sketching
a ruleset through to testing variations of the game with dif-
ferent agents. In order to integrate Squeezer into this, we
added a new process to the end of the design phase, which
takes a partial game design and generates a set of effects for
it. It does this by extracting a list of all the possible events the
game can trigger and then generating an effect for any event
that has a matching appropriate Squeezer recipe (for exam-
ple, the event DestroyPiece and the Squeezer recipe Ex-
plode). We decided on appropriate event/category pairings
because randomly generated recipes describe huge genera-
tive spaces of effects.

The question of where to store these effects was not
straightforward. One reason for this is that ontologically
speaking, up until now Puck had considered two games with
the same ruleset to be identical. This was to help it search the
space more effectively by avoiding testing the same game
twice. However, two games with the same ruleset but dif-
ferent visual effects should be considered as different. This
happens both during a game’s development, in playtesting,
and after release – games such as Tetris have been remade
countless times with variations of their presentation, juice
and game feel3.

We took a compromise solution, where games are still
considered unique for the purposes of generation and evalu-
ation, but effect sets can be generated and stored separately.
This allows multiple sets of effects to be saved for the same
game and loaded dynamically using unique tags. When an
effect set is generated, it is saved to the filesystem with a
filename that combines the game’s name, the targeted ef-
fect’s name, and a suffix indicating the set it belongs to. For
example, SameGame-DestroyPiece-A is an effect for
a game called SameGame, which is designed to activate in
response to the DestroyPiece effect and is from the ‘A’ set
of effects (which in this case means it was the first effect
set saved for this game. In Puck’s normal execution, it will
currently only generated a single set for a game since the
system has no way of preferring one effect set over another.

3Examples include NES Tetris, Tetris 99 and Tetris Effect

However, our user study makes use of this notation to store
multiple effect sets for a single game.

Rendering and Execution
As is common with many AGD systems, Puck’s game model
is separate from its rendering and view code. This is for two
reasons: first, so that we can use AI agents to playtest games
rapidly without rendering or player interaction; and second,
so that renderers/visualisers could be changed out (indeed,
to facilitate research such as this). This poses a problem be-
cause Squeezer’s effects require the renderer to have specific
code to setup, configure and execute effects (for example, it
must keep track of objects so that an explosion effect is ap-
plied to the right game object).

We resolved this by creating a specialised renderer for
Puck’s games. It searches the file system when the game be-
gins for the appropriate effect set, adding any effects it finds
and matching them to events based on the filename (as de-
scribed above). It then listens for events from the game and
fires effects as required. This means that using a different
renderer for the game will result in a playable game but with
no effects, thus arguably making it a partial experience of
the fully designed game.

From Human Users To AI
After integrating Squeezer and using its recipe templates to
generate random effects, we realised that the full scope of ef-
fects Squeezer could generate, while useful for a human user
who can rapidly filter and curate, were inappropriate for an
AGD system that does not experience the effects in the same
way as a human user. For example, Squeezer could generate
effects that resulted in game pieces becoming invisible at the
end of the effect. AI players can still interact with the game
board and play, but a human player cannot - even if the game
is still theoretically interactive.

A human using Squeezer could easily spot such errors and
fix them – or have the awareness to use them effectively
(many games temporarily make game objects invisible for
specific effects). An AI system needs to be given an under-
standing of such issues, however. We added filters to the
effect design mode to ensure it avoided certain worst-case
combinations of parameters. However, we wanted to avoid
being too restrictive here and allowed it enough freedom to
create effect sets that were bad or unusual (such as rotat-
ing/colouring a game object’s sprite or permanently making
it too big or small). This ensures as much expressivity as
possible while also ensuring that situations that render the
game completely unplayable are avoided.

Evaluation - User Study
In order to evaluate our system, we conducted a user study in
which participants rate several games based on their visual
and audio effects. More specifically, we designed the study
to test two hypotheses:
• Automatically generating and applying juice effects to a

game improves the user’s perception of the game.
• Hand-designed juice effects by expert designers are pre-

ferred over automatically generated juice effects.

Although juice is designed to improve the user experi-
ence, it is not obvious that automatically generated effects
will have the same impact on the user. Our first hypothe-
sis seeks to establish whether automated systems can gen-
erate and use juice effectively. Well-designed effects go be-
yond the use of simple templates and event matching, though
– they cohere with the overall game design and match the
theme, tone and cadence of gameplay. Our second hypoth-
esis seeks to establish that although our automated effects
improve the user experience, there is still a gap between our
approach and high-level human design intuition.

We chose two games to use in our study: SameGame (see
Fig. 1), an existing classic game design, and Antitrust, a new
game designed by Puck, both described below. Our moti-
vation behind this was to test our hypotheses both on well-
known and novel game designs, thus accounting for situa-
tions where both our participants and our expert designer
would be familiar with the underlying game and the con-
verse. For each game, we built five versions, one baseline
tween version, one version with effects designed by a human
expert, and three versions with generated effect sets. The
baseline and generated versions also had their background
and sprite art randomly chosen from sets curated by a non-
expert. In contrast, the human-designed version had the ex-
pert select background and sprite art from the same pool. We
describe the baseline and expert setups in more detail below.

Participants were presented with the baseline version, the
human-designed version, and a randomly selected generated
version for each of the two games. Both the order of the two
games and the order of the three versions of each game were
randomised to correct for presentation order bias (the games
were not interleaved, however – the player sees all versions
of one game, then all versions of another). The participants
filled out a form where they rated each game version they
played on their ‘aesthetics and visuals’ (with no further defi-
nition, to allow for subjective interpretation), on a scale from
1-10 where one is ”Very bad” and ten is ”Excellent”. The
participants could fill in the form as they played each ver-
sion of the game, and at the end, we noted that they were
allowed to readjust their ratings. This way, each participant
could give an initial rating as they went along and adjust
the ratings when they had played all three versions. We did
this in the hope that participants rate each version differently
and provide a relative ranking of the three versions they saw.
Evaluations of the two games were separate, and as a re-
sult, a small number of participants only completed one of
the halves of the study. Our survey was advertised primarily
through social media. We did not collect demographic data
on our participants, and participants did not need to com-
plete the games in order to rate them.

Game Versions
Baseline When we initially planned the user study, our
most basic visualiser simply showed the current game state,
with no animations between the states. However, we quickly
realised that with no animations many games become con-
fusing, such as Match-3 games or any games where pieces
move, are destroyed, or change state. Even knowing the
rules, we would sometimes be confused during testing. In

order to avoid that confusion, especially for generated games
that players have probably never played before, we decided
to add a minimalist set of tween effects (Reeves 1981; Pen-
ner 2002), we added smooth translation when moving pieces
around the board, a scale-in tween for spawning and a scale-
out tween for destroying pieces. The scale-in/out tweens
simply scales the piece in from or out to a size of zero. All
rules the game generator can create boil down to spawn,
move and destroy. The games do notify the visualiser of
other events, such as game start, gain score and end turn,
but they are unused by the tween visualiser. These games
have the ‘-Base’ suffix in our result section.

Expert Human We decided on making a designed effect
set, using the same tool as the game generator, to compare
the generated effects with effects designed by a human. We
limited ourselves time-wise because it would otherwise be a
very unfair comparison. The generator, once running, could
potentially generate hundreds of different effect sets in sec-
onds or minutes. However, implementing the juice generator
did take a few days, which users of Squeezer would not need
to wait for. So we decided to allow the expert designer a day
making an effect set for each game. The designed effect sets
include effects for game start and gain score events that the
juice generator did not have any good preset options for gen-
erating. Apart from that the both the designed and generated
effects generate an effect set for tapping, spawning, moving4

and destroying. These games have the ‘-Expert’ suffix in our
result section.

Generated The generated effect sets were produced
through the method described in the previous section. For
each game, the system identifies which messages are in its
ruleset and generates an effect for each message according to
a preset set of recipes (that is, a DestroyPiece effect will
always use the ‘explode’ recipe template, regardless of the
game it is generating for). The system uses the default inten-
sity. The generated effect sets were not curated in any way;
we generated exactly three effect sets and used them as-is.
These games have the ‘-Gen1/2/3’ suffix in our result sec-
tion. The effect sets were generated uniquely for each game
– that is to say, SameGame-Gen1 does not use the same set
as Antitrust-Gen1.

Studied Games
SameGame SameGame is a popular arcade game origi-
nally designed in 1985 and ported to many different plat-
forms. The game takes place on a grid that is randomly filled
with coloured tokens. Tapping on a coloured token will de-
stroy it and all tokens of the same colour in a contiguous re-
gion, as long as the region is above a certain size (in our im-
plementation, three or more). The player scores more points
the larger the region is, thus making the challenge both ef-
ficiently clearing the board and maximising the size of the
cleared regions. SameGame is particularly popular as a we-
bgame due to its simplicity and accessibility. One of our mo-
tivations for including this game was that it is such a well-

4Moving is only implemented for SameGame, as Antitrust does
not include a moving mechanic.

SameGame Base Generated Expert
Gen1 4.11 ⇠ 4.06 ⇠ 4.49
Gen2 4.33 < 5.36 ⇠ 5.31
Gen3 4.17 < 5.23 ⇠ 5.63

Antitrust Base Generated Expert
Gen1 4.69 ⇠ 5.31 < 6.54
Gen2 3.95 ⇠ 3.39 < 5.08
Gen3 4.42 ⇠ 4.24 < 5.24

Table 1: Average ratings given to each build. Ratings are
grouped by which generated build participants were shown,
indicated by the row. Symbols between columns show sig-
nificant orderings, or ⇠ for cases where significance could
not be established.

known casual game, and such games are prone to excessive
use of juice (Juul and Begy 2016). It serves as an example
where players expect emphasis of their interactions to make
them feel fun to keep doing.

Antitrust Antitrust is a two-player game designed by
Puck. Players take turns placing tokens of their assigned
colour on a 5x5 board. If a player makes a line of four tokens
in any direction, those tokens are removed from the board at
the start of the opposing player’s turn. When the board is
full, the game ends, and the player with the most tokens on
the board wins. The game plays like a combination of Con-
nect 4 and Gomoku, where players must balance taking over
the board, forcing the opponent into making mistakes, and
avoiding bad moves which limit their future options. For our
study, Antitrust is useful as it is an example of a game both
users and the authors are unfamiliar with. There are no ex-
isting examples of how to design effects for this game, and
therefore it represents the kind of challenge an automated
game designer might encounter regularly.

Results
In total, our survey attracted 113 participants. Seven partici-
pants failed to complete the form for Antitrust, possibly be-
cause the game took longer to play than SameGame, leaving
us with 106 participants for the Antitrust games. One partic-
ipant mistakenly entered data for SameGame in such a way
that their ratings were not recoverable, leaving 112 partic-
ipant records for SameGame. The average ratings for each
build along with significance comparisons, are shown in Ta-
ble 1. Results are broken down according to which version
of Gen each participant saw.

Generated Versus Baseline As stated earlier, our first hy-
pothesis is that generated effect sets improves the user’s
perception of the game. We compared the ratings for the
Gen1, Gen2 and Gen3 builds with the Baseline build and
ran Welch’s t-test to reject the null hypothesis that the av-
erage rating for the Base game is not distinguishable from
each of the generated builds.

For SameGame, Gen1 is inconclusive, but Gen2 and Gen3
reject the null hypothesis (p <0.05), suggesting they are
significantly preferred over the baseline. For Antitrust, the

mean differences are not significant for Gen1, Gen2 or
Gen3. Out of six generated builds, two were significantly
preferred over the baseline, and four were not significant
enough to conclude either way. We discuss these results later
in this section, especially with respect to the difference be-
tween SameGame and Antitrust.

Expert Versus Generated Our second hypothesis was
that hand-designed effect sets would be preferred over au-
tomatically generated juice effects. Again, we compared the
averages for the three generated builds against the average
ratings for the expert build, running Welch’s t-test to reject
similar null hypotheses.

For SameGame, the expert build was not significantly pre-
ferred over Gen1, Gen2 or Gen3. For Antitrust, however,
the expert build was significantly preferred over Gen1, Gen2
and Gen3 (p <0.05). For completeness, we also tested that
the expert build was preferred over the baseline, which it was
in both cases, with very high significance (p <0.001).

Results Discussion
From these results, there is evidence to cautiously support
both of our hypotheses, with caveats. One-third of our gen-
erated effect sets were significantly preferred over the base-
line, and none were significantly less preferred, supporting
our first hypothesis, while our expert designs were signifi-
cantly preferred over half of our generated effect sets, sup-
porting our second hypothesis. However, some results were
not significant enough to draw conclusions from.

We believe our first hypothesis is supported, especially
when considering the context of this research within auto-
mated game design. An automated game designer using our
baseline would use the same effects for every game it de-
signed, whereas Puck, augmented with Squeezer, can pro-
duce varied and different effect sets for each game it pro-
duces. Even if some games are no better than the baseline,
over time, it will maintain variation while the baseline be-
comes familiar, which is important both from the perspective
of automated game design, as well as computational creativ-
ity (Liapis, Yannakakis, and Togelius 2014).

We also believe our second hypothesis is well-supported.
While we are delighted that Puck was able to be competi-
tive with our expert builds in three of the six builds, it failed
to be significantly preferred in all six. That the expert build
comfortably outperformed both baselines, with significance,
is also evidence that good expert design adds something to
the perception of a game, reaffirming the importance of this
line of research.

Given that some of our participants did not complete
the evaluation of Antitrust and none of the generated An-
titrust sets was preferred over the baseline, we believe An-
titrust itself may have been a less enjoyable game expe-
rience than SameGame, resulting in more generally nega-
tive ratings from more flashy effects. Tuning the difficulty
of the AI player prior to release was difficult, compared to
SameGame which naturally tends towards a conclusion af-
ter a few turns and cannot really be ‘lost’ in a meaningful
sense. It is also possible that players prefer fewer effects in
an adversarial game, with more tension and focus, compared

to SameGame’s casual, lighter mood. This only serves to un-
derline the importance of the relationship between aesthetics
and mechanics, and why AGD research should consider this
interplay more prominently.

This user study is not intended to be the final word on the
applications of juice to automated game design. Rather, we
see this as a jumping-off point. We have clearly shown that
simple automatically generated juice can improve the per-
ception of an automatically designed game, but also under-
lined that even manually designed juice improves the perfor-
mance of automated game design systems. We hope that this
is evidence enough to both encourage AGD researchers to
add juice to their systems and to stimulate more research into
how AGD systems can understand, model and apply juice to
its full potential.

Future Work
This work represents a starting point for research into juice
generation for automated game design. A key area of future
work from an automated game design perspective is to use
data from automated playtesting of games to influence the
juice generation process. Many automated game designers
use AI agents for playtesting games and gathering data on
balance, difficulty and other factors. We believe the same
data can be used to identify ways to juice the game - for ex-
ample, by identifying player actions that are rewarding, rare
or significant. We believe this would greatly focus the juice
generation and result in more unique and distinct games.

We propose that effect evaluation is another key area fu-
ture research, that poses a hard challenge for automated
game design systems. One way to get around this issue, is
to allow the system to make “A/B tests” comparing two sets
of generated effects for the same game, through user play
testing. By allowing users to rank two variations, the system
could potentially find the best option out of a set of gener-
ated effects, and in time it might be possible to improve the
generation process based on the gathered data.

Additionally, both Squeezer and Puck would benefit from
many small additional features to expand their capabilities
for this task. Extending Squeezer with a broader range of
generator options would give Puck more expressivity in the
effects it can generate – in particular, Squeezer lacked a
specialised recipe for some common puzzle effects such as
pieces being added to the board. Giving Puck an understand-
ing of other key design skills such as basic colour theory and
the selection of colour schemes would allow it to augment its
effects, backgrounds and sprite selections to cohere together.

Conclusions
In this paper, we reported on the integration of Squeezer,
a tool for generating juicy effects for games, and Puck, an
automated game designer – the first example, to our knowl-
edge, of an automated game designer that incorporates juice
into its model. We discussed the importance of juice in game
design and the challenges we encountered in integrating
juice into an automated game design workflow and argued
for its importance in light of expanding AGD research. We
reported on a user study where over 100 participants gave

feedback on their perception of several games, which ev-
idenced that juice can add to the player’s perception of a
game and that there is still much work to be done before
juice generation can match up to human-level design.

Juice and game feel are vital parts of modern game de-
velopment. Including these disciplines in the scope of AGD
research is crucial for the field to grow and properly ex-
plore the breadth of game design as a practice. At the same
time, researchers interested in building tools like Squeezer,
investigating co-creativity and supporting game developers
in adding juice to their games will also benefit from work-
ing with AGD systems. AGD research helps challenge us to
create formal models of juice design and test theories about
juice generation at a large scale. We hope this paper is a
starting point for much additional research in this area.

Acknowledgements
The authors thank the reviewers for their enthusiastic feed-
back which improved the paper. The second author was sup-
ported by the Royal Academy of Engineering under the Re-
search Fellowship scheme.

References
Anthropy, A.; and Clark, N. 2014. A Game Design Vocab-
ulary: Exploring the Foundational Principles behind Good
Game Design. Addison-Wesley Professional, 1st edition.
ISBN 0-321-88692-5.
Browne, C.; and Maire, F. 2010. Evolutionary Game Design.
IEEE Trans. Comput. Intell. AI Games 2(1): 1–16.
Cook, M. 2020. Software Engineering For Automated
Game Design. In 2020 IEEE Conference on Games (CoG),
487–494. ISSN 2325-4289. doi:10.1109/CoG47356.2020.
9231750.
Cook, M.; Colton, S.; and Gow, J. 2017a. The ANGELINA
Videogame Design System—Part I. IEEE Transactions on
Computational Intelligence and AI in Games 9(2): 192–203.
ISSN 1943-068X. doi:10.1109/TCIAIG.2016.2520256.
Cook, M.; Colton, S.; and Gow, J. 2017b. The ANGELINA
Videogame Design System—Part II. IEEE Transactions on
Computational Intelligence and AI in Games 9(3): 254–266.
ISSN 1943-068X. doi:10.1109/TCIAIG.2016.2520305.
Cook, M.; Colton, S.; and Pease, A. 2012. Aesthetic Consid-
erations for Automated Platformer Design. In Proceedings
of the Eighth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE-12, Stanford, Cal-
ifornia, USA, October 8-12, 2012.
Cook, M.; and Smith, G. 2015. Formalizing Non-
Formalism: Breaking the Rules of Automated Game Design.
In Proceedings of the 10th International Conference on the
Foundations of Digital Games (FDG 2015), 5. FDG.
Forestié, R. 2018. Best Practices for Fast Game Design in
Unity. https://www.youtube.com/watch?v=NU29QKag8a0.
Accessed: 2020-04-17.
Forestié, R. 2019. How to Design with Feedback and Game
Feel in Mind - Shake It ’til You Make It. https://www.

youtube.com/watch?v=yCKI9T3sSv0. Accessed: 2020-04-
17.
Gray, K.; Gabler, K.; Shodhan, S.; and Kunic, M.
2005. How to Prototype a Game in Under 7 Days.
https://www.gamasutra.com/view/feature/130848/
how to prototype a game in under 7 .php. Accessed:
2019-10-27.
Johansen, M.; Pichlmair, M.; and Risi, S. 2020. Squeezer
- A Tool for Designing Juicy Effects. In Extended Ab-
stracts of the 2020 Annual Symposium on Computer-Human
Interaction in Play, CHI PLAY ’20, 282–286. New York,
NY, USA: Association for Computing Machinery. ISBN
978-1-4503-7587-0. doi:10.1145/3383668.3419862. https:
//doi.org/10.1145/3383668.3419862.
Johansen, M.; Pichlmair, M.; and Risi, S. 2021. Squeezer -
A Mixed-Initiative Tool for Designing Juice Effects. In Pro-
ceedings of the Foundations of Digital Games Conference
(FDG 2021), 11. Online.
Jonasson, M.; and Purho, P. 2012. Juice It or Lose It. https:
//www.youtube.com/watch?v=Fy0aCDmgnxg. Accessed:
2019-02-27.
Juul, J.; and Begy, J. S. 2016. Good Feedback for Bad
Players? A Preliminary Study of ‘Juicy’ Interface Feedback.
In Proceedings of First Joint FDG/DiGRA Conference, vol-
ume Proceedings of first joint FDG/DiGRA Conference, 2.
Dundee: DiGRA. https://www.jesperjuul.net/text/juiciness.
pdf.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014. Com-
putational Game Creativity. In ICCC, 8.
Nelson, M.; and Mateas, M. 2007. Towards Automated
Game Design. In Proceedings of the 10th Congress of the
Italian Association for Artificial Intelligence.
Nelson, M. J.; and Mateas, M. 2008. An Interactive Game-
Design Assistant. In Proceedings of the 13th International
Conference on Intelligent User Interfaces - IUI ’08, 90.
Gran Canaria, Spain: ACM Press. ISBN 978-1-59593-987-
6. doi:10.1145/1378773.1378786. http://portal.acm.org/
citation.cfm?doid=1378773.1378786.
Nijman, J. W. 2013. The Art of Screenshake. https://www.
youtube.com/watch?v=AJdEqssNZ-U. Accessed: 2021-04-
22.
Norman, D. 1988. The Design Of Everyday Things. Basic
Books.
Pell, B. 1992. METAGAME in Symmetric Chess-Like
Games. In Heuristic Programming in Artificial Intelligence
3 – The Third Computer Olympiad.
Penner, R. 2002. Robert Penner’s Programming Macrome-
dia Flash MX. New York: McGraw-Hill/Osborne. ISBN
978-0-07-222356-9.
Pettersson, T. D. 2007. SFXR. http://www.drpetter.se/
project sfxr.html. Accessed: 2020-07-11.
Pichlmair, M.; and Johansen, M. 2021. Designing Game
Feel. A Survey. IEEE Transactions on Games IEEE Trans-
actions on Games (Early Access)(IEEE Transactions on

Games (Early Access)): 1–20. ISSN 2475-1510. doi:
10.1109/TG.2021.3072241.
Reeves, W. T. 1981. Inbetweening for Computer Anima-
tion Utilizing Moving Point Constraints. In Proceedings
of the 8th Annual Conference on Computer Graphics and
Interactive Techniques - SIGGRAPH ’81, 263–269. Dal-
las, Texas, United States: ACM Press. ISBN 978-0-89791-
045-3. doi:10.1145/800224.806814. http://portal.acm.org/
citation.cfm?doid=800224.806814.
Smith, A.; and Mateas, M. 2010. Variations Forever: Flex-
ibly generating rulesets from a sculptable design space of
mini-games. In Proceedings of the IEEE Conference on
Computational Intelligence and Games.
Söderström, J. 2009. The Four-Hour Game Design by Cac-
tus. https://www.gdcvault.com/play/1243/(304)-The-Four-
Hour-Game. Accessed: 2020-07-11.
Summerville, A.; Martens, C.; Samuel, B.; Osborn, J.;
Wardrip-Fruin, N.; and Mateas, M. 2018. Gemini: Bidi-
rectional Generation and Analysis of Games via ASP.
Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment 14(1): 123–
129. ISSN 2334-0924. https://ojs.aaai.org/index.php/
AIIDE/article/view/13013.

	Acknowledgements
	Abstract
	Resumé
	Introduction
	Research Questions
	List of Papers
	List of Open-Source Projects
	Contributions & Outline

	Background
	Practiced-Based Design Research
	Game Development
	Procedural Content Generation
	Evolutionary Algorithms
	Interactive Evolution

	Computational Creativity
	Mixed-Initiative Tools
	Mixed-Initiative Tools for Game Development

	Designing Game Feel
	What is Game Feel?
	From Flow to Feel
	Juice the Feel Amplifier
	Three Design Domains
	Discussion and Future Work

	Supporting Game Feel Design
	Game Description Frameworks
	Video Game Description Language
	Extending VGDL with Game Feel Elements
	Implementation Options
	UnityVGDL
	Building Unity prototypes from VGDL
	Handling VGDL Interactions in Unity Prototypes
	A Generalizable Pattern Appears
	Discussion

	Squeezer
	Interactive Description Design
	Architecture
	Executing the Descriptions
	Designing the Setup Procedure
	Visualising the Effect Sequence
	Discussion

	Automated Game Design Systems
	Automated Game Design
	AGD Approach
	Squeezer Integration
	Juicy Challenges
	Discussion

	Discussion

	A New Game Design Process
	Designing for Playful Exploration and Prototyping
	Visual Sequence Design
	User test

	Sequence Generation
	Guiding the Sequence Generation
	Reflecting on Sequence Generation

	Interactive Evolution
	User Test

	Discussion
	Automated Game Design

	Designing Game Feel with Squeezer
	Game Feel Design Reflections
	Reflecting on Squeezer
	Results from the AGD experiments
	Discussion

	Discussion
	Reviewing Contributions
	Game Feel Design
	Supporting Game Feel Design
	A Playful Design Process
	Game Feel Design with Squeezer
	Reviewing Research Questions

	Future Work
	Practice-Based Game Design Research
	Squeezer
	More Game Design Topics to Explore
	Automated Game Design
	Juice as Sense Replacement
	Exploring How Juice Impacts AI Performance

	References
	Publications
	Video game description language environment for Unity machine learning agents
	Squeezer - A tool for designing juicy effects
	Squeezer - A mixed-initiative tool for designing juice effects
	Designing game feel. A survey.
	Challenges in generating juice effects for automatically designed games

