
IT University of Copenhagen
Digital Design

Tactile Games

Operationalising Difficulty in Puzzle Games

Jeppe Theiss Kristensen

July 30th, 2022

A Dissertation submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

https://www.itu.dk
https://tactilegames.com/

i

Declaration

Rued Langgaards Vej 7 ʹ 2300 Copenhagen S ʹ Denmark ʹ Ph. +45 7218 5000 ʹ CVR 29057753 www.itu.dk

Jeppe Theiss Kristensen

 Digital Design
 Direct phone: +45 6018 3057

E-mail: jetk@itu.dk

July 30, 2022

Declaration for submission of PhD thesis

I, Jeppe Theiss Kristensen, declare that this thesis - submitted in partial fulfilment of the requirements for
the conferral of PhD, from the IT University of Copenhagen - is solely my own work unless otherwise
referenced or attributed. Neither the thesis nor its content have been submitted (or published) for
qualifications at another academic institution.

Yours sincerely

Jeppe Theiss Kristensen

Abstract (Dansk)

Denne erhvervs-PhD har hovedsageligt beskæftiget sig med at bestemme og modellere sværheds-
graden i spil, og specifikt puzzle-spil til mobil (mobile puzzle games). Sværhedsgraden spiller en
afgørende rolle for spillerens engagementet i sådanne spil, så det at opnå en dybere forståelse
og være i stand til at forudsige den opfattede sværhedsgrad på spiller-niveau er vigtige mål ikke
kun for forskere men også for den overordnede industri.

I begyndelsen fokuserede projektet på at skabe en playtesting agent der automatisk kan
spille nyt indhold og nye baner igennem i et kommercielt mobile puzzle games. Til det formål
udviklede vi et reinforcement learning system der kunne fungere inden for bestemte tekniske
begrænsninger såsom ingen mulighed for at bruge optagne spillespor eller tree-search metoder.
Selv om agenten ikke var i stand til at opnå menneskelignende egenskaber på alle baner, så var
et forskningsbidrag at de bedste 10% af agentens forsøg var stærkt korreleret med spillerdata,
samt hvordan agenten kan trænes på en hurtig og robust måde.

Idet agenten ikke var tilstrækkelig i sig selv til at forudsige sværhedsgraden af nye baner,
startede vi med at addressere spørgsmål vedrørende hvordan det er muligt at forbinde spiller-
og agent-adfærd. Det første forskningsområde var mere fokuseret på at svare på spørgsmålet
om, hvad sværhedsgraden egentlig er i mobile puzzle games og hvad det indebærer at forudsige
sværhedsgraden af baner en spiller endnu ikke er stødt på. Fra dette projekt var der to forskn-
ingsbidrag: for det første foreslog vi en parametrisk fordeling til at modellere antallet af skridt
spillerne har brug for til at klare en bane, hvilket kan bruges til at automatisk justere sværheds-
graden. For det andet foreslog vi, hvordan Factorization Machines (FM) kan bruges til at
forudsige antallet af forsøg hver enkelt spiller forventes at bruge på banerne, samt hvordan
spillerevner og grundlæggende sværhedsgrad af baner kan beskrives via de latente faktorer i
modellen.

Det sidste forskningsfokus var at binde det hele sammen – hvordan kan data fra playtesting
agenten bruges sammen med personaliserede forudsigelser til at forudsige sværhedsgraden på
ikke bare eksisterende men også nyt, originalt indhold? Resultaterne viste at brug af data fra
agenten er nyttigt til at forudsige adfærden på nyt indhold og forbedre forudsigelserne. Selv om
FM metoden er nyttig til personaliserede forudsigelser på eksisterende indhold med spillerdata,
så fungerer ikke-personaliserede forudsigelser via neurale network bedre på nyt indhold. Der er
derfor ikke én tilgang som virker bedst til alle use cases, men i alle use cases er præcisionen god
nok til at bruge i en kommerciel kontekst.

iii

Abstract

The main line of investigation of this industrial PhD has been determining and modelling
difficulty in games, specifically in mobile puzzle games. Difficulty plays a crucial role in player
engagement in such games, so gaining a deeper understanding and being able to predict the
perceived difficulty on a player level are important goals not only for researchers but for the
industry at large.

The initial work focused on creating a playtesting agent that would be able to automatically
play through new content in a commercial puzzle game. For this purpose, we developed a
reinforcement learning setup that could operate within a number of technical constraints, such
as no possibility of using player play traces or tree-search. While the agent did not reach human-
level performance on the full-scale problem, a key finding was that the top ∼10% performances
of the agent on a level were strongly correlated with player data. Additionally, we proposed
ways to train the playtesting agent in a quick and robust way.

With the agent not being enough by itself to predict the difficulty of new levels, we started
to address the question of how to link agent behaviour to player behaviour. The first line of
research was more focused on answering the question of what difficulty actually is in puzzle
games and what it entails to predict difficulty for any content a player has not yet encountered.
There were two main findings from this work: first, we proposed a parametric distribution
for modelling the number of actions players spend for completing a level, paving the way for
dynamic difficulty adjustment, and second, how individual difficulty predictions for the players
are possible using factorization machines by capturing player skill and intrinsic level difficulty
with latent factors.

In the last line of research, the objective was to tie it all together – how can agent behaviour
data be used together with personalised predictions for estimating the difficulty of not just old
content but also new, novel content? The results showed that agent data does indeed have high
predictive power on new content and can improve personalised predictions. While the factor-
ization machine approach is useful for personalised predictions on old content, for predictions
on new content, non-personalised predictions using a standard artificial neural network worked
better. There is therefore not one approach that works the best in all use-cases, but in each
of the use-cases, the accuracy of the methods is high enough for being used in a commercial
context.

iv

v

Acknowledgements
First of all, I would like to thank my university supervisor, Paolo Burelli. You have helped me
navigate both academia and industry, and the trust you have put in me, whether it has been
regarding deciding on research directions, organising conferences or other pursuits, has been a
large motivation for me and a huge factor in where I am today. I hope we get to collaborate in
the future.

I would also like to thank my company supervisor, Arturo Valdivia. I thank you for the
interesting discussions we have had, and your ability to transform the data science department
at Tactile Games has given me a great perspective on the industry.

I would also like to thank the two previous company supervisors, Christophe Carvenius and
Morten Nielsen. Although Christophe left early on in the project, I want to thank you for your
role in getting this project up and running. Even if Morten was a temporary stand-in, I want
to thank you for the professionalism, efficiency and patience that you have had regarding this
project. You really helped (re)kick-start the research, especially with the Game AI trip to New
York.

A special thanks goes to the Innovation Fund Denmark and Tactile Games for funding the
PhD. I feel that the collaboration has been mutually beneficial for all parties and helps bridge
the gap between academia and industry. I appreciate the last-month assistance from Tactile
Games.

A benefit of being at both a university and a company is that you have double the amount
of colleagues. I therefore want to thank all the colleagues at Tactile Games, from the other data
scientists and the core team to the level designers and game developers. In particular, I want
to thank Vince for always being up for pushing our understanding, Celia for assistance with
DS tasks, and Lasse, Anibal, and LP for technical assistance with Unity. From ITU, I want to
thank Rasmus for your quick proofs-of-concept on my problems that I hope to imitate one day,
González-Duque for your Bayesian motivation, Sebastian for your assistance early on, and the
rest of the REAL lab for the memorable experiences. I also want to thank the rest of Digital
Design for the great discussions and retreats to Kildegaard.

Despite COVID-19, I managed to go for a short research stay abroad at Aalto University
in Finland. I want to give a big thanks to Perttu Hämäläinen and Christian Guckelsberger for
not just your hospitality but also your intellectual contributions to my work. My PhD would
not have been the same without our collaboration. I also want to thank the rest of the people
at Aalto for the social events that have been sorely missed during these last few years. And the
Thursday pancakes.

I want to thank my family and friends for all the support and offers of help. I especially
appreciate the hospitality of my partner’s family in this last sprint of the PhD in Rhodes. Your
help and concern have been really helpful. ευχαριστώ πολύ!

Lastly, I want to thank my partner, Arxodia. Your patience and support are what have
gotten me through this project, and I cannot express my appreciation with words.

Contents

I Prologue 1

1 Introduction 2
1.1 Motivation . 2
1.2 Problem definition and applications . 4
1.3 Research questions . 5
1.4 Difficulty in puzzle games . 6
1.5 Automated playtesting . 7
1.6 Structure of the thesis . 8

2 Background 9
2.1 Operationalising difficulty . 9

2.1.1 Characterising difficulty . 9
2.1.2 Difficulty in games . 11
2.1.3 Modelling difficulty and players . 13

2.2 Reinforcement learning . 15
2.2.1 Introduction . 15
2.2.2 Policy and value function . 16
2.2.3 Bellman equations . 17
2.2.4 Estimating the value function . 17
2.2.5 Exploration-exploitation dilemma . 18
2.2.6 Policy gradient methods . 19
2.2.7 Function approximation . 20
2.2.8 Algorithms . 20

2.3 Automated playtesting methods . 22
2.3.1 Learning to play games . 22
2.3.2 Automated playtesting in games . 24

II Main research 27

3 Modelling Difficulty Using Historic Observations 28
3.1 Per-level difficulty modelling . 28

3.1.1 Background . 28

vi

CONTENTS vii

3.1.2 Results and conclusion . 29
3.1.3 Relevant paper(s) . 31

3.2 Personalised predictions . 31
3.2.1 Background . 31
3.2.2 Results and conclusion . 32
3.2.3 Relevant paper(s) . 32

3.3 Paper 1: Statistical Modelling of Level Difficulty in Puzzle Games 34
3.4 Paper 2: Personalized Game Difficulty Prediction Using Factorization Machines . 43

4 Developing Playtesting Agents for New Content 56
4.1 Automated playtesting . 56

4.1.1 Background . 56
4.1.2 Results and conclusion . 57
4.1.3 Relevant paper(s) . 59

4.2 Paper 3: Strategies for Using Proximal Policy Optimization in Mobile Puzzle
Games . 60

4.3 Paper 4: Estimating Player Completion Rate in Mobile Puzzle Games Using
Reinforcement Learning . 71

5 Agent-Assisted Game Difficulty Prediction 76
5.1 Difficulty prediction using AI agents . 76

5.1.1 Background . 76
5.1.2 Results and conclusion . 77
5.1.3 Relevant paper(s) . 78

5.2 Paper 5: Difficulty Modelling in Puzzle Games 79

III Epilogue 92

6 Discussion and Conclusions 93
6.1 Contributions . 93

6.1.1 Modelling player behaviour in puzzle games 93
6.1.2 Personalised difficulty prediction . 94
6.1.3 Robust playtesting agent . 95

6.2 Limitations and future work . 95
6.2.1 Pass rate as difficulty metric . 96
6.2.2 Impact of booster items on predictions . 97
6.2.3 Improving the playtesting agent . 98
6.2.4 Using a playtesting agent in practice . 100

6.3 Summary . 102

List of Figures

1.1 Flow model. Adapted from Schell (2019). 2
1.2 Screenshots from the game Lily’s Garden by Tactile Games – a typical game in

the mobile puzzle genre. 3

2.1 Basic reinforcement learning loop. Adapted from Sutton and Barto (2018). . . . 15
2.2 Backup diagrams for the three main methods to learn the value function for RL

problems. The white circles represent a state, s, and the black circles represent
the possible actions, a, in that state. The red areas highlight which observa-
tions are used to update the value functions in each case. Adapted from David
Silver’s lecture 4 on RL; https://www.davidsilver.uk/wp-content/uploads/

2020/03/MC-TD.pdf. 18
2.3 Actor-critic architecture. Adapted from Sutton and Barto (2018). 19

3.1 Scatterplot of how the difficulty, measured by the average attempts per complete,
changed compared to the expected change. The blue line shows where the two
metrics are equal. 30

5.1 Performance of the improved agent on the first 499 levels. 78

6.1 The pass rate (=completion rate) of levels when excluding players that used
booster items (cleaned) compared to the pass rate of the whole player base (nor-
mal). The cleaned pass rate is consistently lower than the normal pass rate, but
there is a strong correlation between the two. 98

viii

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf

List of Tables

1.1 Included papers in the main body of the dissertation. Listed in the order of
appearance in the dissertation. CoG: Conference on Games. FDG: Foundations
of Digital Games. ToG: Transactions on Games. UIST: User Interface Software
and Technology. 6

ix

Nomenclature
A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
AFM Additive Factors model
ALE Arcade Learning Environment
CMA-ES Covariance Matrix Adaptation Evolution Strategy
CoG Conference on Games
ConvNN Convolutional neural network
DDA Dynamic difficulty adjustment
DP Dynamic programming
DQN Deep Q-Network
ES Evolution strategy
FM Factorisation Machines
GAIL Generative Adversarial Imitation Learning
HCI Human-computer interaction
HMM Hidden Markov model
HyperNEAT Hyper NeuroEvolution of Augmenting Topologies
IRL Inverse reinforcement learning
KC Knowledge Component
KL Kullback-Leiber
MC Monte Carlo
MCTS Monte Carlo Tree Search
MDP Markov decision process
ML Machine learning
NEAT NeuroEvolution of Augmenting Topologies
NN Neural network
PCG Procedural content generation
PG Policy Gradient
POMDP Partially observable Markov decision process
PPO Proximal Policy Optimization
RF Random Forest
RL Reinforcement learning
RNN Recurrent neural network
RPG Role-playing game
SAC Soft Actor-Critic
TD Temporal difference
ToG Transactions on Games
TRPO Trust Region Policy Optimization
UCB Upper confidence bounds
UCT Upper confidence bounds to trees
UIST User Interface Software and Technology

x

a Action
A Advantage
DKL Kullback-Leiber divergence
Q State-action value function
R Discounted return
S State
V Value function
π Policy

xi

Part I

Prologue

1

1 Introduction

When somebody calls something difficult – whether it is a game or something else – most
of us will intuitively understand what the person means. However, for researchers and game
developers alike, this is vague. In order to be able to work with the concept, it is necessary to
operationalise difficulty. That is, it is necessary to define what difficulty is so it can be measured
and put into use. In this dissertation, the specific focus is on puzzles games. Together with an
industrial partner, we explore some of the challenges of operationalising difficulty in their games
and propose ways to better understand how to model and utilise difficulty and automatise parts
of the game design process.

1.1 Motivation

A question that game developers frequently ask themselves is whether their game has the optimal
difficulty or not – and with good reason. How difficult a player finds a game is strongly linked
with the player experience and how enjoyable they find it (Vorderer et al., 2003), which is, by
and large, the main concern for game developers. Therefore, operationalising difficulty is a key
focus for not just game developers but also researchers to ensure an optimal player experience.

The player experience can be understood through the concept of flow, which is described by
Csikszentmihalyi (1990). It describes a state of concentration and deep enjoyment where the
person feels immersed in what they are doing and loses track of time. This optimal experience
is valid for other domains than games, but common to each field is the requirement that the

Figure 1.1: Flow model. Adapted from Schell (2019).

2

1.1. MOTIVATION 3

Figure 1.2: Screenshots from the game Lily’s Garden by Tactile Games – a typical game in the
mobile puzzle genre.

presented challenge matches the person’s competence. It is often illustrated as a 2-dimensional
plot, as shown in Fig. 1.1 where, in order to reach the flow state, the player experience should
be in the flow channel. If the game balance is off by either being too easy or hard, players can
become bored or frustrated and ultimately quit the game.

From this viewpoint, there is not a simple way to operationalise difficulty since it very much
depends on both the player but also what kind of challenge. As Denisova et al. (2020) outline,
there are multiple facets to challenge and what affects the players’ perception of challenge. For
any difficulty-modelling framework, the ability to account for differences between the individual
players is, therefore, a highly desirable but also challenging goal.

These considerations about difficulty also have clear industrial applications. In the fiercely
competitive mobile game industry, which makes up more than half the global $175B video
game industry1, a particularly important area of focus is user retention. A widely adopted
business model in this market is a free-to-play model which relies on users not just installing
the game but also spending time and becoming invested in the game in order for the in-game
monetisation schemes to be effective. For game developers, this means constantly balancing the
currently available content and introducing new content to keep the game experience optimal
and exciting.

This is also the case for the industrial partner of this dissertation, Tactile Games. The
typical release schedule of content for one of their games (e.g. Lily’s Garden, Fig. 1.2) consists
of around 50 new puzzle levels on a bi-weekly basis, each requiring multiple manual playthroughs
and iterations by the level designers. This is just for one out of several live games and not even
counting the continuous quality check process of old content that is a large part of the day-
to-day work of the level designers. Being able to measure, estimate, predict and optimise the
difficulty of all content is, therefore, a crucial tool in the toolbox for Tactile Games and other
game companies for enabling informed decisions that can engage new players and keep them
engaged.

While most gaming companies operationalise difficulty one way or another, the process is
often characterised by being reactive, where the decision-makers await the result from analyses
of previously collected data. However, a more proactive approach where issues can be identified
early on has the potential to improve the player experience significantly and also improve the
workflow of game designers in the long run. This is the starting point of this dissertation. The

1https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-
slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023/

1.2. PROBLEM DEFINITION AND APPLICATIONS 4

overarching theme is how difficulty can be operationalised in realistic scenarios so that game
designers can proactively adjust the game content for the optimal player experience. The results
of this dissertation are validated through experiments using data from the industrial partner,
which ultimately allows the results to generalise to other games and bridge the gap between
research and industry.

1.2 Problem definition and applications

An essential focus of the dissertation is to consider plausible scenarios in a typical game company
in which operationalising difficulty is useful and what tools that are available for that. From
interviews with game and level designers at Tactile Games, we have identified several scenarios
in the game design process where being able to operationalise and model difficulty has the
potential to improve their workflow and gain a deeper understanding of player behaviour.

One such scenario is when the level designers need to maintain existing content. An essential
commercial focus for games is to grow their player base, and as new players are acquired and
start playing the game, the existing content may be outdated in several ways. Since the players
typically need to complete the levels linearly in order to progress to the next level, the game
designers may want to optimise and change the difficulty to let new players catch up. Another
possibility is that the new players come from similar games and tend to be more skilled than
the average player and thus need harder content to feel challenged. These considerations also
extend to players who have been playing the game for some time but still have plenty of content
to consume. In addition, players may be served the previous content out of the typical order,
such as through tournaments or in-game challenges. Identifying how difficult players perceive
any content is therefore crucial for a more fair and balanced experience.

Being able to serve these personalised experiences to the players ultimately relies on being
model difficulty on the existing content and estimating how modifying the content also changes
the individual experiences. Therefore, the research related to this scenario focuses on lever-
aging the extensive amount of historical data available about the previous players and their
performance on said content for modelling and operationalising difficulty.

Another workflow that can be improved is when level designers create new content and
the difficulty needs to be evaluated. As mentioned previously, the level designers typically
create new levels continuously that need to be playtested to determine both the difficulty and
whether it is an engaging level. Similarly, other games sometimes employ procedural content
generation methods where the newly created content also needs to be evaluated but in an
even more automated fashion. The challenge in this scenario is that there is very little or no
player data available. While this is commonly overcome by having the designers make use of
playtesting scripts or evaluate the content themselves, it does not scale very easily. The time
it takes to evaluate the content is proportional to the amount of content, and with multiple
supported games, this can quickly add up. Additionally, new mechanics (or different mechanics
between games) can quickly render the previous playtesting scripts unusable and require non-
trivial changes to capture the additional complexity, which can just as easily lead to unexpected
behaviours.

1.3. RESEARCH QUESTIONS 5

The research related to this scenario of being able to evaluate new content aims toward
creating a way to learn and playtest content automatically. A key challenge of this research
is that it should not only be able to automatically adjust to any game or new content but
also allow the level designers to infer the perceived difficulty of the players that encounter the
content.

1.3 Research questions

The discussion above outlines two scenarios where operationalising difficulty is helpful: Mod-
elling difficulty on existing content so that level designers can more easily adjust the difficulty
depending on the level and players, and estimating the difficulty on new content before it is
released to the players. The main research questions of this dissertation relate to how we can
resolve the challenges in the two scenarios and are as follows:

1. How can data from players be used to operationalise and model difficulty?

2. How can difficulty be measured and predicted on content with little to no player data?

In order to answer these questions, we conducted the research by utilising both experimental
and model methodologies and focusing on defining and modelling difficulty using data from the
industrial partner for validating the methods. This line of research is rooted in the player
modelling and human-computer interaction (HCI) domains and contributes with methods and
knowledge for player modelling in games. A brief overview of this research will be given in
Section 1.4.

Another component of the research in this thesis consists of building automated playtesting
methods that are possible to apply in an industrial context. This research contributes with
practical knowledge to the reinforcement learning field and demonstrates through experiments
possible avenues for bridging the gap between research and industry. How this relates to this
PhD will be introduced in Section 1.5.

Through these research topics, the PhD project contributes to increasing the knowledge
about automated playtesting and provides a complete framework for evaluating game content
in a live game, from the initial conception of playtesting to more practical implementations
of state-of-the-art methods. All the results are validated against data from a live commercial
game and demonstrate proof-of-concept methods that can scale to both large and small games.
The dissertation also highlights limitations in current approaches and offers solutions to said
problems, providing a comprehensive framework for playtesting in puzzle games.

The thesis is article-based and includes five papers authored during the PhD. A list of the
included papers is shown in Table 1.1. These papers comprise the main body of papers that are
concerned with estimating difficulty on puzzle levels, with two relating to building a playtesting
agent and the remaining three relating to modelling players and difficulty.

We exclude two other papers that have been a part of the PhD, with one as the main author
and the other one as a co-author. The first paper (Kristensen and Burelli, 2019) focuses on churn
in games, and while churn and difficulty are linked (e.g., Roohi et al. (2021)), the study mainly
focuses on methods for churn prediction and does not contain any direct link with difficulty.

1.4. DIFFICULTY IN PUZZLE GAMES 6

Article # Section Citation Status
Statistical Modelling of Level
Difficulty in Puzzle Games

1 3.3 Kristensen
et al. (2021)

Conference paper,
published in CoG 2021

Personalised Game Difficulty
Prediction Using Factorisation
Machines

2 3.4 Kristensen
et al. (2022)

Conference paper,
published in UIST 2022

Strategies for Using Proximal
Policy Optimization in Mobile
Puzzle Games

3 4.2 Kristensen and
Burelli (2020)

Conference paper,
published in FDG 2020

Estimating Player Completion
Rate in Mobile Puzzle Games
Using Reinforcement Learning

4 4.3 Kristensen
et al. (2020)

Short paper,
published in CoG 2020

Difficulty Modelling in Puzzle
Games

5 5.2 Kristensen and
Burelli (2022)

Journal paper,
under review in ToG

Table 1.1: Included papers in the main body of the dissertation. Listed in the order of appear-
ance in the dissertation. CoG: Conference on Games. FDG: Foundations of Digital Games.
ToG: Transactions on Games. UIST: User Interface Software and Technology.

The second paper (Hald et al., 2020) focuses on methods for procedural content generation
(PCG) in puzzle games. While that also has its uses for developing playtesting agents (e.g.,
Justesen et al. (2018); Risi and Togelius (2020)), it has not been used in that context in this
dissertation.

1.4 Difficulty in puzzle games

How difficulty is defined and operationalised in games depends on the context. For example,
in adversarial games such as chess or first-person shooter games, the fairest game balance
would be if there was an equal 50% of winning, all things being equal. In many single-player
games, regardless of genre, the player often has the option of adjusting the difficulty themselves,
affecting the speed or likelihood of completing the tasks.

In puzzle games, particularly commercial mobile puzzle games, the game developers often
pre-define the difficulty to allow for better monetisation through in-game purchases or ads. The
difficulty is most often defined by the number of attempts, or inversely the pass rate, that
players spend to complete a level (e.g. in games by Tactile Games, Candy Crush + variations
(Gudmundsson et al., 2018; Poromaa, 2017), Angry Birds + variations (Roohi et al., 2021) and
multiple Electronic Arts games (Xue et al., 2017)).

In order to get a better understanding of how the difficulty is affected by specific gameplay
parameters, Paper 1 (Kristensen et al., 2021) examines how the number of actions, or moves,
taken by the players for completing a puzzle level can be modelled. It is found that using a
negative binomial distribution to describe the move distribution is possible for 85% of the levels.
From this statistical description of the levels, it is possible to estimate how changing the move
limit affects the probability of completing the level. This opens the door to dynamically adjust-
ing the difficulty, which has been proposed as a way to increase player engagement (Hunicke,

1.5. AUTOMATED PLAYTESTING 7

2005). A modified approach has also been tested out in practice in one of Tactile Games’ games,
which will be discussed more in detail in Section 3.1.

A limitation of the previous work was that it does not account for individual differences.
The next step is, therefore, to investigate the feasibility of predicting how an individual player
perceives the difficulty, which is examined in Paper 2 (Kristensen et al., 2022). By using a matrix
factorisation method called Factorization Machines (FM) (Rendle, 2012), which has been used
in recommendation settings and other sparse user-item data contexts, we demonstrate the how
these personalised predictions not only allow better differentiation between players but also
provide an interpretable model that level designers can use for other projects than difficulty
adjustment. An extension to this work where we included playtesting data was tested out in
Paper 5 (Kristensen and Burelli, 2022) and will be discussed in the next section.

1.5 Automated playtesting

Playtesting game content is an important step in the design process when creating new content.
It is during this time the designers are able to tweak game parameters to ensure the content is
not just playable but also enjoyable for the players. With the complexity of games today, both
in terms of technical implementations and mechanics, it can be a very time-consuming process
to playtest every nook and cranny, so the industry has started to automate this process to a
larger and larger extent.

Developing methods for automated playtesting faces two questions: what needs to be
playtested, and how can this be achieved. For example, evolutionary methods have been used
to test out the viability of different card combinations in the collectable card game Hearth-
stone (García-Sánchez et al., 2018). Various approaches often also employ AI methods, such
as reinforcement learning (RL) agents for finding inaccessible areas on a map (Bergdahl et al.,
2020; Gordillo et al., 2021) or Monte-Carlo Tree Search (MCTS) or deep learning methods for
determining the difficulty (as measured by the pass rate) of puzzle game levels (Mugrai et al.,
2019; Gudmundsson et al., 2018).

The field of AI for playing games has received much attention over recent years, and it is the
track at Conference on Games with the most paper submission2. While this increased interest in
the field pushes state-of-the-art methods, employing such methods in practice has many pitfalls
and difficulties: Not all games allow for tree-search-based methods like MCTS; they require a
lot of hyperparameter tuning and implementation choices (Engstrom et al., 2019); or some may
struggle to work for specific games (Kamaldinov and Makarov, 2019).

In this dissertation, the focus has been on understanding what affects the efficiency of RL
methods in puzzle games. Paper 3 (Kristensen and Burelli, 2020) first explores how some of
these common limitations can be overcome in the specific case of Lily’s Garden, one of Tactile
Games’ top games. Three specific strategies for more robust learning are proposed: shuffling
the colours of the board pieces, including an action mask in the observations, and resetting the
game once a certain number of steps to prevent catastrophic learning.

Paper 4 (Kristensen et al., 2020) extends this work by considering ten times the number
2In 2020 https://ieee-cog.org/2020/program

https://ieee-cog.org/2020/program

1.6. STRUCTURE OF THE THESIS 8

of levels and correlates the agent performance with player data. A stronger correlation with
player behaviour is observed by only considering the best 10% of the agent playthroughs, with
similar findings also reported for other games (Roohi et al., 2021). As noted by Gudmundsson
et al. (2018), the agent learns how to play very differently than human players. Rather than
attempting to develop an agent that plays exactly like a human, Paper 5 (Kristensen and Burelli,
2022) examines how different methods and data types can be used together with agent data to
predict the difficulty on levels with no observations of how players have played the level.

1.6 Structure of the thesis

The thesis is split into three major parts.

The first part contains the introduction and background chapters.
Chapter 1 provides the motivation for the different studies conducted during the PhD as well
as an overview of the overall dissertation.
Chapter 2 describes related work in these research fields to which this dissertation contributes.

The second part is the main body of the dissertation and includes a more in-depth discussion
of the results from the included articles and how they answer the research questions laid out in
Chapter 1.
Chapter 3 discusses how difficulty is modelled when there is rich player data available.
Chapter 4 discusses the development of a playtesting agent that can be used to play puzzle
levels.
Chapter 5 focuses on the results from using a playtesting agent and how it is used to address
the cold start issue when new content needs to be evaluated while having limited historical data
available to model it.

The third part is a discussion and conclusion about the results and impact of the study and
possible channels for future work.
Chapter 6 contains a critical discussion of the results and limitations presented in the main
body of the work, as well as possible future work. In the end, there is a summary of all the
work.

2 Background

The two major lines of research in this thesis regarding modelling players and difficulty and
building AI agents for playtesting have their roots in different research fields. While these two
areas often overlap in research and application areas, the focus is often on one or the other. An
important viewpoint in this PhD study is that they must be treated with equal importance.

This chapter first introduces difficulty as a general concept and how modelling and predicting
difficulty in various games have been done. The second section focuses on reinforcement learning
and introduces relevant technical terms and concepts for developing automated playtesting
methods. The last section provides an overview of methods and approaches that have been
used for difficulty prediction and playtesting other aspects of games such as quality assurance
and general testing.

2.1 Operationalising difficulty

Difficulty is the core concept that is used throughout this dissertation. However, what consti-
tutes difficulty is often ill-defined and changes across games (Denisova et al., 2020), making it
hard to operationalise and leading to unclear research objectives. In this section, we delineate
how the term difficulty is used in literature and applied in different games as well as explaining
how we define it in this dissertation. Lastly, we provide an overview of how it has been modelled
to allow for its operationalisation.

2.1.1 Characterising difficulty

Before discussing how difficulty is typically operationalised in games, we must characterise what
we mean by difficulty. Difficulty is often used to describe how easily a player can overcome ob-
stacles and complete the tasks (Denisova et al., 2017), but the experience is highly individual,
depending on the player’s skill. We, therefore, often differentiate between the difficulty as a
whole and the perceived difficulty, which throughout this dissertation will refer to the experi-
enced difficulty of a singular player.

We can also differentiate between describing difficulty as a relational or an intrinsic metric
(Denisova et al., 2020). When players are asked how difficult they find a task, it describes a
relational attribute between the player and the task. On the other hand, in other works that
attempt to describe the difficulty of a task (e.g. the win rate of an AI agent on game levels
(González-Duque et al., 2020)), it is often used as an intrinsic property of the task. This subtle
distinction between describing a task by the relational or its intrinsic difficulty is especially
relevant in this dissertation: While we may be able to use playtesting agents to determine

9

2.1. OPERATIONALISING DIFFICULTY 10

ground truths about puzzle game levels – e.g., the optimal strategies, the minimum number of
moves required to complete a level or the pass rate depending on random seeds – the experienced
difficulty of the players is not necessarily the same.

Another consideration is that difficulty is often used synonymously with challenge, but as
Denisova et al. (2020) notes, they are not the same. The word difficult commonly carries a
negative connotation, and a difficult task puts forth an expectation of struggle and frustration.
While we use difficulty with a neutral valence in this dissertation, a challenging task carries a
different connotation and suggests the task is mentally stimulating and engaging. This differ-
entiation is relevant since feeling challenged is one of the key elements for players to find games
enjoyable (Adams, 2014; Alexander et al., 2013; Brockmyer et al., 2009), but it depends on
other things than just the game difficulty. It also depends on the recent history and skill of the
player as well as on game elements that introduce uncertainty or affect the chance of winning
(Denisova et al., 2020).

Challenge can be broken down into different types of challenges, the two main ones being
cognitive and performative (Ermi and Mäyrä, 2007; Cox et al., 2012). A cognitive challenge tests
the player’s ability to reason and solve problems, which is typical in puzzle games like Lily’s
Garden. Performative challenges depend on the players’ reaction times, speed, and physical
interactions with the game. Action and platform games like the Dark Souls1 series or Super
Meat Boy2 are typical examples of such challenges where timing is crucial, and the physical
limitations of the player play a key role. Cole et al. (2015) extend this by referring to those
types of challenges as functional, which is contrasted with emotional challenges where the focus
is not what the players can do but rather how they feel. In games with narrative elements
(e.g., Papers, Please3) or characters that player feels connected with (e.g., Life is Strange4),
the player can not overcome emotional challenges through functional skills but instead require
them to resolve ambiguity and tension in the narrative. Many games consist of multiple types of
challenges, such as The Elder Scrolls V: Skyrim5, that require the player to employ performative
skills in combat, cognitive skills for solving puzzles and emotional choices for various quests
throughout the game.

In the scope of this dissertation, we focus on specific aspects of difficulty in puzzle games.
While difficulty is related to challenge as discussed above, we do not explore all aspects of
challenge. One of the central games in this dissertation, Lily’s Garden, does contain narrative
aspects that can pose emotional challenges, but it is outside the scope of this dissertation
to investigate its impact on the player experience. Similarly, puzzle games do not generally
require any performative skills, so the main focus revolves around cognitive challenges and how
difficulty can affect this. In order to define what we mean by difficulty in puzzle games so it
can be operationalised, we outline how it has been introduced and defined in other games in
the next section.

1https://en.bandainamcoent.eu/dark-souls
2http://supermeatboy.com/
3https://papersplea.se/
4https://lifeisstrange.square-enix-games.com/en-gb/
5https://elderscrolls.bethesda.net/en/skyrim

https://en.bandainamcoent.eu/dark-souls
http://supermeatboy.com/
https://papersplea.se/
https://lifeisstrange.square-enix-games.com/en-gb/
https://elderscrolls.bethesda.net/en/skyrim

2.1. OPERATIONALISING DIFFICULTY 11

2.1.2 Difficulty in games

Difficulty is one of the key aspects game designers want to be able to measure to ensure a
good player experience at all points in the game (Alexander et al., 2013). Early on, many
games employ different tutorials at the beginning of the game to slowly familiarise the players
with core concepts of the game to allow the players to gradually acquire the necessary skills
to progress (Juul, 2011). Later on, it is also essential to ensure that players do not feel stuck
on challenges that exceed their skill, which can negatively affect their enjoyment (Drey et al.,
2021). It is, therefore, crucial for game designers to be able to judge whether there is a good
correlation between acquired skills and difficulty, which can allow them to make the necessary
adjustments to the content.

For this purpose, we need to operationalise difficulty. The way difficulty is operationalised
should reflect the player experience and enable the level designers to measure the impact of
any changes easily, but this can vary from game to game. Lomas et al. (2017) give a precise
definition of difficulty as the probability of task failure, which provides an interpretable metric
for measuring and comparing difficulty. For example, winning a coin toss is less difficult than
guessing the correct number on a die (p(heads) = 0.50 > p(6) = 0.17), but while this idea
of probability of success is intuitive, the complexity of many games do not allow putting the
difficulty into a simple formula (e.g., Aponte et al. (2011b)). Difficulty is therefore typically
described as a relational attribute between the players and the games, and any measurement is
derived from the player’s performance within the game. Such measurements generally consider
one or more metrics that describe the chance of success, progression/score and time/actions
taken.

One important distinction is that in some literature, difficulty is a loose concept (e.g.
easy/medium/hard). Changing the difficulty in these cases is accomplished by adjusting game
parameters that are assumed to capture difficulty (e.g. the number of enemies (Allison and
Polich, 2008)), where any changes in the player performance metrics are considered a conse-
quence of the change in difficulty. However, we argue that for operationalising difficulty, these
metrics are the difficulty, and changes in game parameters should be evaluated against these
metrics to determine whether these changes make the game more difficult or not. In the follow-
ing, we will highlight a few illustrative examples of how different games use these metrics for
difficulty.

Allison and Polich (2008) examine the physiological reaction of players in a first-person
shooter game where they play through 4 different difficulty levels with an increasing number
of enemies. To evaluate the players’ performance, they measure the kills, wounds, shots fired,
and mission success/failure. Similarly, Vicencio-Moreira et al. (2015) also use kills and mission
success along with questionnaires to evaluate how different balancing methods affect these met-
rics when two players of different skill levels are matched up against each other. Common in
these two examples and similar works (Kneer et al., 2016; Mora et al., 2015; Hristova, 2017;
Aponte et al., 2011a) are the metrics of kills, which can be considered a score metric, and the
probability of success as measured by the win rate.

In some genres, it is not easy to directly measure the player’s performance. In the case of role-
playing games (RPG), the goals are often more open in nature and often let the players choose

2.1. OPERATIONALISING DIFFICULTY 12

a pre-defined difficulty themselves. These types of games often rely on emotional challenges,
where a questionnaire like CORGIS (Denisova et al., 2020) is warranted. However, as discussed
by Bostan and Öğüt (2009), if the difficulty is adjusted automatically, the difficulty should
reflect the likelihood of the player reaching their goal. In other instances where there is no
clear goal or victory condition, metrics capturing the progression are often used instead. For
example, Aponte et al. (2011b) consider the number of pellets eaten by Pac-man before losing
all three lives as the difficulty evaluation function. While such score measurements depend on
the game, they provide a way to compare the relative difficulty in the games.

Some games often consist of distinct tasks, but it is not always easy to measure player per-
formance directly. For example, Pusey et al. (2021) investigate how difficulty can be measured
in the puzzle games The Witness6, Untitled Goose Game7 and Baba is You8. They consider
metrics related to the time it takes for the players to complete the puzzles and the number of
incorrectly submitted solutions. While they find a correlation between these two metrics, in
games like Untitled Goose Game, the tasks can be completed in different orders or are optional,
and there is not an easy way to measure the number of actions or attempts. They, therefore,
note that not all games lend themselves to having their difficulty being described by one metric.
In a similar setting, Linehan et al. (2014) use the minimum number of actions taken to solve
puzzles in four commercial games (Portal 1 9, Portal 2 10, Braid11 and Lemmings12), but this
analysis relies on the researchers denoting playthroughs.

In genres with distinct, limited tasks, both the probability of success and time taken are
commonly used. While not explicitly related to games, similar concepts are also used for
estimating the difficulty of programming tasks (Effenberger et al., 2019), where the time taken
to learn new things or error rate on tasks are considered. For platform games, Wehbe et al.
(2017) consider, in addition to the time taken and success rate, the reported difficulty of the
players. For more traditional puzzle games such as Sudoku, in the work by Pelánek (2011)
they consider the mean solution time required to complete a Sudoku puzzle for evaluating the
difficulty.

For the specific type of games considered in this dissertation, mobile puzzle games, similar
ways of operationalising difficulty have been adopted. For example, for the Angry Birds games,
both the pass rate of the players and the number of birds used are commonly considered (Roohi
et al., 2021; Stephenson and Renz, 2019; Kaidan et al., 2016). In a similar vein, difficulty
in Candy Crush games is described by the player success rate (Gudmundsson et al., 2018;
Poromaa, 2017). In this dissertation, the game we focus on is the puzzle game Lily’s Garden,
which shares not only similar mechanics with these kinds of puzzle games but also commercial
context. Operationalising difficulty as the probability of success has been established in this
section as a common measurement across many genres, and for commercial puzzle games, it
is the norm. We therefore also adopt this operationalising of difficulty as the probability of

6http://the-witness.net/
7https://goose.game/
8https://hempuli.com/baba/
9https://store.steampowered.com/sub/469/

10https://www.thinkwithportals.com/
11http://braid-game.com/
12DMA Design, Lemmings, Amiga, Psygnosis, 1991.

http://the-witness.net/
https://goose.game/
https://hempuli.com/baba/
https://store.steampowered.com/sub/469/
https://www.thinkwithportals.com/
http://braid-game.com/

2.1. OPERATIONALISING DIFFICULTY 13

success, or pass rate, of a given level. However, we note that in some instances, it may be
more natural to consider the inverse pass rate, which instead describes the average number of
attempts players spend on the levels.

2.1.3 Modelling difficulty and players

Measuring difficulty is one thing. Being able to predict the expected difficulty is another.
Whether it is for dynamic difficulty adjustment (DDA) (Hunicke, 2005) or measuring the player
experience for procedural content generation (PCG) (Yannakakis and Togelius, 2011), predicting
the difficulty and player experience is necessary for taking proactive steps regarding the design
of the content. Depending on the use case, three components can be considered for these
modelling purposes: a formal model of gameplay, the content itself and/or the players (Dziedzic
and Włodarczyk, 2018). While some methods also consider AI methods to evaluate the levels,
this section focuses on literature that relies on analytical methods or player/level data.

A common use case for predicting difficulty is DDA, which aims to maximise player engage-
ment by adjusting the difficulty during gameplay (Hunicke, 2005). DDA is used in numerous
games, so it covers a wide variety of methods. Some methods are more reactive and adjust
the content in set increments depending on the player’s recent performance. An example of
this is by Silva et al. (2015), where they change the strategy of the opponent AI in DotA if the
relative performance (here, a linear combination of the level of the player, number of deaths and
objectives describe) between the player and AI exceeds a given threshold. Pfau et al. (2020)
use a λ parameter that changes depending on the success of previous playthroughs and is used
to adjust the enemy health, spawn frequency and abilities. Nagle et al. (2016) consider four
different difficulty adaptation methods where their DDA implementation change depending on
the player’s performance as measured by kills. Additionally, they examine how the Big Five
personality traits (e.g. Roccas et al. (2002)) correlate with the duration and enjoyability of the
different adjustment schemes.

Given that players are motivated differently, some approaches focus on modelling the skill
of the players. For Tetris, Lora et al. (2016) use a clustering method based on the players’
playstyle and decisions on where to place the first ten pieces to group people into three categories
(newbie/average/expert). In games with a high degree of chance (e.g., casino games), Borm
and van der Genugten (2001) note that the skill of the player should be measured over time
and that the skill level of a player falls on a number between 0 (pure chance games) and 1 (pure
skill games). Gonzalez-Duque et al. (2021) use a combination of prior knowledge of players and
Bayesian optimisation methods that enable using priors to predict as quickly as possible the
time a given player will use to solve Sudoku puzzles.

Other probabilistic methods have also been used to estimate the success of players. For
example, Mourato et al. (2014) consider the player success rates depending on level parameters
in platform games, such as gap sizes, timing windows and opponent speeds. This allows them
to build a probabilistic model where the effect of each component on failing the level is used to
estimate the final probability of completing the level. Bunian et al. (2017) consider a Hidden
Markov Model (HMM) that captures a player’s in-game behaviour and use this HMM to generate
new behavioural features for predicting the expertise and the Big Five traits of the players.

2.1. OPERATIONALISING DIFFICULTY 14

Similarly, Xue et al. (2017) build a graph model that describes the probability of success and
churn rate based on historical playthrough data. By knowing the historic churn and pass rate
for a given random seed on a level and by treating the problem as a Markov Decision Process
(see Section 2.2), their model serves the players with levels that maximise their engagement. In
one of the included papers in this dissertation (Paper 1, Kristensen et al. (2021)), a statistical
model is used to estimate the number of actions the general population requires to complete
the level. From the parametric description of each level, the impact of changing the move limit
can then be estimated.

A number of approaches break down the challenges into specific components that can be
used for estimating the difficulty. Van Kreveld et al. (2015) consider a linear regression model
that consists of puzzle level variables which can be used to predict a ground truth pass rate.
The puzzle level variables are split into three categories: initial features that describe the initial
setup (e.g., board size), solution features that describe the board state in its solved state, and
dynamic features that capture aspects of the gameplay of the level (e.g., the minimum number
of required moves). Wheat et al. (2016) also model the difficulty of platform games by different
parameters such as platform size and speed. This is also the case in the work by Wehbe et al.
(2017) where they use a Poisson regression to model the error rate of players depending on
scroll speed, target size and jump task complexity, which can be used to estimate how much
the error rate is expected to change as the level parameters change.

Aponte et al. (2011b) model the difficulty of the level and the skill of the player where the
conditional probability of the player completing a level also depends on whether the degree they
have learned the ability that certain challenges consist of. However, it is necessary to be able to
measure these abilities. This shares some links with the Additive Factors Model (AFM) (Cen
et al., 2006) which describes a learner’s probability of success in a given task that requires a
given ability, or Knowledge Component (KC). This has been applied in educational games by
Harpstead and Aleven (2015) where they examine how children learn to balance in the game
Beanstalk. Ultimately, such approaches rely on specifying specific skills of the players, which
may not always be straightforward. In Paper 2 and 5 (Kristensen et al., 2022; Kristensen and
Burelli, 2022) of this dissertation, we introduce a prediction method based on Factorisation
Machines (FM) (Rendle, 2012). This method learns a latent representation of players and
levels automatically and does not rely on specifying any abilities beforehand. It can be used to
estimate the number of attempts a player is expected to spend to complete the level. Similar
matrix factorisation methods have been suggested to be used for immediate content generation
tailored to players (Zook et al., 2012).

Many of the methods above rely on leveraging existing player data for estimating the diffi-
culty of the game content. While some of these methods can be generalised to new content (e.g.,
the linear regression model for puzzle games proposed by Van Kreveld et al. (2015)), not all
games allow for an accurate estimate using these initial features. Another consideration is that
in commercial games like Lily’s Garden, new ideas and challenges are constantly introduced,
which can quickly invalidate such approaches. The necessity to playtest novel content without
observing players is a golden goose for game developers, and the methods that are used for
developing such tools in this dissertation are the topic of the next section.

2.2. REINFORCEMENT LEARNING 15

2.2 Reinforcement learning

Estimating the difficulty of a puzzle level by only observing the initial game board is hard and
does not reveal “traps” or other dynamic aspects of the level that arise during gameplay. A large
part of the research in this dissertation has, therefore, focused on creating a way to playtest
levels to explore these dynamics to allow for a more comprehensive description of the level.
As a first step, game designers often develop agents based on behaviour or heuristic behaviour
trees, but as the game complexity grows over time due to new content and players, such tools
can quickly become hard and cumbersome to update and maintain. Instead, a more feasible
approach is one where the playtesting agent can adapt to content with minimal intervention.
For this purpose, we look to the field of reinforcement learning (RL), which we will describe in
this section.

2.2.1 Introduction

Figure 2.1: Basic reinforcement learning loop. Adapted from Sutton and Barto (2018).

The basic premise of reinforcement learning is that through interactions with the envi-
ronment, an agent learns which actions maximise the long-term reward. The field has been
thoroughly described in the textbook by Sutton and Barto (2018), but this section focuses on
the background and concepts related to methods used in the included papers.

RL is commonly visualised as the loop shown in Fig. 2.1 where the agent with the policy,
πt, chooses an action, at, at time t given the state st. The agent then receives a reward, rt+1,
and observes the next state, st+1.

In this formulation, RL problems can be described as a Markov decision process (MDP)
where the dynamics of the system can be expressed by the following parameters:

• Action a from the action space A, a ∈ A.

• State s from the state space S, s ∈ S.

• The initial state distribution, p0(s0).

• A state transition density model, p(s′|s, a), which describes the probability of transitioning
to the new state, s′, given state s and action a.

2.2. REINFORCEMENT LEARNING 16

• A reward function, r(s, a, s′), that describes the acquired reward by going to state s′ from
state s after taking action a.

A common condition for describing the RL system as an MDP is that it should satisfy the
Markov property, which describes a situation where the future state only depends on the current
state and not the whole history. In a more formal description, the dynamics of the environment
can be considered an MDP if the following is satisfied:

p(st+1|st, at) = p(st+1|st, at, st−1, at−1, . . . , s0, a0)

In instances where the Markov property is not satisfied, such as when underlying or hidden
information is not captured by the state, it is often referred to as a partially observable Markov
decision process (POMPD). This is common in games where the player does not have access to
the full state such as the random seed or other background information like stochastic processes.
This can cause the RL algorithm to converge slowly or not at all, and in order to address that,
the full trajectory is required to solve the problem.

2.2.2 Policy and value function

The goal of reinforcement learning is obtaining a policy, π, that maximises the reward. It
is common to distinguish between a deterministic policy, π(s) = a, where the chosen action
depends only on the state, or a stochastic policy where the action is sampled from a distribution,
a ∼ π(a|s).

How well the learned policy is performing is evaluated by the expected future reward, or
return, which is calculated by the sum of future discounted rewards:

Rt =
T∑

k=0
γkrt+k+1,

where T is the episode length and γ ∈ [0, 1] is the discount factor. The discount factor is a
mathematical addition that ensures that reward is finite in non-episodic problems. Smaller
values of γ put a larger weight on immediate rewards, while a discount factor close to 1 also
allows future rewards to have an impact on the return.

The value function is used to estimate the expected return, Rt, from following policy π given
that system is in state s:

Vπ(s) = Eπ [Rt|st = s]

Another relevant value is the Q-value which describes the expected future reward from
taking action a in state s following policy π:

Qπ(s, a) = Eπ [Rt|st = s, at = a]

The relation between Vπ and Qπ follows from the fact that Vπ(s) can be described as the
sum of Qπ(s, a) weighted by the probability of picking action a:

2.2. REINFORCEMENT LEARNING 17

Vπ(s) =
∑
a∈A

Qπ(s, a)π(s, a) (2.1)

A useful concept is the difference between the two value functions called the advantage:

Aπ(s, a) = Qπ(s, a)− V (s)

The advantage describes how much better (or worse) action a is compared to the average
performance.

2.2.3 Bellman equations

In order to tie the policy and value function descriptions into the MDP framework, we note
that Qπ(s, a) can be described as the sum of returns over all possible future states weighted by
the transition probability:

Qπ(s, a) =
∑
s′∈S

p(s′|s, a)[r(s, a, s′) + γVπ(s′)], (2.2)

where we have used the fact that the expected return depends on the immediate reward plus
the discounted future rewards, Rt = rt+1 + γRt+1.

Combining Eq. 2.1 and Eq. 2.2 leads to the Bellman equations:

Vπ(s) =
∑
a∈A

π(s, a)
∑
s′∈S

p(s′|s, a)[r(s, a, s′) + γVπ(s′)]

Qπ(s, a) =
∑
s′∈S

p(s′|s, a)
[
r(s, a, s′) +

∑
a∈A

π(s′, a′)γQπ(s′, a′)
]

These equations describe the value function in terms of the sum of all returns from future
states weighted by the probability of visiting these states, which depend on both the transition
probabilities and the policy.

2.2.4 Estimating the value function

At the initial step of a problem, there is no information regarding the expected return. For most
RL algorithms, the goal is to learn an estimate for this through the value function, which is
typically approached in three different ways: dynamic programming (DP), Monte-Carlo (MC)
and temporal difference (TD). They can be visualised via backup diagrams (Fig. 2.2), which
show the possible trajectories in the RL setting with each white-black node pair representing a
state-action pair.

While we focus on TD methods in this dissertation, it is worthwhile to discuss DP and MC
methods briefly. DP is a model-based approach where perfect knowledge of the system (i.e.
transition probabilities of the MDP) allows the value function over all states to be computed.
Through policy iteration, the estimated value function, Vπi evaluates the policy, πi, which is
then in an iterative manner used to update the value function until they converge towards the

2.2. REINFORCEMENT LEARNING 18

Figure 2.2: Backup diagrams for the three main methods to learn the value function for RL
problems. The white circles represent a state, s, and the black circles represent the possible
actions, a, in that state. The red areas highlight which observations are used to update the
value functions in each case. Adapted from David Silver’s lecture 4 on RL; https://www.
davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf.

optimal policy, π∗, and the related value function, V ∗. In practice, it is rare to have a full
model of complex problems, and they can be computationally heavy, so MC and TD methods
are generally used.

MC methods are typically model-free and rely on exploring the environment to learn the
value function. An important aspect of these methods is that they only work for episodic
problems – i.e. there is a terminal state. By exploring a given path in the backup diagrams
until a terminal state is reached, the actual average reward can be used to update the value
function. An advantage of MC approaches is that they utilise the empirical return which means
that it is not necessary to model the environment.

TD methods are also model-free, but unlike MC methods, they do not rely on observing a
full episode before updating the value function. Instead of using the actual return to update the
value function, TD methods instead utilise an estimate of the discounted value of the next state.
However, since this an approximation of the real return, there is an associated reward-prediction
error, or TD error δ, which is given by

δ = r(s, a, s′) + γVπ(s′)− Vπ(s) (2.3)

This can be used to update the value function from the following equation:

V (st)← V (st) + αδ,

where α is the step size.
Learning the policy in conjunction with the value function lead to an actor-critic structure,

which is visualised in Fig. 2.3. The critic is parameterised by w and is used to estimate the
value function, V (s; w). The actor that is parameterised by θ with the policy πθ can utilise the
TD error from Eq. 2.3 to update the preference for a given action.

2.2.5 Exploration-exploitation dilemma

Common to model-free methods is the fact that there is a trade-off between exploration and
exploitation: sufficient exploration is necessary to ensure possible better alternatives to the

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf

2.2. REINFORCEMENT LEARNING 19

Figure 2.3: Actor-critic architecture. Adapted from Sutton and Barto (2018).

actions are found, but in order to maximise the returns and evaluate the current policy, it is
necessary to follow and exploit the current policy.

Many algorithms differentiate between on-policy and off-policy methods. On-policy methods
use the learned policy, π, to both collect observations and exploit the learnings. For this reason,
π is often stochastic, which allows the chosen action to not always be the optimal one. Off-policy
methods make use of a second policy called behaviour policy, which is different from the learned
one and can be a heuristic-based one or even completely random.

2.2.6 Policy gradient methods

While the previous sections are primarily concerned with how the value function is updated,
an essential aspect of RL is also how the policy can be updated. For this purpose, assume that
the policy can be parameterised by θ, i.e. π(a|s; θ). We can define an objective function that
focuses on achieving the highest return:

J (θ) = Vπθ
(s0),

where s0 is the initial state. From this, it follows that the policy πθ can be optimised by updating
θ following a gradient ascent method. I.e.,

θ ← θ + α∇θJ (θ),

2.2. REINFORCEMENT LEARNING 20

where α is the learning rate and ∇J (θ) is the policy gradient. Given the fact that the collected
rewards and states do not depend on θ, the policy gradient can also be written as

∇θJ (θ) = Eπθ
[∇θ ln π(a|s; θ)Qπ(s, a)] ,

which is the Policy Gradient Theorem and is used in several policy gradient algorithms. An
advantage of these methods is that they do not depend on the state space and thus the under-
lying MDP, which means they can be combined with model-free methods discussed previously.
They are also often used in actor-critic architectures due to the ability to learn a value function
simultaneously, which can assist in learning the policy.

2.2.7 Function approximation

Before introducing more specific RL methods used in this dissertation, it is helpful to introduce
a common way to deal with complex RL problems. As discussed previously, the value functions
and policies depend on the state, and we assumed each state was unique and tabular. However,
in many RL problems, the state space may be very large. For example, the state space of a video
game may be represented by the pixels forming a 2D image, but the state in two consecutive
frames will be considered entirely unique, even if we know they should be similar. To deal with
this, function approximators can be used to simplify the space, with artificial neural networks
(NN) being a widespread approach and are referred to as deep RL. They are often also used as
function approximators for the value functions and policy and may or may not share parameters
in actor-critic methods.

Using NNs as function approximators has two significant difficulties. The first is that during
online learning, where observations of the transitions are collected while learning, consecutive
samples of the observations will be strongly correlated. Updating the weights of the NN with
correlated data can quickly cause the method to become stuck in local minima. The other
issue is that the problem is not stationary during learning, which is also true for other types
of approximators that approximate the value function. Whenever the model parameters, θ, are
updated, the target output of the value function also changes, which is unlike typical optimisa-
tion problems where the target stays the same. How they have been resolved will be discussed
in Section 2.3.1.

2.2.8 Algorithms

In this dissertation, the main algorithm that is used for training a playtesting agent is Proximal
Policy Optimization (PPO) (Schulman et al., 2017). However, there are many other policy gra-
dient algorithms which sometimes employ similar algorithmic improvements (e.g. Generalised
Advantage Estimation (GAE) (Schulman et al., 2015)). Weng (2018) provides a comprehensive
overview, but in this section, the content is limited to natural policy gradient methods.

The basic idea behind natural policy gradients is that the updates to the model parameters,
∆θ, should be as large as possible with the minimal change in policy, πθ, while still improving
the policy. This is related to the fact that the problem is not stationary. If the new policy is
very different from the previous one, the estimated value function is not representative of the

2.2. REINFORCEMENT LEARNING 21

new policy. By also searching for the largest update to the model parameters, natural policy
gradients tend to converge much faster than normal policy gradients.

Trust Region Policy Optimization (TRPO)

In order to apply natural gradients to deep RL problems, Schulman et al. (2015) proposed Trust
Region Policy Optimization (TRPO). The main idea is that the old policy function, πθold , should
not diverge too much from the new policy, πθ, which is enforced by ensuring the Kullback-Leibler
(KL) divergence, DKL, between the two policies stays small. By phrasing the problem as an
offline learning problem where the behaviour policy is equal to πθold , the objective function
follows a similar structure as an importance sampling problem (e.g., Levine et al. (2020)):

J(θ) = Es∼ρπθold
,a∼πθold

[
πθ(s, a)

πθold(s, a)Qπθold
(s, a)

]
,

where ρπ is the distribution of states visited following policy π. In practice, the objective
function under the KL divergence constraint can therefore be written as

L(θ) = J(θ)− λ(DKL(πθold ||πθ)− δ),

where δ is the permitted KL divergence and λ is the update step size. From this formulation,
the updates to the model parameters then become

∆θ = 1
λ

F (θold)−1∇θJ(θ),

where F is the Fischer Information Matrix which can locally approximate the KL divergence
for similar distributions. This formulation follows the original definition of natural gradients
(Amari, 1998), hence the link between TRPO and natural gradients.

Proximal Policy Optimization (PPO)

Two limitations to TRPO are its computational complexity and inefficiency when using complex
network architectures. To overcome this, Schulman et al. (2017) introduced Proximal Policy
Optimization (PPO). It uses a clipped surrogate function to prevent large updates and is given
by

LCLIP(θ) = E[min(r(θ)Âπθold
(s, a),

clip(r(θ), 1− ϵ, 1 + ϵ)Âπθold
(s, a))],

where r(θ) = πθ(s, a)
πθold(s, a) , and the hat implies the empirical values.

In problems where the value function also needs to be evaluated, such as in actor-critic
architectures, they propose additional terms in the loss function so it becomes

2.3. AUTOMATED PLAYTESTING METHODS 22

LCLIP +V F +S(θ) = Ê[LCLIP (θ)

− c1LVF

+ c2S[πθ](s)],

where LVF = (Vθ(s) − Vtarget)2 describes the value function loss, S[πθ](s)] is an entropy bonus
that encourage exploration by ensuring the policy does not only favour one action, and c1 and
c2 are hyperparameters that affect the importance of each term.

2.3 Automated playtesting methods

As discussed previously, automated playtesting is becoming increasingly necessary for game
developers, but these methods for playing games can take on many forms. In the Artificial
Intelligence and Games book by Yannakakis and Togelius (2018), they consider three overall
approaches for using game AI for playing games: planning-based, RL and supervised learning
– or any combination of the three. While ad-hoc behaviour authoring methods such as Finite
State Machines and Behaviour Trees are commonly employed in various games for AI, they can
be very complex to create and hard to maintain and scale, especially for constantly changing
games. In this section, we first give an overview of various methods developed for playing games
before discussing how these methods have been used specifically for playtesting different aspects
of games.

2.3.1 Learning to play games

Games have become a standard testbed for both RL and AI methods due to the ease of in-
terfacing the algorithms with the game itself but also due to the diversity of games that allow
researchers to tackle a wide range of challenges (Yannakakis and Togelius, 2018). We mainly
discuss deep learning methods due to their ability to manage the complexity of many game en-
vironments and wide adoption in many game genres (Justesen et al., 2019), but other relevant
methods will also be discussed.

A popular benchmarking framework for gameplaying algorithms is the Arcade Learning
Environment (ALE) (Bellemare et al., 2013), which has over 50 Atari 2600 games available.
This includes popular games like Ms Pac-man (a sequel to Pac-man) and Space Invader but
also games such as Montezuma’s Revenge that is recognised for being a hard exploration problem
due to its sparse rewards. The framework allows to easily interface the games to a common RL
setup and save the game state in the emulator, which is necessary for search-based methods.

An influential model-free approach is by Mnih et al. (2015) who introduced deep Q-learning
(DQN) which is able to use the raw pixels to learn playing 49 Atari games in the ALE framework.
DQN is based on standard Q-learning but uses artificial neural networks and convolutional neu-
ral networks (ConvNN) as function approximators. Due to the challenges of using NNs in RL,
they introduced two critical components to the method: An experience replay buffer from which
observations can be sampled during training of the neural network, which helps remove corre-

2.3. AUTOMATED PLAYTESTING METHODS 23

lations between subsequent observations, and only periodically updating the target which helps
with the non-stationarity that occurs when updating the model parameters. Further improve-
ments, such as Prioritised Experience Replay (Schaul et al., 2015) and Duelling Q-networks
(Wang et al., 2016), have been combined in the Rainbow DQN (Hessel et al., 2018), enabling
super-human performance on most of the 57 Atari games. Similarly, Agent57 (Badia et al., 2020)
also achieves super-human performance on 57 Atari games by using a dual NN architecture for
intrinsic and extrinsic rewards, a meta-controller for adaptive exploration and exploitation, and
a larger window in the recurrent neural network (RNN) part of the architecture.

The other family of game-playing methods are planning or search-based methods, which
have been very popular for board games such as Chess and Go (Lee et al., 2009). They differ
from the above approach in that they are able to plan the next move by utilising a model-based
approach or tree search to evaluate the value and impact of a given action. A popular search-
based method is the Monte-Carlo Tree Search (MCTS) (Chaslot et al., 2021) which combines
random sampling with tree search that allows for a good balance between accurately estimating
the expected return and exploring the options. It has been used in a wide variety of contexts
for games (Browne et al., 2012), but it relies on being able to simulate decisions, which can
become prohibitively expensive in terms of computing or speed in complex games. MuZero
(Schrittwieser et al., 2020) deals with this problem by instead learning a world model that can
be queried rather than the environment itself, which the algorithm can then use for planning
(e.g. MCTS). This enables the method to be used for both board games and Atari games and
does not require any prior knowledge such as game rules. Other planning methods have also
been used for playing Atari games. Lipovetzky et al. (2015) apply the Iterative Width planning
method, a breadth-first planner, to the memory (RAM) state space of 54 ALE and find that it
performs similar or better than the Monte Carlo based UCT (Kocsis and Szepesvári, 2006).

Evolutionary strategies (ES) have also been proposed for learning how to play Atari games
(Hausknecht et al., 2014). In this work, they examine four different ways to evolve a neural
network for learning a policy: a static network with only the weights evolved, CMA-ES (Hansen,
2006), NEAT (Stanley and Miikkulainen, 2002) and HyperNEAT (Gauci et al., 2008). Salimans
et al. (2017) also compare CMA-ES to A3C (Mnih et al., 2016) for both Atari games and robotic
tasks where they find that CMA-ES performs better in 28 out of 51 games. One advantage of
ES is that they do not require calculating gradients like policy gradient methods, which makes
them more tolerant to long time horizons where the discount factor of PG methods is necessary
to reduce the variance of the gradient and ensure convergence. Additionally, since ES use the
full, un-discounted reward, they are invariant to delayed rewards.

A concern with some of the methods mentioned above relates to their feasibility in practice.
MCTS methods can be slow, and it is not always possible to simulate multiple decisions without
breaking the game (i.e., inability to restore saved state). With ES, it may be hard to ensure
similar performance across training sessions due to the stochastic process of evolution. In order
to determine feasible approaches to use in the games made by the industrial partner of this
dissertation, we look to tools that have been developed for the popular game development
tool, Unity. An example is ML-Agents (Juliani et al., 2018) which utilises multiple algorithms
including PPO, SAC (Christodoulou, 2019) and an imitation learning approach called GAIL

2.3. AUTOMATED PLAYTESTING METHODS 24

(Ho and Ermon, 2016). A notable addition to ML-agents is curiosity (Burda et al., 2018),
which encourages the agent to explore by rewarding it for seeking out unexpected outcomes
or emergent behaviour such as tool use (Baker et al., 2019). This can reduce the need for
carefully designing a reward function, but it still has specific failure modes, such as the “noisy
TV problem” where the agent is rewarded from stochasticity in the environment rather than
from exploring.

Another issue is that many RL methods are prone to overfitting their environment (Kirk
et al., 2021). In practice, this means that an agent may learn how to play on a specific level
by simply recognising certain states and remembering the optimal actions. The agent will
effectively have learned one specific strategy per instance, which means that it cannot play
other levels where the states are entirely novel. To overcome this, several approaches have been
suggested. Cobbe et al. (2019) propose using several standard methods known from artificial
neural networks such as L2 weight regularisation and dropout. Laskin et al. (2020) utilise data
augmentation techniques known from computer vision such as random translation, cropping and
colour jitter can also improve generalisation, with similar ideas employed by Risi and Togelius
(2020) who propose to use PCG methods to enhance the generality of ML methods.

In this dissertation, the developed playtesting agent is limited by multiple factors:

• There are no play traces.

• Tree-search is not possible due to technical challenges with saving and loading the game
state.

• The implementation should be simple and easy to maintain.

Following these criteria, many of the methods mentioned above (imitation learning, MCTS
or MuZero) are not feasible to use in the context of this dissertation. One possible choice of
algorithm is PPO, which has proven to require little tuning regardless of the domain, and there
is additional support through the ML-Agents framework. The challenge is that it can be brittle
in terms of learning (Hämäläinen et al., 2018). Furthermore, many RL methods are sensitive
to the exact details of the implementation (Ilyas et al., 2018; Huang et al., 2022). The work in
Paper 3 and 4 explore how we implement PPO in practice.

2.3.2 Automated playtesting in games

Much of the previous discussion has concerned itself with learning how to beat the game.
However, an equally important part for game designers who want to use simulation or AI-based
methods for playtesting new content is to consider the gameplay from the players’ point of view
(Aponte et al., 2011b). As discussed by Roohi et al. (2018), player behaviour is not explained
by purely rational and goal-driven decision-making, so a playtesting method that only focuses
on winning will struggle to capture the full spectrum of player behaviour. A desirable aspect
of any playtesting agent is, therefore, passing the Turing test of game playing bots (Hingston,
2009).

One immediate question is how agent behaviour can be likened with human behaviour.
González-Duque et al. (2020) use one type of agent to explore the difficulty, as measured by

2.3. AUTOMATED PLAYTESTING METHODS 25

the win rate, of platform levels that are generated from two descriptors. These results are
used as priors for a Gaussian Process, which can allow quickly estimating the win rate of
different agents (which serve as a proxy for human players). Gallego-Durán et al. (2018) use
the NEAT algorithm for learning to play a 2D maze game and investigate if the learning curve
of the students and playtesting agents were correlated. While they find a good correlation
between the two as measured by the relative difference (∼ 15%), they note that agents tend
to be at a disadvantage initially since they learn from scratch, unlike the players who have
experience from previous rounds. While not directly comparing the learning curves, Paper 4 in
this dissertation (Kristensen et al., 2020) explores how different ways of training agents affect
the agent’s competence and, importantly, how the number of moves used by the agent correlates
with the pass rate of the players. The strongest correlation is when only training the agent once
by randomly sampling levels during training, while training the agent on a single level leads
to a worse correlation because the agent learns different game mechanics at different speeds.
Additionally, only considering a fraction of the best evaluation runs of the agent can lead to a
higher correlation with human players, which has also been observed in other games and agents
(Roohi et al., 2021).

Another way to test whether the agent is human-like is by analysing whether the selected
actions of the agent resemble that of the players. Khalifa et al. (2016) consider the action
length and nil action length, which describes how many repetitions of each action and the
length of pauses between actions. Since humans have slower reaction times and require more
time strategising than machines, players are expected to have more “sticky” actions and longer
nil action lengths. A similar concern is considered for the AlphaStar bot (Vinyals et al., 2019)
when playing Starcraft II online against other players, where the action rate of the agent has
to be manually limited in order to ensure a fair match. Another way to compare behaviours
is proposed by Holmgård et al. (2018), where they examine heatmaps of what parts of a map
agents with different personas visit. Although they do not compare the behaviour with human
players, it provides a way to explore correlations between behaviours which can be extended to
include human players.

MCTS methods have been widely adopted for playtesting (Keehl and Smith, 2018; Stahlke
et al., 2020; Baier et al., 2018; Poromaa, 2017), and ways to utilise them for playtesting multiple
gameplay aspects and styles have been proposed. Variations of MCTS have been proposed by
Guerrero-Romero et al. (2018) to create a team of agents that can explore different parts of
the game, including a winner and explorer personality. In a similar vein, Holmgård et al.
(2018) propose a variation of MCTS where the criteria for selecting which node to expand
are determined through an evolutionary process, and the utility score is based on one of four
hand-crafted player personas (such as the treasure collector whose score increases with the
number of collect items). Mugrai et al. (2019) consider a similar approach specifically for
puzzle games where four distinct goals (minimising/maximising score and available moves) lead
to four distinct playing styles. Using pre-defined strategies for playing puzzle games has been
explored by Shin et al. (2020) where an A2C agent (Mnih et al., 2016) learned to choose the
optimal hand-crafted strategy, but the method is not easily adaptable to other games.

Rather than relying on an agent to learn from scratch, some methods utilise player data to

2.3. AUTOMATED PLAYTESTING METHODS 26

assist in learning how to play. Zhao et al. (2020) consider imitation learning approaches along
with other RL and planning based methods in four cases studies where they compare both the
skill and style of the agents. Similarly, player data can also be used to treat the problem of
picking human-like actions as a supervised prediction problem. Ortega et al. (2013) train a
neural network to imitate players in Mario, but these methods are not easy to use with limited
data available. Tastan and Sukthankar (2011) use inverse reinforcement learning (IRL) for
teaching an agent to learn a reward function based on expert demonstration in the first-person
shooter game Unreal Tournament. They find that the players estimate bots trained using IRL
compared to the standard bots exhibit a more human-like behaviour. Ariyurek et al. (2019)
also find that training playtesting agents using IRL lead to more human-like agents, even if goal
of the agents and players is to find bugs rather than playing the game as intended. Dobre and
Lascarides (2015) use human corpus data for biasing the node selection of the MCTS method
in Settlers of Catan following the hypothesis that this can improve the performance in complex
games. Gudmundsson et al. (2018) also use neural networks along with an MCTS approach in
a commercial setting with an extensive data set where the agent learns to mimic the actions
of the players. To account for how any trained agent learns differently than human players in
terms of both goal and game mechanics, an additional modelling step is employed where the
agent’s pass rate is used along with level features as input to a logistic regression model that
outputs the predicted pass rate on levels that are not available during training of the model.

This kind of two-step modelling can be beneficial, especially in an industrial setting, since
it relies less on creating a playtesting agent that can play exactly like a human and enables an
easier way to update predictions. As mentioned before, Gudmundsson et al. (2018) use the pass
rate of a trained agent in combination with different puzzle level features to predict the average
pass rate on levels without using any kind of player data for the tested levels. Similarly, Roohi
et al. (2021) use a deep reinforcement learning agent to extract a baseline pass rate for each
level, which is then combined into an “extended” model that simulates a cohort of players with
varying skill, persistence and boredom attributes. The results show they can predict the churn
and pass rate within 2%. Shaker et al. (2010) use two agents (the search-based A∗ (Togelius
et al., 2010) and a heuristic agent) to play through procedurally generated Mario levels. By
recording level descriptors, agent data, and the player experience through questionnaires, they
use a multilayer perceptron to predict the reported levels of fun, frustration and challenge.

The challenge of creating a playtesting method that can be used in an industrial context
requires it to be robust to change and accurate. In this dissertation, we consider a similar two-
step modelling approach as described above in Paper 5 (Kristensen and Burelli, 2022) which is
presented in Chapter 5. Crucially, though, we also investigate how this relates to the perceived
difficulty of the player on a large range of players.

Part II

Main research

27

3 Modelling Difficulty Using Historic Ob-
servations

For some games, especially luck-based ones, deriving the difficulty from analysing the game is
straightforward. For example, if we define difficulty as the probability of success, the chance
of winning a fair coin toss is 50%. However, once the games become more complex, describing
difficulty using a simple heuristic or formula becomes less straightforward. Instead, it relies on
measuring how players perform on the tasks.

The fact that the difficulty of a task is often measured from the interactions of the players also
means that modelling the difficulty when such data is available faces very different challenges
compared to modelling the difficulty of entirely new content. In this chapter, we focus on how
such historical playthrough data can be leveraged for modelling difficulty. This allows us to
answer the first two research questions of how difficulty can be operationalised in puzzle games
and how it can be predicted effectively for individual players.

The chapter contains two sections. Each section contains results from Paper 1 and Paper
2 of this dissertation. The full-length papers are attached at the end of this chapter. The first
section introduces a way to model and operationalise difficulty on a per-level basis. The second
section focuses on how it is possible to make personalised predictions, which can be used to
estimate how many attempts any player is expected to use before completing a given level.

3.1 Per-level difficulty modelling

A common element in puzzle games is the existence of an action/move or time limit. In order
to complete the level, the player must complete the task within this limit. This limit is one
of the main parameters that designers can use to adjust the difficulty of a level, but since the
game ends when this limit is reached, we cannot observe how many moves the player would
have needed to complete the level if they fail. However, if we can model how this distribution
of moves that players require to complete the level, it allows level designers to see beyond this
limit and estimate how adjustments in the move limit ultimately affect difficulty.

3.1.1 Background

The level designers in Tactile Games usually use a simple rule-of-thumb heuristic that a change
of the move limit by 1 changes the pass rate by 1.5 to 2.0%. However, there is data available
about how many moves players spend to complete the level, which should allow a more data-
driven approach.

28

3.1. PER-LEVEL DIFFICULTY MODELLING 29

The work by Kristensen et al. (2021) fills this gap by applying a more mathematical and
theoretical approach to model players and difficulty. The study uses a statistical approach to
answer the question of how many moves players require to complete a level, given that we can
only observe up until the move limit. By using a statistical description of the player behaviour,
we are able to estimate how the move distribution would look like if there were no move limit
and subsequently also estimate the pass rate if there were a move limit, paving the way for
possible ways to adjust the difficulty dynamically.

This way of modelling player behaviour on a play-by-play basis is one of the first steps
for modelling difficulty. Subsequent works (Kristensen et al., 2022; Kristensen and Burelli,
2022) focus on predicting how many attempts a specific player requires to complete a given
level. In order to understand how this attempt distribution looks for a given level and interpret
the predictions, the results from this study provide a natural probabilistic explanation of the
behaviour and facilitate understanding other observations regarding the nature of the data.
The results, therefore, provide the basic building block of how our definition of difficulty can be
observed and operationalised in practice.

3.1.2 Results and conclusion

A plausible distribution that could describe the move distribution is a negative binomial distri-
bution. The distribution is described by two parameters and expresses the number of trials we
observe before n failures occur, with the probability p of failure, although it should be noted
that n can be any positive real number. By fitting a negative binomial distribution to the move
distributions from 4000 available levels from the live commercial puzzle game, Lily’s Garden,
we find that in 85% of the levels, there is a good fit between the theoretical model and data.
This strong result demonstrates how we can model players on this granular level.

An observation from the experiments also shows that by excluding attempts where booster
items are used (e.g. additional moves or free actions that help the player finish the level goals),
the move distribution is better described by the proposed negative binomial distribution. One
reason is that when such attempts are included, there is a consistent spike in attempts that
finished two moves before the move limit and a consistent dip in attempts on the last move.
We interpret this as players trying to maximise their score in a sort of “photo finish” and/or
following a safe strategy on the second-to-last move to ensure they complete the level. This
observed behaviour has been important for understanding the shape of the attempt distribution
in Paper 2 (Kristensen et al., 2022) and Paper 5 (Kristensen and Burelli, 2022). In those studies,
we observe an increased number of players that complete levels with just one attempt compared
to a more theoretical expectation.

A caveat to the method proposed in the paper is that it underestimates the difficulty of hard
levels. This may be due to the move limit distribution not following a pure negative binomial
distribution, which will require additional modelling and analysis of the players to account for.
Additionally, the data is cleaned for attempts that used booster items, which account for around
15% of the playthroughs. This also changes the expected pass rate since only attempts that did
not use any help – which are expected to fail more often – are included in the analysis.

The discrepancy between estimated and actual difficulty makes the method hard to use

3.1. PER-LEVEL DIFFICULTY MODELLING 30

Figure 3.1: Scatterplot of how the difficulty, measured by the average attempts per complete,
changed compared to the expected change. The blue line shows where the two metrics are
equal.

in practice. Instead, a modified method has been used in practice where the percentage-wise
expected change is used to suggest how many moves to add or remove to the move limit. The
results of an A/B test that has the purpose of testing out the method for 300 levels are shown
in Fig. 3.1, where it can be seen that the actual change in difficulty is not so large as expected.
However, this is based on preliminary work and requires additional tuning to be used in practice.

Another limitation of this work is that it only considers players on an aggregate level and
does not consider that players may learn new strategies during gameplay. From subsequent
analyses, it was clear that the move distribution is not constant across the attempt number:
when only looking at data from the first attempt of players, the mean and variance of the
distribution were consistently lower when compared to the subsequent attempts. This suggests
that the players who typically finish a level on their first attempt are more skilled than players
who typically require more attempts.

Despite the limitations, an advantage of this approach is that rather than analytically break-
ing down the challenges into smaller components (e.g. Van Kreveld et al. (2015)) or employing
specific domain knowledge (e.g. (Mourato et al., 2014)), this approach is game agnostic. The
assumptions that lead to the proposed statistical distribution for capturing player behaviour are
clearly defined, and they may apply to puzzle games and any other game with time- or action-
limited challenges. The strength of this study comes from not just validating the method on
a large sample of players from a live commercial puzzle game but also the generalisability to
other games, which can help game designers better understand their player base.

3.2. PERSONALISED PREDICTIONS 31

3.1.3 Relevant paper(s)

The results and discussion are mainly based on Paper 1, Statistical Modelling of Level Difficulty
in Puzzle Games (Kristensen et al., 2021). The paper was submitted to the 2021 IEEE Con-
ference on Games as a full-length paper and has been accepted and presented. It is a part of
a collaboration between the IT University of Copenhagen and Tactile Games and has been co-
authored with the principal company supervisor, Arturo Valdivia, and the principal university
supervisor, Paolo Burelli. I am responsible for conducting the experiments and authoring the
introduction and related work sections in the paper. The methods section was mainly authored
by Arturo Valdivia, and the results, discussion and conclusion sections were split between Ar-
turo Valdivia and me. All co-authors have been involved in the discussion and editing of the
final structure of the paper.

3.2 Personalised predictions

Due to the measured difficulty ultimately depending on the interaction between the players
and the content, the difficulty can change over time depending on the player cohorts. This can
lead to degraded performances over time for methods such as the one explored in Section 3.1.
Building a more robust difficulty modelling method, therefore, involves taking individual player
differences into account, which we will focus on in this section.

3.2.1 Background

The starting point of this research is determining which methods are viable for estimating a
player’s perceived difficulty of a level. A common approach for this purpose is to utilise DDA,
which can significantly positively affect player enjoyment (Alexander et al., 2013). However,
due to technical limitations and design choices, adjusting the game content on a game round-
to-game round basis is not often feasible, as is commonly the goal for other DDA approaches
(for a review, see Zohaib (2018)).

Kristensen et al. (2022) propose a method for personalised predictions based on Factorisa-
tion Machines (FM) (Rendle, 2012). This method is known from recommendation algorithms,
where it is common to have sparse data in terms of user-item interactions. The model learns
latent descriptions of players and levels, which can be used for predicting an individual player’s
perceived difficulty on a level but also provides interpretable model parameters that can be used
for further modelling and other personalised and commercial applications by game designers.

The work presented in Section 3.1 considers how the probability of winning in a level depends
on the move limit. This paper extends that line of thought of viewing the problem as a stochastic
process. Given the assumption that the probability of winning is not the same for every player,
another way to infer the individual pass rate is instead building a model that estimates the
number of attempts a given player is expected to spend on a level, similar to the description of
user skill and level difficulty by Aponte et al. (2011b). For this purpose, we rely on Factorization
Machines (FM).

3.2. PERSONALISED PREDICTIONS 32

3.2.2 Results and conclusion

The paper seeks to answer three research questions related to the performance and interpretation
of the FM method. The goals are predicting the number of attempts a player will spend on
levels they have not yet encountered as well as how early on in a player’s lifetime it is possible to
differentiate the player from the average player. A baseline is provided for each level calculated
as the average number of attempts of the players in the training data on the given level.

The results show that it generally requires between 10 and 30 observations of a player to
predict better than the baseline on the levels they have not yet encountered. By using additional
data about the player (e.g., average performance on previous levels and the use of booster items)
and the level (e.g., specific mechanics), the predictive power of the models can be enhanced with
fewer observations. This also enables using a random forest predictor, which works better than
the FM approach with fewer observations. However, once more than 100 observations of a
player are available, the FM method is more accurate.

A strength of using the FM for predicting the perceived difficulty is that it breaks down the
difficulty into a player-level interaction. We find that the learned latent factors that describe
this interaction between players and levels are closely related to player skill and level variance,
which allows the learned model parameters to be used by the game designers for other types
of personalised content, such as customised in-game offers or levels. Therefore, the suggested
framework offers both the possibility to estimate and operationalise the perceived difficulty
and also provide additional utility for the game designers, including the possibility of dynamic
difficulty adjustments or timely intervention for players that are likely to get stuck.

One of the main limitations of the FM approach is that FMs suffer from a cold start problem.
That is, if there are no observations of a player or level, it is impossible to learn the latent factors
for that given entity. Without any other included information about the players or levels, the
method is unable to predict the perceived difficulty for new players or on new levels. One
way to overcome this is by including additional information about the players and levels, but
further research is necessary to determine what type of information is helpful for these cold start
predictions. This is explored in another paper included in this dissertation (Paper 5, Chapter
5).

3.2.3 Relevant paper(s)

The results and discussion are mainly based on Paper 2, Personalized Game Difficulty Predic-
tion Using Factorization Machines (Kristensen et al., 2022). The paper has been submitted
and accepted at UIST 2022. The presentation at the conference is expected to take place
between 31st September 2022 and 2nd November 2022. It has been co-authored with three
other people; Perttu Hämäläinen and Christian Guckelsberger from Aalto University and the
principal university supervisor, Paolo Burelli, from the IT University of Copenhagen. I am
responsible for conducting the experiments and contributing to most parts of the text except
most of the introduction, which was mainly authored by Perttu Hämälåainen, and Section 2.1
on game difficulty, which was mainly authored by Christian Guckelsberger. All co-authors have
contributed to different parts of the text and been involved in the discussion and editing of the

3.2. PERSONALISED PREDICTIONS 33

final structure of the paper.

3.3 Paper 1: Statistical Modelling of Level Difficulty in Puzzle
Games

Statistical Modelling of Level Difficulty in Puzzle
Games

Jeppe Theiss Kristensen
IT University of Copenhagen/Tactile Games

Copenhagen, Denmark
jetk@itu.dk

Arturo Valdivia*
Tactile Games

Copenhagen, Denmark
arturo@valdivia.xyz

Paolo Burelli
IT University of Copenhagen/Tactile Games

Copenhagen, Denmark
pabu@itu.dk

Abstract—Successful and accurate modelling of level difficulty
is a fundamental component of the operationalisation of player
experience as difficulty is one of the most important and
commonly used signals for content design and adaptation. In
games that feature intermediate milestones, such as completable
areas or levels, difficulty is often defined by the probability of
completion or completion rate; however, this operationalisation
is limited in that it does not describe the behaviour of the player
within the area.

In this research work, we formalise a model of level difficulty
for puzzle games that goes beyond the classical probability
of success. We accomplish this by describing the distribution
of actions performed within a game level using a parametric
statistical model thus creating a richer descriptor of difficulty.
The model is fitted and evaluated on a dataset collected from
the game Lily’s Garden by Tactile Games, and the results of
the evaluation show that the it is able to describe and explain
difficulty in a vast majority of the levels.

Index Terms—player modelling, difficulty modelling, game
design, dda, survival analysis

I. INTRODUCTION

A central aspect of game design is difficulty and its effect
on player experience – too easy and players are not sufficiently
engaged; too hard and players become frustrated, causing
them to quit the game. In games consisting of discrete tasks
or levels, a common way to manage the difficulty is by
controlling the resources available to the player to complete
such task or level – e.g., number of actions or time available
to solve a puzzle. Balancing the correct number of resources
available in the level to obtain a desired difficulty is a complex
task that often relies on the ability of the designer to relate an
abstract descriptor of difficulty to the behaviour of the players
and the controllable components in the level.

For example, in the case of puzzle games that provide
players with limited actions, or moves, to complete each
level, such as match-3 or bubble shooter style games, a direct
way to describe the difficulty is by measuring how many
attempts it takes players on average to complete a level. This
quantity is commonly referred to as attempts-to-complete, and
its multiplicative inverse is what we call completion rate. This
definition is useful for identifying levels in which players may
feel stuck and thus stop playing, controlling the consumption
rate of game content, or even enabling different monetisation

* Corresponding author.

10 20 30 40 50 60 70
Moves

0.00

0.02

0.04

Fr
eq

ue
nc

y
Fig. 1. Histogram over the number of actions spent by players to complete
one of the levels in the data. The effect of the action limit near M = 32
can clearly be seen as a sharp cut-off in the distribution. If we are able to
accurately estimate the full distribution (represented by the red curve), the
completion rate using different action limits can be calculated.

strategies. However, such descriptor only considers the data
in an aggregated way and thus lacks the granularity that may,
for example, tell about the effect of changing the action limit
or how close to finish a player was. This makes it relatively
limited in it expressiveness, giving a designer little information
on how to adjust the difficulty and thus turning the task of level
adjustment into a trial-and-error procedure.

In the vast majority of currently published puzzle games,
success or failure are not the only data available about the
player behaviour in a game; often a summary of the actions
performed and the resources used are tracked. If properly
modelled, this information has the potential to be the basis
of a much richer descriptor of level difficulty. In particular,
the number of actions used by players in their attempts has
both the benefit of describing their progress within a level
and being directly related to an important level design aspect,
move limit.

The number of actions used to complete a level depend
on a number of factors, such as player skill, level setup and
luck. This leads to a certain distribution of actions spent by
players on each level (see Fig. 1). The central idea of this
article is that, by modelling and understanding the nature of
this action distribution, we may be able to not only evaluate
the completion rate but also estimate the effect of design
actions, such as changing the move limit, and gain a deeper
understanding of the player challenges.

To achieve this, the model of the player behaviour needs
to be both accurate and explainable. For this reason, in this
research work, we have investigated the application of a

parametric statistical model to represent the underlying action
distribution. We discuss how this behaviour can be modelled
using a negative binomial distribution and conduct an empir-
ical study of the application of this modelling approach to a
dataset from a popular mobile puzzle game – Lily’s Garden
by Tactile Games – and present and discuss the results of the
study.

II. RELATED WORK

Flow [4] describes the psychological state where the dif-
ficulty of a task and user skill match which leads to an
engaging gameplay experience. While difficulty can be broken
down into multiple sub-components (e.g. cognitive, emotional,
etc. [6]), in scenarios where it is necessary to operationalise
difficulty, such as for dynamic difficulty adjustment or auto-
mated playtesting, it is common to use the probability of task
success as an objective measure of difficulty [5], [7], [9], [13],
[15], [17]. This interpretation is supported by Pedersen et al.
[16] where the correlation between player emotions and level
characteristics in a Super Mario Bros is investigated. Here, the
biggest factor for feeling challenged was the completion rate
of the levels or similar aspects of failure, such as number of
deaths.

In this work we adopt a similar probabilistic definition: the
difficulty of a level is given by the win probability, which
empirically is the completion rate and can be computed as the
number of times a given level has been completed over the
total number of attempts on said level. However, while this
aggregated description of difficulty as the completion rate is
intuitive, it does not offer a deeper and actionable understand-
ing of the problem, such as how imposing a time or action
limit affects the completion rate or how close to finishing a
player was. The nature of such data is censored since we do
not have information about the complete playthrough, so to
draw inspiration on how to deal with that, we can look to
survival analysis [14].

Survival analysis is branch of statistics that focuses on
estimating unseen, or censored, data and is commonly used
to estimate a time until an event. There are multiple examples
of using this approach to describe player behaviour using para-
metric distributions: Feng et al. [8] used a generalised Weibull
distribution to model online session length, and Bauckhage et
al. [2] tested various distributions, including a Weibull and
Poisson-Gamma distribution, to estimate time until people
lost interest in a game. A survival analysis approach has
been used to describe gameplay related behaviour in [10],
in which the authors investigated the operationalisation of
perceived difficulty of levels in the game Flappy Bird. By
using player and playtest AI data, they computed an empirical
survival function, S(x), which describes the distribution of
attempts that reached a given length in a level. From this, the
hazard function could then be used as an indicator of perceived
difficulty.

The work presented in this article shares its nature with
these last studies, in that we attempt to operationalise and
abstract aspect of gameplay – i.e. level difficulty – using a

Fig. 2. An example of a level in Lily’s Garden. The level goals are specified on
the left side, and in-game boosters on the right side. These in-game boosters
are very strong boosters that allow the player to complete the level more
easily.

parametric statistical distribution. The key points of departure
are, that the model presented in this article is both built
and evaluated on a large dataset of real player gameplay
data; furthermore, we present a general framework to describe
the operationalisation of difficulty, identify the appropriate
distribution and evaluate its effectiveness.

III. METHODS

Let us start this section by briefly describing the puzzle
game mechanics. Each level ` requires the player to collect
a series of goals within a predetermined maximum number
of actions, or moves, M`. Each move consists of collapsing
groups of adjacent board pieces by tapping on one of them.
Creating more powerful board pieces that clear a large area of
the board is possible by matching groups of at least 5 board
pieces at the same time. An example of a level is shown in
Fig. 2.

If the player completes all of the level goals with no more
than M moves, then we say that the attempt was successful,
and the player passes to the next level. Consequently, each
player can complete each level at most once. Now, if the player
consumes all of the permitted number of moves M without
completing the all of the level goals, then we say that the
attempt was a failure. In this case the player can either spend
a virtual currency to obtain some extra moves (e.g., +5), or
can decide to have one more attempt at the cost of a life.
These lives regenerate automatically over time, and typically
each player can get up to 5 of lives at any given time.

For this study we use data sample from L = 4000 levels
which has been collected between 2020-06-01 and 2021-01-
01. For each level, the available data for each attempt consist
of the number of moves used and whether the attempt was
successful or not. An initial data cleaning step is performed
by excluding all incomplete attempts, i.e., attempts which
are terminated prematurely either due to a technical issue
in the game, or simply because the player deliberately quits
the game. We also exclude attempts using special in-game
boosters which usually inflate the number of attempts finishing
within k = 0, 1, 2 moves from the moves limit M`. The

Fig. 3. Illustration of the observed frequencies of moves to complete a level.
The vertical dotted line indicates that moves limit is set to M` = 15. The
fitted curve is marked with a dashed line. The subplot in the top-left suggests
the almost linear growth in the observed frequencies leads to fitting left tail
of the negative binomial distribution.

final input dataset consist of the frequency of moves used to
complete the level (see Fig. 1) and the overall completion
rate, which is defined as the percentage of successful attempts
over the total number of attempts, with an average of 350,000
successful attempts per level.

The goal of the method is identifying a parametric distri-
bution which can fit the number of moves used to complete a
level to a good degree, i.e., up the truncation point imposed
by the moves limit M∗` . The fitted curve should match the
observed frequencies, and the area under this curve should
match the observed completion rate. As an illustration, Fig.
3 depicts the undesired situation where the fitted distribution
is able to describe well the observed frequencies, but fails at
matching the completion rate. We can expect this to occur for
instance when the steady growth of the observed frequencies
is almost linear and thus calibrated as the left tail of the
distribution. These ideas are formalised below.

Remark. Let us note here that for other types of games,
the definition of the input dataset would be analogous, for
instance, by interchanging the role of moves used to complete
the level by the units of time taken to complete the task.

A. Calibration of model parameters

Given a level ` with a move limit M∗` , let us denote by
F̂` the empirical distribution of moves used to complete the
level. Let ĉ` be the observed level’s completion rate, i.e.,
the percentage of attempts that complete the level within a
maximum of M∗` moves. As depicted in Fig. 1 the empirical
move distribution F̂` is truncated on the right by M∗` , but we
assume that this data corresponds to a censored observation
of an underlying non-truncated distribution F`. Let us assume
that F̂` and F` have probability density functions, and denote
them by f̂` and f`, respectively.

In these terms, our goal is to find a parametric model for the
distribution F`, in such a way that following two conditions
are met:

Fig. 4. Illustration of the linear relationship between the mean and the
variance of number of moves left to complete level.

Condition 1. The fitted distribution, F`, follows closely the
empirical distribution, F̂`, all across the range (0,M∗`].

Condition 2. The quantity F`(M∗`) approximates the observed
completion rate ĉ`.

In this article we consider the Condition 2 as a validation
step only; that is to say, we do not explicitly enforce this
condition as part of the calibration algorithm. The rationale
behind decision is that we aim at establishing here a baseline
for how much can be explained by focusing only on fitting the
truncated data. In other words, we are assessing the degree in
which Condition 1 can ensure that Condition 2 is fulfilled as
well.

Let us now describe calibration strategy for the model
parameters. Given a parametric model for the distribution F`,
we obtain the corresponding parameter set θ` by applying a
Non-Linear Least Squares (NLLS) regression over the range
(0,M∗`], which is were we can fully observe F̂`. Such a
method requires an initial guess θ0 of θ` as an input, which,
if incorrectly chosen, may lead to a false negative due to a
sub-optimal fit. In order to minimise this risk we choose the
initial guess by solving the following optimisation problem:

θ∗0(`) := arg min
θ0∈Θ`

D(f̂`, f
(θ0)
`),

where Θ` denotes the search space for the initial guess
θ0; f (θ0)

` is the distribution we get from NLLS by using the
initial guess θ0; and D is a distance between the distributions
F̂` and F

(θ0)
` over the range (0,M`]. Here we shall use the

Kolmogorov-Smirnov distance (see [1]) which in this case is
simply given by

D(f̂`, f
(θ0)
`) := max

m≤M∗`

∣∣∣F̂`(m)− F (θ0)
` (m)

∣∣∣

= max
m≤M∗`

∣∣∣∣∣∣
∑

m′≤m

(
f̂`(m

′)− f (θ0)
` (m′)

)
∣∣∣∣∣∣
. (1)

Notice that in these terms Condition 1 can be rewritten as
D(f̂`, f

(θ∗0 (`))
`) < δ, for a small enough δ, say 5%.

B. Requirements for the underlying parametric distribution

Our target distribution (i.e., moves used to complete the
level) takes only non-negative integer values. Consequently,
in order to fit a parametric model we can use a non-negative
integer-valued distribution (e.g., negative binomial) or, alterna-
tively, work with a discretization of a non-negative continuous
distribution (e.g., the gamma distribution).

In order to delimit the list of potential distributions we
could use for our analysis, we start by looking at the pattern
depicted by Fig. 4 which suggests that there is a strong linear
relationship between the mean and the variance of number of
moves left to complete level. More precisely: Let M`(n, i) be
the number of moves left at the end of the n-th attempt of the
i-th player to pass level `. Each point of this graph corresponds
to one of the levels ` = 1, ..., L in our sample (L = 4000),
and the coordinates x and y axis equal the mean, µ`, and the
variance, σ`, of M`(n, i), respectively, where n and i vary
over all of the attempts that took place during the observation
period. The dashed line shows the result of performing a linear
regression of σ2

` with respect to µ` with no intercept – i.e.,
we consider a model of the form σ2

` ≈ ψµ`. The goodness
of this fit (i.e., R2 ≈ 85%, p-value < 10−16) suggests the
aforementioned strong linear relationship between the mean
µ` and the variance σ2

` of M`. Further it implies a necessarily
condition that our parametric model for M` should satisfy.

C. Negative binomial distribution as a baseline

Based on the above, is clear that the most natural non-trivial
starting point is to consider a negative binomial distribution
since it is a well-known non-negative integer-valued distribu-
tion exhibiting a linear relation between its mean and variance:

f`(m) :=

(
m+ n− 1

m

)
(1− p)npm, for m = 0, 1, 2, ...

As for the search space for the initial guess we shall use
Θ` := [1, 10M`]× [0.001, 0.999].

Two remarks are in order here: first of all, note that
the negative binomial distribution is also referred to as the
Poisson-gamma distribution since it is equivalent to a Poisson
distribution with intensity parameter λ where the λ itself is
allowed to be random by following a gamma distribution.
Second, a more sophisticated approach would be to work with
a discretization of a Tweedie distribution for which it is well-
known that σ2

` = ψµp` , or even a Poisson-Tweedie distribution
for which σ2

` = µ` + ψµp` [3], [11]. However, we let this
investigation for future work since our initial exploration (see
Fig. 4) suggests that considering a dispersion parameter of
p = 1 could provide already a very good starting point.

IV. RESULTS

To estimate the validity of our approach, we tested it on
4000 levels from the puzzle game Lily’s Garden: first, we
analyse the overall results of fitted distribution parameters
on all of the levels. In a second step, based the conditions

100 101 102

Fitted n

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tte

d
p

105

106

107

Us
er

s

Fig. 5. Log-linear plot of the fitted parameters p and n for each level. The
color indicates the number of users that have played the given level.

described in the previous section regarding the fitted distri-
butions, we discuss the goodness of the fit of the resulting
model, thus evaluating the ability of the model to describe
the player behaviour. Lastly, we validate whether the model
is able to describe the levels’ canonical definition of difficulty
– i.e. completion probability – as well as the aforementioned
behaviour.

A. Distribution parameters

Figure 5 shows the fitted parameters obtained from the
execution of the algorithm on L = 4000 levels from the
puzzle game Lily’s Garden. Each of these points represent
the parameters (n`, p`) of a negative binomial model fitted
to the distribution of moves used to complete each level ` =
1, 2, ..., L. It can be seen that the majority (i.e., 83%) of the
levels fall within a central cluster defined by 0.001 < p` ≤ 1
and 1 ≤ n` ≤ 200. For this central cluster it is apparent
that the parameters (n`, p`) follow a log-linear relationship
log(n`) = ap` + b relationship (R2 = 87%), where a and b
are global constants not depending on the level. This indicates
that the level’s move distribution can possibly be driven by a
single parameter, which would enable level designers to easily
compare levels to one another.

For this purpose, the so-called scale parameter (ϑ`) could
be considered, which describes the spread of a distribution –
i.e., the larger the scale parameter, the more spread out the
distribution. This numerical parameter is often considered in
the context of a parametric family of probability distributions,
and in the case of negative binomial distributions it is given
by this simple expression

ϑ` :=
1− p`
p`

.

Notice that from this expression we can derive the (n`, p`) as

p` =
1

1 + ϑ`
, and n` = exp

(
a

(
1

1 + ϑ`

)
+ b

)
.

There are also two other notable clusters. The first of these
clusters is defined by p` = 0.001 and consists of 15% of

101 102 103 104

Mean

10 4

10 3

10 2

10 1

100

D

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

co
m

pl
et

io
n

ra
te

 d
iff

er
en

ce

Fig. 6. Log-log plot of the Kolmogorov-Smirnov test statistic D and the mean
of the fitted distributions. The colours show the relative difference between
the expected and actual completion rate.

sampled levels. The common feature for all instances in this
cluster it that the parameter fitting threshold had been reached,
which will be explored in more detail in Section IV-B. The
second cluster is defined by n` > 200 and consists of 2% of
the levels in our sample. Inspecting the instances in this – high
n`, high p` – cluster, we encountered either tutorial levels or
levels with a specific type of game mechanic that channels the
players to rather restrictive type of game play.

It is worth noting that, by design, the tutorial levels tend to
exhibit a lower variance than the rest of the levels, either by
fixing the random seed or overall layout and ideal strategy of
the level. This reduced dependence on randomness may there-
fore also lead to a move distribution with smaller variance. In
the same manner, we have observed that the levels containing
the channelling mechanic that restricts gameplay lead to a less
random play experience. Such information may be particularly
useful to level designers since creating levels where the chance
of winning is completely determined by chance removes any
agency from players and are potentially not very fun to play.
Being able to identify such levels can therefore provide a more
quantitative measure of level randomness.

B. Condition 1 and validity of fits

The initial condition laid out in Section III-A states that
the fitted distribution F` should closely follow the empirical
distribution F̂`. To determine whether this is true, we use
the Kolmogorov-Smirnov distance D as defined by Eq. (1).
To give an overview of the link between the distribution
parameters and D, Fig. 6 plots D against the mean (µ` =
n`

1−p`
p`

) of the fitted distribution, and coloured by the relative
difference (c`− ĉ`)/ĉ`. What we find is that 99% of the levels
satisfy D < 5%, meaning that the fitted distributions describe
the empirical data very well in many cases and thus fulfil
Condition 1.

One thing to note is that in some cases, the parameter
boundaries were reached during the fitting process. This was
observed to happen in around 15% of the levels and typically
lead to p` = 0.001. These levels appear in the right-most

Fig. 7. Comparison between the observed completion rates and the fits
obtained from the calibration algorithm.

cluster in Fig. 6 and are defined by µ` > 103. This was
typically observed to happen when the empirical move dis-
tribution only exhibited a steadily increasing trend, leading
to instances where only using the tail of the distribution
would best describe this simple behaviour. We consider those
examples bad fits due to the method not converging and
exclude them for the rest of the analysis in the next section.

Before moving on to the next part of the analysis, we first
attempt to isolate what differentiates the levels that show a
good fit from the other ones. Specifically, we first investigate
whether different game mechanics influence the move distri-
bution. For this purpose, we use a logistic regression to model
whether the level fit converged or not in order to estimate the
impact of specific board pieces. The results indicate that timing
mechanics generally lead to a better fit while one specific
spawning mechanic (i.e., the collect goals first appear after
interacting with the spawner) lead to a worse fit.

One thing that is worth noting is that the data used for
this analysis disregarded attempts that used various in-game
help items (i.e., extra moves, boosters, etc). If a player finds a
level to be difficult or frustrating, subsequent attempts by the
player may be disregarded because they use helping items,
distorting the move distribution. A number of observations
support this hypothesis: When only considering the move
distribution of the second attempt of players, the fraction of
levels that successfully converged increased by about +5%.
Additionally, the fraction of attempts in which players used in-
game boosters and help items were up to +18% more frequent
in non-converging examples than convergent ones; thus, more
attempts are ignored on average for non-converging examples.
In our data processing step, these attempts were filtered out
because they exhibited a clear artificial alteration of the curve,
especially in the last two moves of the levels. Part of the
explanation for the divergent fits can therefore also be related
to the data.

C. Condition 2: completion rate comparison

The second condition states that the expected completion
rate, F̂`(M∗`), should approximate the observed completion

10 20 30 40 50 60

(a)
D=0.55%, n=24.2, p=39.85%

10 20 30 40 50 60

(b)
D=0.60%, n=4.2, p=3.88%

10 20 30 40 50 60

(c)
D=0.44%, n=7.8, p=5.35%

10 20 30 40 50 60

(d)
D=0.28%, n=37.5, p=55.22%

10 20 30 40 50 60
Moves used to complete the level

(e)
D=0.13%, n=8.2, p=10.95%

10 20 30 40 50 60

(f)
D=0.26%, n=7.5, p=5.59%

Fig. 8. Subplots in the top (a-c) and bottom rows (d-f) correspond to instances when the observed completion rate ĉ` ≈ 20% and ĉ` ≈ 40%, respectively.
The first, second and third columns exemplify cases we found a good (a and d), medium (b and e) and low (c and f) agreement between the observed and
fitted completion rates, respectively.

rate, ĉ`. In order to assess this condition, we first notice that
the two values are strongly correlated as exhibited by their
Pearson’s correlation coefficient of ρ = 83%. Further, Fig.
7 suggests that the observed and fitted completion rates are
related to each other by means of the linear relationship

c` ≈ 1.035ĉ` − 0.104 (2)

with an adjusted coefficient of determination of R2 = 75%.
Equation (2) suggests that the completion rates tend to be
underestimated, especially at low completion rates (i.e., for
very hard levels where the average player will need the
equivalent of 8 or more attempts are needed to complete
the level). Based on these arguments we can consider the
Condition 2 has been met as well.

In practice level designers typically work with ranges of
the completion rate rather than point estimates, so that they
can classify the levels in classes (e.g., ”easy”, ”very hard”).
Consequently, the current results are positive and very promis-
ing. One could however also look at point estimates of the
completion rates, for instance under the light of the absolute
percentage error given by ε` := |c`/ĉ` − 1|. By doing this,
we have observed that the median value of ε` revolves around
the 49%, and it goes down to 23% when adjusting according
to Equation (2).

In order to get a better understanding on what leads to the
aforementioned underestimation (i.e., cases where c` < ĉ`),
we exemplify in Fig. 8 what happens in a series of scenarios:
Scenario 1, as illustrated by subplots a and d, corresponds to
cases where the relative error between ĉ` and c` is small. Sce-
nario 2 in subplots b and e show cases where error is medium.
And finally Scenario 3 in subplots c and f corresponds cases
with a major underestimation. In Scenario 3, it can be seen
that it is only the tail of the distribution that is used to describe
the data. A similar phenomenon was also observed in the
cases where the fitting method did not converge: Due to the
available player data and steady increase in completions, only
the tail is required to describe this relatively simple behaviour.
However, contrary to those cases, these levels are in more

of a continuum: It is more likely to underestimate at low
completion rates where more data is censored, while for higher
values of ĉ` (like in Scenario 1 and Scenario 2) we have more
information about the distribution is available which further
constrains f`.

In order to see if there are any specific game mechanics that
may cause a difference between the completion rates, a similar
method as section IV-B is used. Instead of using a logistic
regression for predicting whether it was a good fit or not,
a linear regression is used to predict the difference between
expected and actual completion rate. The results are similar to
the findings in the previous section regarding successful fitting:
Levels with timing or other gameplay restrictive mechanics
lead to a higher expected completion rate. Interestingly, board
pieces with colour-matching mechanics tend to lead to too
low expected completion rates. A way to possibly interpret
this is that goals which can be completed at a steady pace
(such as colour mechanics) lead to a more steadily increasing
ramp-like distribution, leading to completely underestimating
the completion rate due to more degrees of freedom in the
fitting. Timing mechanics, on the other hand, may require more
planning that appear as a more constrained minimum number
of moves spent which leads more defined distribution around
a given move and less variance that may be detrimental to the
modelling method. That said, there are additional factors not
considered (such as level topology), so more work is required
to establish any link between the completion rate difference
and game mechanic.

V. DISCUSSION AND FUTURE WORK

In 85% of the levels we are able to find a negative binomial
distribution that describes the player data well. Additionally,
we are able to derive estimations of different game play
features, such as level randomness and board piece descriptors,
that can give additional insights to the game designers. That
said, there are still some open questions to address about the
current approach related to the modelling and possible use-
cases, which will be discussed in this section.

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Move limit change

8.0
11.0
14.0
17.0
20.0
23.0
26.0
29.0
32.0
35.0
38.0
41.0
44.0
47.0

In
iti

al
 c

om
pl

et
io

n
ra

te

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Ab
so

lu
te

 c
ha

ng
e

in
 c

om
pl

et
io

n
ra

te

Fig. 9. 2D plot of how the completion rate is expected to change depending
on the initial completion rate and the change in moves limit. The initial
completion rates are binned in bins spanning 2%, and the new expected
completion rate is adjusted by the trend from Fig. 7.

A. Changing the move limit

One of the discussed use-cases of modelling these distribu-
tions is that level designers can estimate what changing the
move limit would mean for the completion rate. To examine
how the completion rate is affected by changes in the move
limit, Fig. 9 shows how the predicted absolute change in
expected completion rate depends on the initial completion
rate and change in move limit. As a rule of thumb, the
completion rate seems to change on average by 2% with
slightly lower sensitivity at high or low completion rates. From
discussions with level designers, this is consistent with their
commonly used heuristic.

Another insight is that adding or removing moves is an
asymmetric operation, where the rate of change is bigger
when removing moves. While this is also expected since the
negative binomial distribution itself can be asymmetric and
can potentially have a long right tail (and thus less sensitive
to adding moves), it suggests that game designers need to
be more careful when removing time or actions to increase
difficulty because of this asymmetric change.

One possible limitation of this argument is that it assumes
that the distribution parameters will stay the same if the move
limit changes. However, this is not necessarily true since
players may change their behaviour when closer to the move
limit. For instance, a common strategy is to set up powerful
board piece combinations and fire them off in the end to
maximise the score (regardless of whether there is an explicit
score or not).

B. Player skill

The perceived level difficulty depends not just on level
randomness but also the player skill. So far the level random-
ness was linked to the variance of the fitted distributions, but
logically the move distributions should also be affected by the
skills that have played the level. Indeed, this phenomenon is
something that level designers experience in their day to day
work: As more players reach older levels, the completion rate

Fig. 10. Histogram of the moves used by a certain AI agent to complete a
specific Lily’s Garden. The dashed line represents the negative binomial fit.

slowly changes, which makes it necessary to have a constant
maintenance of all levels.

As a next step, investigating how the level difficulty changes
over time in a longitudinal study using different player cohorts
may provide meaningful insights on player skill and also
model how this affects the distribution parameters. This can
then be used for a more proactive and automatic approach to
difficulty adjustment that ensures a coherent play experience
for both old and new users.

C. Playtesting

Playtesting is crucial for game developers since this process
provides a reliable way to identify bugs and potential design
flaws in a safe environment before going to market. This
process, however, tends to be so expensive and slow that
game developers are increasingly starting to automate this by
means of AI agents using, for instance, reinforcement learning
techniques (e.g. [12] and references therein). This context also
provides an interesting set-up to gain deeper insight into the
techniques derived in the present article and further potential
applications.

Indeed, given that playtest agents are trained in the same
environment as human players, we can for instance let the
agent play using all of the normal rules and game mechanics
but without the constraint on the move limit, M`. Figure
10 shows the distribution of moves generated by one of the
playtest agents considered in [13] when testing a given level.
This particular agent performed sub-par with respect to the
average human player, but what is relevant is that we are able
to visualise its whole move distribution even beyond the limit
M . We can thus fit our proposed negative binomial distribution
across the whole (0, 10M] range, i.e., without truncation.

In line with our expectations, we get a really good fit as
described by a Kolmogorov-Smirnov distance of D = 1.8%.
This sparks the following question regarding playtest agents:
Can exhibiting a negative binomial distribution be regarded as
a necessary condition to declare that the AI agent is playing
in a human-like manner?

Finally we highlight another connection with the results re-
ported in [13]. In that work the authors report that the 5% best

runs of the agent on a given level were the strongest predictor
of the actual completion rate. Clearly this 5th percentile is a
quantity that can be derived explicitly as formula of the fitted
negative binomial parameters. In this sense we can also study
whether the fitting procedure proposed here can be further used
as post-processing strategy to estimate completion rates from
data generated by playtest agents with sub- or even super-
human performance.

D. Other games

In this work we have investigated the application of the
proposed method to a mobile puzzle game; however, there
is nothing in our assumptions that rules out that the same
distribution can be used not just for similar puzzle games with
discrete moves and action limit but also other genres such as
platform or even competitive games.

Generally, puzzle games tend to be very focused on solving
the level goal as fast as possible. Although some games also
provide a score, it is a limited number of factors (randomness
and skill) that affect the distribution of moves. However, in
other game genres, there may be other factors and incentives
for playing: in platform games, players are encouraged to
explore and test out different strategies, and in competitive
games, players may want to beat their opponent as fast as
possible, with randomness playing less of a role than the
relative skill of players. A promising venue for future research
is therefore using this modelling approach across genres to test
and validate its generalisability to different player behaviours.

VI. CONCLUSION

In this research work we set out to determine a richer way
of describing the level difficulty in puzzle games. Specifically,
we propose that the move frequency distribution of the players
for completing a level follows a negative binomial. Using data
from 4000 levels from the game Lily’s Garden as a case study,
the results showed that:
• The negative binomial is able to describe the move

distribution of around 85% of the levels, and the method
can easily be extended to other types of games.

• Describing the levels is possible using a single parameter
– that is the scale parameter ϑ – that describes the spread
of the distribution.

• This more detailed description of the difficulty enables:
(i) estimating the effect of changing the move limit;
(ii) estimating the level randomness; and
(iii) identifying deviations in player behaviour on a level.

In the remaining ∼ 15% of the cases where the method does
not converge; the main issue is due to the data only exhibiting
an increasing trend which leads to the method only using a
very small part of the distribution to match it. Similarly, the
method also tends to underestimate the observed completion
rate, ĉ`, especially towards low completion rates. A possible
avenue for future research is therefore to extend on this model
and include ĉ` as a parameter in the modelling rather than
a constraint. This has the promise of not only improving the
predictions of the method but also ultimately enable estimating

player skill and dynamically adjust difficulty to ensure an
optimal player experience.

VII. ACKNOWLEDGEMENTS

This work has been supported by the Innovation Fund
Denmark and Tactile Games. We also thank Arnau Escapa
and Rasmus Berg Palm for fruitful discussions.

REFERENCES

[1] Kolmogorov-Smirnov test - Encyclopedia of Mathematics.
[2] Christian Bauckhage, Kristian Kersting, Rafet Sifa, Christian Thurau,

Anders Drachen, and Alessandro Canossa. How players lose interest
in playing a game: An empirical study based on distributions of total
playing times. In 2012 IEEE Conference on Computational Intelligence
and Games, CIG 2012, pages 139–146, 2012.

[3] Wagner H. Bonat, Bent Jørgensen, Célestin C. Kokonendji, John Hinde,
and Clarice G. B. Demétrio. Extended poisson–tweedie: Properties and
regression models for count data. Statistical Modelling, 18(1):24–49,
2018.

[4] Mihaly Csikszentmihalyi and Mihaly Csikzentmihaly. Flow: The psy-
chology of optimal experience, volume 1990. Harper & Row New York,
1990.

[5] Simon Demediuk, Marco Tamassia, William L. Raffe, Fabio Zambetta,
Xiaodong Li, and Florian Mueller. Monte Carlo tree search based
algorithms for dynamic difficulty adjustment. In 2017 IEEE Conference
on Computational Intelligence and Games, CIG 2017, pages 53–59.
Institute of Electrical and Electronics Engineers Inc., 10 2017.

[6] Alena Denisova, Paul Cairns, Christian Guckelsberger, and David Zen-
dle. Measuring perceived challenge in digital games: Development &
validation of the challenge originating from recent gameplay interaction
scale (corgis). International Journal of Human-Computer Studies,
137:102383, 2020.

[7] Miguel González Duque, Rasmus Berg Palm, David Ha, and Sebastian
Risi. Finding Game Levels with the Right Difficulty in a Few Trials
through Intelligent Trial-and-Error, 1 2020.

[8] Wu-chang Feng, Francis Chang, Wu-chi Feng, and Jonathan Walpole.
A traffic characterization of popular on-line games. IEEE/ACM Trans-
actions On Networking, 13(3):488–500, 2005.

[9] Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet,
Sami Purmonen, Bartlomiej Kozakowski, Richard Meurling, and Lele
Cao. Human-like playtesting with deep learning. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG), pages 1–8.
IEEE, 2018.

[10] Aaron Isaksen, Dan Gopstein, Julian Togelius, and Andy Nealen.
Exploring Game Space of Minimal Action Games via Parameter Tuning
and Survival Analysis. IEEE TRANSACTIONS ON GAMES, 10(2), 2018.

[11] B. Jørgensen. The Theory of Dispersion Models. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis, 1997.

[12] Jeppe Theiss Kristensen and Paolo Burelli. Strategies for using proximal
policy optimization in mobile puzzle games. In International Conference
on the Foundations of Digital Games, pages 1–10, 2020.

[13] Jeppe Theiss Kristensen, Arturo Valdivia, and Paolo Burelli. Estimating
player completion rate in mobile puzzle games using reinforcement
learning. In 2020 IEEE Conference on Games (CoG), pages 636–639.
IEEE, 2020.

[14] Elisa T Lee and John Wang. Statistical methods for survival data
analysis, volume 476. John Wiley & Sons, 2003.

[15] J. Derek Lomas, Kenneth Koedinger, Nirmal Patel, Sharan Shodhan,
Nikhil Poonwala, and Jodi L. Forlizzi. Is difficulty overrated? the effects
of choice, novelty and suspense on intrinsic motivation in educational
games. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI ’17, page 1028–1039, New York, NY, USA,
2017. Association for Computing Machinery.

[16] Christopher Pedersen, Julian Togelius, and Georgios N Yannakakis.
Modeling player experience for content creation. IEEE Transactions
on Computational Intelligence and AI in Games, 2(1):54–67, 2010.

[17] Su Xue, Meng Wu, John Kolen, Navid Aghdaie, and Kazi A. Zaman.
Dynamic difficulty adjustment for maximized engagement in digital
games. In Proceedings of the 26th International Conference on World
Wide Web Companion, WWW ’17 Companion, page 465–471, Republic
and Canton of Geneva, CHE, 2017. International World Wide Web
Conferences Steering Committee.

3.4 Paper 2: Personalized Game Difficulty Prediction Using
Factorization Machines

Personalized Game Difficulty Prediction
Using Factorization Machines

Jeppe Theiss Kristensen
jetk@itu.dk

IT University of Copenhagen
Digital Design

Copenhagen, Denmark

Christian Guckelsberger
christian.guckelsberger@aalto.fi

Aalto University
Department of Computer Science

Espoo, Finland

Paolo Burelli
pabu@itu.dk

IT University of Copenhagen
Digital Design

Copenhagen, Denmark

Perttu Hämäläinen
perttu.hamalainen@aalto.fi

Aalto University
Espoo, Finland

ABSTRACT
The accurate and personalized estimation of task difficulty provides
many opportunities for optimizing user experience. However, user
diversity makes such difficulty estimation hard, in that empirical
measurements from some user sample do not necessarily generalize
to others.

In this paper, we contribute a new approach for personalized
difficulty estimation of game levels, borrowing methods from con-
tent recommendation. Using factorization machines (FM) on a large
dataset from a commercial puzzle game, we are able to predict dif-
ficulty as the number of attempts a player requires to pass future
game levels, based on observed attempt counts from earlier levels
and levels played by others. In addition to performance and scala-
bility, FMs offer the benefit that the learned latent variable model
can be used to study the characteristics of both players and game
levels that contribute to difficulty. We compare the approach to
a simple non-personalized baseline and a personalized prediction
using Random Forests. Our results suggest that FMs are a promising
tool enabling game designers to both optimize player experience
and learn more about their players and the game.

CCS CONCEPTS
• Human-centered computing → User models; Human com-
puter interaction (HCI).

KEYWORDS
Factorization Machines, games, player modelling

1 INTRODUCTION
Understanding and estimating task difficulty is a fundamental prob-
lem in Human-Computer Interaction (HCI). While good user in-
terface design aims to minimize the difficulty of completing tasks
and achieving goals, we might also be interested in introducing
challenges of just the right difficulty – neither too easy nor too
hard – to e.g. support learning [54] or create enjoyable video games
[8, 49]. Estimating how difficult a challenge is for the target user is
hard due to the diversity of factors affecting difficulty. On a macro
level, the difficulty of making decisions can be boiled down to skill,
the available time, and the inherent difficulty of the decision [2].

However, only the available time is straightforward to measure
in general, and in HCI, executing decisions can pose additional
perceptual-motor difficulties.

This paper investigates difficulty in the particular setting of
casual mobile puzzle games where the player progresses in the
game by completing discrete challenges, or levels. In this context, a
common operationalization of difficulty is the chance of the player
completing the level, or pass rate. This is typically calculated as
the count of successful attempts divided by the total attempts on
the level. The inverse represents the average number of attempts
per complete. Averaged over all players, this is a useful difficulty
metric for game designers since it gives a tangible measure of how
much time a player spends on a level before proceeding, which can
help identify where the player might feel stuck [14] as a potential
cause for churn. However, a significant drawback of this measure
is that it does not account for individual differences in skill. Simply
looking at the aggregate population, therefore, runs the risk of
alienating anybody but the average player who, in many cases, is
neither representative nor the most important prediction target. A
more useful approach for game designers should thus take both
individual player and level information into account.

This challenge of accounting for individual difficulties has been
approached in multiple ways. A common practice is to utilize dy-
namic difficulty adjustment (DDA) in which the predictions are used
to automatically adjust game parameters (e.g. number of enemies)
and tailor the game difficulty to maximize aspects such as reten-
tion or monetization of individual players. However, this kind of
fine-grained control over the levels is not always possible due to
technical aspects (difficult to implement, uncertainty about param-
eters’ effect on difficulty, etc.) or level and game design choices
(levels requiring a specific strategy or visuals, difficulty curve must
follow a certain pattern, etc.). Moreover, fully automated difficulty
adjustment might not be attractive for game designers if they want
to retain some control over the player experience. An alternative
approach that can be of practical use should therefore also capture
and explain player-level interactions and generate knowledge for
the game designers that allows them to be more proactive.

Themain objective of this paper is to showcase such a framework
that game designers can use to both understand the interaction

between players and levels and to estimate level difficulty for indi-
vidual players. Rather than updating the estimates between game
rounds, as is common in many DDA approaches, the goal of this
framework is to leverage daily play session data to inform the of-
fline work of level designers and help them understand the player
base. To achieve this, we use factorization machines (FMs) which
are especially known from recommendation systems [20, 39, 40, 42].
FMs allow predicting user-content interactions by estimating latent
variables that describe each user and each piece of content.

To better understand how FMs can be applied for difficulty esti-
mation, we investigate the following research questions:
RQ1: How do FMs compare to other difficulty prediction methods?
RQ2: How many observations of a player are necessary before it

is possible to discern them from the average player?
RQ3: What do the FM model latent variables mean or represent?

Contribution. In summary, we examine FMs as a novel approach
for personalized game level difficulty prediction. Using a large
dataset of 700k players from the commercial puzzle game Lily’s
Garden, we compare FMs against both a naive non-personalized
baseline and personalized predictions using Random Forests (RF).
Our results support the use of FMs as a promising tool that clearly
outperforms the other methods, especially if augmented with simi-
lar additional features as in the RF regression.

2 RELATEDWORK
To contextualize our contribution, we first resolve ambiguity around
the concept of difficulty, and survey related work on operational-
izing and quantifying difficulty in videogames. We then survey
existing player difficulty prediction models.

2.1 Game Difficulty
Game difficulty is a highly ambiguous concept [12], with at least two
meanings [11]. Firstly, it can denote an intrinsic attribute of a game,
characterizing a game-internal task based on its objective and the
barriers that prevent potential players from achieving it. Secondly,
it can describe a relational attribute between the game and the
player, characterizing the player’s experience of the task based on
their individual skill and history. Often, researchers use the notion
of perceived difficulty to convey the second, experiential meaning.
To complicate things further, difficulty is often used synonymously
with challenge. However, we can draw a subtle distinction based on
the concepts’ valence [11]: players typically consider a game task
difficult, if it causes them frustration and discomfort; challenging
tasks in contrast are stimulating and convey a feeling of being in
control over the outcome [26]. Here, we primarily use the notion
of difficulty, but without appealing to its negative valence.

Difficulty can be actively sought by players as a goal experi-
ence [6], or it can form the foundation [36] of other experiences.
Famously, perceived difficulty contributes to player enjoyment, as
investigated by Alexander et al. [1]. Another such goal experience
is flow – a state in which a player feels engulfed in the task and
loses track of time and worries [8, 10]. It results from exposing a
player to difficulties that are optimal with respect to their individ-
ual skills. Self-determination theory [45, 50] posits that optimal
difficulty satisfies players’ intrinsic need for feelings of competence
and in effect yields motivating gameplay. Amongst others, flow and

intrinsic motivation contribute to player engagement [4], which,
similar to enjoyment, constitutes a core game design objective.

Given the many ways through which difficulty impacts player
experience, it is unsurprising that game designers and researchers
have sought ways to operationalize difficulty for use in design-time
quality control or runtime optimization. In the particular case of
puzzle games, Pusey et al. [37] proposed several objective measures
to quantify difficulty, including the number of incorrect attempts,
the number of actions used, and the time taken to solve a puzzle. The
average number of attempts that players spend to complete a level,
or inversely the pass rate, has been used to assess difficulty in puzzle
games such as Angry Birds [43] and Lily’s Garden [24]. A player’s
experienced number of successes and failures also constitutes a
major component of perceived difficulty, as empirically identified
by Denisova et al. [11] in the development of a questionnaire to
assess perceived difficulty in games. Similar to previous work, we
operationalize an individual player’s perceived difficulty as the
average attempts per complete. Given that players cannot repeat
levels in this study, this is equivalent to the number of attempts
they require to complete a specific level.

2.2 Predicting Difficulty
Previous research has approached player difficulty prediction in
numerous ways depending on the application and research purpose.
Common application areas of difficulty prediction include DDA
and automated playtesting for quality assurance. We next identify
several shortcomings of existing work based on selected examples
and highlight how our contribution overcomes them.

Existing approaches typically predict difficulty aggregated over
a player population rather than individual experiences (e.g. [18, 22,
24, 32, 43, 51]). An example of this is the work by Gudmundsson
et al. [18] where an AI game-playing agent was used to extract a
preliminary estimate of the level pass rate. This estimate was then
combined with level features to create a binomial regression model
to predict the overall pass rate on the level. We consider the focus on
aggregated predictions a shortcoming, as the perceived difficulty
is affected by individual skill and experience, and an aggregate
prediction is thus likely to predict the various goal experiences that
perceived difficulty contributes to less accurately. In contrast to
existing approaches, this paper focuses on predicting individual
player difficulty, thusmoving one step closer to predicting perceived
difficulty as a relational attribute between one player and the game.

Existing studies that focus more on individual player difficulty
prediction often suffer from practical and technical barriers: they
are either operating on a very small scale (e.g. [29, 46, 47, 53]), only
consider toy problems (e.g. [17]), or both (e.g. [16, 21]). Gonzalez-
Duque et al., [16] for instance, use a Bayesian optimization approach
to reliably estimate the time it would take a player to complete a
Sudoku level given the number of pre-filled digits or a simple puzzle
level given two level descriptors after having observed the player
for 5 or 15 game rounds, respectively. However, the limited number
of play traces (<300) in each game lead to a large variance in the
results. It is uncertain how the approach would scale in a live game
with several player cohorts and continuous updates to the game.
In our study, we use data from more than 700,000 players over a 6

2

month period to demonstrate the applicability of our approach to a
large-scale, complex commercial game system.

A common approach in many DDA methods is to consider the
recent history of players in order to adapt the game content. How-
ever, not all methods are able to take advantage of the wealth
of information that is available about the players and levels (e.g.
[5, 16, 27, 55, 56]). For instance, Xue et al. [55] use a probabilistic
graph that estimates the probability of winning, failing and churn-
ing based only on the player’s progress and the current number of
attempts; however, they do not leverage more descriptive features,
such as average playtime, that have been found to be correlated
with player engagement [13, 23]. In our approach, we aim to lever-
age a maximum range of player and level data, combined with
high-cardinality data such as individual player-level interactions.

Especially in the domain of educational games, it is common
to explicitly model a learning curve and introduce new elements
through tutorials to build up player competencies for solving more
complex tasks later [28]. The Additive Factors Model [7] is a pop-
ular method in this context for determining a player/student’s
chance of success on a task that requires certain skills [19]. How-
ever, many related approaches require labelling the required skills
beforehand, and more specialized domain models can be hard to
validate and generalize [15]. In this work, we do not assume any
specific structure of player skill and knowledge and instead learn
latent representations which we can interpret afterward.

As last two shortcomings, we note that, especially in live game
operations, it is not desirable to have a black-box prediction method
that requires expert knowledge to operate [30], as in related work
that utilizes deep learning methods (e.g. [31, 33, 35]). In addition,
methods that require complex implementations (e.g. [52]) are also
undesirable, as any unexpected behavior may be hard to trou-
bleshoot and make game designers lose trust in the system. More-
over, little to no knowledge is generated that enables game designers
to make informed decisions about their games. In this work, we
demonstrate that factorization machines (FMs) afford ease of use,
do not require any special input other than data about the player
and the number of attempts they spent on a given level, and afford
straightforward interpretation that game designers may be able to
use for other tasks such as personalized offers or churn prediction.

To determine feasible approaches for difficulty prediction in
games, it is worth looking beyond games. A similar problem to
difficulty prediction is student grade prediction [38, 48]. Sweeney
et al. [48] use a number of methods to predict the grades for new
students in future courses, ranging from average course grades,
over Random Forest (RF) regressors, to FMs. They found that FMs
performed the best when not including any other information than
the student-course interaction, while with additional information,
FMs and Random Forest regressors performed similarly well. We
are inspired by this work and the ability of FMs to capture high-
cardinality data like user-item-context interactions. Consequently,
we adopt a similar strategy and compare three different approaches
to modeling player difficulty, including RF and FM.

3 CASE STUDY: LILY’S GARDEN
We study the use of FMs for predicting individual player difficulty
in the commercial game Lily’s Garden by Tactile Games. Released

(a) Metagame garden scene, with Lily being offered three flowerbed
decoration options. Realizing an option and progressing in the sto-
ryline requires points, which the player collects by solving puzzles.

(b) Example of a puzzle level. The goal is to collect certain board
pieces, shown on the left side, within a limited number of moves.

Figure 1: Lily’s Garden: interplay of meta and puzzle game.

in early 2019, Lily’s Garden is a casual mobile puzzle game with
more than 6,000 levels and one million daily active users worldwide.

The gameplay has two main components (Fig. 1). In a narrative-
driven meta game, the player is confronted with an abandoned gar-
den in which they can unlock new areas, make decorative choices
and progress in the story by spending points. These points can
be acquired by solving successive puzzle game levels unlocked at
specific times in the storyline. This study focuses on predicting
individual player difficulty for these puzzle levels.

To complete a puzzle, the player must collect specific goal pieces
on the board within a given move limit. The core gameplay consists
of tapping on board piece clusters to clear them, destroy adjacent
pieces, and hereby collect the goal pieces. By tapping on clusters
with more than five, eight or ten pieces, the player can create power
pieces capable of clearing large parts of the board. In some levels,
forging such power pieces is strictly necessary to succeed, and more
advanced strategies involve their combination for enhanced effects.

The game implements a free-to-play model. The player can use
in-game and real currency to buy help in the form of power pieces
and other boosters. Additionally, there are certain game events that
provide such boosters for free. Moreover, players can purchase an
additional five moves for the current attempt if they fail to complete
all the goals within the initial move limit. While purchases are the
main monetization avenues of the game, the designers ensure that
every level can be completed without bought assistance.

For our model, we adopt the existing operationalization of level
difficulty as the average number of attempts that players require
to complete a level. An analysis of player data from Lily’s Garden

3

0 100 200 300 400 500
Levelnumber

1

2

3

4

5

6

7

Av
er

ag
e

at
te

m
pt

s p
er

 c
om

pl
et

e Average attempts
Average attempts, rolling(12)
Tutorial level

0 50

Figure 2: The average number of attempts per level comple-
tion for the first 500 levels. The difficulty trend is illustrated
as a moving mean with a centered window of size 12 – twice
the length of typical designed level sequences.

(Sec. 5 provides an overview of this data) shows the average number
of attempts over the whole level range (Figure 2). The first few
levels (< 10) contain multiple tutorial levels where the gameplay is
streamlined and players are restricted to certain moves. After these
levels with almost guaranteed wins, the difficulty slowly ramps up
– a common design pattern to engage players early on [28].

To understand what level design aspects can affect (intrinsic) dif-
ficulty, we interviewed the team of level designers of Lily’s Garden
and identified a number of candidate level features that could be
relevant for predicting difficulty. This includes quantifiable features
such as the move limit (higher limits lead to easier levels [25]), the
number of goals, and the entropy of the pieces’ color distribution
(the closer to uniform, the harder the level due to power pieces
being harder to create). Other features, such as the level layout,
board piece complexity, or reliance on power pieces, are harder
to quantify but will still affect the difficulty in non-trivial ways.
Defining descriptors that can fully encapsulate these intricacies is
therefore rather challenging and can lead to less expressive and
accurate difficulty prediction models.

In addition to the strong fluctuations in the average number of at-
tempts over the level range, a more detailed analysis also highlights
large differences between individual completion rates both with
respect to the players and the levels (Fig. 3). In early, less (intrin-
sically) difficult levels with fewer than 1.5 attempts per complete
on average, most people (>90%) require 1 attempt, with the remain-
ing players requiring a little more. For later levels with greater
(intrinsic) difficulty, we find a large variance in attempts and a long
tail distribution extending to more than 30 attempts per complete.
These individual differences, paired with strong fluctuations in av-
erage difficulty, make Lily’s Garden an ideal, challenging candidate
for studying personalized player difficulty prediction.

4 METHODS
In accordance with existing work on puzzle games (Sec. 2.1), we
operationalize difficulty by the number of attempts a player will
spend on the level. We consequently frame our individual player
difficulty prediction task as a regression problem, where the target
is to estimate the number of attempts a specific player will spend
on a specific level. For this purpose, we compare four different
methods:

0 5 10 15 20 25 30
Attempts per complete

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

1.08 7.29

Attempt distribution for tutorial/hard levels
Level 5
Level 5 average
Level 383
Level 383 average

Figure 3: Comparison of player attempt distributions for a
tutorial (level 5) and a hard level (level 383).

• Naive baseline (NB): Average attempts by other players.
• Random Forest regression (RF): Ensemble prediction from
multiple decision trees that utilize aggregated player behav-
ior data over the observed levels.

• Factorization Machines (FM): A general regression model
that uses a feature embedding to describe interactions be-
tween variables (e.g. user-item interactions).

• Factorization Machines with Relational Data (FM+feat): As
FM, but also includes the descriptive variables used in the
RF method (e.g. user-item-feature interactions).

To answer our first research question (Sec. 1), we compare these
models based on their prediction error. We moreover analyze how
this error changes based on the number of levels that we observed
the players for. In other words, we identify the number of required
observations to push the error below a certain threshold and thus
answer our second research question.

4.1 Naive Baseline
Given that much related work focuses on predicting difficulty for
a player population rather than individuals, we chose the player-
average number of attempts per level complete as our naive predic-
tion baseline. We calculate this non-personalized prediction on the
players’ data from our training set as illustrated in Fig. 2 using a
linear regression model,

𝑦 = 𝑤0 +
𝐿∑︁
ℓ=1

𝑤ℓ𝑥ℓ , (1)

where𝑤0 = 0,𝑤ℓ is the attempts on level ℓ averaged over all other
players, L is the total number of levels, and 𝑥ℓ ∈ {0, 1}.

This non-personalized baseline is what game designers currently
use in practice for estimating level difficulty. Hence, any improve-
ments over this baseline can directly inform game designers of the
compared methods’ benefits.

4.2 Random Forest Regression
As mentioned in Sec. 2.2, a Random Forest (RF) regression model
has previously been shown to deliver comparable performance to
FMs [48] in a related task. Consequently, we train an RF regressor
on player and level features in our comparison.

RF is an ensemble method based on multiple random trees, i.e.,
decision trees ℎ(x;𝜃t), 𝑡 = 1, ...,𝑇 ;𝜃t with i.d.d. random vectors,
where the nodes of each tree are split using a random set of features

4

and subsets of the data. For regression problems, the split is decided
based on which feature leads to the largest decrease in the absolute
or squared error. The final prediction then combines the predictions
from the trees into an average prediction, 𝑦 = ℎ̂(x). This ensemble
approach enables modeling more complex non-linear behavior and
is less likely to overfit compared to a single random tree.

We use the Random Forest regressor implementation from the
scikit-learn library (version 1.0.2) [34] with the following hyperpa-
rameters and settings: n_estimators=150, max_depth=None,
min_samples_split=2, min_weight_fraction=0.0,
max_features="auto" [=n_features], max_leaf_nodes=None,
min_impurity_decrease=0.0. Due to the size of our data, we em-
ploy an incremental training method1.

4.3 Factorization Machine
Factorization machines (FMs) are a class of factorization models
that can be used as a general predictor for classification, regression,
and ranking tasks [39]. They are similar to linear regression models
but instead model second-order terms as an interaction between
variables using a feature embedding:

𝑦 = 𝑤0 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

⟨vi, vj⟩𝑥𝑖𝑥 𝑗 , (2)

where 𝑤0 is the 0th order term or global bias, 𝑤𝑖 is the first-
order term and describes the bias of the 𝑖’th variable, and vi is a
second-order feature embedding vector of the 𝑖’th variable. ⟨vi, vj⟩
describes the interaction between two variables as the dot product:

⟨vi, vj⟩ =
𝑘∑︁
𝑓 =1

𝑣𝑖,𝑓 · 𝑣 𝑗,𝑓 ,

where 𝑘 is the number of latent factors and a hyperparameter
that must be chosen.

This learned embedding is what enables modeling unseen in-
teractions in the data, which also makes FMs widely used for rec-
ommendation systems, including games recommendations [3, 9],
where user-item interactions are typically very sparse.

The input data is not restricted to the rating-user-item format. It
is possible to use other contextual information [41], including

• One-hot encoding of previous user interactions on other
items.

• User and item descriptors (both numeric and categorical, e.g.
age or labels).

• Implicit feedback data.
Adding additional features typically increases the data set com-

plexity by 𝑛 × 𝑓 , where 𝑛 is the dataset length and 𝑓 is the number
of additional features. However, using FMs with a relational data
block structure to make use of repeated patterns, as suggested by
Rendle et al. [41], can greatly reduce the computational complexity
and make the method scale to very large datasets. Additionally,
Rendle et al. found that FMs with such relational data showed a
consistent performance increase over FMs without relational data.

We use the original implementation of LibFM by Steffen Rendle
[40]. We train each model for 1000 iterations using Markov Chain

1https://github.com/garethjns/IncrementalTrees

Monte-Carlo (MCMC) with an initial standard deviation of 1 to
sample 𝑣𝑖 for FM models and 0.1 for FM+feat models. Based on
brief experiments and the nature of the attempt distribution data,
we do not include a global bias term𝑤0.

5 DATA

training data

test data 1%

99%

P
la

y
e
rs

Levels

Observed levels Level 150

Figure 4: Train/test data split illustration. All data of 99%
of players is used for training. Additionally, the training
utilizes initial observations (“Observed levels”) from the 1%
of players who constitute the test set.

The data used in this study was collected from 2021-06-01 to
2021-11-30 from the game Lily’s Garden and consists of 759,382
players who have all, in this period, played the game beginning
with the first level and at least up to level 200. In free-to-play mobile
games, it is common to have a large churn rate at the beginning of
the game from players that do not interact meaningfully with the
game, so this condition ensures both, that the whole history of each
player is complete, and that the included players share the same
minimum engagement level. Due to the long tail of the attempts
distribution (Fig. 3), for numerical stability, we truncate attempts
with more than 30 attempts to 30, which affects 0.34% of the data.

We split the data to match a realistic use case: We select 1% of
the players to represent “new” players to test the methods on, and
the remaining 99% of the players are considered “old” players who
have started playing earlier and have already progressed far in the
game. We use this old player data for training all models.

Additionally, as illustrated in Fig. 4, FM training also utilizes
some initial observations of the new players. This corresponds to
the model being periodically updated to improve its predictions
as new players progress through the game and more observations
become available. It is also necessary for FM: without observation
of the given player during training, the model does not learn the
bias and embedding of this player (cold start problem).

In our performance evaluations, we report the results with dif-
ferent numbers of initial observations. The results are always com-
puted from levels after 150 to maintain a consistent test set even
when the number of initial observations changes.

The RF and FM+feat methods require feature vectors that de-
scribe the players and levels. These features were selected based on
domain knowledge from level designers and are shown in Table 1.
RF methods do not deal well with high-cardinality data, so it is not
possible to one-hot encode players and levels in this case. Instead,
the player features for all players are aggregated and averaged
across the first 𝑛 observed levels. This means that any prediction of
a player depends on their early performance in the game and does
not take recent observations into account. Otherwise, players are
not comparable through their features due to each player being at

5

Type of feature Name Description

Player features

Attempts Number of attempts on levels
Moves used Number of moves used relative to the move limit when completing the level
Pre-game boosters Boosters that can be used before starting the level
In-game boosters Boosters that can be used while playing the level
Powerpieces, total Number of power pieces created while playing the level
Powerpieces, combos Number of power piece combinations created while playing the level
Rockets, solo Number of rockets created and used on their own
Rocket-bomb combo Number of rocket-bomb combos created and used
Rocket-magic combo Number of rocket-magic combos created and used
Bomb-magic combo Number of bomb-magic combos created and used

Level attributes

Attempts Average number of attempts on level by players in training set
Color entropy Entropy of color spawning weights; 𝑆 = −∑

𝑖 𝑝𝑖 log 𝑝𝑖
Colors Number of unique colors in the level
SpreadingBlocker, cg Levels with a spreading blocker as collect goal (cg)
LayerCake, cg Levels with a specific blocker with 3 hitpoints as a collect goal
ConsecutiveBlocker, cg Levels with a blocker that requires two attacks in a row as a collect goal
MegaMultiColorBlocker Levels with a large blocker that requires matching multiple colors to remove
Teleport Levels with a teleport mechanic that transports pieces around the board

Table 1: Features investigated for RF and FM+feat. The player features are aggregated means on the first 𝑛
observed levels.

different stages of the game with different types of levels, difficul-
ties, required strategies, etc. The level attributes are static and do
not change depending on the number of observations.

6 RESULTS
In the following, we first describe the prediction task to put the
baseline prediction and error metric in context. We then identify
how many observations are necessary to beat the baseline to an-
swer our first and second research questions. Lastly, in order to
answer our third research question, we provide an interpretation
of the model parameters and identify key game levels for under-
standing the model and thus providing valuable insights for the
level designers.

6.1 Baseline Prediction and Error
Both the RF and FM models have been optimized using root mean
square error (RMSE). However, the underlying distribution of at-
tempts, as shown in Fig. 3, follows a geometric-like distribution,
where the most common value is 1, and especially hard levels ex-
hibit a long tail that drives the average attempts up. This long tail
on hard levels can yield a large RMSE on said levels, leading to
the hard levels having a large effect on the model optimization.
To provide a more complete picture of the models’ performance
and support model comparisons on easier levels, we also report the
mean absolute error (MAE) next to RMSE.

Crucially, we cannot expect this baseline nor any of our meth-
ods to yield a close-to-zero prediction error. This is because each
outcome of a level playing attempt is also governed by aleatoric
uncertainty, which the model cannot account for. Each prediction
captures the expected value for a given player-level combination.

Calculating the baseline error by aggregating all data points,
we find the prediction errors across the whole level range to be
RMSEall = 3.86 and MAEall = 2.33. The errors after level 150

25 50 75 100 125 150
Observed levels

2.3

2.4

2.5

2.6

2.7

2.8

2.9

M
AE

FM - 1 FM - 2 FM - 8 FM+feat - 2 RF NB

25 50 75 100 125 150
Observed levels

3.75

3.80

3.85

3.90

3.95

4.00

4.05

4.10

RM
SE

Performance on levels >150

Figure 5: MAE and RMSE on test levels ℓ > 150 for different
observed level counts. The shaded area shows the 95% confi-
dence interval around the means.

are RMSEℓ>150 = 4.10 and MAEℓ>150 = 2.53. The larger error on
ℓ > 150 is due to these levels being generally (intrinsically) more
difficult (Fig. 2) and thus having a larger attempt variance.

6.2 Effect of Observed Level Count
Before being able to differentiate between players meaningfully, we
require sufficientlymany discernible observations of their gameplay.
The first 10 levels introduce the core gameplay, and new mechanics
are then introduced in every tenth tutorial level (21, 31, 41, ... see Fig.
2). We, therefore, compare the methods when trained at 6 points of
a player’s progress: at 10, 20, 30, 50, 100 and 150 levels. To avoid
information leaking between training and test sets, we evaluate the
predictions on the test users after level 150.

6

We tested our FMs with 1, 2, 4, 8, 16, and 32 factors, but we
leave out the 4, 16, and 32-factor models in the presented results for
clarity of visualization since they do not alter or further inform our
conclusions. The MAE and RMSE of all tested models are shown
in Fig. 5, along with the 95% confidence intervals. The FM models
without additional features (i.e., excluding FM+feat-2) all have simi-
lar performance, with the 1-factor model performing better in terms
of MAE and the other FM models performing better in terms of
RMSE. This suggests that using a single latent factor is not enough
to capture the large variance in high-difficulty levels (see Fig. 3),
but it makes the model less likely to overfit and perform worse on
easier levels. The RMSE plot shows that these FM models are on
par with the baseline prediction for as little as 10 observed levels,
and, as more levels are observed, the prediction further improves
over the baseline.

The predictions can be further improved while requiring fewer
observations by including additional features as described in Table
1. This holds for both the RF and FM+feat models. The RM+feat-2
model shows superior performance, but its error increases after
50 observed levels. We consider this an effect of overfitting to the
additional data since the training error for all the FM+feat models
appears to be around RMSEtrain = 3.2.

This highlights the importance of feature engineering, and while
more sophisticated features could be utilized, the basic FMs pre-
sented here are game-agnostic and scale easily, providing a feasible
method for game designers to employ. Our results also show that,
even when additional information is available and included as fea-
tures in the RF model, FMs are still able to extract more relevant
information from the player-level-feature interactions.

To explore why early predictions can be improved by including
additional data comprising more fine-grained descriptions of play-
ers, we analyze the feature importances from the RF model. Fig. 6
shows how the four most important features change depending
on the level observation count. We find that the model utilizes ad-
ditional information other than the number of attempts: early on,
more fine-grained behavior data such as the average number of
moves is more important compared to later on, where the average
number of player attempts becomes increasingly more important.
However, with more observed levels, all models reach a similar
degree of performance. While the FM+feat-2 model performance
appears to stagnate, the FM approaches reach similar, if not better,
performance. This stagnation may be caused by the feature aggre-
gation, where the possible level of detail and stand-out behaviors
are more washed out with an increasing number of observations.
Other features, such as power piece and booster usage, all have a
relative importance of around 0.05, i.e., they are not uninformative.
However, they are strongly correlated, which may reduce their joint
importance, as mentioned in Sec. 4.2.

We also analyzed how the accuracy of predictions varies depend-
ing on the specific level they are computed for. To this end, we
plotted the MAE of the FM-2 model relative to the naive baseline,
as shown in Fig. 7. We omit a similar plot for the other models
as they exhibited similar behavior. We find that the predictions
immediately after the last observed level are more accurate, with
performance deteriorating compared to the baseline on later levels.
We conclude that, firstly, the FM prediction accuracy drops at later
levels, and, secondly, more observed levels lead to a slower decline

25 50 75 100 125 150
Observed levels

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
de

cr
ea

se
 in

 im
pu

rit
y

Main feature importances

attempts_player
moves_used_pct
attempts_level
basicPieceEntropy

Figure 6: Mean feature importances and one standard devi-
ation for the Random Forest (RF) regressor. Only features
with a relative significance above 0.05 are shown.

in predictive performance, meaning a higher observed level horizon
allows a model to be used farther into the future.

The results presented in this section allow us to answer the first
two research questions: Firstly, the basic FM model without addi-
tional information fares worse than the RF model with additional
data until after 100 observed levels, where they converge to similar
performance. However, the FM with the same additional data as the
RF outperforms all other models after 20 observed levels. Secondly,
the number of observations that are necessary to discern a player
from the average players depends on how detailed the available
information is: with only the aggregate number of attempts, the FM
method requires between 10 and 30, while more fine-grained data
can enable predictions after 10 observations for all approaches.

6.3 Interpreting FM Model Parameters
To answer the third research question, we investigate the found
FM model parameters in detail. As already mentioned, the FM
models with two or more factors seem to capture other aspects
than the 1-factor model, and the FM-2 method yields comparable
performance as the RF method after 100 observed levels. We thus
limit the analysis to the 2-factor model with 100 observed levels.

0 100 200 300 400 500
Levelnumber

0.8

0.6

0.4

0.2

0.0

0.2

Di
ffe

re
nc

e
in

 M
AE

 c
om

pa
re

d
to

 N
B

Training levels
10
20
30
50
100
150

Figure 7: MAE difference between the prediction and baseline
for the FM-2 model on the test user predictions for different
observed level counts. The lines show the rolling average
over 12 levels. Similar behavior was observed for the other
models but is not shown for clarity.

7

2 0 2 4 6
w

0 2 4 6 8
v1

Players
Levels

4 2 0 2 4
v2

Figure 8: Histogram of the FM model parameters (100 ob-
served levels, 2 latent factors).

FMs use two main parameters (Sec. 4): the variable biases, 𝑤 ,
and the latent factors that describe second-order interactions, v
(ignoring subscripts for specific users/items/attributes). As a first
step, we consider histograms of the model parameters in Fig. 8
and separate the distributions by player and level parameters. We
find that the distributions are distinctly different between players
and levels for all three parameters. We consequently differentiate
between levels and players in the following examination of each
parameter before discussing their relationship to the player-level
interactions.

1 2 3 4 5 6 7
Level bias, w

1

2

3

4

5

6

7

Av
er

ag
e

at
te

m
pt

s

Levelnumber
100
200
300
400

Figure 9: The average attempts on the level over the level
bias,𝑤 . The black dashed line is the diagonal𝑤 = attempts.

Variable bias, w: For the levels, this variable is strongly corre-
lated (𝜌Spearman = 0.99) with the average number of attempts on
that level (Fig. 9). However, the 𝑤 parameter for the levels is not
sufficient to match the underlying distribution of attempts, which
is not surprising since that would correspond to the baseline model.
As for the players,𝑤 does not correlate strongly with any player-
related metrics. This suggests that the main first-order term comes
from the levels, supporting an interpretation of𝑤 as a baseline level
difficulty. The remaining variance must therefore be explained by
the second-order interaction terms between player and level.

First latent factor, v1: For both the levels and players, this
variable is also strongly correlated with the average number of
attempts (𝜌Spearman = 0.98 and 0.70, respectively), as well as the
variance of the attempts (𝜌Spearman = 0.99 and 0.73, respectively).
We note that for the levels, 𝑣1 is strictly positive, with the exception
of 5 tutorial levels which are only slightly negative. This suggests
that 𝑣1 captures a variance effect for each level, where the sign of
the interaction depends solely on the player. The amplitude then

0 1 2 3 4 5 6 7
v1

0.4

0.6

0.8

1.0

1.2

at
te

m
pt

s/
at

te
m

pt
s

levelnumber
100
200
300
400
leveltype
Tutorial
Normal
Hard

3 2 1 0 1 2 3
v2

0

100

200

300

400

500

Le
ve

ln
um

be
r

attempts
2
3
4
5
6
leveltype
Tutorial
Normal
Hard

Figure 10: Top: Normalized variance versus the latent factors,
𝑣1. Bottom: The level number plotted against the second la-
tent factor, 𝑣2. Note that level designers assign the hard label
based on their own initial estimates, so it does not always
reflect whether a level requires many attempts on average.

reflects the consistency of the level/player: a value close to 0 for
the level signals little variation between the players (it may only
require one simple strategy to win, e.g. in tutorials), while a large
𝑣1 suggests a large variation (e.g. it may require multiple strategies,
or come with high aleatoric uncertainty). For the player, 𝑣1 is more
reflective of their skill level: for 𝑣1 < 0, we expect a player to use
consistently fewer attempts than their peers, especially on harder
levels where skill and strategy matter more. Conversely, 𝑣1 > 0
indicates that the player struggles to employ winning strategies.

To support this interpretation, we investigated levels at the ex-
treme values of 𝑣1. Since 𝑣1 is strongly correlated with the average
number of attempts to complete a level, which in turn is strongly
correlated with the attempt variation on said level, we show the
attempt variation normalized by the average attempts as a function
of 𝑣1 in Fig. 10. At small values of 𝑣1, we find the tutorial levels
which generally have a high move limit and do not require any
special strategies. Conversely, at large 𝑣1 are the levels with the
greatest difficulty and variance compared to the mean. As an illus-
trative example, we show level 383 in Fig. 11, which has the highest
𝑣1 among all levels. There are multiple gameplay reasons why this
level might have high variance and difficulty:

8

(a) Level 5. The level is a tutorial level and has the 7th lowest 𝑣1. It
does not require any special strategies to complete.

(b) Level 383. The level is hard and has the highest 𝑣1. In order to
complete the level, the first level goal requires removing all the shells
to the left, so the seed bag drops down to the bottom,while the second
goal requires attacking either of the three bubble spawners at the
bottom and then destroying six bubbles. The shells and tree stumps
are both hard blockers, requiring power pieces for their removal.

Figure 11: Examples of a tutorial (a) and hard level (b). The
left-hand side shows the level layout, and the right-hand side
shows themove limit, level objectives, and color distributions.
The pieces marked with ’?’ are assigned a random color at
the start given by the weight distribution shown to the right.

(1) The level contains blockers, which can only be destroyed
with power pieces. Less skilled players will have a harder
time creating the necessary pieces.

(2) The spawning weights on piece colors are almost uniform,
making it harder to create power pieces.

(3) There is one specific power piece combination (2 magics,
requiring 2 combinations of 10 pieces) that can easily win a
level. More skilled players may have learned this strategy.

(4) The board itself is larger than average, allowing more possi-
ble strategies (e.g., focus on the top/bottom/left/right side).

All these aspects lead to the perceived level difficulty being
highly variable and dependable on the player’s skill and game
knowledge, supporting the interpretation that 𝑣1 expresses how
large an impact the player’s skill can have on a given level. In
contrast, level 5 in Fig. 11 has the 7th lowest 𝑣1 and requires a much
more simple strategy to win, affording little variation in individual
player difficulty.

Second latent factor, v2: This factor is strongly negatively
correlated with the level number, as shown in Fig. 10. For levels
below 250, 𝑣2 tends to be negative and becomes positive beyond
this threshold. There is nothing in the gameplay that changes dras-
tically in the first 500 levels, but since the level number is linked to
how many players have played the level, we interpret 𝑣2 to capture
aspects that are more temporal and related to the underlying data

distribution: there are more observations on early levels, and differ-
ent players have played later levels. It is thus likely that FM models
with more factors find such spurious connections in the data.

For a deeper interpretation of 𝑣2, we note that that 𝑣2 is inversely
correlated with player features as compared to 𝑣1. Since 𝑣1 can be
interpreted as player consistency and skill, 𝑣2 appears to capture
similar aspects but with the opposite sign, although it should be
noted that the sign of the factors is arbitrary, as the dot product
between user and content factors stays unchanged if one changes
the sign of both factors. Since 𝑣2 for the levels is centered around
0, the effect on the prediction depends on the player and their
progress: a negative 𝑣2 for a player means they spendmore attempts
on early levels but fewer attempts later on, while a positive 𝑣2
signals a reduction in predicted attempts early on andmore attempts
later on. The 𝑣2 factor can therefore also be related to a temporal
shift in a player’s playstyle compared to their peers. Crucially,
this interpretation is less clear than for the first latent factor as 𝑣2
appears to capture aspects more connected to the data collection
rather than the player-level relation.

7 DISCUSSION
Overall, our results from this case study suggest that FM outper-
forms both the naive baseline and RF, especially if augmented with
similar features as RF. Although RF performs better with fewer
observations than non-augmented FM, the latter is game-agnostic,
can be informative about the inter-dependency between players
and levels, and does not require expert knowledge on relevant
player and level descriptors. If such information is available, it can
be utilized by FMs in addition to the player-level data. Crucially
though, there remain some caveats and limitations regarding the
practical use of FMs and their generalizability, which we further
elaborate on below.

7.1 New Players and Content
One issue with FMs is the cold start problem where the model does
not learn model parameters (𝑤 , v) for a specific player if they were
not included in the training data (e.g. if a model is trained during
the night and the player starts playing the next day). This can be
mitigated by including additional player information, as we tested
in this study. While this increases computational complexity, the
capacity to describe the player with a set of features that can be
calculated immediately enables predictions without retraining the
whole model.

While we did not extend our research to include unseen levels,
the same cold start problem also exists in that case. We expect
this to be more difficult to mitigate since information about the
historical average number of attempts on a level – a very strong
predictor for the individualized predictions – is unavailable, and
the entropy of the color distribution (which is available) only ex-
plains a small percentage of the variation. More work is therefore
necessary to identify relevant level features, but some immediate
options could be to include AI playtest agent data since this data
can be strongly correlated with the player pass rate [24, 43, 44].
We advocate FMs as a straightforward extension to the current AI
playtesting approaches that will be able to capture the temporal
and cohort differences, unlike previous prediction models.

9

7.2 Utility to Game Designers
A lot of work on DDA focuses on immediate adjustments to the
game during play. This may be possible using an FM model and
relational data; however, the strength of the FM approach is not
just accurate predictions but also the modeling of further player
characteristics. The latent factors were identified to be related to
the players’ skill and consistency over time, and this information
can be relevant to many other features of the game. For instance, it
could be used to cluster people together for in-game tournaments
or groups so that they match in skill level and the competition is fair.
It can also help level designers in proactively maintaining the level
database by identifying problematic levels and bottlenecks before
a new player cohort reaches this point. Ideally, in-game purchase
data can also be incorporated into the process to provide estimates
for both expected difficulty and monetization effectiveness and let
level designers make informed decisions on necessary changes.

Before a tool like this can be implemented in a live game, though,
there are a number of practical challenges that need to be considered
first. Level design is very often an iterative process where minor
adjustments are repeatedly performed on the level. Any change to
the level will lead to a different difficulty, and the challenge is to
convey this to the model. While some changes are easy to quantify,
such as an alteration of the move limit or goals, others can be more
tricky: even minor changes in the layout (e.g., assigning specific
colors to start pieces or creating a hole in the level) can have a
large impact on the difficulty, creating almost an entirely new level.
We argue that FMs should be able to deal with both cases: if the
change is easily quantifiable, it can be added as relational data, and
if not, the level can be counted as a completely new level. While
this would discard the information that two levels are very similar
and increase data sparsity, FMs generally perform very well on
sparse data compared to other algorithms, making them a very
good candidate to use in the game industry.

7.3 Sensitivity to Randomness
As noted earlier, due to the stochastic nature of Lily’s Garden, it is
not possible to predict the exact number of attempts of a player on
a level. An alternative could be to predict the probability of success
per attempt, similar to Xue et al. [55]. Approaching the optimization
problem from this perspective would require replacing the RMSE
and MAE for evaluating the models with a measure such as the
Poisson deviance, which is more appropriate for strictly positive
counting data. However, for this study, we focus on RMSE andMAE,
as these measures are more canonical and easier to interpret by
game designers.

7.4 Generalizability to Other Games and
Domains

Our study is based on one specific puzzle game, but we expect our
approach to work for other games as well, including other types
of puzzle games, different genres (e.g. platformers or first-person
shooters), or even different types of games (e.g. educational games).
FMs are task-agnostic and can be applied to any game where the
following requirements are met:

(1) The variable of interest, e.g., pass rate or time taken, can
be predicted as a multiplicative (or divisive) combination of
user and content latent variables such as skill and difficulty.

(2) Multiple users are exposed to the same units of content
such as puzzles or levels, allowing for inference of the latent
variables.

Many games meet these requirements, but there are notable
exceptions, such as highly/completely random games, where the
player has little effect on the outcome, and procedurally generated
games, where the generated content can be unique for each player.
Some instances of procedural content generation might still allow
modeling latent player-content relations, e.g. different players strug-
gling with different enemies. However, this needs to be evaluated
on a per-game basis.

While we expect the model parameters to capture similar aspects
across games, we do not consider it feasible to directly transfer a
trained model to another game unless the games are very similar in
terms of both gameplay and the distribution of predictor variables.
However, if the same players play multiple games, all the multi-
game user-content interactions could, in principle, be combined into
one big FM dataset. This is a potential direction for future research.
It should be noted, though, that games can have different types of
challenges, such as emotional, cognitive, and physical challenges
[12]. To model all the challenge and skill facets of multiple games,
one will likely need more FM factors than our default 2.

7.5 Generalizability to Difficulty and/or Skill
Varying Over Time

Our approach does not explicitly take into account players’ learning
and skill improvement during play. However, Fig. 7 demonstrates
that the model performs well more than 100 levels into the future.
Predicting beyond such a safe horizon is typically not necessary, as
the model can be retrained periodically to include new observations
of each player progressing through the game and gaining in skill.
For instance, in our case, it would be feasible to retrain daily, as
most players consume far less than 100 levels per day (median =
7, 90th quantile = 31), and the training takes only 14 hours on an
Intel Cascade Lake c2-standard-16 Google Cloud machine.

Generalizability to dynamically varying skill and difficulty could
also be improved with additional FM input features. An obvious
choice is to utilize difficulty features such as a level’s move limit
or the amounts and types of enemies. It should also be possible
to utilize player statistics such as total playtime, to allow FM to
explicitly model skill acquisition over time. Future work is needed
to investigate whether and how much such extra features improve
prediction accuracy.

8 CONCLUSION
We have considered the problem of predicting personalized per-
ceived difficulty and specifically how many attempts a player will
spend on completing a level in a commercial mobile puzzle game. To
this end, we compared four approaches: a simple non-personalized
baseline, a Random Forest regressor, and Factorization Machines
(FMs), the latter with and without game-specific features.

10

In terms of prediction performance, both the RF and FMmethods
achieved a lower MAE than the baseline after 10 and 30 observa-
tions of the players, respectively, answering our second research
question about howmany observations are necessary for being able
to discern between players. The FM method that utilizes the same
features as the RF model achieves better performance than all the
other models already after 20 observations. All models had a lower
RMSE than the baseline after 10 observations, indicating that any
kind of personalized prediction can improve difficulty estimates.

A deeper analysis allowed us to answer our last research ques-
tion about the FM parameters and their correlation with player
and level characteristics. The first-order term, 𝑤 , captures level
difficulty, while the first latent factor, 𝑣1, captures a player-level
interaction that quantifies the player skill and level randomness:
for levels, 𝑣1 was strictly positive (except for 5 tutorial levels) and
can be thought of as a level variance, whereas for players, both
the magnitude and sign of 𝑣1 indicate how sensitive and consis-
tent a player is to the stochastic elements of a level and can thus
be thought of as an expression of skill. Lastly, 𝑣2 captures signals
related to the underlying data distribution and temporal changes
in player behavior. For levels, 𝑣2 is strongly correlated with the
level number. The latent factor of the player, therefore, describes
whether they perform better or worse over the progress of levels
compared to their peers and, in a sense, how well they learn how to
play. Including more latent factors led to overfitting and was thus
not analyzed in more detail.

Overall, we find that FMs have multiple advantages over other
prediction approaches: they outperform other typical approaches
even when only relying on game-agnostic player-level-attempt data
but have the option to utilize more fine-grained data to further im-
prove performance; the FM model parameters provide interpretable
results; FMs are scalable to large amounts of data. FMs therefore
show a large potential for difficulty modeling not just for research
but also in an industrial context where such advantages are require-
ments.

9 FUTUREWORK
We have focused on estimating how many attempts a player will
spend on completing a level, but there are a number of extensions
to the model that may make it even more useful for game designers.

The model performance clearly improves with additional infor-
mation, especially when only a few player observations are avail-
able. A relevant line of future investigation is therefore to identify
the features that have a large impact on the model performance and
optimize the feature selection to prevent overfitting. Additionally,
including AI playtest agent data may also improve the predictions
on levels with very few or no player-level observations.

The same player-level data could also be used in future work to
predict variables other than the number of attempts. Other useful
prediction targets could include churn, the probability of purchas-
ing a continue, or the number of actions required to complete a
level. Furthermore, the learned model parameters might be useful
for other modeling approaches such as personalized offers, churn
prediction, or sampling criteria for A/B testing new content to
ensure enough player variation of the content.

ACKNOWLEDGMENTS
Many thanks to our anonymous reviewers for their extremely valu-
able feedback. CG has been partly funded by theAcademy of Finland
Flagship program Finnish Center for Artificial Intelligence (FCAI).
We thank Tactile Games for supporting this work, and especially
the level design team for sharing their expertise and insights.

REFERENCES
[1] Justin T. Alexander, John Sear, and Andreas Oikonomou. 2013. An investigation

of the effects of game difficulty on player enjoyment. Entertainment Computing
4, 1 (Feb. 2013), 53–62. https://doi.org/10.1016/j.entcom.2012.09.001

[2] Ashton Anderson, Jon Kleinberg, and Sendhil Mullainathan. 2017. Assessing
human error against a benchmark of perfection. ACM Transactions on Knowledge
Discovery from Data (TKDD) 11, 4 (2017), 1–25.

[3] Syed Muhammad Anwar, Talha Shahzad, Zunaira Sattar, Rahma Khan, and
Muhammad Majid. 2017. A game recommender system using collaborative filter-
ing (GAMBIT). In 2017 14th International Bhurban Conference on Applied Sciences
and Technology (IBCAST). 328–332. https://doi.org/10.1109/IBCAST.2017.7868073

[4] Jeanne H Brockmyer, Christine M Fox, Kathleen A Curtiss, Evan McBroom,
Kimberly M Burkhart, and Jacquelyn N Pidruzny. 2009. The Development of the
Game Engagement Questionnaire: A Measure of Engagement in Video Game-
Playing. Journal of Experimental Social Psychology 45, 4 (2009), 624–634.

[5] Sara Bunian, Alessandro Canossa, Randy Colvin, and Magy Seif El-Nasr. 2017.
Modeling individual differences in game behavior using HMM. (2017).

[6] Paul Cairns. 2016. Engagement in Digital Games. InWhy Engagement Matters:
Cross-Disciplinary Perspectives of User Engagement in Digital Media, Heather
O’Brien and Paul Cairns (Eds.). Springer International Publishing, Cham, 81–104.
https://doi.org/10.1007/978-3-319-27446-1_4

[7] Hao Cen, Kenneth Koedinger, and Brian Junker. 2006. Learning factors analysis–a
general method for cognitive model evaluation and improvement. In International
conference on intelligent tutoring systems. Springer, 164–175.

[8] Jenova Chen. 2007. Flow in Games (and Everything Else). Commun. ACM 50, 4
(apr 2007), 31–34. https://doi.org/10.1145/1232743.1232769

[9] Germán Cheuque, José Guzmán, and Denis Parra. 2019. Recommender Systems
for Online Video Game Platforms: the Case of STEAM. In Companion Proceedings
of The 2019 World Wide Web Conference. ACM, San Francisco USA, 763–771.
https://doi.org/10.1145/3308560.3316457

[10] Mihaly Csikszentmihalyi and Mihaly Csikzentmihaly. 1990. Flow: The psychology
of optimal experience. Vol. 1990. Harper & Row New York.

[11] Alena Denisova, Paul Cairns, Christian Guckelsberger, and David Zendle. 2020.
Measuring perceived challenge in digital games: Development & validation of
the challenge originating from recent gameplay interaction scale (CORGIS).
International Journal of Human-Computer Studies 137 (May 2020), 102383. https:
//doi.org/10.1016/j.ijhcs.2019.102383

[12] Alena Denisova, Christian Guckelsberger, and David Zendle. 2017. Challenge
in Digital Games: Towards Developing a Measurement Tool. In Proceedings of
the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Sys-
tems. ACM, Denver Colorado USA, 2511–2519. https://doi.org/10.1145/3027063.
3053209

[13] Anders Drachen, Eric Thurston Lundquist, Yungjen Kung, Pranav Rao, Rafet Sifa,
Julian Runge, and Diego Klabjan. 2016. Rapid prediction of player retention in
free-to-play mobile games. (2016).

[14] Tobias Drey, Fabian Fischbach, Pascal Jansen, Julian Frommel, Michael Rietzler,
and Enrico Rukzio. 2021. To Be or Not to Be Stuck, or Is It a Continuum?: A
Systematic Literature Review on the Concept of Being Stuck in Games. Proceed-
ings of the ACM on Human-Computer Interaction 5, CHI PLAY (Oct. 2021), 1–35.
https://doi.org/10.1145/3474656

[15] Ilya Goldin, April Galyardt, et al. 2018. Most of the Time, It Works Every Time:
Limitations in Refining Domain Models with Learning Curves. Journal of Educa-
tional Data Mining 10, 2 (2018), 55–92.

[16] Miguel Gonzalez-Duque, Rasmus Berg Palm, and Sebastian Risi. 2021. Fast
Game Content Adaptation Through Bayesian-based Player Modelling. In 2021
IEEE Conference on Games (CoG). 01–08. https://doi.org/10.1109/CoG52621.2021.
9619018

[17] Miguel González-Duque, Rasmus Berg Palm, David Ha, and Sebastian Risi. 2020.
Finding Game Levels with the Right Difficulty in a Few Trials through Intelligent
Trial-and-Error. In 2020 IEEE Conference on Games (CoG). 503–510. https://doi.
org/10.1109/CoG47356.2020.9231548

[18] Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet, Sami Pur-
monen, Bartlomiej Kozakowski, Richard Meurling, and Lele Cao. 2018. Human-
like playtesting with deep learning. In 2018 IEEE Conference on Computational
Intelligence and Games (CIG). IEEE, 1–8.

[19] Erik Harpstead and Vincent Aleven. 2015. Using Empirical Learning Curve
Analysis to Inform Design in an Educational Game. In Proceedings of the 2015

11

Annual Symposium on Computer-Human Interaction in Play (London, United
Kingdom) (CHI PLAY ’15). Association for Computing Machinery, New York, NY,
USA, 197–207. https://doi.org/10.1145/2793107.2793128

[20] Fuxing Hong, Dongbo Huang, and Ge Chen. 2019. Interaction-aware factorization
machines for recommender systems. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 3804–3811.

[21] Martin Jennings-Teats, Gillian Smith, and Noah Wardrip-Fruin. 2010. Polymorph:
dynamic difficulty adjustment through level generation. In Proceedings of the
2010 Workshop on Procedural Content Generation in Games. 1–4.

[22] Ildar Kamaldinov and Ilya Makarov. 2019. Deep reinforcement learning in match-
3 game. In 2019 IEEE conference on games (CoG). IEEE, 1–4.

[23] Jeppe Theiss Kristensen and Paolo Burelli. 2019. Combining Sequential and
Aggregated Data for Churn Prediction in Casual Freemium Games. In 2019 IEEE
Conference on Games (CoG). 1–8. https://doi.org/10.1109/CIG.2019.8848106 ISSN:
2325-4289.

[24] Jeppe Theiss Kristensen, Arturo Valdivia, and Paolo Burelli. 2020. Estimating
Player Completion Rate in Mobile Puzzle Games Using Reinforcement Learning.
In 2020 IEEE Conference on Games (CoG). 636–639. https://doi.org/10.1109/
CoG47356.2020.9231581

[25] Jeppe Theiss Kristensen, Arturo Valdivia, and Paolo Burelli. 2021. Statistical
Modelling of Level Difficulty in Puzzle Games. In 2021 IEEE Conference on Games
(CoG). IEEE, 1–8.

[26] R Lazzaro. 2004. Why we play games: 4 keys to more emotion. Proc. Game
Developers Conference 2004. https://cir.nii.ac.jp/crid/1572543025651858816

[27] Jiayu Li, Hongyu Lu, Chenyang Wang, Weizhi Ma, Min Zhang, Xiangyu Zhao,
Wei Qi, Yiqun Liu, and Shaoping Ma. 2021. A Difficulty-Aware Framework for
Churn Prediction and Intervention in Games. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. ACM, Virtual Event
Singapore, 943–952. https://doi.org/10.1145/3447548.3467277

[28] Conor Linehan, George Bellord, Ben Kirman, Zachary H. Morford, and Bryan
Roche. 2014. Learning curves: analysing pace and challenge in four successful
puzzle games. In Proceedings of the first ACM SIGCHI annual symposium on
Computer-human interaction in play. ACM, Toronto Ontario Canada, 181–190.
https://doi.org/10.1145/2658537.2658695

[29] Diana Lora, Antonio A Sánchez-Ruiz, Pedro A González-Calero, and Marco A
Gómez-Martín. 2016. Dynamic difficulty adjustment in tetris. In The Twenty-Ninth
International Flairs Conference.

[30] Tobias Mahlmann, Anders Drachen, Julian Togelius, Alessandro Canossa, and
Georgios N. Yannakakis. 2010. Predicting player behavior in Tomb Raider: Under-
world. In Proceedings of the 2010 IEEE Conference on Computational Intelligence
and Games. 178–185. https://doi.org/10.1109/ITW.2010.5593355 ISSN: 2325-4289.

[31] Hee-Seung Moon and Jiwon Seo. 2020. Dynamic difficulty adjustment via fast
user adaptation. In Adjunct Publication of the 33rd Annual ACM Symposium on
User Interface Software and Technology. 13–15.

[32] FaustoMourato, Fernando Birra, andManuel Próspero dos Santos. 2014. Difficulty
in action based challenges: success prediction, players’ strategies and profiling.
In Proceedings of the 11th Conference on Advances in Computer Entertainment
Technology. 1–10.

[33] Dvir Ben Or, Michael Kolomenkin, and Gil Shabat. 2021. DL-DDA-Deep Learning
based Dynamic Difficulty Adjustment with UX and Gameplay constraints. In
2021 IEEE Conference on Games (CoG). IEEE, 1–7.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[35] Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. 2020. Enemy within:
Long-term motivation effects of deep player behavior models for dynamic diffi-
culty adjustment. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. 1–10.

[36] Christopher Power, Paul Cairns, Alena Denisova, Themis Papaioannou, and Ruth
Gultom. 2019. Lost at the edge of uncertainty: Measuring player uncertainty in
digital games. International Journal of Human–Computer Interaction 35, 12 (2019),
1033–1045.

[37] Megan Pusey, Kok Wai Wong, and Natasha Anne Rappa. 2021. The Puzzle
Challenge Analysis Tool. A Tool for Analysing the Cognitive Challenge Level of
Puzzles in Video Games. Proceedings of the ACM on Human-Computer Interaction
5, CHI PLAY (Oct. 2021), 1–27. https://doi.org/10.1145/3474703

[38] Zhiyun Ren, Xia Ning, Andrew S. Lan, and Huzefa Rangwala. 2019. Grade Pre-
diction with Neural Collaborative Filtering. In 2019 IEEE International Conference
on Data Science and Advanced Analytics (DSAA). 1–10. https://doi.org/10.1109/
DSAA.2019.00014

[39] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[40] Steffen Rendle. 2012. Factorization Machines with libFM. ACM Transactions on
Intelligent Systems and Technology 3, 3 (May 2012), 1–22. https://doi.org/10.1145/
2168752.2168771

[41] Steffen Rendle. 2013. Scaling factorizationmachines to relational data. Proceedings
of the VLDB Endowment 6, 5 (2013), 337–348.

[42] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme.
2011. Fast context-aware recommendations with factorization machines. In Pro-
ceedings of the 34th international ACM SIGIR conference on Research and develop-
ment in Information Retrieval. 635–644.

[43] Shaghayegh Roohi, Christian Guckelsberger, Asko Relas, Henri Heiskanen, Jari
Takatalo, and Perttu Hämäläinen. 2021. Predicting Game Engagement and Diffi-
culty Using AI Players. Proceedings of the ACM on Human-Computer Interaction 5,
CHI PLAY (Oct. 2021), 1–17. https://doi.org/10.1145/3474658 arXiv: 2107.12061.

[44] Shaghayegh Roohi, Asko Relas, Jari Takatalo, Henri Heiskanen, and Perttu
Hämäläinen. 2020. Predicting game difficulty and churn without players. In
Proceedings of the Annual Symposium on Computer-Human Interaction in Play.
585–593.

[45] Richard M. Ryan, C. Scott Rigby, and Andrew Przybylski. 2006. The Motivational
Pull of Video Games: A Self-Determination Theory Approach. Motivation and
Emotion 30, 4 (2006), 347–363.

[46] Anurag Sarkar and Seth Cooper. 2017. Level difficulty and player skill prediction
in human computation games. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, Vol. 13. 228–233.

[47] Mirna Paula Silva, Victor do Nascimento Silva, and Luiz Chaimowicz. 2015.
Dynamic Difficulty Adjustment through an Adaptive AI. In 2015 14th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames). 173–182.
https://doi.org/10.1109/SBGames.2015.16 ISSN: 2159-6662.

[48] Mack Sweeney, Huzefa Rangwala, Jaime Lester, and Aditya Johri. 2016. Next-
Term Student Performance Prediction: A Recommender Systems Approach.
arXiv:1604.01840 [cs] (Sept. 2016). https://doi.org/10.5281/zenodo.3554603 arXiv:
1604.01840.

[49] Penelope Sweetser and Peta Wyeth. 2005. GameFlow: a model for evaluating
player enjoyment in games. Computers in Entertainment (CIE) 3, 3 (2005), 3–3.

[50] April Tyack and Elisa D Mekler. 2020. Self-Determination Theory in HCI Games
Research: Current Uses and OpenQuestions. In Proc. Conference on Human Factors
in Computing Systems (CHI). ACM, 1–22.

[51] Marc Van Kreveld, Maarten Löffler, and Paul Mutser. 2015. Automated puzzle
difficulty estimation. In 2015 IEEE Conference on Computational Intelligence and
Games (CIG). IEEE, 415–422.

[52] Matheus Weber and Pollyana Notargiacomo. 2020. Dynamic Difficulty Adjust-
ment in Digital Games Using Genetic Algorithms. In 2020 19th Brazilian Sympo-
sium on Computer Games and Digital Entertainment (SBGames). IEEE, 62–70.

[53] Daniel Wheat, Martin Masek, Chiou Peng Lam, and Philip Hingston. 2016. Model-
ing perceived difficulty in game levels. In Proceedings of the Australasian Computer
Science Week Multiconference. 1–8.

[54] Robert C Wilson, Amitai Shenhav, Mark Straccia, and Jonathan D Cohen. 2019.
The eighty five percent rule for optimal learning. Nature communications 10, 1
(2019), 1–9.

[55] Su Xue, Meng Wu, John Kolen, Navid Aghdaie, and Kazi A. Zaman. 2017. Dy-
namic Difficulty Adjustment for Maximized Engagement in Digital Games. In
Proceedings of the 26th International Conference on World Wide Web Compan-
ion - WWW ’17 Companion. ACM Press, Perth, Australia, 465–471. https:
//doi.org/10.1145/3041021.3054170

[56] Alexander Zook, Stephen Lee-Urban, Michael R. Drinkwater, and Mark O.
Riedl. 2012. Skill-based Mission Generation: A Data-driven Temporal Player
Modeling Approach. In Proceedings of the The third workshop on Procedural
Content Generation in Games - PCG’12. ACM Press, Raleigh, NC, USA, 1–8.
https://doi.org/10.1145/2538528.2538534

12

4 Developing Playtesting Agents for New
Content

One obstacle with estimating difficulty on entirely new levels is that there is little to no informa-
tion about how players interact with the content. Game designers typically solve this cold start
scenario by playtesting the content themselves or releasing it to a smaller player population
before the full release. However, both playtesting methods can be relatively time-consuming
and expensive, so the question is how this can be made fast and efficient.

This chapter addresses how such a method can be developed for puzzle games. In doing so,
we contribute to answering the second research question of how we can predict the difficulty of
levels that have little or no player data. In the following section, we introduce the playtesting
method developed during this PhD project to explore the dynamics of the game levels. This
will form the basis for predicting the difficulty of new levels in Chapter 5, which will combine
methods from the previous chapter and this chapter.

4.1 Automated playtesting

Automated playtesting methods are becoming increasingly common and necessary to explore
the complex systems present in today’s games. In the case of puzzle games, it provides a way
to test out multiple aspects of the gameplay, such as finding solutions that level designers did
not think of or estimating the minimum of moves required to complete a level. Therefore, these
methods play a crucial part in evaluating and predicting player behaviour on new content. The
results in this section detail how such an agent has been developed for playtesting puzzle levels
and the challenges of extracting relevant gameplay information.

4.1.1 Background

Creating a playtesting method for the games developed by Tactile Games requires considering
the design choices of the games, which puts certain restrictions on viable methods.

One consideration is that the games were never designed with automated testing and tree
search in mind, which in effect means that it is impossible to save and load the full state of the
gameboard. In addition, as with any piece of software, there are bugs and unexpected behaviours
that can further complicate employing playtesting methods, such as crashes or playthroughs not
terminating when there are no available moves. MCTS and other similar methods that rely on
simulating a whole episode and being able to reset to the current state easily are not viable in
this setting.

56

4.1. AUTOMATED PLAYTESTING 57

Another significant limitation is the fact that there are no play traces of players. Recording
the whole game state at each move for 1 million daily players requires efficient logging, and it
has only recently been made possible in Tactile Games’ games to retrace previous playthroughs
accurately. This means that the playtesting agent can not be trained using imitation learning
(e.g. Juliani et al. (2018); Tastan and Sukthankar (2011)) or supervised learning approaches
(e.g. Ortega et al. (2013)).

Another consideration is the time it takes to evaluate the levels. If the level designers want
immediate feedback on a new level or other changes, it should not take longer than 5 minutes
to provide the relevant feedback. Alternatively, given that around 50 new levels are released
bi-weekly, the evaluation could consider the levels in bulk just before the release time, with
final, minor adjustments being suggested by a difficulty modelling method (e.g. Kristensen
et al. (2021)). The results by Gudmundsson et al. (2018) showed that using 1,000 attempts
compared to 100 attempts could reduce the variance. As mentioned by Poromaa (2017), this
approach requires around 1M simulations of the environment in order to capture 100 attempts,
and in the current implementation of the simulator, this would take around 2.5 hours.

The playtest agent introduced in Paper 3 (Kristensen and Burelli, 2020) assumes that similar
limitations can generally be present in other types of games. It is based on PPO, and given that
the performance can depend a lot on the implementation (Ilyas et al., 2018; Huang et al., 2022),
the paper’s focus is to demonstrate several strategies that allow the algorithm to work robustly
in a typical industrial setting. Additionally, having full access to the game itself allows us to
implement a number of improvements, such as no move limit on the levels and a more informative
state space (i.e. outputting game mechanics rather than pixels, similar to the approach by Volz
et al. (2018) for Mario levels). Paper 4 (Kristensen et al., 2020) further explores how the agent
can be trained in a realistic scenario where time and accuracy are essential factors and evaluates
the agent’s performance by considering the correlation with the players’ pass rate in new levels.

4.1.2 Results and conclusion

Paper 3 (Kristensen and Burelli, 2020) provides three suggestions for implementing an RL agent
based on PPO in Lily’s Garden:

1. Shuffling the colour layers in the state space.

2. Early termination of episodes.

3. Use of a soft action mask.

Since the mechanics pertaining to the colours are the same, the algorithm should not treat
the colours differently. One reason this can improve learning is that it is a kind of data aug-
mentation that can help the model learn to generalise and not get stuck in local minima (Risi
and Togelius, 2020).

Early termination is found to be a crucial addition to ensure stability in learning during
training. The idea is similar to what Liu et al. (2019) found for Angry Birds, where they prevent
collecting harmful trajectories in the replay buffer by restarting the level early if certain game
states are reached. In the study by Kristensen and Burelli (2020), it is also found that without

4.1. AUTOMATED PLAYTESTING 58

this early stopping, the agent tends to learn policies that are overfitted to poor observation and
only repeat one action, and typically an invalid one. Early stopping allows the agent to fill
the replay buffer with meaningful actions early on, enabling more gradual learning towards the
goal.

The problem of selecting the same action can be helped by employing an action mask. Since
the simulator does not provide an action mask (which has since been implemented for Chapter
5), a hand-crafted action mask valid for the first 11 levels is used instead. However, while this
leads to learning a good policy faster, the algorithm fails catastrophically within a few episodes.
As an alternative, the action mask was included as a “soft” action mask where it was included
in the state space instead.

The study also provides suggestions for the choice of hyperparameters, including an entropy
coefficient of 0.01 to encourage exploration and an experience buffer size between 128 and 256
to allow for whole episodes to be included.

While these strategies help the agent learn how to play the first 11 levels, there are some
limitations to this work. Firstly, an issue with shuffling the colours is that it slows down
learning. A more efficient way could include invariance to colour in the neural network itself,
such as including the permutation-invariant attention neuron (Tang and Ha, 2021). Another
issue that is not considered is that imposing time limits when resetting early without including
this information in the game state can lead to suboptimal policies (Pardo et al., 2018). Lastly,
using action masks in reinforcement learning can be tricky, especially in policy gradient methods,
since the action mask needs to be considered in the gradient used to update the policy model
parameters (Huang and Ontañón, 2020). The last two issues have been considered in Paper
5 (Kristensen and Burelli, 2022) where complete information about the time and move limit
has been included in the state space, and the action mask is both fully valid and implemented
correctly in PPO.

Kristensen and Burelli (2020) only considers the first 11 levels, which are very introductory
in nature. This limited scope means that it is hard to conclude whether the method is viable
for modelling player behaviour on the more complex levels. Kristensen et al. (2020) therefore
extend the analysis to include the first 120 levels where the first 100 are used for training.
Furthermore, three ways of training the agent are considered:

1. One-step curriculum: The agent is trained on randomly sampled levels during training.

2. One-step level: The agent is only trained on the specific level to evaluate.

3. Two-step: The agent is first trained on randomly sampled levels, then trained again on
the specific level to evaluate.

The results highlight the difficulty of using AI for playtesting: while the best performing
approach in terms of moves taken to complete the levels is the two-step approach, the correlation
with player data is lower than with the other approaches. Conversely, the one-step curriculum
approach performs the worst out all RL agents in terms of moves but the best in terms of player
correlation. Furthermore, the strongest correlation with player data is when only the 5% best
evaluation runs are considered, with similar results being found subsequently by Roohi et al.
(2021).

4.1. AUTOMATED PLAYTESTING 59

The one-step curriculum model is the strongest contender for being used in an industrial
setting since it can be used immediately without additional training and shows the strongest
correlation with player behaviour. However, there is still room for improvement since a more
competent agent could speed up playtesting further by completing levels faster and thus allowing
for more playthroughs, provided its performance is consistent and still correlated with player
data. A key is ensuring the agent learns to generalise (Cobbe et al., 2019) and possibly create a
curriculum that does not rely on random sampling to allow it to learn to play more challenging
levels (Justesen et al., 2018).

4.1.3 Relevant paper(s)

The results and discussion are based on Paper 3, Strategies for Using Proximal Policy Optimiza-
tion in Mobile Puzzle Games (Kristensen and Burelli, 2020), and Paper 4, Estimating Player
Completion Rate in Mobile Puzzle Games Using Reinforcement Learning (Kristensen et al.,
2020).

Paper 3 was submitted to the 2020 Foundations of Digital Games conference as a full-
length paper and has been accepted and presented. It has been co-authored with the principal
university supervisor, Paolo Burelli. I am responsible for conducting the experiments and
contributing to all of the text. All co-authors have been involved in the discussion and editing
of the final structure of the paper.

Paper 4 was submitted to the 2020 IEEE Conference on Games as a short paper and has been
accepted and presented. It has been co-authored with the principal university supervisor, Paolo
Burelli, and the principal company supervisor, Arturo Valdivia. I am responsible for conducting
the experiments and contributing to all of the text. All co-authors have been involved in the
discussion and editing of the final structure of the paper.

4.2 Paper 3: Strategies for Using Proximal Policy Optimiza-
tion in Mobile Puzzle Games

Strategies for Using Proximal Policy Optimization
in Mobile Puzzle Games

Jeppe Theiss Kristensen
IT University of Copenhagen/Tactile Games

Copenhagen, Denmark
jetk@itu.dk

Paolo Burelli
IT University of Copenhagen/Tactile Games

Copenhagen, Denmark
pabu@itu.dk

Abstract—While traditionally a labour intensive task, the test-
ing of game content is progressively becoming more automated.
Among the many directions in which this automation is taking
shape, automatic play-testing is one of the most promising thanks
also to advancements of many supervised and reinforcement
learning (RL) algorithms. However these type of algorithms,
while extremely powerful, often suffer in production environ-
ments due to issues with reliability and transparency in their
training and usage.

In this research work we are investigating and evaluating
strategies to apply the popular RL method Proximal Policy Op-
timization (PPO) in a casual mobile puzzle game with a specific
focus on improving its reliability in training and generalization
during game playing.

We have implemented and tested a number of different
strategies against a real-world mobile puzzle game (Lily’s Garden
from Tactile Games). We isolated the conditions that lead to a
failure in either training or generalization during testing and we
identified a few strategies to ensure a more stable behaviour of
the algorithm in this game genre.

Index Terms—reinforcement learning, ppo, player agent,
player modelling, playtesting, autonomous agent

I. INTRODUCTION

Human game testing is an expensive and slow process. It
usually requires the full attention of the testers, and there are
limitations on how fast humans can operate. Game developers
are therefore increasingly starting to use automated play
testing. However, developing and implementing such methods
in practice has its problems – the methods tend to require a
very specific setup for one game, and trying to adapt it to other
environments may sometimes break the algorithm and render it
useless. In this paper we therefore set out to explore both novel
and common strategies for ensuring a stable implementation of
a reinforcement learning (RL) play-testing agent in a mobile
puzzle game in a production setting.

A popular choice for creating play testing tools is reinforce-
ment learning, and research in this field is moving fast. Novel
algorithms and updates to current state-of-the-art methods are
constantly being introduced in the latest publications, showing
better performance on typical frameworks such as the Arcade
Learning Environment [3].

However, contrary to these kind of one-shot evaluations,
adapting these methods in a production environment in a
company requires additional considerations – such as ease-of-
use and long-term reliability. Unlike these benchmark games,

Fig. 1. Level 11 from Lily’s Garden. The left hand side shows number of
moves left to finish the level, and the board pieces below indicate which
and how many pieces to collect before completing the level. Collecting the
objectives is done by clearing them off the board, which can be done by
clicking on two or more basic pieces of the same color, or using power pieces
that clear an entire row/area. Power pieces can be created by matching 5 or
more basic pieces.

production games are updated frequently, and it can not be
expected to be possible to draw on expert knowledge at any
time in case something goes wrong. Until more focus has been
put on strategies on how to use these methods, adoption of
these methods in the industry will be slow at best.

In this research work we focus on the challenges of imple-
menting the popular RL method Proximal Policy Optimization
(PPO) [30], a widely used algorithm available in various
RL libraries (OpenAI Baselines/stable-baselines [6], [15], TF-
Agents [9], Unity ML-Agents [18]), in a mobile puzzle game
called Lily’s Garden by Tactile Games (Fig. 1). While other
RL methods may also work in this environment, we choose to
only focus on PPO since it is one of the two main algorithms
implemented in Unity ML-Agents and thus widely accessible
to game developers that use Unity.

Our contribution is two-fold:

• We explore different setups for training an agent in a mo-
bile puzzle game and determine a set of hyperparameters
and setups that enable the agent to some extend play both
seen and unseen levels competently.

• We highlight that the impact of some PPO variations are
not fully understood and can easily lead to unexpected
learning behaviours. We then suggest strategies for avoid-

ing such behaviours and ensure a more stable training.
This paper is structured as follows: First we introduce the

game environment that we will use for testing. Next we present
the basics of the PPO algorithm and discuss the specific imple-
mentation we use. This is followed by the experiments section
where we present the various setups we tested and highlight
the main difficulties and problems encountered during training
of the agent. Lastly we discuss which methods and strategies
that are feasible to employ in a production setting and identify
areas that need improvement.

II. RELATED WORK

When it comes to creating agents for playing games, re-
inforcement learning (RL) and deep learning methods have
started to become a staple and have been used to play a large
variety of games, ranging from arcade games to first-person
shooter games [19].

Each genre has its own challenges, and some approaches
work better than others in different settings. It is therefore
relevant to consider which approaches that have been used for
play-testing in similar game genres.

In Atari games, some of the state-of-the-art approaches
using pixel data or memory-features as input are deep Q-
learning (DQN) [25], [26] and variations thereof (such as
Rainbow [14]), and actor-critic approaches like PPO [30] and
soft actor-critic [11] in [4].

The MuZero algorithm introduced by Schrittwieser et al.
[29] uses a combination of tree-search planning and a learned
model of the environment and is capable of playing Go,
Chess, Shogi and the Atari games. However, how to deal with
stochastic transitions was not examined.

As for approaches used specifically on puzzle games, other
approaches have also been directly applied. Gudmundsson et
al. [10] treat the task as a classification problem and train
a convolutional neural network on player data. Their method
beats state-of-the-art Monte-Carlo Tree Search algorithms in
terms of difficulty prediction and training time and has been
used actively for a year by the time of publication. However,
this method requires play-through data which may not always
be available. Mugrai et al. [27] use a MCTS method with
an evolutionary strategy where the fitness function is used
to mimic specialised player personas/strategies with different
goals, such as maximising score or minimising moves used.
This aspect of creating human-like agents is indeed important
if they are to be used as a play-testing tool, which is also
highlighted by Zhao et al. [36] where the agents are evaluated
by considering both skill and style. A comparison of three
popular methods (DQN, PPO and A3C) in a custom match-3
game is done by Kamaldinov et al. [21] which shows that the
A3C method achieves the highest accumulative reward while
the PPO and DQN methods perform worse than random. They
use a custom match-3 environment, though, so it is not clear
if these results reflect real-world results in puzzle games. An
example of training an agent using actual games levels can be
seen in the Unity blogpost [33], where an agent for playing
Snoopy Pop using ML-Agents in [33] is attempted using a

actor-critic method (SAC, [11]) and imitation learning (GAIL,
[16]). Although a slightly different genre, it shows that the
training can be sped up using sample efficient methods and a
player to guide the agent initially. However, a similar approach
is not efficient in games like Lily’s Garden since in those cases
it is not necessary to simulate physics. Furthermore, there are
more than 1500 levels available so deciding which levels to
train on or alternatively have a player play through all of them
is not scalable.

When it comes to using such automated systems in a
production setting, reliability and accessibility of the algorithm
are critical components. The less interference required, the
better, and when something goes wrong, identifying the points
of failure easily is important so it can be fixed quickly and
not waste resources. RL systems, especially PPO approaches,
tend to be the antithesis of these requirements: they tend to
be brittle [12], and the stability tends to be implementation-
dependant [17]. It is therefore important to consider not just
the algorithms but also the strategies of how a play-testing
tool should be developed.

Such a tool also needs to be able to generalise to new levels,
and one problem that appears in many RL papers is overfitting
to an environment [35]. Ways to diagnose and improve the
generalisation in deep RL systems have been examined is
various works [28], [35]. Farebrother et al. [7] find that
dropout and `2 regularisation with a DQN method improve
generalisation. This is also supported by the findings by Cobbe
et al. [5] where data augmentation, batch normalisation and
stochasticity were also found to improve generalisation in
an implementation of PPO. Adding entropy regularisation
also helps find smoother solutions but is very environment
dependent [1]. Variations in the levels by using procedural
content generation methods can also improve generalisation
and help learn more difficult levels [20]. Avoiding undesirable
and dangerous actions may also help the agent learn more
efficiently because of better and safer exploration strategies
[34]. Having the system learn which actions to eliminate has
been the focus in some recent works [2], [31], [34]. In addition
to learning action blocking, Kenton et al. [22] also use an
ensemble model in both a DQN and PPO setup. While the
DQN method showed improvements, the PPO experiments
showed little improvement compared to the baseline.

III. ENVIRONMENT

In this paper we focus on one game, Lily’s Garden1. It
is a free to play casual puzzle mobile game where you
progress through the main story by completing levels. The
main gameplay is matching similar colored pieces and thereby
collecting objectives (collectgoals), which must be done before
running out of moves. The game board has a maximum
size of 13 by 9, and in each position, board pieces with
various attributes may be placed. The basic pieces can be
destroyed/collected if two or more of the same color are next
to each other and will create power pieces if 5 or more are

1Android, Apple

isCell color1 color2 color3

color4 color5 color6 clickableTrue

clickableFalse isCollectgoal basicPiece bomb

magic rocketHorizontal rocketVertical actionmask

Fig. 2. Example of how an in-game level looks like and how the game board is represented using different channels corresponding to certain board piece
attributes. Note that the last channel, the action mask, is only included in certain experiments.

next to each other. The power pieces can be clicked at any
time and destroy everything in for example a line or circle
around the position. Lastly there are unclickable board pieces,
or blockers, that can be removed by matching basic pieces next
to it or sometimes only by using a power piece. An example
of a level is shown in Fig. 1.

We set up an OpenAI gym environment that connects to
headless version of the game (no graphical interface) which,
for speed purposes, allows us to play through levels without
rendering any graphics. We define a rich reward function
where the reward is calculated at each step as: r = ccollectionn+
ccompletion − 0.1, where ccollection = 0.05, n is the number of
collected collectgoals and ccompletion = 1 if all collectgoals have
been collected. The negative term, −0.1, is added to encourage
the agent finishing the level faster as to not get a large negative
accumulated reward. Given that a typical level has around 50
collectables and requires up to 25 moves to complete, the
expected final reward is R ≈ 50 · 0.05 − 25 · 0.1 + 1 = 1
(not considering discount).

Since each board piece may be of the same type (e.g. basic
or blocker) but different attributes (e.g. color or gravity), one-
hot encoding each board piece by the unique combination of
attributes may lead to a very large and sparse representation,
as seen in [10]. Instead we choose to represent the observation
space by using layers that correspond to the attributes of all
the board pieces in a given position (see Fig. 2). Specifically,
we represent the following attributes with a layer giving a total
of 15 channels:

• ISCELL: used to define shape of game board
• COLOR: one-hot encoding of 6 unique colors
• ISCOLLECTGOAL: if board piece is a collectgoal
• ISCLICKABLE[TRUE/FALSE]: one layer for clickable,

another for non-clickable since a non-clickable piece may
be on top of another

• ID: one-hot encoding of BASICPIECE, ROCKETHORI-
ZONTAL, ROCKETVERTICAL, BOMB and MAGIC

This approach also has an advantage when it comes to general-
izability for future versions because the observation space will

not depend on graphics updates and new types of board pieces
are typically made up of a combination of existing attributes.
The action space consists of 9 × 13 = 117 discrete actions,
corresponding to each square of the game board.

IV. METHODS

The typical reinforcement learning problem consists of
an agent that interacts with an environment and receives a
reward depending on the action. This loop may then continue
indefinitely or until the episode ends. The main purpose of
the algorithm is then to learn a behaviour that maximises the
accumulated reward [32].

In the original form, PPO refers to a family of policy
gradient methods that optimize a (clipped) surrogate objective
function using multiple minibatch updates per data sample.
However, the exact implementations in various libraries may
be slightly different because of other additions such as value
scaling or batch normalisation [17]. Common for them all is
the suggested function to optimise, which is the sum of several
loss functions and is given by

LCLIP+V F+S(θ)t = Êt
[
LCLIP (θ)− c1LV Ft (θ) + c2S[πθ](θ)

]
,

(1)
where LCLIP (θ) is the clipped surrogate objective function,
LV Ft (θ) is the value function squared-error loss, S is an
entropy bonus and c1 and c2 are coefficients. The LCLIP (θ)
term ensures that the policy updates will not be too large, and
the LV Ft (θ) term is to ensure that the loss from both policy and
value functions of the neural networks are accounted for. The
S entropy term encourages a more random policy (i.e. more
exploration) so a larger entropy coefficient c2 will encourage
more exploration.

A. Implementation

Since we want to investigate strategies for implementing
PPO in a production environment, we choose to go with a
widely used code library. Some of the notable RL libraries are

OpenAI Baselines2 and Unity ML-Agents3. For the following
experiments we choose to use stable-baselines, which is a
fork from OpenAI Baselines but follows the same algorithmic
implementation of PPO.

We test out three different strategies which will be described
in this section. These strategies are:

• Color shuffling (CS)
• Resetting
• Action mask
Color shuffling refers to swapping the color channels in

the observations randomly. While color shuffling is done in
the post-training evaluation for all models to simulate how
levels are designed, we want to test how effective it is to
also include this strategy during training. It should also help
prevent overfitting – even though it is random which board
pieces that drop down and replace cleared pieces, the initial
setup are usually predetermined (see Fig. 4) which may lead
to strong overfitting.

Resetting the environment commonly happens at the end
of episodic environments, which in this case could be when
the level is completed or failed. However, the level move
limit is subject to change because of design considerations,
and we already add a penalty at each step to encourage it
finishing faster. Imposing a move limit does therefore not make
much sense. What we do try with the reset strategy, though,
is imposing a total step limit, which includes both valid and
invalid moves. The reasoning behind this strategy, similar what
is given in [24] using restarts in Angry Birds, is that the agent
is prevented from exploring useless states that it will not learn
anything from.

Before deciding what the maximum episode length could
be, two things should be considered. One is how the typical
PPO implementation samples observations. In our case, we
sample 256 observations before training on these minibatches.
This means that if we reset after 256 total steps, we may
end up with a full minibatch of bad training samples, which
is undesirable. Secondly the typical steps required to pass a
level is generally around 50. Levels that require more steps are
rare since it would be very frustrating for players to almost
finish a level but ultimately fail after, say, 100 steps rather
than 50. We therefore choose to reset after 100 steps which
should ensure at least some good observations and still allow
the agent to complete a level.

Using an action mask during training is the last strategy we
explore. While we give a penalty for selecting an invalid ac-
tion, preventing the agents from selecting certain catastrophic
or invalid actions may lead to more efficient learning. The
question is how this limitation should be implemented. We
use two different approaches for creating action masks in the
following experiments – a hard and a soft action mask.

With the hard action mask, the invalid actions are com-
pletely masked when sampling from the policy distribution.
In practice, this is done by adding the mask to the logits

2https://github.com/openai/baselines
3https://github.com/Unity-Technologies/ml-agents

of policy distribution, where valid actions have a value of 0
and invalid action a value of −∞. This is slightly different
than in the ML-Agents library where a small probability ε
is added to the action probabilities which prevents ∞ values
but also allow invalid actions to be taken, albeit with a very
low probability. The way sampling is done in the stable-
baselines library is by using a Gumbel-max trick.4 Specifically,
noise following a Gumbel distribution (computed by taking
the negative logarithm twice of uniformly distributed noise) is
added to the logits which ensures the sampling will follow the
underlying probabilities of the actions.

The soft action mask is a kind of forward model of the
environment. Specifically we add the action mask to the
observation space as an additional channel, as illustrated in the
last panel in Fig. 2. The reason for calling this a soft action
mask is because it does not directly prevent invalid actions
from being taken although it might significantly reduce the
probability. The soft action mask model is denoted with V2.

Since the game simulator does not provide a method for
getting the action mask, we define it ourselves. It follows the
basic rules that an action is valid if at least two BASICPIECES
are adjacent and of the same color, or if there is a power piece
in the cell. While this is not true for later levels, it is sufficient
for the first 11 levels that we test on.

Lastly, we also want to evaluate if it makes a difference to
continue training after the learning curves have plateaued since
shorter training times allow for quicker iterations and thus
easier testing in a production environment. These long-trained
models are denoted in the post-training evaluation figures with
(late).

V. EXPERIMENTS

We carried out a number of experiments to test the per-
formance of the PPO algorithm in our environment. We used
the PPO2 implementation from the Python RL library stable-
baselines [15] and a custom CNN policy (Fig. 3).

Each of the experiments are evaluated similarly to [5] where
the trained agent is tested on unseen levels in order to evaluate

4https://github.com/hill-a/stable-baselines/blob/
a57c80e0636582995d602309d2ea5547c0d58e61/stable baselines/common/
distributions.py#L323

TABLE I
OVERVIEW OF MODELS AND USED ENTROPY COEFFICIENT (EC) AS WELL

AS WHICH TRAINING STEP CHECKPOINT USED FOR POST-TRAINING
EVALUATION. THE SECTION IN WHICH THE RESULTS OF SAID MODELS

ARE ALSO SHOWN. CS: COLOR SHUFFLE.

Model EC Step (×106) Section
Baseline 0 0.35 VI-A
Baseline 0.001 0.20 VI
Baseline 0.01 11 VI-A
CS 0.001 0.20 VI-A
CS 0.01 14 VI-A
CS+reset 0.01 0.35 VI-B
CS+reset+mask 0.01 6.5 VI-C
CS+reset+maskV2 0.01 4.0 VI-C
CS+reset (late) 0.01 14 VI-B
CS+reset+maskV2 (late) 0.01 14 VI-C

Fig. 3. The network architecture of the agent.

Fig. 4. Levels used for the experiment. Board pieces with question marks
are assigned a random color on level start, while every other board piece is
hardcoded.

its ability to generalize. This is done by training on 5 chosen
levels (1, 3, 5, 7 and 9) selected randomly and uniformly
during training and validated using an additional 6 levels (2,
4, 6, 8, 10 and 11). With the exception of level 11, these
levels include two unique blockers, and splitting the levels
accordingly ensures both that the tutorial levels and trained
on and both the training and test sets will include at least
one level containing any of the blockers. Level 11 has a third
unique blocker so we include that level in the evaluation to see
how the agent performs with completely unseen mechanics.
An overview of the levels is shown in Fig. 4.

A. Evaluation Metrics

During training we consider the accumulated reward/learn-
ing curve as the evaluation statistic. For the post-training
evaluation we do not want to only estimate if the agent can
finish the level within the actual in-game max moves but also
how competent it is compared to a random agent. We therefore
allow up to 2000 total steps and do not use an action mask.
We also shuffle the colors during evaluation for all models in
order to simulate actual in-use performance, since the different

colors of the board pieces only affect the aesthetics of the game
and are used interchangeably.

We will consider two post-training evaluation metrics:
Competence is the reciprocal average index (starting with 1)

of the first valid action after sampling actions using the action
probabilities without replacement. Taking the reciprocal value
corresponds to estimating the average valid step percentage
and can be thought of as a proxy for how well the agent
understand the basic match-2 mechanic of the game.

Level completion percentage is calculated by imposing the
level move limit on the agent. We also include actual player
data. It should be noted that the player completion percentage
is estimated by taking the number of level completions over
total number of level attempts. However, the level attempts
include successes, failures and abandoning the game, where
the latter may happen if the game for example crashes,
other technical failures or simply just giving up on a level.
Abandoning the game typically happens less than 5% of the
time, though, so this effect should be minor.

B. Model Setup

We did a preliminary analysis training various models with
different hyperparameters to find a stable configuration. While
we also experimented with reward shaping and state represen-
tations, the key changes required to get the PPO algorithm
to work with Lily’s Garden was changing the minibatch size,
number of steps per update and number of actors. We found
that setting nminibatches to 64 (default: 4), n steps to 256
(default: 128) and the number of parallel actors is set to 8 gave
a good balance between speed and stability of the algorithm.
This is not unexpected as these changes from default ensure
a smoother gradient and faster and more stable training [13]
and thus more stable training.

We use a custom neural network setup as shown in Fig. 3. It
uses three 2x2 convolutions with filter size 64 and leaky relu
activations, which are fed into two fully connected 64 layer
for the actor and critic heads respectively.

The above hyperparameters are kept the same throughout
the experiments except for the entropy coefficient, which will
be discussed further in Section VI and VI-A. That setup will
serve as a baseline model where no special strategies for
training are used. For the other experiments, we use the three
aforementioned strategies in Section IV-A.

VI. RESULTS

The learning curves for every model can be seen in Fig.
5, the valid move percentages in Fig. 6 and the completion
rate in Fig. 7. Table I shows at which step each model was
evaluated as well as in which of the following sections they
are discussed further.

In this section, we only consider the baseline model with
an entropy coefficient (EC) of 0.001. The other two baseline
models are discussed in the next section.

Looking at the learning curve of the Baseline EC: 0.001
model in Fig. 5, it can be seen that the agent quickly learns
as reflected in the increase in episode rewards. However,

0.0 0.2 0.4 0.6 0.8 1.0
Step ×106

60

50

40

30

20

10

0

10

Ep
iso

de
 re

wa
rd

Baseline, EC:0, mean
Baseline, EC:0.001, mean
Baseline, EC:0.01, mean
CS, EC:0.001, mean

CS, EC:0.01, mean
CSReset, EC:0.01, mean
CSResetMask, EC:0.01, mean
CSResetMaskV2, EC:0.01, mean

0 2 4 6 8 10 12 14
Step ×106

60

50

40

30

20

10

0

10

Ep
iso

de
 re

wa
rd

Fig. 5. Learning curves for the tested model. The left figure shows a zoomed in version on the first 1 million steps. CS refers to models trained with color
shuffling.

1 2 3 4 5 6 7 8 9 10 11

Level

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

va
lid

 st
ep

 fr
ac

tio
n

Competency

Test levels
Random model
Baseline, EC:0
Baseline, EC:0.001

Baseline, EC:0.01
CS, EC:0.001
CS, EC:0.01
CSReset, EC:0.01

CSResetMask, EC:0.01
CSResetMaskV2, EC:0.01
CSResetLate, EC:0.01
CSResetMaskV2Late, EC:0.01

Fig. 6. Number of valid moves per level for each model. CS refers to models trained with color shuffling. The grey shaded levels are the unseen test levels

after 400.000 steps, the episode reward sharply decreases
and completely breaks the training. The same behaviour was
also observed in other experiments during the initial analysis.
This happens when the action entropy becomes sufficiently
low which indicates is that the agent ends up picking the
same bad action and fills up the training samples with bad
observations. The problem is further compounded by the fact
that invalid actions do not change the state of the game and
we do not do anything to prevent the algorithm from selecting
invalid actions, leading to identical training data samples and
thus broken learning.

On Fig. 6 and 7 it can be seen that while the agent generally
picks valid actions and completes the levels more often than
the random agent, it does not reach human-like performance
on both seen and unseen levels after level 2.

A. Generalisation
The observation that the agent does not reach human level

performance and sometimes also get stuck on an invalid move
may indicate that the agent does not explore sufficiently.
One way to increase exploration with a PPO algorithm is
to increase the entropy coefficient which adds an entropy

bonus to the loss function (c2 in Eq. (1)). Three different
configurations were tested: 0.0, 0.001 and 0.01, where 0.001
is the default value.

Generally the learning curves are very similar but the higher
the entropy coefficient is, the longer the agent can be trained
for and the less likely it is to encounter catastrophic learning
behaviours.

Adding color shuffling should also help the agents gen-
eralise because it adds randomness. Indeed, the completion
percentage for the CS, EC:0.01 model on level 3 and 4 is
better than any of the baseline models and comparable on
the other levels. While it should be noted that the model had
been training for longer, this was made possible because of the
higher entropy coeifficient and more environment stochasticity.
Color shuffling therefore seems to be a viable strategy in
addition to a high entropy coefficient.

B. Max Episode Length

Using strategies that add randomness and increase explo-
ration are not enough to prevent the agent from sampling the
same move over and over again as evidenced by the previous
experiments. We therefore try the strategy of resetting the

1 2 3 4 5 6 7 8 9 10 11

Level

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Completion %

Human %
Random model
Baseline, EC:0
Baseline, EC:0.001

Baseline, EC:0.01
CS, EC:0.001
CS, EC:0.01
CSReset, EC:0.01

CSResetMask, EC:0.01
CSResetMaskV2, EC:0.01
CSResetLate, EC:0.01
CSResetMaskV2Late, EC:0.01

Fig. 7. Completion rate for each model given the level limit. CS refers to models trained with color shuffling. The unseen test levels are shown with a grey
shaded area as in 6, while the human completion rate is shown as the large grey hatched bar.

environment to break the loop if a bad learning behaviour
happens.

It should be noted that it is difficult to compare the learning
curves of agents trained with reset and those without, since
resetting ensures that it is not possible to accumulate large
negative rewards from choosing the same invalid action over
and over again. However, the learning curves are still useful
for verifying that the agent is improving and not encountering
catastrophic learning behaviour.

Using the reset strategy has a large positive impact on the
learning. None of the agents that employ this strategy run into
the same loop of selecting the same action all the time which
enables the agent to train longer and learn more, with the
exception of the CSResetMask model which will be described
in the next section. Resetting the environment after a number
of steps is therefore a good strategy that leads to more stable
learning.

C. Action Masks

Since none of the other experiments directly prevent invalid
actions to be taken, the agent has to first learn to infer which
moves that are valid. We therefore test two different ways of
adding this information – a hard mask and a soft mask, dubbed
V2, as described in Section IV-A.

Using a hard action mask very quickly leads to high rewards
which makes sense since invalid actions lead to a −0.5 penalty
but are never taken now. However, as far as stability goes, the
training completely fails after around 1.5 million steps, as seen
in the sharp drop in the learning curve on Fig. 5.

Unlike what was seen in many of the previous experiments
when the entropy becomes very low/zero, it now receives
undefined rewards, indicating something with the algorithm
itself is failing. What is happening is that the action probability
distribution from the policy is 100% of an invalid action, and 0
on the rest, but because of the hard action mask, the final logits
distribution is filled with −∞. Taking the maximum of this
vector then leads to unexpected behaviour. This is supported
by the fact that the trained agent is actually not very competent

(even worse than random, Fig. 6) and thus tend to select invalid
actions first.

The picture is completely different when using it as a soft
action mask. Looking at Fig. 5, the CSResetMaskV2 agent is
both stable during training and learns faster compared to the
CSReset agent (i.e. they reach the same learning plateau after
0.5M and 4M steps, respectively). It also has better completion
rate and competency on both test and training levels than any
of the other approaches.

VII. DISCUSSION

The most effective strategy for training seems to be resetting
the environment after a number of total steps. Color shuffling
together with an increased entropy coefficient are also strate-
gies that help the agent learn despite slowing down the train-
ing. Shifting towards more exploration and less exploitation
in games like Lily’s Garden therefore seems to be beneficial.

Some of the strategies did not work very well, though, like
using a hard action mask or training for too long. This gives
rise to some concerns if used in a production environment and
will be discussed below.

A. Dealing With Invalid Actions

The main issue encountered throughout the experiments was
invalid actions, which may be very specific to our environment
and implementation of PPO. For example, in ML-Agents a
small probability ε is added to the raw probabilities ensuring
that there will be no −∞ when converting to logits. This
avoids the hard action mask problem, but it can be argued
that it is not a hard action mask anymore. Other ways to deal
with sampling the same action over and over could be to use
an epsilon-greedy approach or by sampling the way we did
it in post-training evaluation but this significantly slows down
the training.

While this problem with invalid actions may be a very
specific problem to our environment, it still highlights a
possible issue that may arise in other similar games where
some actions do not progress the game. Additionally, if a

0 20 40 60 80 100
Moves used

0.00

0.05

0.10

0.15

0.20

0.25

Fr
ac

tio
n

Level 3
Move limit
Random model
Baseline, EC:0.01
CSReset, EC:0.01
CSResetMaskV2, EC:0.01
CSResetLate, EC:0.01
CSResetMaskV2Late, EC:0.01
Player data

0 20 40 60 80 100
Moves used

0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

tio
n

Level 7
Move limit
Random model
Baseline, EC:0.01
CSReset, EC:0.01
CSResetMaskV2, EC:0.01
CSResetLate, EC:0.01
CSResetMaskV2Late, EC:0.01
Player data

0 20 40 60 80 100
Moves used

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
ac

tio
n

Level 10
Move limit
Random model
Baseline, EC:0.01
CSReset, EC:0.01
CSResetMaskV2, EC:0.01
CSResetLate, EC:0.01
CSResetMaskV2Late, EC:0.01
Player data

Fig. 8. Histograms of how many moves required to finish selected levels for selected agents, including the random agent in black, that show super-, normal
and sub-human performance. The grey shaded area is actual player data and is the distribution that we want to mimic. A sharp cut-off can be seen in the
player data distributions which is aligned with the move limit. The reason a small tail can be seen in level 10 is because players are able to purchase an
additional 5 moves if they fail, but only a fraction of players choose to do so. The normalisation is therefore also not completely comparable since the agents
are allowed to play past the move limit.

hard action mask is being used, the algorithm runs the risk
of masking out every action, leading to unexpected behaviour.
This is an issue since in a number of research papers on
play-testing agents it is not clear how the action masking is
actually being done even though it has a huge impact on
the training of the agent. This adds further complexity to
understanding the algorithms and reflects the thoughts in [17]
that the implementation matters.

One question is whether using the action mask is practical
in the long run since it does require some kind of modelling
of the environment. Additionally, while the levels considered
in this paper do not have very complex game mechanics, later
levels include mechanics that prevent certain actions. While
the environment could be configured to return a proper action,
this may prove computationally and developer-time intensive
and therefore not viable in the long run. However, interestingly
enough it was found out during the evaluation process that
the action mask in some very specific cases allowed invalid
actions. Whether that is because a bug in the game or action
mask modelling is not clear, but it was interesting that this was
not a problem when using the soft action mask. This suggest
that using even a imperfect forward model of the environment
still improves learning.

B. Usefulness in Production

There are two things to consider before judging if the agent
is actually useful to level designers.

The first question is whether the level designers would
be able to rely on the agent or not. For that to be the
case, the more consistent and performant it is, especially on
unseen levels, the better. However, what is observed is that
the completion rate is worse on unseen levels. This limits
the usefulness to level designers since the new levels will
obviously not have been encountered before. One solution for
this could be to allow the agent to train on the unseen levels.
To see whether this is feasible in a production setting requires
further testing.

One other thing to take note of is the fact that the completion
rate is low despite picking valid action most of the time.
This suggests that the agents learn how to play the game but

not how to play it optimally. This may be a consequence
of the reward function, though – a relatively big penalty
is given for selecting invalid moves compared to collecting
objectives. The first thing the agents learn is therefore how to
not take an invalid action. Learning new things, such as going
after objectives, is secondary and would require more training
without overfitting. The best way to achieve this would be
to introduce more levels, which should help with generalising
and making the agent more consistent.

The second thing to consider is that it must play like
a human and not superhuman, so the estimated difficulty
matches with how players perceive it. While the completion
percentage used in the post-training evaluation already reflects
this aspect, it does not tell the whole story. Another way to
judge how human-like the agent behaves is by looking at the
distribution of moves required to finish the level (Fig. 8) and
comparing with human data. This kind of visualisation is also
more useful to level designers since it can be used to determine
the move limit. However, none of the models are consistent
in being super/sub-human which must be addressed first.

C. Future Work

When an agent first tries to learn how to play these puzzle
games, it first needs to figure out how to do a valid move.
As revealed by using an action mask, it learns much faster if
something guides it initially. One way could therefore be to
use imitation learning to first teach it how to do the basics.
This also has the added benefit that it may be easier to guide
the agent to play more like a human which would make the
tool more useful to level designers. It would require some time
and effort to set this up in practice, though, both in regards
to implementing it in production code but also the time level
designers would have to spend training the agent. Evaluating
which approach is more time-effective should therefore not
only include computation time but also the human resources
required. However, an imitation learning module has been
added to ML-Agents and may provide a good starting point.

The post-training evaluations show that the agents play
some levels well but struggle with others. It therefore seems
like a better strategy to spend more time training on the

difficult levels rather rather than continuing selecting the levels
randomly. An idea could be an automated approach like in
[8] where the training examples that yield the most learning
are chosen. This would also open up for training on more
levels which should help generalisation of the agent on unseen
levels. One thing to keep in mind before training on many
new levels and mechanics, though, is that the agent may be
prone to catastrophic forgetting [23] where previously learned
behaviours are completely forgotten.

VIII. CONCLUSION

In this research paper we have successfully adapted the
popular RL method PPO to a production grade puzzle game
for training play-testing agents. Crucial to this success, not
considering hyper-parameter tuning, was introducing a reset
strategy where the environment is reset after a fixed number of
steps. This ensured a more stable training, enabling the models
to learn more. Other strategies also improved other aspects of
the training – color shuffling improved generalisability, and
introducing an action mask as a partial forward model of
the environment in the observation greatly improved training
speed, though the latter may not always be feasible in other
types of games.

When we experimented with a hard action mask that was
added to the logits of the action probabilities, the algorithm
completely broke down. This happened because all the valid
actions from the model were practically 0 while the invalid
actions were all 0 because of the action mask, effectively
masking out every action and leading to unexpected behaviour.
Various RL libraries use a similar method but it should be used
with great caution. A better approach would be to include the
action mask in the observations and thus serving as a partial
forward model.

IX. ACKNOWLEDGEMENTS

This work has been supported by the Innovation Fund
Denmark and Tactile Games.

We thank Hunter Park (https://github.com/H-Park) and Ken-
neth Tang (https://github.com/ChengYen-Tang) for discussions
on the various implementations.

We also thank Rasmus Berg Palm (ITU) for helpful com-
ments for the manuscript.

REFERENCES

[1] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schu-
urmans. Understanding the impact of entropy on policy optimization.
2018.

[2] Mohammed Alshiekh, Roderick Bloem, Ruediger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe Reinforcement
Learning via Shielding. 2017.

[3] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
The arcade learning environment: An evaluation platform for general
agents. IJCAI International Joint Conference on Artificial Intelligence,
2015-Janua:4148–4152, 2015.

[4] Petros Christodoulou. Soft Actor-Critic for Discrete Action Settings.
2019.

[5] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schul-
man. Quantifying Generalization in Reinforcement Learning, 2018.

[6] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai
Wu, and Peter Zhokhov. Openai baselines. https://github.com/openai/
baselines, 2017.

[7] Jesse Farebrother, Marlos C. Machado, and Michael Bowling. General-
ization and Regularization in DQN. 2018.

[8] Alex Graves, Marc G. Bellemare, Jacob Menick, Remi Munos, and
Koray Kavukcuoglu. Automated Curriculum Learning for Neural
Networks. 34th International Conference on Machine Learning, ICML
2017, 3:2120–2129, 2017.

[9] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro,
Ethan Holly, Sam Fishman, Ke Wang, Ekaterina Gonina, Neal Wu,
Efi Kokiopoulou, Luciano Sbaiz, Jamie Smith, Gábor Bartók, Jesse
Berent, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-
Agents: A library for reinforcement learning in tensorflow. https:
//github.com/tensorflow/agents, 2018. [Online; accessed 25-June-2019].

[10] Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet,
Sami Purmonen, Bartlomiej Kozakowski, Richard Meurling, and Lele
Cao. Human-Like Playtesting with Deep Learning. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG), pages 1–8,
2018.

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. 35th International Conference on
Machine Learning, ICML 2018, 5:2976–2989, 1 2018.

[12] Perttu Hämäläinen, Amin Babadi, Xiaoxiao Ma, and Jaakko Lehti-
nen. PPO-CMA: Proximal Policy Optimization with Covariance Matrix
Adaptation. 2018.

[13] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh
Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali
Eslami, Martin Riedmiller, and David Silver. Emergence of Locomotion
Behaviours in Rich Environments. 2017.

[14] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver. Rainbow: Combining improvements in deep reinforcement
learning. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,
pages 3215–3222, 2018.

[15] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi
Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg
Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

[16] Jonathan Ho and Stefano Ermon. Generative adversarial imitation
learning. Advances in Neural Information Processing Systems, pages
4572–4580, 2016.

[17] Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras,
Firdaus Janoos, Larry Rudolph, and Aleksander Madry. Are Deep Policy
Gradient Algorithms Truly Policy Gradient Algorithms? pages 1–40, 11
2018.

[18] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter
Henry, Marwan Mattar, and Danny Lange. Unity: A General Platform
for Intelligent Agents. pages 1–18, 2018.

[19] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi.
Deep Learning for Video Game Playing. IEEE Transactions on Games,
PP(c):1–1, 2019.

[20] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed
Khalifa, Julian Togelius, and Sebastian Risi. Illuminating Generalization
in Deep Reinforcement Learning through Procedural Level Generation.
6 2018.

[21] Ildar Kamaldinov and Ilya Makarov. Deep Reinforcement Learning in
Match-3 Game. In 2019 IEEE Conference on Games (CoG), number 4,
pages 1–4. IEEE, 8 2019.

[22] Zachary Kenton, Angelos Filos, Owain Evans, and Yarin Gal. General-
izing from a few environments in safety-critical reinforcement learning.
pages 1–16, 2019.

[23] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences of the United States of America, 114(13):3521–
3526, 2017.

[24] Tommy Liu, Jochen Renz, Peng Zhang, and Matthew Stephenson. Using
Restart Heuristics to Improve Agent Performance in Angry Birds. 5
2019.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
Atari with Deep Reinforcement Learning. pages 1–9, 12 2013.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2
2015.

[27] Luvneesh Mugrai, Fernando Silva, Christoffer Holmgard, and Julian To-
gelius. Automated playtesting of matching tile games. IEEE Conference
on Computatonal Intelligence and Games, CIG, 2019-Augus, 2019.

[28] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen
Koltun, and Dawn Song. Assessing Generalization in Deep Reinforce-
ment Learning. 2018.

[29] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Si-
monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart,
Demis Hassabis, Thore Graepel, Timothy Lillicrap, and David Silver.
Mastering Atari, Go, Chess and Shogi by Planning with a Learned
Model. 2019.

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. 2017.

[31] Mathieu Seurin, Philippe Preux, and Olivier Pietquin. I’m sorry Dave,
I’m afraid I can’t do that” Deep Q-learning from forbidden action. 2019.

[32] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
Adaptive Computation and Machine Learning series. MIT Press, 2018.

[33] Erving Teng. Training your agents 7 times faster with ML-Agents -
Unity Technologies Blog.

[34] Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J. Mankowitz, and
Shie Mannor. Learn What Not to Learn: Action Elimination with Deep
Reinforcement Learning. Advances in Neural Information Processing
Systems, 2018-Decem(NeurIPS):3562–3573, 9 2018.

[35] Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling Dynamics and
Reward for Transfer Learning. 2018.

[36] Yunqi Zhao, Igor Borovikov, Ahmad Beirami, Jason Rupert, Caedmon
Somers, Jesse Harder, Fernando de Mesentier Silva, John Kolen, Jervis
Pinto, Reza Pourabolghasem, Harold Chaput, James Pestrak, Mohsen
Sardari, Long Lin, Navid Aghdaie, and Kazi Zaman. Winning Isn’t
Everything: Training Human-Like Agents for Playtesting and Game AI.
arXiv: e-prints, pages 1–16, 2019.

4.3 Paper 4: Estimating Player Completion Rate in Mobile
Puzzle Games Using Reinforcement Learning

Estimating Player Completion Rate in Mobile
Puzzle Games Using Reinforcement Learning

Jeppe Theiss Kristensen
IT University of Copenhagen/Tactile Games

Copenhagen, Denmark
jetk@itu.dk

Arturo Valdivia
Tactile Games

Copenhagen, Denmark
arturo@tactile.dk

Paolo Burelli
IT University of Copenhagen/Tactile Games

Copenhagen, Denmark
pabu@itu.dk

Abstract—In this work we investigate whether it is plausible
to use the performance of a reinforcement learning (RL) agent
to estimate the difficulty measured as the player completion rate
of different levels in the mobile puzzle game Lily’s Garden.

For this purpose we train an RL agent and measure the
number of moves required to complete a level. This is then
compared to the level completion rate of a large sample of real
players.

We find that the strongest predictor of player completion rate
for a level is the number of moves taken to complete a level of the
∼5% best runs of the agent on a given level. A very interesting
observation is that, while in absolute terms, the agent is unable to
reach human-level performance across all levels, the differences
in terms of behaviour between levels are highly correlated to the
differences in human behaviour. Thus, despite performing sub-
par, it is still possible to use the performance of the agent to
estimate, and perhaps further model, player metrics.

Index Terms—reinforcement learning, ppo, player agent,
player modelling, playtesting, autonomous agent

I. INTRODUCTION

Automatic testing of games has long been one of the
objectives of research in game artificial intelligence. The
ability to use an agent to test new content and mechanics has
the potential to dramatically reduce the cost of production of
games and improve the game designers’ workflow.

Over the years, autonomous game-playing agents have been
developed using different techniques ranging from rule based
systems to machine learning methods such as supervised
learning or reinforcement learning. While the objective in large
parts of these agents is to play the game optimally – i.e.
to solve the game – many efforts have been put also into
creating agents that behave in a way that resembles as closely
as possible the way a human player would play [4].

The purpose of human-like agents is to play a game
competently and behave in a way that is indistinguishable
from a human player to an outside observer; essentially, being
able pass a game version of the Turing test [10]. Agents of
this kind are ideal candidates to evaluate game content as the
observation of their behaviour in the game can give a more
realistic feedback to a game designer.

Creating human-like agents for game-play testing has been
explored in a number of other works. Holmgård et al. [5]
explore creating such agents using MCTS and evolving node

selection criteria in order to generate procedural player per-
sonas. Mugrai et al. [7] developed this method further and
tested it on a puzzle game comparing its scores to the ones
of a small number of human-players that participated in their
experiment.

Shin et al. [9], in order to try to mirror human players’
behaviour, train an RL agent to learn which of 5 predefined
human-like strategies to pick before picking a valid action
matching the preferred strategy.

Lastly, actual player play-traces can also be used to learn
how actual players play, which was demonstrated by Gud-
mundsson et al. [2], where a convolutional neural network
action selection policy is learned from the play-traces. How-
ever, one issue with using playtraces is that these data are
not always available, for example for a newly released game
with little or no player data, or technical limitations such as
cost of storage or tracking issues. Thus, an agent trained using
reinforcement learning may be a more viable solution.

The initial results on using RL agents for playing Lily’s
Garden in Kristensen et al. [6] show that it is indeed possible
to use an RL agent in this setting. In this research work
we expand upon this line of investigation by including more
levels and consider the next step for estimating player level
completion rate using agent performance. We investigate how
to train and use autonomous agents for estimating the player
completion rate of a number of levels in the game Lily’s Gar-
den by Tactile Games1. For this purpose, we developed a set
of Proximal Policy Optimisation (PPO) based reinforcement
learning agents [8] and evaluate how the number of steps taken
by the agent for completing the levels relate to the behaviour
of a sample of ∼900,000 players.

II. METHOD

Before outlining the experimental approach, in this section
we first present the RL setup that we use for the experiments
followed by a description of the evaluation method.

A. Reinforcement Learning Setup

To serve as a test bed for our agent, we use a custom
environment of Lily’s Garden, detailed in previous work [6].
The game board representation is a (13×9×m) array, where the

1https://tactilegames.com/lilys-garden/
978-1-7281-4533-4/20/$31.00 ©2020 European Union

red orange blue yellow pink purple

clickableTrue clickableFalse isCollectgoal basicPiece bomb magic

rocketHorizontal rocketVertical hasGravity spreadable actionmask isCell

Fig. 1. Example of how the game-board of level 103 looks like left) in-game and right) how it is represented in our custom environment. The channels are
not one-hot encoded but use the hit points of the board piece, hence the different colours in the CLICKABLEFALSE and ISCOLLECTGOAL channels.

Fig. 2. Agent CNN policy setup. Each convolution uses a 2x2 kernel.

different board piece attributes are encoded in the m channels
(see Fig. 1).

Our RL agent implementation is also based on our previous
work in [6] and follows the on-policy implementation of PPO
available in OpenAI Baselines [1] and stable-baselines [3]
where multiple agents can collect state-action-reward observa-
tions simultaneously. The architecture of the policy and value
networks is shown in Fig. 2: three convolutional layers for
feature learning are in common between the two networks,
with separate value and policy heads.

In all the experiments, we use an entropy coefficient of 0.01,
a learning rate of 1e−4 and run 8 agents simultaneously. The
other hyper-parameters are set to nminibatches = 64 (default 4),
nsteps = 256 (default 128) and otherwise default values.

Additionally, based on our previous research [6], we use
three strategies to improve the stability of the training:

• Colour shuffling, where the colour channels are randomly
permuted during the training. This is done to help the
agent to generalise patterns regardless of the colours.

• Resetting after 100 total steps, to prevent the agent from
getting stuck on an invalid move and filling the training
data buffer with useless observations.

• Adding an action mask to the observations, which serves
as a partial forward model leading to faster initial training.

B. Estimating player success rate

When level designers wish to evaluate a level, the player
completion rate is often then used as a proxy for difficulty.
Since players can only complete the level once before pro-

gressing, the completion rate can be directly calculated as
the number of level completions over total attempts across all
users. It is important to note, though, that this is not necessarily
the inherent difficulty of a level and may change in time
depending on which cohorts of players that have reached a
given point.

In our game environment of Lily’s Garden, the agent is
able to take an unlimited number of moves per level. The
move distribution is therefore different compared to player
data, where there is a sharp cut-off after the move limit,
see Fig. 3 left. In order compare these two distributions
and estimate the player completion rate, we record the max
number of moves number of the best x% agent runs and then
calculate the Spearman correlation of this number with the
player completion rate. Because the number of moves spent
by the agent to complete a level is invariant level move limit
is, while the player completion rate is very much determined
by this limit, we normalise the agent moves with the level
move limit.

III. EXPERIMENTS

The objective of this research project is to help determine
how an agent can be used in a production setting in a mobile
gaming company where not only accuracy but also speed is
important. For that purpose, we explore here three scenarios:

• One-step training on curriculum
• One-step training on the target level
• Two-step training, first on a curriculum and then on the

target level
In each scenario the aforementioned training and in-game
behaviour performance are collected and compared to the
human behaviour. In addition to that, we benchmark these
agents against two baselines:

• Random agent which picks a random valid action every
time it has to make a move.

• Greedy agent which mimics a play style that prioritises
clicking on valid pieces belonging to the biggest clusters.

Out the three aforementioned training scenarios, we start
with the One-step training on curriculum because it offers
one desirable feature for production usage: a previously trained

0 50 100 150 200 250
Moves used

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Fr

ac
tio

n
Random model
Big clusters first
One-step curriculum
Two-step
One-step level
Player data

101 102 103

Moves used (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

ed
 fr

ac
tio

n

Level 120

Fig. 3. Left) Distribution of number of moves required for each model to complete level 120 compared to actual player data. The sharp drop-off in the
player distribution of because of the level move limit. Additional steps after the move limit can be purchased using in-game currency. Right) Cumulative move
distribution, or level completion curves, plotted on a log scale.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of best evaluation runs used

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Sp
ea

rm
an

 c
or

re
la

tio
n

Move distribution correlation with player completion rate
Random model
Big clusters first
One-step curriculum
Two-step
One-step level

Fig. 4. Spearman correlation between player completion rate and normalised
moves required to finish each level as a function of fraction of best evaluation
runs used.

agent is used in order to estimate the difficulty of new unseen
levels, without requiring any further training.

The training curriculum here should be chosen in such a
way that the agent is subsequently able to generalise across
new levels and mechanics. Thus, in particular, the curriculum
has to include a variety of different types of levels and be
representative of different game mechanics (e.g., rock blockers,
grass spreading blocks). Furthermore, for evaluation the agent
has to be exposed to a set of equally different unseen levels.

To choose the levels for the curriculum, we note that at the
beginning of Lily’s Garden, the new mechanics are typically
introduced once every ten levels (i.e., on levels 21, 31, 41,
...). The following nine levels at each interval generally mix
the new mechanic with previously introduced mechanics. And
so for the training, we include the first hundred levels which
introduces eight new board pieces in addition to the base
mechanics of the game. These levels are uniformly randomly
sampled and trained on for at least one epoch over 35M steps –
i.e., the equivalent of a human player tapping on the screen. We
remark here that from our empirical observations, this number
of steps ensures that the learning has plateaued and each level
will have been trained on for multiple epochs.

To evaluate the agent performance, we test on the 20
levels following the ones used in training (i.e., levels 101

to 120), which include the previous mechanics plus two new
mechanics: teleporters, which move board pieces to other parts
of the game board, and containers, which are 2x2 blockers
with 10 hit points. For the results we also include the levels
13, 23, ..., 93 to test the performance on previous levels which
are not tutorial levels.

In the second scenario considered, One-step training on
evaluation level, the agent is trained every time from scratch
directly on the new target level. This is done through 1M
steps. Two potential drawbacks of this approach are apparent:
one is that solution may require longer training time before
reaching a level of competency when compared to the other
scenarios based on curricula. Secondly, it may also lead to
poor generalisation. However, if good accuracy is obtained
and the training can still performed in reasonable time, then
this approach may still offer a viable solution to used on a
production environment.

The final scenario we consider, Two-step training, is in-
spired by how players typically learn: At first the player has
some previous general knowledge of how to play the game
but no specific knowledge on how to beat certain level or
game mechanic. Then, after having played through the level
a number of times, the player may finally learn a winning
strategy and complete the level. In this setting, the training for
the first step is analogous to what was is done in the setting
of the One-step training on curriculum scenario, while for
the second step we proceed as analogously to the One-step
training on evaluation level scenario.

IV. RESULTS AND DISCUSSION

Before answering the question of whether we can correlate
the agent behaviour to the players’, we first examine which
agents that acquire the highest proficiency, as measured by
the least amount of average moves spent to complete a
level. A representative example of the level of proficiency
the different agents acquire can be seen by considering the
move distributions in Fig. 3. The most proficient agent comes
from the two-step training approach, followed by the one-step
training on target level and then finally one-step training on a
curriculum.

All the training scenarios lead to agents performing better
than the random and greedy agents. Despite the fact that
some agents only perform slightly better than random move-
wise, time-wise the trained agents are much faster during
evaluation because the random agent attempts to take many
invalid actions before finally choosing a valid one, which
increases the runtime of the evaluation.

One thing that is worth noting is that one-step curriculum
leads to the least proficient agent. The agents trained on a
single level demonstrate that it is possible for the agent to
almost play optimally, so this suggests that something in our
way of training on a curriculum – randomly sampling levels
after an epoch – may prevent the agent from becoming more
proficient. Improving this could be done by developing a
more intelligent curriculum well as adding changes to the RL
algorithm to ensure that no catastrophic forgetting will occur,
where the agent forgets how to play previously learned levels.

That being said, a high proficiency does not necessarily
mean that the performance of the agent is correlated with
the player completion rate. Indeed, looking at Fig. 4 it can
be seen that the one-step curriculum approach shows the
highest correlation, despite being the least proficient agent.
It can also be seen that the highest correlation occurs when
only considering ∼5% of the best runs. With the one-step
curriculum scenario both being the most practical approach,
due to not spending any time on additional training, and also
showing the highest correlation, this is a very promising result
towards using this approach in a production setting.

The least correlated approach is the two-step training, which
shows an even worse correlation than random. This might be
due to the fact that it is able to completely memorise some
levels, while on other levels the agent is still learning. This
mix of memorisation and proficiency may then lead to very
uncorrelated behaviours. This could also explain why in the
one-step training on target levels still shows a correlation; the
agent in this scenario has simply not trained long enough on
a single level to memorise it, so only the agent proficiency
matters.

Why the correlation with player completion rate is highest
when only considering the 5% best runs is not immediately
clear but may be linked with the long tail of the move
distribution: the longer the game goes on for, the more spread
out the point of completion is due to an inherent randomness in
the levels, leading to a lower correlation. Conversely, there is
a certain minimum number of moves required to finish many
levels, so having a good run and finishing early leads to a
much tighter distribution.

The results so far suggest that there is a correlation between
the agent behaviour with player completion rate. Unlike other
works that try to model and predict the precise player metric
(c.f., [2]) using the rank correlation can instead be used to give
an estimate on how a level is compared to other levels. For
example, it may show that a certain level is one of the top
10% most difficult levels.

These initial results are promising but also have some
limitations. Only 120 levels were included in this analysis,

which contain around 60% of the game mechanics. Whether
these correlations extend to the remaining mechanics and
whether the agent is able to deal with them need to be
further investigated before using it in a production setting.
Additionally, we only consider the move distribution for the
correlation. However, it may be possible to utilise additional
agent or level data for our estimates. Not only could this
possibly lead to a more robust estimate, but it could also help
the level designer understand the effects of changing various
aspects of a level.

V. CONCLUSION

We have examined a number of scenarios in which an RL
agent can be trained and used to predict the level difficulty
in a mobile puzzle game. The results – based on ∼60% of
the game mechanics – demonstrate that the two-step training
scenario leads to the most proficient agent, while with the one-
step curriculum the agent attains the largest correlation to real
players’ completion rates. The latter scenario is also arguably
the most practical one in a production scenario.

By considering the best ∼5% of the runs of the agent
and record the max number of moves required to finish the
level, the difficulty of the level, as measured by the player
completion rate, can be estimated in terms of how it ranks
compared to other levels.

Because the results shown in this research work are only
for a limited subset of levels, future work should look into
whether this correlation holds for the remaining levels and
possibly attempt a more modelling-based approach.

REFERENCES

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[2] Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet,
Sami Purmonen, Bartlomiej Kozakowski, Richard Meurling, and Lele
Cao. Human-Like Playtesting with Deep Learning. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG), pages 1–8.
IEEE, 8 2018.

[3] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi
Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg
Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-
a/stable-baselines, 2018.

[4] Philip Hingston. A Turing Test for Computer Game Bots. IEEE
Transactions on Computational Intelligence and AI in Games, 1(3):169–
186, 9 2009.

[5] Christoffer Holmgard, Michael Cerny Green, Antonios Liapis, and Julian
Togelius. Automated Playtesting with Procedural Personas with Evolved
Heuristics. IEEE Transactions on Games, 1502(c):1–1, 2018.

[6] Jeppe Kristensen and Paolo Burelli. Strategies for using proximal policy
optimization in mobile puzzle games. 2020.

[7] Luvneesh Mugrai, Fernando Silva, Christoffer Holmgard, and Julian To-
gelius. Automated playtesting of matching tile games. IEEE Conference
on Computatonal Intelligence and Games, CIG, 2019-Augus, 2019.

[8] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. arXiv e-prints, pages
1–12, 7 2017.

[9] Yuchu Shin, Jaewon Kim, Kyohoon Jin, and Youngbin Kim. Playtesting
in Match 3 Game Using Strategic Plays via Reinforcement Learning.
IEEE Access, 8:1–1, 2020.

[10] Julian Togelius, Georgios N. Yannakakis, Sergey Karakovskiy, and
Noor Shaker. Assessing Believability, pages 215–230. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

5 Agent-Assisted Game Difficulty Predic-
tion

In Chapter 3, we discussed ways to model and operationalise difficulty using historical player
data, but we did not consider how to apply it to content without any player data. In Chapter 4,
we discuss ways to create an automated playtesting agent that can play through puzzle levels,
but we did not explore how it can be used to model difficulty and predict the number of attempts
players will spend on new content. In this chapter, we investigate how we can combine the two
lines of research by using historical data and playtesting data for operationalising difficulty on
any content. The results from this chapter help answer both of the main research questions of
this dissertation.

5.1 Difficulty prediction using AI agents

Creating a playtesting method that can play the level is one thing. Another question is whether
the behaviour of this agent correlates with the player. The work in this dissertation that
focuses on creating a playtesting agent did find a correlation between agent performance and
human players, but a direct translation of the agent performance to player performance is not
sufficiently accurate for the level designers. A more robust approach in an industrial setting
is to use a two-step approach where data is first collected by some playtesting method and
then subsequently used to model and operationalise the estimated difficulty. The results in this
section focus on how this is done in practice.

5.1.1 Background

The previous work presented in Chapter 3 requires observing players on a given level before
being able to model the difficulty of said level. Therefore, the question of how these methods
can be applied in situations where there is little or no player data is not examined. Similarly,
much of the existing literature regarding predicting the difficulty of new levels does not consider
the vital aspect investigated in Section 3.2, which is how the individual player perceives the
difficulty. Instead, these methods commonly compare the agent’s performance to the human
averages (e.g. Gudmundsson et al. (2018); Mugrai et al. (2019); Horn et al. (2018); Roohi et al.
(2021); Kristensen et al. (2020)).

This section focuses on investigating how these two issues of having no player data and
not considering personalisation can be combined. We hypothesise that combining personalised
predictions with data from an agent that learns how to play the levels makes a more accu-

76

5.1. DIFFICULTY PREDICTION USING AI AGENTS 77

rate estimate of perceived difficulty possible. For this, we employ an improved version of the
playtesting agent described in Section 4.1 where we limit the number of possible random seeds
of the levels and remove colour shuffling. This allows the agent to learn the optimal strategy on
each level fully, and while this is a different way to apply playtesting in practice compared to the
recommendations in Section 4.1.2, the study provides insight into how the optimal strategy is
connected to player behaviour. We then carry out a comparative study in Paper 5 (Kristensen
and Burelli, 2022) between the methods in Section 3.2 using data from the playtesting agent in
order to answer the following questions:

• What model and combination of data are the most accurate for personalised difficulty
predictions in the scenario where the prediction is made on existing content and cold start
scenarios?

• Does personalised difficulty predictions lead to better accuracy compared to cohort pre-
dictions in the two scenarios?

5.1.2 Results and conclusion

In the first experiment, we test how well we can predict the number of attempts a given player
will spend on both existing and new puzzle levels. In addition to the FM method, we also con-
sider neural networks and random forest predictors. We find that the FM method outperforms
the other methods for predictions on existing levels, and the accuracy is increased further by
including additional data about the level mechanics and player behaviours. For personalised
predictions on new content, all methods experience a decrease in performance, with the FM
method that includes agent data experiencing the smallest decrease. These results highlight the
FM method’s effectiveness in capturing individual differences and the benefit of using playtest-
ing data when no other data source is available.

Since the level designers typically take decisions based on the average difficulty of the level
(i.e. average number of attempts), we run a second experiment to simulate such a scenario. We
split the players into ten cohorts and predict the average difficulty on a level for each cohort. This
is done two ways: by calculating the aggregated average based on the personalised predictions
and by aggregating the data on a cohort level first and then building a new prediction model
for predicting the average.

The results in this second experiment show that for predicting the average difficulty of exist-
ing content with historical data, cohort predictions generally perform better than personalised
predictions. This is not surprising for two reasons: First, since the cohorts all have very similar
averages on each level and the models are able to learn to recognise which specific set of fea-
tures belongs to each level, the models essentially overfit to the data and learn the average from
the training data. Second, the models for personalised predictions are optimised for individual
predictions and not the cohort averages, so the predictions that lead to the smallest RMSE in
these two cases are not necessarily the same.

For predictions in the cold start scenario with no historical data, the errors are larger but
still better than the baseline prediction. The best performing model for both the cohort-based
and personalised predictions is the NN with all categories of data included (player features,

5.1. DIFFICULTY PREDICTION USING AI AGENTS 78

level descriptions and agent features). The errors for personalised predictions are similar to the
cohort predictions, but personalised predictions generally exhibit a larger variance while cohort
predictions tend to predict more towards the global average.

These results reveal that level designers gain little from using personalised predictions for
cohort predictions on new levels and, in this case, can rely on a NN method for estimating the
difficulty of new content. The FM approach is useful for personalised predictions on existing
content, and the latent features of the players can still be interpreted in terms of player skill
and consistency, as discussed in Section 3.2.

1 2 3 4 5 6
Average attempts

0.0

0.2

0.4

0.6

0.8

1.0

Re
m

ai
ni

ng
 m

ov
es

, r
el

at
iv

e
to

 m
ov

e
lim

it levelnumber
100
200
300
400

Figure 5.1: Performance of the improved agent on the first 499 levels.

The main suggested path for improving predictions is changing how the playtesting agent is
used. As shown by the agent performance in Fig. 5.1, the agent’s competence leads to the agent
completing the levels with several moves left, which is much better than many human players
and thus also not reflective of the full range of player experiences. Possible ways to improve this
are by including more random seeds rather than only the eight used in this study and possibly
training other agents with different reward functions to explore other types of playstyles.

5.1.3 Relevant paper(s)

The results and discussion are based on Paper 5, Difficulty Modelling in Puzzle Games (Kris-
tensen and Burelli, 2022).

Paper 5 has been submitted to Transactions on Games in July 2022. As of the time of
writing, it is currently under review. It has been co-authored with the principal university
supervisor, Paolo Burelli. I am responsible for conducting the experiments and contributing to
most of the text. All co-authors have been involved in the discussion and editing for the final
structure of the paper.

5.2 Paper 5: Difficulty Modelling in Puzzle Games

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 1

Difficulty Modelling in Puzzle Games
Jeppe Theiss Kristensen and Paolo Burelli

Abstract—Difficulty is one of the key drivers of player engage-
ment and it is often one of the aspects that designers tweak most
to optimise the player experience; operationalising it is, therefore,
a crucial task for game development studios. A common practice
consists in creating metrics out of data collected by player
interactions with the content; however, this allows estimation only
after the content release and does not consider the characteristics
of potential future players.

In this article, we present a number of potential solutions
for the estimation of difficulty under such conditions, and
we showcase the results of a comparative study intended to
understand which method and which types of data that perform
better in different scenarios.

The results reveal that models that are trained on a com-
bination of cohort statistics and simulated data produce the
most accurate estimations of difficulty across all scenarios.
Furthermore, among these models, artificial neural networks
show the most consistent results.

Index Terms—Difficulty, reinforcement learning, factorization
machines.

I. INTRODUCTION

AMONG the many characteristics of a game that affect the
player experience, difficulty is generally considered to be

one of the most impactful. As theorised by Csikszentmihalyi
regarding the concept of flow [1], if the game is too easy,
the player risks not feeling challenged, becoming bored and
potentially quitting the game. On the other hand, in case it is
too hard, the player might feel stuck, become frustrated and,
again, potentially quit the game. It is therefore not surprising
that an important focus for many game studios is being able
to estimate difficulty.

For the mobile game industry, which makes up more than
50% of the $175.8B annual revenue in the games industry
[2]–[4], this is an active area of research, and in particular for
puzzle games. These types of games are the most popular
subgenre of mobile games making up around 15% of all
installs, and in such a competitive market, it is not enough
for game studios to simply acquire new users by having a
polished game with low to no cost to enter. Ensuring players
stay engaged in the game is equally crucial for the game
to be a commercial success, which puts pressure on game
studios to both have content that is adequately challenging
for new players to pique their interest but also release new
content for more experienced users that can keep the game
experience fresh and exciting. The challenge for any difficulty
prediction framework is therefore two-fold: not only should it
work on previously released content, where rich information
about other players is available but also on novel content
where player data is more sparse or non-existent. Furthermore,

Jeppe Theiss Kristensen and Paolo Burelli are with the IT University of
Copenhagen, Denmark. Emails: {jetk, pabu}@itu.dk

Manuscript received XXXX.XX.XX; revised XXXX.XX.XX

as difficulty is a concept that emerges from the interaction
between players and content, the estimation is going to be
affected not only by the content type but also by the target
player or cohort of players.

As a first step in the process of building a difficulty mod-
elling framework, it is necessary to operationalise difficulty
so it can be quantified and measured. A common gameplay
element in many puzzle games is the existence of discrete
tasks, or levels. A direct way to quantify the difficulty of a level
is by using the average number of attempts the players require
to complete the level. This metric has been linked to player
churn, and it gives the level designers a clear measure of how
much time players are expected to spend on the challenges.
However, the measurement very much depends on the players
that have played through the level at the time of measuring.
This perceived difficulty can vary depending on player cohorts
and their skill, so using this average metric for all players can
be misleading and does not fully inform the level designers
about the intrinsic difficulty of the level [5].

Another challenge for difficulty estimation is the complexity
of the gameplay. Some aspects of a puzzle, such as winning
strategies or “traps”, may not be immediately apparent through
a static analysis of the level. While it may be possible to
infer the level’s complexity by using historic data of previous
players’ performances, this is not possible with new content.
Instead, it typically requires multiple level designers to manu-
ally playtest the content to overcome this cold start problem,
which can be an expensive and time-consuming process. This
not only limits the volume of new content but also the
quality due to the level designers’ own skills and biases. A
framework for difficulty prediction can therefore benefit from
a component that can explore the dynamics of the game to
determine the intrinsic difficulty but also possibly model how
individual players respond to the intrinsic difficulty.

One or more models able to estimate perceived difficulty in
these different scenarios have multiple potential applications:
they could be employed to give immediate feedback to de-
signers when working on new puzzles, they could be used to
guide a procedural content generation algorithm intended to
create content at a specific level of difficulty, or they could be
used to adapt content so that it would provide a specific level
of challenge to a specific player or cohort.

With these challenges and applications in mind, in this
research work, we investigate various difficulty modelling
frameworks that can address some of the issues and short-
comings that previous approaches have revealed. The two main
research questions we aim to answer are:

RQ1: Is it possible to accurately estimate the perceived
difficulty of a puzzle for a specific player? What
combination of model and data is most effective at
this task?

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 2

RQ2: Is it possible to accurately estimate the perceived
difficulty of a puzzle for a specific cohort of players?
Can we use the same models and methods used of
personalised predictions? What combination of model
and data is most effective at this task?

On one hand, with the first research question (RQ1), we aim
at investigating personalised models of difficulty that can be
used for adaptive gameplay. On the other hand, with the second
research question (RQ2), we aim at investigating models that
are suitable for either cohort-level adaptation or to support
procedural content generation and manual content design.

In order to answer these two questions, we have designed
two experiments in which we break the questions down and
explore how different difficulty prediction methods work in
various scenarios. Using data from a commercial puzzle game,
we investigate the impact of using different types of data,
methods and granularity for difficulty prediction, which con-
tributes to the body of knowledge for developing a complete
and feasible framework for both personalised and cohort
difficulty predictions. While the research builds on results from
a puzzle game, the methods and results have the potential to be
extended to other types of games with similar characteristics
– i.e. linear progression and discrete repeatable challenges –
that can help game studios and researchers alike for building
a more comprehensive model of difficulty in games.

II. RELATED WORK

Difficulty modelling and prediction can be approached in
many different ways depending on the use case. In this paper,
we root our analysis in the practical application of modelling
difficulty in a commercial context in which both the player
population and game experience change constantly. In order to
properly analyse a framework that can work in such a context,
we first discuss the definition of difficulty and give an overview
of how it has previously been modelled in various contexts.
In addition to that, we also examine how various playtesting
methods have been used for evaluating new content and relate
that to the approach presented in this paper.

A. Predicting difficulty

In order for any measurement of difficulty to be meaningful,
it should be reflective of the player experience. However, there
can be multiple aspects that can change this perception, which
include uncertainty and player skill [6]. It is therefore highly
individual how challenging a player finds a puzzle, so a useful
notion is perceived difficulty, where difficulty is described as
a relational attribute between the game and the player [5], [7].
The importance of the individual perception of difficulty can
be understood through the lens of flow; a state where the player
loses track of time and worries [1], [8]. To reach this state,
the presented difficulty of a task should be optimal in terms of
player skill, which means it should satisfy the players’ intrinsic
needs for feeling competent and lead to an engaging game
experience [9]–[11]. With flow and intrinsic motivation being
major contributors to player engagement [12], a core design
object of the difficulty prediction framework is, therefore, to
account for individual or cohort differences.

Pusey et al. [13] describe a number of measurable metrics
for puzzle games that quantify difficulty, which include the
number of actions and time taken to complete a puzzle as well
as the number of incorrect attempts. Indeed, using the average
number of attempts players spend to complete the level, or
inversely the pass rate, is a common way to operationalise
difficulty in puzzle games (e.g. in Angry Birds [14], Lily’s
Garden [15], Candy Crush [16]). As noted by Denisova et
al. [6], the player’s perceived difficulty is strongly linked to the
number of successes and failures, so in this paper, we adopt a
similar definition of difficulty as the number of attempts spent
to complete a given level.

The objective of predicting the number of attempts has been
approached in a number of different ways and with different
applications. One use-case is dynamic difficulty adjustment
(DDA) [17], [18] where the game content is adjusted so
the perceived difficulty for a player follows an optimal or
predefined goal. Gonzalez-Duque et al. [19] consider recent
play history and use Bayesian methods for estimating how
much time a player requires for completing a sudoku puzzle or
platform level. A more direct approach is presented by Xue et
al. [20], where they use the pass rate associated with different
random seeds for each level to serve personalised content.
Deep learning methods have also been used for modelling
players and optimising difficulty and engagement [21], [22].

While DDA has the promise of increasing engagement [23],
[24], not all games are designed with this kind of dynamic
adjustment in mind and designers instead find it sufficient
with more ad-hoc or daily predictions. For this purpose,
parametric-based approaches have been applied for estimating
the probability of success [25]–[27]. An example is the work
by Wheat et al. [28] where four categories of data (e.g. level
features and player behaviour) are considered. In this work, a
random forest classifier had the best accuracy when predicting
how difficult each player perceived levels in a custom platform
game. However, in more complex games with large, diverse
player bases, these parametric approaches may not be able to
fully capture the complex inter-relationship between players
and levels, leading to limited applicability. Matrix factorization
methods, known from recommender systems and their ability
to deal with sparse data, have been used specifically for
predicting the perceived difficulty of each player in games [5],
[29].

In this work, we build on the prediction methods from
Kristensen et al. [5] by extending the analysis in two ways.
The main problem is that matrix factorization methods suffer
from a cold start problem where new players or levels are not
possible to include during training. This leads to the model
not learning latent representation of the new users and levels,
which in turn makes predictions on new content impossible. To
address this, we experiment with including different categories
of data, similar to Wheat et al. [28] in addition to testing out
both a neural network and a random forest model for difficulty
prediction.

B. Playtesting agents
While player data and level data have been used for esti-

mating the difficulty of levels, these categories of data do not

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 3

Fig. 1. Example puzzle level in Lily’s Garden

include any kind of dynamic information about the levels and
are bound to be only an approximation of the gameplay. It
is, therefore, necessary to extract data from playing through
the level, and with the complexity of games today, more
intelligent solutions than simple heuristics-based methods are
increasingly necessary. The methods have also become mature
enough to assist the whole game design process, ranging from
finding bugs, edge cases and general playability [30]–[33],
to modelling players and adjusting difficulty [14], [15], [34]–
[36].

In the specific case of puzzle games, (deep) reinforcement
learning (RL) and Monte-Carlo Tree Search (MCTS) based
approaches are among the most common ones employed to
estimate the difficulty of levels [16], [37]–[41]. In one of the
most recent examples, Kristensen et al. [37] use an imple-
mentation of the RL method Proximal Policy Optimisation
(PPO) [42] to develop an agent capable of playing through
puzzle levels in the commercial puzzle game Lily’s Garden.
Further work showed that despite the agent performing subpar
compared to human players, the agent performance is strongly
correlated to actual player performance [15]. As noted by
Zhao et al. [43], the goal of creating playtesting agents is not
necessarily to outperform humans but rather to capture facets
of the gameplay related to skill and style that can be related
to player behaviour. With a similar perspective, Gudmundsson
et al. [16] demonstrated that by post-processing the statistics
produced by an agent playing a commercial puzzle game, it
is possible to better capture these facets and produce a more
accurate estimation of difficulty.

Inspired by these approaches to agent-based testing and
parametric difficulty modelling, in this study we propose a
combined method built on the RL approach by Kristensen et
al. [15], [37]. The method and its components are chosen and
evaluated through a comparative study intended to showcase
how different combinations of methods and data perform
at the different difficulty estimation tasks described by the
two research questions defined in the previous section. The
aim of the study is to conduct a systematic analysis of the
difficulty modelling problem in the context of puzzle games
and establish a benchmark for future works in the field.

0 100 200 300 400 500
Levelnumber

1

2

3

4

5

6

7

Av
er

ag
e

at
te

m
pt

s p
er

 c
om

pl
et

e Average attempts
Average attempts, rolling(12)
Tutorial level

0 50

Fig. 2. The average attempts per complete over the first 500 levels inves-
tigated. A rolling mean with window size 12 is also shown to visualise the
trend. The vertical grey bars indicate tutorial levels. Adapted from Kristensen
et al. (2022) [5].

III. CASE STUDY: LILY’S GARDEN

In this paper, we employ data from the free-to-play mobile
puzzle game Lily’s Garden by Tactile Games as a case study
to model difficulty in a realistic commercial scenario. The
game was released in early 2019 and has close to a million
daily active users worldwide as of today. It is among the top
10 grossing puzzle games in the US [44] and serves as a
representative sample of games in this genre both in terms
of gameplay and general characteristics.

Lily’s Garden is a puzzle game with an overarching nar-
rative in which the player can unlock decorative pieces and
story plots by completing puzzle levels. These puzzle levels
are blast-type puzzles and contain a gameboard that can be up
to 13 by 9 in size. An example of a level is shown in Fig. 1.
The core gameplay consists of tapping on basic board piece
clusters of the same colour to remove the pieces themselves
as well as adjacent non-basic pieces. By tapping on larger
clusters, more powerful pieces can be created which can clear
larger areas on the board. In order to complete the level, the
player must clear a number of objectives within a given move
limit. As a part of the free-to-play model the game employs,
it is also possible for the player to use booster items that can
affect the gameboard directly or add additional moves, which
can be acquired from in-game events and purchases. However,
all levels are designed to be possible to complete without using
any boosters.

There are currently more than 6000 available levels, but in
this study, we limit the modelling and predicting difficulty to
the first 500 levels. Using the definition of difficulty as the
average number of attempts per complete, the difficulty over
the level range can be seen in Fig. 2. The first 100 levels
or so contain multiple tutorials and easy levels to properly
onboard new players and engage them in the background story.
Subsequently, the difficulty stabilises at around 3.2 attempts
per complete, with easier levels typically being completed in
just one attempt and more difficult levels requiring upwards
of an average of 7 attempts.

While the average varies around 3 attempts, there are large
individual differences. As an example of this, Fig. 3 shows
the distribution of attempts on an easy and hard level and
their averages. Players most commonly only spend one attempt
on a level but due to both the random elements of the game
and player skill, hard levels sometimes require upwards of 30

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 4

0 5 10 15 20 25 30
Attempts per complete

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

1.08 7.29

Attempt distribution for tutorial/hard levels
Level 5
Level 5 average
Level 383
Level 383 average

Fig. 3. Two examples of attempt distribution on an easy and a hard level
(level 5 and 383, respectively). Adapted from Kristensen et al. (2022) [5].

attempts or more. This long-tailed distribution appears similar
(but not equal) to a geometric distribution where the mean
(here the average number of attempts) is proportional to the
inverse pass rate and the variance is proportional to the mean
and pass rate.

IV. METHODS

In a similar approach as Kristensen et al. [5], we treat the
task of predicting the number of attempts a player will spend
on a level as a supervised regression task. We employ a two-
step approach similar to what is used by Gudmundsson et al.
[16] where we first extract relevant data from a playtest agent
and secondly train a prediction model. In the following section,
we describe the playtest agent as well as the different types of
regression methods that will be used in the experiments. The
specifics and hyperparameters of each setup are described in
Appendix A.

A. Playtest agent

To explore the dynamics of each puzzle in the game, we
employ a reinforcement learning agent where we follow the
learnings from previous work on creating a playtesting agent
for Lily’s Garden [15], [37]. In order to capture the game
numerically, each level is described by a 3D array of size
13 × 9 × n, where n = 27 and represents various board
piece mechanics. These mechanics include possible colours,
whether the piece is clickable or not and if it is a goal
piece. If a board piece is present in a given position, its
hit-points are added to the position in each of the channels
that match the mechanics of the piece. In addition to the
game board, we also provide information about the number
of moves taken, the moves left as well as how many total
goal pieces remain after the match. The possible actions
correspond to a position on the game board, meaning there
are 13 × 9 = 117 possible actions, with invalid moves being
masked out. A more comprehensive description is given at the
website https://aicompetition.tactilegames.com/environment.

Differently from our previous works aiming to create a
single playtesting agent that learns to generalise its strategies
to any level, we train one agent for each level. We, therefore,
do not employ colour shuffling, and we use 8 fixed random
seeds for each level which allows us to test 8 different level
configurations and learn the optimal strategy for each.

We allow the agent to take up to 100 moves per episode,
which is around double the average normal move limit of 42.
In order to encourage the agent to learn to finish the level as
quickly as possible, we reward the agent for completing the
level and give an additional bonus for completing it before
the normal move limit, or a penalty if it spends more than the
move limit. Additionally, we also introduce a small reward
for creating power piece combinations, which can be key to
winning some levels. The final reward function is as follows:

• +0.1 for each goal collected.
• +0.8 if completing the level.
• max(−0.8;+0.05 · [M − n]) on level completion, where
n is the number of steps taken and M is the move limit.

• +0.1 for each power piece combination used.

B. Prediction methods

We test out three different methods for this problem: a
neural network (NN) and a random forest (RF) approach
which generally work well with dense data, and a factorization
machines (FM) method which extracts a latent represen-
tation of interactions that enables modelling sparse, high-
dimensionality data such as user-item interactions.

1) Random forest: Random forest is an ensemble prediction
method that utilises multiple decision trees that are created
using a random subset of the features and data. This enables
non-linear modelling and predictions, and it has been used for
the same task in previous work [5].

RFs do generally not work very well with high-cardinality
data such as unique user ids and levels since splits on indi-
viduals is not generalisable and can easily lead to overfitting.
Ways to ensure the model can generalise to new data is by
limiting the maximum depth and number of trees and using a
smaller subset of features for building the trees.

2) Artificial neural networks: Artificial neural networks are
another way to model non-linear processes. Although they are
more of a black box approach than RF, their performance is
usually comparable to or better than RF methods, and they
can be trained incrementally while keeping the model size
constant. This is unlike RF methods which either need to
be fully retrained or incrementally retrained by adding new
individual trees to the ensemble.

NNs can be prone to overfitting due to their large number of
parameters of the models. In order to improve their ability to
generalise, using regularisation and/or adding dropout layers
to the model are commonly employed strategies [45].

3) Factorization machines: Factorization machines are a
general purpose method that can be used for both classification
and regression tasks and belong to a family of matrix factor-
ization methods where entities are described by an embedded
latent vector that enables modelling sparse interaction between
the entities [46]. Specific to FMs, the features can consist of
both high-cardinality data such as user and level ids, as well
as dense data such as content tags or level descriptors. The
formula is given by

ŷ = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑

j=i+1

⟨vi,vj⟩xixj , (1)

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 5

Type of feature Name Description

Historic data Average attempts (level) Average attempts on the level based on playthroughs by old players
Average attempts (player) Average attempts by the player on the first 100 levels

Player features

Moves used Number of moves used relative to the move limit when completing
the level

In-game boosters Boosters that can be used during the level
Pre-game boosters Boosters that can be used before starting the level

Level attributes

Board size Number of available board slots
colour entropy Entropy of colour spawning weights; S = −∑

i pi log pi
colours Number of unique colours in the level
Board pieces Multiple features that each describe the number of board pieces on

the initial board
Collect goals Multiple features that each describe the number of collectgoals

Agent features

Training steps Number of training steps until minimum average length was achieved
Move limit Move limit of the specific level
Game length (min + std) Average number of moves used to complete level across 8 seeds
Completion rate (min + std) Fraction of times the agent finished the level within the movelimit/100

moves across all 8 seeds
Action entropy (min + std) RL agent action entropy
Training losses (min + std) RL policy and value losses

TABLE I
FEATURES INVESTIGATED FOR THE DIFFERENT MODELS. THE PLAYER FEATURES ARE AGGREGATED MEANS ON THE FIRST 100

LEVELS. THE VALUES OF THE AGENT FEATURES ARE AVERAGED FROM THE LATEST 100 EPISODES/PLAYTHROUGHS. FOR SOME OF
THE AGENT FEATURES, WE INCLUDE BOTH THE VALUE AT THE TIME STEP WHERE THE SMALLEST AVERAGE NUMBER OF STEPS WAS

ACHIEVED (DENOTED min), AND THE STANDARD DEVIATION OF THE FEATURE BETWEEN TIME STEPS 1M TO 9M (DENOTED std).

.

where w0 is a global bias, wi is the bias of the i’th variable,
vi = [v1, . . . , vk] is the latent representation of the i’th
variable using k latent factors, and ⟨vi,vj⟩ is the dot product
between the i’th and j’th which captures the second order
interactions of the variable.

Matrix factorization methods, such as FMs, are particularly
prone to cold start problems. In order to learn a latent
representation of a given item, it needs to be present in the
training data, but that is not possible with unreleased content
(e.g. new levels in puzzle games). One possible way to deal
with this in FMs is by including additional data, such as
tags or other item features, which is possible to learn latent
representations from.

V. DATA

The exact type of data that is available will depend on the
game. However, we can define four categories that the data
can belong to, following the approach by Wheat et al. [28]:

• Historic data that considers the average number of at-
tempts by previous players, either on a per-level basis or
per-player basis.

• Player data that capture aspects related to the player’s
skill and purchase tendency.

• Level data that capture specific types of game mechanics
and descriptors of the level.

• Agent data that captures more dynamic information about
the level and is extracted using a playtesting method.

Each of these categories will have an impact on the per-
formance of the prediction model, but they may not be fully
informative on their own. For example, player data is necessary
to include for personalised predictions, but on its own, it does
not say anything about the level itself or how easily the player
can handle specific gameplay elements. Similarly, agent data
may reveal some intrinsic difficulty/ground truth pass rate, but

without level data, it is hard to account for biases in the agent
algorithm (i.e. certain mechanics may be easier to learn for an
agent compared to a human [16]), and personalised predictions
are impossible without player data. Lastly, historic data may
be informative, but it is not available on new content or for
new players. We, therefore, experiment with combining the
data in a number of ways to test the importance of each data
category. We consider the following combinations:

• Historic: Only player-level-attempt information. For
FMs, this is implicitly learned in the variable biases,
while for the RF and NN approaches, it needs to be
calculated explicitly. Only available for predictions on
existing content.

• Player+level: Both player and level data, possible to use
for personalised predictions.

• Agent: Only agent data, possible to use for non-
personalised predictions.

• All: Player, level and agent data combined, possible to
use for non-personalised or personalised predictions. It
does not include features that are explicitly derived from
historic observations.

A. Lily’s Garden case study data

The data used in this study consists of the number of
attempts each player has spent on a given level and is recorded
between 2021-06-01 and 2021-12-01. Only players that have
started playing the game in this interval and played at least 200
levels are included in the data set. We use data that come from
the four different categories of data mentioned previously. An
overview of these features is shown in Table I.

The player data consist of aggregate player data over the
first 100 levels. We consider the average number of moves
they have used to complete the levels as well as booster usage
on the first 100 levels. These features capture the general

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 6

Fig. 4. Train/test split of the data for personalised predictions on levels with
historic data and on levels in the cold start scenario. In this study we use
nobs = 100. The greyed out area is ignored observations for ensuring the
experiments are evaluated on the same content. Adapted from [5].

competence of the players and their willingness to pay to
progress, which are both strong predictors for how many
attempts they will use on future levels [5].

The level attributes describe the size of the board and the
goals and board pieces present in the level. Additionally, the
number of colours and the entropy of the colour distribution
are also included, which can affect how easy it is to make
stronger combinations and thus the difficulty of the level. Un-
like previous work where some of the level features consisted
of historic data such as the average number of attempts on the
level, for this study we only include features that are possible
to determine before any players played the given level. This
is necessary since in the experiments we consider the scenario
with new levels where no historic data is available.

Lastly, for the agent data, we include information about
how well the agent learned to play the level and how easily
it learned to do so. We do this by recording some features
at the point during training at which the average number of
moves taken by the agent is the lowest as well as the standard
deviation of the features between the time steps 1M to 9M.

VI. EXPERIMENT A: PERSONALISED PREDICTIONS

The first research question (RQ1) is aimed at investigating
the modelling of the perceived difficulty of a puzzle level for a
specific player. We follow a similar approach as Kristensen et
al. [5] where we use data from the commercial puzzle game,
Lily’s Garden, that is described in Section III. However, we
extend the study by also considering a cold start scenario
where there are no observations available for a given level.
We denote the two cases as playthrough/historic data (PD)
and cold start (CS).

For creating the data sets for training and testing, we split
the data in two different ways, which are shown in Fig. 4. In
the first case, we split the players into train/test sets with a 99-
1 split but include observations of the players from the test set
in the training set up until the first nobs levels. In the second
case, we split by level number, where the first 400 levels are
used for training and the last 99 levels are used for testing.

FM NN RF

0

1

2

3

4

RM
SE

PD

Personalised predictions
on historic levels

Included data
baseline
100-400 mean
only historic
playerlevel
agent
all

Model name

Fig. 5. RMSE of personalised predictions on content that has been played
by other players.

The nature of the prediction task, where very difficult levels
can have a large variance in attempts as shown previously in
Fig. 3, means the best performing models in terms of root
mean squared error (RMSE) and mean absolute error (MAE)
may be different. Since the models are optimised using RMSE
and we want the method to be more robust towards more
difficult levels, we choose to use RMSE as the reported metric.
We calculate it from the same group of players above level
400 in all cases.

We test out the three methods described in Section IV-B,
and we train them using the four different combinations of
data outlined in Section V. In the first case, we include a
naive baseline prediction for each level which is calculated
as the average number of attempts on the given level by the
players in the training set. In the second case, we use a constant
prediction of ybaseline = 3.23 that is calculated as the average
number of attempts on levels 100-400.

A. Personalised predictions with historic data available

The performance of the methods in terms of RMSE in the
first case is shown in Fig 5. The best-performing model is
the FM model which only includes the player and level data.
FMs, therefore, appear more robust in identifying possible
bottlenecks for an individual player, where they possibly
require a large number of attempts and may feel stuck. This
can be used to the game designers’ advantage by preemp-
tively providing assistance to the players if, for example, the
estimated perceived difficulty exceeds a certain threshold.

Another observation to note is that, while the NN and FM
approaches perform better than the baseline, the RF model
appears to perform worse than all other methods. A crucial
difference between this study and the study by Kristensen et al.
(2022) [5] is that the level features do not include the historic
average attempts due to the fact that this information would
not be available when estimating the difficulty of unreleased
levels. Without such a strong predictor, the RF model does
not appear to be able to infer a meaningful average prediction.
Furthermore, both the FM and NN approaches do not employ
average attempts as input, but they may be able to infer the
average attempts on each level through either the complexity
of the network or the variable biases, wi, of the FM model.

The impact of using different types of data as inputs to
the FM method is shown in Fig. 6. The results are in line

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 7

1 2 3 4 5 6 7 8
Factors

3.700

3.705

3.710

3.715

3.720

RM
SE

Additional data
only historic
playerlevel
agent
all
Global bias
False
True

FM models

Fig. 6. RMSE of the tested FM models for personalised predictions on current
levels as a function of number of factors. The colours indicates what additional
datba that are included in the data set. The dashed line indicates whether w0

is included in the model or not (see Eq. 1).

with previous studies [5] in which the RMSE and MAE are
around 3.8 and 2.3, respectively, and augmenting the data
with player and level data leads to a minor improvement.
An extension to the previous study also includes agent data.
While agent data does not improve the predictions significantly
for the FM method, it leads to a worse performance when
combining it with the player and level data categories. A closer
inspection of the training process shows that the performance
on the test set worsens after just 50 iterations when including
all data categories, while in the other cases, a performance
drop happens after around 950 iterations. This suggests that
a likely cause for the worse performance is the tendency
of the model to overfit. Additionally, in a high-dimensional
space with strongly correlated parameters, the Gibbs sampler
used in the MCMC optimiser for the FM method may not
converge [47], which is the case with the colour entropy and
colours of the level attributes, and the minimum and standard
deviation of the game length.

In terms of other model parameters, four factors seem to
work the best for optimising the RMSE but at the cost of
increasing the MAE. However, the difference in performance
when using between two and four factors is not significant and
does not contradict the results from previous work where two
factors were concluded to be sufficient. Using additional data
does also not warrant the use of more than four factors and can
in fact worsen the performance. There is not a clear pattern of
whether using a global bias improves the predictions, although
the best-performing model does include a global bias.

B. Predictions in cold start scenarios

In the second case, the performance of the models is very
similar as seen in Fig. 5. Excluding the models with only his-
toric data since this is not available in the cold start scenario,
all three FM models perform better than the comparable NN
and RF models. Similarly, only the RF models perform worse
than the constant baseline. The same parameters for the FM
methods (4 factors, both global and variable bias included)
lead to the best performance of the tested FM configurations.

Since the personalised predictions in both cases have very
similar RMSE, we look at the difference between the errors in
the two cases in Fig. 7 to better compare the performances. The

FM NN RF
Model name

0.00

0.05

0.10

0.15

RM
SE

CS
RM

SE
PD

Included data
only historic
playerlevel
agent
all

Fig. 7. Difference in RMSE for personalised predictions between the scenario
where data about player playthroughs (PD) is available and the cold start (CS)
scenario. A positive difference indicates that the error in the cold start scenario
is higher.

results show that for all the methods, the error in the cold start
scenario is higher regardless of data type. This is not surprising
since the information from other players’ performance on a
level should be a strong predictor of the perceived difficulty
of other players. In the FM approach, including agent data
does lead to a smaller gap in error in the two scenarios, which
suggests that agent data does contain important predictors for
predicting difficulty that the FM model learns to utilise. This
is also true for the other methods, but the difference between
the two scenarios for the NN and RF model is still larger than
in the FM case.

It is notable that the performance of the models is similar
and that the FM method with no included data performs
better than a constant baseline. Since the FMs reduce to
a simple linear function that consists of a global bias and
bias term for the players according to Eq. 1 in cold start
scenarios, it suggests the learned biases for individual players
are sufficient for capturing the players’ general performance
on both existing and new content. This is valuable information
for game designers since it may be possible for them to use
these learned biases for more individualised content.

VII. EXPERIMENT B: COHORT PREDICTIONS

The second research question is regarding the possibility
of doing cohort predictions. Level designers are typically
interested in knowing the average number of attempts on the
levels, and since different cohorts reach the levels at different
times, the measured average difficulty may change over time
depending on the cohort. This experiment simulates this by
comparing the aggregated average predictions per level with
the average attempts on each level for the cohort in the test
set. Similar to the previous experiment, we consider both the
scenario where there is historic data from previous players’
playthroughs on a given level and a cold start scenario. We
use the same baselines as in the previous experiment.

We consider two ways of predicting the average number
of attempts on a cohort level. The first approach is using
the personalised predictions from the first experiment and
computing the aggregated average on each level. For the
second approach, since individual estimates may be noisy or

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 8

0.0

0.2

0.4

0.6

Cohort based

0.0

0.2

0.4

0.6

Personalised aggregated
Included data

baseline
only historic
playerlevel
agent
all

NN RF
0.000

0.500

1.000
1.195
1.500

FM NN RF

0.000

0.500

1.000
1.195
1.500

Model name

RM
SE

Cold start
Historic

0.05

Fig. 8. RMSE of the different approaches for predicting the average difficulty of a level for a cohort. The left plots show the cohort-based per-level predictions,
and the right plots show the aggregated average of the personalised predictions for the full data set. The top row is in the case where observations on the
examined levels exist, while the bottom row is the cold start scenario. Note that historic data is not available in the cold start scenario.

inaccurate, we group the players into 10 random cohorts and
use the aggregated average values of the player features to
describe these cohorts. The regression target for each cohort
is then their average number of attempts on the given level.
This allows us to directly use the tested methods to predict the
average number of attempts on a per-level basis of the cohort
of players in the test set. These two approaches will be denoted
by how the initial predictions are grouped (i.e. personalised
or cohort) but we note that in both cases, the final estimates
are on a cohort level.

The results of using the different investigated methods are
shown in Fig. 8. The errors for all models when predicting
the difficulty of existing content is very low, which is not
surprising since the cohorts are generally not very different
as demonstrated by the very small RMSE of the baseline.
The personalised errors are generally larger than the cohort-
based predictions, which is most likely due to the fact that
these models are optimised to minimise the RMSE for each
player. The optimal model, in this case, is not necessarily one
that captures the average number of attempts by the whole
cohort but rather one that can account for the high within-

1 2 3 4 5 6
Average attempts per level

1

2

3

4

5

6

7

Pr
ed

ict
io

n

Cohort, NN
Personalised, NN
10%-90% interval,
personalized predictions,
rolling mean of 5

Fig. 9. Example of predictions of the NN method with cohort and personalised
predictions using all categories of data in the cold start scenario.

level variance. This is clear for the FM models, in which using
only 1 factor leads to an error similar to the baseline but more
factors lead to higher RMSE in this experiment where we show
the results from the 4-factor models.

In the cold start scenario, both the NN and RF models
are the best performing models and appear to have similar
performance for both personalised and cohort predictions.
Additionally, including all possible categories works the best
for the NN and RF methods, similar to what was found in
the first experiment. This is not the case for FM with all data
included, though, which seems to suffer from the same type of
overfitting seen previously. The model parameters for the best
performing FM models were similar as well, where including
both a global and variable bias as well as using 2-4 latent
factors lead to the best performance.

Generally, including only player and level data is not suffi-
cient by themselves to perform better than the baseline. Only
when including agent data it is possible to have more accurate
predictions than a simple constant average. By looking at
the feature importances for the RF models, we also find that
the agent features are on average 5-6 times more impactful
than the level features, with the minimum game length and
completion rate being among the most important. These results
highlight the importance of having a playtest agent that can
capture dynamic aspects of a level for enabling the prediction
models in cold start scenarios. It also supports the conclusion
by Gudmundsson et al. [16] that combining agent performance
with a level features is useful in order to be able to account
for differences in how players and AI agents learn and behave.

Another notable result is that cohort predictions are on-
par with personalised predictions for estimating the average
level’s difficulty in the cold start scenario. To visualise the
differences between the two approaches, Fig. 9 shows the
predictions from each method compared to the actual average
number of attempts. Both methods tend to overestimate the
difficulty of easy levels and underestimate the difficulty of
the hard levels and tend to predict the mean number of
attempts. This suggests that they are both underfitted or that the
features are not informative enough to generalise to new levels.

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 9

The personalised predictions tend to have a larger variance,
especially at higher difficulties, which can be seen from the
80% prediction interval. This is not completely unexpected
due to the high variance in attempts between players on harder
levels, as shown in Fig. 3.

VIII. DISCUSSION

From the results of the experiments, it is clear that the tasks
of creating personalised difficulty predictions for players on
content with available player playthrough data and without
require different approaches. While a part of this is related to
generalisability and overfitting, a deeper discussion about the
data and models can help understand in which circumstances
one approach works better than another. In this section we
therefore focus on three topics: the difference between models
for old and new content, the feasibility of using any of these
models in practice and playtest agent data.

A. Choice of model

One complication with a combined difficulty framework that
can work on both old and new content is that the available
data for the two scenarios are inherently different. For new
content, there are no direct observations of how many attempts
actual players spend on a level. This cold start problem can
especially be an issue for factorization-based approaches, such
as FMs, since the bias and latent factors associated with new
content can not be properly inferred with no observations.
While the inclusion of additional data in FM methods, such as
tags [48] or player/level/agent data, can alleviate this problem,
we still observe that the predictions tend to stay close to the
global average and not capture the full range of behaviours of
players on new levels. This suggests that the contribution of the
additional data to the model prediction is limited, and further
work on ensuring the included data is impactful is necessary.

For the RF and NN approaches, the cold start problem does
not exist to the same extent. FMs learn latent descriptions
for each item, but the RF and NN methods instead only
utilise the included data features. This makes these latter
models not rely on modelling specific items, at the cost of
not having as accurate personalised predictions, as seen in
the first experiment It is therefore also not surprising that the
difference between personalised and cohort predictions on new
content is insignificant with those two methods: the features
with high predictive power (mainly agent data) are the same,
so the information that is possible to extract is the same. The
data for the personalised model training is therefore essentially
an oversampled dataset of the full dataset.

It is worthwhile to note that, for the RF method, while the
results from the second experiment for both personalised and
cohort predictions were promising, the results from the first
experiment showed that the RF method performs worse than
the baseline for predicting the individual perceived difficulty.
The inability of the RF method to capture individual differ-
ences may be due to the greedy nature of the algorithm and
the fact that the chosen player features were too uninformative
compared to both agent and level data. More complex player
data, such as recent history or more detailed behavioural

data, may improve this approach, but this is equally likely to
benefit the NN and FM approaches. Ultimately, both regarding
training and the ability to capture complex behaviours, a neural
network based approach is more feasible for personalised
predictions on both old and new content, though at the cost of
interpretability. For accurate, interpretable methods on existing
content, an FM approach is better.

B. Difficulty modelling in practice
An important question about this approach is whether these

results are reflective of how these methods would work in
practice. To answer that, we consider some aspects regarding
how we collect and split the data.

The data that is used in this study was collected over a
6 month period, but there is no information about when the
players started or stopped playing or which cohort they might
belong to. In order to enable the level designers of a live game
to be proactive, a more realistic approach would be to consider
whether the player has been active recently or not. While the
approach used in this study made it possible to compare it
with previous work (Kristensen et al. (2022) [5]), an idea for
a future study is using a rolling window where the training
data only includes data before a given date, and the test data
only includes after this date up until the prediction date where
the level designers would use the results.

Another consideration regarding the way the data is split
is also whether the scenario of having historic data or the
cold start scenario is necessary. While the cold start scenario
is representative of completely new content, there are often
other concerns when creating new levels, such as whether the
puzzle feels fun or if the solution(s) are clear. This is a much
harder problem to solve and requires the level designers to play
through the levels regardless. This also means that, in practice,
there is a smooth transition from a complete cold start scenario
to a scenario with some historic data available – and not just by
the level designers but also by other players due to pre-releases
to certain regions or A/B tests. Since FMs should work well
with such sparse data, an interesting line of research would
therefore be to investigate how many observations of attempts
on a level are necessary to beat the baseline. This question of
how many observations are necessary has been explored by
Kristensen et al. [5] for players, but it would be valuable to
learn whether the results are true for levels too.

Lastly, we note that in order to address this cold start
scenario, we experimented with treating the agent as a player.
It is a way that could help alleviate the cold start problem
in FMs where enriching item data by adding new ratings
(e.g. [49]) can augment very sparse observations. However,
initial experiments did not show promising results, and an even
stronger tendency to predict the global average was observed.
Using agent behaviour as a direct stand-in for a player,
therefore, requires more finesse than simply oversampling
observations of the agent, and possible ways to improve the
agent will be discussed next

C. Playtesting agent role in difficulty estimation
While the agent data had a large positive impact on the

performance of the models, there are two major aspects that

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 10

can be considered for further work: extracting relevant level
and agent behavioural data, and diversifying the agent.

In this study, the agent was trained on a single level at a
time. Only 8 different random seeds were used, which limits
the number of configurations of a given level that could be
explored. Given that the random seed can greatly affect the
chance of success [20], this not only means that the chosen
seeds may have been more favourable to some levels but also
the agent data may not be fully representative of the complete
player experience where thousands of seeds are used. While an
option could be to include more seeds during training, the RL
algorithm can be very sensitive to hyperparameter tuning and
such curricula [37]. An interesting avenue for future research is
therefore finding an optimal balance in this trade-off between
finding a representative sample while still enabling learning
optimal strategies on the level, which leans into the curriculum
learning domain [50].

A more diverse level sample may be necessary to ensure
the data is distinct and informative. For example, the pass
rate of the agent was 93% (or approximately 1.1 attempt per
complete) across all levels, which also means in a majority
of the cases, the agent only spent 1 attempt on all 8 seeds.
This leads to degeneracy in the levels where they are in-
distinguishable from one another in the agent data, despite
having different player pass rates. This can also explain the
issue of many of the predictions trending towards the global
average since an otherwise informative feature does not allow
the algorithms to easily differentiate between levels especially
the easier and medium difficulty ends of the scale. A possible
way to overcome this is by including multiple agents that
are trained with different reward functions (similar to [38])
which could allow for more comprehensive data regarding the
gameplay.

With the ultimate goal of being able to employ this difficulty
framework in a live game, the main concern is whether the
accuracy on especially new content is accurate enough for the
level designers to rely on. Gudmundsson et al. [16] consider
the same business problem and present a method based on
a similar two-step approach that employs a playtest agent to
extract an agent pass rate and subsequently use in a prediction
model. They mentioned that King has used it for two of
their games and reported the best model has a 4.0% to 6.6%
MAE on the pass rate. Translating our results from attempts
to pass rate, our method has a 8.1% MAE. However, it is
not possible to translate the result directly since they do
not report the absolute magnitude of the win rates, which
means if they have more hard levels with low, but similar,
pass rates, the reported MAE is also expected to be lower.
Additionally, they considered two different games which share
many similar mechanics but still observed a difference in the
predicted performance. While it is therefore hard to make a
direct comparison, the results in this study can still inform
the level designers about the scale of difficulty, and further
ideas could involve classifying the levels into easy, medium
and hard difficulties rather than directly predicting the number
of attempts. Furthermore, the variation of results within the
experiment by Gudmundsson et al. [16] and between that
and this experiment, albeit minor, can be studied further

to investigate whether there are specific differences in the
player base or the characteristics of the games or the methods
employed that lead to the observed results.

IX. CONCLUSION

In this study we considered two questions: is it possible to
estimate the perceived difficulty of a puzzle level for a given
player on both existing newly generated (human or otherwise)
levels, and is it possible to do this on a cohort level? To
answer these questions, we tested out three different prediction
methods for estimating the number of attempts each player is
expected to spend in order to complete a given level using
data from a live commercial puzzle game. Additionally, we
experimented with including and combining data belonging to
four categories: historic data, player and level data, as well as
agent data collected by a reinforcement learning playtesting
agent

For personalised predictions on existing content, with pre-
vious players’ data, the factorization machines approach per-
formed significantly better than the random forest and neural
network methods. However, including all three types of data
for the factorization machine led to worse performance most
likely due to overfitting and bad optimisation conditions. The
neural network approach worked better than the baseline,
while the random forest performed worse. This is explained
by the fact that the NN method is able to capture the historic
average number of attempts through the complexity of its
network and sequential training that enables better handling
of large data sets.

To estimate the average difficulty of new content, in a cold
start scenario, the neural network approach worked the best
for both personalised and cohort-based predictions, while the
factorization machines method did not work very well due to
the cold start problem common in factorization methods.

It was also found that including the data collected by a
playtest agent is necessary for the methods to perform better
than the global average. However, since the agent consistently
performed better than most players, it did not allow to differ-
entiate easily between the easy to medium difficulty levels.

REFERENCES

[1] M. Csikszentmihalyi and M. Csikzentmihaly, Flow: The psychology of
optimal experience. Harper & Row New York, 1990, vol. 1990.

[2] “Gaming market - growth, trends, covid-19 impact, and forecasts
(2022-2027),” https://www.mordorintelligence.com/industry-reports/
global-gaming-market, accessed: 2022-07-08.

[3] “Global games market to generate $175.8 billion in 2021; despite a
slight decline, the market is on track to surpass $200 billion in 2023),”
https://newzoo.com/insights/articles/global-games-market-to-generate-
175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-
surpass-200-billion-in-2023/, accessed: 2022-07-08.

[4] “How much is the gaming industry worth in 2022? (revenue &
stats),” https://earthweb.com/how-much-is-the-gaming-industry-worth/,
accessed: 2022-07-08.

[5] J. Kristensen, C. Guckelsberger, P. Burelli, and P. Hämäläinen, “Person-
alized game difficulty prediction using factorization machines,” User
Interface Software and Technology, vol. 2022, 2022.

[6] A. Denisova, P. Cairns, C. Guckelsberger, and D. Zendle, “Measuring
perceived challenge in digital games: Development & validation of
the challenge originating from recent gameplay interaction scale
(CORGIS),” International Journal of Human-Computer Studies, vol.
137, p. 102383, May 2020. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S1071581919301491

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 11

[7] A. Denisova, C. Guckelsberger, and D. Zendle, “Challenge in
Digital Games: Towards Developing a Measurement Tool,” in
Proceedings of the 2017 CHI Conference Extended Abstracts
on Human Factors in Computing Systems. Denver Colorado
USA: ACM, May 2017, pp. 2511–2519. [Online]. Available:
https://dl.acm.org/doi/10.1145/3027063.3053209

[8] J. Chen, “Flow in games (and everything else),” Commun. ACM,
vol. 50, no. 4, p. 31–34, apr 2007. [Online]. Available: https:
//doi.org/10.1145/1232743.1232769

[9] R. M. Ryan, C. S. Rigby, and A. Przybylski, “The Motivational Pull of
Video Games: A Self-Determination Theory Approach,” Motivation and
Emotion, vol. 30, no. 4, pp. 347–363, 2006.

[10] A. Tyack and E. D. Mekler, “Self-Determination Theory in HCI Games
Research: Current Uses and Open Questions,” in Proc. Conference on
Human Factors in Computing Systems (CHI). ACM, 2020, pp. 1–22.

[11] J. T. Alexander, J. Sear, and A. Oikonomou, “An investigation of
the effects of game difficulty on player enjoyment,” Entertainment
Computing, vol. 4, no. 1, pp. 53–62, Feb. 2013. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1875952112000134

[12] J. H. Brockmyer, C. M. Fox, K. A. Curtiss, E. McBroom, K. M.
Burkhart, and J. N. Pidruzny, “The Development of the Game En-
gagement Questionnaire: A Measure of Engagement in Video Game-
Playing,” Journal of Experimental Social Psychology, vol. 45, no. 4, pp.
624–634, 2009.

[13] M. Pusey, K. W. Wong, and N. A. Rappa, “The Puzzle Challenge
Analysis Tool. A Tool for Analysing the Cognitive Challenge Level
of Puzzles in Video Games,” Proceedings of the ACM on Human-
Computer Interaction, vol. 5, no. CHI PLAY, pp. 1–27, Oct. 2021.
[Online]. Available: https://dl.acm.org/doi/10.1145/3474703

[14] S. Roohi, C. Guckelsberger, A. Relas, H. Heiskanen, J. Takatalo, and
P. Hämäläinen, “Predicting game difficulty and engagement using ai
players,” Proceedings of the ACM on Human-Computer Interaction,
vol. 5, no. CHI PLAY, pp. 1–17, 2021.

[15] J. T. Kristensen, A. Valdivia, and P. Burelli, “Estimating player comple-
tion rate in mobile puzzle games using reinforcement learning,” in 2020
IEEE Conference on Games (CoG), 2020, pp. 636–639.

[16] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,
B. Kozakowski, R. Meurling, and L. Cao, “Human-like playtesting with
deep learning,” in 2018 IEEE Conference on Computational Intelligence
and Games (CIG). IEEE, 2018, pp. 1–8.

[17] R. Hunicke, “The case for dynamic difficulty adjustment in games,”
in Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology, 2005, pp. 429–433.

[18] M. Zohaib, “Dynamic difficulty adjustment (dda) in computer games:
A review,” Advances in Human-Computer Interaction, vol. 2018, 2018.

[19] M. Gonzalez-Duque, R. B. Palm, and S. Risi, “Fast game content
adaptation through bayesian-based player modelling,” in 2021 IEEE
Conference on Games (CoG), 2021, pp. 01–08.

[20] S. Xue, M. Wu, J. Kolen, N. Aghdaie, and K. A. Zaman,
“Dynamic Difficulty Adjustment for Maximized Engagement in Digital
Games,” in Proceedings of the 26th International Conference on
World Wide Web Companion - WWW ’17 Companion. Perth,
Australia: ACM Press, 2017, pp. 465–471. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3041021.3054170

[21] D. B. Or, M. Kolomenkin, and G. Shabat, “Dl-dda-deep learning based
dynamic difficulty adjustment with ux and gameplay constraints,” in
2021 IEEE Conference on Games (CoG). IEEE, 2021, pp. 1–7.

[22] J. Pfau, J. D. Smeddinck, and R. Malaka, “Enemy within: Long-term
motivation effects of deep player behavior models for dynamic difficulty
adjustment,” in Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, 2020, pp. 1–10.

[23] T. Constant and G. Levieux, “Dynamic Difficulty Adjustment
Impact on Players’ Confidence,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. Glasgow
Scotland Uk: ACM, May 2019, pp. 1–12. [Online]. Available:
https://dl.acm.org/doi/10.1145/3290605.3300693

[24] J. Li, H. Lu, C. Wang, W. Ma, M. Zhang, X. Zhao, W. Qi, Y. Liu,
and S. Ma, “A Difficulty-Aware Framework for Churn Prediction and
Intervention in Games,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. Virtual Event
Singapore: ACM, Aug. 2021, pp. 943–952. [Online]. Available:
https://dl.acm.org/doi/10.1145/3447548.3467277

[25] F. Mourato, F. Birra, and M. P. dos Santos, “Difficulty in action
based challenges: success prediction, players’ strategies and profiling,”
in Proceedings of the 11th Conference on Advances in Computer
Entertainment Technology, 2014, pp. 1–10.

[26] M. Van Kreveld, M. Löffler, and P. Mutser, “Automated puzzle difficulty
estimation,” in 2015 IEEE Conference on Computational Intelligence
and Games (CIG). IEEE, 2015, pp. 415–422.

[27] J. T. Kristensen, A. Valdivia, and P. Burelli, “Statistical modelling of
level difficulty in puzzle games,” in 2021 IEEE Conference on Games
(CoG). IEEE, 2021, pp. 1–8.

[28] D. Wheat, M. Masek, C. P. Lam, and P. Hingston, “Modeling perceived
difficulty in game levels,” in Proceedings of the Australasian Computer
Science Week Multiconference, 2016, pp. 1–8.

[29] A. E. Zook and M. O. Riedl, “A temporal data-driven player model
for dynamic difficulty adjustment,” in Eighth Artificial Intelligence and
Interactive Digital Entertainment Conference, 2012.

[30] S. Ariyurek, A. Betin-Can, and E. Surer, “Automated video game testing
using synthetic and humanlike agents,” IEEE Transactions on Games,
vol. 13, no. 1, pp. 50–67, 2019.

[31] A. Latos, “Automated playtesting on 2d video games. an agent-based
approach on nethackclone via iv4xr framework,” Master’s thesis, Utrecht
University, 2022.

[32] S. A. Dukkancı, “Level generation using genetic algorithms and diffi-
culty testing using reinforcement learning in match-3 game,” Master’s
thesis, Middle East Technical University, 2021.

[33] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén, “Augmenting
automated game testing with deep reinforcement learning,” in 2020 IEEE
Conference on Games (CoG). IEEE, 2020, pp. 600–603.

[34] S. Stahlke, A. Nova, and P. Mirza-Babaei, “Artificial players in the
design process: Developing an automated testing tool for game level and
world design,” in Proceedings of the Annual Symposium on Computer-
Human Interaction in Play, 2020, pp. 267–280.

[35] B. Horn, J. A. Miller, G. Smith, and S. Cooper, “A monte carlo
approach to skill-based automated playtesting,” in Fourteenth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2018.

[36] J. Pfau, A. Liapis, G. Volkmar, G. N. Yannakakis, and R. Malaka,
“Dungeons & replicants: automated game balancing via deep player
behavior modeling,” in 2020 IEEE Conference on Games (CoG). IEEE,
2020, pp. 431–438.

[37] J. T. Kristensen and P. Burelli, “Strategies for using proximal policy
optimization in mobile puzzle games,” in International conference on
the foundations of digital games, 2020, pp. 1–10.

[38] L. Mugrai, F. Silva, C. Holmgård, and J. Togelius, “Automated playtest-
ing of matching tile games,” in 2019 IEEE Conference on Games (CoG).
IEEE, 2019, pp. 1–7.

[39] Y. Shin, J. Kim, K. Jin, and Y. B. Kim, “Playtesting in match 3 game
using strategic plays via reinforcement learning,” IEEE Access, vol. 8,
pp. 51 593–51 600, 2020.

[40] I. Kamaldinov and I. Makarov, “Deep reinforcement learning in match-3
game,” in 2019 IEEE conference on games (CoG). IEEE, 2019, pp.
1–4.

[41] E. R. Poromaa, “Crushing candy crush: predicting human success rate
in a mobile game using monte-carlo tree search,” Master’s thesis, KTH,
School of Computer Science and Communication (CSC), 2017.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv e-prints, pp. 1–12,
7 2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[43] Y. Zhao, I. Borovikov, F. de Mesentier Silva, A. Beirami, J. Rupert,
C. Somers, J. Harder, J. Kolen, J. Pinto, R. Pourabolghasem et al.,
“Winning is not everything: Enhancing game development with intelli-
gent agents,” IEEE Transactions on Games, vol. 12, no. 2, pp. 199–212,
2020.

[44] “Appbrain: Google play ranking: The top grossing puzzle games in
the united states,” https://www.appbrain.com/stats/google-play-rankings/
top grossing/puzzle/us#, accessed: 2022-07-08.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[46] S. Rendle, “Factorization Machines with libFM,” ACM Transactions on
Intelligent Systems and Technology, vol. 3, no. 3, pp. 1–22, May 2012.
[Online]. Available: https://dl.acm.org/doi/10.1145/2168752.2168771

[47] A. Justel and D. Peña, “Gibbs sampling will fail in outlier problems
with strong masking,” Journal of Computational and Graphical
Statistics, vol. 5, no. 2, pp. 176–189, 1996. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/10618600.1996.10474703

[48] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin, “Field-aware factorization
machines for ctr prediction,” in Proceedings of the 10th ACM conference
on recommender systems, 2016, pp. 43–50.

IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST XXXX 12

[49] F. Tahmasebi, M. Meghdadi, S. Ahmadian, and K. Valiallahi, “A
hybrid recommendation system based on profile expansion technique to
alleviate cold start problem,” Multimedia Tools and Applications, vol. 80,
no. 2, pp. 2339–2354, 2021.

[50] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone,
“Curriculum learning for reinforcement learning domains: A framework
and survey,” arXiv preprint arXiv:2003.04960, 2020.

[51] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[52] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time
limits in reinforcement learning,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Dy and A. Krause, Eds.,
vol. 80. PMLR, 10–15 Jul 2018, pp. 4045–4054. [Online]. Available:
https://proceedings.mlr.press/v80/pardo18a.html

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

APPENDIX A
METHOD PARAMETERS

A. Playtest agent setup

We use an implementation of PPO from Stable-Baselines3
[51]. We use a three-layer convolutional neural network (Con-
vNN) with 32 filters each, stride of 1, kernel sizes of [3,
2, 2] and paddings of sizes [1, 0, 0]. Additionally, to make
the method time- and progress-aware, we concatenate the
flattened output from the ConvNN of size 64 with a vector
with information about the progress and limit for both episode
length and goals, as suggested in [52]. The critic network
head has two fully connected layers of size 128, and the actor
network head has two fully connected layers of size 32. All
activation functions are exponential linear units (ELUs).

We use the following hyperparameters:

• ent_coef: 0.01
• learning_rate: 3e-4
• batch_size: 512
• n_steps: 256
• n_epochs: 4
• clip_range_vf: 1.0
• gamma: 0.99
• gae_lambda: 0.95

B. Random forest setup

We use the random forest regressor implementation from
the scikit-learn library version 1.0.2 [53]. Due to the size of
the data we also incrementally train the model using Incre-
mentalTrees1. We use the following hyperparameters for the
RF (non-personalized/personalized) setup (default parameters
unless otherwise noted):

• n_estimators: 150/260
• max_depth: 8/8
• max_features: 3/3

1https://github.com/garethjns/IncrementalTrees

C. Neural network setup

We use a simple fully connected feed-forward neural net-
work with three layers and 256 and 64 neurons for person-
alised and non-personalised predictions each, respectively. To
improve generalisation, we also employ 0.1 dropout layers and
an L2 regularisation of strength 1× 10−5 during training.

D. Factorization machines setup

We use the implementation of LibFM [46] version 1.4.2
with a MCMC inference method for model parameters. We use
an initial standard deviation for initialising v of 0.1. We also
use the meta option to assign players and levels into separate
groups, which allows for a more complex regularisation of
parameters by assigning different regularisation parameters for
each group.

BIOGRAPHY SECTION

Jeppe Theiss Kristensen received his MSc degree
in astronomy in 2016 from Aarhus University.

He is currently an industrial Ph.D. student at the
IT University of Copenhagen and collaborates with
an industrial partner, Tactile Games.

His research focus involves player modelling and
reinforcement learning for playtesting methods in
puzzle games.

Paolo Burelli received his MSc degree in infor-
mation technology in 2007 from the University of
Udine and his PhD degree in 2012 from the IT
University of Copenhagen.

Dr. Burelli is currently an Associate Professor at
the IT University of Copenhagen and a member
of the Games Technical Committee of the IEEE
Computational Intelligence Society.

He researches computational models of user ex-
perience and behaviour in digital environments and,
throughout his experiences in the academic world

and in the game industry, he has published more than 30 articles on this and
related topics.

Part III

Epilogue

92

6 Discussion and Conclusions

This dissertation’s central research theme concerns how difficulty in puzzle games can be mod-
elled and operationalised. A vital component of that work has been considering its applicability
in an industrial context where technical and design restrictions, together with a focus on en-
abling informed decisions, have guided this work. In this chapter, the contributions to the
research fields of player modelling and AI in games will be presented as well as the possibilities
for improving and extending the work. A final summary will be given at the end.

6.1 Contributions

This dissertation is concerned with two research questions: how player data can be employed
to model and operationalise difficulty, and how this is possible with little to no player data.
Through the five included papers, the research questions have been illuminated and have led to
the following contributions.

6.1.1 Modelling player behaviour in puzzle games

As an initial step for modelling and operationalising difficulty, we propose to model the number
of moves players spend to complete different levels as a negative binomial distribution (see
Section 3.1). This statistical interpretation provides a way to directly estimate the difficulty
measured by the pass rate by asking what the probability of spending fewer moves than the move
limit is, given the fitted negative binomial distribution. Furthermore, it allows level designers to
operationalise difficulty as a function of the move limit, supporting more data-driven decisions
on their behalf.

In order to validate the hypothesis that a negative binomial distribution can describe the
move distribution, we consider data from 4,000 levels from the game Lily’s Garden by Tactile
Games. From this, we consider two criteria for determining the goodness of fit.

First, we use a Kolmogorov-Smirnoff distance D to check how different the actual and
modelled distribution are and find that 99% of the levels are well described (D < 5%). However,
we also find that the fitting method reaches the parameter threshold in around 15% of the cases.
This typically happens when the distribution exhibits a steady increase which leads to fitting
to the tail end of the distribution.

The second criterion is comparing the estimated pass rate with the actual pass rate, where
we find that the estimated pass rate generally underestimates the actual pass rate. However,
these two metrics are strongly correlated, and the difference can be corrected when using this
approach in practice.

93

6.1. CONTRIBUTIONS 94

Two other valuable insights for level designers have also come from this research. The first
insight is related to the data itself, where excluding players that use booster items is crucial for
good fits. For a majority of the levels, when players who use booster items are included in the
data, the move distributions show a distinct “photo finish” behaviour on the last two moves
where players save up big combos they can fire off just before the move limit – but still with
one move to spare.

The second insight is related to the distribution that highlights certain aspects of difficulty.
Where previous work sometimes models human behaviour with a symmetric normal distribution
(e.g. Mourato et al. (2014)), this work proposes an asymmetric distribution. This means that
when adjusting the move limit, the pass rate is not equally affected by either adding or removing
moves. Furthermore, we find evidence that the recorded moves used by the playtesting agent
follow a similar distribution. Given the long tail of the distribution, it follows that the agent
will sometimes struggle to complete a level, which can lead to slower learning since it rarely
reaches the goal.

While these results focus on puzzle games, we expect they can be extended to similar games
(such as time taken to complete other challenges), and we provide the mathematical foundation
to test if that is the case.

6.1.2 Personalised difficulty prediction

An essential part of the player experience is the perceived difficulty of the player. To account for
that when modelling and operationalising difficulty, we propose using Factorisation Machines,
known from recommender system literature, to estimate the number of attempts the individual
player will use to complete a level. The strength of this method is that it describes the interaction
between players and levels by learning latent descriptions of both, which allows the method to
estimate the perceived difficulty of players on levels they have not yet encountered. While a
similar approach has been considered by Zook and Riedl (2012), we can utilise additional data
and provide an interpretation of the learned latent factors in this novel approach.

We consider the first 499 levels of Lily’s Garden to validate our approach and use 700,000
players in our study (see Section 3.2). We also collect data regarding the level mechanics and
the player performance and purchase history, which allows a broader range of methods to be
tested and measure the impact of including additional data.

We treat the problem of personalised predictions as a regression problem. We test out
an FM and RF method for this purpose and compare them with a baseline computed by the
current level average, representing the current way level designers use difficulty. Additionally, we
investigate how the number of levels a player has played affects the accuracy of the personalised
predictions. We calculate the mean absolute error (MAE) and root mean squared error (RMSE)
for evaluation.

Both methods perform better than the baseline after 20 to 30 observations. Including
additional data can improve the predictions even further. The RF method performs better with
fewer observations, but once more than 100 observations of the player are included, the FM
method has comparable or better performance. An additional benefit of the FM method is that
the latent factors can be interpreted as player skill and level variance, which the level designers

6.2. LIMITATIONS AND FUTURE WORK 95

can use for other customised content.
The investigation is extended in Chapter 5 where we consider the possibility of using person-

alised predictions in cold start scenarios where we have no historical player data on the levels,
which has, to our knowledge, not been considered in previous works in similar contexts (e.g.
Gudmundsson et al. (2018); Roohi et al. (2021); Mugrai et al. (2019)). In this extended study,
we also include a NN method and data from a playtesting agent. The results show that the NN
method is a better approach for both cohort and personalised predictions, especially when the
agent data is combined with player and level data.

6.1.3 Robust playtesting agent

The dissertation has introduced an RL-based playtesting agent that can be used to play through
puzzle levels (see Chapter 4). It uses an implementation of PPO, (Schulman et al., 2017) which
helps ensure the learned policy does not fail catastrophically. We have also identified other
additions from this research that ensure more stable learning, including shuffling the colours,
early resetting and correctly applying action masks.

In order to use the agent for playtesting purposes, we have explored plausible approaches
for training the agent and employing it in practice. Training the agent once on a random
curriculum of levels leads to the highest correlation with player pass rates, which is also the
most feasible approach to use in an industrial context since it is faster to evaluate new levels.
Any additional training leads to more variance in the agent’s skill and thus a lower correlation,
which highlights that consistency is key when using playtesting agents. Furthermore, the agent
does not need to emulate human behaviour exactly since the difference needs to be adjusted for
in a subsequent step regardless, which we do by testing personalised predictions using the three
approaches described in Chapter 5.

Another observation is that in some instances, when the agent struggles to complete a level,
an alternative is to only consider the top 5-10% best evaluations of the level. Similar results have
been observed in subsequent work by Roohi et al. (2021), which corroborates the hypothesis
that the performance of the agent may exhibit a large variance (see Section 3.1) that can cause
outliers in the data and thus worse correlation with player behaviour.

Lastly, reducing the stochasticity of the environment, such as limiting the number of random
seeds, can significantly help the agent learn the optimal strategies for even the hard levels. This
can provide the basis for further development of the agent where a curriculum can be built for
the agent or train multiple agents with different playstyles.

6.2 Limitations and future work

The research of this dissertation has led to actionable contributions that have already been used
in an industrial context. In order to further improve the impact of these methods, there are a
number of questions and limitations that could be addressed in future work. Each paper has
put forth suggestions for future work, and in this section, we group them by topic and more
critically discuss them.

6.2. LIMITATIONS AND FUTURE WORK 96

6.2.1 Pass rate as difficulty metric

The pass rate, or inversely the average attempts per complete, is widely adopted in both litera-
ture and game studios. It is often this type of data that game companies share with researchers
(e.g. Roohi et al. (2021); Poromaa (2017)), and it has a straightforward interpretation: the
average attempts metric gives a tangible measure that level designers can use to compare their
own performance with and is strongly correlated with the amount of time players will spend
on the levels. User studies also typically find that the perception of difficulty is correlated with
the number of successes compared to failures (e.g. Alexander et al. (2013); Denisova et al.
(2020)). The question is whether this metric is helpful on its own. In the following discussion,
three additional metrics will be discussed which could further improve the applicability of any
difficulty modelling framework.

Perceived challenge and uncertainty

While we have focused on operationalising difficulty as the average number of attempts or
pass rate, as discussed by Denisova et al. (2020), the perceived challenge can depend on mul-
tiple things, where the difficulty is just one of the aspects. Another aspect that can affect
the perceived challenge is uncertainty, and in puzzle games, many elements can contribute to
uncertainty about the outcome.

One example is the chance of spawning different coloured basic pieces. The more uniform
this colour distribution is, the more difficult it is to create large combinations for creating power
pieces, and the more difficult the level is, which has also been experimentally confirmed through
A/B tests at Tactile Games. However, this information is not available to the player, leading
to uncertainty about the optimal strategy.

Similarly, other game mechanics can contribute to uncertainty, such as a board piece that
can spread and cover basic pieces. This mechanic can force the player to change strategy or ruin
otherwise carefully laid plans, increasing the perceived difficulty and leading to high frustration,
as evidenced by user reports in Tactile Games gathered by the player care employees.

The number of attempts a player spends to complete a given level is therefore only one
aspect of the perceived challenge. An enhanced framework for modelling the player experience
could include ways to capture this uncertainty. A possible future research direction is how this
can be estimated from player statistics. One idea is extending the research of modelling the
move distributions (Kristensen et al., 2021) and using the move distribution variance as a proxy
for uncertainty. This could also be extended with the results from the FM model (Kristensen
et al., 2022) to further model individual players and individual differences. Lastly, it is also an
option to utilise a playtesting agent to test and evaluate the variance of stochastic elements in
the game design.

Churn rate

Another important metric for game designers to consider is the churn rate since it is a direct
sign of low engagement of the players, and high retention of players is crucial for monetisation.
Roohi et al. (2021) adopt a more complete view of difficulty prediction where churn rate is also

6.2. LIMITATIONS AND FUTURE WORK 97

considered in the modelling process. By simulating the progression of a group of players with
varying degrees of skill, persistence and boredom – the latter two affecting churn rate – on the
first 168 levels of Angry Birds Dream Blast, their extended model allows them to explain the
observed player churn and pass rates accurately. Similarly, Xue et al. (2017) use a probabilistic
progression graph to model the players’ trajectories in various games, where the player at a given
level is assigned separate transition probabilities for churning, failing the level or progressing
to the next level. Since this satisfies the Markov property (Section 2.2), they can use dynamic
programming methods to optimise the player progression for maximal player retention.

In order to better capture how the difficulty changes depending on cohort level, an extension
to the work in this dissertation could be to include churn. This could also enable optimising
the level funnel, which is particularly relevant in special events (such as Christmas releases)
where there is limited time to complete the content. Results from A/B tests conducted by
Tactile Games where the ordering of the levels was randomised have not revealed any significant
differences. However, a more complete framework like the ones discussed above could enable
a more analytical approach to optimise the ordering. Churn prediction has also been the
focus in previous work (Kristensen and Burelli, 2019), but if these predictions can not be
used to recommend actionable decisions, such as adjusting the difficulty, they are hard to use in
practice. Therefore, an interesting line of research is how we can combine personalised difficulty
predictions from this dissertation with personalised churn probabilities. Rather than relying on
simulations of player groups (e.g. Roohi et al. (2021)) or relying on historical data (e.g. Xue
et al. (2017)), such an approach has the promise to enhance the player experience even further.

Near-win attempts

One last metric to consider is being able to measure how close the player is to winning. A strong
psychological hook to get players to continue playing or purchasing boosters is if they feel they
were close to winning and can win next time/using a booster now. This is in the company’s
interest for optimising revenue, but for players, it is also a matter of having the agency for
deciding whether they complete the level or not to ensure a positive experience (Juul, 2009),
regardless of whether it is from skill or other kinds of resources. Earlier work hinted that such
player behaviour is measurable, such as the “photo finish” observed in the move distribution
(Section 3.1), but future work could look more closely at which types of levels and mechanics
that lead to the player feeling close to winning.

6.2.2 Impact of booster items on predictions

Whenever data needs to be extracted for analysis, it is necessary to make certain choices as to
how to filter it. These choices can significantly affect the results that follow from analyses and
modelling based on this data, making it harder for researchers to compare results.

One example is the work in Section 3.1 where we exclude players that used boosters that
added moves to the level and other in-game items. This is around 15% of the player base per
level, which is not an insignificant amount, and more importantly, the filtered data is different
from what Tactile Games typically use for their day-to-day operations where they do not apply
the same filtering. Using boosters makes it easier for the player to pass the level, and indeed,

6.2. LIMITATIONS AND FUTURE WORK 98

Figure 6.1: The pass rate (=completion rate) of levels when excluding players that used booster
items (cleaned) compared to the pass rate of the whole player base (normal). The cleaned pass
rate is consistently lower than the normal pass rate, but there is a strong correlation between
the two.

the computed pass rate, or completion rate, of the filtered data compared to the unfiltered,
normal data consistently exhibits a lower pass rate (see Fig. 6.1).

Some players hold the belief that using boosters is cheating, while others consider it a normal
part of the game. Neither viewpoint is invalid, but excluding one or the other group leads to
a difference in the data, which means that different results and conclusions can be drawn from
each instance. Any sort of data filtering will, therefore, bias the results. In the case with pass
rates shown in Fig 6.1, this bias can be adjusted by a simple linear correlation, but this may
not be the case in other instances or use cases.

For future research, a recommendation is to provide a clear description of the filtering of
the data and a discussion of its effect on the results. This will help researchers and industry
transfer the learnings from one study to another and increase the impact of the work.

6.2.3 Improving the playtesting agent

The results in Chapter 4 show that training one playtesting agent to play all the levels com-
petently is a challenging problem. The agent used in Chapter 5 is able to learn to play most
levels competently, but it was necessary to limit the number of random seeds and only train
it on a single level at a time. This section discusses possible ways to enable the training of a
single agent that can play any new level competently.

Planning methods

In many similar works (e.g. Gudmundsson et al. (2018); Roohi et al. (2021); Mugrai et al.
(2019); Holmgård et al. (2018)), a commonly employed method is MCTS. The complexity of
puzzle games is comparable to board games like Chess and Go, in which planning and search-

6.2. LIMITATIONS AND FUTURE WORK 99

based methods work well and tend to outperform deep RL methods like PPO (e.g. Roohi et al.
(2021); Mugrai et al. (2019)). One of the reasons that the dissertation focused on developing a
playtesting agent based on deep RL, and more specifically PPO (see Chapter 4), is that search-
based methods are not technically viable in the games by Tactile Games mainly due to not
being able to save and load game states.

In order to overcome this limitation but still leverage the strength of planning approaches
is to utilise world models. For example, Ha and Schmidhuber (2018) use a recurrent neural
network (RNN) in combination with a variational autoencoder to predict the future state and
allow taking the recent history into account, which can be helpful when working with partially
observable systems. MuZero also learns a kind of world model that allows the method to perform
tree-search in this learned world model. Both methods (using an RNN and a world model to
perform tree-search) are possible ways to improve the current approach. Including an RNN in
the network architecture may also allow the agent to be more consistent in its strategies (such as
focusing on creating power pieces), and the world model can overcome the technical limitations
that exclude any search-based methods.

Learning to play hard levels

In Chapter 5, it is noted that in order to ensure the agent can learn to finish hard levels, it
is necessary to reduce the stochasticity of the environment by limiting the number of random
seeds and using the same colours throughout the training. However, as discussed in Chapter
4, (re)training the agent on the level that is to be evaluated is undesirable since it reduces the
correlation with player metrics and takes more time to provide a difficulty estimate of the level.

This is related to the field of generalisability in reinforcement learning and curriculum learn-
ing (Narvekar et al., 2020), and there are multiple possible options that can be explored, such
as reward shaping or data augmentation. For the immediate next steps, we propose to develop
a better curriculum. We already used a curriculum for training the agent described in Chapter
4, albeit an inefficient one – namely, a random sampling curriculum. Furthermore, since it is
not technically possible to employ PCG methods (Justesen et al., 2018; Hald et al., 2020) or
adjust the content efficiently in the games by Tactile Games, we have to rely on the available
content.

One reason why a random curriculum is inefficient is that harder levels tend to require
more moves or more advanced strategies to complete. By introducing too hard levels early
on, the probability that the agent reaches the goal within the reset limit is low, which slows
down learning by not letting the agent receive the reward signal in the end. A possible line of
research could therefore be how to optimally select a curriculum that ensures the agent learns
how to play hard levels and which method leads to the largest correlation with human data.
An option is to use a curriculum that is guided by the measured human difficulty, where levels
are sampled from a given range of difficulty depending on the agent’s current performance. A
more intelligent sampling could also be tested, such as a multi-armed bandit approach similar
to Graves et al. (2017) or Mysore et al. (2019). The learned level sampling strategy could then
be one that improves and maximises the correlation between the agent and human behaviour.

One aspect to keep in mind is that this kind of sequential learning in artificial neural net-

6.2. LIMITATIONS AND FUTURE WORK 100

works is prone to catastrophic forgetting (Kirkpatrick et al., 2017), where the performance on
previously learned tasks deteriorates as new tasks are learned. As a first step, implementing a
number of common regularisation techniques in the network architecture (e.g. L2 weight decay
and dropout Cobbe et al. (2019)) can help with this, in addition to simplifying the environment
by implementing a permutation invariant layer to account for colour interchangeability (e.g.
Tang and Ha (2021)) could be employed to address these issues.

Diversity in play styles and correlation with players

The reward function of an agent significantly affects what the agent learns, and while multiple
agents with different reward functions are a possibility to increase playtesting coverage, the
question still remains what reward function(s) is useful for a playtesting scenario.

One family of methods that has not been explored in this dissertation is curiosity-driven
learning (Pathak et al., 2017). The core idea is that the agent receives an intrinsic reward
(contrasted to an extrinsic reward from the environment) for taking actions that lead to unex-
pected game states, which in turn promotes exploration and emergent strategies. In our case,
it may bias the agent towards learning strategies that clear the entire board since the following
board state will be completely random. Crucially, though, we will not need to shape the reward
function to create power pieces or utilise other heuristics, which we were generally unsuccessful
with in previous work (Kristensen et al., 2020).

Another possible approach is to condition the applied policy on not just the state but also
other factors. For example, DIAYN (Eysenbach et al., 2018) learns a policy that is conditioned
on a latent variable, z, which represents distinct skills. A more direct approach for conditioning
the policy is by adjusting the reward function, which could consist of multiple terms with
different coefficients (similar to de Woillemont et al. (2021)). By providing these coefficients
as a part of the state space and changing the coefficients during training, it is possible to
condition the policy on these coefficients. Future work could look into which terms are efficient
for learning (e.g. pieces cleared as a proxy for curiosity) and which configurations lead to the
most player-like behaviour.

6.2.4 Using a playtesting agent in practice

Using a playtesting agent in practice is not just a question of whether it is possible to use it
for estimating the difficulty of new levels. It also requires maintenance when, for example, the
game gets updated, or the inevitable bugs appear. Given the complexity of the problem, this
section will discuss some of the challenges and questions that need to be answered in future
research to move the method closer to a “production ready” state.

Maintainability

A reasonable question is whether the playtesting agent that makes up half of this PhD is
accessible for game developers to utilise and transfer to new games. To answer this question,
we can consider aspects regarding explainability and ease of use.

6.2. LIMITATIONS AND FUTURE WORK 101

A common thing that happened when discussing how the agent works with different stake-
holders at Tactile Games was that they understood it as a tree-search-based method. While
it is an innocent misunderstanding, it can materialise itself as wrong or inefficient code and
time-consuming back-and-forth communications until the misunderstanding has been cleared
up. Furthermore, a common question when checking how the agent played through a level
was why it took a particular move and what its strategy was. Especially in business contexts,
understanding why an algorithm does something is just as important as the performance itself.
An interesting line of research, for this reason, is explainable reinforcement learning, which seeks
to provide explanations for the agent’s choices (for a survey, see Puiutta and Veith (2020)). As
a first step, an idea is a post-hoc analysis of the agent’s behaviour. Specifically, we can supple-
ment the difficulty predictions with a heatmap of the actions over the course of playtesting a
given level, which can provide the level designers with information about what the agent focuses
on and, thus, its strategy.

The other aspect of maintainability is how easy it is to update the agent. This has been
the topic for Kristensen and Burelli (2020) where we consider different strategies to make the
learning more robust, but with more than 6,000 levels in some games and regular new mechanics
and updates, a key focus is being able to add new information to the agent while still keeping
its performance. There are two ways we imagine this can work in practice. One is by simply
retraining the agent from scratch with the new information, and the key to this approach is
to ensure that the learning utilises a good curriculum as described in Section 6.2.3. The other
idea is to employ methods from the transfer learning domain (for a survey in RL, see Zhu et al.
(2020)).

There are multiple ways we can approach transfer learning in practice. One way is by adding
new channels and layers to the neural network while keeping the initial weights the same. The
newly added weights can then be updated from subsequent training on the new levels or other
curricula. Another way is to use the existing agent and train the new agent since any game
updates are not expected to invalidate the old agent completely. This can be done through
imitation learning approaches (e.g. GAIL) or by treating it as a supervised learning task where
the goal is to have the new network output the same as the old one. The most efficient way can
be explored in future research.

Open questions

During the development of the playtesting agent, there have been several decisions that may
have had an impact on the performance of the agent but did not warrant deeper investigations.
In the following part of the text, we ask whether these decisions indeed impact the agent and
propose to investigate these aspects before using the playtesting agent in practice.

As described by Pardo et al. (2018), time limits in RL matter. It can affect what the agent
learns and how it plays the level. In this work, we have proposed using an early resetting limit
of 100 actions, but this is more than the typical level move limit. While the human move limit
has been included as a part of the reward function and generally encourages the agent to finish
as fast as possible, the question is whether this very high reset limit leads the agent to learn
very different strategies than human players. Testing out different reset limits or even adjusting

6.3. SUMMARY 102

it during training can therefore be a way to answer this question.
During the training of an agent, especially with on-policy ones, it is common to use a

stochastic policy to allow it to explore properly. On the other hand, during evaluation, it is
common to switch to a greedy deterministic policy where the agent fully exploits its learning.
However, this may not be ideal in our case. Since two actions may lead to the exact same
outcome – e.g. if two basic pieces are stacked on top of each other, tapping either of them
leads to the same outcome even though it is two distinct actions – the policy may assign equal
importance to both actions. However, this also means that for larger clusters, the relative
importance of each action corresponding to tapping on one of the pieces in the cluster is lower
than the actions associated with smaller clusters. A greedy, deterministic policy may therefore
become biased towards tapping on smaller clusters, which may, in turn, also make it rarer to
create powerful combos. The question is, therefore, whether using a stochastic or a deterministic
policy is better for evaluating the levels. A direct way to test this is to compare the performance
between the two policies and measure the typical size of the tapped clusters and moves taken
to complete the level.

One limitation of the agent is that it cannot use booster items. This partly simplifies the
RL problem, and the level designers playtest and design all levels to be possible to complete
without any such tools. However, boosters are an integral part of the game that some players
are happy to use, so to increase the coverage of the agent, the question is how this can be
incorporated into the playtesting method. Technically, this could be achieved by modifying the
reward function where a penalty is given if the agent chooses to use boosters. The magnitude of
the coefficient of this penalty term could also help mimic players with different “budgets” and
could be an extension to the proposed experiment by using varying coefficients for each reward
function term discussed in Section 6.2.3. The action space would also need to be appropriately
modified by, for example, making it a multi-discrete action space that allows the agent to use
the in-game boosters on any location of the game board. Some boosters also require to be
activated before the level starts, but there are frequent events that add such boosters for free
(e.g. “hot streaks”). A solution to that is to add these booster power pieces to the initial board
setup and consider it as a part of the initial board state distribution. More complex boosters,
such as unlimited lives, may lead the players to take more risks and sub-optimal play styles,
but they are more difficult to include, and we do not expect it affects the coverage of the agent
by not considering this aspect.

6.3 Summary

This dissertation has approached the topic of operationalising difficulty in puzzle games by con-
sidering challenges related to utilising historical player data and employing automated playtest-
ing methods for modelling and operationalising difficulty. The work includes a statistical de-
scription of the number of moves spent on each level, introducing a framework for modelling the
interaction between players and levels, a novel reinforcement learning implementation for auto-
mated playtesting and a novel approach for combining personalised predictions with playtesting
agent data to predict the number of attempts players will spend on new content. Each of the

6.3. SUMMARY 103

contributions is based on data from the commercial puzzle game, Lily’s Garden, and is eval-
uated on large samples of players, which solidifies the significance of the results. In addition
to the proposed methods, multiple findings have come from this work. The negative binomial
used to describe the move distribution provides a probabilistic explanation of the performance
of both players and agents and improves the operationalisation of using the average number
of attempts as a difficulty metric. Additionally, from the game-agnostic Factorisation Machine
algorithm for personalised difficulty prediction, the results show that the learned latent descrip-
tions of players and levels capture aspects of player skill and level variance. Lastly, the process
of developing a reinforcement learning agent highlights the various challenges with both using
reinforcement learning for puzzle game environments and correlating the agent performance
with player behaviour. The methods in this dissertation overcome multiple of these challenges
and provide clear recommendations on how difficulty can be operationalised for both existing
and new content and possible directions for future work.

Bibliography

Ernest Adams. Fundamentals of game design. Pearson Education, 2014.

Justin T. Alexander, John Sear, and Andreas Oikonomou. An investigation of the effects of
game difficulty on player enjoyment. Entertainment Computing, 4(1):53–62, February 2013.
ISSN 18759521. doi: 10.1016/j.entcom.2012.09.001. URL https://linkinghub.elsevier.

com/retrieve/pii/S1875952112000134.

Brendan Z. Allison and John Polich. Workload assessment of computer gaming using a
single-stimulus event-related potential paradigm. Biological Psychology, 77(3):277–283, 2008.
ISSN 0301-0511. doi: https://doi.org/10.1016/j.biopsycho.2007.10.014. URL https://www.

sciencedirect.com/science/article/pii/S030105110700186X.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):
251–276, 1998.

Maria-Virginia Aponte, Guillaume Levieux, and Stéphane Natkin. Difficulty in videogames:
an experimental validation of a formal definition. In Proceedings of the 8th International
Conference on Advances in Computer Entertainment Technology, pages 1–8, 2011a.

Maria-Virginia Aponte, Guillaume Levieux, and Stephane Natkin. Measuring the level of
difficulty in single player video games. Entertainment Computing, 2(4):205–213, 2011b.
ISSN 1875-9521. doi: https://doi.org/10.1016/j.entcom.2011.04.001. URL https://www.

sciencedirect.com/science/article/pii/S1875952111000231. Special Section: Interna-
tional Conference on Entertainment Computing and Special Section: Entertainment Inter-
faces.

Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. Automated video game testing using synthetic
and humanlike agents. IEEE Transactions on Games, 13(1):50–67, 2019.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvit-
skyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human
benchmark. In International Conference on Machine Learning, pages 507–517. PMLR, 2020.

Hendrik Baier, Adam Sattaur, Edward J Powley, Sam Devlin, Jeff Rollason, and Peter I Cowling.
Emulating human play in a leading mobile card game. IEEE Transactions on Games, 11(4):
386–395, 2018.

104

https://linkinghub.elsevier.com/retrieve/pii/S1875952112000134
https://linkinghub.elsevier.com/retrieve/pii/S1875952112000134
https://www.sciencedirect.com/science/article/pii/S030105110700186X
https://www.sciencedirect.com/science/article/pii/S030105110700186X
https://www.sciencedirect.com/science/article/pii/S1875952111000231
https://www.sciencedirect.com/science/article/pii/S1875952111000231

BIBLIOGRAPHY 105

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew,
and Igor Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint
arXiv:1909.07528, 2019.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, jun 2013.

Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. Augmenting automated
game testing with deep reinforcement learning. In 2020 IEEE Conference on Games (CoG),
pages 600–603. IEEE, 2020.

Peter Borm and Ben van der Genugten. On a relative measure of skill for games with chance
elements. Top, 9(1):91–114, 2001.

Barbaros Bostan and Sertaç Öğüt. Game challenges and difficulty levels: lessons learned from
rpgs. In International simulation and gaming association conference, pages 1–11, 2009.

Jeanne H Brockmyer, Christine M Fox, Kathleen A Curtiss, Evan McBroom, Kimberly M
Burkhart, and Jacquelyn N Pidruzny. The Development of the Game Engagement Question-
naire: A Measure of Engagement in Video Game-Playing. Journal of Experimental Social
Psychology, 45(4):624–634, 2009.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and
Simon Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43, 3 2012. ISSN 1943-068X. doi:
10.1109/TCIAIG.2012.2186810. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6145622%0Apapers3://publication/doi/10.1109/TCIAIG.

2012.2186810http://ieeexplore.ieee.org/document/6145622/.

Sara Bunian, Alessandro Canossa, Randy Colvin, and Magy Seif El-Nasr. Modeling individual
differences in game behavior using hmm. In Thirteenth Artificial Intelligence and Interactive
Digital Entertainment Conference, 2017.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

Hao Cen, Kenneth Koedinger, and Brian Junker. Learning factors analysis–a general method
for cognitive model evaluation and improvement. In International conference on intelligent
tutoring systems, pages 164–175. Springer, 2006.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo tree search:
A new framework for game ai. Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 4(1):216–217, Sep. 2021. URL https://ojs.aaai.

org/index.php/AIIDE/article/view/18700.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6145622%0Apapers3://publication/doi/10.1109/TCIAIG.2012.2186810 http://ieeexplore.ieee.org/document/6145622/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6145622%0Apapers3://publication/doi/10.1109/TCIAIG.2012.2186810 http://ieeexplore.ieee.org/document/6145622/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6145622%0Apapers3://publication/doi/10.1109/TCIAIG.2012.2186810 http://ieeexplore.ieee.org/document/6145622/
https://ojs.aaai.org/index.php/AIIDE/article/view/18700
https://ojs.aaai.org/index.php/AIIDE/article/view/18700

BIBLIOGRAPHY 106

Petros Christodoulou. Soft Actor-Critic for Discrete Action Settings. arXiv e-prints, pages 1–7,
10 2019. URL http://arxiv.org/abs/1910.07207.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying gener-
alization in reinforcement learning. In International Conference on Machine Learning, pages
1282–1289. PMLR, 2019.

Tom Cole, Paul Cairns, and Marco Gillies. Emotional and functional challenge in core and avant-
garde games. In Proceedings of the 2015 annual symposium on computer-human interaction
in play, pages 121–126, 2015.

Anna Cox, Paul Cairns, Pari Shah, and Michael Carroll. Not doing but thinking: The role
of challenge in the gaming experience. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, page 79–88, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450310154. doi: 10.1145/2207676.2207689. URL https:

//doi.org/10.1145/2207676.2207689.

Mihaly Csikszentmihalyi. Flow: The psychology of optimal experience, volume 1990. Harper &
Row New York, 1990.

Pierre Le Pelletier de Woillemont, Rémi Labory, and Vincent Corruble. Configurable agent with
reward as input: A play-style continuum generation. In 2021 IEEE Conference on Games
(CoG), pages 1–8. IEEE, 2021.

Alena Denisova, Christian Guckelsberger, and David Zendle. Challenge in Digital Games:
Towards Developing a Measurement Tool. In Proceedings of the 2017 CHI Conference Ex-
tended Abstracts on Human Factors in Computing Systems, pages 2511–2519, Denver Col-
orado USA, May 2017. ACM. ISBN 978-1-4503-4656-6. doi: 10.1145/3027063.3053209. URL
https://dl.acm.org/doi/10.1145/3027063.3053209.

Alena Denisova, Paul Cairns, Christian Guckelsberger, and David Zendle. Measuring perceived
challenge in digital games: Development & validation of the challenge originating from recent
gameplay interaction scale (CORGIS). International Journal of Human-Computer Studies,
137:102383, May 2020. ISSN 10715819. doi: 10.1016/j.ijhcs.2019.102383. URL https:

//linkinghub.elsevier.com/retrieve/pii/S1071581919301491.

Mihai Sorin Dobre and Alex Lascarides. Online learning and mining human play in complex
games. In 2015 IEEE Conference on Computational Intelligence and Games (CIG), pages
60–67. IEEE, 2015.

Tobias Drey, Fabian Fischbach, Pascal Jansen, Julian Frommel, Michael Rietzler, and Enrico
Rukzio. To Be or Not to Be Stuck, or Is It a Continuum?: A Systematic Literature Review
on the Concept of Being Stuck in Games. Proceedings of the ACM on Human-Computer
Interaction, 5(CHI PLAY):1–35, October 2021. ISSN 2573-0142. doi: 10.1145/3474656. URL
https://dl.acm.org/doi/10.1145/3474656.

http://arxiv.org/abs/1910.07207
https://doi.org/10.1145/2207676.2207689
https://doi.org/10.1145/2207676.2207689
https://dl.acm.org/doi/10.1145/3027063.3053209
https://linkinghub.elsevier.com/retrieve/pii/S1071581919301491
https://linkinghub.elsevier.com/retrieve/pii/S1071581919301491
https://dl.acm.org/doi/10.1145/3474656

BIBLIOGRAPHY 107

Dagmara Dziedzic and Wojciech Włodarczyk. Approaches to measuring the difficulty of games
in dynamic difficulty adjustment systems. International Journal of Human–Computer Inter-
action, 34(8):707–715, 2018.

Tomáš Effenberger, Jaroslav Čechák, and Radek Pelánek. Measuring difficulty of introductory
programming tasks. In Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale,
pages 1–4, 2019.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo
and trpo. In International conference on learning representations, 2019.

Laura Ermi and Frans Mäyrä. Analyzing immersion. Worlds in play: International perspectives
on digital games research, 21:37, 2007.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Francisco Gallego-Durán, Rafael Molina-Carmona, and Faraón Llorens-Largo. Estimating the
difficulty of a learning activity from the training cost for a machine learning algorithm. In
Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing
Multiculturality, pages 654–659, 2018.

Pablo García-Sánchez, Alberto Tonda, Antonio M. Mora, Giovanni Squillero, and Juan Julián
Merelo. Automated playtesting in collectible card games using evolutionary algorithms: A
case study in hearthstone. Knowledge-Based Systems, 153:133–146, 2018. ISSN 0950-7051.
doi: https://doi.org/10.1016/j.knosys.2018.04.030. URL https://www.sciencedirect.com/

science/article/pii/S0950705118301953.

Jason Gauci, Kenneth O Stanley, et al. A case study on the critical role of geometric regularity
in machine learning. In AAAI, pages 628–633, 2008.

Miguel Gonzalez-Duque, Rasmus Berg Palm, and Sebastian Risi. Fast game content adaptation
through bayesian-based player modelling. In 2021 IEEE Conference on Games (CoG), pages
01–08, 2021. doi: 10.1109/CoG52621.2021.9619018.

Miguel González-Duque, Rasmus Berg Palm, David Ha, and Sebastian Risi. Finding game
levels with the right difficulty in a few trials through intelligent trial-and-error. In 2020 IEEE
Conference on Games (CoG), pages 503–510, 2020. doi: 10.1109/CoG47356.2020.9231548.

Camilo Gordillo, Joakim Bergdahl, Konrad Tollmar, and Linus Gisslén. Improving playtesting
coverage via curiosity driven reinforcement learning agents. arXiv preprint arXiv:2103.13798,
2021.

Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Auto-
mated curriculum learning for neural networks. In 34th International Conference on Machine
Learning, ICML 2017, volume 3, pages 2120–2129. International Machine Learning Society
(IMLS), 2017. ISBN 9781510855144.

https://www.sciencedirect.com/science/article/pii/S0950705118301953
https://www.sciencedirect.com/science/article/pii/S0950705118301953

BIBLIOGRAPHY 108

Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet, Sami Purmonen, Bart-
lomiej Kozakowski, Richard Meurling, and Lele Cao. Human-like playtesting with deep learn-
ing. In 2018 IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8.
IEEE, 2018.

Cristina Guerrero-Romero, Simon M Lucas, and Diego Perez-Liebana. Using a team of general
ai algorithms to assist game design and testing. In 2018 IEEE Conference on Computational
Intelligence and Games (CIG), pages 1–8. IEEE, 2018.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

A. Hald, J.S. Hansen, J. Kristensen, and P. Burelli. Procedural Content Generation of Puzzle
Games using Conditional Generative Adversarial Networks. In ACM International Conference
Proceeding Series, 2020. ISBN 9781450388078. doi: 10.1145/3402942.3409601.

Perttu Hämäläinen, Amin Babadi, Xiaoxiao Ma, and Jaakko Lehtinen. PPO-CMA: Proximal
Policy Optimization with Covariance Matrix Adaptation. arXiv e-prints, 10 2018. URL
http://arxiv.org/abs/1810.02541.

Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation, pages 75–102, 2006.

Erik Harpstead and Vincent Aleven. Using empirical learning curve analysis to inform design
in an educational game. In Proceedings of the 2015 Annual Symposium on Computer-Human
Interaction in Play, CHI PLAY ’15, page 197–207, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450334662. doi: 10.1145/2793107.2793128. URL https:

//doi.org/10.1145/2793107.2793128.

Matthew Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter Stone. A neuroevolution
approach to general atari game playing. IEEE Transactions on Computational Intelligence
and AI in Games, 6(4):355–366, 2014.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. 32nd AAAI Conference on Artificial Intelligence, AAAI
2018, pages 3215–3222, 2018.

Philip Hingston. A turing test for computer game bots. IEEE Transactions on Computational
Intelligence and AI in Games, 1(3):169–186, 2009.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in Neural
Information Processing Systems, pages 4572–4580, 2016. ISSN 10495258.

Christoffer Holmgård, Michael Cerny Green, Antonios Liapis, and Julian Togelius. Automated
playtesting with procedural personas through mcts with evolved heuristics. IEEE Transac-
tions on Games, 11(4):352–362, 2018.

http://arxiv.org/abs/1810.02541
https://doi.org/10.1145/2793107.2793128
https://doi.org/10.1145/2793107.2793128

BIBLIOGRAPHY 109

Britton Horn, Josh Aaron Miller, Gillian Smith, and Seth Cooper. A monte carlo approach to
skill-based automated playtesting. In Fourteenth Artificial Intelligence and Interactive Digital
Entertainment Conference, 2018.

Dayana Hristova. Dynamic difficulty adjustment (dda) in first person shooter (fps) games, 2017.

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient
algorithms. arXiv preprint arXiv:2006.14171, 2020.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto,
and Weixun Wang. The 37 implementation details of proximal policy optimiza-
tion. In ICLR Blog Track, 2022. URL https://iclr-blog-track.github.io/2022/

03/25/ppo-implementation-details/. https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/.

Robin Hunicke. The case for dynamic difficulty adjustment in games. In Proceedings of the 2005
ACM SIGCHI International Conference on Advances in computer entertainment technology,
pages 429–433, 2005.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Are deep policy gradient algorithms truly policy gradient
algorithms? CoRR, abs/1811.02553, 2018. URL http://arxiv.org/abs/1811.02553.

Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry, Marwan Mattar,
and Danny Lange. Unity: A general platform for intelligent agents. CoRR, abs/1809.02627,
2018. URL http://arxiv.org/abs/1809.02627.

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius,
and Sebastian Risi. Illuminating generalization in deep reinforcement learning through pro-
cedural level generation. arXiv preprint arXiv:1806.10729, 2018.

Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep learning for video
game playing. IEEE Transactions on Games, 12(1):1–20, 2019.

Jesper Juul. Fear of failing? the many meanings of difficulty in video games. The video game
theory reader, 2(237-252), 2009.

Jesper Juul. Half-real: Video games between real rules and fictional worlds. MIT press, 2011.

Misaki Kaidan, Tomohiro Harada, Chun Yin Chu, and Ruck Thawonmas. Procedural generation
of angry birds levels with adjustable difficulty. In 2016 IEEE Congress on Evolutionary
Computation (CEC), pages 1311–1316. IEEE, 2016.

Ildar Kamaldinov and Ilya Makarov. Deep reinforcement learning in match-3 game. In 2019
IEEE conference on games (CoG), pages 1–4. IEEE, 2019.

Oleksandra Keehl and Adam M Smith. Monster carlo: an mcts-based framework for machine
playtesting unity games. In 2018 IEEE Conference on Computational Intelligence and Games
(CIG), pages 1–8. IEEE, 2018.

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
http://arxiv.org/abs/1811.02553
http://arxiv.org/abs/1809.02627

BIBLIOGRAPHY 110

Ahmed Khalifa, Aaron Isaksen, Julian Togelius, and Andy Nealen. Modifying mcts for human-
like general video game playing. IJCAI International Joint Conference on Artificial Intelli-
gence, 2016-January:2514–2520, 2016. ISSN 1045-0823. 25th International Joint Conference
on Artificial Intelligence, IJCAI 2016 ; Conference date: 09-07-2016 Through 15-07-2016.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of generalisa-
tion in deep reinforcement learning. arXiv preprint arXiv:2111.09794, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sci-
ences of the United States of America, 114(13):3521–3526, 2017. ISSN 10916490. doi:
10.1073/pnas.1611835114.

Julia Kneer, Malte Elson, and Florian Knapp. Fight fire with rainbows: The effects of displayed
violence, difficulty, and performance in digital games on affect, aggression, and physiological
arousal. Computers in Human Behavior, 54:142–148, 2016. ISSN 0747-5632. doi: https://doi.
org/10.1016/j.chb.2015.07.034. URL https://www.sciencedirect.com/science/article/

pii/S0747563215300455.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European con-
ference on machine learning, pages 282–293. Springer, 2006.

Jeppe Kristensen and Paolo Burelli. Personalized game difficulty prediction using factorization
machines. Transaction on Games, 2022, 2022.

Jeppe Kristensen, Christian Guckelsberger, Paolo Burelli, and Perttu Hämäläinen. Personal-
ized game difficulty prediction using factorization machines. User Interface Software and
Technology, 2022, 2022.

Jeppe Theiss Kristensen and Paolo Burelli. Combining Sequential and Aggregated Data for
Churn Prediction in Casual Freemium Games. In 2019 IEEE Conference on Games (CoG),
pages 1–8, August 2019. doi: 10.1109/CIG.2019.8848106. ISSN: 2325-4289.

Jeppe Theiss Kristensen and Paolo Burelli. Strategies for using proximal policy optimization in
mobile puzzle games. In International conference on the foundations of digital games, pages
1–10, 2020.

Jeppe Theiss Kristensen, Arturo Valdivia, and Paolo Burelli. Estimating player completion rate
in mobile puzzle games using reinforcement learning. In 2020 IEEE Conference on Games
(CoG), pages 636–639, 2020. doi: 10.1109/CoG47356.2020.9231581.

Jeppe Theiss Kristensen, Arturo Valdivia, and Paolo Burelli. Statistical modelling of level
difficulty in puzzle games. In 2021 IEEE Conference on Games (CoG), pages 1–8. IEEE,
2021.

https://www.sciencedirect.com/science/article/pii/S0747563215300455
https://www.sciencedirect.com/science/article/pii/S0747563215300455

BIBLIOGRAPHY 111

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. Advances in neural information processing
systems, 33:19884–19895, 2020.

Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot, Jean-Baptiste Hoock, Arpad Rimmel,
Olivier Teytaud, Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-Pei Hong. The computational
intelligence of mogo revealed in taiwan’s computer go tournaments. IEEE Transactions on
Computational Intelligence and AI in games, 1(1):73–89, 2009.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Conor Linehan, George Bellord, Ben Kirman, Zachary H. Morford, and Bryan Roche. Learning
curves: analysing pace and challenge in four successful puzzle games. In Proceedings of the
first ACM SIGCHI annual symposium on Computer-human interaction in play, pages 181–
190, Toronto Ontario Canada, October 2014. ACM. ISBN 978-1-4503-3014-5. doi: 10.1145/
2658537.2658695. URL https://dl.acm.org/doi/10.1145/2658537.2658695.

Nir Lipovetzky, Miquel Ramirez, and Hector Geffner. Classical planning with simulators: Re-
sults on the atari video games. In Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

Tommy Liu, Jochen Renz, Peng Zhang, and Matthew Stephenson. Using restart heuristics to
improve agent performance in angry birds. In 2019 IEEE Conference on Games (CoG), pages
1–8, 2019. doi: 10.1109/CIG.2019.8848039.

J Derek Lomas, Kenneth Koedinger, Nirmal Patel, Sharan Shodhan, Nikhil Poonwala, and
Jodi L Forlizzi. Is difficulty overrated? the effects of choice, novelty and suspense on intrinsic
motivation in educational games. In Proceedings of the 2017 CHI conference on human factors
in computing systems, pages 1028–1039, 2017.

Diana Lora, Antonio A Sánchez-Ruiz, Pedro A González-Calero, and Marco A Gómez-Martín.
Dynamic difficulty adjustment in tetris. In The Twenty-Ninth International Flairs Confer-
ence, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2 2015. ISSN 0028-0836. doi: 10.
1038/nature14236. URL http://dx.doi.org/10.1038/nature14236http://www.nature.

com/articles/nature14236.

Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim Harley, Tim-
othy P. Lillicrap, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. 33rd International Conference on Machine Learning, ICML 2016, 4:
2850–2869, 2016.

https://dl.acm.org/doi/10.1145/2658537.2658695
http://dx.doi.org/10.1038/nature14236 http://www.nature.com/articles/nature14236
http://dx.doi.org/10.1038/nature14236 http://www.nature.com/articles/nature14236

BIBLIOGRAPHY 112

Antonio Miguel Mora, Francisco Aisa, Pablo García-Sánchez, Pedro Ángel Castillo, and
Juan Julián Merelo. Modelling a human-like bot in a first person shooter game. International
Journal of Creative Interfaces and Computer Graphics (IJCICG), 6(1):21–37, 2015.

Fausto Mourato, Fernando Birra, and Manuel Próspero dos Santos. Difficulty in action based
challenges: success prediction, players’ strategies and profiling. In Proceedings of the 11th
Conference on Advances in Computer Entertainment Technology, pages 1–10, 2014.

Luvneesh Mugrai, Fernando Silva, Christoffer Holmgard, and Julian Togelius. Automated
playtesting of matching tile games. IEEE Conference on Computatonal Intelligence and
Games, CIG, 2019-Augus, 2019. ISSN 23254289. doi: 10.1109/CIG.2019.8848057.

Siddharth Mysore, Robert Platt, and Kate Saenko. Reward-guided curriculum for robust rein-
forcement learning. preprint, 2019.

Aniket Nagle, Peter Wolf, and Robert Riener. Towards a system of customized video game
mechanics based on player personality: Relating the Big Five personality traits with difficulty
adaptation in a first-person shooter game. Entertainment Computing, 13:10–24, March 2016.
ISSN 18759521. doi: 10.1016/j.entcom.2016.01.002. URL https://linkinghub.elsevier.

com/retrieve/pii/S1875952116000045.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter
Stone. Curriculum learning for reinforcement learning domains: A framework and survey.
arXiv preprint arXiv:2003.04960, 2020.

Juan Ortega, Noor Shaker, Julian Togelius, and Georgios N. Yannakakis. Imitating human
playing styles in Super Mario Bros. Entertainment Computing, 4(2):93–104, 4 2013. ISSN
18759521. doi: 10.1016/j.entcom.2012.10.001.

Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits in reinforcement
learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4045–4054. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/

pardo18a.html.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction. 34th International Conference on Machine Learning,
ICML 2017, 6:4261–4270, 2017.

Radek Pelánek. Difficulty rating of sudoku puzzles by a computational model. In Twenty-Fourth
International FLAIRS Conference, 2011.

Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. Enemy within: Long-term motiva-
tion effects of deep player behavior models for dynamic difficulty adjustment. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–10, 2020.

Erik Ragnar Poromaa. Crushing candy crush: predicting human success rate in a mobile
game using monte-carlo tree search. Master’s thesis, KTH, School of Computer Science and
Communication (CSC), 2017.

https://linkinghub.elsevier.com/retrieve/pii/S1875952116000045
https://linkinghub.elsevier.com/retrieve/pii/S1875952116000045
https://proceedings.mlr.press/v80/pardo18a.html
https://proceedings.mlr.press/v80/pardo18a.html

BIBLIOGRAPHY 113

Erika Puiutta and Eric Veith. Explainable reinforcement learning: A survey. In Interna-
tional cross-domain conference for machine learning and knowledge extraction, pages 77–95.
Springer, 2020.

Megan Pusey, Kok Wai Wong, and Natasha Anne Rappa. The Puzzle Challenge Analysis Tool.
A Tool for Analysing the Cognitive Challenge Level of Puzzles in Video Games. Proceedings
of the ACM on Human-Computer Interaction, 5(CHI PLAY):1–27, October 2021. ISSN 2573-
0142. doi: 10.1145/3474703. URL https://dl.acm.org/doi/10.1145/3474703.

Steffen Rendle. Factorization Machines with libFM. ACM Transactions on Intelligent Systems
and Technology, 3(3):1–22, May 2012. ISSN 2157-6904, 2157-6912. doi: 10.1145/2168752.
2168771. URL https://dl.acm.org/doi/10.1145/2168752.2168771.

Sebastian Risi and Julian Togelius. Increasing generality in machine learning through pro-
cedural content generation. Nature Machine Intelligence, 2(8):428–436, 8 2020. ISSN
2522-5839. doi: 10.1038/s42256-020-0208-z. URL http://www.nature.com/articles/

s42256-020-0208-zhttp://arxiv.org/abs/1911.13071.

Sonia Roccas, Lilach Sagiv, Shalom H. Schwartz, and Ariel Knafo. The big five personality
factors and personal values. Personality and Social Psychology Bulletin, 28(6):789–801, 2002.
doi: 10.1177/0146167202289008. URL https://doi.org/10.1177/0146167202289008.

Shaghayegh Roohi, Jari Takatalo, Christian Guckelsberger, and Perttu Hämäläinen. Review
of intrinsic motivation in simulation-based game testing. In Proceedings of the 2018 chi
conference on human factors in computing systems, pages 1–13, 2018.

Shaghayegh Roohi, Christian Guckelsberger, Asko Relas, Henri Heiskanen, Jari Takatalo, and
Perttu Hämäläinen. Predicting game difficulty and engagement using ai players. Proceedings
of the ACM on Human-Computer Interaction, 5(CHI PLAY):1–17, 2021.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

Jesse Schell. The Art of Game Design: A Book of Lenses. A K Peters/CRC Press, London,
2019. ISBN 978-1138632059.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mas-
tering atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609,
2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–
1897. PMLR, 2015.

https://dl.acm.org/doi/10.1145/3474703
https://dl.acm.org/doi/10.1145/2168752.2168771
http://www.nature.com/articles/s42256-020-0208-z http://arxiv.org/abs/1911.13071
http://www.nature.com/articles/s42256-020-0208-z http://arxiv.org/abs/1911.13071
https://doi.org/10.1177/0146167202289008

BIBLIOGRAPHY 114

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv e-prints,
art. arXiv:1506.02438, June 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. arXiv e-prints, pages 1–12, 7 2017. URL http://arxiv.

org/abs/1707.06347.

Noor Shaker, Georgios Yannakakis, and Julian Togelius. Towards automatic personalized
content generation for platform games. Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 6(1):63–68, Oct. 2010. URL https:

//ojs.aaai.org/index.php/AIIDE/article/view/12399.

Yuchul Shin, Jaewon Kim, Kyohoon Jin, and Young Bin Kim. Playtesting in match 3 game
using strategic plays via reinforcement learning. IEEE Access, 8:51593–51600, 2020.

Mirna Paula Silva, Victor do Nascimento Silva, and Luiz Chaimowicz. Dynamic Diffi-
culty Adjustment through an Adaptive AI. In 2015 14th Brazilian Symposium on Com-
puter Games and Digital Entertainment (SBGames), pages 173–182, November 2015. doi:
10.1109/SBGames.2015.16. ISSN: 2159-6662.

Samantha Stahlke, Atiya Nova, and Pejman Mirza-Babaei. Artificial players in the design
process: Developing an automated testing tool for game level and world design. In Proceedings
of the Annual Symposium on Computer-Human Interaction in Play, pages 267–280, 2020.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

Matthew Stephenson and Jochen Renz. Agent-based adaptive level generation for dynamic
difficulty adjustment in angry birds. arXiv preprint arXiv:1902.02518, 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 2018.

Yujin Tang and David Ha. The sensory neuron as a transformer: Permutation-invariant
neural networks for reinforcement learning. In Thirty-Fifth Conference on Neural Infor-
mation Processing Systems, 2021. URL https://openreview.net/forum?id=wtLW-Amuds.
https://attentionneuron.github.io.

Bulent Tastan and Gita Sukthankar. Learning policies for first person shooter games using
inverse reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 7(1):85–90, Oct. 2011. URL https://ojs.aaai.org/

index.php/AIIDE/article/view/12430.

Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten. The 2009 mario ai competition.
In IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2010.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://ojs.aaai.org/index.php/AIIDE/article/view/12399
https://ojs.aaai.org/index.php/AIIDE/article/view/12399
https://openreview.net/forum?id=wtLW-Amuds
https://attentionneuron.github.io
https://ojs.aaai.org/index.php/AIIDE/article/view/12430
https://ojs.aaai.org/index.php/AIIDE/article/view/12430

BIBLIOGRAPHY 115

Marc Van Kreveld, Maarten Löffler, and Paul Mutser. Automated puzzle difficulty estimation.
In 2015 IEEE Conference on Computational Intelligence and Games (CIG), pages 415–422.
IEEE, 2015.

Rodrigo Vicencio-Moreira, Regan L Mandryk, and Carl Gutwin. Now you can compete with
anyone: Balancing players of different skill levels in a first-person shooter game. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 2255–
2264, 2015.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmas-
ter level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354,
2019.

Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and Sebastian Risi.
Evolving mario levels in the latent space of a deep convolutional generative adversarial net-
work. In Proceedings of the genetic and evolutionary computation conference, pages 221–228,
2018.

Peter Vorderer, Tilo Hartmann, and Christoph Klimmt. Explaining the enjoyment of playing
video games: The role of competition. In Proceedings of the Second International Conference
on Entertainment Computing, ICEC ’03, page 1–9, USA, 2003. Carnegie Mellon University.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference
on machine learning, pages 1995–2003. PMLR, 2016.

Rina R Wehbe, Elisa D Mekler, Mike Schaekermann, Edward Lank, and Lennart E Nacke.
Testing incremental difficulty design in platformer games. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, pages 5109–5113, 2017.

Lilian Weng. Policy gradient algorithms, Apr 2018. URL https://lilianweng.github.io/

posts/2018-04-08-policy-gradient/.

Daniel Wheat, Martin Masek, Chiou Peng Lam, and Philip Hingston. Modeling perceived
difficulty in game levels. In Proceedings of the Australasian Computer Science Week Multi-
conference, pages 1–8, 2016.

Su Xue, Meng Wu, John Kolen, Navid Aghdaie, and Kazi A. Zaman. Dynamic Difficulty Adjust-
ment for Maximized Engagement in Digital Games. In Proceedings of the 26th International
Conference on World Wide Web Companion - WWW ’17 Companion, pages 465–471, Perth,
Australia, 2017. ACM Press. ISBN 978-1-4503-4914-7. doi: 10.1145/3041021.3054170. URL
http://dl.acm.org/citation.cfm?doid=3041021.3054170.

Georgios N. Yannakakis and Julian Togelius. Experience-driven procedural content generation.
IEEE Transactions on Affective Computing, 2(3):147–161, 2011. doi: 10.1109/T-AFFC.2011.
6.

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
http://dl.acm.org/citation.cfm?doid=3041021.3054170

BIBLIOGRAPHY 116

Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games. Springer Inter-
national Publishing, Cham, 2018. ISBN 978-3-319-63518-7. doi: 10.1007/978-3-319-63519-4.
URL http://link.springer.com/10.1007/978-3-319-63519-4.

Yunqi Zhao, Igor Borovikov, Fernando de Mesentier Silva, Ahmad Beirami, Jason Rupert, Caed-
mon Somers, Jesse Harder, John Kolen, Jervis Pinto, Reza Pourabolghasem, et al. Winning
is not everything: Enhancing game development with intelligent agents. IEEE Transactions
on Games, 12(2):199–212, 2020.

Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement learning:
A survey. arXiv preprint arXiv:2009.07888, 2020.

Mohammad Zohaib. Dynamic difficulty adjustment (dda) in computer games: A review. Ad-
vances in Human-Computer Interaction, 2018, 2018.

Alexander Zook, Stephen Lee-Urban, Michael R. Drinkwater, and Mark O. Riedl. Skill-based
Mission Generation: A Data-driven Temporal Player Modeling Approach. In Proceedings
of the The third workshop on Procedural Content Generation in Games - PCG’12, pages 1–
8, Raleigh, NC, USA, 2012. ACM Press. ISBN 978-1-4503-1447-3. doi: 10.1145/2538528.
2538534. URL http://dl.acm.org/citation.cfm?doid=2538528.2538534.

Alexander E Zook and Mark O Riedl. A temporal data-driven player model for dynamic
difficulty adjustment. In Eighth Artificial Intelligence and Interactive Digital Entertainment
Conference, 2012.

http://link.springer.com/10.1007/978-3-319-63519-4
http://dl.acm.org/citation.cfm?doid=2538528.2538534

	I Prologue
	Introduction
	Motivation
	Problem definition and applications
	Research questions
	Difficulty in puzzle games
	Automated playtesting
	Structure of the thesis

	Background
	Operationalising difficulty
	Characterising difficulty
	Difficulty in games
	Modelling difficulty and players

	Reinforcement learning
	Introduction
	Policy and value function
	Bellman equations
	Estimating the value function
	Exploration-exploitation dilemma
	Policy gradient methods
	Function approximation
	Algorithms

	Automated playtesting methods
	Learning to play games
	Automated playtesting in games

	II Main research
	Modelling Difficulty Using Historic Observations
	Per-level difficulty modelling
	Background
	Results and conclusion
	Relevant paper(s)

	Personalised predictions
	Background
	Results and conclusion
	Relevant paper(s)

	Paper 1: Statistical Modelling of Level Difficulty in Puzzle Games
	Paper 2: Personalized Game Difficulty Prediction Using Factorization Machines

	Developing Playtesting Agents for New Content
	Automated playtesting
	Background
	Results and conclusion
	Relevant paper(s)

	Paper 3: Strategies for Using Proximal Policy Optimization in Mobile Puzzle Games
	Paper 4: Estimating Player Completion Rate in Mobile Puzzle Games Using Reinforcement Learning

	Agent-Assisted Game Difficulty Prediction
	Difficulty prediction using AI agents
	Background
	Results and conclusion
	Relevant paper(s)

	Paper 5: Difficulty Modelling in Puzzle Games

	III Epilogue
	Discussion and Conclusions
	Contributions
	Modelling player behaviour in puzzle games
	Personalised difficulty prediction
	Robust playtesting agent

	Limitations and future work
	Pass rate as difficulty metric
	Impact of booster items on predictions
	Improving the playtesting agent
	Using a playtesting agent in practice

	Summary

