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Abstract

Multimedia collections contain a wealth of information that can be used to
gain insight into trends, performing investigations, finding media to repre-
sent concepts, and much more. Over the past decade, multimedia collec-
tions have seen tremendous growth, with technological advances allowing
ever faster generation and sharing of multimedia data. Multimedia analytics
is a research field that focuses on providing insight into large-scale multime-
dia collections. In this field, it has been stated that analysing such collections
requires an interactive approach that combines the strengths of a human and
a machine. The machine’s objective is to present items relevant to the hu-
man’s information needs, while the human may indicate their relevance, to
improve the machine’s future suggestions. To facilitate this process, an inter-
active learning approach capable of handling the scale of today’s collections
is required. While a preexisting approach can be scalable, it demands sig-
nificant computational resources. In this thesis, a new interactive learning
approach is proposed, called Exquisitor, which integrates high-dimensional
indexing, incremental retrieval, and query optimisation policies into the inter-
active learning process, making it responsive, accurate, flexible, and scalable.
Furthermore, the work emphasizes the need for better automated evaluation
protocols, as existing protocols fail to capture different types of user interac-
tions, making it reasonable to suspect whether or not interactive learning is
suited for obtaining insight. New automated evaluation protocols are intro-
duced in this work that analyse various user interaction strategies, to better
evaluate the capabilities of interactive learning. While not eliminating the
need for user testing, it allows for more detailed performance analysis of in-
teractive learning approaches earlier in the developmental phase. Through
extensive experiments, it shows that Exquisitor improves or maintains result
quality, while drastically reducing response time and requirements for com-
putational resources. In addition to the automated evaluation protocols, the
approach has also been used in practice, through participation in live inter-
active search challenges. The research and development of Exquisitor has
shown that interactive learning is efficient for gaining insight into large mul-
timedia collections, establishing it as the new state of the art in large-scale
interactive learning. By reducing requirements for computational resources,
it opens up possibilities for future research on utilising these resources to
introduce additional elements into the analytical process, such as concurrent
classifiers, diversification of results, or dynamic combination of modalities.



Resumé

Multimedie kollektioner indeholder en stor mængde information, som kan
benyttes til at få viden inden for trends, efterforskninger, finde medier til at
repræsentere koncepter, m.m. Multimedie kollektioner har haft stor vækst
i løbet af det sidste årti, da diverse teknologiske fremskridt har gjort det
nemmere at generere og dele multimedie data. Multimedia Analytics er et
forskningsfelt, der fokuserer på at analysere store multimedie kollektioner.
For at opnå viden fra sådanne kollektioner, er der behov for en interaktiv
fremgangsmåde, der kombinerer kompetencerne af menneske og maskine. I
denne interaktive fremgangsmåde præsenterer maskinen relevante billeder og
videoer for en persons behov, hvor personen har mulighed for at indikere me-
die objekternes relevans, hvilket maskinen benytter til at forbedre de næste
relevante forslag. En interaktiv læringstilgang, som kan håndtere mæng-
den af nutidens multimedie kollektioner, er nødvendig for at facilitere den
ønskede fremgangsmåde. Én eksisterende metode er skalerbar og i stand til
at behandle store kollektioner, men kræver mange ressourcer. I denne afhan-
dling præsenteres Exquisitor, en ny interaktiv læringstilgang, der integrerer
high-dimensional indexing, incremental retrieval, og query optimisation poli-
cies. Dette resulterer i en responsiv, akkurat, fleksibel og skalerbar interaktiv
læringstilgang. Desuden fremhæves et behov for forbedringer i automatis-
erede evaluerings protokoller for interaktive læringstilgange. Eksisterende
protokoller tager ikke holdning til hvordan forskellige personer interagerer
med maskinen i en interaktiv læringstilgang. Dette kan lede til tvivl om
fremgangsmåden kan analysere store multimedie kollektioner. Derfor intro-
duceres nye automatiserede evaluerings protokoller, der analyserer forskellige
måder en bruger kan interagere med maskinen. Disse ekskluderer ikke be-
hovet for aktuelle brugertest, men fremmer forståelsen for effektiviteten af
fremgangsmåden tidligere i udviklingsfasen. Omfattende eksperimenter har
vist, at Exquisitor øger eller fastholder kvaliteten for at finde relevant data,
samtidig med at reducere responstiden og mængden af ressourcer. Udover
automatiseret evaluering er Exquisitor også blevet brugt i praksis, med delt-
agelse i live interaktive søge konkurrencer. Forskningen og udviklingen af
Exquisitor har fastslået, at en interaktiv læringstilgang er effektiv for at opnå
indblik i store multimedie kollektioner, og etablerer den som standarden in-
den for skalerbare interaktive læringstilgange. Reducering af ressourcerne
åbner desuden op for ny forskning i hvordan de frigjorte ressourcer kan an-
vendes til at introducere nye elementer til at forbedre den interaktive process.
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Chapter 1

Introduction

What do you think about when taking an image or a video these days? In the past,
people have worried about how many images and videos they could take without
running out of storage. Today this is a rare thought, not only because storage of all
devices has significantly increased, but also because the majority of our multimedia
items are stored in the cloud. With the storage restriction removed, people take
images and videos at a greater pace than ever before, making personal collections
much larger in size. We also upload media items to various websites and share
them through social media platforms. This leads to massive multimedia collections
that need to be managed in terms of storage and retrieval. Furthermore, these
massive collections, ranging from millions to billions of items, contain a wealth of
knowledge useful for understanding trends, performing investigations, discovering
new concepts and finding media items that can represent them, and much more.

We have an expectation that machines are capable of understanding multimedia
data better than in the past, as images and videos that are taken from our phones
get automatically annotated. The reality is that pretrained models from deep
neural networks are used to predict labels for images and videos, along with other
computer vision techniques performed to extract more low-level features. While
some may expect the machine to handle any sort of input, once we start going from
words to phrases, most techniques start to struggle. This means that when users
want to find items using elaborate labels and phrases, they have to either, simplify
it into more basic labels, or start recalling when they took the image or video.

Additionally, with these recent technological advances, society today has be-
come accustomed to a certain standard when it comes to interacting with appli-
cations. We expect rapid feedback from any application on computers, phones,
or tablets, and we have a tendency to lose focus after waiting for 5 seconds or
more [75, 84]. Much of this rapid feedback is due to advances in hardware and
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10 CHAPTER 1. INTRODUCTION

efficient data storage, that enables performing heavier computations on specialized
hardware e.g. GPUs and FPGAs. Many issues related to growing collections may
be resolved by adding more hardware. However, not all users may have access to
such specialized hardware, nor the knowledge to optimally utilise it.

When users interact with a multimedia collection they typically approach it
with a goal in mind. This goal can be broad, specific or somewhere in between.
Consider the following two scenarios:

Scenario A A user wants to watch the penalty shootout from the EURO 2020 final
between Italy and England. This is a specific incident in terms of time and
place, making it easy to find through keywords. After the user finds the
desired video the interactive session with the multimedia collection is over,
or is it? The user’s interest might now shift towards looking for triumphant
moments in football involving England.

Scenario B A forensic analyst has been given a seized laptop containing a large multi-
media collection, with the initial goal to find items containing criminal acts.
The analyst might start by browsing the collection, but later realise that the
goal may be too broad. Thus, they might focus on specific crimes and cre-
ate a summary of items pertaining criminal elements, which they can later
categorise into different priority levels.

Most common consumer applications allow users to interact with large multi-
media collections through a search bar, or by supplying an example image or video,
along with some filters that can be applied. When an example is provided, regu-
lar retrieval systems perform a comparison between the supplied example and the
media items in the collection, to return the most similar ones. For scenario A, the
user has to restart their search once their goal changes from the penalty shootout
to triumphant moments in football, when using such retrieval systems. Analytical
tools generally have more features to better support the actions the analyst needs,
but do not support the type of flow between exploration and search present in sce-
nario B. Even if a system did support such a flow between exploration and search,
an issue still arises with regards to scale. When it comes to massive collections
there are more advanced techniques that support scalable search than scalable ex-
ploration. However, even some of these techniques have a tendency to rely on more
powerful hardware. What is missing in today’s environment of multimedia search
and exploration tools is a scalable interactive approach that is able to adapt to-
wards the user’s goal, regardless of whether it is oriented towards exploration or
search, while keeping the cost of computational resources low.

During retrieval with example images or videos, the machine uses representa-
tions of their content to figure out which items in the collection are similar. Many
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features can be derived from a multimedia item and be part of the representation,
leading to high-dimensional data. Using high-dimensional data representations
to compute similarity between the examples and all items in a collection can be
costly, especially for larger collections. To facilitate scalable retrieval for multime-
dia collections, high-dimensional indexing is needed, where the representations of
multimedia items are split into smaller areas, which reduces overall computation.
Multimedia Analytics is a research field that focuses on extracting information
from multimedia collections to obtain various insights. In this field, interactive ap-
proaches that allow a human to work together with a machine have been suggested
as being capable of obtaining insights from large multimedia collections. For a
human and machine to work together in such a setting, a set of requirements need
to be met. These requirements focus on the ability towards finding relevant items
for a given information need and for the performance at scale [113]. Interactive
learning is an approach where human and machine work together in order to sup-
port better retrieval. In its simplest form, a screen of suggested items is provided
by the machine, and the human user determines their relevance towards the goal or
insight they want to obtain. The machine uses the feedback provided to update its
underlying model and presents a new set of suggestions for the user to go through.
This is an iterative process which stops when the user decides. With such an ap-
proach the user has more control over the direction the interactive session is going
into.

This thesis presents Exquisitor, a scalable interactive multimodal learning ap-
proach that addresses the need for solving analytical tasks with modest resources.
Exquisitor combines and extends state-of-the-art approaches in interactive learning,
storage, and retrieval to facilitate interactive sessions capable of solving exploration
and search tasks. In addition, the thesis expands on the current evaluation efforts
of such systems, to better understand the influence of user behavior earlier in the
development phase. As multimedia collections consist of different media items (im-
ages and videos), with multiple layers of information that can be extracted, such
as objects from images or actions from videos, the impact of using multiple infor-
mation sources is analysed. Through extensive experiments, Exquisitor is shown
to be capable of interacting with collections of over 100 million items, with higher
accuracy, lower response time, and lesser resource demands, than state-of-the-art
approaches. These results establish Exquisitor as the new state of the art.

The remainder of the thesis is structured as follows: Chapter 2 covers the
background of multimedia and interactive learning. Chapter 3 presents the articles
that make up the foundation of the Exquisitor approach. Chapter 4 highlights
and accounts for the demonstrations and workshops where the Exquisitor client
application has participated in. Chapter 5 summarises the work described in the
thesis and addresses future research prospects.
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Chapter 2

Background

“A picture is worth a thousand words”, is a well-known saying that implies that
humans are able to make many observations from just looking at an image. These
observations can relate to colors, shapes, objects, or concepts based on the indi-
vidual’s knowledge, such as types of cars and distinction between pets and wild
animals. This is in stark contrast to how a machine processes an image. For the ma-
chine to determine any sort of content within the image, it needs to have meaningful
representation. The attributes of a representation, called features, are numerical
values describing various parts of the contents in an image. These features can be
low-level, such as intensities of pixels to determine shapes, or high-level, such as
probabilities for concepts or objects being present in the image. Note that unlike
humans, the concepts or objects a machine can derive are finite. Aside from the
visual content of an image, the machine also has access to metadata. This can be
technical data relating to the capturing device or an external device, or it can be
annotations provided by a human in the form of descriptions or tags. The different
types of features from the multimedia content, is referred to as a modality. Thus,
metadata features may relate to the textual modality, while content features relate
to the visual modalities such as concepts or actions, and for videos features relating
to audio is another modality. Recall scenario B, where the forensic analyst wants
to find images and videos from a seized laptop relating to crimes. When going
through the media items, the analyst will know when an item includes a suspect
or people related to a suspect, while a machine’s representation will at most lead
to concepts such as “woman and man talking” or “man in a sports car”. Context
is rarely part of the multimedia representation, as it is quite difficult to obtain
through objective means. To make the machine find items with specific context,
interaction with a human is needed, as they can tell the machine which items are
relevant for their context. Facilitating such an interactive approach, requires the

13



14 CHAPTER 2. BACKGROUND

representations from the machine to be transparent towards the user, so they can
comprehend why certain interactions lead to a specific outcome. Section 2.1 goes
into details of different multimedia representations and their impact on various
tasks.

The machine processes an image by deriving one or more representations from
it. The representations of a multimedia item can be of varying sizes and are of-
ten of a high-dimensional nature, such as feature vectors detailing the orientation,
size, and shape, for a set of pixels, or probabilities of concepts from the machine’s
concept dictionary. These representations are used to find relevant items when a
user interacts with the collection. For instance, to find items related to crimes,
the analyst can start by browsing the collection through an explorer, or query a
search engine with text or an example image containing crime related concepts.
To determine the similarity between the examples and the media items in the
collection, a similarity score is computed using the feature values of their represen-
tations against the examples. This similarity score is used to sort the collection,
from which the top items are presented to the analyst. With such representations,
computing the similarity for all items in a collection can be time consuming, espe-
cially if more than one representation is involved and if the collection is very large.
Typically, to reduce computation and retrieval time when searching in a database,
indexes are used to organise the data into smaller areas for quicker access. For the
high-dimensional representations of multimedia data, specialised high-dimensional
indexes are required, which focus on storing the multimedia representations for
scalable similarity based operations. Section 2.2 covers multimedia retrieval using
high-dimensional indexing.

A human can formulate their task to the machine in multiple ways, such as a
textual description, keywords, or when it is difficult to find words to describe the
task, they may supply example images. The machine attempts to either find exact
matching items in the collection or similar items. If the task is to find multiple
relevant items to the supplied images, finding visually similar items may not always
lead to the correct items. Assume the forensic analyst is searching for crimes related
to assault and supply an image of people fighting. The machine’s representations
of the media item heavily determine the results for this scenario. If the machine’s
representations are capable of extracting the concept of “fighting”, the output may
be images and videos of boxing and UFC events, along with actual items containing
assault. In most systems, the analyst will now have to either browse through the
results, or supply different examples and hope for better results. Alternatively,
a far better option is to guide the machine towards the relevant concepts and
context, by stating which items from the results are relevant and which are not.
In this case, the boxing and UFC items are not relevant, while the items with
assaults are. Now, the machine can use this feedback to train a classifier and get
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better items fitting the context and concepts. If the output still contains irrelevant
items, the user can continue providing feedback. This sort of interactive approach
is known as Interactive Learning and is not only ideal for assisting the machine
in understanding the task of the human, but also for the human to explore the
collection. Section 2.3 takes a look at how interactive learning approaches have
been applied to multimedia collections.

Evaluation relating to the performance of retrieval systems often focuses on
the quality of the results and the response time of operations, using automated
benchmarks. For interactive learning approaches, the user is involved far more
than just providing an initial query, which is difficult to reflect using automated
evaluation efforts. User studies are ideal for interactive approaches, but acquir-
ing general users can be difficult, let alone actual domain experts such as forensic
analysts. Performing user studies on an early development system is not ideal,
as there are typically a limited number of available users, which means they have
to engage with the system on multiple occasions in the development phase, thus
introducing bias. Furthermore, early stage systems that want to simply test the
algorithmic performance, may not have considered the interface design. This may
influence the user’s behavior in the tests and can unintentionally mislead the re-
sults. If the developers are fully aware of this, they can use the opportunity to
test both functionality and the related interface, but this increases the workload
of developers. Thus, automated evaluations have their merits during development
and provide foundation for an approach’s capabilities. To properly evaluate an in-
teractive learning approach, using automated evaluation early on and proper user
studies at later stages is ideal. Section 2.4 reviews automated evaluation efforts
and evaluation with real user sessions for interactive learning.

2.1 Multimedia Representation

A great amount of information is captured when an image or video is taken, from
technical details about the capturing device, to the visual information of its con-
tent, along with supplementary visual information extracted by a machine, and
textual information such as description or tags provided by a human. The infor-
mation residing in a singular media item is useful for obtaining knowledge for many
purposes. For instance, a forensic analyst may be interested in learning about the
camera device, or if the items contain descriptions or tags of interest, or to learn
more about the visual surroundings related to a suspect. While an image or video
may provide valid evidence for a task, associating the information between items in
a multimedia collection through one or more modalities, is beneficial for reinforcing
known knowledge, or expanding ones knowledge. Thus, it is important to know
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how different types of modalities are represented by the machine, to determine
their suitability towards different tasks.

In general the resulting file from taking an image contains the image data, along
with EXIF data, which relates to the physical camera device, its settings, and time
and date. If the device has a GPS then there is a high possibility of geolocation data
also being part of the EXIF data. EXIF can further contain copyright information,
image description, user information and more, but the majority of these are optional
and regular people do not bother adding them. Some users that are knowledgeable
with EXIF data, may see it as containing too much personal information or that
it increases the size of an image, and decide to remove it. Photographers may
remove it to not expose the settings of the device they used. Even so, EXIF data is
the initial metadata for majority of images available on computers. While not the
most descriptive information, it is still enough to find items, e.g. using geolocation
if a user wants to find images captured in a specific city, or the device name if a
user is looking for images captured by their smartphone and not their handheld
camera. Although it is possible to add image descriptions to an image file, textual
descriptions of images are usually provided when people upload their images to a
social media platform or sharing site. They may also add tags related to content
or the context of the image to get more exposure, and add it to an album on
the sharing site or their device. Without processing the image or the metadata
for additional information, this is the available data, which is mostly useful for
finding exact images or within specific ranges. In the case of the forensic analyst
attempting to find crime related media items, the metadata can at most be useful,
if the descriptions or tags contain information related to the suspect, such as name
or nickname, or if the analyst knows that certain crimes took place in specific areas.
If the analyst wishes to focus on the contents of media items depicting crimes, EXIF
data from the items is unlikely to contain much information about the contents.

When it comes to the contents of a media item, many different representa-
tions have been used for the visual elements in multimedia items over the years.
Early on, the representations focused on the physical characteristics of an image,
using information from the pixels. With colored images, the intensity of pixels
from different color spaces, such as RGB, can be used to define color histograms
or correlograms [31, 42, 97], which are useful for determining the presence of dom-
inant colors or spectrum of colors. Aside from colors, the information from pixel
intensities can determine specific textures, as well as outline shapes [31, 73], and
be used for facial recognition [5, 115]. While these representations are useful, they
are heavily linked with the item in terms of position, size, rotation, etc. As such,
attempting to find images that contain a book, using an example image where a
“book” is on the left side, will result in items with a book on the left side. With local
invariant features [101] such as the popular scale-invariant features (SIFT) [69, 70]
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this issue can be avoided. SIFT features represent an image with multitudes of
feature vectors containing information about the various low-level details. These
features focus on the low-level characteristics of an image, and do not necessarily
capture the concepts within it.

To make the machine better at grasping semantic concepts, machine learning
techniques can be used to train various models that classify the contents of an
image [57]. The classification is based on annotated data used for training, where
annotations are provided by humans. For a training item, either all highly visi-
ble concepts seen in an image are annotated or the most dominant concepts. With
multiple annotations for an image, the location of the concepts can also be added in
the form of bounding boxes. Initially, the classification for these concepts, through
machine learning approaches, were low in terms of accuracy and the number of
concepts. However, with the emergence of deep learning, it has become apparent
that learning features using deep convolutional neural networks (DCNN) is signif-
icantly better for extracting semantic concepts [59, 98]. The primary drawbacks
of DCNN’s are the number of annotated items they need for training, the time it
takes to train the model, and the finite number of output labels, but even then the
gain is so substantial compared to prior approaches that it is seen as an acceptable
trade-off. This is a highly active research field, with many new neural network ar-
chitectures being presented each year that aim to increase accuracy, reduce training
time, optimising hyperparameters and more [30, 95]. To circumvent the training,
pre-trained models based on different datasets, such as ImageNet, are available to
use out-of-the-box for extracting features, making the use of deep net technology
extremely appealing. On top of semantic concepts, actions [38], scenes [117], fash-
ion/clothing [66], and other specific categories of labels can be extracted with deep
learning models. The representation from DCNN is a vector containing the values
of the output layer in the neural network. These vectors are dense and relate more
to the machine’s understanding of what is in the image. Alternatively, a softmax
function can be used on the output layer to obtain probabilities for the presence of
all the labels within an image, which are sparse and comprehensible for a human.

There are many ways to represent the textual data. In the most basic form, a
key-value format can be used, but this primarily leads to heavily search oriented
queries that rely on the user having extensive knowledge of the item(s) they are
interested in. Instead of a relational format, the text from fields such as descrip-
tions and tags can be represented with a vector space model, which can be used for
similarity-based search. This representation can be fairly basic, such as using a bag
of words [23], where all words from a field such as description are used to define a
vocabulary. The representation for an image can then be the count or frequency of
the words from the vocabulary. They can also be represented with a vector of term
weights using TF-IDF [83], which determines the importance of words from an im-
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age file’s text field such as description, based on their presence in that image and
the rest of the collection. This can also be used to remove words with low scores,
which are determined to be of low importance [67]. Alternatively, neural networks
can be used to train a word association model such as Word2Vec [22, 44], that can
output aggregated word vectors of the textual data. These word vectors can be
used as is, but they tend to be fairly large and incomprehensible to a human. To
alleviate this process, topic modelling is performed, where a set of relevant topics is
determined, and the similarity score between the words from an items text and the
topics is calculated and used as the representation [46]. With great progress in nat-
ural language processing and deep learning, recurrent neural networks can be used
to extract long short-term memory (LSTM) embeddings (feature vectors) [105].
These representations take into account the relation between the words within a
sentence and are better suited for representing sentences. Ultimately, the vector
space models are well suited for similarity queries, that allow the user to search
with fewer constraints.

With all the different types of multimedia representations, it is important to
know their benefits and drawbacks. For instance, the visual modality representa-
tion of SIFT features is well suited for copy detection tasks [62], as the numerical
features indicate the specific details forming an image. They are ill-suited for tasks
focusing on finding concepts within images. Instead, using feature vectors derived
from a DCNN will be a better fit. Similarly, for the textual modality, if the user
wants to find items related to a tag, a key-value representation will be enough,
whereas if they want to match phrases from descriptions, a vector space model
may be better. Once the type of interactions and tasks for a retrieval system are
clear, then appropriate representations from different modalities can be chosen for
the multimedia items in the collection.

With multiple representations for items, there is the option of combining their
information to improve the analysis and retrieval processes. To combine and use
multiple modalities certain choices regarding fusion need to be made [7]. There are
two types of fusion that can be considered, early and late fusion. Early fusion im-
plies that the data representation is of a joint nature between the used modalities,
typically by concatenating the different representations [96]. Many deep learning
approaches have also been used in similar fashion to train models using multiple in-
put modalities leading to a combined representation through some form of concate-
nation/fusion layer [10, 18, 41, 78]. This can also be considered as mid fusion since
it is essentially using the individual modality representations initially [50]. Late
fusion typically retrieves items from each modality and then combines their result
sets, before presenting them to the user. The combined result set can be based on
rank aggregation [65] or the modalities combined scores [103, 116]. The benefit of
early fusion is less storage requirements as only one representation is being used,
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though it can be less transparent and more complex to perform computations on.
Late fusion does require additional storage as it uses multiple representations that
need their own storage and retrieval structure, but it opens up for more actions to
take, such as determining the influence of certain modalities.

2.2 Multimedia Retrieval and Indexing

For very small collections, it may be possible for a human to go through each item
and find items that are related to their task. For larger collections, however, it
is infeasible that a human can process them entirely on their own, and therefore
we rely on a machine by using its capabilities for efficiently storing and processing
larger collections. For the machine to facilitate such retrieval, it needs to store the
multimedia representations in data structures that are designed for efficient access.
There are multiple ways to perform a search on a multimedia collection. The most
common forms are query by text, applying filters (faceted search), and query by
example, while other forms such as query by sketch or query by concept/object
location are less common [2, 39]. The results of a search can differ depending on
the objective, such as searching for exact items containing the query information
or searching for similar items.

Search for images and videos often requires methods involving text based
search, either through phrases or keyword terms. For this type of retrieval, the
item’s metadata along with auto-captions from the visual modality, can be used to
build an inverted index to map all the words from the representations to the items
containing them [17, 107]. These are useful for finding exact matches, as well as
items partially containing the supplied query text. Another way to perform query
by text is to use the vector space models of the textual modality from LDA topics,
or from deep net models such as LSTM’s, or Word2Vec. These representations are
used to determine which items are most similar to the query text. This is also
how query by example is performed, using representations such as DCNN models
or SIFT features. Query by example is convenient when the user is unable to de-
termine the right words to describe their item(s) of interest, or is looking for items
containing the exact same information. To find the most similar item(s) a typical
search strategy is to use the well known k -Nearest Neighbor (k-NN) algorithm [11].

When the contents of multimedia representations are high-dimensional vec-
tor space models, high-dimensional indexing is used [13]. These indexes focus on
splitting the data into smaller areas that are represented by either a combined rep-
resentation of the underlying items, or a selected representative item. To ensure
that items are found within the smaller areas of the index, an item’s representation
can be duplicated to multiple areas of the index. High-dimensional indexing is op-
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timized for similarity search [12, 14], where Approximate Nearest Neighbor (ANN)
search is frequently used, usually as a variation of k-NN [9, 19, 25, 60]. Unlike k-NN,
where the entire collection need be processed, ANN focuses on a pre-determined
number of areas in the index neighboring the query, which significantly reduces
computational load. A downside to ANN is that relevant items may not be part
of the checked areas of the index. In such cases, measures can be taken to expand
the search space by checking more areas [40, 89], which may be easy or difficult to
do depending on the index structure.

The data structure of a high-dimensional index can be hash-based. The inten-
tion behind hash-based approaches is to use a hash function that transform the
representation of an item into a unique fixed-size value. In general, hash-based
indexes store the data into buckets. When finding exact matches, the goal is to
locate the best matching bucket and search through it. To improve data distribu-
tion in non high-dimensional hash-based indexes that focus on finding exact items,
use hash functions where close data representations have a larger distance. For
high-dimensional data, where the focus is on finding similar items, having large
distances between close items is not appropriate, as close items will end up in dif-
ferent buckets. Hash-based indexes for high-dimensional data, such as the popular
Locality Sensitive Hashing (LSH) approach, attempts to do the opposite, by using
hash functions where close representations also have close hash representations.
An LSH index uses multiple hash functions to get multiple hash representations
of an item, which are stored in a number of tables and buckets [3, 27]. During
retrieval, the example query is transformed using the hash functions and an ap-
propriate bucket is found from each table, which is then searched to find the k
most relevant items. This approach leans heavily towards search, as the process
focuses on looking into items from the most appropriate bucket of each table. This
can make it difficult to move towards exploring a collection in an interactive ap-
proach. Multi-probe LSH variants allow extracting items from more buckets, by
also checking a number of surrounding buckets [71, 72, 104].

Vector quantization approaches are another popular way to construct high-
dimensional indexes. They typically project the multimedia representation to a
line using a distance measure and store it in a classic B+-Tree [32]. A modified
version of this is the Nearest Vector Tree (NV-Tree) that constructs a tree from
repeated projections to arbitrary lines [61]. This has been proven to be highly
scalable, both in terms of growing collections and increasing number of dimensions
of representations [63]. These are appropriate for ANN search by projecting the
query to the arbitrary lines and finding k relevant items. Product Quantization is
another vector quantization approach that first compresses the representations and
then places the data into clusters [34, 45]. By compressing the representations, it
reduces computations between items. Cluster Pruning is an approach that forms a
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multi-level index of clusters, where cluster representatives are arbitrarily selected
like the first step of k-means, then the tree is built bottom up. The algorithm
focuses on creating balanced clusters and during search selects items from b clusters,
which can be altered at runtime. This leads to a trade-off between search speed
and result quality [21]. Extended Cluster Pruning (eCP) is a variation that targets
cluster sizes that fit within a single disk I/O in case the index is too large for main
memory [36, 76]. For the cluster based approaches, it is simple to perform ANN
search by selecting a maximum number of clusters to go through.

All of these indexes use the query example as a point to find the nearest neighbor
around. However, with an interactive approach the user may supply multiple items,
in which case the point is a mean of their feature vector. This can easily lead to
unreliable results. Alternatively a classifier can be used to to define a decision
boundary for relevant and non relevant items, such as the linear SVM [24]. In such
a case the items farthest from the decision boundary in the relevant direction are
the desired items. This requires the query process to find the farthest neighbor to
a plane, rather than a point. There is research in approximate farthest neighbor
to point queries [79], whereas farthest neighbors to a plane are not prevalent in
high-dimensional indexing.

2.3 Interactive Learning

Interactive learning is a human-in-the-loop approach where a user is presented
with items that they need to provide feedback on. The feedback is used to train
an interactive classifier, that is used to retrieve a new set of items for the user to
judge, concluding one interaction round. This feedback loop continues until the
user decides to stop, either because they found their desired item(s), or determined
that no relevant items are present in the collection. The way a user provides
feedback is by labeling items as positive or negative. The systems may ask to
label all presented items, a fixed number, or leave it up to the user [58, 87, 100,
118]. Studies have also shown that only providing negative feedback is also a
possibility [106, 109]. While the machine may be capable of processing a large
number of items, humans get overwhelmed when too many items are presented to
them. As such, interactive learning approaches focus on presenting a small subset
of the items requiring feedback, instead of a ranked list of the entire collection.

Interactive learning consists of two forms, active learning (AL) and user rel-
evance feedback (URF). In active learning the feedback process is not part of
the retrieval process. Instead, the intention is to spend a short number of in-
teraction rounds to define an effictive classifier towards the desired information
need [35, 43, 93]. This is done by presenting the user with items that the under-
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lying interactive classifier is unsure about, typically data points near the decision
boundary, usually for a pre-determined number of feedback rounds, or until a
threshold is passed using a stopping strategy [64, 74], whereafter the classifier is
used to retrieve the most confident items. Given this approach of teaching the
model first and then using it for retrieval, AL approaches attempt to focus on re-
ducing the feedback time or labelling cost by locating high-value items that heavily
improve the model [33, 102]. AL approaches can be beneficial for tasks that include
notions which the machine may not contain in its representations. However, for
longer-running tasks where the items of interest may change over time, AL will
need to restart the learning process every time additional information to a task is
added. AL has been shown to be better for optimising classifiers or models, and
has been getting more attention recently with deep learning methods. As these
methods require significant annotated data and training time, AL can be used to
provide critical feedback during the training to shift the model in the desired di-
rection [1, 33, 68, 110]. The main drawback of AL is primarily deciding when to
stop the feedback process, and research is continuously being done to determine
optimal stopping strategies [64, 74].

User relevance feedback has been used in content based retrieval from the very
beginning [29, 86, 118]. URF focuses purely on the retrieval, where it aims to
present the classifier’s most confident items after any given round. This allows
the user to continuously influence the retrieval process throughout the interac-
tive session. Although user relevance feedback aims to show the most confident
items, diversifying the results by also including some items farther from the deci-
sion boundary of the classifier is a possibility [28]. A variation of URF is pseudo-
relevance feedback (PRF), where the user is removed, and instead the top most
relevant items for an initial query is used as positive examples to update the classi-
fier, and then get the actual results [15, 47, 108, 109]. Notice that nothing prevents
AL and URF from working in the same system [114], but the choice of method to
use still affects the workflow.

Latency is of great importance in interactive learning systems, to ensure that
the user does not lose focus. While advanced classifiers, using deep learning or other
machine learning approaches, may result in greater quality, the sheer amount of
time they take to train makes them unsuitable for an interactive approach. Take
for instance the forensic analyst example, where the analyst may only have a few
hours to find crime-related media items. Using an interactive approach that takes
1 minute per interaction or 1 second per interaction can make a major difference.
There are two reasons for the high training time, the first being the architecture
of the classifier, but the greater factor being a large number of training items, as
without it the quality drops significantly. Therefore, it is common to use these
approaches to preprocess the items to extract features for a representation, and for
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retrieval k-NN or the popular support vector machine (SVM) is used [20, 92, 99].
The SVM is an appropriate choice for an interactive classifier as it is efficient and
requires only a few training examples. Another classifier that has been shown to
be valuable is the Self-Organizing-Map (SOM) [58]. Other approaches use nearest-
neighbor queries with weights that are optimised based on the feedback [29]. In
comparison to these SVM is better qualified for exploration tasks as well as search
oriented ones.

Prior to the work presented in this thesis, the state-of-the-art scalable interac-
tive learning approach was Blackthorn. Blackthorn is able to interact with a 100
million item collection with an average latency of 1.2 seconds per interaction round.
It uses URF with a Linear SVM as its classifier, and uses a highly efficient com-
pression technique that results in 99% reduction of feature vector size, allowing the
data to be in memory. If multiple modalities are used, it performs late modality fu-
sion through rank aggregation, but only on a fixed number of candidates from each
modality [111]. While Blackthorn adheres to the requirements set for interactive
human and machine approaches [113], a drawback is that it achieves its impressive
performance by using 16 CPU-cores, and if the collections grow, more CPU-cores
are needed to maintain the same response time. For a truly scalable interactive
learning approach, there is a need for more efficient data structures [48].

2.4 Evaluating Interactive Learning

Evaluation of interactive learning approaches typically focuses on the precision
and recall to determine the quality of the approach. While focusing on the quality
may show that the interactive approach is able to find relevant items for a user’s
needs, response time is equally important with growing multimedia collections,
as highlighted in the previous section, especially with society being accustomed
to instantaneous responses from interactive applications. High quality is always
desired, but if it takes too long, the user may lose interest or run out of time if the
task is time sensitive. Latency is also important to consider when encountering
tasks with incremental descriptions, meaning more information is added to their
description or replaced over time as additional knowledge is gained.

The actual experiments to evaluate an interactive learning approach can be
done with automated evaluation protocols or through user studies. While both
methods have their benefits, automated evaluation protocols can be performed at
any given time with metric outputs, whereas user studies need to be scheduled and
properly analysed to provide both quantitative and qualitative data. Furthermore,
with interactive learning approaches, there are certain parameters that are user
dependent, such as number of items presented, and number of items labeled as
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positive and negative. These can be preset for an automated evaluation protocol,
and be enforced in a user study through suggestion or implementation [86, 100].
For early stage systems, automated approaches are useful to indicate how viable an
approach may be, while user studies on a mid to late development stage system are
far better than automated evaluation, as they can highlight interaction patterns
which may not have been accounted for in the original design.

Automated evaluation protocols are fairly similar to regular retrieval bench-
marks, where a task description is used to query the underlying data structure to
get the top results. The difference here is that these need to reflect interactive
learning, which means they need to represent a user providing feedback to a small
suggestion set, throughout an interactive session. The interactive session is typ-
ically limited to a number of rounds or until all relevant items from the ground
truth are found. To reflect real users, these protocols use artificial users which are
assigned a task with a corresponding ground truth. For each interaction round, the
artificial user uses the ground truth to label positive examples [26, 100], with some
evaluations adding arbitrary negatives from the collection as well [80, 85, 112]. The
value of automated evaluation protocols is to get an indication of the interactive
approach’s performance during the developmental phase. Most evaluation proto-
cols simulate perfect users with finite tasks. Human users are not perfect and are
prone to make mistakes, which can be reflected by allowing the artificial users to
make mistakes [114]. Additionally, each human user will interact differently to-
wards the interactive system, which can be due to their knowledge and experience
of the system or collection, or their understanding of the goal/task. Thus, the ar-
tificial users’ behavior with regards to labeling items needs to better reflect a real
user. Furthermore, to better evaluate the capabilities of an interactive learning
approach for exploration and search tasks, tasks with descriptions changing over
time and with objectives differing from finding one or more items, are required.

While it may be difficult to set up user studies for early development systems,
acquiring feedback for an interactive approach in a real setting is beneficial, as an
approach may do well in the automated evaluation, but performing an analytical
task in a real setting will help uncover whether or not the approach works as in-
tended. Therefore, simply demonstrating the approach to an audience, or asking
someone to perform or state a task, is an opportunity to get valuable feedback of the
approach. Interactive search challenges such as the Lifelog Search Challenge [37]
and Video Browser Showdown [91] are live workshops where multiple interactive
retrieval systems compete to solve various search oriented tasks. The tasks vary
from finding one relevant item to finding as many as possible, and are either pre-
sented with a video segment, a fixed textual description, or an incremental textual
description where more details are provided over time. These venues are great
testing grounds for interactive retrieval systems, however, they are collection spe-
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cific with tasks primarily leaning towards search. Typically, systems that include
multiple forms of representations and retrieval methods tend to do well. While
interactive learning approaches are capable of solving search tasks, they tend to
start from an explorative perspective which may not hone in on the relevant items
as quickly as a pure search approach. Nevertheless, these venues are still beneficial
for evaluating the adaptability and real-world performance of interactive learning
approaches for a specific group of tasks.
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Chapter 3

The Exquisitor Approach

This chapter presents Exquisitor, a new interactive learning approach for large scale
multimedia, along with new ways to evaluate such interactive approaches. Exquisi-
tor combines user relevance feedback with high-dimensional indexing, incremental
retrieval, and query optimisation policies, to achieve a scalable interactive learning
approach that reduces computing resources, while maintaining or improving the
quality over other such approaches. This chapter consists of 4 articles that cov-
ers the foundation of the Exquisitor approach. Chapter 4 details Exquisitor as a
system that is demonstrated and used in interactive live search challenges.

Recall that the large-scale interactive learning approach Blackthorn manages
to interact with a collection of 100 million items, with an average response time
of 1.2 seconds on 16 CPU-cores. If only a single CPU core is used, the average
response time increases to roughly 5 seconds, indicating the reliance on available
computing resources. It is inevitable that a scalable approach will rely on available
resources to a certain degree with large multimedia collections, but this can be
alleviated through high-dimensional indexing. While any index may improve the
response time and reduce resource requirements, it is important that it maintains
similar quality and allows solving fluctuating tasks, such as scenarios A and B from
the introduction (Section 1). Therefore, the chosen high-dimensional index needs
to satisfy a set of requirements to achieve the desired efficiency.

Section 3.1 presents the article entitled Interactive Learning for Multime-
dia at Large, published in the proceedings of the 42nd European Conference on
Information Retrieval (ECIR 2020) [54]. This article introduces the requirements
for a large scale interactive learning approach together with high-dimensional index-
ing, and proposes the initial version of Exquisitor as the approch that best satisfies
these requirements. Exquisitor uses the foundation of Blackthorn; user relevance
feedback with a linear SVM classifier, along with a comprehensible compressed rep-
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resentation. The high-dimensional index that is deemed most fitting for interactive
learning is the extended Cluster Pruning (eCP). eCP is an index that has primarily
been used for nearest-neighbor search to a point, which is not how relevant items
are found using decision boundaries of the SVM’s hyperplane. To find the most
relevant items for an SVM’s hyperplane, farthest-neighbor queries to a plane need
to be supported. Exquisitor uses a modified version of the eCP that supports k-FN
queries to a plane and integrates the compressed representations of the multimedia
items. To evaluate the capabilities of the initial Exquisitor approach, with regards
to classifier adaptability and performance at scale, two evaluation protocols are
used for the ImageNet and YFCC100M collections, which are image collections
consisting of 14M and 100M items respectively. The results of this evaluation show
that the linear SVM is capable of adapting towards new/unknown knowledge, and
the performance of the eCP index achieves similar or improved quality. In terms
of response time and lowering resource requirements for collections at YFCC100M
scale, the approach achieves an average response time of 0.3 seconds using only
on a single CPU-core, which is 0.9 seconds faster and with 16x less resources than
Blackthorn. While these results do establish the initial version of Exquisitor as the
new state of the art, the evaluations used do not consider human user behavior,
when it comes to interactions with interactive learning systems.

In the evaluation protocols used for interactive learning, the items are labeled
based on the ground truth set, where anything in it is positive and everything else
is negative. In a real interactive learning session, the number of items one user
perceives as positive and negative may be different to what another user perceives.
Furthermore, a real user will also label non-relevant items as positive to steer
the model into the desired direction of relevant items. For more search-oriented
tasks, users typically have the option to apply filters to reduce number of items
being considered. Filters are set based on a user’s knowledge of the collection,
where a novice user may apply filters that do not significantly reduce the scope,
an experienced user may know of filters that fit better for a given task. It is
important to understand the effects of the different ways a user can interact with
an interactive learning approach, to enhance existing features or reveal the need
for additional features.

Section 3.2 presents the article entitled Impact of Interaction Strategies
on User Relevance Feedback, published in the proceedings of the International
Conference on Multimedia Retrieval (ICMR 2021) [53]. This work defines a set
of labeling and filtering strategies, with the former based on observations from
real user sessions and existing protocols, and the latter based on different levels of
knowledge of a collection. To evaluate these strategies, new evaluation protocols
are defined where the tasks focus either on finding one relevant item or all relevant
items from the ground truth. The artificial users in these protocols label positive



29

examples based on a distance from an item to the ground truth items. The analysis
of this work refutes the common assumption of more training examples always being
beneficial. It also indicates that arbitrary selection of negatives from the collection
is valid for tasks with many similar non-relevant items, and shows that aggressive
filtering by users with lesser knowledge of the collection can lead to excluding
relevant items. There are still aspects of interactions that these new evaluation
protocols do not consider, but they shed light on the fact that the human user is
a major factor in these approaches, both in terms of effecting quality and time to
complete a task.

For large collections, users are not presented with all relevant items for their
query, but a smaller subset of the top relevant items, as to avoid overwhelming them
and to reduce time spent on considering which item to label what. If the user has
a search-oriented task in mind, they may wish to apply constraints in the form of
filters, to narrow the search space. One of the major reasons behind Exquisitor’s
performance is the high-dimensional index. A common trait in approximate high-
dimensional indexing is to split the data into smaller areas and only process a
limited number of those areas during retrieval, constituting a responsive approach.
To maintain a quick response time, filters are only applied on the items from the
selected areas. With a limited number of areas, applying filters may lead to no
suggestions being found. Returning no suggestions is acceptable if there are no
items in the collection that pass the applied filters, but for approximate high-
dimensional indexes this is not ensured since only a subset of the collection is
considered. Ensuring that all items are checked when aggressive filters are applied,
requires the ability to expand the search space; considering items from additional
smaller areas, when the set of suggestions is small or empty. The expansion needs
to be done through increments, to avoid unnecessarily processing a large number
of items, but this incremental retrieval approach can increase response time if it
has to expand the scope multiple times. To alleviate multiple expansions, query
optimisation policies can be used based on the information of an area’s items, to
establish whether or not it is worth processing. This way, only areas that contain
one or more items passing the filters will be processed.

Section 3.3 presents a journal article entitled Exquisitor: Responsive, Ac-
curate, Flexible and Scalable Interactive Learning for Multimedia, which
has been submitted to IEEE Transaction on Multimedia on the 25th of December
2021, and is under peer review at the time of writing (July 2022). In this article,
Exquisitor is extended with a priority queue to support incremental retrieval, and
uses query optimisation policies based on information of filters and observed items
within clusters in the eCP index. Note that this is an expansion and revision of
the article presented in Section 3.1. To truly check Exquisitor’s ability to find
relevant items when filters are applied, the evaluation protocols from the article in
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Section 3.2 are used. Since Exquisitor has a major focus on being efficient at scale,
the relatively small collections from the article in Section 3.2 are combined with the
large-scale YFCC100M collection. From the evaluation, we observe that without
incremental retrieval and query optimisation policies (the initial Exquisitor version)
the time per interaction round is the fastest. However, as the initial version only
has a fixed scope, relevant items fall out of the scope when filters are applied which
leads to no suggestions being returned, halting the interactive session. Enabling
incremental retrieval, as expected expands the scope and manages to find relevant
items, but it does increase the average latency to around 1 second. The increase in
latency is alleviated through the various query optimisation policies. With these
additions to Exquisitor, it is shown to be capable of supporting both exploration-
and search-oriented tasks at scale in interactive times.

Majority of the work has primarily focused on the interactive learning and
index performance with visual semantic concepts from images. For the evaluation
with YFCC100M, the metadata from the images has been used to define LDA-
topics as a representation for the textual modality. In Exquisitor each modality
representation of visual semantic concepts and the LDA-Topics are stored in their
own index. During the retrieval process, late fusion by rank aggregation is used
to combine the results from each modality. There is a major disparity between
the quality of the two modality representations, with some images not containing
any viable metadata, and others having very little of it. With this disparity and
a fusion approach that attempts to treat modalities equally, the suggestions from
the textual modality have a high chance of being unrelated items. In such cases,
it is safer to discard the representation from the interactive learning process and
primarily use it for search or for filters. While semantic concepts can be a good
representation for the visual content of an image, however, it may not be enough
for a video. In a video many things can be occurring, which can relate to concepts,
actions, scenery, or audio, all of which may be useful during the interactive learning
process. Typically, in these cases, fusion is used to combine the information from
the representations to get suggestions. However, the relation between modalities
both in terms of quality and in terms of relevance to a given task can be difficult
to determine.

Section 3.4 presents the article entitled Influence of Late Fusion of High-
Level Features on User Relevance Feedback for Videos, which has been
submitted to the 2nd International Workshop on Interactive Multimedia Retrieval
(IMuR 2022) on the 7th of July 2022, and is under peer-review at the time of
writing (July 2022). In this article, several late fusion methods with user relevance
feedback have been used to solve tasks on three video collections, using the modal-
ities of semantic concepts, actions, scenes, and audio. The first late fusion method
uses a rank aggregation, where the result set from each modality representation is
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combined based on an aggregate score derived from their ranks in each represen-
tation. A variation of this is weighted rank aggregation, which depicts the case
of a task leaning towards a specific modality and the user setting a preference for
that modality, leading to its rank weighing more in the fusion. Other approaches
considered are no fusion by dividing the suggestion set into top items from each
modality, and partial fusion where the suggestion set consists of fused and non-
fused items. The outcome from this work shows that fusion is beneficial, but the
presence of weaker modalities can negatively effect the quality. Similarly, setting a
preference on a modality is only good when it is on the right modality for a task.
Partial fusion is generally better when it is difficult to determine a modality pref-
erence for a task. Based on this work, it is safe to say that including all modalities
is not always good, and that modalities that work well for one collection, may not
work well on others. Thus, when employing multiple modalities with Exquisitor,
using partial fusion, along with giving the user an option for preferring modality,
may improve the overall interactive learning experience.
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Abstract. Interactive learning has been suggested as a key method for
addressing analytic multimedia tasks arising in several domains. Until
recently, however, methods to maintain interactive performance at the
scale of today’s media collections have not been addressed. We propose
an interactive learning approach that builds on and extends the state of
the art in user relevance feedback systems and high-dimensional index-
ing for multimedia. We report on a detailed experimental study using
the ImageNet and YFCC100M collections, containing 14 million and 100
million images respectively. The proposed approach outperforms the rel-
evant state-of-the-art approaches in terms of interactive performance,
while improving suggestion relevance in some cases. In particular, even
on YFCC100M, our approach requires less than 0.3 seconds per interac-
tion round to generate suggestions, using a single computing core and
less than 7GB of main memory.
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1 Introduction

A dominant trend in multimedia applications for industry and society today is
the ever-growing scale of media collections. As the general public has been given
tools for unprecedented media production, storage and sharing, media generation
and consumption have increased drastically in recent years. Furthermore, up-
coming multimedia applications in countless domains—from smart urban spaces
and business intelligence to health and wellness, lifelogging, and entertainment—
increasingly require joint modelling of multiple modalities [20, 47]. Finally, users
expect to be able to work very efficiently with large-scale collections, even with
the limited computing resources they have at their immediate disposal. All these
trends contribute to making scalability a greater concern than ever before.

User relevance feedback, a form of interactive learning, provides an effective
mechanism for addressing various analytic tasks that require alternating between
search and exploration. Figure 1 shows an example of such a relevance feedback
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Fig. 1: An outline of the user relevance feedback approach proposed in this paper. The
shaded area indicates that the traditional relevance feedback pipeline is enhanced with
a novel query mechanism to a state-of-the-art cluster-based high-dimensional index.

process, where positive and negative relevance judgments from the user are used
to train a classifier, which in turn is used to provide new suggestions to the
user, with the process continuing until the user completes the interaction. There
has been relatively little work on user relevance feedback and truly scalable and
interactive multimedia systems in general in the last decade, however, which
recently raised serious concerns in the multimedia community [39]. Clearly, the
time has come to re-visit interactive learning with an aim towards scalability.

We propose Exquisitor, a highly scalable and interactive approach for user
relevance feedback on large media collections. As illustrated in Figure 1, the
proposed approach tightly integrates high-dimensional indexing with the inter-
active learning process. To the best of our knowledge, our approach is the first
scalable interactive learning method to go beyond utilizing clustering in the pre-
processing phase only. To evaluate the approach, we propose a new zero-shot
inspired evaluation protocol over the ImageNet collection, and use an existing
protocol for the large-scale YFCC100M collection. We show that our approach
outperforms state-of-the-art approaches in terms of both suggestion relevance
and interactive performance. In particular, our approach requires less than 0.3
seconds per interaction round to generate suggestions from the YFCC100M col-
lection, using a single CPU core and less than 7GB of main memory.

The remainder of this paper is organized as follows. In Section 2, we discuss
interactive learning from a scalability perspective, setting the stage for the novel
approach. In Section 3, we then present the proposed approach in detail, and
compare its performance to the state of the art in Section 4, before concluding.

2 Related Work

As outlined in the introduction, combining interactive learning with high di-
mensional indexing is a step towards unlocking the true potential of multimedia
collections and providing added value for users. In this section we first describe
the state of the art in interactive learning. Then, based on the identified ad-
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vantages and limitations of interactive learning algorithms, we provide a set of
requirements that high-dimensional indexing should satisfy for facilitating inter-
activity on extremely large collections. Finally, we use those requirements for
reflecting on the state of the art in high-dimensional indexing.

Interactive Learning: Interactive learning has long been a cornerstone of fa-
cilitating access to document collections [1, 18, 27, 16] and it became an essential
tool of multimedia researchers from the early days of content-based image and
video retrieval [36, 15]. The most popular flavour of interactive learning is user
relevance feedback that presents the user, in each interaction round, with the
items for which the classification model is most confident [36]. User relevance
feedback has frequently been used in the best performing entries of benchmarks
focusing on interactive video search and exploration [28, 41]. However, those so-
lutions were designed for collections far smaller than YFCC100M, which is the
challenge we take in this paper. Linear models for classification, such as Linear
SVM are still amongst the most frequent choices in relevance feedback appli-
cations [22, 31, 48] due to their simplicity, interpretability and explainability as
well as the ability to produce accurate results with few annotated samples and
scale to very large collections.

To the best of our knowledge, Blackthorn [48] is the most efficient interactive
multimodal learning approach in the literature. Its efficiency is achieved through
adaptive data compression and feature selection, multi-core processing, and a
classification model capable of scoring items directly in the compressed domain.
Compared to product quantization [17], a popular alternative optimized for k-
NN search, Blackthorn was found to yield significantly more accurate results
over YFCC100M with similar latency (1.2 seconds), while consuming modest
computational resources (16 CPU cores with 5 GB of main memory).

Indexing Requirements: We have identified the following requirements for
high-dimensional indexing to enhance the performance of interactive learning:

R1 Short and Stable Response Time: A successful indexing approach in interac-
tive learning combines good result quality with response time guarantees [44].

R2 Preservation of Feature Space Similarity Structure: Since interactive classi-
fiers compute relevance based on a similarity structure on the feature space,
the space partitioning of the high-dimensional indexing algorithm must pre-
serve this similarity structure.

R3 k Farthest Neighbours: Relevance feedback approaches typically try to in-
form the user by presenting the most confidently relevant items based on
the judgments observed so far, which are the items farthest from the clas-
sification boundary. As results are intended for display on screen, the index
should thus return k farthest neighbours (k-FN).

We are not aware of any work in the high-dimensional literature targeting ap-
proximate k-FN where the query is a classification boundary. We therefore next
review the related work and discuss how well different classes of high-dimensional
indexing methods can potentially satisfy these three requirements.
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High-Dimensional Indexing Scalable high-dimensional indexing methods
generally rely on approximation through some form of quantization. One class
of methods uses scalar quantization. The NV-tree, for example, is a large-scale
index that uses random projections at its core [25, 26], recursively projecting
points onto segmented random lines. LSH is another indexing method that uses
random projections acting as locality preserving hashing functions [2, 8]. Re-
cently, multimedia researchers have considered hashing for multimedia applica-
tions, but typically at a much smaller scale than considered here [13, 29, 42].
LSH has been considered in the context of hyperplane-based nearest-neighbour
queries [5, 45] and point-based farthest-neighbour queries [7, 32, 46], but not in
the context of hyperplane-based farthest-neighbour queries. We argue that LSH
and related methods fail to satisfy the three requirements above: they focus on
quality guarantees rather than performance guarantees (R1); hashing creates
“slices” in high-dimensional space, making ranking based on distance to a deci-
sion boundary difficult (R2); and they typically focus on ε-range queries, giving
no guarantees on the number of results returned (R3).

A second class of methods is based on vector quantization, typically using
clustering approaches, such as k-means, to determine a set of representative
feature vectors to use for the quantization. These methods create Voronoï cells
in the high-dimensional space, which satisfy R2 well. Some methods, such as
BoW-based methods, only store image identifiers in the clusters, thus failing to
support R3, while others store the entire features, allowing to rank the results
from the farthest clusters. Finally, many clustering methods seek to match well
the distribution of data in the high-dimensional space. Typically, these methods
end with a large portion of the collection in a single cluster, which in turn takes
very long to read and score, thus failing to satisfy R1 [12].

Product quantization (PQ) [17] and its variants [4, 10, 14] cluster the high-
dimensional vectors into low-dimensional subspaces that are indexed indepen-
dently. PQ better captures the location of points in the high-dimensional space,
which in turn improves the quality of the approximate results that are returned.
One of the main aims of PQ is data compression, however, and PQ-based meth-
ods essentially transform the Euclidean space, complicating the identification
of furthest neighbours (R2). PQ-compression was compared directly with the
Blackthorn compression method designed for interactive learning [48] and was
shown as having inferior performance. The extended Cluster Pruning (eCP) al-
gorithm [11, 12], however, is an example of a vector quantifier which attempts to
balance cluster sizes for improved performance, thus aiming to satisfy all three
requirements; we conclude that eCP is our prime candidate.

3 The Exquisitor Approach

In this section, we describe Exquisitor, a novel interactive learning approach
that tightly integrates high-dimensional indexing with the interactive learning
process, facilitating interactive learning at the scale of the YFCC100M image
collection using very moderate hardware resources. Figure 1 shows an outline of
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the Exquisitor approach. We start by considering the multimodal data represen-
tation and classifier, before describing the indexing and retrieval algorithms in
separate sub-sections. To facilitate the exposition in this section, we occasionally
use actual examples from the YFCC100M collection.

3.1 Media Representation and Classification Model

Similar to [48], we choose to represent each image with two semantic feature
vectors, one for visual content using deep-learning-based feature vectors and the
second for textual content by extracting LDA topics from any textual metadata
associated with the images. Although more descriptive approaches for extracting
text features exist, in this case the LDA is effective in yielding discriminative
representation for different items.

Directly working with these representations, however, is infeasible. In our
case, using 1,000 and 100 dimensions for the visual and text domains, respec-
tively, the feature vectors would require 8.8KB of main memory per image, or
around 880GB for the YFCC100M collection, which is far beyond the storage
capacity of typical hardware. We use the data compression method presented in
[48] that preserves semantic information with over 99% compression rate.

Consistent with the state of the art in user relevance feedback, the classi-
fier used in Exquisitor is Linear SVM. The choice is further motivated by the
algorithm’s speed, reasonable performance and compatibility with the sparse
compressed representation. Note that the choice of interactive classifier and fea-
tures in each respective modality made in this paper is not an inherent setting of
Exquisitor; they can be replaced as deemed fit. The choices made in this paper
are in line with the choices made in the state of the art Exquisitor competes
against (most notably [48]), providing a level field for experimental evaluation.

3.2 Data Indexing

The data indexing algorithm used in Exquisitor is based on the extended Cluster
Pruning (eCP) algorithm [12]. As motivated in Section 2, the goal is to individ-
ually cluster each of the two feature representations with a vector quantizer,
using a hierarchical index structure to facilitate efficient selection of clusters to
process for suggestions. For each collection, cluster representatives are selected
randomly and clusters are formed by assigning images to the nearest cluster
based on Euclidean distance, computed efficiently directly in compressed space.
The indexing algorithm recursively selects 1% of the images at each level as rep-
resentatives for the level above, until fewer than 100 representatives remain to
form the root of the index. As an example, the bottom level of the index for each
modality in the YFCC100M collection consists of 992, 066 clusters, organized in
a 3 level deep index hierarchy, which gives on average 100 images per cluster
and per internal node. When building the indices, the average cluster size was
chosen to be small, as previous studies show that searching more small clusters
yields better results than searching fewer large clusters [11, 40].
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3.3 Suggestion Retrieval

The retrieval of suggestions has the following three phases: identify b most rele-
vant clusters, select r most relevant candidates per modality, and fuse modalities
to retrieve k most relevant suggestions.6

Identify b Most Relevant Clusters: In each interaction round, the index of
representatives is used to identify, for each modality, the b clusters most likely
to contain useful candidates for suggestions. This search expansion parameter,
b, affects the size of the subset that will be scored and can be used to balance
between search quality and latency at run-time. All cluster representatives are
scored by the interactive classifier and the b clusters farthest from the separating
plane in the positive direction are selected as the most relevant clusters. In
Section 4.3 we evaluate the effects of b on the YFCC100M collection.

We observe that with the YFCC100M collection, both modalities have 1-2
clusters that are very large, with more than 1M items. These clusters require a
significant effort to process, without improving suggestion quality. In the exper-
iments reported here, we have therefore omitted clusters larger than 1M.

Select r Most Relevant Candidates per Modality: Once the most rele-
vant b clusters have been identified, the compressed feature vectors within these
clusters are scored to suggest the r most relevant media items for each modality.
The method of scoring individual feature vectors is the same as when selecting
the most relevant clusters.

Some notes are in order here. First, in this scoring phase, media items seen in
previous rounds are not considered candidates for suggestions. Second, an item
already seen in the first modality is not considered as a suggestion in the second
modality. Third, if all b clusters are small, the system may not be able to identify
r candidates, in which case it simply returns all the candidates found. Finally, we
observe that treating all b clusters equally results in an over-emphasis on items
that score very highly in only one modality, but have a low score in the other
modality. This can be troublesome if the relevant items have a decent score in
both modalities. By segmenting the b clusters into Sc segments of size b/Sc this
dominance can be avoided; we explore the impact of Sc in Section 4.3.

Modality Fusion for k Most Relevant Suggestions: Once the r most rel-
evant candidates from each modality have been identified, the modalities must
be fused by aggregating the candidate lists to produce the final list of k sugges-
tions. First, for each candidate in one modality, the score in the other modality
is computed if necessary, by directly accessing the compressed feature vector,
resulting in 2r candidates with scores in both modalities.7 Second, the rank of
each item in each modality is computed by sorting the 2r candidates. Finally,
the average rank is used to produce the final list of suggestions.
6 In the case of unimodal retrieval, the latter two phases can be merged.
7 To facilitate late modality fusion, the location of each feature vector in each cluster
index is stored; each vector requires ∼800KB of RAM for the YFCC100M collection.
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Multi-Core Processing: If desired, Exquisitor can take advantage of multiple
CPU cores. With w cores available, the system creates w worker processes and
assigns b/w clusters to each worker. Each worker produces r suggestions in each
modality and fuses the two modalities into k candidates, as described above.
The top k candidates overall are then selected by repeating the modality fusion
process for the suggestions produced by the workers.

4 Experimental Evaluation

In this section, we experimentally analyse the interactive performance of Exquisi-
tor. We first outline the baseline comparison architectures from the literature.
We then describe two detailed experiments. In the first experiment, we pro-
pose a new experimental protocol for interactive learning based on the popu-
lar ImageNet benchmark dataset, and show that a) the Linear SVM model is
capable of discovering new classes in the data, and b) with high-dimensional
indexing, performance is significantly improved. In the second experiment, we
then use a benchmark experimental protocol from the literature defined over
the YFCC100M collection, and show that at this scale the Exquisitor approach
outperforms the baseline architectures significantly, both in terms of retrieval
quality and interactive performance.

4.1 Baseline Approaches

In the experiments we compare Exquisitor with the following state-of-the-art
approaches from the literature.
Blackthorn: To the best of our knowledge, Blackthorn [48] is the only direct

competitor in the literature for interactive learning at the YFCC100M scale.
Unlike Exquisitor, Blackthorn uses no indexing or prior knowledge about
the structure of the collection, instead using data compression and multi-
core processing for scalability.

kNN+eCP: This baseline is representative of pure query-based approaches
using a k-NN query vector based on relevance weights [34, 23], an approach
that was initially introduced for text retrieval [35] but has been adapted for
CBIR with relevance feedback [37].

SVM+LSH, kNN+LSH: These baselines represent SVM-based and k-NN-
based approaches using LSH indexing. We replace the eCP index with a
multi-probing LSH index [30] using the FALCONN library [3].

All comparison architectures are compiled with g++. Experiments are performed
using dual 8-core 2.4 GHz CPUs, with 64GB RAM and 4TB local SSD storage.
Note, however, that even the YFCC100M collection requires less than 7GB of
SSD storage and RAM, and most experiments use only a single CPU core.

While tuning LSH performance is difficult, due to the many parameters that
interact in complex ways (L is the number of tables, B is the number of buckets
in each table, and p is the number of buckets to read from each table at query
time), we have strived to find parameter settings that a) lead to a similar cell
size distribution as eCP and b) yield the best performance.
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4.2 Experiment 1: Discovering ImageNet Concepts

Zero-shot learning is a method which trains a classifier to find target classes
without including the target classes when training the model. Taking inspiration
from zero-shot learning, the objective of this experiment is to simulate a user
that is looking for a concept that is on their mind, but is not directly represented
in the data; a successful interactive learning approach should be able to do this.

Image Collection: ImageNet is an image database based on the WordNet
hierarchy. It is a well-curated collection targeting object recognition research as
the images in the collection are categorized into approximately 21,000 WordNet
synsets (synonym sets) [9]. The collection contains 14,198,361 images, each of
which is represented with the 1,000 ILSVRC concepts [38]. Due to images being
categorized into multiple WordNet synsets, the ImageNet collection contains
duplicate images, each labelled differently, which can lead to false negatives.

Experimental Protocol: The protocol for the experiment is constructed by
randomly selecting 50 concepts from the 1,000 ILSVRC concepts. For each con-
cept a simulated user (henceforth called actor) is created, which knows which
images belong to its concept and is charged with the task of finding items belong-
ing to that concept. We have then created and indexed 5 different collections of
visual features, where the feature value of the concepts belonging to 10 different
actors have been set to 0 to introduce the zero-shot setting.

The workload for each actor proceeds as follows. Initially, 10 images from
the concept and 100 random images are used as positive and negative exam-
ples, respectively, to create the first round of suggestions, simulating a situation
where the exploration process has already started. In each round of the interac-
tive learning process, the actor considers the suggested images from the system
and designates images from its concept as positive examples, while 100 addi-
tional negative examples are drawn randomly from the entire collection. This is
repeated for 10 interaction rounds, with performance statistics collected in each
round. To combat the duplicate images problem, we first run the workload using
the original data where the concepts are known in order to establish an upper
bound baseline for each approach.

Results: Figure 2 compares the average precision across the 10 rounds for each
of the approaches under study, for both the case when the concept is known
(blue columns) and unknown (red columns). For Exquisitor and eCP+kNN, the
search expansion parameter b is set to 256, while SVM+LSH and kNN+LSH
have the following settings for the LSH index: L = 10, B = 214, and p = 20.

Overall, the figure shows that precision for the known case is nearly 50% on
average for the SVM-based approaches, and only slightly lower for the k-NN-
based approaches. When the feature value for the actor’s concept is not known,
however, the average precision drops only slightly for the SVM-based approaches,
while the k-NN-based approaches perform very poorly. These results indicate
that the Linear-SVM model is clearly superior to the k-NN approach.
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Fig. 2: Average precision per round across all
ImageNet actors for each interactive learning
approach. The blue columns depict the known
case, while the red depict the unknown case.

Table 1: Average latency per
interaction round across all
ImageNet actors.

Approach Latency

Exquisitor 0.008 s
Blackthorn (1w) 0.130 s
Blackthorn (16w) 0.017 s
SVM+LSH 0.008 s
kNN+eCP 0.008 s
kNN+LSH 0.004 s

Turning to the average time required for each iteration of the learning pro-
cess, Table 1 compares the approaches under study. Overall, we note that the
four approaches relying on high-dimensional indexing perform very well using a
single computing core, requiring less than 10 milliseconds to return suggestions.
At the moderate scale of the ImageNet collection, eCP and LSH perform sim-
ilarly. Running Blackthorn with 16 cores is 2x slower, however, while running
Blackthorn using a single core is about 16x slower.

As mentioned above, precision is impacted by the ImageNet collection itself
containing duplicates. A visual inspection of the results of some of the worst-
performing actors suggest that with known data, the majority of the non-relevant
images are such duplicates. For the unknown case, a similar trend is seen for the
SVM-based approaches, but not for the k-NN-based approaches, which clearly
are unable to steer the query vectors for suggestions to a more relevant part of
the collection. Figure 3 shows some examples of this, for the actor for concept
“knee pad”. As the figure shows, with any SVM-based approach the irrelevant
images are also knee pads, but tagged to another related concept, while for the
k-NN-based approach, no relevant images were found and the irrelevant images
bear no relationship to knee pads.

4.3 Experiment 2: Performance at YFCC100M Scale

The goal of this experiment is to study the scalability of the Exquisitor approach,
in comparison to the baseline approaches from the literature. To that end, we
apply the only interactivee learning evaluation protocol from the literature that
we are aware of at YFCC100M scale [48].

Collection: The YFCC100M collection contains 99,206,564 Flickr images, their
associated annotations (i.e. title, tags and description), a range of metadata
produced by the capturing device, the online platform, and the user (e.g., geo-
location and time stamps). The visual content is represented using the 1,000
ILSVRC concepts [38] extracted using the GoogLeNet convolutional neural net-
work [43]. The textual content is encoded by a) treating the title, tags, and
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Fig. 3: Examples of relevant and irrelevant suggestions for different approaches for the
ImageNet actor for the concept “knee pad”.

description as a single text document, and b) extracting 100 LDA topics for
each image using the gensim toolkit [33].

The YFCC100M collection, being large and uncurated, displays some inter-
esting phenomena worth mentioning. First, a non-trivial proportion of images
are a standard Flickr “not found” image.8 A similar situation arises in the text
modality, with many images lacking text information altogether, resulting in
zero-valued vectors. Such images are essentially noise, potentially crowding out
more suitable candidates. Second, with the collection being massive and the data
being compressed and clustered, discriminativeness of feature vectors becomes a
problem: non-identical images may be mapped to identical feature vectors.

Experimental Protocol: For this experiment we follow the experimental in-
teractive learning protocol in [48]. This evaluation protocol is inspired by the
MediaEval Placing Task [24, 6], in which actors simulating user behaviour look
for images from 50 world cities.

To illustrate the tradeoffs between the interactive performance and result
quality, we focus our analysis on precision and latency (response time) per inter-
action round. It is worth noting that due to both the scale of YFCC100M and
its unstructured nature, precision is lower than in experiments involving small
and well-curated collections.

Impact of Search Expansion Parameter: We start by exploring the impact
of the search expansion parameter b for the eCP index. Figure 4 analyses the
impact of b, the number of clusters read and scored, on the precision (fraction
of relevant items seen) in each round of the interactive exploration. The x-axis
shows how many clusters are read for scoring at each round, ranging from b = 1
to b = 512 (note the logarithmic scale of the axis), while the y-axis shows the
average precision across the first 10 rounds of analysis. The figure shows precision
for two Exquisitor variants, with Sc = 1 and Sc = 16. In both cases, only one
worker is used, w = 1. For comparison, the figure also shows the average precision
for Blackthorn, the state-of-the-art SVM-based alternative.

As Figure 4 shows, result quality is surprisingly good when scoring only a
single cluster in each interaction round, returning about two-thirds of the pre-
8 The image collection was actually downloaded very shortly after release, but already
then this had become a significant issue.
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cision of the state-of-the-art algorithm. As more clusters are considered, quality
then improves further. As expected, dividing the b clusters into Sc = 16 chunks
results in better quality, an effect that becomes more pronounced as b grows.
In particular, with b = 256, Exquisitor returns significantly better results than
Blackthorn. The reason is that by assigning the b relevant clusters to Sc = 16 seg-
ments, Exquisitor is able to emphasize the bi-modal media items as explained in
Section 3.3. Note that as further clusters are added with Exquisitor (b = 512 and
beyond), the results become more and more similar to the Blackthorn results.

Figure 5, on the other hand, shows the latency per interaction round. The
figure again shows the two Exquisitor variants, with Sc = 1 and Sc = 16; in
both cases, one worker is used, w = 1. For comparison, as before, it also shows
the average latency for Blackthorn (with 16 CPU cores). Unsurprisingly, Fig-
ure 5 shows linear growth in latency with respect to b (recall the logarithmic
x-axis). With b = 256, each interaction round takes less than 0.3 seconds with
Sc = 16, and about 0.17 seconds with Sc = 1. Both clearly allow for interactive
performance; the remainder of our experiments focus on b = 256. If even shorter
latency is desired, however, fewer clusters can be read: b = 32, for example,
also gives a good tradeoff between latency and result quality. This latency is
produced using only a single CPU core, meaning that the latency is ∼4x better
than Blackthorn, with 16x fewer computing cores, for an improvement of ∼64x,
or nearly two orders of magnitude. With this knowledge we see b as a parameter
that is determined by collection size and the task a user is dealing with, but, as
a general starting point we recommend b = 256 for large collections.

Comparison: Figure 6 shows the tradeoff between result quality, measured
by average precision across 10 rounds of interaction, and the average latency
required to produce the suggestions in each round. For Exquisitor, the figure es-
sentially summarizes Figures 4 and 5. For kNN+eCP, the dots represent the same
b parameter values, while for the LSH-based approaches a variety of parameter
values are represented. The figure clearly demonstrates that Exquisitor is the
best approach in both precision and response time compared to all the baseline
approaches, achieving better precision than Blackthorn, requiring less than 0.3
seconds compared to Blackthorn’s 1.2 seconds. Both k-NN-bases approaches get
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stuck at 6% which is to be expected since the k-NN query narrows down the
scope of the search making it impossible to get out of local optima. SVM+LSH
performs better, with precision nearly as good as Blackthorn and response time
close to Exquisitor. Overall, however, Exquisitor performs better partly due to
being able to utilize the SVM during cluster selection with k-FN queries, and
partly due to the cluster segments allowing better multi-modal results.

5 Conclusions

In this paper, we presented Exquisitor, a new approach for exploratory analysis
of very large image collections with modest computational requirements. Exquisi-
tor combines state-of-the-art large-scale interactive learning with a new cluster-
based retrieval mechanism, enhancing the relevance capabilities of interactive
learning by exploiting the inherent structure of the data. Through experiments
conducted on YFCC100M, the largest publicly available multimedia collection,
Exquisitor achieves higher precision and lower latency, with less computational
resources. Additionally, through a modified zero-shot learning experiment on
ImageNet, we determine the Exquisitor approach to be excellent at solving cum-
bersome classification tasks. Exquisitor also introduces customizability that is,
to the best of our knowledge, previously unseen in large-scale interactive learning
by: (i) allowing a tradeoff between low latency (few clusters) and high quality
(many clusters); and (ii) combatting data skew by omitting huge (and thus likely
nondescript) clusters from consideration. Exquisitor has recently been used suc-
cessfully in interactive media retrieval competitions such as the Lifelog Search
Challenge [21] and Video Browser Showdown [19]. In conclusion, Exquisitor pro-
vides excellent performance on very large collections while being efficient enough
to bring large-scale multimedia analytics to standard desktops and laptops, and
even high-end mobile devices.
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ABSTRACT
User Relevance Feedback (URF) is a class of interactive learning
methods that rely on the interaction between a human user and
a system to analyze a media collection. To improve URF system
evaluation and design better systems, it is important to understand
the impact that different interaction strategies can have. Based
on the literature and observations from real user sessions from
the Lifelog Search Challenge and Video Browser Showdown, we
analyze interaction strategies related to (a) labeling positive and
negative examples, and (b) applying filters based on users’ domain
knowledge. Experiments show that there is no single optimal la-
beling strategy, as the best strategy depends on both the collection
and the task. In particular, our results refute the common assump-
tion that providing more training examples is always beneficial:
strategies with a smaller number of prototypical examples lead to
better results in some cases. We further observe that while expert
filtering is unsurprisingly beneficial, aggressive filtering, especially
by novice users, can hinder the completion of tasks. Finally, we
observe that combining URF with filters leads to better results than
using filters alone.
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Figure 1: Our proposal for an automated evaluation process
to understand the impact of user interaction strategies: We
create artificial users that label suggestions from the collec-
tions using different strategies and apply metadata filters
based on different levels of domain knowledge.

1 INTRODUCTION
Interactive Learning (IL) is a multimedia retrieval approach, where
a user and system work together to build a model in order to satisfy
a user information need [8, 9, 16, 19, 36, 37]. The system presents
users with media items from a collection that they label as positive
or negative, only positive [25], or only negative [31]. The labeled
items are then used to train a classifier that is deployed to retrieve
new suggestions. Some IL systems provide additional features, such
as: filters to focus on subcollections; text search to find positive
examples; or advanced browsing features, such as an event timeline.
IL is a continuous process that stops when the user considers the
task to be complete. User Relevance Feedback (URF) is a variation
of IL that focuses on quick convergence of the user’s information
need by providing the most relevant items from the system’s model
in each interaction round. Active Learning, another variation of
IL, suggests items from the collection that are most valuable to
improve the model, rather than the most relevant ones [12]. Since
we are focusing on scenarios where the user is seeking relevant
items, we focus on URF.

Traditionally, evaluation of URF focuses on measuring the clas-
sification performance of the model used to retrieve items [11, 29,
34, 35]. Recently, automated evaluation protocols have been used
to evaluate URF systems with a focus on artificial users [16, 23, 36]
for large multimedia collections. However, these are based on one
interaction strategy where the artificial user labels relevant items
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as positives and the system labels everything else as negatives. In-
tuitively, when using URF systems, a common assumption is that
more positive examples build a better model.

We conjecture that for many tasks it may be beneficial to have
a smaller set of stronger positive examples. Understanding when
to prefer one interaction strategy over another can greatly reduce
the time of convergence for an information need. To garner this
understanding, the first thought might be to conduct user studies.
However, user studies are expensive and allow users too much
freedom which makes them impractical for fine-tuning models and
analyzing the impact of specific interaction strategy. To evaluate
URF systems with an emphasis on understanding the impact of
interaction strategies, an automated approach is necessary.

This paper uses such an automated approach to analyze the im-
pact of different interaction strategies for URF systems. First, we
define several strategies for labeling positive and negative examples
and study their impact on result quality. Second, we explore the
impact of 4 classes of artificial users applying filters based on their
level of domain knowledge. To evaluate the interaction strategies,
we define automated evaluation protocols based on three multime-
dia collections, two from the interactive search challenges Lifelog
Search Challenge [10] and Video Browser Showdown [28], and one
for VOPE-8hr [39], a domain-specific forensic research collection.
Figure 1 outlines the proposed evaluation process, where artificial
users use the strategies to guide the relevance feedback process.

The knowledge gained from analyzing these interaction strate-
gies can benefit the training of new users of URF systems, as well
as help experienced users improve their performance on specific
tasks. It could also be incorporated into systems as a feature to auto-
matically suggest suitable interaction strategies for different tasks.
Specifically, this paper contributes three best practice guidelines:

(1) Labeling strategies impact results significantly, in particular,
strategies with more examples are not always better.

(2) Adding URF is always as good or better than just using filters.
(3) While filtering is often beneficial, overly aggressive filtering

can adversely affect the ability to complete tasks.

2 RELATEDWORK
User Relevance Feedback has been used since the 1960s to im-
prove queries for information retrieval [24] and saw a boom in the
1990s and 2000s for multimedia retrieval [11, 12, 29, 33–35]. Later,
it started fading as hash based approaches [20], product quantiza-
tion [13], and deep learning models [7, 32, 40] were proven more
efficient for retrieval on large-scale collections. However, in recent
years the issue of scalability has largely been resolved and the
state-of-the-art URF systems for large scale multimedia retrieval
are competitive with other approaches and require fewer examples
to train their models than the supervised approaches [16, 18, 36].

Since users are central to URF systems, it is important that the
evaluation methods of these systems account for their behavior.
Early evaluation efforts for relevance feedback utilized collections
that had relevance judgement mappings between queries and asso-
ciated documents [1, 2]. This allows for automating the evaluation
process with the simulated “user” judging items based on the rele-
vance judgement mappings. This form of evaluation with optimal
users that have knowledge about the ground truth has remained

the most common form for URF systems to date. Some evalua-
tion protocols use this for labeling the suggestions as positive or
negative [6, 29]. Other evaluation protocols, especially those that
work with large-scale collections, also add additional arbitrary neg-
atives [16, 23, 25, 36]. Analytic Quality uses artificial actors which
solve an analytic task derived from an existing benchmark/user
task, measuring precision and recall over time and estimating the
user’s insight gain [38].

While the plethora of work on automated evaluations contributes
to show the effectiveness of URF systems in various fields, the
evaluation methodology only captures the behavior of a specific
interaction strategy which may not be a strategy a real user will
resort to. Aside from this there has also been work that has focused
on evaluating systems with real users [23, 26, 29, 39]. URF systems
typically showcase up to 30 images in each round and depending
on the restrictions they can label as many items as they want [29],
be limited to label a few examples [26], or only label examples as
positive [25]. These evaluations give greater insight towards user
behaviour, but they rarely generalize the interaction strategies due
to the inherently limited set of users (tens at most).

With real users, it is also important to study the impact of users
with different levels of knowledge. Dividing the users into users
with relevant or no domain knowledge, it is possible to show that
the performance of labeling examples or applying filters can be
greatly affected [10, 27, 28].

From the related work, we identify a gap between artificial users
and real users and to the best of our knowledge no work has focused
on the impact this can have when evaluating URF systems. Hence
there is a need for considering various labeling strategies that are
inspired by real users, as well as establishing different levels of
domain knowledge when applying filters.

3 USER INTERACTION STRATEGIES
To evaluate URF systems in an automated way, we need artificial
users, software agents that simulate user behaviour. Their task is to
find one or more relevant item(s) from a collection C, based on a
textual description of an information need. To achieve this, they
follow a certain strategy for labeling examples. Additionally the
users apply filters based on different levels of domain knowledge.
In the remainder of this section we propose a variety of labeling
and filtering strategies to better understand the impact the different
strategies can have on the performance of a URF system.

3.1 Labeling Strategies
The common labelling strategy of marking ground truth items
as positives and everything else as negatives [4, 14, 16, 36] may
result in a near empty set of positives and a vast set of negatives,
where some negatives might feature relevant content. Furthermore,
the task objective can involve finding all items in the relevant set,
finding as many relevant items in r rounds as possible, or stopping
once the first relevant item is encountered. To support evaluation
for the different task objectives we must define strategies that use
the ground truth items to rank suggestions and select the best
suggestions as positives.

All strategies in this paper are based on observations of URF
systems used in live interactive search challenges, in particular the
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Lifelog Search Challenge and the Video Browser Showdown [10,
15, 17, 19, 21, 28]. We assume that the collections are comprised of
images or videos represented with semantic feature vectors that can
be compared using a distance metric. Each strategy uses a distance
function with two feature vectors with semantic concepts extracted
using neural networks as input; 𝑑 (v𝑥 , v𝑚𝑎𝑥 ). The first vector is the
item from the suggestion set S𝑟 of the current interaction round 𝑟 .
The second is the max-pooled feature vector of the relevant items.
We use the Euclidean distance: it is simple, efficient, well-researched,
and works well with using a compressed representation [36].1

We have identified three major categories of labeling strategies,
Accumulative Sets, Fixed Positive Sets and Arbitrary Negative Sets,
that we now describe in detail.

3.1.1 Accumulative Sets. Continuously adding items to the positive
and negative set is a typical behavior of users that are attempting
to gradually improve the model. This leads to the first strategy.
±AccAdd — Accumulative Sets with Additions: Label the p
nearest items to v𝑚𝑎𝑥 in S𝑟 as positive, adding them to P𝑟 , the set
of positives for round 𝑟 , and label n furthest items from v𝑚𝑎𝑥 in S𝑟
as negative, adding them to N𝑟 , the set of negatives for round 𝑟 .

P𝑟 = P𝑟−1 ∪ argminp
𝑥 ∈S𝑟

(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (1)

N𝑟 = N𝑟−1 ∪ argmaxn𝑥 ∈S𝑟
(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (2)

As users keep adding to the sets, examples from earlier interac-
tion rounds may become less important or even bad for the model.
Therefore, users may start replacing items to improve the model;
this behavior is typically observed from more experienced users.
±AccRep — Accumulative Set with Replacements: The user is
allowed to replace items from the positive or negative sets if better
representatives exist in the suggestion set S𝑟 , or in the labeled sets
P𝑟−1 and N𝑟−1. The positive and negative sets at round 𝑟 have the
size 𝑝𝑟 and 𝑛𝑟 respectively.

P𝑟 = argminp𝑟
𝑥 ∈S𝑟∪P𝑟−1∪N𝑟−1

(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (3)

N𝑟 = argmaxn𝑟𝑥 ∈S𝑟∪P𝑟−1∪N𝑟−1 (𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (4)

An example of a positive example moving to the negative set
is when an early positive example becomes a negative example
as the model evolves. By replacing items, the chances of building
a stronger model is enhanced. ±AccRep is a strategy that a user
may utilize early on in a session but as the size of the positive and
negative sets increases, the task of replacing items will become too
time consuming. Therefore, even if this strategy works well, it may
not be an optimal strategy during long sessions.

Enforcing an accumulative strategy increases the chances for
overfitting the model towards certain features, which can be espe-
cially bad if erroneous items, e.g., incorrectly labeled, are added.

3.1.2 Fixed Positive Sets. Limiting the positive and negative sets
to a fixed size, where the user can only replace items after the
first round, avoids overwhelming the user with trying to replace
from large sets. Instead, such strategies solely rely on the user’s
ability to replace bad examples when better ones are encountered.
These strategies tend to be more dynamic, and are suitable for tasks
1We also experimented with Mahalanobis distance but found it to be less effective.

where the user looks for strong archetypes to model the categories
of relevance. However, limiting the sets can hurt the classification
model for tasks where more items are required.
±FixRep — Fixed Set with Replacements: Restricts the size of
both sets to p and n respectively.

P𝑟 = argminp
𝑥 ∈S𝑟∪P𝑟−1∪N𝑟−1

(𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (5)

N𝑟 = argmaxn𝑥 ∈S𝑟∪P𝑟−1∪N𝑟−1 (𝑑 (v𝑥 , v𝑚𝑎𝑥 )) (6)
Next is a hybrid strategy that users might use for extremely

descriptive tasks, where good positive examples are rare, and where
the limitation on negatives cannot train the model well enough to
find the good positive examples. By restricting the positive set to
only the strongest positives, but continuously adding to the negative
set, the model can potentially be steered towards the relevant items.
This strategy can be linked closely to negative relevance feedback
as it is mainly guided by its negative set in the initial rounds [31].
+FixRep-AccAdd—Fixed Positive Set, Accumulative Neg. Set:
Fixed positive set (Eq. 5) and accumulative negative set (Eq. 2).

3.1.3 Arbitrary Negative Sets. There is work that suggests that
spending time on labeling negatives may not be as important as
labeling positives [16, 38]. It is therefore crucial to investigate the
impact of arbitrarily choosing negatives from either the suggested
item set or the overall collection. Both use 𝑎𝑟𝑏 (X, n), a function
which selects n arbitrary elements from a media item set X. We
define two strategies, whose positive strategies follow Eq. 1.
+AccAdd-ArbLoc —Arbitrary Negative Set (Local): Label 𝑛 neg-
atives arbitrarily from S𝑟 and add them to N𝑟−1.

N𝑟 = N𝑟−1 ∪ 𝑎𝑟𝑏 (S𝑟 \ P𝑟 , n) (7)

+AccAdd-ArbGlo — Arbitrary Negative Set (Global): Label 𝑛
negatives from the entire collection C and add them to N𝑟−1.

N𝑟 = N𝑟−1 ∪ 𝑎𝑟𝑏 (C \ P𝑟 \ N𝑟−1, n) (8)

3.2 Filtering Strategies
Another aspect of interactive retrieval sessions is applying filters
to reduce the scope of the analysis. Typically, filters are set based
on metadata or features extracted from the items, and they can be
added or removed at any point during a session. The reasoning
behind the chosen filters can vary between users and the quality
of filters can often depend on the level of domain knowledge they
have. We define 4 types of users based on their expertise; No Filter,
Novice, Expert and Data Author.

No Filters: To act as a baseline, this user type only utilizes the
interactive learning system by labeling the retrieved suggestions,
without applying any filters.

Novice: Users that tend to read a query and try to match the text
with matching filters. This reflects the behavior of new users start-
ing to work with a collection or system. However, it can also lead to
misinterpretation of the query and exclusion of relevant items. This
has indeed been observed during the novice sessions of interac-
tive search challenges [10, 28]. The reasons for misinterpretations
include time pressure, misusing the system, lack of domain knowl-
edge, and language barriers. For example, consider the following

50 CHAPTER 3. THE EXQUISITOR APPROACH



query: “Walking on a green footpath, to my car. I remember I had
come off a flight and it was around lunch-time. I got into my car and
drove to have a meal. No, I drove to work where I had lunch” [10].
A Novice user might attempt a filter such as “work”, excluding the
relevant image in which a person was walking on a green footpath.

Expert: Represents analysts with expert domain knowledge. They
know the system, have adequate knowledge of the collection and are
able to interpret tasks beyond their description. They can connect
query information with metadata from previous acquired knowl-
edge, such as setting a location filter from a reference to a person
who was seen at that location in a prior session. Semantic filters,
such as "morning" or "evening" for hours, also fall under this.

Data Author: This type represents users with detailed knowledge,
gained from having either created the collection or maintained it
by updating or adding metadata. They are thus able to go beyond
the query and apply filters due to actual recollection of creating the
desired item in the collection. They may also use external informa-
tion for clarification, as they may recall a detail which can be found
via personal files or the internet, e.g., using a query regarding a
place they visited but forgot the name of. Note that this user type is
only applicable on collections that have a handful of contributors.

3.3 Summary
We conjecture that the labeling and filtering strategies presented
in this section have a strong impact on the performance of URF
systems. This has to date not been sufficiently captured by existing
evaluation methods. In the remainder of the paper we therefore con-
duct experiments that analyze the impact of the different labeling
and filtering strategies with a variety of collections and tasks.

4 EXPERIMENTAL SETUP
The experiments are conducted on tasks from 3 collections with
varying objectives, query details and metadata quality. The key
metric is completion time, or how many interaction rounds it takes
on average to finish a task. While observing the behavior of labeling
and filtering strategies for a handful of rounds is interesting, the
direct impact of a strategy will ultimately be reflected in the time to
finish the task. In addition, recall is also a relevant metric for tasks
with time limits, or tasks that require finding all relevant items.

An actor [38] is an artificial user that uses a particular labeling
and filtering strategy, and has a unique arbitrary starting point for
each relevant task. Each actor communicates with a URF server
using a script to perform the relevance feedback. To conduct the ex-
periments we use a URF system where 25 items are suggested each
round. The underlying classification model is linear SVM, which
has a good accuracy/speed ratio and is consistent with the state of
the art [16, 37]. During each interaction round the actor has to label
𝑝 positives and𝑛 negatives from the 25 suggestions and apply filters
depending on their labeling and filtering strategy respectively. All
the results reported in this paper are an average of 50 different
actors for each labeling and filtering strategy combination.

4.1 LifeLog Search Challenge 2019
Lifelogging is the idea of recording everything one does digitally,
such as taking 2-3 images via a body camera every minute and

logging daily routines manually and by using smart gadgets. Lifel-
oggers tend to end upwith a large collection of images andmetadata.
The Lifelog Search Challenge (LSC) is an interactive live search
challenge featuring a small curated lifelog collection [10]. The col-
lection used in LSC2019 contains 41,666 images represented as 1000
dimensional feature vectors extracted with a deep neural network
using concepts from ImageNet [5]. The collection contains metadata
such as location, day and time that are useful as filters. Additional
data, such as eating logs, fitness information, personal notes, are
excluded as they are only available for a subset of the collection.

LSC2019 featured 24 interactive tasks with corresponding ground
truths, where each task aimed to find images relevant to a textual
query describing events from the lifelogger. The descriptions are
extended through iterations, where each iteration adds some new
information. Every iteration lasts 30 seconds with a total of six
iterations. The nature of the task description is that of a memory,
where one iteration may contradict a statement made in a previous
one. The descriptions also typically contain information that can
be correlated to metadata. The objective of a task is to find any of
the relevant items; for some tasks the relevant set contains only a
handful of images, while for a few it contains 50+ items. Due to the
quality and transparency of the metadata, all types of users defined
in Section 3.2 are applicable to this collection.

4.2 Video Browser Showdown 2020
The Video Browser Showdown [28] (VBS) is a live interactive search
challenge similar to LSC. The latest edition of VBS was in 2020
and used the V3C1 collection that consists of 1000 hours of video
segments or approximately 1M keyframes, from the online video
site Vimeo [3]. We refer to this collection as VBS2020.

Unlike LSC2019, which consists of images from a single user,
these videos are from different users all over the world. The users
have free reign over the metadata, such as video categories and
tags related to the video. While categories have a fixed number of
options to select from, it is up to the user to determine which fits
the video, making it highly subjective. The tags have no real restric-
tions, allowing the user to define their own tags. The categories and
tags metadata are considered video level filters as they only refer to
entire videos. The keyframes have also been processed for number
of faces visible, making it possible to set this as a keyframe level
filter. Note that our system uses keyframes from the videos as rep-
resentatives of the segments. The representation for the keyframes
is a more detailed feature vector with 12,988 dimensions [22].

VBS2020 featured 13 known item search tasks. The tasks describe
visual events from a specific video segment. The descriptions focus
more on visual features compared to metadata information. These
tasks are presented through iterations as well, with time intervals of
60 seconds and a total of three iterations. The task objective is to find
any relevant video segment of the described event. The collection
also has more vaguely described tasks called Ad-hoc video search,
where the goal is to find as many segments as possible that match
the description. However, these tasks have been omitted since they
lack a ground truth.

Due to the metadata having no central curator it is difficult to
define a user for Data Author user strategy from Section 3.2. We
therefore focus on Novice and Expert user strategies instead.
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4.3 VOPE-8hr
The VOPE-8hr [30, 39] collection is inherently different from the
previous two, both in terms of scale and objective. It consists of
8 hours of video broken into shots of 3 seconds, making it the
smallest collection with∼9600 items. VOPE-8hr is a domain-specific
collection for forensic research and the associated tasks are to
find extremist propaganda content of three types; Neo-Nazis (task
1), Islamic terrorists (task 2) and Scottish ultra-nationalism (task
3). These tasks differ from the other two collections’ tasks as the
objective is to find all relevant examples of which some are easily
identifiable and others being needles in a haystack. In addition to
this, the collection is intentionally curated to have a portion of
“red-herring” data that shares visual similarity to the relevant items
but contextually is completely irrelevant [39]. The number of items
to find for each task also differs, with tasks 1 and 3 having roughly
50 items and task 2 having 684 items. As there is no metadata
that a real user could use as filters, no metadata filtering strategy
experiments have been run for this collection.

5 EXPERIMENT 1: LABELING STRATEGIES
A baseline experiment is run with all the labeling strategies from
Section 3.1 where 𝑝 = 5 and 𝑛 = 15 with no filter options.2 Typically
in a URF setting the starting point is arbitrary. Therefore, selecting
more negatives than positives in each round can be beneficial for
directing the classifier quicker to the relevant item, as the initial
items may not contain any good positive examples.

5.1 LSC2019
Figure 2(a) shows the number of rounds required to complete tasks
for each labeling strategy on LSC2019. The two leftmost boxes show
the distribution for the two Accumulative strategies. While their
median is the same, ±AccRep is far more consistent than ±AccAdd,
indicating that replacing items from the positive and negative set
while adding items is better than just adding items. The two boxes
in the middle show the Fixed Positive strategies. The hybrid strategy
+FixRep-AccAdd is far better than the ±FixRep strategy. However, it
does have some tasks where it does extremely poorly, as indicated
by its outliers. We explore this in more detail with Figure 2(b)
below. Lastly we have the two boxes on the right for the Arbitrary
Negative results. Of the two, +AccAdd-ArbLoc is the better, meaning
that labeling arbitrary negatives from the suggestion set is better
than labeling them from the whole collection. If we compare this
strategy with its Accumulative counterpart ±AccAdd, it is nearly
identical in performance if not slightly better. Note that similar
effect is observed from using -ArbLoc with +FixRep (not shown).

Figure 2(b) shows the average rounds per run for each task from
LSC2019. The majority of tasks follow the pattern of tasks 1 and
2, which have ground truths with many near-duplicate images
in the collection: “...looking at an old clock, with flowers visible.
There was a lamp also...” (task 1), “A red car beside a white house...”
(task 2). While most strategies fare well with these tasks, ±FixRep
and +AccAdd-ArbGlo are consistently bad, but for different reasons.
For these tasks, the ±FixRep strategy can end up in a state where
it cannot improve the model as no stronger positive or negative
2We have run experiments with 𝑝 ∈ {1, 3, 5, 7} and 𝑛 ∈ {5, 10, 15, 20}. Since the
results support the conclusions in this section, we do not discuss them further.
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Figure 2: Baseline results for LSC2019. (a) shows the average
rounds it takes to complete the tasks, emphasizing the dis-
tribution for each strategy. (b) shows the average rounds per
run for each task separately.

examples can be found, and the strategy simply browses through
the model’s ranked list of suggestions. +AccAdd-ArbGlo, on the
other hand, explores the search space more sporadically as it labels
negatives from the whole collection. Since the actor must select
some positives in every round, this sporadic exploration leads to
many bad positives, resulting in a poor model for the tasks.

There are a few tasks that show a different pattern. First, tasks
14 and 22 are cases where the description leads to many positive
examples: “I was in my office taking a skype call... large image of
a man’s face on the screen...” (task 14). There is an abundance of
computer, laptop, tablet, smartphone and tv related screens in this
collection, and for this task the screen relates to a laptop/notebook
screen which is seen in roughly one-third of the images in the
collection. This can be bad for +FixRep-AccAdd, as the -AccAdd
part will add many of these screens to its negative set. The other
strategies counter this by adding screens also to the positive set.
±FixRep is a good option here, because of the exact same reason it
is bad in the other tasks: few or none of these near-duplicates end
up in the negative set, resulting in a better model. This scenario
refutes the assumption that more examples are always better.

Second, task 8 has ground truthwith visual features that are amix
of common and distinctive features, where the common features
can lead the model away from the distinctive features: “Walking
on a green footpath, to my car...” (task 8). Here, the ground truth
item consists of a parking lot with several cars. While the collection
consists of many different types of cars, some are abundant in the
collection, while others are rarer. For this particular task, one of the
abundant types is “minivan” which has approximately 3,000 related
items, while one of the rarer types is “sports car” with roughly
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50 items. +FixRep-AccAdd is the best strategy in this case, as it
limits the positive set to the strongest examples. While suggestions
with the common “minivan” feature will continuously appear, some
of them will be labelled negative, which in effect will allow the
distinctive “sports car” feature to dominate the model.

5.2 VBS2020
Figure 3(a) shows the average rounds per run to complete the tasks.
As this collection is roughly 20 times larger than LSC2019, we
restrict the number of rounds a session can take to 500. Since some
tasks cannot be completed within this limit, we also report the
average recall distribution for each strategy in Figure 3(b).

Again, the two leftmost boxes in both figures represent the results
for the Accumulative strategies. Here, ±AccAdd fares better than
±AccRep. With ±AccRep replacing items in growing positive and
negative sets, the model can jump to many different directions,
including back to areas already explored. This can occur when weak
examples are repeatedly replaced with different weak examples.
As the variety of content is much larger in the VBS2020 collection
than LSC2019, this is more likely to happen.

The middle two boxes show the results for the Fixed Positive
strategies. For VBS2020, +FixRep-AccAdd is the best strategy for ma-
jority of the tasks in terms of rounds and recall. ±FixRep also shows
great improvement over the other strategies, and has a more consis-
tent distribution than +FixRep-AccAdd in terms of recall. The reason
why these strategies do not fall into the same trap as ±AccRep, is
because the positive set is limited, which allows for better control
over the model’s direction. Even with ±FixRep replacing negatives,
eventually only strong negative examples will remain.

The two rightmost boxes show the Arbitrary Negative strategies
where the performance resembles that of LSC2019. +AccAdd-ArbLoc
is again close to the performance of ±AccAdd as shown in the
figure, and when tested with the +FixRep strategy (not shown)
it resembles the performance of +FixRep-AccAdd. Based on these
finding there is definitely some merit to letting the system choose
arbitrary negatives from the suggestion set.

The objective of each task is to find any segment related to an
event in a video, and as mentioned in Section 4.2 the task descrip-
tions emphasize visual features of the ground truth items. The
majority of the VBS2020 tasks have ground truth with a mixture of
common and distinct visual features, similar to the outlier task 8 for
LSC2019. As described above, many positives hurt the classification
model with such tasks, as the positive set includes many items
with strong common features, which drive the model away from
the ground truth items with distinctive features. Policies with few
positive examples are better candidates in this case. The prevalence
of this type of tasks is the main reason for the strong performance
of the ±FixRep and +FixRep-AccAdd strategies for VBS2020.

5.3 VOPE-8hr
The results are significantly different for the VOPE-8hr collection,
as the focus of tasks is to find all relevant items. Figure 4(a) shows
the number of average rounds with each labeling strategy for each
task. The bottom points of each line depict the average round when
the first relevant item was encountered and the upper point is the
average rounds it took find all relevant items and complete the task.
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Figure 3: Baseline results for VBS2020. (a) shows the number
of avg. rounds it takes to complete the tasks for each labeling
strategy and (b) shows the average recall of them.

The red lines show the Accumulative strategies, where there are
no significant differences between them. The black lines depict the
Fixed Positive strategies, which for these tasks perform the worst. As
the intention of the tasks is to find all relevant items, the number of
examples in the positive set may be too small to define a satisfactory
model. The blue lines show the Arbitrary Negative strategies. Here,
we observe that +AccAdd-ArbGlo does surprisingly well for all 3
tasks. This is due to the presence of "red-herring" data along with
noise in the collection, making it difficult to select good negatives
from the local suggestion set. Task 2 takes the longest, as it has 14
times as many relevant items as the other two tasks.

If the objective was to find the first relevant item, all strategies are
efficient. This is more clear when looking at the recall over rounds
for each task, depicted in Figures 4(b)-(d) for each task respectively.
For task 1, all strategies find more than 80% of the relevant items in
fewer than 50 rounds but struggle with the remaining 20%. While
most strategies follow a similar pattern for tasks 2 and 3, the Fixed
Positive strategies finds the majority at a slower rate but complete
the task at the same time as the others. This behavior can be related
to the "red herring" data as the other strategies add far more of
those into their positive set which leads their models quicker to the
relevant search space. Ultimately, it is worth considering that when
such a scenario occurs where the user goes many rounds without
discovering a relevant item, it could indicate to the system that it
should guide the user to switching strategies.

5.4 Analysis of Replacements
Since some strategies allow replacements, it is interesting to know
when those replacements occur. Figure 5(a) shows the replacement
occurrences for±AccRep,±FixRep and +FixRep-AccAdd for LSC2019.
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Figure 4: Results frombaseline labeling strategy experiments for VOPE-8hr. (a) shows the number of avg. rounds for each label-
ing strategies and task. The bottom point indicates the avg. round the first relevant item was discovered, while the top depicts
the avg. rounds it took to complete the task. (b), (c) and (d) shows the average recall over rounds for each task respectively.
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Figure 5: Occurence of replacements in the positive set.

The y-axis shows the average replacement occurrences as percent-
age and the x-axis shows the rounds as percentage. For the Fixed
Positive strategies, many replacements occur early in the session.
This is expected, as the model is starting to form and every round
will have different suggestions. As the model becomes better, how-
ever, replacements become rare as many of the suggestions are
similar and not necessarily better. For ±AccRep the occurrence of
replacements is more balanced; as the positive set keeps increasing,
the chance of replacements occurring remains similar.

The replacement patterns are similar across all collections. The
replacement pattern for VBS2020 (not shown) is nearly identical
to LSC2019. Figure 5(b) shows the replacement occurrences for
VOPE-8hr which has a similar pattern but the trend of the fixed
strategies is far more apparent, where both strategies stop replacing
items after roughly 20% into the session. This is because the “red-
herring” data in the collection is visually similar to the relevant
items, helping the system to rapidly find optimal positive examples.

5.5 Summary
From the labeling strategy experiments we learn that different
strategies can be beneficial depending on the collections content
and size, and the nature of the tasks. This is a clear indication
that the current evaluation methods that use strategies resembling
+AccAdd-ArbGlo are not good enough to indicate the quality of
URF systems. In addition to this revelation, the results contradict
the assumption that more positive/negative labeled examples each
round always lead to faster convergence.
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their filters are applied, shown with percentage (left axis)
and maximum number of interaction rounds (right axis)
when the number of suggestions per round is 25.

6 EXPERIMENT 2: FILTERING STRATEGIES
We have observed how different labeling strategies can impact the
number of rounds it takes to solve tasks for the different datasets.
On average the VBS2020 and VOPE-8hr take roughly 230 rounds
to complete a task, which tranlates to 75 minutes assuming the
user spends an average of 20 seconds judging examples per in-
teraction round. LSC2019 tasks fare better with average tasks for
the strongest strategies taking fewer than 75 rounds (25 minutes).
However, considering the actual time to complete the tasks in the
live search challenges is 5-7 minutes, this is too long. In this experi-
ment we run the best labeling strategies with the different filtering
strategies described in Section 3.2 on LSC2019 and VBS2020. As
previously mentioned VOPE-8hr does not contain metadata that
can act as filters and therefore experiments for it have been omitted.

6.1 LSC2019
We start by analyzing the potential impact of filters. Figure 6 shows
the percentage of search space when filters are applied by the
3 different user types for each iteration of the tasks in LSC2019.
Furthermore, it depicts the worst case number of rounds it will take
to find the relevant items on the right axis.

Overall this indicates the possibility of faster retrieval with the
scope being reduced by more than 60% when all filters are applied
for the Novice user. Additionally the relation between type of user
and scope is clear and shows that in theworst caseData Author need
much fewer rounds than the Expert, while the difference between
Expert and Novice is slightly smaller. Note that the Novice users
apply filters that exclude the relevant items for four tasks, meaning
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Figure 7: Avg. rounds to complete tasks with filters using the
best labeling strategies for LSC2019.

that the retrieval process either stops by finding the relevant item in
an iteration prior to the one where the excluding filters are applied
or they run out of items once they are applied.

Turning to the actual impact of filters, Figure 7 shows the results
for actors using the best strategy from each category of the baseline
experiments, ±AccRep, +FixRep-AccAdd and +AccAdd-ArbLoc, with
regards to average number of rounds per run to complete the task
when the different filtering strategies are applied. The leftmost
group of boxes represents the same results from Figure 2(a) where
no filters were applied. The next group is the results from running
the filters applied by the Novice which sees each strategy taking
fewer than 70 rounds in average across tasks. The results include
the four failure tasks which are shown as outliers.3 The third group
of boxes represent the results where the filters are applied by an
Expert. Again, this shows great improvement for all strategies with
average rounds being between 20-30 for all strategies. The final
group of boxes show the result for the Data Author filters, which
brings all strategies below 10 rounds. Overall the trend is expected,
as users with better domain knowledge apply better filters and
avoid exclusion issues. As a final note, we observe no change in the
relative performance between labeling strategies when filters are
applied: ±AccRep and +FixRep-AccAdd remain the strongest.

6.2 VBS2020
For VBS2020, theNovice selects most filters from tags and categories
which end up excluding the correct video segment for most tasks.
In fact there are only two tasks where it manages to not exclude
them and manages to find the desired segment in fewer than 20
rounds. For the remaining 11 tasks, however, it fails to complete
any of them with the filters applied. We therefore do not consider
the Novice user further.

Next we study the impact of actors using the filtering strategy
of an Expert user that has worked with the collection and under-
stands when and how to set frame level filters and video level filters.
Figure 8(a) highlights the results of these actors using the Fixed
Positive strategies, which were the best overall from the labeling
strategy experiments. None of the filters set by the actor exclude
any relevant items and we see a great improvement in terms of
average rounds per run for both strategies with +FixRep-AccAdd
still being the best. Figure 8(b) shows the avg. recall per run for the
actors. While both labeling strategies improve in this area as well,
the +FixRep-AccAdd is far more consistent with the average recall
3Note that ±AccRep does complete up to 11 of its 50 runs for 1 of those tasks. This
is due to the excluding filter being set later for this task than the other 3, making it
possible for the task to be completed.
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Figure 8: VBS2020 results for the Fixed strategies using Ex-
pert filters.

close to 100% for the majority of the tasks, which further solidifies
it as a preferred strategy. However, there are still tasks where some
of the runs fail to complete. This means that the model either got
derailed and exceeded the number of rounds or that even with the
filters applied the search scope is still too large.

6.3 Summary
Overall we have shown that applying filters is beneficial for all types
of users if the collection is well curated and the task descriptions re-
flect the metadata used as filters. It can have negative consequences
if the user has little domain knowledge, especially when they set
extreme filters that exclude the relevant items. However, as filters
are set over time and the excluding feature is not set at the begin-
ning, URF is occasionally fast enough to bypass the excluding filter
by finding a relevant item before that filter is set. Furthermore, our
results firmly indicate that URF with filters applied by users with
high domain knowledge is always better than just applying filters.

7 CONCLUSION
In this paper, we have analyzed the impact of interaction strategies
for labeling positives and negatives as well as applying filters based
on user’s domain knowledge for user relevance feedback systems.
By conducting experiments on three different collections of various
sizes and tasks using artificial users, we observe that the choice of
labeling strategy can have a major impact on number of interaction
rounds it takes to finish a task. There is no single optimal labeling
strategy, as the best strategy depends on both the collection and the
task. Furthermore, our results refute the common assumption of
providing more training examples is always beneficial, as strategies
with smaller set of examples lead to better results in some cases.

We observe that users with expert level or higher domain knowl-
edge unsurprisingly apply filters that are beneficial. However, ag-
gressive filtering, especially by novice users, can hinder the comple-
tion of tasks. Furthermore, URF is a powerful tool in conjunction
with filters that leads to better results than using filters alone.

These findings should be considered in future URF evaluation
efforts as more refined artificial users will lead to better benchmarks,
making it easier to quantify the performance of URF systems.
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Abstract—Interactive multimedia retrieval needs to be respon-
sive, accurate, flexible and scalable to deal with continuously
evolving user information needs in large collections. These
requirements are hampered by three fundamental gaps between
human and machine, namely the semantic, pragmatic and scale
gap. While approaches exist that alleviate one or two of the
gaps, no approach exists that bridges them all simultaneously.
We propose Exquisitor, a novel interactive learning approach that
bridges all three gaps, featuring a new cluster-based retrieval
mechanism, combining high-dimensional indexing, incremental
retrieval and query optimisation policies. Using these techniques,
Exquisitor facilitates search and exploration in collections with
over 100 million items, while maintaining sub-second latency. Our
experiments establish Exquisitor as the state-of-the-art approach
satisfying all requirements expected from a truly interactive
multimedia retrieval system.

Index Terms—Interactive multimodal learning, multimedia
analytics, high-dimensional indexing, incremental retrieval, query
optimisation.

I. INTRODUCTION

Multimedia collections are an integral part of everyday life,
as well as a crucial source of data for science, public health,
entertainment, and more. With this vast amount of multimedia
data available, users need approaches facilitating search and
exploration in their collections. Especially with the emergence
of smartphones, wireless networking and cloud services, users
have become accustomed to responsive applications. Recently,
0.1 to 2-3 seconds has been established as an acceptable
latency for tasks involving interaction with the user [34].

User interaction with multimedia data is dominated by
three gaps, represented in Figure 1. The first challenge is the
machine’s capability to produce semantically relevant results.
This is described as the semantic gap, which revolves around
the semantic level of information extracted from a multimedia
item by human and machine [41]. The user can recognise
content and assert context almost instantly. The machine, on
the other hand, bases its understanding on objective concepts,
extracted from annotations and low-level features. The last
decade’s research in deep learning has greatly reduced the
semantic gap, with Convolutional Neural Networks approach-
ing or surpassing human capabilities in tasks such as object
recognition [24], [42]. While moving from benchmarks to
general applications still remains an open challenge [3], the
state of the art already provides accurate results.

With accurate results, the machine can start addressing the
user’s intent, a set of information needs that dictate interactions
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Fig. 1: The three fundamental gaps between human and
machine and the approaches to help bridge them. Exquisitor is
the first multimedia system to simultaneously bridge all three.

with a collection [22]. The user’s intent is dynamic, involving
a complex interplay of content and context that is generally
encoded in the machine’s concept dictionary only partially.
This is reflected in the pragmatic gap, which is the difference
between the highly adaptive model in the human mind that
creates, adds and deletes categories on the fly, as opposed
to the machine which is typically limited to rigid and non-
adaptive models [50]. To address the pragmatic gap, the
machine needs a flexible model that matches the adaptivity
of the human mental model.

Interactive learning (IL) is a key method for bridging the
pragmatic gap, as it solves analytic tasks that require alternat-
ing between exploration and search [50]. IL is a human-in-
the-loop machine learning approach, where a user judges the
relevance of a collection subset by labeling the media items
as positive or negative. The judged items are used to (re)train
an underlying classifier in the system to find a new subset
of items to present the user with [16]. Recently, interactive
learning has been deployed in a variety of settings, such as
deep learning with user relevance feedback [33], technology-
assisted reviewing using continuous active learning [27], mul-
timedia analytics [51], or interactive multimodal learning in
compressed domain [49].

On top of the accuracy and flexibility challenges, the con-
tinuous growth of multimedia collections brings the challenge
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Fig. 2: The Exquisitor approach. The feedback loop repre-
sents state of the art elements in Interactive Learning. The
highlighted elements are those innovated on by Exquisitor.

of scale. Increasing computational resources can alleviate this
problem, but cannot solve it. In addition, the amount of items
a user and a machine can process at once differs immensely.
Where the machine can index the data and process in bulk,
the human can only process a small subset to avoid being
overwhelmed. Thus the user requires the ability to dynami-
cally define and explore subcollections rather than the entire
collection. This constitutes the scale gap. A scalable approach
is capable of working with such large-scale collections [19].

When users do not have a clear information need or are un-
able to formulate it as a query, exploratory operations are better
for gaining insight. As the user gains insight, the information
need may become clear enough to seek specific items. This
interaction is dictated by the user, where the actions frequently
switch between (sub)collection exploration and search [50].
To provide such interactions, an interactive retrieval system
is needed that has all four aforementioned characteristics:
responsiveness, accuracy, flexibility and scalability.

Available state-of-the-art techniques, such as deep learning
for retrieval, hashing, or self-organising maps, are responsive
and accurate, but they are not flexible as they are limited
to their precomputed similarity structure. Some are scalable
in principle, but are rarely evaluated on large-scale collec-
tions [52]. Scalable approaches reduce computations, typically
by applying approximate high-dimensional indexing on large-
scale multimedia collections, which can greatly reduce the
amortized computation cost. This makes such approaches
responsive, accurate and scalable, but not flexible, as they
revolve around the precomputed distribution of the data.

We propose Exquisitor, a responsive, accurate, flexible
and scalable interactive learning approach for exploration
and search in multimedia collections. Exquisitor uses limited
hardware resources, making it available to broad audiences.
Figure 2 depicts Exquisitor’s innovation within the framework
of interactive learning, which involves:

1) High-Dimensional Index: This component is at the core
of Exquisitor. Unlike most existing scalable approaches,
the index is optimised for supporting interactive learning.

2) Incremental Retrieval: In many exploration and search
scenarios, traditional use of the high-dimensional index
fails to return accurate results. Exquisitor applies incre-

mental retrieval to ensure processing until the relevant
items are found.

3) Query Optimisation Policies: Exquisitor uses information
about data distribution with regards to the query and the
interactive session to enable incremental retrieval early in
the process.

Through benchmarking against various baselines using col-
lections ranging from 40K to over 100M items in size, we
show that Exquisitor is capable of supporting both interactive
exploration and search tasks, while maintaining sub-second la-
tency using a single CPU core, making Exquisitor the state-of-
the-art large-scale multimodal interactive learning approach.

II. RELATED WORK

In this section we describe the state of the art in interactive
learning to identify advantages and limitations. Based on this
we provide a set of requirements for high-dimensional index-
ing to facilitate interactivity on extremely large collections.
These requirements are then used to reflect upon the state of
the art in high-dimensional indexing.

A. Interactive Learning

Interactive learning has been an integral part of content-
based retrieval from its dawn [37]. There are two main
types of IL approaches, User Relevance Feedback (URF) and
Active Learning (AL) [16]. In recent years, URF and AL
approaches have shown successful incorporation of human
(expert) knowledge to provide exploratory access to ever-
growing collections. Furthermore, they have been able to learn
new analytic categories [49], [23] and train accurate classifier
with minimal number of training samples [47].

The key difference between URF and AL is the returned
data subset from the system. In URF the subset consists of
items that the classifier is most confident about [37]. AL, on
the other hand, presents the user with items that the classifier
is least certain about in order to maximize the information
gain of the classifier [16], [17]. In the recent years batch
active learning has gained popularity in deep computer vision
applications [28], [48]. However, it requires human users
to label a large set of items first, which makes them non-
interactive. There has been research in stopping strategies for
AL, to make faster use of the classifier [27], but these still
require a fair amount of labeled items and lack flexibility. With
user in the loop, URF is the preferred approach, as it satisfies
the need to find relevant items during each interaction round
and also makes it easier for the user to judge the items.

There are two phases in an IL system for multimedia
retrieval, the offline and online phase. The offline phase
performs precomputations that expedite the interactive analysis
in the online phase. This includes extracting various semantic
features, which are used to represent each item. In the interac-
tive context, using features that transparently convey semantics
to the user has been shown to diminish the semantic gap and
lead to a more accurate classifier [50], [41]. For efficiency in
larger collections it is typical to compress these features [49],
[9]. The final data representation can be used as is or be stored
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in a data structure to help with the search process, such as a
high-dimensional index [4].

The non-highlighted elements in Figure 2 depict the online
phase of the IL process. The process starts by presenting the
user with a small arbitrary subset of the collection, typically
containing around 20-30 items [46]. The small size ensures the
user is not overwhelmed and the classifier remains adaptable
in the early rounds. The user judges these presented items
by labeling them as positive or negative [14]. The system
may constrain how many items need to be judged [37] or
it may not [46]. The labels are used to update the interactive
classifier and query the collection. The top-ranked items are
then presented to the user in the new interaction round.

On smaller collections, many relevance feedback methods
have been used for content based retrieval, such as deep
learning where URF is used to fine-tune a CNN [33] and
SVM with various feature representations [14]. To the best
of our knowledge, only two approaches have been proven
successful on very large collections, such as YFCC100M with
100M items [45]. The first is based on Product Quantiza-
tion [18], which is a popular approach for k-NN search using a
compression scheme that splits the high-dimensional features
into low-dimensional sub-spaces. The second approach is
Blackthorn [49], which also uses a compressed representation,
but the representation preserves original values from the most
important features. Blackthorn has proven capable of achieving
average interaction round response times of 1.2 seconds on
YFCC100M using 16 CPU cores, while outperforming product
quantization in terms of accuracy. However, Blackthorn relies
on many CPU-cores to be scalable, making it infeasible to
process large-scale collections with modest hardware. With
this in mind we assume Blackthorn to be the main baseline
for our use case.

B. Indexing
To improve the efficiency of URF for large collections,

storing the data in a high-performance index is a natural
extension as it structures the data for faster retrieval. We
identify three main requirements for an index to enhance large-
scale URF.
R1 Short and Stable Response Time: A successful indexing

approach in interactive learning combines good result
quality with response time guarantees [44].

R2 Preservation of Feature Space Similarity Structure: The
space partitioning of the high-dimensional indexing algo-
rithm must preserve the similarity structure on the feature
space used by the interactive classifiers.

R3 k Farthest Neighbours: Relevance feedback approaches
present the most confident relevant items based on the
judgments observed so far, which are the items farthest
from the classification boundary.

Due to the curse of dimensionality, scalable high-
dimensional indexing methods must rely on approximation
using scalar or vector quantization, typically trading off small
reductions in quality (or even just quality guarantees) for
dramatic response time improvements. Therefore, when em-
ploying an approximate high-dimensional index there is a
major focus on the trade-off between quality and time.

The popular hash-based index LSH uses random projec-
tions acting as locality preserving hashing functions [10], [1],
storing the data in buckets within tables. As the quality and
performance of LSH is highly dependent on the hash func-
tions, some approaches focus on improving these [43], [32]
while others focus on reducing the amount of functions [30].
LSH primarily focuses on quality over performance, failing
R1, as well as “slicing” the high-dimensional space leading to
difficulties when ranking based on distance, thus failing R2.
To the best of our knowledge LSH has not been considered
in the context of hyperplane-based farthest-neighbour queries,
thus having no guarantee for R3.

Vector quantization typically uses clustering approaches,
such as k-means, to determine a set of representative feature
vectors to use for the quantization. They fail to satisfy R1 as
they typically end with a large portion of the collection in a
few clusters or even a single cluster. By relying on Voronoï
cells in the high-dimensional space, they satisfy R2. As they
can store the entire features, they can rank the results from
the farthest clusters, satisfying R3 [12].

Product quantization (PQ) and its variants [18], [2] cluster
the high-dimensional vectors into low-dimensional sub-spaces
that are indexed independently. As PQ modifies the space, it
fails to satisfy R2 on top of the already existing failure to sat-
isfy R1. The extended Cluster Pruning (eCP) algorithm [11],
is an example of a vector quantifier that attempts to balance
cluster sizes for improved performance, thus aiming to satisfy
all three requirements; we conclude that eCP is a prime
candidate for large-scale IL.

These high-dimensional indexes are global, making it diffi-
cult to explore or search subcollections, formed for instance by
filters being applied to the retrieved candidates. For eCP, the
clusters selected during retrieval may not have enough relevant
items to present the user with. To avoid such scenarios,
incremental retrieval using a priority queue is deployed to
retrieve additional clusters [15], [39]. Incremental retrieval
reuses information from previous searches to reduce the work
of running a search from scratch [21]. It is utilised in path-
finding algorithms such as A∗ and LPA∗ [21], [29]. Further-
more, for improving search in k-NN approaches [5] they have
even been used for hierarchical high-dimensional indexes to
improve search [31] and determining the best k values within a
maximum distance [15], [39]. We conjecture that incorporating
this into the retrieval process will be greatly beneficial when
using indexes with restrictions on the search space.

III. THE EXQUISITOR APPROACH

Figure 2 shows the proposed Exquisitor approach. The top
(non-highlighted) elements represent a general IL process, the
bottom (highlighted) elements represent the contributions of
Exquisitor, where the trained classifier scores and selects the
most relevant index cells from a high-dimensional index.

The index restricts search space to avoid processing the
entire collection, introducing a trade-off between quality and
latency. The user can also apply filters on metadata. In essence,
the interactions of relevance judgements and applying filters
between user and system form dynamic subcollections to
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Algorithm 1 Priority Queue

Input: hyperplane q, clusters to return b, root of index θ
Output: b clusters based on farthest neighbors
procedure: SearchPQ(q,b)

1: sel← 0 // Amount of clusters selected
2: res← []
3: while pq is not empty ∧ sel < b do
4: e← pq.dequeue()
5: if isLeaf(e) then
6: res.append(e)
7: sel← sel + 1
8: else
9: foreach child c of e do pq.enqueue(c, dist(q,c))

10: end if
11: end while
12: return res
procedure: SearchIndex(q,b)
13: pq ← PQ(θ,dist(q,θ))
14: return SearchPQ(q,b)

search within, that may fall outside the index restriction. As
filters are applied to the returned items of the index cells, the
trade-off can result in zero quality if no items pass the filters.
On such occasions, Exquisitor uses incremental retrieval along
with query optimisation policies to expand the search space.

A. High-Dimensional Index
In the offline phase, the collection is prepared by first

extracting visual semantic concepts using a deep convolutional
neural network. This is followed by a compression that selects
the top 7 features of an item and stores them in three 64-bit
integers [49]. On this representation, a modified version of ex-
tended Cluster Pruning (eCP) is used to build an approximate
high-dimensional index, which is capable to find k-farthest
neighbors in the compressed space.

The extended Cluster Pruning algorithm builds the index
by using the first step in k-means to form k clusters, where
k = Nitems/ts, with ts being the soft target size for the
clusters (typically ts = 100). ts makes it possible to predict
and control the latency when traversing the index [44]. Once
cluster representatives are chosen, the clusters are filled. Then,
a hierarchical tree with L levels is built top-down from the
representatives, where the bottom-most level has lL = k
clusters and the levels above have li−1 =

√
li [12], [11]. For

multimodal data, an index is created per modality.
In the online phase, Exquisitor uses the user-provided labels

to train its linear SVM classifier which is fast and reliable
and does not require many training examples. The hyperplane
from the SVM is then used to select clusters from the eCP
index. Without applying incremental retrieval this is done by
selecting the most relevant b node/clusters at each level in the
hierarchy, similar to the breadth-first search. The b clusters are
processed in segments, which mainly improve result quality
when multiple modalities are used, preventing one modality
taking over. After the clusters are processed, late fusion using
rank aggregation is performed and the top items are presented
to the user.

B. Incremental Retrieval

The user applies filters to the items returned from the b
clusters, leading to a potential pitfall when the filters form a
subcollection which is only partially, or not at all within the
retrieved clusters. This is a general problem even for queries
where many related items are found but the relevant ones
are not within the b clusters. The b restriction, which brings
significant latency control benefits, may thus be responsible
for reduction or even elimination of relevant query results.

This is solved by incremental retrieval that gets additional
b clusters when not enough items are found to return. We add
a priority queue (PQ) to maintain the search state and provide
means for incremental retrieval. When the initial b clusters do
not have enough items, the search switches to using best-first-
search which processes the most relevant nodes and leaves,
regardless of their level in the index hierarchy. This is more
search-oriented than the breadth-first-search.

A pseudo algorithm of the PQ implementation can be seen
in Algorithm 1. The priority queue ranks the items based
on the Euclidean distance of the cluster representative to
the SVM decision boundary, where the largest distance in
the positive direction is considered most relevant. Once the
decision boundary is formed, the first element is inserted in the
queue, which is the root of the index. The queue dequeues the
most relevant element; if the element is a node it enqueues its
children, and if it is a cluster it is added to the result list. Once
b clusters are found, the interactive learning process continues.
In the case where we do not have enough items to return, we
only need to call SearchPQ(q,b) to get b more clusters.

As a measurable criterion to determine whether enough
clusters are selected, we use T = b·ts

2exp , where b · ts is the
expected number of items within the b clusters based on target
size ts, and exp is the expansion iteration. This dynamic
threshold reduces unnecessary expansions.

C. Query Optimisation Policies

We define query optimisation policies that derive an es-
timated count representing the total number of useful items
for the b clusters. If the count is below threshold T , then b
is doubled. Doubling b ensures that cases where the relevant
subcollection is far away is found faster than with a constant
b increase. This expansion continues until enough items pass
the threshold or all the clusters have been processed.
Count Threshold (CT): The baseline estimated count (CT )
simply accumulates the number of items from the b clusters.
Global Remaining Count (GRC): This policy tracks and
updates the amount of items remaining in a cluster when any
of its items are presented to the user. The policy is independent
of filter knowledge as it only focuses on counting the number
of items of the b selected clusters.
Filter Remaining Count (FRC): This policy monitors which
filters are applied in the current round and how many items
pass from the selected clusters. Two sets are used, one for
tracking the exact amount of items passing each cluster and
another for the number of items presented to the user from the
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cluster. These two sets are checked to get the exact number of
remaining items passing the filters in the cluster. If a cluster
has not been checked with the active filters then GRC is used
for that cluster’s count. The cases can be seen in Equation 1,
where EC is the number of items passing the cluster and RI
is the number of items returned from the cluster.

FRC(Ci) =

{
EC(Ci)−RI(Ci), if EC(Ci) exists
GRC(Ci), otherwise

(1)

Estimated Remaining Count (ERC): The eCP index is
typically built with a three level deep hierarchy, where the leaf
nodes are the clusters. This query optimisation policy aims
to calculate how many items exist within a selected cluster
with a given filter combination. It uses a probability based on
the number of items with the given combination and the total
number of items from a set level in the index hierarchy. If the
level from which the probabilities are calculated represents the
leaf nodes then the count will be the exact number of items
passing the filter combination. Since this policy will have an
inherently high memory cost, it is better to choose levels above
the leaf level to reduce this cost. Equation 2 shows how the
count is derived, where Ci is the cluster, FC is the set of active
filter combinations, Pr(Ci, FCi) represents the probability of
how many items Ci is possibly containing with FCi, and lastly
GRC(Ci) is the Global Remaining Count for Ci.

ERC(Ci) =

FC∑

j=0

Pr(Ci, FCj) ·GRC(Ci) (2)

All Remaining Count (ARC): The final policy is All Remain-
ing Count which uses all described policies. Given a cluster
Ci, a series of prioritised checks are performed. It starts by
checking whether Ci has been fully seen, and in case it has
not, it further checks whether or not to return FRC, GRC or
ERC. This gives a more accurate estimated count.

IV. EXPERIMENTAL SETUP

In this section we describe and motivate the conducted
experiments that analyse the performance of Exquisitor with
regards to analytical tasks, and then provide an overview of
the baseline approaches we compare Exquisitor against.

A. Overview of Experiments

We report three experiments. The first experiment (Sec-
tion V) focuses on classifier flexibility, evaluating the ability
of Exquisitor to discover new concepts in data at scale. The
second experiment (Section VI) focuses on the scalability
of Exquisitor for exploration-oriented tasks in large-scale
collections. In the third experiment (Section VII), we analyze
the performance of Exquisitor for search-oriented tasks that
dynamically form subcollections.

All three experiments use the ARC policy, however, note
that for the first two experiments, which do not consider
filters, this defaults to GRC. In Section VIII, we perform an
ablation study of the query optimisation policies for the third
experiment. For all experiments the artificial user judging the
suggestions is presented with 25 items.

The first two experiments are exploration-oriented where
the goal is to find as many relevant items as possible. As

such, the key metric for the experiment is average precision
per interaction round. The third experiment is search-oriented,
where the task is to find the first relevant item within a sub-
collection. Thus, the key metric is the number of interaction
rounds to complete the task. We also impose a limit on the
number of interaction rounds, and in case tasks do not finish
within this limit, average recall is also a metric of interest.
For all experiments, average latency per interaction round is
the most important performance metric. All collections are
represented by 1,000 ILSVRC [38] concepts extracted with a
convolutional neural network [7].

B. Baseline Approaches

In the experiments, we compare the Exquisitor approach to
the following approaches:
Blackthorn: To the best of our knowledge, Blackthorn [49]
is the only direct competitor on interactive learning at 100M
scale. Blackthorn uses no indexing or prior knowledge about
the structure of the collection, deploying instead data com-
pression and multi-core processing for achieving scalability.
kNN+eCP: This baseline is representative of pure query-based
approaches using a k-NN query vector to search the index,
based on relevance weights [35], [25], an approach that was
initially introduced for text retrieval [36] but has been adapted
for CBIR with relevance feedback [37].
SVM+LSH, kNN+LSH: These baselines represent SVM-
based and k-NN-based approaches using LSH indexing. We
replace the eCP index with a multi-probing LSH index [30].
The LSH index has many parameters for tuning performance,
such as L number of hash tables, B number of buckets in
each table, and p number of buckets to read from each table
at query time. For a fair comparison and best performance, we
have set the parameters as in eCP.

V. EXP. 1: DISCOVERING IMAGENET CONCEPTS

We evaluate IL flexibility using a zero-shot-inspired proto-
col for interactive learning on the popular ImageNet dataset,
which consists of 14,198,361 images categorized into approx-
imately 21,000 WordNet synsets (synonym sets) [8].

A. Experimental Protocol

Zero-shot learning is a method which trains a classifier to
find target classes either without including them in the training
set or by including them in the training set, but without labels.
We arbitrarily select 50 concepts and create an artificial user
(henceforth called actor) for each. The objective of each actor
is to find images belonging to their associated concept. To
clearly capture the effects of knowing the concept versus not
knowing it, this experiment is run once with the value of the
concept represented in the collection, acting as a baseline, and
once with the concept being unknown.

The experiment has a total of 50 runs per actor, each run
with 10 interaction rounds starting from a different random
subset. Each run is initialized by 10 random positive images
and 100 random negative images, simulating an ongoing
interactive session.
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Fig. 3: Average precision per round across all ImageNet actors
for each interactive learning approach. The blue boxes depict
the known case, while the red depict the unknown case.

Fig. 4: Examples of relevant and irrelevant suggestions for
different approaches from an ImageNet actor with the “knee
pad” concept.

B. Results

Figure 3 shows the results from this experiment, comparing
Exquisitor against all baseline approaches. The blue boxes
show the average precision distribution for each actor in the
case where the system knows the concepts, while the red boxes
show the precision distribution for the case where the concepts
are unknown. As expected, the results where the concepts are
unknown, are worse than when they are known. A noticeable
trend, however, is that all approaches using the linear SVM
only fall by about 10% whereas the k-NN approaches largely
fail to recover the semantic concepts if unknown. As it is likely
that items with the removed concept have some other related
concepts, the linear SVM is able to capture this, while the
k-NN approach does not adapt as well.

Note that since many images are categorized into multiple
WordNet synsets, the ImageNet collection contains duplicate
items that are labelled differently, which can lead to false
negatives. This is clearly evident by Figure 4 which shows
suggestions from an interaction round where the top row are
relevant items and the bottom row irrelevant items. These are
from a run for Exquisitor (known/unknown) and kNN+eCP
(unknown). In the unknown case Exquisitor, using the linear
SVM, finds false negatives, while the k-NN finds no relevant
suggestions and the irrelevant items are true negatives.

In terms of average latency, all approaches using high-
dimensional indexes reach around 8 ms with 1 CPU core, over-
performing Blackthorn that requires 17 ms. This highlights the
advantages of an index-based approach.

VI. EXP. 2: PERFORMANCE AT YFCC100M SCALE

This experiment uses an experimental protocol from the
literature, defined over the YFCC100M collection [49], to
illustrate the interactive performance and retrieval quality of
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Fig. 5: Average precision vs. latency over 10 rounds of analysis
across all YFCC100M actors. Exquisitor, kNN+eCP: b = 1−
512. LSH: L = 10, B = [210, 218], p = [15, 40].

Exquisitor at very large scale. YFCC100M consists of
99,206,564 million images along with their associated annota-
tions (i.e. title, tags and description), and a range of metadata,
including geo-location and timestamps. The visual content is
again represented by the 1,000 ILSVRC concepts. The textual
content is encoded by a) treating the title, tags, and description
as a single text document, and b) extracting 100 LDA topics
for each image.

A. Experimental Protocol

This protocol is inspired by the MediaEval Placing Task
[26], [6], in which actors look for images from one of 50
world cities. Regarding evaluation metrics, it is worth noting
that due to both the scale of YFCC100M and its unstructured
nature, precision is lower in absolute terms than in experiments
involving small and well-curated collections. The runs are
performed consistent with the experimental protocol presented
in Section V and involve 10 interaction rounds with an initial
positive and negative set.

For the eCP index, b ranges from 1 to 512, with increments
by power of 2. For LSH, we experiment with a variety of
parameter settings, including those aimed at reflecting a similar
cell size distribution as eCP.

B. Results

Figure 5 shows the results from this experiment. Exquisitor
achieves the best performance on both precision and latency.
The closest approach in terms of precision is Blackthorn. How-
ever, Blackthorn has much higher latency. The improvement in
precision between Exquisitor and Blackthorn is due to the se-
lection and processing of clusters in Exquisitor, making it more
consistent than Blackthorn, which scans the entire collection.
SVM+LSH approaches the performance of Exquisitor in terms
of latency when b = 512, but has significantly lower precision.
We conjecture that there may be a parameter setting that allows
the SVM+LSH approach to also get better precision but there
is no guarantee that such a setting will not overfit to the
experiment. As for the k-NN approaches, both eCP and LSH
reach the same precision at roughly 6% but again fall into the
issue of focusing on the wrong concepts and failing to improve
quality, regardless of index settings.
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TABLE I: Example LSC and VBS tasks with expected results

Task Description Result

LSC25 Find the time when I was looking at an
old clock, with flowers visible. There
was a lamp also, and a small blue mon-
ster (perhaps a long rabbit) watching
me. Maybe there were two monsters.
It was a Monday or a Thursday. I was
at home and in a bedroom.

TKIS23
(VBS)

Red elevator doors opening, a bike
leans inside, doors closing and reopen-
ing, bike is gone. Zoom-in on bike,
zoom-out from empty elevator. The
bike is silver, the text ’ATOMZ’ is
visible.

VII. EXP. 3: DYNAMIC SUBCOLLECTIONS

This experiment focuses on the performance of Exquisitor
for tasks that lead to dynamic subcollections. For this ex-
periment, we use two small collections, LSC2019 [13] and
VBS2020 [40], LSC and VBS in short, that contain interactive
tasks with query descriptions that involve dynamic subcollec-
tion exploration, when users apply filters on metadata. To test
the ability of Exquisitor when exploring such subcollections
at scale, we merge both collections into YFCC100M, forming
the LSC+YFCC and VBS+YFCC collections. An example task
for each collection can be seen in Table I.

LSC2019 is a collection from the Lifelog Search Challenge
2019, featuring 41,666 images [13] along with metadata such
as location, day and time. In total, it has 24 interactive tasks
with corresponding ground truths, where each task aims to
find one relevant image matching a textual query describing
events from the lifelogger.

VBS2020 is a collection from the Video Browser Show-
down 2020, consisting of 1000 hours of video from Vimeo,
which are segmented and represented by 1,082,567 keyframes.
The metadata of VBS2020 entails video level categories and
tags defined by the user uploading the video. The categories
are selected from a fixed set, while tags are created with no
restrictions. A keyframe-level metadata for the number of faces
detected is also extracted [40]. There are 13 interactive tasks
with corresponding ground truths for this collection.

A. Experimental Protocol
For these experiments we deploy actors on the protocol of

the real LSC and VBS challenges. The actors are equipped
with specific labeling and filtering strategies corresponding to
real users with various levels of collection knowledge and URF
expertise [20]. The levels are: Novice, a new user interacting
with the collection; Expert, a user who has worked with the
system and collection for a long time; and Data Author, a user
that was part of creating or curating the collection.

Labeling strategies determine how many positive and neg-
ative examples are chosen in each round, and whether items
can be replaced from the positive/negative sets if better ex-
amples are found. We use the ±AccRep strategy for LSC and
+FixRep-AccAdd for VBS, as these were shown to provide
the best result quality [20]. With ±AccRep, the actor accu-
mulates p positive examples and n negative examples in each

interaction round, and can replace items if better examples
are found. +FixRep-AccAdd uses a fixed-size positive set of p
items, requiring the actor to only replace items once it is full,
while the negative set accumulates as before, but the actor can
only add n negative examples. In all experiments, we use the
recommended settings of p = 5 and n = 15 [20].

As the intention behind these experiments is to form dy-
namic subcollections we use the Expert filtering strategy,
which resembles a user with enough domain knowledge to
infer filters not necessarily present in the query text and avoids
applying wrong filters. Note that there are 5 tasks in LSC with
the Expert filtering strategy that do not set any filters, and thus
do not form dynamic subcollections. We omit these 5 tasks
from the experiments.

The experimental protocol simulates users that deal with
tasks from the start of the interactive learning process. To
better reflect the real-world time constraints, the number of
rounds is limited to 500 rounds in the protocol. This may
be considered a generous number, but a high number allows
better understanding of the effects of the relevance feedback
process in dynamic subcollections. Each task is run 50 times
with different starting points.

In this experiment we compare Exquisitor with a kNN+eCP
approach, which has also been configured with incremental
retrieval and query optimisation policies. The b parameter for
this experiment is set to 256. In addition, Blackthorn is run on
the smaller LSC and VBS collection only, as the previous ex-
periment has shown that it requires more computing resources
at this scale and still takes longer with similar to less quality.
We exclude experiments with LSH as the previous experiment
has shown that it is inferior to Exquisitor, but also due to
a need to set multiple parameters which can be collection
specific making it far less flexible than the other approaches.

B. Results

LSC and LSC+YFCC: Figure 6(a) shows the distribution of
average rounds to complete tasks in the LSC2019 benchmark,
using Expert filters guaranteeing dynamic subcollections.

Consider first the left side of the figure, which focuses on the
small LSC collection. Blackthorn and Exquisitor have the best
performance, with the majority of tasks taking 5-20 rounds
of interaction, while kNN+eCP performs significantly worse.
Note that, since all approaches solve all tasks in fewer than
60 rounds, recall is 1.0 in all cases.

The right side of Figure 6 shows the average rounds to
complete tasks within LSC+YFCC, which is more than 1000x
larger than LSC. The performance of both kNN+eCP and
Exquisitor is only affected very modestly in the larger collec-
tion, and as before Exquisitor’s performance is nearly identical
to that of Blackthorn on the smaller collection. Also note that
Exquisitor manages to get better results for the longest task
in the case of the smaller LSC collection, which is due to
the b restriction limiting items. Considering the collection size
difference, we believe that the nearly identical performance for
Exquisitor is a remarkable result.

Figure 6(b) shows the distribution of average response time
per round for the tasks. The collection size determines the
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(a) Average rounds to complete tasks (b) Average latency per round

Fig. 6: Performance comparison between Exquisitor and kNN+eCP with b = 256 on the LSC and LSC+YFCC collection,
against Blackthorn on the LSC collection (black).

(a) Average rounds to complete tasks (b) Average recall

Fig. 7: Performance comparison between Exquisitor and kNN+eCP with b = 256 on the VBS and VBS+YFCC collection,
against Blackthorn on the VBS collection (black).

processing time and kNN+eCP and Exquisitor have similar
latencies, since they both use the same index. In all cases, the
average latency is below 0.5 seconds, and with an average of
0.29 seconds across all runs.
VBS and VBS+YFCC: Figure 7(a) shows the average rounds
to complete tasks for the VBS2020 benchmark. The left side
again focuses on the smaller collection of VBS. Here we see
that Blackthorn and Exquisitor are able to complete tasks more
consistently than kNN+eCP with Exquisitor being best overall.

The right side focuses on the larger collection VBS+YFCC.
kNN+eCP’s performance is unchanged but still bad. Exquisitor
performs better on average but exhibits a performance drop in
comparison to Blackthorn. This is partly due to the different
distribution of items in the index for the larger collection and
because of positives and negatives from the YFCC collection
in the first few rounds. It is still far better than kNN+eCP.
Finally we observe that the latency for each approach (not
shown) is similar to the LSC and LSC+YFCC respectively.

As the VBS collection has less carefully curated metadata
than LSC, there are situations where the item(s) of interest
are not found within 500 rounds. Therefore it is important
to analyse the recall for this benchmark. Figure 7(b) depicts
average recall per run, where the left side shows the result
for the smaller collection, and the right side for the larger.
Focusing first on the smaller, we see that even when the entire
collection is available, using Blackthorn, there are outlier tasks
that only complete as little as 19% of the runs. kNN+eCP

performs significantly worse. Exquisitor’s performance is sim-
ilar to Blackthorn for the smaller collection, with one of the
outlier tasks not completing and the other two outlier tasks
having better recall than Blackthorn. As for the VBS+YFCC,
Exquisitor again has one task that is not completing, while the
rest have a fairly high recall. The impact on recall is due to
the query optimisation policy ARC expanding too much and
returning noise which distracts the classifier.

VIII. ABLATION STUDY

We perform an ablation study to investigate the impact of
incremental retrieval and different query optimisation policies
in Exquisitor, using the experimental protocol from Experi-
ment 3. The baseline, fixed (FX) version of Exquisitor has both
incremental retrieval and query optimization policies disabled.
We then consider versions where incremental retrieval is
enabled with different query optimisation policies.
LSC+YFCC: Figure 8(a) shows the average rounds to com-
plete tasks within LSC+YFCC. The FX version (the leftmost
box), fails to complete majority of the tasks, and even those
that do complete require on average more than 200 rounds.
In comparison, Exquisitor with IncR alone, or with query
optimisation policies is consistently far below that. For this
experimental protocol there is no significant difference in
rounds to complete tasks for any combination of IncR and
query optimisation policy. However, there are differences in
latency, shown in Figure 8(b), which depicts the average
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Fig. 8: Performance of Exquisitor with various settings on the LSC+YFCC collection using Expert filters.
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Fig. 9: Performance of Exquisitor with various settings on the VBS+YFCC collection using Expert filters.

latency per round. FX is the fastest, which is not surprising as
no additional clusters are selected beyond b. IncR raises the
average latency to above 1 second for majority of the tasks, as
it only gets b additional clusters every increment. For the query
optimisation policies, CT and GRC are similar to IncR, while
FRC is slightly better and below 1 second. ARC is the most
consistent policy and has an average latency of 0.29 seconds
which is the best of all the policies. With regards to memory
cost of policies for LSC+YFCC, GRC uses 8 MB, FRC uses
16 MB and ERC uses 11 MB. With such a low cost, memory
has no real impact on the choice of policy.
VBS+YFCC: Figure 9(a) shows the average rounds to com-
plete the tasks within VBS+YFCC. As mentioned in Ex-
periment 3, the VBS+YFCC protocol does not have strong
filters as the LSC+YFCC protocol, leading to more rounds in
average. We see a similar performance impact between FX
and IncR, where the former is incapable of completing almost
any task, the latter manages to complete all but one. The query
optimisation policies results are again quite similar, with GRC
being the best, along with ERC. ARC does worse in terms of
average rounds to complete tasks, however it is still the fastest
with an average latency of 0.25 seconds per round. Figure 9(b)
shows the distribution of average recall per run for tasks in the
protocol. It is again evident that the best policy for this task
is GRC along with ERC. The reason for ERC being better
than ARC here is due to the FRC policy’s influence resulting
in additional expansions that lead to noise. The deciding factor
for the best policy for VBS+YFCC, comes down to latency or

memory usage. The memory usage for ERC in VBS+YFCC
is significantly different than LSC+YFCC. While GRC and
FRC use the same memory, ERC uses 2.3 GB. This increase
is due to VBS having far more options for each filter, which
in turn requires more space for statistics.
Summary: For any collection the base policy is GRC. For
well curated collections ARC can be used, but as the memory
cost of ERC is tied to the amount of items and existing
metadata filter combinations, ARC can potentially have a high
memory cost. Therefore, FRC is the better choice for well
curated collections with many filter combinations.

IX. CONCLUSION

In this paper, we have introduced Exquisitor, a responsive,
accurate, flexible and scalable interactive learning approach,
that manages to bridge the semantic, pragmatic and scale
gap between human and machine. Exquisitor outperforms
the state of the art on precision, recall, and latency, with
low latency maintained even on very large collections. At
the same time, Exquisitor is computationally efficient, using
16x less resources than its direct state-of-the-art competitor,
Blackthorn. Finally, since our experimental protocols included
a variety of collections and tasks, we have demonstrated
that Exquisitor is versatile. We believe that this establishes
Exquisitor as the new state of the art and unlocks potential
for truly interactive search and exploration applications at large
scale.

3.3. RESPONSIVE, ACCURATE, FLEXIBLE AND SCALABLE IL 65



REFERENCES

[1] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Proc. of the IEEE Symp.
on the Foundations of Comp. Science. IEEE, 2006, pp. 459–468.

[2] A. Babenko and V. S. Lempitsky, “The inverted multi-index,” IEEE
TPAMI, vol. 37, no. 6, pp. 1247–1260, 2015.

[3] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund,
J. Tenenbaum, and B. Katz, “Objectnet: A large-scale bias-controlled
dataset for pushing the limits of object recognition models,” in Proc.
NIPS, 2019.

[4] C. Böhm, S. Berchtold, and D. A. Keim, “Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases,” ACM Comput. Surv., vol. 33, no. 3, p. 322–373, Sep 2001.

[5] B. Bustos and G. Navarro, “Improving the space cost of k-nn search in
metric spaces by using distance estimators,” Multim. Tools Appl., vol. 41,
no. 2, p. 215–233, Jan. 2009.

[6] J. Choi, C. Hauff, O. V. Laere, and B. Thomee, “The placing task at
MediaEval 2015,” in Proc. MediaEval 2015 Workshop. CEUR, 2015.

[7] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. CVPR. IEEE, 2017, pp. 1800–1807.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. CVPR, 2009, pp.
248–255.

[9] L. Gao, J. Song, X. Liu, J. Shao, J. Liu, and J. Shao, “Learning in high-
dimensional multimedia data: the state of the art,” Multim. Sys., vol. 23,
no. 3, pp. 303–313, 2017.

[10] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. VLDB, 1999, pp. 518–529.

[11] G. Þ. Gudmundsson, L. Amsaleg, and B. Þ. Jónsson, “Impact of storage
technology on the efficiency of cluster-based high-dimensional index
creation,” in Proc. International Conference on Database Systems for
Advanced Applications (DASFAA). Springer, 2012, pp. 53–64.

[12] G. Þ. Gudmundsson, B. Þ. Jónsson, and L. Amsaleg, “A large-scale
performance study of cluster-based high-dimensional indexing,” in Proc.
of Int. Workshop on Very-large-scale Multim. Corpus, Mining and Ret.
ACM, 2010, pp. 31–36.

[13] C. Gurrin, K. Schoeffmann, H. Joho, A. Leibetseder, L. Zhou, A. Duane,
D. Nguyen, D. Tien, M. Riegler, L. Piras et al., “Comparing approaches
to interactive lifelog search at the lifelog search challenge (lsc2018),”
ITE Trans. on Media Tech. and App., vol. 7, no. 2, pp. 46–59, 2019.

[14] X. He, O. King, W.-Y. Ma, M. Li, and H.-J. Zhang, “Learning a semantic
space from user’s relevance feedback for image retrieval,” IEEE Trans.
on Cir. and Sys. for Vid. Tech., vol. 13, no. 1, pp. 39–48, 2003.

[15] G. R. Hjaltason and H. Samet, “Incremental distance join algorithms for
spatial databases,” in Proc. ACM SIGMOD, 1998, pp. 237–248.

[16] T. Huang, C. Dagli, S. Rajaram, E. Chang, M. Mandel, G. E. Poliner,
and D. Ellis, “Active learning for interactive multimedia retrieval,” Proc.
IEEE, vol. 96, no. 4, pp. 648–667, 2008.

[17] M. Huijser and J. C. v. Gemert, “Active decision boundary annotation
with deep generative models,” in IEEE ICCV, 2017, pp. 5296–5305.

[18] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE TPAMI, vol. 33, no. 1, pp. 117–128, 2011.

[19] B. Þ. Jónsson, M. Worring, J. Zahálka, S. Rudinac, and L. Amsaleg, “Ten
research questions for scalable multimedia analytics,” in Proc. MMM.
Springer, 2016, pp. 290–302.

[20] O. S. Khan, B. Þ. Jónsson, J. Zahálka, S. Rudinac, and M. Worring,
“Impact of interaction strategies on user relevance feedback,” in Proc.
ICMR. ACM, 2021, p. 590–598.

[21] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic
search in ai,” AI Magazine, vol. 25, no. 2, pp. 99–99, 2004.

[22] C. Kofler, M. Larson, and A. Hanjalic, “User intent in multimedia search:
A survey of the state of the art and future challenges,” ACM Computing
Surv., vol. 49, no. 2, Aug 2016.

[23] A. Kovashka, D. Parikh, and K. Grauman, “Whittlesearch: Interactive
image search with relative attribute feedback,” IJCV, vol. 115, no. 2, pp.
185–210, Nov 2015.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Neural Information
Processing Systems. Curran Associates Inc., 2012, p. 1097–1105.

[25] M. Lan, C. L. Tan, J. Su, and Y. Lu, “Supervised and traditional term
weighting methods for automatic text categorization,” IEEE TPAMI,
vol. 31, no. 4, pp. 721–735, 2008.

[26] M. Larson, M. Soleymani, P. Serdyukov, S. Rudinac, C. Wartena,
V. Murdock, G. Friedland, R. Ordelman, and G. J. F. Jones, “Automatic
tagging and geotagging in video collections and communities,” in Proc.
ICMR. ACM, 2011, pp. 51:1–51:8.

[27] D. Li and E. Kanoulas, “When to stop reviewing in technology-assisted
reviews: Sampling from an adaptive distribution to estimate residual
relevant documents,” ACM Trans. Inf. Syst., vol. 38, no. 4, Sep 2020.

[28] Z. Liu, J. Wang, S. Gong, H. Lu, and D. Tao, “Deep reinforcement
active learning for human-in-the-loop person re-identification,” in IEEE
ICCV, 2019.

[29] Y. Lu, X. Huo, O. Arslan, and P. Tsiotras, “Incremental multi-scale
search algorithm for dynamic path planning with low worst-case
complexity,” IEEE Trans. on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 41, no. 6, pp. 1556–1570, 2011.

[30] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
LSH: efficient indexing for high-dimensional similarity search,” in Proc.
VLDB, 2007, pp. 950–961.

[31] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE TPAMI, vol. 36, no. 11, pp. 2227–2240,
2014.

[32] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality sensitive hashing: A
comparison of hash function types and querying mechanisms,” Pattern
Recognition Letters, vol. 31, no. 11, pp. 1348–1358, 2010.

[33] L. Putzu, L. Piras, and G. Giacinto, “Convolutional neural networks for
relevance feedback in content based image retrieval,” Multim. Tools and
App., vol. 79, no. 37, pp. 26 995–27 021, 2020.

[34] W. Ribarsky and B. Fisher, “The human-computer system: Towards an
operational model for problem solving,” in Proc. Hawaii Int. Conf. on
Sys. Sciences, 2016, pp. 1446–1455.

[35] S. E. Robertson and K. Spärck Jones, “Simple, proven approaches to
text retrieval,” Univ. of Cambridge, Comp. Lab., Tech. Rep., 1994.

[36] J. J. Rocchio, “Relevance feedback in information retrieval,” University
of Harvard, Computer Laboratory, Tech. Rep., 1965.

[37] Y. Rui, T. S. Huang, and S. Mehrotra, “Content-based image retrieval
with relevance feedback in MARS,” in Proc. of Int. Conf. on Image
Processing, vol. 2. IEEE, 1997, pp. 815–818.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet large scale visual recognition challenge,” Int Journal of
Comp. Vis., vol. 115, no. 3, pp. 211–252, Dec 2015.

[39] H. Samet, “K-nearest neighbor finding using maxnearestdist,” IEEE
TPAMI, vol. 30, no. 2, pp. 243–252, 2008.

[40] K. Schoeffmann, “A user-centric media retrieval competition: The Video
Browser Showdown 2012-2014,” IEEE MM, vol. 21, no. 4, pp. 8–13,
2014.

[41] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-
based image retrieval at the end of the early years,” IEEE TPAMI, vol. 22,
no. 12, pp. 1349–1380, 2000.

[42] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.

[43] Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Quality and efficiency in high
dimensional nearest neighbor search,” in Proc. ACM SIGMOD, 2009,
pp. 563–576.

[44] R. Tavenard, H. Jégou, and L. Amsaleg, “Balancing clusters to reduce
response time variability in large scale image search,” in Int. Workshop
on Content-Based Multim. Indexing. IEEE, 2011.

[45] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland,
D. Borth, and L.-J. Li, “YFCC100M: The new data in multimedia
research,” Comm. ACM, vol. 59, no. 2, p. 64–73, Jan. 2016.

[46] R. Tronci, G. Murgia, M. Pili, L. Piras, and G. Giacinto, ImageHunter:
A Novel Tool for Relevance Feedback in Content Based Image Retrieval.
Springer Berlin Heidelberg, 2013, pp. 53–70.

[47] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann, “Multi-class
active learning by uncertainty sampling with diversity maximization,”
IJCV, vol. 113, no. 2, pp. 113–127, Jun 2015.

[48] D. Yoo and I. S. Kweon, “Learning loss for active learning,” in Proc.
CVPR, 2019.

[49] J. Zahálka, S. Rudinac, B. Þ. Jónsson, D. C. Koelma, and M. Worring,
“Blackthorn: Large-scale interactive multimodal learning,” IEEE TMM,
vol. 20, no. 3, pp. 687–698, 2018.

[50] J. Zahálka and M. Worring, “Towards interactive, intelligent, and inte-
grated multimedia analytics,” in Visual Analytics Science and Technology
(VAST). IEEE, 2014, pp. 3–12.

[51] J. Zahálka, M. Worring, and J. J. van Wijk, “II-20: Intelligent and
pragmatic analytic categorization of image collections,” 2020.

[52] L. Zhu, Z. Huang, Z. Li, L. Xie, and H. T. Shen, “Exploring auxiliary
context: discrete semantic transfer hashing for scalable image retrieval,”
IEEE Trans. on Neural Networks and Learning Sys., vol. 29, no. 11, pp.
5264–5276, 2018.

66 CHAPTER 3. THE EXQUISITOR APPROACH



Influence of Late Fusion of High-Level Features
on User Relevance Feedback for Videos

Omar Shahbaz Khan
IT University of Copenhagen

Copenhagen, Denmark
omsh@itu.dk

Jan Zahálka
Czech Technical University in Prague

Prague, Czech Republic
jan.zahalka@cvut.cz

Björn Þór Jónsson∗
Reykjavik University
Reykjavík, Iceland

bjorn@ru.is

ABSTRACT
Content based media retrieval relies on the multi-modal data repre-
sentations. For videos, these representations focus on representa-
tions for the textual, visual, and audio modalities. While the modal-
ity representations can be used individually, combining their in-
formation can improve the overall retrieval experience. For video
collections, retrieval focuses on either finding a full length video or
specific segment(s) from one or more videos. For the former, the
textual metadata along with broad descriptions of the contents are
useful. For the latter, visual and audio modality representations are
preferable as they represent the contents of specific segments in
videos. To solve exploration and search tasks in larger collections,
an interactive learning approaches such as user relevance feedback
has shown promising results. When combining modality represen-
tations in user relevance feedback, often a form of late modality
fusion method is applied. While this generally tends to improve
retrieval, its performance for video collections with multiple modal-
ity representations of high-level features, is not well known. In this
study we analyse the effects of late fusion using high-level features,
such as semantic concepts, actions, scenes, and audio. From our
experiments on three video datasets, V3C1, Charades, and VGG-
Sound, we show that fusion works well, but depending on the task
or dataset, excluding one or more modalities can improve results.
When it is clear that a modality is better for a task, setting a pref-
erence to enhance that modality’s influence in the fusion process
can also be greatly beneficial. Furthermore, we show that mixing
fusion results and results from individual modalities can be better
than only performing fusion.
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1 INTRODUCTION
There has been significant growth in video collections over the
past decade, primarily spearheaded by social media platforms such
as YouTube, Facebook, and Instagram. More recently, TikTok and
Shorts (YouTube) are having an even greater impact, as their format
focuses on short videos, mostly below 30 seconds, leading to more
frequent uploads. To search for a video, multiple search strategies
can be used. For finding entire videos, textual search is often used,
which relies on the available textual metadata. If a user is interested
in finding videos containing an exact event or series of events, a
more appropriate interactive retrieval strategy is warranted, that
relies on data describing the contents within segments of videos.
With massive collections it is unlikely that any user knows every-
thing within it, which is why search strategies are not always the
go-to interaction, but rather strategies that allow a mix of explo-
ration and search. User relevance feedback is an interactive learning
approach where a human user and machine work together to solve
complex analytical tasks involving information needs exceeding
the machine’s understanding of the content, and information needs
that shift between exploration and search [34]. The user specifies
relevant and irrelevant items on a suggestion set obtained from
the machine’s current classifier. The feedback is used to update the
interactive classifier that is then used to procure new potentially
relevant suggestions. User relevance feedback is an approach that
leans more towards exploration initially, but depending on the feed-
back can either slowly or quickly hone in on certain areas of the
collection.

The information extracted from videos is inherently multimodal
and can be divided into textual (metadata relating to the entire
video, such as uploading user, description, categories, and tags),
visual (the contents from shots within the original video, such as se-
mantic concepts, actions, scenes, colors, and number of objects), and
audio (such as the sound of music or actions occurring in shots). All
modalities are potentially useful for building classification models,
for performing similarity search or keyword search, and for serving
as filters to narrow the scope of the collection. As the textual meta-
data is generally video-level information, it can negatively impact
the retrieval by shifting it towards a specific video rather than the
desired shots. Thus, representations that focus on shot-level details
are better in the case of finding specific content occurring within
videos [16, 20].

The interplay between modalities is often discussed with regards
to umbrella terms, such as textual and visual. Within each of these
modalities, however, multiple types of features can be extracted
that represent different aspects of the content. For instance, the
visual modality contains semantic concepts and actions, both of
which can be used to describe a shot, that represent two completely
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different notions. Therefore, treating them as individual modality
representations during the retrieval process can be beneficial.

A common method for enhancing content-based retrieval is to
combine the information between modalities. This can take the
form of early fusion with a joint representation, either by concate-
nating the various representations into one [28], or by learning
a new representation through deep learning, such as text-image
embeddings [24] or audio-visual embeddings [6, 22]. Having a sin-
gle representation for a multimedia item does simplify retrieval,
in terms of storage but adds to computational complexity as more
attributes are involved. Additionally, there is no easy way to switch
a modality off, and the deep learning joint embeddings do require
more time to train with a large annotation set.

Another form of fusion is late fusion, which fuses modalities
during the retrieval phase or at the end of it, by either training a
classifier using the different modalities as input, or by merging the
results of each modality [8, 19, 23, 28]. The basic approach is to get
the result set of each classifier and merge them using either the
sum or product of the classifier scores [1, 17], or rank aggregation
where the positions of items within each result set determines the
place in the final set [10, 18, 32]. A major benefit of late fusion
is that it allows control over modalities during retrieval, so if a
representation is discovered to be favorable or unfavorable for a
task, its influence can be increased or reduced accordingly. This can
either be done on-the-fly by a user or by learning from the supplied
query examples [23, 31]. As it is often the case that properties of
all user tasks cannot be determined beforehand, the flexibility of
late fusion can be valuable for an interactive approach.

The majority of the approaches in the literature focus on fusion
across modalities [10, 15]. There are some that consider fusing
multiple representations from a single modality but these have
primarily focused on images and the visual modality [2, 3]. As
the task of users can vary between exploration and search, user
relevance feedback is an appropriate interactive approach to use for
evaluating the effects of late fusion and the influence of modality
representations accordingly. In large-scale user relevance feedback
approaches, late fusion through rank aggregation has been shown to
perform well for image collections exceeding 100 million items [18].

In this work, we investigate the effects of late fusion when using
high-level features within and across modalities in user relevance
feedback. We examine the current rank aggregation method and ex-
plore the effects of using fixedweights to amplify specificmodalities.
Additionally, we check whether not fusing the results has merit, by
splitting the suggestion set into segments for each modality. Lastly,
we consider a partial fusion method that mixes the suggestion set
by having a fixed number of fused and non-fused slots. We conduct
experiments on three video datasets, V3C1 [4], Charades [27], and
VGG-Sound [6], focusing on tasks revolving around ad-hoc video
search. Through our findings we show that the current rank aggre-
gation method works well overall. However, when there is disparity
in strength between modalities for a task, assigning more weight
to the strongest modality improves quality. We also discover that
mixing the suggestions with fused and non-fused items performs
either on par with, or better than, the rank aggregation.

2 LATE FUSION METHODS
In retrieval it is common to return the top 𝑘 items of a collection
instead of all items, as it reduces computation and latency, and does
not overwhelm the user. If only a single representation is used for
the items in a collection, then the retrieval process simply needs to
rank the items based on this and return the top 𝑘 . With multiple
modality representations of a data item it is more complicated, as
they lead to different top 𝑘 items, thus a late fusion step is required.
Late fusion can be performed in many ways, ranging from straight-
forward approaches, that minimise computation and reduce latency,
to approaches that perform elaborate computations based on details
of the available information. The former is warranted in an interac-
tive learning approach, since the latter results in increased response
times which in turn lead to users losing focus [26]. This section
outlines the fusion methods for interactive learning considered in
this study.

A simple approach is to return only items that are present in two
or more representations’ top items, however, this may lead to fewer
than 𝑘 items being returned. Another approach is to make a union
across all the items from each representation into a combined list
𝑅, where the top 𝑘 items can be determined based on a function
that accounts for all representations. If the query scores/distances
of representations are of the same nature, then a possibility is to
add the scores together and re-rank 𝑅 based on this. However, it
is unlikely that all representations hold this property, therefore,
a better approach is rank aggregation. Rank aggregation is an
approach where re-ranking is done for each representation and an
aggregate score based on an items rank is calculated. This aggregate
score is then used to re-rank 𝑅 a final time, and return the top 𝑘 .
There are multiple ways to determine the aggregate score such as
using the sum, average, median, and linear combination [11, 25].
In this study we use the sum of an item’s ranks, as it requires less
computation and shows the true influence of a representation.

The benefit of rank aggregation is that it treats each modality
equally and is independent of different representations. However,
treating each modality equally is not always a good choice, as differ-
ent tasks may favor one modality over another. In such cases, some
interactive approaches are able to disable badmodalities or use fixed
weights to modify the impact of the modalities [9]. The weights
may also be adjusted automatically based on the interactions with
the user [30, 31], but such approaches are best when there is a clear
indication of good examples belonging to a specific modality. In our
case, the user’s feedback is gathered from the multi-modal output
of the top 𝑘 items from 𝑅, as seen in Figure 1a, making it less trans-
parent as to which modality strongly influenced them to be highly
ranked. Setting fixed weights for each modality representation is
possible but not realistic, as a regular user will have tremendous
difficulties in determining them. Instead, to study the impact of
weights we use a weighted rank aggregation approach where a
user sets a preferred modality. This is a more realistic approach as
the user only needs to know what a modality represents, such as
concepts or actions, which is enough for them to determine whether
a task favors one or the other. Essentially, this means that initially
all modalities have a weight of 𝑤 and if a preferred modality is
set, its weight will be larger than the rest. When performing rank

68 CHAPTER 3. THE EXQUISITOR APPROACH



(a) Rank Aggregation (b) No Fusion with 3 modalities (c) Partial Fusion with 3 modalities

Figure 1: Output from the different late fusion methods

aggregation, the modality weights are applied during the aggregate
score calculation.

Some retrieval systems separate modalities entirely and allow
the user to query specific modalities. If the user queries multiple
modalities, then either a late fusion step is used to get a combined
result set or the results of each modality are presented and kept
separate [13, 14, 29]. Therefore, instead of fusing items into a final
result set from which the top 𝑘 are selected, the actual screen pre-
senting the suggestions can be utilised to show the top 𝑘

𝑀 results
from each representation, where 𝑀 is the number of modalities.
Here no fusion (NF) takes place but rather the suggestions are
divided into sections.An illustration of this method with 3 modali-
ties can be seen in Figure 1b. If carefully implemented, this reduces
computation as it avoids the aggregation step, and is more trans-
parent with the user. This may also be beneficial in determining a
dominant modality for a task.

A variation to this approach is a mix of rank aggregation and no
fusion, where the final suggestion set consists of fusion slots (MM)
and slots for each modality’s top items (NF). We call this method
partial fusion (PF). Figure 1c illustrates an example output of
partial fusion with 3 modalities using 6 MM slots and 1 NF slot per
modality. With a more diverse result set one might expect to get
similar performance to rank aggregation in terms of computation,
but potentially increase quality. Furthermore, this method may also
be capable of determining a dominant modality for a task based on
the selection of NF slots. With no fusion and partial fusion it is also
important to consider the ordering of which items are presented to
a user in a real use case, as that may influence the feedback they
provide.

3 EXPERIMENTAL SETUP
To analyse the effects of late fusion with high-level features from
one or more modalities from videos, we use three video datasets.
In this section, we go over the user relevance feedback approach
used in the experiments in 3.1, followed by a description of the
evaluation protocols and their metrics in 3.2, and the details of the
three datasets with regards to features, pre-processing, and tasks
in 3.3-3.5.

3.1 Relevance Feedback System
We conduct the experiments using Exquisitor, which is an inter-
active learning system with user relevance feedback at its core.
Exquisitor has shown state-of-the-art performance in large-scale
interactive multimodal learning [18]. The approach compresses the
multimedia representations of an item and stores them in approxi-
mate high-dimensional indexes. It consists of two phases; an offline
phase and an online phase.

In the offline phase, high-level semantic features are extracted
from the multimedia items. As these features are sparse, the top
𝑛 features are selected and stored into a compact representation
of 64-bit integers using the Ratio-64 compression from [32]. After
getting the compressed representation a high-dimensional index is
built for each modality/representation. Exquisitor uses a modified
version of the extended Cluster Pruning (eCP) index. This cluster-
based index is built by arbitrarily selecting a number of cluster
representatives, like the first step in k-means, and then building a
hierarchy from the representatives. The main point of the clusters
is to be balanced to achieve response time guarantees. Once the
index is built, Exquisitor is ready to proceed to the online phase.

The online phase of Exquisitor matches the general user rele-
vance feedback approach. It loads the index and presents the user
with an arbitrary set of items. After the user provides feedback on
these items, the underlying classifier is trained. The classifier used
by Exquisitor is linear SVM, which is well known for being efficient
at training with few examples. Once trained, the resulting hyper-
plane is used to select the most relevant clusters (farthest from
the hyperplane), followed by processing their items and present-
ing the top 𝑘 . If multiple representations are involved, Exquisitor
uses rank aggregation to perform late fusion. Due to the compres-
sion and high-dimensional indexing, Exquisitor is highly efficient
with minimal resources, which allows it to allocate more resources
when multiple representations are involved than other interactive
learning approaches.

3.2 Evaluation Protocols and Metrics
To define automated evaluation for interactive learning we adhere
to the principles of Analytic Quality (AQ) [33]. AQ is a means to
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define automated evaluation protocols for interactive learning ap-
proaches. With AQ, a set of artificial users label items from the
provided suggestions. These users are referred to as actors. Each ac-
tor has one task, such as finding as many items fitting a description
as possible, using the ground truth to label positive examples and
treating everything else as negative. A total of 𝑠 interactive sessions
are performed with each actor consisting of 𝑟 total rounds, where
each session starts with a different starting point. This starting
point is determined by supplying an initial 𝑝 positive examples
and 𝑛 negative examples. There is also an option for supplying
additional true negative examples along with the labeled examples
each round.

To obtain results that confidently reflects the performance of a
late fusion method, the number of interactive sessions and rounds
for all protocols in this work is set to 𝑠 = 50 and 𝑟 = 10. The
number of suggestions returned each interaction round is set to
𝑘 = 24. While 10 rounds may seem as little, it is actually quite
time consuming in the case of a real application. Assume the user
thoroughly inspects each item, which takes 3-5 seconds. With 24
suggestions each round will take between 72-120 seconds, meaning
10 rounds takes between 12-20 minutes. It may be even more if
the user not only views the keyframe of a shot but also plays the
shot. For each interactive session, an actor starts with 3 positive
examples from the ground truth and 5 negative examples (not in
the ground truth) that are arbitrarily chosen. No additional true
negatives are supplied during a session.

Themetrics from these protocols are average precision per round,
average recall after 𝑟 rounds, and average latency per round. Since
we are primarily focusing on the quality of late fusion methods we
are interested in the precision and recall, and not response time,
unless there is a noticeable impact. Note with 24 suggestions per
round, a total of 240 items will be considered, which means large
ground truth sets may have low recall numbers.

Regarding the weighted rank aggregation late fusion method,
when a modality is preferred (𝑊𝑀𝑜𝑑 ) it will have the weight set
to 2.0 while any other modality involved will have a setting of 1.0.
For the partial fusion method we perform the experiments with
two settings for the number of non-fused slots per modality which
are 2 (PF2) and 3 (PF3). For instance with 24 suggestions and 3
modalities, PF2 will have 18 MM slots and 2 NF slots per modality,
and PF3 will have 15 MM slots with 3 NF slots per modality.

3.3 V3C1
V3C1 is a dataset consisting of 7,475 videos constituting 1,000 hours
of footage. The videos are from the video sharing site Vimeo. The
videos have textual metadata such as categories, tags, and descrip-
tions. The individual videos range from 18 seconds to 1 hour, with
an average length of 8 minutes. To be able to find shots from the
videos that might be of interest for some task, we need to be able
to extract features from smaller segments of the videos. Therefore,
shot boundary detection is performed on the videos. As the shots
may be of arbitrary lengths, we conform them to be within 1-10
seconds, leading to 1,007,360 total shots. From these shots we ex-
tract semantic concepts using a deep neural network that extracts
12,988 ImageNet concepts [21]. As multiple concepts can be present
over the length of a shot, the representative feature vector chooses

the highest scoring concepts across 1-5 frames depending on the
segments length. We extract action related features from Kinetics-
700 [5] using a 3D-ResNet model [12]. The actions are taken from
the middle of the shot. Furthermore, we also extract features re-
lating to the scene using a model for Places365 [35]. These are
extracted from the middle frame of the shot. For all feature repre-
sentations used in the experiments, the top 5 features are extracted
and stored in the compressed representation.

V3C1 has been used in research as part of interactive retrieval
challenges, namely TRECVID and Video Browser Showdown. These
challenges focus on Known Item Search (KIS) tasks with regards
to finding a specific shot within a video, correlating to either a
textual description or a visual presentation of the shot to locate.
Additionally, Ad-hoc Video Search (AVS) is another form of search
task, where the intention is to find as many itemsmatching a textual
description. The tasks that we use in our experiments for the V3C1
dataset are from the 2021 TRECVID challenge on Ad-hoc Video
Search. In total 20 queries are available with ground truth. The
ground truth is built from real human assessors determining the
relevance of submissions from participants. This implies not all
items matching the query descriptions are in the ground truth. The
number of relevant items for the actors range from 194 to 2,637.

3.4 Charades
Charades is a dataset made for research related to activity recogni-
tion of daily human activities. It consists of 9,848 videos of arbitrary
length, albeit smaller than the previous dataset. Shot boundary
detection has also been performed on this dataset, leading to 58,066
shots. Similar to the V3C1 dataset, we extract ImageNet concepts,
Kinetics-700 actions, and scenes from Places365. The Charades
dataset consists of a training and testing set. As we do not use the
training set to train our model we include all items in the dataset.

The type of tasks related to this dataset are similar to AVS tasks
where videos containing an activity need to be found. The Charades
dataset has a total of 157 activity descriptions. Inspecting these de-
scriptions shows that there are several small groups that are highly
related in terms of concept and activity. We therefore randomly
select 1 description from every 5, to get a varied selection of distinct
tasks. Activities with fewer than 1,000 items are removed, leading
to a total of 23 tasks for this dataset.

3.5 VGG-Sound
The last dataset we use is VGG-Sound, which is a large scale audio-
visual dataset. The videos conveniently have a maximum length
of 10 seconds. For this dataset we do not need to detect shots and
can use the videos as is. Similarly to the previous two datasets the
same features are extracted. Additionally we extract audio based
concepts using an audio classification model [7].

We focus only on the testing set of this dataset, as the audio
classification model has been trained with the training set. Out
of the 15,446 test videos, only 9,996 videos have been obtained.
The reason for missing videos is due to (i) the videos no longer
being available, (ii) the videos having been made private, or (iii) API
version issues.1 The final dataset of VGG-Sound comes with 309

1The full list of videos that we have used along with the tasks of the different datasets
can be found here: https://github.com/Ok2610/URF-VidMod.git
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annotated classes divided amongst 9 categories. Instead of focusing
on every class we select 3 from each category arbitrarily as the
tasks for the evaluation. This leads to 27 varied tasks with relevant
items ranging from 13 to 43.

4 RESULTS
In this section we present the results of the experiments conducted
on each dataset using the different late fusion methods. The modal-
ity representations, as previously stated, are semantic concepts de-
rived from ImageNet (Img), actions from Kinetics-700 (Act), scenes
from Places365 (Scn), and audio from VGG-Sound (Aud).

4.1 TRECVID2021
Table 1 shows the results for the individual modalities, ImageNet,
Actions, and Scenes, on the V3C1 dataset. The first column indicates
average precision per round and the second column average recall
after 10 rounds. Out of the three modalities, ImageNet performs
far better than the others, in both precision and recall. With 24
items being displayed per round it indicates on average 3 of the
items are from the ground truth. Note that the recall is low as the
number of items covered over 10 rounds is not close to the number
of total items of the ground truth. Actions is the second strongest,
but its precision and recall are less than half of ImageNet. Scenes
performs the worst out of the three. This is no real surprise as
majority of the tasks from this challenge focus on events where
concepts are more prevalent. While some tasks do refer to an action
occurring in the video segment, these also highlight concepts which
the ImageNet modality can use. As for Scenes it is evident that the
tasks do not highlight the surroundings, with 4 tasks not finding
any relevant items and other tasks not finding relevant items over
multiple rounds.

Table 2 shows the average precision of each modality combina-
tion with respect to the various methods for fusion. The first column
indicates the precision of late fusion by rank aggregation. The fol-
lowing three columns are of weighted rank aggregation, when
preferring ImageNet (𝑊𝐼𝑚𝑔), Actions (𝑊𝐴𝑐𝑡 ), and Scenes (𝑊𝑆𝑐𝑛),
respectively. The remaining columns show the precision for no
fusion (NF), and partial fusion with 2 (PF2) and 3 (PF3) non-fused
slots per modality. The highest average precision achieved is 0.163
by𝑊𝐼𝑚𝑔 using all modalities. The lowest average precision of 0.068
comes from Act+Scn when used with NF. The reason for the low
precision in general is due to the ground truth not covering the
entire collection, as mentioned in Section 3.3. Looking into the
modality combinations for the baseline rank aggregation, we ob-
serve Img+Act has a better precision than just using the ImageNet
concepts. Img+Scn on the other hand has a lower precision, al-
though still being over 3 times better than Scenes alone. Act+Scn
has a higher precision than both Actions and Scenes individually.
If all modalities are used with rank aggregation, the precision is
higher than just ImageNet, but is lower than Img+Act. With regards
to weighted rank aggregation, when it prefers the strongest modal-
ity, ImageNet, it achieves the highest precision of all approaches.
Preferring Actions and Scenes is worse in all cases where ImageNet
is present, but between𝑊𝐴𝑐𝑡 and𝑊𝑆𝑐𝑛 , preferring Actions is better.
If no fusion is performed and the result set is divided amongst the
modalities, the precision for two modality combinations is lower

Table 1: Results of individual modalities for TRECVID 2021.

Modality Precision Recall

Img 0.131 0.057
Act 0.056 0.023
Scn 0.037 0.018

Table 2: Average Precision per round (TRECVID2021)

Rank 𝑊𝐼𝑚𝑔 𝑊𝐴𝑐𝑡 𝑊𝑆𝑐𝑛 NF PF(2) PF(3)

Img+Act 0.144 0.158 0.120 - 0.094 0.146 0.144
Img+Scn 0.115 0.130 - 0.092 0.104 0.117 0.116
Act+Scn 0.078 - 0.078 0.074 0.068 0.075 0.075
All 0.137 0.163 0.125 0.112 0.137 0.141 0.140

Table 3: Average Recall after 10 rounds (TRECVID2021)

Rank 𝑊𝐼𝑚𝑔 𝑊𝐴𝑐𝑡 𝑊𝑆𝑐𝑛 NF PF(2) PF(3)

Img+Act 0.065 0.071 0.055 - 0.041 0.066 0.065
Img+Scn 0.049 0.055 - 0.041 0.045 0.051 0.050
Act+Scn 0.034 - 0.035 0.032 0.032 0.034 0.034
All 0.060 0.071 0.055 0.048 0.060 0.063 0.062

than the baseline, but equal to it when all three modalities are used.
As for the partial fusion with two or three non-fused slots, the
precision is better than the baseline, with PF2 being better than
PF3.

Table 3 shows the average recall of the modality combinations
and fusion methods, where the columns are the same as Table 2. The
results mimic the precision observations, with𝑊𝐼𝑚𝑔 being best with
a recall of 0.071 with all modalities involved and when excluding
Scenes (Img+Act). The lowest recall of 0.032 is from no fusion with
Act+Scn. While all fusion methods with Act+Scn achieve a higher
average recall than using them individually. Comparing the recall of
the lone ImageNet run with the combinations including ImageNet,
higher recall is achieved with Img+Act and all modalities. Img+Scn
performs worse, highlighting Scenes as a bad modality.

The results show that on average the best fusion method is
weighted rank aggregation preferring ImageNet. In terms of modal-
ities, the best average results are achieved when all modalities are
involved. However, when considering individual tasks, only 7 out
of the 20 tasks achieve higher precision and recall when compared
to the results of Img+Act and Img+Scn for𝑊𝐼𝑚𝑔 . Img+Act manages
to have the most task improvements with 9 out of 20 tasks, while
Img+Scn has 3 out of 20. The 7 tasks that score the highest for all
modalities combined do insinuate elements for all three modalities.
Take for instance the tasks “person wearing an apron indoors” (task
8) or “two boxers in a ring” (task 17). Here the concepts of “person”,
“apron”, “boxer”, and “ring”, are useful for ImageNet. For Scenes and
Actions one can infer a kitchen setting where a person is cooking
for the former task, and an indoor boxing stadium/gym where peo-
ple are boxing for the latter. For the tasks favoring Img+Act, the
background scenery is not important, such as “person painting on a
canvas” (task 10) or “man pointing his finger” (task 12). These tasks
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can take place anywhere, such as painting at a studio, outdoors, or
in their home. For tasks favoring Img+Scn it is not necessarily that
an action can not be associated, but it may be difficult to obtain.
For instance, in the task “hang glider floating in the sky on a sunny
day” (task 1) the concepts of “hang glider”, “sunny”, and “sky” are
useful for ImageNet and Scenes, but the closest detectable action for
this will be “paragliding”, which will introduce shots of parachutes
rather than hang gliders.

Overall from the results we see when a bad modality is involved,
it takes away from the stronger modalities. As expected, applying
weights on the stronger modality, improves the results. No fusion
performs worse, while partial fusion is the second best, which
indicates that showing non-fused examples can be good and may
be beneficial towards dynamic weight adjustments.

4.2 Charades
Table 4 shows the average precision and recall of the individual
modalities on the Charades dataset. Similar to the TRECVID evalua-
tion, ImageNet is the strongest modality, but the difference towards
the other modalities is less. Again, the recall is extremely low due
to the size of the ground truth set. The videos in this dataset fo-
cus more on actions from humans which does show some tasks
being better with the Action modality. Scenes is capable of finding
relevant items in all tasks, albeit being worse at it than the others.

Table 5 shows the average precision for the different modality
combinations and fusion methods. For this dataset the highest pre-
cision is 0.131 and is achieved by rank aggregation with all three
modalities. The lowest precision is 0.095 by𝑊𝑆𝑐𝑛 . In the case of the
baseline rank aggregation we see an increase in precision across all
combinations. One noticeable result is that Scenes interferes less
with Actions than ImageNet, as seen by the precision of Img+Act
and Act+Scn. The highest precision is achieved by using all three
modalities. Adding weights on ImageNet further improves the pre-
cision when two modalities are involved, however, when all three
are used it is slightly lower than the baseline. Weights on Actions
improve the precision only when used with Scenes, while weights
on Scenes is always lower than the baseline. No fusion shows im-
provement over the individual modalities, but is not better than
the baseline fusion. The partial fusion approach achieves the best
precision for two modality combinations.

Table 6 shows the average recall for the tasks in Charades. The
highest recall of 0.010 is observed from the partial fusion methods
with ImageNet and Actions and all three modality representations.
The lowest recall is 0.007 from no fusion with ImageNet and Scene.
The recall is far lower for Charades as the ground truth is signif-
icantly larger, and again there is the potential of false negatives.
With the results being similar to the precision, aside from the high-
est precision which is from rank aggregation with all modalities,
it is safe to proclaim that overall partial fusion is better for this
dataset, with 2 non-fusion slots being better than 3 again, though
the difference is minuscule.

Surprisingly, for this dataset, setting weights on the strongest
modality does not achieve the best results. It does improve over the
baseline rank aggregation, but fails to beat partial fusion. So having
a user set weights is still preferable over the baseline, but may not

Table 4: Results of individual modalities for Charades

Modality Precision Recall

Img 0.095 0.007
Act 0.089 0.006
Scn 0.081 0.005

Table 5: Average Precision per round (Charades)

Rank 𝑊𝐼𝑚𝑔 𝑊𝐴𝑐𝑡 𝑊𝑆𝑐𝑛 NF PF(2) PF(3)

Img+Act 0.121 0.123 0.111 - 0.100 0.124 0.124
Img+Scn 0.099 0.105 - 0.095 0.097 0.106 0.106
Act+Scn 0.108 - 0.109 0.107 0.103 0.111 0.111
All 0.131 0.130 0.125 0.119 0.126 0.128 0.127

Table 6: Average Recall after 10 rounds (Charades)

Rank 𝑊𝐼𝑚𝑔 𝑊𝐴𝑐𝑡 𝑊𝑆𝑐𝑛 NF PF(2) PF(3)

Img+Act 0.009 0.009 0.008 - 0.007 0.010 0.010
Img+Scn 0.007 0.007 - 0.007 0.007 0.009 0.009
Act+Scn 0.008 - 0.008 0.007 0.007 0.009 0.009
All 0.009 0.009 0.009 0.009 0.009 0.010 0.010

be a necessity to achieve better results. With regards to the perfor-
mance of the modality combinations for PF2, the same phenomenon
is observed as TRECVID results. Some tasks perform better with all
modalities while others are better when one modality is excluded.
Of the 23 tasks, 9 perform best with all modalities, 10 favor Img+Act,
and 4 are better with Img+Scn. The tasks where all modalities work
well have descriptions where the multiple modalities can benefit
each other, such as “throwing something on the floor” (task 18),
where the “floor” leads to indoor Scenes, “throwing” fits Actions,
and “something” allows any object based concept from ImageNet
to be involved. For Img+Act the tasks do not care for the scenery
of the relevant shots, such as “holding a phone/camera” (task 2)
and “watching/reading/looking at a book” (task 5). For these tasks
the Scenes modality can steer the multimodal results in unrelated
directions, while also taking additional non-fused slots due to the
partial fusion method. The 4 tasks favoring Img+Scn are fairly open
in terms of scenery, but the concepts involved make it easy to infer
specific environments. For instance the task “putting something on
a shelf somewhere”, while open-ended, with the concept of “shelf”
indoor Scenes of office or home environments can easily be applied.

4.3 VGG-Sound
Recall that the tasks of VGG-Sound focus on events occurring in
videos based on audible cues. Here we perform experiments with
Audio features as well. Majority of the tasks focus on sounds coming
from objects or from an entity performing an action, with few
relating to sounds from the scenery. As such, the results including
Scenes show similar traits to the TRECVID results: as the lone
modality it performs poorly, and interferes with other modalities to
make results worse. Hence, Scenes are not discussed further here.
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Table 7 shows the average precision and recall for the individual
modalities. As the ground truth sets for tasks in this dataset are
much smaller in comparison to the other datasets, the recall is
much higher. For this dataset the Audio dominates over ImageNet
and Actions. ImageNet and Actions are close in performance, with
Actions being slightly better.

Table 8 shows the average precision for the modality combi-
nations and the different fusion methods. The highest precision
is 0.074 and is achieved when all modalities are involved using
weighted rank aggregation on the clearly dominant representation
for Audio. The lowest precision of 0.036 is from Img+Act used with
no fusion. The baseline rank aggregation improves the performance
of ImageNet and Actions over their individual run. For all combina-
tions with Audio, the other modalities act more as an interference,
leading to worse performance than with just Audio. When weights
are applied on each modality, it is clear that when put on a clear
strong modality the results improve overall. Weights on the other
modalities perform worse than the baseline results. With no fusion
we observe that it improves over the baseline for Action and Audio,
and manages to have better precision than the individual Audio
run with all three modalities involved. This shows that while the
other modalities may not be as strong as Audio, they are still good
enough to provide relevant items. Looking at the two partial fusion
methods results they manage to get the highest precision when only
ImageNet and Actions are used. Img+Aud and Act+Aud manage to
get better or similar precision as the individual Audio run.

Table 9 shows the average recall for the fusion methods and
modality combinations. We observe a similar pattern as the preci-
sion results.𝑊𝐴𝑢𝑑 achieves the best recall where Audio is involved,
highest being 0.557, and the best recall for Img+Act is achieved by
partial fusion with 2 non-fused slots. While the precision for no fu-
sion with all modalities is higher than the solo Audio precision, the
recall is less. Similarly while the partial fusion methods achieve the
same precision as the individual Audio run, the recall is better with
all combinations. With a clear strong modality the 3 non-fusion
slot per modality does perform better than 2 slots in some cases.

Inspecting the performance of tasks for the𝑊𝐴𝑢𝑑 modality com-
binations, we again observe that with all modalities a higher aver-
age precision and recall is achieved, but for a number of the tasks
excluding a modality is better. Specifically, only 8 of the 27 tasks
achieve their best performance with all modalities present, 13 tasks
are better with Img+Aud, while the remaining 6 tasks are better
with Act+Aud. Tasks such as “lawn mowing” (task 2), “basketball
bounce” (task 4), and “canoe, kayak rowing” (task 14) work well
with all modalities as they have a fair representation for certain
elements of the descriptions. For Img+Aud, the task do not pertain
any major action, but rather a concept/object which makes a sound,
such as “train horning” (task 1) and “chinchilla barking” (task 6).
For the tasks that favor Act+Aud, the concepts involved may not
always fit the description, such as “playing squash” (task 3), where
a concept such as “tennis” may lead to wrong results, while the
action of “playing tennis” along with Audio for “playing squash”
will better help each other.

Table 7: Results of individual modalities for VGG-Sound

Modality Precision Recall

Img 0.028 0.195
Act 0.029 0.207
Aud 0.069 0.521

Table 8: Average Precision per round (VGGSound)

Rank 𝑊𝐼𝑚𝑔 𝑊𝐴𝑐𝑡 𝑊𝐴𝑢𝑑 NF PF(2) PF(3)

Img+Act 0.040 0.040 0.039 - 0.036 0.041 0.041
Img+Aud 0.068 0.059 - 0.073 0.065 0.070 0.069
Act+Aud 0.062 - 0.052 0.071 0.067 0.070 0.070
All 0.066 0.063 0.056 0.074 0.072 0.070 0.070

Table 9: Average Recall after 10 rounds (VGGSound)

Rank 𝑊𝐼𝑚𝑔 𝑊𝐴𝑐𝑡 𝑊𝐴𝑢𝑑 NF PF(2) PF(3)

Img+Act 0.286 0.283 0.279 - 0.256 0.291 0.290
Img+Aud 0.514 0.443 - 0.554 0.486 0.530 0.522
Act+Aud 0.464 - 0.384 0.540 0.504 0.527 0.530
All 0.492 0.466 0.410 0.557 0.506 0.527 0.533

4.4 Discussion
From the experiments conducted on the different datasets, it is ap-
parent that when more modalities are present fusion is important.
This is an observation from all the datasets, where the no fusion re-
sults fare worse than the other methods. It is also evident that fusion
with all modalities leads to higher precision and recall on average,
however, this does not mean it is better for all tasks. This is high-
lighted in every dataset, where different combinations of modalities
lead to different tasks performing better. Hence, the choice of modal-
ities for a task matters. Furthermore, if it is clear which modality a
task favors, a preference can be set for that modality, which can be
extremely beneficial, as shown with the weighted rank aggregation
results for TRECVID and VGG-Sound, with increases in average
precision of 24% and 7%. In case it is not clear which modality to set
a preference towards, showing mixed suggestions of fused items
and a number of items from each modality, is more appropriate
than regular fusion, or arbitrarily choosing a preference. This is
evident from the Charades results, where partial fusion achieves
better results than weighted rank aggregation. Aside from the take-
aways relating to fusion, it is also worth noting that a modality’s
performance in one dataset does not translate over to another. We
have shown that the ImageNet modality is strong for TRECVID
and Charades, which contain a wide variety of shots. However,
its strength diminishes when dealing with VGG-Sound, which is
not necessarily due to its representation, but is more related to
the tasks focusing on more than simply a concept’s presence. The
Action modality does not perform well for TRECVID, as the dataset
contains many shots where someone is not performing an action. In
Charades and VGG-Sound an action taking place is more common,
hence, the improved performance.
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5 CONCLUSION
In this paper we highlight the impact of different modality represen-
tations in videos for user relevance feedback with late fusion. We
specifically analyse late fusion using rank aggregation, weighted
rank aggregation, split modality output (no fusion), and partial
fusion. Through experiments conducted on three video datasets,
V3C1, Charades, and VGG-Sound, we show that modality fusion
is generally beneficial, although weaker modalities can negatively
impact the quality of the results. If the user knows beforehand
which modality is better suited for a task, prioritising the results
from that modality during fusion is greatly beneficial, while priori-
tising a bad modality for a task can be detrimental. Furthermore,
diversifying the results with items coming from fusion and from
individual modalities, is better than regular rank aggregation and
no fusion. Finally, the performance and relation between modalities
can change from one dataset to another.
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Chapter 4

Demonstrations and Interactive
Search Challenges

When designing an interactive learning approach, it is important to realise that
it consists of two parts, a foundation for the interactive learning process and a
client application that the human user interacts with. While the previous chapter
covered the foundation, this chapter focuses on Exquisitor as a client application.

The basic interface for an interactive learning approach typically consists of the
suggestions displayed in a grid, with buttons for labeling an item positive or neg-
ative. This constitutes the principles of the approach, but it is worth considering
whether such interface is sufficient for exploring and searching through large multi-
media collections. Section 4.1 presents a demonstration paper entitled Exquisitor:
Breaking the Interaction Barrier for Exploration of 100 Million Images,
which has been published in the proceedings of 27th ACM Multimedia confer-
ence (ACMMM 2019) [82]. In this demonstration, the initial version of Exquisitor
from Section 3.1 is used to interact with the YFCC100M collection on a laptop,
using a web interface following the design described above. As the intention of this
demonstration was on exploring the collection, additional functions were available
in the client, which focused on getting items from a classifier with arbitrary exam-
ples, or an arbitrary set of items. From this demonstration, multiple observations
were made. With regards to the presentation, simply asking people to explore a
collection is not enough for all users, but rather giving them an initial objective
of finding images containing a certain concept is better. The demonstration also
confirmed that the research community has an interest in interactive learning to ex-
plore and search large collections, but responsive and accurate approaches such as
Exquisitor are needed. As for the client application, it demonstrated that Exquisi-
tor is able to find relevant items, and reliably work on a single laptop, where all
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computations are done, and achieves an average response time of 0.3 seconds. The
only extension to the laptop was a 2 TB SSD to store the images of the YFCC100M
collection. By showing that Exquisitor can run well on a laptop, has inspired re-
search towards down scaling it to mobile phones [6]. In cases where users already
had a goal in mind, starting from an arbitrary screen did lead to many rounds of
labeling negatives or getting new screens with arbitrary items or concepts. From
this observation, considerations towards adding filters, or a function to find initial
positive examples arose.

To further understand the capabilities of Exquisitor with regards to search
oriented tasks and tasks with shifting descriptions, it is important to introduce
methods to reduce the search space in large collections. This has two effects, first
it reduces computation and second it can help find relevant items faster. Section 4.2
and 4.3 presents two workshop papers for Exquisitor participating at the Lifelog
Search Challenge (LSC) 2019 and 2020 at the International Conference of Mul-
timedia Retrieval (ICMR) [52, 55]. Lifelog data consists of personal information
relating to an individual, collected through smart gadgets. One of these gadgets is
a miniature body-camera that takes images at set intervals, leading to a large im-
age collections. At LSC, only subsets of the larger collections are used. The tasks
presented at these challenges are textual known-item search tasks, where the goal
is to find an item from the relevant item set. The task descriptions are presented
live over a period of time, where additional details are provided or corrections are
made, such as "Find an image of me in the office... It was a Tuesday... Actu-
ally it was a Thursday". The intention behind participating in these challenges is
to analyse the properties of Exquisitor when solving very specific search-oriented
tasks. The expectations are therefore not to get a high placement, but learning the
benefits and shortcomings of interactive learning in a “real” setting.

During the first participation in this live interactive search challenge, Sec-
tion 4.2, the Exquisitor client application consisted of the interface from the demon-
stration, along with filters for the images’ metadata information. Additionally, a
function for getting a new suggestion set was added, which used the current classi-
fier to get the next top ranked items. With the task descriptions focusing on meta-
data and visual aspects of the images, representations for both modalities were
used. From the participation, it was evident that Exquisitor was capable of solving
tasks that lean towards search, but improvements to the client application would be
needed. One of these improvements was screen utilisation, as the column showing
statistics of Exquisitor, takes space away from either enlarging images or present-
ing more images per round. Furthermore, not having a method to quickly find
some positive examples, meant initial interaction rounds being spent on negative
labeling. In the LSC 2020 participation, in Section 4.3, all of these improvements
were made, by adding a keyword search for concepts to find initial positive exam-
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ples and improving screen space. From these improvements, Exquisitor is capable
of solving tasks in image collections. From the second participation, many task
descriptions indicated the presence of exact text within images, which Exquisitor
did not have any representations for, nor did it have filters for such, showing that
different tasks may highlight different modalities. Even then, Exquisitor managed
to solve some of the tasks, but it is important to consider additional filters and
modalities for the interactive learning approach, to better support realistic tasks.

While participation in LSC shows that the Exquisitor client works for images,
multimedia collections also consists of videos. To examine the application with
regards to videos and tasks focusing on finding events occurring within videos,
Exquisitor has participated in the Video Browser Showdown (VBS) 2020 and 2021.
Section 4.4 and 4.5 present the workshop papers for VBS 2020 and 2021 which are
workshops held at the Multimedia Modeling conference (MMM) [49, 51]. These
challenges are similar to LSC, but revolve around a video collection and have been
going for over a decade now. Similar to LSC, it has textual known item search (T-
KIS) tasks, along with visual known item search (V-KIS) where the relevant video
segment to find is played live, and ad-hoc video search (AVS) tasks which focus
on finding as many segments as possible matching a description. VBS is done over
two sessions, one involving the expert users and one involving the novice user. The
novice user is a person selected from the audience at the workshop. It should also
be noted that the VBS challenges allow up to two users, which for Exquisitor meant
two users running Exquisitor in isolation on their own laptops.

The first participation showed that Exquisitor is capable of handling tasks for
video collections. However, Exquisitor struggled with task descriptions that had
a focus on temporal aspects of a segment, as there is no notion for this in the
foundation or the client application. From the novice session, it became clear that
a common user is still used to searching with keywords, as the search functionality
intended for finding positive examples for the interactive learning process, was
used more as a regular search tool. In the second participation, the temporal task
descriptions were addressed by adding the ability to work with multiple models in
the client and then use a merge function to find videos containing segments from
both models. There were no novice session for VBS 2021, as the event had been
made virtual due to COVID-19. Generally, observing all the users, expert or novice
from VBS and LSC, highlighted how users with experience and expertise label,
filter, and search with the client application, compared to novices. Additionally,
as these workshops run over a long session, fatigue also plays a part, which can
lead to users underperforming. These behavioral observations were not present
in any of the automated evaluations, which is what motivated the study of their
impact, leading to the article in Section 3.2. Furthermore, it became apparent that
Exquisitor needed to have some form of incremental retrieval, as otherwise the scope
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of the index was set to process the entire collection. Fortunately, this caused no real
performance issues due to the small collection sizes of LSC and VBS, but if it was
a large-scale collection, the story would have been different, which motivated the
research towards incremental retrieval and query optimisation policies presented
in the journal article in Section 3.3. Furthermore, given that the task descriptions
often involve colors of clothing, or actions performed by a person, it is worthwhile
to add additional modality representations, and optimising the fusion based on the
findings from the article in Section 3.4.

Through participating in the demonstration and workshops of LSC and VBS,
the Exquisitor client has been shown to be well suited for performing exploration-
and search-oriented tasks on multimedia collections. It is clear, however, that due
to its interactive learning nature, retrieval systems that include multiple search
functionalities will fare better at the challenges. However, due to the low resource
utilisation of Exquisitor, additional search functionality is possible to introduce in
the application, without hampering the interactive learning performance. Aside
from the client application demonstrated at these venues, a mobile application
following the principles of Exquisitor has also been developed [6, 90], as well as
an alternative cross platform user interface [56]. Showcasing interactive learning
on mobile devices is intriguing, as it is a new way of interacting with a collection
which many are not accustomed to on smaller devices.



Exquisitor: Breaking the Interaction Barrier
for Exploration of 100 Million Images

Hanna Ragnarsdóttir
Reykjavik University
Reykjavik, Iceland
hannar15@ru.is

Þórhildur Þorleiksdóttir
Reykjavik University
Reykjavik, Iceland
thorhildurt15@ru.is

Omar Shahbaz Khan
IT University of Copenhagen

Copenhagen, Denmark
omsh@itu.dk

Björn Þór Jónsson
IT University of Copenhagen

Copenhagen, Denmark
bjorn@itu.dk

Gylfi Þór Guðmundsson
Reykjavik University
Reykjavik, Iceland

gylfig@ru.is

Jan Zahálka
bohem.ai

Prague, Czech Republic
jan.zahalka@bohem.ai

Stevan Rudinac
University of Amsterdam
Amsterdam, Netherlands

s.rudinac@uva.nl

Laurent Amsaleg
CNRS–IRISA
Rennes, France

laurent.amsaleg@irisa.fr

Marcel Worring
University of Amsterdam
Amsterdam, Netherlands

m.worring@uva.nl

ABSTRACT
In this demonstration, we present Exquisitor, a media explorer
capable of learning user preferences in real-time during interactions
with the 99.2 million images of YFCC100M. Exquisitor owes its
efficiency to innovations in data representation, compression, and
indexing. Exquisitor can complete each interaction round, including
learning preferences and presenting the most relevant results, in
less than 30 ms using only a single CPU core and modest RAM.
In short, Exquisitor can bring large-scale interactive learning to
standard desktops and laptops, and even high-end mobile devices.
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1 INTRODUCTION
Multimedia collections have become a cornerstone data resource in
a variety of scientific and industrial fields. One of the most difficult
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Figure 1: The Exquisitor demonstration interface. Exquisi-
tor interactively learns new analytic categories over the full
YFCC100M image collection, with average latency of less
than 30 ms per interaction round, using hardware compa-
rable with standard desktops and modern mobile devices.

challenges for interactive exploration of such collections—not only
for data scientists working with these collections, but also for the
multimedia community as a whole—is their scale. How can we
facilitate efficient access to multimedia collections comprising tens
or hundreds of millions of images, let alone billions?

Interactive learning, which was embraced by the multimedia
community in the early days of content-based image and video
retrieval [4, 12], has recently experienced revival as an umbrella
method capable of satisfying a variety of multimedia information
needs, ranging from exploratory browsing to seeking a particular
known item [17]. Through feedback from the user, interactive learn-
ing can adapt to the intent and knowledge of the user, and thus
collaboratewith the user towards, e.g., learning new or unknown an-
alytic categories on the fly. Previous contributions, however, largely
operated at a relatively small scale [1, 2, 8, 10, 13, 14].
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Consider, as an example, the YFCC100M collection [16], com-
prising 99.2M images and 0.8M videos. It has existed for some time
now, but very few have a good idea about what its actual contents
are. This is no surprise, as it is difficult to tackle this collection with
existing techniques: the simple metadata-based filtering approach
is impeded by the sparse and noisy nature of the metadata and, at
this scale, similarity search is akin to shooting in the dark. Semantic
concept detectors can be used to generate additional content-based
metadata for both approaches, but that does not alleviate their
problems. And thus, the YFCC100M collection remains a mystery.

We have recently developed Exquisitor, a highly scalable inter-
active multimodal learning approach [6]. A key feature that sets
Exquisitor apart from related approaches is its scalability: Exquisitor
can retrieve suggestions from 100 million images with sub-second
latency, using extremely modest computing resources, thus break-
ing the interaction barrier for large-scale interactive learning. In
this demonstration, we propose to allowACMMultimedia attendees
to interactively explore the YFCC100M collection with Exquisitor.

2 EXQUISITOR INTERFACE
The current Exquisitor user interface, shown in Figure 1, is browser-
based and implemented using the React JavaScript library. It is a
fairly traditional interactive learning interface, in that users are
asked to label positive and negative examples, which are then used
to learn their preferences and determine the new round of sug-
gestions. Due to the extreme efficiency of the interactive learning
process, however, there are some notable differences from tradi-
tional interactive learning interfaces:

• The learning process runs unobtrusively in the background,
continuously providing new on-demand relevant examples
as the user progresses with her exploration, instead of re-
quiring explicit management.

• Individual images are replaced, rather than the entire screen,
for a smooth transition from one interaction round to the
other. Users are allowed to indicate that images are neither
positive nor negative to get a new suggestion, and images
that have been visible for some time, but not tagged as posi-
tive or negative, can also be replaced with new suggestions.

• Users can revisit positive and negative examples, removing
or even reversing the feedback label, as their understanding
of the collection contents and its relevance evolves.

Overall, the user interface is intended to provide a smooth learning
experience. We have already used Exquisitor in the Lifelog Search
Challenge (LSC) 2019 [7], and a detailed evaluation of the user
experience is part of our future work.

3 THE LEARNING PROCESS
Exquisitor’s back-end produces relevant results to show to the user
in less than 30 ms per interaction round, including learning the
user preference and scoring the collection, using one 2.4 GHz CPU
core and less than 6 GB of RAM. The back-end system is composed
of two web services, as shown in Figure 2. The ImageAPI service
serves thumbnails for the YFCC100M image collection, as required
by the user interface. The LearningAPI servicewraps the underlying
multimodal learning engine, decribed in [6]. In the remainder of
this section, we briefly outline the multimodal learning process.

Figure 2: Exquisitor demonstration system overview.

To enable interactive multimodal learning, visual and text fea-
tures were extracted from the images of the YFCC100M collection.
For visual features, the 1000 ImageNet semantic concepts were
extracted using a GoogLeNet architecture [15]. For the text modal-
ity, 100 LDA topics were extracted from the image title, tags and
description using the gensim framework [11].

Uncompressed features for the 99.2M images require nearly
880GB of memory. Exquisitor uses the recently proposed Ratio-
64 representation, which preserves only the top visual concepts
and text topics for each image [18]. The compressed feature collec-
tions require less than 6GB of storage, thus fitting into the memory
of a standard consumer PC, as well as some high-endmobile devices.
This effective compression method has been shown to preserve the
semantic descriptiveness of the visual and text features [18].

The interactive learning process is facilitated using a linear SVM
model, proven to provide a good balance between efficiency and
accuracy when classifying large datasets based on few training
examples [5, 9]. Based on the relevance indication provided by
the user, a classifier is trained separately for the text and visual
modalities and the images furthest from the hyperplane are selected.
The final list of results is created using rank aggregation.

The compressed feature data is indexed using a variant of the
extended Cluster Pruning (eCP) high-dimensional indexing algo-
rithm [3]. By directing Exquisitor’s attention to the clusters with
representatives most relevant to the learned linear SVM model,
the work of scoring candidates is reduced by nearly two orders of
magnitude, with an actual increase in quality [6]. The combination
of all these state-of-the-art methods enables an interaction round
of less than 30 ms on average using only limited computational
resources: one 2.4 GHz CPU core and less than 6 GB of RAM.

4 DEMONSTRATION
Themain emphasis of the demonstration will be to allow conference
participants to explore the 99.2 million images of the YFCC100M
collection using Exquisitor. The authorswill also prepare some inter-
esting exploration scenarios that highlight aspects of the YFCC100M
collection. During the demonstration we hope to engage conference
participants in a discussion that can inspire the multimedia commu-
nity to work on scalable multimedia techniques and applications.
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ABSTRACT
Interactive learning is an umbrella term for methods that attempt to
understand the information need of the user and formulate queries
that satisfy that information need. We propose to apply the state
of the art in interactive multimodal learning to visual lifelog ex-
ploration and search, using the Exquisitor system. Exquisitor is a
highly scalable interactive learning system, which uses semantic
features extracted from visual content and text to suggest rele-
vant media items to the user, based on user relevance feedback on
previously suggested items. Findings from our initial experiments
indicate that interactive multimodal learning will likely work well
for some LSC tasks, but also suggest some potential enhancements.
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1 INTRODUCTION
Today’s plethora of small devices allows capturing a tremendous
amount of personal information. The people who make use of these
devices to the fullest extent, gathering a variety of information
about their daily lives, are termed lifeloggers. The most important
feature of a typical lifelog is the image collection generated by
a camera attached to the individual lifelogger taking pictures at
regular intervals. The lifelog can also contain other sensor data, such
as temperature, location, heart rate, and audio, depending on which
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Figure 1: Exquisitor’s interactive learning pipeline. Initially,
the lifelog’s image collection is processed to produce a com-
pressed semantic representation, that is stored in a scalable
high-dimensional index. In each round of the interactive
learning process, the user is shown a set of potentially rele-
vant images. The user’s judgments are then used to train a
classifier, which in turn is used to retrieve a new set of im-
ages to show to the user. With the LSC collection, producing
new suggestions takes about 30ms on a laptop computer.

devices the individual uses. Furthermore, this data can be processed
with state-of-the-art computer vision and learning algorithms to
produce semantic annotations. Applications of such personal lifelog
data include self-monitoring and assisted memory [10].

The Lifelog Search Challenge (LSC) is a competition where re-
searchers are asked to study and develop methods to solve search-
related tasks for a multimodal lifelog dataset. Each task in LSC is an
independent query, to be solved in a few minutes, where a correct
result is a single image returned from a set of relevant images. The
query description is given gradually, as might be typical when a
lifelog is used to find information and the user slowly remembers
more details about the situation. The first edition of LSC, held in
2018, showcased a variety of multimedia browsers aiming to search
the lifelog with different approaches, ranging from traditional key-
word search to novel virtual reality-based approaches [8].

Working with a lifelog should be a highly interactive process,
where the lifelog user is collaborating with the lifelog system on
a variety of tasks, ranging from pure exploration of the lifelog
collection to focused search tasks to retrieve images relating to

82 CHAPTER 4. DEMOS AND INTERACTIVE CHALLENGES



particular memories. Multimedia analytics has been proposed as a
research area aimed exactly at solving such diverse interactive in-
formation needs [23]. In multimedia analytics, an analytical session
is composed of multiple different sub-tasks, ranging from browsing
to seeking a particular known item, thus forming an exploration-
search axis. Furthermore, interactive multimodal learning was pro-
posed as an umbrella task capable of satisfying all the tasks on the
exploration-search axis [23]. It is therefore of significant interest to
apply interactive multimodal learning to LSC.

We have recently developed Exquisitor, a highly scalable inter-
active multimodal learning approach [13]. Figure 1 illustrates the
iterative feedback process employed by Exquisitor as employed
with lifelog data. When a lifelog user has an information need, she
is initially presented with a set of randomly selected images from
the lifelog and asked to give feedback on (some of) the items. The
feedback is used to build (and subsequently update) a classification
model, which in turn is used to provide new suggestions; this itera-
tive process continues as long as the user deems necessary. A key
feature that sets Exquisitor apart from other interactive learning
approaches is its scalability: Exquisitor can retrieve suggestions
from the YFCC100M collection with sub-second latency, using com-
puting resources that are comparable to today’s high-end mobile
device. In this paper, we propose to use Exquisitor to solve the tasks
of the Lifelog Search Challenge.

The remainder of the paper is organized as follows. In Section 2,
we briefly give background for interactive learning and LSC. Sec-
tion 3 then outlines the Exquisitor approach and its exploration
interface. In Section 4, we look at the dataset provided by LSC and
describe the processing required to use it with the Exquisitor ap-
proach. In Section 5, we briefly report on initial experiments with
interactive retrieval tasks, before concluding the paper in Section 6.

2 BACKGROUND
Interactive learning comes in two basic forms, active learning and
user relevance feedback [11]. In active learning, the goal is to create
the best possible classifier, so the contribution of the user is typi-
cally to annotate samples close to the decision boundary between
classes [2, 12]. User relevance feedback algorithms, in contrast, fo-
cus on giving users insight into the multimedia collections [17]. As
a result, relevance feedback systems typically present as sugges-
tions to the user the items for which the classification model is the
most confident [19]. While this latter strategy may require more
interactions to achieve the same final quality of the classification
model, users may achieve their desired knowledge earlier [23].

Originally proposed in the 90s, early user relevance feedback
systems for content-based image and video retrieval commonly re-
lied on visual features that lack meaningful representation, such as
colour, texture, shape and edge histograms [19], as well as indexing
techniques that are inefficient in high-dimensional spaces, such
as R-trees and kd-trees [4]. While relatively little work has been
done on user relevance feedback in the last decade, recent advances
in both high-dimensional indexing and data representation, along
with calls for action from the multimedia community [21, 23], have
motivated us to re-visit user relevance feedback with the Exquisitor
approach [13].

Figure 2: Exquisitor’s browser-based user interface. When
hovering over an image, the user can label it as positive (bot-
tom left), negative (bottom right), or seen (top right). Posi-
tive items (green column) and negative items (red column)
are then used for updating the model.

Lifelogging is also steeped in history. In 1945, Vannevar Bush
published an article in which he proposed the “Memex”, which
he described as “a device capable of storing all books, records,
and communications, and which is mechanized so that it may be
consulted with exceeding speed and flexibility” [1]. Despite the
desire for such a device, the required technology did not exist and
therefore Bush could only encourage future researchers to carry
out this vision. The pioneering effort was the MyLifeBits project [5],
where Gordon Bell attempted to digitize nearly every aspect of his
life, creating the first lifelog. Recent years have seen the emergence
of more devices capable of capturing lifelog data, such as miniature
cameras, heart rate monitors, audio capturing devices, and GPSs,
to name a few. Collecting all this information is the first step, of
course, but as with the MyLifeBits project, the ability to process
the data in real time at scale in a flexible way is still desired.

The LSC, now in its second year, is the first interactive chal-
lenge focusing on lifelog data. It derives its format from Vide-
Olympics [22] and Video Browser Showdown (VBS) [20], inviting
interactive retrieval systems to solve interactive tasks at premise.
Six teams participated in LSC 2018. Some of these had previously
participated in VBS, while others were new systems; overall the
more developed systems had greater success [8]. The techniques of
the different retrieval systems varied significantly, but features such
as filters, similarity search and keyword search were a recurring
theme [8]. On top of these, specific systems emphasized different
interactions, such as virtual reality [3], sketch-based [14, 15] or
visual concepts [16] to name a few. However, none of the LSC 2018
participants used a relevance feedback-based approach.

3 EXQUISITOR
Exquisitor is a user relevance feedback approach capable of han-
dling large scale collections in real time [13]. It uses a Linear SVM
classifier as the underlying model deployed to score items in a com-
pressed feature space each interaction round. Furthermore it uses
a high dimensional indexing approach based on extended Cluster
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Pruning (eCP) [6]. The Exquisitor system used for LSC consists of
three parts: (1) a web-based user interface for receiving and judging
submissions; (2) an interactive learning server, which receives user
judgments and produces a list of suggestions; and (3) an off-the-
shelf web server which serves image thumbnails. In the following,
we describe the first two parts of the system.

3.1 Exquisitor Interface
The current Exquisitor user interface, shown in Figure 2, is browser-
based. It is largely a traditional interactive learning interface, in
that users are asked to label positive and negative examples, which
are then used to learn their preferences and determine the new
round of suggestions. Due to the extreme efficiency of the scoring
process, however, the interface itself initiates the request for new
suggestions, either at regular intervals or when new examples have
been produced.

3.2 Exquisitor Server
Exquisitor is developed to handle large-scale image collections,
where each image is described with feature vector data from the
visual and text modalities. The main components of the system are
a) data representation and indexing, and b) the scoring process. We
will briefly describe these in the following.

The high-dimensional feature vectors from the visual and text
modality are independently compressed using an index-based com-
pression method [24], where each feature vector is represented
using the top 6 features of each modality and compressed into
only three 64-bit integers. This results in an item only requiring 24
bytes of space per feature vector modality. The system has no need
for decompression as it is capable of scoring the items directly in
compressed space.

The compressed feature vectors are then indexed using the eCP
high-dimensional indexing algorithm [7]. A set of R representative
vectors is chosen from the collection and each vector is assigned to
the closest representative, thus forming clusters in the compressed
high-dimensional space. To facilitate retrieval, the clusters are re-
cursively indexed, using the same method to select representatives
of the representatives, to a chosen height L of the index.

In each interaction round, the Linear SVM model yields a clas-
sification hyperplane, which is used to form a farthest neighbor
query to the cluster-based index. The goal is to yield k suggestions,
which can be presented to the user. From each modality, b clusters
are retrieved and their contents scanned to yield the r furthest
neighbors from hyperplane. Using late modality fusion, these r
candidates from each modality are then merged with a rank ag-
gregation scheme to produce one ranked list, and the top k overall
candidates returned. If further efficiency is required, multiple CPU
cores can collaborate in producing the answer, by usingw workers
to process b/w clusters each.

Table 1 summarizes the initial parameter settings we have used
for the LSC collection. Note that experiments with YFCC100M have
shown that there is a tradeoff between latency and result quality.
As more clusters are processed (higher b) both latency and result
quality increase, but at some point result quality stops improving,
and may even get worse with additional processing in some cases.
We have yet to determine the optimal tradeoff between latency and

Table 1: Runtime parameters for Exquisitor with LSC data.

Parameter Description Default

Offline Indexing Parameters

R Number of representatives/clusters 417
L Height of index tree 2

Runtime Scoring Parameters

b Clusters read from the index 16
r Candidate items from each cluster 100
k Number of new suggestions returned 25
w Number of CPU cores used 1

result quality for the LSC data, but the collection is small enough to
fully process in about 20 milliseconds per interaction round using
only a single CPU core.

4 DATASET PREPARATION
LSC 2019 provides a dataset consisting of lifelog data collected from
a single user over the course of 27 days [9]. The dataset consists of
41.665 images with associated metadata and biometric data of the
lifelogger. This section describes how the given data was processed
into visual and textual feature vectors for use with Exquisitor.

4.1 Visual Data
In the LSC dataset, visual concepts (e.g., “computer”, “indoor”, and
“wall”) have already been assigned to images with a certainty score
ranging from 0 to 1. All in all, there are 548 unique concepts in the
collection; the highest number of concepts found on a single image
is 15. As described above, the 6 visual concepts with the highest
certainty scores are retained in the compressed data representation,
while the remaining concepts are ignored.

Note that not all images have visual concept data. A total of
986 images have apparently not successfully cleared the concept
generation process and are not represented in the visual dataset
at all. Additionally, 1,454 images had a “null” concept assignment,
indicating that the feature extraction process yielded no concepts.
As the data was processed sequentially, according to time and date,
we have made the assumption that most images with missing visual
concept data can be represented by the features of the previous suc-
cessful image. Figure 3 shows one example where this assumption
holds, but there are also examples where the previous image is far
less similar.

Figure 3: An example of consecutive images from the LSC
dataset, where thefirst imagehas valid visual conceptswhile
the following images have none.
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Figure 4: Suggestions provided in the third round of interac-
tion for an example AS task: find images of driving.

4.2 Textual Data
The text metadata consists of annotated descriptions for 23,788
images. Along with a general description of the activity in the
image, the direct object with which the user was interacting, if
any, is also given as text. These two fields were used to extract
text feature scores, using a 100-topic LDA model trained on the
English Wikipedia corpus using the gensim toolkit [18]. Note that
409 of the 986 items that had no visual features were found to have
some textual features, leaving 577 images without any visual or
text features.

4.3 Other Data
Additional metadata about the lifelog user were provided, such as
location, heart-rate, food information, etc. For now, these have not
been used to extract features, but this remains an option. Further-
more, this information could be used to combine filters with the
relevance feedback process.

5 INITIAL EXPERIENCES
According to [23], the way a user initially interacts with a collection
is by browsing through it. As further insight is gained about the
collection and the task of the user becomes more clear, the user can
start to narrow the scope until a result is achieved. The question
then is whether this type of process is suitable for LSC tasks.

Based on the previous Lifelog Search Challenge, and other similar
competitions such as Video Browser Showdown, the likely tasks
for systems can be categorized into two groups: Known Item Search
(KIS) andAd-hoc Search (AS). In LSC 2018, the former was dominant.
KIS tasks means that there is only one image (or a small set) that
will satisfy the query, while AS tasks have more broad answers.
In the following, we consider examples of AS and KIS tasks, and
describe our initial experiences.

5.1 Example: Ad-hoc Search
As an example AS task, consider finding images where the user is
driving. As can be seen in Figure 4, it took only 3 interaction rounds,
starting from a random set of images, before the system becamewell
aware of our intent and provided many relevant results. The overall

Figure 5: Random image chosen for the example KIS task.

process took a little over 30 seconds (left column), while producing
suggestions took on average 30 milliseconds per interaction round.

5.2 Example: Known Item Search
We believe that a KIS task will be harder with a relevance feedback-
based system, as finding a suitable Linear SVMmodel that separates
the correct image from the collection will be hard. To test this, we
have randomly chosen the image in Figure 5 as an example of a KIS
task. Starting again from a random set of images, Exquisitor quickly
identified that the information need included laptops or computers,
but as the image is very similar to many other images containing
laptops or computers, the correct image could not be found in 40
interaction rounds. Note that in LSC, each task generally has a set
of images considered relevant, so this example KIS task is most
likely significantly harder than LSC tasks, but it was nevertheless
instructive, as summarized next.

5.3 Summary of Observations
So far, our work has been more focused on exploration than on
identifying known items. While relevance feedback alone should
be capable of narrowing the scope of exploration and eventually
finding the correct items, some additional functionality appears
necessary for the time-constrained LSC tasks. We have identified
the following key issues to address before LSC 2019 starts:

(1) Using more modalities than only visual and text modalities
is the first priority. Metadata, such as location, time, and day,
could be used both to find candidates and influence their
ranking, thus impacting the choice of suggestions. Further-
more, filters on metadata could be used to reduce the scope
of exploration, thus allowing users to more quickly arrive at
a correct answer.

(2) Currently, the initial set of images is chosen randomly. Using
either a visual query or text query to prime the suggestions
could be a good addition to the interface. Due to the underly-
ing index structure, such queries can be easily implemented
without changing the relevance feedback process.

(3) When looking for a known item, it must be possible to in-
struct the system that, while all of the suggestions shown
are indeed relevant, none of them are exactly what is sought.
In that case, the system should show further suggestions
based on the same model.

(4) Currently, the interface only shows image thumbnails. Ex-
amining an image in more detail, along with its metadata,
could help the user evaluate its relevance, and potentially
also help choose which modalities to use or to adjust filters.
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6 CONCLUSION
In this paper we have described the initial configuration of the
Exquisitor system for our first participation in the Lifelog Search
Challenge (LSC 2019). Exquisitor is a highly scalable interactive
learning system, which relies on user relevance feedback to improve
its model of the user’s information need.What sets this system apart
from related work is the scalability, which it owes to innovative
feature selection, compression and indexing as well as the ability
to train the interactive model and score multimedia items directly
in the compressed space. As a consequence, the visual and text
features for the LSC collection can be stored in less than 6MB
of RAM and processed in about 30 milliseconds on average per
interaction round on a modest laptop computer. We have described
our initial experiences with using Exquisitor on lifelog data, and
proposed a number of enhancements to the system for improved
performance.
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ABSTRACT
We present an enhanced version of Exquisitor, our interactive and
scalable media exploration system. At its core, Exquisitor is an
interactive learning system using relevance feedback on media
items to build a model of the users’ information need. Relying on
efficient media representation and indexing, it facilitates real-time
user interaction. The new features for the Lifelog Search Challenge
2020 include support for timeline browsing, search functionality for
finding positive examples, and significant interface improvements.
Participation in the Lifelog Search Challenge allows us to compare
our paradigm, relying predominantly on interactive learning, with
more traditional search-based multimedia retrieval systems.
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1 INTRODUCTION
The Lifelog Search Challenge (LSC) is a live system-evaluation
event, where researchers compare their systems based on their abil-
ity to help users quickly solve search-related tasks for a multimodal
lifelog dataset. Each task in LSC is an independent query, to be
solved in a few minutes, where a correct result is a single image
returned from a set of relevant images. The query description is
given gradually, as might be typical when a lifelog is used to find
information and the user slowly remembers more details about
the situation. The first two editions of LSC, held in 2018 [3, 4] and
2019 [5], have showcased a variety of multimedia retrieval systems
aiming to search the lifelog with different approaches, ranging
from traditional keyword search to novel virtual reality-based ap-
proaches (e.g., see [1, 9, 10, 12]).

We have recently developed Exquisitor, a highly scalable inter-
active learning system for general multimedia analytics applica-
tions [7]. When applied to LSC, the user is initially presented with
a set of randomly selected images from the lifelog and asked to
give feedback on (some of) the items about their relevance to the
LSC task at hand. The feedback is used to build (and subsequently
update) a classification model, which in turn is used to provide
new suggestions; this iterative process continues as long as the
user deems necessary. Figure 1 describes Exquisitor’s interactive
learning interface. A key feature that sets Exquisitor apart from
other interactive learning approaches is its scalability: Exquisitor
can retrieve suggestions from the LSC 2020 collection of 43K images
in less than 50 milliseconds using a single CPU core, allowing to
retrieve suggestions very rapidly following each user interaction.

Exquisitor participated in LSC 2019 [8], where it ranked sixth
out of nine participants. The main lesson from LSC 2019 was that
interactive learning is a viable approach, even in this heavily search-
oriented competition setting. However, we also identified some
shortcomings of the Exquisitor system itself that prevented solving
some of the tasks. In this paper, we present the lessons learned from
LSC 2019 and how we have improved the system for participation
in LSC 2020. These improvements were partly implemented for
participation in the Video Browser Showdown 2020 [6], where
Exquisitor ranked fifth out of eleven participants.
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Figure 1: Exquisitor’s interactive learning interface. Previously selected positive examples are shown on the left and negative
examples on the right. The middle panel shows 25 suggestions based on the classification model built based on the user’s
feedback. By hovering over a thumbnail (see the middle thumbnail), users can select the image/video clip as a positive or
negative example (bottom left/right corners), remove it from consideration (upper right corner) or submit as solution to the
task (upper left corner). The top bars are for search and filtering, as described in the text.

The remainder of the paper is organized as follows. Section 2
briefly outlines the Exquisitor approach. Section 3 describes the
lessons learned from participation in LSC 2019, and Section 4 re-
views the changes made to Exquisitor based on those lessons.

2 EXQUISITOR
Exquisitor is a state-of-the-art multimodal interactive learning ap-
proach that combines efficient representation of data, a fast inter-
active classifier, and large-scale collection indexing [7]. The data
representation for each multimodal item comprises state-of-the-art
semantic visual concepts and text features. The semantic features
are compressed per modality using an index-based compression
method [16] that achieves over 99% compression rate whilst yield-
ing a data representation that preserves the semantic information
in the original data. The interactive classifier of choice, linear SVM,
operates directly in the compressed space to greatly speed up the
suggestion retrieval process. While more complex models, such as
those based on CNN architectures, have achieved great successes
in supervised learning settings, the performance of linear models
for classification is still unparalleled in interactive learning due to
their relatively good performance, explainability and the ability to
scale to very large collections [7, 11, 13, 16].

To build an index suitable of scaling up to large scale datasets,
Exquisitor builds on the extended Cluster Pruning (eCP) algo-
rithm [2], which creates a hierarchical structure of the collection
and enables efficient weaving of index utilization into the interac-
tive learning pipeline. Instead of scoring all items in the collection
with the classifier trained on user input, in each interaction round,
Exquisitor first identifies the 𝑏 clusters most relevant to the query,
based on the SVM model, and then only scores items in those
clusters, again using the SVM model to produce the suggestion
candidates per modality. More specifically, the 𝑏 clusters of each
modality are divided into 𝑠 segments, and a list of 𝑟 candidates is
produced from each segment. The final suggestions are then ob-
tained by performing late modality fusion over the 𝑠 × 𝑟 candidates
from each modality to produce the final 𝑘 suggestions for the user.

By using a high-dimensional index, Exquisitor’s suggestion re-
trieval relies not only on the scores provided by the interactive
classifier, but also harnesses the collection’s high-dimensional struc-
ture; our results indicate that this can indeed improve the quality of
the suggestions at scale. In [7], large-scale, artificial actor-simulated
experiments [15] with the ImageNet and YFCC100M collections
show that with parameter settings of 𝑏 = 256, 𝑠 = 16, 𝑟 = 1, 000 and
𝑘 = 25, Exquisitor significantly outperforms the state of the art in
user relevance feedback.
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3 LESSONS FROM LSC 2019
As outlined in the introduction, we believe that interactive learning
as a concept performed quite well on the search-based tasks of
LSC 2019. We found, however, that the system was missing some
features that would have been useful for solving some of the tasks:

• Model Bootstrapping. Initially, the user is presented with
a screen of 25 random images from the lifelog collection.
Even for the relatively small LSC 2019 collection of about
43K images, this represents less than 0.1% of the collection.
For some tasks there were few positive examples in the
collection, so the odds of randomly finding positive examples
was therefore very low. Somemeans of searching for positive
examples is thus clearly needed.

• Temporal Overview. Several LSC tasks described a sequence
of events leading up to the correct answer to the task, and
sometimes these prior events were easier to identify than the
eventual answer. Without any means to browse a timeline,
finding these prior events offered limited value for solving
the tasks.

• General Interface Issues. We found that the interactive learn-
ing interface itself had multiple problems, and was in par-
ticular difficult to use for novice users. This included basic
issues such as too much unused space on the screen and too
many mouse-clicks for common operations, as well as re-
quiring complex interactions to apply filters to the relevance
feedback process.

• Metadata Integration. Finally, at LSC 2019 we used only a
subset of the available metadata. While the subset we used
would have been sufficient to solve most of the tasks, inte-
grating all available metadata is important for the ability to
solve general analytics tasks.

We believe that these findings apply generally for any multimedia
analytics application, as the problems encountered during LSC
could be encountered in many situations where a combination of
search and exploration is required.

4 NEW FEATURES FOR LSC 2020
In order to address the lessons described above, we have imple-
mented the following changes to the Exquisitor system:

• Model Bootstrapping.We have implemented text-search func-
tionality, using pylucene, over the metadata of the lifelog im-
ages, including the semantic concepts and their descriptions.
Note, however, that the primary goal of the search function-
ality is not to find the answers to the tasks—although this
may happen in some cases—but rather to identify positive
example images, or even specific negative example images,
that can be used to build the model of user intent.

• Temporal Overview. For the Video Browser Showdown, we
implemented a video explorer to browse short scenes within
the context of the videos, as shown in Figure 2. By consider-
ing each lifelog image as a thumbnail from a video (albeit, a
video with a very low frame-rate), we adapt this functional-
ity to support timeline browsing within the lifelog collection.
We have also improved the timeline explorer implementation
to provide flexible granularity of the lifelog timeline, thus
providing better overview for the user.

• General Interface Issues. In order to improve usability, we
have eliminated some functionality that was not used in
practice (e.g., incrementally replacing images with new sug-
gestions), streamlined several important operations (e.g., ex-
amining the collections of positive or negative examples),
and improved screen usage significantly by eliminating un-
used background space.

• Metadata Integration. Finally, we are working to improve
the use of images and metadata. We have applied state-of-
the-art ResNeXt-101 visual concept detectors [14] to the
lifelog images, impacting both the user relevance feedback
process and text search. We have also improved the filtering
process and are working to extend the range of metadata
from the collection that is available to users. As an example,
the ability to filter lifelog images based on geo-location could
potentially be important for some LSC tasks.

As noted above, some of these enhancements have already been
applied in our participation in the Video Browser Showdown 2020.
With the additional changes made for LSC participation, we expect
that the system will perform significantly better with LSC tasks.

5 CONCLUSION
Exquisitor is an efficient interactive learning system, which relies
on user relevance feedback to build a model of the user’s informa-
tion need. While Exquisitor targets general multimedia analytics
applications, the participation in the Lifelog Search Challenge (LSC)
nevertheless allows comparison with more traditional search-based
media retrieval systems. In this paper we have described the lessons
learned from participation in LSC 2019 and the changes made to
the Exquisitor system for our participation in LSC 2020.
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Abstract. When browsing large video collections, human-in-the-loop
systems are essential. The system should understand the semantic infor-
mation need of the user and interactively help formulate queries to satisfy
that information need based on data-driven methods. Full synergy be-
tween the interacting user and the system can only be obtained when the
system learns from the user interactions while providing immediate re-
sponse. Doing so with dynamically changing information needs for large
scale multimodal collections is a challenging task. To push the boundary
of current methods, we propose to apply the state of the art in interac-
tive multimodal learning to the complex multimodal information needs
posed by the Video Browser Showdown (VBS). To that end we adapt the
Exquisitor system, a highly scalable interactive learning system. Exquisi-
tor combines semantic features extracted from visual content and text to
suggest relevant media items to the user, based on user relevance feed-
back on previously suggested items. In this paper, we briefly describe the
Exquisitor system, and its first incarnation as a VBS entrant.

Keywords: Interactive learning · Video browsing · Scalability.

1 Introduction

The Video Browser Showdown (VBS) is a series of annual live competitions,
where researchers are asked to study and develop methods to solve search-related
tasks for a benchmark video collection. The VBS tasks, which are independent
queries of three different flavours, are unknown to the researchers, who must
prepare their systems and data representations for any potential task. At com-
petition time, users of all systems are then given a few minutes to solve the
tasks. Furthermore, depending on the task, the query may be gradually refined
by adding information as time passes, to simulate real users with imperfect mem-
ories. While the systems taking part in previous VBS editions employ a variety
of advanced search and retrieval techniques, a common observation is that they
are highly interactive, requiring users to review and refine results of queries, re-
sulting in a highly interactive process. Interactive multimodal learning has been
proposed as an interactive method capable of satisfying users with uncertain
information needs [15]. Given the format of VBS, it is of significant academic
interest to apply interactive multimodal learning to VBS.
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Fig. 1. Exquisitor’s interactive learning pipeline. Initially, the video collection is pro-
cessed to produce a compressed semantic representation, that is stored in a scalable
high-dimensional index. In each round of the interactive learning process, the user is
shown a set of potentially relevant videos. The user’s judgments are then used to train
a classifier, which in turn is used to retrieve a new set of videos to show to the user.

We have recently developed Exquisitor, a highly scalable interactive multi-
modal learning approach [5, 9]. Figure 1 illustrates the iterative feedback process
employed by Exquisitor with video data. When a new task starts, the user is
initially presented with a set of randomly selected video scenes from the collec-
tion and asked to give (positive or negative) feedback on (some of) the scenes.
The feedback is used to build (and subsequently update) a classification model,
which in turn is used to provide new suggestions; this iterative process continues
as long as the user deems necessary. The Exquisitor system has been used to
interactively explore the YFCC100M collection [9], and to compete in the Lifelog
Search Challenge (LSC) 2019 [6], where it ranked 6th out of 9 competition en-
trants. A key feature that distinguishes Exquisitor from previous interactive
learning systems is its scalability [5]; while the VBS video collection contains
more than 1,000 hours of video, video suggestions can be retrieved in a fraction
of a second in each interaction round. In this paper, we describe the adaptation
of Exquisitor for participation in the Video Browser Showdown.

The remainder of the paper is organized as follows. In Sections 2 and 3, we
briefly give background for interactive learning and the Video Browser Show-
down, respectively. In Section 4, we then describe Exquisitor and its adaptation
to VBS, before concluding in Section 5.

2 Interactive Learning

Interactive learning belongs to the family of human-in-the-loop learning ap-
proaches, eliciting data labels from the user and using that feedback to classify
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the otherwise unannotated data on the fly. In contrast to supervised learning,
no labels are required prior to the analysis. Interactive learning commonly uses
a lightweight, fast classifier that learns online as the user inputs her feedback.

The two main learning strategies in interactive learning are active learning
and user relevance feedback. The objective of active learning is to create the
best classifier by eliciting labels on data most informative to the classifier, which
often translates to the data points the classifier is the least confident about or
those closest to the decision boundary [1, 4]. Conversely, user relevance feedback
aims to satisfy the user, presenting items for which the classification model is
the most confident [11]. While this latter strategy may require more interactions
to achieve the same final quality of the classification model, users may obtain
their desired insights earlier [15].

The increasing drive towards interactivity, personalized user experience, and
higher-level semantic understanding, combined with recent advances in related
scientific disciplines [12, 15, 16], have motivated us to re-visit user relevance feed-
back with our Exquisitor approach [5, 9].

3 The Video Browser Showdown

Involving users in the evaluation of retrieval processes has long been a chal-
lenge [7, 12, 14]. The majority of multimedia and computer vision benchmark
competitions are held offline, allowing scientists to devote both significant com-
putational power and time, which has helped solve difficult closed-world prob-
lems. Over the last two decades, however, international interactive search bench-
marking events have emerged, where systems and their users must solve unknown
and complex tasks within a limited time frame. From its inception in 2001,
the TRECVID benchmark initiative included an interactive search task [14].
The VideOlympics [13] then started in 2008 and ran for five years, introducing
the concept of live interactive video search benchmarking. The Video Browser
Showdown (VBS) has been running since 2012 [8], and is now the premier live
event, where participants must explore and search a collection of 1,000 hours of
video [10]. A recent event series is the Lifelog Search Challenge (LSC), where a
collection of lifelog image data must be explored [3]. While VBS and LSC repre-
sent only subsets of multimedia analytics applications, participation is important
as it allows comparison with related state-of-the-art interactive systems.

The tasks in VBS have three different flavours. Visual Known-Item-Search
(KIS) tasks present a randomly selected video clip to competitors, who must
then identify the correct clip in the collection and submit it to the VBS server.
Textual KIS tasks present a gradually evolving text description, which again
has a specific matching scene in the collection. Finally, Ad-hoc Video Search
(AVS) tasks ask for scenes matching a description; in this task judges evaluate
the relevance of answers as they are submitted to the VBS server. The VBS
competition has an expert session, where the teams use their own systems to
solve all types of tasks, and a novice session, where conference participants, who
have never seen the system, are asked to solve visual KIS and AVS tasks.
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Fig. 2. Exquisitor’s current user interface. The interface is browser-based and used
primarily via mouse-based interaction. When hovering over a video, the user can choose
to view the video in full, submit it to the VBS server, label it as a positive/negative
example, or mark it as seen (using a ‘next’ button, the user can also mark all videos
as seen and get a full screen of new videos). Positive (green column) and negative (red
column) examples are immediately used to update the model.

4 Exquisitor

Exquisitor is a user relevance feedback approach capable of handling large scale
collections in real time [5, 9]. The Exquisitor system used for VBS consists of
three parts: (1) a web-based user interface for receiving and judging video sug-
gestions; (2) an interactive learning server, which receives user judgments and
produces a new round of suggestions; and (3) a web server which serves videos
and video thumbnails. All three components run locally on the laptop of the
VBS participants. In the following, we describe the first two parts of the system.

Exquisitor Interface: The current Exquisitor user interface is shown in Fig-
ure 2. In this initial incarnation, it is a pure interactive learning interface: the
user is asked to label examples, which are subsequently used to learn the user’s
preference and suggest further examples. As the process to generate new sugges-
tions is very efficient, however, new suggestions are retrieved each time the user
identifies new positive or negative examples.

Exquisitor Server: Exquisitor has been developed to handle large-scale media
collections, where each media item is described with feature vector data from

94 CHAPTER 4. DEMOS AND INTERACTIVE CHALLENGES



both visual and text modalities. The main components of the server are a) data
representation and indexing, and b) the scoring process, described briefly below.

Each of the (just over) million scenes in the VBS collection is represented by
a high-dimensional concept feature vector extracted from a selected keyframe.
The high-dimensional feature vectors are compressed using an index-based com-
pression method [16], where each feature vector is represented using the top 6
features of the modality and compressed into only three 64-bit integers. The
compressed feature vectors are then indexed using the eCP high-dimensional in-
dexing algorithm [2]. A set of representative vectors is chosen from the collection
and each vector is assigned to the closest representative, thus forming clusters in
the compressed high-dimensional space. To facilitate retrieval, the cluster repre-
sentatives are recursively indexed to form an approximate cluster-based index.

Exquisitor uses a Linear SVM classifier learned from user interactions to score
items in the compressed feature space. In each interaction round, the Linear SVM
model yields a classification hyperplane, which is used to form a farthest neighbor
query to the cluster-based index. The goal is to yield k = 25 suggestions, which
can be presented to the user. The clusters farthest from the SVM hyperplane
are selected and their contents scanned to yield the k furthest neighbors.

Solving VBS Tasks: In KIS tasks, the aim of positive and negative examples
is to create a model that is good enough to bring the correct answer to the
screen. If the user is satisfied that all videos displayed are neither useful as
positive/negative examples nor the answer to the task, the user can use the
‘next’ button to continue browsing the results, similar to the typical ‘query and
browse’ approach of many current VBS entrants. A submitted result is considered
as a positive example, regardless of whether it is the correct result or not; once
the correct result has been submitted the task is complete. For AVS tasks the
process is identical, except that all videos on screen can be submitted at once
using a special button, and the process only ends once time has expired.

5 Conclusions

This paper has outlined the adaptation of the Exquisitor system to the Video
Browser Showdown, both in terms of the data used to represent the video col-
lection and the interface changes made for video browsing. As a new entrant in
the competition, our primary goal is to learn from our participation in the com-
petition, aiming to understand both how well the interactive learning approach
suits the different competition tasks, and how we can improve our preliminary
interface to be better suited to the competitive environment.

Acknowledgments: This work was supported by a PhD grant from the IT
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Abstract. Exquisitor is a scalable media exploration system based on
interactive learning, which first took part in VBS in 2020. This paper
presents an extension to Exquisitor, which supports operations on se-
mantic classifiers to solve VBS tasks with temporal constraints. We out-
line the approach and present preliminary results, which indicate the
potential of the approach.
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1 Introduction

The Video Browser Showdown (VBS), now in its 10th anniversary edition, has
emerged as an important vehicle for the evolution of the multimedia field [5].
During VBS, researchers are given a series of never-before-seen task descriptions,
based on a collection of 7,475 video clips [9], and asked to interactively retrieve
either one specific video segment or multiple relevant segments, depending on the
task type. VBS allows researchers working on media exploration and search tools
to apply their techniques in a realistic setting and better understand the pros and
cons of both the underlying techniques and the interfaces. The lessons learned
during the competition can then inspire new methods and further research. In
addition, the competitive setting makes for an exciting event where the ranking
of systems can also give hints to their usability and applicability.

Exquisitor, a prototype media exploration system based on interactive learn-
ing, took part for the first time in VBS 2020, where it placed 5th out of 11
systems [2]. The goal of Exquisitor, as applied to VBS, is to build a seman-
tic classifier for the information need represented in each task, and use that
classifier—along with metadata filters and a video timeline explorer—to solve
the task. Exquisitor uses the video segmentation supplied with the VBS col-
lection and represents each video segment independently by semantic features
derived from its keyframe. When building the semantic classifier, Exquisitor sug-
gests keyframes to the user and asks for feedback on those suggestions. Once the
user spots a potentially relevant keyframe, the video explorer can then be used
to explore the actual content and internal structure of the full video clip.

4.5. EXQUISITOR @ VBS 2021 97



For many VBS tasks, the task description applies to more than one video seg-
ment, often focusing on different semantic concepts in different segments, and
sometimes providing an explicit temporal relationship. Unsurprisingly, therefore,
all the strongest VBS competitors provide temporal queries as a major tech-
nique [4, 6, 10, 7]. Since video segmentation tends to split the video by semantic
concepts, a classifier built to find one segment may not find the other, and the
system should provide support to utilise the relationship between concepts in
video segments.

In this paper, we present a new version of Exquisitor, where the major ex-
tension is the support for utilising relationships between semantic classifiers.
While each semantic classifier is developed in the same manner as before, using
independent video segments, the results of two semantic classifiers can now be
combined in various ways, with an optional temporal relationship specification.
In this paper we briefly outline the method and interface for combining two se-
mantic models and show how two models combined could be used to solve two
VBS 2020 tasks, one of which the team failed to solve during the competition.
We will present and evaluate the methods in more detail in a later publication.

2 Exquisitor

Exquisitor is a user relevance feedback approach capable of handling large scale
collections in real time [3, 8]. The Exquisitor system used for VBS consists of
three parts: (1) a web-based user interface for receiving and judging video sug-
gestions; (2) an interactive learning server, which receives user judgments and
produces a new round of suggestions; and (3) a web server which serves videos
and video thumbnails. Due to the computational efficiency of the system, all
three components can run locally on a laptop.

Exquisitor Server: Exquisitor is fueled by a semantic model that combines
interactive multimodal learning with cluster-based indexing. Each keyframe in
each modality is represented by an efficient representation containing the most
important semantic features, compressed using an index-based method [11]. This
representation is further clustered using a cluster-based indexing approach [1].
When building a semantic classifier C, a linear SVM classifier is iteratively re-
fined based on user interactions (positive and negative examples). In each round
of interaction, the resulting separating hyperplane forms k-farthest neighbour
queries posed to the cluster-based indexes. Finally, late fusion is performed on
the retrieved results, to produce the 25 top-ranked results to suggest to the user.

Exquisitor Interface: The interface for building classifiers is shown in Figure 1.
By hovering over a keyframe, the user can choose to view the video, submit it to
the VBS server, label it as a positive/negative example, or mark it as seen. Using
the ‘next’ button, the user can also mark all videos as seen and get a full screen
of new videos based on the current semantic classifier. Positive (green column)
and negative (red column) examples are immediately used to update the model.
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Fig. 1. Exquisitor’s interface for building semantic classifiers. See text for details.

Interactive Learning and VBS: The tasks in VBS have three different
flavours: Textual Known-Item-Search (KIS) tasks present a gradually evolving
text description matching a short video segment; Visual KIS tasks show the
video clip sought; and Ad-hoc Video Search (AVS) tasks ask for all segments
matching a description. In these tasks, the aim of interactive learning is to cre-
ate a classifier that is good enough to bring the correct answer(s) to the screen.
For KIS tasks, a submitted result is considered as a positive example; once the
correct result has been submitted the task is complete. For AVS tasks the pro-
cess is identical, except that all videos on screen can be submitted at once using
a special button, and the process only ends once time has expired.

3 Operations on Semantic Classifier Rankings

To ground the presentation, consider the two textual KIS tasks in Table 1, both
of which have a temporal component. Task T1 was solved by 6 teams during VBS
2020, and was generally considered a difficult task. There are many videos with
bridesmaids and brides and grooms, respectively, but in this particular video they
do not co-occur in a keyframe during the segment that was considered a solution
to the task, and hence we failed to solve this task. Task T6, on the other hand,
was the only text-based task solved by all teams. The Exquisitor team solved
it efficiently during the competition by building a classifier for elevators, since
(a) the elevator and the bike co-exist in the same keyframe and (b) elevators
are rare, so the keyframe is quickly suggested for inspection. Note, however,
that since there are many examples of bikes in the collection, but most of them
outdoors, building a classifier for bikes is not a productive method to solve T6.

4.5. EXQUISITOR @ VBS 2021 99



Table 1. Two example textual KIS tasks from VBS 2020.

Task Description

T1 Seven bridesmaids in turquoise dresses walking down a street, and three still
images of the bride and couple. The bridesmaids walk on the sidewalk towards
the camera. The photos of the couple and bride are taken in a park.

T6 Red elevator doors opening, a bike leans inside, doors closing and reopening, bike
is gone. Zoom-in on bike, zoom-out from empty elevator. The bike is silver, the
text ’ATOMZ’ is visible.

Classifier Ranking Operations: The rankings obtained by two semantic clas-
sifiers, C1 and C2, can be combined with a keyframe relationship operation, C1

op C2, where op ∈ {∩,∪, \, −̇}. Furthermore, a temporal constraint can option-
ally be added, which requires either a maximum distance between keyframes
(within <frames>) or a minimum distance (after <frames>). The result of the
classifier ranking operation is a list of videos satisfying both the relationship
constraint and optional temporal constraint. Each video is represented by a list
of keyframes, annotated by the classifier(s) they appear in, and the videos are
ranked by an average score based on the accumulated rank of their scenes from
each classifier and the total number of scenes.

As an example, consider solving task T6 by intersection of rankings produced
by semantic classifiers for bikes and elevators. A video would be returned as an
answer only if both classifiers return a scene from that video. Since the task
description indicates that the two elements should be close to each other, a
temporal constraint of within 1, for example, would avoid videos where bikes
and elevators are far apart.

User Interface: Figure 2 shows the interface for classifier ranking operations.
As the figure shows, the result of the merge is a list of the 10 top-ranked
videos, where each video is represented by three colour-coded keyframes. Yellow
keyframes are from C1 and blue from C2, while keyframes appearing in both
classifiers are shown as green. The interface shows the highest ranked frame of
each colour; if no keyframe appears in both classifiers, the third frame is the
second highest frame from one classifier. Additionally, summary information on
the number of keyframes in the video and classifiers is shown to the left of the
keyframes.

Evaluation: To evaluate the usefulness of classifier ranking operations, we at-
tempted to solve the two tasks of Table 1, both by building a single classifier
and by building two classifiers and intersecting their rankings. These experiments
were carried out in a calm setting, with no time limit, unlike the competitive
environment of VBS. Furthermore, for this evaluation, the entire task text was
considered. To estimate the user workload, we counted the number of interac-
tions with the system, where an interaction is any action taken by the user, such
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Fig. 2. Exquisitor’s interface for semantic classifier operations. See text for details.

as labelling a keyframe as a positive example or changing to a different interface
component. We chose to stop after around 75 interactions; once we reached this
limit, we considered the task to be unsolved.

Table 2 summarises the results for the two tasks. Consider first T1, a difficult
task which was not solved by Exquisitor during the competition. As the table
shows, a simple intersection of the results produced by two classifiers could solve
the task. Now consider task T6, which was significantly easier. Table 2 shows
that a single classifier on ‘elevator’ is the fastest approach to solve this task, due
to the composition of the collection; this was fortunately the approach taken
during the competition. Had we chosen to focus on ‘bike’ instead, however, the
results suggest we would have failed to solve the task. Building rough classifiers
for each concept and intersecting their rankings, however, is also an efficient
method to solve the task; since the order in which the models are built does not
matter the method is robust.

Table 2. Effectiveness experiment results

Task Models Interactions Solved

T1 ‘bridesmaid’ 76 No
‘bride’ 78 No
‘bridesmaid’ ∩ ‘bride’ 60 Yes

T6 ‘elevator’ 8 Yes
‘bike’ 75 No
‘elevator’ ∩ ‘bike’ 15 Yes
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4 Conclusions

We have outlined an extension to the Exquisitor system, supporting operations
on semantic classifiers to solve VBS tasks with temporal constraints. Our pre-
liminary results indicate that this new approach has significant potential, and
we look forward to testing the approach in the competitive setting.
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Chapter 5

Conclusion

The aim of this thesis has been to design an interactive learning approach for mul-
timedia collections, which can be used to determine the benefits and shortcomings
of such approaches, when dealing with large collections and tasks that focus on ex-
ploration and search. Prior large-scale interactive learning approaches have shown
adequate performance, but they either lean too much towards the machine’s repre-
sentation of multimedia items, making it difficult for a human to assess, or heavily
rely on available computing resources to become a scalable approach. As interac-
tive learning is a human-in-the-loop approach, it is important that the machine is
transparent with the human to make the most out of the interactions. Further-
more, it is important to remember that everyone does not have the same availability
of computing resources. Therefore, a scalable approach should not have a heavy
reliance on computing resources, to ensure a larger appeal. Large-scale content
based retrieval approaches rely on high-dimensional indexing which heavily focuses
on solving search-oriented tasks, and have rarely been used for interactive learning
with an emphasis on both exploration and search. For high-dimensional indexing
to be used with interactive learning, a set of requirements are proposed in this the-
sis, which ensure that it is responsive and scalable. Furthermore, the interactive
learning approach needs to be flexible to adapt towards shifting tasks, and accurate
at scale. In this thesis the Exquisitor approach is proposed, which combines inter-
active learning with high-dimensional indexing following these requirements. To
achieve these requirements, the interactive learning classifier and high-dimensional
index have to be aligned, when it comes to representation and what a relevant item
is. Otherwise, the process is not transparent and it becomes cumbersome to de-
termine where potential errors arise. Similarly, the high-dimensional index has the
property of being approximate, which is useful for controlling the time and quality,
but there needs to be a way for the approach to circumvent this property when the
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user is only interested in small groups of items across the collection. Exquisitor uses
a compressed representation for the multimedia items, which the high-dimensional
index stores and uses as is. The interactive classifier of SVM is used to train a
hyperplane, to which the farthest items from the plane in the positive direction
are seen as relevant. The high-dimensional index has been modified to perform
k-farthest neighbor queries to a plane, to find relevant items. Lastly, to circumvent
the approximation property, incremental retrieval and query optimisation policies
are present in Exquisitor.

During the work on Exquisitor it became apparent that automated evaluation
measures do not consider the behaviors of different human users when interacting
with such an approach. To this end, we have shown that how a user interacts
with a system can have a significant impact on the outcome of a session for a
specific task. This is shown through new evaluation protocols, but also observed
through live showcases of Exquisitor as a client application. At these showings, it
is evident that a pure interactive learning approach requires additional features,
such as procuring initial positive examples, making corrections by replacing or
removing already labeled items, and having multiple models to deal with temporal
tasks. These features are present in the Exquisitor client stemming from the work in
this thesis. Furthermore, the representations used for the multimedia items in the
interactive learning process have primarily been visual semantic concepts, which are
suitable for image collections, but for videos additional modality representations
can be involved. While additional representations are possible to extract, through
our work we have shown that it is important to keep in mind whether or not they
are useful for a given task and collection. Furthermore, it may be better to discard
weaker modalities or set preferences on the stronger modalities, when it is clear
that a weak modality has little value for a task.

Exquisitor has shown that a truly scalable interactive learning approach is ca-
pable of exploring and searching large collections and acquiring desired knowledge.
Furthermore, it is able to adapt towards new areas in case the nature of the task
changes as knowledge is gained throughout a session. Thus, making Exquisitor
responsive, accurate, flexible and scalable, using significantly less computing re-
sources than its predecessors. Following this work, there are multiple research
avenues to take up with regards to the foundation of Exquisitor, automated eval-
uation protocols, and better utilisation of the newfound available resources.

With continuous advances in deep learning for representations of image and
video content, it is important to check whether these can replace current repre-
sentations, or be added as additional representations. Cross-modal embeddings
combine the information from multiple modalities and learn a new multi-modal
representation, which have been shown to outperform single modality represen-
tations in most cases [16, 50, 88]. Contrastive learning is another approach that
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combines the information from text and visual content through self supervised
learning, and has shown immense improvements for generalized image and video
captioning, when using a large number of training samples [8, 81, 94]. These repre-
sentations are often used for retrieval focusing on search, hence it will be interesting
to see whether they are useful for interactive learning. Another representation is
based on hypergraphs, where the relations between the various representations con-
nected to multimedia items are used to create a hypergraph from which a singular
representation is learned [4]. In this case it will be interesting to see how well the
hypergraph representation compares to multiple representations.

When it comes to evaluating interactive learning approaches, the automated
evaluation measures lack the influence of a real human user. While the new evalu-
ation protocols presented in this thesis attempt to improve the artificial users, by
introducing labeling and filtering strategies, there are still many details of a human
user’s behavior that are not represented. An approach to create more intelligent
artificial users, is to use reinforcement learning to generate different users [77]. This
requires an initial data collection phase from multiple user sessions, to capture the
various behaviors of real human users. By analysing the session data, different
policies, rewards, and states, can be defined from the different actions users make,
which can be used by the reinforcement learning agents. As there are many ac-
tions a user can take in the Exquisitor client application, the most frequently used
actions that focus on the interactive learning process should be considered.

Finally, Exquisitor reducing computing resources for performing interactive
learning, opens up for the opportunity of utilising the additional resources to im-
prove the overall experience of an interactive session. This may include multiple
different classifiers for the interactive learning approach such as a linear SVM and
a Self-Organising-Map. Furthermore, resources can be used to facilitate two com-
pletely different sessions, from the same or another user, which can be used to
combine the results of both, similar to how the Exquisitor client handles temporal
queries. With regards to the client application, resources can be used to intro-
duce new retrieval methods, to determine potential filters from a given query, or
to improve the interactive learning by adding methods for finding better examples.
Another aspect of this work is that we have shown that even with weaker deep learn-
ing model representations, Exquisitor is capable of getting relevant items. Thus, in
case of time dependent tasks, where a multimedia collection needs to be analysed,
preprocessing a collection with multiple models, both stronger and weaker models,
is a possibility, where the weaker model’s representations are used to access and
explore the collection quickly, and when the stronger model’s representations are
ready, they can either replace or work with the representations of the other model.

Ultimately, the work stemming from this thesis is an interactive learning ap-
proach that allow users to spend more time interacting with their collections in
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continuous sessions that adequately shifts to their needs. By significantly reduc-
ing resource requirements, there is now a way to interact with a large collection
without having to rely on a cloud platform or specialized hardware. Thus, people
or parties with collections they wish to analyse that contain private or sensitive
data, now have a solution for this. There is still the notion of performing feature
extraction which may demand specialized hardware or more resources, but this is
a one-time operation. Lastly, Exquisitor shows that everyone has the ability to in-
teract with such large collections in a manner that is not reliant on us formulating
understandable terms for a machine and more importantly, in a global society, is
independent of language.
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