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Abstract

Endemic Machines is an interdisciplinary investigation of the
question: What is required for a machine to adapt to a local ecosystem?
Through the medium of sound, it explores the conceptualization
and design of machines that belong in an ecosystem because
they evolve within and alongside it. Drawing on research in
soundscape ecology, artificial life, and artificial intelligence, it builds
an interdisciplinary view of machine engagement with an existing
soundscape.

Building on the biosemiotic concept of a sensory world, an
umwelt, this work formulates a basis for the machine sensing of the
soundscape. In parallel, it presents work — conceptual and based
in practice — that constructs a new frame for the production and
understanding of machinic vocalizations in the soundscape. The
term robophony is devised to describe the sounds of ecologically-
engaged machines as they do not fit within the existing ontological
framework which characterizes sound as originating from humans
(anthrophony), (non-human) biological entities (biophony), or
geophysical processes (geophony).

Additionally, the concept of eco-technogenesis is proposed as
a way of understanding the cyclical co-evolution of technologies
and ecosystems. This extends the concept of technogenesis, which
situates technology and humanity as evolutionary partners, to the
co-development of ecosystems and machines. The processes of
feedback and co-creation inherent in eco-technogenesis provide a
framework for understanding how machines can become endemic.

These theoretical contributions are scrutinized in the experi-
mental design of an endemic machine that evolves a vocalization
in an existing, real-world soundscape. Through this machine, the
RowdyKrause, adaptation to a local ecosystem is addressed in prac-
tice. The work delves into the nuances and complexities of adapting
to a local ecosystem and the internal tensions embedded in the con-
cept of an endemic machine.
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Resumé

Endemiske Maskiner er en interdiciplinær undersøgelse af
spørgsmålet: Hvad kræver det for at en maskine kan tilpasse
sig et lokalt økosystem? Ved brug af lyd som medie, udforskes
konceptualisering og design af maskiner der tilhører et økosystem
fordi de udvikler sig som en del af og sammen med det. Ved at
trække på forskning inden for lydbilledsøkologi, kunstigt liv og
kunstig intelligens, bygges et interdiciplinært overblik over hvordan
maskiner kan blive en del af et eksisterende lydbillede.

Ved at bygge på det biosemiotiske koncept for en følende ver-
den, en ‘umwelt’, beskriver denne afhandling fundamentet for ma-
skinopfattelse af et lydbillede. Samtidig præsenteres arbejde—kon-
ceptuelt og baseret på praktiske forsøg - som konstruerer et nyt felt
for produktion og forståelse af mekaniske vokaliseringer i et lydbil-
lede. Ordet “robophony” bruges for at kunne beskrive lydene fra
maskiner der er en del af et lydmæssigt økosystem, da de ikke pas-
ser ind i eksisterende ontologiske rammer der karakterisere lyd som
kommer framennesker (antropomorfisk), (ikkemenneskelige) bio-
logiske entiteter (biophony), eller geofysiske processer (geophony).

Derudover, foreslåes konceptet øko-teknogenesis til at forstå
cyklisk og gensidig udvikling af teknologi og økosystemer. Det
er en udvidelse af konceptet teknogenesis, der opstiller teknologi
og menneskeheden som evolutionære partnerer, så det omfatter
gensidige udvikling af økosystemer og maskiner. De processer med
feedback og gensidig udvikling, som er en del af øko-teknogenesis
skaber rammerne for hvordan maskiner kan opnå endemiske træk.

Teorierne er gennemprøvet ved brug af en eksperimentielt
designet endemisk maskine, kaldet ‘Rowdy Krause’, der udvikler
en vokalisering i et eksisterende, naturligt lydbillede. Denne
maskine et et eksempel på hvordan maskiner kan tilpasses et
lokalt økosystem i praksis. Denne afhandling dykker ned i nuancer
og kompleksiterne i forbindelse med at tilpasse en endemisk
maskine til et lokalt økosystem, og de interne modsætninger i selve
konceptet.
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Chapter 1

Introduction

What is required for a machine to adapt to a local ecosystem? This question
underpins the various lines of inquiry in this dissertation. How does a
machine become part of an ecology, a network of beings and energies and
materials?

Machines are typically considered artifacts of the human world. In
much of post-Enlightenment Western philosophy, that world is cleaved
from the world of nature, which is to be either admired from afar or
brought under control. This view has been critiqued and dismissed
by a generation of scholars of philosophy, technology, and cybernetics,
but it still dominates the design of machines that operate in ecosystems.
Thesemachines—agricultural sprayers and harvesters, sonic pest control
devices, robot lawnmowers — operate with a singularity of purpose that
does not account for the whole of the ecology in which they exist. They
do to the ecosystem instead of becoming part of it.

In askingWhat is required for a machine to adapt to a local ecosystem?, this
dissertation investigates the potentialities of bringing machine agency to
the ecosystem. It works to integrate ecological concepts into the process
and language of machine design. It attempts to reposition technology not
as outside of ecosystems, a thing thrust onto them, but as a force that is an
inherent part of biological life, that exists in non-human animal systems,
and can be understood as a co-creative ecological force.

1.1 Background and State of the Art

The question of the role and place of machines in ecosystems is entangled
in a number of fields. One approach comes from the fields of engineering
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ethics and bioethics. Beginning as a brief consideration of the possible
role of robots in monitoring ecosystems (Sullins, 2011), recent work has
established different types of robot-ecosystem relationships and begun a
discussion of the ethical implications of those robots (Wynsberghe and
Donhauser, 2017; Donhauser, Wynsberghe, and Bearden, 2020). This
discourse touches on some of the broader issues in AI and robotics
— robot autonomy and AI safety; the environmental impact of robot
manufacturing and disposal; and the predicted increase in the use of
robotics in ecosystems.

However, these approaches are set in the language of engineering
practice. In this framework, machines have tasks that they accomplish.
They serve, augment and enhance (Wynsberghe and Donhauser, 2017).
Even in the discussion of ecobots — the term Van Wynsberghe and
Donhauser (2017) use for ecologically functional robots — the precise
roles imagined for machines are the products of human desire and
decision-making.

Though it is not explicitly acknowledged, this discourse is the product
of a philosophy where humans sit apart from and above ecosystems. It
renders humans as subject and machines and ecologies as object. The
machines that it produces have singular goals that often make them
unable to improvise, adapt, and respond to the complexities of the
ecosystem they find themselves in.

A different approach can sometimes be found in the work of artists
and designers. These are often explicit attempts to interrogate the
conventional understanding of human-machine-ecosystem relationships
as defined by their opposition to one another. These works invoke
”the pattern that connects” (Bateson, 1972); they seek new ways of
formulating and understanding the dynamics of human-built machines
in ecology.

For example, Benitez and Vogl’s in silico et in situ (2016-2017) is a
series of digitally fabricated installations designed to create or re-create
habitats for animals. One of these artificial habitats is a 3D printed LED
ring that serves as a platform for spiders to build their webs. This habitat
raises interesting questions about how human intervention in ecosystems
tips the scales in toward one species or another, in this case favouring the
spider over its photophilic prey.

Two other artists’ work explores the creation of artificial woodpeckers.
Ian Ingram’s The Woodiest (2010) focuses on their mating rituals while
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Rihards Vitols’s Woodpecker (2016) deals with their foraging behaviour1.
Ingram’s body of work, in particular, is an exploration of the use of
machines to communicate with non-human animals in novel and playful
ways. Vitols’sWoodpecker is interesting in that it has an explicit ecological
and conservation impetus. The woodpeckers arise from the artist’s
concern for the health of the forest in the context of a decline in the
woodpecker population and a simultaneous influx of insect life. The
artwork is, in part, an attempt to help the trees survive in a changing
climate by imitating woodpeckers to dissuade insects from approaching.

Vitols is not the only artist to approach sound in this way. David
D. Dunn has produced acoustic art that engages with the dynamics of
ecosystems since the work Sonic Mirror in 1986-1987. More recently, his
work has focused on insect sonification. His recordings of bark beetles
led to a collaboration with ecologists in which they discovered that it
is possible to use sound to disrupt the lifecycles of the beetle — an
animal that kills trees by the millions as it nests, mates, and grows in
them (Hofstetter et al., 2014). To accomplish this, Dunn created an
acoustic system that mixed recorded beetle sounds with synthetic audio
and further manipulated the sounds to form a continuously changing
soundscape to not allow the beetles to become accustomed to the sonic
environment. This technique, in many ways, resembles the approach
used in Dunn’s earlier artwork.

Notably, many of these examples engage sound as a medium for
exploring how machines relate to ecosystems. The sonic world is a rich
space for this type of inquiry, and it forms the main site of the work in
this dissertation. These aforementioned machines and those developed
and explored throughout this Ph.D., engage with the soundscape — a
term associated with R. Murray Schafer’s The tuning of the world (1977)—
which describes the breadth of an acoustic environment.

The field of soundscape ecology (Pijanowski et al., 2011a; Farina,
2014)— the source of much of the theoretical basis for the experiments in
this dissertation — emerges from the study of soundscapes through the
lens of landscape ecology. It is concernedwith the ecological implications
of sound at the landscape scale. Thus, soundscape ecology drives the
consideration of the effects of work like Ingram’s The Woodiest from the

1Ingram’s and Vitols’s work is discussed in further detail in Robophony: A new voice
in the soundscape (article 4). That article also features a partial discussion of Dunn’s work
discussed later in this section.
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individual animals that hear the artificial mating woodpeckers to the
entire network of impacted relationships in the ecosystem.

One of the concerns of soundscape ecology is understanding the
dynamics of soundscape formation. Under the umbrella of soundscape
ecology, several theories have been developed that offer hypotheses about
how animals’ vocalizations shift in relation to one another and the non-
biotic portions of the soundscape. One of these theories, the acoustic
niche hypothesis (ANH), has played an important role in much of the
work in this dissertation.

Bernie L. Krause first proposed the ANH in his 1987 article,
“Bioacoustics, Habitat Ambience in Ecological Balance.” The theory
holds that species tend to differentiate their calls to occur in a unique
combination of space, time, and spectral frequency distribution. This
process serves to minimize the chance of confusion and interference
between species’ signals. Under this theory, different species occupying
the same physical space in a stable ecosystem might signal using the
same pitch structure at different times of the day2 or using different
frequencies at the same times, but will not generally use the same types
of tones simultaneously. This theory is a key driver of two of the main
experimental platforms in this dissertation: the artificial life (ALife)
experiment (article 3) and the Rowdy Krause (articles 4 to 6).

Soundscape ecology divides the soundscape into three components
based on sound source. The categories — biophony, geophony, and
anthrophony—- were first proposed by Krause (2008) and were adopted
as part of the field in its founding publications (Pijanowski et al., 2011a;
Pijanowski et al., 2011b) and a subsequent book on the subject (Farina,
2014). These three categorieswere expanded to fourwith technophony in
the framework used in in the broader field of ecoacoustics3 (Farina, 2018;
Farina, Eldridge, and Li, 2021). This categorical breakdown of sounds
and the difficulty of placing some of the works considered here within
them led to the formulation of the new category called robophony in
Robophony: A new voice in the soundscape (article 4).

2Or during the different seasons.
3Ecoacoustics, defined in 2015 by Sueur and Farina, widens the scope of inquiry of

soundscape ecology to include the consideration of sound at all ecological levels — not
just the landscape.
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(a) Robotic arm that
senses and sorts samples
by colour.

(b) The BioAcoustic In-
dex Tool prototype in
the field.

(c) The Rowdy Krause
installed in a commu-
nity garden.

Figure 1.1: Prototypes developed and tested in the completion of this
dissertation.

1.2 Research Overview

The response to the research question “What is required for a machine to
adapt to a local ecosystem?” was built throughout the Ph.D. from the
bottom-up through a series of design experiments, simulations, and
prototypes followed by reflection. The experiments began with an
exploration of robotic senses and meaning-making. This was followed
with the design and implementation of a field experiment in machine
sensing and, in parallel, a series of simulations that explored the making
of sound. A final experiment that brought together the sensing and
vocalization into an embodied artificially intelligent agent incorporated
many of the findings from the earlier research and led to many of the
conceptual contributions of this dissertation.

The research is organized around three physical prototypes (fig. 1.1)
and an ALife simulation. The prototype in fig. 1.1a is the subject of
Clustering sensory inputs using NeuroEvolution of Augmenting Topologies
(article 1). That article presents a novel approach to organizing sensory
information by using an evolutionary neural network to cluster unlabeled
data. In the context of machine engagement with ecosystems, this is
understood as a building block to meaning-making independent of a
human-defined ontology.

The second prototype, the BioAcoustic Index Tool (BAIT), continues
to explore machine sensing of the ecosystem, but shifts perspective from
the exploration of basic meaning and grouping in article 1 to acoustic
indices designed to measure biodiversity using sound. Article 2, written
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for an audience of soundscape ecologists and bioacoustics researchers,
presents BAIT (fig. 1.1b) as a tool on which large-scale, long-term
ecological monitoring networks may be based. It details the design
and testing for a system that can autonomously record acoustic indices
for months and possibly years at a time for use in longitudinal studies
of soundscapes and biodiversity. However, it also represents another
approach to machine organization of acoustic information — one that
uses expert-designed heuristics to generate meaningful information from
raw data.

In parallel with the development of BAIT, a virtual experiment
employing techniques from the field of ALife was underway. This
experiment, detailed in An artificial life approach to studying niche
differentiation in soundscape ecology (article 3), tested and explored some of
the basic hypotheses of soundscape ecology by evolving communications
strategies for virtual populations and species. In doing so, it broadens the
understanding of the evolution of a species’s vocalizations.

Article 3 focuses on the acoustic niche hypothesis (ANH) and
demonstrates that it is possible to produce some of its predicted effects by
incentivizing a population to understandmembers of its own species and
ignore members of other species. This is significant because this reward
is often intrinsic in the wild.

The final three articles (4-6) reflect on the development of the third
prototype — the Rowdy Krause (fig. 1.1c) — at different stages of
its conception and prototyping. The Rowdy Krause is an embodied
artificially intelligent agent built to express the predictions of the ANHby
evolving a vocalization and constructing an acoustic niche in an existing
ecosystem. These articles use the Rowdy Krause as the basis for the
creation and expansion of concepts and theories in a number of fields.

Article 4 addresses a gap that the Rowdy Krause exposes in how
soundscape ecology categorizes sounds. It examines the biosemiotics
of sounds in a soundscape as an alternative approach to categorizing
sounds by source. In considering the Rowdy Krause alongside other
artwork that produces ecologically relevant sound using machines, the
article proposes a new category of sound called robophony to refer to
machinic sound with ecological intent or meaning.

Similarly, Sound as Material for Eco-technogenesis (article 5) considers
the process of co-creation that occurs between the Rowdy Krause and
an existing soundscape and uses that as a basis for building up the
concept of eco-technogenesis. Eco-technogenesis builds on the theory
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of technogenesis, expanded from the work of Stiegler (1998) by Hayles
(2012). Where technogenesis posits that technologies are not merely
useful prostheses but that humans and technologies are co-evolutionary
forces that shape one another in a reciprocal process, eco-technogenesis
holds that a similar process can and does occur in ecosystems. In
this conception of the relationships between technology and ecosystems,
machines and ecosystems can adapt to one another through a process of
feedback that mirrors the co-evolution of humans and technologies.

The final article, Endemic Machines: Artificial Creativity in the Wild
(article 6), names and describes the concept that frames the dissertation.
It is written after a field experiment with a finished prototype of the
Rowdy Krause and reflects on the design process to formulate machines
as endemic inhabitants of ecosystems. It details the production of the
Rowdy Krause and frames the practice of designing endemic machines
in general.

The next six chapters contextualize, clarify, and extend the insights
in the articles described above. While the articles are organized
expansively, beginningwith themost specificmoving toward the general,
these introductory chapters take the opposite approach. Chapter 2
(Endemism) expands on the concept of endemic robotics defined in
article 6 and describes its relationship with eco-technogenesis. Chapter 3
(Sensing the Soundscape) brings together the work on machine sensing
and elaborates on how the act of sensing an ecosystem is an important
step in adapting to it. The corollary to that is sound production, and
chapter 4 (Robophony in the World) delves into how the production of
sound is formulated throughout the work in this dissertation.

Chapter 5 (Methodology) elaborates on the methodological bases for
the various lines of inquiry found within this work. Chapter 6 (Discus-
sion) raises issues and observations that arise from the consideration of
the body of work as a whole and points to directions for future work. Fi-
nally, chapter 7 (Conclusions) reviews the contributions of the thesis and
summarizes the findings.





Chapter 2

Endemism

What is required for a machine to adapt to a local ecosystem? The question
appears relatively clear at the outset, but upon closer examination,
it becomes fuzzier. What does it mean for a machine to adapt
to an ecosystem? The question is confounding even applied to
biological species. Conventional notions of native and invasive have been
challenged to reflect the dynamic character of ecosystems and ecosystem-
ness (Rodriguez, 2006; Prévot-Julliard et al., 2011; Schlaepfer, Sax, and
Olden, 2011). What has often been thought of as the pristine state of an
ecosystem has turned out to be merely a stop along a winding path.

As the notion of an ecosystem has shifted from the pastoral to
something more complex (Harries-Jones, 2008; Marris, Mascaro, and
Ellis, 2013), the question of adapting to an ecosystem has become more
complicated. In the first place, a species adapting to an ecosystem
presupposes that the ecosystem is a static target to which the species can
change itself to fit. It fails to recognize that ecosystems and species are in
a state of constant co-creation.

Perhaps the question goes back even further to the very definition
of an ecosystem. What is an ‘ecosystem’ that is being adapted to?
In the seminal text Fundamentals of ecology, Odum (1971) describes an
ecosystem as ”[t]he [biotic] community and the nonliving environment
function[ing] together” in ”a given area” that could not exist without
”the cycling of materials and the flow of energy.” By that definition, a
species is a part of an ecosystem simply by its existence in a place and its
participation in its material and energetic flows.

If the question is considered in the negative — when is a species not
adapted to an ecosystem — this implies that the species fails to engage
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with the existing material and energetic flows. Virtually all species will
cause some a shift in these flows, but a species that adapts does sowithout
collapsing or even rapidly altering the entire network of material and
energetic relationships. After the introduction of a well-adapted new
species, the system is able to return to an equilibrium state that is similar
to the state it existed in prior to the disturbance.

Hobbs, Higgs, and Harris (2009) introduced new terminology
for thinking about these types of ecosystems in “Novel ecosystems:
implications for conservation and restoration.” They devised a tripartite
categorization for ecosystems as historical, hybrid, or novel. While
recognizing that the term historic itself is somewhat vague, they define
historical ecosystems as containing ”biota and ecosystemproperties”within
the ecosystem’s range of variability in some previous time (Hobbs,
Higgs, and Harris, 2009). A novel ecosystem has a species composition or
functional properties that are different from any historical range, while
a hybrid ecosystem retains many of the ecosystem’s historic properties1
but supports a different range of species or a different geophysical
environment.

What does this ecosystem classification mean for the place of
machines in ecosystems? Machines are unlikely to fit into the conception
of a historical ecosystem, having not been present in an ecosystem on
anything approaching evolutionary timescales. They could, however, be
part of a hybrid ecosystem that retains much of its historic properties
and flows with some shift in its inhabitants — including the introduction
of a machine. It suggests that a machine should enmesh itself in the
ecosystem’s flows of material and energy to become adapted.

Endemic Machines: Artificial Creativity in the Wild (article 6) describes
an approach for this type of adaptation. It borrows the concept of
endemism from ecology to guide the design of machines that integrate
with an existing ecosystem through behaviour.

Anderson (1994) traces the ecological concept of endemism back to
the early 1800s, where it was used in a French-language science dictionary
to refer to families of plants in which all of the species grow in only one
country (De Candolle, 1820, p412). Since that time, it has been used in
ecology to refer both to species that occur only in a small area and to

1Such as ”nutrient load, hydrology, species diversity, etc.” (Hobbs, Higgs, and
Harris, 2009)
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species that occur in a specific area of undefined size2. (Anderson, 1994).
Darwin added a requirement for a historical relationship, describing
species that are endemic to a place as having been ”produced there, and
nowhere else in the world” (Darwin, 1869, p121)3.

Anderson (1994) notes that endemic has also been used recently in
ecology to denote species that are restricted to a certain type of habitat
instead of a particular geographic area, which Anderson refers to as
habitat endemism. This definition suggests a shift from the understanding
of area as a physical location to a more conceptual paradigm that links
physical place by habitat type to understand a boundary for an endemic
species.

In light of these varying uses of the term across research fields
and time, it seems prudent to specify how endemic is deployed in this
context. From the definitions mentioned above, one can understand
endemic species as those that: are found only within a small physical
area; are found only within a single country; are found only within some
bounded geographic region; have evolved — and remain exclusively in
— a particular place; or, are found only in certain types of habitats.

Defining endemism by political boundaries (e.g., countries,
provinces, etc.) is not a useful approach here as landscapes and ecosys-
tems cut across political borders. The size of the distribution is also not
the issue of greatest concern for endemic machines; the interest is in ma-
chines that participate in an ecosystem’s material and energetic flows, so
it makes little difference whether the ecosystem in question is measured
in square metres or square kilometres. More expansive definitions, such
as habitat endemism, might be interesting for understanding whether a
machine that is endemic to one place might also be considered endemic
in another similar habitat but are not the main focus here.

The definition of endemism used in this dissertation and the
accompanying articles has a dual focus: being bound exclusively to some
geographic region, without defining a particular limit on the region’s size;
and the historical contingency of evolving in a specific environment, as
discussed by Darwin (1869).

An entry on endemism in the 2008 Encyclopedia of Ecology uses
language that helps to clarify the precise nature of the endemism

2Which could range from the size of a small puddle to the area of a whole continent
or the entire planet.

3However, an earlier edition of the text refers only to an endemic species being
”found nowhere else in the world.”
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discussed here. It lists six different subcategories of endemic species4 that
help to illuminate the circumstances of the endemism. Autochthonous
endemics evolved in the location that they now exclusively inhabit,
reflecting Darwin’s conception of endemism as being produced by a
place. In contrast, allochthonous endemics evolved elsewhere but are
currently found exclusively in one place. Taxonomic relics are the last
survivingmembers of a once diverse group,while biogeographic relicswere
once widespread but are now confined to a small area. Finally, there
are neoendemics and paleoendemics, the former which arose recently and
may only be endemic to an area because it has not had the opportunity
to spread further5 and the latter, which is an old species that may
once have been widely distributed but is now confined to a particular
place (Morrone, 2008).

Of these, the taxonomic and biogeographic relics and the neo- and
paleoendemics describe the evolutionary journeys of species across
generations. Machine lifetimes are considered on the order of years
or perhaps decades, so these subcategories have little meaning and
point to where the metaphor of endemism collapses for machines.
Endemism in ecology is about speciation, generational adaptation, and
habitat (Anderson, 1994; Morrone, 2008). Machines have models,
versions, minor and major revisions. Their endemism, especially as
conceived in Endemic Machines: Artificial Creativity in the Wild (article 6),
is individual.

That assertion — that machine endemism is individual — seems
contradictory at first consideration. Endemism generally deals with the
distribution of a species; an individual is always limited to a particular
place. However, the endemism of machines, the endemism of the Rowdy
Krause, is not a general endemism. It is an autochtonous endemism. It
is the endemism described by Darwin (1869) when he writes of a species
“produced in a specified place and nowhere else in the world.”

For endemic machines, “produced” does not refer to the physical
body. The Rowdy Krause is built from off-the-shelf electronic compo-
nents that are global in origin; they are made of materials harvested from
mines around the world, refined and assembled in any number of fac-
tories that are part of a global supply chain of electronic commodities.

4(Morrone, 2008) refers to endemic taxa as opposed to species, to refer to the idea
that endemism can be defined at any taxonomic level (e.g., order, family, genus) and
not just at the species level. For the purposes of this discussion, I’ll continue to refer to
species, but the ideas should be applicable on a broader level as well.

5As opposed to being limited by climate, geological boundary, or some other factor.
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Instead, the specifics of the place produce the machine’s actions. What
is described here is a type of behavioural endemism in which what the
machine does reflects a relationship with a particular ecosystem.

This type of co-creative process in which an ecosystem changes
machine behaviour which impacts the composition of the ecosystem
is described in Sound as Material for Eco-technogenesis (article 5). Eco-
technogenesis was developed in article 5 as an extension and expansion
of the concept of technogenesis (Stiegler, 1998; Hayles, 2012) from the co-
evolution of humans and technologies to the co-evolution of ecosystems
and technologies6. This process is not new, nor is it limited to human
technologies7. However, the advent of evolution-inspired computational
algorithms means that the feedback cycles inherent in eco-technogenesis
can occur at a far more rapid pace than ever before.

Together, eco-technogenesis and endemism — specifically au-
tochtonous endemism — are useful concepts for describing how ma-
chines can adapt to a local ecosystem. Endemism is an effectivemetaphor
for the kind of the relationship that can be formed between a machine
and an ecosystem. The specificity of the relationship between an endemic
species that evolved in and alongside the bio- and geologic conditions
of a particular place is a useful frame for thinking about how a machine
must be approached to be truly of a place.

Eco-technogenesis approaches from the other direction but arrives at
a similar conclusion. It comes from the human perspective, extending
a notion that is concerned mainly with the co-evolution of people and
technology into one where technology and ecosystems can co-evolve and
co-create one another. Eco-technogenesis is a process bywhich amachine
can become endemic. As a concept, it takes care to render the ecosystem
a dynamic, creative actor in the relationship, something that is easily
forgotten at the pace of digital evolution but is essential in forging long-
term bonds.

6It is also discussed further in section 4.2.
7E.g., Beaver dams, termite hills, etc.





Chapter 3

Sensing the Soundscape

What is required for a machine to adapt to a local ecosystem? The previous
chapter outlined a framework for this process. Endemism attempts
to define what it means to adapt to an ecosystem. Eco-technogenesis
describes the process by which ecosystems and technological entities
can change with each other. This chapter and the next (chapter 4)
examine how that happens, more specifically, delving into the sensory
and motive mechanisms behind the process of eco-technogenesis and
becoming endemic.

The previous chapter established that endemism — a form of
adaptation to a local ecosystem achieved by evolving alongside it — can
be based on behaviour. One way of focusing the work is to centre the
inquiry on a particular domain of behaviour, a specific sensory field, a
single pairing of inputs and outputs. In this case, sound emerged as a
particularly interesting candidate.

The sonic domain is a potent space for this sort of exploration. As
Cobussen (2016) points out, sound is an enveloping sense. It surrounds
the producer and perceiver. The sonic bends easily around trees, through
brush, and over walls. To hear a sound is to ride a wave, its pressure
changing over time. In this way, it is technically straightforward to sense
and produce. Working with sound requires only a microphone and
speaker, electronic components which are easily actuated and recorded
and that can readily create and capture complex signals.

Vision is often considered the primary human sensory modality
(Colavita, 1974; Hutmacher, 2019). Sound is an essential mode
of communication for many species. Auditory signals are used for
everything from findingmates to warning of nearby danger andmarking
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territorial dominance (McKenna, 2020). The amalgamation of those
biological signals and the sounds from human and geological sources
combine to form what ecologists call the soundscape.

3.1 Soundscape

Sound in the environment — or the soundscape — has been studied
extensively since the 1960s and is an active area of study in a number
of fields today. Authors have long written about sounds in the
environment, as Schafer (1977) points out extensively, but they were
perhaps first brought to the fore of public consciousness as an ecological
force by Carson’s Silent Spring (1962). Carson marshalled sound
— or its absence, in this case — to channel a larger conversation
about environmental conservation and the hazards of overconfidence in
technological interventions in ecosystems. Notably, the lack of birdsong
is mainly discussed in a single chapter of the book, And No Birds Sing, but
so powerful is the metaphor of a silent spring that it forms the title and
organizing concept of the entire work.

The concept of soundscape — an auditory corollary to the concept
of a landscape — was formalized by R. Murray Schafer in 1977 in the
seminal work The tuning of the world. The concept grew in prominence
through Schafer’s World Soundscape Project (WSP) and the artwork and
writing of WSP collaborators Hildegard Westerkamp (1974) and Barry
Truax (1978).

Adopting the framework of acoustic ecology from the WSP, Bernie
L. Krause proposed the acoustic niche hypothesis (ANH) in 1987,
positing that the spectro-temporal plane is a finite ecosystem resource
and that species tend to occupy non-overlapping niches in the timing
and frequency of the sounds that they produce. Audio spectrum, in this
telling, is territory just as much as a hole in a tree trunk or a particular
patch of grassland, and encroachment on that territory likely leads either
to adaptation or decline.

That encroachment, the projection of sounds in the same frequency
and timings as a resident species in an ecosystem, can come from the
arrival of a new species, but it is just as likely — or perhaps more so
— to have a human origin. Krause and his collaborator Stuart Gage
(2003) used the term anthrophony to describe these sounds of human
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origin, along with biophony and geophony, to refer to sounds coming
from biological organisms and geological processes1.

In the first decade of the 2000s, the practice of soundscape analysis
shifted with the introduction of digital recording and analysis tools.
The relative ease of spectral analysis with digital tools gave rise
to a set of acoustic indices such as the Acoustic Complexity Index
(ACI) (Pieretti, Farina, and Morri, 2011) and Acoustic Diversity
Index (ADI) (Villanueva-Rivera et al., 2011) that are used to monitor
variables like biodiversity and species richness and to identify acoustic
events (Abdallah, Frigui, and Gader, 2009; Towsey et al., 2014; Farina et
al., 2016).

The publication of a special issue of Landscape Ecology (Pijanowski
and Farina, 2011) and eventually a book (Farina, 2014) formalized a
collection of research under a set of related sub-disciplines into the field
of soundscape ecology. Human analysis of soundscapes using methods
such as sound walking (Westerkamp, 1974) and clairaudience (Schafer,
1977) has remained an essential component of soundscape studies in the
soundscape ecology era. However, many of the recent developments
have focused on computational methods of soundscape analysis; they
represent a turn toward machinic senses of sound.

3.2 Machine Sensing

Humans detect sound as pressure waves disturbing the eardrum,
which transmits vibrations through the malleus, incus, and stapes2
and to the hairs in the cochlea that vibrate in response to different
frequencies (Wallace, 2010). The cochlear hairs translate vibration into
electrical impulse to be processed in the brain.

Typically, in machines, this mechanical-to-electrical translation is con-
ducted by a microphone (Zawawi et al., 2020). A wide range of ma-
terials and mechanisms can be used to accomplish this transformation.
However, the microelectromechanical systems (MEMS) capacitive mi-
crophone, which produces an electrical signal in response to shifting ca-
pacitance between a flexible diaphragm and a fixed plate, is commonly
used in small electronics applications, including those in The BioAcoustic

1For example, the sounds of wind, water, rain, avalanches, and volcanoes would all
be considered geophony.

2The three bones in the middle ear, also known as the hammer, anvil, and stirrup.
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Figure 3.1: Sample spectrograms showing the frequency components of a
pure 4 kHz tone (left), the call of a crane (centre), andwhite noise (right).
The horizontal axis is time and the vertical axis is frequency, with the
darkness of the image at a point indicating the intensity of that frequency
component of the sound at a given point in time. (Originally in article 6)

Index Tool (article 2) and Endemic Machines: Artificial Creativity in the Wild
(article 6).

Once sounds are converted to electrical impulses, the human auditory
processing system features a hierarchy of subsystems that process
sounds from low-level signals detected from the cochlea to higher-
level abstractions and concepts (Kell et al., 2018). Machine auditory
systems often feature a similar structure; analog electrical signals are
amplified and filtered and then converted to digital representations for
further processing. The process and pitfalls of digitization are well-
documented (Farina, 2014; Browning et al., 2017) and will not be covered
in detail here.

In machines, the journey from raw digital audio data to a higher-
level, more meaningful representation of what is being heard takes many
forms. Often, the first involves a shift from the time domain in which the
signal is captured to the frequency domain, whichmore closely resembles
low-level animal perception of sound (Farina, 2014). The fast Fourier
transform (FFT) is a classic tool of signal analysis, and one of its variants
is often used to transform an audio signal from a single value in time
representing the momentary fluid pressure on a sensor to an array of
numbers representing the energy in a particular frequency band at a
given time.

This representation is relatively straightforward; the values produced
by an FFT can be imagined as similar to the electrical response of an array
of cochlear hairs at a given time (see fig. 3.1 for a visual representation
of this measurement). How a machine perceives the acoustic world
depends on how those values are subsequently processed.
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3.3 Information Representations

The machines in this thesis utilize three distinct types of representations
to engage with sensory information: heuristic, semantic, and relational.
Heuristic representations use static, pre-defined computations to calcu-
late a higher-level feature of a set of data; semantic representations map
an a priori meaning to a signal which serves a reference or ground truth
that an intelligent agent can learn; and relational representations describe
the connections between pairs or groups of data points, which allows an
intelligent agent to learn similarities and differences between sensory ex-
periences.

The acoustic indices calculated by the BioAcoustic Index Tool (BAIT)
(article 2) are found using a pre-defined algorithm and are therefore
considered heuristic representations of the captured sound. The benefit
of heuristic representations such as ACI and ADI is that they have
a universality to them — the calculations would be the same for a
particular sound regardless of the context in which it is computed. These
representations can be compared across time and space.

The two acoustic indices calculated by BAIT are far from the only
heuristic representations of sound. ACI is a measure of the temporal
variation of a sound, and ADI is related to the spectral variation of the
sound, but other acoustic indices like the Bioacoustic Index (BI) and
Normalised Difference Soundscape Index (NDSI) attempt to quantify
features like the intensity of sounds and the relative prevalence of
anthropogenic and biological sounds. As of 2019, more than 60 acoustic
indices have been developed for use in analyzing soundscapes (Bradfer-
Lawrence et al., 2019).

A semantic representation of data is used inAn artificial life approach to
studying niche differentiation in soundscape ecology (article 3). The study
tests the ANH by simulating the evolution of communication in two
species inhabiting a virtual soundscape. Each species consists of a
population of senders and receivers; the senders evolve an encoding
for messages and receivers evolve the ability to identify messages from
senders of their own species and decode them (see fig. 3.2 for a schematic
drawing of this system). The data representation for the receivers —
they are responsible for sensing the soundscape in this experiment — is
semantic because each message has a ground truth meaning and this is
what the receivers evolve the ability to decode.

The paper focuses on understanding the formation and dynamics of
acoustic niches, but it also demonstrates one way of machines extracting
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Figure 3.2: A schematic of the experimental setup in article 3. Two
populations, each consisting of sender and receiver neural networks
(NNs) encode and interpret messages in a simulated soundscape.
Receivers of one species have to learn to ignore messages from the other
species’s senders while learning to decode messages from senders from
their own species. This creates evolutionary pressure on the senders to
differentiate their messages, and the species tend to construct their own
niches. (Adapted from article 3)

meaning3 from sound. The system in the simulation is a highly simplified;
the virtual soundscape is a 9-element array of floating point numbers
between 0 and 1, representing the intensity of sound on 9 frequency
bands. The message is far more straightforward than those that would
be received in the full spectrum audio of a physical ecosystem, and the
ground truth is presented as a single, absolute number.

However, the experiment demonstrates that the species form separate
niches to optimize their internal communication. This simplified system
in An artificial life approach to studying niche differentiation in soundscape

3Meaning is used here to indicate a unit of knowledge that has some useful impact
in the world.
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ecology (article 3) points to how semantic representations of data can
help groups of machines develop a communications strategy and find an
acoustic niche in a multispecies environment.

Two experiments in this thesis, Clustering sensory inputs using
NeuroEvolution of Augmenting Topologies (article 1) and the Rowdy Krause
(detailed in article 6), use relational representations to try to organize the
information that they capture. Instead of processing the information and
comparing it to a ground truth as in article 3, these methods are useful
for establishing patterns by grouping similar sensory experiences.

These methods are interesting because they do not rely heavily
on a priori human knowledge and understanding as do the first two
representations. Acoustic indices are explicitly based on a human
understanding of scientific analysis and methods of processing sound
that reveal something about an ecosystem’s underlying properties.
Likewise, semantic representations require a ground truth that usually
employs human arbitration of what is true. Relational representations,
however, can rely almost exclusively on the sensory perception of the
machine.

That is not to say that there is no human involvement. The designers
will select sensors for themachine4, the datawill be preprocessed through
human-designed signal filters, and the programmer will decide which
dimensions are included in the data to be clustered. However, from this
point, the associations between data points are based entirely on what
signals the machine can capture. There is no further need for human
interpretation of the information before the machine can act on it.

This machine-centric representation of the sensory world is an
important consequence ofClustering sensory inputs using NeuroEvolution of
Augmenting Topologies (article 1). The clustering algorithm in that paper
deals with visual input as opposed to acoustic data; nevertheless, the
concepts therein apply to audio perception as well. Grouping similar
sounds is one of the foundational processes in infants learning auditory
communication (Goudbeek et al., 2005). Goudbeek et al. (2005) describe
a process whereby newborns can discern between a variety of sounds
wider than the phonetic categories that exist in the language(s) they are
exposed to; only later do they begin to treat sets of sounds that don’t
have a semantic difference similarly. In other words, infants first learn
to differentiate and group sounds and subsequently begin to ascertain
meaning for them.

4Microphones and human sensing
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The clustering, differentiating, grouping of experiences is then a type
of pre-semiotic knowledge. It can serve as the foundation of a machine’s
model of the world, the basis of its umwelt (Hayles, 2012)5. As such,
relational representations of sensory data serve an important function for
enabling a machine umwelt that is distinct from the human perceptual
world. Semantic representations tell a machine what is: This soundmaps
to the concept of crow; that one maps to the concept of dog. However,
those distinctions are only important in a particular context. Depending
on what a machine is doing, it may only need to distinguish animal from
vehicle. Alternatively, the concept of dog is too broad for a machine that
has a particular dog-related goal, and it needs to be able to differentiate
terrier from shepherd or even one individual dog from another of the same
species.

In declining to interpret the message concretely, algorithms using
unlabelled data leave the determination ofmeaning and action to another
process. They delay or even avoid the active assigning of meaning to
signal. They allow an endemic machine to decide which distinctions are
important based on what it needs to do.

The images in fig. 3.3 show the groupings determined by the robot
in Clustering sensory inputs using NeuroEvolution of Augmenting Topologies
(article 1). The robot was allowed to examine the leaves using its colour
sensor6 and used the four light values — red, green, blue, and unfiltered
— to learn three clusters of similar leaves. In fig. 3.3, some patterns are
immediately discernible: many leaves of the same species are grouped
together; darker green samples are mainly grouped in Cluster 0; brighter
green samples seem to be grouped in Cluster 1. However, other choices
are not so obvious— for example, the large leaf in the bottom of the image
of Cluster 1 seems like an odd fit for that group — and a human sorting
of these leaves would likely produce very different results.

This is precisely the point. The robot’s sensory system is different
from our own. It senses a single point of colour, whereas a human
might examine the colouring, shape, texture and smell of the leaf
before deciding which are most similar. What is similar in the robot’s
worldview is different than in a human perceptual world. A cluster-
based representation of sensory information allows the robot to create

5Emmeche (2001) is more skeptical that a machine can have a fully formed umwelt
akin to that of an animal.

6The Adafruit TCS34725 (https://www.adafruit.com/product/1334).

https://www.adafruit.com/product/1334
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(a) Cluster 0 (b) Cluster 1 (c) Cluster 2

Figure 3.3: Three clusters learned by the robot in Clustering sensory inputs
using NeuroEvolution of Augmenting Topologies (article 1).

that different experiential world without imposing the human sensory
world on it.

This relational model of the sensory world can then form the basis for
a machine becoming endemic to an ecosystem in the manner described
in chapter 2. It can use this model to assess possible behaviours, how
they relate to sensory experiences it has observed, and how they fit into
a unique part of the state-space of the machine’s perceptual world, a new
niche.





Chapter 4

Robophony in the World

What is required for a machine to adapt to a local ecosystem? Thus far, chapter 2
has established the concept of endemism as an ecological metaphor to
understand the notion of a machine fitting into an ecosystem. Chapter 3
describes the relationship between endemism and the sensory world of
a machine. Nevertheless, endemism cannot be merely observational; it
requires an engagement with the flows of energy and materials in an
ecosystem.

As established in chapter 2, endemism is a reciprocal relationship;
it requires bidirectionally. In auditory terms, this means duplex
communication, hearing and speaking, sending and receiving. In other
words, the ability to become part of a soundscape— to be endemicwithin
it — depends on both the ability to perceive the soundscape and then to
act upon it.

This chapter focuses on the action, the sending of signals, the speaking
into the soundscape. The discussion about the role of machinic sound in
ecosystems is framed by the ideas in the two papers Robophony: A new
voice in the soundscape (article 4) and Sound asMaterial for Eco-technogenesis
(article 5). The practice of designing thesemachines is discussed through
the work in An artificial life approach to studying niche differentiation in
soundscape ecology (article 3) and Endemic Machines: Artificial Creativity
in the Wild (article 6).

4.1 _________phony

The roles of different sounds in an ecosystem are often understood in
soundscape ecology through the framework of a tripartite categorization.
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Beginning with Krause and Gage (2003), sound in the landscape was
categorized as biophony, geophony, and anthrophony, though recent
publications have added a fourth category — technophony (Farina,
Eldridge, and Li, 2021). This division quickly became a central
concept in the field of soundscape ecology. It is used to calculate
acoustic indices such as the Normalised Difference Soundscape Index
(NDSI), which compares the relative volumes of frequency bands that
are typically anthrophony-dominated with those that are biophony-
dominated (Kasten et al., 2012). It even factors in the definition of
soundscape ecology in one of the papers that helped to define the field;
Pijanowski et al. (2011a) describe soundscape ecology as “all sounds,
those of biophony, geophony, and anthrophony, emanating from a given
landscape to create unique acoustical patterns across a variety of spatial
and temporal scales.”

While these categorizations are useful in many studies in soundscape
ecology, they fail to capture some types of sounds. The need for a new
way of considering the sounds of ecologically-active machines is the
impetus behind article 4, where a new category of sound called robophony
is defined. It argues that a machine adapted to a particular ecosystem,
creating temporally layered sounds of hybrid origin is too different from
the types of sounds typically considered to be anthrophony1. It is
not from a biological source, so it should not be considered biophony.
Therefore it requires its own frame.

One of the ways by which robophony might be understood is
by its impact on an ecosystem. In Robophony: A new voice in the
soundscape (article 4), robophony is understood as the product of a
dynamic agent, something that can shift over time and in response to
the ecosystem in which it resides. The process is feedback-oriented and
relies on the interplay between machine and existing soundscape. This
interaction, a co-evolution of technology and ecosystem, is characterized
and conceptualized in the paper Sound as Material for Eco-technogenesis
(article 5).

1The notion of technophony had arisen at this point but was not part of the central
discourse of soundscape ecology as Farina, Eldridge, and Li (2021) was not published
at the time of writing. Regardless, technophony describes the kinds of rumbling,
buzzing, and humming that is generated by mechanized technologies. Robophony and
technophony describe different types of sound and can be considered complementary
categories.
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4.2 Technogeneses

Sound as Material for Eco-technogenesis (article 5) introduces the novel
concept of eco-technogenesis as the co-evolution of technologies and
ecosystems. It describes how a machine can become a co-creative force
within an ecosystem. In doing so, it expands Stiegler (1998)’s work —
refined byHayles (2012)—which situates technology as part of the story
of human evolution, instead of as its byproduct. Sound as Material for
Eco-technogenesis (article 5) also implies — but does not delve into — a
concept of bio-technogenesis that extends technogenesis to non-human
animals. This section elaborates on those concepts and discusses how
the processes of bio- and eco-technogenesis inform the adaptation of
machines to ecosystems.

The current understanding of technogenesis has been limited to
the co-evolution of humans and technology2. However, it can and
should be extended to non-human animals as well. Studies of animal
behaviour regularly identify species that use tools and communication
techniques across generations. For example, dolphins have been
shown to pass techniques for using sponges to assist in foraging by
matrilineal descent (Krutzen et al., 2005), demonstrating tool use and
intergenerational knowledge transfer. Evolving tool cultures have also
been observed in crows in New Caledonia (Whiten and Schaik, 2007), as
they cut leaves to fashion a handle for their hunting sticks. As more is
gleaned about how non-human animals engage with the material world,
it is less and less convincing to reserve the concept of technogenesis to
human development.

Further examples can be found of animals using sonic tools in a way
that demonstrates bio-technogenesis. Hardus et al. (2009) noted that
populations of wild orangutans use tools to modify their kiss squeak
— a sound likely used to warn off predators or other orangutans. They
strip leaves from a tree and hold them in front of their mouths, lowering

2In Technics and Time, 1: The Fault of Epimetheus (1998), Stiegler addresses technics
and technology in the context of hominization — the process of becoming human. One
of the central theses of the work is that engagement and co-evolution with technology
itself are what make humans human — and implicitly distinct from other animals. A
great deal of recent research contradicts the notion that humans are unique in this way,
as discussed in the main text. Additionally, Stiegler also engages in racist fallacies in a
failed attempt to discuss conceptions of time. He quotes prodigiously from Jean Jacques
Rousseau’s Discourse on the Origin of Inequality, in which Rosseau lays a framework that
considers groups of people in different states of civilization and savagery (Eze, 1997;
Seamster and Ray, 2018).
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the tone of their squeak and allowing them to emulate a larger animal.
Palm cockatoos have been shown to use tools in courtship, with the male
beating a hollow branch with a stick to attract a mate (Fitch, 2015). In
these examples, tool use has fitness implications for the animals, implying
that the use of the tool can be an evolutionary driver. These examples
make a case for an expansion of the notion of technogenesis to non-human
biological organisms. In particular, they point to the potency of bio-
technogenesis in the sonic domain.

The concept of eco-technogenesis introduced in article 5 further
expands technogenesis beyond a single species to entire ecosystems. Eco-
technogenesis describes the process of co-becoming where ecosystems
shape the development of technologies and the impacts of those
technologies shape the structure and succession of the ecosystem. The
article gives an example of this in the co-evolution of the tools and
ecologies of modern agriculture. It also points to the emergence of beaver
dams and the pond ecosystems they are associated with as an example of
eco-technogenesis with no human input3.

The article emphasizes the way in which digital technologies enable
a new form of eco-technogenesis — one that can be human-initiated, but
ecosystem-driven. Hayles (2012) argues that programmable technologies
drive technogenesis in new ways. These technologies are explicitly
feedback-oriented. They are designed to be responsive, to learn andmove
within a changing environment.

This means that while both programmable and non-programmable
technologies can be part of a process of eco-technogenesis involving
human technologies, programmable technologies can engage in this
process autonomously once they are deployed. Figure 4.1 illustrates
these differences. Both systems in that figure involve a process of eco-
technogenesis where the soundscape shifts as birds and technologies
change their sound-producing patterns in response to one another.
However, changing the noise produced by the non-programmable
technology involves humans studying its impact on birds and redesigning
the technology to be less disruptive, resulting in a new physical object —
a new, quieter car. The programmable technology, conversely, is able to
adapt its behaviour in situ. Once programmed, it can engage in a process
of eco-technogenesis independently of the human designer.

3Beaver dams are considered to be the technological component of this relationship.
See article 5 for a detailed account .



4.3. Making some (robophonic) noise 29

designs
affects

affects

Programmable TechnologyNon-Programmable Technology

designs

affects

studies

writes
reads

Figure 4.1: The difference between eco-technogenesis involving a
programmable and non-programmable technology. Birds adjust their
calls in the presence of traffic noise (Luther and Derryberry, 2012), but
this has no immediate effect on the car. Eco-technogenesis might occur
if an ecologist studies those relationships and then someone designs
a quieter car, which has less impact on the birds. Programmable
technology, such as the robot, can be designed to change in response to
the environment without further human intervention.

In this way, programmable technologies can be active participants
in eco-technogenesis in a form that is initiated by humans but driven
forward by technology and the ecosystem. This is an important argument
in Sound as Material for Eco-technogenesis: technology, imbued with some
degree of autonomy, has the potential to act ecologically while eschewing
some of the traditional anthropocentric aesthetics of beauty that have
driven conservation in the past. By changing itself in response to the
ecosystem, it can approach “Bateson’s concept of ecological aesthetics, in
which systems interact through feedback” (article 5).

4.3 Making some (robophonic) noise

What mechanisms might machines use to evolve the production of
sounds in an ecosystem? Two different approaches are attempted in this
thesis, both using neuroevolution of augmenting topologies (NEAT) to
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evolve neural networks. The first, detailed in An artificial life approach
to studying niche differentiation in soundscape ecology (article 3), frames
the production of signals as part of a process of evolving intra-species
communication. Notably, it is undertaken in simulation and using a
simplified digital code in place of sonicwaves, but the principles explored
there can serve as the basis for a physical instantiation of a machine. The
second is mentioned in Robophony: A new voice in the soundscape (article 4)
and Sound as Material for Eco-technogenesis (article 5) and described in
detail in Endemic Machines: Artificial Creativity in the Wild (article 6) and
uses soundscape ecology theory to drive the production of a vocalization.

An artificial life approach to studying niche differentiation in soundscape
ecology (article 3) details a simulation that explores the mechanisms by
which species adapt their communication strategies in a multispecies
ecosystem. It simulates the process of two different species evolving
internal communication strategies (see fig. 3.2). The experiments
demonstrate that it is possible to produce the effect predicted by the
acoustic niche hypothesis (ANH) — the division of a communication
spectrum into distinct niches — simply by rewarding species for accurate
intra-species communication. In other words, the construction of
an acoustic niche arises from the benefit of communication between
conspecifics — members of the same species.

Article 3 points to one possible way of formulating robotic voices to
be endemic in a soundscape that mimics how animals find an acoustic
niche. Though the study environment was highly simplified, it reflects
one of the primary drivers of animal communication. Animals are driven
to find ways of communicating with their conspecifics to attract mates,
mark territory, and signal warnings (Farina, Eldridge, and Li, 2021). The
better they accomplish this without interference, the more likely they
are to survive, thrive, and reproduce. Acoustic niche construction is a
byproduct of this process.

The second approach is discussed in detail in Endemic Machines:
Artificial Creativity in the Wild (article 6). This approach, used in the
Rowdy Krause, was designed for a lone machine operating in an existing
ecosystem. The effort was framed by the understanding of the Rowdy
Krause as a new species attempting to become endemic in its habitat.

The Rowdy Krause’s vocalization system consists of two connected
parts: a simulated vocal tract that produces audio output and an evolving
neural network (NN) that controls the vocal tract to generate the desired
type of sound. Each NN produced by the evolutionary process ”plays”
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the vocal tract and generates an audio sample, which the evolutionary
process uses to evaluate the fitness of that NN.

The predictions of the acoustic niche hypothesis were used to set the
fitness function — the function that evaluates the audio samples. The
Rowdy Krause creates a representation of the existing soundscape by
recording audio from the environment and storing a representation of
which frequencies were used in each recording. The fitness function
compares the frequencies used in the audio samples generated by
the each NN using the vocal tract to the frequencies that are used
by recordings from the soundscape. In a manner similar to the
clustering algorithm in article 1, it uses the distance between frequency
representations to determine which generated vocalizations are most
different from the recorded samples.

As the vocalization for the Rowdy Krause evolves, vocalizations
that are most different from the recorded audio samples are selected
preferentially, driving the computational evolution toward unused parts
of the audio spectrum. This produces the effect predicted by the ANH of
a species finding a niche in a soundscape by using vacant portions of the
audio spectrum.

The vocalizations that were initially produced by this process
conformed to the expectations of the ANH, but they tended towards
high-pitched squeals or low drones which carry little information in a
biosemiotic sense. Article 6 details a small but significant set of changes
that were made to the fitness function to address this. Once adjusted, the
Rowdy Krause was able to evolve a set of varied vocalizations that were
unique in the soundscape. A representation of these vocalizations and
the recorded audio from the soundscape is shown in fig. 4.2.

Though successful in terms of emulating the predicted effects of the
ANH, the Rowdy Krause and its design process raise some important
issues for endemic machines: How should designers make decisions
when they may unable to sense the full range of a design’s actions? How
does a designer determine that a machine is doing something beneficial
for an ecosystem? These are discussed further in section 6.3.
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Figure 4.2: Results from the experiment with the final version of the
Rowdy Krause. The image shows a representation of the Rowdy
Krause’s vocalizations ( ) and recorded samples from the soundscape
( ), plotted using a technique called t-distributed Stochastic Neighbour
Embedding. The distance between points corresponds to the similarity
of the spectral components of the sounds, with those closer together
having a more similar spectral composition. For the Rowdy Krause’s
vocalizations, darker points correspond to those vocalizations evolved
later in the evolutionary process. The figure shows that, with a few
exceptions there is little similarity between the vocalizations produced
by the Rowdy Krause and the sounds recorded from the soundscape.
The Rowdy Krause appears to have constructed an acoustic niche in this
soundscape. (Adapted from article 6)
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Methodology

The chapters of this thesis have thus far covered the formulation of a
concept of machine endemism, an exploration of computational sensing
of the world, and a discussion of how technological sound can be
produced and understood in the context of a soundscape. These inquiries
and conversations fall outside the bounds of any specific academic field.
Articles 1 to 6 draw on engineering (2,6), art (4,5,6), design (2,6),
soundscape ecology (2,3,4,5,6), computer science (1,3,6), artificial life
(3,4,5,6), and biosemiotics (1,3,4,5,6).

As such, the workwithin this dissertation employs a range of research
methods drawn from a similarly broad set of research traditions. This
chapter focuses on the research process, including methods used and
production of new knowledge, in the various projects and papers that
comprise this dissertation.

5.1 Methods

Practice is an essential part of all of my research processes. Prior to
this Ph.D., my previous studies were in engineering and visual arts —
two fields that are highly applied and ultimately focused on producing
physical instantiations of research. The importance of that creative
production has not shifted in thiswork. All of thework in this dissertation
is driven by the conception and realization of a prototype or simulation.

These prototypes and simulations (detailed in section 5.2) are used
in different ways: Some are subjected to hypotheses and quantitative
experimentation using classical scientific methods; others are treated in a
more exploratory manner, observing the results and building knowledge
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inductively. This section discusses the range ofmethods and their specific
applications in more detail.

5.1.1 Scientific Method

Though not the primary mode of inquiry in much of this dissertation,
some of the studies presented here use the classical scientific method as
their main mode of inquiry. Clustering sensory inputs using NeuroEvolution
of Augmenting Topologies (article 1) andAn artificial life approach to studying
niche differentiation in soundscape ecology (article 3) are rooted in computer
science and incorporate additional insights and theories from cognitive
science and soundscape ecology, respectively. Both papers make and
test hypotheses1, producing knowledge by comparing the performance
of different techniques.

5.1.2 Practice-led and practice-based research

Though the two papers mentioned in the section 5.1.1 employ classical
scientificmethods in their studies, they are still part of the larger structure
of research that stems from practice that underlies the entirety of this
dissertation. Although not discussed in the paper, the study in Clustering
sensory inputs usingNeuroEvolution of Augmenting Topologies (article 1)was
the result of building a robotic arm with a sensory component (fig. 1.1a)
to detect colour and thinking through the process of how it could learn
categories for the items that it sensed.

The role of practice in research is a topic of active discussion among
interdisciplinary and arts- and design-based researchers (Candy and
Edmonds, 2018; Liggett, 2020). A number of formulations of research
based in practice have been articulated (Biggs and Buchler, 2008; Liggett,
2020), but this dissertation adopts the approaches to practice-based and
practice-led research espoused in Candy and Edmonds’s “Practice-Based
Research in the Creative Arts: Foundations and Futures from the Front
Line” (2018).

Candy and Edmonds define practice-based research as research
where the ”creative artifact is the basis of the contribution to knowledge”
while practice-led research ”leads primarily to new understanding about

1Clustering sensory inputs using NeuroEvolution of Augmenting Topologies (article 1)
is less explicit about this, but its implied hypothesis is that k-means clustering can be
approximated using neuroevolution.
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practice”(2018, p64). The work in this thesis engages mainly in practice-
based research; new understandings about practice emerge, but they are
not the primary new knowledge that results from the work. The three
papers that have roots in the Rowdy Krause artifact serve as examples of
this.

The Rowdy Krause was an attempt to put into practice in the physical
world an understanding gained from the simulated artificial life (ALife)
experiment in article 3. The concept of robophony, detailed in Robophony:
A new voice in the soundscape (article 4), arose from realizing that
the sounds produced by the artifact did not fit into the predominant
conception of what composed a soundscape. This prompted research
into other examples of work that also failed to conform to the existing
categories and the emergence and description of a new category of
environmental sound.

Similarly, a discussion of the concept of technogenesis with my
eventual co-authors in the context of the Rowdy Krause revealed the
gap in conceptual understanding of how ecosystems could co-evolve
with technologies. This conversation resulted in the formulation of the
concept of eco-technogenesis which is the basis of Sound as Material for
Eco-technogenesis (article 5).

Endemic Machines: Artificial Creativity in the Wild (article 6) builds
the new concept of endemic machines from reflections on the process
of designing the Rowdy Krause. Endemic machines emerged during
the process of designing the Rowdy Krause while considering the
ways that the prototype evolved alongside the ecosystem. The link to
ecological endemismwas established by thinking through the design and
programming of the machine.

5.1.3 Exploratory Data Analysis

The exploratory nature of some of the studies in this dissertation meant
that for some experiments—particularly the field trial in article 2— there
was no specific hypothesis being tested at the outset. These studies used
a bottom-up approach that was open to the emergence of new patterns
for further investigation. The goal of data collection in these works was
to generate a broad view of the observed processes in order to test the
efficacy of new experimental systems. In place of testing a specific pre-
formulated hypothesis, the data from the experimentswas assessed using
exploratory data analysis (EDA) techniques.
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EDA is the process of broadly assessing collected data to identify
possible patterns and trends (Jebb, Parrigon, and Woo, 2017). The
main task is to generate — not test — hypotheses; the process uses a
bottom-up approach with the raw data as a starting point to generate
new theory (Salkind, 2010). These processes are critiqued in scientific
communities when used to validate hypotheses as it is often possible
to generate some statistically significant result using a dataset; however,
this practice amounts to a misuse of a generally valuable strategy in
data analysis and should not be seen as an indictment of the processes
themselves when applied to hypothesis generation (Jebb, Parrigon, and
Woo, 2017).

The clearest illustration of the types of methods associated with EDA
is found in fig. 6 of The BioAcoustic Index Tool (article 2) and is reproduced
in full here in fig. 5.1. The figure is a scatterplot matrix (Jebb, Parrigon,
and Woo, 2017) of the two acoustic indices and three environmental
variables measured by BAIT. Because the study was mainly intended
to evaluate the efficacy of the device, it was not designed to test a
specific ecological hypothesis. However, the plot in fig. 5.1 allows for the
simultaneous visualization of many of the measured variables, including
their distributions over time. Based on that plot and some of the other
representations of the data, it was possible to offer possible explanations
for the observed patterns that could be tested as hypotheses in future
studies.

5.2 Experimental Platforms

The experimental platforms that were used to conduct the research in
this dissertation have been discussed in previous chapters, but they are
collected here to bring focus to the practice-based processes the underly
the research. This includes the three physical devices that form the basis
of articles 1, 2 and 4 to 6, the virtual soundscape platform used in article 3,
and two prototypes that were under development but did not fit the
direction of the research.

The process of developing these platforms began with a research
question — which often shifted as the prototype was developed — and
a rapid mockup of the system to determine its feasibility. This was
followed by further prototyping, development of a testable model, and
experimentation.
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Figure 5.1: A scatterplot matrix that was part of the EDA process
in article 2. It shows the acoustic indices and environmental factors
measured by the BioAcoustic Index Tool (BAIT). The data is coloured
by month to illustrate how the relationships change seasonally. The plots
along the diagonal are density plots which — like histograms — show
how each measured variable is distributed. The scatter plots above and
below the diagonal show the relationships between the x- and y-axis
variables; those above the diagonal are annotatedwith a linear regression
while those below the diagonal show the density of the data using
contour lines to illustrate areas of increasing density. These plots provide
a helpful overview of the data gathered and allows for the discovery of
new patterns and hypotheses that can be tested in later research (Jebb,
Parrigon, andWoo, 2017). For exampleAcoustic Complexity Index (ACI)
appears to be more strongly correlated with the environmental factors
than Acoustic Diversity Index (ADI) does. This observation could form
the basis of a new experiment to confirm and explain this apparent
phenomenon. (Adapted from article 2)
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(a) RUBE, a hanging robot, devel-
oped with Stig Anton Nielsen and
used as part of the Beyond Digital
— Towards Biological research resi-
dency.

(b) An early prototype of an elec-
tronic nose with an array of VOC sen-
sors aligned on a solderless bread-
board.

Figure 5.2: Prototypes developed over the course of the Ph.D. that were
not used in the research in this dissertation.

The early prototypes and platforms began as tools for engaging some
of the more basic questions related to machines in ecosystems. The latter
ones were conceived as ways of asking broader questions and integrating
the findings from earlier explorations.

Two prototypes — a hanging robot called RUBE and an early mockup
of an electronic nose—were constructed but not included in the research
discussed here. Shown in fig. 5.2, these were developed prior to the
decision to focus on sound and were set aside when it was determined
that they no longer fit with the direction of the research project.

5.2.1 Robotic Arm

Research question How would a machine choose to group a set of
objects differently than a person?

The robotic arm (fig. 1.1a) features a single-pixel colour sensor that
was used in the development of the clustering algorithm detailed in
Clustering sensory inputs using NeuroEvolution of Augmenting Topologies
(article 1). The arm detects an object in the vicinity of its gripper, closes
the sensor over the object, illuminates it and measure the reflected light
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with a colour sensor that detects red, green, blue, and full spectrum
light. The clustering algorithm then decides to which group of objects
the sample belongs, based on the clusters it has learned from the set of
samples it has already seen.

A set of collected plant leaves were sampled with the robotic arm
so that the algorithm could learn a cluster representation. The robotic
arm was then given more leaves to see what kinds of groups it would
form. Asdetailed in article 1, the robot and clustering algorithmemulated
the results obtained using a classic clustering method — the k-nearest
neighbours algorithm.

The experiments conducted on the robotic arm helped to develop
the practice of using relational representations of knowledge to allow
a machine to form an independent representation of its sensory
experiences, as discussed in section 3.3. This formed the basis for the
representation of sensory information in the Rowdy Krause.

5.2.2 The BioAcoustic Index Tool

Research question How can one measure quantitative changes in a
soundscape over a span of months?

BAIT is an autonomous sensor system for measuring acoustic indices
and environmental data in long-term, off-grid environments. The sensor
is described in detail in The BioAcoustic Index Tool (article 2). BAIT was
tested at a field site near Höör, Sweden for nearly six months, during
which it collected over 4000 measurements of the soundscape.

The field experiments demonstrated the long-term collection of
heuristic representations of the soundscape that can be used to charac-
terize changes in the soundscape over time. Exploratory analysis of the
data collected revealed some correlation between environmental factors
and soundscape measurements, which warrants further exploration in
future studies.

5.2.3 ALife Simulated Soundscape

Research question Does the need to communicate within a species lead
to the formation of acoustic niches as predicted by the acoustic niche
hypothesis (ANH)?

The simulated soundscape used for the ALife experiments is detailed
in article 3. It models an ecosystem with two species trying to evolve
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internal communication through a simplified soundscape. The same
systemwas used in a later experiment (Kadish and Risi, 2020) examining
adaptation to noise that is not included in this dissertation. The two-
species experiment was able to demonstrate that evolutionary pressure
to communicate within a species is a significant driver of acoustic niche
construction.

5.2.4 The Rowdy Krause

Research question What is required for a machine to adapt to a local
ecosystem?

The Rowdy Krause was conceived as a way of bringing together many
of the lines of inquiry from earlier experiments and exploring broader
questions related to the roles of machines in ecosystems. Its development
is detailed in article 6, but it influenced the formation of the concepts in
articles 4 and 5 as well as the organizing concept of this dissertation —
endemicmachines. TheRowdyKrause exists in three forms: a first virtual
experiment discussed in articles 4 and 5; a second virtual experiment
shown in the art exhibition at the 2020 ALife Virtual Conference; and as
a physical experiment.

The process of developing, testing, and thinking through the Rowdy
Krause resulted in the development of three new concepts that are
key contributions of this research: robophony, eco-technogenesis,
and endemic machines. The experiments with the Rowdy Krause
demonstrated machine construction of acoustic niches and pointed to
questions about the design and ethics of machines in ecology that are
explored in article 6. Further exploration of these questions can be found
in chapter 6 (Discussion).
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Discussion

What is required for a machine to adapt to a local ecosystem? Chapters 2 to 4
describe a process that involves becoming part of the energetic flows of a
soundscape by learning its contours and evolving vocalizations focused
on under-utilized portions of the acoustic spectrum.

Through virtual and embodied experiments, these chapters — and
the papers on which they are based — lay the groundwork for thinking
through andmaking a new type of machine. It is a machine that is deeply
engaged in the dynamics of ecosystems, whose behaviour arises from a
particular place and time in a particular ecological context.

Bridging the fields of soundscape ecology, biosemiotics, design,
engineering, and computer science, the space of inquiry in the discussion
of endemic machines is expansive. The previous chapters cover and
add depth and context to the published articles, but some issues remain
unresolved. Additionally, points were mentioned in passing that warrant
further attention. This chapter focuses on those outstanding concerns to
bring disparate thoughts together and open space for future work.

6.1 Implications

What are the broader implications of the concepts and prototypes
developed here? In particular, how should the Rowdy Krause and the
concept of endemic machines be considered outside the confines of this
particular research?

The work has ramifications for an important trend in machines and
ecology: the recent and ongoing proliferation of sensors and robots used
in ecological contexts. Already, drones are used to monitor sensitive bird
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and mammal populations, autonomous robots are used to cull invasive
apex predators, and climbing robots are designed to perform tasks from
inspection to pest control (Wynsberghe and Donhauser, 2017).

The way that these machines are conceived and designed matters1.
The assumptions about the world that get built into these machines
affect how they impact the ecosystems that they engage. In engineering
discourse, these machines tend to be understood as extensions of human
agency, projecting a human-defined task beyond the reach of the human
hand (Wynsberghe and Donhauser, 2017).

Endemic machines and the Rowdy Krause describe and demonstrate
an alternative set of assumptions; they look toward a possible future in
which machines are designed as ecological entities. In doing so, they
open space to discuss what kinds of machines should be engaging with
ecosystems.

6.2 Ecology and conservation

Much of the discussion space that is opened by the consideration of en-
demic machines concerns the fields of ecology and conservation. En-
demic machines raise some of the same questions as conventional ma-
chines used in these ecology and conservationwork: What is the environ-
mental impact of creating and disposing of these machines (Wynsberghe
and Donhauser, 2017)? Do narratives of their ecological benefits account
for that material impact? More broadly, when should humans choose to
actively intervene in ecosystems (Hobbs, Higgs, and Hall, 2013; Wyns-
berghe and Donhauser, 2017) and to what end?

Additional concerns arise when a machine is explicitly engaged
in a co-creative evolutionary process with an ecosystem as endemic
machines proposes. Some of these concerns are shared in general with
practitioners of artificial intelligence (AI), who areworry about the safety
of evolutionary computational systems (Lehman, 2020); others are more
particular to endemic machines.

One concern is that, co-evolving with an ecosystem, the ecosystem
could become reliant on endemic machines. The endemic machine could
drive species towards an evolutionary dead-end instead of allowing them
to adapt to changing conditions, causing problems in the future if the

1In the words of Michelle Westerlaken (2020) channelling Haraway (2019), ”It
matters what designs design designs.”
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machine is removed. Van Wynsberghe and Donhauser (2017) raise a
similar question in consideration of what they call ecobots or robots-for-
ecology:

Could the failure or removal of such a robot weaken
the system if said system was relying on the robot to fulfill
a role/function? Is it possible that the robot will become
requisite for some systems to flourish? (Wynsberghe and
Donhauser, 2017, p19)

However, the concern is even more acute when considering endemic
machines. Ecobots of the type described by Van Wynsberghe and
Donhauser (2017) tend to have static missions, whereas endemic
machines are specifically understood to co-evolve with the ecosystem.
That co-evolution, while embodying an approach that is attuned to an
ecosystem, also creates a greater risk for a catastrophic disturbance by
the removal of the machine.

In practical terms, the removal of the machine is less a question of
if than of when. Machines are bound to break down, so it is imperative
to consider the impact on an ecosystem of removing a component that
has — by the definition of endemic machines — been attempting to
evolve into a deeply integrated part of its material and energy flows.
Barring the advent of machines capable of reproduction or self-repair2
— a development which would carry with it its own unique concerns —
machines are destined to be temporary ecosystem inhabitants.

While this dilemma can and should be treated as a serious concern,
it can also be viewed as an opportunity to pull focus to the dynamic
structure of ecosystems. Species move in and out of ecosystems and
ecosystems adapt to these changes. In this context, designers of
endemic machines should consider planned obsolescence — not in the
conventional manner of technology that breaks down after three years,
but in the sense that their exit from the ecosystem is planned and built
into their programming and behaviour structure. In a way, they should
help the ecosystem adapt to their absence just as they learn to adapt to
the ecosystem.

2Depending on the definition of a machine, these may already exist. Van
Wynsberghe and Donhauser (2017) speculate that engineered plants and biofilms can
be considered robots.
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6.3 Design decisions

The design of endemicmachines raises a question related to the discourse
on human aesthetic preferences in ecology. What role should human
aesthetic preferences play in the design of endemic machines? Human
perception of what an ecosystem should be often runs counter to how
ecosystems actually work (Harries-Jones, 2008). How, then, does a
designer trust themselves to make decisions about endemic machines?

A further challenge arises when one considers that these machines
will interact with living beings whose perceptual systems are vastly
different from our own. Their senses extend beyond our own, and their
umwelten are inaccessible to us. In work with two of the experimental
platforms — the robotic arm and the Rowdy Krause — it was often
difficult to tell the difference between themachines notworking and them
not behaving as expected. How can one design in imperceptible spaces?

These two questions are linked; how does a designer make decisions
when their senses cannot be trusted to evaluate them? The approach
detailed in Endemic Machines: Artificial Creativity in the Wild (article 6) is
twofold: determine a framework for making decisions before the design
process begins — in this case, designing the machine based on the
principles of the acoustic niche hypothesis (ANH) — and adopting the
stance that the my own aesthetic preferences should be ignored in favour
of the interests of the ecosystem.

Despite the success of the Rowdy Krause prototype, reflection on the
design process revealed issues with that approach and some insights into
how to shift the process in future work.

6.3.1 Objectivity and the View From Nowhere

The position that it was possible to discount my aesthetic preferences
in the design of the Rowdy Krause can be critiqued in a similar way
as the ”view-from-nowhere” positioning in journalism and the objective
stance in scientific inquiry (Haraway, 1988; Young and Callison, 2021). It
performs the ”god trick” of pretending to be able to see all perspectives
while being fixed in a single point of view (Haraway, 1988). The idea that
it would be possible to remove my aesthetic viewpoint from the design
process masked the important ways in which that viewpoint informs the
design. It imposed a distance on my relationship to the Rowdy Krause
and the ecosystem that it inhabited that was false and easily broken in
the latter part of the design process.
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The result is that when the time came to make aesthetic decisions, it
was impossible to fully engage with the complexity and indeterminacy
of my choices. When initial trials of the Rowdy Krause produced
unexpected types of vocalizations, the immediate conclusion was that
they were not animal-like enough and the code had to be fixed. The
assumption was that my decision was serving the ecosystem’s structure.
However, it is possible that the sounds were indeed adapted to the
ecosystem, and my expectations of the types of sounds that should
evolve were biased. An acknowledgement of my true position in the
process would have encouraged a deeper exploration of those initial
vocalizations.

One approach to engaging with other species in this way can be
found in the recent work of Michelle Westerlaken. In her doctoral thesis,
“Imagining Multispecies Worlds,” Westerlaken (2020) explores a set of
design practices that she calls multispecies worlding. She engages in
world-making and thinking with different animals (and a forest) as a way
of imagining and constructing an alternative to speciesism. In doing so,
she articulates the importance of care and ”tracing the tell,” a phrase
she uses to invoke deep attention to the worlds of other beings, while
acknowledging the designer’s position (Westerlaken, 2020).

6.3.2 Situating knowledge

Another important realization occurred as the COVID-19 pandemic
forced relocation of the development process of the Rowdy Krause from
the lab to my home office and a parallel shift of the field site for testing
from a community garden to my home office’s balcony. Before the shift,
the physical distance of the lab from the field site had enforced another
type of distance in the design process — a physical separation between
the intended ecosystem and the design space. Here, the soundscape that
I was designing was abstract, a series of memories and short recordings.

The shift to the home office meant that work could proceed with
the door open, suddenly immersed in the soundscape that the Rowdy
Krause would eventually inhabit. This change concretized the work that
was underway, rendered the soundscape tangible, and I found myself
beginning to notice calls, noises, andvocalizations that hadnot previously
come into focus. Though I had committed to this notion of maintaining
aesthetic distance, the sudden immersion in the soundscape allowed me
to begin to consider how the Rowdy Krause might resonate with what I
was hearing.



46 Chapter 6. Discussion

This relates to DonnaHaraway’s (1988) concept of feminist objectivity
embodied and situated in a particular context that she calls situated
knowledges. The sudden closeness to the ecosystem in question focused
my attention on the particularities of that ecosystem as an actor in the
relationship that I was helping to form. The soundscape was no longer
an abstractable entity that could be objectively engaged from a distance;
I could begin to engage with the soundscape as part of the soundscape
myself.

This type of situated work — driven in this case by the exigent
circumstances of 2020-2021 — may be an essential component in the
design of endemic machines. By engaging with the ecosystem through
the design process, one can begin to attune to what Bateson (1979) calls
an ecological aesthetic, or the pattern which connects (Harries-Jones, 2008).

6.3.3 Designing Processes

A consequence of working with artificially intelligent systems is that as
a designer, the task is to craft AI’s learning and evolutionary process in
place of crafting the final result. One can assess the result and then adjust
the process, but the focus of the design work is on the system. It matters,
then, which processes are chosen as the basis of the design. This fact is
perhaps obvious, but the implications become clear in consideration of
two of the experiments in this dissertation.

Chapter 4 describes two different methods for evolving the commu-
nications strategies of AI agents. The first, tested in simulation in arti-
cle 3, employs a real biological need— communication— as its incentive.
The second, deployed in the Rowdy Krause and discussed in articles 4
to 6, motivated the evolution of sound using the expected behaviour of a
species as defined by the acoustic niche hypothesis (ANH).

The simulations were able to readily demonstrate the effects of the
ANH while the latter struggled to reproduce some of the anticipated
behaviours and required adjustments. Part of this is due to the
simplifications built into the simulation system and the added complexity
of the Rowdy Krause operating in the real world. However, another
plausible explanation is how the processes were designed.

The difference between the two lies in the reward structure that was
designed for the evolutionary process. The species in the simulationwere
instructed to try to communicate; the Rowdy Krause was instructed to
find an acoustic niche. In the simulation, the niche arose from the attempt
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to communicate, whereas for the Rowdy Krause, what constitutes a niche
was pre-defined as part of the design process.

It is worth considering how biological species construct acoustic
niches. Their process resembles that of the simulation more than that
of the Rowdy Krause. Species are not instructed to find a niche. Rather,
their attempts to find a way to communicate lead to a niche’s formation.

In the design of endemic machines, the design of the process matters.
It was, in the end, possible to adjust the incentive structure to correct the
way it defined an acoustic niche and ultimately encourage the Rowdy
Krause to find niches within the soundscape. However, it might have
been more fruitful to ask it to find a way to communicate with others like
itself and allow its own conception of an acoustic niche to emerge from
that process.

6.4 Domains of endemism

Much of the inquiry in this work focuses on the sonic domain, but the
concept of endemic machines is broader than any one particular sense.
There are many possible domains in which a machine could adapt to an
ecosystem. As discussed in chapter 2, becoming part of an ecosystem
entails engaging with the cycling of energy and materials within the
ecosystem.

In this work, that cyclical engagement was achieved through the
sensing and production of sound. In particular, the Rowdy Krause was
designed to create a feedback cycle between sensed sound and the sound
being produced as an explicit part of a conversation with the existing
soundscape.

While the RowdyKrause does not actually communicatewith another
robot, the work was designed around the impetus of communication.
The process by which the Rowdy Krause produced vocalization is based
on the ANH, which proposes that a species finds an acoustic niche
to facilitate intraspecies communication — a finding supported by An
artificial life approach to studying niche differentiation in soundscape ecology
(article 3).

Amore conventional engineering approachmight question the notion
of machines communicating with one another in the audible spectrum at
all. Established electronic communications technologies that use radio
waves — Bluetooth, WiFi, ZigBee — are secure, error-correcting, and
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thoroughly tested for sending digital information between machines.
In truth, these types of technologies would produce more stable and
verifiable communication between two or more machines.

However, communication in that way would be inaccessible to other
parts of the ecosystem. Other ecosystem actors would have no opportu-
nity to engagewith thosemachines— noway of intercepting, mimicking,
responding, or listening to what the machines are saying. These oppor-
tunities are essential for forming the types of deep relationships that in-
tertwine a species — or in this case, a machine — in the material and
energetic flows of an existing ecosystem.

These opportunities for engagement and entanglement extend to
other sensory modalities. Immediately interesting — though with
significant technical challenges — is scent. While sound is mainly
considered the domain of the animal kingdom3, chemical signals in
the form of pheromones cross phylogenetic boundaries and are a
nearly ubiquitousmode of biological communication (Jones and Bennett,
2011). The deep ecological and emotive impact of olfaction makes it an
interesting target for future work in endemic machines.

Machines engaging with smell — and therefore volatile chemicals —
also point to another mode of endemism. While sound is an energetic
medium interacting with the ecosystem through advancing pressure
waves, smell is physical and the beginning of an engagement with its
material flows. Another form of adaptation to a local ecosystem could
involve amachine becomingmore engagedwith the ecosystem’smaterial
flows.

The rapidly developing fields of soft robotics (Jørgensen, 2019) and
wet artificial life (Swan, 2009; Aguilar et al., 2014) represent opportunities
for the integration of biological materials into machines. Common to
these fields is a shift away from the rigid metal, plastic, and silicon
materiality of most digital devices. This presents an opportunity to
incorporate physical material from the ecosystem into the machine. The
ability to become part of metabolic and material networks would root
machines to a local ecosystem in a substantial and concrete way and
would be a new frontier in endemic machines.

3This is a commonly held position, though it is debated in research communities
that study other branches of life. Gagliano (2013) argues that buzz pollination in plant-
insect interactions constitutes a sense of sound on the part of plants. She also points
to studies that indicate that plants produce and respond to acoustic signals. Further
studies demonstrate that sound can induce or shift the stress responses of plants, and
induce a range of other behaviours (López-Ribera and Vicient, 2017).
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6.5 Should machines be endemic?

In the discussion of endemic machines in this dissertation, the question
of whether machines should be endemic — whether it is good to
make machines that adapt to and become part of ecosystems — is not
directly considered; the ethics of endemic machines are only addressed
briefly. The question can actually be posed as two separate questions:
Are endemic machines preferable to non-endemic machines? Should
machines be deployed in ecosystems?

These are daunting questions with complex ethical implications. But
they need not be answered in the general terms proposed here. One of
the fundamental premises of endemic machines is that the details of a
specific scenario matter. These questions must be posed in the context of
a specific ecosystem and a specific machine.

For example, Van Wynsberghe and Donhauser (2017) describe an
autonomous underwater robot called the Lionsfish Project that culls
lionfish. Lionfish are voracious apex predators that can consume 80%
of the fish on a reef in a single month. The Lionfish Project’s robots
would not be considered endemic machines — they are preprogrammed
with the task of killing lionfish and do not adapt or co-evolve with the
reef ecosystem — but the intent behind their mission is to preserve the
biodiversity of coral reefs.

The ethics of culling a species for conservation purposes is a topic of
debate in conservation biology and opinions vary about if, when, and
how it should be done (Dubois et al., 2017; Hampton, Warburton, and
Sandøe, 2019). Some researchers emphasize the short term improvement
of the ecosystem biodiversity (Hampton, Warburton, and Sandøe, 2019),
while others maintain that the first priority should be the modification
of any human activities that are at the root cause of an acute ecological
crisis (Dubois et al., 2017).

If one assumes that the impulse to manage the population of lionfish
is ethical, the question shifts to whether it would be preferable for
the project to use an endemic machine. An endemic machines-based
approach could involve designing a machine to inhabit the ecosystem
as an apex predator whose main prey is lionfish. As an artificial apex
predator, it would have other roles in the ecosystem in addition to
removing lionfish. For example, the endemic machine could be designed
to account for the importance of cycling nutrients through the aquatic
food chain (Schmitz, Hawlena, and Trussell, 2010; Vanni, 2002); it could
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include a process for digesting the captured lionfish and distributing the
nutrient material through the ecosystem.

Many conservation and restoration projects provoke questions about
the root causes of an ecological problem andwhether the proposed action
addresses those causes or remedies a symptom. Those cases where
ecological intervention is warranted do not always justify the use of a
machine. However, where machines are used, there is something to be
said for using ones designed to engage — through feedback and co-
evolution — with the full complexity of the ecosystem they are trying
to help.



Chapter 7

Conclusions

What is required for a machine to adapt to a local ecosystem? Adaptation to an
ecosystem requires integration and entanglement with its material and
energetic flows. A machine has to sense the system, collect experiences
of the relationships therein, and form a response to the streaming energy
and matter. It has to shift its behaviour in response to others and shift
the behaviour of others in return. That push and pull, call and response
shapes a niche, a space for the machine to call its own that is embedded
within the larger network of relationships that is the ecosystem.

In the course of arriving at that response, this dissertation has yielded
contributions to soundscape ecology, artificial life (ALife), engineering,
and design. These include the contributions to the field of soundscape
ecology of the BioAcoustic Index Tool (BAIT) — a process and prototype
for the collection of soundscape data — and the demonstration of
key features of the acoustic niche hypothesis (ANH) in simulation.
They also include three conceptual contributions that emerged from the
development of the Rowdy Krause.

The concept of robophony—a contribution to the field of soundscape
ecology and its understanding of the sounds that comprise a soundscape
— emerged from considering the biosemiotic role of sounds from an
ecologically engagedmachine. This addition to the ontology of ecological
sounds creates conceptual space for technological entities with hybrid
origins and complex networks of influences and relationships.

Reflecting on this type of sound from the ecological perspective
shaped the second major contribution in this thesis: eco-technogenesis.
Eco-technogenesis originated in consideration of sound, but expands to a
more general conception of the process of technological and ecological co-
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creation. As such it impacts multiple fields including ecology and ALife.
The concept of eco-technogenesis suggests that, for a machine to adapt to
a local ecosystem, it has to also allow a local ecosystem to adapt to it to
initiate a reciprocal process.

That process of co-adaptation, of the machine developing in a way
that is unique to a particular time and place, forms the third significant
conceptual contribution of this thesis: endemic machines. The concept
of endemic machines is a way of rooting the practices surrounding
the design of locally adaptable machines in the analogy of ecological
endemism. It implies a historical contingency and contextual specificity
that grounds the machine in the particularities of an ecosystem.

The practices that form the basis of endemicmachine design constitute
one way of designing a machine to adapt to a local ecosystem. Future
work should expand to sensory realms beyond sound, focusmore intently
on the ethics of endemic machines, and experiment with machines
that operate on longer time scales. But the work documented and
discussed here — the sensory experiments, simulations of acoustic
niche construction, the Rowdy Krause as a working prototype, and the
concepts of robophony and eco-technogenesis — lay a solid foundation
for continued research into endemic machines.
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ABSTRACT
Sorting data into groups and clusters is one of the fundamental tasks
of artificially intelligent systems. Classical clustering algorithms
rely on heuristic (k-nearest neighbours) or statistical methods (k-
means, fuzzy c-means) to derive clusters and these have performed
well. Neural networks have also been used in clustering data, but re-
searchers have only recently begun to adopt the strategy of having
neural networks directly determine the cluster membership of an
input datum. This paper presents a novel strategy, employing Neu-
roEvolution of Augmenting Topologies to produce an evoltionary
neural network capable of directly clustering unlabelled inputs. It
establishes the use of cluster validity metrics in a fitness function
to train the neural network.

CCS CONCEPTS
• Information systems → Clustering; • Computing method-
ologies → Knowledge representation and reasoning; Neural
networks; • Applied computing→Engineering; Agriculture;

KEYWORDS
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1 INTRODUCTION
Grouping similar data and experiences is a fundamental building
block of learning. Without the need for a priori information about
the meaning of a particular input, clustering forms the basis for
generating meaningful categorizations [3]. Given its foundational
role in learning, it is perhaps surprising that few efforts have used
neural networks to perform clustering and none could be found
that use neuroevolution. This paper develops a technique called
NEAT Clustering (NEAT-CLU) for clustering using neuroevolution.
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2 BACKGROUND
Clustering refers to the process of assembling unlabeled data into
like groups. A number of clustering strategies are well-established:
k-nearest neighbours (k-NN), k-means, fuzzy c-means (FCM), DB-
SCAN, and self organizingmaps (SOM) are standard tools for cluster
analysis [2]. Of these, only SOMs use neural networks (NNs), gener-
ating a neural map that is overlaid on the input data. These methods
share an underlying model of input data plotted on a hyperplane
and the use of a distance measurement to assign a cluster.

Two existing efforts use NNs to bypass the use of a distance
metric in cluster assignments and assign cluster membership as
a direct output of the NN [5, 6]. They both require that data be
presented in pairs with pre-determined measurements of similarity
and neither employ evolutionary methods to form their networks.

The evolutionary NN employed in this paper is known as neu-
roevolution of augmenting topologies (NEAT) [7]. NEAT evolves
the structure and weights of its neurons in tandem, adding layers
and complexity as necessary to achieve an optimal fitness. NEAT
and its derivatives have been applied to a wide range of tasks but
this is its first application to cluster assignment.

3 ALGORITHM
The NEAT algorithm itself is well-documented [7] and is used in
its standard form in NEAT-CLU, so it is not covered in detail here.
NEAT-CLU uses the raw input data, so there is no need to preprocess
samples. For k clusters, the output is encoded using

⌊
log2 (k )

⌋
+ 1

output neurons with an unsigned step activation function. The full
NN output is treated as a binary number representing the assigned
cluster. When the number of binary combinations does not match
the desired number of clusters, some clusters are assigned multiple
binary numbers. For example, in this trial, the outputs 01 and 10
both map to the second cluster.

One of the key insights in NEAT-CLU is that clustering metrics
can be a key component of the fitness function for training an
evolutionary NN. The Calinski-Harabaz (CH) score is a measure of
the comparison between intra-cluster variability and inter-cluster
variability [1]. For a sample set of N observations, divided into
k clusters with the centroid of cluster i at mi , the CH score can
be written as Fch =

SB
SW ×

N−k
k−1 where the intercluster variance

SB and intracluster variance SW are SB =
∑k
i=1 ni | |mi −m | |

2 and
SW =

∑k
i=1
∑
x ∈ci | |x −mi | |

2.
Two metrics are added to the fitness function to encourage even

clustering. A demerit (Fk ) is assessed if fewer clusters are created
than desired. Another (Fn ) penalizes disparity in group size. The
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(a) Clusters created by the NEAT clusterer. Axes
represent the two components of a PCA decompo-
sition of the 4-dimensional input space.

(b) Clusters created by a K-means clusterer. Axes
represent the two components of a PCA decompo-
sition of the 4-dimensional input space.

(c) Fitness over generations in the evolutionary
process that produced the clustering network.

Figure 1: Side-by-side comparison of NEAT-CLU and k-means clustering algorithms (a-b). Generational fitness (c).

Table 1: Cluster metric scores

Calinski-Harabaz Silhouette

NEAT-CLU 103.31 0.36
k-means 108.23 0.38

resulting fitness function can be written as F = wchFch −wkFk −

wnFn wherew denotes a weighting constant, the demerit for devi-
ation from the desired number of clusters (K ) is Fk = K − k and a
measure of cluster size disparity is Fn = k −

∑k
i=1

ni
max(n) .

4 METHOD
This work formed part of an inquiry about how a robot could expe-
rience an ecosystem, so the experiment focused on the clustering
of plant leaves. The robot was equipped with a single-pixel camera
with which it R-G-B and white reflectance from different leaves.
The NEAT-CLU clustering algorithm was trained on these samples
and then used to sort new samples into three distinct groups. This
result was compared to a k-means clustering of the same data.

5 RESULTS
Using the NEAT-CLU algorithm, the robot sorted the leaves into
three clusters. The NEAT networkwas evolved over 100 generations
with a population of 100 individuals (figure 1c). The results of
NEAT-CLU are shown (figure 1a) beside the results of k-means
clustering (figure 1b). NEAT-CLU and k-means produce similar
results with minor differences at the cluster boundaries. NEAT-CLU
has effectively learned to closely emulate a k-means clustering
strategy. The cluster scores for the two methods are quite close
(Table 1) though k-means fares slightly better in both evaluated
metrics.

6 DISCUSSION
The slight underperformance of NEAT-CLU and its increased com-
plexity with respect to k-means suggest that NEAT-CLU will not
replace the standard clustering tools. However, NEAT-CLU can offer
a degree of flexibility that is unavailable to k-means. The structure

of clusters in k-means — as well other standard clustering meth-
ods — stems from the algorithm’s clustering mechanism. K-means
performs well on gaussian-distributed datasets with equal-sized
clusters, but often performs poorly on data that is distributed in
other ways [4]. NEAT-CLU’s clusters are structured by the fitness
function, which can be easily modified to suit new datasets.

The CH portion of the fitness function could be replaced by an-
other clustering metric, such as the S_Dbw cluster validity index [4].
This would allow NEAT-CLU to adapt readily to many differently
structured datasets. This flexibility is the true advantage of per-
forming clustering using neuroevolution. The same algorithm can
be adjusted — even during the evolutionary process — to fit a wide
variety of different datasets and end-goals.
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BioAcoustic Index Tool: Long-term biodiversity monitoring using
on-sensor acoustic index calculations
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Abstract
Acoustic indices are valuable tools for measuring and tracking changes in
biodiversity. However, the method used to collect acoustic index data can be
made more effective by recent developments in electronics. The current process
requires recording high-quality audio in the field and computing acoustic indices
in the lab. This produces vast quantities of raw audio data, which limits the time
that sensors can spend in the field and complicates data processing and analysis.
Additionally, most field audio recorders are unable to log the full range of contextual
environmental data that would help explain short-term variations. In this paper,
we present the BioAcoustic Index Tool, a smart acoustic index and environmental
sensor. The BioAcoustic Index Tool computes acoustic indices as audio is captured,
storing only the index information, and logs temperature, humidity, and light levels.
The sensor was able to operate completely autonomously for the entire five-month
duration of the field study. In that time, it recorded over 4000 measurements of
acoustic complexity and diversity all while producing the same amount of data that
would be used to record 3 minutes of raw audio. These factors make the BioAcoustic
Index Tool well-suited for large-scale, long-term acoustic biodiversity monitoring.

Abbreviations: ACI Acoustic Complexity Index; ADC analog-to-digital
converter; ADI Acoustic Diversity Index; AEI Acoustic Evenness Index; BAIT the
BioAcoustic Index Tool; BI Bioacoustic Index; FFT fast Fourier transform; FPU
floating point unit; H Acoustic Entropy Index; Hf Spectral Entropy; I2S Integrated
Inter-IC Sound Bus; KDE kernel density estimate; MEMS microelectromechanical
systems; NDSI Normalised Difference Soundscape Index; RTC real-time clock;
SET Soundscape Explorer (terrestrial).

KEYWORDS
acoustic index, soundscape ecology, biodiversity, sensor, field recorder, open source

1. Introduction

The soundscape is a rich source of information about the state and health of an
ecosystem. In particular, the calculation of acoustic indices from audio recordings of a
soundscape provides stable quantitative metrics to monitor ecosystems for disturbances
and changes in biodiversity. However, despite rapid advances in portable electronic
technologies, the methods of calculating acoustic indices have not changed since the
introduction of the concept by Boelman et al. (2007) and Sueur et al. (2008b).

Taking advantage of high-performance and low power consumption of modern
microcontrollers, we have developed a tool to streamline the computation of acoustic
indices, enable longer-term field studies, and add context to acoustic data by also
recording environmental conditions. The BioAcoustic Index Tool (BAIT) skirts the
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data storage limitations of conventional audio field recorders by calculating acoustic
indices in the field and storing only the index data, making it possible to leave a
sensor in the field for months or even years at a time. At the same time, we have
leveraged the flexibility of the onboard microcontroller to add additional sensors
for light, temperature, and humidity. This means that acoustic index data can be
correlated to the environmental conditions immediately surrounding the sensor. The
ability to continuously monitor a soundscape over a period of months and years
and to de-correlate a flexible range of environmental conditions from changes in the
sonic environment has the potential to vastly improve the long-term monitoring of
biodiversity using sound.

The use of sound as an indicator of biodiversity dates back at least to the
publication of Silent Spring by Carson in 1962. As the concept of the soundscape
was formalized by researchers such as Westerkamp (1974), Schafer (1977), and Truax
(1978), soundscapes were recorded in analogue formats using portable stereo reel-to-
reel recorders (Lyonblum 2017). By the mid-2000s digital recording and computing
technologies had advanced to the point that larger-scale digital analysis of audio was
possible.

These developments enabled the creation and use of the first acoustic indices for
conducting quantitative analyses of biodiversity using sound (Boelman et al. 2007;
Sueur et al. 2008b; Villanueva-Rivera et al. 2011) and the practice has expanded
rapidly since then (Bradfer-Lawrence et al. 2019). These methods have the benefit
of being able to estimate biodiversity without requiring the types of intensive surveys
that have been traditionally used for assessing biodiversity (Sueur et al. 2008b; Buxton
et al. 2018). The use of soundscape recordings and acoustic indices can help minimize
disturbance of sensitive landscapes and reduce the cost of performing surveys while
providing long-term data for assessing ecosystems.

The methods for collecting long-term soundscape data have changed little since the
early days of soundscape recording. Typically, raw audio is recorded using purpose-built
field audio recorders that remain in the field, untended, for anywhere from a few days
to a few months (Pijanowski et al. 2011b; Pieretti et al. 2015; Gottesman et al. 2020).
Commercial field recorders — such as the Song Meter from Wildlife Acoustics — are
often used in these projects, but new, open-source tools such as AURITA (Beason et al.
2019) and the AudioMoth (Hill et al. 2019) that use electronics from the do-it-yourself
(DIY) community are becoming more common as well.

Recordings are stored as high-quality audio files and collected at the end of the
recording period for analysis in the lab. In the lab, recordings are preprocessed —
this can include pre-filtering some audio frequencies (Towsey et al. 2014; Farina et al.
2021), removing noisy recordings (Righini and Pavan 2020), or subsampling the data
in various ways (Towsey et al. 2014; Righini and Pavan 2020; Farina et al. 2021) —
and then acoustic index calculations are performed.

This established method works well to capture acoustic index data, but has several
drawbacks. An oft-mentioned difficulty for researchers is the sheer volume of data
produced (Righini and Pavan 2020). Raw audio files require lots of storage (Bradfer-
Lawrence et al. 2019) and significant data processing facilities (Towsey et al. 2014;
Farina et al. 2021).

A single 15-minute uncompressed audio file, recorded at the 44.1 kHz in 16-bit
stereo — a typical configuration for soundscape recordings — requires about 150MB
of storage. Even with some of the largest (512GB) SD cards available, this means that
a recorder is limited to about 850 hours (35 days) of continuous recording before the
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Table 1.: Uses cases for different field recorders and sensors
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record high-quality audio files for review and analysis in the lab • • • •
log environmental data alongside acoustic indices • •
capture ultrasonic frequencies • • • •
access pre-computed acoustic indices • •
be able to modify or hack your recorder • • •
deploy sensors remotely for more than a few months •
spend under $100 (USD) per sensor •
spend under $200 (USD) per sensor • •
spend under $400 (USD) per sensor • • •
spend under $1000 (USD) per sensor • • • • •

data must be collected1. Researchers have also noted that archiving and processing all
of that data presents its own set of challenges (Righini and Pavan 2020) and many
authors describe trade-offs between the quality and depth of data they record and the
storage and processing limitations they face.

The recorders that are currently used also lack a certain flexibility. They perform
their assigned role of recording audio well but are limited to that particular
task. Meanwhile, researchers have called for further integration of environmental
data into soundscape studies to provide context for recordings and acoustic index
measurements (Pijanowski et al. 2011b; Righini and Pavan 2020).

Tools like the aforementioned AURITA and the AudioMoth, as well as others like the
Solo recorder (Whytock and Christie 2017), point to a way forward. These devices rely
on recent developments in electronics and battery technology as well as the emergence
of a vibrant DIY hardware community to create relatively cheap but powerful devices
for recording the soundscape. These particular tools don’t change how acoustic index
data is collected, but related advances in DIY electronics have made powerful and
efficient processors and sensors available to a wide community.

In particular, more microcontrollers — the small, embedded computers that power
some of these sensors — are now capable of efficiently computing fast Fourier
transforms (FFTs), the basis for producing spectrograms and many of the most popular
acoustic indices. This enables them to perform the first stage of computation and
analysis in the field, as the data is collected, instead of waiting to return to the lab with
raw data. These microcontrollers have the additional benefit of being programmable —
and therefore flexible in their operation — and can often connect to many peripherals
including additional sensing equipment and devices for data storage and wireless
communication.

There has been interest in deploying these types of technologies for ecological
research. Guo et al. (2015) proposed that these types of smart sensors can improve
ecological data collection by enabling continuous data acquisition and long-term
operation in the field. Browning et al. (2017) and Greif and Yovel (2019) point out
that onboard processing of raw data would dramatically reduce the amount of data
that needs to be stored.

In the sonic domain, researchers have begun to test the use of on-sensor

1This can be extended with recorders that feature multiple SD card slots, but one will still encounter
limitations for long-term monitoring with this approach
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analysis of sound. One such effort analyses acoustic data to track the grazing of
cows (Deniz et al. 2017). Another uses deep learning neural networks to detect the
vocalizations of different species urban bats (Balestrini et al. 2020). Other work
has taken place in aquatic environments, where sound is the primary mode of
communication (Baumgartner et al. 2013).

Finally, there is the Soundscape Explorer (terrestrial) (SET), developed by
Lunilettronik2. It combines on-board computation of Acoustic Complexity Index (ACI)
values with the logging of environmental data. It features two microphones — one for
audible sound and one for ultrasonic detection — and can record for up to two weeks in
a typical configuration3. While these features have proven useful in field studies (Farina
et al. 2016; Farina and Salutari 2016; Farina 2019; Benocci et al. 2020), SET calculates
only ACI and does not have solar charging capabilities, limiting its utility in long-term
unsupervised studies4.

The BioAcoustic Index Tool is our attempt to fill that gap (see table 1).
Using technologies associated with the DIY community, BAIT integrates a powerful
microcontroller that calculates acoustic indices in real-time as sound is captured from
the surroundings with environmental sensors that capture temperature, humidity, and
light data. The resulting sensor captures acoustic index and environmental data while
storing 40000 times less raw data than a conventional field audio recorder. Combined
with the solar battery charging system, this allows the sensor to run autonomously
and indefinitely in the field, without the need to change batteries or SD cards.

The ability to run these sensors without constant maintenance means that they are
ideally suited to anchor large-scale, long-term acoustic biodiversity monitoring projects
involving a grid of sensors spread out across a landscape. In the next section, we present
the design of a prototype of this type of sensor system. We outline its capabilities and
its drawbacks and, in later sections, discuss its applicability to existing and future
studies.

2. Materials and Methods

The BioAcoustic Index Tool (BAIT) is a smart sensor that measures acoustic indices
from the soundscape of an ecosystem and records those indices as well as other
environmental data. Using a combination of onboard audio processing and solar power,
BAIT was able to operate maintenance-free for nearly 6 months in a forest garden in
southern Sweden.

The base of the sensor works in much the same way as any of the existing field
recorders: it features a microphone, a processor, and an SD card. High-quality audio
is captured and recorded to the SD card in much the same way as is done in the
SongMeter recorders used by (Pieretti et al. 2015; Gottesman et al. 2020; Righini and
Pavan 2020) and the Solo recorder used by (Bradfer-Lawrence et al. 2019)5.

The next step is where BAIT differs from a standard field recorder. Instead of
leaving the audio files on the SD card to be collected and processed back in a lab,
BAIT performs acoustic index calculations on-board, in the field. Once the acoustic
indices are calculated for a particular audio file, the file is discarded and all that it

2http://www.lunilettronik.it/en/prodotto/set-soundscape-explorer-terrestrial/
3Product specification at http://www.lunilettronik.it/soundscape_explorer/.
4As SET is a closed-source commercial product, researchers are unable to expand its capabilities as needed.
5The microprocessor and microphone used in BAIT are similar to those found in the Solo recorder.
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stores are the numbers representing the calculated acoustic indices6.
As predicted by Browning et al. (2017); Greif and Yovel (2019), performing

calculations in-situ and discarding the raw audio results in a massive reduction in
onboard data storage requirements. As such, storage capacity is no longer a limiting
factor in the operating life of the sensor. A drawback of this approach, of course, is that
it is no longer possible to reanalyze the raw audio or perform additional calculations
or manual observations after the fact.

With storage capacity no longer a concern, the availability of power is now the main
limiting factor for long-term operation of the sensor. A small, 2-watt solar panel powers
the BioAcoustic Index Tool and charges its internal battery. While this configuration
allowed the sensor to remain in the field recording data for over 6 months, it did not
provide enough power or energy storage to allow the sensor to record continuously —
especially in the darker, earlier months of the year. The sensor uptime is detailed in
section 3.1.

2.1. Design

An important part of the BioAcoustic Index Tool is that the plans and code are
open-source and therefore modifiable by researchers with specific needs. For example,
knowing that there might not be enough power to carry out continuous recordings
throughout the day and night, a researcher might modify the power management code
to prioritize recording at dusk and dawn and only record during other times of the day
if there is excess power available. They might also implement the calculation of other
metrics that are useful for analyzing the soundscape.

In this section, we outline the design of BAIT to give the reader a general
understanding of how the tool works. Further design and implementation details are
described in section A.

2.1.1. Electronics

The electronic core of BAIT is a microcontroller, a set of sensors, and a power-
management system. The microcontroller captures sound and environmental readings
from the sensors and stores the environmental readings on an onboard microSD card.
The audio is processed in real-time using modified versions of the algorithms to
calculate ACI and Acoustic Diversity Index (ADI) on streaming data. The power
management system charges the battery and informs the microcontroller to enter a
lower-power mode when the battery doesn’t have enough charge to run the full-scale
calculations.

The microcontroller is similar to the one used in the AudioMoth (Hill et al.
2019) — an ARM Cortex M4F. In place of using a customized circuit board to
run the microcontroller as is done on the AudioMoth, BAIT uses the Teensy 3.6
USB Development board which includes electronics for basic functionality like power
regulation, a real-time clock (RTC), and an onboard microSD card reader (see fig. 1).
The Teensy is also Arduino-compatible and BAIT’s firmware is written using Arduino
libraries. These factors make it relatively easy to modify the design and the associated
firmware.

6It is entirely possible to store more than just the acoustic indices. During our evaluation of BAIT, we also
recorded intermediate computations to help verify the calculations of acoustic indices after the fact. BAIT is
capable of retaining data at any level — including raw audio — for verification, data, audits, or additional
analysis, but doing so would negate some of the benefits discussed later on.
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Figure 1.: Diagram of the electronic components and connections in BAIT prototype.

The sensor set includes a MEMS (microelectromechanical systems) microphone, a
temperature and humidity sensor, and an ambient light sensor, all shown in fig. 1. The
microphone captures soundscape data, while the other sensors enable the correlation
of soundscape information with environmental data. The environmental sensors could
also be used to schedule audio recordings or regulate power usage, though this is not
currently implemented.

2.1.2. Firmware

The firmware7 for BAIT is written using the Arduino platform as well as libraries
from Adafruit8 and PJRC9. It is modularly structured so that it is easy to add in the
calculation of new bioacoustic and environmental measurements. It also incorporates
two different power modes to enable proper charging of the batteries, while maintaining
the collection of bioacoustic and environmental data as consistently as possible. The
entire firmware is open-source and available on GitHub10.

The BAIT firmware controls sensor readings and data preprocessing; performs audio
analysis and the calculation of acoustic indices; and manages the battery and power
state of the system. The two main features of the BAIT firmware are the modified ADI
and ACI algorithms and the power management system.

2.1.3. Acoustic index calculations

Two test acoustic indices were chosen for implementation in the prototype of BAIT:
ADI and ACI. They were selected because both are well-documented and commonly-
used in field studies. Their structure — operating on spectral representations of the
audio — makes them suitable for implementation on a microcontroller that can perform
FFTs. An overview of the implementation of these indices is given here, but a detailed
description of the algorithm can be found in section A.2.

The ADI is an attempt to quantify the acoustic diversity of a sound. Defined by
Villanueva-Rivera et al. (2011), the ADI operates between 0-10 kHz and calculates the

7Firmware is software that is written for embedded computing, such as the microcontroller in BAIT.
8adafruit.com
9pjrc.com, the manufacturer of the Teensy

10github.com/dkadish/BioAcousticIndexTool
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Shannon entropy of the sound. This is done by dividing the frequency spectrum into
10 equal 1-kHz bands and assessing the proportion of FFT bins that contain energy
above a defined threshold in each band. The Shannon index of these values is the ADI.
A full calculation is shown in section A.2.1.

In the R implementation, this calculation is performed on a whole recording at once,
calculating the proportion of positive bins at each frame. To efficiently calculate ADI
on streaming data, BAIT collects a running sum of the number of times each FFT
frequency bin exceeds the threshold along with a count of how many samples it has
seen. These totals are divided at the end of the entire sample instead of at each frame,
avoiding the accumulation of floating point errors over the course of the sample.

To calculate ACI in real-time on a microcontroller, it was necessary to translate the
ACI algorithm into C++ but also to modify it to work with streaming data instead
of a full audio file. Described in detail in Pieretti et al. (2011), the ACI represents
the amount of variation of intensity of sound within frequency bands over the course
of a recording fragment. It relies on the assumption that anthropogenic noises — for
example, the droning of an aeroplane engine or the buzz of a factory — are often
spectrally constrained and relatively constant, so it attempts to detect sounds that
vary from moment-to-moment.

Normally, ACI is calculated for a complete audio file, but we modified the algorithm
so that it could be computed in real-time as new audio was captured. Full details of
the modified implementation can be found in section A.2.2.

2.1.4. Power modes

As storage space is no longer a limiting factor for BAIT, power is now the primary
concern for the smart sensor. To conserve battery, two different power modes were
designed, to maximize BAIT’s operational time.

In the main, full-power mode, BAIT has all sensors enabled and records all of the
available data. Audio is captured and indices are calculated in real-time as described
above. Environmental data is captured and recorded to the microSD card. However,
capturing and processing audio requires the processor to be constantly active. When
only environmental data is collected, BAIT is active only a small fraction of the time,
meaning that it consumes less power. As such, a second, low-power mode was developed
to capture only environmental and battery data. When this mode is active BAIT is
unable to capture or process audio, so the data from those times is not recorded.

For the prototype, these modes are used in two different ways. In mixed-power
mode, BAIT alternates between full- and low-power modes every 15-minutes to extend
the basic battery life of the system. It is assumed that this still provides a reasonable
temporal resolution for soundscape index measurements. Secondly, the low-power mode
is engaged when the battery level falls below a set level. This allows BAIT to continue
to monitor environmental parameters and be ready to return to full-power mode once
the battery charge increases.

Full details of how the power modes are designed and activated are available in
section A.2.3.

2.1.5. Enclosure

The enclosure for the BioAcoustic Index Tool is 3D printed and the plans are freely
available online11. The enclosure was designed in Autodesk Fusion 360 and features

11github.com/dkadish/BioAcousticIndexTool
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(a) Top view of the solar
panel

(b) Bottom view with sensor
panel visible

(c) Rear view with controls
and plugs

Figure 2.: Three renderings of the BioAcoustic Index Tool

a solar panel mount, an external power switch, a Micro-USB charging port, and a
downward-facing sensor panel. The final design is shown in fig. 2.

The enclosure should not be considered water-proof, but with a good 3D print, it
can last outside in a range of weather12. To that end, the placement of the solar panel
helps to protect the seam from heavy rain as does the placement of the sensors on the
bottom of the device.

2.2. Field Experiments

The BioAcoustic Index Tool was tested in the field at a forest garden site called Holma
Skogsträdgården in Höör, Sweden for approximately 5 months between February 18
and July 17, 2019. The site is an active educational forest garden set adjacent to a
preschool and a forest garden teaching facility (Holma Folkhögskola), between a series
of conventional farms on the outskirts of the town. A train line runs about 200m from
the garden carrying local, regional, and long-distance passenger traffic as well as freight
trains, and the sound of the passing trains echos loudly through the garden.

The garden itself features mixed groves of food-bearing trees, bushes, and perennial
vegetables. Birds flit back and forth between the fruit trees and visit the sizeable on-
site pond. Through the day, children from the preschool visit the garden to explore
and classes from Holma Folkhögskola work and learn in the groves.

All of this activity provided a rich acoustic environment for testing BAIT. In addition
to measuring the acoustic indices of the soundscape, the purpose of the trial was to
establish the operating parameters for BAIT. This includes the following:

• Uptime: How many acoustic measurements is BAIT able to take using the
available power?

• Mode power usage: What is the power consumption of each mode in the field?
• Storage requirements: How much data is actually recorded?
• Environmental data correlation: How does the environmental data collected

12It worked for more than 6 months at a field site in southern Sweden and was not damaged by water in that
time. That said, something did appear to have built a web inside the case and a solitary bee apparently took
up residence in one of the screw recesses in the exterior of the case.
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(a) In the field in Holma Skogsträdgård. (b) Electronics after 5 months in the field.

Figure 3.: Views of the BioAcoustic Index Tool during the field experiments.

correlate to the measured acoustic indices?

3. Results

The field experiments were designed to validate the basic functionality of BAIT and
to establish its operating parameters, as well as to produce a dataset that would
demonstrate the types of relationships that could be explored using the sensor. In the
following sections, we detail findings for operating parameters such as uptime, battery
usage, and data production. We conduct a preliminary exploration of the collected
acoustic index and environmental data and visualize the types of correlations that can
be found in the dataset.

3.1. Uptime

Uptime refers to how many of the scheduled measurements were taken. For the
prototype, acoustic index readings were generated from 15 minutes of audio every
30 minutes, so 100% uptime would correspond to 48 measurements per day for audio.
Environmental readings were recorded every 5 minutes, so 100% uptime implies 288
measurements per day. The uptime depends on battery charge levels and power modes;
for example, audio readings are suspended while the battery charge level is low, which
causes the uptime to drop.

Uptime was calculated from the measurement counts visualised in fig. 4. Figure 4a
shows the data organised by week to visualise seasonal changes in data collection. It
depicts the number of acoustic index (grey) and environmental (red) readings taken as
well as the average light levels (yellow, in lumens) and battery voltage (blue, in volts)
for each week. The same data is shown in fig. 4b, organised instead by hour.

Overall, BAIT had an uptime of 57% for acoustic index measurements and 88%
for environmental measurements. However, this varies widely by season and time of
day. Seasonally, there’s a large jump in uptime for acoustic index collection between
weeks 12 and 14 as average light levels increased and the battery was charged more
regularly. Small variations in the average luminosity seem to correspond to large shifts
in available power — and therefore the uptime — but this likely has to do with the
positioning of the solar panel, meaning that the position and timing of the sunlight are
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(a) Weekly grouping showing seasonal
changes. Low light levels in February and
March impeded solar charging, which inter-
rupted audio readings.
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(b) Hourly grouping showing diurnal
changes. Midday sun drove charge levels
higher which lead to increased readings in
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Figure 4.: Number of acoustic index (grey) and environmental (red) readings taken
and the average light levels (yellow, in lumens) and battery voltage (blue, in volts).
This visualises the uptime of the sensor and the main factors determining the sensor
availability.

perhaps more important than the average level. A more regular shift can be seen in the
daily cycles (fig. 4b) as midday sun charges the battery, creating a spike in readings in
the late afternoon as BAIT exits low-power mode.

3.2. Battery usage

In the lab, the power consumption of the microcontroller and sensor peripherals was
measured to be 284 mW in full-power mode and 16 mW in low-power mode. At the
3.7 V nominal voltage of BAIT’s battery, this translates to a current draw of 76.8 mA
in full-power mode and 4.3 mA in low-power mode. Given these rates and the 4400
mAh capacity of the battery, BAIT should be able to run continuously for just over 57
hours in full-power mode and a little over 1023 hours (around 42.5 days) in low-power
mode without recharging.

These values are measured under ideal, laboratory settings and should be considered
an upper bound on BAIT’s battery life. For a more detailed analysis of the battery
operation see Appendix B.

3.3. Storage

The onboard processing of sound data means that a 15-minute analysis of the
soundscape produces mere bytes of data. Over the approximately 5 months of data
collection, the sensor produced just under 15 MB of data. Though the sensor did have
periods where it didn’t record, the uptime was greater than 50%, so even at full power
for the entire recording period, the sensor wouldn’t have collected more than 30 MB
of data. That’s roughly equivalent to the size of 3 minutes of raw audio, recorded with
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standard settings. By comparison, generating the 4023 acoustic index measurements
that BAIT captured using conventional recordings would have required the collection
and processing of about 600 GB of raw audio.

3.4. Acoustic index

Of course, the primary task of the sensor is to capture acoustic index data. Over the
course of the 5-month study period, BAIT captured 4023 measurements of each ACI
and ADI. We present the collected data as it shows hourly and day-of-the-week patterns
in fig. 5 with ACI shown in blue and ADI in orange.

One observes clear diurnal patterns in the measurements of both acoustic indices in
fig. 5a. ACI exhibits a peak around midday with distinctive valleys around 3:00 and
19:00, while ADI has more of a plateau between 7:00 and 17:00. A study by Fairbrass
et al. (2017) found that while ACI is correlated to biophony, ACI and ADI are also
correlated to different types of anthrophony13. Given that, we expected to observe a
difference between weekday and weekend patterns of the measured acoustic indices,
however this is not the case in fig. 5b. The site is used during the week for teaching by
Holma Folkhögskola — though there is not a constant presence there every day — and
weekend events are sometimes hosted by a non-profit group that is associated with the
site. It is possible that the use patterns at the site are irregular enough that there was
no significant difference between human activity on weekdays and over the weekend to
shift the distribution of measurements, though this issue requires further study.

Interestingly, the shape of the plot of ADI in fig. 5a resembles the average ADI values
that Villanueva-Rivera et al. (2011) found on agricultural sites in the paper where they
first describe the metric. There, too, they recorded small peaks in the morning and
evening with relatively flat values throughout the day and night.

3.5. Environmental Data Correlation

In addition to calculating acoustic indices, BAIT also records environmental data
that can be used to understand the acoustic information that is captured. In their
introduction to the field, Pijanowski et al. (2011a) pointed out that animal behaviour
as well as soundwaves themselves are often modulated by environmental variables such
as weather and light conditions. While it may be possible to use forecasts and weather
station data to study the effects of environmental conditions on acoustic indices,
onboard sensors can give a hyperlocal view of these phenomena.

The plots in fig. 6 visualize the relationships between ACI and ADI and the measured
temperature, humidity, and luminosity. The data is displayed in a scatterplot matrix,
which is used to show pairwise relationships between the different dimensions of a
dataset. The scatterplot matrix has 3 distinct areas: the top-left area shows scatterplots
of 2 of the measured variables along with a linear regression and its r2 value; the
diagonal shows the distribution of values for a single variable using a kernel density
estimate (KDE)14; and the lower-right area shows scatterplots with contour lines

13ACI is positively correlated to the level of anthrophonic activity — defined as the area of a spectrogram
that is covered by anthrophonic sound — while ADI is negatively correlated to anthrophonic diversity which
reflects the number different types of anthrophonic sound. Notably, ACI and ADI are negatively correlated to
the presence of electronic sounds and vehicular noise, while human speech is positively correlated to ACI but
negatively correlated to ADI.
14This is similar to a histogram, but generates a continuous plot showing the density of measurements around
a particular value.
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Figure 5.: Violin plots of ACI and ADI values, organized by hour and day to highlight
diurnal and weekly patterns in the acoustic index measurements. Each violin shows
the distribution of measurements over the category using a kernel density estimation.
The violins also contain an internal box plot depicting the mean as a white dot and
the quartiles as a black box.

highlighting areas of higher density. The data points and density estimates are coloured
by month to help visualise seasonal changes in measurements.

In the top-left of fig. 6, the r2 value is the square of the correlation coefficient of
the linear regression and it indicates the level of interdependence of the 2 measured
variables. The ACI-ADI plot (1st row, 2nd column) shows that the measured acoustic
indices are relatively uncorrelated. This means that they appear to measure different
aspects of the recorded soundscape and and confirms the utility of having recording
both metrics. Most highly correlated are the 3 environmental variables, as seen in the
Temperature-Humidity, Temperature-Luminosity, and Humidity-Luminosity. Relative
humidity — which is what is actually being measured — is defined in relation to
temperature and days tend to be both warmer and brighter than nights, so these highly-
correlated relationships are expected. Interestingly, ACI seems to be more strongly
correlated to the environmental factors — especially humidity and luminosity — than
temperature.

The density estimates along the diagonal show how the measurements of a single
variable are distributed. As in a histogram, the x-axis shows the measured values and
the y-axis depicts the relative density of measurements around that value. The ADI-
ADI plot shows the distinct double-peak of the measured acoustic diversity with most
of the measurement centred near ADI values of 0.2 or 0.55. ACI measurements also
reveal a slight second peak, but it is much less pronounced that that of ADI.

The plots in the bottom-right side of fig. 6 show the density of points in bivariate
distributions using a 2-dimensional KDE to create an overlay much like a topographical
map. Darker contours outline areas of higher density, while lighter contours show more
diffuse measurements. They help to reveal the manner in which variables are correlated.
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Figure 6.: A scatterplot matrix of the measured acoustic indices and environmental
factors. The data is coloured by month to illustrate how the relationships change
seasonally. The plots along the diagonal are density plots which — like histograms —
show how each measured variable is distributed. The scatter plots above and below the
diagonal show the relationships between the x- and y-axis variables; those above the
diagonal are annotated with a linear regression while those below the diagonal show
the density of the data using contour lines to illustrate areas of increasing density.
These plots are useful as an overview of the data that has been collected. For example,
the ADI-ADI plot found along the diagonal in the second column of the second row
shows that ADI values cluster around two values — 0.2 and 0.55. The ACI-Luminosity
plot in the first row shows that there’s a relatively strong correlation between the two
measurements (compared to the other factors), which makes sense given the strong
diurnal patterns seen in the ACI plot in fig. 5a. Directly below that plot, the correlation
between ADI — which has a much flatter daytime curve in fig. 5a — and Luminosity
is shown to be quite a bit weaker.
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For example, the Temperature-ADI plot reveals an unexpected pattern. The plot shows
a deep impression in between the two peaks that are centred around temperatures of
about 15◦C and ADI values of 0.2 and 0.55. This means that ADI values are actually
most divergent at temperatures around 15◦C, while outside of that range, the ADI
measurements are more uniform.

These plots demonstrate the utility of collecting environmental data alongside
acoustic indices measurements. Patterns in the data are evident with only the
basic visualisations presented here. Further analyses could help to decorrelate the
environmental measurements from the acoustic data to better understand both
the impact of environmental conditions on acoustic index measurements and long-
term trends in biodiversity measurements conducted under varying environmental
conditions.

4. Discussion

The results in the previous section indicate how the BAIT prototype performs in the
field. But what do they mean for its potential use in future field studies? What kind
of performance can be expected in the field, what kinds of data can researchers expect
to collect, and how might BAIT be improved to address some of its drawbacks and
deficiencies and to add functionality?

4.1. Data Storage

Data storage and management are often cited as key limitations for soundscape
studies (Towsey et al. 2014; Bradfer-Lawrence et al. 2019; Righini and Pavan 2020;
Farina et al. 2021). In the field test, BAIT generated 4023 data points for each of the
acoustic indices that it measured. Each data point was based on 15 minutes of audio
which, had it been captured as raw audio using a conventional field recorder, would
have required about 600 GB of storage capacity.

In contrast, BAIT produced just 15 MB worth of data over the course of 5 months
in the field, capturing 2 acoustic indices twice-per-hour and 3 points of environmental
data at 5-minute intervals. This represents a reduction in the data output of a sensor
by a factor of 40000. At these data production rates, the size of available storage is no
longer a limiting factor in the ability of the sensor to run autonomously in the field for
an indefinite period.

4.2. Power

The next key limitation is the availability of power. Soundscape recordings are often
conducted well away from the electrical grid and so battery power becomes essential
for running recording devices. Processing data in the field does require far more power
than simply recording audio files and, as such, BAIT requires a solar panel to maintain
sufficient power to operate. This has both advantages and disadvantages. BAIT was
able to operate over a long time (the device was still running at the end of the 5-month
test period) but the uptime was intermittent, with BAIT recording environmental data
in 88% of the time-periods but acoustic indices in only 57% of the scheduled times.
The recording periods for the acoustic indices were biased towards the afternoon and
evening as the device often lost power in the morning after a night of recording drawing
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on power stored during the previous day.

4.3. Available Data

In the end, what matters most is what data is available to a researcher. The most
important benefit of BAIT — the ability to capture acoustic index data without
needing to store raw audio files — will be the most difficult for some researchers to
accept. Without access to the raw audio, they cannot re-process the audio after having
listened to the recordings, they cannot run additional analyses after the fact, and —
perhaps most importantly for some — they will be unable to listen to the soundscape
and interpret the recordings themselves (Righini and Pavan 2020; Farina et al. 2021).
It is important to not discount what is learned qualitatively about a field site through
the active listening of someone with a well-tuned ear for the details of a soundscape15.

That said, something is gained as well here. The automation of the process of
generating acoustic indices saves computing time and effort, but also minimizes the
opportunity for human data processing errors. In their 2018 paper on sources of errors
in scientific studies, Brown et al. identify errors of data management as one of four
major types of study error. In automating a large part of the initial data analysis,
BAIT minimizes the risk of introducing errors between the capture of audio data
and the calculation of acoustic indices. It means that different recordings will not, for
example, accidentally be processed by different implementations of an acoustic index
algorithm16 or using different parameters and settings.

In addition, the recording of synchronized environmental data has the potential
to add new explanatory power to acoustic index measurements. Pijanowski et al.
(2011a) describe the impact of what they call atmospheric dynamics on the composition
of the soundscape. These conditions can have direct impacts on the measured
soundscape, such as when wind and rain produce sound, but they also have indirect
impacts. Animals often modulate their sound production in response to environmental
factors (Pijanowski et al. 2011a) — think of cricket chirp rates responding to changes
in temperature — and the actual propagation of sound also depends in part on
atmospheric conditions (Ingård 1953) Pijanowski et al. (2011b) set the improvement
of understanding of the relationship between environmental conditions and sound as
one of six major themes in the field of soundscape ecology and the availability of a
tool that records these conditions alongside soundscape data could prove to be an
important step toward that goal.

4.4. Use Case

A number of recent studies have used acoustic indices — and ADI or ACI in particular
— to investigate ecological questions and might have benefited from the use of a tool
like BAIT (Farina et al. 2013; Farina and Pieretti 2014; Towsey et al. 2014; Bradfer-
Lawrence et al. 2019; Righini and Pavan 2020; Farina et al. 2021). Some additional
studies have employed the SET, which provides some of the same benefits as does
BAIT (Farina et al. 2016; Farina and Salutari 2016; Farina 2019; Benocci et al. 2020).

To better understand the use cases for BAIT, it is useful to examine in detail a
single study that used conventional recording methods to understand how it would be

15One possible way to mitigate this by conducting a type of mixed-mode recording is discussed in section 4.5.5
16The R packages seewave and soundecology produce different ACI values, see https://cran.r-project.org/web/
packages/soundecology/vignettes/ACIandSeewave.html
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Table 2.: Common acoustic indices and their status in BAIT

Index Source BAIT Status

Acoustic Complexity Index (ACI) Pieretti et al. (2011) workinga

Acoustic Diversity Index (ADI) Villanueva-Rivera et al. (2011) workinga

Bioacoustic Index (BI) Boelman et al. (2007) easily implementedb

Acoustic Evenness Index (AEI) Villanueva-Rivera et al. (2011) easily implementedb

BIOPHONY Righini and Pavan (2020) easily implementedb

Acoustic Entropy Index (H) Sueur et al. (2008b) not implementedc

Spectral Entropy (Hf )d Sueur et al. (2008b) easily implementedb

Normalised Difference Soundscape Index (NDSI) Kasten et al. (2012) not implementedc

afully implemented and tested in the prototype
bnot in the prototype but can be calculated using the same process as working acoustic indices
cnot implemented, requires new processes not used in the prototype
dSpectral Entropy (Hf ) is actually one half of the calculation of the Acoustic Entropy Index, which is the sum
of the spectral and temporal entropies of a signal.

changed by the introduction of BAIT. Righini and Pavan (2020) set out to characterize
the soundscape of a nature reserve and compare the soundscape inside and outside the
reserve using the recordings from three field sites. They used a Song Meter 3 field
recorder to capture 45600 minutes (488.30 GB) of recorded audio, recording the first
10 minutes of every 30-minute period over the course of a month.

The study included qualitative and quantitative analysis, listening to recordings and
viewing their spectrograms as well as calculating a set of seven acoustic indices. The
study found significant differences between daytime and nighttime activity for all three
sites as well as differences between the two sites within the reserve and the site outside
the reserve. In addition to an analysis of the full dataset, Righini and Pavan also
performed some manual filtering of the data. They listened to all of the recorded data
and excluded files that featured heavy wind or rain and then compared the resulting
indices to those calculated with the full dataset.

How would the study have been different if the authors had been able to use the
BioAcoustic Index Tool in place of the SM3 Field Recorders? The data collection
would have been similar, though they would have had the ability to leave the sensors
in the field for far longer, no longer having to worry about data storage and processing
capabilities17. Much of the quantitative analysis would also remain the same; of the
seven acoustic indices that are calculated, two are already implemented on BAIT and
three others can be easily added to the system (see table 2 for details). Two others —
Acoustic Entropy Index (H) and Normalised Difference Soundscape Index (NDSI) —
would require additional programming to implement on BAIT as they do not use the
same underlying processes already employed by the ACI and ADI calculations. The
qualitative analysis, on the other hand, would not be possible in the same manner.
BAIT does not currently record audio or spectrograms — though it is possible to do
so (see section 4.5.5) — so the researchers would be unable to listen to recordings and
observe spectrograms in the way that they did in the study.

However, BAIT would come with one important additional benefit. Righini and
Pavan write that there are unaccounted for differences between the three sites during
the daytime that probably depend on environmental factors. ‘These results indicate

17In prototype testing, BAIT did not always have enough power to sample at every scheduled point, but this
could be mitigated using a larger solar panel and battery and the lighter recording schedule of this study —
10 minutes every half hour as opposed to 15 in the BAIT test.
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the need to have more information of environmental parameters at very local levels
and thus the need to add at least light, temperature, humidity and wind sensors to
acoustic recorders.’ (Righini and Pavan 2020) BAIT performs precisely this function,
measuring light, temperature, and humidity on the sensor alongside the acoustic index
data.

4.5. Future Developments

Even in its current form as a first prototype and proof-of-concept, BAIT can produce
interesting datasets over a long period of time in the field. However, there are a range
of improvements that should be undertaken to enhance current performance and add
functionality.

4.5.1. Power

The power system is the most obvious candidate for some improvements. The easiest
way to improve the uptime for the sensor would be to simply increase the size of the
battery and the solar panel. A larger battery would allow the system to store more
energy during sunny times to help eliminate the dip in recordings during the early
morning hours and a larger panel could take better advantage of the available solar
energy to capture more energy when it is available.

The power modes could also be adjusted for more effective operation. The system
could be adjusted to prioritize certain times of the day — for example, dawn and dusk
when there is often increased acoustic activity. Or it could be programmed to ensure
that there is roughly even sampling of all of the times of the day so that less sampling
is done during the evening when the battery is often more fully charged to save power
for morning samples.

A third power mode could also be introduced that would capture but not process
audio. The processing is particularly power-intensive, so when battery levels are lower
or there is little sun, BAIT could capture audio, but wait to process it until reserve
solar power is available and then delete the raw audio files to regain the storage space.

Additionally, there is some indication that BAIT was sampling more than necessary
in the field trial. Pieretti et al. (2015) suggest that capturing audio for one of every five
minutes is sufficient to accurately characterize a soundscape using ACI. Therefore it
is possible to change the sensor scheduling to lower the amount and duration of audio
capture and index computation, which would further extend the battery life of the
sensor.

A combination of these approaches could increase the uptime for soundscape
recording and improve the quality and distribution of data that is collected without
intensive hardware revisions. However, on the electronic hardware side, an improved
battery management system that could track current draw and power usage would
be a boon to the system’s ability to self-regulate and switch between power modes.
This kind of improvement should be high on the list of priorities for the next major
hardware revision.

4.5.2. Wireless

There’s a benefit to the reduction of data that BAIT produces that has been alluded to,
but not discussed in full. With the daily data production in kilobytes (KB), it becomes
more feasible — both in terms of power requirements and cost of transmission —
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to send data from remote locations back to a lab as it is being collected. Wireless
transmission can be expensive both in terms of power requirements and the price of
bandwidth in remote areas, so minimizing the data to be transferred is essential.

Existing acoustic monitoring systems such as Echo Box and the SAFE
Acoustics monitoring network have used popular consumer wireless communications
infrastructure such as WiFi and cellular networks (Balestrini et al. 2020; Sethi et al.
2020). However, remote areas where these types of devices are often deployed sometimes
lack the required cellular and WiFi infrastructure. In these circumstances, it becomes
necessary to transmit data by longer-range modes of communication. In practice, this
would likely mean linking individual sensors by a mesh network to a common base
station with a satellite or landline Internet connection. IoT wireless technologies like
LoRaWAN (Vangelista et al. 2015; Margelis et al. 2015) or ZigBee (Safaric and Malaric
2006) could play this role; both are low-power mesh networking technologies designed
for embedded systems.

Wireless signalling would draw some battery power, but the BioAcoustic Index Tool
could collect data until it is charged to its highest power level before sending a burst
of collected data back to the lab through its wireless networking system. This feature
would help to make the device fully autonomous and able to operate basically without
service at all, barring equipment failures. The same connection could be used to send
device status updates and even potentially to adjust sampling schedules and parameters
based on data observed back in the lab.

This would allow BAIT to operate as part of a large-scale, long-term, fully
autonomous network of hundreds or thousands of acoustic biodiversity monitoring
sensors. The ability to leave a sensor in the field indefinitely and to collect data remotely
could enable entirely new types of long-term tracking studies.

4.5.3. Additional indices

For the prototype, we calculated two indices: ADI and ADI. They were chosen
for their importance in the field and their relative ease of calculation. However,
several other acoustic indices use similarly structured computations that would not
be difficult to implement on BAIT using the structure that we have developed.
These include Bioacoustic Index (BI) (Boelman et al. 2007), Acoustic Evenness Index
(AEI) (Villanueva-Rivera et al. 2011), and BIOPHONY (Righini and Pavan 2020), as
well as spectral entropy (Toh et al. 2005). These indices are some of the key components
of the soundecology (Villanueva-Rivera and Pijanowski 2018) and seewave (Sueur
et al. 2008a) R packages that are commonly used in soundscape ecology studies.

Because the code for BAIT is open-source, anyone can modify the firmware that
performs these calculations and it is possible to add new indices as they are defined in
the literature.

4.5.4. Environmental sensors

For the prototype, temperature, humidity, and light level sensors were chosen for
inclusion in BAIT because the sensors are readily available and provide a good
overview of the environmental conditions at a particular location. But there are many
other sensors that are available for more detailed detection of particular parameters,
depending on the needs of a particular research project.

An anemometer could be a particularly useful addition to the toolkit as wind can
be a significant factor in some of the acoustic index calculations (Righini and Pavan
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2020). A soil moisture or rainwater sensor could provide additional details about the
hydraulic conditions at a site, and as rain is another significant source of geophonic
sound that can affect calculations.

Those represent the most obvious additions to BAIT’s sensor toolkit, but one could
imagine how the addition of more specialized sensors like geophones for detecting
seismic events and air quality sensors for detecting vehicular emissions and forest fires
might prove useful for particular studies. It would be impossible — and probably
unhelpful — to exhaustively list all of the sensors that one could attach to BAIT, but
the point here is to note that the system is extendible and can be modified to the
specific sensory needs of a study.

4.5.5. Mixed-mode data collection

One of the most significant drawbacks of BAIT is that it saves no raw audio. This is a
purposeful feature of the system, but it also means that there is nothing for researchers
to listen to for a more experiential or qualitative impression of their field site. While
this type of knowledge is seldom referred to specifically in written research, listening
to the soundscape can give the researcher context and a connection the site that the
raw acoustic index data cannot provide on its own. For some, this is a crucial part of
their work (Righini and Pavan 2020).

Though the prototype is set up this way, there is no reason that saving raw audio has
to be an all-or-nothing proposal. It is possible to save particular samples of audio to
the storage medium or even to record all possible audio and delete samples selectively
to free up space as necessary. Intermediate calculations such as the raw FFT data — or
FFTs averaged over time — could be stored to generate spectrograms upon collection.
The system could be programmed to retain data for anomalous events that produce
extreme acoustic index or environmental data to later diagnose the causes and impacts
of these events.

These strategies could help to alleviate researcher concerns about the quality of
data collected and can be used to perform confidence checks to confirm the accuracy
of calculations. They can be used as data samples that can be examined in detail and
used to illustrate the processes used for acoustic index calculations.

4.5.6. Embedded smart sensors

This section has so far focused on future improvements to BAIT specifically, but it
is prudent to note the potential of smart sensors in general to enable new types of
acoustic and ecological research. The practice of moving processing power to peripheral
sensors is part of a broader trend in computing called edge computing (Shi et al.
2016). As microcontrollers have gotten smaller, more efficient, more powerful, and
more accessible, it has become increasingly possible to perform complex computation
in embedded contexts.

These shifts are occurring rapidly. A 2018 study detailed a multilevel frog detection
system that performed initial data analysis on an embedded device, followed by further
analysis on a cloud server (Roe et al. 2018). Only two years later, a paper proposed
running a full deep learning neural network classifier designed to detect bird calls right
on the sensor (Sturley and Matalonga 2020) and Balestrini et al. (2020) have produced
a network of sensors with an embedded deep learning-based bat detector and classifier.
These solutions use embedded computers (the Raspberry Pi and Intel Edison), but it
is actually possible to run some neural networks on microcontrollers that use a fraction
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of the power of even these lightweight systems (Falbo et al. 2020).
As these trends continue, it should be possible to perform more accurate species and

event detection as well as advanced index calculation on-site. These changes will open
new opportunities for acoustic population and biodiversity surveys as well as long-term
monitoring of ecosystems.

4.6. Conclusion

The BioAcoustic Index Tool is a shift from the conventional field audio recorder and
is unlikely to replace them where researchers are interested in performing in-depth
analysis of a particular soundscape. However, it would be a boon to a project interested
in the calculation of acoustic indices over a broad spatial and temporal field. The
ability to generate acoustic index data at a large number of sample points over a
long study time could enable new kinds of soundscape surveys that track patterns
over months, years, and decades. The inclusion of synchronized environmental data
gives researchers the tools for better understanding of how environmental conditions
modulate the soundscape and impact measured acoustic indices. And the use of an
open platform for BAIT enables researchers to extend the platform with new sensors
and calculations as needed.

A tool like BAIT makes it possible to envision the creation of permanent acoustic
biodiversity monitoring networks featuring tens, hundreds, and even thousands of
sensors spread across a landscape. With wireless connections, these networks could
generate a high-resolution overview of shifting biodiversity levels. It would be possible
to measure seasonal and annual changes in biodiversity and better understand how
environmental factors contribute to acoustic measurements of biodiversity as well as
changes in biodiversity itself. The fully-automated pipeline that produces acoustic
index data at the sensor would allow ecologists to focus on the interpretation of the
acoustic index data instead of the process of its collection and computation.

The approach is indicative of a coming shift in the collection, processing, and analysis
of acoustic data and soundscape recordings. BAIT and future sensors like it have
the potential to move the first level of ecological data processing from the lab to
the field and, in doing so, easing the process of collecting and analyzing data about
soundscapes.
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Appendix A Design

The design of the BioAcoustic Index Tool is described in section 2.1, however specific
implementation details are important for the reproduction of BAIT. Here, the specific
electronic components, algorithms, and programming strategies are detailed to make
it possible to build and extend BAIT for future studies.

A.1. Electronics

The BAIT design is based around the Teensy 3.6, which features an ARM Cortex
M4 processor. The processor includes a floating point unit (FPU), which allows it to
perform calculations with floating point numbers in a relatively efficient and accurate
manner. The remainder of BAIT is divided into a power management system and a
sensor system.

The primary sensor is the microphone, an Integrated Inter-IC Sound Bus (I2S)
microelectromechanical systems (MEMS) chip-based microphone that mounts directly
onto a PCB. The microphone chip captures sound with a flat response curve in the 100
Hz to 10 kHz range and digitizes it before sending it forward to the microcontroller
over an I2S bus. The SPH0645 was selected for its cost-effectiveness and the ease of
connecting it to the system given the pre-digitized signal that it produces, however,
its linear response range of 100-10k Hz might be a limiting factor to others interested
in using the tool. Fortunately, it is possible to replace this device with an external
microphone for sample collection, if a different frequency response is desired.

In addition to the microphone, the BAIT features a set of environmental sensors that
can gather data that can help to provide context to the bioacoustic indices and result
in a deeper understanding of the patterns of biodiversity (Pijanowski et al. 2011a). Two
sensors are engaged in this environmental data collection and they capture light levels,
ambient temperature and relative humidity. The Si7021 from Silicon Labs measures
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both ambient temperature and relative humidity and gives digital readings in degrees
Celsius and percentage. The TSL2561 measures the intensity of the ambient light in
lux.

A full list of the electronic components used in the prototype and their cost is
available in table 3.

A.2. Firmware

The firmware for BAIT is written using the Arduino platform as well as libraries from
Adafruit18 and PJRC19. It is modularly structured so that it is easy to add in the
calculation of new bioacoustic and environmental measurements. It also incorporates
two different power modes to enable proper charging of the batteries, while maintaining
the collection of bioacoustic and environmental data as consistently as possible.

The major contribution of the BAIT firmware is the translation of the algorithms
for the calculation of two bioacoustic indices into C++ and their transformation from
offline post-processing algorithms into code that runs efficiently online and in real-
time. The ACI and ADI were implemented in this way and each required different
modifications.

The full firmware is available on GitHub at github.com/dkadish/BioAcousticIndexTool.

A.2.1. ADI calculation

Defined in (Villanueva-Rivera et al. 2011), the ADI operates between 0-10 kHz and
calculates the Shannon entropy of the sound by dividing the frequency spectrum into
10 equal 1-kHz bands and applying Equation 1, where pi is the proportion of sound in
frequency band i.

H ′ = −
S∑

i=1

pi ln pi (1)

Note that this proportion pi is understood as the proportion of FFT bins within the
frequency band i that are above a defined threshold. What results is a measure of the
diversity of the soundscape in terms of how the sounds are spread across the frequency
spectrum over the period of measurement.

In the R implementation, this calculation is performed on a whole recording at once.
It calculates a spectrogram for the entire file and then collects the overall level in each
band for use in calculating diversity. The BAIT does not have the luxury of a complete
sound file, so it instead collects a running sum of the power in each frequency bin along
with a count of how many samples it has seen. pi is tracked frame-by-frame, calculating
a running sum of the number of bins with values above the threshold (Pi) and tracking
the number of frames seen (N). When the ADI value is calculated for a length of time,
Equation 2 is applied to avoid accumulating floating point errors.

pi =

(
N∑
i=0

Pi

)
/N (2)

18adafruit.com
19pjrc.com, the manufacturer of the Teensy
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Now, Equation 1 can be applied as in the original implementation and the ADI can
be calculated for a longer span of time, emulating the way that a whole sound file is
processed.

A.2.2. ACI Calculation

The transformation of the ACI calculation is somewhat more complex. Described in
detail in Pieretti et al. (2011), the ACI represents the amount of variation of intensity of
sound within frequency bands over the course of a recording fragment. It relies on the
assumption that anthropogenic noises — for example, the droning of an aeroplane
engine or the buzz of a factory — are often spectrally constrained and relatively
constant, so it attempts to detect sounds that vary from moment-to-moment.

Over the course of a user-defined temporal step (j)20, the difference in intensities
from between samples (dk) at a particular frequency bin (∆fl) is calculated as

dk = |Ik − Ik+1| (3)

These differences are summed over the entire temporal window and divided by the total
observed acoustic intensity over that period as in Equation 4, resulting in a measure
of the ACI for a particular frequency bin and temporal step (ACIj,l).

ACIj,l =
∑n−1

k=1 dk∑n
k=1 Ik

(4)

These measurements are added up for all q frequency bins and all m temporal steps
in a recording to determine the total ACI for the audio clip as

ACItot =

q∑
l=1

m∑
j=1

ACIj,l (5)

To perform this calculation efficiently, BAIT retains a running tabulation of the
total ACI (ACItot), the sum of the difference between samples in the same frequency
bin (D), the total acoustic intensity in the same frequency bin (I). It also stores the
previous intensity measurement for each band (Ik−1) so that the difference (dk−1) can
be calculated. At the end of each temporal window, these values can be reset except
for ACItot, which is retained and saved to a file at the end of the recording period.

The conversion of these scripts from post-processing calculations to ones that can
be performed on streaming data saves a great deal of data and enables the processing
of sound on the microcontroller without taxing its memory resources.

A.2.3. Power Modes

The BAIT has two power modes that are switched between automatically as the
system’s battery charges and discharges. The main power mode measures acoustic and
atmospheric data and is active when the battery is charged over 3.7V, as measured by
an onboard voltage divider. In this mode, audio is captured and realtime calculations
are done to log ACI and ADI.

20These are also referred to as clumps in (Farina et al. 2016). BAIT defaults to 30s.
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Table 3.: Parts list and prices for the prototype of BAIT

Part Price (USD)

Solar Charger v2 17.50
PowerBoost 500 9.95
4400 mAh Li-Ion Battery 19.95
Si7021 Temperature and Humidity Sensor 8.95
TSL2561 Light Sensor 5.95
I2S MEMS Microphone 6.95
Teensy 3.6 29.95
Solar Panel (2W) 29.00
22k Ohm resistor 0.75
SD Card (16 GB) 9.95
Coin cell mount 0.95
Coin cell battery 0.95
On/Off Switch 0.95

Total* 141.75

*Total cost for the purchased breakout boards and compo-
nents. Does not include the cost of the 3D printed enclosure,
breadboards, and consumable parts such as screws, wire, etc.

These calculations, however, are quite power-intensive and inhibit the charging of the
battery when they are engaged. To maintain data logs, but allow the battery to charge
when it is low, a low power mode is engaged below the threshold of 3.7V, in which
the BAIT records only environmental data and turns the acoustic systems off to save
energy. Since the atmospheric measurements are intermittent, the microcontroller can
sleep in between measurement cycles, drastically reducing the power requirements21.

The sleep cycle is also modulated by the measurement process. ACI and ADI are
calculated in 15-minutes segments on the BAIT22. If low-power mode were to engage
during the middle of a 15-minute measurement cycle, all data gathered before the
invocation of low-power mode would be wasted. To avoid this pattern, BAIT inhibits
the application of low-power mode during acoustic index calculation. After the cycle
has completed and useful data are collected, then the BAIT is allowed to sleep for a
cycle.

A.3. Enclosure

The enclosure is 3D printed from polylactic acid (PLA) on an Ultimaker 2 printer.
It features a detachable sensor panel with cut-outs for the 3 sensors, a port for
power delivery, and an external power switch. The case has mount points for a
3D-printed solar panel mount and hanging system to suspend it from a tree in
the study environment. Internally, the enclosure has mount points for the power
management PCBs and a cradle for the battery pack that powers the system. All
of the screw points are augmented with metal heat-set inserts to strengthen the
screw points. Designs were done using Autodesk’s Fusion 360 software and sliced on
Ultimaker’s CURA. Design files are available in the project’s GitHub repository at
github.com/dkadish/BioAcousticIndexTool.

21As opposed to the acoustic measurements which require continuous, intensive calculations.
22Emulating 15-minute recordings of soundscapes.
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(a) Low-power mode voltage drop. The trend
line shows a drop of 0.02 mV/min (1.5
mV/hour) in low-power mode.
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(b) Mixed-power mode voltage drop. The
trend line shows a drop of 0.20 mV/min (12.3
mV/hour) in mixed-power mode.

Figure 7.: Voltage drop under different power modes when there is no sunlight charging
the batteries via the solar panel.

Appendix B Battery Life

Section 3.2 describes a laboratory-based analysis that establishes the upper bound on
the battery life of BAIT without recharging using the solar panel. However, there are
serious limitations to these calculations. The battery capacity is negatively impacted
by both high and low temperatures, so the capacity in field situations is likely to be
less than 4400 mAh. These measurements also exclude the voltage boost electronics
used to convert the 3.7 V supply from the battery to the 5 V supply expected by the
Teensy 3.6. The boost electronics operate at 90% efficiency23, meaning some power is
lost in the conversion. As such, these numbers should be treated as an upper limit on
the possible performance of the battery.

To establish more realistic operating parameters, it was necessary to gather data in
the field. This presented another challenge as the prototype cannot directly measure
power consumption. The battery voltage measurements used for switching between
power modes can reveal something about the battery’s state. However, it is important
to note that the discharge profile of the lithium-ion battery pack is highly nonlinear so
these analyses can also only provide an estimate of the power consumption of BAIT.

Voltage change in the two power modes was estimated by analysing the drop in
voltage during times when the luminosity was near-zero and therefore the system was
not being charged by the sun. In mixed-power mode, where audio is being captured
and processed, the battery voltage was falling at a rate of about 12.3 mV/hour. In
contrast, in low-power mode, the battery voltage was falling at a little over a tenth of
that, 1.5 mV/hour. The data behind this calculation is shown in fig. 7.

The battery can be charged to 4.2V and mixed-power mode is engaged until it
reaches 3.7V, so without any solar charging, the sensor can read and process audio for
at least 40 hours24. It is also possible to increase the operational time by switching
to a larger solar panel or battery. A larger capacity battery would allow the sensor to
store more power when the sun is shining to increase the time that it could run without
charging. And a larger panel could collect more energy from the available light in order
to charge the battery faster and more often.

23Product specification and datasheet available at https://www.adafruit.com/product/1903
24Again, this is approximate as the discharge curve for lithium-ion batteries is non-linear.
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Appendix C ACI Algorithm Verification

The ACI algorithm has a number of different implementations that produce slightly
different results. The implementations in the R packages seewave (Sueur et al.
2008a) and soundecology (Villanueva-Rivera and Pijanowski 2018) have differences
in their outputs, which are documented in the notes for the soundecology package
at https://cran.r-project.org/web/packages/soundecology/vignettes/ACIandSeewave.html.
There, Villanueva-Rivera attributes the differences to slight variations in the
implementation of the clumping argument, j.

Here, the implementation in BAIT is compared to the soundecology implementation
to verify the accuracy of the approach to calculating ACI as a running sum. The test
is conducted using audio recordings that were used in a comparison of the ACI results
from soundecology and another implementation of the ACI algorithm, a plugin for the
WaveSurfer software called SoundscapeMeter.1.0.14.05.2012 (Villanueva-Rivera 2015).
The recordings were resampled to 44.1 kHz (originally 48 kHz) to meet the requirements
for the code to play WAV files from an SD card in the Teensy Audio Library.

The material — including code, audio, and data files — used for these tests is
available on figshare at http://dx.doi.org/10.6084/m9.figshare.14445348.

C.1. FFT

The spectrograms produced by the microcontroller in BAIT and the spectro function
of the seewave package25 are slightly different. This is shown in detail in fig. 8, which
plots the two spectrograms along with the differences between the two, once the values
are normalized26. This means that for the same audio, BAIT will inevitably produce
a different result from soundecology (and therefore other implementations as well).
For this reason, caution should be used when comparing ACI results computed using
different methods.

C.2. ACI Computation

To bypass the difference in FFT implementations and verify the remainder of the
algorithm, we used a modified version of the acoustic_complexity function from
soundecology which calculates ACI from FFT values saved in a CSV file instead of
from a raw audio file27. To generate the CSV file, BAIT runs test code28 that computes
the ACI of a sound file while recording the FFT values to its SD card as they are
computed.

Here, a second discrepancy between the two implementations is clear in the clumping
procedure — the same site as the difference between the soundecology and seewave
versions of the algorithm. The soundecology implementation of ACI calculates a

25This is used to produce an FFT representation of the sound for analysis in the soundecology package.
26Note that the BAIT spectrogram shown here has a change from the implementation used in the BAIT
prototype field experiment. The default setting for the microcontroller’s FFT library averages together 8
readings to produce a single temporal value for each frequency. This went unnoticed prior to the field
experiment, so the data in the testing of the prototype used this setting. This has been corrected in the latest
version of the code (version 0.2 on Github at https://github.com/dkadish/BioAcousticIndexTool/releases/tag/0.2)
so that no averaging of the FFT readings is done.
27The R notebook containing that test code is available on figshare at http://dx.doi.org/10.6084/m9.figshare.
14445348.
28The code that generates the CSV is available at https://github.com/dkadish/BioAcousticIndexTool/blob/0.2/
firmware/bait/src/test_save_spectro.cpp.
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Figure 8.: Spectrograms of the lower frequencies from the first portion of 6.wav. The
top image is the spectrogram generated by BAIT, the middle image is the spectrogram
generated using seewave, and the final image is the difference between the two
(normalized) spectrograms.

variable called I_per_j at the beginning of its computation, which is the number
of temporal frames per cluster. This fixed variable is calculated as the integer (floor)
of j, the number of clumps divided by ∆tk, the time per frame. Each clump, then, is
calculated from a fixed number of FFT readings.

BAIT, however, operates in real-time and therefore does not have the ability to look
back over a fixed sound file and determine a static number of bins per clump. The
number of FFT readings per clump is controlled by the timing of the microcontroller.
If the clump time is set for 5 seconds, the clump rolls over once 5 seconds have passed.
This leads to slight variations in the clump size if the FFT frame rate does not divide
evenly into the clump time.

To account for this, the test code on BAIT also records the ACIj value for
each cluster j as well as the number of FFT readings processed at the end of the
frame. That number of FFT readings is then used in the modified version of the
acoustic_complexity function from soundecology so that its clumps are calculated
on the same number of frames. This allows for a direct comparison between the ACI
calculations of BAIT and the soundecology package.

Figure 9 shows the total ACI value for each clump (ACIJ) calculated by BAIT
and the modified acoustic_complexity function from the soundecology package.
The slight discrepancy in each value is caused by floating-point calculation errors. The
FFT values from the microcontroller are saved to CSV with a 6-digit decimal precision,
which leads to rounding errors when those numbers are imported into R. Additionally,
the microcontroller computes floating point numbers at single (32-bit) precision, while
R uses double (64-bit) precision leading to further minor differences in the results.

However, it is clear from the plot in fig. 9 that the algorithm implemented on the
microcontroller in BAIT is the same as the one implemented in soundecology. The
total ACI values that are calculated using that process — 598.18 from soundecology
and 597.61 from BAIT — differ only by rounding errors within the calculation.
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Figure 10.: ACI totals from each of the 50 test files in the first set of test data at
https://doi.org/10.6084/m9.figshare.1036395.v1.

C.3. Comparability

Though the cluster-by-cluster computation is the similar, implementation differences
between the real-time ACI computation on BAIT and the file-based computation on a
computer will produce different results for the same sound. Therefore, it is inadvisable
to directly compare ACI results obtained with BAIT with those obtained by recording
sound and computing the ACI using implementations in R.

An examination of the waveforms of selected audio files reveals a pattern. Figure 11
shows 3 files where the ACI values computed using BAIT and the soundecology R
package were similar and 3 where there were large differences in the values. From
this sample, it appears that similar results were produced for sounds with higher
amplitudes.

This can be shown formally. The median of the amplitude envelope (M) is a measure
of the amplitude of a sound over an entire recording. The Shapiro-Wilk test shows the
distributions of the difference between calculated ACI values and the median of the
amplitude envelopes to not be normally distributed (p = 8.2e − 3 and p = 2.4e − 3
respectively), so correlation is tested using Spearman’s rank-order correlation. The test
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Figure 11.: Waveforms of a selection of the audio files from fig. 10. The ACI values
for the audio files in the top row were similar when calculated with BAIT and the
soundecology R package, while those in the lower row differed more significantly.

shows a strong negative correlation (ρ = −0.95, P = 2.2e−16), meaning that the larger
difference in computed ACI values occurs in conjunction with quieter sounds.

This can likely be attributed to difference in precision discussed in section C.2.
Quieter sounds — those with lower median amplitudes — produce smaller values in
an FFT. These smaller signals amplify the precision errors that arise due to the 16-
bit operation of the microcontroller, leading to greater differences in the final ACI
calculation.

Appendix D FFT Filtering

Farina et al. (2016) introduce two modifications to the original ACI algorithm. They
discuss the presence of artifacts in the FFT caused by microphone noise, analog-to-
digital converter (ADC) errors, and introduced electronic noise and how these artifacts
can cause inaccurate measurements of acoustic complexity.

The first modification is the addition of fixed-value threshold to eliminate spurious
pulses from the FFT matrix. Any FFT values below the threshold are discarded and
replaced with 0 in the FFT.

A second modification then eliminates these erroneous values from the overall ACI
calculation. In the calculation of dk (eq. (3)), the absolute difference between adjacent
values in the FFT matrix, the calculation is treated as 0 if either of the values is 0.
The modified version of eq. (3) is shown in eq. (6).

dk =

{
0 if Ik = 0 or Ik+1 = 0

|Ik − Ik+1| else
(6)

This modified version of the ACI is used in the latest version of SoundscapeMeter
(2.0). The option to perform this type of filtering has also been added to the latest
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version of the BAIT firmware, found at github.com/dkadish/BioAcousticIndexTool, for
compatibility. It is enabled by setting the doFilter and doDiscardAdjacentZeros
flags to true when instantiating the ACI_TemporalWindow class in the main function.
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Abstract

Artificial life simulations are an important tool in the study
of ecological phenomena that can be difficult to examine
directly in natural environments. Recent work has established
the soundscape as an ecologically important resource and
it has been proposed that the differentiation of animal
vocalizations within a soundscape is driven by the imperative
of intraspecies communication. The experiments in this
paper test that hypothesis in a simulated soundscape in
order to verify the feasibility of intraspecies communication
as a driver of acoustic niche differentiation. The impact
of intraspecies communication is found to be a significant
factor in the division of a soundscape’s frequency spectrum
when compared to simulations where the need to identify
signals from conspecifics does not drive the evolution
of signalling. The method of simulating the effects of
interspecies interactions on the soundscape is positioned as
a tool for developing artificial life agents that can inhabit and
interact with physical ecosystems and soundscapes.

Introduction
Artificial life experiments have become important tools
for exploring biological phenomena. In particular, they
have allowed researchers to study the relationships between
evolutionary processes and ecological theories (Aguilar
et al., 2014), like the emergence of interspecies relationships
like mutualism and parasitism (Watson et al., 2000).

One area of ecology that has received little attention thus
far from artificial life (ALife) studies is soundscape ecology.
The field of soundscape ecology has been formalized by
researchers over the past decade (Pijanowski et al., 2011a),
building on earlier conceptions of the soundscape (Schafer,
1977). One of its foundational theories is the acoustic
niche hypothesis (ANH) (Krause, 1987), which applies the
concept of ecological niches — the distribution of resources
that are used by a species in an ecosystem (Pocheville, 2015)
— to the soundscape.

The manuscript is slightly amended from the published version
to correct an error in Figure 3a. The figure in the published version
plots the messages from a different run of the simulation than the
one shown in Figure 3b. This in no way changes the results of the
study.

This experiment tests the proposed mechanisms for the
formation of these niches in a virtual soundscape in order
to understand how species change vocalizations in response
to one another. It models the behaviour of two species in a
virtual ecosystem and tracks how their calls shift through
the audio spectrum in response to different evolutionary
pressures. Through the experiment, evolutionary pressure to
communicate within a species is found to play a significant
role in the formation of acoustic niches.

In examining the emergence of communication between
artificially evolved species, this study draws from a
body (Arita and Koyama, 1998; Wagner, 2000; Sasahara and
Ikegami, 2007) of ALife-based studies of communication
including the work of Floreano et al. (2007) in emergent
communication between robotic agents. However, it is
distinct from these previous studies in its focus on the
effect of the emergent communication on the ecological
phenomena of niche differentiation.

The main contributions of this study are the development
of a simplified model of a soundscape for the purpose of
rapid experimentation and in-depth analysis of population-
soundscape dynamics, and the demonstration of the ANH
on this model.

Background
In the physical world, the concept of soundscape —
the collection of the acoustic features of a landscape —
has roots and influences in a diverse array of academic
fields (Lyonblum, 2017). It grew initially out of the arts
and cultural studies work of Westerkamp (1974), Schafer
(1977), and Truax (1978), but has since expanded into
the sciences. In the field of ecology, the soundscape
is considered an important ecological resource and its
composition is thought to indicate the diversity and stability
of the ecosystem (Pijanowski et al., 2011b). Though the
field of soundscape ecology was only proposed relatively
recently (Pijanowski et al., 2011b), the application of
ecological principles to the study of soundscape has a longer
history. Notably, the concept of ecological niches was
first introduced in the context of sonic resources by Krause



(1987) as the acoustic niche hypothesis.

Acoustic niche hypothesis (ANH)

The acoustic niche hypothesis expands the concept of
ecological niches to the spectro-temporal plane of the
soundscape. Krause proposed that, in the same way that
niche differentiation leads to species making use of the range
of physical resources available in an ecosystem, species tend
to differentiate their use of an ecosystem’s sonic resources.
This differentiation, according to Krause, occurs spectrally
in the sonic frequencies that animals use for vocalization
and temporally in the time-based patterns of their sounds.
The theory holds that older, more mature ecosystems should
show a greater degree of differentiation between the auditory
niches that long-established species occupy.

The ANH describes the result of acoustic differentiation,
but Endler (1992) proposed the primary mechanism for this
evolutionary driver: sexual selection based on a mate’s
ability to hear a call and the ability to maintain territory.
In this formulation, vocalizations and auditory receptors
have co-evolved to maximize the reception of signals
from members of ones own species (conspecifics), while
minimizing interference from members of other species
(heterospecifics).

This type of spectral differentiation has been observed
numerous times in the wild: in the calls of certain
species of frogs (Feng and Schul, 2007); in the buzzing
of cicadas (Sueur, 2002); and in the overall division of a
soundscape in Borneo between a series of birds, gibbons,
and accompanying insects (Krause, 2008). However, it has
proved difficult to experimentally probe the formation and
division of spectral niches, due to the lengthy timescales
that would be required to allow evolutionary processes
to progress (Miller, 1995) and the complexity of the
systems and soundscapes that are encountered “in the
wild” (Wheeler et al., 2002).

ALife approaches

Where ecological phenomena have been difficult to
experimentally investigate, researchers have proposed that
ALife approaches can be a mode of inquiry that allows
for the manipulation of particular conditions and the rapid
collection of large quantities of data about a simulated
ecological system (Miller, 1995). In 2018, Eldridge and
Kiefer proposed synthetic acoustic ecology (SAC) as a
toolset for exploring questions in the field of soundscape
ecology using ALife methods in virtual ecosystems. Their
study examined one of the assertions of ANH (Krause,
1987) — that one can identify the maturity of an ecosystem
by examining its acoustic signature. Using a multi-agent
system model, they demonstrated that patterns emerge in
two common acoustic indices that indicate the stability of
a model ecosystem.

Niche differentiation mechanisms
The study in this paper uses a virtual soundscape to test
hypotheses in soundscape ecology, building on the work of
Eldridge and Kiefer (2018). While Eldridge and Kiefer’s
study focused on the verification of acoustic biodiversity
metrics, this study examines the mechanisms that breed
interspecific diversity and intraspecific convergence in the
vocalizations of communities in a soundscape. In particular,
it is designed to test Endler’s hypothesis (1992) that the
ability to identify vocalizations from members of the same
species drives acoustic niche differentiation.

The acoustic niche hypothesis posits that soundscapes
niches are differentiated on both spectral and temporal
levels, so that species ensure that their calls are isolated in
both frequency and time. In order to simplify the modelling
and analysis and to allow for a deeper examination of the
effects of differentiation, this study focuses only on the
spectral component of this differentiation.

Approach
The experimental setup for testing the drivers of acoustic
niche differentiation consists of a set of evolving populations
and a soundscape that they communicate within. The
experiment tests two hypotheses: the alternative hypothesis
(H1), that acoustic niche spectral differentiation is driven a
need to identify signals from potential mates or territorial
rivals of the same species; and the null hypothesis (H0) that
spectral differentiation in acoustic niches is not driven by the
need to distinguish the species of the signaller.

In order to facilitate rapid experimentation and ease the
analysis of the emergent signalling systems, the experiments
use a simplified, discretized model of a soundscape instead
of a full-spectrum, temporally-varying acoustic space.
Sounds are modelled as 9-bit vectors that represent the
use of 9 available frequency bands in an instantaneous
signal. These simplifications allow the repetition of the
experiments many times with a large number of generations
and individuals, such that results reflect general trends in
the dynamics of these systems rather than the peculiarities
of any single simulation. The entire system is illustrated
in Figure 1 and described in detail in the sections below.
Lettering in brackets refers diagram labels in Figure 1.

Populations
In soundscape ecology in the physical world, the
communicative process is often assessed in two parts:
sender and receiver. Every individual, of course, is both
sender and receiver, but the processes experience different
evolutionary pressures; “[n]atural selection favors signals
that elicit a response in the receiver that increases or
maintains the fitness of the sender” (Endler, 1992). The
same is true in reverse, such that the sender and receiver of
a particular species evolve alongside one another, but with
sightly different driving forces.



So
un

ds
ca

pe

0

1

Fitness

Fitness

Fitness

Fitness

Sender
o1o0 o2

Receiver
m1m0 m2 m3

o1o0 o2

Sender

m1m0 m2 m3

Receiver

Species A Species B

(a)

(b)

(e)

(c)

(d)

(f)

(g)

(h)

(i)

Figure 1: The experimental setup. Senders (a) encode a 3-bit message (o0..2) into the 9-band soundscape (e) using a neural
network with 3 inputs (c) and 9 outputs (d). Receivers (b) “hear” encoded messages from all species’ senders and predict the
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of their neural networks. Sender fitness (i) depends on how well conspecific receivers identify their species and decode their
messages. Receiver fitness (h) depends on how well they identify the species of all senders and how well they decode messages
from conspecifics.



The populations in this experiment are modelled as
artificial neural networks, which are optimized with
the neuroevolution of augmenting topologies (NEAT)
algorithm (Stanley and Miikkulainen, 2002). NEAT models
individual phenotypes as neural networks with a fixed
number of inputs and outputs and an evolvable internal
structure and connectivity. This allows the population to
begin with simple neural structures and to evolve complexity
as necessary to achieve the task.

For the experiment presented here, each species actually
consists of two NEAT populations: a population of senders
(a in Figure 1) and a population of receivers (b in Figure 1).
The populations communicate over a simulated soundscape
(e) that consists of 9-bit vectors, interpreted as acoustic
frequency bands which can be used by senders to transmit
messages. The senders encode 3-bit messages ([o0, o1, o2])
into a representation in the 9 frequency bands using their
3-input (c), 9-output (d) neural network structures. The
structure of 2 species encoding 3-bit messages into a 9-
band soundscape allows for the development of relatively
complex messaging while allowing the soundscape to
remain undersaturated as each species could theoretically
communicate in only 3 of the 9 bands. The frequency bands
form the inputs to the 9-input (f), 4-output (g) receiver neural
networks. The first 3 outputs ([m0,m1,m2]) of the receiver
network are its estimation of the original message and the
final output represents the receiver’s prediction of whether
the message comes from a conspecific (m3 ≥ 0.5) or from
a heterospecific individual (m3 < 0.5).

The soundscape (e) is shared among species but messages
are received serially in order to decouple timing effects;
therefore, each receiver “hears” messages from the senders
of all of the present species, but receives them one at a time.
Additionally, any spatial arrangement of the individuals is
not considered as part of this experiment, so each receiver
“hears” the signals from every sender at the same “volume”
with no attenuation due to a distance or set of obstacles
between them.

Fitness
In a communicative process, the evolutionary pressure on
senders and receivers is related but differs in some crucial
aspects. The fitness functions used in this experiment reflect
these differences. Since communication for mating and
territorial maintenance is hypothesized to drive acoustic
differentiation (Endler, 1992), the sender is indifferent to
how its messages are interpreted by receivers from other
species. The receiver, however, processes all messages
regardless of their origin; it has to learn how to differentiate
messages from conspecifics from those of heterospecifics.

Following this reasoning, the fitness of the sender (i) is
formulated to reflect how well its message is understood —
or correctly decoded — by the receivers of its own species; it
does not depend on how the receivers of the another species

process its messages. The fitness of the receiver (h) reflects
both how well it is able to distinguish the species of the
sender as well as whether it is able to correctly decode the
message.

The ability of a receiver to perform these two tasks
— identifying messages from conspecifics and decoding
messages — is formulated into components of the the fitness
function as fs (species identification fitness, Equation 1)
and fd (message decoding fitness, Equation 2). m is the
decoded message where the first three components (m0..2)
are message as decoded by a receiver. The fourth value
output by the receiver (m3) determines whether the receiver
has identified this message as coming from a conspecific
(m3 > 0.5) or from a member of another species. The
original message is a three-bit string represented by oi.

fs(m) =

{
fadj(1− |1−m3|) if same species
fadj(1− |0−m3|) if different species

(1)

fd(m) = 3 ∗
2∏

i=0

fadj (1− |oi −mi|) (2)

To achieve the desired fitness formulations, these
equations are applied in different ways for senders and
receivers by adjusting the enabling/disabling coefficients es
and ed in Equation 4. For each message produced, a sender’s
fitness is based on the interpretation of the message by all
receivers from its own species. Equation 4 is applied for
each receiver from the sender’s species with es = 1. The
value of ed depends on whether the species is identified
incorrectly (ed = 0) or correctly (ed = 1). IfR the
species is incorrectly identified, then the interpretation of the
message is of no consequence, which is why the fitness of
the message decoding is ignored.

Receivers “hear” messages from the senders from both
species and their ability to identify and ignore messages
that are not from their species is an important component
of their fitness. For each message that a receiver “hears”,
fs is calculated as part of its fitness (es = 1). If the
receiver correctly identifies that a message originated from a
member of its own species, it receives an additional score
for decoding the bits of the original message (fd) and a
bonus multiplier (fb) for correctly identifying multiple bits
(ed = 1), as described in Equation 4.

fb(es, N) =


1.0 if es = 0
N∏
i=0

(
i

10
+ 1) if es = 1

(3)

ft = (esfs(m) + edfd(m)) ∗ fb(es, N) (4)

One detail that requires some explanation is the
adjustment function (fadj) applied to the fitness equations
for species identification (fs) and message decoding (fd).



The results that these equations evaluate are treated as binary
in the operation of the system but the receivers produce
output as decimal numbers between 0 and 1. If the receiver
outputs m3 = 0.6 for a message from a member of its own
species, the consequence is no different from m3 = 1.0 —
the receiver has correctly decided that the message should
not be ignored. However, an application of Equation 1
without fadj would result in quite different fitnesses for
the two outputs. Equation 5 creates a sharp rise in the
fitness, centred around a value of 0.5 without producing a
discontinuity, which was found to create an effective fitness
landscape for the evolutionary process.

fadj(x) =
1

2
(tanh(8.0 ∗ (x− 0.5)) + 1) (5)

Null model and hypothesis
The model used to test the null hypothesis (H0) uses a
modified formulation of the fitness functions. The null
hypothesis is that the need to identify messages from
members of the same species does not play a role in niche
differentiation. Therefore receivers are assumed to be able
to know a priori which messages come from senders of their
own species and no fitness is assigned for the task of species
identification in this null model.

In the null version of the model, this results in the
receivers only processing messages from members of their
own species and ignoring messages from the other species.
Senders and receivers are evaluated with the fitness function
in Equation 4 with es = 0.

Results
We ran simulations of our ecosystem with senders and
receivers for two species. Each population consisted of 50
individuals and the simulation was run for 300 generations.
The results discussed here are averages and standard
deviations from 20 independent simulations. Additionally,
the results from a representative example simulation are
highlighted in figures and throughout this section in order
to discuss specific features of an individual simulation.

For each simulation, we generated spectrograms that
mirror the type of chart that is often presented in studies
of soundscapes (Krause, 1987; Pijanowski et al., 2011a),
except that the x-axis of these plots represents generations
instead of real-time auditory signals. These diagrams, such
as the one seen in Figure 2, show how the two species’s use
of the frequency bands shifts from generation to generation.
The initial populations’s encoded messages are randomly
distributed across the 9 frequency bands, but the signals
converge over the course of the first 50 to 100 generations
into a subset of bands used primarily by one species. In
this example, after an initial series of about 100 generations,
both species show consistent use of 3 bands — 0, 2, and 4 for
Species A and 1, 5, and 7 for Species B — for the remainder
of the simulation. Species A develops and then eventually

scales down the use of band 3 and band 8, but Species B’s
use of 1, 5, and 7 remains remarkably stable through most
of the latter 200 generations.

The spectral plots provide a useful visual representation
of the divergent signals, but the actual level of separation
can be quantified further and visualized in another manner.
Figure 3a shows a mapping of the high-dimensional
messages to two-dimensions using t-distributed Stochastic
Neighbour Embedding (t-SNE), plotted for particular
generations of interest. The encoded messages generated by
senders from the two species can be seen to rapidly separate
into clusters from an initial state of near-total overlap. This
can be further examined in the plot below the cluster maps
(Figure 3b) which shows the silhouette score for the clusters
over the course of generations. The silhouette score is used
in the evaluation of clustering algorithms and is a measure of
the density of clusters (Rousseeuw, 1987), where a score of
0 indicates overlapping data and a score of 1 indicates dense
and well-separated clusters. The rapid rise of the silhouette
score here indicates the splitting of the spectrum audio
spectrum between the senders in relatively few generations.

The plot shows the average and standard deviations of the
silhouette scores from the series of 20 trials of H1 (dark
grey) alongside the silhouette score from the specific run
from which the clusters in the plot above were derived
(pink). In addition, it shows the average and standard
deviation of silhouette scores from 20 trials of the null model
H0 (light grey). A test of the hypotheses using Welch’s t-test
— because the variance of the samples cannot be assumed
to be equal — reveals that the difference between the two
models is significant after generation 4 (P < 0.01), with an
average P-value of 15× 10−5 for latter 295 generations.

While the null model does produce a level of clustering
of the species’ messages, this is to be expected as a
result of the selection of frequency bands on which to
communicate. However, in the null model, this selection is
not competitively driven by the presence of the other species.
In H1, the receivers of the two species drive their senders
towards diverging frequency bands as their fitness increases
with their ability to identify messages from their own species
and reject those from the other.

We also examined the actual performance of the species
with regard to their ability to recognize and decode messages
from their conspecifics. Figure 4 shows the scores of the
senders and receivers from a species over the course of 300
generations. On average, the proportion of messages that
are correctly identified as being from members of the same
or other species (red) rises sharply in the first generations
before steadying near 80%. The proportions of bits that
are correctly decoded and messages that are fully decoded
correctly are slower to rise, but continue to do so throughout
most of the evolutionary process.
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Figure 2: The use of the 9 frequency bands by the population of senders in the example simulation of H1. The graph shows the
changing use of the frequency bands over 300 generations. In the first generations, both species’s signals are spread across the
9 bands such that the signals from the two species overlap. These signals converge rapidly to a smaller subset of the available
bands. By about the 50th generation, there is little overlap between the two species — A uses mainly bands 0, 4, and 6 while B’s
signals are concentrated on 1, 5, and 7 — though there is some use of bands 2 and 3 by both species. In this example, Species
B uses band 2 heavily but intermittently until just before the 100th generation, when it ceases almost all activity on the channel
and Species A begins to make consistent use of it for the remainder of the simulation. By the generation 300, both species have
converged to the near-exclusive use of 3 channels: 0, 2, and 4 for Species A and 1, 5, and 7 for Species B.

Discussion
The results presented in the previous section demonstrate
that it is possible to drive spectral differentiation in the
acoustic signature of an agent through an impetus to
communicate with other members of the same species.
An analysis of the distance between intraspecies messages
and interspecies messages shows a significant difference
between the test of the alternative hypothesis (H1) and the
null hypothesis (H0), as seen in Figure 3b. Moreover,
Figure 2 provides a visual reference for the division of
the spectrum in a selected simulation of the alternative
hypothesis (H1). The spectrum has been split between the
two species after the first 100 generations, such that Species
A primarily makes use of bands 0, 2, and 4 while Species B
relies on bands 1, 5, and 7. It is interesting to note that, in
the first 100 generations, band 2 is used mainly by Species
B, however this changes around generation 90 as Species A
begins to use the band regularly. Once Species A establishes
regular use of the band, Species B never returns to it with
any stability for the remainder of the simulation.

In models of the null hypothesis (H0), the two species
occasionally achieve a level of differentiation of their
messages, however this occurs only by chance. In both
models, species tend to converge to the primary use of
roughly 3 of the 9 available channels for communication.
Three channels is the fewest that can be used to encode the
three-bit message and it is often the easiest solution for the
evolving neural networks to find. However, in the null case,
the channel selection is not driven by competition between
the species, only by cooperation within a species. This lack
of competition often leads to overlapping channel selections,
which in turn, is responsible for the lower silhouette scores

for the null models (Figure 3b).
While these results cannot be taken as confirmation of the

proposed mechanism of the ANH, they demonstrate that the
mechanism is plausible. The drive to produce signals that
are identifiable and understandable to members of one’s own
species within the finite resource that is a soundscape results
in the formation of acoustic niches for vocalizing species.

This study also demonstrates the efficacy of a highly
simplified model in demonstrating the plausibility of a
particular mechanism for the formation of patterns within
a soundscape. It compliments the work of (Eldridge and
Kiefer, 2018), which explores the way that common acoustic
indices respond to changing populations and signals, and
presents another application for a synthetic acoustic ecology.
Together with other types of computational studies of
soundscapes (Eldridge and Kiefer, 2018), this paper lays
the foundation for a method of rapidly interrogating
evolutionary acoustic processes. In addition to providing
insight into ecological studies, research in this area can
also be used to inform the development and analysis of
evolutionary acoustic agents live “in the wild” and interact
with biological ecosystems.

Conclusion
Though the experiment presented here is based on a highly
simplified model of a physical ecosystem, it demonstrates
that it is possible to rapidly and repeatedly test some of
the basic principles of soundscape ecology. As predicted,
the experiment was able to demonstrate the important role
of intraspecies communication in the partitioning of the
acoustic resources of an ecosystem.

This has important implications for the development of
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(a) Cluster diagrams of messages in selected generations, mapped to 2 dimensions using t-SNE. Each point is a message generated by a sender
in a single generation (labeled above the plot) of the simulation. The selected generations are marked on the silhouette score plot below with
pink circles. The different colours represent messages originating from members of the two different species. The messages in generation
0 are scattered randomly from both species as the initial neural network connections for the senders are randomly generated. The messages
rapidly converge to two clusters by generation 12. However, these clusters are still evenly spaced internally, as the initial selection pressure is
mainly to differentiate messages between the two species. In later plots, for example in those from generations 175 and 299, smaller clusters
form within the messages from a single species as the senders from each species converge on representations for particular bits and messages.
This clustering drives the increasing bit and total scores in Figure 4.
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(b) Silhouette score of the encoded messages, grouped by species, over the course of 300 generations. Scores reflect the validity of the message
clusters when grouped by species, averaged over 20 runs of the simulation, and plotted with the standard deviation in the background. An
example of an individual run is also plotted (pink) and the generations of that run that are plotted in the cluster diagram above are noted. The
difference between the alternative hypothesis (H1) and the null hypothesis (H0) is significant (P < 0.01) after generation 4. The average
P-value after generation 4 is 15× 10−5.

Figure 3: Cluster validity scores over 20 runs of the simulation. Message clusters are shown above for selected generations of
an example run.
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Figure 4: Performance of a species, showing the receivers’
ability identify the species (yellow), and the rate at
which sender-receiver pairs were able to correctly identify
individual message bits (blue) and the entire message (pink).

hardware-based ALife agents for the production of sound
in a physical, hybrid ecosystem. It suggests that, if
one of the goals of that agent is to identify a niche for
itself in the soundscape, it is important to co-evolve the
auditory production with auditory perception to drive the
vocalizations into an empty portion of the spectrum.

In a broader sense, this experiment sets out the foundation
for a method of testing ideas for hardware-based agents in
software simulations to understand the possible dynamics
once they are released in the field. It grounds the inquiry into
a complex phenomenon with a concrete example that solidly
demonstrates the theoretical basis for a physical experiment
through repetition and statistical analysis on a scale that is
difficult to achieve in the field. And it demonstrates the
feasibility of a key theory in soundscape ecology.
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Soundscape studies typically distinguish between three sources of sound: biophony, sounds produced by 
animals, plants, and other biological entities; geophony, sounds produced by non-living features such as 
water or wind; and anthrophony, sounds produced by humans and human technology. Recent developments 
in the study of hybrid ecosystems and ecological robotics challenge these categorizations. A series of four 
soundscape interventions are considered, which lead to the proposal of a new category: robophony. These 
interventions — robots and autonomous digital agents — operate in feedback loops with the existing bio- 
, geo-, and anthrophony in the ecosystem. The properties that emerge from these cases: site specificity, 
hybrid sourcing, and layered temporality form the basis of this new category of sound in the soundscape. 

 
robophony, soundscape ecology, robots, NEAT 

 

1. INTRODUCTION 

The categorization of sound in a soundscape is 
necessarily imperfect. Sounds are fluid, overlapping 
and —  in  the  age  of  digital  reproduction  — 
often removed from their sources and therefore 
difficult to group. And yet, the categorization of 
sound is an important part of the analysis of a 
soundscape. It helps researchers to understand how 
a sound enters a soundscape, what role it plays     
in structuring the sonic environment, and how it 
relates to other parts of the soundscape (Pijanowski, 
Villanueva-Rivera, et al., 2011). A set of thoughtfully 
constructed categorizations can help researchers 
and practitioners identify patterns and discuss the 
features of a soundscape in a meaningful way. 

Schafer (1977) presented the first taxonomy of 
sound objects in his 1977 text “The tuning of the 
world”. The labels were based on the catalogue 
headings in a collection of literary descriptions of 
sounds gleaned from written documents that his 
team had gathered. The headings were compiled 
as entries were added to the catalogue, so that the 
taxonomy is more the result of a generative process 
than a deliberate organization. They capture the 
whole set of catalogued sounds into a three-layer 
hierarchy, with the top layer dividing sound objects 
into the supercategories of natural sounds, human 
sounds, sounds and society, mechanical sounds, 
quiet and silence, and sounds as indicators. 

The field of soundscape ecology, which developed in 
part out of Schafer’s work, uses a different system 

of categorizing sound sources. Bernard Krause,  
one of the pioneers of the field, used a tripartite 
division of biophony,  geophony,  and  anthrophony 
to group sounds in a 2003 technical report on 
soundscape as an indicator of ecosystem health 
with Stuart Gage. The categories of geophony and 
anthrophony was split further in Krause’s “Anatomy 
of the soundscape: Evolving perspectives” (2008). 
Here, he used electromechanical, physiological, 
controlled, and incidental as the four subcategories 
of anthrophony, covering anthropogenic sounds from 
repetitive mechanical from whirring motors to the 
crunching of leaves underfoot as a person walks 
through the woods, while the subcategories of wind, 
water, weather, and geophysical forces subdivide 
geophonic sounds into more precise groups. 

These categories are operationalized in different 
ways by Krause and  his  contemporaries.  They  
are deployed in the production of a framework for 
understanding the dynamic relationships within a 
soundscape and as way of understanding which 
types of sounds dominate over different temporal 
and spatial configurations (Pijanowski, Farina,  et 
al., 2011). They also help ecologists to measure 
overall ecosystem health (Pijanowski, Villanueva- 
Rivera, et al., 2011), understand the effects of 
different sounds of aspects of animal life (Pijanowski, 
Villanueva-Rivera, et al., 2011), and establish the 
relational dynamics between the different categories 
of sound (Gasc et al., 2017). 
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The model of these relationships in Pijanowski, 
Farina, et al. (2011)  gives  specific  attention  to 
the feedbacks between the whole soundscape and 
these categories of sound.  This  describes  the  
way in which, for example, anthropogenic additions 
to the soundscape sounds can mask bird calls, 
prompting them to shift, thus prompting a secondary 
soundscape change. 

One thing missing from this model, however, is a 
way of accounting for the pace of these feedback 
mechanisms. If one wants to understand the 
dynamics of a soundscape — which is a key goal of 
soundscape ecology — it is important to be able to 
discuss the speed at which different types of sound 
shift in response to other shifts in the soundscape. 

It also places little emphasis on the biosemiotics    
of the sounds that are entering the soundscape. 
Under the current model, the sound of a car engine 
and the playback  of  recorded  soundscapes  over 
a loudspeaker are both treated as  anthrophony,  
but the two sounds would likely be perceived in 
wildly different ways by inhabitants of an ecosystem, 
human or nonhuman. 

This does not require a wholesale re-imagining of the 
system currently in use. Bio-, geo-, and anthrophonic 
sounds are largely  internally  consistent  in  terms 
of their feedback and response rates. However, a 
new set of actors is emerging that requires its own 
category in this formulation. 

Learning robotic systems and autonomous agents, 
particularly those designed to engage directly with 
the sonic ecosystem, have the ability to change 
their behaviour in a manner similar to  the  ways 
that animals shift their sonic outputs in response   
to environmental changes. However, robots operate 
on sped-up timescales,  shifting  behaviours  in 
ways that are unencumbered by established group 
dynamics and highly-specified morphologies. This 
paper proposes a new category of ecological sound, 
robophony, to capture this emerging class of sound 
objects. 

What follows is a summary of the history of the 
contemporary categorizations of soundscape and 
their place in a dynamics-based conception of these 
categories. Examples are brought to motivate the 
creation of the category of robophony, going into 
detail about two cases which represent the primary 
motivators. Finally, the category of robophony and 
the issues that remain with its instantiation are 
discussed. 

2. BACKGROUND 

All categories represent an imperfect flattening of an 
idea space. At their best, however, categorizations 
and taxonomies of objects and phenomena can 
bring clarity and new analytical perspectives to a 
field of study. Since the formal definition of the 
soundscape in Schafer’s The t uning o f t he world  
(1977), two main taxonomies have been used to  
group sounds. Schafer’s own categorizations were 
presented in Chapter 9 of his book, while those 
used by Krause were developed as part of an 
understanding of soundscape ecology beginning in 
the late 1990s. 

2.1. Schafer’s Taxonomy 

Schafer dedicates an entire chapter of his The 
tuning of the world to the subject of “classification”. 
He notes that — depending on one’s perspective 
— sounds might  be  categorized  according  to 
their acoustic, psychoacoustic, semiotic-semantic, 
or emotional-affective qualities. He first describes   
a system of classification according to physical 
characteristics — the duration, frequency, dynamics, 
internal fluctuations, mass, and grain — before 
noting that these describe isolated sound events, 
thus limiting its utility in the study of soundscape 
ecology. 

Most pertinent to this discussion, however, is 
Schafer’s subsequent description of a taxonomy 
based on the semiotic and semantic content of a 
sound. This taxonomy emerged from a process of 
cataloging written descriptions of sound. The World 
Soundscape Project  (WSP)  team  had  engaged  
in a lengthy process of collecting what  Schafer  
calls earwitness accounts and sorting them into a 
catalogue. Schafer’s taxonomy is drawn directly from 
the categories and subcategories that emerged from 
this study. 

The taxonomy consists of six primary categories: 
natural sounds, human sounds, sounds and society, 
mechanical sounds, quiet and s ilence, and sounds 
as indicators. These categories — with the exception 
of quiet a nd s ilence — are broken into secondary 
and often tertiary subcategories. In total, 46 
secondary subcategories and an extensive set of 
tertiary subcategories serve to categorize every 
sound that the WSP catalogued from written 
sources. 

Because the taxonomy is derived from the cataloging 
process, it doesn’t have a pre-conceived organizing 
principle. It is, however, biased by the types and 
origins of literary sources that are chosen as some 
of its subcategories reveal. There is, for example,   
a town soundscapes subcategory of sounds and 
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society which features a single tertiary subcategory: 
Britian and Europe, etc. 

It is also important to note that the categories are 
based on a semiotic approach to sound. Specifically, 
the approach is anthroposemiotic (Emmeche, 2007), 
prioritizing the human understanding of meaning 
from sound, as evidenced by subcategories such  
as eating (Schafer, 1977).  This  approach  is  
useful for creating categorizations of sound for 
humans, but is less relevant to the categorization  
of sounds in soundscape ecology. In ecological 
terms, a biosemiotic approach that accounts for the 
interpretation of sonic signs by nonhumans in the 
ecosystem is crucial. A human semiotic category 
does not necessarily have any meaning to other 
ecosystem inhabitants. The study of soundscapes in 
an ecological context necessitates a new taxonomy. 

2.2. The Krause-Gage Taxonomy 

The field of soundscape ecology was not formally 
defined until a special issue of the journal Landscape 
Ecology in 2011, but the taxonomic framework used 
by soundscape ecologists has roots in much older 
work. From their introduction to the field, (Pijanowski, 
Farina, et al., 2011) use a tripartite system for 
grouping sounds by origin: geological, biological, and 
anthropogenic. These terms have roots in a 1997 
book by Krause and a 2003 report by Krause and 
Gage. 

Unlike Schafer, Krause and  Gage  are  deliberate 
in the purpose behind the construction of these 
categories in  their  2003  report.  In  an  analysis  
of the relationship between  acoustic  indicators  
and ecosystem states, they point out that the 
“classification will assist in identifying the introduced 
elements that may cause stress or change not 
otherwise noticed by traditional visual evaluation”. 

The notion of what is “introduced” provides a clear 
link to work in landscape ecology and conservation 
such as (Wiens, 2009). It sets up the later 
development of soundscape conservation (Dumyahn 
and Pijanowski, 2011), in which the authors discuss 
the need to preserve “natural sounds”. 

For their part, Krause and Gage are clear about 
which sounds they consider to be  natural:  “In  
most environments today, soundscape signatures 
are comprised of two natural components, biophony 
and geophony, and a probable human component 
that includes the third, anthrophony” (2003). 

This characterization immediately raises some 
significant conservation questions. Are the biophonic 
sounds produced by introduced species themselves 
not considered introduced? Are they “natural” 

in  this  analysis?  What  about  the  reproduction  
of biophonic sounds through loudspeakers and 
playback devices? If a recorded bird song is   
played over a  speaker  within  their  native  range, 
is that considered biophonic or anthrophonic? Is it 
something introduced or is it a part of the natural 
soundscape? 

2.3. Hybrid Ecosystems 

These are important underlying questions in 
soundscape ecology. There are objects and sounds 
that blur these lines  between  the  categories  in  
the Krause-Gage taxonomy. They complicate the 
identification of “introduced” and “natural” elements 
in the soundscape. These works challenge the 
understandings of soundscape and landscape 
conservation that underpin the basic sonic taxonomy 
of soundscape ecology. 

Ecologists have already begun to acknowledge 
these new ecological coalescences. Hobbs, Higgs, 
Hall, et al. (2014) propose that, instead of describing 
them as natural or anthropogenic, ecosystems can 
be described as historical, hybrid, and novel to 
varying degrees. This reflects the understanding 
that few ecosystems — including vast tracts of 
forest that are often regarded as pristine, like the 
Amazon (Roosevelt, 2013) — are free of human  
influence and that the state of an ecosystem is in 
constant flux (Hobbs, Higgs, and Harris, 2009). The 
notion of a historical ecosystem considers whether 
an ecosystem is currently situated within a dynamic 
range that correlates with the past or whether human 
activity has fundamentally shifted the ecosystem’s 
composition. 

An ecosystem where, for example, a particular 
species has gone extinct or a new species has been 
introduced is perhaps no longer historical, but could 
retain many of its historical dynamics with some 
human intervention. Then, it is considered hybrid: 
not exactly within its former range, but retaining 
much of its former character or significant properties. 
Novel ecosystems have undergone a wholesale 
change in composition — perhaps they have lost an 
irreplaceable keystone species or it is the site of a 
rehabilitated mine — so it may not be possible to 
reconstitute its former makeup. 

Conservation priorities might be set differently for 
each type of system such that maintenance of a 
historical state may be the priority in a historical 
ecosystem, hybrid and novel ecosystems can be  
managed to conserve a general ecosystem function 
or a dynamic biodiversity. In the context of hybrid and 
novel ecosystems, anthropogenic sound — like other 
anthropogenic interventions — might play a role in 
supporting or reconstructing the ecosystem and its 
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soundscape. These types of interventions would be 
complex and fraught, but the anthropogenic sounds 
that could be used might not have the kinds of mostly 
negative connotations that Krause tends to associate 
with the anthrophonic sounds of car engines and 
airplane overflights. 

2.4. Ecobots 

What could produce the kinds of sonic interventions 
that might contribute to the soundscapes of hybrid 
and novel ecosystems?  The  introduction  of  a 
new biological species — either intentionally or 
unintentionally — would likely make an impact on the 
soundscape. But this discussion focuses on another 
potential sonic actor: robots. 

In their (2017) paper, Wynsberghe and Donhauser 
discuss a category of robots that act in ecological 
manner which they call ecobots. These are robots 
whose design purpose is to perform an ecological 
function, such as helping to manage the proliferation 
of an overpopulated species or consuming toxins 
from a contaminated ecosystem. 

The concept of ecobots is important here because 
they stand apart from what Wynsberghe and 
Donhauser (2017) call robots-in-ecology. These are 
robots that happen to be operating in ecosystems, 
but that aren’t necessarily responsive to the 
ecosystem or performing an ecological role. Any 
sounds that these robots-in-ecology produce, such 
as the sound of the rotor of a drone that  is  
hovering over an ecosystem, would fall into the same 
anthrophonic category as that of a ATV engine. 

Ecobots, however, have a different relationship with 
the ecosystem. Their actions are responsive to 
changing conditions in the ecosystem. They become 
part of the ecosystem’s flows and feedbacks in a 
manner that is in some ways similar to that of an 
animal. Their contributions to the soundscape are 
not quite the same as those of a robot-in-ecology. 
Their sounds carry different meaning. 

 
3. ROBOTS IN THE SOUNDSCAPE 

This section explores these provocations through a 
series of four case studies, the last of which is a 
work in progress by the author. Each of the cases 
discussed here has a digital component operating 
with some degree of autonomy, producing sound in 
an outdoor ecosystem and could be considered to 
be ecobots. 

3.1. David Dunn 

David Dunn is a composer and researcher whose 
work has often involved computer-mediated sonic 

engagements with ecosystems. Two works are of 
particular interest here: Sonic Mirror from 1986-1987 
and Autonomous Systems from 2003-2005. 

Both works are attempts to engage soundscapes, 
using computers as part of a sonic feedback 
mechanism. Their  roots  can  be  traced  to  the  
rise of cybernetics and the availability of portable 
computing technologies, and they are steeped in  
cybernetic concepts such as feedback, complexity, 
and emergence. 

Sonic mirror can  be  understood  as  an  attempt  
to insert computational node within the larger 
ecosystem. “The original concept  was  conceived 
as a stationary cybernetic sound sculpture capable 
of processing acoustic data within an outdoor 
environment. Eventually the sculpture might function 
as an autonomous system structurally coupled to  
its surrounding environment in a manner that might 
allow for ‘learning’ between components” (Dunn, 
2002). 

Autonomous S ystems is something of a follow-up  
to Sonic Mirror. In this work, the soundscape is 
recorded, processed, and replayed in a repeating, 
cyclical process. As the work records and replays its 
own shifting of the soundscape, the animals in the 
ecosystem engage it and shift their behaviour, and 
thus the behaviour of the machine as well. 

These works are interesting as early examples of 
digital sonic systems operating in a feedback loop 
with a whole ecosystem. They bring a cybernetic 
approach to interventions in the soundscape of an 
ecosystem and, in doing so, create systems that  
are simultaneously reliant on human design and 
invention and bio- and geophonies. The sounds that 
they makes are not neatly human or non-human, 
digital or analog. The are ontologically uncertain. 

3.2. Ian Ingram, The Woodiest (2010) 
 
Artist Ian Ingram’s The Woodiest (2010)1 is an 
“auto-erotic, hermaphroditic, all-in-one woodpecker 
love-bot” according to the accompanying artist 
statement. It is inspired by the mating ritual of the 
Pileated Woodpecker, which consists of some initial 
drumming by an individual — a form of long-distance 
communication — followed by drum-tapping by the 
pair, once the second bird has been attracted to the 
site (Kilham, 1979). 

Ingram  (2010)  notes  that  this  appears  to  be 
akin to foreplay on the  part  of  the  birds;  as  
such, The  Woodiest  is  a  robotic  system  that  
can engage in the entire act  on  its  own.  The  
robot listens for territorial drumming by a biological 

 
 

1The Woodiest documentation: https://vimeo.com/16213036 



Robophony: A new voice in the soundscape 
Kadish 

 

247  

woodpecker and, upon hearing this drumming, the 
male artificial woodpecker subsystem responds with 
its own territorial drum. The female subsystem then 
responds with a courtship drum-tap,  completing  
the encounter from a sonic perspective. The robot 
simultaneously engages under-explored areas of 
robotics for animal pleasure as well as robotic self- 
pleasure. 

In video documentation of the work, the robot’s 
drumming sounds quite similar to that of the 
woodpecker that it responds to, with the addition of 
the whine of the servo motor before and after the 
drumming and the layering of the vibration motor 
sounds on top of the rapping of the artificial beak  
on the hollow tree. The robot is notably unable to 
produce the higher-frequency vocalizations that the 
woodpecker demonstrates. 

These differences mark the robot as an imposter   
to the human listener. But it is unclear if the 
woodpeckers — or other species in the ecosystem 
—  experience  a  semiotic  difference  between  
The Woodiest and a mating pair of biological 
woodpeckers. This raises a question of audience  
for the taxonomic system under examination. Whose 
perception of the sound is important? In some sense, 
the sound is anthrophonic. Ingram designed and built 
The Woodiest from human mined, fabricated, and 
assembled components. He decided the parameters 
within which The Woodiest would make noise and 
also chose to install The Woodiest on a particular 
tree in a particular forest at a particular time. And yet, 
The Woodiest makes no sound unless a woodpecker 
triggers it. The sound is necessarily collaborative. It 
is both bio- and anthro- and also somehow neither. 

3.3. Richard Vitols, Woodpecker (2016) 
 

 
Figure 1: One woodpecker from Vitols’ The Woodpecker 

(2016). Used with permission of Richard Vitols. 
 
Ingram’s are not the only artificial woodpeckers to 
be found outdoors. The Woodpecker2 is a series of 

 
 

2Woodpecker documentation: https://vimeo.com/180702278 

 

 
Figure 2: A broken woodpecker from The Woodpecker 

(2016). Used with permission of Richard Vitols. 
 

30 artificial woodpeckers, installed in a forest near 
Dusseldorf in 2016 by artist Rihard Vitols. The titular 
woodpeckers are, according to the artist, an attempt 
to rescue the local trees from a coming infestation of 
insects. 

The inspiration for the work emerges from the 
intersection of two phenomena: the first is the  
ability of insects to respond to the sound of 
woodpeckers and the growing detrimental effect of 
insect infestations on the global forest canopy; the 
second is the projected decline of bird populations. 
This lead Vitols to wonder if a robotic woodpecker 
impersonator might be able to help the trees survive 
an insect onslaught. 

The woodpeckers themselves are simple robots, 
constructed from a basic microcontroller, a solar 
panel and battery pack, and a solenoid (linear) motor 
that hits the tree to produce the woodpecker sound. 
They were installed in the forest for four weeks, 
knocking on trees to produce pecking sounds when 
their batteries were charged. They were examined 
once per week and some that were broken — such 
as the one in Figure 2 — were removed and retired. 

The solenoid motors don’t produce the rapid beats 
of the vibration motors in Ingram’s work. But these 
artificial woodpeckers aren’t attempting to perform  
a woodpecker mating call. They are simulating the 
sounds of a woodpecker foraging and the sequential 
hammering they produce is difficult to distinguish 
from an actual woodpecker. 

Woodpecker is unique, in part, due to its materiality. 
Few roboticists discuss their work in terms of 
breakdown and decay, yet Vitols takes explicit note of 
the robots that have broken or been destroyed (see 
Figure 2). This points to two different temporal cycles 
in digital producers of sound. There is the working 
lifecycle and the material lifecycle. The working 
lifecycle can be as short as a few days or weeks in 
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this case, but the copper and silicon that form the 
electrical circuits that power the robot won’t decay 
for many biological generations. 

At the same time, these digital actors are unable   
to self-repair or reproduce. They have no way of 
continuing their existence beyond their individual 
bodies. Without human intervention, their direct 
temporal  mark  on  the  soundscape  is  fixed  in    
a manner quite distinct from the biological and 
geological sources of sound. 

3.4. The rowdy krause (2019-) 

The rowdy krause is a work-in-progress to evolve    
a voice for a new endemic species within an 
ecosystem. The robot’s vocalization is based on 
Krause’s (1987) acoustic niche hypothesis (ANH), 
which contends that animals differentiate their  
class across the frequency spectrum in a manner 
analogous to the differentiation of resource use in the 
traditional understanding of ecological niches. 

The rowdy krause begins by listening to the existing 
soundscape. It listens in particular for interesting 
sounds that rise above the background din of the 
soundscape. Within those sound events, it pays 
attention to which parts of the frequency spectrum 
are most heavily used and which are left open for a 
new species to occupy. 

In order to encourage the emergence of a complex, 
but biologically-plausible voice, the robot uses a 
mammalian vocal tract simulator to produce sound. 
It is able to control the voicebox, throat, tongue, lip 
and nasal cavity of a virtual vocal tract called Pink 
Trombone3. This creates a context for the robot to 
produce sounds that could be biological in origin. 

The vocal tract is controlled by a neural network 
that is evolved using neuroevolution of augmenting 
topologies (NEAT) (Stanley and Miikkulainen, 2002). 
NEAT allows for the evolution of both the structure 
and the weighting of the neural network, so that it 
can add complexity as needed. The neural network 
takes a representation of the last sound that it made 
as input — so that it can “hear” itself — and outputs 
the next shape of the trachea, epiglottis, tongue,  
and lips, as well parameters to control the nose and 
voicebox according to the current network structure. 

Once the neural network-controlled vocal tract 
produces a vocalization, the NEAT evolutionary 
process assesses how well this sound fits into the 
unused frequencies in the soundscape. Over time 
this process is repeated for many different evolved 

 

 
 

Figure 3: A screen capture of the Pink Trombone vocal 
tract simulator. Used with permission of Neil Thapen. 

 

for reproduction in the evolutionary process  and 
are more likely to pass their traits to the next 
generation of neural networks. This leads to a series 
of vocalizations that make increasingly better use of 
the least used frequency bands in the soundscape4. 

The rowdy krause continues to listen to the 
soundscape as it shifts in response to changing 
seasons as well as the presence of the  new  
robotic voice. It continually incorporates what it hears 
into its understanding of the sonic structure of its 
ecosystem, so that the vocalizations that it produces 
are always shifting in response to changes in the 
soundscape. 

Currently, the rowdy krause has been  tested  in  
the  lab  using  recorded  soundscapes  to   drive 
the evolutionary process. However, field trials are 
planned for a peri-urban forest garden ecosystem, 
as well as a set of urban garden environments. 

The rowdy krause represents another dimension in 
the discussion of robophony. Unlike Dunn’s work, it 
is not a reprojection of past sound events back into 
the soundscape. It is also not an analog percussive 
sound like the two artificial woodpeckers. This voice 
is entirely synthesized, and yet it maintains some   
of the characteristics of biophony. Its generative 
frameworks — the vocal tract, neural network, and 
evolutionary process — reference biological objects 
and phenomena. It is also explicitly responsive to 
the soundscape in a way that mimics the theoretical 
response of a biological species. 

voices. Neural networks whose voices better match    
the predictions of the ANH are selected more often 

 
 

3Neil Thapen’s Pink Trombone: https://dood.al/pinktrombone/ 

4A demonstration of this process is available online at https: 
//vimeo.com/359044847 
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The rowdy krause is clearly not biological. It has a 
human builder and programmer and can be installed 
or removed on a whim.  Its  actions  are  bounded 
by human decisions about the constraints of the 
vocalization system and the neural network that 
controls it and yet it is relatively free from human 
control within those bounds. 

Because its  calls  are  new  to  the  ecosystem,  
the  biosemiotic  significance  of  them  is  unclear.  
It is  possible  that  the  sounds  it  produces,  in   
the perception of some of the inhabitants of an 
ecosystem, is close enough to that of a potential 
predator, mate, or prey to carry some meaning. But 
the human semiotics of the rowdy krause are equally 
unclear. Is it considered noise on par with that of an 
engine? Or is it more akin to bringing a dog into an 
ecosystem? 

 
4. ROBOPHONY 

The four cases discussed in the previous section 
are distinct from one another, but each points to      
a type of hybridity that exists somewhere between 
the categories of anthrophony and biophony. Sonic 
Mirror and Autonomous Systems introduce the 
notion of a dynamic soundscape component that 
uses a system of feedback between anthropogenic 
and bio-geological actors to produce a dynamic 
sonic component that is hybrid in origin. The 
Woodiest’s sonic emanations raise questions about 
the biosemiotics of robotically-produced sound. 
Woodpecker adds to this the temporal dynamics of 
a soundmaking technical object and distinguishes 
these robots further from their biological analogs   
in their inability to heal and reproduce and their 
sensitivity to the element and predation. Finally, the 
rowdy krause prompts the review of questions about 
the origins of biologically-informed, computationally 
generated sound and the semiotics and biosemiotics 
of an introduced digital species. 

The hybrid nature of these objects points to the 
need for a new category of in the taxonomy of 
sounds in soundscape ecology: robophony. Broadly, 
robophony is the set of sounds produced by 
ecological robots in a soundscape.  Informed  by  
the cases in the previous section, it encompasses 
the following distinguishing features: site specificity, 
hybrid sourcing, layered temporalities. 

4.1. Site Specificity 

The notion of site specificity is borrowed from mid- 
21st century art and is often — though not always — 
invoked in the context of monumental land art works 
such as Christo and Jeanne-Claude’s Surrounded 
Islands (1983) or the many ecological interventions 
of Helen and Newton Harrison. Here, site specificity 

refers not to the physical object itself, but to the 
particular sounds that it produces. 

In fact, the sound-producing objects themselves in 
the four cases are for the most part not specific to a 
particular site. Dunn’s computer equipment for Sonic 
Mirror and Autonomous Systems could be set up 
almost anywhere, as could the physical body of the 
rowdy krause. The two woodpecker-based works are 
designed to sit on a tree, but they were not built for 
the particular trees — or even the particular species 
of trees — that they ended up on. They feature 
adjustable straps so that they can be mounted on   
a tree of the artist’s choosing after the fact. 

However, the sonic  output  of  all  of  these  works 
is a result of the particular configuration of their 
surroundings. Dunn and Kadish’s work are most 
explicit  in  this  regard.  Dunn’s  work  uses  the  
live soundscape as the raw material for the 
computational modulation and reprojection. The 
soundscape is part of the cybernetic system that 
produces new sound. It does not exist without the 
specificity of its place. In the rowdy krause, the 
existing soundscape is an extra step removed from 
the eventual sound that is produced, but it is no less a 
part of the work. The rowdy krause’s voice is evolved 
to fit the ecosystem’s soundscape and is a result of 
the combination of existing biophony, geophony, and 
anthrophony of the site. 

These works could inhabit another site, but they 
would at that point be new works. Their voices 
would be different, would evolve differently, and their 
robophonic contribution to the soundscape would be 
change. 

This holds to a lesser, but not inconsequential 
degree for The Woodiest and Woodpecker. The 
Woodiest’s sonic projections are a product of its 
sight insofar as it exists in dialogue with resident 
woodpeckers. Its pecking sequence is activated only 
in response to another woodpecker’s call. As such, 
the particularities of its actions can be understood 
as the response to a particular community. 

Woodpecker is not responsive to external sounds, 
but its own sound — like that of The Woodiest —   
is not entirely of itself. The source of sound in both 
of these works is the percussive action of the robot 
meeting the tree. In fact, the main source of sound 
in both of these robots is the vibration of the tree or 
branch. Its materiality, its age, texture, and solidity, 
all determine the resulting sound. These sounds are 
specific: to the tree, to the branch, to the meeting of 
biological matter and technological artefact. 

As devices built by humans, it is tempting to 
categorize the sounds that these works produce 
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as anthrophony. They would likely be understood 
as electromechanical or controlled sounds under 
Krause’s taxonomy (1987), both subcategories of 
anthrophony. But site specificity is a trait more  
often associated with biophony. In fact, Krause’s 
acoustic niche hypothesis (1987) along with another 
foundational theory of soundscape ecology — the 
acoustic adaptation hypothesis which concerns the 
adaptation of animal calls to a particular physical 
environment (Morton, 1975) — explicitly frame 
biophony as site specific. Neither of these categories 
are quite sufficient to capture the acoustic impact of 
these new ecological actors. Robophony is therefore 
positioned as originating from devices constructed 
by humans, but with sound that it embedded in a 
local context and specific to a place. 

4.2. Hybrid sourcing 

The Krause-Gage taxonomy is source-based — it 
categorizes sounds according to the object that 
produces the sound. However, the source is not 
always clear. When a recording of a bird call is played 
back into an ecosystem, is the source biological or 
technological and therefore anthropogenic? 

This question implicitly refers to a phenomenon that 
Schafer (1977) terms schizophonia. The sound is 
separated from its source, creating a disconnect 
from its original location and meaning. If a bird 
produces an alarm call, it signifies that there is 
danger for themselves, other members of their 
species, and possibly for others as well. When that 
call is recorded and played back, the sign has —   
in biosemiotic terms — lost its object (Emmeche, 
2007). 

This describes the situation of The Woodiest and 
Woodpecker. Though neither work features the 
playback of recorded sound, both sign the presence 
of a woodpecker through sound without the actual 
presence of that woodpecker as an object. The 
Woodiest signals a biological woodpecker that a 
mating pair is present and that this is there territory, 
but were the bird to claim the territory for themselves, 
there would be no consequence normally associated 
with infringing on a fellow woodpecker’s territorial 
claim. Woodpecker similarly alerts insects to the 
presence of a predatory woodpecker without the 
possibility of capture and consumption. 

The origin and biosemiotics of the other two cases 
are perhaps even more confounding. In Sound 
Mirror, Autonomous Systems, and the rowdy krause, 
the existing soundscape in an ecosystem acts as the 
base material for the sound that is produced. Dunn’s 
work processes that soundscape and reprojects the 
result back into the ecosystem. The sound is partially 
bio-, geo-, and anthrophonic in origin, depending 

on the composition of the soundscape that the 
works record during their operation. But there are 
another set of anthropogenic forces that act on it: 
the hardware system of computer, microphone and 
speaker; and the software system of algorithms that 
modulate and process the incoming sound. It cannot 
be said to be purely anthrophonic, nor is it bio- or 
geophonic. 

The rowdy krause evolves something to actively 
differentiate itself from what it hear — but the 
material from which it differentiates itself is likely    
a mix of biophony, geophony, and anthrophony, 
depending on the ecosystem that it inhabits. It 
continues to evolve its voice in relation to the 
soundscape as the soundscape shifts in response to 
its presence. This feedback is most likely to occur in 
the domains of bio- and anthrophony as geological 
sounds are not likely to change in the short term    
in response to the rowdy krause. This means that 
the call of the rowdy krause is also hybrid in origin. 
It may be primarily generated by the anthropogenic 
computational system, but it is a result of all three of 
the Krause-Gage phonic taxa. 

For all of these works, the framework for their sounds 
are set by their human designers. But they would 
not exist or would exist differently without the bio- 
and geophonic components of the soundscapes that 
they inhabit. Their sources are distributed between 
biological, geological, and anthropological sources 
and they therefore fit neatly into none of those 
categories. This points to the position of robophony 
as a set of sounds with hybrid sources that fail to fit 
neatly into the three other categories. 

4.3. Layered temporalities 

The hybrid sourcing of robophonic sound also gives 
way to a complex network of temporalities. It is 
important to understand the dynamic timescales of 
each of the sources of sound in a soundscape, 
because these timescales impact the rate of 
feedback between sources. 

Patterns of geophony tend to shift on geological 
timescales — though anthropogenic activities are 
accelerating these as well — meaning that the sound 
of rain, for example, is not immediately responsive to 
most biological changes in the landscape. Biophony 
and anthrophony operate on a range of timescales. 
Evolutionary changes operate on relatively slow 
cycles that are depending on the lifespan and mating 
rates of the species in question. But behavioural  
changes can occur much more rapidly. 

Computational timescales can be sped up even 
further, calculations taking place at the microsecond 
scale, and rendered without a perceivable delay 
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for many biological audiences. The material flows  
of computational technologies, however, tend to 
operate on more geological timescales. Biomass 
breaks down quickly, but silicon and copper remain 
in the landscape for many biological generations. 

Sound Mirror and Autonomous Systems perform this 
kind of near-instantaneous computational 
temporality. But their performances also induce rapid 
— yet still comparatively slow — engagement from 
nearby biological actors. The performance mixes 
the instantaneous computational timeframe with the 
behavioural timeframe of biological entities. 

The rowdy krause does not directly incorporate 
existing sounds into its own vocalization, but it does 
perform computational evolution at a pace far faster 
than biological evolution is able to act. In its offline 
version, it can simulate multiple generations — birth, 
life, mating, and death — of about 20 individuals in 
under 15 minutes. The version that will eventually 
inhabit an outdoor ecosystem will evolve more slowly 
than this, but still at a pace unavailable to biologically 
evolving species. 

Woodpecker serves as a reminder that although 
robotic material flows are geologically slow, their 
functional flows can still be quite rapid. Figure 2 
shows a robotic woodpecker that was destroyed by 
the elements after less than four weeks in operation. 
Robots like these are sensitive to moisture, cold, and 
animal attacks, meaning that although the materials 
may persist for many generations, they may not 
contribute to the sounsdscape for very long. 

4.4. Future robophonies 

The four cases that are presented above together 
make a case for the addition of robophony to the 
taxonomy of sound in the soundscape. But there are 
plenty of examples of technologies that do not quite 
qualify as robophony at the moment, but could in the 
near future. 

Many of these are sold as sonic pest control devices. 
They play high pitched sounds to deter bats, mice, 
and mosquitos. One plays tones in the 400-1000Hz 
range in an attempt to drive moles away. Currently, 
these devices typically lack a sensory system to 
determine their effect on the ecosystem and whether 
they are “working” or when their target is nearby. 

However, it is not unreasonable to imagine these 
things getting smarter. As the harmful effects of 
indiscriminate sonic output are better understood 
one could imagine that instead of constantly playing 
a static tone to deter rodents, they might begin to 
play varying but relevant sounds only when they 
detect a rodent. This type of feedback between the 

rodent and the operation of the sonic agent could 
qualify it as robophony. 

 
5. CONCLUSIONS 

Taxonomies are inherently flawed, but they inform 
our understanding of a system and its component 
parts. The categories of sound in a soundscape 
have served soundscape ecology well thus far, 
enabling discussion about the composition of a 
soundscape and the impacts of human activity on 
the nonhuman inhabitants of an ecosystem. 

But the cases presented here demonstrate that 
these categories are insufficient to capture the 
dynamics of a growing number of biologically 
interactive technological agents. They are 
human- made, but not human-driven. They are 
temporally complex, and they are produce sound 
specific to their adopted habitat. 

These agents, entities, actors in the soundscape 
require a new descriptor, one that  captures  
these properties and, in doing so allows for the 
consideration of the ethics, biosemiotics, and new 
feedback loops that accompany their presence. 
This descriptor is robophony. 
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This paper delineates the conceptual outcomes from a two-week intensive cross-disciplinary 
conversation between an art historian, an interaction designer, and an artist/engineer. With the aim 
of applying the concept of technogenesis to an exploration of sound as material for art and design, 
we consider sound as a material force within an ecosystem. Through this lens, sound produced by 
either life- or technological-forms allows us to consider the ecological impact and potential 
meanings of generated sound. Drawing on biosemiotics, we propose that the co-evolution of sound, 
technology, and environments, what we call eco-technogenesis, demands relational, and thus 
ethical, thinking. The rowdy krause, an autonomous sonic agent, designed by Kadish to identify and 
inhabit an acoustic niche within an ecosystem, serves as a case study for thinking through eco- 
technogenesis. 

 
Biosemiotics. Ethics. Soundscape ecology. Sound objects. Technogenesis. 

 

1. INTRODUCTION 
 

This article is the conceptual outcome of a two-week 
intensive research- and practice-based 
collaboration between Megan Hines, an art 
historian, Maja Fagerberg Ranten, an interaction 
designer, and David Kadish, an artist/engineer. 
Drawing on conversations that took place at Catch: 
Center for Art, Design, and Technology, Helsingør, 
and the RE:SOUND Conference, Aalborg, we 
discuss sound as a material and the ecological 
impact and potential meanings of generated sound. 
Approaching our topic from a cross-disciplinary lens, 
we posit that the increasing presence of generated 
sound within ecosystems demands expanding 
technogenesis to the non-human realm. We 
propose bio- and eco-technogenesis as tools to 
consider the relationality of generated sound. 

Technogenesis, as developed by Bernard Stiegler 
(1998) and expanded on by Katherine Hayles (2012) 
describes human evolution as occurring as a result 
of interactions with the environment and the 
available tools or technologies within that 
environment. Technogenesis is a co-constituted 
process of becoming, an intertwining of the past, 
present, and future trajectories of the techno-human 
ensemble. In this framework, technologies drive 
shifts in human genetic, epigenetic, and 

developmental traits. Though the process is non- 
teleological, the entities as they currently exist could 
not have existed independently and are rendered 
meaningless without one another. Stiegler (1998) 
traces a line from the emergence of bipedal mobility 
and the freeing of the hands to the beginnings of tool 
use and the development of a co-constitutive 
relationship between technics and human genetic 
and epigenetic changes. He argues, 

 
“the prosthesis is not a mere extension of the 
human body; it is the constitution of this body qua 
‘human’” (1998, p. 152). 

 
Hayles (2012) focuses on contemporary 
technogenesis, aiming to describe the 
unprecedented change and amplified feedback 
loops that digital technologies have activated in our 
environment and ourselves. 

We argue here that this process of technological 
becoming can and should be applied to other 
biological forms as well as to ecosystems. The 
inherently relational quality of sound provides an 
excellent medium through which to introduce 
ecological thinking to the concept of technogenesis. 
Soundscape ecology, sometimes called 
ecoacoustics or soundscape studies, is the study of 
sounds in an ecosystem. Its history predates its 
naming. For example, ornithologists took advantage 
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of sound recording technologies as soon as it was 
plausible to bring them into the field in the late 
nineteenth century. These studies concentrated on 
single bird songs in order to preserve and analyse 
them. Soundscape ecology incorporates individual 
sounds into a whole soundscape, a term coined by 
Canadian composer R. Murray Schaffer (1969). 
Schaffer’s concept of a soundscape was 
groundbreaking for including sounds made by 
humans, nature, and machinery, whether electric or 
mechanical (Ibid., 5-6). The soundscape was a 
landmark contribution to soundscape ecology 
because it moved the study of sonic relations 
beyond the confines of music. Furthermore, the 
soundscape pushed the study of sound into a wider 
realm that included non-human and non-organic 
listeners and creators. To accept that sound acts as 
an ecological force implies that its effects go beyond 
human aesthetics and touch on material relations 
within an environment. 

 
1.1 Cross-disciplinary Backdrop 

The topics of technogenesis and soundscape 
ecology are necessarily cross-disciplinary, spanning 
fields as wide as sound studies, ecology, 
evolutionary biology, anthropology, and media 
studies. As representatives from three different 
fields of study, we spent two weeks together in 
Denmark in August 2019: the first week as 
participants at the workshop Artistic and Curatorial 
Practices in the Age of Technogenesis at Catch in 
Helsingør; and the second week at the 2019 Media 
Art Histories conference in Aalborg titled 
RE:SOUND Sound, Media and Art - Theories, 
Histories, Practices. 

Throughout the two weeks, we discussed what is at 
play when we consider sound as material within an 
ecological soundscape. How do we define and 
perceive sound? How do nonhumans perceive 
sound? Moreover, what happens when one 
perceives sound that is computationally generated? 
By acknowledging that sound acts as an ecological 
force, we discuss the effects of sound beyond 
human aesthetics within an ecosystem. 

The work-in-progress explored at the pre- 
conference workshop, Kadish’s the rowdy k rause, 
serves as a subject for our conversation. We begin 
our discussions through the presentation of three 
conversation themes, followed by a conversation 
between us based on our respective practices. We 
posit that viewing technogenesis from a cross- 
disciplinary lens can broaden the perspective on 
sound as material within ecological soundscapes. 
The two conversation themes are sound as 
computational material and eco-technogenesis. 

 

1.2 The Rowdy Krause 
The rowdy krause is an autonomous sonic agent 
that is designed to inhabit an ecosystem and find an 
acoustic niche for itself within that ecosystem’s 
soundscape. The work is currently in progress (see 
Figure 1), but the rowdy krause is already able to 
perform its search for a niche using a recorded 
soundscape, while future iterations will perform this 
in real-time, embedded in an ecosystem. 

The rowdy krause begins its search for a niche by 
listening to the soundscape in which it is placed. It 
makes note of the different sounds that it hears and 
analyses their spectra so that it can start to 
determine which frequencies are least used. It 
continues listening and revising its understanding of 
what already exists in the soundscape throughout 
the process of evolving its own voice. 

To make sound, the rowdy krause makes use of a 
computational model of a mammalian vocal tract so 
that the sounds that it produces have something in 
common with sounds that one might hear from a 
biological creature. The simulator was developed by 
Neil Thapen and is called Pink Trombone.1 The 
rowdy krause controls the simulator using an 
evolutionary neural network that uses a process 
called the neuroevolution of augmenting topologies 
(NEAT), meaning that the structure and weighting of 
the neural network both undergo evolution (Stanley, 
2002). 

 

 
Figure 1: The rowdy krause’s physical instantiation in 

progress. The rowdy krause’s computation occurs on a 
Raspberry Pi single board computer, and it senses its 
surroundings using a microphone, temperature and 

humidity sensor, and light detector, while engaging with 
the world through an amplified speaker. 

 
Every time the neural network produces a 
vocalization by controlling the vocal tract, the 
vocalization is compared to all of the sounds that the 
rowdy krause has already heard in the ecosystem’s 
soundscape. The neural network is assigned a 
fitness based on how different the sound it produces 
is from the existing soundscape and the networks 
with the best fitness are more likely to pass on traits 
to the next generation of neural networks in the 
evolutionary process. Over time, the rowdy krause 
tends toward finding a voice that occupies a unique 
niche within its soundscape. 
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While the parameters for the rowdy krause’s voice 
are selected by Kadish, the actual voice arises from 
the particular composition of the ecosystem that it 
inhabits. At the same time, the projection of the 
evolving vocalizations into the ecosystem adds to 
the soundscape and affects other ecosystem 
inhabitants. Their responses and the new voice are 
part of the ecosystem’s continual evolution, and also 
drive the evolution of the rowdy krause’s 
vocalization, an example of eco-technogenesis in 
action. 

 

2. SOUND AS COMPUTATIONAL MATERIAL 

Sound made by humans and machinery ranges from 
recordings, digitized sounds and algorithmically- 
generated sounds. Typically, humans author 
content; the composer, artist, designer, or developer 
uses sound as material in their technologically-aided 
practice. The idea of sound as immaterial or 
ephemeral has changed as the technological 
possibilities for the recording and manipulation and 
sound increased. Composer Pierre Schaeffer was 
the first to refer to an “object sonore” or sound object 
(Schaeffer, 1966). As audio technologies 
progressed, recorded sound objects no longer 
referred to a sound source, but existed as objects in 
their own right (Chattopadhyay, 2017). 

Joseph Klett has extended the materiality of sound 
to the sonic object setting, the place of interaction 
between material sounds and their interpreters 
(Klett, 2014). Besides labelling sound as social as it 
occurs among bodies, Labelle (2006) addresses 
sound as spatial. Sound is always more than one 
place and performs with and through space. Sound 
is a relational phenomenon: from immaterial to 
material, from inside one’s thoughts to others’, and 
through space (Labelle, 2016, p. xi). 

Søndergaard (2019) describes sound as the perfect 
material for experimental practices because of its 
“difficulty” as time-based, immaterial and fugitive. He 
adds that sound is nothing without being 
experienced. He describes sound as an artist’s 
material and the first media art practice: 

 
“...and because of the invention of technologies 

that make it possible to liberate sound from its 
source, sound even became the first 
technologically emerging artistic material; as 
such, sound art could be seen as the first media 
art practice, historically.” (Søndergaard, 2019, p. 
96). 

 
Cox (2013) elaborates on sound having a sonic 
ontology. He states that whereas the ontology of 
“matter” privileges sight and touch, the invisible, 
intangible and ephemeral objects of smell, taste and 
hearing exist in the shadows compared to solid 
materials. He concludes that sound has a different 
ontology and materialism: 

“...a conception of being and matter that can 
account for objecthood better than an ontology of 
objects can account for sounds.” (Cox, 2013). 

 
According to Cox (2009), sound instead affirms an 
ontology of flux, where objects are replaced by 
events; a sonic philosophy of sound as flux, event 
and effect. 

The same can be stated about computational 
material. It too can be described as an intangible 
matter and as an ontology of flux. We are bodily 
affected through, with, and by computational 
material, and no longer differentiate between the 
subjective inside and technology from the outside. 
Rather than dividing the human-technology relation 
into a matter of a foreground and a background we 
can unpack Hayles’ (2012) claim that digital media 
and the actions of computers are embodied, that 
technical objects have agency or the potentiality of 
computational material as autonomous. 

When Hayles expanded the concept of 
technogenesis, the idea that humans and technics 
coevolve, the focus was on contemporary digital 
technologies. She relates technical beings versus 
embodied living beings and focused on the 
interfaces between programmable machines and 
humans: 

 
“...the actions of computers are also embodied, 
although in a very different manner than with 
humans. The more one works with digital 
technologies, the more one comes to appreciate 
the capacity of networked and programmable 
machines to carry out sophisticated cognitive 
tasks, and the more the keyboard comes to seem 
an extension of one’s thoughts rather than an 
external device on which one types.” (Hayles, 
2012, p. 3). 

 
Thus, embodiment takes the form of an extended 
cognition where larger networks beyond the desktop 
computer are entangled with human agency and 
thought. Hayles clearly described technical objects 
as having agency. In the sense that technical objects 
are agents of complex temporalities, in evolutionary 
terms, they are repositories of change. (Hayles, 
2012, p. 85) 

Carvalhais (2010) addresses the autonomous 
quality of programmable media beyond their 
creators and users: 

 
“A system’s autonomy can be regarded not only 
as an amount of control that is conferred to or 
appropriated by it but also as a transfer of some 
amount of agency to the system.” (Carvalhais 
2010, p. 421). 

 
He compares procedural systems to biological 
systems and claims that computational material too 
can be complex. With reference to Herbert A. Simon 
he describes an inner and outer environment of a 
system as the substance and organization of the 
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artefact and the operating surroundings (Carvalhais, 
2010, p. 634). Manovich (2001) makes a related 
distinction between the cultural layer and the 
computational layer as the distinction between the 
interface and what the computer reads. 

Computational material is potentially autonomous. 
Computational media and sound are not just 
mediators, but also programmable, and thus 
potentially autonomous beyond their makers and 
users/listeners. The notion of sound as material and 
computational material is interesting in relation to the 
rowdy krause. Is the rowdy krause autonomous, and 
who is the author of the voice of the new species? 
What is the role of the computational material in 
relation to the rowdy krause? In what follows, we 
situate potentially autonomous technological forms 
as material forces within ecosystems and ask how 
an example such as the rowdy krause impacts and 
is impacted by the relationality of sound within its 
environment. 

 

3. ECO-TECHNOGENESIS 
 

Eco-technogenesis describes the co-becoming of 
ecosystems and technologies. Hayles asserts, 

“technical objects embody complex temporalities 
enfolding past into present, present into future” 
(2012, p 86). 

 
While Hayles applies this idea to human 
development, here we apply it to an understanding 
of the past and future development of ecosystems. 
The contemporary farm is a good working example 
of eco-technogenesis (Mazoyer, 2006). The typical 
large wheat monoculture found in mid-western North 
America, for example, did not arise overnight, but is 
the result of tens of thousands of years of co- 
evolutionary development involving technical 
ensembles, human societies, and ecosystems. 
When the first hunter-gatherers scattered seeds 
from their food in a known location or the first 
metalworkers forged a plow, their goal was not to 
produce unbroken hectares of wheat monoculture. 
And yet, that ecosystem is only possible because of 
the advent of seed harvesting and metal plows, the 
selection and evolution of new crops and countless 
other technological and biological changes. 

Examples of the co-evolution of humans, 
technology, and ecosystems abound, but what 
about non-human eco-technogenesis? This is a 
more difficult proposition to consider, given the 
difficulty of observing the slow changes continually 
modified by feedback loops between animals and 
environments occurring on evolutionary and 
geological timescales. Scholars have pointed to 
habitat-modifying species like the beaver as an 
example. Beavers are best known for cutting trees 
to dam rivers, creating larger pools of water within a 
river ecosystem. The technical object of the dam is, 

on its own, a significant factor in the formation of 
these dammed river ecosystems. It has an impact 
on the plant and animal communities in the 
ecosystem (Rybczynski, 2007), reshaping the 
network of interactions and relationships in the 
landscape. Dams become an essential component 
of the development of the ecosystem. Considering 
the evolutionary history of beavers provides 
evidence that this behaviour evolved through 
technological and evolutionary reinforcement. 
Natalia Rybczynski argues the building of dams 
evolved from simpler behaviours like cutting and 
feeding on smaller vegetation (Ibid., 2007). It implies 
a long, slow, multigenerational process in which 
dams began as smaller debris and eventually took 
the form of larger constructions, thereby 
reconstituting the ecosystem and reinforcing the 
behaviour. Beavers’ activities are implicated in the 
evolution of fish and amphibians in dammed rivers 
as well as the defences of nearby tree species (Ibid., 
2007). Beaver dams can be considered a canonical 
example of eco-technogenesis. 

 
3.1 Sound and eco-technogenesis 

Returning to soundscape ecology, we argue sound 
provides a domain in which to think through the 
possibility of eco-technogenesis. In fact, this idea is 
not entirely new. The intermeshing of sound, 
technology, and ecology exploded into public 
consciousness in 1962 with the publication of 
Carson’s landmark book Silent Spring, in which she 
revealed the devastating effects of industrial 
chemicals on bird populations by pointing to gaps in 
the sound spectrum as bird species went extinct. 
Carson’s method of measuring ecological health 
using sound predated yet paved the way for the 
acoustic niche hypothesis (ANH) (Krause, 1987) 
and the acoustic adaptation hypothesis (AAH) 
(Morton, 1975). The ANH is based on empirical 
observations that suggest sounds produced by 
species vocalizing within an ecosystem tend not to 
interfere with one another, creating a partitioning of 
the acoustic range (Sueur and Farina, 2015, 495). 
Relatedly, the AAH argues animal-generated 
sounds have adapted to their particular habitat, 
taking into account the properties of the landscape 
and plant life to maximize sound dispersal (Sueur 
and Farina, 2015, 495). The ANH and AAH provide 
the basis for thinking in terms of the co-constitution 
of sound and landscape. Based on Carson’s and 
Krause’s work, an ecosystem’s soundscape 
became an indicator of its diversity and health. Loss 
of diversity across the acoustical space indicated an 
imbalance and an infiltration of human activity in the 
ecosystem. For example, Krause observed that 
smaller parks in the American Northwest 
established by lumber companies and characterized 
by a monoculture of young pines displayed a 
shocking lack of biodiversity evidenced by large 
gaps in the acoustical space (Krause, 1993). 
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Soundscape ecology allowed for thinking of the 
intermeshing of sound, technology, and ecology and 
the technogenesis of soundscapes, while preserving 
the nature/culture divide. Having defined eco- 
technogenesis, we now focus on the possibility of 
technogenesis across human, non-human, and non- 
organic or technological systems. Throughout the 
course at Catch, we considered autonomous agents 
capable of creative sound generation through case 
studies and in practice. Our aim here is to situate 
generative sound practices within local ecologies. 
Kadish’s rowdy krause, developed over the course 
of his doctoral studies and presented for the first 
time at Catch, provides a case study. Given that we 
have accepted sound as a material force in an 
ecosystem, we conclude by speculating on the 
ethics of an eco-technogenesis that includes non- 
organic sound generation. 

There are a number of automated or robotic sound- 
generating systems that are designed specifically to 
engage with ecosystems in a dynamic and 
generative manner. David Dunn’s Sonic Mirror 
(1986) is an early example of this type of work. 
Dunn’s Sonic Mi rror, which he considers a sound 
performance, arose from an interest in rules and 
systems for processing and reproducing 
soundscapes (Dunn, 2013). Sonic M irror involves 
the recording of sound in an ecosystem by an 
autonomous computer system, the processing and 
modulation of that recording, and the subsequent 
reprojection of the sound into the ecosystem. Dunn, 
who was trained as a composer, observed that the 
ecosystem inhabitants began to engage with the 
recording and playback system, and noted the 
ecosystemic nature of sound: 

 
“The song of a bird is not just grist for 

compositional manipulation; it is a code of 
signification not only between members of that 
particular species, but also for the extended fabric 
of mind that forms the biohabitat within which that 
species resides” (Dunn, 2013, p. 100). 

 
Dunn’s statement parallels our own argument, that 
eco-technogenesis demands that non-organic self- 
organizing systems be considered as relational 
elements within an ecosystem. 

In 2001, biologist Claus Emmeche specualted, 
“Does a robot have an Umwelt?” (Emmeche, 2001). 
The biologist Jakob von Uexküll’s concept of Umwelt 
is defined as an organism’s perceptual world (1909, 
1992). From the concept of Umwelt, it follows that an 
organism acting within a perceptual environment 
relies on signs to interpret the material world and is 
a communicative being, even if one does not accept 
this as proof of high-level reasoning. Emmeche 
speculated autonomy and self-organization would 
be necessary qualities for occupying an Umwelt, and 
that robots could therefore have an Umwelt. In 
response, biologist Winfried Nöth offered the 
example of a robot successfully moving around its 

environment and argued even if it did have an 
experience of Umwelt, it would be impossible for 
humans to know anything about that experience 
(Nöth, 2001). In 2012, Hayles referring to Uexküll’s 
famous example of a tick (Uexküll, 1992) agreed, 
arguing if an animal as simple as a tick could have 
an Umwelt, surely a spatially-aware robot could. 
(Hayles, 2012, p. 249n4). Each of these examples 
stresses vision and proprioception as markers of 
semiosis. We argue here just as a robot moving 
around its environment has an Umwelt, an artificial 
intelligence system occupying an acoustical niche 
has an Umwelt. 

The rowdy krause meets this threshold by listening 
to its environment, identifying the least utilized 
portions of the audio spectrum, and evolving a voice 
to fill those frequencies. It performs the acoustic 
niche hypothesis as an autonomous technological 
species, its Umwelt framed by its primary sensory 
organ: its microphone. As its vocalizations evolve to 
fill previously empty portions of the soundscape, 
how do existing inhabitants of the ecosystem 
perceive its calls? Its interference in their own 
communication is minimal by design, but the rowdy 
krause’s calls are nevertheless part of the acoustic 
environment. 

 
3.2 Biosemiotics as a basis for an ethics of 
generated sound in eco-technogenesis 

Technogenesis belies the idea of infiltration and 
instead presents the problem of intermeshing and 
relationality. Relationality forces the question of 
ethics, a code that governs behaviour within a social 
setting. Hoffmeyer, Kull, Tønnensen, Beever, and 
Hendlin have all approached ethics from the 
perspective of biosemiotics, the production and 
interpretation of signs in the living world beyond 
human language. (Hoffmeyer, 1993; Kull, 2001; 
Tønnensen, Beever and Hendlin, 2015). We argue 
here that the creative use of sound requires an 
exploration of the ethics of sound generation within 
an ecosystem, an occurrence that only promises to 
increase as techniques for sonic manipulation 
continue to develop. By thinking through eco- 
technogenesis, sounds regardless of origin 
contribute for better or worse to a biosemiotic 
ecosystem, an environment within which the 
generation and interpretation of sounds as signs 
evolve in co-constitution with one another 
regardless of origin, whether biological, natural, or 
technological. Given this description, preserving the 
nature/culture divide proves likely to be a fruitless 
enterprise in the face of ongoing technological 
development. As sound-generating autonomous 
agents increasingly become part of the soundscape, 
it is crucial we consider how to design responsible 
inhabitants. This idea follows Cox’s argument that 
sound art provides an opportunity to explore the 
ontogeny of sound (Cox, 2009). But whereas in 
Cox’s argument, sound art points to a realm of 
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sound outside human sensory experience, in our 
estimation, sound not only points to a realm of 
sensory experience outside the human, it acts as a 
source of potential various meanings to an 
ecosystem’s inhabitants. Even if these sounds are 
generated by non-living self-organizing systems, 
their potential to occupy an Umwelt makes them 
“morally considerable” (Beever and Tønnessen, 
2015, p. 45). 

Part of the appeal but also the challenge of 
biosemiotic ethics is its insistence on the existence 
of systems of meaning that reside outside of human 
experience (Hoffmeyer, 1993; Kull, 2001; 
Tønnensen, Beever and Hendlin, 2015). 
Traditionally, however, conservationist rhetoric has 
relied on anthropocentric notions of beauty to drive 
home the necessity of caring for ecosystems 
(Harries-Jones, 2008). Like beautiful works of art in 
a museum, it was reasoned, landscapes should be 
preserved for future generations to enjoy. Even 
Carson relied on this line of thinking by lamenting the 
loss of bird songs for human ears (Carson, 1962). 
Recently, it has become apparent that these human- 
centred values are not only questionable in their 
efficacy, but also potentially harmful to the 
ecosystems they try to protect (Harries-Jones, 
2008). In emphasising stasis over dynamics, the 
idea of beauty as applied to ecosystems betrays 
their essence. Peter Harries-Jones argued 
Bateson’s idea of an ecological aesthetics, which 
leaves behind human-centred ideas of beauty, has 
finally started to gain traction, if without full 
appreciation for its biosemiotic implications (Ibid.). 
Bateson’s concept of ecological aesthetics, in which 
systems interact through feedback, provides a 
foundation for thinking of ecosystems as composed 
of layers that add up to something greater than 
themselves (1972). In other words, ecological 
aesthetics is a type of holistic thinking that resists 
reductionism. 

 

4. CONCLUSION 
 

Throughout this article, we considered sound 
generated by an autonomous agent as contributing 
to the co-constituted becoming of ecosystems and 
technologies. Based on our collaborative work and 
discussions, we offer insights into sound as 
computational material, eco-technogenesis, and the 
possibility for an ethics of sound generation based 
on biosemiotics in this new ecological paradigm. 

We do not present an exhaustive account of the 
subjects but invite other scholars and practitioners 
to continue the conversation and further explore the 
subject of technogenesis in relation to sound and 
ecosystems. Finally, the thorny questions of ethical 
approaches to eco-technogenesis will continue to 
present themselves in the future, especially as the 
possibilities for technological sound generation 

increase. Here we offer a starting point for 
considering ethical relationality from the perspective 
of biosemiotics. 
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Abstract

Artificial creativity is often applied in attempts to mimic or eclipse human creativity with

machines. However, as a creative force that is not bound to human experiences, it can act as a

way of approaching non-human or more-than-human creative forces from a new perspective.

This paper develops a concept of endemic machines to describe a process of engaging the

creativity of an ecosystem through a machine that adapts with that ecosystem. A case study

detailing the design and testing of an endemic machine called the Rowdy Krause helps to

ground the concept of endemic machines in practice.

The discourse of artificial creativity tends to be centred around human creativity. It

features explorations of whether artificial intelligences (AIs) can emulate artists, whether a

computational process can considered creative, and what artificial creativity means for human

creative practice. Much as R.U.R, the original conception of a robot, is a humanoid android, we

strive to see our own creativity in and through artificially creative machines.

But creative AIs also offer the opportunity for a different kind of exploration: the

exploration of a creativity that is expressly not human. Artificial creativity can act as a lens

through which to explore not only machine creativity, but other forms of creativity to which

we have no experiential access. In particular, this article focuses on non-human — henceforth

referred to as more-than-human — forms of biological creativity: the creativity of ecosystems

and evolution.



Kadish 2

The article outlines endemic machines, a set of practices and principles relating to

machines that engage creatively with ecosystems through co-evolution. These are examined in

greater depth through the presentation of a case study that details the design and testing of an

endemic machine called the Rowdy Krause.

Creativities

Much of the focus of artificial creativity has been on the arts and this has resulted in a

broad range of creative technologies from computational musical composition (Kroos) to robot

painters (Cohen) and interactive sculptures (Chan et al.). What these artificially creative works

share is their audience; their creativity is for human enjoyment. Furthermore, the creativity that

they display is modelled on human creativity. They are the result of attempts to imbue machines

with the types of creativity that we, as humans, perform.

This type of work has made important contributions to the understanding of artificial

intelligence and human creativity and, in some cases, pushed the boundaries of the creative

fields with which it engages. But to limit explorations of artificial creativity to these kinds of

tasks would be to limit a fundamentally non-human creativity to trying to emulate and extend

humanity. Robots, artificially intelligent agents, and autonomous machines are built by humans,

modelled on humans, and often do work for humans, but they are in fundamental ways, not

human. They are other-than-human, or perhaps more-than-human (Abram).

A more-than-human creativity affords the capacity to interact with other more-than-

humans in new and perhaps interesting ways. Robots can sense the world with an expanded —

or constrained — set of sensory apparatuses that immediately creates a perceptual world to which

humans don’t have direct access. Artificially intelligent agents are unencumbered by some of the

innate ways that humans think, leaving them open to relating to other more-than-humans in ways

that we are fundamentally incapable.
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Due to that openness, number of efforts to use AI to understand animal communication

are already underway. For example, an initiative called CETI1 aims to use AI to better understand

whale communication (Andreas et al.). Other efforts have produced promising results translating

the ultrasonic vocalizations of rodents (Coffey, Marx, and Neumaier).

However, current artificially intelligent robotics situated in biological ecosystems tend to

be programmed for productivity rather than creativity (e.g. Bergerman et al., Oberti and Shapiro).

In terrestrial ecosystems, vision-based AI is used in precision agricultural robots to apply spot-

adjusted treatments of water, fertilizer, and pesticides in order to regularize plant growth and

maximize yields (C. Yang, Sui, and Lee). Underwater, deep learning systems can assess fish

behaviour, estimate their size, and assess water quality in fish farms (X. Yang et al.). These

practices impose an industrial regularity on landscapes, flattening their complexity and muting

the creativity of the ecosystem.

The creativity of ecosystems resides in the complex web of relationships and

dependencies that perpetuate the flow of materials and energies. It is the combined creativity

of the evolutionary processes shaping the species that compose the living community of the

ecosystem (Gould). This is the virtually boundless creativity that results in Darwin’s "endless

forms" (1859), the incredible diversity of the tree of life.

The creativity of evolution is a particular creativity. It is distributed, with creative

contributions arising from many sources and interactions (Beatty, “The Creativity of Natural

Selection? Part I: Darwin, Darwinism, and the Mutationists” “The Creativity of Natural

Selection? Part II: The Synthesis and Since”). It is recursive, looping back on itself in spirals

of feedback and response. And it is non-teleological; there is no end goal, though there may be

1

The Cetacean Translation Initiative, https://www.projectceti.org/
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some directionality (Dobzhansky Beatty, “The Creativity of Natural Selection? Part I: Darwin,

Darwinism, and the Mutationists”).

In this creativity of evolution and ecosystems lies an opportunity for artificial creativity.

It is an opportunity to engage, as a more-than-human creativity with a creative force that is itself

more-than-human. A chance to engage ecosystems with an openness that is partially liberated of

human ideas of what an ecosystem should be, what form it should have. There is the possibility

of forming new types of relationships with more-than-human inhabitants of an ecosystem that lie

outside the realm of human sensory perception and human desire. The possibility of approaching

ecosystems as they are, instead of as we want them to be.

Trends in Robotics in Ecosystems

The aforementioned AI-based animal communication projects are just one way that

researchers have attempted to develop machines with ecologies in mind. Van Wynsberghe and

Donhauser defined three categories to group different kinds of environmental robots:robots-in-

ecology are general-use robots that are used for environmental purposes such as data collection or

surveying; robots-for-ecology are robots designed specifically for use in ecology or by ecologists;

and ecobots are robots that are "ecologically functional" — that is, they perform some ecosystem

function as opposed to merely observing or collecting.

This last category, ecobots, is of particular relevance to the discussion here. The notion of

functional implies an ecologically significant role. An ecobot, therefore, is active in "the cycling

of materials and the flow of energy" (Odum) that shape the ecosystem. Note, however, that there

is no requirement in Van Wynsberghe and Donhauser’s conception of ecobots that the machines

are artificially intelligent or necessarily creative. The two examples of digital ecobots that they

give — they also discuss bio-tech hybrids such as genetically engineered plants and biofilms as

potential ecobots — are autonomous underwater robots designed to hunt and kill predators that
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have become overabundant and are destabilizing coral reefs.

These ecobots are interesting examples of robots performing an ecosystem function. They

use AI systems to detect their targets and help conservation biologists to bring the ecosystem

into a state of equilibrium. They are designed to address a situation where an apex predator has

become successful beyond the carrying capacity of their environment. In that sense, they are

indeed engaging the material and energetic flows of an ecosystem. That engagement, however,

is fixed, along with their mission.

Creativity and Endemism

Though the ecobots described in the previous section have an ecological mission, the

terms of their operation are still set by human designers. The concept of endemic machines

proposed here is something more open-ended. It sets forth a paradigm for a type of digital

engagement with ecosystems that seeks creative ways of contributing to the ecology of a place.

It relies on the opacity of computational evolution — including the widespread ability of

computationally evolved systems to produce results that confound their programmers (Lehman

et al.) — as an entryway into the equally opaque world of biological evolution.

Endemic machines are grounded in the ecological concept of endemism. In ecology,

endemism describes the relationship between a species and a particular place (Morrone). The

singularity of the linkage between place and species signifies a special bond. An endemic

robot, like an endemic species, is “produced in a specified place and nowhere else in the

world" (Darwin).

Materially, this would seem antithetical to the way robots are produced. As artefacts of

a globally-connected system of trade, robots are conglomerations of standardized parts, each

manufactured in a different, highly-specialized factory from materials harvested from around the

world. They are, in this sense, the very opposite of endemic.
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While it is possible for robots to incorporate locally sourced materials, the discussion

here focuses not on the production of the physical robot, but on the development of a robot’s

behaviour. The robot’s physicality may be of a distributed origin, but for an endemic robot, its

behaviour is learned, evolved, or otherwise produced in a specified place. Like evolution itself,

the development of the robot’s behaviour is uncharted; there is no defined destination.

As the endemic robot learns with the ecosystem, it engages in a process of eco-

technogenesis (Hines, Kadish, and Ranten). An ecological extension to the concept of

technogenesis (Stiegler, expanded by Hayles), eco-technogenesis refers to a process of co-

evolution whereby an ecosystem and a technology form a shared, entangled history. Each exists

as it does because of the other.

Case Study: The Rowdy Krause

The concept of endemic robotics is explored in more depth through a case study of

an embodied, artificially intelligent agent called the Rowdy Krause. The Rowdy Krause is an

experiment in artificial niche construction in a biological ecosystem. The machine’s goal is to

create a space for itself, a niche within an existing ecosystem.

Niches and the Acoustic Niche Hypothesis

An ecological niche describes the collection of environments and resources that impact

the lifecycle of an organism (McCormack). It encompasses their food, shelter, predators, prey,

symbionts, and waste streams (Pocheville). Niche construction recognizes that, as an organism

forms its own niche, it shifts the resource landscape such that the ecosystem itself changes

form (Laland, Matthews, and Feldman). This opens space for new niches and shifts the adaptive

pressures on other species. The act of a species inhabiting a space changes that space and has

impacts that ripple through the ecosystem.

The Rowdy Krause engages with a particular part of an ecosystem and a specific part of
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(a) The internal electronics. (b) Testing at Byhaven på Sundholm.

Fig. 1. The Rowdy Krause, in development and initial testing.

its resource landscape: the soundscape. The soundscape is the collection of all of the sounds in

a particular environment (Schafer) and its study in the context of ecology is called soundscape

ecology (Pĳanowski et al. Farina). Niche theory appears in soundscape ecology as the acoustic

niche hypothesis (ANH), which treats the soundscape as a limited resource that ecosystem

inhabitants can use (Krause). Much as plants compete for sunlight in a dense forest, species

compete for sonic territory and construct niches in the acoustic spectrum.

The ANH hypothesizes that different species try to minimize overlap in their use of sonic

resources to not confuse signals. Partitioning can occur spectrally, by using different frequencies

or tones; temporally, by vocalizing at different times of the day or the year; or spatially, by

moving to different locations. Of these, the Rowdy Krause focuses on spectral partitioning to find

itself an acoustic niche.
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Designing for Ecosystems

One of the central questions in the practice of endemic machines is how to design a

machine for an ecosystem. Even the notion of what it means to do something for an ecosystem

appears to require an understanding of what an ecosystem wants which is itself problematic.

It implies a teleology to the dynamics of ecosystems that runs counter to the prevailing

understanding of evolution.

Two ideas ultimately served as guides in the design process for the Rowdy Krause. The

first is Gregory Bateson’s concept of ecological aesthetics and his notion of being "responsive to

the pattern which connects". The other is Rafael Lozano-Hemmer’s assertion that electronic art

should have the ability to surprise the artist (Lozano-Hemmer and Ranzenbacher).

Ecological aesthetics helped to focus the process on the feedbacks and interactions that

the Rowdy Krause would encounter. It drew attention to how current inhabitants of the ecosystem

might perceive the sudden arrival of a new sonic agent. It focused the inquiry on to how to frame

the process of listening within a soundscape and how to produce ecologically relevant sound to

project back into that environment.

The idea of art surprising the artist helped to reinforce that the Rowdy Krause should not

necessarily produce the sounds that met my own desires or expectations, but that its aim was to fit

the fabric of the existing soundscape. Surprising vocalizations produced by the Rowdy Krause

are acceptable and perhaps even valuable so long as they serve the purpose of establishing an

acoustic niche. This prompt reinforced the idea that, in the process of building and programming

the Rowdy Krause it was important to be able to differentiate between something broken or not

working and something not working as expected, but in a manner that is still in fulfilment of its

overarching goal.
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Prototype

The first task in the design of the Rowdy Krause was to design the mechanism for

producing sound. The intent was for the Rowdy Krause to behave as a novel animal in the

soundscape, so it was important for it to have behaviours which responded to the ecosystem, but

also for it to be able to evolve over time. Neuroevolution of augmenting topologies (NEAT) is a

computational evolution algorithm that is well-suited to this task as it evolves a neural network

structure, which can be used to drive specific behaviour. The algorithm adds complexity to the

network as needed, meaning that the structure of the behaviour tends to move from relatively

simple at the outset to more complex behaviours over time.

However, an artificial neural network (ANN) itself does not produce sound. It merely

maps inputs to outputs through a network of artificial neurons, analogous to a brain. That brain

requires some form of instrument to turn its signals into sound. Recent research has used a range

of different "instruments" for this task. Some ANNs generate raw audio waveforms that can

be played directly on a speaker (van den Oord et al.). Others generate audio in the frequency

domain, producing spectral representations that are then converted into sound (Engel et al.). Yet

other attempts use a more symbolic approach, generating musical scores or MIDI instructions

that can be played on real or electronic instruments (Huang et al.).

For the purposes of the Rowdy Krause these approaches all seemed either too limited or

too open. The symbolic efforts are typically used to generate music or speech, both of which

are rooted in human culture. If the project of endemic machines is based on using more-than-

human intelligence to interact in new ways with the more-than-human ecosystem, it would

seem antithetical to limit the range of sounds to those generated by human cultures. The raw

waveforms and frequency domain representations pose almost the opposite challenge: they
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can create almost any sound imaginable, far beyond the range of what would be found in an

ecosystem.

The task, then, was to identify a mechanism for generating sound that could produce a

range of sounds that would not be out of place in an ecosystem, but that isn’t limited to human

semiosis. A search for a suitable mechanism lead to the Pink Trombone (https://dood.al/

pinktrombone/). Pink Trombone (fig. 2) is a vocal tract simulator made for touchscreen devices

so that users can control a virtual tongue and palate as well as the voicebox to create human-

like noises. However, it is also possible to re-code it so that the dimensions of the vocal tract

can vary outside of the range of human anatomy and the tract can be controlled in ways that are

not possible for a human to achieve. Together, these features formed an even balance between

something that is based in biology, but not too specifically human.

To control Pink Trombone, the ANN’s outputs were connected to the control points that

determine the shape of the vocal tract’s throat, tongue, and lips (see fig. 2). The ANN’s outputs

were calculated at every time step and the shape of the vocal tract was adjusted accordingly. This

produced a unique vocalization for each evolved iteration of the neural network structure.

In NEAT, the process used to evolve the ANN, a fitness is calculated for each of

the individuals — the different neural network structures — in a generation (Stanley and

Miikkulainen). The ANNs that produce the highest fitness levels in each generation are selected

to reproduce and form the next generation, driving the population towards higher fitnesses.

The design of an appropriate measurement of fitness is a key component in the success of an

evolutionary algorithm.

The goal of the Rowdy Krause was to find an acoustic niche in an existing ecosystem.

Thus, the fitness for an ANN controlling Pink Trombone was calculated as the uniqueness of

the spectral composition of the sound that was produced. In practice, this involved sampling the
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Fig. 2. The Pink Trombone interface (Used with permission). A video of the Rowdy Krause

prototype evolving control of Pink Trombone in real time is available at

https://vimeo.com/359044847.
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soundscape of the ecosystem in question, performing a fast Fourier transform (FFT) to calculate

its spectrum, and then creating a database of the spectral components of the soundscape samples.

Sounds produced by the ANN and Pink Trombone were then compared to this database and those

most different from the recorded sounds in the database were determined to be most fit.

This system was demonstrated initially at a workshop in the summer of 2019, using

recorded audio from a forest garden in southern Sweden as the soundscape. This proof-of-

concept demonstration was entirely virtual and offline, but the sounds that were generated were

interesting enough to warrant further exploration.

Embodied Implementation

The prototype demonstrated the efficacy of evolving a neural network to control the Pink

Trombone. Missing, however, was the element of feedback from the ecosystem that is an essential

component of an endemic machine. The Rowdy Krause could learn from the recorded audio in

the virtual versions, but the ecosystems in question had no opportunity to respond to the Rowdy

Krause.

The shift from a prototype to an embodied device prompted a miniaturization of the

computational components of the system. The code that had previously been executed on a laptop

was now running on a Raspberry Pi — a single-board, embedded computer with vastly less

processing power. The consequence of this was that code that had run previously in realtime, a

key feature of a system that generates live audio, was now unable to do so. The process had to be

reconsidered.

The prototype system had three subsystems: the Pink Trombone, the evolutionary system

(NEAT), and a control system that linked the evolved ANNs to the Pink Trombone’s interface.

The combination of these three elements in this way was convenient, but highly inefficient. To

enable the software to run on the embedded computer, the Pink Trombone was recoded into
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Fig. 3. Sample spectrograms showing the frequency components of a pure 4 kHz tone (left), the

call of a crane (centre), and white noise (right). The horizontal axis is time and the vertical axis is

frequency, with the darkness of the image at a point indicating the intensity of that frequency

component of the sound at a given point in time.

Python and better integrated into the rest of the software.

The system worked — the embodied the Rowdy Krause was able to evolve a vocalization

— but minor changes in the new implementation of the process meant that the sounds it produced

were quite different from those of the virtual prototype. In place of the types of vocalizations

produced by the prototype — a sort of rhythmic blooping that sounded vaguely like it could have

come from an undiscovered primate — the sounds were more often longer and droning. This

veered occasionally into an unpleasant high-pitched whine.

Consideration of the structure of the fitness function revealed the likely reason for

this. The fittest sounds — those most spectrally different from the set of sounds heard in the

soundscape — are likely to be pure tones on frequencies that have minimal usage (see fig. 3 for

sample spectrograms). The structure of the virtual system had constrained the Rowdy Krause

from finding these sounds but the implementation in the embodied version of the Rowdy Krause

made it possible. The fitness function now had to be adjusted to account for the change in

capability of the instrument.

From a biosemiotic perspective, the problem with droning vocalizations and pure tones

is that they are informationally poor. A source that produces only tonal sounds tends to have
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low Shannon entropy which, from the perspective of information theory, means that it has low

information content. A tonal vocalization might be appropriate as signal of alarm, but not for

general communication.

The other challenge is that, in this configuration, the Rowdy Krause had a tendency to

become trapped in an evolutionary dead end. As the evolving population of neural networks

found these tonal vocalizations, the populations converged towards these types of highly fit

solutions. They ceased to explore the evolutionary landscape of possible vocalizations.

To address these two problems, two modifications were made to the structure of the

neuroevolutionary process: The fitness function was adjusted to reward sounds with greater

spectral entropy; and the vocalizations produced by the various evolved neural networks were

added to the database of sounds alongside those recorded from the soundscape. The first

modification encouraged the pursuit of a more temporally varied vocalization. The addition

of evolved vocalizations to the database meant that the populations were encouraged to create

sounds different from those they had created in the past in addition to being different from sounds

recorded from the soundscape. The effect of this was to create a sort of novelty search, driving

the evolutionary neural networks toward new configurations and helping them to avoid becoming

stuck in a particular type of vocalization.

With these modifications, the Rowdy Krause was deployed virtually once again as an art

installation at the Artificial Life virtual conference in the summer of 2020. For this version, titled

Virtual Rowdy Krause - Point Pelee, vocalizations were evolved using streaming audio from a

Point Pelee National Park near Windsor, Canada. A recording of that work is available online2.

The embodied version of the Rowdy Krause was also tested in the field in Malmö,

2

https://soundcloud.com/david-kadish/virtual-rowdy-krause-point-pelee-alife2020



Kadish 15

Sweden in October, 2020. Due to travel restrictions related to the COVID-19 pandemic, the

field site was moved from a community garden in Copenhagen to the balcony of my apartment

in Malmö, where it overlooked a small park and playground, a busy urban road, and an active

construction site for the regional hospital. A short video recording of the field experiment can be

viewed online3.

Vocalizations

The two iterations of the final version of the Rowdy Krause — one evolving in a virtual

soundscape from Point Pelee and the other in the real soundscape on my apartment balcony —

were able to produce vocalizations. Those vocalizations were varied, occasionally sounding like

a strange frog and other times more like the wind whistling over a pipe without quite producing

resonance.

The embodied version of the Rowdy Krause inhabited the balcony for approximately

two weeks. About a week into its residency, I heard a sound from outside and found myself

unsure of whether it was coming from the Krause. Whether it was the Rowdy Krause or a bird

or something else entirely, I found myself paying more attention to the soundscape outside my

workspace than I had previously.

Niche Construction and Endemism

It is possible to determine more precisely whether the Rowdy Krause was able to

construct a niche in the two ecosystems that it inhabited. Figure 4 visualizes the results of the two

experiments. The plots are two-dimensional representations of the spectral components of sounds

created using a process called t-distributed Stochastic Neighbour Embedding (t-SNE). Each point

represents a recorded or evolved sound and the proximity of two points reflects their similarity.

3

https://vimeo.com/542298317
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The darkness of the points representing evolved sounds shows when in the evolutionary process

that sound was produced, with sounds from early in the evolutionary process appearing lighter.

Figure 4a shows the evolved sounds from the balcony experiment in blue and the recorded

sounds from the soundscape in green. There is very little overlap between the clusters of evolved

and recorded points, indicating that, for the most part, the evolved sounds were spectrally

different from the recorded soundscape. The Rowdy Krause appears to have been successful

in constructing an acoustic niche — represented by the cluster of blue points — that is distinct

within the soundscape. A similar pattern is seen in the evolved (orange) and recorded (purple)

sounds from Point Pelee in fig. 4c.

The plots can also help to address the question of whether the Rowdy Krause was able to

become endemic to these two soundscapes. One of the features of endemism is particularity to

a place. Figure 4b shows the evolved vocalizations from the two experiments. The points have

some overlap towards the centre of the plot, but for the most part are found in two distinctive

clusters. This indicates that the evolutionary processes proceeded differently in the two

soundscapes. However, it is difficult to discern the degree to which this is due to the different

soundscapes or different random initial conditions for the evolutionary process. It does mean that

it is possible that the Rowdy Krause demonstrated a degree of endemism.

Reflections

There is a point in the description of the design process in the previous section that

illustrates a central issue in the design of endemic machines. After the redesign of the Rowdy

Krause’s software to work on an embedded system, it was not performing in the same way it

had been in the initial prototype. Moreover, the change in performance produced a result that

was not in line with my expectations of what the Rowdy Krause should sound like. As a result,

adjustment were made to the code.
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(a) Audio from the embodied (balcony) version. (b) Evolved sounds from both experiments.

(c) All sounds from the balcony and Point Pelee.

Point Pelee Recordings

Balcony Recordings

Point Pelee Evolved

Balcony Evolved

First                                         Last

Generation

Fig. 4. Plots of the recorded and evolved sounds from the experiments at Point Pelee (virtual) and

the balcony (embodied). Sounds that were evolved later are shown in darker shades. The plots

use t-SNE to visualize high-dimensional data (the frequency components of each sound) on a

two-dimensional plane. The space between points relates to the similarity between the sounds

with sounds that are more alike being clustered together.
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In retrospect, however, there is a question as to whether those adjustments should have

been made. It is not clear that the changes served the ecosystem. While the new vocalizations did

not meet my expectations, they may still have been ecologically relevant. Was the Rowdy Krause

broken or merely being creative in a manner that was alien to me? In the design of endemic

machines, this is often unclear.

Particularly in the throes of a design cycle, it can be difficult to step back and consider

whether a result is correct for an ecosystem. One way of addressing this is found by returning to

Bateson. An often omitted part of his quotation about "the pattern which connects" is that "[t]he

pattern which connects is a meta-pattern. It is a pattern of patterns." Focusing on the result is

problematic because the result is not necessarily intended for human consumption. One might

instead concentrate on the processes — the patterns of patterns — to determine whether an

endemic machine is working.
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